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ABSTRACT 

Several experiments are presented to evaluate the development of visuo-spatial short term 

memory from childhood to old age (from five-year-olds to about 70-year-olds). Visuo­

spatial short term memory was assessed through transformational imagery tasks. 

The first set of experiments (chapters 3, 4 and 5) concerned the development of mental 

rotation abilities. A review of the literature suggested that young children (specifically so­

called preoperational children) and elderly people are poor at rotating a mental image of a 

visual pattern. However, as some mental rotation abilities have been reported while using 

Shepard's paradigm, attention was focussed on the role of the first steps necessarily taken 

while performing a mental rotation task, specifically the maintenance of a visual pattern in 

STM. 

The second set of experiments (chapter 6) considered another imagery subsystem, namely 

"mental scanning". Like mental rotation, it requires the maintenance of a visual pattern in 

short term memory. 

Image maintenance ability has been assessed in reference to Kosslyn's (1994) model 

although Baddeley's (1986) working memory model- specifically, Logie's (1995) revision 

of the VSSP - has been sometimes considered while interpreting the data. These two 

different theoretical models suggest the existence of two related but different subsystems for 

sotring visual and spatial information. 

Most of the data presented in this thesis suggest that young children and the elderly have 

some difficulties maintaining spatial characteristics of a visual pattern in short term memory, 

i.e. the orientation of the stimulus in the mental rotation tasks and the location of targets in 

the mental scanning tasks. These results tend to provide some developmental evidence for a 

dissociation between the dorsal and ventral subsystems. It seems that the two subsystems 

develop at different speeds. The ventral subsystem might be better developed earlier than the 

dorsal subsystem. Similarly, some data suggest that the same ventral system is not yet 

affected by ageing when the dorsal subsystem has already begun to deteriorate. 
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Chapter One 

General introduction I 

Think about your very first actions in the morning when you wake up. Your eyes open ... 

Here is vision ! Once our eyes are opened, we are able to capture a huge amount of 

information. We see our environment and decide what actions to take. Visual perception 

guides our behaviour, it is useful for prompting behaviours, for moving around and for 

touching things (Watt, 1991). Vision is part of all our everyday life activities. However, we 

might sometimes have the impression of "seeing" although our eyes are closed. In such 

situations, we are "seeing" mental images of our environment that we have stored in 

memory. We "see" with our mind's eye. Indeed, two related sets of visual representation 

can be activated to preserve the physical characteristics of external objects (e.g. the 

configuration of an environment). The first representation is elaborated when the objects are 

present and constitutes a physical code (i.e. the visual percept) while the second 

representation is actively generated in the absence of external objects - it constitutes a mental 

image (Shepard, 1978). 

We can roughly say that visual perception corresponds to the process of interpreting and 

understanding sensory information (i.e. the light reflected by an object on the retina) 

(Ashcraft, 1994, p. 88). Levine and Shefner (1981) mentioned that "Perception refers to the 

way in which we interpret the information gathered (and processed) by the senses. In a 

word, we sense the presence of a stimulus, but we perceive what it is". What about mental 

images? Finke (1989) has proposed a convenient definition: Mental imagery is defined as 

"the mental invention or recreation of an experience that in at least some respects resembles 

This introduction is adapted from Lejeune (1 993a). 
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the experiences of actually perceiving an object or an event, either in conjunction with, or in 

the absence of, direct sensory stimulation". 

Mental images arise in several everyday activities. We use mental images while solving 

problems, while remembering details of a painting seen in a museum, or while remembering 

whether a friend wears glasses. 

Although it is hard to reject the phenomenological existence of imagery, its scientific 

study is challenging. Indeed, imagery is a subjective phenomenon; it is not directly 

observable. Moreover, mental images are elusive. Consequently, experimental methods are 

needed to infer the properties of imagery in an objective manner and to elicit the images 

themselves (Finke, 1989). 

For these reasons, the history of mental image studies is long and controversial (Denis, 

1989; Le Ny, 1994; Pinker & Kosslyn, 1983). At the end of the 19th century, psychology 

as the "science of mental activities" was the first discipline after philosophy to study the 

mind's eye. Introspection was then used to understand the human mind: Subjects were 

required to report what was going on in their mind. References to mental images were often 

reported. However at the beginning of the 20th century, psychology stated the firm wish to 

become a scientific discipline. Watson's (1913) radical position claiming psychology as the 

"behavioural science" had a dramatic impact on American studies of imagery. These "Ghosts 

in the mind machine" (Kosslyn, 1983) became very rarely studied; they were considered to 

have no functional role in behaviours. The situation was however somehow different in 

Europe where several scientists continued their researches in the field (e.g. Bartlett (1932) 

continued to study visual memory in United Kingdom). It was only in the fifties with neo­

behaviourism that mental imagery was reconsidered in the whole scientific world as a 

possible mediator in human and animal behaviours; for instance, Skinner (1953, p.266) 

referred to operant seeings. 
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In this theoretical evolution, Paivio's (1971, 1986) dual coding theory was probably the 

first integrative theory to reconsider the mental images. Briefly stated, the dual coding theory 

postulates the existence of two classes of phenomena cognitively governed by two 

subsystems functionally and structurally distinct. One subsystem is specialised for the 

representation and the processing of non-verbal or imaginal information, whilst the other is 

specialised for verbal information. Paivio gave imagery a major status in the cognitive 

system. Images, for instance, were shown to be involved in language comprehension (see 

for a brief discussion: Lejeune, 1993e). His model continued to develop in the seventies and 

eighties, and still animates several debates in current research. 

Cognitive psychology and mental imagery 

The birth and the development of cognitivism firmly re-integrated imagery into the field of 

psychology. Since the 1970s, new methodologies have been developed and a huge amount 

of empirical data has been collected. Although different methodologies have been used, 

mental chronometry has been the most valuable source of information. This literature is 

large and it is sufficient for present purposes to highlight two central sets of studies: Mental 

rotation and mental scanning. 

Mental rotation 

Shepard and his associates (for a review, see Shepard & Cooper, 1982) pioneered the 

scientific study of mental rotation. They widely investigated young adults' ability to maintain 

and to rotate a visual image in short term memory. In the first experiment, Shepard and 

Metzler (1971) presented subjects with pairs of perspective line drawings of three­

dimensional objects having no canonical orientation. The objects were identical or mirror 

images of one another, and they differed by rotations that were either in the picture plane or 

in depth, about the vertical axis. The angular difference between the objects systematically 
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varied from trial to trial. The subjects judged whether the objects were identical or were 

different, i.e. whether one of the objects was a mirror-reversed version of the other one. 

Reaction times (RTs) were a linear function of the angular discrepancy. In other words, the 

time to verify that the stimuli were equivalent increased in direct proportion to the angular 

differences between the stimuli. This proportional increase in RTs implied that the mental 

rotations must have been carried out at a constant rate for all the comparisons. 

Shepard and Metzler (1971) suggested that subjects mentally rotate one of the objects 

towards the orientation of the other before carrying out the final comparison. Mental rotation 

resembles the actual rotation of concrete objects or patterns. "Imagined transformations and 

physical transformations exhibit corresponding dynamic characteristics and are governed by 

the same laws of motion" (Finke, 1989, p. 93). 

This principle leads to, at least, two predictions: (1) Mental rotation is holistic, and (2) 

mental rotation is continuous. 

The holistic characteristics of mental rotation have been demonstrated by Cooper (1975) 

and Cooper and Podgorny (1976). They showed that rotation rates are not dependent on the 

complexity of the patterns. While using polygons varying in complexity as stimuli, RTs 

increased linearly with increasing departure from the initial position of the stimulus, and the 

rate of increase was independent of the patterns' complexity. 

Moreover, Cooper (1976) demonstrated that mental rotations are continuous, i.e. mental 

rotations pass through all the intermediate points along the transformational path. Mental 

rotations do not occur as discrete sequences of static images but are carried out in a smooth 

and continuous manner. In a classical experiment, Cooper (1976) presented subjects (who 

already participated in experiments on mental rotation, so that their rotational speed was 

known) with polygons in one of six orientations that they were already familiar with (i.e. 0°, 

60°, 120°). As soon as the pattern was removed, subjects were required to imagine that it 
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was rotating clockwise at their normal rate of mental rotation. While the subjects were 

imagining the rotation of the polygon. a test was presented. either in one of the six familiar 

orientations, or in an intermediate orientation (i.e. 30°, 90°, 150°). Reaction times increased 

linearly with increasing departure of the test stimulus orientation from where the mentally 

rotated pattern should have been at that time (inferred from Cooper's knowledge of 

individual subject's rotational speed). These results suggested that mental rotations are 

continuous. 

Although much chronometrical data supports the conclusions about the dynamic 

characteristics of mental rotation, some psychologists have not been totally convinced and 

several alternative explanations have been offered. Four major groups of criticisms have 

been formulated about imagery results. 

Pylyshyn (1981) as well as Intons-Peterson (1983) has drawn attention to some biases 

related to the task demands and the tacit knowledge subjects may have about the processes 

engaged. The way stimuli are presented and/or the expectations of the experimenter might 

affect subjects' performances. However, as subjects are never told to imagine simulating 

physical motions, mental rotation studies are less susceptible to these criticisms. But, in 

other studies on imagery, it has been demonstrated that experimenter's expectations might 

influence subjects. It has been shown for instance that some of the results of imagery 

studies disappear when the experiment is run by naive experimenters (Intons-Peterson & 

White, 1981). 

It seems that Shepard and Metzler's pioneering study is not the most convincing research 

to prove the analogical nature of mental rotation. Indeed, Just and Carpenter (1978) have 

shown that during such a task, eye movements suggest that subjects are processing the 

stimulus step by step considering only some stimulus segments during the task. 
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Hochberg and Gellman (1977) reported evidence that mental rotation is not always 

continuous and holistic. They showed that the rates of mental rotation were reduced when 

the landmark features of the rotated stimuli became more salient. Consequently, the rate of 

mental rotation might depend on the stimulus characteristics. However, in Hochberg and 

Gellman's (1977) study, it seems that when salient orientational features were included in 

the stimuli, subjects did not have to carry out mental rotations (see Shepard & Cooper, 

1982, for a counter-criticism). 

Finally, when congenitally blind people are required to compare normal and mirror­

reversed versions of patterns (tactile modality), their RTs increased with increasing angular 

disparity (Kerr, 1983; Marmor & Zabeck, 1976). These results suggest that mental rotation 

is not restricted to the visual modality, but can be applied in any sensory modality. 

Mental scanning 

Mental scanning represents another process which has been classically studied in the field 

of imagery. In their pioneering study, Koss1yn, Ball and Reiser (1978) presented subjects 

with a map of an imaginary island which they were to memorise in the form of a mental 

image. Several objects (a hut, a tree, a beach ... ) were drawn on the island. After the 

memorisation of the pattern, the picture of the island was removed. Subjects had to generate 

a mental image of the previously memorised island and to focus their attention on a particular 

detail (e.g. the tree). They were then invited to mentally scan from that location to another 

designated one (e.g. the beach). When "arrived", they pressed a button: Scanning times 

were recorded. Kosslyn et al. (1978) showed that the scanning times were linearly 

dependent on the physical distance separating the two details on the map. Based on these 

results, they suggested that mental images preserve the visuo-spatial extension of the 

external referent. 
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Similar results were reported with other patterns and different procedures: A map 

representing the University Campus of San Bernardino (Evans & Pezdek, 1980); a map of 

Netherlands (Boer, 1991). However, although Kosslyn et al. 's (1978) results have been 

replicated, several criticisms were formulated against these experiments. This was 

particularly true since the generation of an image of an island from a verbal description of 

this pattern yielded similar results (see Denis & Cocude, 1989; Denis & Zimmer, 1992). It 

seems that there is an equivalence between images constructed from verbal descriptions and 

those based on memories for pictorial stimuli. But whatever the results, Denis and Cocude 

(1989) continued to consider that mental scanning is an entirely analogical process. 

Pylyshyn (1984) has been the most sceptical about scanning studies results. He claimed 

that tacit knowledge subjects have about visual scanning rates could be responsible for the 

observed results. Indeed, Mitchell and Richman (1980) have replicated Kosslyn et al. 's 

(1978) results while using another experimental methodology. In this study, subjects were 

not required to scan across a mental image but rather to estimate the scanning times. The 

estimated times matched very closely the image scanning times. 

To avoid these criticisms and especially those related to tacit knowledge, other 

methodologies were used. Finke and Pinker (1982) presented subjects with four dots on a 

screen. When the dots were removed, subjects were asked to image the precise locations of 

the dots. An arrow then was displayed in an unexpected orientation and location, and 

subjects were required to judge as quickly as possible whether the arrow was pointing to one 

of the previously presented dots. Although subjects were not explicitly instructed to scan 

across the pattern, RTs increased linearly with the distance separating the arrow and the 

pointed dot. This new methodology confirmed that imaginal representations preserve the 

visuo-spatial characteristics of the external referent. 
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Visual mental imagery : A representation which is functionally and 

structurally equivalent to visual perception. 

Despite several criticisms and mainly on the basis of chronometrical studies, the image 

and the percept became two distinguished concepts and several models were developed to 

account for these different psychological phenomena. Research showed that mental imagery 

can be considered equivalent to the visual representations associated with the perception of 

visual stimuli. In other words, studies demonstrated that the generation of an image can be 

considered as an afferent activation of perceptual representations identical to those 

automatically activated during the perception of an external stimulus. This idea - going back 

to the philosophical essay of Hume (1739) - was developed by authors such as Hebb 

(1968), Shepard (1978, 1984) and Finke (1980), and an increasing number of studies 

continued to test the functional and structural equivalences between imagery and visual 

perception (Finke, 1985; Finke & Shepard, 1986; Farah, 1988). 

"Imagery is ... (considered to be) functionally equivalent to perception to the extent that 

similar mechanisms in the visual system are activated when objects or events are imagined as 

when the same objects or events are actually perceived" (Finke, 1989). These functional 

equivalences were demonstrated for instance in probe detection tasks using imagined 

features (see Podgorny & Shepard, 1978), or with imagery-induced color aftereffects (see 

Finke & Schmidt, 1977). 

Similarly, "the spatial arrangement of the elements of a mental image corresponds to the 

way objects or their parts are arranged on actual physical surfaces or in an actual physical 

space. This principle requires that mental images, like a physical surface or space, be 

spatially continuous" (Finke, 1989). This principle was evidenced for instance in studies on 

imagined scanning (see Kosslyn, 1973; Pinker, 1980). 
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These characteristics gave rise to the notion of imagery as an analogical representation. In 

cognitive psychology, the representation of an external information is called "analogical" if it 

preserves the structure or other properties of this information without the intervention of a 

symbolic (propositional or numerical) encoding (Doron & Parot, 1991). Mental images 

seem to respect these criteria, and consequently can be considered as analogical 

representations. Indeed, "Visual images have all the attributes of actual objects in the world. 

That is, that they take up some form of mental space in the same way that physical objects 

take up physical space in the world" (Eysenck & Keane, 1990, p. 216). Kosslyn (1980, 

1994) has offered a theoretical model based on these ideas (see later). 

Alternative theories 

However, during this period, several inconclusive debates took place. In the context of 

studies on problem solving (specifically, on deductive reasoning), Huttenlocher (1968) 

suggested that subjects solve the task on the basis of spatial images (a mental space). 

However, this position was contested by Clark (1969) who insisted on the abstract format of 

mental representations used to process syllogisms. 

In addition, the propositionalist school which emerged from late behaviourist criticisms 

(see Anderson & Bower, 1973) had a dramatic impact on imagery studies. Pylyshyn (1973), 

as a representative of this school, considers images as epiphenomena to which functional 

properties are wrongly attributed. A more abstract representation would exist which is not 

equivalent to imaginal nor to verbal representations that propositionalists call amodal 

representation or propositional representation. Propositional representations would be the 

single valid form of representation underlying all types of memory. One argument of the 

propositionalist school is that verbal and visual information has to be connected in some 

way. Consequently, it would be very inefficient to store information permanently in two 

separate codes (as in Paivio's dual coding theory - see above). 
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In this so-called "imagery debate" (see for a review: Tye, 1991), Anderson (1978) has 

proposed the thesis of indetermination. According to this position, we are not in a position to 

clearly differentiate the analogical versus propositional conceptions. Both conceptions could 

be pertinent to account for several imaginal phenomenon; any empirical data could receive 

both interpretations. 

Kosslyn (Kosslyn, Murphy, Bemesderfer & Feinstein, 1977) proposed a mixed theory. 

In his first version of his model, Kosslyn (Kosslyn, Pinker, Smith & Schwartz, 1979; 

Kosslyn, 1980) attempts a computational approach to imagery. He accurately describes 

several components of the imagery system and tries to determine the "deep" structure of 

these representations. According to his position, images are representations which preserve 

an analogical correspondence with the represented objects. He considers that imaginal 

processes combine properties from the visual modality (which would be roughly speaking 

analogical) with "profound components" of representations. Propositions could be used to 

describe the infrastructure and the encoding modality of images in long term memory whilst 

the format of images when they are consciously experienced could be analogical (Kosslyn & 

Pomerantz, 1977). Images would have an analogical visual format when they are generated 

in short term memory in a structure called the "visual buffer". 

Imagery and cognitive neurosciences 

Cognitive psychology could hardly answer the objections concerning the nature of mental 

imagery. Consequently, neurological studies were elaborated to resolve this debate. If 

cognitive neuroscience can provide convincing evidence that mental imagery makes use of 

certain regions of the brain that have specialized functions - specifically that imagery shares 

processing sites with visual perception -, one could narrow down the range of possible 

explanations (Finke, 1989). During the 1990s, a huge number of experiments in this field 

have concerned imagery. 
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Experimental and clinical neuropsychology showed that imagery is a process which 

requires the activation of visual processing subsystems. In her systematic review of reported 

cases of brain-damaged patients with imagery impairments, Farah (1984) has shown among 

other things that patients with left posterior hemisphere lesions are impaired in the generation 

of mental images. Such a report questions the widespread belief that imagery is a "right 

hemisphere" skill because of its popular association with "global" processing (Bruyer, 1982; 

Erlichman & Barret, 1983). Studies of subjects with brain focal lesions or 

commissurotomized patients (Farah, Gazzaniga, Holtzman & Kosslyn, 1985) as well as 

studies using lateralized tachistoscopy in normal adults (Farah. 1986) have produced 

evidence that the left hemisphere is involved in the generation of mental images. 

Specifically, these studies showed that imagery involved posterior areas of the brain, i.e. 

involved the visual cortex. 

In a set of experiments, Peronnet and Farah (Peronnet & Farah, 1990; Farah, Peronnet, 

Gonon & Giard, 1988) demonstrated with psychophysiological techniques that the 

generation of mental images activates representations in the visual system. It is well known 

that to generate a mental image of an object (e.g. the letter H) improves the perceptual 

detection of a corresponding visual percept (see Podgorny & Shepard, 1978). Electro­

physiological activity of the brain recorded during the processing of one of these visual 

detection tasks under image generation instructions showed an effect of imagery on the 

temporal and topographical distribution of Event Related Potentials (ERPs). These effects 

were also observed in the occipital regions of the brain, i.e. the visual cortex. 

Similarly, Positron Emission Tomography (PET) and regional Cerebral Blood Flow 

(rCBF) studies have clearly confirmed that imagery activates visual cortex (Cohen, Kosslyn, 

Breiter, Di Girolamo, Thompson, Anderson, Bookheimer, Rosen & Belliveau, 1996; 

Deutsch, Bourbon, Papanicolaou & Howard, 1988; Goldenberg, Podreka, Steiner, 

Willmes, Suess, & Deecke, 1989; Goldenberg, Podreka, Steiner, & Willmes, 1987; Roland 
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& Friberg, 1985). The activation of these posterior cortical areas suggests that visual 

imagery is a function related to the visual system. 

All these findings that demonstrate that imagery involves an activation of the visual cortex 

cannot easily be explained in terms of propositions or other nonvisual forms of internal 

representation. Indeed, the occipital cortex processes information that is predominantly 

visual. Similarly, tacit knowledge, experimenter's expectations, or other forms of criticisms 

can be ruled out. It is very unlikely that a subject would know, tacitly or otherwise, which 

areas of the brain are supposed to be activated during imagery tasks. Consequently, to quote 

Kosslyn (1994, p. 406) : "We now have strong evidence in favor of depictive 

representations, and a reasonably clear picture of the mechanisms that generate, interpret, 

and use imagery in information processing. ( ... ) We can stop debating about the 

fundamentals, and can address additional questions". 

Kosslyn's theory of imagery revisited: Evidence from the new Cognitive 

Neuroscience 

Kosslyn (1994) reformulated his theory of mental imagery in the light of the new 

cognitive neuroscience, and as a consequence, could reply to the criticisms against the 

concept of imagery. His new theory not only reformulates some ideas about mental imagery 

but also considers the visual cognition as a whole. He integrates data from neural 

computations, neurophysiology (including animal models), and neuroanatomy. The 

"computer metaphor" used in his previous theory (see Kosslyn, 1980) - the Dry Mind - is 

replaced by a new concept: the Wet Mind (see Kosslyn & Koenig, 1992). His theory is 

extensively presented as it constitutes the most developed theory of imagery at present. 

The cognitive system is conceived as a functional system composed of neurones 

responsible for several operations (eventually engaged in a particular task). These neurones, 

organised in networks, receive similar INPUT and send similar OUTPUT (Kosslyn, 1987). 
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For particular processing, neurones have to interact rapidly. As a consequence, 

complementary neurones are usually located in similar areas of the brain; it explains the 

localisation of the different psychological functions in the cerebral cortex. 

In Kosslyn's theory, seven major subsystems are identified: the visual buffer, the 

attention window, the object properties encoding system, the spatial properties encoding 

system, the associative memory, the information lookup system, and the attention shifting 

mechanism. 

The Visual Buffer 

The visual buffer is located in the retinotopic areas of the visual cortex (Kosslyn, Alpert, 

Thompson, Maljkovic, Weise et al., 1993). It acts as a two-dimensional space where objects 

are represented as patterns of neuronal activation. The visual buffer is not a physical space 

but rather a functional space, i.e. properties such as position or distance are determined by 

the relations of contiguity between the cells but do not correspond necessarily to physical 

properties of position or distance on the neuronal structure which is the medium of the 

representation. The visual buffer has a limited spatial extent, is elliptic, and has a limited 

resolution which decreases when the pattern is displayed at the periphery of the buffer 

(Finke & Kosslyn, 1980; Finke & Kurtzman, 1981). 

As only a limited amount of information can be processed at a particular time, a mobile 

attention window selects visual input for the next stages of processing. The attentional 

window is conceived as a system which inhibits information that is not under current 

processing. 

The selected information is then simultaneously sent to two sets of subsystems which 

work in parallel. These correspond to the two major visual cortical pathways (Ungerleider 

&Mishkin, 1982): (1) The Ventral System (What System) - or occipito-temporal path -
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which is engaged in the processing of visual properties of objects (colour, shape, texture), 

and (2) the Dorsal System (Where System) - or occipito-parietal path - which is engaged in 

the processing of spatial properties of objects (localisation, orientation, size). 

The Ventral System 

The ventral system encodes objects properties (such as shape, color and texture) and 

matches them to visual representations in Long Term Memory (LTM) to allow object 

recognition. 

A "Preprocessing subsystem" extracts the nonaccidental and signal properties of the input 

image. Nonaccidental properties are edges that are roughly parallel, intersecting, collinear, 

and so on. Signal properties include colored and textured regions that distinguish the object. 

In addition, a "Motion Relation encoding subsystem" encodes the object characteristics 

related to an actual movement of the object. 

The image and extracted properties are sent to the "pattern activation subsystems". The 

mental representation which is most activated by these INPlITS is then "selected": The object 

is visually recognised. 

The Dorsal System 

The Dorsal System operates in parallel with the Ventral System. It encodes a 

representation of location, size, and orientation of each of the perceptual units within the 

attention window. 

The information contained in the Visual Buffer is too incomplete to allow the analysis of 

spatial properties. Indeed, as this information is retinotopically organised, it is considerably 

modified by ocular saccades and head movements. A "Spatiotopic Mapping subsystem" 
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encodes the location, the size and orientation of the object as a whole. It locates accurately 

the objects in space relating information about the eyes, head and body position and the 

visual information in the Buffer. Its OUTPUT can be considered as a set of co-ordinates 

which determines the spatial position of each object present in the visual field. The 

spatiotopic mapping subsystem sends input to the "categorical spatial relations encoding 

subsystem" and to the "coordinate spatial relations encoding subsystem". 

