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Abstract 

The present study investigated the fish populations of the lower Forth Estuary, east 
Scotland. Cooling water extraction by the 2400 MW Longannet Power Station (LPS) 
inevitably removes a certain quantity of fish from the estuary, all of which experience 
mortality. The present study employed a sampling regime of greater intensity than 
previous studies to investigate the extent of mortalities from January 1999 - December 
2000. Collections of fish impinged on intake screens were made eight times monthly, at 
L W or HW of spring or neap tides during the day or by night. Marine species 
dominated the assemblage of fish collected, with sprat, herring, and whiting 
contributing> 80% of total abundance. Sprat was twice as abundant as herring in 1999, 
while the proportions were very similar in 2000. Total abundance of all species 
collected in 1999 was estimated at 1. 09 x 107

, while the value of 3.29 x 107 in 2000 was 
three times larger. These figures were the largest recorded among British estuarine and 
marine power stations, but were precisely the correct order based on an exponential 
relationship between total impingement and water abstraction rate established from data 
from other locations. Validation of the estimated total biomass of fish removed was 
given by comparison with the known total mass of all materials disposed to landfill. 
Statistical analysis of impingement data showed that tidal range and season were the 
most important environmental variables influencing the rate of removal of fish from the 
estuary. That light was not significant for most species is attributed to high levels of 
turbidity and the resulting low visibility by day and night. 

Demersal and benthic fish abundances collected from 1982 - 2000 in 30 annual trawls 
at three sites in the mid-lower Forth Estuary were analysed. Species tended to be 
present in greatest abundance at the most seaward of the sites. Patterns of seasonal 
abundance reflected those observed in the impingement study at LPS, and catches 
tended to be greatest at L W. Total species richness showed no significant trend over 
time, whilst total annual abundance of fish captured in trawls showed a significant 
negative trend. This was largely due to significant declines in the two most abundant 
species, namely whiting and eel pout, attributable in the latter case to increasing 
temperatures. Changes in the ichthyofaunal composition were largely driven by 
whiting, eel pout, cod and plaice. Eight of ten common species showed no significant 
trend in abundance over the length of the time series, suggesting them to perhaps be at 
equilibrium densities. 

Quantities of commercially fished species above minimum landing size limits that were 
removed by LPS were very low, and restricted to herring and occasional whiting. The 
quantity of juveniles that could have recruited into the fished populations was expressed 
as equivalent adults. The values were larger than any previously reported in the UK, 
primarily due to the quantities of juvenile fish impinged being greater than at any other 
British power station, and the importance of the Forth as a nursery area for marine 
species. 

It was concluded that LPS is the dominant UK power station in terms of magnitude of 
impingement losses. It may be prudent to consider a precautionary approach to mitigate 
losses, and to this end options for reduction of the magnitude of impingement are 
discussed. 
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Glossary of Abbreviations 

Abbreviations in the present study are generally introduced in the text, but the following 

list is intended to provide a convenient reference source. 

AFDS, acoustic fish deterrent system. 

CA, diadromous migrant (see section 1.3.1). 

CI( s), confidence interval( s). 

COMAR, code of Maryland regulations. 

CSS, critical swimming speed. 

CV, coefficient of variation. 

CVSD, coefficient of variation of standard deviation. 

CW, cooling water. 

CWIS, cooling water intake structure. 

DD, density-dependent. 

DI, density-independent. 

DO, dissolved oxygen. 

EIA, environmental impact assessment. 

EPR!, Electric Power Research Institute. 

ER, estuarine resident (see section 1.3.1). 

FRPB, Forth River Purification Board. 

FW, freshwater (see section 1.3.1). 

GLM, generalised linear modelling (model). 

GLMs, generalised linear models. 

HW, high water. 
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ICES, International Council for the Exploration of the Sea. 

KPS, Kincardine Power Station. 

LPS, Longannet Power Station. 

LTso, lethal temperature at which 50% of tested organisms perish. 

L W, low water. 

MA, marine adventitious (see section l.3.1). 

MCLS, minimum commercial landing size. 

MDS, multidimensional scaling. 

MJ, marine juvenile (see section l.3.1). 

MS, marine seasonal migrant species (see section 1.3.1). 

MW, megawatt. 

MW e, megawatts of electricity. 

NS, not significant. 

NTU, nephelometric turbidity unit. 

PRIMER, Plymouth Routines in Marine Ecological Research. 

PSU, practical salinity unit(s). 

SD, standard deviation. 

SE, standard error. 

SEP A, Scottish Environment Protection Agency. 

SIMPER, similarity percentage analysis. 

SL, standard length. 

SSB, spawning stock biomass. 

SN, survey vessel. 

TL, total length. 

US EPA, United States Environmental Protection Agency. 
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Chapter 1. Introduction 

1.1. Overview 

An estuary is "a semi-enclosed coastal body of water, which has a free 

connection with the open sea, and within which sea water is measurably diluted with 

fresh water from land drainage" (Pritchard, 1967). The fact that estuaries are dynamic 

transition zones between freshwater and marine ecosystems is significant for the life 

inhabiting them, not least the ichthyofauna. Freshwater, marine, diadromous and 

estuarine-resident fish can be expected to form the fish assemblage of most estuaries, 

typically with relatively few species thriving on the abundant resources concentrated in 

the estuary by the action of freshwater input and tidal influence (Day et al., 1989). The 

sheltered nature of estuaries as harbours, flat land, and of course the source of water 

they offer, makes this type of environment desirable for human settlement. 

The fish assemblage of the Forth Estuary, East Scotland, has thus far been most 

fully studied by trawl studies undertaken by the Forth River Purification Board (FRPB) 

and its successor, the Scottish Environment Protection Agency (SEPA). Seasonal and 

spatial differences in the composition and abundance of the fish populations have been 

investigated (reviewed by Poxton, 1987). Estimates of total fish biomass and 

production, as well as approximate population sizes for the more abundant species, are 

based solely on demersal studies using either Agassiz or beam trawls (Elliott and 

Taylor, 1989; Elliott et aI., 1990). Other than one short pilot midwater trawl study in 

the early 1980s (FRPB, 1984), the information obtained on pelagic species is based on 

the comparatively small numbers of these fish that are caught in demersal trawls. 
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Cooling water abstracted from the Forth Estuary by the electricity generating station at 

Longannet has been estimated to remove substantial quantities of fish (Maitland, 1997; 

1998), which are lost from the estuary. The present study intended to undertake a more 

intensive sampling programme of cooling water intake than previously attempted at this 

location, in order to both quantify the extent of power station mortality and to 

investigate hypotheses concerning the influence of environmental factors on rates of 

removal of fish species in cooling water. An assessment of the 19 year Agassiz trawl 

dataset was carried out to examine long term trends in abundance in the benthic and 

demersal fish assemblage, as well as seasonal and spatial trends in abundance. Novel 

pelagic trawling was initiated to address the paradoxical situation existing whereby a 

greater abundance of individuals of pelagic species were estimated to be removed from 

the estuary in cooling water than were assessed to be present by inadequate trawling on 

or near the bottom. 
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1.2. The study area: the Forth Estuary 

The Forth Estuary stretches eastwards from the upstream limit of tidal intrusion 

in Stirling downstream along some 48 km to the seaward limit just east of the Forth 

Road Bridge (Maitland et at. , 1984; Wallis and Brockie, 1997). Thus the head of the 

estuary is at Stirling, the upper estuary is taken as being from Stirling to Alloa, the 

middle estuary (including Longannet) from Alloa to a line between Bo'ness and 

Crombie Point, and the lower estuary from Bo'ness/Crombie Point to the Queensferry 

road and rail bridges at the mouth of the estuary (Figure l.1) (McLusky, 1987a). 

SCOTLAND 

THE FORTH ESTUARY 

_ Stirling 

Cambus 

N 

t 

Forth Bridges 

Figure l.l. The Forth Estuary. LPS denotes position of Longannet Power Station, KPS of the now 
decommissioned Kincardine Power Station (see Chapter 2). Single letters indicate locations of trawls 
discussed in Chapter 3: P = Port Edgar, T = Tancred, L = Longannet. Iwost = L W of spring tides; hwost 
= HW of spring tides. 
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Freshwater inputs to the estuary are largely from the rivers Forth and Teith and the 

Allan Water, with the flow rate varying with season from a mean of 24 m3s-1 from June 

to August, increasing to 93 m3s"l between December and February (Wallis and Brockie, 

1997). This reflects the increase in river flow due to rain and/or melting snow in 

autumn and winter. It is the ebb and flow of the tide that dominate water movements in 

the estuary, however. The tidal cycle is semi-diurnal, with a mean spring tidal range of 

5.0 m and a mean neap range of 2.5 m (Webb and Metcalfe, 1987). From the middle 

estuary seawards the flood is longer in duration than the ebb, resulting in faster average 

ebb velocities (70-110 cms"l) compared with flow (40-70 cms-\ at low water a long 

period of slack water of about 3 hours occurs, particularly in the lower reaches such as 

at Rosyth (Webb and Metcalfe, 1987). Tidal excursion varies between 8-16 km, the 

maximal values tending to be between Cambus and Kincardine (see Figure 1.1.) (Webb 

and Metcalfe, 1987). 

The interaction of freshwater flow and tidal fluxes of seawater influences the physico

chemical composition of the Forth Estuary. The estuary varies from being partially

mixed to well-mixed (Webb and Metcalfe, 1987; McLusky, 1989; Wallis and Brockie, 

1997), with the tidal range influencing the extent to which denser, more saline water 

invades the upper layers of freshwater. The rate of freshwater flow affects the upstream 

penetration of salt. Thus a low tidal range occurring at the same time as a high 

freshwater flow would give salinity of 0 PSU several kilometres below Stirling, whereas 

a high tidal range combined with low freshwater flow would confine water with a 

salinity of 0 PSU to near the head of the estuary at Stirling. Surface waters of the 

estuary tend to ebb before the bottom waters, whereas the bottom waters flood earlier 

than the surface waters; in common with most northern hemisphere estuaries the flood 
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currents are stronger on the north side of the estuary, though the cause of this has been 

suggested to be due to the bathymetric action of the estuary, rather than the expected 

effect of Corio lis' force (Webb and Metcalfe, 1987). 

Along with salinity, temperature is an important physical variable that is affected by 

fresh and saltwater interaction. In summer, the freshwater temperature is usually 

greater than that of the seawater, whereas the opposite is true in the winter. Upstream, 

the ameliorating effect of the sea is diminished, so that the more freshwater stretches of 

the estuary are in phase with the surrounding land in terms of temperature change 

(Harrison, 1987), which may result in relatively rapid temperature variability compared 

to more marine areas. 

The area of the estuary of primary interest to this study, between the Forth Bridges and 

Kincardine Bridge (Figure 1.1), is approximately 6057 ha at high water, reducing to 

3850 ha at low water (Jayamanne and McLusky, 1997). The estuary's sub-tidal 

sedimentary regime is mostly of fine material with median diameter < 50 J.l.m, with 

coarse mixed materials in some areas, notably where the estuary is constricted (at 

Grangemouth docks, Kincardine Bridge and near Rosyth) and in the main channel near 

the north shore (Elliott and Kingston, 1987), as well as stony substratum nearer to the 

mouth of the estuary at Blackness and Port Edgar (Elliott and Taylor, 1989). Fine mud 

is found at the inter-tidal mudflats of Kinneil and Skinflats, with this mud also 

extending to the sub-tidal areas next to these locations. A study of 80 locations in the 

lower and mid-estuary by Elliott and Kingston (1987) revealed that the silt and clay 

content (i.e. material < 63 J.l.m diameter) of these areas was generally quite high 

(between 40 and 80 % in many locations). 
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The fineness of the estuary's sediments, combined with the water movements already 

mentioned, makes the Forth Estuary turbid. Maximum turbidity occurs at the 

freshwaterlbrackish water interface, between 3 and 15 km downstream of Stirling; its 

intensity depends on freshwater flow and tidal range and varies greatly between spring 

and neap tides (Webb and Metcalfe, 1987; Dobson, 1997). Sediment re-suspension 

affects oxygen levels in the water, and the variability of freshwater flow with season is 

crucial in this respect: low flow combined with higher temperatures in summer causes 

reduced dissolved oxygen levels, whereas in winter higher freshwater flow and 

decreased temperature mean that oxygen levels are typically > 80 % saturation 

(Griffiths, 1987). Dobson (1997) suggests that a correlation between dissolved oxygen 

concentration and salinity in the mid and upper estuary is due to permanently trapped 

organic matter acting as the primary consumer of dissolved oxygen in low salinity 

regions, rather than being caused by suspended solids in the water column. It is 

important to note that oxygen depletions are rare lower down the estuary, but that any 

oxygen deficit in the upper estuary may act as a barrier to migratory fish needing to 

descend to the lower estuary and ultimately the sea. To this end, SEPA defines a 

minimum dissolved oxygen level environmental quality standard (EQS) of 4 mgTl 

(equated to a 95th percentile of 4.5 mg.rl) as being desirable to reduce the likelihood of 

stress on fish such as Atlantic salmon, Salma salar (Leatherland, 1987; Elliott et al., 

1988). 

The Forth Estuary has been described, along with the Firth of Forth, as being the "most 

intensively used sea area around Scotland" (McLusky, 1987a). The location of 

numerous major sources of industrial and municipal effluents has had a detrimental 
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effect on water quality in the estuary. Improvements have been made in recent years 

with respect to the treatment of effluent before disposal into the estuary. Griffiths 

(1997) lists examples of these improvements such as provision of long sea outfalls and 

primary/secondary treatment of waste in sewage treatment works, as well as biological 

treatment of waste produced by companies such as Weir Paper, Quest International, 

Zeneca and British Petroleum. These changes have had a tangible effect, for example 

the return to the Forth of the anadromous smelt Osmerus eperlanus, a fish species 

sensitive to pollution (Griffiths, 1997; personal observations). 

In common with most estuaries, the Forth Estuary is regarded as being biologically 

productive: between Kincardine Bridge and the Queensferry Bridges, it is estimated that 

over the whole area covered by tides there exists a total of almost 3500 tonnes wet 

weight of benthic biomass (McLusky, 1987b) which supports a subtidal biomass of 

shrimp (mostly Crangon) of about 110-170 tonnes (Jayamanne and McLusky, 1997). 
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1.3. The ichthyofauna of estuaries 

General features of fish found in estuaries, particularly temperate estuaries of the 

northern hemisphere, are introduced as a basis to place the later information specific to 

the Forth in context. 

1.3.1. Categories of estuarine fish 

Elliott and Dewailly (1995) provide a comprehensive account of classifications 

of the fish in European estuaries. A fish present in an estuary generally belongs to one 

of the following categories: 

FW - freshwater species such as perch, Perea jluviatilis, which penetrate the upper 

reaches of estuaries by voluntary migration or due to river spates; 

CA - diadromous fish seasonally migrating through the estuaries, such as anadromous 

Atlantic salmon, Sa/mo safar, or catadromous eel, Anguilla anguilla, requiring to use 

the environment as a route linking their preferred areas for spawning and feeding; 

ER - estuarine resident species, spending the whole life cycle in estuaries, for example 

pogge, Agonus eataphraetus, or eel pout, Zoarees viviparus; 

MS - marine species with seasonal migrations into estuaries as juveniles and adults, for 

example for overwintering purposes, like the clupeids, sprat and herring; 
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MJ - marine species using the estuary as a nursery for juveniles with adults present only 

in very low numbers, e.g. the gadoids, whiting, Merlangius merlangus, and cod, Gadus 

morhua, and the flatfish, plaice, Pleuranectes platessa, and dab, Limanda limanda; 

MA - consists of marine adventitious species, such as ling, Malva malva, and lesser 

weever, Trachinus vipera, which enter the lower reaches of the estuary on an irregular 

basis, mostly for opportunistic feeding. 

Some fish may lie out with these strict definitions. Flounder, Platichthys f/esus, is 

regarded as being the classic example of an ER species (McLusky, 1989), but in fact 

leaves to spawn in the deeper waters beyond the estuary mouth (Elliott and Taylor, 

1989). Newly settled young then ascend the estuary to use the upper turbid reaches as a 

nursery, and adults also re-enter. Some authors have tentatively classified flounder as 

CA species, e.g. Costa and Elliott (1991), others suggest either ER or CA is possible 

(Pomfret et aI., 1991). The thesis uses the abbreviations above throughout, so reference 

should be made to this section in order to clarify the definitions used. 

1.3.2. Characteristics of estuarine fish 

Abundant biological resources are concentrated in estuaries by the combined 

factors of freshwater input and tidal action, and this is reflected in very high levels of 

biomass production compared to other aquatic ecosystems. Estuaries may produce 

biological resources at the rate of 16 g m"2year"l, a figure that can be contrasted with the 

world oceanic mean of less than 1 g m"2year"1 (Day et al., 1989). To exploit these 

resources, estuarine fish must be able to adapt to the accompanying fluctuating 

23 



conditions caused by these same abiotic factors. Species distribution within estuaries is 

governed by many influences, but water temperature, salinity and dissolved oxygen 

levels are paramount. In a study of the Humber Estuary, Marshall and Elliott (1998) 

showed that several species of fish exhibited distributions that appeared associated 

significantly with temperature, these being negative correlations for whiting and sprat, 

whereas sole (Solea solea), flounder and herring displayed significant positive 

correlations. Salinity gave significant positive correlations with sole, plaice and pogge, 

but a negative correlation with three-spined stickleback (Gasterosteus aculeatus) 

distribution, the latter reflecting the fact that this is a primarily FW species, though 

some populations may be CA migrants. Whiting and pogge showed significant positive 

correlations with dissolved oxygen levels, whereas flounder and stickleback were 

negatively correlated to this environmental parameter. Similarly, Thiel et al. (1995) 

showed that the structure of the fish community of the Elbe Estuary, Germany, is 

affected by the estuary's longitudinal gradient of salinity; current velocity differences 

gave non-uniform distributions across the estuary; and water temperature fluctuations 

and low oxygen concentrations acted seasonally to alter patterns of diversity and 

abundance. Strategies for survival are necessarily metabolically expensive, and may 

consist of migration to more favourable conditions, or else the ability to tolerate change 

in the environment (Moyle and Cech, 1996). Relatively few species are equipped to 

flourish within estuaries, and typically 8-15 species make up > 90 % of the fish biomass 

in estuaries (Day et aI., 1989). The harsh nature of the estuarine environment, due to 

fluctuations in salinity and often strong tidal movements, combined with the fact that 

estuaries are geologically young environments (McLusky, 1989) and so the time to 

evolve to the environment has been relatively short, is reflected in the observation that 

there are few true ER species (Potter et aI., 1997). 
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Marine species from the MJ and MS categories may inhabit estuaries for a variety of 

reasons (Elliott et a/., 1990). Since salinities are generally lower in estuaries compared 

to the sea, this reduces the osmotic stress euryhaline fish experience since less water 

will tend to leave body fluids - this is of particular importance to juveniles, who are 

more vulnerable to the pressures of the environment than are adults. Avoidance of 

predation is an important consideration, and estuaries seem to offer an attractive 

environment in two respects: firstly, predators tend to be in relatively low densities in 

estuaries compared with neighbouring coastal waters, and secondly the predators that 

are present have greatly reduced hunting abilities. This latter point is due to the 

generally high water turbidity affecting visibility, vision being the primary sense used in 

predation (Guthrie and Muntz, 1993). The presence of high prey densities may be a 

reason for estuarine use in some species, though it is unlikely to be so for planktivorous 

clupeids, which are present in greatest numbers at a time of year that differs from 

zooplankton maxima (Elliott and Taylor, 1989). Juvenile whiting may follow the 

migrations of common shrimp, Crangon crangon, in the Severn Estuary and Bristol 

Channel, suggesting that this source of food is important in their estuarine distribution 

(Henderson and Holmes, 1989). It is generally believed that the physico-chemical 

characteristics of the water chiefly tend to govern distribution of estuarine fish, with 

biological factors being of secondary importance (Moyle & Cech, 1996). 

Some authors regard MS and MJ species as 'estuarine-dependent', meaning that these 

species are obliged to use estuaries in at least one phase of their life cycle (e.g. Moyle 

and Cech, 1996). It seems that this may not be the case, however, since evidence exists 

for so-called estuarine-dependent species using other areas instead of estuaries, e.g. 

sheltered coastal waters (Blaber and Blaber, 1980; Claridge and Potter, 1984). Thus 
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Lenanton and Potter (1987) suggest 'estuarine-opportunistic' to be a more appropriate 

term for fish of the MS and MJ categories, given Hedgpeth's (1982) comment that 

"estuaries are transitory features in the geological sense and could not be depended on 

as critical environments for the survival of marine species in coastal environments". 

The present study hereafter uses common names for species encountered during 

sampling in the Forth Estuary, with scientific nomenclature being listed in Appendix 1. 

Common and scientific names of species other than those sampled during the course of 

the present study are given in the text. 
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1.4. Thermal power generation and the aquatic environment 

Thermal power generation involves the use of either a fossil fuel (gas, coal, oil 

or peat), or else the fission of radioactive elements, to produce heat. This heat is central 

to the Rankine cycle, a thermodynamic process whereby steam produced at high 

temperature and pressure is conveyed to a turbine, transmitting energy to the turbine 

rotor, which then drives the generator (Figure 1.2) (Langford, 1983). The steam is 

condensed at the end of the turbine and returned to the boiler to repeat the cycle. The 

significance of this to the aquatic environment is that large volumes of cooling water are 

required to allow the condensation process to occur: a direct-cooled 1000 MWe 

conventional power station uses 30 m3s·1 of cooling water (Turnpenny and Coughlan, 

1992). In the so-called direct-cooled (also known as 'once-through') systems, the 

cooling water is returned directly to the water body from whence it came (though far 

enough away not to affect the temperature of the water that is being withdrawn for 

cooling), after having taken part in the condensation process. An alternative system, 

utilised where water is in relatively short supply, is the re-use of the cooling water 

following loss of heat in cooling towers or ponds. This method, known as indirect 

cooling, may be two or three times more expensive than once-through cooling 

(Langford, 1983). There are over 40 direct-cooled power stations on the coast of 

Britain and the North Sea coast of continental Europe (Henderson, 2000). 
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Figure 1.2. Schematic diagram of cooling water system for a direct-cooled power station (redrawn from 
Langford, 1983). 

Concern over the effects on the aquatic environment from thermal power generation 

initially focussed on thermal emissions from discharge of heated cooling water. This 

was noted as long ago as the British Electricity Supply Act of 1919 (Langford, 1983). 

The elevation of water temperature due to such emissions may change the chemistry of 

the water in the receiving water body, thus affecting organisms in that habitat. Water 

chemistry may also be affected by various chemical agents used to minimise corrosion 

and biofouling within the power station system. Of greater importance to this study is 

the effect of the cooling water extraction on the aquatic environment. Water is 

withdrawn at an intake, which may be offshore at the end of a long tunnel, or else 

onshore with an intake canal leading up to it. At the point of withdrawal from the water 

body, coarse screens prevent large, potentially damaging materials such as logs being 
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drawn into the cooling water system. The water, still containing a variety of biological 

and man-made materials, travels to fine screens of small mesh size that filter out most 

of the remaining items. Any organisms trapped on these fine screens are said to have 

been impinged (Vaughn, 1988), and are washed off the screens to either be returned to 

water body or else disposed of elsewhere. Very small organisms such as fish eggs and 

larvae may pass through the screens and enter the cooling water system proper, 

eventually being discharged back into the water body with the heated water, in a process 

termed entrainment (Vaughn, 1988). The present study concerns solely impingement of 

fish, though it is suggested that future studies into entrainment may be beneficial at 

Longannet Power Station (see Chapter 5). 

The debate over whether entrainment and impingement may significantly affect fish 

populations in the source water body is not a new one. Studies into power station 

removal effects have been carried out since the 1960s. Henderson (2000) reviews 30 

years' worth of fish impingement data from British and European North Sea coast 

power station studies, and notes that many of the power stations are sited in important 

nursery grounds for some commercial species of fish. For example, the 17 power 

stations operating in the southern North Sea remove an amount of plaice estimated at 

50% of commercial plaice landings in the adjacent area. 

Aside from potential adverse impacts on the aquatic environment, power stations offer a 

convenient means of ecological monitoring through sampling of impinged materials 

washed from intake screens (Turnpenny and Coughlan, 1992). The efficiency of the 

method is such that 119 of 122 known inshore species of fish have been collected from 

intake screens of power stations around the coast of England and Wales (Henderson, 
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1989). Long term monitoring of fish impingement in the Bristol Channel at Hinkley 

Point B Nuclear Power Station has yielded much valuable information on the 

ichthyofauna of that region, for example (Henderson and Seaby, 2001). 
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1.5. Aims of the present study 

The present study has several key aims: 

• To conduct an impingement sampling programme at Longannet Power Station 

in order to quantify losses of fish from the mid-lower Forth Estuary. 

Environmental factors and several water quality parameters are statistically 

modelled in order to determine their relative influences on impingement rate of 

the most commonly encountered species. 

• To use impingement data in order to assess environmental impact in terms of 

removal of species deemed to be of particular importance, due to possessing 

status as commercially or recreationally exploited, socio-politically sensitive, or 

conservation listed. 

• To examine the long term trends in benthic and demersal species abundance 

captured in Agassiz trawls since 1982, in order to assess any changes that may 

have occurred over the period and investigate why they may have occurred. 

• To model statistically the long term Agassiz dataset in order to determine 

seasonal, spatial and tidal influences on abundance of benthic and demersal 

species in the mid-lower Forth Estuary. 

• To provide estimates of abundance of common clupeids by novel midwater 

trawling, and to model statistically the data to give a preliminary assessment of 

the influence of season, location and tidal state on the abundance of the species 

in the mid-lower estuary. 
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• To evaluate the results obtained from impingement and trawl studies in order to 

examine the potential overall impact on the Forth Estuary ichthyofauna by 

Longannet Power Station. 

• To assess the suitability of impingement collections as an alternative means of 

sampling the Forth Estuary fish populations by comparison with results obtained 

from trawling. 
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Chapter 2. Fish extraction by Longannet Power Station, 1999 
& 2000: extent of impingement and influences on 
impingement rate. 

2.1. Introduction 

The abstraction of water for cooling by coastal and estuarine thermal power 

stations inevitably results in removal of aquatic organisms from the water body, 

including fish. Very small fish life stages such as eggs and larvae may pass through 

filter screens and through the entire cooling system. Larger fish are generally impinged 

on the filter screens, the minimum size of fish likely to be impinged being dependent on 

the size of mesh fitted (Turnpenny, 1981). Abundances of fish impinged annually may 

be of the order of millions of individuals (Langford, 1983). The extent of annual 

impingement seems to be directly proportional to the amount of water extracted for 

cooling water (CW) purposes: larger power stations abstract more water and so tend to 

remove more fish (Kelso and Milburn, 1979; Henderson and Seaby, 2000). 

A variety of factors may affect both long-term and short-term impingement rate. 

These factors can be classified as those that increase likelihood of contact with the CW 

intake flow, and those that increase the likelihood of removal in the CW once in the 

vicinity of the intake. An example of the former is regular seasonal fluctuations in 

impingement rate attributable to migrations of species into areas that increase likelihood 

of contact with CW intakes at certain times of the year, as exemplified by large 

ingresses of clupeids overwintering in inshore marine and estuarine waters during the 

colder months of the year (e.g. Maes et al., 1998b; Power et al., 2000). Once near a 

CW intake, the sustainable swimming ability of fish is a major influence on probability 

of impingement, for this is the mode of escape from the inflow. Fish are ectothermic, 

33 



meaning that swimming ability is reduced at low water temperatures, thus increasing 

impingement susceptibility (Turnpenny, 1983a,b). Any factor influencing swimming 

ability, e.g. level of endoparasitic infestation (Sprengel and Liichtenberg, 1991), may 

affect escape probability. Escape from CW intakes is not solely dependent on 

swimming ability, but is dependent also on intake water flow pattern (horizontal causing 

greater escape than vertical) and ability of the fish to see the intake (Turn penny, 1988a). 

Impingement rate has been shown to increase at night when visibility is reduced (e.g. 

van den Broek, 1979), but not in locations where turbidity is high making intakes 

largely undetectable by day and night (Turnpenny, 1988a; Henderson and Seaby, 1994). 

Tidal influence may introduce variation in impingement rate on a daily basis, with 

greatest rate of impingement often occurring during the period at or around L W 

(Sharman, 1969; Langford et al., 1978). This may be because fish are more 

concentrated at LW than at HW, thus increasing the likelihood of contact with CW 

intakes (MJ. AttriII, Benthic Ecology Research Group, University of Plymouth, 

personal communication). In addition, intake drum screens are located in weIIs of 

tidaIIy determined water depth, with greater turbulence and so increased likelihood of 

impingement occurring at L W (Langford, 1983). Within-month variations in 

impingement rate due to differences in tidal range may occur, and some standardised 

monthly sampling programmes aim to avoid such trends by collecting fish midway 

between spring and neap tides (e.g. Henderson and Holmes, 1991). An amplification of 

the concentration effect mentioned above presumably occurs during the extreme L W 

experienced during spring tides. 

The Forth Estuary, east Scotland, possessed two thermal electricity generating 

stations, the now decommissioned Kincardine Power Station (KPS) and Longannet 
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Power Station (LPS) (Figure 1.1). Fish impingement studies were undertaken at the 

former by Sharman (1969), while impingement at LPS was investigated by Maitland 

(1997, 1998). The latter study assessed total impingement mortality in 1994 to have 

been approx. 2.16 x 107 fish in 1994 and 2.09 x 107 fish in 1996, based on fortnightly 

daylight samples of 30 min duration. Total impinged fish biomass in 1996 was 

estimated to be approx. 161.0 t. The author suggested these values to be underestimates 

due to the likely increase in impingement during darkness, preliminary evidence of 

which was found in 1997 (Maitland, 1998). Four species comprised approx. 90% of 

total impinged abundance in 1996, attributable to 44.3% herring, 27.7% sprat, 12.2% 

whiting and 5.7% sand goby. The first three of the species use the estuary seasonally, 

either to overwinter (herring and sprat) or as a nursery (whiting) (Elliott et al., 1990), 

while sand go by is an estuarine resident (Elliott and Dewailly, 1995). In contrast to the 

field studies of Maitland (1997, 1998), Turnpenny (1997) used the impingement 

prediction software PISCES (v.3.0) to estimate mean LPS impingement at 7.4 x lOs 

individuals per annum, with mass 10.9 t. Six species were predicted to comprise almost 

90% of the impinged fish abundance, namely whiting (27.1%), sand goby (19.1%), 

lesser pipefish (15.8%), flounder (10.1%), herring (8.5%) and sea snail (8.2%). 

The present study aimed to investigate fully the nature of fish impingement at 

LPS. It was hypothesised that the total annual abundance of fish impinged at this 

location would be of the order predicted for a power station of similar water usage rate 

in the NE Atlantic. This was examined using a theoretical relationship linking water 

abstraction rate and total annual impingement proposed by Henderson and Seaby 

(2000). Possible links between environment and fish impingement rate were analysed 

using Generalised Linear Modelling. Likely influences on the rate of fish contact with 
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the LPS intake were included in models, e.g. tide height, tidal range and season, as well 

as potential influences on probability of escape once in contact with the intake (number 

of CW pumps operational, freshwater flow rate, light presence/absence, temperature, 

salinity, turbidity, dissolved oxygen). 
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2.2. Materials and methods 

2.2.1. Study site 

LPS is a coal-fired thermal electricity generating station of the direct-cooled or 

once-through type. The plant commenced full operation in 1973. Total rated capacity of 

the facility is 2400 MW (approximately 40 % of Scottish demand), supplied by four 600 

MW units. There are four CW pumps each capable of withdrawing approximately 

22.75 m3s-1 of cooling water through an intake structure 163 m from the shoreline. The 

intake consists of twelve vertical apertures, each 5.18 x 3.05 m, with coarse bars 7.62 

cm wide set at 38.1 cm intervals to prevent large debris such as logs from entering the 

CW system. The total intake surface area is approximately 157.75 m2
. Water intake 

speed with four CW pumps working is thus given by the calculation 

Water entering the intake system is dosed with sodium hypochlorite to reduce 

biofouling and travels down two culverts. The water from each culvert then enters two 

screen wells horizontally, and is sucked vertically downwards through four rotating 

drum screens of diameter 16.46 m x 3.3 5 m width and 8 mm mesh size. Debris is 

collected on screen ledges, and is removed at the top of the screens' rotation by wash

water jets. The removed material travels down channels and into two trash-collection 

baskets, one each for screens 1 and 2 (the 'west' screens) and screens 3 and 4 ('east' 

screens). Trash baskets are emptied approximately every 8 hours, although this varies 

according to their degree of fullness. All material in the trash baskets is disposed of at 
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an off-site landfill facility. Small items, including biological material such as fish eggs, 

pass through the screen mesh and enter the condenser system with the cooling water, 

after which they pass down a l.6 km outflow canal and re-enter the estuary, 

downstream of the power station. 

2.2.2. Sampling protocol 

A sampling regime which was designed to include ranges of variables thought to 

influence impingement rate was implemented. Tide height and range was calculated for 

Grangemouth using the TIDE CALC v.1.1 tidal prediction software system (Ministry of 

Defence Hydrographic Office, 1994). From January 1999 to December 2000, monthly 

sampling sessions were carried out at HW and LW of spring and neap tides (i.e. when 

tidal range was > 3. 5m or < 3. 5m, respectively; Lindsay et aI., 1996) in daylight or 

darkness. This resulted in eight sampling sessions per month, with some sessions being 

carried out on the same day at different stages of the tidal and diel cycles. 192 sampling 

sessions were thus scheduled over the 24 month study period, but 32 of these were 

unable to be undertaken due to blocking of channels by organic materials. This was 

most pronounced during July and August 2000, when inundation by scyphozoan 

medusae prevented sampling and also caused loss of generation capacity at LPS 

(T.Corless, ScottishPower pIc, personal communication). A less pronounced influx of 

such medusae was also observed in 1999, and this is a common feature in British 

inshore areas during the summer months (Russell, 1970). 

Each sampling session consisted of collecting fish that had been washed off the 

fine mesh drum screens following impingement, by using a 5-mm mesh handnet placed 

over the point of discharge into the trash basket. lOx 3 min replicates were taken at a 

single active discharge. Excessive quantities of impinged debris occasionally prevented 
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the intended sampling duration being undertaken. The actual time sampled was noted, 

and it was possible to standardise quantity of fish obtained per unit volume given 

knowledge of pump capacity (i.e. approx. l.365 x 106 l.min-1
), number of pumps 

operational at the time of sampling, and duration of sampling. Water quality parameters 

(temperature, salinity, dissolved oxygen, turbidity and conductivity) were measured 

prior to sampling from the CW intake jetty, using an Horiba® U-I0 Water Quality 

Checker multiprobe. Water samples at LW of spring tides occasionally had to be 

collected using a bucket, as the multi probe cable did not reach the water from the jetty. 

Lack of availability of the multi probe prior to its procurement or else during 

maintenance meant that all four physico-chemical water quality parameters were 

measured on 126 occasions. Collected fish were subsequently identified to species, 

enumerated and measured for total length (TL) and wet mass. 

2.2.3. Potential errors associated with the sampling method 

2.2.3.1. Number of samples taken during each sampling session 

To assess whether the sampling regime was adequate in terms of reflecting 

differences in impingement rate during the various sampling periods each month 

(HWILW of spring/neap tide in light/dark), a power analysis was undertaken using the 

nQuery Advisor 2.0 software package (Statistical Solutions, 1997). Three months were 

selected that included eight sampling sessions of equal sample volume and number of 

replicates, that were undertaken at the same location (i.e. east screens or west screens). 

The months chosen were November 1999, June 2000 and December 2000. For each 

month separately, a power analysis consisting of a one-way analysis of variance on 

eight groups of samples with equal numbers of replicates (n = 10 for each group in each 
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month) was carried out. The significance level, a, used was 0.05, and the number of 

samples required to produce a power of 80% was calculated. 

Table 2.1. Results of power analysis for fish impingement at LPS. Variance of means, V, = l:(sample 
mean - group mean)/G. 'n per group' = number of replicates per group required to show significant 
differences between groups at a = 0.05 level. 

November 1999 June 2000 December 2000 
Number of groups, G 8 8 8 
Variance of means, V 1247.7 1045.03 41339.89 

Common standard deviation, (J 37.193 35.419 209.853 
Effect size (V/cr2

) 0.902 0.833 0.9387 
Power (%) 80 80 80 
n eer groue 3 4 3 

Based on the data entered into the assessment, three replicates in each group sufficed to 

highlight differences for the November 1999 and December 2000 data, whereas an 

additional replicate (i.e. n = 4) was required for the June 2000 data. In all cases, 

performing the same analysis and entering 10 replicates as the 'n per group' gave a 

power of > 99%. The analysis suggested that the 10 replicates actually taken in each 

sampling session (group) were more than adequate to illustrate differences between 

samples taken each month, as shown in Table 2.1. 

2.2.3.2. Sampling duration 

Perhaps the major potential source of error in the present study was the relative 

brevity of the sampling method, with 30 min (or sometimes less) 'snapshots' of 

impingement by LPS being used. While being approximately four times the sampling 

intensity of previous works at this location (Maitland, 1997, 1998), this regime was still 

far less comprehensive than studies at other sites, e.g. the Indian Point nuclear 

generating station had all impinged fish collected, identified and counted from 1973-

1977 (Barnthouse and Van Winkle, 1988). This was the most intensive example 
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available but many studies have utilised a weekly 24-h sample, e.g. Turnpenny (1983a) 

at Fawley Power Station, and studies at other Hudson Estuary power plants (listed in 

Barnthouse and Van Winkle, 1988). The present study did not possess adequate 

manpower to attempt such ambitious sampling intensities, plus the large quantities of 

fish impinged at certain times of the year would have no doubt required subsampling in 

any case. To investigate the potential error in the routine sampling method, two 24-h 

surveys were undertaken in March and September 2000 at times intended to coincide 

with routine sampling sessions. The first session took place from 0500h on 30 March 

2000 to 0400h the following day. One 10 min impingement sample was taken every 

hour on the hour. In addition, routine samples of 10 x 3 min were taken at 0550h, 

1220h and 1830h on 30 March 2000 and at 0120h on 31 March 2000 (i.e. at LW in 

darkness, HW in daylight, L W in daylight and HW in darkness, respectively). The tide 

was a neap, having a range of approximately 2.34m. The total CW volume represented 

by the hourly sampling was approx. 6.552 x 108 I, while the routine technique 

represented a total of approx. 3.276 x 108 I CW sampled. Geometric mean 

impingement rates were 12.26 fish.1O-7r1 (i.e. fish per 107 I of CW sampled) (95% 

confidence intervals (CIs): 8.61 - 17.47) for hourly sampling and 9.51 fish.1O-7r l (95% 

CIs: 7.32 - 12.37) for routine samples. Geometric means were used to account for the 

highly skewed nature of the data (Tumpenny and Henderson, 1993) and 95% CIs were 

calculated according to Fowler and Cohen (1990). The second 24-h session took place 

during a spring tide (tidal range 6.09m) and consisted of hourly 3 min samples taken 

between OOOOh - 2300h on 28 September 2000. The hourly samples were of 3 min 

duration because of large numbers of fish and other materials being impinged on this 

day. Regular sampling took place at 0420h, 0850h, 1650h and 2100h (i.e. HW in 

darkness, LW in daylight, HW in daylight and LW in darkness, respectively) and 
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consisted of lOx 1 min samples, with the exception of the first three samples at 0420h, 

these being 2 min each. Routine sampling yielded fish from an approximate total of 

1.1466 x 108 I CWo The hourly collections represented a total of 1.9656 x 108 I CW 

sampled. The hourly sampling technique gave a geometric mean impingement rate of 

625.58 fish.1O-7r1 (95% CIs: 453.34 - 863.27), while the routine sampling session's 

mean was slightly lower, at 594.22 fish.1O-7r1 (95% CIs: 434.04 - 813.49). It can be 

seen that in both cases routine sampling produced an underestimate of fish impingement 

rate compared with hourly sampling, but that the 95% confidence intervals of the mean 

hourly impingement rates included the routine sampling means and so reasonable 

confidence in the routine method was assumed. 

2.2.3.3. Residence time within system and sampling efficiency 

Another likely source of error in the sampling procedure was lack of knowledge 

concerning residence time of fish within the cooling water system, i. e. time from 

entering the intake in the estuary to appearance in the hand net samples. It was feIt that 

use of fluorescent dye or inert objects such as oranges and marked dead fish would not 

accurately represent the potential for impingement avoidance by swimming of live fish. 

It was also deemed unethical to release live marked fish into the system to assess 

residence time, however. Therefore a literature review was undertaken to obtain 

approximate estimates of residence time in similar systems. Maes (2000) released 246 

live goldfish, Carassius auratus, into the inlet system of the Doel nuclear power plant, 

Zeeschelde estuary, Belgium. 69% of the fish were captured in impingement samples 

after 20 min and 80% after 1 h. The length of the inlet culvert was 540m (c.f 163m at 

LPS). The residence time at LPS was likely to be only a few minutes, though it has 

been suggested that some fish, such as large cod, may be able to resist impingement for 
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released 91 dye-marked juvenile sea bass into the screen well at Kingsnorth Power 

Station, Medway Estuary. Only 70% of the fish were recovered over the next 2 days. 

Since the fish were too large to penetrate the mesh of the drum screens, the authors 

suggest the remaining 30% that were not recorded had avoided impingement or had 

experienced mechanical damage that prevented identification or even that crabs living 

within the system had preyed upon some of the fish. In any case, this example shows 

that it is unlikely that all fish that are removed from the estuary by LPS will end up as 

impinged material on the drum screens. For the purposes of this study, it is however 

assumed that sampling efficiency was 100%, in terms of percentage of fish entering 

screen wells and subsequently being washed to trash baskets. 

2.2.4. Calculation of total annual impinged fish abundance and biomass 

Quantity of fish obtained in each routine sampling session was converted to 

number of fish per 107 I CW sampled. Monthly geometric mean values of fish.1O-7r1 

with 95% CIs were calculated, the skew in the data having suggested that use of the 

arithmetic mean would have overestimated the mean rate (Turnpenny and Henderson, 

1993). Where sessions had been missed, values were assigned based on interpolation of 

known values from that month. This was achieved by establishing mean ratios between 

the eight sampling sessions for months when all sessions had been undertaken. Such 

ratios were calculated separately for 1999 and 2000. Monthly estimates of impinged 

fish abundance were obtained by multiplying the mean fish impingement rate by the 

estimated monthly water use. Lack of detailed pump operational data meant that the 

average number of operational pumps observed during sampling was multiplied by 

mean CW abstraction rate and extrapolated to give the total monthly water use. Mass of 

impinged fish was estimated in a similar manner, substituting geometric mean mass per 
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unit volume into monthly calculations. The sum of monthly fish abundance and mass in 

each year gave estimated annual totals of abundance and wet mass of fish impinged at 

LPS in 1999 and 2000. This was initially undertaken for all species together, then 

impinged abundance and mass was calculated separately for the ten most commonly 

impinged species in both years. 

2.2.5. Examination of potential predictors of impingement rate 

Potential predictors of fish impingement rate were assessed for statistical 

significance using Generalised Linear Modelling (GLM) in the software package S

PLUS (MathSoft, Inc) (Venables and Ripley, 1996). This statistical technique is 

increasingly popular due to flexibility in stipulation of error structure, allowing data 

distributions other than normal to be analysed without need for transformation of data. 

Overdispersion of data in the present study, caused by a few occasions when great 

quantities of fish were sampled, meant the data were generally suited for modelling with 

a negative binomial error structure. Lack of multiprobe availability to record water 

quality parameters during 40 sampling sessions required the separation of data into two 

sets. The first dataset consisted of all n= 166 sampling sessions, and aimed to establish 

whether relationships existed between fish impingement rate and the continuous 

variables/factors listed as (a) in Table 2.2. Hypothesised relationships between 

predictors and impingement rate are included in this Table. The second dataset 

consisted of the n= 126 samples when water quality parameters had been measured, and 

intended to establish the presence or absence of relationships between impingement rate 

and temperature, salinity, dissolved oxygen and turbidity (listed as (b) in Table 2.2). 
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Table 2.2. Potential predictors offish impingement rate at LPS. (a) n=166 samples; (b) n=126 samples. 
• +, direct proportionality; -, inverse proportionality. t each level of the season factor represented a 3 
month period, i.e. 1: Jan, Feb, Mar; 2: Apr, May, Jun; 3: Jul, Aug, Sep; 4: Oct, Nov, Dec . •• Freshwater 
flow into Forth Estuary, measured at Craigforth, Stirling (SEPA, unpublished data). : 1, darkness; 2, 
daylight. 

Predictor 

(a) Season 
Tidal range 
Tide height 

Freshwater flow** 
CWpumps 
operational 

Sampling effort 
Light 

(b) Temperature 
Salinity 

Dissolved oxygen 
Turbidity 

Continuous 
variable (V) or 

factor (F) 
F 
V 
V 
V 
F 

V 
F 

V 
V 
V 
V 

Units or levels of 
factor 

1,2,3,4t 
m 
m 
3 -I ms 

2,3,4 

m3 

1,2+ 

°C 
psu 

mgT! 

NTU 

Hypothetical 
relationship* 

S pecies-dependent 
+ 

Species-dependent 
+ 

+ 

+ 

Both datasets used raw fish counts as opposed to data standardised to unit 

volume. Sampling effort was included as a predictor variable in GLMs to account for 

differences in volume of CW assessed (Table 2.2). The analysis was carried out for all 

species together then subsequently for each of the ten most commonly impinged species 

in 1999 - 2000. Predictors were assessed for significance at the 95% confidence level 

(p<0.05) and were eliminated by a stepwise deletion procedure if found to be 

insignificant. Data were assessed for presence of a negative binomial distribution using 

an S-PLUS function supplied by K. Wilson, Department of Biological Sciences, 

University of Stirling. GLMs thus utilised a negative binomial distribution function if 

appropriate, otherwise quasi-likelihood estimation with log link and variance Il was 

assumed. Predictors significant at the 95% confidence level were assessed for the 

nature of their relationship with number of fish impinged by visual inspection of plots 

of GLM partial residuals. Relative importance of significant predictors was established 
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by assessment of deviance explained per degree of freedom. Interactions were not 

investigated, as preliminary analysis suggested them to be of little importance, and 

computational errors tended to occur with attempts to include excessive number of 

terms in GLMs. 
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2.3. Results 

2.3.1 Water quality parameters near the LPS water intake 

Results of the water quality parameter measurements showed that temperature 

averaged about 6°C in the coldest months of January and February 2000, whilst 

approaching 16°C in August of both years (Figure 2.2a). Salinity fluctuated rather 

irregularly compared with temperature, such a pattern being caused by missing samples 

either at L W or HW skewing monthly means high or low respectively (Figure 2.2b) and 

differences in freshwater flow (Figure 2.2e and see Table 2.9). In general, salinities 

were typical of a mid-lower estuarine site, with monthly means ranging from about to 

23 to approaching full strength seawater. 