The "Coordinate Spatial Relations Encoding" subsystem encodes metric information 

about location, size and orientation. It sends spatial co-ordinates (i.e. spatial relations) to 

long term memory. This subsystem is located in the posterior parietal area which not only 

receives visual afferences but is also implicated in the control of movement. As a 

consequence, the information related to the localisations could be encoded in a format 

directly usable for moving behaviours. 

The "Categorical Spatial Relations Encoding" subsystem works in parallel with the 

former subsystem. It encodes spatial relations in the format of categorical representations 

(e.g. "connected to", "on", "under", "on the right of' ... ). The categorical representations 

preserve the invariant parameters, i.e. those which do not affect the purely metrical 

properties of the objects. 

Associative Memory, Information lookup and attention shifting 

The information from the Ventral and Dorsal Systems then converge in the associative 

memory (LTM). The information is synthesised and associated to other information kept in 

this amodal memory such as the name, the category, the function, etc. 

The information lookup subsystems and the attention shifting subsystem are used when 

the object is not immediately recognised. They allow the search of other information both in 

the associative memory and in the visual buffer (through a shifting of the attention window). 
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Mental imagery in Kosslyn's (1994) theory 

We have known since the late 1980s that visual imagery shares with visual perception the 

same structures. It has been demonstrated that visual imagery activates the same cortical 

areas of the brain (cf infra). As a consequence, subsystems involved in visual information 

processing should help to explain imagery processes. However, in the case of imagery, the 

INPUT is no longer sensorial but originates in associative memory. The system is acting 

backwards, i.e. the reversed scenario of visual perception: associative memory> dorsal and 

ventral subsystems> visual buffer. 

Moreover, Kosslyn (1994) adds to his model a subsystem called "Configuration shifting" 

to refer to the image transformations (mental rotation, mental scanning ... ). This subsystem 

transforms the patterns in the visual buffer. 

Baddeley's (1986) working memory model 

Another theoretical model which could be considered with interest is Baddeley's (1986) 

working memory model. However, it is concerned with not only visual information but also 

auditory information. Although less explicit on imagery subsystems, the working memory 

model shares some common characteristics with Kosslyn's (1994) model. It will be 

considered only in this context. 

According to Baddeley (1986, 1992), working memory is a system with a limited 

capacity for temporary storage and manipulation during information processing. It includes a 

central executive for complex decision and control processes and a number of subsidiary 

slave systems thought to be involved in specific processing. Two such subsystems were 

envisaged in the original formulation, namely the articulatory loop and the vi suo-spatial 

scratch pad. The former subsystem is thought to act as a subvocal rehearsal buffer and has 
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received the largest share of fruitful research effort. The visuo-spatial scratch pad (VSSP) 

has received rather less attention, and its characteristics are somewhat less clear as a result. 

The VSSP is responsible for storage of visuo-spatial information in short term memory. 

The most interesting aspect of this model for our concern is that Logie and Marchetti (1991) 

have suggested that this system is decomposed into two subsystems: A spatial and a visual 

one. These concepts parallel the dorsal and ventral subsystems in Kosslyn's (1994) model. 

Indeed, visual distractor tasks can interfere with visual, but not spatial, working memory 

(Baddeley, Grant, Wight & Thomson, 1975; Baddeley & Lieberman, 1980). Conversely, 

spatial processing interferes specifically with spatial working memory (Baddeley & 

Lieberman, 1980; Logie & Marchetti, 1991). 

According to Baddeley (1986), VSSP would be involved in the active manipulation of 

mental images. He wrote (1986, p. 143) that "there is good evidence for the occurrence of a 

temporary visuo-spatial store ... that is capable for retaining and manipulating images". 

However, a recent neuropsychological case study of a patient with a left parieto-occipital 

lesion (Morton & Morris, 1995) has demonstrated selective impairment in mental 

transformation in the absence of an impairment in visuospatial working memory. This case 

questions the strict association of VSSP and image transformation. 

Conclusion 

In the present thesis, two imagery subsystems are considered: Mental rotation and mental 

scanning. Neither Kosslyn (1994) nor Baddeley (1992) considered imagery from a 

developmental perspective although it might help to clarify some issues in this field. The 

approach of the present thesis is clearly a developmental one. Abilities in mental rotation and 

mental scanning will be approached in a life-span perspective. 
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Mental rotation as well as mental scanning can be decomposed into several subsystems. 

This thesis sets out to examine the development of these components in order to understand 

the maturation and deterioration of mental rotation and mental scanning. In Kosslyn's 

(1994) theory, many subsystems are engaged in imagery processes. For the sake of clarity, 

only some components will be considered in the present research. These components have 

been selected because they seem to be particularly important when we have to carry out 

mental rotation or mental scanning. Basically, two general components will be considered in 

this thesis: (1) processes engaged in the encoding of a visual pattern (dorsal/spatial and 

ventral/visual subsystems), and (2) processes engaged in the transformation of a mental 

image. 

In Chapter 2, the developmental literature on mental rotation abilities is reviewed. As 

only very few papers have considered the development of mental scanning, these studies 

will be presented in the introduction of Chapter 6. The literature on mental rotation is 

organised into several sections corresponding to the different subsystems supposed to be 

engaged in mental rotation. 

Chapter 3 presents a study which provides information on children's, young adults' and 

the elderly'S ability to carry out a mental rotation of an object in space. To my knowledge, 

this study is the first experiment to assess mental rotation ability with identical tasks across 

ages. 

Vi suo-spatial short term memory with large capacity seems to be particularly necessary to 

carry out transformations of mental images. In Chapter 4, the central issue in this thesis is 

introduced: Is the development of mental rotation abilities dependent on visuo-spatial short 

term memory? A correlational analysis between mental rotation abilities and short term 

memory span for visual patterns is presented. 
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However, according to Kosslyn (1994) and Baddeley (1992), mental imagery functions 

are strongly related to processes engaged in visual and spatial short term memory. They 

suggest that the stimuli are encoded in two parallel subsystems : A visual/ventral and 

spatial/dorsal subsystems. These components encode specific characteristics of the visual 

pattern. The visual component encodes the "visual" characteristics, i.e. color, texture, 

shape, etc. The spatial component encodes the "spatial" characteristics, i.e. orientation, 

location, etc. Both subsystems are engaged in the encoding of a visual pattern. In Chapter 

5, vi suo-spatial short term memory is no longer considered as a single structure but is 

decomposed into these two sub-components. The role of the localisation processes is 

particularly assessed in three consecutive experiments. 

Chapter 6 generalises the conclusions of previous chapters to another mental imagery 

subsystem: Mental scanning. Vi suo-spatial short term memory capacity is assessed and its 

impact on mental scanning abilities is analysed. 
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Chapter Two 

Development of mental rotation : 
Studies of children and elderly people 

As described in the general introduction, imagery studies have developed dramatically 

since the 1970s, and still more clearly in the 1990s. Imagery as a whole has received much 

attention not only from classical cognitive psychologists but also from cognitive 

neuroscientists. It has allowed an integrative approach of imagery. 

Another valuable source of knowledge about imagery could be provided by 

developmental psychology. Developmental psychology might help to clarify some 

controversies in this field of research. As mentioned by Mandler (1983) and Paivio (1986), a 

developmental approach could allow, for instance, some clarification of a potential 

distinction between an analogical versus propositional format of imagery. But more 

interestingly, a developmental approach - especially if considered in a life-span perspective­

could bring us some information about how the different subsystems postulated in 

Kosslyn's (1994) theory evolve with age. Are all subsystems equally developed in 

childhood? Are they affected equally by ageing? Can we identify developmental trends 

among the different subsystems? 

As mentioned in the previous chapter, several theoretical models of imagery were 

formulated in the 1980's, and all of them state the composite character of the imagery system 

(e.g. Kosslyn, 1980; Kosslyn, 1994). A common aspect of these models is that they 

propose the generation and the transformation of mental images. The generation of images 

refers to processes which allow subjects to create an image in mind; they "see" what an apple 

20 



looks like, they remember the face of their closest friend. These images are generated from 

information kept in an associative memory (see Kosslyn, 1994). In contrast, the 

transformation refers to a set of subprocesses which modify the content of images or animate 

them through particular movements. Image transformations are defined by their dynamic 

characteristics. Subjects can scan across mental images, they can increase or reduce its size, 

they can mentally rotate an image. This distinction between image generation and image 

transformation is useful in a developmental approach. 

This review considers the development of one imagery subsystem: "Mental rotation". 

Roger N. Shepard and Lynn A. Cooper referred to this term in the 1970s while carrying out 

a number of classical experiments (see chapter 1). The process is classically used for 

instance when we have to identify what the letter p looks like when 1800 rotated. 

Cooper and Shepard (1973b) referred to a specific algorithm to describe mental rotation 

processes. When particular characters or figures have to be compared or identified, their 

structure and orientation are first globally encoded in short term memory. Second, a 

transformational process is activated to rotate a mental image of the stimulus to its canonical 

or learned orientation. When mental rotation has been carried out, the mental image of the 

object is compared with the referent. When the image is in congruence with its referent, we 

respond. 

In terms of Kosslyn's (1994) theory, the first step probably corresponds to the activation 

of the ventral and dorsal subsystems which send their OUTPUT to the associative memory 

(which allows object recognition). The second step corresponds to the activation of the so­

called "Configuration shifting" subsystem which transforms the patterns in the visual buffer. 

The third phase allows a comparison between the information in the visual buffer and the 

representation ofthe corresponding information in the associative memory. 
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Previous reviews (see Dean, 1990; Lautrey & Chartier, 1991) have considered the 

development of mental imagery as a whole. They argued that young children are very poor at 

transforming mental images. However, such an approach is misleading. These authors seem 

to consider imagery as an undifferentiated system. They reviewed the literature as if there 

would be just one general system which deals with imagery. Such a conception supposes 

that the different imaginal abilities (mental rotation, mental scanning, etc.) develop at the 

same speed since they belong to the same general system. Or in other words, to acquire 

knowledge on the development of one subsystem gives us information on the other 

subsystems (in Dean, 1990, and Lautrey & Chartier, 1991, they used mainly mental rotation 

studies to infer a general theory on the development of imagery). Such an approach is 

incorrect. Indeed, computational, neuropsychological, differential as well as developmental 

studies have clearly demonstrated the specificity of each imagery subsystem (e.g. Kosslyn, 

Flynn, Amsterdam & Wang, 1990; Farah, 1984; Kosslyn, Brunn, Cave & Wallach, 1984; 

Kosslyn, Margolis, Barrett, Goldknopf & Daly, 1990). 

This chapter reviews only the development of mental rotation. Studies are organised 

around Shepard's basic algorithm. Both children's and the elderly's capacities are 

considered and their difficulties are categorised in terms of the different steps they 

necessarily take during a mental rotation task. 

Stimulus encoding 

When an adult is confronted with a visual stimulus, he spontaneously extracts global 

characteristics of the structure and the orientation of the perceived objects. During this first 

processing, which covers in fact several parallel processes, the object is recognised. 

Stimulus recognition is fundamentally based on a dissociation between two main processing 

sets: the perception and the elaboration of the percept, and the comparison of this percept 

with representations kept in memory. 
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Stimulus recognition is not extensively considered here, however we must be conscious 

that this step necessarily precedes the activation of the mental rotation processes per se (see 

for a discussion on the recognition of misoriented shapes: Corballis, 1988; or for a broader 

discussion of the models of visual cognition: Pinker, 1984; Humphreys & Bruce, 1991; 

Kosslyn, 1994). Pinker (1984) grouped the different theories of object recognition into 

three categories: (1) Viewpoint-independent models, (2) Multiple-views models, and (3) 

Single-view-plus-transformation models. In the Viewpoint-independent models, a single 

representation is attributed to the object independently of its size, orientation or position. 

Marr's (1982) theory falls into this category. His approach is to use simple, low-level 

properties of an object's shape, such as axes of elongation, to define a reference frame 

intrinsic to the object. The shape of the object can then be represented in terms of relation of 

the object's parts to its intrinsic reference frame. This description yields to an "object­

centered" representation. Because intrinsic reference frames change orientation with the 

object, object-centered representations are orientation-invariant. In the Multiple-views 

models, an object is represented in a set of representations, each associated with a familiar 

orientation. The object is recognised when it matches one of them. Finally, in the Single­

view-plus-transformation models, the objects are represented in a single viewer-centred 

orientation and the recognition is reached through transformation processes which convert a 

representation of the perceived object into a canonical orientation kept in memory, or which 

match memory representations with the perceived form. The mental rotation process has 

been proposed to be a candidate for this transfonnation process. 

However, many studies in cognitive psychology and neuropsychology suggest that 

mental rotation is not always used when we have to recognise "misoriented objects". 

Corballis (1988) has suggested that mental rotation would be only used when the 

identification or recognition tasks are unusual or difficult. It would particularly be the case in 

a handedness recognition task where discriminations between nonnal and mirror-reversed 

versions of the stimuli have to be realised. On the contrary, faster mechanisms would be 
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used when the stimuli are simple or highly familiar. For instance, Corballis, Zbrodoff, 

Schetzer and Butler (1978) have shown that RTs to name rotated alphabetical characters do 

not depend on the stimulus orientation, and Eley (1982) has reported a similar flat RT trend 

in a task requiring the identification of misoriented letter-like symbols. 

However, the familiarity of the stimuli does not always seem to prevent the use of 

transformation processes. Jolicoeur (1985, 1988, 1990) and McMullen and Jolicoeur (1992) 

have shown that the time to name misoriented line drawings of familiar objects and animals 

increases systematically as a function of stimulus orientation. The recognition of a 

disoriented natural object requires the alignment of visual inputs with the stored 

representations through a normalisation process (Ullman, 1989). Naming time functions 

seem to reflect a transformation process related to mental rotation. This suggests spatial 

processing similar to those carried out in mental rotation tasks. 

In these chronometrical studies, the slope of the RT function has been used as a criterion 

to state whether a mental rotation process has been used to recognise the misoriented object. 

Indeed, Metzler and Shepard (1974; quoted from Shepard & Cooper, 1982) wrote that "The 

subject... can perform mental rotation at no faster than some limiting rate". Cohen and 

Kubovy (1993) summarised the data mentioning that a rate of 1 mslrotational degree is the 

limiting value in interpreting the RT slopes as evidence for a mental rotation process. This 

limiting value is based on reported data in several published papers (e.g. Corballis, 

Zbrodoff, Shetzer & Butler, 1978, p.100 : 0.97 ms/degree; Takano, 1989, p.35 : loooo/s.; 

Tarr & Pinker, 1989, p.256 : 0.78 ms/degree). As in many object identification studies 

recognition time has been shown to be below this value (e.g. Jolicoeur & Landau, 1984; 

Takano, 1989), another process might be used while naming misoriented objects. In fact, 

Jolicoeur (1990) has suggested a dual-system model of object identification in which a slow 

normalisation process - i.e. mental rotation - is needed to maintain the spatial relations 

among stimulus features so that these descriptions might be mapped onto memory 

representations (Koriat & Norman, 1989; McMullen & Jolicoeur, 1992). However, with 
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practice, subjects are able to name the objects more quickly, and the steepness is reduced to 

less than the value mentioned above. It seems that subjects shift from an analogue­

transformation process to a feature-based system when knowledge is acquired about the 

objects to be identified (Murray, Jolicoeur, McMullen & Ingleton, 1993). It is only under 

particular conditions - namely, when orientation-invariant information is difficult to isolate -

that subjects continue to rely upon an alignment system to recognise misoriented objects 

(Tarr & Pinker, 1989). Apparently, object recognition can be reached through two different 

but related transformation processes during repetitive presentations of natural objects. 

Mirror-reversed versus normal discriminations and object naming activate related spatial 

processes which tend to become independent with practice. According to Murray, 

Jolicoeur, McMullen and Ingleton (1993), the diminution of the orientation effect with 

practice could be explained by learned representations which keep orientation-invariant parts 

or attributes, independently of their spatial relations. In terms of Biederman's (1987) 

theory, one source of orientation-invariant parts may be geometric primitives called geons, 

derived from viewpoint-invariant nonaccidental properties of the stimulus. 

Neuropsychological data also support object recognition models increasing the standing 

of hypothesised relations between viewers and objects. However, some single case studies 

suggest a dissociation between mental rotation and rotated object recognition: L.B., a 

commissurotomized subject, who was very poor at mentally rotating letters presented to the 

left hemisphere, was well able to identify the same letters in varying orientations (Corballis 

& Sergent, 1989). Similarly, Farah and Hammond (1988) have reported clear evidence for a 

dissociation between mental rotation and object recognition abilities. Their patient R.T., who 

had a large right frontotemporoparietal lesion, was presented with different mental rotation 

and object recognition tasks. While he preserved the aptitude to recognise rotated objects, he 

performed badly in the different mental rotation tasks. 

In this section, I consider whether these components affect children's and elderly 

people's performances in mental rotation tasks. First, are they able to recognise misoriented 
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stimuli ? Second, are they able to encode and to maintain visual information in short term 

memory ? 

Studies of children 

Object recognition 

So far as children's ability to recognise rotated stimuli is concerned, many empirical 

studies (e.g. Bower, 1967; Gibson, Owsley & Jonhson, 1978) have demonstrated object 

constancy across changes in orientation in infants. 

Spelke and associates (Kellman & Spelke, 1983; Spelke, 1985) have run a number of 

experiments to test young infant's object knowledge and identification of object features to 

which they respond. Using an habituation paradigm, they demonstrated that separated 

fragments of an object are interpreted as parts of a single object if they undergo a common 

motion. 

Kellman and associates (Kellman, 1984; Kellman & Short, 1987) confirmed that infants 

abstract information about geometric form from kinetic information. In their studies, three­

dimensional objects were presented under several orientations. When four-months-old 

infants observed a continuously moving stimulus, they recognised it across changes in 

orientation. However, two different views of a single form seen in a static view (without 

being presented with the rotational motion between the two end-states of the form) were not 

considered as identical. 

Testing older children (five and eight-year-olds), Lejeune (l992b, 1996) clearly showed 

that they have no difficulty in naming misoriented familiar objects, an ability which was 

shown to be independent of mental rotation ability. Subjects who achieved good 

performance in object recognition tasks often performed very poorly in mental rotation tasks. 
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This suggests that the ability to recognise misoriented objects emerges well before the ability 

to mentally rotate an image. However, Lejeune's (1992b, 1996) studies could be criticised. 

It might be that the two sets of tasks were not matched for difficulty. In particular, the object 

recognition tasks could have been much easier. However, as Farah and Hammond (1988, 

p. 42) mentioned: "Could it be the case that mental rotation is simply harder than orientation­

invariant object recognition, and that this alone accounts for the observed dissociation 

between the two types of task? Mental rotation may well be harder than orientation­

invariant object recognition, but if this is true then our case has already been made: 

Logically, it cannot be true both that mental rotation is harder than orientation-invariant 

object recognition and that mental rotation is required for (Le., a component of) orientation­

invariant object recognition". 

Maintenance of visual information in short term memory 

Does this mean that a reason for children's failure in mental rotation tasks should be 

sought in the development of visuo-spatial memory ? 

Childs and Polich (1979) and Waber, Carslon and Mann (1982) considered this problem 

in examining differences in performance between children and adolescents. Subjects were 

asked to decide whether rotated stimuli were normal or mirror-reversed. Without advance 

information about the structure and the orientation of the test character, RTs increased with 

the departure of the stimulus from its upright orientation as in classical experiments (see 

Cooper & Shepard, 1973a). The chronometrical index suggested that subjects mentally 

rotated stimuli into congruence. In another condition, subjects were provided with structural 

and orientational information about the object that was to be presented. Provided with such 

information, they were expected to generate a mental image of the pattern in a particular 

orientation before the presentation of the target and, as a consequence, were expected to 

respond uniformly and rapidly to all orientational conditions. Indeed, in such situations, 
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when young adults are presented with information on the forthcoming target, their answers 

are the same for all orientational conditions, i.e. RTs are no longer dependent on stimulus 

orientation but rather a flat function is observed. It is classically interpreted that this flat 

function suggests that young adults, when provided with information, do not carry out 

mental rotation. This RT pattern was expected in children and adolescents. However, 

although younger subjects (9-year-olds) claimed to generate an imaginal representation of the 

stimulus, RT curves strongly suggested that they did not. RTs still depended on the stimulus 

orientation just as in a condition without advance information. The authors concluded that 

children can use mental rotation strategies to solve the problem, but are impaired in preparing 

and maintaining visuo-spatial information for 1000 msec in short term memory. 

Could we reasonably suppose that young children are not able to maintain visual 

information for 1000 msec in working memory? Kosslyn, Margolis, Barrett, Goldknopf 

and Daly (1990) demonstrated that the maintenance of visual images is far superior to 1000 

msec in 5-year-olds; it is indeed equal to at least 3 seconds. Moreover, Wilson, Scott and 

Power (1987) showed that the memory span for visual patterns does not decrease between 2 

and 10 seconds in five-year-olds. Such empirical evidence calls the previous interpretation 

into question. 

In Childs and Polich (1979) and Waber, Carlson and Mann (1982), visual short term 

memory was conceived as a single structure. However, since the development of 

Baddeley's working memory model, and still more specifically, Logie's (1995) revision of 

the visuo-spatial sketchpad (VSSP) - the slave system in charge of the maintenance of visuo­

spatial information -, we know that visual short term memory is a dual structure where 

visual and spatial information are encoded separately. 

Similarly, recent computational models of high-level vision subsystems (Kosslyn, 1994; 

Kosslyn & Koenig, 1992) could help us to reinterpret these data. As mentioned in the 

general introduction, two sets of subsystems (corresponding to the two major visual cortical 
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paths in brain) have been identified in these models: The first path, classically referred to as 

the ventral system - or occipito-temporal path - analyses the structure of the stimulus, whilst 

the second path, referred to as the dorsal system - or occipito-parietal path - considers the 

spatial dimensions of the stimulus. It would be worth identifying developmental trends of 

these two subsystems in the context of mental rotation tasks. It could be that the information 

young children forget during the 1000 msec retention interval is more related to spatial 

characteristics, i.e. the stimulus orientation, rather than structural characteristics of the 

stimulus. 

Complexity of the stimuli 

The idea of a poor encoding of the stimuli in mental rotation task was suggested both in 

Kail, Pellegrino and Carter's (1980) and in Carter, Pazak and Kail's (1983) studies. They 

demonstrated not only that the speed of mental rotation increases with development but that 

unfamiliar characters (abstract shapes from Thurstone's P.M.A. task versus alphanumeric 

characters, i.e. familiar characters) require more time to be rotated, encoded and compared. 

However, it is unclear whether the reported results were due to the complexity of the stimuli 

or due to the experimental procedure. Although in both tasks two stimuli were presented 

simultaneously (one upright stimulus and one rotated stimulus), it could be that subjects did 

not use the upright version of the alphanumeric character to carry out the comparison but 

rather used the mental representation of the letter they had in L TM. As a consequence, when 

submitted to this version of the task, subjects were, in a way, confronted with a mental 

rotation task where a single shape was presented. We know that such task lead to higher 

rotational speed (see Shepard & Cooper, 1982). The authors might have then wrongly 

attributed the effect on RTs to stimulus complexity. It would rather be due to the 

experimental procedure. 
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Rosser, Ensing, Glider and Lane (1984) and Rosser, Ensing and Mazzeo (1985) also 

considered the issue. They tested the role of stimulus features in the prediction of the 

appearance of rotated objects. They showed that to add at least one orientational marker to 

poor stimuli such as squares or other simple geometric figures increases success rates in 

young children (4- and 5-year-olds). 

However, these results lead to a dilemma. Adding orientational features improves 

children perfonnances but also increases both the difficulty of encoding the stimulus and the 

memory load. The more features there are, the more difficult it is to keep them in short tenn 

memory. A way to solve this issue is to suggest that only orientational features are encoded 

and later rotated. Such a hypothesis is consistent with some data collected in adults (e.g. 

Carpenter & Just, 1978) suggesting that they rotate part of the figure. Similarly, Bialystok 

(1989) has shown that children (9- and ll-years-old) encode only critical features (those 

related to the orientation of the stimulus) and not the whole figure. Such results could be 

partially related to Lejeune's (1994) findings which suggest that before the emergence of 

mental rotation abilities in children, the strategies used are based on a perceptual analysis of 

the location of some stimulus details. 

Studies of elderly people 

Object recognition 

In a review of the literature, Bmyer (1994) has suggested that ageing has little effect on 

visual recognition. When deficits are reported, they rather concern low level vision. For 

instance, Fozard (1990) reported that ageing affects sensitivity to luminosity and spatial 

resolution (e.g. visual acuity, contrast sensitivity or depth perception). Specifically, Hoyer 

(1990) has suggested that ageing might affect localisation processes (see Kosslyn's (1994) 

model) but not object identification. 
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Visuo-spatial short term memory 

No study has considered the effect of ageing on visuo-spatial memory in connection with 

the development of mental rotation abilities. However, it seems that visuo-spatial memory 

span decreases with age. In a recent study, Feyereisen and Van der Linden (1992) showed 

that ageing does affect spatial memory span (measured with the block-tapping test). 

Similarly, Dror and Kosslyn (1994) showed that image maintenance is affected by age. 

Transformational phase: The mental rotation itself 

Studies of children 

Piagetian perspective 

Before the mid seventies, most of the studies on the development of mental imagery in 

children had been carried out by Piaget and Inhelder (1966). Two major questions were at 

the origin of their work: (1) Is mental imagery a by-product of perception or is it a 

reproductive mechanism like imitative behaviours, (2) Is the development of imagery 

independent of other intellectual abilities or is it related to the development of "operations" ? 

To assess their ideas, Piaget and Inhelder (1966) tested broad samples of children in 

several experimental conditions. It appeared in most of their studies that so-called 

"preoperational children" (i.e. children younger than about 7 years of age) were particularly 

poor in image transformational tasks. Consequently, Piaget postulated that only reproductive 

images are present in young children: Children are able to generate static images of an object 

or a scene but cannot transform them. It is only after the age of seven or eight that 

anticipatory images appear: Children become able to implement transformations of images 1. 

Interestingly enough, dreaming studies in subjects younger than seven-years-old suggest that children's 
dreams are simple and static (e.g. Foulkes, 1982). 
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These imaginal transformations are only possible when children can distinguish the invariant 

parameters of the object, and have explicitly understood the transformation itself. According 

to this hypothesis, the development of mental imagery would parallel the development of 

"concrete operations". The static character of images before age seven would depend on the 

preoperational tendency of the child to centre himself (herself) on the objects and to ignore 

them when they are moved from an initial position to a final one. The child does not 

understand that the parts of the moving object change their position in a co-ordinated way. 

As a consequence, preoperational children would distort one or more of its properties. 

Moreover, he thinks that any imaginal anticipation of movement presupposes that the images 

follow one another in order of succession, which derives from operational seriation; the 

child would need to understand the logical sequence of movement to imagine correctly the 

transformation imposed on the object. Clearly, the Piagetian conception was developed in a 

context which tended to attribute a symbol status to mental imagery (see Meyerson, 1923). 

The image is no longer an extension of perception, it seems to be a product of the 

interiorization of intellectual acts: It is an interiorized imitation. Such ideas were at that time 

suggested in psychophysiological work (e.g. Rey, 1947, 1948; Jacobson, 1931). 

However, the relationship observed between motor activities and imagery would be now 

interpreted as an effect of motor imagery, used for instance in mental rehearsal techniques in 

sport training (see Murphy & Jowdy, 1992), rather than visual imagery. 

The information-processing approach 

Cognitive psychology has considered the development of mental imagery, mainly through 

mental rotation processes. Shepard and Metzler's (1971) paradigm has been applied in 

developmental studies. Most of the time, mental chronometry has been used to assess 

Piagetian ideas. Specifically, several studies tried to determine whether mental imagery is 

static or kinetic in young children. However, at present, no empirical evidence has been 

brought to explain the origin of mental imagery; only Kosslyn (1981) and Shepard (1984, 

1988) have suggested some hypotheses about the genesis of this cognitive function. 
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It is common to distinguish between the origin of imaginal representations and 

transformational imagery processes. Structures and processes might be innate, but the 

content of mental images would be - of course - acquired through visual experiences (see 

Dean, 1990). 

Shepard (1984, 1988; see also Lejeune, 1992a) has offered the most developed theory of 

the origin of mental imagery. Humans move and live in a three-dimensional world in part 

populated with mobile objects. The constraints on mobility imposed by this three­

dimensional space would be physical invariants which have prevailed throughout biological 

evolution; Evidence for mental rotation abilities has been reported in baboons (see for 

instance: Vauclair, Fagot & Hopkins, 1993) and in very young human subjects (see 

Darcheville, Bideaud & Devos, 1992). Among these constraints, the kinetic component 

(governing the displacement or the spatial transformation between objects, and between 

objects and us) would be essential. Stable spatial transformational rules based on the six 

degrees of freedom of the environment would have interiorized: Three translational 

components (up-down, left-right, backward-forward) and three rotational components 

(angular shifts of attitude, pitch, yaw - in aeronautical parlance). 

It is in this particular space that mental rotation would take place. Mental rotation would 

respect intrinsic characteristics of this space and consequently would respect the "least action 

principle": The constructed and mentally used path would tend to be the simplest and 

shortest one in a set of possibilities. Lejeune (1993b) showed that the representation of 

rotational movement in three-year-olds respects this principle. 

Empirical work: Evidences from mental chronometry 

Marmor (1975) used Shepard's paradigm to study the development of mental rotation 

capacities in young children. She presented five and eight-year-olds with pairs of panda 
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shapes differing in orientation by a rotation in the picture plane. Children were instructed to 

imagine visually the rotation of one of the pandas to superimpose it on the other one, and to 

determine after the rotation whether the two pandas were the same or different. The pandas 

could have the same or different legs raised. One of the stimuli was rotated by 30°, 60°, 120° 

or 150°. RTs served as an evidence for the use of mental rotation. Results indicated that 

young children could use kinetic imagery: RTs showed a significant linear relationship with 

stimulus orientation as in young adults (see figure 1). It should be emphasized that, in this 

experiment, children were instructed to imagine the rotation of the patterns. Consequently, 

this study does not inform us whether such results would be observed without these explicit 

instructions. 
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Figure 1 : Reaction times and errors (in %) for 

stimuli 30°, 60°, 1200 and 1500 rotated in five­

year-olds (circles) and in eight-year-olds 

(squares). Adapted from Mannor (1975). 
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Although several studies have replicated Marmor's results (Courbois, 1994; Dean, 

Scherzer & Chabaud, 1986; Hatakeyama, 1989; Kosslyn, Margolis, Barret, Goldknopf & 

Daly, 1990; Kerr, Corbitt & Jurkovic, 1980; Lejeune & Decker, 1994; Marmor, 1977), 

others have failed (Dean, Duhe & Green, 1983; Dean & Harvey, 1979). One possible 

explanation for such failure might be the nature of the stimuli used in these experiments. The 

later two studies used abstract shapes as stimuli which might be more difficult to encode. 

In addition to reporting a linear trend of RTs as a function of stimulus orientation, 

Marmor (1975) also suggested that mental rotation speed evolves with age. The increasing 

of rotational speed with age has also been reported by Carter, Pazak and Kail (1983), Kail 

(1985) and Kail, Pellegrino and Carter (1980). Several explanations have been offered for 

this. Kail, Pellegrino and Carter (1980) first suggested that a global transformational 

processes could explain the lower rotational speed in young children. In older subjects, just 

one part of the stimulus would be rotated which would result in higher rotational speed. 

However, this hypothesis has been later rejected in favour of a general reduction of 

processing time in children (Kail, 1991, 1993; Kail & Park, 1990). Whatever the task, RTs 

at a particular age could be expressed by RTe = me RTa (with RTc for the Response time in 

children at a particular task, me as a variable which is function of age - me is constant at a 

particular age and decreases as an exponential function of age to reach the value of 1 at 

adulthood -, and RTa as the value of RT in young adults in a corresponding task). The 

change in rotational speed is not specific to mental rotation but is also observed in other 

tasks. 

Shepard and Metzler (1971) demonstrated that mental rotation obeys the same rules when 

stimuli are rotated in depth. However, all the developmental studies mentioned so far used 

two-dimensional stimuli rotated in the frontal plane. Two studies tested mental rotation in a 

three-dimensional space in young children: Foulkes and Hollified (1989) and Lejeune and 

Decker (1994). 

35 



In the first experiment, although the performance of five to six-year-olds was as good as 

that of young adults, the classical linear RTs trend was not reproduced in five-year-olds 

either for two- or three-dimensional rotations. On the contrary, in the second experiment, 

RTs with a linear trend were observed in six, seven and ten-year-olds for two-dimensional 

rotations, but was only observed in the younger children for depth rotations. Moreover, 

error rates increased in younger children in the three-dimensional condition. Lejeune and 

Decker (1994) suggested that an imaginal processes was used for frontal rotations in all 

subjects but, in the older subjects, logical reasoning might be used for three-dimensional 

rotations. Such interpretation is in congruence with the hypothesis which states that the 

development of imagery goes from an analogical mode to a more propositional (abstract ?) 

mode (see for instance: Dean, Duhe & Green, 1983; Lautrey & Chartier, 1991). Divergences 

between Foulkes and Hollifield's and Lejeune and Decker's studies are difficult to interpret. 

However, it should be noticed that stimuli and stimulus orientations were different in these 

two studies. In Foulkes and Hollified's study, stimuli were rotated by only 0°,30°,60° and 

150° rotated. 

In summary: Compromises between the Piagetian and the information-processing 

approaches? 

New methodologies (especially mental chronometry) have allowed psychologists to 

examine the development of mental rotation abilities. Does it mean that the Piagetian 

position has to be definitely abandoned? 

In fact, several studies have systematically tested the relationship between mental rotation 

abilities and the operational level of development (see Dean, Scherzer & Chabaud, 1986; 

Foulkes, Sullivan, Hollifield & Bradley, 1989; Hatekeyama, 1989; Kerr, Corbitt & 

Jurkovic, 1980; Marmor, 1977). Generally, no correlation appeared between mental rotation 

abilities and the operational level of development. 
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However, a Piagetian approach is not totally irrelevant in imagery studies. Methodologies 

used by the information-processing school are just different (Dean, 1990; Mandler, 1983; 

Lautrey & Chartier, 1991). In Piaget and Inhelder's (1966) studies, drawings, statements or 

gestures were used to extemalise the mental representations; such methods might not be 

good methods to study the development of children's representations (Kosslyn, Heldmeyer 

& Locklear, 1977; Kosslyn, 1980; Marmor, 1977). All Piagetian tasks require the child to 

have an explicit knowledge of the processes used to solve the task. On the contrary, in 

information-processing studies, an implicit knowledge is sufficient to solve the task. As a 

consequence, the two approaches might deal with different aspects of the development of 

imagery. 

In fact, Dean, Duhe and Green (1983) and Lautrey and Chartier (1991) have suggested 

that spatial cognition would evolve from an analogical to a propositional format. The 

analogical representation would allow children to mentally represent transformations without 

an explicit representation of the transformation. These analogical representations would 

allow the prediction of successful anticipation of end-states in a transformational task (see 

for instance some results reported in Piaget & Inhleder, 1966, Dean et ai., 1986; Marmor, 

1975). On the contrary, the propositional representations would be based on abstract and 

logical rules. They would result in an explicit knowledge of the transformation. During the 

preoperational period (in Piaget's parlance), children's kinetic images would be global units. 

They would become progressively differentiated and abstracted in sequences with 

meaningful relations during the next developmental stage. Very young children, who 

succeed in end-state comparison tasks such as those used classically by Shepard (see 

Shepard & Cooper, 1982) may be able to imagine rotations by using a qualitatively different 

mental imagery than do older children. 

Although interesting, the hypothesis offered by Lautrey and Chartier (1991) is too 

general. Consequently, other empirical studies will be necessary to test their hypothesis. 

What can be remembered from their approach is the distinction between implicit and explicit 
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knowledge of the transformation. It seems that this distinction could account for the 

differences between Piagetian and infonnation-processing studies. 

Studies of elderly people 

If many empirical works have tested the development of mental rotation abilities in 

children, very few studies have considered the ability of the elderly. All the published work 

has used an infonnation-processing approach, and has applied Shepard's paradigm. 

At present, there is no elaborated theory on the effect of ageing on imagery abilities. 

However, we know that imagery has a complex underlying structure (see Kosslyn's (1994) 

model presented in the general introduction). The imagery subsystems result from the 

workings of specific regions of the brain. Hence, changes in the brain with ageing could 

selectively affect different aspects of individual cognitive functions (Bruyer, 1994; Dror & 

Kosslyn, 1994). 

Empirical works: Evidence from mental chronometry 

Johnson and Rybash (1989) reviewed several studies on mental rotation abilities in 

elderly (Berg, Hertzog & Hunt, 1982; CerelIa, Poon & Fozard, 1981; Gaylord & Marsh, 

1975; Hertzog, Vernon & Rypma, in press; Jacewicz & Hartley, 1979; Puglisi & Morrell, 

1986; Sharps & Gollin, 1987). 

Some of these studies reported slower rotation rates in elderly (e.g. CerelIa, Poon & 

Fozard, 1981; Dror & Kosslyn, 1994; Gaylord & Marsh, 1975), others did not report 

differences between elderly people and young adults (e.g. Jacewicz & Hartley, 1979). 

However, it has to be mentioned that in the later study, for instance, subjects as young as 

56-years-old composed the group of elderly people. Age of the subjects might explain the 

differences in performance. Moreover, stimuli and procedures varied in the different 
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experiments (letters, human figures, etc). These differences could also explain the different 

results reported so far (see Sharps, 1990). 

Considering the different published works as well as the performance of elderly people in 

other imagery tasks (mental scanning, image maintenance, etc), Dror and Kosslyn (1994) 

proposed an explanation for the difficulties elderly people encounter in mental rotation tasks. 

They suggest that a deficit in spatial location could explain their poor performance; however, 

it is not clear how this explanation works (this issue will be reconsidered later). 

Many studies have also considered the modification of response times with ageing (see 

Welford, 1988). All of them demonstrated that ageing increases response times. Reviewing 

the literature, Feyereisen (1994) suggested that this general slowing down might be due to 

both sensori-motor deficits and modifications of central operations, i.e. attentional 

mechanisms, signal identification, selection and control of action. 

Conclusion 

The present chapter addressed the question of the evolution of mental rotation capacities 

from childhood to old age. The literature has been reviewed through Cooper and Shepard's 

(1973b) algorithm: (a) The encoding phase and the maintenance of visual information in 

short term memory, (b) The mental transformation of the stimulus (mental rotation itself). 

At first glance, we may be surprised to notice the similarity between the abilities of 

children and the elderly. Both groups encounter similar difficulties while carrying out a 

mental rotation task. However, it is difficult to draw accurate conclusions since age 

categories, stimuli, and experimental conditions are often different in the reported 

experiments. 
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If we accept Shepard's (1988) theory of the origin of imagery subsystems which 

postulates an innate origin for all transformational imagery subsystems, we should admit that 

the difficulties encountered both by children and the elderly should be sought in other related 

cognitive subsystems. Indeed, the innate origin of transformational subsystems seems to be 

plausible since mental rotation abilities have been reported in animals such as pigeons 

(Hollard & Delius, 1982) or baboons (Vauclair, Fagot & Hopkins, 1993) which suggest that 

it has prevailed through biological evolution. 

As a consequence, a poor functioning of the transformational process itself (the so-called 

"Configuration shifting subsystem" in Kosslyn's (1994) theory) could not explain the 

difficulties encountered by young children and elderly people. Indeed, several studies 

showed some mental rotation abilities in children (e.g. Marmor, 1975) and in the elderly 

(e.g. Dror & Kosslyn , 1994) - at least, when Shepard's paradigm was used - although their 

performance is usually poorer than those of young adults. In many studies, RTs have been 

shown to increase linearly as a function of stimulus orientation just as in studies assessing 

mental rotation abilities in young adults. 

Just one noticeable difference was always reported: Processing speed in mental rotation 

tasks has been shown to be lower in children (see Kail, 1986, 1988) and in the elderly (see 

Feyereisen, 1994). But in both groups of subjects, it seems that a central mechanism could 

be responsible for the speed of information-processing. A plausible candidate could be the 

quantity of processing resources (or effort, attention, etc) subjects have at their disposal to 

execute a cognitive processes. Brandimonte, Hitch and Bishop (1992) raised similar 

conclusions while studying other imagery abilities (e.g. image combinations) in children. 

Where else could the difficulties come from ? As is shown by this review, children as 

well as the elderly seem to be poor in encoding and maintaining the stimulus which has to be 

rotated. 
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During the recognition of the stimulus, young children (3- and 4-year-olds) have some 

difficulties in discriminating rotation differences between stimuli (see Rosser et al., 1985). 

Moreover, older children (around 9 years of age) seem to be even poorer in keeping vi suo­

spatial information in short term memory (Bialystok, 1989; Carter et al., 1983; Childs & 

Polich, 1979; Waber et ai., 1982). 

It might not be surprising then that several papers have insisted on the role of stimulus 

characteristics: Better performance in children has always been observed while using familiar 

objects as stimuli (e.g. Bialystok, 1989; Dean et ai., 1986; Marmor, 1975, 1977). On the 

contrary, an increase in error rates has often been reported when more abstract stimuli were 

used (e.g. Dean & Harvey, 1979; Piaget & Inhelder, 1966). Similarly, Kail and Park (1990) 

have suggested that what seems to be acquired during development is the use of mental 

rotation in various situations. They (Kail & Park, 1990) have reported that, with massive 

practice, young subjects (11 and 20 years of age) answer more quickly. However, the 

practised skill did not generalise to other stimuli: Subjects trained with rotating letters did not 

improve their performances when they were tested with other stimuli. In fact, what has been 

interiorized with practice is not mental rotation per se, but a catalogue of stimuli in different 

orientations. 

In elderly people, several studies have reported that they do not seem to be poor at 

recognising objects (see, Bruyer, 1994). However, it seems that some basic processes in 

vision might be affected by ageing (specifically, the localisation processes - see, Hoyer, 

1990). Moreover, their ability to maintain vi suo-spatial information in short term memory 

seems to be poor (Dror &Kosslyn, 1994). 

Does this mean that children and elderly have difficulties in encoding the stimulus and 

keeping short term memory traces? This could explain the difficulties they meet during the 

transformational phase. 
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The study of mental imagery development, and consequently of mental rotation, is still in 

its infancy stage. We need both new methods and procedures to analyse empirical data. We 

need parametric studies to systematically compare the different results reported so far. 

Different stimuli do not yield similar performance, and angular orientations have not always 

been identical in published work (notably, the absence of the stimulus presentation at 180 

degrees in some studies). We could also regret that only two studies in children (and no 

study in the elderly) have considered depth rotations although such rotations may be more 

common than picture-plane rotations. The age categories are sometimes too broad and are 

often different across studies. All these parameters should be considered in future research. 

Rather than simply multiplying studies, we should systematically focus on each step of 

the process, taking into account theories of memory, space and perception. We know that 

mental rotation is not just a "sma]} box" in the cognitive system. Mental rotation is a 

complicated processes which requires the activation of several paral1el subsystems. The 

development of these subsystems has to be understood if we want to gain insight to the 

genesis of mental rotation. Some systems could be innate and some could be acquired 

through development, some could be stable across ages while others could deteriorate with 

ageing. 
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Chapter three 

Mental Rotation from childhood to old age: 
Some preliminary empirical data 

As reported in chapter two, both children and elderly people have difficulty in carrying 

out mental rotation. However, no study, at present, has assessed mental rotation abilities in 

children and elderly people using the same set of tasks and the same stimulus orientation. 

An experiment designed to compare developmental differences in mental rotation is 

reported as a preliminary study. Four groups of subjects (five-year-olds, eight-year-olds, 

young adults and elderly people) were given mental rotation tasks. The tasks were borrowed 

or largely inspired from previously published studies. Performance (correct responses) was 

measured. 

EXPERIMENT 1 

METHOD 

Subjects 

Ninety six subjects participated in the experiment. Twenty four five-year-olds (mean age: 

5;02 - range 4;09-5;03), 24 eight-year-olds (mean age: 7; 11 - range 7;09-8;03), 24 young 

adults (mean age: 20;01, range 18;02-24;06) and 24 elderly people (mean age: 71 ;02, range 
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66;02-82;04) were recruited in the surroundings of Liege, Belgium. The children were from 

schools serving middle income communities in and around Liege, while the young adults 

were students or staff members at the University of Liege who participated as volunteers. 

Elderly people were members of the University Alumni Association or were recruited 

through personal contacts. Gender was not controlled, and all subjects were native French 

speakers. 

General procedure 

Subjects were tested individually in a session lasting approximately 40 minutes. Subjects 

performed the tasks in the following order: Cones, Mannequins and L-shape. Although the 

tasks were different, they were not systematically counter-balanced. It was assumed that 

they were identical in difficulty. 

Mental Rotation Tasks 

Material 

Two stimuli were presented simultaneously on each trial (except for the L shape task). 

Three sets of stimuli were used in testing: the cones task (Marmor, 1977), the Mannequin 

task (Lejeune, 1994), and the L task (Farah & Hammond, 1988). The stimuli are presented 

in figure 2. 

Mannekins Cones L shapes 

Figure 2: Stimuli used in the mental rotation tasks. 
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A slide projector was used to project the stimuli on a white screen (50 x 30 cm). Slide 

projection was controlled by the experimenter and stimuli were projected until the subject 

answered. The next stimulus was presented when the subject was ready. 

Procedure 

The experimental procedure consisted of two parts for children: (a) pretraining on same­

different judgements, and (b) experimental tests. Adults and elderly people were introduced 

to the experimental tests without pretraining. 

During the pretraining, children were taught through verbal instructions and 

demonstrations to discriminate between same and different pairs. The stimuli were pasted on 

pieces of cardboard that the child could manipulate. During the first phase of the pretraining, 

two stimuli were presented in the upright position. The subjects were required to say 

"same" when the stimuli were identical, and "different" when the stimuli were different. 

During the pretraining, the child could manipulate the pieces of cardboard; they could 

superimpose them to see whether they were identical. 

Subjects were then given the experimental tests. In these tests, the stimulus on the 

subject's left side remained upright while the stimulus on the subject's right side appeared in 

one of four orientations: upright or 60°, 120°, 180° clockwise rotation from the upright. 

Each subject was given three experimental tests (three sets of stimuli: Cones, Mannequins 

and L shapes). Each experimental test was composed of 32 trials randomly ordered. 

Subjects were asked to mentally rotate the figure in the frontal plane before judging (as 

quickly as possible) whether the stimuli were the same or different. When different, the 

cones were not nicked on the same side, the mannequins did not hold the object in the same 

hand, and the L shapes appeared mirror reversed. Subjects' answers were tape recorded. 

Performance (errors) was later analysed. 

The design included four groups (5-year-olds, 8-year-olds, young adults and elderly 

people), three sets of stimuli (cones, mannequins and L shapes) and four orientations (0°, 
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60°, 120° and 180°). Orientations and stimuli were within-subjects factors while group was a 

between-subjects factor. 

RESULTS 

The number of correct trials for each subject in each mental rotation task was calculated. 

A repeated measures ANOV A was carried out on individual score with Age (5-yr-olds, 8-yr­

oIds, young adults and elderly people) and stimulus orientation (0°, 60°, 120° and 180°) as 

independent variables. 

Cones task 

In this task, Error rates were significantly different in the different age categories, 

F(3,88) = 13.19, P < 0.0001, and were affected by stimulus orientation, 

F(3,264) = 28.97, p < 0.0001. Moreover, a significant interaction between age and 

stimulus orientation, F(9,264) = 7.29, p < 0.0001, was observed. Error rates increased 

significantly as a function of stimulus orientation in the five-year-olds, F(3,66) = 26.24, 

p < 0.0001, in the eight-year-olds, F(3,66) = 4.72, p < 0.005 and in the elderly people, 

F(3,66) = 9.11, p < 0.0001, but not in the young adults, F(3,66) = 0.82, p < 0.49. 

Moreover, I tested the difference between the means for each orientation in comparison with 

the 0° condition in each age category. A Dunnett post-hoc analysis revealed significant 

differences for some orientations (p < 0.05). Significant differences are marked with an 

asterisk in figure 3. Error rates as a function of stimulus orientation for the four age 

categories are presented in figure 3. 
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Figure 3: Error rates in the Cones task as a function of 

stimulus orientation and age. 