Figure 2.2. Variation in water quality parameters: (a) temperature, (b) salinity, (c) dissolved oxygen, (d) 
turbidity, as measured off LPS intake jetty (values are means ± SE); (e) daily freshwater flow values 
recorded at Craigforth, Stirling (SEPA, unpublished data). 

(a) 
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Figure 2.2. cont. 

Dissolved oxygen levels were generally highest from late autumn to spring (9 - 10 

mgr\ with lows in summer (5 - 8 mgr\ though the inoperation of the DO probe in 

summer 2000 meant data for this period were lacking (Figure 2.2c). Turbidity levels 

were generally very high, averaging 200 - 400 NTU for much of the study (Figure 
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2.2d). Freshwater flow, as measured at the estuary head (Craigforth, Stirling), was 

greatest between November 1999 and March 2000, with minimal levels being recorded 

from June - September in both years of the study (Figure 2.2e). 

2.3.2 Composition of LPS impingement samples, 1999 - 2000 

Detailed raw data from the LPS impingement surveys are found on the CD

ROM located in Appendix 2 of the present study. A total of 35550 fish were collected 

in 1999, and 101981 in 2000, representing 39 species from 25 families (see Appendix 

for scientific nomenclature) (Table 2.3). In each year 34 species were collected, with 

the only differences between years resulting from single occurrences of several species 

that were mostly either MA species and so using the estuary irregularly (haddock, 

mackerel, boreal pearlside, greater sand eel, lesser weever) or else MJ species that use 

estuaries routinely as nurseries but are near the northerly limits of their geographic 

range in the Forth and so are uncommon (e.g. sand smelt). All species collected have 

been previously recorded from the Forth, with the exception of the silvery pout, an 

offshore gadoid normally associated with the deeper waters of the North Sea; this 

species was collected once in each year of the study. Of the 39 species collected, ten 

each were in the ER and MJ ecological guilds, eight were MA species, five were CA 

migrants, four were MS species and 2 were FW (Table 2.3). 
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Table 2.3. Species obtained by sampling intake screens at LPS, January 1999 - December 2000. n = 83 
samples in both years. *' Gobies' reflects the taxonomic uncertainty in identification of what is likely to 
be sand goby, Pomatoschistus minutus. 'Ecological guild' follows definitions proposed by Elliott and 
Dewailly (1995) (see Chapter 1). Habitat: P, pelagic; D, demersal; B, benthic. Species ranked according 
to total collected in 2000. 

1999 2000 
Species (ecological Total collected (% of Frequency of Total collected (% of Frequency of 
guild, habitat) all fish) occurrence in samples all fish) occurrence in samples 
Sprat (MS, P) 17304(48.7%) 98.8% 43292 (42.5%) 100% 
Herring (MS, P) 8531 (24.0%) 94.0% 39157 (38.4%) 100% 
Whiting (MJ, D) 3411 (9.6%) 100% 5895 (5.8%) 96.4% 
'Gobies'· (ER, B) 2580 (7.3%) 81.9% 5498 (5.4%) 83.1% 
Plaice (MJ, B) 1023 (2.9%) 86.7% 3292 (3.2%) 95.2% 
Smelt (CA, P) 526 (1.5%) 63.9% 1524 (1.5%) 73.5% 
Lesser pipefish (ER, 426 (1.2%) 68.7% 841 (0.8%) 91.6% 
B) 
Flounder (ER, B) 837 (2.4%) 90.4% 808 (0.8%) 92.8% 
Cod (MJ, D) 289 (0.8%) 48.2% 764(0.7%) 57.8% 
Pogge (ER, B) 138 (0.4%) 50.6% 226 (0.2%) 68.7% 
River lamprey (CA, B) 137 (0.4%) 56.6% 149 (0.15%) 43.4% 
Dab (MJ, B) 7 (0.02%) 3.6% 100 (0.1 %) 22.9% 
Saithe (MJ, D) 88 (0.2%) 19.3% 76 (0.07%) 31.3% 
Common sea snail 129 (0.4%) 33.7% 67 (0.07%) 25.3% 
(ER, B) 
3-spined stickleback 38(0.1%) 18.1% 66 (0.07%) 33.7% 
(FW,P) 
Salmon (CA, P) 4(0.01%) 3.6% 56 (0.05%) 6.0% 
Eel (CA, P) 31 (0.09%) 21.7% 38 (0.04%) 28.9% 
Sea trout (CA, P) 9 (0.03%) 9.6% 32 (0.03%) 19.3% 
Lesser sandeel (ER, B) 6 (0.02%) 7.2% 31 (0.03%) 20.5% 
Eelpout (ER, B) 14 (0.04%) 15.7% 17 (0.02%) 15.7% 
Fatherlasher (ER, B) 6 (0.02%) 3.6% 16 (0.02%) 16.9% 
Sole (MJ, B) 2 «0.01%) 1.2% 6«0.01%) 6.0% 
5-bearded rockling 1 «0.01%) 1.2% 5 «0.01%) 6.0% 
(MS, B) 
Grey gurnard (MS, B) 1 «0.01%) 1.2% 3«0.01%) 3.6% 
Ling(MA, D) 1 «0.01%) 1.2% 2 «0.01%) 2.4% 
Bib/pout (MJ, D) 0 2«0.01%) 2.4% 
Butterfish (ER, B) 4 (0.01 %) 4.8% 2 «0.01%) 2.4% 
Silvery pout (MA, D) 1 «0.01%) 1.2% 1 «0.01%) 1.2% 
Common dragonet 1 «0.01%) 1.2% 1 «0.01%) 1.2% 
(MA, B) 
Pollack (MJ, D) 1 «0.01%) 1.2% 1 «0.01%) 1.2% 
Perch (FW, P) 2 «0.01%) 2.4% 1 «0.01%) 1.2% 
Sand smelt (MJ, P) 0 1 «0.01%) 1.2% 
Boreal pearlside (MA, 0 1 «0.01%) 1.2% 
P) 
Greater sandee! (MA, 0 1 «0.01%) 1.2% 
B) 
Lesser weever (MA, 0 1 «0.01%) 1.2% 
8) 
Thick-lipped grey 6 (0.02%) 3.6% 0 
mullet (MS, D) 
15-spined stickleback 1 «0.01%) 1.2% 0 
(ER, D) 
Haddock (MA, D) 1 «0.01%) 1.2% 0 
Mackerel (MA, P) 1 «0.01%) 1.2% 0 
Sea bass (MJ, D) 1 «0.01%) 1.2% 0 
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Clupeids (sprat and herring) accounted for 70 - 80% of all fish collected in both 

years. Sprat was more abundant than herring in both years, though there was little 

difference in total abundance in 2000, in contrast to the previous year when sprat were 

more than twice as abundant as herring. These species occurred in almost all samples 

taken during 1999 - 2000. Whiting and gobies ranked third and fourth in total 

abundance in both years of sampling but, though present in far fewer quantities than the 

cIupeids, they occurred in a high proportion of samples. Thus whiting occurred in 

approximately the same proportion of samples as clupeids, while gobies were present in 

just over 80% of samples in both years. Plaice were the fifth most abundant taxon 

collected in both years, comprising about 3% of the total number of fish. The relative 

contribution of flounder decreased by about two-thirds between 1999 and 2000, 

resulting in this species moving from sixth to eighth rank, though it occurred more 

frequently in samples of the latter year. Smelt contributed 1.5% of total abundance in 

both years, but was found more frequently in samples in 2000. Another relatively 

abundant species that was more frequent in its occurrence in 2000 was lesser pipefish, 

present on over 90% of sampling occasions compared with < 70% in 1999. This 

species made up approximately 1 % of total fish numbers in both years. The proportion 

of total collected abundance attributable to cod remained quite similar between years, at 

0.7 - 0.8%, while frequency of occurrence increased by approximately 10% between 

years. Pogge and river lamprey both contributed about 0.4% of total numbers in 1999, 

and occurred in 50-55% of samples collected at LPS. This contrasts with the observed 

situation in 2000 when both species contributed half or less of the previous year's 

proportions; pogge were present in almost 70% of samples taken in this year, whereas 

river lamprey decreased to be present in just over 40% of samples. In both 1999 and 

2000 the eleven most abundant species accounted for> 99% of total abundance. 
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2.3.3 Abundance and mass estimates of fish impingement at LPS, 1999 -
2000 

It was estimated that approximately 1. 09 x 107 fish were impinged in 1999 (sum 

of monthly minimal 95% CIs = 4.61 x 106
; sum of monthly maximal 95% CIs = 2.63 x 

107
) with a wet mass of75.7 t (95% CIs: 36.2 t - 160.6 t). The estimated total for 2000 

was 3.29 x 107 individuals (95% CIs: l.31 x 107 
- 9.03 x 107

) with mass 161.3 t (66.5 t 

- 41l. 7 t). Estimates of annual abundance and mass of the ten most common species 

impinged are given in Table 2.4. 

Table 2.4. LPS impingement, 1999-2000. Estimated annual abundances and masses of ten most 
commonly collected fish. Values based on mean calculations shown in bold, with ranges of sums of 
minimal and maximal 95% confidence intervals in parentheses. 

sprat 

herring 

whiting 

gobies 

smelt 

plaice 

flounder 

lesser pipefish 

cod 

pogge 

1999 
abundance 

5.00 x 106 (3.17-
8.64 x 106

) 

2.27 x 106 (1.73-
3.06 x 106~ 
1.21 x 10 (7.92 x 
105 _ 2.02 x 106) 
4.88 x lOS (2.83 x 
105_ 1.02 x 106) 
3.24 X 105 (1.32 x 
105 - 1.66 X 106) 
3.08 x 105 (1.93-
5.69 x 105~ 
2.73 x 10 (1.99-
5.29 x 105~ 
1.52 x 10 (9.84 x 
104_ 2.91 x 105) 
1.05 x 105 (6.48 x 

104 -2.13 x 105
) 

5.36 x 104 (1.61 x 
104 - 2.45 x 105) 

mass (kg) 
1.75 X 104 (1.06-
3.50 x 104) 
1.48 x 104 (1.07-
2.13 x 104~ 
1.68 x 10 (1.17-
2.59 x 104~ 
1.29 x 10 (5.07 x 

102 -3.99 x 103) 
2.22 x 103 (8.11 x 

102 -7.78 x 103
) 

1.92 x 103 (1.24-
3.36 x 103~ 
5.45 x 10 (3.30-
1.02 x 103{ 
8.84 x 10 (4.96 x 
101 

- 2.47 x 102
) 

7.69 x 102 (4.61 x 
102 

- 1.34 x 103) 
2.71 )( 102 (2.33 -
3.45 x 102

) 

2000 
abundance 

1.35 x 10' (8.88 x 
106 _ 2.48 x 107) 

1.19 X 10' (6.19 x 
106-2.43 x 107

) 

2.22 x 106 (1.41 -
3.54 x 106~ 
1.02 x 10 (5.47 x 
105 _ 3.07 x 106) 

3.74 x lOS (2.45 -
6.20 x 105~ 
1.19 x 10 (7.04 X 

105_ 2.20 X 106
) 

1.74 x 106 (1.23-
2.56 x 106~ 
2.73 x 10 (1.79-
4.82 x IOs~ 
2.62 )( 10 (1.80-
4.37 x 105~ 
1.02 x 10 (4.40 X 

104 
- 2. 96x 105) 

mass (kg) 
3.92)( 104 (2.16-
9.15 x 104) 
4.29 )( 104 (2.34 -
9.05 x 104~ 
5.09 )( 10 (3.11-
8.43 x 104~ 
2.37 x 10 (1.01-
9.86 x 103) 
3.12 x 103 (1.53 -
7.34 x 1 03~ 
5.16 x 10 (2.10 x 
1 03 - 1.41 x 104) 
9.64 x 103 (6.31 x 
103 - 1.65 X 104) 
1.47 x 102 (8.71 x 

101 
- 3.58 X 102

) 

3.24 x 103 (1.38-
9.08 x 103~ 
3.20)( 10 (2.17-
6.08 x 102) 

Sprat, herring and whiting were estimated to be the top ranked species in terms of 

impinged abundance in both 1999 and 2000 (Table 2.4). Mass ranks differed, due to the 

relative differences in size of the species. Thus whiting was numerically subordinate to 

herring in 1999, but provided a greater estimated proportion of mass, while in 2000, 
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whiting were estimated to be of greater total mass compared to both sprat and herring. 

Gobies were assessed as being the fourth-ranked taxon in terms of abundance impinged 

in 1999, though the small mean body mass meant the total mass impinged was relatively 

low. The most commonly encountered flatfish species, plaice and flounder, were 

estimated to have undergone the greatest relative differences in total annual 

impingement between 1999 and 2000, in the range of approx. 4-6 x greater abundance 

impinged in the latter year. Indeed, all of the taxa listed in Table 2.4 were estimated to 

have undergone an increase in total abundance impinged between 1999 and 2000, 

though in the case of smelt the difference was of a relatively low order. All other taxa 

were impinged in numbers at least twice as great as the previous year. 

Monthly species-specific impingement varied considerably during the study 

period (Figure 2.3). Sprat were most abundant in August of each year, whilst generally 

being present in highest numbers during the cooler months of the year compared with 

the early summer months (fig 2.3a). Herring impingement was greatest in the final 

quarter of 2000, with elevated numbers also observed the previous December -

February, and lowest abundances tending to be in the March - June period each year 

(Figure 2.3b). Whiting exhibited similar August increases as sprat, but peak estimated 

abundance occurred in December 2000, while the periods April - July 1999 and March 

- June 2000 were of greatly reduced impingement (Figure 2.3c). Estimated 

impingement of the 'gobies' taxon showed bimodal peaks of abundance in January and 

October 2000, with impingement throughout 1999 being at a much lower level than the 

following year, particularly in the April - July period (Figure 2.3d). Monthly 

impingement in smelt was estimated to have been greatest in June - July in both years, 

while yearly minima tended to occur from October - December (Figure 2.3e). Plaice 

impingement in 1999 peaked in August, and numbers from November of that year to 
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January 2000 were elevated compared to the first seven months of 1999 (Figure 2.3t). 

Peak plaice impingement was estimated to have occurred in August 2000, ,with numbers 

remaining high thereafter in relation to the early part of that year. Both years of the 

study showed biomodality in peaks of flounder impinged abundance: the first of these 

was in March - April and the second around August, with marked decreases in 

impingement between these periods (Figure 2.3g). Lesser pipefish impingement was 

greatest in March - May 1999 while the following year the same trend was observed but 

approximately one month later (Figure 2.3h). In both years impingement was least in 

July or August (Figure 2.3h). The peak in impingement abundance of cod differed 

somewhat between years, being July in 1999 and October in 2000, with numbers 

generally high over the period at, or approaching, winter (Figure 2.3i). Minimal 

impingement occurred in the months of May and June in each year (Figure 2.3i). Pogge 

impingement was highest from December 1999 - February 2000, with a secondary peak 

in November 2000, while yearly lows occurred in the summer - late autumn period of 

each year (Figure 2.3j). The influence of season on impingement rate is discussed in 

section 2.4.3.2. 
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Figure 2,3, Estimated monthly impinged abundance ± 95% CIs of species impinged at LPS, 1999 -2000, 
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2.3.4 Predictors of fish impingement rate at LPS 

In general, the predictors entered into the GLMs summarised in tables 2.5 and 

2.6 explained relatively little of the null deviance. Summaries of results of GLMs of the 

full LPS dataset (n=166 samples) are presented in Table 2.5. When fish counts for all 

species were combined, tidal range and season explained the greatest quantity of 

deviance per degree of freedom, with the former being the most important factor overall 

(Table 2.5a). Tidal range was positively related to fish impingement rate. Season 3 

(Jul-Sep) had a greater positive association with impingement rate than season 4 (Oct

Dec), while season 2 (Mar-Jun) exhibited a greater negative proportionality than season 

1 (Jan-Mar). Freshwater flow was shown to be positively related to combined species 

impingement, while the number of CW pumps operational during sampling was shown 

to be positively related to impingement when 4 pumps were employed, but negatively 

related when 2 or 3 pumps were working, the former tending to be more strongly related 

to lower fish impingement than the latter. Tide height explained least deviance amongst 

significant predictors, and was inversely proportional to fish impingement rate. 

Sampling effort and the presence/absence of daylight were not established as significant 

in GLMs of all species combined. 
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Table 2.5. Summary of results of GLMs on n= 166 dataset from LPS. Details of predictors in Table 2.2. 
'd.f.' is degrees of freedom; 'deviance' is amount of deviance explained by predictor; 'significance': * = 
p<0.05, ** = p<O.OI, *** = p<O.OOI, NS = not significant (p>0.05); 'relationship': + signifies direct 
proportionality with dependent variable, - signifies inverse proportionality, relative strengths of factor 
levels indicated where more than 2 levels are present. t indicates negative binomial distribution applied 
in GLM; t indicates quasi-likelihood estimation applied in GLM. NULL signifies total deviance in null 
model. 

(a) all d.f. deviance significance relationship 
s~eciest 
NULL 337.7 
season 3 65.04 *** +: 3>4 

-: 2>1 
tidal range 42.68 *** + 
tide height 1 4.26 * 
fw flow 1 11.97 *** + 
pumps 2 11.65 ** +:4 

-: 2>3 
effort 1 NS 
light NS 

(b) s~rat~ d.f. deviance si~nificance relationship 
NULL 324.0 
season 3 69.91 *** +:3>4 

-: 2>1 
tidal range 19.96 *** + 
tide height 1 NS 
fw flow 1 15.76 *** + 
pumps 2 15.22 *** +:4 

-: 2>3 
effort NS 
light NS 

(c) herrin~~ dJ. deviance significance relationship 
NULL 328.3 
season 3 70.61 *** +:3>4 

-: 2>1 
tidal range 39.34 *** + 
tide height NS 
fw flow 1 11.97 *** + 
pumps 2 11.65 ** +:4 

-: 2>3 
effort 1 NS 
li~ht 1 NS 
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Table 2.5 cont. 
(d) whiting+ d.f. deviance significance relationship 
NULL 306.6 
season 3 101.14 *** +: 3>4 

-: 2>1 
tidal range NS 
tide height 4.98 * 
fw flow 7.80 ** + 
pumps 2 11.65 NS 
effort 1 NS 
light NS 

(e) plaice+ d.f. deviance significance relationship 
NULL 324.4 
season 3 29.95 *** +:4>3 

-: 2>1 
tidal range 1 57.11 *** + 
tide height 1 12.92 *** 
fw flow 7.80 * + 
pumps 2 11.65 NS 
effort 1 NS 
light NS 

(1) gObies* d.f. deviance significance relationship 
NULL 24091.7 
season 3 5490.42 *** +:4>1 

-: 2>3 
tidal range 6054.88 *** + 
tide height 677.79 ** 
fw flow 1 3121.51 *** + 
pumps 2 NS 
effort NS 
light 588.74 ** 

(g) floundefl d.f. deviance significance relationship 
NULL 2120.4 
season 3 NS 
tidal range 1 318.63 *** + 
tide height 1 NS 
fw flow 1 NS 
pumps 2 NS 
effort 1 NS 
light 1 NS 

(h) pogge! d.f. deviance significance relationship 
NULL 445.6 

season 3 67.43 *** +:4>1 
-: 3>2 

tidal range 114.22 *** + 
tide height 15.22 ** 
fw flow 10.76 * + 
pumps 2 NS 
effort I 11.07 * + 
light 1 NS 
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Table 2.5 cont. 
(i) smelt! d.f. deviance significance relationship 
NULL 6386.9 
season 3 1264.04 *** +:2 

0: 1 
-: 4>3 

tidal range 1392.54 *** + 
tide height 905.19 *** 
fw flow 1 NS 
pumps 2 NS 
effort 765.46 *** + 
light 1 NS 

(j) lesser pipefish! d.f. deviance significance relationship 
NULL 2207.8 
season 3 597.80 *** +:2>4 

-: 3>1 
tidal range NS 
tide height 509.87 *** 
fw flow NS 
pumps 2 NS 
effort I 56.42 * + 
light NS 

(k) cod! dJ. deviance significance relationship 
NULL 2434.1 
season 3 957.55 *** +:4>3 

-: 2>1 
tidal range 1 288.68 *** + 
tide height 1 257.47 *** 
fw flow 45.01 *** + 
pumps 2 NS 
effort 33.51 ** 
light 31.12 ** 

Given the clupeids' numerical dominance of all species collected at LPS, it is 

unsurprising that the individual species GLMs for sprat and herring displayed many 

shared features with the GLM of all species combined (Table 2.5.a-c). Both species 

lacked a common predictor present in the combined model, tide height, but the 

remaining four predictors were the same, as was the nature of their relationships, though 

season explained the greatest proportion of deviance in sprat, whereas tidal range was 

most important in herring. Herring displayed an inversely proportional impingement 

rate with light intensity, though the relationship was only weakly significant. Of the 
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more commonly occurnng impinged species, only whiting lacked a significant 

relationship with tidal range; the significance of season was of the same nature as for 

the clupeids, and since around 80% of all fish impinged during 1999-2000 were sprat, 

herring or whiting, it is obvious why the combined species GLM was similar to these 

three species' individual GLMs. Whiting impingement was weakly negatively related 

to tide height, and increasing levels of freshwater flow tended to coincide with greater 

impingement of this species (Table 2.5d). 

The remaining individual species GLMs on the full dataset all exhibited significant 

positive relationships between fish impingement abundance and tidal range, with the 

exception of lesser pipefish (Table 2.5e-k). Tidal range accounted for the greatest level 

of deviance in all of these GLMs, apart from in cod, where season was more important 

per degree of freedom. Where significant relationships existed between impingement 

rate and predictors, the nature of the relationship was as hypothesised (see Table 2.2), 

except for cod which possessed a weakly negative relationship between sampling effort 

and impingement rate. Seasonality of impingement was exhibited by most species. The 

impingement rates of plaice, goby, pogge and cod were shown to be most positively 

related to season 4 (tables 2.5e,f,h,k), the final quarter of the year, whereas lesser 

pipefish and smelt tended to be impinged at the greatest rate during the second quarter 

of the year (tables 2.5i,j). Flounder was the solitary species to possess a single 

significant predictor, that of tidal range (Table 2.5g). 

Summarised results of GLMs of the n= 126 sample dataset investigating 

relationship between fish impingement rate and water quality parameters are shown in 

Table 2.6. In all species' models significant relationships, when present, between water 

quality variables and fish impingement rate were always of the hypothesised nature, i.e. 
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inversely proportional for temperature, salinity and dissolved oxygen, and directly 

proportional for turbidity. As with the GLMs of the full dataset (see Table 2.5 above), 

the influence of sprat and herring on the combined species GLM is large (Table 2.6a-c). 

All three models show temperature and dissolved oxygen to be the only significantly 

related variables, with temperature explaining a greater amount of the total deviance. In 

the GLM of whiting impingement, dissolved oxygen was the most significantly related 

variable, followed by salinity and temperature, which is only weakly significant (Table 

2.6d). Plaice exhibited a similar pattern, though turbidity was the weakest significant 

predictor rather than salinity (Table 2.6e). Temperature explained the greatest amount 

of deviance in gobies and pogge (Table 2.6f,h), with salinity most related to 

impingement rate in lesser pipefish and cod (Table 2.6j,k). Flounder impingement rate 

was significantly related solely to turbidity (but only very weakly) (Table 2.6g), while 

smelt impingement was not significantly related to any water quality parameter (Table 

2.6i). 

Table 2.6. Results of GLMs on n=126 dataset from LPS. Details of predictors in Table 2.2. 'dJ.' is 
degrees of freedom; 'deviance' is amount of deviance explained by predictor; 'significance': * = p<O.05, 
** = p<O.OI, *** = p<O.OOI, NS = not significant; 'relationship': + signifies direct proportionality with 
dependent variable, - signifies inverse proportionality, relative strength of factor levels indicated where 
more than 2 levels are present. t indicates negative binomial distribution applied in GLM; l indicates 
quasi-likelihood estimation applied in GLM. NULL signifies total deviance in null model. 

(a) all speciesf d.f. deviance significance relationship 
NULL 192.4 

temperature 4l.82 *** 
salinity NS 
dissolved oxygen 3l.88 *** 
turbidity NS 

(b) spratt d.f. deviance significance relationship 
NULL 187.4 
temperature 1 33.57 *** 
salinity NS 
dissolved oxygen 27.05 *** 
turbidity NS 

( 
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Table 2.6 cont. 
(c) herringt d.f. deviance significance relationship 
NULL 184.8 
temperature 1 30.06 *** 
salinity 1 NS 
dissolved oxygen 1 19.03 *** 
turbidity NS 

(d) whitingt d.f. deviance significance relationship 
NULL 186.8 
temperature 9.65 ** 
salinity 1 11.70 *** 
dissolved oxygen 1 19.07 *** 
turbidity NS 

(e) plaicet d.f. deviance significance relationship 
NULL 169.6 
temperature 1 15.31 *** 
salinity 1 NS 
dissolved oxygen 1 20.66 *** 
turbidity 1 5.02 * + 

(0 gobies* d.f. deviance significance relationship 

NULL 19928.4 

temperature 4454.57 *** 
salinity 1062.44 * 
dissolved oxygen 3378.25 *** 
turbidity NS 

(g) floundert d.f. deviance significance relationship 
NULL 140.5 
temperature NS 
salinity 1 NS 
dissolved oxygen 1 NS 
turbidity 4.47 * + 

(h) pogge* d.f. deviance significance relationship 
NULL 393.0 

temperature 121.19 *** 
salinity NS 
dissolved oxygen 26.45 ** 
turbidity 20.82 ** + 

(i) smelt* dJ. deviance significance relationship 

temperature NS 
salinity NS 
dissolved oxygen NS 
turbidity NS 
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Table 2.6 cont. 
U) lesser pipefish! d.f. deviance significance relationship 
NULL 1909.1 
temperature NS 
salinity 244.33 ** 
dissolved oxygen NS 
turbidity NS 

(k) cod* d.f. deviance significance relationship 
NULL 1818.1 

temperature 127.14 * 
salinity 285.82 *** 
dissolved oxygen 1 244.44 *** 
turbidity NS 
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2.4 Discussion 

2.4.1. Species composition of impinged LPS ichthyofauna 

Species richness is inversely proportional to latitude between the poles and the 

tropics (Begon et 01., 1996). Data of impinged fish species composition at twelve 

marine and estuarine power stations in England and Wales analysed by Henderson 

(1989) suggested the relationship between species richness (S) and latitude (L) to be: 

S = -7.85 L + 478.8 

Application of this equation to LPS (latitude 56° N) would predict a species richness of 

39.2. The 39 species collected in 1999-2000 fulfil this prediction precisely (Table 2.3). 

Loss of species richness with increasing latitude is most likely to be caused by 

diminishing availability of ecological niches caused by the altered climatic regime 

(Henderson, 1989). Thus a species such as sand smelt, dependent on warm summer 

temperatures to build up sufficient fat reserves to overwinter (Henderson et 01., 1988), 

was present only as a single individual in LPS impingement samples (Table 2.3), but is 

the most commonly impinged species at Fawley Power Station on the English south 

coast (Henderson et 01., 1984). Routine sampling at LPS in 1996 by Maitland (1998) 

yielded 25 species, though the total annual sampling effort was approximately 25% that 

of the present study. 

Habitat utilisation of LPS-impinged fish, in terms of favoured vertical position 

in the water column (pelagic, demersal or benthic), differs somewhat from predictions 

based on the same twelve power stations mentioned above. With 39 species present, 

one would predict five pelagic, 12 demersal and 22 benthic species (Henderson, 1989). 
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The LPS samples were of the same order for demersal species only (11 species), 

whereas the pelagic complement was richer almost to the same number of species as the 

benthic component of the impinged ichthyofauna was poorer than predicted (ten and 18 

species respectively, Table 2.3). The discrepancy is not related to a large number of 

infrequent pelagic species occurring compared to demersal or benthic, as species 

contributing <0.01% of the total sampled consisted of only two pelagic species, 

compared to five benthic and seven demersal (Table 2.3). Mathieson et al. (2000) noted 

that pelagic species dominated total ichthyofaunal abundance in the Kincardine 

intertidal marsh and subtidal areas nearby, which contrasted with the numerical 

dominance by benthic species in the Humber, Westerschelde, Mira and Cadiz estuaries. 

The major difference in the composition of impingement samples between the 

1999-2000 data of the present study and those of Maitland (1997, 1998) collected 

during 1996, is that the most abundant species over the past two years was sprat as 

opposed to herring (Table 2.7). 

Table 2.7. Composition ofLPS impingement samples in the years 1996, 1999 and 2000. lData from 
Maitland (1997, 1998); tdata from this study. 

1996t 1999t 2000t 
Herrin~ 44.3% 24.0% 38.4% 
SErat 27.7% 48.7% 42.5% 
Whitin~ 12.2% 9.6% 5.8% 
Sand ~ob~ 5.7% 7.3% 5.4% 
Lesser EiEefish 3.3% 1.2% 0.8% 
Smelt 2.1% 1.5% 1.5% 
Plaice 1.2% 2.9% 3.2% 
Cod l.2% 0.8% 0.7% 
Flounder 1.2% 2.4% 0.8% 
River lamEre~ 0.2% 0.4% 0.2% 

99.1% 98.8% 99.3% 

Maitland's 1996 sampling coincided with the lowest North Sea sprat abundance indices 

since 1991, whereas values for 1999-2000 were 3 - 5 x greater (ICES, 2000). Herring 
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North Sea spawning stock biomass has increased since 1996, and recruitment at age 0 

was much greater in 1999 and 2000 than in 1996 (ICES, 2000), but it seems that greater 

increases in sprat abundance have been reflected in sprat becoming the dominant 

species in terms of impingement mortalities at LPS (Table 2.7). Sprat was the more 

abundant of the two common clupeids taken in the Forth between 1981 and 1989 by 

Elliott et al. (1990), whereas the impinged clupeids at Kincardine Power Station (KPS) 

in the 13-month period from November 1961 - November 1962 was made up of approx. 

8.92 x lOs herring and 7.91 x lOs sprat (Sharman, 1969). Power et al. (2000) suggested 

that herring tend to numerically dominate in the upper reaches of estuaries in all seasons 

except for winter, thus at LPS, situated in the mid-lower Forth estuary, one may expect 

sprat to outnumber herring. 

An increase in North Sea spawning stock biomass and recruitment of plaice over 

the past 5 years (ICES, 2001a) may have contributed to the rise in proportion of this 

species to approx. 3% of total impinged abundance, compared with just over 1 % in 

1996 (Table 2.7). Plaice ranked 5th in total abundance, a similar rank to the 6th place 

observed in 1961-62 at KPS (Sharman, 1969). Indeed, the major difference between the 

relatively similar LPS surveys of the 1990s (Table 2.7) and the KPS survey of the 1960s 

was that cod was assessed to be the third most commonly impinged species in the latter 

(Sharman, 1969). This presumably reflects the greater abundance of cod in the North 

Sea at that time (Hislop, 1996). 
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2.4.2. Extent of LPS impingement 

2.4.2.1. Abundance and biomass estimates of LPS impingement, 1999 - 2000 

Quantities of fish estimated impinged at LPS varied between 1999 and 2000. 

The 2000 estimate ofapprox. 3.29 x 107 fish of mass 161.3 twas 2-3 x greater than the 

corresponding abundance and biomass estimates for the previous year. This may be the 

result of a combination of factors, but those that seem most likely based on the available 

evidence are increased abundances of fish in the lower Forth Estuary, as shown by trawl 

studies (see Chapter 3) and the increased demand on LPS for electricity generation. 

Possible explanations for the former are explored in chapters 3 and 4. LPS generated 

more electricity in 2000 than in any year since full operation began in 1973, a situation 

that arose due to a shortfall in electrical supply caused by the inoperation of Hunterston 

'B' Nuclear Power Station (L. McSporran, ScottishPower pIc, personal 

communication). This resulted in greater annual water abstraction than in the previous 

year, and therefore greater removal of fish from the estuary, since water use rate is 

thought to positively influence the extent of impingement (section 2.4.2.2). The 

seemingly great difference in total quantity of fish impinged between consecutive years 

is not without precedent, for the Paluel Nuclear Power Station, France, was estimated to 

have impinged 2.04 x 109 fish in 1984, compared with 2.7 x 108 fish the following year 

(Henderson, 2000). 

Influxes of fish at British coastal and estuarine power stations are often 

attributable to presence of large shoals of sprat (Turnpenny, 1983a). The Dungeness 

'A' Nuclear Power Station in Kent was forced to cease generation on seven occasions 

between 1969 and 1980 for this very reason (Turnpenny, 1983a). Power output was 
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diminished, though not halted, at KPS in December 1962, due to impingement of> 136 

t of clupeids, mostly sprat (Sharman, 1969). Contemporary evidence for the presence of 

large quantities of sprat in the Forth estuary was given in February 2001, when a large 

shoal of sprat entered Rosyth Naval Dockyard and died through lack of sufficient 

oxygen (BBC Online News, 2001). The quantity of fish removed was> 8 t. Thus the 

56.7 t of sprat estimated to have been impinged at LPS from Jan 1999 - Dec 2000 

seemed a not inconceivable quantity. Further evidence for this order of impingement 

being possible is given in section 2.4.2.2. The estimated 2.73 x 105 and l.74 x 106 

flounder impinged in 1999 and 2000 respectively was comparable to the 1.13 x 106 

flounder impinged at the Cordemais Power Station, Loire Estuary, France (Robin, 

1991). The French data referred only to O-group individuals, however, while LPS 

flounder were of a variety of ages, and the Cordemais site was in the mesohaline section 

of the estuary, a more preferred nursery area for juvenile flounder (Robin, 1991). This 

presumably explained why a power station of much lower water use (22 m3s· l
) 

impinged comparable quantities of flounder to LPS. 

The universal increase in total annual impingement exhibited by the ten most 

abundant taxa was likely to be a reflection of an increase in fish abundance in the Forth 

Estuary between 1999 and 2000, as noted above. Some evidence for similar increases 

being typical of the inshore areas of the British east coast is shown by comprehensive 

surveys carried out at various bottom trawl stations in the English inshore regions of the 

Humber, the Wash and the Thames (Rogers, 2000a,b,c). The results of these surveys 

where applicable to species commonly impinged at LPS, in each region, are 

summarised in Table 2.8. 
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Table 2.8. Summary of change in trawl catch rates per 1000 m2 by CEF AS, September 2000, compared 
with September 1999 (Rogers, 2000a,b,c). Increases: +++, ~ 100%; ++, 50-100%; +, 0-50%. Decreases: 
- - -, 100%; - -,50-100%; -, 0-50%. -, no change. 

Humber Wash Thames 
plaice 
O-group 
I-group + +++ + 
2-group 
flounder +++ +++ ++ 
gobies ++ + 
pogge +++ +++ +++ 
whiting +++ +++ +++ 

Although plaice 0- and 2-group fish declined in all three regIOns, the I-group fish 

showed increases, and this is of significance as most plaice impinged at LPS are either 

0- or I-group individuals. Large increases in the inshore abundances of the remaining 

species shown in Table 2.3 suggest a common influence in the higher abundance of fish 

captured in 2000 compared to 1999. This is explored further in chapters 3 and 4. 

2.4.2.2. Comparison of estimated LPS impingement with predictions based on 
water extraction rate 

As water abstraction rate increases, so fish impingement also increases. Data for 

89 power plants in the Great Lakes provided the relationship: 

10glO(I) = 0.414 + 1.84410g lO MWe capacity (r2 = 55%) 

where I = number of fish impinged per annum and MW e represents maximum electrical 

output (MW) (Kelso and Milburn, 1979). 

Thus the relationship was not linear, but exponential. Henderson and Seaby 

(2000) also suggested that water abstraction rate is a good predictor of annual fish 

impingement rate, based on data from 13 British and European North Sea coastal and 
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estuarine power stations. The authors noted there to be a "relative unimportance" of 

locality (i.e. coast or estuary) on the numbers impinged, and that pumping rate was of 

greater significance. The proposed exponential relationship was: 

1=9 x 10"7 G3.055 (r2 = 84%) 

where I = number of fish impinged per annum, G = maximum cooling water abstraction 

rate in US gall.s"l (the relationship was presented in a document intended primarily for 

an American readership). 

Data used were based on studies listed by Henderson (2000). Applying the 

equation to the LPS CW inflow rate of 2.41 x 104 US ga1l.s"1 (i.e. 91 m3s"l) gives a 

predicted annual impingement of approx. 2.19 x 107 fish. Impingement at LPS in 1999 

and 2000 was estimated to be 1.09 x 107 and 3.29 x 107 fish respectively. The mean of 

these two values is 2.19 x 107
, a remarkable validation of the Henderson and Seaby 

(2000) equation. The fit of the LPS data to the simple abstraction rate model is further 

illustrated in Figure 2.4. 
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Figure 2.4. Relationship between cooling water extraction rate and annual impingement of fish for 13 
British and NW European power stations, with predicted and actual values for LPS denoted by asterisks 
(*). Data from Henderson and Seaby (2000) and this study. 

This simple analysis seems to supply good evidence for the hypothesis that LPS 

annual impingement of fish is of the order expected for a power station of this capacity 

in the NE Atlantic geographical area. It is interesting to note also that the previous 

estimates of impingement at LPS by Maitland (1997) were very similar, being of the 

order of 2.16 x 107 and 2.09 x 107 fish per annum in the years 1994 and 1996 

respectively. As previously noted, these estimates were extrapolated from studies with 

sampling intensities 25% or less of the present study, and carried out during daylight 

hours only. Lack of any great difference between estimates generated from studies with 

and without night sampling is of significance and will be discussed further in section 

2.4.3. There are some sites that are not adequately represented by the Henderson and 

Seaby (2000) equation, such as that of Wylfa Nuclear Power Station, Wales, where the 
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rocky nature of the surrounding area makes the site very unusual (Henderson and 

Seaby, 2000). Cockenzie Power Station in the Firth of Forth impinges a minimal 

quantity of fish (Maitland, 1997), and this may be related to the surrounding inshore 

area being of notably low productivity (D.S. McLusky, University of Stirling, personal 

communication). The major discrepancy between the annual impinged abundance and 

biomass estimated from the present study and the predictions of the PISCES v.3 

software, i. e. 7.4 x 105 individuals of mass 10.9 t (Turnpenny, 1997), is likely to be due 

to the software having been developed with data from power stations at lower latitudes 

than LPS (C.J.L. Taylor, Nuclear Electric, personal communication). 

There seems to be little decline in marine productivity with latitude, as 

abundance of fish remains approximately equal per unit of CW abstracted over the 

entire annual period, as suggested by Henderson (I989). The ability of fewer species to 

maintain viable populations at higher latitudes, because of disappearance of ecological 

niches (see section 2.4.1), suggests that the remaining species may exist in greater 

abundance than when in competition with other species at lower latitudes. 

2.4.2.3. Comparision of estimated fish biomass impinged with known values of all 
materials disposed to landfill 

All impinged materials that are washed off the drum screens into the trash 

baskets at LPS are emptied into skips and ultimately buried in a landfill site, as 

previously mentioned. Since cost of burial is measured per tonne disposed, accurate 

records of wet mass of all materials buried were available for the LPS impingement 

study period, i.e. January 1999 - December 2000. A comparison of the estimated wet 

mass of fish impinged at LPS with total wet mass of all materials disposed to landfill is 

presented in Figure 2.5. 
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Figure 2.5. Estimated wet mass offish impinged at LPS, January 1999 - December 2000, compared with 
known wet mass of all impinged materials disposed of to landfill. Fish estimates ± 95% confidence 
intervals. 

The comparison gives confidence in the estimates of mass fish impinged at LPS 

that were calculated in the present study. It is apparent that in no month was the 

estimated impinged fish biomass greater than the total known wet mass of materials 

disposed of to landfill (Figure 2.5), excepting the upper 95% confidence intervals in 

August 1999 and September - December 2000. Proportion of total wet mass impinged 

that was estimated to be attributable to fish biomass tended to be least during the March 

- May periods in both years. This was likely to be due to the general seasonal decrease 

in fish impingement rate (see section 2.4.3.2) coupled with an influx of leaves that 

presumably were gradually washed down the Forth during the autumn and winter 

months (personal observations). The greater proportion of estimated fish mass in total 

wet mass of impinged material in the third and fourth quarters of the year was 

exemplified by the period July - December 2000, where the mirroring of the rise and 

fall of total mass impinged by fish mass is apparent. Fish were estimated to make up a 

relatively consistent 50% or so of the total mass during this period. The mass of all 
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materials disposed to landfill in 1999 was 456.74 t, which increased to 578.08 t in 2000. 

This rise of 121.34 t was consistent given the estimated increase in fish biomass 

impinged and also the overall increased water extraction rate which would have been 

likely to increase the quantity of all materials impinged (see section 2.4.2.1). 

2.4.3. Assessment of significant predictors of impingement rate at LPS 

2.4.3.1. Water quality parameters as predictors ofLPS impingement 

Of eleven GLMs formulated for the reduced n= 126 water quality dataset, 

temperature and dissolved oxygen were statistically significant in eight GLMs, salinity 

in four GLMs, and turbidity in three GLMs. The association of water quality 

parameters with fish impingement rate was as hypothesised, namely direct 

proportionality for turbidity and impingement, while temperature, dissolved oxygen and 

salinity were inversely related to impingement rate (Table 2.6). Caution should be 

applied in consideration of the results of the analyses for, as noted by Myers (1998), "It 

is difficult not to find environmental variables that are nominally statistically significant 

in an exploratory analysis". This is especially true of the following discussion and of 

section 2.4.3.2, where various predictors may be significantly correlated (Table 2.9). 
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Table 2.9. Pearson correlation coefficients for predictors of fish impingement at LPS. Associated 
probabilities of statistical significance: NS = not significant; • = p<0.05; •• = p<O.Ol; ••• = p<O.OOl. 

turbidity dissolved temperature salinity tide height tidal range 
ox en 

dissolved 0.079 
oxygen NS 
temperature -0.081 -0.611 

NS ••• 
salinity -0.111 -0.131 0.207 

NS NS • 
tide height -0.259 0.174 0.018 0.524 

•• NS NS ••• 
tidal range 0.368 -0.318 0.032 0.211 

••• • •• NS • 
freshwater 0.054 0.lO6 -0.352 -0.472 0.007 -0.232 
flow NS NS ••• ••• NS •• 

Turbidity is a major influence on teleost fish behavioural ecology, as vIsion is well 

developed in most species (Guthrie and Muntz, 1993). Turbidities near the LPS intake 

were generally very high, ranging from a low mean monthly value of 23 NTU in March 

1999 to a mean of 593 NTU in July 1999 (Figure 2.6d). A positive association between 

turbidity levels and quantity of fish impinged was demonstrated for three species, 

namely flounder, plaice and pogge. It should be noted that, in the context of generalised 

linear modelling, the explanatory power of these relationships was relatively weak 

(p>O.OOl in all cases, Table 2.6e,g,h). The successful avoidance of removal in 

abstracted water requires visualisation of the CW intake to trigger the fish optomotor 

reflex, allowing station to be maintained against an inflow current by stabilisation of the 

visual field with reference to prominent components in this field (Turnpenny, 1988a). 

Thus greater turbidity would be likely to decrease the distance from the intake that the 

optomotor reflex could be triggered, exposing the fish to greater intake velocities and 

increasing likelihood of impingement. Intake velocity at the Doel Nuclear Power 

Station, Belgium, for example, increased from 6.3 ems·! at 10m from the intake, to 45.8 

ems·! at the coarse screens (Maes et al., 1998a). It can be argued that this mechanism 
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may have been responsible for the increased impingement of these three speCIes. 

However, there are additional, not necessarily exclusive, possible explanations. The 

visibility hypothesis outlined above is an example of a mechanism that is applicable 

when fish are already in the region of the intake, but turbidity may also influence the 

likelihood of fish being in the region of the intake. It has been suggested that one 

reason fish may enter estuaries is to utilise areas of high turbidity to decrease likelihood 

of perception by visual predators (Cyrus and Blaber, 1987; Elliott et aI., 1990). If the 

area near the LPS intake is particularly turbid compared with adjacent estuarine sites, it 

may be more attractive to fish. This could lead to increased likelihood of entrainment 

by the CW intake flow and enhance impingement. A decrease in turbidity would lead 

fish to seek other areas. Turbidity will tend to increase as tide height drops due to 

washing off of sediment from mud flats and prolonged suspension of particles in the 

LW channel (McLusky, 1989). This situation is augmented during the extremes of high 

and low water during spring tides. Thus high turbidity is linked to tide height and tidal 

flow. The implications of the associations of impingement rate with tide height and 

tidal range are discussed fully in section 2.4.3.2, and they are likely to interact with 

various abiotic factors, especially the water quality parameters 

The salinities measured at LPS are characteristic of a mid-lower estuarine site 

(Figure 2.2b), approaching full strength seawater at HW, whilst generally not falling 

below 20 PSU at L W (McLusky, 1989). Associations between salinity and fish 

impingement, when statistically significant, were negative, so that impingement was 

enhanced at lower salinities. This was evident in whiting, go by, pipefish and cod. Most 

fish species present in estuaries are euryhaline (Moyle and Cech, 1996). This is 

especially true of the c1upeids (Blaxter and Hunter, 1982). It seems unlikely that the 

limited range of observed salinity levels will have influenced the presence of euryhaline 
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species in the vicinity of the LPS intake, though infrequently impinged stenohaline 

marine species may have been more likely to penetrate further up the estuary at higher 

salinities. The rarity of such species excluded them from meaningful statistical 

analysis. Influence of salinity on sustainable swimming speeds may have been of 

greater significance. Turnpenny (1983b) tested the hypothesis that salinities isotonic to 

fish blood, i.e. 17, may reduce the work that is needed to maintain fish homeostasis and 

so free more oxygen for sustained locomotion. This was not substantiated in 

investigations of critical swimming speed (CSS) of sprat and herring by the same 

author, as there was no effect of salinity on CSS in the range 18-33. It is tempting to 

interpret the results of the present study as providing evidence that marine fish are less 

able to escape impingement at lowered salinities, as their preferred marine conditions 

intuitively would allow them better physiological performance. The association of 

salinity with tide height, tidal range and season may better explain the significance of 

salinity in prediction of impingement rate, and is discussed in section 2.4.3.2. 

The reaction of fish to power station CW intake flows is akin to that of the 

reaction to trawls: perception of the intake, followed by counter-current orientation into 

the flow and sustained swimming opposing the current, matching the intake velocity 

initially, eventually followed by fatigue and dropping back into the intake or else 

swimming forwards to safety (Turnpenny, 1988a). Sustainable swimming as opposed 

to burst swimming is used, with the latter only being employed if fish are startled by 

sudden movements or noise (e.g. throwing of objects into the water; Turnpenny, 1988a). 

Turnpenny (1988a) suggests that the adoption of sustained swimming appears to be due 

to evolved criteria for an escape response not being met in CW flows, with the result 

that burst swimming is not employed. Turbidity has already been mentioned in relation 

to intake perception, and now the effects of temperature and dissolved oxygen on 
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sustained swimming performance are considered. Sustainable swimming is an aerobic 

process, and a decrease in ambient oxygen below a threshold level (Figure 2.6) has been 

shown to reduce sustainable swimming speed in a number of species (reviewed by 

Beamish, 1978). 