Mannequin task 

In this task, the age of the subjects and the stimulus orientation significantly affected 

performance, respectively, F(3,88) = 15.08, p < 0.0001, and F(3,264) = 51.93, 

p < 0.0001. However, the interaction between age and stimulus orientation was not 

significant, F(9,264) = 0.84, p < 0.58. Moreover, error rates increased in function of 

stimulus orientation in all age categories with F(3,66) = 22.11, F(3,66) = 4.62, F(3,66) = 

21.47 and F(3,66) = 15 (all with p < 0.005), respectively in 5-, 8-yr-olds, young adults and 

elderly people. However, a Dunnett post hoc analysis revealed that the difference between 

the 0° and the other orientations was only significant (with p < 0.05) in some of the 

conditions (significant differences are reported with an asterisk in figure 4). Error rates are 

reported in figure 4. 
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L shapes task 

Similar results were observed in the L shapes task: Age categories and stimulus 

orientation influenced significantly performance, respectively, F(3,88) = 8.74, p < 0.0001, 

and F(3,624) = 27.05, p < 0.0001. Moreover, the age variable interacted with stimulus 

orientation, F(9,264) = 4.97, p < 0.0001. Complementary ANOVAs revealed that 

orientation significantly affected the error rates in five-year-olds, F(3,66) = 18.08, 

p < 0.0001, in eight-year-olds, F(3,66) = 8.05, p < 0.0001, and in young adults, 

F(3,66) = 2.94, p < 0.04. A similar tendency was observed in elderly people, 

F(3,66) = 2.37, p < 0.08. Figure 5 presents the error rates as a function of stimulus 

orientation for the four age categories, and significant differences between the 0° and the 

other orientations (as revealed by a Dunnett post hoc analysis, with p < 0.05) are marked 

with an asterisk. 
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Figure 4: Error rates in the Mannequin task as a function 

of stimulus orientation and age. 
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Figure 5: Error rates in the L shape task as a function of stimulus 

orientation and age. 

Correlational analyses among mental rotation tasks 

A global score (independent of stimulus orientation) for each mental rotation task was 

calculated. These global scores were used in correlational analyses among tasks for each age 

category. It was expected that good correlations would be observed between tasks as several 

studies have suggested that mental rotation is an automatic process (see, Kail, 1991, or 

Corballis, 1986). This theoretical assumption has not been observed in all age categories. A 

summary of the correlational analysis are reported in table 1. Interestingly, positive 

correlations between tasks are observed in young adults and in eight-year-olds - two age 

categories for which mental rotation is supposed to be mature. On the contrary, positive 

correlations are not observed between some tasks in the younger children and in the elderly. 
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Table 1 : Correlations between mental rotation tasks in the different age categories. 

Five-year-olds : 

Cones 

Mannequins 

L-shape 

EiCht-year-olds : 

Cones 

Mannequins 

L-shape 

Young adults: 

Cones 

Mannequins 

L-shape 

Elderly peQple : 

Cones 

Mannequins 

L-shape 

Cones 

Cones 

1 

Cones 

1 

Cones 

1 

Mannequins 

0.44 (p < 0.03) 

Mannequins 

0.55 (p < 0.005) 

L-shape 

0.14 (p < 0.52) 

-0.05 (p < 0.83) 

L-shape 

0.69 (p < 0.0002) 

0.63 (p < 0.0008) 

Mannequins L-shape 

0.73 (p < 0.0001) 0.61 (p < 0.001) 

1 0.52 (p < 0.008) 

Mannequins 

0.25 (p < 0.24) 

L-shape 

0.44 (p < 0.03) 

0.15 (p < 0.49) 
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General scores for mental rotation tasks 

Performance for each mental rotation task was summed for each subject to get a general 

score. Due to the lack of positive correlation between tasks in some age categories, no 

inferential statistics analysis was performed; however, data are reported in scattergrams 

(figure 6) with general scores (in %) presented in ascending order in each age category (each 

black point represents an individual score). 
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Figure 6 : Individual scores (in ascending order) for mental rotation tasks 

in five-year-olds, eight-year-olds, young adults and elderly people. 

General scores are expressed in percentages of correct responses. Twenty 

four subjects were assessed in each age category (each black point 

represents a subject). 
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DISCUSSION 

The aim of this study was to address the issue of the development of mental rotation in a 

life-span perspective. Similar tasks were used across ages (five-year-olds, eight-year-olds, 

young adults, and the elderly people). Mental rotation was supposed to be required to solve 

the tasks. Indeed, the cones task has been validated in young adults by Marmor (1977), the 

Mannequins task and the L shape task by Lejeune (1994, 1995 - the L shape task was 

inspired from Farah and Hammond (1988) who described this task as a mental rotation task 

in a neuropsychological study). In all these previous published papers, reaction times were 

linearly dependent on stimulus orientation in adults - a function which has been often used as 

an evidence for mental rotation. For these reasons, although we have no direct evidence that 

subjects carried out mental rotations (RTs were not measured in this study), it was assumed 

that they did. 

An additional reason why subjects were supposed to carry out mental rotation can be 

found in the error distributions. When each task is considered separately, errors were 

observed to be significantly affected by stimulus orientation (with an exception) - a fact 

which is often observed in mental rotation tasks. Globally, errors increased with stimulus 

orientation with lower values for 00 presentation and higher values for 1800 presentation [An 

exception to this general rule was observed for young adults in the cones task where errors 

were not affected by stimulus orientation]. 

As evidenced in figure 6, most of the young adults performed the mental rotation tasks 

quite well (90 % of correct response). It is however interesting to notice that one subject 

performed the mental rotation tasks very poorly. He was an undergraduate student in our 

Department but performed the tasks at chance level. General scores in eight-year-olds range 

from 70 % to more than 90 % correct responses. In five-year-olds, about half of the 
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subjects got a general score between 50 % and 60 % correct responses, the other half of the 

subjects got a score range between 60 % and more than 90 % correct responses. Clearly, in 

this age category, there are huge individual differences and error rates are sometimes 

particularly high. In the elderly people, most of the subjects obtained rather good scores 

(ranged between 80 % and more than 90 % correct responses). However, some subjects 

(n = 5) performed the tasks very poorly with scores between about 60 % and 70 % correct 

responses. 

These general scores confirm that at the age of eight (and in young adults), performance 

is good. It seems that at this age, mental rotation is mature. On the contrary, at five years of 

age, many children are still poor in mental rotation tasks. We can be particularly alerted by 

the poor performances observed in younger children when the comparison stimulus is not 

rotated. When the referent and the target are both presented at 0°, error rates reach values of 

about 20 % or more. Although children were trained to same-different judgments, their 

performance was still poor in such condition. Similarly, in the elderly people, the fact that 

some subjects get poor general scores suggests that ageing affects mental rotation ability. 

All these data are consistent with most of the studies published so far. 

However, this global approach of subjects' performances has to be considered with 

caution. Indeed, correlational analysis between tasks within age category did not reveal 

significant positive correlation between all tasks in five-year-olds and in the elderly people. 

Moreover, when significant positive correlations were observed in young adults and in 

eight-year-olds, the values of the correlation were not particularly high. Such results 

question the role of stimulus characteristics in mental rotation tasks - a fact which is 

surprising since Kail (1991) has suggested that mental rotation is an automatic process. 

However, it should be noted that Kail (1991) assessed mental rotation ability in young adults 

and in young adolescents, i.e. at an age when mental rotation is mature. It might be that the 

nature of stimulus could influence performance when mental rotation is immature or has 

deteriorated with ageing. 
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Several hypotheses have been proposed to account for the difficulties young children and 

elderly people encounter while carrying out mental rotation. (see chapter two). Whatever the 

explanations are, it first appears that mental rotation is undoubtedly the product of complex 

processing. As mentioned earlier, Kosslyn (1994) suggests the existence of several 

processing subsystems. His model not only considers the constituent features of the object 

but also their location in space. It should allow a decomposition of the respective role of 

these two essential dimensions in visual cognition. Such a model is not only interesting in 

the understanding of object recognition per se, but is also probably valuable in establishing 

the relationships between object recognition and imaginal processes such as mental rotation. 

Mental rotation is a process strongly connected with the dorsal system described in the 

general introduction. Referred as the "ROTATE" unit in an earlier version of Kosslyn's 

(1980) theory, it would assist the usual dorsal routines in particular cases, and consequently, 

would benefit from the assistance of the ventral system as well. 

Very few studies have strictly considered the development of the two major subsystems 

postulated in Kosslyn's model: (1) the ventral system and (2) the dorsal system. The 

intimate interconnection between both subsystems makes it difficult to find convincing 

behavioural effects. However, an explanation for the results of the present experiment could 

be sought in the development of these subsystems. 

Explanations for the difficulties encountered by young children and elderly people while 

solving a mental rotation task should be sought both in the development of visuo-spatial 

short term memory and specifically in the development of the dorsal system. In a mental 

rotation task, subjects are not only required to analyse the spatial configuration of the rotated 

stimulus but also to keep it a longer time in short term memory (STM) - during the mental 

transformation (i.e. mental rotation) of the stimulus. 
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The next chapters of this thesis are devoted to these issues. Experiment two (in chapter 

four) considers the relationship between the development of visuo-spatial short term memory 

capacity (i.e. memory span), and mental rotation abilities. The major question addressed in 

this experiment is whether the development of mental rotation abilities is dependent on the 

development of STM capacity. Experiment three and the following experiment (in chapter 

five) attempt to decompose visuo-spatial STM into its two components: Visual and Spatial 

subsystems (see Logie & Marchetti, 1991), or in Kosslyn's (1994) parlance, Dorsal and 

Ventral subsystems. 
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Chapter four 

Development of mental rotation ability 
and visuo-spatial short term memory span: 

Are they related? I 

We know now that it has been demonstrated several times that human adults are able to 

mentally rotate objects through space (see for a review: Shepard & Cooper. 1982). To 

identify what is the letter p when 1800 rotated. they mentally rotate the stimulus to its upright 

position before judging that it is a d. The so-called "mental rotation" process allows them to 

transform a mental image of the stimulus and consequently to simulate a new position of the 

target stimulus. 

Kosslyn. Flynn. Amsterdam and Wang (1990) have proposed that the mental rotation 

process can be activated when an image is kept in the visual buffer (i.e. the structure on 

which mental images are displayed in the cognitive system). This image is a short term 

memory (STM) representation formed either through a visual percept (e.g. Shepard & 

Metzler. 1971). or generated from long term memory (e.g. Kosslyn. Ball & Reiser. 1978). 

Once generated. the image has to be maintained until the transformation. i.e. mental rotation. 

has been accomplished. 

Consequently. this model suggests that mental rotation could be based on the ability to 

keep visual information in STM for a certain period of time. In fact. humans have been 

This study has been presented in an oral communication at the Second International Conference on 
Memory, Padova, Italy, 14th-19th July 1996. 
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shown to be able to keep visuo-spatial information in STM (Baddeley, 1986; Logie, 1986; 

Phillips, 1983). But, Wilson, Scott and Power (1987) showed that visuo-spatial STM 

capacity, i.e. the memory span, changes with age. This quantity is smaller in young children 

and in elderly people than in adolescents and young adults. 

Does this mean that STM capacity (as revealed through the memory span) affects mental 

rotation abilities? Should we search for developmental differences in mental rotation abilities 

considering the development of STM span? The present study proposes a correlational 

analysis between mental rotation performances and visuo-spatial memory span across ages 

(from childhood to old age). 

In fact, very few studies have considered this issue. A reason for this fact might be that 

Corballis (1986) as well as Kail (1991) have suggested that mental rotation is an automatic 

process. In these studies, subjects were asked to solve a classical mental rotation task (see 

for instance: Cooper & Shepard, 1973a) while increasing the memory load. Mental rotation 

of letters had to be carried out while retaining either digits or patterns in STM. Although the 

competing tasks slowed subjects while answering, the response times remained linearly 

dependent on the stimulus orientation. Mental rotation was not affected by an increase of the 

memory load. However, in both studies, subjects tested in the experiments presented well­

developed mental rotation abilities. In Corballis's (1986) study, young adults were tested. In 

Kail's (1991) study, the youngest subjects were nine-years-old. If we refer to the 

developmental literature, there is no doubt that after the age of eight the mental rotation 

process is mature (see for a review: Dean, 1990). So, the question is: Is mental rotation 

independent of STM capacities before the age of eight? Moreover, what about such 

independence when STM capacity has begun to deteriorate with age? Indeed, several studies 

have suggested that the capacity of vi suo-spatial STM is smaller in young children and 

elderly people than in young adults (see Van der Linden & Hupet, 1994; Wilson, Scott & 

Power, 1987). 
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Relevant to the present issue are both Kosslyn, Margolis, Barret, Goldknopf and Daly's 

(1990) and Dror and Kosslyn's (1994) studies. The first study considered mental rotation 

and image maintenance abilities in children, the second one considered the same issue in 

elderly people. Kosslyn et al. (1990) showed (among other things) that young children are 

relatively poor at rotating objects in images, but some of their data suggested that they are 

relatively good at maintaining images (at least for 3 seconds). On the contrary, Dror and 

Kosslyn (1994) showed that old age affects both mental rotation and image maintenance 

abilities. Consequently, it appears that different imagery subsystems are differentially 

affected by age. 

In this study, five-year-olds, eight-year-olds, young adults and elderly people were 

presented with selected mental rotation tasks already used in experiment 1. In addition, their 

STM span for visuo-spatial information was measured. Correlational analyses between tasks 

were used to assess the interdependence of these cognitive abilities. 

EXPERIMENT 2 

MErHOD 

Subjects 

Forty eight subjects participated in the experiment. Twelve five-year-olds (mean age: 

5;01 - range 4;09-5;03), 12 eight-year-olds (mean age: 8;02 - range 7;09-8;03), 12 young 

adults (mean age: 21;03, range 19;06-25;10) and 12 elderly people (mean age: 75;03, range 

68;05-83; 11) were recruited in the area of Liege, Belgium. The children were from 

kindergartens and schools in and around Liege, while the young adults were undergraduate 

students at the Department of Psychology, University of Liege. Elderly people were 
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recruited through personal contacts. All subjects participated as volunteers. Gender was not 

controlled, and all subjects were native French speakers. 

General procedure 

Subjects were tested individually in a session lasting approximately one hour. Subjects 

carried out two sets of tasks: Mental rotation tasks and Memory span tasks. All the subjects 

did the mental rotation tasks first followed by the memory tasks. Although the tasks within 

the two sets were somewhat different, they have not been systematically counter-balanced 

(which would have resulted in too large a combination of experimental conditions). It was 

assumed that mental rotation tasks were identical in difficulty. Each task was composed of 

24 trials. Moreover, in the memory tasks, subjects were first tested on the easiest conditions, 

namely the conditions with the shortest retention interval (see description of tasks for further 

explanation). 

Tasks 

Mental Rotation Tasks 

Material 

Two stimuli were presented simultaneously on each trial (except for the L shape task). 

Three sets of stimuli were used in testing: the cones task (Marmor, 1977), the Mannequin 

task (Lejeune, 1994) and the L task (Farah & Hammond, 1988). The stimuli are presented in 

figure 7. 

Stimuli were presented on A4 white sheets of paper. The next stimulus was presented 

after the subject responded to the previous item. 
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Manneki ns Cones L shapes 

Figure 7: Stimuli used in the mental rotation tasks. For description of the tasks, 

see the procedure section. 

Procedure 

The experimental procedure consisted of three parts for children: (a) pretraining on same­

different judgments, (b) criterion test, and (c) experimental tests. Adults and the elderly 

people undertook the experimental tests without pretraining or criterion tests. 

During the pretraining, children were taught through verbal instructions and 

demonstrations to discriminate between same and different pairs (see experiment I). This 

ability was then assessed with a criterion test in which equal numbers of same and different 

pairs were displayed in random order. The subjects were required to say "same" when the 

stimuli were identical, and "different" when the stimuli were different. On each trial, two 

stimuli were presented (except in the L shape task) in the upright position. The criterion used 

was the correct response on all of the first 10 trials or on any 20 of 24 trials. 

Children who passed the criterion test, as well as adults and the elderly people, were 

given the experimental tests which were substantially similar to the criterion test except that 

the stimulus on the subject's left side remained upright while the stimulus on the subject's 
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right side appeared in one of four orientations: upright or 60°, 120°, 180° clockwise rotation 

from upright. 

Each subject was given three experimental tests (three sets of stimuli: Cones, 

Mannequins, and L shapes). Each experimental test was composed of 32 trials randomly 

ordered. Subjects were asked to judge as quickly as possible whether the stimuli were the 

same or different. When different, the cones were not nicked on the same side, the 

mannequins did not hold the object in the same hand, and the L shapes appeared mirror 

reversed. 

The design included four groups (5-year-olds. 8-year-olds. young adults. and the elderly 

people). three sets of stimuli (Cones. Mannequins and L shapes) and four orientations (0°. 

60°, 120° and 180°). Orientations and stimuli were within-subjects factors while group was a 

between-subjects factor. 

Visuo-spatial STM tasks 

Material 

The memory tasks combined both Wilson et al. 's (1986) memory task and Kosslyn 

et al. 's (1990) image maintenance task. Stimuli were patterns composed of boxes which 

could be either filled or unfilled. Each box measured 1 em X 1 cm. Filling the box produced 

a solidly illuminated rectangle. The first pattern presented consisted simply of two boxes. 

one below the other, with one box filled. Pattern complexity increased in steps of two boxes 

at a time. The last level of complexity was represented in a 6 X 5 matrix with IS boxes 

filled. In each pattern exactly half of the boxes were illuminated at random. Four trials for 

each level of complexity were presented. Consequently, subjects could undertake at most 56 

trials (14 levels of complexity X 4 trials). 
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Procedure 

Each trial began with the presentation of an attentional signal. When ready, the subjects 

pressed the space bar, which caused the presentation of the stimulus. The stimulus was 

presented for 2000 msec. After this delay, the stimulus was removed and the subjects had to 

retain an image of the pattern for 500 msec (first condition), 1000 msec (second condition) 

or 5000 msec (third condition). Following this, two X marks appeared within the matrix. 

The subjects were asked to decide whether the stimulus shape (filled boxes) would have 

covered the X marks. If so, they pressed one key; if not, they pressed another one. Subjects 

were first presented with the first condition (500 msec), followed by the second (1000 msec) 

and the third (5000 msec) conditions. Figure 8 presents an example of a trial. The tasks were 

interrupted when subjects committed more than 2 errors in a set of 4 trials (corresponding to 

a particular level of complexity). 

Rentention x 
Interval x 

Figure 8 : Example of stimulus used in the Short term 

memory task. See procedure section for the description of 

the task. 
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RESULTS 

Mental rotation tasks 

The number of correct trials for each subject in each mental rotation task was calculated. 

A repeated measures ANOVA was carried out for each mental rotation task on individual 

scores with age (5-yr-olds, S-yr-olds, young adults and elderly people) and stimulus 

orientation (0°, 60°, 120° and IS00) as independent variables. 

In the Mannequin task, age, F(3,44) = 7.03, p < 0.0006, and stimulus orientation, 

F(3, 132) = 24.1S, P < 0.0001, significantly affected performance. As the interaction age X 

stimulus orientation was also significant [F(9,132) = 6.63, p < 0.0001], repeated measures 

ANOV As were calculated for each age category considered separately. The stimulus 

orientation significantly affected performance in five-year-olds, F(3,33) = 21.17, p < 

0.0001, in eight-year-olds, F(3,33) = 3.5S, p < 0.02, and in the elderly people, 

F(3,33) = 5.0S, p < 0.005. However, orientation did not affect performance in young 

adults, F(3,33) = 1.72, p < O.IS. Results are reported in figure 9. 

Similar analyses were carried out for the Cone task. A global ANOV A revealed 

significant effects of age, F(3,44) = 8.25, p < 0.0002, orientation, F(3,132) = 17.16, p < 

0.0001, and age X orientation, F(9,132) = 6.29, p < 0.0001. Complementary analyses 

showed that error rates were significantly affected in the five-year-olds, F(3,33) = 15.16, p 

< 0.0001, and in eight-year-olds, F(3,33) = 5.48, p < 0.004. In elderly people, the 

orientational effect almost reached significance, F(3,33) = 2.37, p < 0.08. This effect was 

not observed in young adults, F(3,33) = 1, p < 0.41. Error rates are reported in figure 10. 
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Figure 9: Mannequin task: Error rates as a function of stimulus orientation 

in five-year-olds, eight-year-olds, young adults and elderly. 

0 5-yr-olds 

0 8-yr-olds 

• Young adults 

• Elderly people 

Stimulus orientation 

Figure 10 : Cone task: Error rates as a function of stimulus orientation in 

five-year-olds, eight-year-olds, young adults and elderly. 
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In the L shape task, age, F(3,44) = 9.49, p < 0.0001, orientation, F(3,132) = 15.30, 

P < 0.0001, and the interaction age X orientation, F(9, 132) = 3.24, P < 0.002, were also 

shown to affect the scores significantly. Complementary ANOV As revealed that the 

orientational effect was significant at the age of 5, F(3,33) = 6.7, p < 0.001, the age of 8, 

F(3,33) = 3.06, p < 0.04, and in elderly people, F(3,33) = 8.4, p < 0.0003. No effect was 

observed in young adults, F(3,33) = 0.71, p < 0.55. Error rates as a function of stimulus 

orientation in the four age categories are presented in figure 11. 

0 5-yr-olds 

8 8-yr-olds 

• Young adults 

• Elderly people 

lWO lSOO 

Stimulus orientations 

Figure 11 : L shape task: Error rates as a function of stimulus orientation in 

five-year-olds, eight-year-olds, young adults and elderly. 

Visuo-spatial STM tasks 

The memory span of each subject was determined as follows. The tasks comprised 

several levels of complexity, each corresponding to a particular memory span. For instance, 

65 



the first level comprised two black squares, in other words two units to maintain, i.e. it 

corresponded to a memory span = 2. The next level corresponded to a memory span = 3, 

and so on until the last level which corresponded to a memory span of 15. The tasks were 

interrupted when the subject committed more than 2 errors for one level of complexity (i.e. 

equal to or worse than chance level: 50 %). The last level of complexity successfully 

completed by the subject determined his/her memory span. For instance, a subject who 

passed the task as far as level 6, i.e. gave the correct answers at least 3/4 trials, reached a 

memory span considered equivalent to 7. The same subject, at level 7, just passed 114 trials, 

i.e. failed more than half the time to give the correct answer. For each subject, this measure 

was computed in each retention interval condition (i.e. 500 msec, 1000 msec, and 5000 

msec). 

Repeated measures ANOV As were calculated on the memory span value with Age (5-yr­

oIds, 8-yr-olds, young adults and elderly people) and Retention Interval (SOD, 1000 and 

5000 msec) as independent variables. Age was a between variable and Retention a within 

variable. Table 2 shows the mean values and standard deviations observed in five, eight­

year-oIds, young adults and elderly people in the three retention interval conditions. 

TABLE 2 

5-yr-olds 8-yr-olds Y2 Adults Elderly 

500 milliseconds m: 2.75 m: 5.33 m: 6.83 m: 4.5 

s: 1.48 s: 2.26 s: 2.51 s: 1.51 

1000 milliseconds m: 2.16 m: 4.75 m:7 m: 3.33 

s: 0.93 s: 1.76 s: 2.41 s: 1.07 

5000 milliseconds m: 1.83 m:4.5 m: 6.66 m:3 

s: 1.26 s: 1.97 s: 2.14 s: 1.76 

Table 2: Means (m) and standard deviations (s) for Memory span in five-year-olds, eight­

year-olds, young adults and elderly people as a function of the retention interval (500 msec, 

1000 msec and 5000 msec). 
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A global ANOV A revealed a significant effect of age, F(3,44) = 17.33, p < 0.000 I, as 

well as of the retention interval, F(2,88) = 8.31, p < 0.0005. The interaction between age 

and retention interval was not significant, F(6,88) = 1.11, p < 0.36. Mean memory spans 

for each retention condition are reported in figure 12. However, a complementary ANOVA 

computed on memory span in each age category considered separately revealed only an 

effect of the retention interval in elderly people, F(2,22) = 6.35, p < 0.0066. No effect was 

observed in five-year-olds, F(2,22) = 2.64, p < 0.09, in eight-year-olds, F(2,22) = 1.94, 

P < 0.17, and in young adults, F(2,22) = 0.32, p < 0.72. 
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Figure 12: Changes in memory span as a function of age (five-year-olds, 

eight-year-olds, young adults and elderly people) and retention interval 

(black circle: 500 msec, black square: 1000 msec, and black triangle: 5000 

msec). 
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Correlational analysis between mental rotation performances and visuo­

spatial memory span 

Global scores for mental rotation tasks and span tasks were calculated for each subject. 

Pearson correlations were computed on these global scores. Analysis within age group has 

been avoided since the sample size in each age category was relatively small (n = 12). 

Moreover, a cross-age analysis appeared to be more meaningful in the context of this 

developmental study. Correlation between error rates in mental rotation and memory span 

was observed to be relatively high (r = -0.67, p < 0.000 I). Values are reported in figure 

13. When the three young adults scoring particularly high in memory span were removed 

(see figure 13, red squares), the correlation was -0.71 (p < 0.0001). 

Correlation between 
mental rotation performances 

12 and memory span 
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Figure 13 : Correlation between mental rotation performance 

(global score) and memory span for visual pattern. Each symbol 

represents an individual score. 
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DISCUSSION 

The aim of this study was to investigate whether the development of mental rotation 

abilities is related to the development of visuo-spatial STM span. The answer is positive. A 

correlation between mental rotation performances and STM span computed across age 

categories revealed a relatively good association between scores. Consequently, it seems 

that both processes are related. 

The first assessment carried out in this experiment concerned mental rotation abilities). 

This study confirmed that mental rotation abilities are not yet fully developed in five-year­

oIds. At this age, young children performed very poorly in all three mental rotation tasks, 

especially when the stimuli were rotated by 1800
• In this condition, answers were close to 

chance level. Such results confirm previously published studies with preoperational children 

(to use Piagetian parlance) (see: Dean, 1990). Similarly, in elderly people, poor performance 

was found in the three mental rotation tasks (with the exception of the mannequin task). It 

also confirms that mental rotation abilities are affected by ageing (e.g. Dror & Kosslyn, 

1994). 

This study also confirms that at the age of eight, mental rotation abilities are - roughly 

speaking - as well developed as in young adults. At eight-years-old, children perform mental 

rotation tasks as well as young adults. It seems that this part of the cognitive system is well 

developed. This is in agreement with the Piagetian conception of imagery development 

according to which transformational imagery (in this case: mental rotation) is developed after 

the onset of the operational stage (Piaget & Inhelder, 1966). 

Young adults were particularly good at the three mental rotation tasks. Orientation did not 

affect their performances although it did in operational children. This reflects somehow a 

difference between these two last groups of subjects. It might be that the three mental 

For the same reasons as those stated in experiment 1, although RTs have not been measured, I 
consider that subjects carried out mental rotations. 
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rotation tasks were really easy for young adults and/or the tested subjects were particularly 

good at these imagery tasks. 

The second assessment carried out in this study concerned the vi suo-spatial STM span. 

As reported by Wilson, Scott and Power (1987), STM span changes with age. The memory 

span in five, eight-year-olds, young adults and elderly as shown in table 2 reproduce Wilson 

et al. 's (1987) results. In younger children, the STM span was smaller than in the other 

groups. Moreover, the memory span decreases with ageing. 

Correlational analysis between the two sets of tasks suggested that mental rotation 

abilities and STM span are related. Does this mean that we should immediately conclude that 

both cognitive processes are totally dependent? In fact, I think that the memory tasks used 

in this experiment - although classical ones - are not sensitive enough to determine in which 

way both cognitive sub-systems are related. 

In such tasks, visuo-spatial STM is considered as a single system. However, Logie and 

Marchetti (1991) have suggested that visuo-spatial STM - referred to in their theory as the 

VSSP (Visuo-spatial Sketch Pad) from Baddeley's (1986) working memory model - can be 

decomposed into two subsystems: (1) A visual and (2) a spatial subsystem. Similarly, 

Kosslyn (1994) has suggested that when studying visual cognition, we might consider the 

two main cortical pathways engaged in the analysis of a visual pattern. The first path, 

classically referred as the ventral system - or occipito-temporal path - analyses the structure 

of the stimulus, whilst the second path, referred as the dorsal system - or occipito-parietal 

path - considers the spatial dimensions of the stimulus. Consequently, both Logie and 

Marchetti (1991) and Kosslyn (1994) suggest that visuo-spatial STM should be decomposed 

into two subsystems. 

If mental rotation abilities and visuo-spatial STM are somehow related, the assessment 

should consider the development of both memory subsystems as defined above. 
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Specifically, mental rotation abilities could be related to the spatial subsystem rather than the 

visual subsystem. It might be that some aspects of the spatial subsystem develop later than 

the visual subsystem, and also deteriorate earlier with age. This issue is considered in the 

next chapter. 
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Chapter five 

Retention of spatial information 
in short term memory and mental rotation abilities 

from childhood to old agel 

Cooper and Shepard (1973a) found that RTs increased linearly2 with angular orientation 

of rotated letter stimuli. However, in a particular experimental condition, Cooper and 

Shepard (1973a) showed that providing subjects with information about the structure and the 

orientation of the to-he-compared target modifies the RT function. When young adults have 

enough information to generate an image of the target or can keep structural and spatial 

information about the target in visual short term memory (VSTM), they respond with 

identical speed whatever the stimulus orientation. Reaction times become independent of 

stimulus orientation. 

In addition, Kosslyn et al. (1990) have suggested that the mental rotation process can be 

activated when an image is kept in the visual buffer (i.e. the structure in which mental 

images are generated). This image is a STM representation formed either through a visual 

percept, or generated from long term memory. Once constituted, the image has to be 

maintained until the transformation, i.e. mental rotation, has heen carried out. Consequently, 

the ability to maintain visual information in STM for enough time is essential for a successful 

mental rotation. Similarly, a visual STM trace exempts subjects from the activation of the 

mental rotation subsystem (e.g. Cooper & Shepard, 1973). 

Part of this research has been presented at the Annual Meeting of the Belgian Psychological Society, 
May 12, 1995, Louvain-Ia-Neuve, Belgium. 

2 In fact, to be precise, the RTs function was curvilinear. However. for the purpose of this experiment. 
it is not necessary to consider this difference. These effects were probably due both to the experimental 
procedure and the stimulus characteristics (see for instance: Lejeune, M. & Parmentier, F., in press, for 
a discussion of this issue). 
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Visuo-spatial short term memory: Visual and Spatial 

In the following experiments, visuo-spatial short term memory is considered in the 

context of two theories: (1) Kosslyn's (1994) theory of high level vision, and (2) 

Baddeley's (1986) working memory model. These models were presented in the general 

introduction. 

Considering both models, it seems that visuo-spatial short term memory is not to be 

considered as a single system but rather as - at least - a dual system with a visual (ef ventral 

system) and a spatial (cf dorsal system) subsystem. These two subsystems would process 

different but related information from a visual pattern. 

What do we know about the development of visuo-spatial short term 

memory? 

Studies of children: Memory capacity 

There have not been many studies on the development of visuo-spatial short term 

memory. Most of the studies of children - just as studies of young adults - have mostly 

considered the development of verbal working memory. Dempster (1981) reported that 

verbal memory span (i.e. verbal memory capacity) goes from about two items (digits) at the 

age 2 1/2 to about five items at age 7. In young adults, the verbal memory span value is about 

seven. 

Wilson, Scott and Power (1987) studied visual memory span in five, seven, eleven-year­

olds and young adults. A pattern (black and white grid cells) was presented for two seconds 

(i.e. memorisation time). Then, the stimulus was removed for a period of 2 or to seconds 

(i.e. retention interval). During the to-second retention interval, subjects were either given 
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an interfering task (a counting task) or were not. Following the retention interval, the pattern 

was displayed again but with one black cell replaced by a white one. The stimuli were 

increased in complexity by adding cells to the pattern, i.e. increasing the memory span. 

Subjects were required to point at the position of the missing black cell. The longer the 

retention interval was, the more the memory span decreased in all age categories except in 

the five-year-olds where it remained identical between the 2- and 10-second interval 

conditions (without an interfering task). The mean memory spans in the 2-second interval 

conditions were 3.7, 8.2, 14.1 and 14.3 units, and in the to-second interval condition were 

about 2.8, 6.9, 11 and 11.2 units, respectively in the 5, 7, 11-year-olds and adults. 

Similarly, Kosslyn, Margolis, Barrett, Goldknopf and Daly (1990) have shown that 

children of five years of age are able to retain visual information for at least three seconds. 

Five, eight and fourteen-year-olds and young adults were asked to memorise grids that 

contained a pattern created by filling in grid cells. After the memorisation period, a key had 

to be depressed and the pattern was removed from the computer screen. Two conditions 

were studied: (1) A 4 items pattern - i.e. a pattern where one-fifth of the cells of a 4x5 grid 

were filled in - had to be maintained for 500 msec, and (2) a 7 items pattern - i.e. a pattern 

where one-fifth of the cells of a 5x7 grid were filled in - had to be maintained for 3000 msec. 

After the retention interval, two X marks appeared either in or out of a previously filled 

square. Subjects were required to judge whether both X marks appeared in or out of the 

memorised pattern. In the heavy load and long retention interval condition, errors were about 

35 %,25 %, 15 % and 7 % respectively in the 5-, 8-, 14-year-olds and young adults. These 

results suggest that young subjects can partially keep visual information in STM for at least 3 

seconds. However, since error rates increased between the two conditions in the three 

younger groups, it appeared also that young children encounter more difficulty in the heavy 

load and long retention interval condition. The percentages of errors (35%) in the five-year­

olds in the second experimental condition are particularly high. However, Kosslyn et al. 's 

(1990) study does not make clear whether the increase in error rates is due to the increase in 
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memory load or due to the increase in the retention interval as the amount of information to 

be kept in STM was not the same in both conditions. 

To answer this question, I (see chapter four) combined Wilson et al. 's (1987) and 

Kosslyn et al. 's (1990) tasks: Wilson's stimuli were used but Kosslyn's methodology was 

applied. The patterns (presented for 2 seconds) became more complex over trials, and 

subjects had to judge whether two X marks had been displayed in previously filled in 

squares. The retention intervals used in this study were 500 msec, 2000 msec and 5000 

msec. Subjects were tested successively on all three conditions. Interestingly enough, the 

retention interval did not affect young adults, or children. These results suggest that the 

reduction of efficiency in young children observed in Kosslyn et aI's (1990) study can be 

explained by the higher memory load in the second condition rather than by the retention 

interval itself. 

Studies of children: Evidence for a dissociation between the spatial and visual 

subsystems ? 

To my knowledge, no study has explicitly tested the dissociation between the spatial and 

visual subsystems in short term memory. However, a reinterpretation of some published 

studies might provide us with some information on this issue. 

Koenig, Reiss and Kosslyn (1990) showed in a study assessing several subsystems 

composing the dorsal system, that young children are highly impaired in assessing the 

metrical distance between objects and parts of objects but are well able to categorise objects. 

Such data would suggest - although not demonstrate - that the spatial subsystem within the 

dorsal system develops later than the other subsystem. 

Two studies on mental rotation abilities in children could also be considered with interest 

in this context: Childs and Polich (1979) and Waber, Carlson and Mann (1982). The first 
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authors applied the Cooper and Shepard (1973b) paradigm (cj supra) to young children and 

adults. Nine, eleven and twenty-year-olds were required to judge as quickly as possible 

whether rotated letters were normal or mirror-reversed versions. Two experimental 

conditions were compared: (I) Subjects received no information on the target before the test, 

and (2) subjects received information about the structure and the orientation of the target 

1000 msec before its presentation; concretely, they were shown the forthcoming target in its 

normal form (i.e. not in the mirror-reversed version) in a particular orientation (similar to 

that of the forthcoming target). Without advance information, RTs were linearly dependent 

on stimulus orientation in all subjects. However, in the advance information condition, 

younger children's RTs functions remained linearly dependent on stimulus orientation. 

Children had to carry out mental rotations despite the information provided. They behaved as 

if they did not use the information provided. Childs and Polich (1979) interpreted these 

results as evidence that children have difficulty in keeping visual information in short term 

memory for 1000 msec. 

Waber, Carlson and Mann (1982) reproduced Childs and Polich's (1979) findings in 

other age categories. Fifth- (about lO-yr-olds) and seventh- (about 12-yr-olds) grade 

children were presented with rotated letters and were required to judge whether they were 

normal or mirror-reversed versions. Globally, quantitative analysis showed that RTs 

increased linearly with stimulus orientation either in an advance or no advance information 

condition. However, qualitative analysis revealed that the frequency of an adult-like profile 

(Le. flat slope in the advance information condition) increased substantially between age 10 

and 12 (although only 41 % of the older subjects showed an adult-like profile). 

Consequently, it appeared that manipulations of visual images and visual short term memory 

would still be poor in early adolescence. Subjects at the age of the puberty could hardly 

retain visual information in memory for 1000 msec (which was also the retention interval 

used in this study). 
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As already mentioned in chapter two, I think that the interpretation of these two studies 

should be reformulated in the light of more recently published works. Indeed, can we really 

conceive that young children cannot retain a visual pattern in STM for one second? One 

second is such a short period of time that such a hypothesis does not seem to be seriously 

valid. Indeed, as mentioned above, Kosslyn et al. (1990) showed that children of five years 

of age are able to retain visual information for at least three seconds. In addition, Wilson et 

al. (1987) showed that the retention interval can reach values of 10 seconds in children of 

similar age. 

A fundamental difference between Kosslyn's and Wilson's studies and Childs and 

Polich's and Waber et al.'s studies on mental rotation is the orientation of the to-be­

memorised stimulus. In the two first studies, the patterns are presented in an orientation 

basically defined by horizontal and vertical axes. No stimulus appears in an oblique 

orientation. In contrast, in the mental rotation studies, the orientation is an important 

component of the task: The stimuli are presented in several orientations - often in an oblique 

orientation. Would it mean that the orientation of the memory representation makes the 

difference? Would it be more difficult to keep an oblique pattern in STM ? It would mean 

that the spatial characteristics of the stimuli are lost during the 1000 msec interval used in 

Childs and Polich's (1979) and Waber, Carlson and Mann's (1982) studies. 

In conclusion, the reinterpretations of the previous studies - if correct - would suggest 

that the spatial subsystem (or dorsal system) - at least part of it - is developed later than the 

visual subsystem (or ventral system). This issue is considered in this chapter. 

Studies with elderly people: Memory capacity 

Although several studies (see: Craik, 1977) have suggested that no differences can be 

observed between young adults and elderly people in memory span tasks, others reported 
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opposite results (see: Salthouse, 1991). However, among these studies, very few 

considered visuo-spatial short term memory. 

An effect of ageing has been observed while using the block-tapping test to measure 

spatial memory span in elderly people (Feyereisen & Van der Linden, 1992). Memory span 

values were 6.54 and 4.96, respectively in young adults and elderly people. Moreover, in 

chapter four, similar effects of ageing were reported with another vi suo-spatial memory task. 

Although the memory span in young adults was equal to 6.83 (mean between the different 

retention interval conditions), it was reduced to 3.61 in 65- to 80-year-oIds. Both studies 

suggest that old age reduces visual memory capacity. 

Dror and Kosslyn (1994) observed a similar reduction of visual image maintenance ability 

in elderly people. They used a task also used with children (see Kosslyn et al .. 1990). 

Subjects age 63 were submitted to an image maintenance task. They had to study a pattern, 

and after the removal of the pattern, an X mark appeared after 2500 msec. Subjects had to 

decide whether the memorised shape would have covered the X mark. The patterns became 

more complex over the trials. Error rates increased with the complexity of the pattern. 

Although no significant differences appeared between elderly people and young adults, an 

overall analysis suggested that the elderly may have a deficit in maintaining images. The 

absence of significant differences makes accurate conclusions difficult. 

Studies with elderly people: Evidence for a dissociation between the spatial and visual 

subsystems ? 

There are no more studies on the effects of ageing on the different visuo-spatial memory 

subsystems other than in children. However, Hoyer (1990) reviewed the literature on the 

effect of ageing on visual memory and argued that published studies suggest an effect of 
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ageing on the localisation process (i.e. dorsal system) but not on the identification subsystem 

(i.e. ventral system). 

In fact, Grady et al. (1992) reported clear evidence for a reduction of efficiency of the 

dorsal system in the elderly. In a PETscan study, they showed that different cortical areas 

were activated whilst subjects were submitted to a pattern recognition or pattern localisation 

task. In the first task, the ventral path, i.e. occipito-temporal areas, was activated, while in 

the second task, the dorsal path, i.e. occipito-parietal areas, was activated. However, 

although this dissociation between the two cortical paths was observed in young adults, the 

distinction was less obvious in elderly people. According to the authors, this would reflect a 

reduction of efficiency of these structures (or processes) with age. 

The present study 

The "mental rotation paradigm" might be particularly useful in assessing the development 

of both visual and spatial short term memory. To study this issue, I have used a 

methodology inspired by Cooper and Shepard (1973a). Simple characters were used as 

stimuli to reduce as much as possible the amount of information to be kept in memory. The 

assessment was realised in a life-span perspective: Young children, young adults and elderly 

people were tested. 

EXPERIMENT 38 

Experiment 3a is largely inspired from Childs and Polich's (1979) and Waber, Carlson 

and Mann's (1981) studies. The ability of five-year-olds, eight-year-olds, young adults and 

elderly people was tested in a mental rotation task using three experimental conditions. In the 

first condition (see figure 14, A), subjects were presented with the letter L. The letter could 

be presented upright or 60° or a multiple of 60° rotation from the upright. Subjects were 
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required to mention whether the presented stimulus was the normal or mirror-reversed 

version of an L. It was expected that in all age categories, RTs would increase linearly with 

stimulus orientation just as in classical work. 

In the second condition (see figure 14, B), subjects were first provided both with 

structural and orientational information about the target. As in Childs and Polich (1979) and 

Waber et al. (1981) studies, the target appeared 1000 msec after the removal of this 

information. In other words, subjects had to keep the information in short term memory for 

one second. The RT function was expected to be independent of orientation in eight-year­

oids and in young adults since no mental rotation is required in this condition. On the 

contrary, at the age of 5 and in the elderly, the RT function was expected to be dependent on 

stimulus orientation despite the information provided (and consequently, despite the fact that 

no mental rotation is really required in this condition). The hypothesis was based on the fact 

that it appeared in previously published studies (see chapter two) that young children and 

elderly people are poor at maintaining spatial information in short term memory. 

The third condition (see figure 14, C) tested whether a reduction of the time interval 

between the information provided and the target (as defined in the second condition) would 

modify the RT functions. Let us suppose that RT functions are dependent on orientation in 

the second condition in five-year-oIds and elderly people and that these results are due to the 

fact that these subjects cannot retain spatial information for 1000 msec (as postulated in my 

hypothesis). Reducing the retention interval should allow subjects to benefit from the 

provided information. They could possibly maintain the information in short term memory 

for a shorter period of time. If they can retain this information, they should easily solve the 

mental rotation task, and the RT function should become independent of stimulus orientation 

since no mental rotation is required. In the third condition, the retention interval was reduced 

to 500 msec. 
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METHOD 

Subjects 

Four age categories of subjects were tested: 36 five-year-olds (mean age: 5;02 [5 years 2 

months] range 4;09 to 5;03), 36 eight-year-olds (mean age: 7; 10, range 7;09-8;03), 36 

young adults (mean age: 20, range 18-26) and 36 elderly subjects (mean age: 71, range 65-

78). All subjects were volunteers. Children were attending public and private schools in the 

surroundings of Liege. Young adults were undergraduate students at the University of 

Liege. The elderly subjects were recruited through personal contacts or in leisure clubs in 

Liege. According to self-reports, all subjects were completely healthy and were not taking 

any medication that might have affected their cognitive performance. 

Subjects from each age category were distributed among three experimental groups, each 

receiving a different version of the mental rotation task. Consequently, each experimental 

group was composed of 12 subjects from each age category (Ln = 48). 

Material 

The stimulus for the task was the same used in Farah and Hammond (1988). The shape 

used in the task looks like the letter L (size: 3.5 cm x 2 cm). The stimuli were presented at 

the centre of a computer screen placed at about 50 cm from the subject. The stimuli were 

presented in six orientations: 0°, 60°, 120°, 180°, 240° or 300°. The letter L could be 

presented in its normal or mirror-reversed version. Two keys on a keyboard were used to 

respond. 

The task comprised 48 trials, 8 at each level of orientation; half of the stimuli at each level 

of orientation were normal, half were mirror-reversed. 
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Procedure 

Three experimental conditions were tested. In the first condition, subjects had to depress 

the space bar when they were ready. Following this, a stimulus was presented. The subjects 

were instructed to mentally reorient the shape to its upright position, and then to decide as 

quickly as possible whether it was a normal or mirror-reversed version of the letter L. They 

depressed one of two keys to answer (left hand on the W key of an AZERTY keyboard for 

"different" answer, i.e. mirror-reversed, and right hand on the + key of an AZERTY 

keyboard for "same" answer). 

In the second condition, when subjects had depressed the space bar, they were provided 

with structural and orientational information about the target, i.e. they could see the letter L 

in its normal format in the orientation of the forthcoming target. This information was 

presented for 2000 msec. Following this, the information was removed from the screen. 

One thousand msec later, the target was displayed. It could be a normal or mirror-reversed 

version of an L presented in the same orientation as the provided information. Subjects had 

to depress a key as quickly as possible (same as in the first condition) to indicate whether the 

target was identical to the provided information. 

Finally, the third condition was similar to the second condition except that the target 

appeared 500 msec after the removal of the information. Figure 14 illustrates the three 

experimental conditions. 

Before the experimental tests as described above, the two groups of children underwent a 

training session to teach them through verbal instructions and demonstrations the difference 

between the normal and mirror-reversed version of the letter L. When the children had 

understood the instructions, the training session began. During the training session, the 

stimuli were always presented on the centre of a computer screen in the upright position but 

could be normal or backward. Children were asked to depress a specific key on the 
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keyboard when the stimuli were the same, and another key when they were different. This 

training task was made up of 24 trials. The training was continued until the child reached a 

score of 80% or more of correct responses. 

® 8 A Info. 
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B@) ;> OR 
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Figure 14 : Schematic representation of the three experimental 

conditions. A : No information. B: Advanced information 

followed by a 1000 msec retention interval before the target. C: 

Advanced information followed by a 500 msec retention 

interval before the target. The target was always presented in 

the same orientation as the advanced information (B & C) but 

was the normal or mirror-reversed version of the advanced 

information. 
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RESULTS 

Reaction times 

Reaction time functions are presented in figures 15 A, 15 B, and 15 C. Means and 

standard deviations are presented extensively in appendix 3. 

A global repeated measures ANOV A was carried out on individual RT means for correct 

responses. Age, stimulus orientation and experimental conditions were considered as 

independent variables. Age, F(3,132) = 28.2, p < 0.0001, and experimental conditions, 

F(2,132) = 3.95, P < 0.02, had a significant effect on RTs. Similarly, stimulus orientation 

which had an overall significant effect on RT, F(5,660) = 13.21, P < 0.0001, also interacted 

with the age variable, F(15,660) = 1.75, p < 0.04, and the experimental conditions, 

F(10,660) = 3.37, p < 0.0003. However, age did not interact significantly with the 

experimental condition, F(6,132) = 0.94, p < 0.47. Similarly, the triple interaction between 

age, experimental conditions and stimulus orientation was not significant, 

F(30,660) = 1.00, P < 0.47. 

Complementary ANOV As were computed on each age category considered separately. In 

the five-year-olds, there was a significant effect of the experimental condition, 

F(2,33) = 7.4, p < 0.002, and of stimulus orientation, F(5,165) = 11.31, p < 0.0001. 

Both variables interacted significantly, F(10,165) = 2.28, p < 0.02. In fact, stimulus 

orientation significantly affected RTs in younger children when they were not provided with 

information, F(5,55) = 4.6, p < 0.001, and when the information was provided 1000 msec 

before the presentation of the target, F(5,55) = 8.25, p < 0.0001. When the retention 

interval was 500 msec, stimulus orientation had no effect on RTs, F(5,55) = 1.78, 

p<0.13. 
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Figure 15 A : Reaction times (in msec) as a function of stimulus 

orientation for the "No advanced information" condition in the four 

age categories. 
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Figure 15 B : Reaction times (in msec) as a function of stimulus 

orientation for the "Advanced information: 1000 msec" condition in 

the four age categories. 
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Figure IS C : Reaction times (in msec) as a function of stimulus 

orientation for the "Advanced information: 500 msec" condition in the 

four age categories. 

In the eight-year-olds, similar results were observed. Experimental conditions, 

F(2,33) = 7.65, stimulus orientation, F(5,16S) = 6.74. and the interaction experimental 

condition X stimulus orientation, F(10,16S) = S.19, had a significant effect on RTs, all with 

p < 0.0001. However, the orientational effect was only significant in the first condition (No 

information), F(S,SS) = 7.33, p < 0.0001, and in the second condition (1000 msec retention 

interval), F(S,5S) = 3.14, P < 0.01. Stimulus orientation did not affect RTs in the SOO msec 

retention interval condition, F(S,SS) = 1.82, p < 0.12. 