Ambient oxygen concentration 

Figure 2.6. Theoretical relationship between ambient oxygen concentration and sustainable swimming 
speed. Dashed line indicates critical oxygen concentration below which sustained swimming speed is 
greatly reduced. After Beamish (1978). 

It was thus hypothesised that lower concentrations of dissolved oxygen in the 

region of the LPS intake would increase fish impingement rate by decreasing the 

maximum sustainable swimming speed of fish. This was suggested to be the case in 

sprat, herring, gobies, whiting, cod and plaice (Table 2.6). The hypothesised reason for 

increased impingement at lower levels of dissolved oxygen, i.e. decreased sustained 

swimming capacity, would be valid for species that exhibit sustained swimming 

performance, in this case all the aforementioned species excluding gobies. The latter is 

a benthic taxon that moves primarily by browsing and darting, thus sustained swimming 

is not applicable to it (Turnpenny, 1988a). Before further discussion of the significance 

of dissolved oxygen to fish impingement at LPS, it is necessary to consider the 

importance of water temperature. 

The relationship between sustainable sWlmmmg speed and temperature 

generally exhibits a directly proportional relationship up to a maximum, followed by a 
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decline thereafter (Figure 2.7) (Beamish, 1978). This is due to the process being 

oxygen-limited, with a reliance on aerobic metabolism to produce ATP. The amount of 

oxygen available for activities excluding basal metabolism decreases, so that swimming 

performance is reduced at the upper ranges of thermal tolerance (Beamish, 1978). 

Turnpenny and Bamber (1983) showed that the median critical swimming speed of sand 

smelt increased from 2.70 - 5.73 body lengths.s-1 between 5.9 and 18.SoC. This would 

have corresponded to the ascending portion of the relationship illustrated in Figure 2.7. 

Temperature 

Figure 2.7. Theoretical relationship between sustainable swimming speed and water temperature (after 
Beamish, 1978). Temperature at which maximum sustainable swimming speed occurs is denoted by the 
dashed line. 

The present study hypothesised that temperatures below optimum levels, being 

detrimental to swimming ability, would be positively related to impingement rate, and 

this was illustrated in GLMs of all species combined, sprat, herring, whiting, cod, goby, 

pogge and plaice (Table 2.6). In August 1999, temperatures averaged 16.25°C and 

impingement of sprat and herring was relatively great, in the order of 5.0 x 106 and 3.4 

x lOS individuals respectively. If such temperatures exceeded the optimum required to 

achieve maximum sustainable swimming speed (Figure 2.7), then this could have 

explained the high level of impingement in this warm month. The L T 50 (48h) of herring 
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held in stock tanks of 8.7 - 1 1. 2°C was found to be approx. 19 - 21°C by Brawn (1960), 

which would suggest that the herring present in the Forth at temperatures> 16°C may 

have exhibited reduced swimming capacity and so enhanced impingement when in the 

vicinity of the LPS intake. Juvenile herring (44 - 57 mm SL) tested for swimming 

performance at temperatures of 16.2 - 16.3°C were found to be able to sustain speeds of 

approx. 10 body lengths.s· l (Turnpenny, 1983b). Herring are generally found at 

temperatures from 0 - 18°C (Brawn, 1960). The optimum temperature for swimming 

would therefore seem to be around 9 - l3°C, and impingement was lowest in April -

June in each year (Figure 2.3b), the months when temperatures were at these levels 

(Figure 2.2a). This may of course also have been due to emigration from the estuary, 

leaving a reduced abundance present, since Power et al. (2000) showed that herring tend 

to leave the Thames Estuary at temperatures > 10°C. The importance of season in 

influencing impingement rate is discussed in section 2.4.3.2. It could be suggested that 

the relatively low dissolved oxygen levels in August 1999, averaging approx. 6.42 mgT 

I, may also have diminished sustained swimming ability. Dissolved oxygen levels 

measured in the following month were even lower, with a mean of 4.70 mgTI (cfthe 

suggested level of ~ 4.5 mg.r l
. at which many marine fish species become stressed; 

Poxton and Allouse, 1982) whilst mean temperature had also actually fallen slightly. 

Sprat impingement was estimated at 5.9 x lOs, an order of magnitude lower than the 

previous month. This could have been caused by the reduction in temperature 

enhancing swimming ability, while the reduction in dissolved oxygen did not produce a 

detrimental effect since it may still have been above the critical level illustrated in 

Figure 2.6. Herring exhibited a slight increase in estimated total impingement, to 4.0 x 

lOs, which subsequently decreased in the following two months, whilst dissolved 

oxygen levels increased (Figure 2.2c). The available evidence could be interpreted as 
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suggesting that in summer, low dissolved oxygen levels may enhance likelihood of 

impingement, while in winter low temperatures would cause a similar phenomenon. If 

summer water temperatures exceed the temperatures necessary for maximum 

sustainable swimming speed, then enhanced impingement may also occur in summer. 

As shall be seen in section 2.4.3.2, however, the complex interaction of environmental 

factors means that these potential influences may be difficult to isolate. 

2.4.3.2. Environmental and operational predictors of LPS impingement 

As with the water quality parameters of temperature, salinity, dissolved oxygen 

and turbidity discussed in section 2.4.3.1, the potential impingement influences of tide, 

season, light, freshwater flow and number of operational pumps may act to determine 

presence of fish in the vicinity of the LPS CW intake, or to moderate likelihood of 

impingement once near the intake, or both. 

Of all the variables examined for significant association with impingement rate 

tidal range was often the most important. Tidal range was significant in nine of eleven 

GLMs, exceptions being for whiting and lesser pipefish (Table 2.5). It explained the 

greatest proportion of model deviance in seven of the nine GLMs in which it was 

present, including that of all species considered together. There was a direct 

proportionality with impingement rate. Various plausible mechanisms exist to explain 

this highly significant association. Ebb and flow current velocities are enhanced during 

spring tides, compared with neaps. In the Forth Estuary, maximum ebb and flood 

current velocities may be 110 and 70 ems·1 respectively during spring tides, whilst only 

70 and 40 cms·1 respectively during neaps (Webb and Metcalfe, 1987). These velocities 

are at or above the maximum sustainable swimming speeds of most of the impinged fish 

sampled at LPS (Turnpenny, 1988a), and so fish would be expected to move with the 
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tidal flow, evidence for which was given by Welsby et al. (1964) whilst observing 

shoals of clupeids using sonar from the CW intake of KPS. The greater tidal excursion 

associated with an increased tidal range would theoretically move more fish into the 

vicinity of the CW intake per unit time, thus enhancing impingement levels compared 

with lower tidal range and current velocities. The increased quantities of passively 

impinged debris during spring tides lend support to this theory. In the Severn, greatest 

impinged species richness occurs during spring tides, and may be attributable to 

increased tidal movements pushing more species into the immediate vicinity of power 

station intakes (P.A. Henderson, Pisces Conservation Ltd., personal communication). 

An alternative explanation might be that increased tidal velocities during spring tides 

contributed to increased CW intake flow velocities, leading to velocities exceeding 

those constituting the maximum sustainable swimming speed of fish. Since tidal flows 

are presumably largely perpendicular to the CW intake flow at LPS, this possibility is 

unclear and would require hydrodynamic modelling of the type discussed by Turnpenny 

(1988a). The fact that sampling at LPS was undertaken at slack water, with very little 

tidal movement, would suggest against this and the previous suggestion for effect of 

tidal range on impingement rate. A final possibility for positive association between 

tidal range and impingement rate is that extreme low waters experienced during spring 

tides are likely to result in a greater concentration of fish, especially in an estuary like 

the Forth where extensive mudflats exist, leading to increased likelihood of contact with 

the CW inflow. This is the mechanism believed to cause greatest impingement at 

Severn Estuary power stations during spring tides (P.A. Henderson, Pisces Conservation 

Ltd., personal communication), and was the rationale for sampling undertaken at the 

West Thurrock Power Station, London, as large numbers offish were anticipated during 

spring tides (MJ. Attrill, University of Plymouth, personal communication). The 
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increased numbers of leaves impinged during spring tides may be due to the extreme 

HW reaching farther up intertidal areas and displacing more debris than during neap 

tides. If there was a maximal concentrating effect of L W during spring tides, then it 

might be reasonable to assume that there would be a maximal diluting effect of HW 

springs, leading to lowest impingement at this time, something that was not observed at 

LPS. However, if residence time within the CW system was much greater than initially 

believed, then this could have resulted in many fish being impinged at HW that had 

actually entered the screen wells at L W or during the flood tide. The actual mechanism 

governing increased impingement during spring tides may be a combination of all three 

of the above possibilities. 

Tide height itself was shown to exhibit a weakly significant inverse 

proportionality with impingement in all models except those of sprat, herring and 

flounder. The possible influence of LW in concentrating fish in the estuarine channel 

has been discussed in the context of differences between spring and neap tides. Trawls 

on the mudflats near LPS at Torry Bay, Kinneil and Skinflats by Elliott and Taylor 

(1989) revealed flounder to be the dominant species utilising the intertidal area, taken 

on 94% of occasions. Sprat and herring were taken on 35% and 53% of occasions 

respectively. The lack of a significant relationship between impingement rate and tide 

height in these species tends to undermine the argument for a concentration effect of 

more fish having been impinged at L W due to increased contact with the intake. Maes 

(2000) also observed no effect of tidal state (HWILW/ebb/flood) on impingement rate 

of sprat and herring at the Doel Nuclear Power Station, upper Zeeschelde estuary, 

Belgium. Most benthic species were impinged in significantly greater numbers at HW 

and ebb tide at Doel, suggested by Maes (2000) to be due to their utilisation of intertidal 

mudflats close to CW intake, which required close passage to the intake to be reached. 
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An alternative explanation for generally enhanced L W impingement at LPS might be 

the actual behaviour of fish in CW filter screen wells following removal from the 

estuary. Water height in the wells varies with tide height, with the proximity to the 

screen surface increasing as tide height falls. As turbulence in the water of the well 

increases with the approach of L W, there is greater probability of impingement due to 

currents exceeding maximum sustainable swimming speeds (Langford, 1983). At HW 

the opposite is true, and "quiet areas" are more plentiful, sometimes allowing even 

dead, floating fish to apparently avoid impingement (personal observations). As 

duration of residence within the CW system may not differ greatly between HW and 

L W, this may explain the relative weakness of the statistical significance of tide height. 

Tide height was the most important variable associated with impingement of lesser 

pipefish (Table 2.Sj). The preference of this species for water of < 180cm depth 

(Wheeler, 1969) may be evidence that a retreat from the intertidal area with ebb tides 

increases likelihood of contact with the LPS CW intake. 

Light was hypothesised to be inversely proportional to rate of impingement, 

since decreased visibility at low light levels would have hindered fish perception of the 

CW intake structure and decreased escape potential, a situation analogous to the 

situation discussed with regard to turbidity in section 2.4.3.1. This phenomenon was 

observed at Kingsnorth Power Station by van den Broek (1979), who recorded 

impinged abundances three times greater by night than by day, and suggested that some 

benthic species are more active by night, thus are more likely to be impinged than when 

buried in the substrate. Light intensity influence on catch rate was investigated in the 

highly turbid Zeeschelde estuary for both a power station CW intake (Maes, 2000) and 

stow nets (Maes et aI., 1999a). The former study showed significantly greater 

impingement of sand goby and sprat at night than by day, while six other species, 
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including herring, lacked any significant differences. Only four of 34 species exhibited 

greater catch abundance by night in the latter study, including dab and flounder (Maes 

et al., 1999a). Where significant associations were demonstrated in the present study, 

i.e. in the case of herring, gobies and cod, the relationship was indeed as hypothesised, 

but was only weakly statistically significant (Table 2.5c,f,k). In the majority of GLMs, 

light was removed at an early stage in the stepwise deletion procedure. It seems that the 

generally high turbidity levels near the LPS intake may obscure visibility sufficiently to 

greatly reduce the possible effects of light on intake perception. This effect has been 

suggested to account for lack of day-night differences in impingement in the Severn 

Estuary (Turnpenny, 1988a). The behaviour of herring and cod alters at night, and may 

have contributed slightly to increased impingement during darkness. Herring shoals 

tend to break up at night, and individual fish tend to decrease swimming speed (Blaxter 

and Batty, 1990). The combination of dispersal over a greater area, combined with 

reduced activity may increase both the likelihood of contact with the CW intake and 

also decrease the ability of fish to resist removal in the water flow. Cod shoals also 

disperse at night (Wheeler, 1969) and could be prone to the former effect too. It is 

notable that Maitland (1998) suggested enhanced impingement occurred at LPS during 

the hours of darkness, based on several 24-h surveys undertaken in 1997. The present 

study suggests that light is not a significant factor in determining impingement rate, 

which would explain the agreement of estimates of total annual impingement calculated 

using sampling undertaken only during daylight hours (Maitland, 1997) and a 

combination of day and night samples (the present study), as highlighted in section 

2.4.2.2. 

Number of cooling water pumps operational was shown to be a significant 

predictor of magnitude of impingement at Fawley Power Station by Turnpenny (1983a), 
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and the direct proportionality between CW abstraction rate and total annual 

impingement was investigated in section 2.4.2.2. Maitland (1997, 1998) suggested that 

increased electricity demand during the colder months of the year led to greater 

generation and water abstraction, and that this led to increased impingement more than 

any other influence. It was hypothesised that impingement rate at LPS would be 

directly proportional to number of CW pumps operating. Data from the present study 

suggested that operation of four CW pumps was directly proportional to impingement 

rate, while operation of two or three pumps was inversely proportional. This was 

demonstrated in GLMs of all species together, as well as for sprat and herring (Table 

2.5a,b,c). A similar quantity of water was sampled in each sampling session, evidence 

of which is given by the fact that sampling effort was only weakly significant in models 

of pogge, smelt, lesser pipefish and cod impingement (Table 2.Sh-k). Therefore the 

influence of pump rate may have been due to increased CW intake velocity with more 

pumps working, estimated at 57.7 cms· l with four pumps operational, and falling to 43.3 

cms· l with three pumps. Increased intake velocities would have been more likely to 

exceed maximum sustainable swimming speeds, especially if in combination with high 

levels of turbidity. The greater need for four CW pumps operating during the winter, 

when fish are likely to be present in greater numbers due to inshore migrations and 

when temperature-dependent swimming ability is reduced, urges the relatively weak 

explanatory power of number of pumps operational to be treated with caution. 

Season was the most frequently occurring significant environmental variable in 

the modelling, present in ten of eleven GLMs undertaken, and explained the greatest 

proportion of deviance per d.f. in analyses of sprat, whiting and cod impingement 

(Table 2.Sb,d,k). First and foremost, fish must be in the vicinity of the intake to stand 

any chance of removal in the abstracted CWo Seasonality in impinged abundance is 
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evident in a variety of species, including those present in the estuary throughout the year 

or else for limited periods. The latter include marine species using the estuary 

opportunistically (Potter et al., 1997) as an overwintering ground (sprat, herring) or else 

as a nursery (whiting, cod, plaice) (Elliott et al., 1990). The tendency of the clupeid 

species to enter the estuary mostly in the cooler months of the year may be an effort to 

reduce metabolic rate at a time when feeding is minimal (Elliott et al., 1990), since the 

estuary is colder than the sea in winter. Abundant estuarine food resources are likely to 

attract juvenile gadoids, and although there is major overlap in cod and whiting's food 

preferences, the present data suggest the final quarter of the year to be a greater positive 

influence on the presence of cod, whereas the period from July to September is most 

positively associated with whiting impingement. This may be a reflection of a temporal 

partitioning of resources between these two ecologically similar species, as suggested 

by Elliott et al. (1990). The importance of estuarine turbidity in concealing juveniles 

from predators has already been discussed. Pogge, termed an estuarine resident by 

Elliott and Dewailly (1995), exhibited a positive association between impingement 

abundance and the seasonal factors encompassing the period between October and 

March, while there was a negative association during the remainder of the year (Table 

2.5h). This seasonality was previously noted for pogge only in the southern part of the 

British range (Wheeler, 1969), so this may be evidence of offshore-inshore migrations 

occurring in the Forth, possibly due to a warming of the climate. The potential climate

related changes in the Forth ichthyofauna are discussed further in Chapter 3. Healey 

(1971) noted that sand goby was abundant in the Ythan estuary from July - February, 

but could not identify the reason for decrease in abundance from March - June. The 

present study suggested a somewhat later occurrence in the lower Forth Estuary, the 

seasons of greatest abundance (Table 2.St) being similar to pogge. Of the ten most 
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commonly impinged species, smelt and lesser pipefish were unusual in having season 

two (April - June) as the most positively associated with impingement (Table 2.5i,j). In 

smelt, this is known to be the period associated with the upstream pre-spawning 

migration of anadromous adults (Lyle and Maitland, 1997). No seasonality in lesser 

pipefish estuarine occurrence is noted in the literature. Lack of season as a significant 

factor influencing flounder impingement is due to the peaks and troughs of 

impingement straddling the boundaries between seasons (Figure 2.3g). The bimodality 

in abundance peaks, i.e. in approximately March and June - July, was not noted in Forth 

trawl studies by Elliott and Taylor (1989). Only in June and the following several 

months was abundance high compared to the rest of the year. 

Migrations into the LPS vicinity thus may be responsible for much of the 

significance attached to the season factor. The association of season with impingement 

rate is likely to encompass other variables that emerged as significant in their own right. 

Freshwater flow was a positively-related significant variable in GLMs of all species 

combined, sprat, herring, whiting, plaice, gobies, pogge and cod. As these species 

tended to be impinged during seasons when freshwater input was highest, generally 

from October - March, it seems that the mostly rather weak significance of the 

freshwater flow association may have been an artefact of the greater importance of 

season on impingement rate. There is a possibility that river flow into estuaries may 

provide olfactory cues to trigger inshore migration of marine juvenile species 

(Whitfield, 1999). Elevated impingement during the colder months may be caused by a 

combination of three environmental and operational features. Seasonal migrations of 

species into the Forth estuary firstly introduce fish into areas near the LPS intake. Low 

water temperatures and increased CW water abstraction intake rates then diminish fish 
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escape potential based on swimming ability alone. These three factors would all be 

included in the levels of the factor 'season' that were part of the modelling process. 
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2.5. Conclusions 

The composition of the impinged icthyofauna at LPS consisted of 39 species 

from January 1999 - December 2000. This is in accordance with the hypothetical 

decline in biodiversity with increasing latitude. Habitat use differed somewhat 

compared to inshore areas of England and Wales, with greater proportions of pelagic 

than benthic species, though demersal species were of similar proportions. Species 

composition did not differ markedly from previous studies at this location, though sprat 

ranked first in overall abundance, in contrast to herring's dominant position in previous 

years. Annual abundances of impinged fish were exactly of the order predicted for a 

power station of LPS water abstraction capacity in a typical NW European coastal or 

estuarine location. Season and tidal range were shown to be the most important 

predictors of impingement, being most likely to influence presence of fish in the 

vicinity of the LPS CW intake. Other relatively weakly associated variables were 

mostly those influencing escape potential of fish once near the intake, such as 

temperature and dissolved oxygen. Turbidity was positively related to impingement in 

some species, and the generally high levels of turbidity were likely to contribute to the 

exclusion of light as a significant factor. The present study at LPS seems to confirm 

various hypotheses of predictors of impingement that have been based on previous 

research. The relatively low sampling intensity led to statistical models with 

comparatively low predictive power, and increased sampling effort would presumably 

have increased the clarity of some of the trends observed. 
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Chapter 3. Fish populations in the mid- and lower Forth 
Estuary: temporal, tidal and spatial variations in fish 
abundance as assessed by demersal and pelagic trawling. 

3.1. Introduction 

Variation in abundance of fish may be caused by a suite of interacting factors. 

Interannual variability in survival of pre-adult phases, particularly of the generally more 

fecund marine species, influences between-year differences in abundance (e.g. Phillipart 

et al., 1996). Whiting recruitment (survival to age 1; Daan et al., 1990) offers a clear 

example: in 1968 an estimated 9.13 x 109 fish entered the various North Sea stocks, 

while the following year this number was reduced to 1.08 x 109 (ICES, 2001a). Thus 

numbers present in inshore areas, including estuaries, may differ considerably between 

years. Distribution of fish in such areas may be dependent on their preferences for 

specific features of the environment. Substratum preferences in demersal and benthic 

species, for example, may influence fish in estuaries to choose one location over 

another, e.g. cod and whiting tend to be associated with soft bottoms of sand, mud and 

fine gravel (Elliott and Dewailly, 1995). The influence of abiotic factors in determining 

species distribution was introduced in section 2.4.3. Migrations into estuaries at 

particular times of the year are a feature of many fish species, and contribute to intra-

annual monthly variations in abundance. This was clearly illustrated for the Forth 

Estuary (Elliott et al., 1990), and is a feature common in temperate estuaries (e.g. Day 

et al., 1989). Use of intertidal areas by species such as plaice and flounder at HW (e.g. 

Wolff et al., 1981) may reduce abundances of these fish in samples taken in the 

subtidal. 
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Interspecific differences in latitudinal range of distribution are hypothesised to 

influence interannual differences in abundance of fish, as has been demonstrated in 

other animal groups (see references in Henderson and Seaby, 1999). Populations near 

to the latitudinal centre of their geographic range would be expected to show less 

interannual variability in abundance than those nearer the periphery (Miller et al., 

1991), for the peripheral populations are close to specific tolerance thresholds and are 

more likely to encounter better adapted species, either in competition or through 

predation (Henderson and Seaby, 1999). Evidence of increased population stability 

with decreasing latitude, e.g. in sole (Rijnsdorp et al., 1992) and long rough dab, 

(Walsh, 1994), suggests the theoretical relationship between stability and geographic 

range to be asymmetric (Phillip art et al., 1998) (Figure 3.1). 

Latitude 

Figure 3.1. Hypothetical variation in abundance of a species in relation to latitude (after Phillipart et al., 
1998). 

Evidence accumulated in favour of the above hypothesis thus far has been somewhat 

equivocal, but Henderson and Seaby (1999) suggested that comparisons between 
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different geographical locations may be affected by lack of standardised sampling 

techniques. 

The importance of the Forth Estuary in providing habitats for a variety of fish 

species was highlighted in works by Elliott and Taylor (1989) and Elliott et al. (1990). 

These studies were based on regular sampling of the Forth ichthyofauna using bottom 

trawls, initially monthly from October 1981 - December 1985, then with a reduced 

frequency of approximately every quarter until the present day. The two decades' 

worth of information is a valuable resource in allowing changes in the mid-lower Forth 

Estuary fish populations to be assessed. The present study selected monthly data from 

the early 1980s to conform as closely as possible to the current sampling regime. 

Rather than attempting to calculate absolute abundances of demersal and benthic 

species, as carried out by Elliott et al. (I990), the current study used trends in monthly 

abundances to examine changes in the mid-lower estuarine ichthyofauna. Simple 

examination of monthly plots of fish abundance illustrated trends in abundance of the 

frequently encountered species. Possible influences of tide height, month, and trawl 

station on catch abundance were modelled using the GLM technique introduced in 

Chapter 2. More detailed exploratory analysis of the data was then undertaken using 

non-parametric statistical techniques designed primarily to investigate change in marine 

communities. These methods, based on calculation of similarity in species abundance 

and percentage occurrence in the assemblage between different years, allowed the 

species responsible for any major changes in the ichthyofauna to be established. The 

hypothesis that species sampled in the Forth that were closer to the centre of their 

geographical ranges would exhibit less intra-annual variation than those nearer the 

periphery of their ranges was tested. The hypothesis was further investigated in relation 

to variations in population abundances of the same species sampled from the Severn 
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Estuary by Henderson and Seaby (1999) over a similar time period (1981 - 1998) as the 

present study. 

Pelagic trawling was carried out in 1984 (FRPB, 1984), with reasonable success, 

but was discontinued. The most common pelagic species in the Forth Estuary, sprat and 

herring, were sampled in part by bottom trawling, and Elliott et al. (1990) considered 

the data, thus obtained, to be suitable in reflecting trends in abundance. Agassiz 

trawling in 1999 - 2000 captured almost no clupeids, despite LPS impingement 

sampling (Chapter 2) revealing that these species were present in the estuary in relative 

abundance. Pelagic species were therefore excluded from long-term analyses of 

Agassiz trawl data. Preliminary assessment of novel pelagic trawling that commenced 

in January 1999 was undertaken. These pelagic data were modelled in a similar fashion 

to the benthic and demersal data mentioned above, using GLMs, but in addition 

attempts were made to produce preliminary quantitative estimates of the abundance of 

clupeids in the mid-lower Forth Estuary. These data would be more likely to be of the 

true order of magnitude than those generated by Elliott et al. (1990) which were likely 

to be underestimates, based on limitations of the bottom trawls in sampling the pelagic 

populations. 
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3.2. Materials and methods 

3.2.1. Agassiz trawl study 

3.2.1.1. Field study 

Trawling took place at three mid-lower Forth Estuary stations, Port Edgar, 

Tancred and Longannet (Figure 1.1), from January 1982 - December 2000, using the 

SEPA survey vessel (SN), the Forth Ranger. Each sample consisted of an approx. 0.8 

km haul with a 2 m Agassiz trawl with stretched mesh of 15 mm. All fish collected 

were identified to species, enumerated and measured for TL and wet mass. Trawling 

was undertaken at HW and L W in five months of the year, giving a total of 30 trawls 

per year, i.e. ten trawls at each site. 

approximately three months apart, 

Sampling in individual years took place 

i.e. III January, March/April, June/July, 

September/October and December, with minor exceptions. Only 24 trawls were 

undertaken in 1986, owing to lack of sampling in January. 

3.2.1.2. Generalised Linear Modelling of Agassiz data 

Abundance data for the ten most commonly captured benthic and demersal 

species were analysed using Generalised Linear Modelling (see section 2.2.5) to 

investigate various hypotheses associated with sampling conditions. In all cases n=564 

trawls. L W catches were hypothesised to be greater than those at HW due to the use of 

mudflats by all species under investigation leading to a lower concentration of fish in 

the subtidal area at HW (Elliott and Taylor, 1989). Affinities of particular species with 

certain trawl stations were investigated without any specific hypothesis in mind. 
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Differences in specific abundance due to month were hypothesised to be likely to 

exhibit known patterns of estuarine abundance, these patterns having been assessed by 

previous authors (Elliott and Taylor, 1989; Elliot et al., 1990; Chapter 2). Included in 

the models were station (levels 1,2,3 = Port Edgar, Tancred, Longannet), tide (levels 1,2 

= LW, HW) and month (levels 1,2,3,4,5 = Jan, Apr, Jun, Sep, Dec approx.), as well as 

interactions between all possible pairs of factors (station x tide, station x month, and 

tide x month). Models were based on either a negative binomial distribution or quasi

likelihood estimation, as detailed in section 2.2.5. Relationships between response and 

predictors were assessed by visual inspection of partial residual plots. The nature of 

significant interactions was examined using the interaction plot function of Minitab 13 

(Minitab Inc, 2000). The modelling procedure was repeated twice with random data 

subsets of n=282 trawls, as a means of assessing the validity of the original GLMs. 

3.2.1.3. Non-parametric exploratory analysis of Agassiz trawl data 

Exploratory analyses of the 19-year Agassiz trawl dataset were carried out using 

the PRIMER v.5 software package (PRIMER-E Ltd., 2000). These analyses aimed to 

elucidate any changes in the composition of the ichthyofaunal assemblage of the 

demersal and benthic species in the mid-lower Forth Estuary, as well as identifying the 

species responsible for such changes. This was achieved by treating each calendar year 

(January - December) as one sample and comparing similarity of the species caught in 

each sample in abundance and percentage terms. First, a Bray-Curtis similarity matrix 

of untransformed yearly abundance data was computed for all demersal and benthic 

species recorded during Agassiz trawling, followed by hierarchical agglomerative 

clustering and non-metric multidimensional scaling (MDS), the CLUSTER and MDS 

routines, respectively, of PRIMER (Clarke and Warwick, 1994). In this way, any 
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changes in the ichthyofauna could initially be explored by visualisation of MDS plots, 

and such trends investigated further by comparing the MDS plots to groupings of years 

judged to be similar in terms of species composition by clustering. The MDS and 

cluster analyses were followed by similarity percentage analysis (SIMPER) in order to 

identify the main species contributing to differences between groups of years identified 

by clustering. This was undertaken for groups of years determined to be approx. >60% 

similar and >70% similar. Data for 1986 were excluded from abundance data analyses, 

due to the reduced sampling effort in this year. The procedure was repeated for 

untransformed species percentage composition data, including data for 1986. 

3.2.1.3. Investigation of population size variability in relation to species latitudinal 
range 

The approximate geographical centres of the ten most commonly caught 

species' ranges were determined from Wheeler (1969). These species were then ranked 

in order of predicted variability in population size (measured as coefficient of variation 

of standard deviation (CVSD) of the mean of total annual abundance), according to the 

hypothetical relationship between recruitment and latitude proposed by Phillip art et al. 

(1998), and this was compared to the observed values. The observed CVSDs were then 

compared to data for eight of these species occurring in the Severn Estuary that were 

sampled over a similar time period (1981 - 1998) by Henderson and Seaby (1999). The 

relative magnitudes of the CVSDs were assessed based on predicted differences 

attributable to differences in latitude of the two estuaries (56.0oN and 51 JON for the 

Forth and Severn respectively) compared with species' estimated centres of 

geographical range. 
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3.2.1.4. Preliminary assessment of sampling error associated with Agassiz trawling 

An assessment of the sampling error ('repeatability') of results obtained by 

Agassiz trawling, using data from SEP A surveys in the Tay Estuary between 13 

October 1998 and 21 February 2001 obtained with the same trawl and vessel as in the 

Forth Estuary studies. Each haul was of 0.8 km at 2 knots. Trawling took place at two 

sites, Abertay and Ladyshoal. Most sampling days involved two sequential replicate 

hauls at each station, covering the same area, though occasionally there were three 

replicates, and on one occasion six (Ladyshoal, 30 April 1999). As was expected from 

such few replicates, coefficients of variation (CV) in abundance of individual species 

were mostly > 100%, indicating large variation in abundances between replicate tows. 

For example, abundance of one in the first trawl, followed by zero in the second tow, 

gave a CV of > 1 00%, so figures for species that were not abundant were treated with 

caution. Similarly, CVs of 0% were obtained in the case of there being equal numbers 

of fish in all trawl replicates carried out, something that only occurred in cases where a 

single fish or a maximum of two fish were caught in each trawl. Figure 3.2 illustrates 

the problem of assessing sampling error of the Agassiz gear in the present study. 

Low total abundance of fish will often produce a CV of 0% or 100% (DeAlteris 

et al., 1989): a wide variety of CV s occurred at low abundances of fish caught in 

replicate trawls (Figure 3.2a-d). Figure 3.2b and 3.2d give some scant evidence for 

sampling error being reduced in whiting and cod as total abundance of fish caught in the 

trawls increases. This interpretation should be viewed with caution, however, as it is 

based on data collected on very few days, and each of these days only usually involved 

twin replicated tows at each site. Trawling in the Forth generally yielded more fish than 

trawls undertaken in the Tay. Thorough testing of sampling error of both Agassiz and 

pelagic trawls in the Forth Estuary is yet to be carried out. Suffice to say that all 
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previous studies in this area (e.g. Elliott and Taylor, 1989~ Elliot! et al., 1990) were 

subject to the same sampling error. 
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Figure 3.2. Assessment of Agassiz trawl repeatability (sampling error), data from Tay Estuary 1999-
2001. CV = coefficient of variation; 'total abundance in replicate trawls' = total number of fish collected 
in all replicated trawls on a single day at either Abertay or Ladyshoal. 

3.2.2 Pelagic trawl study 

3.2.2.1. Field study 

Pelagic trawling by SN Forth Ranger commenced in January 1999, and took place on 

the same days, at the same stations, and for the same distance/duration as Agassiz 

trawling (see section 3.2.1.1.). The gear was a modified commercial sprat net, of 

opening 7.1m wide by 7.3m high, though depth gauge measurements showed that the 

average height during trawling was approx. 2.5m. Internal stretched cod-end mesh size 

was 1.2cm. Fish captured were analysed as detailed in section 3.2.1.1. When 

necessary, subsamples of 30 fish were taken for mass and length measurements, and the 

105 



remaining fish were enumerated. Poor operation of the pelagic gear in January 1999 

necessitated exclusion of these data from subsequent analyses; data for January 2001 

were included so that a full 24-month period was obtained. L W pelagic trawling in July 

2000 was curtailed by inundation of scypohozoan medusae causing tearing of the net 

(see section 2.2.2.). This gave a total of 57 trawls between April 1999 and January 

2001. 

3.2.2.2. Calculation of approximate abundances in the mid-lower Forth Estuary 

Data for sprat and herring abundances obtained in each trawl were multiplied by 

3.33, which assumed a gear efficiency of 33%, i.e. similar to that of the Agassiz gear 

(Kuipers, 1975). Monthly arithmetic and geometric mean abundances per trawl with 

95% confidence intervals were computed. Assuming that each pelagic haul represented 

fish from an approximate trawled volume of 11680 m3
, the concentration of fish per m3 

was calculated. A uniform distribution of fish between the Forth Bridges and Dunmore 

was assumed (Figure 1.1), representing a mean volume of water of approximately 5.02 

x 108 m3 (SEP A, unpublished data). The boundaries of this area were based on the 

seaward limit of the Forth Estuary, as defined by McLusky (1987a), and the historical 

location of herring fisheries in Airth parish (The Statistical Accounts of Scotland, Vol. 

3, p. 488). Extrapolation of mean fish abundance per unit volume to the volume above 

thus gave estimates of c1upeid abundance in the Forth based on pelagic trawling. 

Extrapolations were based on three estimates of mean abundance: arithmetic mean with 

95% CIs, geometric mean with 95% CIs, and arithmetic mean with 95% CIs calculated 

geometrically. The last of these calculations aimed to compensate for the possible 
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underestimation of abundance during calculations of the geometric mean (Fowler and 

Cohen, 1990). 

3.2.2.3. Generalised Linear Modelling of pelagic data 

Data of sprat and herring abundance were treated as detailed for Agassiz-caught 

species in section 3.2.1.2, in order to investigate similar hypotheses. Both GLMs were 

based on negative binomial distributions of data. 
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3.3. Results 

Agassiz and pelagic trawl data for the period 1999 - 2000 are presented in a CD-ROM 

(see Appendix 2). 

3.3.1. Agassiz trawl study, 1982 - 2000. 

3.3.1.1. Specific compositon of catch and abundance trends of common species 

Thirty demersal and benthic species were collected in Agassiz trawls from 1982 

- 2000 (Table 3.1). In addition the pelagic species of sprat, herring and smelt were also 

caught, but are not considered here. 

Whiting was the most abundant of the species captured, followed closely by 

eel pout. Pogge, flounder and plaice were quite similarly abundant over the 19-year 

period, with approx. 2000 individuals of each species having been sampled. Gobies, 

cod and dab occurred in the range 950 - 1300 individuals, while fatherlasher and sea 

snail were similarly abundant at 400 individuals trawled. These ten most abundant 

species comprised 97.8% of the total demersal and benthic species quantity caught by 

Agassiz trawling from 1982 - 2000. 
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Table 3.1. Composition of Agassiz trawl catches, 1982 - 2000. Maximum: maximum yearly total; 
minimum: minimum yearly total; mean: arithmetic mean of all years; total: total fish caught 1982 - 2000. 

maximum minimum mean total 

whiting 483 36 226.9 4310 

eelEout 669 17 207.7 3946 

Eogge 182 55 114.8 2181 

flounder 349 20 103.4 1965 

Elaice 255 29 90.4 1718 

gobies 196 3 68.1 1293 

cod 293 2 62.1 1179 

dab 137 4 50.2 953 

fatherlasher 86 4 21.7 413 

sea snail 73 5 21.1 401 

lesser sandeel 62 0 5.7 108 

butterfish 18 0 4.9 93 

river lamErer 12 0 2.4 46 

long rough dab 18 0 2.0 38 

grer gurnard 19 0 1.9 36 

lesser EiEcfish 3 0 0.9 18 

saithe 8 0 0.8 15 

great EiEefish 6 0 0.5 10 

lemon sole 4 0 0.5 9 

Dover sole 3 0 0.5 9 

Eollack 7 0 0.4 8 

common dragonet 2 0 0.3 6 

ling 3 0 0.2 4 

eel 2 0 0.2 4 

5-bearded rockling 1 0 0.2 4 

red gurnard 4 0 0.2 4 

Montagu's sea snail 3 0 0.2 3 

Eoorcod 1 0 0.1 

15-sEined stickleback 0 0.1 

lesser s/2otted do~sh 0 0.1 
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The yearly total sampling effort of 30 trawls tended to catch more fish in the 

first decade of the time series, with peaks in 1987 - 1988 (Figure 3.3). Number of 

species taken per year generally declined between the mid-1980s and the mid-1990s, 

though there was an increase to previous highs in 1997 - 1998. A major decline in 

species number to the lowest ever annual total of 12 in 1999, was followed by 20 

species being recorded in 2000, a 19-year high. The lowest total annual abundance of 

fish was also recorded in 1999, with an increase to levels similar to those of most of the 

1990s the following year (Figure 3.3). 
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Figure 3.3. Trends in total annual abundance and number of benthic and demersal species taken by 
Agassiz trawling, lower Forth Estuary, 1982 - 2000. Sampling effort = 30 trawls in all years except 
1986, when n = 24 trawls. 
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There was no statistically detectable decrease in species richness over time, but the 

trend of a decrease in annual abundance of fish was highly significant: 

In (mean annual abundance per trawl) = 3.83 - 0.0381 T (r2 = 31.5%, P = 0.007) 

where T is year of study (n = 19 years in total). 

Whiting, eelpout, dab and gobies exhibited 19-year lows in abundance in 1999 -

2000 (Figure 3.4a,e,i). Whiting showed peaks in abundance in 1987-88 and 1994-95, 

with less marked fluctuations in abundance in the years prior to these periods (Figure 

3.4a). Following a smaller peak in 1997-98, the lowest recorded abundances in the 19-

year series were evident in 1999-2000. The linear trend for this species was 

significantly negative, being described as: 

In (whiting abundance + 1) = 4.3 + 0.0252 T (r2 = 6.7%, P = 0.007) 

where T is month of sampling (n = 94 months in total). 

The other main Forth gadoid species, cod, was particularly abundant in 1990-91 

and the latter months of 2000, with mean catch being 3-5 x that of the remaining years, 

which tended to average around two fish per trawl. There was no significant linear 

trend. Plaice was similar to cod in showing peak abundances in 1990-91 and 2000, and 

lack of any significant linear trend (Figure 3.4c). Flounder abundance peaked in 1987-

88, and generally higher abundances in the 1980s compared with less abundant but 

more stable catches in the 1990s, contributed to a lack of any linear trend in abundance 

(Figure 3.4d). Dab were occasionally caught in very large numbers, but often catches 
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were zero, and this species exhibited least evidence of any trend in abundance of all ten 

most common species (Figure 3.4e). In sharp contrast, eel pout showed the clearest 

trend of all species, this being a significant decline in abundance caused by steadily 

diminishing catches throughout the 1990s following an enhanced period of abundance 

from 1987-89 (Figure 3.4f). The regression equation obtained for this species was: 

In (eelpout abundance + 1) = 3.86 - 0.0107 T (r2 = 30.2%, P < 0.001) 

where T is month of sampling (n = 94 months in total). 

Pogge abundance reached a plateau from 1987-90, followed by something of a 

decline in the early 1990s, and levels of generally greater abundance in the 1990s than 

the previous decade (Figure 3.4g). This did not result in a significantly positive linear 

trend in abundance, however. The most positive trend in abundance of fish captured 

during Agassiz trawling was exhibited by fatherlasher, thanks to relatively high 

abundances in 1998-99 and 2000 (Figure 3.4h), though the linear regression did not 

indicate that this increase was statistically significant. High abundance in the early 

1980s was followed by mostly low catches, with the exception of 1992-93, until the 

recent period of increased numbers. Three peaks of goby abundance occurred between 

1985 and 1991, with only one period of relatively high abundance later in the time 

series (1997-98) combined with deep troughs oflow catches in 1994-95 and 1999-2000 

(Figure 3.4i). This species was similar to most others in exhibiting an absence of any 

statistically significant linear trend in abundance over the study period. The abundance 

of sea snail in trawls was second only to dab in its lack of any clear trend during the 19-

year period (Figure 3.4j). A relatively high period of abundance in 1988-89 was the 

peak in abundance of this species, but numbers were generally low. 
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Figure 3.4. Monthly abundance of common fish species caught in the lower Forth Estuary by Agassiz 
trawling, 1982 - 2000. Each month's data represents sum of six trawls (HW and LW at three stations). 
Black line represents yearly moving average (period of five months of sampling), dashed lines indicate 
significant negative linear trends in abundance of whiting and eeJpout. 
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GLMs of the 19-year Agassiz trawl dataset generally explained rather little of 

the null deviance. Despite this, both first and second retests of the models using random 

subsets of half the total number of data produced almost precisely the same results, 

indicating reasonable reliability of the GLMs of the entire datasets. As the results of 

these retests are almost identical to the primary GLMs, the results are not reproduced 

for sake of clarity. The station factor explained the greatest proportion of deviance per 

degree of freedom in models of plaice, flounder, cod, eelpout and fatherlasher 

abundance (Table 3.2c-g). Month explained most deviance in the pogge, gobies, dab 

and sea snail models (Table 3.2b,h-j), while tide was the most significantly related 

factor only in the whiting GLM (Table 3.2a). When tide was a significant factor 

predicting abundance of fish caught in the gear, the relationship was usually that of L W 

being positively related to fish abundance, and HW being negatively related. This was 
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the case for pogge, flounder, eelpout, and fatherlasher (Table 3.2b,d,f,g respectively), 

and also for plaice and sea snail, where tide was only marginally statistically 

insignificant (Table 3.2c,j). Whiting was the only species to show a significant positive 

relationship between trawl abundance and HW (Table 3.2a). 

Table 3.2. Summary of results of GLMs on lower Forth Estuary Agassiz trawl dataset, 1982 - 2000 
(n=564 trawls). 'd.f.' is degrees of freedom; 'deviance' is amount of deviance explained by predictor; 
'significance': * = p<0.05, ** = p<O.OI, *** = p<O.OOI, NS = not significant (p>0.05); 'relationship': + 
signifies direct proportionality with dependent variable, - signifies inverse proportionality, relative 
strengths of factor levels indicated. Station: PE = Port Edgar, T = Tancred, L = Longannet. Month: I = 
January, 2 = late March/April/early May, 3 = late June/July/early August, 4 = September/October, 5 = 
December. t indicates negative binomial distribution applied in GLM; t indicates quasi-likelihood 
estimation applied in GLM. NULL signifies total deviance in null model. 

(a) whitingf d.f. deviance significance relationship 
NULL 703.6 
tide I 10.9 *** +:HW 

-:LW 
station 2 16.1 *** +:PE>T 

-: L 
month 4 30.3 *** +:5>1>4 

-: 3>2 
tide x station 2 8.2 * See Figure 3.5a 
tide x month 4 NS 
station x 8 34.2 *** See Figure 3.6a 
month 

(b) (!oggef d.f. deviance si~nificance relationshiE 
NULL 696.5 
tide 1 15.8 *** +:LW 

-:HW 
station 2 25.2 *** +:PE>L 

-: T 
month 4 65.4 *** +:4>1>5 

-: 2>3 
tide x station 2 14.2 *** See Figure 3.5b 
tide x month 4 NS 
station x 8 36.6 *** See Figure 3.6b 
month 
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Table 3.2 cont. 
(c) plaicef d.f. deviance significance relationship 
NULL 625.3 
tide 1 NS (p=O.062) +:LW 

-:HW 
station 2 53.0 *** +:T>L 

-: PE 
month 4 23.2 *** +:3>4 

-: 1>2>5 
tide x station 2 NS 
tide x month 4 NS 
station x 8 ** See Figure 3.6c 
month 

(d) flounderf d.f. deviance significance relationship 
NULL 945.9 
tide 1 13.8 *** +:LW 

-:HW 
station 2 195.4 *** +:L 

-: T>PE 
month 4 112.3 *** +: 3>4 

0:2 
-: 1>5 

tide x station 2 NS 
tide x month 4 NS 
station x 8 55.0 *** See Figure 3.6d 
month 

(e) cod; d.f. deviance si~nificance relationshiE 
NULL 2877.1 
tide I NS 
station 2 400.2 *** +:PE 

-: T>L 
month 4 NS 
tide x station 2 NS 
tide x month 4 NS 
station x 8 NS 
month 

(t) eeleoutt d.f. deviance significance relationship 
NULL 828.6 
tide 1 13.9 *** +:LW 

-:HW 
station 2 79.3 *** +:PE>L 

-: T 
month 4 108.1 *** +: 3>2 

-: 5>1>4 
tide x station 2 NS 
tide x month 4 NS 
station x 8 75.5 *** See Figure 3.6e 
month 
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Table 3.2 cont. 
(g) dJ. 
fatherlashert 

deviance significance relationship 

NULL 632.9 
tide 12.5 •• +:LW 

-:HW 
station 2 137.7 ••• +:PE 

-: T>L 
month 4 20.8 •• +: 1>5>2 

-: 3>4 
tide x station 2 7.9 • See Figure 3.5c 
tide x month 4 NS 
station x 8 NS 
month 

(h) gObiesf d.f. deviance significance relationship 
NULL 624.9 
tide 1 NS (p=0.057) +:LW 

-:HW 
station 2 8.7 * +:PE>T 

-: L 
month 4 100.8 .** +: 1>5>4 

-: 3>2 
tide x station 2 NS 
tide x month 4 NS 
station x 8 18.9 * See Figure 3.6f 
month 

(i) dab~ d.f. deviance si~nificance relationshie 
NULL 234l.9 
tide 1 NS 
station 2 184.8 *.* +:T>L 

-: PE 
month 4 576.4 *.* +:5>4 

-: 2>3> 1 
tide x station 2 NS 
tide x month 4 NS 
station x 8 NS 
month 

G) sea snail~ d.f. deviance significance relationship 
NULL 702.4 
tide 1 NS (p=O.057) +:LW 

-:HW 
station 2 42.3 *.* +:L 

-: PE>T 
month 4 146.5 *** +:4>5 

-: 2>3>1 
tide x station 2 NS 
tide x month 4 NS 
station x 8 NS 
month 
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The relationships between the various species' trawl abundances and the month factor were 

quite diverse. Greatest positive relationships were shown between abundance and month I 

(January/February) in fatherlasher and gobies (Table 3.2g,h), month 3 (June/July) in plaice, 

flounder and eelpout (Table 3.2c,d,t), month 4 (September/October) in pogge and sea snail 

(Table 3.2bj), and month 5 (December) in whiting and dab (Table 3.2a,i). Month 2 

(AprillMay) did not show the greatest positive relationship with any species, but did exhibit the 

greatest inverse proportionality with abundance ofpogge, dab and sea snail (Table 3.2b,ij). 