In young adults, complementary ANOV As revealed a significant effect of experimental 

conditions, F(2,33) = 16.3S, stimulus orientation, F(S,165) = IS.17, all with p < 0.0001, 

on RTs. The interaction between these two variables was also found to be significant, 

F(lO,16S) = 9.9, p < 0.0001. Other analyses showed that stimulus orientation affected RTs 
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when subjects were not provided with information, F(S,SS) = 23.S8, p < 0.0001, and when 

the information was provided 1000 msec before the target, F(S,SS) = 2.66, p < 0.03. In the 

last condition, i.e. when the retention interval was SOO msec, RTs function was independent 

of stimulus orientation, F(S,SS) = 0.8, p < 0.S6. 

Finally, in the elderly, the overall ANOV A showed only a significant effect of stimulus 

orientation on RTs, F(S,16S) = 2.98, p < 0.01. However, neither the experimental 

condition, F(2,33) = 0.1, p < 0.9, nor the interaction between stimulus orientation and the 

experimental conditions, F(1 0, 16S) = 1.21, p < 0.29, was significant. In fact, the 

orientational effect was only significant when subjects were not provided with information, 

F(S,SS) = S, p < 0.0008. In the 1000 msec retention interval condition, the stimulus 

orientation did not affect RTs, F(S,SS) = 0.S7, p < 0.73. Similar results were observed in 

the SOO msec retention interval condition, F(S,SS) = 1.3S, p < 0.26. 

Error rates 

Error rates are reported in figures 16 A, 16 B, and 16 C, and mean values and standard 

deviations are presented in appendix 3. 

A global repeated measures ANOVA was carried out on errors. Age (S-, 8-year-olds, 

young adults and elderly) and the experimental conditions (without advanced information, 

with advanced information 1000 msec and 500 msec before the target) were between 

variables, while stimulus orientation (0°,60° and multiple of 60°) served as a within variable. 

A global effect of age, F(3,60) = 3.29, p < 0.03, and of stimulus orientation, 

F(5,300) = 5.45, p < 0.0001, was observed. However, the experimental conditions did 

not yield significantly different performance, F(2,60) = 0.35, p < 0.7. No interaction 

between variables significantly affected the performance (orientation x age : 
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F(15,300) = 1.33, p < 0.18; age x experimental condition : F(6,60) = 0.45, p < 0.84; 

orientation x experimental condition, F(10,300) = 0.52, p < 0.87; and orientation x 

experimental condition x age: F(30,300) = 0.99, p < 0.48). 

Complementary ANOV As on each age category considered separately confirmed a 

significant effect of stimulus orientation only in five-year-olds, F(5,75) = 2.64, p < 0.03, 

and in the elderly, F(5,75) = 3.4, p < 0.008. No effect of stimulus orientation was observed 

in the eight-year-olds, F(5,75) = 0.61, p < 0.69, and in the young adults, F(5,75) = 1.95, 

p < 0.09. 
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0 
fJ' (ff' 120° 180° 240° 300° 360° 

Stimulus orientation 

Figure 16 A : Errors (in percent) as a function of stimulus orientation 

for the "No advanced information" condition in the four age 

categories. 
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Figure 16 B : Errors (in percent) as a function of stimulus orientation 

for the "Advanced information: 500 msec" condition in the four age 

categories. 
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Figure 16 C : Errors (in percent) as a function of stimulus 

orientation for the "Advanced information: 500 msec" condition in 

the four age categories. 
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Error rates did not differ in the experimental conditions in the five-year-olds, 

F(2, 15) = 0.3, p < 0.75, in the eight-year-olds, F(2,15) = 1.37, p < 0.28, in the young 

adults, F(2,15) = 1.46, p < 0.26, and in the elderly people, F(2,15) = 0.2, p < 0.82. 

Moreover, the experimental conditions never interacted significantly with stimulus 

orientation (in the five-year-oIds: F(10,75) = 0.44, p < 0.92; in the eight-year-olds: 

F(10,75) = 1.21, p < 0.3; in the young adults: F(10,75) = 0.55, p < 0.84; and in the elderly 

people: F(10,75) = 1.52, p < 0.15). 

DISCUSSION 

Three experimental conditions were compared in experiment 3a. When subjects were not 

provided with structural and orientational information on the forthcoming stimulus, and had 

to judge whether the stimulus - which could be rotated - was a normal or mirror-reversed 

version of the letter L, RT functions were significantly dependent on stimulus orientation in 

all age categories. These results suggest that at all ages, subjects were using an analogue 

transformational process before judging the identity of the stimuli. However, it should be 

also noticed that error rates were relatively high in children (between 15 and 20 % for most 

stimulus orientations in five-year-olds). These results suggest that, although young children 

exhibit the same RT functions when they answer correctly, they are relatively poor in mental 

rotation tasks. 

The most interesting results of experiment 3a are found in the second and third 

conditions. When provided with information 1000 msec before the presentation of the target, 

eight-year-oIds and young adults answered uniformly rapidly whatever the stimulus 

orientation. The orientational effect observed in both age categories for this experimental 
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condition should not be interpreted as evidence for mental rotation. Indeed, the RT slope is 

too slight to reflect the mental rotation processes (see chapter two). It seems that they could 

keep the provided information in short term memory and consequently did not need to carry 

out a mental rotation of the target before responding. 

In contrast, younger children did not seem to keep such information for one second as 

revealed by the RT function. Indeed, in the second experimental condition, when provided 

with structural and orientational information 1000 msec before the target presentation, five­

year-olds' RTs depended on stimulus orientation. Moreover, their error rates were quite high 

(more than 20 % of errors) for the larger stimulus orientations. These results confirmed 

Childs and Polich's (1979) and Waber et al. 's (1981) results. 

Similarly, in elderly people, although RTs were not significantly affected by stimulus 

orientation, the RT pattern suggested that their information-processing was not similar to that 

of young adults, but not yet identical to that of younger children. There was a hint that their 

RTs tended to be affected by stimulus orientation (see figure 16 B). As in younger children, 

their performance was poor for larger stimulus disorientation; error rates reached 15 to 25 % 

of errors for the 1200
, 1800 and 2400 orientations. Although provided with information on 

the forthcoming target, elderly people performed poorly in mental rotation tasks. 

The results are even more interesting in the third condition. In this condition, RTs were 

independent of stimulus orientation in all age categories. It seems that at any age, subjects 

can keep structural and orientational information in short term memory for 500 msec. 

However, despite short interval and target priming, error rates were still high (10-15 %) in 

the younger children and in the elderly people. 

In conclusion, experiment 3a seems to confirm that five-year-olds are particularly poor at 

maintaining spatial information (the stimulus orientation) for 1 second but that they can retain 

it for 500 msec. Similarly, experiment 3a suggests that such ability is poor in the elderly. In 
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contrast, eight-year-olds as well as young adults have no difficulty in keeping information in 

short term memory and benefit from this information while solving a mental rotation task. 

The difference observed between the younger children and the other subjects might be 

found in the difficulty that they have mentally rehearsing the information during the retention 

interval. Indeed, several authors (e.g. Cuvo, 1975: Ornstein, Nauss & Liberty, 1975) have 

suggested that young children do not spontaneously use rehearsal strategies. This topic will 

be reconsidered later. 

EXPERIMENT 3b 

The hypothesis that spatial information is particularly difficult to maintain in short term 

memory in children age 5 and in the elderly is tested in experiment 3b. To test this 

hypothesis, the second and third conditions of experiment 3a were replicated, introducing an 

interfering mask during the retention interval. 

Consequently, in experiment 3b, subjects were provided with structural and orientational 

information 1000 msec or 500 msec before the presentation of the target, but during this 

retention interval, an interfering mask was presented. Figure 17 presents the experimental 

conditions. It is assumed that the interfering mask would prevent subjects from mentally 

rehearsing the information provided. Indeed, in such a condition, they should be mainly 

busy with an inhibition of the irrelevant information. 

It was expected that in this condition, both five-year-olds and elderly people would be 

particularly impaired in the task. As a consequence, RTs in five-year-olds and in elderly 

people should be dependent on stimulus orientation in each condition, or in other words, 

younger children and elderly people would need to carry out mental rotations despite the 

advanced information. 
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METHOD 

Subjects 

Twenty four five-year-olds (mean age: 4; 11, range 4;09-5;03), 24 eight-year-olds (mean 

age: 8;01, range 7;09-8;03),24 young adults (mean age: 19, range 18-24) and 24 elderly 

people (mean age: 69, range 65-80) took part in the experiment. They were recruited through 

the same channels as in experiment 3a. 

Subjects from each age category were distributed among two experimental groups. Each 

experimental group was consequently composed of 12 subjects from each age category 

Cr. n = 48). 

Material 

Basically, the material was identical to experiment 3a except that only four orientations 

were used: 0°, 60°, 120° and 180°. Moreover, an interfering mask was displayed during the 

retention interval (see figure 17 for an illustration of the stimuli). The tasks were composed 

of 32 trials, 8 at each level of orientation; half of the stimuli at each level of orientation were 

normal, half were mirror-reversed. 

Procedure 

Two experimental conditions were tested. In the first condition, subjects were required to 

press on the space bar when they were ready. Following this, structural and orientational 

information about the target was displayed for 2 seconds. The information was removed 

from the computer screen and replaced by an interfering mask (see figure 17). The mask was 

presented for 1000 msec. After this, the target was presented. It was a normal or mirror-
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reversed version of the letter L. Subjects had to decide as quickly as possible whether the 

target was identical to the provided information. When the target was identical to the 

provided information, they depressed a key, and when different, they depressed another key 

on the keyboard (see experiment 3a). 

The second condition was basically the same as the first condition except that the mask 

was presented for 500 msec. 

Children were presented with a training session as in experiment 3a (see above for details 

on the procedure). 

1000 msec OR 

500 msec 

Figure 17 : Schematic representation of the experimental 

conditions. A: with a 1000 msec interval, and B: with a 500 

msec interval during which an interfering mask was 

displayed. 
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RESULTS 

Reaction times 

Reaction times functions are presented in figures 18 A and 18 B. Means and standard 

deviations are reported in appendix 4. 

A global repeated measures ANOV A was calculated on reaction times for correct 

responses. Significant effects of age, F(3,87) = 94.91, and of stimulus orientation, 

F(3,261) = 19.75, were observed. all with p < 0.0001. Similarly, the interaction 

stimulus orientation X age was also significant, F(9,261) = 6.25, p < 0.0001. A Tukey 

post-hoc analysis revealed that the 5-year-olds and the elderly people obtained similar RT 

means (p < 0.05). However, neither the experimental condition, F(1,87) = 0.01, p < 0.91. 

nor the other interactions between variables affected significantly the reaction times [age X 

experimental condition, F(3,87) = 0.3, p < 0.82; experimental condition X stimulus 

orientation, F(3,261) = 0.12, p < 0.95; and stimulus orientation X age X experimental 

condition, F(9,261) = 0.84, p < 0.58]. 

As an effect of age was observed in the global ANOV A, several analyses were carried out 

on each age category considered separately. When subjects had to keep structural and 

orientational information for 500 msec before the presentation of the target, RTs were 

significantly dependent on stimulus orientation in the five-year-olds, F(3,33) = 6.17, 

P < 0.002, and in the elderly people, F(3,33) = 5.31, P < 0.004. No effect of stimulus 

orientation was observed in the eight-year-olds, F(3,33) = 0.47, p < 0.71, and in the young 

adults, F(3,33) = 2.76, P < 0.07. 

When subjects had to retain the information for 1000 msec, similar results were 

observed. Stimulus orientation significantly affected RTs in the five-year-olds, F(3,30) = 
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3.82, p < 0.02, and in the elderly, F(3,33) = 8.77, p < 0.0002, but not in the eight-year­

olds, F(3,33) = 0.47, p < 0.7, and in the young adults, F(3,33) = 2.35, p < 0.09. 
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Figures 18 A and B : Reaction times (in msec) as a function of 

stimulus orientation in five-year-olds, eightyear-olds, young adults 

and elderly people (see symbols on the right side of each graph). 

Results for the "1000 msec retention interval" are presented in part 

A of the figure, whilst results for the "500 msec retention interval" 

are presented in part B. 
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Error rates 

Error rates are presented in figures 19 A and 19 B. Error means and standard deviations 

are reported in appendix 4. 

Similar analyses were computed on error rates. A global repeated measures ANOV A 

revealed significant effects of age, F(3,88) = 32.92, and stimulus orientation, 

F(3,264) = 21.95, with p < 0.0001. The interaction stimulus orientation X age was also 

significant, F(9,264) = 3.99, p < 0.0001. No effect of the experimental condition, 

F(1,88) = 0.58, p < 0.45, and of the other interactions between variables could be observed 

[age X experimental condition, F(3,88) = 2.02, p < 0.12; stimulus orientation X 

experimental condition, F(3,264) = 0.7, p < 0.55; and stimulus orientation X age X 

experimental condition, F(9,264) = 0.65, p < 0.75]. 

ANOV As calculated on each age category considered separately revealed a significant 

effect of stimulus orientation both in the five-year-olds, F(3,33) = 4.29, P < 0.01, 

F(3,33) = 2.74, p < 0.06, in the 500 and 1000 msec conditions respectively, and in the 

elderly people, F(3,33) = 18.14, p < 0.0001, F(3,33) = 9.26, p < 0.0001, in the 500 and 

1000 msec conditions respectively. No effect of stimulus orientation could be observed in 

the eight-year-olds in the 500 msec condition, F(3,33) = 1.73, p < 0.18, and in the 1000 

msec condition, F(3,33) = 1.59, p < 0.21. Similar results were observed in the young 

adults in the 500 msec condition, F(3,33) = l.14, p < 0.35, and in the 1000 msec condition, 

F(3,33) = 0.81, p < 0.49. 
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Figures 19 A and B : Errors (in percent) as a function of 

stimulus orientation in five-year-olds, eight-year-olds, young 

adults and elderly people (see symbols on the right side of 

each graph). Results for the "1000 msec retention interval" are 

presented in part A of the figure, whilst results for the "500 

msec retention interval" are presented in part B. 
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DISCUSSION 

The purpose of experiment 3b was to confront subjects with an interfering mask while 

solving a mental rotation task. It was hypothesised that an interfering mask should affect the 

ability of younger children and elderly people to maintain vi suo-spatial information in short 

term memory. 

Experiment 3a showed that five-year-olds are poor at maintaining the orientation of the 

stimulus for 1000 msec in short term memory. It appeared in experiment 3a that the 

maximum time for which they can keep spatial information in short term memory seems to 

be around 500 msec. Indeed, when provided with orientational information about the target 

500 msec before the test, younger children respond at the same speed whatever the target 

orientation. 

Experiment 3b indicates that this 500 msec limit holds good only when subjects have no 

other information processing to carry out during the retention interval. When an interfering 

mask is displayed during the retention interval, it was found again in the five-year-olds that 

the linear RTs trend classically observed when subjects are carrying out mental rotations 

occured. In the 500 msec and 1000 msec retention interval conditions, younger children 

seem to be particularly impaired at maintaining spatial information in short term memory. 

This is also confirmed by the high error rates observed for the 600 to 1800 orientations. 

Similar results were observed in elderly people. In experiment 3a, RTs were not 

influenced by stimulus orientation in the 1000 msec retention interval condition, which 

suggested that elderly people are well able to keep spatial information for such a period. 

Such conclusions however have to be revised in the light of experiment 3b. 

Indeed, in this experiment, the introduction of an interfering mask during the retention 

interval modified RT functions in elderly people. It appeared that they are highly impaired in 
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maintaining spatial information in short term memory even for 500 msec. Their RT functions 

are similar to those observed in younger children (except maybe in the 500 msec retention 

interval where the effect of stimulus orientation is less pronounced - but still significant). In 

addition, error rates were also relatively high in both retention interval conditions, especially 

for the larger stimulus disorientations. 

It should also be noticed that, although no statistical analysis has been carried out between 

experiments 3a and 3b, the graphs suggest that error rates increased in five-year-olds and in 

the elderly people when an interfering mask is displayed during the retention interval. Such 

results confirm the negative effect of the interfering mask on young children and elderly 

performances; it suggests how poor these subjects are in solving such tasks. 

How should the effect of the interfering mask be interpreted ? When provided with 

information on the forthcoming target, subjects have to keep it in short term memory. It is 

well known that to maintain auditory information, subjects use the so-called articulatory loop 

(at least if we refer to Baddeley's working memory model). In some way, they sub-vocally 

rehearse the information. In case of visual information, it seems that a similar processes 

could exist. Kosslyn (1980) refers to a REGENERATE unit. This subsystem would allow 

subjects to mentally rehearse the information to keep it in the visual buffer, i.e. in short term 

memory. 

When an interfering mask is used, subjects are confronted with irrelevant information 

during the period when logically they should be mentally rehearsing the pattern to be kept in 

short term memory. However, it might be that the mask interferes with the rehearsal 

processes. Subjects have to allocate resources for the inhibition of the irrelevant information. 

Consequently, it might be that their ability to rehearse the relevant information is affected by 

the necessity to inhibit the interfering mask. 
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On the one hand, several studies (e.g. Cuvo, 1975; Flavell, Beach & Chinsky, 1966; 

Ornstein, Nauss & Liberty, 1975; Ornstein, Nauss & Stone, 1977) have suggested that 

before the age of 7, children do not use rehearsal strategies. Prior to age 7, children typically 

are not strategic. It is only after this age that they begin to use the simplest rehearsal 

strategies, i.e. overt or covert repetition of items to be remembered. This could account for 

the difficulties young children have in keeping spatial information in memory. In fact, the 

debate on young children's ability to mentally rehearse information is going on. It seems 

that young children can rehearse and spontaneously choose to do so for auditory speech 

material. However, when the memory material is presented in pictorial form, similar 

cognitive processing is not observed (Hitch & Halliday, 1983; See Gathercole, Adams & 

Hitch (1994) for a recent study on this issue). 

On the other hand, some studies (e.g. Zacks & Hasher, 1988) have reported the difficulty 

elderly people have in inhibiting irrelevant information during task solving. Hasher and 

Zacks (1988) have suggested that ageing would be associated with a reduction of efficiency 

of the inhibitory attentional processes which control the access and the temporary 

maintenance of irrelevant information in a task in progress. The existence of distracting 

information in working memory would be the expression of this deficit. It would interfere 

with the resolution of a particular problem. Such a deficit could explain why elderly people's 

RT functions became dependent on stimulus orientation in experiment 3b. 

In conclusion, although similar patterns of responses have been observed in five-year­

olds and elderly people, the responsibility could be shared between two different 

subsystems: A poor rehearsal ability in young children versus a lack of inhibition of 

irrelevant information in elderly (or both). 

The interfering mask did not affected either eight-year-olds or young adults. In both 

groups, RTs remained independent of stimulus orientation. These facts confirm that at these 

ages, both short term memory and mental rotation processes are mature. 
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EXPERIMENT 3c 

Through experiments 3a and 3b, the reasoning has been that five-year-olds and elderly 

people are very poor at maintaining spatial information in short term memory. However, no 

experiment tested whether structural information, i.e. the information processed by the 

ventral or visual subsystem, is preserved in memory. Experiment 3c is designed to assess 

this ability. 

The experimental procedure is similar to that used in the two previous experiments. 

Subjects were provided with structural and orientational information on the forthcoming 

target. Two experimental conditions were used, i.e. a 500 msec and a 1000 msec retention 

interval. The provided information was the letter L or C in different orientations. The target 

could be the same letter or the other one, always presented in the same orientation as the 

provided information. Subjects could be presented with the letter L in its normal version, 

the letter L in its mirror-reversed version, or the letter C as targets (the exact shapes are 

represented in figure 20). In the case where the provided information was an L in its normal 

version followed by an L in its normal version as the target, the two stimuli were structurally 

equivalent. The situation was identical when both the provided information and the target 

were the letter C. In the cases where the letter L in its mirror-reversed version was displayed 

after an L in its normal version, or when an L in its normal version followed the letter C, 

there was a structural difference between the information provided and the target. 

If younger children and elderly people can keep structural information in short term 

memory, when the provided information and the target are structurally different, they should 

immediately notice that there is a mismatch between both stimuli. This is particularly the 

case when the provided information is the letter C and the target is the letter L. 

Consequently, it was hypothesised that in such situation, subjects' RTs should not be 
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affected by stimulus orientation. They should immediately perceive the difference between 

the information kept in memory and the target. 

However, when the letter L, normal or mirror-reversed, serves as target after an L in its 

normal format, the results reported in experiment 3a (second and third experimental 

conditions) should be replicated in experiment 3c. Indeed, in such situation, if they do not 

keep the provided information in short term memory, they have to identify through a mental 

rotation process which version of the letter L is presented as a target. Indeed, as Simion, 

Bagnara, Roncato and Umilta (1982) mentioned: "same" and "different" judgments are 

mediated by the same holistic processor in the case of visual images. As a consequence, 

orientation functions for "different" or negative responses are like those for "same" or 

positive responses in showing a linear or quasi-linear relationship between latency and 

angular difference of the comparison stimuli. 

In showing a difference in RT functions in the two situations, i.e. same structure versus 

different structure, a differential development of the visual and spatial components of STM 

for visual patterns would be partly evidenced in five-year-olds and elderly people. 

METHOD 

Subjects 

Ninety six subjects completed the experiment. Twenty four were children aged five (mean 

age: 5;02, range 4;09-5;03),24 were eight-years-old (mean age: 8;01, range 7;09-8;04),24 

were young adults (mean age: 22, range 18-29) and 24 were elderly people (mean age: 78, 

range: 71-80). 
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Children were from kindergartens and schools in the surroundings of Liege and Huy, 

Belgium. Young adults were undergraduate students or staff members at the University of 

Liege. Elderly people were recruited from personal contacts or attended a leisure club in the 

area of Liege. 

Material 

The shapes used in the task were the letters Land C (size: 3.5 cm x 2 cm). The stimuli 

were presented at the center of a computer screen placed at about 50 em from the subject. 

The stimuli were presented in four orientations: 00
, 600

, 1200 or 1800
• The letter L could be 

presented in its normal or mirror-reversed version. The letter C was always presented in its 

normal version. 

Subjects completed 64 trials: 12 times the letter L in its normal version followed by the 

letter L in its normal version (4 trials for each orientation); 12 times the letter L in its normal 

version followed by the letter L in its mirror-reversed version (4 trials for each orientation); 

12 times the letter C in its normal version followed by the letter L in its normal version (4 

trials for each orientation); and 12 times the letter C in its normal version followed by the 

letter C in its normal version (4 trials for each orientation). Trials were displayed in random 

order. Two keys on a keyboard were used to indicate responses. 

Procedure 

Two experimental conditions were tested. In the first condition, when subjects had 

depressed the space bar, they were provided with structural and orientational information on 

the target, i.e. they saw the letter L or C in its normal format in the orientation of the 

forthcoming target. Subjects were instructed that the provided information would be always 

an L or a C in its normal version. This information was presented for 2000 msec. Following 

this, the information was removed from the screen. One thousand msec later, the target was 
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displayed. It could be a normal or mirror-reversed version of an L, or the normal version of 

the letter C. Subjects had to decide as quickly as possible whether the target corresponded to 

the information provided. They depress one of two keys to answer (left hand on the W key 

of an AZERTY keyboard for "different" answer, i.e. mirror-reversed, and right hand on 

the + key of an AZERTY keyboard for "same" answer). 

The second condition was similar to the first condition except that the target appeared 500 

msec after the removal of the information. Figure 20 illustrates the two experimental 

conditions, and the possible combination of stimuli for the 60° orientation. 
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Figure 20 : Schematic representation of the experimental 

conditions. The provided information are represented on the 

left side with targets represented on the right side. In 

between: retention interval of 500 msec or 1000 msec. 

The provided information and the target were always 

presented in the same orientation. 
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In contrast to the young adults and the elderly people, children were first submitted to a 

training period as defined in the two previous experiments, i.e. discrimination learning of 

"same" and "different" judgments. A criterion test was also used to select subjects as in 

experiments 3a and 3b. 

RESULTS 

Reaction times 

In experiment 3c, there were two experimental conditions : the retention interval for the 

provided information was 500 msec or 1000 msec. Subjects could be presented with four 

trial categories: L normal followed by L normal (L > L), L normal followed by L mirror­

reversed (L > LM), C normal followed by L normal (C > L), or C normal followed by C 

normal (C > C). Stimuli could be presented at 0°,60°, 120° or 180°. 

A first global mixed ANOVA was calculated on RT means for correct responses with Age 

and Experimental conditions as between factors, and Trial category and Stimulus orientation 

as within factors. Results of this global ANOVA are presented in table 3. As all the 

interactions between independent variables but one were significant, several complementary 

analyses have been carried out to understand these complex significant effects. 

Complementary analyses on RTs Trial categories 

A first set of analyses was carried out on RTs for correct responses on each trial category 

considered separately. Age and experimental conditions were between factors and stimulus 

orientation was a within factor. RT means are reported in figures 21 A to 24 B. Data are 

also reported extensively in appendix 5. 
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TABLE 3 

Results of the global mixed ANOV A on RTs for correct responses 

Independent variables and interactions F(df) = value p value 

Age F(3,88) = 24.65 fJ < 0.0001 

Experimental condition (Retention) F(1,88) = 0.52 fJ < 0.47 : NS 

Age x Experimental condition F(3,88) = 0.28 /J < 0.84: NS 

Trial category F(3,264) = 50.8 p < 0.0001 

Trial category x Age F(9,264) = 8.62 p < 0.0001 

Trial category x Experimental condition F(3,264) = 10.24 p < 0.0001 

Trial category x Age x Exp. condition F(9,264) = 3.96 p < 0.0001 

Stimulus orientation F(3,264) = 42.52 p < 0.0001 

Stimulus orientation x Age F(9,264) = 8.9 fJ < 0.0001 

Stimulus orientation x Exp. condition F(3,264) = 7.45 fJ < 0.0001 

Stirn. orientation x Age x Exp. condition F(9,264) = 3.91 /J < 0.0001 

Trial category x Stimulus orientation F(9,792) = 14.57 p < 0.0001 

Trial cat. x Stirn. orientation x Age F(27,792) = 3.49 fJ < 0.0001 

Trial cat. x Stirn. orient. x Exp. condition F(9,792) = 5.63 p < 0.0001 

Trial cat. x Stirn. or. x Age x Exp. condo F(27,792) = 3.1 p < 0.0001 

L normal > L normal 

The results are reported in figure 21 A for the 1000 msec condition, and in figure 21 B 

for the 500 msec retention interval condition. 

107 



L normal> L normal 
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Figure 21A : Response times (in msec) as a function of stimulus 

orientation and age, for the trial category L > L, the 1000 msec 

retention interval condition. 
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Figure 21B : Response times (in msec) as a function of stimulus 

orientation and age, for the trial category L > L, the 500 msec 

retention interval condition. 
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In the first trial category (L > L), a global repeated measures ANOV A was carried out on 

RT means for correct responses. Age, F(3,88) = 26.16, p < 0.0001, and stimulus 

orientation, F(3,264) = 40.04, p < 0.0001, significantly affected RTs. In addition, 

Stimulus orientation interacted significantly with age, F(9,264) = 8.85, and with the 

retention interval, F(3,264) = 10.14, both with p < 0.0001. The triple interaction orientation 

x age x retention, F(9,264) = 5.05, p < 0.0001, was also significant. The retention interval 

did not affect the RTs by itself, F(l,88) = 0.76, p < 0.38, and did not interact significantly 

with age, F(3,88) = 0.33, p < 0.8. 

The analysis was carried on one step further. Repeated measures ANOV As were 

calculated on each age category considered separately to assess the effect of stimulus 

orientation. 

In the five-year-olds, RTs significantly increased as a function of stimulus orientation in 

the 1000 msec retention interval condition, F(3,33) = 22.02, p < 0.0001, but not in the 500 

msec retention interval condition, F(3,33) = 2.44, p < 0.08. Similar results were found in 

the elderly people: Stimulus orientation significantly affected RTs when the information was 

presented 1000 msec before the target, F(3,33) = 13.44, p < 0.0001, but not - although 

results were almost significant - when the information was presented 500 msec before the 

target, F(3,33) = 2.7, p < 0.06. 

In the eight-year-olds and the young adults, stimulus orientation significantly affected the 

RTs in both experimental condition [Eight-year-olds : 1000 msec retention interval: 

F(3,33) = 3, p < 0.04; 500 msec : F(3,33) = 5.45, p < 0.004; and Young adults: 

1000 msec retention interval: F(3,33) = 4.52, p < 0.009; 500 msec : F(3,33) = 3.46, 

p<0.03]. 
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L normal > L mirror-reversed 

The results are reported in figure 22 A for the 1000 msec condition, and in figure 22 B 

for the 500 msec retention interval condition. 

Similar results were observed for this trial category. A global ANOVA on RTs for 

correct responses showed that age, F(3,88) = 25.28, and stimulus orientation, 

F(3,264) = 27.39, both with p < 0.0001, significantly affected the RTs. Moreover, 

stimulus orientation interacted significantly with age, F(9,264) = 5.97, p < 0001, and with 

retention interval, F(3,264) = 6.55, p < 0.0003. The orientation x age x retention interval 

interaction was also significant, F(9,264) = 3.57, p < 0.0003. On the contrary, retention 

interval itself did not affect the RTs, FO ,88) = 2.33, p < 0.13, and did not interact with age, 

F(3,88) = 0.75, p < 0.52. 

ANOVAs were then computed on RTs for each age category considered separately. In 

the five-year-olds, an effect of stimulus orientation was observed both in the 500 msec 

condition, F(3,33) = 0.05, p < 0.05, and in the 1000 msec condition, F(3,33) = 15.1, 

P < 0.0001. Similar results were observed in the eight-year-olds [500 msec : 

F(3,33) = 4.77, P < 0.007; 1000 msec : F(3,33) = 3.2, p < 0.04], and in the elderly 

[500 msec : F(3,33) = 3.17, p < 0.04; 1000 msec : F(3,33) = 7.09, p < 0.0008]. In the 

young adults, the orientational effect was only observed in the 1000 msec retention interval 

condition, F(3,33) = 7.64, p < 0.0005, and not in the 500 msec condition, F(3,33) = 1.04, 

p < 0.39. 
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Figure 22A : Response times (in msec) as a function of stimulus 

orientation and age, for the trial category L > LM, the 1000 msec 

retention interval condition. 
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Figure 22B : Response times (in msec) as a function of stimulus 

orientation and age, for the trial category L > LM, the 500 msec 

retention interval condition. 
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C normal > L normal 

The results are reported in figure 23 A for the 1000 msec condition, and in figure 23 B 

for the 500 msec retention interval condition. 

A global repeated measure ANOV A was carried out on RTs for correct responses. The 

RTs were significantly affected by age, F(3,88) = 19.93, p < 0.0001, and by stimulus 

orientation, F(3,264) = 4.7, P < 0.003. No other variable or interaction between variables 

was observed in this trial category [retention interval: F( 1,88) = 0, p < 0.97; age x retention 

interval, F(3,88) = 0.25, p < 0.86; stimulus orientation x age: F(9,264) = 1.29, p < 0.24; 

stimulus orientation x retention interval: F(3,264) = 0.49, p < 0.68; stimulus orientation x 

age x retention interval: F(9,264) = 1.07, p < 0.38]. 

The orientational effect was assessed for each age category considered separately. 

Stimulus orientation affected RTs in the 1000 msec retention interval in the five-year-olds, 

F(3,33) = 3.11, P < 0.04, in young adults, F(3,33) = 3.38, p < 0.03, and in the elderly 

people, F(3,33) = 2.93, p < 0.05, but not in the eight-year-olds, F(3,33) = 1.2, P < 0.23. 

In the 500 msec retention interval condition, stimulus orientation did not affect 

significantly RTs [Five-year-olds : F(3,33) = 2.75, p < 0.06 (almost significant); Eight­

year-olds : F(3,33) = 2.39, p < 0.09; Young adults: F(3,33) = 1.51. p < 0.23; and Elderly 

people: F(3,33) = 1.38, p < 0.27]. 
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Figure 23A : Response times (in msec) as a function of stimulus 

orientation and age, for the trial category C > L, the 1000 msec 

retention interval condition. 
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Figure 23B : Response times (in msec) as a function of stimulus 

orientation and age, for the trial category C > L, the 500 msec 

retention interval condition. 
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C normal > C normal 

The results are reported in figure 24 A for the 1000 msec condition, and in figure 24 B 

for the 500 msec retention interval condition. 

In the last trial category, similar analyses showed a significant effect of age, 

F(3,SS) = 23.42, p < 0.0001, stimulus orientation, F(3,264) = 2S.45, p < 0.0001, 

stimulus orientation x age, F(9,264) = 5.5, p < 0.0001, stimulus orientation x retention 

interval, F(3,264) = 3.64, p < 0.01. Other independent variables or interactions between 

variables did not significantly affect RTs [Retention interval: F(1,SS) = O.OS, P < 0.77; 

age x retention interval : F(3,SS) = 0.2S, p < 0.S4; stimulus orientation x age x retention 

interval: F(9,264) = 1.63, p < 0.11]. 

The analysis was carried one step further. Repeated measures ANDV As were calculated 

on each age category considered separately. In the five-year-olds, the RTs significantly 

increased as a function of stimulus orientation in the 1000 msec retention interval condition, 

F(3,33) = 10.24, p < 0.0001. No effect of stimulus orientation was observed in the 500 

msec condition, F(3,33) = 1.44, p < 0.25. 

In the elderly people, stimulus orientation significantly affected RTs when the information 

was presented 500 msec before the target, F(3,33) = 3.59, P < 0.02, as well as 1000 msec, 

F(3,33) = 14.99, p < 0.0001. 

In eight-year-olds, a stimulus orientation effect was observed in the 1000 msec condition, 

F(3,33) = 4.69, p < 0.008, but not in the 500 msec condition, F(3,33) = 2.34, p < 0.09. In 

contrast, in young adults, opposed results were observed: Stimulus orientation influenced 

significantly RTs in the 500 msec retention interval condition, F(3,33) = 5.22, p > 0.005, 

but not in the 1000 msec condition, F(3,33) = 1.73, p < O.IS. 
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C normal> C normal 
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Figure 24A : Response times (in msec) as a function of stimulus 

orientation and age, for the trial category C > C, the 1000 msec 

retention interval condition. 
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Figure 24B : Response times (in msec) as a function of stimulus 

orientation and age, for the trial category C > C, the 500 msec 

retention interval condition. 
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Complementary analyses on RTs Age categories 

ANDV As were carried out on RTs for correct responses in each age category considered 

separately to assess the effect of retention interval and its interaction with stimulus 

orientation in each trial category. 

Five-year-olds 

The results are reported in figure 25. 
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Figure 25 : Response times (in msec) as a function of 

stimulus orientation, trial category (L > LM, L > L, C > C, C 

> L) and retention interval (grey line: 1000 msec; black line: 

500 msec) in five-years-old children. 
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For the trial category L > LM, significant effects of retention interval, F(l,22) = 5.41, 

p < 0.03, stimulus orientation, F(3,66) = 16.25, P < 0.0001, and stimulus orientation x 

retention interval, F(3,66) = 9.52, p < 0.0001, were observed. A Tukey test (p < 0.05) 

showed that the difference between the retention interval conditions was only present for 

the 1800 orientation. 

For the trial category L > L, the RTs were significantly affected by stimulus orientation, 

F(3,66) = 23.03, P < 0.0001, but not by the retention interval, F(1,22) = 2.15, p < 0.16. 

However, the interaction between retention interval and stimulus orientation was 

significant, F(3,66) = 14.59, p < 0.0001. A Tukey test (p < 0.05) showed a significant 

difference between RT means for the 1800 orientation. 

When children were presented with a C followed by an L, RTs were only significantly 

affected by the stimulus orientation, F(3,66) = 5.67, p < 0.002. Neither the retention 

interval, F(1,22) = 0, p < 0.98, nor the interaction retention interval x stimulus orientation, 

F(3,66) = 0.25, p < 0.86, was significant. 

Finally, for the trial category C > C, the stimulus orientation, F(3,66) = 10.69, 

P < 0.0001, and the interaction stimulus orientation x retention interval, F(3,66) = 4.92, 

p < 0.004, were significant, but not the retention interval itself, F( 1,22) = 0.84, p < 0.37. 

The interactions between trial category and stimulus orientation are presented in table 4 

for both the 500 msec and 1000 msec retention intervals. 

11 7 



TABLE 4 

Interaction between trial cate 0 and stimulus orientation. Retention interval: 500 msec 

C>C 

L>LM < 0.32 < 0.2 

L>L < 0.86 

C>C 

Interaction be . I tween tna category an d . stlmu us onentatIon. R I 1000 etenUon interva : msec 

L>L C>C C>L 

L>LM F(3,33) = 2.79, p < 0.06 F(3,33) = 8.04, p < 0.0004 F(3,33) = 13.3, p < 0.000 I 
~ 

L>L ~. ~ F(3,33) = 6.0 I, p < 0.002 F(3,33) = 19 p < 0.000 I 
".", i" " 

C>C .. , F(3 33) = 6.43 p < 0.002 

Eight-year-olds 

The RT values are reported in figure 26. 

In eight-year-olds, neither the retention interval [L > LM : F( I ,22) = 0.16, P < 0.69; 

L> L : F(I,22) = 0.38, p < 0.55; C > L : F(I,22) = 1.07, p < 0.31; and C > C : 

F(1,22) = 0.01, p < 0.91], nor the interaction between retention interval and stimulus 

orientation [L > LM : F(3,66) = 2.10, p < 0.11; L > L : F(3,66) = 1.58, p < 0.20; C > L : 

F(3,66) = 1.06, p < 0.45; and C > C : F(3,66) = 0.9, p < 0.45] significantly affected the 

RTs. 

However, RTs were significantly affected by the stimulus orientation in the trial category 

L > LM, F(3,66) = 5.92, p < 0.001, L > L, F(3,66) = 6.51, p < 0.0006, C > L, 

F(3,66) = 2.07, P < 0.01, and C > C, F(3,66) = 5.69, P < 0.002. 

The interactions between trial category and stimulus orientation are presented in table 5 

for both the 500 msec and 1000 msec retention intervals. 
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Figure 26 : Response times (in msec) as a function of 

stimulus orientation, trial category (L > LM, L > L, C > C, 

C > L) and retention interval (grey line: 1000 msec; black 

line: 500 msec) in eight-years-old children. 

. I Interaction between trIa category an 

TABLE 5 

d I sttmu us onentatton. R I 500 etentton interva : msec 

L>L C>C C>L 

L>LM F(3,33) = 0.72, p < 0.55 F(3 33) = 1.\9, D < 0.33 F(3,33) = 2.9 D < 0.05 

L>L I " ',.1_ ;ik, ,., 
" F(3,33) = 0.47 , D < 0.71 F(3 33) = 2.04, 1) < 0.13 

""" C>C I~ *-.;,,'" ~ F(3 33) = 0.8 D < 0.5 

. I Interaction between tna category an d . sttmu us onentatlon. R etentton mterva I 1000 msec 

L>L C>C C>L 

L>LM F(3,33) = 0.15, p < 0.71 F(3,33) = 3.65, D < 0.02 F(3 33) = 2.9, D < 0.12 

1~".1t #')1; T ", 
~' F(3 ,33) = 2.68 p < 0.06 L>L ", ~; 0 F(3 33) - 1.32 f} < 0.29 

w 
, 

C>C ",.",,,,, '" F(3,33) = 1.36. fJ < 0.27 
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Young adults 

The results are summarised in figure 27. 
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Figure 27 : Response times (in msec) as a function of 

stimulus orientation, trial category (L > LM, L > L, C > C, C 

> L) and retention interval (grey line: 1000 msec; black line: 

500 msec) in young adults. 

As in eight-year-olds, the retention interval did not affect the RTs in young adults 

[L > LM: F(1,22) = 4.08, P < 0.06; L> L : F(I,22) = 1.56, p < 0.22; C > L : 

F( 1,22) = 1.67, p < 0.21; and C > C : F( I ,22) = 1.48, p < 0.24], and interacted 

significantly with stimulus orientation only in the trial category L> LM, F(3,66) = 3.65, 

p < 0.02. In fact, a Tukey test showed that RT means were different in the 600 and 1200 

orientation. 
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The stimulus orientation x retention interval interaction was not significant in the L > L 

trial category, F(3,66) = 0.52, p < 0.22, in the C > L category, F(3,66) = 1.93, p < 0.13, 

and in the C > C category, F(3,66) = 0.18, p < 0.91. 

On the contrary, stimulus orientation affected significantly RTs in all trial categories 

[L > LM : F(3,66) = 6.59, p < 0.0006; L> L : F(3,66) = 7.81, p < 0.0002; C > L : 

F(3,66) = 3.98, p < 0.01; and C > C : F(3,66) = 4.43, p < 0.008]. 

The interactions between Trial category and Stimulus orientation are presented in table 6 

for both the 500 msec and 1000 msec retention intervals. 

TABLE 6 
Interaction between trial cate 0 and stimulus orientation. Retention interval: 500 msec 

L>L C>C C>L 

L>LM ~~~~<~0~.6~9 __ -;~~~~~~<~0~.5~7 __ -;~~~~~~~~~ 

L> L < 0.79 

C>C 

and stimulus orientation. Retention interval : 1000 msec 

L>LM < 0.008 

< 0.84 

< 0.53 

Elderly people 

The results are reported in figure 28. 
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Figure 28 : Response times (in msec) as a function of stimulus 

orientation, trial category (L > LM, L > L, C > C, C > L) and 

retention interval (grey line: 1000 msec; black line: 500 

msec) in the elderly people. 

In the trial category L > LM, RTs were affected only by stimulus orientation, 

F(3,66) = 9.51, p < 0.1. Retention interval, FO ,22) = 0.1, p < 0.75, and the interaction 

retention interval x stimulus orientation, F(3,66) = 2. 17, p < 0.1, did not significantly 

affect the results. 

In the trial category L > L, similar results were observed: The stimulus orientation, 

F(3,66) = 14.45, p < 0.0001, was the only variable to affect the RTs. Retention interval, 

F(l,22) = 0, p < 0.99, and stimulus orientation x retention interval, F(3,66) = 2.47, 

p < 0.07, were not significant, although the interaction almost reached significance. 
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No significant main effects or interactions were found in the trial category C > L 

[Retention interval: F(l,22) = 0.18, P < 0.68; Stimulus orientation, F(3,66) = 0.14, 

P < 0.] 4; and Stimulus orientation x retention interval, F(3,66) = 0.97, P < 0.41]. 

Finally, in the trial category C > C, stimulus orientation significantly affected RTs, 

F(3,66) = ] 2.66, p < 0.000 I , but neither the retention interval variable, FCI,22) = 0.07, 

p < 0.79, nor the interaction stimulus orientation x retention interval, F(3,66) = 0.61. 

p < 0.61, was found to be significant. 

The interactions between Trial category and Stimulus orientation are presented in table 7 

for both the 500 msec and 1000 msec retention intervals. 

TABLE 7 

Interaction between trial cate 0 and stimulus orientation. Retention interval : 500 msec 

L>LM 

L>L 

C>C 

L>L 

Interaction between trial 

Error rates 

C>L 

< 0.19 

and stimulus orientation. Retention interval : 1000 msec 

A first global mixed ANOV A was carried out on errors with age and experimental 

conditions as between factors, and trial category and stimulus orientation as within factors. 

The results of this global ANOV A are presented in table 8. Several complementary analyses 

were carried out to understand the significant effects. 
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TABLE 8 

Results of the global mixed ANOV A on errors 

" 

Independent variables and interactions F(dt) = value p value 

Age F(3,88) = 16.24 p < 0.0001 

Experimental condition (Retention) F( I ,88) = 23.03 p < 0.0001 

Age x Experimental condition F(3,88) = 5.28 p < 0.002 

Trial category F(3,264) = 16.07 p < 0.0001 

Trial category x Age F(9,264) = 1.9 p < 0.05 

Trial category x Experimental condition F(3,264) = 8.37 p < 0.0001 

Trial category x Age x Exp. condition F(9 ,264) = 1.45 p < 0.17: NS 

Stimulus orientation F(3,264) = 17.19 p < 0.0001 

Stimulus orientation x Age F(9,264) = 1.67 p < 0.09: NS 

Stimulus orientation x Exp. condition F(3,264) = 4.02 p < 0.008 

Stirn. orientation x Age x Exp. condition F(9,264) = 0.78 p < 0.64: NS 

Trial category x Stimulus orientation F(9,792) = 0.94 p < 0.49: NS 

Trial cat. x Stirn. orientation x Age F(27,792) = 0.23 p< I: NS 

Trial cat. x Stirn. orient. x Exp. condition F(9,792) = 0.95 p < 0.48: NS 

Trial cat. x Stirn. or. x Age x Exp. condo F(27,792) = 0.45 p < 0.99: NS 

Complementary analyses on error rates : Trial categories 

A first set of analyses were carried out on errors on each trial category considered 

separately. Age and experimental conditions were between factors and stimulus orientation 
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was a within factor. Error rates (in %) are reported in figures 29 A to 32 B. Data are also 

reported extensively in appendix 6. 

L normal > L normal 

The results are reported in figure 29 A for the 1000 msec condition, and in figure 29 B 

for the 500 msec retention interval condition. 

In the first trial category (L> L), a global repeated measures ANOV A was carried out on 

errors. Error rates were significantly affected by age, F(3,88) = 16.7, p < 0.000 I, 

retention interval, F(1,88) = 24.01, p < 0.0001, and stimulus orientation, 

F(3,264) = 6.87, P < 0.0002. In addition, the retention interval significantly interacted 

with age, F(3,88) = 4.56, p < 0.005, and with stimulus orientation, F(3,264) = 3.15, 

p < 0.03. However, stimulus orientation did not interact significantly with age, 

F(9,264) = 1.06, p < 0.39, and the triple interaction orientation x age x retention, 

F(9,264) = 0.44, p < 0.91, did not significantly affect the performance. 
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Figure 29A : Errors (in %) as a function of stimulus orientation and 

age, for the trial category L > L, the 1000 msec retention interval 

condition. 
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L normal> L normal 
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Figure 29B : Errors (in %) as a function of stimulus orientation and 

age, for the trial category L > L, the 500 msec retention interval 

condition. 

Repeated measures ANOV As tested the effect of stimulus orientation on each age 

category considered separately. 

In the five-year-olds, error rates increased significantly as a function of stimulus 

orientation in the 1000 msec retention interval condition, F(3,33) = 5.04, p < 0.006, but 

not in the 500 msec retention interval condition, F(3,33) = 0.67, p < 0.58. Similar results 

were found in the elderly people: Stimulus orientation significantly affected error rates when 

the information was presented 1000 msec before the target, F(3,33) = 3.19, p < 0.04, but 

not when the information was presented 500 msec before the target, F(3,33) = 0.9, 

p<0.45. 

Stimulus orientation did not significantly affect error rates in eight-year-olds and young 

adults, [Eight-year-olds : 1000 msec retention interval : F(3,33) = 0.29, p < 0.83; 
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500 msec : F(3,33) = 0.31, p < 0.81; and Young adults: 1000 msec retention interval : 

F(3,33) = 1.6, P < 0.21; 500 msec : F(3,33) = 0.21, p < 0.89]. 

L normal > L mirror-reversed 

The results are reported in figure 30 A for the 1000 msec condition, and in figure 30 B 

for the 500 msec retention interval condition. 

Similar results were observed for this trial category. A global ANOV A on errors showed 

that error rates were significantly affected by age, F(3,88) = 9.35, retention interval, 

FO ,88) = 27.8, stimulus orientation, F(3,264) = 8.53, all with p < 0.000 I, and by the 

interaction retention interval x age, F(3,88) = 5.06, p < 0.003. On the contrary, the 

interactions retention interval x stimulus orientation, F(3,264) = 2.2, p < 0.09, stimulus 

orientation x age, F(9,264) = 0.55, p < 0.84, and stimulus orientation x age x retention 

interval, F(9,264) = 0.72, p < 0.69, had no significant impact on performance. 
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Figure 30A : Errors (in %) as a function of stimulus orientation and 

age, for the trial category L > LM, the 1000 msec retention interval 

condition. 
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Figure 30B : Errors (in %) as a function of stimulus orientation and 

age, for the trial category L > LM, the 500 msec retention interval 

condition. 

ANDV As were then computed for error rates for each age category considered separately. 

In the five-year-olds, an effect of stimulus orientation was observed in the 1000 msec 

condition, F(3,33) = 5.04, p < 0.006, but not in the 500 msec condition, F(3,33) = 0.41, 

p < 0.74. Similar results were observed in the elderly [500 msec : F(3,33) = O.SI, 

P < 0.49; 1000 msec : F(3,33) = 3.61, p < 0.02]. In contrast, in the eight-year-olds and in 

young adults, stimulus orientation did not affect performance [S-year-olds: 500 msec : 

F(3,33) = 0.52, p < 0.67; 1000 msec : F(3,33) = 0.21, P < 0.S9; young adults: 500 msec 

: F(3,33) = 0.46, p < 0.71; 1000 msec : F(3,33) = 2.25, p < 0.10]. 