Plaice and flounder abundance were most negatively related to the first level of the month factor 

(Table 3.2c,d), while the same was true of whiting, fatherlasher and gobies in month 3 (Table 

3.2a,g,h), and of eel pout in month 5 (Table 3.2t). 

The most pronounced positive relationships between trawl abundances and trawl 

station were observed with greatest regularity for Port Edgar. This was evident in 

whiting, pogge, cod, eelpout, fatherlasher and gobies (Table 3.2a,b,e-h). Tancred 

showed the greatest direct proportionality with abundances of plaice and dab (Table 

3.2c,h), while flounder and sea snail exhibited this trend at the Longannet station (Table 

3.2d,j). Greatest inverse proportionality with catch data was evident most often at the 

Tancred station, this being the case in the models of pogge, flounder, cod, eel pout and 

fatherlasher abundance (Table 3.2b,d-g). Plaice, dab and sea snail models suggested 

greatest inverse proportionality at the Port Edgar site (Table 3.2c,i,j), and a similar trend 

was displayed by whiting and gobies at Longannet (Table 3.2a,h). 

Explanatory power of the interaction terms tested in the modelling process 

tended to be rather weak compared to the main effects, as evident from the relatively 

low amount of deviance explained per degree of freedom in most cases. The tide x 

month interaction was not significantly related to fish abundance in any of the models. 

The tide x station interaction was significant in three models (Figure 3.5). Whiting 

abundance at HW was much greater than at L W at Port Edgar, but declined to similar 
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levels as the LW trawls at Longannet (Figure 3.Sa). Catches ofpogge at LW tended to 

be much higher than those undertaken at HW at Port Edgar and Longannet, but 

reasonably similar at Tancred (Figure 3.Sb). Fatherlasher abundance tended to be 

considerably greater at L W than at HW at Port Edgar, while there was little difference 

between the two tidal states at the other stations (Figure 3.Sc). 

Figure 3.5. Plots of significant tide x station interaction from GLMs of Forth Estuary Agassiz trawl data, 
1982 -2000. Tide: 1 = LW, 2 = HW. Station: 1 = Port Edgar, 2 = Tancred, 3 = Longannct. Mean = 
mean abundance per trawl. 
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The numerous levels of factor in interaction plots of station x month made these 

data less easy to interpret, so the most important features were assessed. Monthly 

variation in catch of whiting was greatest at Port Edgar, with both greatest and least 

catches occurring in December and June, respectively (Figure 3.6a). Pogge exhibited 
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similar wide variations in catch at Longannet, where the most abundant mean catches 

were observed in September, whilst also possessing a low in April similar to that at 

Tancred in the same month (Figure 3.6b). Plaice abundance in April tended to be 

markedly greater at Tancred than at the other two stations, while at Port Edgar catches 

were low throughout the year and showed little variation; maximum abundances in this 

species were in June at Longannet (Figure 3.6c). Flounder were caught in very similar 

abundance at Port Edgar and Tancred throughout the year, while values at Longannet 

were generally higher and in June showed a pronounced peak (Figure 3.6d). Eelpout 

abundance in all months, except April, tended to be greater at Port Edgar and Longannet 

than at Tancred, with these differences being of greater magnitude in June and 

September; largest catches were in April at Port Edgar and June at Longannet, with 

abundance at Tancred only greater than Longannet in April (Figure 3.6e). Abundance 

of gobies was minimal at all stations in June, while being highest at Port Edgar in 

January and December, and at Tancred in December (Figure 3.6f). 
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Figure 3.6. Plots of significant station x month interaction from GLMs of Forth Estuary Agassiz trawl 
data, 1982 -2000. Station: 1 = Port Edgar, 2 = Tancred, 3 = Longannet. Month: 1 = January/February, 2 
= April/May, 3 = late June/July/early August, 4 = September/October, 5 = December. Mean = mean 
abundance per trawl. 
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3.3.1.3. Exploratory analysis of changes in demersal and benthic ichthyofauna 

Hierarchical agglomerative clustering and 1\1OS plots of the Agassiz data 

highlighted similar groupings of years, whether considering raw abundance data 

(Figures 3.7a and 3.8a) or percentage composition of annual catches (Figures 3.7b and 

3.8b). MDS plot stress values of 0.11 and 0.12 suggest that these 2-dimensional 

representations of multi-dimensional data were quite revealing, especially in 

combination with the cluster analysis. Clustering of raw abundance data gave three 

distinct groups at the 60% similarity level: group 1 (1999 and 2000), group 2 (1987 and 

1988) and group 3 (all remaining years) (Figure 3.7a). This was in agreement with the 

MDS plot of the same data, with 1999 and 2000 on the left of the ordination, 1987 and 

1988 on the right of the plot, and the remaining years generally nearer the centre (Figure 

3.8a). 
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Figure 3,7. Dendrograms of hierarchical agglomerative clustering of Agassiz trawl data, lower Forth 
Estuary 1982 - 2000, based on (a) sums of abundances of species taken in each year, and (b) percentage 
contribution of each species to total annual abundance. Data for 1986 excluded from (a) due to reduced 
sampling effort. Values computed in relation to Bray-Curtis similarity matrices. 
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Figure 3.8. MDS plots of Agassiz trawl data, lower Forth Estuary 1982 - 2000, based on (a) sums of 
abundances of species taken in each year, and (b) percentage contribution of each species to total annual 
abundance. Data for 1986 excluded from (a) due to reduced sampling effort. 
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Similarity percentage analyses (SIMPER) for these groupings are reproduced in 

Table 3.3. The most dissimilar were groups 1 and 2, with whiting and eelpout's relative 

abundance in 1987-88 contrasting with their scarcity in 1999-2000, and thus providing 

the bulk of the dissimilarity (approx. 60%) (Table 3.3c). The relatively high ratio of 

average dissimilarity to standard deviation of these two species, surpassed only by that 

of pogge, suggested them to be consistently good indicators of changes between the two 

periods, (Clarke and Warwick, 1994). Similar trends were noted between groups 2 and 

3 (Table 3.3a), the groups with greatest average dissimilarity. Comparison between 

groups 1 and 3 showed eelpout and whiting to again be the major contributors to 

dissimilarities (Table 3.3b). 
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Table 3.3. Summary output of SIMPER analysis of >60% similar raw Agassiz abundance data, 1982 -
2000 (excluding 1986). Av. Abund = average abundance, Av. Diss = average Bray-Curtis dissimilarity, 
Diss/SD = average dissimilarity/standard deviation, Contrib% = percentage of total dissimilarity 
attributable to species, Cum.% = cumulative percentage dissimilarity. See text for details of years 
contained in groups. 

(a) 
Groups 3 & 2 
Average dissimilarity = 43.94 

Group 3 Group 2 
Species Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum. % 
ee1pout 159.93 637.00 17.51 4.03 39.84 39.84 
whiting 227.29 443.50 8.17 2.13 18.59 58.43 
flounder 85.50 244.50 5.78 1. 43 13.16 71.59 
gobies 72.64 121.00 2.86 1. 36 6.51 78.10 
pogge 109.43 178.00 2.50 2.00 5.70 83.80 
cod 60.71 23.00 1. 55 0.73 3.53 87.33 
dab 60.29 31. 00 1. 28 0.95 2.90 90.23 

(b) 
Groups 3 & 1 
Average dissimilarity = 47.33 

Group 3 Group 1 
Species Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum. % 
whiting 227.29 47.00 11. 66 1. 75 24.63 24.63 
eelpout 159.93 32.00 8.10 1. 52 17.11 41. 74 
plaice 85.07 168.00 6.02 1. 45 12.72 54.46 
cod 60.71 128.50 5.45 1. 40 11. 52 65.98 
gobies 72.64 9.00 4.21 1. 81 8.90 74.88 
dab 60.29 10.00 3.39 1.13 7.17 82.05 
fatherlasher 19.57 52.00 2.24 1. 32 4.73 86.78 
pogge 109.43 100.50 1. 87 1. 50 3.96 90.74 

(c) 
Groups 2 & 1 
Average dissimilarity = 67.96 

Group 2 Group 1 
Species Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum. % 

eel pout 637.00 32.00 24.55 6.17 36.12 36.12 
whiting 443.50 47.00 16.08 5.53 23.65 59.78 
flounder 244.50 80.00 6.67 1. 33 9.82 69.60 
gobies 121. 00 9.00 4.58 1.25 6.74 76.34 
cod 23.00 128.50 3.98 1. 41 5.86 82.20 
plaice 80.50 168.00 3.65 1.15 5.38 87.58 
pogge 178.00 100.50 3.14 6.75 4.62 92.20 
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The 70% similarity level of raw abundance data consisted of group 1 (1999), group 2 

(2000), group 3 (1987 and 1988), group 4 (1990), group 5 (1982, 1983, 1984, 1985, 

1989, 1992, 1994, and 1997), and group 6 (1991, 1993, 1995, 1996, and 1998) (Figure 

3.7a). SIMPER analyses of comparisons between each pair of groups are reproduced in 

Table 3.4. Groups 5 and 6 were the least dissimilar (Table 3.4d), while groups 1 and 3 

were most dissimilar (Table 3.4h). In both cases eelpout and whiting contributed most 

to the average dissimilarity (approx. 50 - 65%), while eelpout was a reliable 

discriminating species, along with pogge, in terms of highest dissimilarity to S.D. ratios. 

The importance of eelpout and whiting was also apparent in all other comparisons with 

group 3, due to the high abundance of these species in 1987-1988 (Table 3.4a,c,e,I), as 

well as between group 1 and group 5 (Table 3.4g). Large abundance of cod in 1990 

(group 4) and 2000 (group 2) led to this species generally accounting for approx. 20-

30% of dissimilarity in comparisons of these groups with others (Table 3.4b,c,f,i,n). 

The relatively low cod contribution to dissimilarity between these two groups reflects 

the high abundances exhibited in both (Table 3.4m). The relatively large increase in 

abundance of cod and plaice between 1999 and 2000 contributed 60% of the 

dissimilarity between these two years, which comprised groups 1 and 2 respectively 

(Table 3.40). The low abundances of plaice and cod in much of the 1990s gave rise to 

these two species again providing the bulk of dissimilarity between groups 2 and 6 

(Table 3 An). Dissimilarity between 2000 (group 2) and much of the 1980s (group 5, 

see above) was driven in almost equal part by the former's increased abundance of cod 

and plaice and decrease in whiting and eelpout, compared with the latter (Table 3 Ak). 

These four species contributed just over 70% of dissimilarity between these groups. 

Decreases in whiting, gobies, eel pout and plaice accounted for a similar level of 

dissimilarity between group 1 and group 6 (Table 3.4j). 
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Table 3.4. Summary output of SIMPER analysis of >70% similar raw Agassiz abundance data, 1982-
2000 (excluding 1986). Av. Abund = average abundance, Av. Diss = average Bray-Curtis dissimilarity, 
Diss/SD = average dissimilarity/standard deviation, Contrib% = percentage of total dissimilarity 
attributable to species, Cum.% = cumulative percentage dissimilarity. See text for details of years 
contained in groups. Hash marks (#) indicate inability to compute due to <3 years of data under 
consideration. 

(a) 
Groups 5 & 3 
Average dissimilarity = 38.08 

Group 5 Group 3 
Species Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum. % 
eel pout 210.75 637.00 15.06 4.59 39.53 39.53 
whiting 269.25 443.50 6.50 1. 77 17.06 56.59 
flounder 88.50 244.50 5.43 1. 40 14 .26 70.85 
gobies 64.50 121.00 2.87 1. 33 7.52 78.37 
pogge 115.63 178.00 2.23 1. 51 5.84 84.22 
dab 58.50 31. 00 1.16 1. 09 3.06 87.27 
sea snail 21. 88 42.00 1.13 1.20 2.98 90.25 

(b) 
Groups 5 & 4 
Average dissimilarity = 33.30 

Group 5 Group 4 
Species Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum. % 
cod 40.38 293.00 11. 01 13.48 33.04 33.04 
whiting 269.25 223.00 4.07 1. 21 12.23 45.28 
plaice 86.50 174.00 3.80 3.18 11. 41 56.68 
gobies 64.50 143.00 3.44 2.14 10.33 67.02 
eelpout 210.75 176.00 2.95 1. 67 8.87 75.89 
flounder 88.50 14 6.00 2.46 1. 94 7.39 83.28 
pogge 115.63 82.00 1. 77 1.27 5.30 88.58 
dab 58.50 31. 00 1. 43 1. 08 4.30 92.88 

(c) 
Groups3 & 4 
Average dissimilarity = 44.62 

Group 3 Group 4 
Species Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum. % 

eelpout 637.00 176.00 14.68 9.32 32.90 32.90 
cod 23.00 293.00 8.59 9.92 19.25 52.16 
whiting 443.50 223.00 7.01 4.20 15.71 67.87 
flounder 244.50 146.00 3.31 0.75 7.41 75.28 
pogge 178.00 82.00 3.06 20.12 6.85 82.12 
plaice 80.50 174.00 2.98 2.99 6.68 88.80 
gobies 121. 00 143.00 2.38 2.46 5.34 94.14 
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Table 3.4 cont. 
(d) 
Groups5 & 6 
Average dissimilarity = 31.05 

Group 5 Group 6 
Species Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum. % 
eel pout 210.75 75.40 7.77 1. 91 25.04 25.04 
whiting 269.25 161.00 7.17 1.16 23.08 48.12 
dab 58.50 69.00 2.83 1. 36 9.11 57.23 
pogge 115.63 105.00 2.26 1. 58 7.27 64.50 
plaice 86.50 65.00 2.16 1.27 6.96 71. 46 
flounder 88.50 68.60 2.05 1. 45 6.60 78.06 
gobies 64.50 71. 60 1. 99 1. 45 6.41 84.47 
cod 40.38 46.80 1. 22 1. 39 3.91 88.39 
sea snail 21. 88 19.00 0.94 1.18 3.02 91. 41 

(e) 
Groups 3 & 6 
Avera~e dissimilarity = 53.16 

Group 3 Group 6 
Species Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum. % 

eel pout 637.00 75.40 21. 99 11. 75 41. 36 41. 36 
whiting 443.50 161.00 11. 07 4.28 20.83 62.19 
flounder 244.50 68.60 6.84 1. 58 12.87 75.06 
gobies 121. 00 71. 60 2.95 1. 27 5.55 80.60 
pogge 178.00 105.00 2.84 3.27 5.34 85.94 
dab 31. 00 69.00 1. 68 0.96 3.16 89.10 
plaice 80.50 65.00 1. 30 1. 33 2.44 91. 54 

(f) 
Groups4 & 6 
Average dissimilari~ = 38.94 

Group 4 Group 6 

Species Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum. % 
cod 293.00 46.80 12.28 7.94 31. 53 31. 53 
plaice 174.00 65.00 5.46 2.97 14.02 45.56 
eelpout 176.00 75.40 5.02 5.62 12.90 58.46 
flounder 146.00 68.60 3.84 3.20 9.86 68.32 
gobies 143.00 71.60 3.59 2.53 9.21 77.53 
whiting 223.00 161.00 3.18 1. 24 8.16 85.69 
dab 31. 00 69.00 2.13 0.92 5.47 91.16 

(g) 
Groups 5 & J 
Avera~e dissimilari!l = 50.10 

Group 5 Group 1 

Species Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum. % 
whiting 269.25 36.00 16.59 2.02 33.12 33.12 
eelpout 210.75 17.00 13.64 2.81 27.22 60.35 
gobies 64.50 3.00 4.35 1. 77 8.69 69.04 
dab 58.50 4.00 3.81 1. 55 7.60 76.64 
pogge 115.63 99.00 2.54 1. 52 5.07 81. 71 
flounder 88.50 67.00 2.37 1. 77 4.73 86.43 
plaice 86.50 81. 00 1. 87 3.27 3.72 90.16 
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Table 3.4 cont. 
(h) 
Groups 3 & J 
Average dissimilarity = 69.55 

Group 3 Group 1 
Species Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum. % 
ee1pout 637.00 17.00 27.65 11.65 39.76 39.76 
whiting 443.50 36.00 18.15 8.28 26.10 65.85 
flounder 244.50 67.00 7.87 1. 21 11. 32 77.17 
gobies 121.00 3.00 5.29 1.10 7.61 84.78 
pogge 178.00 99.00 3.52 17.03 5.06 89.84 
cod 23.00 61. 00 1. 69 1.29 2.42 92.26 

(i) 
Groups4 & J 
Average dissimilarity = 56.84 

Group 4 Group 1 
Species Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum. % 
cod 293.00 61. 00 13.68 ####### 24.07 24.07 
whiting 223.00 36.00 11. 03 ####### 19.40 43.46 
eelpout 176.00 17.00 9.38 ####### 16.49 59.96 
gobies 143.00 3.00 8.25 ####### 14.52 74.48 
plaice 174.00 81. 00 5.48 ####### 9.65 84.13 
flounder 146.00 67.00 4.66 ####### 8.20 92.32 

G) 
Groups 6 & J 
Average dissimilarity = 40.28 

Group 6 Group 1 

Species Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum. % 
whiting 161. 00 36.00 11.12 2.67 27.60 27.60 
gobies 71. 60 3.00 6.09 2.95 15.11 42.72 
dab 69.00 4.00 5.73 1. 24 14 .23 56.95 
eelpout 75.40 17.00 5.22 4.38 12.96 69.91 
plaice 65.00 81. 00 2.98 2.38 7.41 77.32 
cod 46.80 61. 00 2.20 1. 80 5.46 82.78 
flounder 68.60 67.00 1. 85 2.00 4.60 87.38 
pogge 105.00 99.00 1. 84 1. 78 4.57 91.95 

(k) 
Groups 5 & 2 
Average dissimilarity = 50.48 

Group 5 Group 2 
Species Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum. % 
whiting 269.25 58.00 11. 02 1. 82 21. 83 21. 83 
plaice 86.50 255.00 8.83 6.00 17.49 39.32 
eelpout 210.75 47.00 8.46 2.28 16.76 56.07 
cod 40.38 196.00 8.17 9.64 16.19 72 .27 
father1asher 22.63 86.00 3.32 3.83 6.59 78.85 
gobies 64.50 15.00 2.67 1. 62 5.29 84.15 
dab 58.50 16.00 2.20 1.19 4.36 88.50 
pogge 115.63 102.00 1. 86 1. 65 3.69 92.20 
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Table 3.4 cont. 
(1) 
Groups 3 & 2 
Average dissimilarity = 66.38 

Group 3 Group 2 
Species Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum. % 
eel pout 637.00 47.00 21. 45 11. 47 32.32 32.32 
whiting 443.50 58.00 14.00 7.65 21. 09 53.41 
plaice 80.50 255.00 6.35 5.42 9.56 62.97 
cod 23.00 196.00 6.28 6.20 9.46 72.44 
flounder 244.50 93.00 5.48 1. 03 8.25 80.69 
gobies 121. 00 15.00 3.87 0.99 5.83 86.52 
fatherlasher 9.50 86.00 2.78 17.62 4.19 90.71 

(m) 
Groups4 & 2 
Average dissimilarity = 36.39 

Group 4 Group 2 
Species Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum. % 
whiting 223.00 58.00 7.49 ####### 20.57 20.57 
eelpout 176.00 47.00 5.85 ####### 16.08 36.66 
gobies 143.00 15.00 5.81 ####### 15.96 52.62 
cod 293.00 196.00 4.40 ####### 12.09 64.71 
fatherlasher 4.00 86.00 3.72 ####### 10.22 74.94 
plaice 174.00 255.00 3.68 ####### 10.10 85.04 
flounder 146.00 93.00 2.40 ####### 6.61 91. 65 

(n) 
Groups 6 & 2 
Average dissimilarity = 45.22 

Group 6 Group 2 
Species Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum. % 
plaice 65.00 255.00 11.80 4.74 26.09 26.09 
cod 46.80 196.00 9.25 5.12 20.46 46.55 
whiting 161. 00 58.00 6.29 2.11 13.91 60.46 
fatherlasher 17.80 86.00 4.21 4.69 9.31 69.76 
gobies 71. 60 15.00 3.45 2.30 7.63 77.39 
dab 69.00 16.00 3.21 1. 00 7.10 84.49 
eelpout 75.40 47.00 1. 73 1. 95 3.83 88.32 
flounder 68.60 93.00 1. 51 1. 02 3.35 91. 67 

(0) 
Groups 1 & 2 
Average dissimilarity = 39.20 

Group 1 Group 2 
Species Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum. % 
plaice 81. 00 255.00 13.32 ####### 33.98 33.98 
cod 61. 00 196.00 10.34 ####### 26.37 60.35 
fatherlasher 18.00 86.00 5.21 ####### 13.28 73.63 
eel pout 17.00 47.00 2.30 ####### 5.86 79.49 
flounder 67.00 93.00 1. 99 ####### 5.08 84.57 
whiting 36.00 58.00 1. 68 ####### 4.30 88.87 
gobies 3.00 15.00 0.92 ####### 2.34 91. 21 
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The major differences between the final two years of the time series, 1999 and 

2000, which were highlighted initially by the raw abundance data, were confirmed 

when the same analyses were repeated using the percentage contribution of each species 

to total annual abundance. At the >60% similarity level, the cluster dendrogram 

delineated two groups, similar to those of the MDS plot (Figure 3.8b), and consisting of 

group 1 (all years except 1999 and 2000) and group 2 (1999 and 2000) (Figure 3.7b). 

The SIMPER analysis revealed that the decline in eel pout and whiting percentage 

contribution to the total annual abundance, allied with the increase in cod and plaice 

proportions in the annual abundance, were almost in equal part to account for approx. 

64% of the dissimilarity in these groups (Table 3.5). 

Table 3.5. Summary output of SIMPER analysis of >60% similar Agassiz percentage composition data, 
1982 - 2000. Av. Abund = average abundance, Av. Diss = average Bray-Curtis dissimilarity, DissiSD = 
average dissimilarity/standard deviation, Contrib% = percentage of total dissimilarity attributable to 
species, Cum.% = cumulative percentage dissimilarity. See text for details of years contained in groups. 

Groups 1 & 2 
Average dissimilarity = 47.58 

Group 1 Group 2 
Species Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum.% 
whiting 24.07 7.70 8.19 1. 84 17.21 17.21 
plaice 8.27 24.21 7.97 2.91 16.75 33.96 
eelpout 20.21 4.74 7.74 1. 51 16.26 50.22 
cod 5.47 18.43 6.73 2.87 14.14 64.36 
pogge 11. 93 18.03 4.10 1. 43 8.62 72.98 
gobies 7.46 1.20 3.16 1. 70 6.64 79.62 
fatherlasher 2.01 7.00 2.59 1. 90 5.44 85.06 
flounder 10.19 13.51 2.46 1. 36 5.17 90.23 

When similarity levels of approximately >70% were investigated, four groups existed: 

group 1 (1982 - 1989, excluding 1985), group 2 (1985 and 1991 - 1997), group 3 (1990 

and 1998) and group 4 (1999 and 2000) (Figure 3. 7b). Eelpout accounted for greatest 

proportion of dissimilarity between group 1 and groups 2, 3 and 4 (Table 3.6a,b,d) and, 

despite low overall contribution to dissimilarity, was by far the most consistent 

138 



discriminating speCles between groups 3 and 4, as illustrated by the high 

dissimilarity/S.D. ratio (Table 3.6f). Whiting's relatively great contribution to overall 

fish abundance throughout most of the 1990s, as well as 1985, represented as group 2, 

accounted for approx. 25% of the dissimilarity between this group and groups 3 and 4, 

when this species' contribution was lower (Table 3.6c,). Cod made a relatively large, 

though inconsistent contribution to dissimilarities between group 3 and groups 1 and 2 

(Table 3.6b,c), while the proportion of total dissimilarity between group 4 and groups 1 

and 2 were relatively lower, but the dissimilarity/S.D. ratios were the highest of all 

species, suggesting consistency over all comparisons between groups (Table 3.6d,e). 

The relatively high proportion of total fish abundance attributable to plaice in 1999 -

2000 (group 4) meant that this species was a major contributor of dissimilarity between 

this group and the remaining groups, at approx. 16 - 20% of total dissimilarity (Table 

3.6d,e,f). 

Both raw abundance and percentage composition exploratory analyses served to 

highlight changes in the composition of the lower Forth Estuary ichthyofauna in similar 

ways. The decline of an MJ species, whiting, as well as two resident taxa, eel pout and 

gobies, in combination with recent increases in MJ species plaice and cod, appeared to 

drive much of the observed differences in the 19-year dataset. 
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Table 3.6. Summary output of SIMPER analysis of 70% similar Agassiz percentage composition data, 
1982 - 2000. Av. Abund = average abundance, Av. Diss = average Bray-Curtis dissimilarity, DisS/SD = 
average dissimilarity/standard deviation, Contrib% = percentage of total dissimilarity attributable to 
species, Cum.% = cumulative percentage dissimilarity. See text for details of years contained in groups. 

(a) 
Groups 1 & 2 
Average dissimilarity = 31.48 

Group 1 Group 2 
Species AV.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum. % 
eelpout 30.72 12.70 9.01 2.38 28.62 28.62 
whiting 19.38 30.55 5.67 1. 33 18.00 46.62 
dab 3.64 8.93 3.01 1.18 9.57 56.19 
flounder 12.03 8.09 2.55 1. 30 8.09 64.28 
pogge 10.02 13.40 2.35 1. 59 7.46 71. 74 
plaice 7.91 8.12 2.15 1. 45 6.83 78.57 
gobies 5.90 7.55 2.11 1. 58 6.70 85.27 
cod 3.42 5.30 1. 40 1. 06 4.45 89.72 
sea snail 1. 95 1. 97 0.77 1. 26 2.46 92.18 

(b) 
Groups 1 & 3 
Average dissimilarity = 32.28 

Group 1 Group 3 
Species Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum. % 

eelpout 30.72 13.49 8.62 2.54 26.70 26.70 
cod 3.42 13.26 5.16 1.10 15.97 42.67 
gobies 5.90 12.56 3.33 1. 70 10.32 52.99 
pogge 10.02 12.75 3.22 1. 53 9.98 62.96 
whiting 19.38 14.55 2.65 1. 32 8.21 71.17 
plaice 7.91 10.14 2.24 1. 50 6.95 78.12 
flounder 12.03 12.17 1.52 1. 40 4.70 82.82 
fatherlasher 1. 88 3.20 1. 45 1. 28 4.49 87.32 
sea snail 1. 95 3.49 1.25 1. 40 3.86 91.17 

(c) 
Groups 2 & 3 
Average dissimilarity = 31.77 

Group 2 Group 3 
Species Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum. % 
whiting 30.55 14.55 8.00 1. 86 25.19 25.19 
cod 5.30 13.26 4.85 1.17 15.26 40.44 
dab 8.93 2.43 3.28 1.20 10.32 50.76 
pogge 13.40 12.75 3.22 1. 91 10.14 60.90 
gobies 7.55 12.56 2.55 1. 47 8.03 68.93 
flounder 8.09 12.17 2.27 1. 41 7.14 76.07 
plaice 8.12 10.14 2.21 1. 37 6.95 83.02 
eelpout 12.70 13.49 1. 54 1. 40 4.85 87.87 
fatherlasher 1. 82 3.20 1. 45 1.71 4.56 92.44 
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Table 3.6 cont. 
(d) 
Groups J & 4 
Average dissimilarity = 49.77 

Group 1 Group 4 
Species Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum.% 
eelpout 30.72 4.74 12.99 3.82 26.10 26.10 
plaice 7.91 24.21 8.15 2.97 16.37 42.48 
cod 3.42 18.43 7.50 3.97 15.08 57.56 
whiting 19.38 7.70 5.84 2.97 11.74 69.30 
pogge 10.02 18.03 4.40 1. 31 8.83 78.13 
fatherlasher 1. 88 7.00 2.67 1. 94 5.36 83.49 
gobies 5.90 1. 20 2.35 1. 30 4.72 88.21 
flounder 12.03 13.51 2.10 1. 43 4.21 92.42 

(e) 
Groups 2 & 4 
Average dissimilarity = 48.33 

Group 2 Group 4 
Species Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum. % 
whiting 30.55 7.70 11. 43 2.77 23.64 23.64 
plaice 8.12 24.21 8.05 2.86 16.65 40.29 
cod 5.30 18.43 6.56 3.00 13.58 53.88 
eelpout 12.70 4.74 3.98 2.09 8.24 62.11 
dab 8.93 1. 38 3.78 1. 37 7.81 69.92 
pogge 13.40 18.03 3.72 1. 52 7.69 77.61 
gobies 7.55 1.20 3.24 2.13 6.70 84.31 
flounder 8.09 13.51 2.98 1. 39 6.17 90.49 

(f) 
Groups 3 & 4 
Average dissimilarity = 36.92 

Group 3 Group 4 
Species Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum. % 
plaice 10.14 24.21 7.04 2.39 19.06 19.06 
gobies 12.56 1. 20 5.68 6.18 15.38 34.44 
cod 13.26 18.43 4.67 1. 33 12.65 47.09 
pogge 12.75 18.03 4.63 1. 47 12.53 59.62 
eelpout 13.49 4.74 4.37 16.47 11. 85 71. 47 
whiting 14.55 7.70 3.42 2.01 9.27 80.74 
fatherlasher 3.20 7.00 2.30 1. 41 6.22 86.96 
flounder 12.17 13.51 1. 63 1. 74 4.42 91. 38 
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3.3.1.4. Population abundance variability in relation to latitude 

The rank of species collected in the Forth based on predicted CVSDs 

(coefficients of variation of standard deviations) of annual abundance differed 

somewhat from that predicted based on the relative proximity of each species to the 

centre of its geographical range (Table 3.7). 

Table 3.7. Ten most abundant species caught by Agassiz trawl, lower Forth Estuary, 1982-2000 
(excluding 1986): coefficient of variability of standard deviation (CYSD) of mean annual abundance 
observed ranking compared to that hypothesised, then compared to Severn Estuary data (Henderson and 
Seaby, 1999). Centres of range derived from Wheeler (1969). 'Gobies' = Pomatoschistus spp., assumed 
comparable to sand goby of Severn data. 

latitudinal Forth observed rank Severn observed relationship of 
species range CVSD ( efpredicted) CVSD(%) Forth to Severn CVSDs (ef 

(centre), (%) predicted) 
ON 

pogge 48 -73 32.79 1 (7) 70.95 < «) 
(60.5) 

plaice 35 -70 56.95 2 (4) 116.64 < (» 
(52.5) 

whiting 43 -73 57.86 3 (1) 50.55 > «) 
(58) 

flounder 30 -73 67.95 4 (6) 42.77 > (» 
(51.5) 

'gobies' 37 -72 69.87 5 (2) 55.49 > «) 
(54.5) 

dab 46 -73 80.73 6 (5) 60.47 > «) 
(59.5) 

sea snail 50 -73 88.10 7 (8) 70.48 > «) 
(61.5) 

eelpout 51-73 91.52 8 (9) NA 
(62) 

father lasher 45 -73 95.01 9 (3) NA 
(59) 

cod 48 - 80 109.36 10 (10) 117.80 < «) 
(64) 
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Pogge CVSD was the lowest, despite being predicted to be relatively high. Dab, 

sea snail and flounder were within one place of their predicted ranks, while cod 

exhibited greatest variation in annual abundance, as predicted. Plaice, whiting, gobies 

and flounder showed moderate agreement with predictions, while fatherlasher rank was 

considerably lower than predicted (Table 3.7). 

Of eight species comparisons with Severn estuary data, only three were of the 

nature hypothesised (Table 3.7). Pogge catches in the Forth were far less variable than 

those in the Severn, while the opposite was true of flounder, both as predicted. The 

CVSDs of cod and whiting in the two estuaries were relatively similar, while 

respectively nominally fulfilling and rejecting the hypothesised relationships. The 

CVSDs of plaice, gobies, dab and sea snail were markedly different from the predicted 

relationships (Table 3.7). 

3.3.2. Pelagic study, April 1999 - January 2001. 

3.3.2.1. Species composition of catches and approximate c1upeid abundances 

Sprat and herring dominated pelagic trawl catches between April 1999 and 

January 2001, as expected. These two species accounted for 7019 individuals of a total 

pelagic abundance of 7842 fish, or 89.5%. The clupeid catch was dominated by sprat, 

with 4959 fish (63.2% of total pelagic abundance), while herring contributed 2060 

individuals (29.3%). The remaining fish sampled were mostly whiting (569 individuals, 

8.2% of total pelagic trawl abundance) and smelt (51 individuals). Almost 90% of 

whiting captured (500 individuals) were taken at LW. Other benthic and demersal 

species were taken, usually at L W, probably attributable to the gear dipping towards the 

bottom. 
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Mean estimated abundance of sprat in the Forth Estuary between Dunmore and 

the Forth Bridges from April 1999 - January 2001 was approx. 1.31 x 107 individuals 

(arithmetic 95% CIs: 6.00 x 106 
- 2.01 x 107

; geometric 95% CIs: 8.10 x 106 
- 2.11 x 

107
) when calculated using the arithmetic mean of abundances per unit volume trawled, 

and 2.02 x 106 (95% CIs: 1.25 - 3.26 x 106
) when using the geometric mean. Herring 

mean abundance was estimated at 5.30 x 106 individuals (arithmetic 95% CIs: 2.47 -

8.13 X 106
; geometric 95% CIs: 3.40 - 8.24 x 106

) by arithmetic mean calculation, and 

9.94 x 105 (95% CIs: 6.39 x 105 
- 1.55 x 106

) using the geometric mean of herring 

caught per unit volume trawled. Maximum and minimum estimated abundances over 

the study period are provided in Table 3.8. Estimated abundances in the ten months 

during which trawling took place are illustrated in Figures 3.9 and 3.10. 

Table 3.8. Months with estimated maximum and minimum clupeid population sizes, mid-lower Forth 
Estuary, April 1999 - January 200 1. Data estimated from pelagic trawling. 

sprat 

herring 

maximum abundances 
arithmetic mean geometric mean 
(geometric 95% CIs) (95% CIs) 

April 2000: 3.45 x 10' 
(1.27 X 106 

- 9.39 X 108
) 

January 2001: 1.41 x 10' 
(1.81 X 106 

- 1.10 X 108
) 

January 2000: 1.18 x 
107 (5.95 x 106 -2.35 
x 107

) 

January 200 1: 2.05 X 

106 (2.62 x 105 - 1.60 
x 107

) 
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minimum abundances 
arithmetic mean geometric mean 
(geometric 95% (95% CIs) 
CIs) 
September 2000: 
1.93 x 106 (1.57-
2.37 x 106

) 

December 2000: 
1.14 x 106 (2.32 x 
lOs _ 5.64 X 106) 

December 2000: 
7.33 x 105 (6.22 x 
104 

- 8.65 X 106
) 

December 2000: 
3.55 x 105 (7.21 x 
104 

- 1.75 X 106
) 
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Figure 3.9. Estimated abundances of sprat in the Forth Estuary (Dunmore - Forth Bridges), April 1999 -
January 2001, based on pelagic trawl catches Data for July 2000 excluded due to gear damage (see text). 
Values are extrapolations of arithmetic means of 6 trawls per month, ± 95% geometric CI. 
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Figure 3.10. Estimated abundances of herring in the Forth Estuary (Dunmore - Forth Bridges), April 
1999 - January 2001, based on pelagic trawl catches. Data for July 2000 excluded due to gear damage 
(see text). Values are extrapolations of arithmetic means of 6 trawls per month, ± 95% geometric CI. 
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3.3.2.2. Generalised Linear Modelling of sprat and herring abundance 

GLMs of sprat and herring abundances in relation to the predictor factors of tide, 

month and trawl station explained relatively little of the null deviance, as was the case 

with the Agassiz and power station models. Sprat abundance was significantly related 

to tidal state, L W having a directly proportional relationship with numbers captured, 

while HW was inversely proportional (Table 3. 9a). Month was the only other factor 

that was significant, and the greatest positive relationship with abundance was shown by 

month 2 (ApriIlMay), followed by months 1 (January) and 4 (September). Inverse 

proportionality was demonstrated with the months of July and December (3 and 5 

respectively), with the former showing the stronger relationship (Table 3.9a). 

Herring abundance was significantly related to all of the factors and interactions 

modelled, with the exception of the station x month interaction (Table 3. 9b). Tide was 

only included in the model due to the significance of both of its interaction terms, while 

it was actually marginally non-significant (p = 0.07). The nature of the relationship was 

as exhibited by sprat, LW positively related to abundance (Table 3.9b). Station was 

weakly significant, with direct proportionality between herring abundance and trawls 

carried out at Longannet and Port Edgar (the former being more positively related than 

the latter), and a negative relationship was suggested with data collected at Tancred 

(Table 3.9b). Sampling in months 4 (September) and 1 (January) was most positively 

related to herring abundance, while April, June and December samples were inversely 

proportional to abundance (Table 3.9b). 
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Table 3.9. Summary of results of GLMs on lower Forth Estuary pelagic trawl dataset, April 1999 -
January 2001 (n=57 trawls). 'd.f.' is degrees offreedom; 'deviance' is amount of deviance explained by 
predictor; 'significance': * = p<0.05, ** = p<O.OI, *** = p<O.OOI, NS = not significant (p>0.05); 
'relationship': + signifies direct proportionality with dependent variable, - signifies inverse 
proportionality, relative strengths of factor levels indicated. Station: PE = Port Edgar, T = Tancred, L = 
Longannet. Month: 1 = January, 2 = late MarchlApriVearly May, 3 = late June/July/early August, 4 = 
September/October, 5 = December. Both models utilised negative binomial distributions. NULL 
signifies total deviance in null model. 

(a) sprat d.f. 
NULL 
tide 1 

station 2 
month 4 

tide x station 2 
tide x month 4 
station x 8 
month 

(b) herring dJ. 
NULL 
tide 1 

station 2 

month 4 

tide x station 2 

tide x month 4 

station x 8 
month 

deviance significance 
97.4 
13.6 *** 

NS 
28.5 *** 

NS 
NS 
NS 

deviance significance 
131.8 
3.3 p = 0.07 

7.3 * 

20.7 *** 

6.1 * 

22.4 *** 

NS 

relationship 

+:LW 
-:HW 

+:2>1>4 
-: 3>5 

relationship 

+:LW 
-:HW 
+:L>PE 
-: T 
+:4>1 
-: 2>3>5 
See Figure 
3.11a 
See Figure 
3.11b 

The interaction of tide x station explained least proportion of null deviance per 

degree freedom of the significant factors, and suggested HW abundance to be slightly 

greater than L W only at Port Edgar, while the abundance at Longannet at L W was much 

greater than at HW (Figure 3.IIa). The other significant interaction, tide x month, 

explained the greatest proportion of null deviance, and showed L W catches to be much 

greater than those at HW in January, and slightly greater in April and September, while 

in the other two months HW yielded slightly more herring (Figure 3. 11 b). 
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Figure 3.11. Plots of significant interaction terms from GLMs of herring abundance, lower Forth Estuary: 
(a) tide x station, (b) tide x month. Tide: 1 = LW, 2= HW. Station: 1 = Port Edgar, 2 = Tancred, 3 = 
Longannet. Month: 1 = January, 2 = April, 3 = July, 4 = September,S = December. Mean = mean 
abundance per trawl. 
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3.4. Discussion 

3.4.1. Assumptions made during trawling 

Various assumptions were made in the Agassiz and pelagic trawl studies. Assessment 

of relative abundance, such as that between each trawl in the present study, depended on the 

assumption that the relationship: 

I1.C qN 
---
I1.j A 

holds true, where C = catch, f = trawling effort, A is area or volume occupied by the 

stock, N = total stock abundance, and q is the catchability coefficient (Gee, 1983). 

Intrinsic and extrinsic factors affect the catchability coefficient of trawls: it is based 

upon two elements, qI (gear efficiency) and q2 (availability and vulnerability of fish to 

the trawl) (Gee, 1983). Gear efficiency (ql) is assumed to be constant throughout a tow, 

but in practice may vary, for example due to a change in substrate. Availability of fish 

to trawling (q2) is a measure of the proportion of fish in a study area that are likely to be 

in the path of the trawl at the time of sampling. Estimation of availability may assume 

an even spatial distribution throughout the study area, but aggregations of fish on a 

small scale (e.g. in shoals; Misund, 1994) or larger scales (e.g. migration to intertidal 

areas for feeding purposes; Wolff et al., 1981) may significantly affect such an 

assumption. The known diel vertical migrations of herring, i. e. towards the sea surface 

at dusk and towards the sea bed at dawn (Blaxter and Batty, 1990), may have affected 

estimates of abundance from midwater trawls in the present study, assuming herring 

shoaling behaviour in the Forth Estuary to be similar to that in the ocean. Michalsen et 

al. (1996) provided evidence that q2 is related to tidal rhythm for Barents Sea cod and 

haddock, since the vertical distribution of the species varies with tidal current; fish 
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descended as tidal current decreased in speed, and so were more available to bottom 

trawl capture at this phase of the tide. This effect seemed to be advanced and expanded 

if co-occurring with sunrise, illustrating that the interaction of these two environmental 

influences is important. 

Many studies simply state efficiency of the gear to indicate catchability 

coefficient. Studies of the Forth Estuary fish using beam and Agassiz trawls assumed 

an efficiency of 33% (i.e. catchability coefficient of 0.33), based on Kuipers' (1975) 

study that assessed the efficiency of a 2 m beam trawl in catching juvenile plaice. 

Efficiency of the same gear is likely to differ between species (see above), as shown by 

Kjelson and Johnson (1978) for a 6.1 m otter trawl used in sampling marked fish of a 

known density in an enclosed North Carolina tidal embayment: juvenile pinfish, 

Lagodon rhomboides, were sampled at a rate of 48%, whereas juvenile spot, Leiostomus 

xanthurus, experienced a sampling efficiency of 32% (i.e. catchability coefficients of 

0.48 and 0.32, respectively). Precision of measurement of efficiency in the study was 

variable, with the standard error ranging from 9 - 58% of the mean. 

Fish behaviour in the process of capture by trawls is of great commercial and 

scientific interest. Vulnerability of fish available for sampling (i.e. those in the path of 

an oncoming trawl) varies inter- and intraspecifically. Initially, the sound of the vessel 

may cause an avoidance response; demersal fish in the pelagic zone typically swim 

downwards (possibly increasing the proportion caught by demersal trawls), whereas 

pelagic fish tend to swim off at right angles to the vessel's motion (God0, 1994). 

Vision is important to most fish (Guthrie and Muntz, 1993), and perception of trawl 

components often depends on fishes' visual abilities and the colour of the trawl used. 

Wardle (1993) suggests pelagic nets to be most effective in catching fish if fitted with a 

black top, white base and black and white striped sides. High turbidity in the Forth (see 
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section 2.3.1) may have caused the lack of this optimum colour of netting to not be as 

significant as during fishing in clearer waters. 

When fish are already in the mouth of the trawl, it is still not a foregone 

conclusion that they will be captured. This was mentioned in section 2.4.3.1 as 

analogous to avoidance of removal in power station CW intake flows (Tumpenny, 

1988a). Smaller fish are better at escaping beneath demersal trawls, an effect reduced 

by fitting tickler chains to the bottom of the trawl's mouth (God0, 1994). No tickler 

chains were fitted to the Agassiz trawls in the present study. Haddock were shown to 

escape upwards over the head of the trawl more consistently than cod (God0, 1994). 

Scaling effects are of great importance when fish are in the mouth of the trawl, for 

larger fish are more likely to escape capture by enduring pursuit from the trawl by 

swimming in the same direction as the trawl; small fish need to swim more 

energetically to attain the same speed, and so tire more easily and are caught (Wardle, 

1993). Smaller fish may pass through the mesh of the net's cod end, although this is 

less likely with the small mesh sizes used for scientific purposes, as in the present study. 

God0 et al. (1990) hypothesised that catch rates of large fish would decrease with 

increasing trawl duration, due to the greater swimming capacity of large fish compared 

to smaller individuals. Testing this with varying trawl durations did not, however, 

produce significant change in mean length of fish caught, for the species tested (cod, 

haddock and long rough dab). 

In general, trawl surveys are limited In their accuracy by the following 

assumptions (God0, 1994): 

i) variability in gear selection for size or species of fish is constant, so 

that comparisons can be made between surveys subject to certain 

constraints; 
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ii) the size of the sampling unit (i.e. trawling effort) is constant under all 

conditions; 

iii) the trawl performs equally well in differing conditions such as depth, 

weather and bottom substrate type. 

The Agassiz and pelagic trawling carried out in the present study assumed these 

conditions, though testing of gear efficiency and related features would be needed to 

quantify errors associated with the techniques. Resource constraints have prevented this 

from being carried out adequately thus far. 

3.4.2. Trends in demersal and benthic species' abundances and changes in 
composition of the lower Forth Estuary ichthyofauna 

Total number of benthic and demersal species collected over the 19-year period 

of Agassiz trawling was thirty, which, when the occasional pelagic species captured 

were also included, is close to the quantity of species expected for a temperate estuary 

of this latitude (Henderson, 1989; see Chapter 2). Considerable changes in the 

composition of the ichthyofaunal assemblage were observed to have taken place over 

the time period, culminating in a fish community structured quite differently in 1999 -

2000 from that observed in previous years. While these two years were very distinct 

from all others, they were also quite dissimilar to each other. The change stemmed 

from 1999 possessing the least total quantity of species and total abundance of fish over 

the entire period: it was a poor year for many species, with abundances of whiting, 

gobies, eelpout and dab being at minimum values for the 19-year period. In addition, 

cod and plaice abundances in 2000 were at second highest and highest levels observed, 

respectively. The exploratory non-parametric multidimensional analyses employed in 

the present study suggested that most differences in the composition of the Forth 
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Estuary ichthyofauna were due to the differing abundances of whiting, eelpout, cod and 

plaice. Analysis using percentage of the total abundance attributable to each species 

showed that, apart from the very different years of 1999 and 2000, there was generally a 

split between most years sampled in the 1980s and those from 1990 onwards. Whilst no 

trend in benthic or demersal species richness over the study period was apparent, there 

was a statistically significant decrease in abundance of fish captured during trawling. 

This was attributable largely to the significant declines in abundance of whiting and 

eeJpout, which were the most abundant species taken over the entire period, but with 

greatly reduced numbers towards the end of the time series. There were no other 

speCIes exhibiting statistically detectable linear trends in abundance, though more 

speCIes (flounder, gobies, dab, sea snail) showed non-significant negative trends in 

abundance than positive (plaice, cod), and this would also have contributed to depressed 

total fish abundances as the time series progressed. It is important to consider whether 

the decline in fish abundance in the mid-lower Forth Estuary may have been a local or 

regional phenomenon. 

Eelpout was the second most abundant species sampled in 19 years of Agassiz 

trawling, and showed the most significant negative trend in abundance of the ten most 

common species sampled. From 1981 - 1989, eelpout was estimated to be the most 

abundant fish species in the Forth Estuary, with a long-term average of 3.26 x 106 

individuals (Elliott et al., 1990). The peak in abundance of the Forth Estuary eelpout in 

1988 was followed by a steady decline into the 1990s with abundance being half or less 

than the previous decade, and a downward trend clearly in evidence (Figure 3.4t). This 

was very similar to the trend in eelpout catch per unit effort (CPUE) observed in inshore 

areas near the Ringhals Nuclear Power Station, Kattegat, Sweden (Figure 3.12) (S. 
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Thbrnqvist, Swedish National Fisheries Board, personal communication), located on the 

eastern edge of the North Sea at approximately the same latitude as the Forth. 
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Figure 3.12. Similarity in CPUE of eelpout, lower Forth Estuary and Swedish inshore waters off 
Ringhals Nuclear Power Station. Data are mean number offish per trawl (Forth) or per tyke net night 
(Ringhals). Data from this study and ThOmqvist (personal communication). 

Peaks of eelpout abundance in 1987 were recorded during trawl sampling in inshore 

regions of the east English coast between Flamborough Head and North Foreland, 

followed by catches in the 1990s that were very small compared with the previous 

decade (Rogers et al., 1998). The most likely reason for the decline of eel pout at these 

locations, which are relatively near to the southern edge of its range (Wheeler, 1969), is 

a general upward trend in water temperatures over the past two decades (Henderson and 

Seaby, 2001), associated with warming of the global atmosphere. The greatest ever 

mean temperature anomalies of both land and ocean were observed in 1998, as 

illustrated for most of the northern hemisphere in Figure 3.13. 
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Annual Surface Mean Temperature Anomalies (90N-20N) 
National Climatic Data Center/NESDIS/NOAA 
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Figure 3.13. Annual Surface Mean Temperature Anomalies, 1880 - 1999, for latitude 20 - 90oN. 
Reproduced from http://www.ncdc.noaa.gov/ollclimate/researchl1999/annlann99.html (National Oceanic 
and Atmospheric Administration National Climatic Data Center). 

The thermal tolerance of eelpout i closely correlated with the outhern limit of it 

range, and an increase in temperature would be expected to cau e a northward hift in 

distribution (van Dijk et aI., 1999). The importance of eelpout abundance in indicating 

po sible climate change was the subject of the EU project "Effect of climate induced 

temperature change on marine coa tal fi he ", re ults of which arc in preparation. 

Adequate year-round water temperature data for the Forth E tuary are lacking, but 

ignificant negative correlation between the natural logarithm of annual mean of 

monthly abundance of eelpout in the Forth and January water temperature one year 

earlier of two off hore North Sea tations at similar latitude were ob erved (Table 

3.10). 
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Table 3.10. Significant negative correlations between natural logarithm of eelpout CPUE and sea bottom 
temperature in the previous year, based on Agassiz trawl data from 1981 - 2000 (n = 19 years). Values 
are Pearson correlation coefficients with associated probabilities in parentheses. Temperature data from 
ICES Oceanographic Database and Services, http://www.ices.dk/oceanl 

In (annual mean of eelpout 
monthly abundance) 

Bottom sea temperature in January of previous year 
Approx. 55°N Approx. 57°N 

-0.686 (p - 0.001) -0.621 (p = 0.005) 

The major peaks in eelpout abundance in both Forth and Kattegat data (Figure 3.12) 

would seem to agree reasonably well with the low temperature anomalies of the mid-

1980s, while the period of eelpout decline between 1990 and 2000 coincides with the 

most positive temperature anomalies in the l20-year time series (Figure 3.l3). Given 

that the period from December - February is when eelpout are born (Miller and Loates, 

1997), the temperature at this time may be of great importance in determining survival 

of young fish. Eelpout reach 140mm and 200mm TL by the end of the first and second 

years of life respectively (Wheeler, 1969), and the length-frequency distribution of 

eelpout caught in the lower Forth Estuary suggests that most fish were of these ages 

(Figure 3.14). This may partially explain the lag of one year in the negative correlation 

of eelpout abundance and January water temperature. 
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Figure 3.14. Length-frequency distribution of eelpout sampled from the lower Forth Estuary, 1987 -
2000. 

Were eelpout abundances negatively correlated to temperature in the same year, rather 

than the previous year, an alternative explanation to decreasing abundances could be 

movement of adults to cooler waters offshore, beyond the range of the sampling gear, as 

was illustrated by sea snail in the Severn Estuary (Henderson and Seaby, 1999). This 

species was generally low in abundance during the relatively warm winter of 1996 -

1997, with the exception of the month of January, when temperatures were unusually 

cool (4. SOC) and sea snail abundances were 1 - 2 orders of magnitude greater than in the 

preceding or following months (Figure 3.15). Sea snail reproduce in spring, so that this 

pulse of increased abundance could only have been explained by inshore movement 

(Henderson and Seaby, 1999). With increasing temperatures in the Severn, as 

elsewhere in the northern hemisphere and indeed the world, annual sea snail catches in 

this location steadily declined from 1981 - 2001, probably due to increased use of 

deeper waters away from the sampling point (Henderson and Seaby, 2001). The same 

was not true of the Forth, with abundances captured in 1998 being the second greatest 

recorded, after 1988, and lack of any significant positive or negative trends in 
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abundance over the same time period (Figure 3 Aj). As previously noted, 1998 was the 

warmest year so far (Figure 3. 13), and natural logarithm of total annual sea snail 

abundance in Agassiz trawls was significantly positively correlated with January bottom 

water temperature in the same year at the 55°N North Sea station mentioned above 

(Pearson correlation coefficient = 0.502, P = 0.029). This unexpected result may have 

been a spurious correlation, but can largely be explained by high sea snail abundances 

in a relatively few years when temperatures were unusually high. 
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Figure 3.15. Evidence for possible inshore-offshore migration controlling abundance of sea snail 
impinged at Hinkley Point B power station, Severn Estuary. Data from Henderson and Seaby (1999). 

While not as clear, a statistically significant decline in Agassiz trawl catches 

over the study period was exhibited in whiting as for eel pout, and the mean catches in 

the final three years of the dataset were the lowest recorded. No such significant 

decrease was observed in either or cod or plaice. These three species enter the Forth 

from the North Sea primarily as juveniles (Elliott et al., 1990), so one might expect 

reasonable agreement between stock assessment data from the North Sea and adjacent 

areas and Agassiz data from the Forth. While spawning stock biomass (SSB) of all 
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three species declined significantly from 1981 - 2000 (ICES 200 la), only plaice and 

cod recruitment of age 1 fish showed a significant linear fall over the same time period 

(Figure 3.16). It seems counter-intuitive that whiting was the only species of the three 

not to exhibit a significant decline in North Sea abundance of recruits, while the 

juveniles of the same species were unique in showing a decline in numbers in the Forth 

Estuary. Cod and plaice recruitment significantly declined in the North Sea, but showed 

no such trend in the Forth, exactly the opposite effect to whiting. Availability of data 

more specific to the east coast of Scotland may correct these unusual observations, as 

the data in Figure 3.16 integrate results from many countries and regions of the North 

Sea. Processes governing abundance of these 0+ MJ species are most likely to be of 

importance beyond inshore areas, since spawning and early life history prior to 

metamorphosis occurs in offshore regions of the North Sea, e.g. at depths of about 37m 

in the southern North Sea in the case of plaice (Wheeler, 1969). There is evidence that 

recruitment to age 1 of some commercially important species is governed by climatic 

factors. This was suggested by Fox et al. (2000) in an assessment of Northeast Atlantic 

plaice, that egg mortality is increased at higher temperatures and therefore that lower 

temperatures would favour increased recruitment. This could explain the rather 

depressed levels of plaice in the Forth during the 1990s (Figure 3.4c), but not the high 

values of 1990 and 2000 when rather high positive temperature anomalies were 

observed at the time of spawning (Figure 3.13). Planque and Fredou (1999) used a 

meta-analysis of Atlantic cod stocks to show that recruitment was positively related to 

temperature in northern stocks, negatively related in southern stocks, and that there was 

no relationship between recruitment and temperature in stocks near the middle of the 

temperature range. The exploitation of important commercial species may complicate 
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the trends in recruitment of the MJ species, something that would not be the case for 

species that are not the subject of capture fisheries, such as eel pout. 

It was noteworthy that in 1999, the year following the warmest on record (1998; 

Figure 3.13), species richness and total abundance of demersal and benthic fish captured 

by Agassiz trawling were both at lows for the 19-year time series (Figure 3.3). 

Negative impacts of warm winter temperatures causing reduced numbers of eelpout 

have already been suggested and it may be possible that this phenomenon produced low 

recruitment in a number of other species, such as goby and dab. Warm temperatures in 

1999 may have discouraged estuarine use by MJ and MA species and influenced 

increased residence in cooler waters outside the estuary, for 1999 was only marginally 

less warm than 1998 (Figure 3.13). The same arguments could be applied to increased 

abundances of fish in the year 2000, being due to cooler waters in either 1999 or 2000 

affecting recruitment or inshore-offshore movements respectively, or a combination of 

the two. 
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Figure 3.16. Spawning stock biomass (SSB) and recruits at age 1 of (a) whiting in ICES areas IV and VII 
D, (b) cod in ICES subarea IV and divisions VII D and III A, and (c) plaice in ICES area IV (North Sea). 
Significant negative linear trends for SSB (- - -) and recruitment (- - -) are indicated. Data from 
ICES (200Ia). 
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How do changes in the Forth's ichthyofaunal assemblage compare with those 

observed in the Severn region over a similar time period? The significant decline in 

total abundances of benthic and demersal species in the Forth contrasted strongly with 

the increase observed in the outer Severn Estuary, where total abundance of fish taken 

during standardised monthly sampling at Hinkley Point A in 2000 - 01 had risen 

significantly to three times its level in 1981 (Henderson and Seaby, 2001). This agreed 

with the approx. fourfold increase in total abundance of all fish sampled from the intake 

screens of Oldbury Power Station in the mid-Severn estuary when comparing the 

periods July 1972 - June 1977 and July 1996 - June 1998 (Potter et al., 2001). 

Although these Severn power station impingement data included pelagic species, which 

showed positive trends in abundance, increases in two major gadoid species, whiting 

and cod, were also evident in the Hinkley data (Henderson and Seaby, 2001). Mean 

annual abundance of whiting on Oldbury intake screens was more than twice as great in 

1996 - 1998 than from 1972 - 1977. Some species that did not exhibit any long-term 

trends in the Forth, such as flounder, also seemed to be increasing in the outer Severn, 

though Henderson and Seaby (2001) state that further years of data are needed to 

confirm this statistically. There was a "modest" decrease in abundance of flounder in 

the mid-Severn Estuary (Potter et at., 2001), paralleling a decrease in the Thames 

Estuary that may be attributable to increased predation of 0+ individuals by ctenophores 

(Thomas, 1998). This decline was not true of sand goby, which exhibited a 4.2 x 

increase in mean annual abundance between the 1970s and 1990s (Potter et at., 2001). 

The low numbers of dab in the final three years of the Hinkley Point study are similar to 

those observed in the Forth and reductions in abundances with increasing water 

temperature were suggested to be likely (Henderson and Seaby, 2001). Species richness 
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in the outer Severn also increased, due to increased occasional captures of warmer water 

species. The abundances of whiting, cod and plaice have increased between 1981 -

2000, with the enhanced numbers of cod being suggested as "curious" by Henderson 

and Seaby (2001), given the decline in North Sea stocks noted above, and the increasing 

temperatures within the Severn. Abundance of O-group cod sampled at Hinkley Point in 

2000 - 01 was the highest on record. It is suggested that conditions in both the outer 

and inner Severn Estuary have generally become more favourable for fish (Potter et al., 

2001; Henderson and Seaby, 2001), and this is reflected in the increases in total 

abundance over the last 20 - 30 years. Potter et al. (2001) believe reductions in 

emissions of industrial effiuents such as cadmium over the past 20 - 30 years may have 

had more of an influence on improving water quality for fish in the Severn than 

reductions in organic waste disposal. This was due to the Severn generally being well-

mixed because of its great tidal range and so not being as likely to suffer oxygen 

depletion problems characteristic of other previously polluted estuaries such as the 

Thames (Thomas, 1998). Further discussion of this subject is given in Chapter 5. 

3.4.3. Temporal, spatial and tidal influences on abundance of demersal and 
benthic species 

The fact that random selections of data used to rerun GLM analyses provided 

almost exactly the same results as the original models utilising the full dataset gave 

confidence that the results were of biological significance and not merely spurious 

relationships caused by sampling errors. Statistical analysis of potentially important 

factors influencing abundance of fish caught in Agassiz trawls confirmed that the 

temporal trends in abundance of fish captured in the mid-lower Forth Estuary in this 

study compared favourably to previous studies in this estuary and similar temperate 

locations. Examination of all GLMs formulated allowed several observations to be 
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made. As noted by Elliott et al. (1990), there was a marked seasonality of fish 

abundance in the Forth. The abundances of fish caught in September - October and 

December were found to be higher than at other times of the year, this being attributable 

to the influxes of 0+ MJ migrants over autumn and winter. Fish abundance tended to be 

least in April and June/July, due primarily to emigration of the same MJ species. These 

trends were in good agreement with peaks and troughs in total estimated fish biomass 

impinged at LPS (Figure 2.5). Possible reasons for increased abundance of fish in the 

estuarine habitat during these months were discussed in section 2.4.3.2. Temporal 

trends in abundance confirmed the hypothesis that they would reflect trends seen by 

other workers in the Forth (Elliott and Taylor, 1989; Elliott et al., 1990). This was 

unsurprising given that the data used in the present study were merely an extension of 

the same dataset. Abundances of fish over the 19-year period also exhibited 

comparable trends with the 1999 - 2000 dataset from LPS (Chapter 2). 

While the ten species analysed consisted nominally of four MJ (whiting, cod, 

plaice, dab) and six ER species (flounder, pogge, eelpout, fatherlasher, gobies, sea snail) 

(Elliott and Dewailly, 1995), it is important to note that flounder may be the only 

species that can be regarded as a true estuarine resident (Wheeler, 1969). The other ER 

species also possess significant inshore coastal populations, and are essentially marine 

and estuarine fish, prompting Mathieson et al. (2000) to suggest a necessity for 

subclassification of these species to recognise the difference. The majority of species 

were to be found in greatest abundance at the most marine site, Port Edgar, suggesting a 

possible preference for the near perpetual full strength seawater at this location. The 

extent to which populations from the estuary mix with those from the Firth and beyond 

may also influence the numbers of fish at the boundary of the truly marine environment. 

Heterogeneity of Forth Estuary and Firth of Forth populations of eelpout was suggested 
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by differences in mean vertebral counts of the two areas (Poxton, 1987), possibly 

indicating the estuarine population to have a reasonably restricted geographic range and 

therefore a true preference for more saline waters. Salinities remain high at Tancred for 

much of the time (AS. Hill, Scottish Environment Protection Agency, personal 

communication), and plaice and dab were most positively associated with this trawl site. 

Only flounder and sea snail were most common at Longannet, and in the case of the 

former species this observation was not un surprising given the preference for waters of 

reduced salinity (Wheeler, 1969). 

Were salinity the only factor governing distribution of fish in the mid-lower estuarine 

environment of the Forth, one might have expected species with highest abundance at 

Port Edgar to show progressively less abundance at the Tancred and Longannet sites. 

This was true of whiting and gobies, while pogge, cod, eelpout and fatherlasher tended 

to be more abundant at Longannet than Tancred. This may be explained by the 

increased likelihood of capture of fish at Longannet, due to the relatively narrow nature 

of the estuary at this station compared with Tancred producing a greater concentration 

of fish at L W. Port Edgar was also in a narrower section of estuary than Tancred, and 

may explain the greater abundance of flounder at the former station, when one might 

intuitively expect the less saline Tancred site to be preferable for this species. 

Differences in abundance between the sites were relatively small in this species, 

however. The brief migrations of flounder to the Firth for spawning (Elliott et at., 

1990) may complicate this interpretation, however. Whether or not there was a genuine 

biological explanation for greatest abundances of plaice and dab being at Tancred 

would require further studies into possible local differences in substrate type or prey 

availability between the sites. 
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The importance of tide in determining abundance of fish caught in trawls was 

evident in most of the ten species modelled. Pogge, flounder, eelpout, fatherlasher, 

plaice, gobies and sea snail exhibited negative relationships between abundance in 

trawls and tide height, as originally hypothesised; in the case of the latter three species 

the relationship was marginally statistically insignificant. The best explanation for this 

observation seems to be the concentrating effect of L W meaning more fish are present 

in the estuarine channel, as discussed in section 2.4.3.2. At HW the dilution effect of 

increased water volume and fish moving onto mudflats to feed would have been 

expected to produce this result, as observed for all of these species except fatherIasher 

by Elliott and Taylor (1989). L W at Port Edgar gave the greatest abundances of pogge 

and fatherIasher, possibly due to the combination of the concentration effect and also 

reduced salinity influencing a preference for the most marine site (see above). Whiting 

were the only species for which HW was positively related to abundance in trawls, 

contrary to expectations since Elliott and Taylor (1989) noted use of intertidal mudflats 

by this species, and this was most evident at Port Edgar, then Tancred, while at 

Longannet there was little to choose between abundance at HW or L W. This may be 

evidence for this MJ species being essentially estuarine-opportunistic (Potter et al., 

1997), rather than estuarine-dependent: if whiting used the inshore areas of the Firth of 

Forth as a nursery as well, then the influx of water into the estuary at HW may facilitate 

immigration of many more individuals, which then leave again with the ebb of the tide. 

Given that the whiting population in the Forth from 1981 - 1987 was estimated by 

Elliott et al. (1990) to be approx. 2.65 x 106 individuals with contemporary abundances 

likely to be less than this (section 3.4.2 above), and the present study suggested that 

LPS impingement of whiting in 1999 - 2000 was at values approaching this estimate 

(see section 2.3.3), then a flux of individuals between the estuary and offshore areas 
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seems not unreasonable. The lack of differences between HW and L W catches of 

whiting at Longannet contrasts with the significantly increased impingement of the 

species observed at LW at LPS (section 2.4.3.2) and would lend support to the idea that 

the height of the water in the screen wells at LPS is of greater significance than that of 

the concentration effect of fish in the estuary. 

Interactions between trawl station and month of sampling were the commonest 

of the significant interactions, occurring in whiting, plaice, pogge, eel pout and gobies. 

There was very little difference in abundance of whiting between months at the Tancred 

and Longannet sites, with abundances at the former being higher (see above). Most 

pronounced differences occurred at Port Edgar, where the greatest abundances, as at the 

other sites, at all times occurred in December, while minimum abundance was at the 

same site in June/July. This was consistent with a large influx of whiting during the 

winter, and low abundance in summer. Little difference in abundance at the two other 

sites suggested reasonable numbers of whiting remaining in the estuary throughout the 

year, as is now the case for the Severn Estuary and Bristol Channel, where before there 

was a more marked seasonality (Henderson and Seaby, 2001). Flounder and eelpout 

were the major exceptions to the general pattern of high winter and low summer 

abundance in the estuary. Elliott and Taylor (1983, 1989) showed that flounder were 

notably more abundant in the subtidal and intertidal areas of the lower estuary during 

the summer months of 1981 and 1982; this agreed with the interaction of month 3 

(June/July) and the Longannet station (i.e. the station closest to the large areas of 

mudflat at Kinneil and Skinflats; Figure 1.1) producing the strongest positive 

relationship with abundance of flounder captured in trawls. This is explained by the 

tendency of flounder to migrate to intertidal areas to feed at HW (Wolff et al., 1981; 

Wirjoatmodjo and Pitcher, 1984), and to virtually cease feeding during the colder 
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months of winter (Wheeler, 1969). Thus flounder were most abundantly captured at 

L W in the Longannet area during the summer months. Eelpout's presence in the 

estuary was most pronounced during the spring (month 2) at Port Edgar and summer 

(month 3) at Longannet, corresponding to the return of adults from deeper waters in the 

Firth following winter spawning and the recruitment of young-of-the-year juveniles 

respectively (Elliott et al., 1990). It seems that the rapid growth of the species in its 

first year (Wheeler, 1969) may be facilitated by consumption of abundant resources on 

the intertidal flats, since the species are known to use the mudflats (Elliott and Taylor, 

1989). Intertidal use may have become less common with warming of the estuary and 

the general increase in temperature of the estuarine waters in summer, presumably 

proportionally more than the surrounding sea, may explain the fewer eelpout in the 

estuary in the 1990s (see section 3.4.2). The seasonality of pogge in exhibiting inshore

offshore migrations was introduced in section 2.4.3.2, and the GLM of the 19-year 

Agassiz dataset seemed to provide some evidence of this, for abundance at Longannet 

was greatest in autumn and winter, while being at a minimum in late spring and 

summer, in complete agreement with the impingement trends at LPS. The inshore 

migration was for spawning purposes, with adults migrating to deeper waters offshore 

(Wheeler, 1969). Plaice are not as tolerant of reduced salinities as flounder (Wheeler, 

1969), so the tendency for greater abundance at Tancred than Longannet may be largely 

explained by this factor. High abundance of the species at Longannet, especially of 

young-of-the-year, in the summer time may again be caused by movements in relation 

to the intertidal flats, as suggested for flounder and other species. Plaice were the third 

most common species encountered during intertidal trawling at KinneiI, Skinflats and 

Torry Bay in 1981 - 1982 by Elliott and Taylor (1989), being present on 41 % of 

occasIOns. Goby was relatively uniformly distributed among the three stations 
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throughout the period from April to September, but was of relatively low magnitude. In 

contrast, the Port Edgar and Tancred sites yielded far more fish than at Longannet in 

winter. This agrees reasonably well with the pattern of impingement at LPS (Chapter 2) 

and of abundance in the Ythan Estuary (Healey, 1971). The species does not penetrate 

far up estuaries (Wheeler, 1969), so greater abundance at Port Edgar and Tancred, as 

noted above, was not surprising. Wheeler (1969) also noted that gobies, meaning 

specifically sand goby, are annual, and this explained the observed pattern of abundance 

well: abundances were at a minimum in June/July, at the time before hatching of young 

of the year had truly commenced; by September, abundances had risen, but were still 

quite modest, in contrast to the very large increases over winter at the more marine 

stations, which would have been almost completely of the young of the year, now of a 

reasonable size to be captured more consistently by Agassiz trawling; in late spring 

(April), following some overwintering mortality, the population had declined and 

spawning was commencing. The death of adults following spawning meant that the 

June/July population was the minimum observed in the estuary, completing the cycle. 

Offshore migrations at the end of autumn, as noted by Wheeler (1969) may also have 

enhanced numbers at Port Edgar during this period of the year. 

3.4.4. Interannual variation in demersal and benthic species abundances 

The data of the present study contributed little in the way of supportive evidence 

for the hypothesis that between-year variation in fish population size increases with 

distance from the latitudinal centre of the species' range (Miller et al., 1991). 

Comparison of the same species between the Forth and the Severn gave three of eight 

correct predictions, not dissimilar to that of random guessing. The ordinal predictions 

of species variability within the Forth were not as poor as the inter-estuarine 
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comparison, but still of dubious quality. The observation that ranges may be shifting 

northwards due to an upward trend in seawater temperatures may have complicated any 

existing relationships (phillipart et al., 1998). Of species commonly sampled from 

intake screens at Hinkley Point B Power Station in the Severn Estuary, sole were 

theoretically the furthest north from the centre of their geographical range, and would 

therefore be hypothesised to exhibit most interannual variation in numbers impinged. In 

fact, the species was the third most stable of 26 species investigated, after conger, 

Conger conger, and flounder (Henderson and Seaby, 1999). Pogge and fatherlasher 

were the species showing unexpectedly low and high variability in population 

abundance in the Forth. Subjective determination of the centre of species' geographical 

ranges from reference sources means that the true centre of the range was unlikely to be 

estimated completely accurately, and this major potential error may have generated 

false predictions based on the hypothesis. Differences in sampling technique may have 

introduced lack of compatibility in the Forth and Severn datasets (Henderson and 

Seaby, 1999). The case for power stations being an excellent sampling tool for fish has 

been emphasised on many occasions (e.g. Henderson, 1989~ Maes et al., 1998a), so the 

species concerned may not have been caught with equal efficiency. Comparisons of 

commercially exploited species with unfished species may be complicated by fishing 

mortality altering natural patterns of variation. As noted by Henderson and Seaby 

(1999), the attractiveness of the latitude-population variability hypothesis of Miller et 

al. (1991) was its simplicity, but lack of evidence is mounting against it. Henderson 

and Seaby (1999) offer an alternative hypothesis, that population variability shows no 

trend with either latitude or longitude and that variability within the permanent range is 

determined by local factors such as disease, giving a chaotic pattern of recruitment 

variability. The sea snail in the Severn, at the southern edge of the species' range, are 
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annual and yet have greater stability of numbers than those nearer the centre of the 

range in the Forth, which live for several years (Henderson and Seaby, 1999). This 

stability of the annual Severn population is remarkable, and contrasts with the huge 

variations in abundance of other annual species such as sand goby (Rogers et al., 1998). 

To avoid extinction, the southern sea snail of the Severn possesses great stability in 

year-to-year recruitment. This in itself is compelling evidence against the hypothesis of 

Miller et al. (1991). 

3.4.5. Preliminary assessment of the pelagic fish populations 

Sprat and herring constituted the great majority of fish taken during pelagic 

trawling between April 1999 and January 2001, whilst whiting were the next most 

abundant species and most of the remaining species were benthic or demersal species 

caught incidentally when the gear dipped towards the substrate. The difficulties of 

sampling with a net of opening 2.5 - 7m high in water depths as shallow as 6m are 

apparent, so it was no surprise that occasionally non-pelagic species were taken. 

Herring constituted 29.3% of total clupeid catch, which is somewhat less than the 

approx. 44% taken during impingement sampling at LPS (Chapter 2), but very similar 

to the 26.4% derived in the initial pelagic study of January - April 1984 (FRPB, 1984). 

Estimated sprat and herring population sizes were greater than the long term 

averages provided by Elliott et al. (1990). The arithmetic means of abundance were an 

order of magnitude larger, while the geometric means were approximately double 

(Table 3.11). The estimates all suggest sprat populations to be between two and three 

times more abundant than herring at this location. Maximum estimated abundances, 

which occurred in the period from January - April, were very similar to those noted by 

Elliott et al. (1990) (January - March). 
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Table 3.11. Estimated sizes of c1upeid populations in the lower Forth Estuary, based on data from the 
present study and Elliott et al. (1990). 

This study (1999 - 2000) 

arithmetic mean geometric mean 
sprat 1.37 x 10' 2.02 x 106 

herring 5.30 x 106 9.94 x lOs 

Elliott et al. (1990) 
(1981 - 1989) 

5.9 x lOS 

These data suggest the pelagic gear offers more accurate estimates of clupeid population 

size than Agassiz trawling, as expected. While sprat and herring abundance in the 

North Sea was rather low in the early 1980s, there were much greater values later in the 

same decade (ICES 2000), so that the estimates of Elliott et al. (1990) were calculated 

at times of both relative abundance and scarcity of the two species compared with the 

present day. This may be taken as evidence that the increased population estimates 

derived for 1999 - 2000 are not merely a result of increased North Sea abundances of 

the two species. It is apparent that the method of estimation of abundances was rather 

crude. Gear efficiency was not known, so a value similar to that of the Agassiz trawl 

was adopted, where a lower value would have resulted in proportionally greater 

estimates of abundance. The shoaling nature of clupeids may have suggested greater 

abundance on some occasions while underestimating numbers on others. The need for 

greater frequency of trawling to reduce this type of error is obvious, but often was not 

possible because of limited sampling resources. As was clear in monthly estimates of 

abundance (Figures 3.9 and 3.10), confidence limits were generally exceptionally wide, 

symptomatic of the shoaling behaviour of the species. The arbitrary selection of the 

region between Dunmore and the Forth Bridges as the volume of water that contained 

the clupeids was necessary to aid calculations of absolute abundance, but the likely 

movement of species into and out of this area due to tidal flows and active migrations 
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introduces a degree of inaccuracy into calculations of this type. More accurate 

measurements of abundance may be possible in the future by utilisation of acoustic 

techniques, though the development of adequate methods for generally shallow 

estuaries is a relatively new science, facing different challenges to the more established 

sonar used in open sea assessments (Trevorrow et at., 2000). Since movement of 

clupeids in the estuary tends to be directed by tidal currents (Welsby et at., 1964), use of 

fixed nets of known opening area combined with flow meters may allow abundances of 

fish to be more effectively estimated. Use of stow nets by local fishermen utilises high 

spring tidal currents to catch fish in the lower estuary (personal observations), and a 

comparison with results from trawl studies would be of interest. 

Generalised linear modelling of relatively few pelagic data obtained between 

April 1999 and January 2001 must be treated with caution, in particular in light of the 

relatively large dataset available for Agassiz trawling (section 3.4.3). Despite this, 

some preliminary features were of note. Both sprat and herring abundance was 

significantly enhanced at LW compared to HW, possibly due to increased concentration 

of fish available to trawling in the subtidal region at LW. Elliott and Taylor (1989) 

noted that herring and sprat used the mudflats at Kinneil, Skinflats and Torry Bay 

relatively frequently at HW, so this would tend to increase numbers present in the 

subtidal at L W. The significant interaction of tide x station in herring showed that this 

effect was particularly pronounced at the Longannet station, which is immediately 

adjacent to the mudflats and situated in relatively shallow water in a relatively narrow 

channel. Observations regarding effects of the month factor on abundances probably 

require many more additional years of data to be reliable. 
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3.4.6. An overview of data from the upper Forth Estuary 

Data collected during HW beam trawling at six sites in the upper estuary 

between Kincardine and Stirling (see Elliott and Taylor, 1989, for map) in the summer 

months were not considered in detail in the present study, due to lack of sampling in 

1986-87 and 1994-95 as well as wide variation in number of months sampled, but are of 

note as a comparison to data from the lower estuary discussed in detail above. 

Abundances of fish captured per trawl were similar to those in the mid-lower estuary, 

despite hauls being of only 0.6 km length (ej 0.8 krn in lower estuary, see section 

3.2.1.1). In general an increase in total number of fish captured was observed between 

1983 and 1993, with a levelling-off from 1996 - 1999 (Table 3.12). This trend was 

largely attributable to increases in abundance of smelt, whiting, flounder and gobies. 

The abundance of gobies continued to rise until 1996, then stabilised at around 15 

individuals per trawl from 1997 - 1999. Flounder declined in abundance at the end of 

the period to levels similar to those recorded early in the time series, while whiting 

declined to the lowest recorded abundances from 1996 - 1999. 
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Table 3.12. Abundance of fish sampled in upper Forth Estuary, 1983 - 1999. Data represent mean 
number of fish collected per trawl per year. Data from A.S. Hill (Scottish Environment Protection 
Agency, personal communication). 

total smelt sl!rat herring flounder gob~ whiting I!laice others 
1983 5.7 0.0 0.0 0.9 2.3 0.0 2.4 0.0 0.0 
1984 2.6 0.0 0.1 0.1 2.0 0.3 0.1 0.3 0.0 
1985 10.3 0.0 2.7 1.3 5.0 0.0 1.2 0.2 0.0 
1986 No samE.'in~ undertaken 
1987 No samEJin~ undertaken 
1988 17.0 0.0 4.3 0.5 4.1 5.9 l.7 0.0 0.4 
1989 15.2 0.1 0.8 2.7 9.1 l.8 0.5 0.0 0.1 
1990 43.7 0.2 8.3 5.9 1.9 6.8 20.0 0.1 0.4 
1991 37.1 9.5 2.5 0.1 13.9 3.1 0.8 5.3 1.8 
1992 31.1 6.4 1.2 0.1 18.2 0.7 3.9 0.0 0.5 
1993 58.3 16.1 6.0 2.3 17.4 2.6 8.8 4.9 0.3 
1994 No samE!Jin~ undertaken 
1995 No sameJinfJ.. undertaken 
1996 48.7 2.3 0.2 0.1 15.8 25.2 1.8 0.7 2.7 
1997 25.1 5.1 2.0 0.1 3.6 13.9 0.0 0.1 0.3 
1998 24.2 4.5 0.5 0.0 1.5 17.0 0.0 0.0 0.7 
1999 30.1 7.7 1.8 1.4 4.5 13.8 0.2 0.6 0.2 

The re-establishment of the pollution-sensitive smelt in the Forth, following 

disappearance in the late 1960s due to overfishing, siltation and low dissolved oxygen 

levels (Blaber et al., 2000), was "eagerly anticipated" by Poxton (1987). The upper 

estuarine data, together with high levels of impingement at LPS (Maitland 1997, 1998; 

Chapter 2), indicate that the species has indeed made a good recovery from the late 

1980s to the present day, and this was suggested to be due to improved water quality in 

the upper estuary by Griffiths (1997). The reduction in emissions of effluents into the 

upper estuary is likely to be the cause of increased fish abundances in this area, but the 

overall rises in fish numbers are of relatively smaller magnitude than the decreases in 

abundance of fish in the mid-lower estuary, since the latter region comprises over 90% 

of the volume of the Forth Estuary (FRPB, 1978). 
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3.5. Conclusions 

Total abundances of demersal and benthic fish in the mid-lower Forth Estuary 

significantly declined between 1982 and 2000, largely due to significant decreases in 

abundance of whiting and eelpout. While the abundance of fish in the upper estuary 

increased over the same period, due to improvements in water quality, these two species 

did not increase in abundance in the upper estuary, suggesting that they were reduced in 

numbers from the estuary as a whole. Large differences in water volume of the upper 

and lower estuaries suggest reductions in fish abundance in the latter area to be of 

greater significance than increases in the former. For eelpout the change in total 

abundance may be related to increasing water temperatures affecting recruitment. 

Trends in abundance of juvenile whiting, cod and plaice in the Forth did not reflect 

trends for the same species in the North Sea and adjacent areas. Populations of all other 

species in the lower estuary showed no significant positive or negative trends in 

abundance. Decline in abundance of Forth fish populations may be due to decreased 

recruitment or else emigration from the estuary in response to unfavourable conditions 

such as increasing water temperatures. Measurement of water quality parameters such 

as temperature, dissolved oxygen, salinity and turbidity were not undertaken, so the 

influence of these factors on the ichthyofauna could not be modelled. The addition of 

these data to regular trawling undertaken by SEP A would be of use in elucidating 

further the distribution patterns of fish in the estuary. The species in the lower Forth 

Estuary are primarily of marine origin and reflected this by tending to be found in 

greatest abundance at the most seaward site of Port Edgar. Abundance at Longannet 

was often also higher than at the Tancred station, because of the proximity of extensive 

mudflats used for feeding purposes by many species. This was also reflected in 
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increased catches at L W, when most fish were concentrated into a smaller area of 

estuarine channel. The exception was whiting, and it may be that HW brings many 

individuals of this species from the Firth of Forth into the lower estuary. The pelagic 

fish populations in 1999 - 2000 were dominated by sprat and herring, with the former 

more abundant than the latter, and preliminary estimates of abundance were an order of 

magnitude greater than those obtained by extrapolation of bottom trawl data. 

Continuation of the pelagic trawling programme may allow trends in abundance within 

the lower estuary to be modelled more accurately over the coming years. 
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Chapter 4. Environmental impact of Longannet Power 
Station on the Forth Estuary ichthyofauna: impingement of 
commercial, recreational and threatened fish species. 

4.1. Introduction 

Assessment of environmental impact on fish populations due to losses caused by 

impingement or entrainment during CW abstraction is a 30-year old subject that to this 

day causes much debate amongst those involved in power station research. The United 

States Clean Water Act § 316(b), for example, states that "the location, design, 

construction, and capacity of cooling water intake structures reflect the best technology 

available for minimizing adverse environmental impact", but without specific 

definitions of terms such as "adverse" and "impact", the legislation is open to a variety 

of interpretations. The US Environmental Protection Agency (US EPA) is in the 

process of re-addressing this issue and proposing federal laws on CW abstraction (US 

Federal Register, 2000), though with not inconsiderable difficulties (see EPRI, 2000; 

Henderson and Seaby, 2000). Several different definitions of adverse environmental 

impact are being considered (US Federal Register, 2000), including: 

1. Adverse aquatic environmental impacts occur whenever there will be 

entrainment or impingement damage as a result of the operation of a 

specific cooling water intake structure. The critical question is the 

magnitude of any adverse impact. The exact point at which adverse 

aquatic impact occurs at any given plant site or water body segment is 

highly speculative and can only be estimated on a case-by-case basis by 
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considering the species involved, magnitude of the losses, years of intake 

operation remaining, ability to reduce losses, etc. (US EPA, 1977). 

2. Impingement or entrainment of 1 % or more of the aquatic organisms in 

the near-field area [defined as the area around the intake structure from 

which organisms are drawn onto the screens or into the cooling system] 

as determined in a one-year study. 

3. Any impingement or entrainment of aquatic organisms. 

An alternative definition was proposed by UW AG (2000): "Adverse environmental 

impact is a reduction in one or more representative indicator species that (1) creates an 

unacceptable risk to the population's ability to sustain itself, to support reasonably 

anticipated commercial or recreational harvests, or to perform its normal ecological 

function and (2) is attributable to the operation of the cooling water intake structure". 

British legislation covenng operation of power stations is represented by the 1989 

Electricity Act. Schedule 9 § 3(3) requires electricity generators to "avoid, so far as 

possible, causing injury to fisheries or to the stock of fish in any waters". Thus a similar 

problem regarding definitions of terms such as "injury", as was noted above for US 

legislation, clearly exists. 

Individual power stations may impinge numerous organisms from a variety of species. 

The US EPA (1977) suggested that "critical aquatic organisms" be selected for study of 

environmental impacts of power stations, such organisms tending to be removed in CW 

flows and being one or more of the following: 
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1. representative, In terms of their biological requirements, of a balanced, 

indigenous community of fish, shellfish, and wildlife; 

2. commercially or recreationally valuable (e.g., among the top ten species landed 

- by dollar value); 

3. threatened or endangered; 

4. critical to the structure and function of the ecological system (e.g., habitat 

formers) 

5. potentially capable of becoming localised nuisance species; 

6. necessary, in the food chain, for the well-being of species determined in 1 - 4; 

7. one of 1 - 6 and have high potential susceptibility to entrapment-impingement 

and/or entrainment. 

This was very similar to the process of identifying appropriate 'important' manne 

species in order to conduct appropriate environmental impact assessments (EIA) by the 

UK power industry. Species were classified as 'important' if rare, locally 

representative, commercially significant, of socio-political concern, or else of 

importance as food resources for other creatures (Bamber, 1990). 

The American approach to EIA of CW impingement and entrainment mortalities was to 

formulate mathematical models of fish population dynamics and investigate whether 

compensatory mechanisms would offset losses due to CW abstraction (e.g. papers in 

Barnthouse et al., 1988). These density-dependent models were deemed inappropriate 

to study environmental impacts of British power stations by the Central Electricity 

Research Laboratories (CERL) (P.A. Henderson, Pisces Conservation Ltd., personal 

communication), and so a procedure was developed to estimate the quantity of mature 

adult fish that would have accrued to commercial fisheries had they not experienced 
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mortality as juveniles due to impingement or entrainment. This technique, known as the 

equivalent adult value (EA V) method (Turnpenny, 1989), suggested tonnages of 

equivalent adult fish lost at Heysham 1, Hinkley B, Fawley and Kingsnorth power 

stations to be trivial compared to catches from adjacent commercial fishing grounds 

(Turnpenny, 1988b). Thus although catches of fish seemed numerically large, the 

preponderance of juveniles meant that the large quantities involved only represented a 

relatively small total number of fish that would have survived to adulthood. The EA V 

method applied to commercial species impinged at LPS was undertaken by Turnpenny 

(1997) using the PISCES (v.3) software prediction system (see section 2.4.2.2), and 

estimated that the abundance of juvenile herring, whiting, cod, dab, plaice and sole 

impinged annually at LPS would represent approximately 9.7 t of fish that would have 

existed as adults. 

The present study aimed to use the EA V technique employing actual field data collected 

during the impingement study from January 1999 - December 2000 (Chapter 2), to 

assess the potential environmental impact of loss of equivalent adult whiting, cod, 

plaice, and herring through loss of juveniles by LPS CW abstraction. In addition, the 

direct loss of these species above minimum commercial landing sizes, as well as the 

losses of sprat, a commercial species with no minimum size limit to catch, was 

estimated. The extent of impingement of Atlantic salmon and sea trout smolts, as well 

as eel, was investigated due to their recreational and socio-political importance. In 

addition, the impingement of the potentially threatened river lamprey, a species listed 

by the International Union for Conservation of Nature and Natural Resources, was also 

determined. 
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4.2. Materials and methods 

4.2.1. Impingement of fish species above minimum commercial landing sizes 

Impinged whiting, cod, plaice, herring and sprat were collected and analysed 

from January 1999 - December 2000, as detailed in section 2.2.2. Abundances and wet 

mass of the first four of these species above minimum commercial landing size (MCLS) 

were estimated, according to the technique described in section 2.2.4. The same 

procedure was undertaken for all sprat estimated to have been impinged during the same 

time period, as no MCLS exists for this species. Abundances of each species were then 

converted into approximate monetary values by use of available data for value and total 

live weights of fish landed into Scottish ports from ICES area IVb by UK vessels in 

1999. 

4.2.2. Potential future losses of commercial species through impingement of 

juveniles 

4.2.2.1. Basis of the Equivalent Adult Value (EAV) Method 

The EA V method (Turnpenny, 1989) was used to estimate the approximate 

number of adult whiting, cod, plaice and herring that would have existed had juveniles 

not experienced mortality on the LPS intake screens. The EA V of a juvenile fish is 
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defined as the average lifetime fecundity of an adult that has just reached maturity 

which is required to replace that juvenile (Turnpenny, 1988b; 1989). The EA V method 

assumes that the population is in equilibrium; therefore births balance deaths and the 

population growth rate, A, equals one. Each EA V value is calculated as: 

EAV= 1 
StFa 

where St = fractional probability of survival from spawning to time t, and Fa is the 

average lifetime fecundity of an adult. Fa is defined as: 

m 

Fa = 'LPjSjEjR j 
j=a 

where a is the age at which> 50 % of fish mature; m is the number of age classes in the 

population, P; is the fraction of females that are mature in age class j, ~ is the survival 

probability from the age at which > 50% mature to age class j, Ej is the average 

fecundity of mature females of age class j, and Rj is the proportion of females in age 

classj. 

Therefore as an immature fish grows older, the probability of its survival to maturity 

increases, and this is reflected in an increase in the EA V factor used to calculate the 

number of just-mature (i.e. the age when> 50% of the year class is mature) adults that 

would have resulted from that individual. Since the EA V method was intended to 

calculate the number of just-mature adults, incorporation of fish that are beyond this 

stage of the life cycle yields EA V factors > 1, i. e. impingement of one such fish 

represents more than one just-mature individual. This phenomenon occurs rarely in 
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power station studies since most impinged fish are juveniles and therefore possess EA V 

factors < 1. 

4.2.2.2. Potential losses of equivalent adult whiting, cod and plaice 

Potential losses of equivalent adult whiting, cod and plaice through impingement 

of juveniles were assessed using the EA V method as originally presented by Turnpenny 

(1989). Size class measurements for each species were summed by quarter (January -

March, April - June etc.) to conform to the procedure of Turnpenny (1989), which had 

originally used data collected monthly but analysed quarterly. Each fish was assumed 

to have been caught in the middle of the quarter, so that ages relative to the assumed 

date of capture were calculated based on known periods of peak spawning. Proportions 

of different age groups of each species were estimated by examination of length

frequency histograms and using lengths-at-age suggested by Wheeler (1969). These 

proportions were then multiplied by the estimated total number of fish impinged during 

the appropriate quarter using previously calculated abundance data (section 2.4.2.1), to 

give estimated abundances of each age group impinged at LPS. The abundances of 

each age group were multiplied by the appropriate EAV factor (Table 4.l) to give 

abundances of adults of age when> 50% maturity occurs. Some error was inevitably 

introduced by use of EA V factors over a decade old, since parameters such as survival 

probabilities are liable to change over time, but the values employed were expected to 

give results of the correct order of magnitude. The abundances of equivalent adults thus 

obtained were multiplied by mass-at-age values obtained from the literature to give 

estimates of total mass of equivalent adults potentially lost through impingement of 

juveniles. Total adult equivalent masses were converted into monetary terms using 
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available data for value and total live weights of fish landed into Scottish ports from 

ICES area IVb by UK vessels in 1999. 

Table 4.1. EA V factors employed in calculations of potential equivalent adult losses of whiting, cod, and 
plaice at LPS, 1999 - 2000. 0, I, II refer to age group of fish, i.e. those born in same year as 
impingement, those born in previous year, and those born two years earlier, respectively. Data from 
Tumpenny (1989). 

whiting cod plaice 

0 I II 0 I II 0 I II 

January - 0.506 0.932 1.05 x 7.4 x 0.149 7.62 x 0.122 0.23 
March lO's 10'2 lO-6 

April- June 2.48 x 0.595 1.10 3.98 x 8.4 x 0.167 1.37 x 0.145 0.258 
lO·3 10'2 10'2 10'3 

July- 0.35 0.70 1.27 4.7 x 0.10 0.187 1.62 x 0.163 0.289 
Seetember 10'2 10'2 

October- 0.42 0.82 1.68 6.0 x 0.124 0.215 6.86 x 0.193 0.306 
December 10'2 10'2 

4.2.2.3. Potential losses of equivalent adult herring 

Assessment of the potential loss of equivalent adult herring at LPS, through loss 

of juveniles, employed the EA V method of Turnpenny (1989), as detailed above, but 

with certain alterations. The majority of herring entering the Forth Estuary are likely to 

originate from spawning grounds off Buchan Ness, and therefore were born in August -

September (Harden-Jones, 1968). Employing the EA V factors given by Turnpenny 

(1989) would have assumed that the herring had been spawned in November, since the 

original factors were calculated for herring stocks originating from different spawning 

grounds. This would have introduced potentially important errors into the calculations. 

Instead, a birthday of 1 September was assumed for most herring collected in LPS 

impingement samples. EA V factors employed were estimated from values given for 

both spring and autumn-spawning herring by Turnpenny (1989), based on the 

assumption that the fish were collected in the middle of each month (Table 4.2). 
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Table 4.2. EAV factors employed in calculations of potential loss of equivalent adults due to 
impingement of juveniles at LPS, 1999 - 2000. t indicates months for which the EAV factors apply in 
the ease of herring assessed to have originated from Buchan Bank (born on 1 September), while : 
indicates months for spring-spawned fish (born on 1 March). Approx. ages in days are shown, assuming 
that fish were sampled in the middle of each month. - indicates months for which EA V factors were not 
estimated due to fish of this age having not been impinged. 

First year of life Second year of life Third + year of life 
Month of Age EAV Age EAV Age EAV 
impingement factor factor factor 
Septembert /March: 15 380 0.757 745 0.998 
Oetobert/April; 45 410 0.775 775 1.07 
Novembcrt /Mayt 75 440 0.7885 805 1.21 
Decembert IJunet 105 470 0.802 835 1.21 
JanuarytIJuly; 135 500 0.802 865 1.35 
Februarytl August: 165 0.6875 530 0.8345 895 1.35 
Marcht ISeptember: 195 0.682 560 0.869 925 1.52 
Aprilt/October; 225 0.6985 590 0.869 955 1.52 
Mayt !November; 255 0.715 620 0.869 985 1.69 
JunetlDecember; 285 0.715 650 0.869 1015 1.69 
Julyt/January; 315 0.715 680 0.9335 1045 1.69 
Augustt IF ebruary; 345 0.736 710 0.9335 1075 1.69 

The possibility that herring other than those from the Buchan stock also enter the Forth 

Estuary was suggested by the occasional skew observed in length-frequency histograms 

of impinged herring from LPS (Figure 4.1). A possible explanation was that 

impingement of spring-spawned herring caused the unusual additional modes on 

histograms. A commercial fishery on herring spawning in the Firth of Forth from 

January - April existed until a stock collapse in 1946 (Thomas and Saville, 1972). 

Catches of adult spring-spawning herring in the Firth of Forth averaged approx. 5000 t 

from 1896 - 1927, then increased to a peak of over 18000 t in 1938, followed by a 

decline and the aforementioned collapse immediately following World War II (Thomas 

and Saville, 1972). The same authors suggested that since fishing effort was markedly 

reduced due to war, the decline in the stock was more probably due to emigration of 

herring from the area or a recruitment failure due to some change in the environment 

rather than overfishing. It may be that the spring-spawning Firth stock remains in 
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greatly reduced numbers, or else that fish spawned in spring from other areas find their 

way into the Firth, and that they are occasionally impinged at LPS. As this theory was 

postulated retrospectively, no morphometric confirmatory analyses of herring assumed 

to be spring spawners were undertaken. It was therefore assumed that these herring 

were born on 1 March, and EA V factors based on the estimated age of the fish in each 

month were employed (Table 4.2). 
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Figure 4.1. Example of possible mixing of Buchan-spawned and spring-spawned herring in impingement 
samples from LPS in January 2000. Mode of Buchan herring spawned in August - September 1998 
indicated by "', that of herring potentially spawned in February - March 1998 by"''''. 

4.2.3. Extent of impingement of salmonid smoits, spring/summer 2000 

Identification of salmonid smolts (Atlantic salmon and sea trout) in 1999 was 

uncertain due to lack of adequate identification keys. The extent of LPS impingement 
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of salmonid smolts was assessed during the 2000 downstream migration season, for 

which suitable identification sources became available (K. Lockhart, University of 

Stirling, personal communication). Based on first and last occurrences of smolts in 

impingement samples, salmon were assumed to have been migrating past the LPS CW 

intake from 16 April - 31 May 2000, while sea trout were assumed to have undertaken 

downstream migrations between 16 April and 16 June. Number of fish impinged per 

unit volume in each of the sampling sessions during the assumed duration of the 

downstream migration was followed by determination of the geometric mean number of 

fish per unit volume over the same period. The mean values for each species were then 

multiplied by the volumes of CW abstracted during the two periods of downstream 

migration, these volumes having been estimated according to the method in section 

2.2.4, to give the estimated total abundances of smolts impinged at LPS in 2000. 

4.2.4. Extent of impingement of river lamprey and eel 

River lamprey and eels were collected and measured from the intake screens at 

LPS from January 1999 - December 2000 using techniques described in section 2.2.2. 

Abundances of the species were estimated as detailed in section 2.2.4. 
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4.3. Results 

4.3.1. Impingement of commercial species ~ MCLS 

Very few individuals of the larger-bodied commercially important species 

(whiting, cod, plaice, herring) collected in impingement samples from LPS were ~ 

minimum commercial landing size (MCLS) (Figure 4.2a-d). Most of these fish were 0+ 

or 1 + juveniles. Sprat do not have an MCLS (IN. McCallum, Scottish Fisheries 

Protection Agency, personal communication), and the catch consisted mostly of 0+ and 

1 + fish (i. e. those approx ::; 130mm; Wheeler, 1969), though with a very small 

proportion of individuals approaching the maximum TL (160mm; Miller and Loates, 

1997) (Figure 4.2e). 

No cod or plaice 2: MCLS were taken during the course of the study, and the single 

whiting of 302 mm taken in April 2000 extrapolated to approximately 400 individuals 

of this size over the whole study period, with a very low monetary value (Table 4.3). 

Herring 2: 200mm TL were rare in relation to other size classes of this species (Figure 

4.2d), but were the most commonly impinged of the species with commercial landing 

size limitations. The estimated 2.15 x 104 herring impinged 2: MCLS would have been 

worth just over £360 at 1999 values (Table 4.3). Due to the fact that sprat of all sizes 

are marketable in one form or another, and there is a lack of MCLS for this species, it 

was unsurprising that sprat contributed the dominant portion of commercial species 

directly lost to impingement at LPS in 1999 - 2000. The estimated 1.85 x 107 

individuals of this species of nearly 57 t wet mass were worth marginally below £3000 

(Table 4.3). 
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Figure 4.2. Length frequency distributions of commercial species measured from impingement at LPS, 
January 1999 - December 2000. Dashed lines (- - -) indicate minimum commercial landing sizes 
(MCLS) for whiting, cod, plaice and herring (no MCLS exists for sprat). 
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(c) plaice 
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Table 4.3. Estimated abundance, wet mass, and value of commercially important species::: minimum 
commercial landing size (MCLS) impinged at LPS, January 1999 - December 2000. Ranges of 95% 
confidence intervals indicated in parentheses. MCLS values obtained from ICES (2000, 2001a). 
Monetary values based on data of fish landed into Scottish ports from ICES area IVb by UK vessels in 
1999 (Scottish Executive Publications, 2000). No MCLS exists for sprat. 

Estimated Estimated wet Estimated value 
species MCLS abundance of mass of of impinged fish 

impinged fish ~ impinged fish ~ ~MCLS 
MCLS MCLS (kg) 

whiting 27cm 400 (254 - 629) 58.8 (37.3 - 92.5) £33 (£21 - £52) 
cod 35cm 0 0 0 
Elaice 27cm 0 0 0 
herring 20cm 2.15 x 104 (1.53- 2.62 x 103 (1.86- £361 (£274 - £523) 

3.11 x 104~ 3.79 X I03~ 
sprat 1.85 x 10 (1.20- 5.67 x 10 (3.22 x £2894 (£1643-

3.35 x 107~ 104_ 1.26 x IOS~ £6450~ 
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4.3.2. Potential loss of adults through impingement of juveniles of 

commercial species 

All four commercially important specIes exhibited substantial increases from 

1999 to 2000 in estimates of abundance and mass of equivalent adults that were lost 

through impingement of juvenile fish (Tables 4.4 - 4.8). This was a reflection of the 

increased impingement of fish in the latter year of the study, as discussed in Chapter 2. 

The period from October - December in both years gave maximum estimated losses of 

equivalent adults in all species, with the exception of whiting in 1999 when the 

phenomenon was observed during the January - March interval (Table 4.4a). In 

contrast, the first quarter of 2000 gave lowest estimated abundance of equivalent adult 

whiting lost to impingement at LPS (Table 4.4b), with this period exhibiting a similar 

characteristic for cod and plaice in 1999 (Tables 4.Sa and 4.6a, respectively). Loss of 

equivalent adults tended to be at minimal levels during the second quarter of the year, 

April - June~ this was true for plaice and herring in both years (Tables 4.6 - 4.8,), and 

for whiting in 1999 (Table 4.4a) and cod in 2000 (Table 4.5b). In all four species the 

bulk of potential equivalent adult losses were provided by impingement of juvenile fish 

less than a year old, i. e. those entering inshore waters for the first time following birth. 

The herring assessed to have originated from Buchan Ness spawning grounds 

outnumbered those believed to have come from spring-spawning stock by an order of 

magnitude in 1999, both in terms of actual abundance impinged and potential losses of 

equivalent adults (Tables 4.7a and 4.8a)~ in 2000, the Buchan herring were an additional 

order of magnitude more abundant than their spring-spawned cousins (Tables 4.7b and 

4.8b). 

193 



Table 4.4. Estimated impingement of 0 - 2-group whiting at LPS with estimated abundance and biomass 
of equivalent adults that would have existed had the impinged fish not experienced mortality. EAV 
(equivalent adult value) factors obtained from Tumpenny (1989). Mass values calculated from mean 
biomass of age 2 whiting of O.174kg (ICES, 200 la). Values in parentheses are ranges of 95% confidence 
intervals. 

Estimated Abundance of Mass of equivalent 
(a) 1999 impinged equivalent adults adults (kg) 

abundance 
O-grouE 0 a 0 

January - I-group 4.78 x 105 (2.49- 2.42 x 105 (1.26 - 4.81 x 4.21 x 10· (2.19 - 8.36 x 

March 9.50 x 105~ 1052 ]O4~ 

2-group 2.67 x 10 (1.39- 2.49 x 10·(1.30-4.95 x 4.33 x 103 (2.25 - 8.61 x 
5.31 x ]04) 104~ 103~ 

a-group 0 0 0 
April- I-group 9.83 x 10· (7.40 X 104 5.85 x 10· (4.41 - 8.02 x 1.02 x 10· (7.66 x ]03_ 

June - 1.35 x ]O5~ ]04) 1.39 X ]04) 
2-group 1.48 x 104 (1.12- 1.63 x 104 (1.23 - 2.24 x 2.84 x 103 (2.14 - 3.89 x 

2.03 x ]04) ]04) 103) 
O-group 3.50 x 105 (2.57- 1.22 x 105 (8.98 x 104_ 2.13 x 10· (1.56 - 3.00 x 

4.92 X 105) 1.72 x 105) ]04) 

July- I-group 1.56 x 104 (1.15- 1.09 x 10· (8.02 x ]03_ 1.90 x 103 (1.40 - 2.68 x 
September 2.20 x ]O4~ 1.54 X 104~ ]032 

2-group 2.28 x 10 (1.67- 2.89 x 10 (2.12 - 4.07 x 5.03 x 10% (3.69 - 7.09 x 
3.21 x 103) ]03) 102

) 

a-group 2.24 x 105 (1.73 - 9.43 x 10· (7.27 X 104
_ 1.64 x 10· (1.27 - 2.49 x 

3.41 x ]O5~ 1.43 x 1 05~ ]042 

October- I-group 1.47 x 10 (1.13- 1.20 x 10 (9.28 x 102_ 2.09 x 101 (1.62 - 3.18 x 

December 2.23 x ]O3~ 1.83 x 103~ ]022 
2-group 2.67 x 10 (2.06- 4.48 x 10 (3.46 - 6.81 x 78 (60 - 1.19 x 102) 

4.05 x 10
2* 1022 

9.98 x 10· (6.42 X 104 _ total 1.21 x 10 (7.92 x ]05 5.73 x 105 (3.69 - 9.70 x 
-2.02 x 106

) 105) 1.69 x 105) 

Estimated Abundance of Mass of equivalent 
(b) 2000 impinged equivalent adults adults (kg) 

abundance 
O-grouE 0 0 0 

January- I-group 7.65 x 10· (4.85 X 104 3.87 x 10· (2.45 - 6.72 x 6.73 x 101 (4.27 x 103_ 
March -1.33 x 1052 104} 1.17 x ]O4~ 

2-group 1.30 x 104 (8.21 x ]03 1.21 x 10· (7.66 x ]03_ 2.10 x 10 (1.33 - 3.65 x 

- 2.25 x 1042 2.]0 x 104~ 103) 
O-grouE 0 0 0 

April- I-group 4.75 x 10· (2.67- 2.87 x 104 (1.59 - 5.63 x 4.92 x 103 (2.77 - 9.80 x 

June 9.47 x 104~ ]O4} 103} 
2-group 3.79 x 10 (2.13- 4.16 x 10· (2.34 - 8.30 x 7.25 x 103 (4.08 x 103 _ 

7.54 X ]O4~ 104} 1.44 x 104~ 
O-group 8.83 x 10 (5.87 x 105 3.09 x 105 (2.05 - 4.70 x 5.38 x 10 (3.58 - 8.17 x 

- 1.34 x 106
) 105) 104

) 

July- I-group 3.82 x 101 (2.54- 2.67 x 103 (1.78 - 4.06 4.65 x 102 (3.09 - 7.06 x 
September 5.80 x 103

) x 103
) 102

) 

2-grouE 0 0 0 
O-group 1.15 x 106 (7.14 x ]05 4.85 X 105 (3.00 -7.84 x 8.44 x 104 (5.22 x ]04_ 

- 1.87 x 106
} 105} 1.36 x 105~ 

October- I-group 1.65 x 103 (1.02- 1.35 x 101 (8.39 x 102_ 2.36 x 10 (1.46 - 3.81 x 
December 2.67 x 103} 2.19 x 1032 102

} 

2-grouE 0 0 0 
total 2.22 x 106 (1.41 - 9.20 x 105 (5.80 x 105_ 1.60 x 105 (1.01-2.59 x 

3.54 x 106
) 1.49 x 106

) 105
) 
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Table 4.5. Estimated impingement of 0 - 2-group cod at LPS with estimated abundance and biomass of 
equivalent adults that would have existed had the impinged fish not experienced mortality. EAV 
(equivalent adult value) factors obtained from Turnpenny (1989). Mass values calculated from mean 
biomass of age 4 cod of 3.305kg (ICES, 200Ia). Values in parentheses are ranges of 95% confidence 
intervals. 

Estimated Abundance of Mass of equivalent 
(a) 1999 impinged equivalent adults adults (kg) 

abundance 

O-grouE 0 0 0 
January - I-group 7.45 x 103 (1.25 x 103 5.51 x 102 (93 - 3.44 x 1.82 x 103 (3.07 x 102 _ 

March -4.65 x 1042 103} 1.14 x 104~ 
2-group 5.32 x 102 (90 - 3.32 79 (13 -4.94 x 102

) 2.62 x 10 (44 -1.63 x 103) 
x 103} 

April- O-grouE 0 0 0 
June I-grouE 0 0 0 

2-grouE 0 0 0 
O-group 5.75 x 104 (4.13- 2.70 x 10J (1.94 -4.26 x 8.93 x 103 (6.42 x 103_ 

July - 9.05 x 1042 103} 1.41 x 104} 

September I-grouE 0 0 0 
2-grouE 0 0 0 
O-group 3.98 x 104 (2.21 - 2.39 x 10J (1.33 - 4.38 x 7.89 x 103 (4.38 x 103_ 

October - 7.30 x 104) 103
2 1.45 x 1042 

December I-grouE 0 0 0 
2-grouE 0 0 0 

total 1.05 x 105 (6.48 x 104 5.72 x 103 (3.37 x 103_ 1.89 x 104 (1.12 -4.15 x 
-2.13 x lOsl 1.26 x 104l 104~ 

Estimated Abundance of Mass of equivalent 
(b) 2000 impinged equivalent adults adults (kg) 

abundance 
O-group 0 0 0 

January - I-group 1.51 x 104 (5.45 x 103 1.12 x 103 (4.04 x 102 _ 3.69 x 103 (1.33 x 103_ 
March - 5.05 x 104

} 3.73 x 1032 1.23 x 1042 

2-~rouE 0 0 0 
O-~rouE 0 0 0 

April- I-group 3.62 x 103 (7.50 x 102 3.05 x 102 (63 - 1.47 x 1.01 x 10J (2.08 x 102 _ 

June - 1.75 x 1042 1032 4.87 x 1032 

2-~rouE 0 0 0 
O-group 8.74 x 104 (6.58 x 104 4.11 x 103 (3.09 - 5.65 x 1.36 x 104 (1.02 - 1.87 x 

July- - 1.20 x lOs} 103} 104
} 

September I-group 2.07 x 103 (1.56- 2.07 x 102 (1.56 - 2.85 x 6.84 x 10
2 (5.15-9.41 x 

2.85 x 103) 102
) 102

} 

2-groUE 0 0 0 
O-group 1.52 x 105 (1.05 - 9.14 x 103 (6.32 x 103_ 3.02 x 104 (2.09 - 4.82 x 

October- 2.43 x IOs~ 1.46 x 104~ 10
4
2 

December I-group 1.85 x 10 (1.28- 2.29 x 10 (1.58 - 3.66 x 7.57 x 102 (5.23 x 102_ 

2.95 x 1032 102} 1.21 x 103
} 

2-grouE 0 0 0 
total 2.62 x 105(1.80- 1.51 x 104 (1.02 - 2.61 x 4.99 x 104 (3.37 - 8.63 x 

4.37 x IDS) 1 04~ lo4l 
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Table 4.6. Estimated impingement of 0 - 2-group plaice at LPS with estimated abundance and biomass 
of equivalent adults that would have existed had the impinged fish not experienced mortality. EAV 
(equivalent adult value) factors obtained from Tumpenny (1989). Mass values calculated from mean 
biomass of age 4 plaice ofO.349kg (ICES, 200Ia). Values in parentheses are ranges of 95% confidence 
intervals. 

Estimated impinged Abundance of Mass of equivalent 
(a) 1999 abundance e!luivalent adults adults (klQ 

O-~rouE 0 0 0 
January - I-group 2.18 x 104 (5.46 I( 101 2.66 x 103 (6.66 I( 102_ 9.28 x 101 (2.32 I( 102_ 

March - 9.09 I( 1052 1.11 I( 104~ 3.87 I( 101~ 
2-group 1.88 x 103 (4.71 I( 102 4.32 x 10 (1.08 x 102 _ 1.51 x 10 (38 - 6.29 I( 102

) 

-7.84 x 1012 1.80 I( 1012 
O-group 5.52 x 103 (4.26 -7.46 8 (6 -10) 3 (2 -4) 

I( 1012 
3.82 x 103 (2.95 - 5.17 x 1.33 x 10J (1.03 - 1.80 I( April- I-group 2.64 x 104 (2.04 - 3.56 

June I( 104} 1012 1032 
2-group 4.29 x 103 (3.32 - 5.80 1.11 x 103 (8.56 x 102_ 3.87 x 102 (2.99 - 5.22 I( 

I( 103} 1.50 x 103
) 10

22 
O-group 1.20 x 105 (6.49 I( 104 1.94 x 103 (1.05 - 3.69 I( 6.76 x 101 (3.67 x 102 _ 

- 2.28 I( 1052 10
12 1.29 I( 101~ 

July - I-group 1.40 x 104 (7.59 I( 101 2.28 x 103 (1.24 - 4.34 x 7.96 x 10 (4.32 I( 102_ 
September - 2.66 I( 1042 101} 1.51 I( 103~ 

2-group 7.32 x 103 (3.98 I( 101 2.12 x 10J (1.15 - 4.03 I( 7.39 x 10 (4.01 I( 102 _ 

- 1.39 x 104
} 1012 1.41 I( 101~ 

O-group 9.70 x 104 (7.44 I( 104 6.66 x 103 (5.11 - 9.50 I( 2.32 x 10 (1.78 - 3.32 I( 

- 1.39 I( 105} 103
} 1012 

October - I-group 8.32 x 103 (6.38 I( 101 1.61 x 10J (1.23 - 2.29 I( 5.60 x 102 (4.30 - 8.00 I( 

December - 1.19 I( 1042 103} 1022 
2-group 1.76 x 103 (l.35 -2.52 5.40 x 102 (4.14 -7.71 x 1.88 x 102 (1.44 - 2.69 I( 

I( 1012 102
} 1022 

total 3.08 x 105 (1.93-5.68 2.32 x 104 (1.48 -4.42 I( 8.08 x 103 (5.16 I( lO l _ 

I( 105) 104) 1.54 I( 1042 

Estimated impinged Abundance of Mass of equivalent 
(b) 2000 abundance eguivalent adults adults (k~ 

O-grouE 0 0 0 
January - I-group 1.20 x 105 (6.49 I( 104 1.47 x 104 (7.92 I( 101_ 5.12 x 103 (2.76 - 9.63 I( 

March - 2.26 x 105} 2.76 I( 104~ 1012 
2-group 2.00 x 10J (1.08 - 3.77 4.61 x 10 (2.49 - 8.67 I( 1.61 x 102 (87 - 3.03 I( 102

) 

I( 1012 102} 
O-group 9.79 x 104 (8.87 I( 104 1.34 x 101 (1.22 - 1.52 I( 47 (42 - 53) 

- 1.11 I( 1052 101} 

ApriI- I-group 1.35 x lOS (1.23 -1.54 1.96 x 104 (1.78-2.23 I( 6.85 x 103 (6.21 - 7.79 I( 

June I( 1052 104} 1012 
2-group 3.71 x 101 (3.36 - 4.22 96 (87 - 1.09 x 102) 33 (30 - 38) 

I( 102} 
6.64 x 103 (3.64 I( 101_ O-group 4.10 x lOS (2.25 - 8.00 2.32 x 10J (1.27 - 4.52 I( 

I( 
1052 1.30 I( 104) 10

12 
July - I-group 1. 77 x 104 (9.73 x 101 2.89 x 103 (1.59 - 5.65 I( 1.01 x 103 (5.53 I( 102_ 

September - 3.47 I( 104
} 1012 1.97 x 101~ 

2-group 1.11 x 103 (6.08 I( 102 3.21 x 101 (1.76 - 6.26) 1.12 x 10· (61-2.18 x 102
) 

-2.171(103} 
O-group 3.92 x 105 (1.86 - 8.41 2.69 x 104 (1.27 - 5.77 I( 9.39 x 103 (4.44 I( 101_ 

October - I( 105} 10
42 2.01 x 105~ 

December I-group 1.15 x 104 (5.46 I( 101 2.23 x 103 (1.05 - 4.78 I( 7.77 x 10 (3.68 I( 102 _ 

- 2.48 I( 104
} 10

12 1.67 I( 1012 
2-grouE 0 0 0 

total 1.19 x 106 (7.04 I( 105 7.39 x 104 (4.53 I( 104_ 2.58 x 104 (1.58-4.63 I( 

-2.20 I( 106
) 1.33 I( 105) 104

) 
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Table 4.7a. Estimated 1999 impingement of herring originating from Buchan Ness (assumed born on 1 
September each year) at LPS, with estimated abundance and biomass of equivalent adults that would have 
existed had the impinged fish not experienced mortality. EAV (equivalent adult value) factors obtained 
from Tumpenny (1989). Mass values calculated from mean biomass of age 2 herring of 0.122kg (ICES, 
2000). Values in parentheses are ranges of 95% confidence intervals. 

(a) 1999 Born Sel!tember 1998 Born Sel!tember 1997 Born Sel!tember 1996 
Abundance Equivalent Abundance Equivalent Abundance Equivalent 

adults adults adults 
January 0 0 1.12 x 105 9.00 x 104 6.15 x 103 8.30 x 103 

(8.38 x 104 _ (6.72 x 104 _ (4.59 - 8.24 (6.20)( lOl _ 
1.50 x 10

j
) 1.21 x lO

j
) x IOl~ 1.11 )( 104~ 

February 0 0 1.11 x 105 9.27 x 104 2.17 x 103 2.93 x 10 
(5.63 )( 104 _ (4.70 x 104 _ (1.10 -4.29 (1.48 - 5.79 
2.19 x IOj~ 1.83 x lOj~ x IOl~ x IOl~ 

March 0 0 2.25 x 10 1.96 x 10 1.11 x 10· 1.68 X 104 

(1.61 - 3.15 (1.40 - 2.74 (7.90 x IOl _ (1.20 - 2.36 
x lOs} x lOs} 1.55 x 104~ x 104} 

April 0 0 2.50 x 10· 2.17 x 10· 5.43 x 10 8.26 x 102 

(2.38 - 2.63 (2.06 - 2.28 (5.17 - 5.71 (7.85 - 8.69 
x 104~ x 104} x 102} x 102} 

May 2.96 x 102 2.12 x 102 1.42 x 104 1.23 x 10· 2.96 x 102 5.00 x 102 

(1.51 - 5.80 (1.08 -4.15 (7.24 x lOl _ (6.29)( lOl _ (1.51 - 5.80 (2.55 - 9.81 
)( 102~ x 102) 2.79 x 104) 2.42 x 104

) x 102) x 102~ 

June 4.33 x 104 3.10 X 10· 3.33 x 103 2.90 x 103 3.33 x 101 5.63 x 101 

(2.53 -7.40 (1.81 - 5.29 (1.95 - 5.69 (1.69-4.95 (1.95 - 5.69 (3.30 - 9.62 
)( 104~ x 104~ x IOl~ x IOl~ x 102~ x 102~ 

July 8.30 x 10· 5.93 x 10· 1.10 x 103 1.02 x 103 0 0 
(6.10 x 104_ (4.36 - 8.08 (8.06 x 102_ (7.52)( 102_ 
1.13 x 105~ x 104~ 1.49 x IOl~ 1.39 )( lOl~ 

3.06 x 10J 5.17 x 103 August 3.31 x 10 2.44 x 105 6.39 x 10 5.97 x 10 
(2.48 - 4.42 (1.83 - 3.25 (4.79 - 8.53 (4.47 -7.96 (2.29 - 4.08 (3.87 - 6.90 
x IOs2 x lOs~ )( 10l~ x 10l~ x lOl~ x IOl2 

September 3.98 x 105 3.01 x 105 1.81 x 103 1.81 x 10J 2.27 x 101 3.83 x 101 

(3.54 - 4.46 (2.68 - 3.38 (1.62 - 2.04 (1.61 - 2.03 (2.02 - 2.55 (3.41 - 4.30 
x 105~ x 105~ x IOl~ x lOl} x 102~ )( 102} 

October 2.06 x 105 1.60 x 105 7.25 x 101 7.76 x 101 7.25 x 101 1.23 x 10J 

(1.68 -2.S3 (1.30 - 1.96 (5.91 - 8.91 (6.32 - 9.53 (5.91 - 8.91 (9.98 )( 102_ 
x lOS} x 105} )( 102

} x 102} )( 102~ 1.51 )( lOl~ 
November 1.19 x 105 9.38 x 10· 2.84 x 101 3.44 x 101 2.84 x 101 4.80 x 10 

(6.12)( 104 _ (4.82 x 104_ (1.46 - 5.52 (1.77 - 6.68 (1.46 - 5.52 (2.47 - 9.33 
2.31 )( IOs~ 1.82 )( lOs~ x 102} )( 102} )( 102} )( 102l 

December 4.06 x 10 3.26 x 10 5.08 x 103 6.15 x 10J 2.33 x 103 3.94 x 103 

(3.28 - 5.03 
x 1052 

(2.63 -4.03 
)( lOs~ 

(4.11-6.30 
)( 1012 

(4.97 -7.62 
)( lOl) 

(1.88 - 2.89 
)( 10l} 

(3.18 -4.88 
)( 10l) 

Total abundance = 2.12 x 10~ ~1.61 - 2.87)( 106
) 

Total abundance of eguivalent adults = 1.69 x 10il ~1.28 - 2.29 )( 106
) 

Total mass of eguivalent adults = 2.06 x 105 kG ~1.56 - 2.79)( 105 k~) 
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Table 4.7b. Estimated 2000 impingement of herring originating from Buchan Ness (assumed born on 1 September each year) at LPS, with estimated abundance and biomass 
of equivalent adults that would have existed had the impinged fish not experienced mortality. EA V (equivalent adult value) factors obtained from Tumpenny (1989). Mass 
values calculated from mean biomass of age 2 herring of 0.122kg (ICES, 2000). Values in parentheses are ranges of 95% confidence intervals. 

(b) 2000 _ Born September 1999 _ _ _ _ __ _ BOfll S~t(!f!lller 12.2.8_ ~~_~Born§t!pt~ber 199L ___ _ _ Born~eptember 1996 

January 

February 

March 

April 

May 

June 

July 

August 

September 

October 

November 

December 

Abundance Equivalent Abundance Equivalent adults Abundance Equivalent Abundance Equivalent adults 

adults adults 
o o 7.26 x 10'<6.7~5.83 xW(5.40- 2.05 x 104 (1.90- 2.76 x 104 (2.56- 3.70 x 10\3.42-3.99 x 6.25 x 10'(5.79-6.75 

7.84 x 10') 6.29 x 10') 2.21 x 104
) 2.98 X 10') 103

) x 103
) 

o o 5.77 x 10'(2.48 x -4.81 x 10'(2.07 x 1.56 x 10' (6.69 x 2.11 x 10J (9.04 x 0 0 
10' -1.34 x 10'1 __ !O~q:z..x lo.~ _ 102

_ 3.63 x 103
) 102

_ 4.90 x 103
) 

o o 1.10 x 10~ (5.84 - - 9.52 x 104 (5.08-" -- - 7.39 x 101(3.94 x 1.12 x 10J (5.99 x o o 
2.05 x 10') ___ JO'-1.78xIO') __ 102 -1.38 x 103

) 102 -2.10 x 103
) 

o o 3.07" 10'(1.90 - - 2:67 "-10'(T.65----3.08)(i02 (1.91- 4.68 x 102 (2.90 _ 3.08 x 102 (1.91- 4.98 x 5.21XIW(3.22-8.41 
4.96 x 10') 4.31 x 10') 4.98 X 102

) 7.56 X 102
) 102) x 102

) 

5.77 x 104 (1.64-x-4: ilX 10'(1."17--3.83 x 104 (1.08 --3.33X104 (9.43 x 0 0 0 0 
10' - 2.04 x 10') x 10' -1.46 x 10') x 10' -1.35 x 10') 103 -1.17 x 10') 
2.45 x 105 (1.19 - 1.75 x 10' (8.54 x 5.24 x 104 (2.55 x~4.55-xlOi (2.22- o 
5.03 x 10') 10' - 3.60 x 10') 10' - 1.08 x 10') _ 9.35 _x 10') 
6.31 x 105 (5.52 - 4.52 x 10' (3.95 - 5.52 x 104 (4.83 - 5-:15 XIO' (4.50-
7.22 x 10~ 5.16 x 10\ _ 6.31 x 10') 5.89 X 104

) 

o 

8.97 x 10'(6.93 ,,-- -6.60 X 10' (5.10 - 1.59 x 10' (1.23 -~1.48 x 10' (1.14- o 
10' - 1.16 x 106

) 8.54 x 10') 2.05 x 104
) 1.92 X 104

) 

2.41 x 10"(i.38 ~- --1.82 x 10' (f05:-- -9.11)( 10'(5.24 x - - 9.09XTo' (5.23 x o 
4.19 x 10') 3.17 X 10') 103 -1.58 X 10') 103 -1.58 x 104

) 

3.78 x 10'(i.34 x--2.93xIO' (L04:--1.19Xlir{4~ii x-- 1-:27 Xio· (4.51 x o 
10' - 1.06 x 10') 8.23 x 10~ 103

_ 3.33 x 104
) 103 

- 3.57 x 104
) 

1.24 X 10' (4.59 x - - -9.78>< io' (3.62 x- 8.00>< lir (2:96 x-- 9.67 x 103 (3.58 )( o 
10' - 3.35 x 10' 10' - 2.64 x 10' 103 

- 2.16 x 104
) 103 

- 2.61 x 10' 
4.22 X 10' (1.68 x 3.39 x 10' (1.34 - 8.97 x 10' (3.56 x 1.08 x 10' (4.31 x 
10' - 1.06 " 10') 8.53 x 10') 103 

- 2.26 x 104
) 103 

- 2.73 x 104
) 

Total abundance = 1.16 x 107 (6.04 x 10' - 2.51 x 10') 

Total abundance of equivalent adults = 9.05 x 10' (4.69 X 10' -1.97 X 10') 

Total mass of equivalent adults = 1.10 x 10i" kg (5.72 "..10'-= 2.32 x 10' kg) 
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Table 4.8a. Estimated 1999 impingement of spring-spawned herring (assumed born on 1 March each 
year) at LPS, with estimated abundance and biomass of equivalent adults that would have existed had the 
impinged fish not experienced mortality. EAV (equivalent adult value) factors obtained from Turnpenny 
(1989). Mass values calculated from mean biomass of age 2 herring of 0.122kg (ICES, 2000). Values in 
parentheses are ranges of95% confidence intervals. 

(a) 1999 Born March 1999 Born March 1998 Born March 1997 
Abundance Equivalent Abundance Equivalent Abundance Equivalent 

adults adults ) adults 
January 0 0 4.43 x 103 3.17 x 103 5.90 x 103 5.51 x 103 

(3.31 - 5.93 x (2.36 - 4.24 x (4.41 -7.91 x (4.12-7.38 x 
103) 103) 103) 103) 

February 0 0 0 0 1.95 x 103 1.82 x 103 

(9.89 x 102
- (9.23 x 102 _ 

March 0 0 4.61 x 103 3.49 x 10J 
3.86 x 103~ 3.60 )( 103~ 
6.46 x 10 6.44 x 10 

(3.29 - 6.46 x (2.49 - 4.89 )( (4.61 - 9.05 )( (4.60 - 9.03 x 

103) 103) 103
) 103

) 

April 0 0 0 0 0 0 
May 0 0 0 0 0 0 
June 0 0 3.33 x 102 0 0 

(1.95 - 5.69 x 
102

) 

July 0 0 0 0 0 0 
August 8.34 x 102 5.66 x 102 0 0 0 0 

(6.25 )( 102 _ (4.24 -7.55 x 
l.l1 )( 103

) 102
) 

4.54 x 102 3.94 x 102 September 0 0 0 0 
(4.04 - 5.09 )( 
102

) 

(3.51 - 4.42 )( 
102

) 

October 0 0 0 0 0 0 
November 0 0 6.82 x 103 5.92 x 103 0 0 

(3.50 x 103_ (3.05)( 103_ 

December 1.53 x 104 1.09 x 104 
1.33 )( 104~ 
1.03 x 10 

1.15 x 104~ 
8.91 x 10 0 0 

(1.23 - 1.89 (8.81 )( 103_ (8.28 x 104_ (7.20 x 104_ 
x 104) 1.35 )( 104) 1.27 x lOs) l.l0 x lOs) 

Total abundance = 1.50 x 105 (1.16 - 1.94 x lOs) 

Total abundance of equivalent adults - 1.28 x 105 (9.92 )( 104 - 1.66 x 103) 
Total mass of equivalent adults = 1.56 x 104 kg (1.21 - 2.03 x 104 kg) 
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Table 4.8b. Estimated 2000 impingement of spring-spawned herring (assumed born on 1 March each 
year) at LPS, with estimated abundance and biomass of equivalent adults that would have existed had the 
impinged fish not experienced mortality. EAV (equivalent adult value) factors obtained from Tumpenny 
(1989). Mass values calculated from mean biomass of age 2 herring ofO.122kg (ICES, 2000). Values in 
parentheses are ranges of 95% confidence intervals. 

(b) 2000 Born March 2000 Born March 1999 Born March 1998 
Abundance Equivalent Abundance Equivalent Abundance Equivalent 

adults adults adults 
January 1.28 x 104 1.28 x 104 9.15 x 103 9.27 x 104 8.65 x 104 

(1.19 -1.38 x (1.19 - 1.38 x (8.48 - 9.88 x (8.59 x 104_ (8.02 - 9.34 x 
104

) 104
) 103

) 1.00 x IOS~ 104) 
February 0 0 0 0 4.46 x 10 4.16 x 101 

(1.91 x 102 _ (1.79 - 9.69 x 
1.04 x 103~ 102

) 

March 0 0 0 0 2.46 x 10 2.46 x 101 

(1.31 - 4.61 x (1.31-4.61 x 
102

) 102
) 

April 0 0 0 0 0 0 
May 0 0 0 0 0 0 
June 0 0 0 0 0 0 
July 0 0 0 0 0 0 
August 7.55 x 101 5.19 x lOt 0 0 0 0 

(5.84 - 9.77 x (4.01 - 6.72 
102

) x 102
) 

September 8.28 x 101 5.65 x lOt 0 0 0 0 
(4.76 x 102 _ (3.25 - 9.82 
1.44 x 103

) x 102
) 

October 0 0 0 0 0 0 
November 0 0 1.24 x 104 1.07 x 104 0 0 

(4.57 x 103 _ (3.97 x 103 _ 

December 0 0 
3.34 X 104~ 
1.10 x 10 

2.90 X 104~ 
9.57 x 10 0 0 

(4.37 x 104 _ (3.80 x 104 _ 

2.77 x lOs) 2.41 x lOs) 

Total abundance = 2.30 x 105 (1.47 - 4.29 x lOs) 

Total abundance of equivalent adults = 2.04 x 105 (1.32 - 3.77 x lOS) 
Total mass of equivalent adults = 2.49 x 104 kg (1.61 - 4.59 x 104 kg) 
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Herring dominated estimated total wet biomass of equivalent adults lost by 

impingement of juvenile fish at LPS during 1999 - 2000, with values an order of 

magnitude greater than whiting, and two orders of magnitude greater than both cod and 

plaice (Table 4.9). Monetary value of the relatively large total mass of herring was 

approx. l.5 x that of whiting, reflecting the lower value per unit mass of herring. The 

values per unit mass of cod and plaice were similar, thus the total value of the estimated 

wet masses lost as equivalent adults were approx. 2: 1 in favour of the former species, 

explained by the wet mass of equivalent adults being in a similar ratio. The relatively 

high monetary value per unit mass of cod meant that the estimated total monetary value 

of this species was approx. 56% that of whiting and 36% that of herring, whilst the total 

wet mass was of the order of26% and 4% respectively (Table 4.9). 

Table 4.9. Estimated total wet mass and monetary value of equivalent adult whiting, cod, plaice and 
herring potentially lost through impingement of juveniles at LPS, January 1999 - December 2000. 
Values in parentheses are ranges of 95% confidence intervals. Monetary values based on data of fish 
landed into Scottish ports from ICES area IVb by UK vessels in 1999 (Scottish Executive Publications, 
2000). 

species mass of equivalent value 
adults 

whiting 259.7 t (165.1 - 427.6 t) £145,612 (£92,293 -
£239,031) 

cod 68.8 t (44.8 - 127.8 t) £82,166 (£53,513-
£152,560) 

plaice 33.9 t (21.0 - 61.8 t) £40,080 (£24,814 -
£73,027) 

herring 1637 t (756 - 2734 t) £225,858 (£104,288 -
£377,062) 
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4.3.3. Extent of impingement of salmonid smolts during the 2000 

downstream migration 

A total of 56 Atlantic salmon and 19 sea trout smolts were collected during 

routine sampling sessions between 27 April and 5 June 2000. The greatest rate of 

impingement of both species was on 3 May, at HW of a spring tide during darkness 

(Table 4.10). Salmon smolts ranged from 101mm (8 g wet mass) to 145mm TL (22.1 

g), while sea trout were in the range 111 mm (12.9 g) to 191 mm (63.1g). 

An estimated 3.62 x 1011 I and 4.80 x 1011 I of CW was abstracted from 16 April - 31 

May and 16 April - 16 June, respectively. The former period was assumed to be the 

downstream migratory period of salmon smolts, while the latter was that of sea trout 

(see section 4.2.3). During the first of these periods it was estimated that the total 

abundance of salmon smolts impinged at LPS was 5.18 x 103 (95% CIs: 3.99 - 6.73 x 

103
), while the total impinged abundance of sea trout smolts during the latter period was 

approximately 255 (l05 - 618). 
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Table 4.10. Details of impingement of salmonid smolts at LPS during the 2000 downstream migration 
season. Abbreviations of sampling sessions: HW IL W = high/low water; SIN = spring/neap tide; DIL = 
darkness/daylight. Thus, for example, HWSD = high water of spring tide in darkness. - indicates sessions 
assumed undertaken after cessation of the salmon smolt downstream migration season (see text for 
details). 

fish per 108 1 CW 
sam~led 

sam(!ling session salmon sea trout 
27 AEril, 0240, L WND 0 0 
27 AEril, 0900, HWNL 0 0 
27 AEril, 1530, LWNL 1.22 2.44 
27 AEril, 2210, HWND 0 0 
3 Ma~, 0330, HWSD 47.62 9.77 
5 Ma~, 0910, L WSL 13.43 3.66 
5 Ma~, 1720, HWSL 3.66 1.22 
19 Ma~, 2150, LWSD 4.88 0 
26 Ma~, 0200, LWND 0 1.22 
26 Ma~, 0830, HWNL 0 0 
26 Ma~, 1450, LWNL 0 0 
30 Ma~, 0050, HWND ° ° 1 June, 0250, HWSD 0 
5 June, 1040, L WSL 4.88 
5 June, 1840, HWSL ° 5 June, 2300, LWSD 0 
9 June, 0220, L WND ° 13 June, 0110, HWND ° 13 June, 0640, LWNL 0 
13 June, 1310, HWNL 0 

4.3.4. Extent of impingement of river lamprey and eel 

4.3.4.1. Extent of impingement of river lamprey 

In 1999 an estimated 4.31 x 104 (range of sums of minimal and maximal 95% 

confidence intervals: 1.16 x 104 
- 2.45 x 105) river lamprey were impinged at LPS. A 

somewhat greater quantity of the species was impinged in the year 2000, this being 

approximately 7.23 x 104 (95% CIs: 2.39 x 104 
- 2.52 x 105) lamprey. Impingement 
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was greatest during August and December 2000 and December 1999 - January 2000, 

while exhibiting minimal levels during the period from March - May in both years 

(Figure 4.3). 
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Figure 4.3. Estimated abundance of river lamprey impinged at LPS, 1999 - 2000. Error bars indicate 
95% confidence intervals. 

The length-frequency distribution of lamprey collected in impingement samples at LPS 

showed two main groups of lamprey with modes of about 100 - 120mm and 230 -

260mm respectively (Figure 4.4). The former was likely to constitute juveniles 

undergoing downstream migration primarily in spring and early summer, while the 

latter would have been a mixture of older juveniles inhabiting the estuary for feeding 

purposes and adults undertaking upstream migration to spawn in freshwater (Maitland 

et al., 1984). 

204 



45 

40 

~ 35 
'; 

= 30 ~ 
'S: 
:e 25 ,5 ... 
0 20 ... 
a.I 

.Q 
15 8 

= c 10 

5 

0 
0 0 0 0 

N ~ \0 

size class (TL, mm) 

Figure 4.4. Length frequency distribution of river lamprey collected in impingement samples at LPS, 
January 1999 - December 2000. 

4.3.4.2. Extent of impingement of eel 

As with lamprey, eel impingement was greater in the latter year of the study: in 1999 an 

estimated 1113 individuals were impinged at LPS (range of sums of minimal and 

maximal 95% confidence intervals: 23 - 90742) while in 2000 the abundance was 

estimated at more than double the previous year's, 2441 (range of 95% CIs: 50 -

154110) fish. The wide confidence intervals were due to the very infrequent occurrence 

of eels in impingement samples. Peaks of impingement at LPS occurred in August 

1999 and the period from May - August 2000, while numbers were lowest during the 

January - March period each year (Figure 4.5). 
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Figure 4.5. Estimated impingement of eel at LPS, January 1999 - December 2000. 95% CIs omitted for 
clarity. 

All individuals taken were > 200 mm TL, and the majority were yellow eels of 210 -

350 mm TL, with only a few specimens being silver eels (Figure 4.6). 
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Figure 4.6. Length frequency distribution of eel collected in impingement samples at LPS, January 1999 
- December 2000. 
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4.4. Discussion 

4.4.1. Impingement of commercially important species at LPS, 1999 - 2000 

Impingement of sprat, herring, plaice, whiting and cod above MCLS in 1999 -

2000 produced a quantity of fish that would have been worth approx £3300 at 1999 

values. This was largely attributable to the inclusion of all sprats estimated impinged 

during this time period in the calculation. In reality, sprats that are> 12 cm TL (approx 

15 g wet mass) are the most valuable to fishermen (IN. McCallum, Scottish Fisheries 

Protection Agency, personal communication), and since relatively few sprats impinged 

were of this size (modal length was in the range 7 - 9 cm TL; Figure 4.2e), estimated 

monetary values for sprat were likely to be overestimates. Few fish above MCLS of the 

remaining four assessed species were taken. This was probably attributable to a) the 

relatively small proportions of older and larger fish in most populations; b) the function 

of the estuary for marine species being primarily as a nursery, with adults being less 

frequent visitors (Elliott et al., 1990); c) the greater likelihood of adults being above 

critical escape lengths required to avoid removal in the cooling water inflow 

(Turnpenny, 1988a; see section 5.2.2). The importance of the second of these points is 

apparent when comparing losses of commercial species above MCLS at LPS with 

values suggested for the Sizewell power stations of the Suffolk coast (Table 4.11). 

Only values for impingement of adult herring were comparable to the other sites, 

reflecting the fact that adult plaice, cod and whiting are MJ species, and so were not as 
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abundant in the Forth Estuary as coastal waters. Herring, in contrast, are MS species, 

with adults as well as juveniles overwintering in estuaries and inshore areas. 

Table 4.11. Estimated annual mean mass of fish ~ MCLS impinged at LPS (1999 - 2000) compared with 
data for existing Sizewell A and B power stations, as well as the proposed Sizewell C station (Turnpenny 
and Henderson, 1993). 

Annual mass of impinged fish;::: MCLS (kg) 
LPS Sizewell A Sizewell B Sizewell C 

whiting 29 2796 6051 12080 
cod 0 708 1533 3060 
plaice 0 18 38 76 
herring 1310 570 1233 2460 
total 1339 4092 8855 17676 

Of greater potential significance in monetary estimation of value of impinged 

fish were the estimated equivalent adults that may have existed had juveniles not 

experienced mortality. The EA V method employed was not expected to give precise 

estimates, but order-of-magnitude approximations (Tumpenny, 1989). The crude 

estimates generated in the present study suggested that, from January 1999 - December 

2000, the juvenile plaice, cod, whiting and herring removed by LPS may have 

represented future losses of adults in the region of 1.27 x 107 fish with mass 1999 t and 

worth approximately £494,000 at 1999 values. Since whiting, plaice, and herring are 

spawned in the North Sea and are not limited in their distribution solely to the Forth 

Estuary, it is relevant to place potential losses at LPS into the context of catches by 

North Sea commercial fisheries. Landings of cod and plaice from ICES fishing area IV 

(the North Sea) from 1995 - 1999 averaged 105851 t and 83055 t respectively (ICES, 

200 1 a). The mean annual LPS equivalent adult losses of cod and plaice in 1999 - 2000 

amounted to approximately 0.032% and 0.020% of these totals. No data on discards 

were available for these two species. Total herring catch from ICES areas IVa (northern 

North Sea) and IVb (central North Sea) in 1999 was 203839 t, of which 873 twas 
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discarded (ICES, 2000). The annual mean based on the 2 years of data from the present 

study suggested that herring equivalent adults removed by LPS would have constituted 

0.54 % of the total catch, or almost 1.3 x the total discarded mass. Discards often 

contain many undersized fish, however, so comparing the mass of equivalent adults to 

total mass of discards was not entirely appropriate. Length-frequency compositions of 

discarded fish are necessary to allow more accurate comparisons. Such data from 

northeast English fisheries suggest that the proportion of total whiting discards 

attributable to 2 year-old fish (i.e. those considered adults in the present study) was 

approximately 22.4% by mass, based on the variety of discard tendencies displayed by 

seine, otter, Nephrops and beam trawlers (ICES, 200Ib). The mean annual total 

discards of whiting from ICES subarea IV from 1995 - 1999 was 22931 t (ICES, 

2001a); assuming similar proportions of2 year old fish were discarded by the North Sea 

whiting fleet as suggested by the NE English data above, LPS would have removed 

equivalent adult whiting amounting to approximately 2.6 % of the annual total of 2-year 

old discarded fish. 

Were the estimates of equivalent adults that may have ultimately been lost due 

to impingement at LPS of reasonable magnitude? LPS was estimated to have impinged 

a total mean annual abundance offish species of all sizes in the region of2.2 x 107 fish 

(Chapter 2). This was comparable to the total quantity of fish impinged at eight power 

stations on the SE coast of England (Table 4.12; Henderson, 2000). Estimates of the 

total mass of equivalent adults of the four commercial species considered in the present 

study were somewhat greater at LPS than at the SE English power stations combined 

(Tumpenny and Henderson, 1993), though of the same order of magnitude, and the 

composition of the total mass varied markedly for all species excepting plaice (Table 
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4.12). Estimated total mass of equivalent adult whiting lost at LPS was half that of the 

SE English data, while cod equivalent adult mass was 4 - 5 x greater. These 

differences may be accounted for by differential distribution of the juveniles of these 

gadoid species, i.e. whiting tending to be more abundant in the inshore waters of SE 

England, while cod are more common in the Forth Estuary than the English coast. 

Inshore trawl data from SE England suggested that cod were scarce in the region of the 

power stations represented in table 4.12, with mean catches from zero to well below one 

fish per 1000 m2 sampled from 1981 - 1997 (Rogers et al., 1998). This contrasted with 

a mean of 1.2 cod 1000 m-2 in the Forth Estuary from 1982 - 1997 (based on data from 

Chapter 3). Whiting abundance in the Forth over the same time period averaged 5.5 

fish 1000 m·2, while the inshore regions of SE England possessed many areas with 

whiting at abundances of 10 - 50 fish 1000 m-2 (Rogers et al., 1998). 

Table 4.12. Comparison of estimated equivalent adult mass loss of commercially important species at 
LPS (mean annual values based on period from January 1999 - December 2000) and values estimated for 
SE English power stations (Tumpenny and Henderson, 1993). • power stations included were Sizewell 
A, Sizewell B, Bradwell, Littlebrook C, West Thurrock, Tilbury C, Isle of Grain and Kingsnorth. : data 
for total impingement of all species at the SE English power stations from Henderson (2000). 

LPS, annual SE English 
mean 1999- power stations· 
2000 

annual impinged abundance, all species 2.19xlO' 2.84 x 10': 
(number of individuals) 

whiting 129.8 345 
equivalent adult 

cod 34.4 7.7 
mass of 

plaice 16.9 11.1 
commercial 
species (t) herring 818.7 435 

total 999.8 798.8 

Equivalent adult estimates of herring impingement at LPS were approx. twice the total 

mass estimated impinged at SE English power stations (Table 4.12). Such a difference 

may have arisen for several reasons. Firstly, the present study employed an assumed 

mass at age 2 of 0.122 kg for equivalent adults, whereas the SE English estimates were 

undertaken at a time when a value of 0.113 kg was appropriate (Turnpenny and 
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Henderson, 1993). Each equivalent adult fish was therefore approx. 10% lighter. The 

principle period of impingement of herring in their first year of life occurs at the same 

time of the year (i.e. late summer - autumn) at LPS and Sizewell power stations, but the 

fish are not of the same age: as previously noted, herring impinged at LPS are generally 

from Buchan stock and were spawned in August - September of the year prior to 

impingement. The younger SE English herring, originating from the Downs spawning 

population, are spawned in November - January, thus have lower EA V factors for the 

same period of the year as Forth herring. The decreased probability of survival to 

maturity thus contributed to each juvenile herring from SE English locations accounting 

for a reduced proportion of an equivalent adult compared with juvenile herring 

impinged at the same time at LPS. Given these various pieces of evidence, the 

estimates of equivalent adult biomass of all species impinged at LPS seemed not 

unreasonable. 

Estimates of equivalent adult tonnage losses due to impingement of juveniles at 

LPS in 1999 - 2001 were two orders of magnitude greater than the predicted losses 

from the PISCES (v.3) simulation undertaken by Tumpenny (1997) (Table 4.13). This 

was clearly attributable to the fact that the PISCES simulation produced an estimate of 

total impingement of all species that was two orders of magnitude less than that of the 

present study (Table 4.13). 
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Table 4.13. Comparison of estimated equivalent adult mass loss of commercially important species at 
LPS (mean annual values based on period from January 1999 - December 2000) and values predicted for 
LPS by the PISCES (v.3) software system (Turnpenny, 1997). 

LPS, annual LPS, PISCES 
mean 1999- simulation 
2000 

annual impinged abundance, all species 2.19 x 107 7.41 x 105 

(number of individuals) 

equivalent adult 
whiting 129.8 4.7 
cod 34.4 0.9 

mass of 
plaice 16.9 0.05 

commercial 
species (t) herring 818.7 3.9 

total 999.8 9.6 

The PISCES estimate of annual EA V tonnage lost at LPS was described as being "well 

below the expected annual landings from a small inshore trawler" (Turnpenny, 1997). 

Comparisons of the present study's estimates are hard to make without precise data on 

the catches of individual trawlers. There were 40 pelagic vessels based in Scotland in 

1999, which landed a total of 84455 t of herring in the UK and abroad (Scottish 

Executive Publications, 2000), suggesting a mean of approximately 2111 t per vessel. 

Impingement of juvenile herring at LPS in 1999 would have constituted just over 10% 

of the equivalent adult annual catch of one such 'average' vessel. 555 demersal vessels 

based in Scotland landed 20659 t, 26567 t, and 8029 t of whiting, cod and plaice 

respectively (Scottish Executive Publications, 2000). Not all demersal vessels fish for 

these species in equal proportions, due to factors such as geographical location or quota 

restrictions, but if it is assumed for simplicity that this was the case, then equivalent 

adult impingement at LPS in 1999 would have amounted to the tonnage of whiting 

landed by 2 - 3 theoretical average vessels, and 40% and 56% of the mass of cod and 

plaice respectively landed by a single such average vessel. Data for 2000 landings were 

unavailable for a similar comparison to be undertaken, though it would be likely that 

LPS impingement figures would be proportionally greater, due to total allowable catch 
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(TAC) of the demersal species being reduced (ICES, 200Ia) and the TAC of herring 

remaining at approximately the same level as 1999 (ICES, 2000). 

Equivalent adult tonnages of herring regarded as spring-spawned averaged just 

over 92 t per annum. This was well below historical levels of fishing catch of Firth of 

Forth spring-spawning herring (see section 4.2.2.3). Confirmation of the status of the 

herring assumed to be spring-spawned was not undertaken in the present study, but may 

be of use in the future in order to clarify this issue. Small spring-spawning stocks exist 

on the SE coast of Britain, e.g. the Wash and the ThameslBlackwater estuaries (MSC, 

2000), but whether herring from these areas would be likely to enter the Forth and 

experience impingement is uncertain. Wood (1959) describes spring-spawned herring 

being taken inshore on the NE coast of England (Blyth, Sunderland and Hartlepool) that 

may have originated from spawning grounds in the vicinity of the Berwick Bank. It 

may be possible that these herring enter the Forth, along with Firth of Forth spring

spawned herring, and produce the occasional anomalies in length-frequency 

distributions of what are predominantly late summer/autumn-spawned herring 

originating from Buchan Ness. 

4.4.2. Impingement of salmonid smolts during the 2000 downstream 

migration 

It must be borne in mind that the estimates of salmonid smolt impingement were 

subject to various potential sources of error, not least of which was the fact that they 

were generated from relatively few routine sampling sessions. Better results would be 

obtained from more intensive sampling during the expected period of downstream 
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migration of smolts. Although discrimination of Atlantic salmon and sea trout smolts 

during 1999 was uncertain, it was undoubtedly clear that far more smolts were collected 

during the 2000 downstream migration season than the previous year. Six smolts of 

indeterminate species were collected during April - May 1999, compared with 75 the 

following year. Volumetric extrapolation of the 1999 data yielded an approximate total 

of 650 smolts impinged at LPS, though with extremely wide 95% confidence intervals 

(6.6 - 64099 smolts). This figure was an order of magnitude less than the estimated 

total abundance of salmon and sea trout smolts impinged during the 2000 downstream 

migration season. How much this was due to routine sampling in 2000 coinciding with 

one particular occasion when smolts were being impinged at a great rate (i.e. 3 May, 

0330h) was uncertain. Smolt production has been shown to vary greatly between 

consecutive years, e.g. in the North Esk, where abundance was estimated at 98000 in 

1967 compared with 227000 in 1968, and a decline from 173000 in 1975 to 93000 in 

1976 (Shearer, 1992). Another contributory factor to increased catches in 2000 could 

have been that water use by LPS during the smolt downstream migratory season was 

greater in 2000 than 1999. In April- June 1999 an average of2.8 cooling water pumps 

were observed to be working during sampling sessions; the same period in 2000 saw an 

average of 3.7 pumps working. The greater water use would have resulted in greater 

impingement of fish, since water extraction rate is the best predictor of fish 

impingement rate (see sections 4.4.1. and 2.4.2.2; Henderson and Seaby, 2000). 

Impinged salmon smolt abundance at LPS in 2000 constituted approximately 0.016% of 

the total quantity of fish estimated to have been impinged in that year. This proportion 

was an order of magnitude lower than estimates of 0.16 - 0.22% for smolt impingement 

at Severn Estuary power stations (Table 4.14), as well as the PISCES v.3 software 

prediction of 2481 salmon removed from a total of 741109 fish of all species (0.34%; 
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Turnpenny, 1997). Thus estimated salmon smolt impingement at LPS was 

proportionally less than that observed at other power stations, but was an still an 

absolute order of magnitude larger due to total quantity of fish impinged at LPS being 

two orders of magnitude greater (Table 4.14). Comparison of contemporary Forth data 

with data from the Severn that is 10 - 30 years old is not ideal, for many salmon stocks 

have exhibited considerable declines in recent years (WWF, 2001). The 184 salmon 

captured by rod and line in the Severn in 1999 (Environment Agency of England and 

Wales, 2000) is an order of magnitude less than 1196 salmon fished from the Forth 

District in the same year (Anon., 2000), and may provide albeit scant evidence of 

salmon being more abundant in the Forth catchment than the Severn, assuming fishing 

effort was comparable. If a greater abundance of salmon and smolts were present in the 

Forth than the Severn, this could also have contributed to greater impingement of smolts 

estimated to have occurred at LPS. 
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Table 4.14. Comparison of LPS salmon smolt impingement estimate with data from Severn Estuary and 
Bristol Channel power stations. * data for abstraction rates and total annual impingement of all species 
from Henderson (2000). 

power station water period of total annual total salmon reference 
abstraction study fish smolt 
rate impingement impingement 
(m3s·1),1r (all sl!ecies)* 

Oldbury-on- 26.5 July 1972- 2.5 x 105 405 (annual Claridge and 
Severn June 1977 mean) Potter (I 994) 
Berkeley 26.5 September 2.5 x lOS 490 (annual Claridge and 

1974 - July mean) Potter (1994) 
1977 

Uskmouth 30.3 8 April- 12 2.9 x 105 642 Aprahamian 
May, 1989 and Jones 

(1997) 
LPS 91.0 April 16- 3.3 x 10 7 5178 this study 

June 16, 2000 

How many of the smolts impinged at LPS in 2000 would have been likely to survive to 

return to the Forth area? Estimates of survival in Atlantic salmon between smolt stage 

and return to the homewaters as grilse (i. e. salmon undergoing an upstream migration 

after one winter at sea) or older fish (2 SW or 3 SW, meaning upstream migration after 

2 or 3 winters at sea) are not available for the salmon of the Forth. The closest studied 

Scottish population was in the North Esk, where total survival from smolt-to-grilse, -2 

SW and -3 SW ranged between 14 - 53% for each cohort of smolts from 1964 - 1985 

(Shearer, 1992). If similar values were applicable to the Forth, and assuming the above 

extrapolations of total smolt abundance impinged were reasonable, then perhaps 

approximately 560 - 3570 fish that were likely to return within 3 winters at sea were 

lost from the Forth catchment due to impingement. Sea trout survival from the smolt 

stage to return as mature adults was estimated to be 30 - 40 % in the Bresle catchment 

area, Upper NormandylPicardy, France (Euzenat et al., 1999). If similar rates of 

survival were applicable to the Forth, the potential future loss of sea trout adults from 
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the Forth catchment due to power station impingement at LPS would be in the region of 

30 - 250 individuals. Such simple calculations take no account of the possible benefits 

to individuals avoiding impingement that removal of conspecifics in CW flows may 

confer. If, for example, less competition for food results from removal of a certain 

number of individuals, then remaining fish may experience enhanced prospects of 

survival. This point is elaborated in Chapter 5. 

Atlantic salmon smolts have been shown to use a nocturnal selective ebb tide transport 

pattern of migration (Moore et al., 1995). Use of the faster flowing upper sections of 

the water column, in the middle of a river or estuary, seems to be an energetically 

efficient way of reaching the sea. Thus smolts would tend to be least susceptible to 

impingement at a power station intake during a nocturnal ebb tide (Aprahamian and 

Jones, 1997), assuming that the intake is located relatively far from the middle of the 

water body. This is the case at LPS, where the intake is approximately 160m from the 

shore, in a section of estuary about 1km wide. Moore et al. (1995) observed smolts 

holding position in an area of low flow near a road bridge following passive upstream 

transportation with a flood tide, and Shearer (1992) states that smolts "rest in areas of 

low water velocity when currents are not in the direction in which they wish to travel". 

It is conceivable that smolts in the Forth Estuary seek similar areas, which are generally 

found at the margins of the water body, and increase likelihood of contact with the 

power station intake when in the vicinity ofLPS. The large number of smolts impinged 

at HW on 3 May 2000 may have been due to downstream movement on the previous 

ebb tide, followed by lateral movements to the edges of the estuary to avoid upstream 

displacement with the flow of the incoming tide. Such a migration would have brought 

the smolts into the vicinity of the LPS intake and resulted in removal in abstracted CWo 
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4.4.3. Impingement of river lamprey and eel at LPS, 1999 - 2000 

The estimates of impingement of river lamprey during 1999 - 2000 were very 

similar to the Figure of 4.68 x 104 individuals estimated to have been impinged at LPS 

in 1996 (Maitland, 1997). River lamprey differed from species such as cod and whiting, 

in that though younger individuals were impinged at LPS, the majority of the impinged 

abundance was adolescents and adults, as previously noted by Maitland et al. (1984) 

and Maitland (1997). The reason for such a trend may have been that juvenile lampreys 

undergoing a downstream migration following approximately 5 years in freshwater 

utilised the ebb currents of the estuary in a similar way to that of Atlantic salmon smolts 

discussed in section 4.4.2. Since the strongest currents would have been likely to be 

near the centre of the estuary, this would have facilitated avoidance of the LPS intake, 

which is relatively near to the shore. Impingement of river lamprey at KPS tended to 

include a much greater proportion of seaward migrating juveniles than older fish, 

believed to be caused by ~he CW intake being nearer to the centre of the water body 

than that of LPS (Figure 1.1), resulting in greater likelihood of removal of juvenile 

lamprey in abstracted CW (Maitland et al., 1984). Clupeids, gadoids, and possibly to a 

lesser extent smelt, have all been noted as prey for river lamprey (references in Hardisty 

and Potter, 1971). Enhanced abundances of the first two of these groups of prey species 

in the estuary over the late summer - early spring period (as shown by impingement at 

LPS; see Chapter 2) would have provided significant resources for adolescent lampreys 

which were in the parasitic phase of the life cycle and may have returned to the estuary 

from the sea for feeding purposes during this time (Maitland et al., 1984). Seeking prey 

in the mid-lower estuary would have caused these individuals to encounter the LPS CW 
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intake more often than if they had been resident in the Firth of Forth or North Sea. 

Several whiting and herring collected during impingement sampling at LPS were noted 

to possess scarring characteristic of lamprey attachment (personal observations). In 

combination with larger lamprey that were likely to be sexually mature adults 

undergoing upstream migration in late summer and autumn, it was clear that LPS 

impinged primarily adolescent and adult river lamprey, with minimal abundances being 

noted in March - May of both years, the time of downstream migration of juveniles 

(Maitland et al., 1984). 

River lamprey are the only species of fish that was regularly impinged at LPS that is 

listed by the International Union for Conservation of Nature and Natural Resources 

(lUCN) and possesses Lower Risk (near threatened) status (Hilton-Taylor, 2000). The 

definition of this classification is as follows (lUCN, 2000): 

VULNERABLE (VU) - A taxon is Vulnerable when it is not Critically Endangered or 

Endangered but is facing a high risk of extinction in the wild in the medium-term future. 

LOWER RISK (LR) - A taxon is Lower Risk when it has been evaluated, and does not 

satisfy the criteria for vulnerable. Taxa included in the Lower Risk category can be 

separated into three subcategories: 

1. Conservation Dependent (cd). Taxa which are the focus of a continuing taxon

specific or habitat-specific conservation programme targeted towards the taxon 

in question, the cessation of which would result in the taxon qualifying for one 

of the threatened categories above within a period of five years. 
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2. Near Threatened (nt). Taxa which do not qualify for Conservation Dependent, 

but which are close to qualifying for Vulnerable. 

3. Least Concern (Ic). Taxa which do not qualify for Conservation Dependent or 

Near Threatened. 

Maitland (1997) noted that river lamprey are contained in the European Community 

(now European Union) Habitat and Species Directive, and that member states thus have 

a duty to protect and conserve this species. The prospects of reduction in quantities of 

river lamprey impinged at LPS are discussed in Chapter 5. Agassiz trawl data from the 

study detailed in Chapter 3 showed river lamprey to be caught during trawling rather 

infrequently (Figure 4.7), with no significant trends in abundance. 
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Figure 4.7. Abundance of river lamprey captured in Agassiz trawls oflower Forth Estuary (see Chapter 3 
for details). 

Thus, as noted by Maitland (1997), uncertainty exists over determining whether or not 

the environmental impact of LPS on lamprey populations is significant, at least in the 

sense of the population being able to sustain itself without risk of extinction. Under the 

most conservative of definitions of adverse environmental impact, that of any 
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impingement occurring, it is clear that LPS has impinged river lamprey throughout its 

years of operation. Decline of river lamprey in other river and estuary systems that may 

be impacted with additional anthropogenic sources of mortality are likely to have 

resulted in designation of the LR (nt) status above. River lamprey in the mid-Severn 

Estuary, for example, have declined to approximately half of their 1970s level, possibly 

due to impediments to adult upstream migration and unfavourable alterations in silt 

habitats of the larval stages (Potter et al., 2001). In terms of the population of river 

lamprey from the Forth it is unclear if power station impingement creates an 

unacceptable risk to the population's ability to sustain itself. River lamprey 

impingement at KPS between December 1961 and November 1962 amounted to approx 

5700 individuals (Sharman, 1969). This was an order of magnitude less than the mean 

annual quantities impinged at LPS in 1999 - 2000 (this study) and 1996 (Maitland, 

1997), and presumably was composed of mostly juveniles migrating downstream, 

assuming a similar pattern to the study of lamprey impingement at KPS by Maitland et 

al. (1984). The 1961 - 1962 study was undertaken while KPS was abstracting just 

under 15 m3s·1 of CW (a power output of 360 MW), and additional screening was in 

place at the intake that were designed primarily to reduce removal of smolts (Sharman, 

1969). The impingement of juvenile lamprey likely to have been during downstream 

migration in the present study was in the order of 4900 and 1375 individuals in 1999 

and 2000 respectively. This presents a complex situation when attempting to infer 

changes that may have taken place in the population between the 1960s and the present 

study. While the impingement of downstream juvenile migrants in the present study at 

LPS was of the same order as the total suggested from KPS data in the 1960s, the 

present study consisted of samples from far greater quantities of CW than KPS. The 

observation that juveniles tend to be impinged at LPS in relatively low proportions 
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compared to upstream migrating adults or adolescents (Maitland et al., 1984; this 

study), whereas the opposite was true at KPS, could mean that, per unit volume of water 

in the estuary, little has changed with regard to abundance of river lamprey. It seems 

that the river lamprey population in the Forth catchment area initially experienced loss 

of primarily juvenile lamprey with the commencement of generation at KPS, which was 

then augmented to include loss of adolescents and adults when LPS came online, and, 

with decommissioning of KPS, changed to a situation where primarily older juveniles 

and adults are removed from the population, whilst downstream migrant juveniles still 

experience mortality to a similar or slightly less extent than when KPS was in its 

infancy. Chapter 5 discusses more fully implications of long-term power station 

operation on fish populations in theoretical terms. 

A definite decline in eel abundance in the Forth over the past 40 years seems to 

be a more straightforward conclusion to reach in comparison to the uncertainty over 

lamprey population abundance discussed above. An estimated 11000 eels were 

impinged at KPS during the same 1961 - 1962 study mentioned above (Sharman, 

1969). This was an order of magnitude greater than levels estimated from data of the 

present study, despite the fact that total water volume abstracted by LPS annually in 

1999 - 2000 was approx 4.5 - 6 x the amount of the KPS study. Maitland (1997) 

estimated 4392 silver eel to have been impinged at LPS in 1996, a total abundance 2 - 3 

x that of the present study, despite the fact that total quantity of electricity generated, 

and hence CW abstracted, in 1996 was somewhat less than the annual values for the 

present study (see Figure 5.2). The Agassiz trawl dataset from 1982 - 2000 was of no 

use in assessing trends in abundance of the species, for only four individuals were 

captured throughout the 19 years of the study (Table 3.1). The decline in eel 
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populations in the Forth, as inferred above from declines in capture by power stations, 

appears to be a Europe-wide phenomenon. This is suggested by the fact that, for the 

period 1980 - 1999, elver and glass eel recruitment observed downward trends in 13 of 

14 European river systems, yellow eels declined in 6 of 10 studied areas, and silver eel 

decreased in all five river areas examined (Elf AC, 1999). The systems not observing a 

downward trend in abundance showed no apparent trend in recruitment over the time 

series. Impingement data from Severn Estuary power stations suggested no significant 

change in abundance of eel between the mid-1970s and the late 1990s in the mid

estuary at Oldbury (Potter et al., 2001), while Henderson and Seaby (2001) noted a 

decline at the outer estuarine Hinkley Point site between 1981 and 2001. Reasons for 

this almost universal decrease in eel abundance are uncertain, with possibilities 

including overfishing of elvers and habitat destruction (Henderson and Seaby, 2001), as 

well as the introduction of Anguillicola crassus, a swimbladder parasite that was 

introduced into Europe from Asia in the 1970s (Evans and Matthews, 1999). 

Henderson and Seaby (2001) noted that the decline in eel populations was not likely to 

be attributable to power station operation, but that impingement may come under 

greater scrutiny were conservation measures to be introduced in the future. Eighteen 

British and continental European power stations in the NE Atlantic were estimated to 

have removed approximately 2.4 x lOs yellow and silver eels per annum from 1980 -

1990 (Henderson, 2000); the mean of this figure is just over 1.3 x 104
, indicating that 

the value obtained for LPS in the present study seems reasonable and may indicate 

further decline over the past decade. 
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4.5. Conclusions 

The monetary value of commercially important species above MCLS lost directly 

to impingement at LPS in January 1999 - December 2000 was very low, and primarily 

attributable to impingement of sprat, a species for which no restrictions on landing size 

exist. Wet masses of whiting, cod, plaice, and herring that could have existed as adults 

were they not impinged as juveniles were much greater, though still relatively minor in 

the context of landings by fishing vessels in the North Sea. Similar trends have been 

observed at other power stations, and the comparison of incidental power station loss to 

directed fisheries generally suggests low values of loss due to impingement. Chapter 5 

will discuss the potential limitations of reliance on the EA V method in assessing 

environmental impacts of LPS on the fish populations in the Forth Estuary. LPS was, 

based on the results of the present study, the largest single source of removal of 

commercially important species amongst British coastal and estuarine power stations at 

which impingement research has been undertaken. This was not wholly unexpected, 

bearing in mind that the station is the largest estuarine or marine generating plant in the 

UK. Estimates of impinged abundance of threatened river lamprey and declining eel, 

and recreationally and socio-politically important salmonid smolts showed that LPS 

could be regarded as displaying an adverse environmental impact, based simply on a 

conservative definition whereby any impingement would be regarded as detrimental to 

these populations. The difficulty in assessing whether or not LPS has an impact in 

terms of affecting the populations' abilities to sustain themselves was clear. The final 

Chapter of the present study will discuss general points regarding this difficulty. 
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Chapter 5. General Discussion 

5.1. To what extent might LPS impact upon the fish populations of the 
Forth Estuary? 

5.1.1. Introduction 

LPS is the largest British manne or estuarine generating station and not 

surprisingly it seems likely that it has the greatest fish impingement mortality among 

UK power stations (Figure 2.4). Of paramount importance in the present study however 

is an attempt to discuss to what extent population-level effects on the ichthyofauna of 

the Forth Estuary may be occurring as a result of the impingement of numerous 

individuals. 

Controversy exists over the impact of CW extraction on fish populations. The 

Electric Power Research Institute (EPRI) of the USA stated, in comments on the 

proposed US EPA CW legislation (US Federal Register, 2000): 

"EPRI and some of the best fishery scientists in the world have never identified a site 

where definitive or conclusive aquatic population or community level impacts have 

occurred from operation of CWIS [cooling water intake structures], ... " (EPRI, 2000, 

p.2). 

A similar view was given by Dey et at. (2000, p. S 17): 

"To the authors' direct experience and knowledge, there have been no demonstrated 

adverse impacts on populations or the balanced indigenous community by CWS 
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[cooling water systems] operation, suggesting that entrainment/impingement losses are 

typically small in relation to the compensatory capacity of the involved populations". 

The "compensatory capacity" referred to in the above quotation is the various means by 

which populations avoid extinction despite natural mortality being supplemented by 

additional agents of mortality such as fishing or power station impingement. Thus 

Boreman (2000) implies that the proportional reduction in abundance of juveniles from 

a particular cohort due to power station mortality is greater than the proportional 

decrease in abundance of adults originating from that year class. Compensatory 

mechanisms, also known as direct density-dependent mechanisms, limit population 

growth at high abundance or increase numerical growth at low abundance. Rose and 

Cowan (2000) suggest slower growth, lower survival and increased emigration as 

examples of the former, with more rapid growth, better survival and increased 

immigration as agents of increased population growth rates. Attempts to quantify 

compensatory responses of fish populations to anthropogenic mortality have often relied 

on stock-recruitment models, exemplified by the classic Ricker (1954) curve (Figure 

5.1). The "surplus" of recruits that theoretically exists in such a relationship means that 

the stock can be thinned from equilibrium level (where number of recruits matches 

abundance of stock, i. e. parent:progeny ratio is 1: 1) to a lower level, and this may 

actually increase the abundance of recruits that exist (Figure 5.1). 
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abundance of stock 

Figure 5.1. Ricker (1954) curve of theoretical relationship between stock size and number of recruits into 
the stock. Equilibrium size of the stock is where number of parents = number of recruits (denoted bye). 
After Boreman (2000). 

The EA V approach used in Chapter 4 does not take into account the possible 

compensatory mechanisms that may be operating in the fish populations analysed. The 

method is density-independent, i. e. no allowance is made for compensation that may 

occur through reduction in resource constraints with thinning of the population 

(Tumpenny and Taylor, in press). Instead, just a single value of loss is generated. The 

EA V method has a further disadvantage: no account is taken of the contribution the 

impinged animals may have made to the ecosystem had they died from natural causes 

and remained within the water body. Thus although only approx. one in 400 35-day old 

whiting might be expected to survive to maturity at age 2 based on EA V calculations 

(Tumpenny, 1989), 399 fish would become food for predators, scavengers or 

decomposers. Boreman (2000) highlights the fact that removal of 'surplus' by power 

plant operation will result in another component of the food web being out-competed 

for that resource, and that the term 'surplus' is rather a misnomer since there will be no 

wastage of the 'extra' recruits entering the system. The removal offish from the system 

due to power station mortality is thus likely to have a general impact on the ecosystem, 
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not just individual fish populations. This is a topic of great interest requiring further 

study in the context of ecosystem level impacts (see section 5.4.5). 

5.1.2. Use of short term data 

The populations of each fish species in the Forth are reduced in abundance by 

differing proportions due to the abstraction of CW at LPS. Had estimates of benthic 

and demersal species' absolute abundances been calculated solely by extrapolation of 

Agassiz trawl data obtained in 1999 - 2000, > 100% of fish assessed to have been 

present in the estuary would have been estimated to have been impinged at LPS in 

several cases (Table 5.1). These simple calculations are based on the assumption of fish 

being distributed uniformly between two arbitrary points within the estuary when, as 

discussed in section 3.4.3, there is likely to be tidally facilitated movement between the 

estuary and inshore areas of the Firth of Forth. Assessment of short term absolute 

abundance can therefore be seen to be prone to substantial uncertainty, and so an 

assessment of long-term relative abundance was undertaken. 
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Table 5.1. Estimated total abundance of benthic and demersal fish in the Forth Estuary (extrapolated 
values based on mean area of 5316 ha between the Forth Bridges and Dunmore; see Figure 1.1) and 
percentage of these values estimated to be lost to power station impingement. Trawl abundances shown 
are arithmetic annual mean of monthly summation of 6 trawls ± 95% CI, impingement abundances as in 
Table 2.4). Trawl efficiency of33% assumed. 

mean annual trawl- total estimated LPS impingement as % 
calculated abundance iml!in~ement at LPS of trawl abundance 
1999 2000 1999 2000 1999 2000 

whiting 1.84 ± 2.05 2.14 ± 1.37 1.21 x 106 2.22 x 106 658% 1037% 
x 105 x 105 (7.92 x 105 (1.41 - 3.54 

- 2.02 x x 106
) 

106
) 

cod 2.18 ± 3.40 7.23 ± 8.56 1.05 x 105 2.62 x 105 48.2% 36.2% 
x 105 x 105 (6.48 X 104 (1.80 - 4.37 

- 2.13 x x 105) 
105) 

plaice 3.13±2.18 9.40 ± 9.16 3.08 x 105 1.19 x 106 98.4% 126.6% 
x 105 x 105 (1.93 - 5.69 (7.04 x 105_ 

x 105
) 2.20 X 106

) 

flounder 2.95 ± 3.30 3.43 ± 2.52 2.73 x 105 1.74 x 106 92.5% 507% 
x 105 x 105 (1.99 - 5.29 (1.23 - 2.56 

x 105) x 106
) 

pogge 3.61 ± 4.70 4.09 ± 4.08 5.36 x 104 1.02 x 105 14.8% 24.9% 
x 105 x 105 (1.61 X 104 (4.40 X 104 

- 2.45 x - 2.96x 105) 
105) 

fatherlasher 6.64 ± 6.98 3.17 ± 1.46 2.22 x 102 7.15 x 102 0.33% 0.23% 
x 104 x 105 (2 - 2.91 x (5 - 1.09 x 

104) 105) 

gobies 1.11 ± 2.05 5.53 ± 5.37 4.88 x 105 1.02 x 106 4396% 1844% 
x 104 x 104 (2.83 x 105_ (5.47 x 105 

1.02 x 106
) - 3.07 x 

1.70 x 105 ± 
106

) 

eclpout 1.03 x 105 ± 4.81 x 102 1.14 x 103 0.47% 0.67% 
8.19 x 104 7.13 X 104 (3 -7.99 x (24 - 1.01 x 

104
) 105

) 

sea snail 3.69 ± 4.58 6.27 x 104 ± 4.52 x 104 2.88 x 104 81.6% 45.9% 
x 104 1.01 x 105 (2.11 x 104 (6.72 x 103 

- 1.42 x - 1.42 x 
105) 105) 

5.1.3 Use of long term data 

The long term relative abundance study assumed that the Agassiz trawling 

method did not change significantly from year to year, and that the efficiency of the 

gear for catching each species was constant. Thus for species x the assumption was that 

a constant y % of the individuals encountering the trawl would be captured. 
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How can the long-term Agassiz trawl data set discussed in Chapter 3 be used to 

evaluate potential impacts of LPS on the fish populations of the Forth? Dey et al. 

(2000) suggest that operating power plants would be deemed to have had no adverse 

impact on fish populations if there are no long-term declines in fish abundance. The 

mid-lower Forth Estuary dataset suggested that declines had occurred in two out often 

assessed species (Chapter 3), but that there was no long-term trend in abundance of the 

remaining eight species. The decline in eelpout abundance seems likely to have been 

caused by warming of the climate initiating a northward shift in the species' 

distribution, while there is no clear reason for decreases in whiting abundance (section 

3.4.2). Assuming that the trawl data accurately reflect relative abundance, the 

populations of cod, plaice, sole, gobies, flounder, sea snail, pogge, fatherlasher in the 

Forth Estuary appear to have remained stable from 1982 - 2000 (Figure 3.4). This lack 

of decline could be taken as indicating no impact of CW abstraction on the fish 

populations in the Forth. But, as previously noted, LPS commenced operations ten 

years before the Agassiz dataset used in Chapter 3 began, and can be seen to have been 

extracting substantial quantities of CW throughout its operational existence (with the 

exception of the 1984 - 85, the year of the UK coal miners' strike) (Figure 5.2), 

assuming that the total quantity of electricity generated may be taken as a reasonable 

proxy for the quantity of CW abstracted. 
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Figure 5.2. Electricity generation by LPS, April 1972 - March 2001. Totals are shown for financial 
years (April - March). Data from D. Robertson, ScottishPower pIc. (personal communication). 

Thus the Agassiz trawl dataset is of fish populations that had already experienced a 

decade of impingement mortality prior to commencement of the 19-year time series. It 

is impossible to know what equilibrium densities prior to LPS operation may have been 

without field data having been collected in the same way. The issue is complicated by 

the Forth Estuary having undergone various other changes, including closure of KPS, 

substantially decreased effluent inputs, and possible climatic change. The potential 

effects of LPS on the fish populations of the Forth Estuary may be examined 

theoretically using a simple model of the interaction of density-dependent (DD) and 

density-independent CDI) mortality given by Sinclair (1989) (Figure 5.3). 
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m3 = strong DD m2 = weakDD 

p ~----------~~------------~~--

Pl~------~----~~~----------~--

% 

density 

Figure 5.3. Model of interaction of density-dependent (DD) and density-independent (DJ) processes. % 
represents the percentage of population size that is represented by production (P) and loss due to DI 
mortality (m.) and DD mortality (m2 and m3). Equilibrium population densities are K) - K4. After 
Sinclair (1989). 

The model assumes that production (P, the input of births and immigration to the 

population) is held constant at all population densities. A DI mortality, mI, would 

produce a uniform proportional decrease in population size across all densities of 

population, resulting in a new level of production, Pl. Mortality induced by a power 

station is of this type, for it is insensitive to population densities (Boreman, 2000). The 

resultant change in equilibrium density as a result of the DI mortality depends very 

much on the strength of any DD mortality operating on the population. With relatively 

weak DD mortality (m2), there is a relatively large change in equilibrium density from 

Kl to K2. The interaction of a relatively strong DD mortality, m3, with DI mortality ml 

gives a proportionally smaller decrease in equilibrium density from K3 to K4. Though 

very much a simplification, the Sinclair (1989) model produces an important 

conclusion: equilibrium densities are determined by both DD and DI factors. It may be 

that fish populations in the mid-lower Forth Estuary, having experienced DI mortality 
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through power station impingement for almost 30 years, may be at equilibrium sizes 

below those that would be predicted were mortalities caused by CW impingement not 

occurring. This would be dependent on the extent to which DD factors operate to 

regulate the abundance of Forth fish populations. 

The much-studied ichthyofauna of the Severn Estuary and Bristol Channel may 

offer the first indication of impacts on fish populations caused by direct-cooled power 

stations. The region appears to have become a more favourable environment for fish in 

recent years, with total abundance increasing by 3 - 4 x (Henderson and Seaby, 2001; 

Potter et aI., 2001). The latter authors attributed the increase in abundance to improved 

reproductive success caused by lessening of sublethal effects due to reductions in toxic 

metal emissions. Metal refining in the Severn had previously led to the estuary 

possessing concentrations of the trace metals cadmium, copper, lead, zinc and nickel 

several times higher than in the Forth (Balls et aI., 1997). Increasing temperatures were 

assumed to be responsible for increased species richness due to greater prevalence of 

warmer water species (Henderson and Seaby, 2001). An additional improvement in the 

Severn environment may be the reduction in CW abstraction through closure of several 

power stations. Seven direct-cooled power stations are or were operational in this area, 

including the world's first full-scale commercial nuclear power station at Berkeley 

(opened in 1962; Langford, 1983). Of potential significance to the Severn ecosystem 

are closures of four of these power stations since 1989 (Table 5.2). The total estimated 

annual impingement of fish > 3 em SL from the region is likely to have been 

approximately halved to 3.44 x 106 individuals (Henderson and Seaby, 2001). 
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Table 5.2. Direct-cooled power stations on the Bristol Channel/Severn Estuary. Data from Henderson 
and Seaby (2001). 

operational status annual impingement current annual 
mortality (fish> 3cm impingement mortality 
SL) pre-1989 (fish> 3 cm SL) 

Hinkley Point A closed (2000) 1.3 x 106 

Hinkley Point B working 9.9 x 103 9.9 x 103 

Oldbury working 2.5 x 103 2.5 x 103 

Berkeley closed (1989) 2.5 x 103 

Uskmouth closed (1995) 2.9 x 103 

AberthawB working 2.2 x 106 2.2 x 106 

Pembroke closed (1997) l.6 x 106 

total 6.9 x 106 3.4 x 106 

Preliminary evidence of increased abundance in fish and other taxa that may partially be 

due to power station closures exists for several species, though results must be treated 

with caution until statistical analyses can be undertaken; to this end a sufficiently long 

period of time from the closure of Hinkley Point A in 2000 is required, i.e. in 2002 -

2003. Changes in climate and the water quality of the estuary may also have influenced 

conditions, though the latter was probably already contributing to increasing fish 

abundances in the 1970s (Potter et al., 2001). Long term monitoring of fish 

impingement at Hinkley Point B station, lac. cit., has shown increases in common 

shrimp, common prawn (Palaemon serratus), sprat, whiting, flounder and sand goby 

abundances since the initiation of power station closures (Henderson and Seaby, 2001). 

In most cases the populations exhibited great stability in number over the first decade of 

monitoring, from 1981 - 1990; the extreme example is of common prawn, with stable 

abundances until 1998, following which an almost exponential increase has occurred 

(Henderson and Seaby, 2001). The authors suggest that a decrease in total fish 

impingement of > 3 x 106 individuals per annum would provide detectable abundance 

changes in a total population numbering 108 
- 109 individuals, providing sufficient 

sampling is undertaken. In conclusion, Henderson and Seaby (2001, p.11) state: 
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" ... the SEDS [Severn Estuary Data Set] will offer over the coming 2 years the best 

opportunity available in the world to test for the impact of direct-cooled power 

stations. " 

The implications of this future research for the situation observed at LPS may be 

significant. Both the Severn and the Forth estuaries have undergone improvements in 

water quality, and both are experiencing increasing water temperatures. Some species 

are decreasing in abundance at each location as a result of the latter phenomenon (sea 

snail in the Severn, eelpout in the Forth), whether as a result of movement offshore or 

increased mortality. The overall trend in species abundance differs, however: a 

substantial increase in numbers has occurred· in the Severn, whereas a significant 

decrease has occurred in the Forth. Part of the increase in abundance in the Severn is 

attributable to increases in abundance of sprat and herring; these pelagic species were 

not included in the long-term analysis of Forth Agassiz trawl data. Pelagic species 

cannot be said to account for all of the increase in abundance, for major increases in 

whiting have also occurred in the Severn. This has not occurred in the Forth, with a 

significant decrease being noted (Chapter 3). Changes in climate would, if anything, 

have tended to decrease whiting abundance more in the Severn than the Forth since the 

latitude of the Severn is nearer to the southern limit of the species' range (see Table 

3.7). The increases in abundance of sand goby and flounder at Hinkley Point in the 

1990s (though not at Oldbury in the mid-lower Severn estuary in the case of flounder; 

Potter et al., 2001) were not exhibited by these species in the Forth (lack of any trend 

over 19 years of Agassiz trawling was noted in Chapter 3). These observations may 

indicate that operation of LPS, generally stable since 1984 (Figure 5.2), may indeed be 
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significantly limiting fish abundance in the Forth Estuary. If the seven power stations 

operating throughout the 1980s contributed to lower equilibrium densities of fish 

species in the Severn region through impingement of approximately 6.9 x 106 fish 

annually, it could reasonably be argued that the possibility of LPS exhibiting a similar 

effect in the Forth is considerable. This is for two reasons. First, annual impingement 

of fish at LPS is perhaps three times greater than total impingement of fish was 

estimated to be at the seven Severn stations (Table 5.3). Second, the Forth Estuary is 

between 6 - 7 x smaller in size than the Severn (Table 5.3). Intuitively one would 

assume that the total abundance offish within the Forth estuary would be proportionally 

smaller. Thus a greater magnitude of impingement loss in a smaller estuary would be 

expected to produce significant reductions in the ichthyofaunal equilibrium densities of 

the Forth, should such a case be proven in the Severn. 

Table 5.3. Comparison of size and fish impingement by direct-cooled power stations in the Forth and 
Severn estuaries. Severn impingement data refer to total impingement estimated to have occurred prior to 
initiation of power station closures (see text). Area data from Buck (1993) (Forth) and Davidson et al. 
(1991) (Severn); impingement data from this study (Forth) and Henderson and Scaby (2001) (Severn). 

total area (ha) 

Forth Estuary 8401 
Severn Estuary 55700 
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5.2. Potential for mitigation of impingement losses 

5.2.1. Applying the precautionary principle to mitigation of fish 
impingement at LPS 

It may thus be prudent to consider a precautionary approach to mitigation of 

impingement losses at LPS. The 'Precautionary Principle' is open to a variety of 

interpretations (see O'Riordan and Cameron, 1994), but a reasonably concise and 

relevant definition is given in the proposed changes to the US Magnuson-Stevens 

Fishery Conservation and Management Act, known as the Fisheries Recovery Act 

(MFCN,2001): 

"The term "precautionary approach" means -

(A) exercising additional caution in favor of conservation in any case in which 

information is absent, uncertain, unreliable, or inadequate as to the effects of any 

existing or proposed action on fish, essential fish habitat, other marine species, and the 

marine ecosystem in which the fishery occurs". 

Obviously this statement is contained in legislation proposed in relation to conservation 

of fisheries, but the elements are relevant in the case of LPS, since it remains uncertain 

to what extent CW abstraction in the Forth impacts the ichthyofauna at a population 

level. Given the extent of impingement losses in purely numerical terms, a reasonable 

precautionary approach would err on the side of investigating mitigation of 

impingement that would not entail excessive cost. Strict application of the 

precautionary principle at LPS would involve cessation of generation, obviously an 

inviable option entailing considerable economic and societal costs (Figure 5.4). 
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Henderson and Seaby (2000) argue that best available technology (BAT) to reduce 

impingement of fish is installation of closed cycle cooling, but this is the most costly 

mitigation option (Figure 5.4). Section 5.2 outlines potential methods to mitigate fish 

removal in CW abstracted at LPS. 
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Figure 5.4. Theoretical representation of costs of ameliorating environmental impact through differing 
levels of application of the precautionary principle. PP = precautionary principle, BAT = best available 
technology (to ameliorate effects of impact), CL = critical load, BA TNEEC = best available technology 
not entailing excessive cost. After Pearce (1994). 
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5.2.2. Determination of expenditure on mitigation techniques 

Determination of an appropriate level of expenditure on technologies to mitigate 

fish impingement mortalities is not a simple procedure. Bailey et al. (2000) formulated 

a framework based upon balancing of costs and benefits to the environment and 

fisheries. They suggested that "The maximum value of an intake technology is the 

value of the loss [offish and/or other species]. The value [of the technology] can never 

be more than the initial loss even if the technology cost virtually nothing and was 100% 

effective". If applied to the situation observed at LPS, two obvious problems arise: 

should the value of a 'loss' be calculated as the actual loss of commercial species that 

are above MCLS (section 4.3.1.) or as the potential loss of equivalent adults through 

actual loss of juveniles (section 4.3.2.), since mostly juveniles are impinged? Based on 

mean figures for 1999 - 2000, this would represent an expenditure of £ 1,644 in the 

former case, compared with £247,000 in the latter. Also, how to evaluate the loss of 

species that are not commercially important and so cannot be evaluated in monetary 

terms? 

In an effort to overcome these difficulties, the State of Maryland, USA, 

promulgated environmental laws in 1975 in the Code of Maryland Regulations 

(COMAR) that introduced a simple cost-benefit analysis to assess the monetary level of 

mitigation required to be installed if impingement occurred due to cooling water intake 

structures. Each fish impinged was assigned a length-based dollar value (Table 5.4), the 

sum of which then had to be multiplied by a weighting factor depending on whether, for 

example, they were classified as commercial species (weighting of 1.0) or forage 

species (weighting of 0.75). 
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Table 5.4. Examples of dollar values assigned to fish species to estimate monetary value of species lost 
to impingement at power stations. Forage fish defined as "All fishes that are not listed elsewhere in this 
table and that are used as food by predatory fishes". Excerpted from section 08.02.09.01 ofthe Code of 
Maryland Regulations (W.A. Richkus, Versar Inc., personal communication). 

(a) Saltwater (Ocean) Food and Sport Fishes 

Species Under 4" 4" - 6" 6" - 8" 

Cod Gadus .10 .20 
Sp. 
Herring, .01 .05 
Sea Clupea 
Sp. 
(b) Bait and forage fishes 

Forage fish: includes minnows, 
shiners, daces, chubs, 
silvcrsidcs, anchovies, blcnnics, 
sculpins, gobies. 

.30 

.09 

Under 4 inches 

$1 per thousand 

8" - 10" 10" - 12" Price per 
Pound over 
12" 

.40 .50 .50 

.12 .15 .20 

Under 4 inches 

$2 per thousand 

The regulation contained in COMAR 26.0S.03.05.D(1) required that, based on the 

dollar value of fish lost to impingement, plant operators should install and implement 

mitigation technologies not exceeding the total value of organisms lost in a five year 

period, or five times the value of organisms lost in a single year. The Maryland 

regulations thus enabled monetary valuations of all species to be obtained. The 

regulations exist in the same format to the present day, as evaluations were carried out 

in the 1970s and early 1980s and so updating of the dollar values to account for factors 

such as inflation was unnecessary (W.A. Richkus, Versar Inc., personal 

communication). Were one to apply the values listed in Table 5.4 to cod, herring, and 

gobies impinged at LPS in 1999 - 2000, the total 1975 dollar value in the 2 year period 

would amount to approximately $388,595, suggesting a mitigation expenditure of just 

over $970,000. This crude analysis obviously ignores all other species impinged at 

LPS, for most of the species listed are not found in the eastern Atlantic, and the 

determination of worth would be likely to differ considerably if attempted for British 
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species. Nevertheless, the analysis illustrates the extent to which the Maryland 

authorities regarded protection of Chesapeake Bay aquatic resources to be an important 

environmental issue. 

5.2.3. Techniques for mitigation of fish impingement mortality 

A variety of options of differing feasibilities exists to mitigate fish mortality 

caused by impingement at direct-cooled power stations (Table 5.5). These techniques 

are site-specific and cannot universally be applied to all power stations. Any mitigating 

device located in a water body is susceptible to biofouling and damage by large debris. 

The nature of some mitigation techniques makes them inapplicable to cooling water 

intake systems of existing facilities. A fish return system was incorporated in the design 

of the Sizewell B nuclear power station, for example, while the existing Sizewell A 

station could not have such a device successfully retrofitted (Turnpenny and Taylor, in 

press). 
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Table 5.5. Summary of selected fish impingement mortality mitigation techniques. 

Method of mitigation 
Fish collection and return 
systems 

Fish diversion systems, e.g. 
angled screens with pumped 
return to water body 

Physical barriers, e.g. barrier 
nets 

Behavioural barriers, e.g. light 
or acoustic 

Closed cycle cooling (cooling 
towers) 

Stock enhancement 

Plant outageslflow reductions 

Reduction in intake velocity of 
CW 

Main advantages 
Return fish to water body 
following impingement 

Reduction in likelihood of 
impingement; return of fish to 
the water body 

Likelihood of fish entering 
immediate vicinity of CWIS is 
reduced 
Fish are deterred from entering 
the region of CW abstraction 

Possibly the best means to 
reduce losses of organisms 
through impingement and 
entrainment (Henderson and 
Seaby, 2000) 

Augments abundance of stocked 
species (McLaren et al., 1988) 

Can be synchronised with times 
of peak abundance, e.g. of 
juvenile stages (Englert et aI., 
1988) 
Increases likelihood of escape 
from intake current 

Main disadvantages 
Difficult to retrofit to existing 
facilities; differential survival of 
species (Turnpenny and Taylor, 
in press) 
High cost; differential survival 
of species following return to 
water body (Taft, 2000); 
susceptibility to blockage by 
debris (Langford, 1983) 
Unsuitable for areas of 
considerable tidal flows and 
high debris loading 
Interspecific differences in 
response, some actually being 
attracted to intake (Taft, 2000) 
High cost of construction and 
maintenance (Bergen, 1988); 
increased emissions of 
greenhouse gases (Veil, 2000); 
size of structure (area 
occupicd/visual pollution) 
(Barnthouse et aI., 1988b) 
Not feasible for all species due 
to inability to rear in captivity; 
disruption of genetic 
composition of wild stocks 
Reduction of generation 
potential; periods ofpcak 
abundance differ between 
species 
Only relevant to species with 
recognised sustainable 
swimming capabilitics, less 
effective in turbid waters 
(Turnpenny, 1988a); high cost 
and difficulty in redesigning 
existing intakes (Langford, 
1983) 

Whilst widening of the LPS intake to reduce intake velocity is likely to be 

unfeasible both from economic and engineering standpoints, the significance of intake 

velocity is still of relevance. Average intake velocity at the surface of the coarse 

screens was calculated as being 57.7 cms· l with 4 CW pumps operational (section 2.2.1) 

and 43.3 cms· l with 3 pumps working. Ability of fish to escape from water intakes is 

dependent, amongst other factors, on the approach velocity of the intake (i.e. velocity of 
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the water entering the intake), the size and species of the fish, and the temperature of the 

water. The critical escape length was modelled by Turnpenny (1988a) as: 

Lcrit = [(V/(a = ~.T)]l/o.6 

where Lcrit = critical escape length, Va = approach velocity, a & ~ are species

specific constants, T = temperature (OC). The critical escape lengths of four commonly 

impinged species at LPS were calculated based on the intake velocity dependent on 

whether three or four CW pumps were operational and mean water temperature 

recorded each month at LPS, assuming three conditions of intake debris blockage that 

would have influenced intake velocity to differing degrees: 100% clear intake surface 

area, 25% blocked (i.e. a 25% decrease in surface area, with corresponding increase in 

intake velocity) and 50% blocked. The rationale for the blockage percentages was 

based on personal observations of the coarse screens. For each month of sampling at 

LPS between January 1999 and December 2000 (excluding July 2000, as no sampling 

took place, see above), the proportion of fish impinged that were below theoretical 

critical escape lengths was calculated. 

For all species it was noted that the percentage offish below Lcrit at LPS increased in the 

colder months of the year, as expected with the corresponding decrease in water 

temperature (Figure 5.5). When the intake surface area was halved, i.e. at 50% 

blockage, only a small percentage « 0.5%) of herring were above Lcrit and so capable of 

escaping the intake flow (Figure 5.5b), whereas the size classes of all other three species 

impinged at LPS were below the Lcrit required to escape no matter the water temperature 

(Figure 5.5a,c,d). 
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Figure 5.5. Proportion of fish below critical escape length, LPS, January 1999 - December 2000: (a) 
sprat; (b) herring; (c) whiting; (d) plaice. 100% clear = 57.7 or 43.3 cms· l 

(--); 25% blocked = 76.1 or 
57.7 cms· l 

(- -); 50% blocked = 115.0 or 86.6 cms· l 
(- - -). 
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(c) whiting 
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Figure 5.5. cont. 

This simple analysis suggested that blockage of the LPS intake screens could 

theoretically be of some considerable importance in determining the proportion of fish 

removed in the CW flow, and that some potential exists for reducing losses by increased 

frequency of coarse screen debris removal. This would be likely to be less effective 

during the colder months when even a 100% clear intake would possess water velocities 
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greater than the reduced fish swimming ability could overcome. It should be noted, 

however, that swimming ability alone may not suffice to aid escape from a CW intake, 

as fish must be able to see the intake in order to orientate away from it and facilitate 

escape (Turnpenny, 1988a). In turbid waters such as those of the lower Forth Estuary 

this ability may be reduced and so removal in the CW flow could occur irrespective of 

magnitude of water velocity in relation to swimming ability. 

Acoustic fish deterrent systems (AFDS) have been tested at various locations in Europe, 

and are advantageous in that fish are discouraged from approaching the immediate 

vicinity of CW intakes (Table 5.6). The systems have been successfully retrofitted at 

Hartlepool (Turnpenny et al., 1995) and Doel Nuclear Power Stations (Maes et al., 

1999b). AFDS have been shown to significantly reduce likelihood of impingement of 

the majority of the most abundant species estimated to have been impinged at LPS in 

the present study (Table 5.6). 

Table 5.6. Percentage reductions in impingement offish species at Hartlepool and Docl Nuclear Power 
Stations attributable to installation of acoustic fish deterrent systems. Data from Tumpenny et al. (1995) 
and Maes et al. (l999b). 

species Hartlepool Doel 
sprat 60.1% 88% 
herring 79.6% 95% 
whiting 53.5% infrequent 
gobies infrequent 34% 
smelt infrequent 64% 
all species combined 55.9% 51% 

Species with swimbladders tended to exhibit greatest reduction in impingement, while 

species such as flatfish with reduced or absent swimbladders did not generally show 

significant decreases in abundance. Such species are often able to survive 

impingement, so that installation of AFDS in combination with a fish return system may 
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diminish the differential protection offered by AFDS. This technique has been 

implemented at the recently opened Shoreham-on-Sea Combined Cycle Gas Turbine 

station. As mentioned above, difficulties exist in retrofitting return systems, so this may 

not be a viable option at LPS, but to what extent might installation of a successfully 

functioning AFDS reduce the extent of fish impingement at LPS? Assuming the values 

for the Hartlepool and Doel stations (Table 5.6), the total abundance offish impinged at 

LPS could be decreased from the 1999 - 2000 mean of2.19 x 107 fish to 9.66 x 106
_ 

1.07 x 107 per annum. The reduction in mass of sprat, herring and whiting impinged at 

Hartlepool with the AFDS operational was 69% (Turnpenny et al., 1995). Such a 

decrease at LPS in 1999 - 2000 would have potentially reduced the mass of these three 

most commonly impinged species from 182.1 t to 56.5 t. Similar AFDS performance at 

LPS as at Hartlepool and Doel in reducing impingement of juvenile whiting, cod and 

herring would have the potential to reduce monetary losses of equivalent adults of these 

species from the mean annual 1999 - 2000 value of approx £217,000 to £57,000 -

£69,000 (see section 4.3.2), assuming that reduction in cod impinged abundance was of 

the order of 54.7%, as suggested for 'other swimbladder species' by Turnpenny et al. 

(1995). Acoustic deterrence oflarger clupeids and gadoids from the vicinity of the LPS 

CW intake could theoretically facilitate decreased removal of the parasitic phase of 

estuarine-inhabiting adolescent river lamprey (section 4.4.3), if these creatures 

associated with their intended prey and followed their avoidance responses closely. 

This would not be likely in the case of non-feeding upstream migrating adults or 

downstream migrating juveniles. The potential for acoustic deterrents reducing 

impingement of salmonid smolts was shown by brown trout (Salmo fruita L.) exhibiting 

steady movements away from a sound stimuli in laboratory experiments (Turnpenny et 

al., 1993). This was probably due to the fish responding to vibrations near to the sound 
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source, for the poor connectivity between the inner ear and swimbladder means that true 

hearing is relatively insensitive (Turnpenny et al., 1998). There was no statistically 

significant response from eels in acoustic deterrence experiments (Turnpenny et al., 

1993), as confirmed by Maes et al. (1999b) during field trials at Doel, though in the 

field study a statistically insignificant reduction of some 65% was noted. 
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5.3. The suitability of impingement collections as a sampling device for 
fish of the Forth Estuary 

5.3.1. Use of CW intakes to sample fish 

Since power stations are generally constantly operating, and therefore constantly 

requiring to withdraw water, they are a very useful device to sample aquatic organisms 

with. Knowledge of pump capacity combined with duration spent sampling impinged 

and/or entrained materials allows standardisation of organisms sampled to unit volume, 

as undertaken in the present study (Chapter 2). Power station cooling water intakes 

have proved to be the best means of sampling in areas where the sedimentary or tidal 

regime diminishes the efficiency of other gears, e.g. in the Severn Estuary, where the 

tidal range may be up to 14.5m and most forms of fishing are not possible (Henderson 

et at., 1992). The West Thurrock Power Station (now closed) on the Thames Estuary 

was a useful sampling tool on an estuary that is busy with boat traffic and thus awkward 

to sample by boat-based methods (Thomas, 1998). The main criticism of power station 

intakes as a sampling device is the fact that they are fixed points, providing information 

on only the small area near to the intake (Thomas, 1998). Henderson (1989), however, 

suggests that even a fixed source such as a power station intake may in fact sample the 

equivalent of a 20km stretch of coastline, dependent on tidal range and mobility of the 

species in the water body. Estuaries such as the Severn and the Hudson (NE USA) 

possess several power stations on them, thus allowing fish migrations to be studied at 

different times and locations along the water body (e.g. Claridge and Potter, 1984; 

Henderson and Holmes, 1989). Power station intakes have been noted to sample mostly 

smaller individuals compared with trawl studies, due to the relatively weak swimming 

ability of small fish compared to larger conspecifics (e.g. Thomas, 1998; Maes, 2000). 
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It has been shown that power station impingement samples may contain three times the 

abundance of organisms per unit volume compared with simultaneously-taken stow net 

samples (Maes, 2000). The general conclusion is therefore that using power stations as 

a sampling method is very efficient, though that there is a bias for smaller fish to be 

taken as they are more susceptible to the intake flow compared with stronger-swimming 

large fish. 

5.3.2. Comparison of efficiency of LPS intake sampling with trawling 

The present study attempted to compare efficiencies of power station intake 

sampling and trawling by conducting the two simultaneously on several occasions. This 

was rather unsuccessful due to lack of fish obtained by trawling however, so in lieu of 

comparison of simultaneously collected samples, a simple analysis of all data collected 

between January 1999 - December 2000 (April 1999 - January 2001 in the case of 

pelagic trawling; see section 3.2.2) is included in the present discussion. The number of 

species obtained by Agassiz and pelagic trawling, 28, was somewhat less than that due 

to LPS sampling (39), a difference readily attributable to the fact that the latter 

technique involved sampling an approximate total of 1.14 x 107 m3 of CW, while 

trawling with both gears sampled an estimated 7.19 x 105 m3 of estuarine water. The 

discrepancy in total sampling effort between LPS intake sampling and trawling reflected 

the fact that power station sampling was logistically easier to undertake, needing only 

two workers and not being subject to weather or pressure of work in other areas. 

Abundances of pelagic species captured per unit volume by LPS CW intake sampling 

compared favourably with pelagic trawl hauls for sprat and herring, to approximately 

the same order of magnitude, while smelt were very much underrepresented in trawl 
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catches (Table 5.7). Simultaneously conducted intake and stow net sampling by Maes 

(2000) in the Zeeschelde estuary (see below) suggested somewhat different tendencies: 

the ratio of intake to net abundances were 0.61, 0.62 and 1.09 for sprat, herring and 

smelt respectively. The only similarity with the Forth data was that the clupeids were 

sampled to the same order of magnitude per unit volume. 

Table 5.7. Mean abundances of selected fish species sampled from LPS intake screens and from pelagic 
trawling in the lower Forth Estuary. For details ofLPS and pelagic trawl sampling see sections 2.2.2 and 
3.2.2.1 respectively. LPS data used were from January 1999 - December 2000 (total volume sampled ~ 
1.14 x 107 m3

); pelagic trawl data used were from April 1999 - January 2001 (total volume sampled ~ 
6.66 x 105 m\ 

sprat 
herring 
smelt 

abundance per 103 m3 of water 
sampled at LPS CW intake 
5.32 
4.18 
1.80 

abundance per 103 mJ of water 
sampled by pelagic trawling 
6.63 
2.61 
7.66 x 10-5 

To facilitate a meaningful comparison between LPS intake sampling and Agassiz 

trawling, essentially a 2-dimensional sampling technique where abundance of fish per 

unit area is relevant, it was necessary to attempt to express abundance of impinged fish 

sampled per unit area. It was assumed that the velocity across the whole of the CW 

intake surface was 57.7 cm S·l (see section 2.2.1). Sampling was only ever undertaken 

at one trash basket at anyone time, so it was further assumed that fish obtained during 

impingement collections had passed through half of the total CW intake width of 51.7 

m. Impinged materials were almost always sampled from two CW pumps, so the rate of 

CW sampling over the period 1999 - 2000 was assumed to have been 45.5 m3s· l (2 

pumps x 22.75 m3s· l per pump). The total duration of sampling at LPS over the two 

year period was thus given by the calculation: 

11399563 m3 
/ (2 x 22.75 m3s· l

) = 250540 s 
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where 11399563 m3 represented the total volume of water sampled at the CW intake. 

The 'area' therefore represented as having been sampled by the CW intake, as ifit had 

been a stationary 'trawl' with water moving towards it, was therefore: 

0.577 ms·1 x 25.85 m x 250540 s = 3.74 x 106 m2
. 

Using this unusual approach, it was clear that the power station intake sampled some 

benthic and demersal species at similar orders of magnitude compared with Agassiz 

trawling, i.e. whiting and plaice, whereas most species were collected at 1 - 3 x lower 

orders of magnitude (cod, flounder, pogge, eelpout, sea snail, fatherlasher), and gobies 

were an order of magnitude more abundant per unit volume in intake samples (Table 

5.8). 

Table 5.8. Mean abundances per unit area of selected fish species sampled from LPS intake screens and 
from Agassiz trawling in the lower Forth Estuary. For details of LPS and Agassiz trawl sampling see 
sections 2.2.2 and 3.2.1.1 respectively. LPS data used were from January 1999 - December 2000 (total 
'area' sampled::::: 3.74 x 106 m2); Agassiz trawl data used were from the same period (total area sampled::::: 
9.60 x 104 m2

). 

whiting 
cod 
plaice 
flounder 
pogge 
eel pout 
gohies 
sea snail 
fatherlasher 

abundance per 103 m1 'area' 
sampled at LPS CW intake 
2.49 
0.28 
1.15 
0.44 
9.74 x 10-2 

8.30 x 10-3 

2.16 
5.24 x 10-2 

5.89 x 10-3 
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abundance per 103 m1 area 
sampled by Agassiz trawling 
1.13 
2.66 
3.54 
1.79 
2.18 
0.77 
0.19 
0.28 
1.08 



All of the species except flounder and sea snail tend to be found at greatest abundance 

at Port Edgar (section 3.3.1.2); it could therefore be argued that a possible reason for 

greater prevalence of pogge, eel pout, cod, fatherlasher and plaice in trawl samples 

compared with intake collections might be the fact that the analysis summed all trawl 

catches across all stations, thereby enhancing trawl numbers with the greater 

abundances from Port Edgar. How then to explain the greater abundance of impinged 

whiting and gobies, when these species were also shown to be present in greatest 

abundance at the site furthest from LPS? It may be that these two species tend to be 

present in higher densities nearer to the margins of the estuarine channel in the vicinity 

of LPS, thus are caught in low densities by mid-channel hauls at the Longannet trawl 

station. The opposite might be true of flounder and sea snail, both seemingly most 

abundant at the Longannet station than anywhere else, but being sampled at 

comparatively low densities. Flounder, in particular, may congregate on the opposite 

side of the channel to LPS, in order to exploit the large areas of intertidal flat upon 

inundation at HW. 

The study by Maes (2000) mentioned below found that the Doel CW intake 

sampled all benthic and demersal species more efficiently than stow nets when 

compared on a volumetric basis, though the differences were usually within the same 

order of magnitude. Treating the Agassiz trawl as a 3-dimensional sampling device, by 

multiplying area swept by the minimal height of the trawl opening (O.SSm) would have 

resulted in the LPS intake yielding less fish per unit volume for all benthic and demersal 

species except gobies (Table 5.9). 
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Table 5.9. Mean abundances per unit volume of selected fish species sampled from LPS intake screens 
and by Agassiz trawling in the lower Forth Estuary. For details of LPS and Agassiz trawl sampling see 
sections 2.2.2 and 3.2.1.1 respectively. LPS data used were from January 1999 - December 2000 (total 
volume sampled ::::: 1.14 x 107 m3

); Agassiz trawl data used were from the same period (total volume 
sampled::::: 5.28 x 104 m\ 

whiting 
cod 
plaice 
flounder 
pogge 
eelpout 
gobies 
sea snail 
fatherlasher 

abundance per 103 mJ 

sampled at LPS CW intake 
0.82 
9.24 x 10.2 

0.38 
0.14 
3.19 x 10-2 

2.76 x 10-3 

0.71 
1. 71 x 10-2 

1.93 x 10-3 

abundance per 103 mJ 

sampled by Agassiz trawling 
2.05 
4.83 
6.44 
3.26 
3.96 
1.40 
0.34 
0.51 
1.97 

Comparison of the lengths of common fish obtained by LPS intake sampling and trawl 

sampling reveals a trend that has often been observed at other locations: fish sampled at 

power station CW intakes tend to be smaller than those taken by other means. This was 

clearly the case in the Forth Estuary for whiting, cod and plaice (Table 5.10; Figure 

5.6a,b,e). The mean lengths of sprat captured by both LPS intake and pelagic trawl 

were very similar (Table 5.10), though it can be seen that the distribution of length 

classes sampled by the latter method was somewhat more even than in the case of the 

former technique (Figure 5.6c). Herring sampled at the LPS intake possessed a similar 

overall modal length as the fish taken by pelagic trawling (Figure 5.6d), but the greater 

proportion of fish of longer lengths meant that the mean length of intake fish was 

smaller than that obtained by trawling (Table 5.10). The difference was, however, 

somewhat less than in the MJ gadoids and plaice. 
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Table 5.10. Mean lengths (± SD) of fish sampled from intake screens at LPS and by pelagic or Agassiz 
trawling in the lower Forth Estuary, 1999 - 2000. Quantity of measured fish is included in parentheses. 

LPS CW intake trawls 
whiting 122.6 ± 26.4 mm (n - 9194) 152.5 ± 38.4 mm (n = 91) 
cod 115.2 ± 30.9 mm (n = 1089) 152.2 ± 44.7 mm (n = 197) 
sprat 81.4 ± 16.8 mm (n = 37804) 81.5±24.1 mm(n=241) 
herring 94.3 ± 21.4 mm (n - 25946) 104.1 ± 37.9 mm (n = 232) 
plaice 74.2 ± 24.1 mm (n = 4311) 106.3 ± 34.1 mm (n = 275) 

Figure 5.6. Comparison of length-frequency distributions of all measured fish sampled from LPS CW 
intake and trawling in the mid-lower Forth Estuary, 1999 - 2000. Trawl data used to plot graphs were 
from Agassiz hauls in the cases of whiting, cod and plaice, and from pelagic hauls for sprat and herring. 
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Figure 5.6 cont. 

This rather crude companson has some limitations. The trawl data represent the 

summation of all measured fish from hauls at all three mid-lower estuarine stations. 

Thus a trawl undertaken at Port Edgar would be unlikely to sample the same shoal of 

herring as was being simultaneously sampled at LPS, for example. For the purposes of 

this simple analysis, the assumption was obviously all size classes of fish would be as 

likely to encounter trawls as the LPS intake, and that the preponderance of different size 

classes in the two sampling methods is a reflection of differences in avoidance of 

capture in the two methods. Despite the simplicity of the comparison, the conclusions 

are similar to a much more rigorous test of the same phenomenon by Maes (2000). He 

showed that stow nets, a passive fishing technique facilitated by tidal currents, tended to 

simultaneously catch the same species as the CW intake of the Doel power station, but 

that the nets caught larger fish than the intake (Table 5.11). The two gears were located 
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only 50 m apart and were sampled simultaneously, so were likely to be encountering 

fish from the same micro-area of estuary. 

Table 5.11. Mean lengths of fish sampled at Doel Power Station CW intake and by two stow nets located 
50 m from the intake. Samples collected during 10 different I-h periods. Statistical probabilities of 
lengths significantly differing are shown, based on a Mann Whitney U test. Adapted from Maes (2000). 

number probability of 
stow net Doel CW intake 

measured significant 
difference 

whiting 139.8 mm 122.5 mm 96 p =0.039 
sprat 66.2 mm 61.4 mm 1036 p < 0.001 
herring 79.0 mm 71.9 mm 1056 p < 0.001 
plaice 126.1 mm 91.6 mm 20 p = 0.021 

A simultaneous companson of trawling with intake sampling at the adjacent West 

Thurrock power station, Thames Estuary, also confirmed that larger fish were present in 

the water body than were appearing on intake screens (Thomas, 1998), though no 

formal statistical analysis was undertaken. 

Sampling of impinged fish at the LPS CW intake screens offers a cost-effective and 

relatively straightforward means of monitoring fish populations of the Forth Estuary. A 

good example of this is the case of sprat, noted to be taken at a marginally greater rate 

per unit volume by pelagic trawling than LPS impingement sampling. The important 

point is that sampling at LPS supplies fish from 45.5 m3s· l of abstracted CW, assuming 

two CW pumps are operational and 'feeding' the trash basket where sampling is 

occurring. Pelagic trawling at 2.5 knots with gear of opening 17.75 m2 (section 3.2.2.1) 

therefore samples approx. 22.9 m3s·l
. To obtain 100 sprat would therefore take on 

average approx. 413 s by impingement sampling, and 659 s by pelagic trawling. Given 

the premium on time that usually exists in sampling programmes, intake sampling offers 

a good means to obtain specimens relatively quickly. The considerable quantities of 
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CW abstracted mean that inefficiencies of the method compared to Agassiz trawling 

may be offset by the ease of obtaining samples. 
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5.4. Future research 

5.4.1. Studies of impingement of species of particular interest 

The present study investigated all impinged species collected during routine 

sampling, the timing of which was based on predetermined tidal and diurnal 

characteristics. In the future it may be desirable to concentrate limited resources into 

sampling at certain critical times. The best example of this would be an investigation of 

impingement of salmonid smolts during the downstream migration season. The present 

study attempted to generate estimates of Atlantic salmon and sea trout impingement in 

2000 (section 4.3.2). To improve upon these estimates it is necessary to sample with a 

greater intensity during the months of April - June, something that has already been 

attempted in 2001 by SEPA (AS. Hill, Scottish Environment Protection Agency, 

personal communication). The most thorough method would be search and removal of 

all smolts from skips prior to disposal to landfill, a very demanding task. Aprahamian 

and Jones (1997) enumerated all Atlantic salmon smolts captured in one month at 

Uskmouth Power Station in 1989. An abstraction rate at LPS of three times that of 

U skmouth means that far greater quantities of fish and debris would need to be 

processed in order to identify smolts. 

5.4.2. Acoustic studies of fish within the Forth Estuary 

Potentially movements of individual fish within the Forth Estuary could be 

studied by fitting fish with miniature acoustic transmitters, as carried out on Atlantic 

salmon smolts in the River Conwy Estuary, Wales, by Moore et al. (1995). The main 

purpose of such a study would be to elucidate tidal and diel influences on the 
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movements of individual fish. The particular hypothesis that enhanced impingement at 

LPS during spring tides may have been a result of increased tidal currents and tidal 

excursion causing a greater quantity of fish to enter the region of the CW intake per unit 

time than during neap tides could be tested by this method (section 2.4.3.2). The 

acoustic transmitters employed by Moore et al. (1995) required a number of acoustic 

relay buoys and automatic listening stations to record signals from the buoys. Such 

transmitters are 17mm long x 8mm diameter, have a mass of about 0.35g in water, and 

are surgically placed within the body cavity of the fish, thus limiting the size and 

species that could have the devices implanted. Maximum range of transmitters was 

about 100m, usually 50 - 75m because of the environmental effects of changing 

turbidity, salinity, etc. that could influence propagation of the signal (Moore et al., 

1995). The approximate battery life of 30 d for the transmitter would be sufficient to 

allow monitoring of fish over at least one spring-neap tidal cycle. 

Small-bodied and delicate species such as sprat and juvenile herring encountered 

in the Forth Estuary could not readily be fitted with acoustie transmitters. The potential 

use of sonar employed from a research vessel for estimation of the abundance of 

clupeids in the Forth was already suggested (section 3.4.5), and an extension of this may 

be to attempt to track the movements of clupeid schools by pursuit in a vessel 

employing such acoustic equipment. 

5.4.3. Mark and recapture of fish in the Forth Estuary 

Capture of live fish by trawling (or by impingement collections for more robust 

species such as flatfish) followed by marking (e.g. with dye), release and subsequent 

recapture could facilitate useful further study of the fish populations of the Forth 

Estuary. The discrepancy in estimates of fish population sizes within the Forth Estuary 
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and abundance of fish impinged at LPS has already been discussed (section 5.1). Mark 

and recapture experiments may offer a means to generate more accurate estimates of 

population size. Population size, n, may be estimated by using the equation: 

Me 
n=--

R 

where M = number of marked fish released, R is number of marked fish recovered 

among C total fish recaptured (Pawson and Eaton, 1999). Using this technique, Pawson 

and Eaton (1999) released 322 alcian dye-marked O-group sea bass close to Kingsnorth 

Power Station, Medway Estuary. Eighteen of these marked fish were recovered in 

impingement samples up to a month following release, out of a total of l.65 x 104 bass 

collected from the intake screens. This suggested the total population of bass living 

near the intake to be approx. 2.95 x lOs individuals. Given that only 48% of fish were 

impinged after entering the CW system (the remainder being damaged or eaten by 

crabs; see section 2.2.3.3), the mortality due to impingement was approx. 17.4% (5.1 0 x 

104 of2.95 x lOS) (Pawson and Eaton, 1999). To undertake such an exercise would be 

potentially labour-intensive, since accurate estimates of total impingement are necessary 

and much time needs to be devoted to sorting through all debris displaced into trash 

baskets. The requirement to examine fish closely for marks also increases handling 

time during the data collection process. Marking of fish may assist in assessing the 

spatial extent of marked species, e.g. to what extent the species move beyond the 

boundaries of the estuary and into the Firth of Forth. This would require additional 

trawl sampling beyond the boundaries of the estuary, again demanding of resources. As 

with all mark and recapture studies, it would be assumed that marked fish could always 
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be identified upon recapture, and that the marking process did not alter marked fishes' 

susceptibility to predation or impingement. 

5.4.4. Fish entrainment studies at LPS 

The present study concentrated solely on routine sampling of impinged fish at 

LPS. Entrainment of fish, meaning the passage through the condensor system of life 

stages too small to be impinged (i.e. eggs and larvae), was not investigated. Study of 

entrainment at LPS would potentially be of great interest. From a purely scientific 

standpoint assessment of eggs entrained at LPS would provide information on species 

that may be spawning in the estuary. In addition, estimates of mortality of eggs and 

larvae may also be incorporated into calculations of losses of equivalent adults (section 

4.3.2) for commercial species. This was undertaken at the Sizewell Power Stations and 

for some species losses due to entrainment were estimated to be greater than those 

caused by impingement (Turnpenny and Taylor, in press; Table 5.12). 

Table 5.12. Estimated annual equivalent adult tonnages of commercially important species lost at 
Sizewell Nuclear Power Stations due to impingement and entrainment mortalities. Data from Tumpenny 
and Taylor (in press). 

Sizewell A station Sizewell B station 
impinged entrained impinged entrained 

plaice 0.41 t 2.34 t at 4.54 t 
sole 4.0 t 19.5 t 0.20 t 37.8 t 
dab 2.30 t at 0.41 t at 
cod 0.84 t at 0.10 t at 
whiting 41.0 t at 32.7 t at 
herring 51.0t 13.8 t 73.2 t 26.7 t 
sea bass 0.35 t at 0.07 t Ot 
total 100 t 35.6 t 107 t 69.0 t 

Ichthyoplankton surveys in the Firth of Forth from March - July 1986 yielded fish eggs 

of 23 species and larvae of 12 species; dab (42.2%), whiting (13.4%) and flounder 

(11. 1 %) were most common of the eggs examined, while sandeel (65.3 %) and clupeids 
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(29.3%) dominated larval abundance (poxton, 1987). Egg and larval densities were 

greatest in the centre of the Firth and least in the inner Firth, suggested by the author to 

be due to the eggs being primarily of marine as opposed to estuarine origin. This might 

also suggest that equivalent adult losses attributable to entrainment may be low at LPS, 

and studies could investigate the hypothesis that losses caused by entrainment would be 

expected to be lower in the Forth Estuary than at marine sites such as Sizewell. An 

entrainment study at the 2000 MW Fawley Power Station on the estuarine Southampton 

Water estimated that direct losses of eggs and larvae of fish were relatively small and 

that, even with conservative assumption of survival to adulthood of 0.01 % of eggs and 

0.1% oflarvae, equivalent adult losses would be low (Dempsey, 1988; Table 5.13). The 

author described the low diversity and abundance of entrained early life stages of fish as 

'typical' of estuarine waters; a similar study at LPS would be of interest given that the 

salinity regime at Fawley (28 - 32 PSU; Turnpenny, 1988b) is very similar to that in the 

mid-lower Forth Estuary. Identification of herring eggs in samples of entrained 

materials at LPS could also elucidate the extent of herring spawning in the Firth in 

spring (section 4.4.1). 
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Table 5.13. Estimated losses of ichthyoplankton (and adult equivalents) due to entrainment at Fawley 
Power Station (September 1986 - September 1987). Direct losses ± S.D. Adult equivalent values 
calculated based on assumption of 99.99% mortality of eggs and 99.9% mortality of larvae. Reproduced 
from Dempsey (1988). 

direct loss adult equivalents 
larvae: 
sandeels (Ammodytes spp.) 8.8 x 104 ± 8.8 x 104 0-180 
sand smelt 6.3 x 104 ± 6.3 x 104 0-120 
fatherlasher 5.4 x 104 ± 5.4 x 104 0-110 
flounder l.l x 106 ± 2.8 x 105 820 - 1380 
gobies 1.8 x 10' ± 2.9 x 106 15100 - 20900 
sprat 3.6 x 106 ± 9.2 x 105 2680 - 4520 
great pipefish 6.3 x I05±3.1xI05 320 - 930 
lesser pipefish 4.1 x 105 ± 5.4 x 104 60 - 160 
long-spined sea scorpion 1.4 x 105 ± 1.4 x 105 0-280 
(Taurulus bubalis) 
eggs: 

5.4 x 104 ± 5.4 x 104 lesser weever 0-11 
sole 3.3 x 105 ± 3.3 x 105 0-6 
sprat 8.5 x 105 ± 8.5 x 105 0- 19 

5.4.5. Impingement and entrainment studies of other taxa at LPS 

Fish are only one part of the Forth Estuary ecosystem, and impingement and 

entrainment of other organisms present in the water body also occurs. Substantial 

quantities of common shrimp, Crangon crangon L., were observed to be impinged 

during the course of the present study, and estimation of the extent of their impingement 

is of relevance given their importance as food items for fish such as whiting (Henderson 

and Holmes, 1989). Assessment of potential ecosystem-level effects by LPS would 

require sampling of additional trophic levels of the estuarine food web. Thus it would 

be relevant to undertake entrainment studies of removal of primary producers (e.g. 

phytoplankton), holoplanktonic crustacea such as calanoid copepods, and larval fish, in 

addition to the sampling of impinged fish that is already well established. Such 

sampling could be undertaken using a pump sampler fitted with a fine mesh employed 

in the intake fo reb ay, as carried out in 1992 - 93 at the Sizewell power stations to 

265 



investigate entrainment of commercial fish species (Tumpenny and Taylor, in press; see 

section 5.4.4). The potential importance of removal of organisms in the lower levels of 

food webs was discussed by Henderson and Seaby (2000) with the example of a simple 

theoretical four level pelagic food chain. Transfer of production (g of carbon) was 

assumed to be 10% efficient between successive trophic levels, so that 1 g of carbon 

fixed by primary producers resulted in 0.001 g of carbon produced by predatory fish. A 

theoretical decrease in standing crop due to entrainment of organisms in the first three 

levels of the simple chain resulting in transference efficiency decreasing to 9% would 

give a decrease in predatory fish production of 27% (Figure 5.7). Entrainment studies 

could be supplemented with sampling in the outflow channel in order to assess survival 

rates of organisms passing through the condensor circuit system. 

g of carbon produced at 
g of carbon produced at 10% transference 

trophic level efficiency 9% transference 
efficiency 

1. primary producer 1 1 

~ 1% ~ 
decrease in 

2. planktonic crustacean 0.1 .. 0.09 

~ transference ~ 
efficiency 

3. larval fish 0.01 0.0081 

~ ~ 

4. predatory fish 0.001 0.00073 

Figure 5.7. Theoretical example of potential importance of decreased transfer efficiency caused by 
decrease in standing crop of organisms in trophic levels 1 - 3 due to power station entrainment. 
Developed from Henderson and Seaby (2000). 
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5.4.6. Trawl studies 

The present study originally intended to combine sampling of fish by trawling 

with simultaneous recording of water quality data using the same multi probe as 

employed off the LPS intake jetty (section 2.2.2). The multiprobe was unavailable on 

sufficient occasions to make any meaningful use of the data thus collected, so no 

analysis was possible. In the future it may be desirable to collect such data in order to 

investigate associations between fish assemblages and environmental parameters, as 

undertaken in the Humber by Marshall and Elliott (1998) (see section 1.3.2). In the 

long term, it is desirable to continue sampling the mid-lower Forth Estuary using similar 

methods to those discussed in Chapter 3, particularly in the case of Agassiz trawling. 

The 20-year database of knowledge has already revealed some interesting changes in 

the ichthyofauna of the Forth. Will changes continue to occur as global temperatures 

continue to rise? Could a species such as eelpout become absent from the estuary 

proper due to these increases? Assuming Agassiz trawling is the best means of 

sampling the resident fish species, it will eventually be interesting to assess to what 

extent cessation of operations at LPS (scheduled for 2020; L. McSporran, 

ScottishPower pIc., personal communication) might bring about changes in the Forth 

fish populations. 

5.4.7. Alternative means of sampling at various locations within the estuary 

Small scale fishing using stow nets occurs in the region of Kincardine on Forth. 

This passive fishing technique may offer an alternative to pelagic trawling, the latter 

being difficult to undertake in an estuary such as the Forth where tidal currents are 

strong. The ineffectual sampling in January 1999 served to illustrate occasional 

difficulties experienced with pelagic gear, for minimal numbers of fish were taken 
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during six hauls in a month when fish impingement was reasonably pronounced and 

abundance would have been expected to be high. Stow net deployment at shallow and 

deep intervals in the water column with simultaneously conducted impingement 

sampling would allow further investigation of the efficiency of LPS as an alternative 

sampling device, as carried out in the Zeeschelde by Maes (2000) (see section 5.3.2). 

Fixed net fishing in the Severn yields species in similar to proportions to power station 

sampling (Henderson and Holmes, 1991). 
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5.5. Summary and Main Conclusions 

• The study has investigated the fish populations of the lower Forth Estuary, in 

terms of species composition, diversity, and seasonal and spatial distribution. 

• Both LPS impingement sampling and trawling yielded a quantity of fish species 

in the mid-lower Forth Estuary that was of the order expected for an inshore area 

of this geographical latitude. 

• A preliminary analysis of the abundance of common clupeids (sprat, herring) by 

novel pelagic trawling suggested that abundance in the Forth Estuary was at 

least an order of magnitude greater than previously believed from bottom 

trawling. The estimates thus generated exhibited wide confidence intervals, 

suggesting evaluation by other means would be worth considering. 

• An assessment of the 19-year dataset of Agassiz trawling of benthic and 

demersal species at three stations in the mid-lower Forth Estuary showed that 

while species richness did not show a long term trend, total abundance exhibited 

a significant decline. This was largely driven by significant decreases in whiting 

and eelpout abundance, the latter seemingly being related to increased 

temperatures caused by climatic change. Changes in the benthic and demersal 

ichthyofauna of the lower estuary are largely due to the decline of the 

aforementioned species and also the increase in abundance of cod and plaice. 

• The common benthic and demersal species were generally most abundant at the 

most seaward site, presumably reflecting their marine origin, and were captured 

in greatest numbers at L W, likely to be due to their concentration in the 

estuarine channel and retreat from intertidal areas. 
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• Species caught in trawls showed seasonal trends in abundance typical of 

temperate inshore areas of the northern hemisphere, and these trends were 

generally mirrored in seasonal trends of impingement at LPS. 

• The main factors influencing the presence of fish within the vicinity of the CW 

intake at LPS and the total rate of fish impingement are season and tidal range, 

typical of most marine and estuarine power stations. Light did not influence 

impingement rate in almost all common species investigated, supporting 

evidence from other locations that high turbidity levels diminish likelihood of 

escape by visual perception of intakes by day and night. 

• The annual total of fish impinged at LPS in 1999 - 2000 was concordant with 

theoretical expectations based on an exponential relationship between CW 

abstraction and fish impingement, established from other locations in Britain and 

the North Sea coast of Europe. The estimated numerical extent of fish 

impingement at LPS is as predicted for a power station of this size. 

• Extent of impingement of species such as salmonids, eel and river lamprey that 

are of special consideration due to recreational, socio-political or threatened 

status was determined but conclusions were unclear, given a lack of stock 

information and the nature of the routine impingement sampling protocol. 

• The lack of data on relative abundance of fish in the Forth Estuary prior to 

commencement of generation at LPS means that equilibrium densities for fish 

for this period are not known. This results in a lack of certainty regarding the 

population level impact on the Forth Estuary ichthyofauna by LPS CW 

withdrawal. 
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• Mitigation of impingement losses may be considered as a precautionary measure 

to reduce mortalities caused by LPS CW abstraction. A variety of techniques 

are available, but differ widely in cost and retrofitting ability. 

• A comparison of LPS impingement sampling and trawling revealed that 

impingement samples compared favourably to pelagic trawl samples in numbers 

of fish captured per unit volume, though differences in mean sizes of fish taken 

existed. Agassiz trawling tended to yield more fish per unit volume or area than 

impingement sampling, though the fundamental differences in the sampling 

techniques made comparisons difficult. The rate of water abstraction at LPS 

means that quantities of fish obtained per unit time may exceed those obtained 

by trawling even if impingement sampling is less efficient. This, coupled with 

relatively minor cost and ability to be carried out in almost all weather 

conditions, makes impingement sampling at LPS a particularly useful tool in 

monitoring fish populations of the Forth Estuary. 

• Much potential research exists, both related to operation of LPS and in terms of 

trawl studies nearby. Alternative means of sampling the ichthyofauna may be 

worth consideration, including stow nets. 
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Appendix 1 - scientific nomenclature of species sampled in the 
present study 

family and species 
ecological 

habitatt 
sampling 

Guild* method~ 

Petromyzonidae 
River lamEre~, Laml!.etraf!uviatilis (L.} CA B L,A,P 

Clupeidae 
Sprat, Sprat/us sprattus (L.) MS P L, A, P 
Herring, Clur.ea harengus {L.} MS P L,A,P 

Salmonidae 
Atlantic salmon, Salmo salar (L.) CA P L,P 
Sea trout, S. trutta (L.) CA P L 

Osmeridae 
Smelt, Osmerus er.erlanus {L.} CA P L,A,P 

Anguillidae 
EuroEean eel, Anguilla anguilla {L.} CA B L 

Syngnathidae 
Great pipefish, Syngnathus acus L. ER B P 
Lesser EiEefish, S. rostellatus L. ER B L,A,P 

Atherinidae 
Sand smelt, Atherina l!.resbJ!Jer Cuvier MJ P L 

Gasterosteidae 
Three-spined stickleback, Gasterosteus 

aculeatus L. CA P L,P 
Fifteen-spined stickleback, Spinachia 

sr.inachia (L.) ER D L 
Sternoptychidae 
Boreal pearlside, Maurolicius muelleri 

{Gmelin} MA P L 
Gadidae 

Whiting, Merlangius merlangus (L.) MJ D L, A,P 
Pollack, Pollachius pollachius (L.) MJ D L,A,P 
Saithe, P. virens (L.) MA D L,A 
Cod, Gadus morhua (L.) MJ D L, A,P 
Haddock, Melanogrammus aeglefinus (L.) MA D L 
Bib, Trisopterus luscus (L.) MJ D L 
Poor cod, Trisopterus minutus (L.) MA D A 
Silvery pout, Gadiculus argenteus 

Guichenot MA D L 
Ling, Molva molva (L.) MA D L,A 
Five-bearded rockling, Ciliata mustela {L.} MS B L 

Ammodytidae 
Lesser san dee!, Ammodytes tobianus L. ER B L,P 

Callionymiidae 
Common dragonet, CallionJ!..mus fJ!..ra L. MA B L 

cont. 
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Trachinidae 
Lesser we ever, Eehiiehthys vipera (Cuvier) MA B L 

Gobiidae 
Gobies, Pomatosehistus spp. ER B L,A,P 

Pholididae 
Butterfish, Pholis gunnel/us (L.) ER B L,A 

Zoarcidae 
Eelpout, Zoarees viviparus (L.) ER B L,A,P 

Serranidae 
Sea bass, Dieentrarehus labrax (L.) MJ D L 

Percidae 
Perch, Perea fluviatilis L. FW P L 

Mugilidae 
Thick-lipped grey mullet, Chelon labrosus 

(Risso) MS D L 
Triglidae 

Grey gumard, Eutrigla gurnardus (L.) MS B L 
Cottidae 

Fatherlasher, Myoxoeephalus seorpius (L.) ER B L,A 
Agonidae 

Pogge, Agonus cataphractus (L.) ER B L,A,P 
Liparidae 

Sea snail, Liparis liparis (L.) ER B L,A,P 
Montagu's sea snail, Liparis montagui 

(Donovan) MA B A 
Scombridae 
Mackerel, Seomber seombrus L. MA P L 

Pleuronectidae 
Common dab, Limanda limanda (L.) MJ B L,A 
Flounder, Platiehthysflesus (L.) ER B L, A,P 
Plaice, Pleuroneetes platessa (L.) MJ B L, A, P 
Long rough dab, Hippoglossoides 

platessoides (Fabricius) MA B A 
Lemon sole, Microstomus kilt MA B A 

Soleidae 
Sole, Solea solea (L.) MJ B L,A 

* For ecological guild classifications see section 1.3.1. 

t P = pelagic, B = benthic, D = demersal. 

t L = collected by impingement sampling at LPS, A = collected by Agassiz trawling, P 

= collected by pelagic trawling. 
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Appendix 2 - CD-ROM of data collected in 1999 - 2000 

Raw data obtained during all LPS impingement collections and the majority of trawling 

days in 1999 - 2000 are found as Microsoft Excel spreadsheets within the CD-ROM 

inside the back cover of the present study (files within folders 'Fish Data 1999' and 

'Fish Data 2000'). These data include species common name (see Appendix 1 for 

scientific nomenclature), total lengths, masses and abundances. Impingement sampling 

sessions files take the form 160CT1, 160CT2, etc., signifying the first and second 

sessions on a particular date, 16 October 1999 in this case. LPS impingement files from 

the year 2000 possess an 'x' prefix, hence X27APRI, X27APR2, etc., for the first and 

second samples collected on 27 April 2000. All impingement files are divided into 

worksheets that represent each 3-minute subsample of impinged materials collected 

from the intake screens. These are labelled according to their location, e.g. WS 1 and 

WS2 were the first and second subsamples collected at the west screens of the CW 

intake, while ES 1 was the first subsample collected at the east screens. Raw data for 

24-h sampling sessions in March and September 2000 (see section 2.2.3.2) are included 

(these are labelled XMAR24Hl, XMAR24H2 etc. for March 2000, and XSEP24Hl, 

XSEP24H2 etc. for September 2000). 

All raw trawl data files can be identified by the suffix -tr; the form of the data files 

differs, some containing Agassiz and pelagic trawl data, others possessing data from 

only one gear type. In all cases the details of the trawling become evident upon opening 

the relevant file. Summary data files are included in monthly subfolders, taking the 

form xlgtnovsum for data collected at LPS in November 2000 (xlgtmar24hsum in the 

case of the 24-h sessions), and trwljulsum for trawl data collected in July 1999. 

Summary data for trawling undertaken in January 2001 are included (xtrwljan2001sum) 
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in the Dec2000 subfolder of Fish Data 2000, these data having been used in section 

3.2.2 to compensate for poor functioning of the pelagic trawl in January 1999. 

The 1999 - 2000 impingement and trawl data are summarised in the file 'Data used in 

thesis', including abundance and biomass estimates offish taken at LPS and abundances 

of trawled fish. Long-term Agassiz trawl data (1982 - 1998), as well as trawl data not 

included in the Fish Data 1999 and Fish Data 2000 folders, are not included, and 

enquiries regarding these data should be addressed to: 

Tidal Waters Section 

SEP A East Region 

Clearwater House 

Heriott-Watt Research Park 

Avenue North 

Riccarton 

Edinburgh EH14 4AP. 

In addition, a Microsoft Word 2000 document of the present study is also located on the 

CD-ROM (file 'whole thesis - final hardbound version'). 
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