C normal > L normal 

The results are reported in figure 31 A for the 1000 msec condition, and in figure 31 B 

for the 500 msec retention interval condition. 
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Figure 3] A : Errors (in %) as a function of stimulus orientation and 

age, for the trial category C > L, the 1000 msec retention interval 

condition. 
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Figure 31 B : Errors (in %) as a function of stimulus orientation and 

age, for the trial category C > L, the 500 msec retention interval 

condition. 
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A global repeated measure ANOVA was carried out on Errors. Errors were only 

significantly influenced by age, F(3,88) = 5.25, p < 0.002. No effect of other variables or 

interaction between variables was observed in this trial category [Retention interval: F( \ ,88) 

= 2.32, p < 0.13; Age x retention interval, F(3,88) = 1.16, p < 0.33; Stimulus orientation, 

F(3,264) = 2.06, p < 0.11; Stimulus orientation x Age: F(9,264) = 0.36, p < 0.95; 

Stimulus orientation x retention interval : F(3,264) = 0.0.04, p < 0.99; Stimulus 

orientation x age x retention interval: F(9,264) = 0.63, P < 0.77]. 

Unsurprisingly, when age categories were considered separately, the stimulus orientation 

did not affect error rates [5-year-olds: 500 msec: F(3,33) = 0.31, p < 0.8\; 1000 msec: 

F(3,33) = 0.28, p < 0.84; 8-year-olds: 500 msec: F(3,33) = 1.25, p < 0.31; 1000 msec: 

F(3,33) = 0.52, p < 0.67; Young adults: 500 msec: F(3,33) = 0.42, p < 0.74; 1000 msec: 

F(3,33) = 0.65, p < 0.59; and Elderly people: 500 msec: F(3,33) = 1.22, p < 0.32; 1000 

msec: F(3,33) = 1.14, p < 0.35]. 

C normal > C normal 

The results are reported in figure 32 A for the 1000 msec condition, and in figure 32 B 

for the 500 msec retention interval condition. 

In the last trial category, similar analyses showed a significant effect of age, 

F(3,88) = 12.2, P < 0.0001, of retention interval, F(1,88) = 10.09, p < 0.002, and of the 

interaction between these variables, F(3,88) = 3.72, p < 0.01, on performance. The effect 

of stimulus orientation on errors almost reached significance, F(3,264) = 2.38, p < 0.07. 

However, the other interactions between variables did not significantly affect error rates 

[Stimulus orientation x age: F(9,264) = 0.42, p < 0.92; Stimulus orientation x retention 

interval: F(3,264) = 1.3, P < 0.27; and Stimulus orientation x age x retention interval: 

F(9,264) = 0.38, p < 0.95]. 
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Figure 32A : Errors (in %) as a function of stimulus orientation and 

age, for the trial category C > C, the 1000 msec retention interval 

condition. 
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Figure 32B : Errors (in %) as a function of stimulus orientation and 

age, for the trial category C > C, the 500 msec retention interval 

condition. 
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The analysis was carried one step further. Repeated measures ANOV As were calculated 

on each age category considered separately to test the effect of stimulus orientation. This 

latter variable did not affect error rates [5-year-olds: 500 msec: F(3,33) = 0.5, p < 0.68; 

1000 msec: F(3,33) = 1.03, p < 0.39; 8-year-olds: 500 msec: F(3,33) = I, p < 0.41; 1000 

msec: F(3,33) = 0.08, p < 0.97; Young adults: 500 msec: F(3,33) = 0.28, p < 0.84; 1000 

msec: F(3,33) = 1.28, p < 0.29; and Elderly people: 500 msec: F(3,33) = \, p < 0.41; 1000 

msec: F(3,33) = 1.27, p < 0.3]. 

Complementary analyses on errors Age categories 

ANOV As were carried out on errors in each age category considered separately to assess 

the effect of retention interval and its interaction with stimulus orientation in each trial 

category. 

Five-year-olds 

The results are reported in figure 33. 

For the trial category L > LM, a significant effect of retention interval, F( I ,22) = 9.82, 

p < 0.005, and stimulus orientation, F(3,66) = 3.76, p < 0.01, was observed. However, 

the interaction stimulus orientation x retention interval, F(3,66) = 1.19, p < 0.32, was not 

significant. A Tukey test (p < 0.05) showed that the difference between the retention 

interval condition was only present for the 1800 orientation. 

For the trial category L > L, errors were significantly affected by the retention interval, 

F(l,22) = 8.87, p < 0.007, and stimulus orientation, F(3,66) = 3.62, p < 0.02. 

However, the interaction between retention interval and stimulus orientation was not 
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significant, F(3,66) = 1.43, p < 0.24. A Tukey test (p < 0.05) showed a significant 

difference between RT means for the 1200 and 1800 orientations. 

When children were presented with a C followed by an L, errors were not significantly 

affected by the retention interval, F(l,22) = 2.08, p < 0.16, the stimulus orientation, 

F(3,66) = 0.54, p < 0.65, and the interaction retention interval x stimulus orientation, 

F(3,66) = 0.05, p < 0.98. 
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Figure 33 : Errors (in %) as a function of stimulus 

orientation, trial category (L> LM, L > L, C > C, C > L) and 

retention interval (grey line: 1000 msec; black line: 500 

msec) in five-years-old children. 
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Finally, for the trial category C > C, only the retention interval, F(l,22) = 9.26, 

p < 0.006, significantly affected performance. Neither the stimulus orientation, 

F(3,66) = 1.43, P < 0.24, nor the interaction stimulus orientation x retention interval, 

F(3,66) = 0.2, p < 0.89, had a significant effect on error rates. 

The interactions between Trial category and Stimulus orientation are presented in table 9 

for both the 500 msec and 1000 msec retention intervals. 

TABLE 9 

Interaction between trial cate or and stimulus orientation. Retention interval: 500 msec 

C>L 

L>LM 

L>L 

C>C 

TABLE 9 (continued) 

Interaction between trial cate 0 and stimulus orientation. Retention interval: 1000 msec 

C>L 

L>LM < 0.66 

L>L < 0.84 

Eight-year-olds 

The RT values are reported in figure 34. 

In eight-year-olds, neither the retention interval [L > LM : F(1,22) = 2.2, p < 0.15; 

L> L : F(l,22) = 2.1, p < 0.16; C > L : F(I,22) = 0.89, p < 0.36; and C > C : 

F(I,22) = 0.43, p < 0.52], the stimulus orientation [L > LM, F(3,66) = 0.59, p < 0.63, 

L> L, F(3,66) = 0.08, p < 0.97, C > L, F(3,66) = 0.35, P < 0.79, and C > C, 
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F(3,66) = 0.19, p < 0.9], nor the interaction between retention interval and stimulus 

orientation [L > LM : F(3,66) = 0.59, p < 0.97; L > L : F(3,66) = 0.51, p < 0.68; C > L : 

F(3,66) = 1.10, p < 0.35; and C > C : F(3,66) = 0.6, p < 0.61] significantly affected error 

rates. 

The interactions between trial category and stimulu orientation are presented in 

table 10 for both the 500 msec and 1000 msec retention interval s. 

8-yr-olds : L > LM 8-yr-olds : L > L 
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Figure 34 : Errors (in %) as a function of stimulus 

orientation, trial category (L > LM, L > L, C > C, C > L) 

and retention interval (grey line: 1000 msec; black line: 500 

msec) in eight-years-old children. 
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TABLE 10 

InteractIOn be . I tween tna category an d I stJmu us onentatlOn. R I 500 etentlOn mterva : msec 

L>L C>C C>L 

L>LM F(3,33) = 0.67, p < 0.57 F(3,33) = 0.14, p < 0.94 F(3,33) = 0.74, p < 0.53 
"~~t,~ "~1' 

L>L ¥ F(3,33) = 1.18, p < 0.33 F(3,33) = 0.79, fJ < 0.51 
,< 

C>C F(3,33) = 1.18, p < 0.33 

InteractIOn be . I tween tna category an d . sUmu us onentatlOn. R I 1000 etenllon mterva : msec 

L>L C>C C>L 

L>LM F(3,33) = o, ~ < I F(3,33) = 0.37, p < 0.78 F(3,33) = 0.41 , fJ < 0.74 

L>L F(3,33) = 0.74, p < 0.53 F(3,33) = 0.57 fJ < 0.64 
,', ~, 

C>C 
, 

F(3,33) = 0.74, fJ < 0.53 

Young adults 

The results are summarised in figure 35. 

In young adults, the retention interval [L> LM : F( 1,22) = O. 19, p < 0.66; L> L : 

F(1,22) = 0.08, p < 0.78; C > L : F(1,22) = 0.86, p < 0.36; and C > C : F(I,22) = 0.62, 

p < 0.44], the stimulus orientation [L > LM: F(3,66) = 1.75, p < O. 17; L> L : 

F(3,66) = 1.43, P < 0.24; C > L : F(3,66) = 0.91, P < 0.44; and C > C : F(3,66) = 0.49, 

p < 0.69] and the interaction retention interval x stimulus orientation [L > LM, 

F(3,66) = 1.03, P < 0.38; L > L, F(3,66) = 0.46, p < 0.71, C > L, F(3,66) = 0.08, 

p < 0.97, and C > C, F(3,66) = 0.64, P < 0.59] did not significantly affect the 

performances. 

The interactions between trial category and stimulus orientation are presented in 

table II for both the 500 msec and 1000 msec retention intervals. 
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Interaction b 
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Figure 35 : Errors (in %) as a function of stimulus orientation, 

trial category (L > LM, L > L, C > C, C > L) and retention 

interval (grey line: 1000 msec; black line : 500 rnsec) in 

young adults. 

TABLE II 
. 1 etween tna category an d stlrnu us onentatlon. R etentlon mterva I 500 

L>L c>c C>L 

rnsec 

L>LM F(3,33) = 0.21, f) < 0.89 F(3,33) = 0 f) < I Fe3 ,33) = 0.23 I) < 0.87 
~c'" 

If-L>L :;&,'\k ' .:i1: .. ,":« .,~;: 

F(3 ,33) = 0.24 f) < 0.86 F(3 33) = 0.12. f} < 0.95 ". ~ 

I~ ~.@"'" " '" C>C F(3 33) = 0.24, I) < 0.86 

Interaction be . I tween trIa category an d . stlrnu us onentatlOn. R I 1000 etentlon mterva : rnsec 

L>L C>C C>L 

L>LM F(3.33) - 0.36, p < 0.78 Fe3,33) = 2.25 f) < 0.1 F(3 ,33) - 0.67 f) < 0.57 

L>L , F(3,33) = 0.3, f} < 0.83 Fe3 33) = 0.64, D < 0.59 
."'''' .:' ',' 

C>C .rtill' tY .K ,E. F(3,33) = 0.3, f} < 0.83 
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Elderly people 

The results are reported in figure 36. 

Elderly: L > LM Elderly: L> L 
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Figure 36: Errors (in %) as a function of stimulus orientation, 

trial category (L > LM, L > L, C > C, C > L) and retention 

interval (grey line: 1000 msec; black line: 500 msec) in the 

elderly people. 

In the trial category L> LM, errors were significantly affected by the retention interval, 

F(1,22) = 23.65, p < 0.0001, and the stimulus orientation, F(3,66) = 3.35, p < 0.02. 

The interaction retention interval x stimulus orientation, F(3,66) = 1.93, p < 0.13, did not 

significantly affect performance. A Tukey test (p < 0.05) showed a difference between the 

retention intervals for the 00
, 1200 and 1800 orientations. 
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In the trial category L > L, similar results were observed : Retention interval, 

F(I ,22) = 19.02, p < 0.0002, and stimulus orientation, F(3,66) = 3.11, p < 0.03, 

significantly affected performance. The interaction stimulus orientation x retention 

interval, F(3,66) = 1.51, p < 0.22, was not significant. A Tukey test (p < 0.05) revealed 

a significant difference between the retention intervals for the 1200 and 1800 orientations. 

No variable and interaction between variables was found significant in the trial category 

C > L [Retention interval; F( I ,22) = 1.48, p < 0.24; Stimulus orientation, F(3,66) = 

1.33, p < 0.27; and Stimulus orientation x retention interval, F(3,66) = 1.0 I, p < 0.39]. 

Finally, in the trial category C > C, the retention interval significantly affected RTs, 

F(3,66) = 8.34, p < 0.009, but neither the stimulus orientation variable, F( I ,22) = 0.98, 

p < 0.41, nor the interaction stimulus orientation x retention interval, F(3,66) = 1.38. 

p < 0.26, was found to be significant. 

The interactions between trial category and stimulus orientation are presented in 

table 12 for both the 500 msec and 1000 msec retention intervals. 

TABLE 12 

InteractIon b . ] etween tna category an d I stlmu us onentatlon. R I 500 etentlOn mterva ; msec 

L>L C>C C>L 

L>LM F(3,33) = 0, p < 1 F(3,33) = 0.06 v < 0.98 F(3,33) = 1.12, lJ < 0.35 

L>L 
«. F(3,33) = 1.35, fJ < 0.27 F(3,33) = 1.17. v < 0.33 "" ., 

C>C ~ F(3 33) = 1.35 v < 0.28 

InteractIOn be . I tween tna category an d . stlmu us onentatlon. R I 1000 etentlOn mterva : msec 

L>L C>C C>L 

L>LM F(3,33) = 0.18 p < 0.91 F(3,33) = 0.54, v < 0.66 F(3,33) - 1.12, v < 0.35 
", ~, 

L>L -"",,~ ". F(3,33) = 0.54 v < 0.66 F(3 33) - 0.55, p < 0.65 

C>C " F(3 33) - 0.54 p < 0.66 
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DISCUSSION 

In experiment 3c, subjects were confronted with four different situations. In the first 

situation, they had to keep in short term memory the letter L in a particular orientation, and 

they were then (after a retention interval of 500 msec or 1000 msec) presented with the same 

stimulus. In the second situation, they were first presented with the letter L and after the 

retention interval, they were presented with the letter L in its mirror-reversed version. In the 

third situation, they were presented with the letter C followed, after the retention interval, by 

the letter C. Finally, in the fourth situation, they were presented with the letter C, and after 

the retention interval, by the letter L. 

Results of experiments 3a were replicated in the first and second situations, i.e. L > Land 

L > L mirror-reversed. When five-year-olds and elderly people had to keep the provided 

information in STM before the presentation of the target, the RTs were dependent on 

stimulus orientation. Although they received information before the presentation of the 

target, they had to activate a mental rotation process to discriminate between a normal versus 

a mirror-reversed version of the letter. In contrast, when the retention interval was reduced 

to 500 msec, flat functions were observed. Reducing the retention interval made them able 

to keep the spatial characteristics of the provided information in STM. Globally, although 

no statistical analyses have been carried out to compare experiments 3a and 3c, error rates 

were equivalent in both experiments for these experimental conditions. Younger children 

and the elderly performed the task poorly, especially for the larger stimulus disorientations. 

Results of experiments 3a were also replicated in eight-year-olds and young adults. An 

effect of stimulus orientation was observed in both retention interval conditions. However, 

the RT slope was too slight to interpret these data as evidence for the use of a mental rotation 

process (see chapter two). Whatever the retention interval, they can keep the information in 

STM which makes mental rotations unnecessary. 
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It was hypothesized in the two previous experiments that these results suggest poor 

maintenance of spatial (orientational) information in STM before the age 5 and in elderly 

people. 

If the orientational effects observed in experiments 3a and 3b were due to the difficulty 

younger children and the elderly had in keeping spatial information in STM, these effects 

should disappear when the information to be kept in STM is structurally different from the 

target. In fact, in this later condition, subjects should immediately notice the mismatch 

between the information provided and the target. The structural difference between the two 

stimuli makes the decision easier and, whatever the stimulus orientation, the responses 

should be uniformly rapid. Subjects, whatever their age, can keep the stimulus structure in 

STM and consequently do not need to activate a transformational process to compare the 

stimuli. In this condition, the stimuli are immediately recognised as being different. Indeed, 

it has been shown that mental rotation is not required to identify rotated letters (e.g. Eley, 

1982; Corballis, Zbrodoff. Schetzer & Butler, t 978). but mental rotation is required to 

discriminate between normal versus mirror-reversed versions of rotated letters (Corballis. 

t 988). This situation corresponds to the fourth one in experiment 4b where the provided 

information was the letter C and the forthcoming target was the letter L. 

The results tend to confirm this hypothesis. Let us first consider the performance of five­

year-olds and elderly people. When the information provided and the target were 

structurally different. i.e. the letter C was followed by the letter L, whatever the retention 

interval. the RTs never reflected the use of mental rotation. The RT functions were the same 

in all subjects. Although the RTs were dependent on stimulus orientation, the RT slope was 

too low to provide evidence for the mental rotation process. Moreover. performances were 

better in this situation (C > L) than in the other situations whatever the stimulus orientation. 
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In eight-year-olds and in young adults, similar results were observed. They did not use 

mental rotation to solve the task, a fact which is not surprising since no mental rotation is 

required to solve such a task ! 

In such conditions, it seems that all subjects, whatever the age, immediately noticed the 

mismatch between the information provided and the target. As a consequence, subjects 

answered uniformly rapidly whatever the stimulus orientation. The very first visual 

processing of the target would be sufficient to observe a structural difference between the 

simultaneously presented stimuli. The segments composing the two letters are different: (I) 

The letter L is composed of one long bar and a shorter bar with a right angle at one of their 

extremities, (2) the letter C is composed of one long bar but two shorter bars also connected 

through right angles at their extremities with the two shorter bars pointing in the same 

direction. The analysis of the stimulus structure during initial visual processing allows the 

subjects to recognise that the presented stimuli are different in structure. In other words, 

these results suggest that young children and elderly people can keep structural information 

in STM. 

CONCLUSION 

Several studies have assessed mental rotation abilities in young children and in the elderly 

(see chapter two for a review of the literature). Although contradictory results are reported, 

most of the authors agree that mental rotation ability is poor in young children (usually 

referred as preoperational children) and in the elderly. They can carry out mental rotations 

but their performance is usually poorer than that of older children (older than about 8 years 

of age) and young adults. Several explanations have been suggested but none of them is at 

present completely satisfactory. 
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However, when the successive steps subjects have to take when confronted with a mental 

rotation task are considered, it seems that young children and the elderly people already 

encounter some difficulties during the very first steps. They are particularly poor at encoding 

and maintaining visuo-spatial information in short term memory. But to understand this 

issue, it seems that vi suo-spatial short term memory should not be considered as a single 

system but rather as a dual system (although a correlation has been observed between 

memory span for visual patterns and mental rotation ability - when performance is 

considered across age categories - [see chapter three]). 

Kosslyn (1994) and Logie and Marchetti (1991) have suggested two different but related 

models of visuo-spatial STM. Both of them suggest that vi suo-spatial STM can be 

decomposed into - at least - two subsystems. Kosslyn (1994) refers to a ventral and a dorsal 

subsystem while Logie and Marchetti (1991) refer to a visual and a spatial subsystem (see 

also, Logie & Reisberg, 1992). The first subsystem (ventral or visual) would process, 

roughly speaking, the structural characteristics of the stimuli, while the second (dorsal or 

spatial) would process the spatial characteristics. The distinction between these two 

subsystems has been supported by neuropsychological studies (e.g. Farah, Hammond, 

Levine & Calvanio, 1988) as well as by connectionist modelling (Rueckl, Cave & Kosslyn, 

1989). 

The present experiments suggest that both young children and elderly people are poor at 

maintaining the spatial characteristics of a visual pattern in short term memory. Specifically, 

they seem to be poor at maintaining the orientation of the stimulus. If we consider both 

Kosslyn's (1994) and Logie's (1995) theoretical models, we might suggest that the spatial 

component of these models is not yet developed in young children and is affected by ageing. 

These results are probably related to other data reported by other authors. Koenig et al. 

(1990) have reported that young children are poor at assessing metrical distances between 

objects, and Hoyer (1990) has suggested that the localisation processes engaged in visual 

processing might be affected by ageing. However, other authors (see Ellis et ai., 1987) 
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have reported that the localisation of objects would be automatically encoded and would 

emerge early in cognition. 

Consequently, this suggests that in the domain of spatial cognition. some spatial 

processes could be more affected by age than others. The dorsal system - if engaged in the 

processing assessed in the experiments as hypothesized - should probably be decomposed 

into other subsystems. However, other studies are necessary to understand the genesis of 

the spatial analysis involved in visual processing. 
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Chapter six 

Mental scanning: A life-span studYJ 

While navigating in town, we sometimes have the impression of visualising the route to 

reach a particular shop, for instance. In such situations, we generate images and scan them 

to "observe" some important characteristics of the route so that we can anticipate our actions. 

Subjects often report the use of a mental scanning process while reading a map, navigating 

in complex environments, remembering details on some of Rodin's sculptures seen in the 

Hotel Biron during a last trip to Paris. 

With the emergence of research on mental imagery in the I 970s, mental scanning began 

to be studied in young adults using mental chronometry as a paradigm. Classical cognitive 

psychology studies have been presented in the general introduction. These classical 

chronometrical studies have been criticised but, again, cognitive neuroscience can help to 

interpret the data in mental scanning. 

As mentioned in chapter 1, Kosslyn (1994) recently reformulated his theory of mental 

imagery in the context of recent cognitive neuroscience. In his theory, image scanning has to 

be considered as an image transformation process. 

This study was done in collaboration with Dr Yannick Courbois, University Charles de Gaulle, Lille, 
France. It is part of a research program assessing the development of imagery abilities in normal and 
mentally retarded children. Normal populations are considered in our laboratory in Li~ge, while the 
French laboratory specializes in mental handicap. Several studies have been presented at different 
international conferences (see Courbois & Lejeune, 1994; Courbois, Lejeune & Aslani, 1995). 

Experiment 4a and 4b will appear in : Lejeune, M. & Courbois, Y. L'inspection mentale de l'enfance 
au grand age: donnees empiriques recentes. In J. Bideaud and Y. Courbois (in press), L'image menlale 
el son developpemenl. Paris: Presses Universitaires de France. 
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Brandt, Stark, Hacisalihzade, Allen and Tharp (1989) showed that eye movements 

always accompany the visualisation of objects, and that subjects also tend to move their eyes 

when scanning visual images internally (Kosslyn, 1973, collected similar unpublished data -

reported in Kosslyn, 1994, p. 366). Kosslyn (1994, p. 366) suggests that "most image 

scanning consists of recalling what one saw when actually scanning along an object, but 

such processing may be more common than one might suspect; people usually have the 

opportunity to scan an object at the time it is initially perceived". 

Image scanning would then be akin to imaged saccades (although imaged saccades are not 

clearly defined in Kosslyn's (1994) theory, they would correspond functionally to real 

saccades but without any physical eye movements). However, in the classical studies 

mentioned before, a more continuous process was suggested by RT patterns. Kosslyn 

(1994) suggests that such a process might mimic what we would actually see after a head or 

body rotation rather than after eye movements. 

Image scanning may involve two mechanisms: One that shifts the attention window (see 

description of Kosslyn's (1994) model in the general introduction) and one that transforms 

the contents of the visual buffer. This latter mechanism may rely on motor programs that 

ordinarily move the eyes, head or body. It replaces the contents of the visual buffer with a 

new representation of material that is contiguous to that in the previous representation. In 

this case the image would "slide" across the visual buffer. 

Studies of children 

If many studies have considered the development of mental rotation abilities in children 

(see chapter 2), very little research has been reported on the development of mental 

scanning. 
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While assessing the development of different imagery subsystems, Kosslyn, Margolis, 

Barret, Goldknopf and Daly (1990) studied image scanning in children. Subjects were 

presented with a "square ring" of boxes covering the entire computer screen (see figure 37). 

Three boxes in different locations at the periphery of the screen were coloured, and the 

centre of the screen was empty. Each trial consisted of the presentation of a pattern made of 

these three cells (with a different location for each trial). Subjects were required to memorise 

the location of the three target cells. When memorised, they pressed the space bar which 

resulted in the removal of the pattern. Immediately after, an X or an 0 appeared within one 

of the boxes of the square ring. When an X was displayed, subjects had to say whether the 

X was located in a previously coloured cell. When an 0 was displayed, subjects had to 

judge whether the cell located opposite the 0 on the other side of the ring was previously 

coloured. This latter condition was supposed to require the activation of an image scanning 

process while the first one should not. RTs were higher when subjects were supposed to be 

using a scanning process whatever the age of the subjects (five-, eight- and fourteen-year­

olds). The unique difference across age categories was the scanning speed: The older the 

subjects were, the quicker they responded. These results were in fact also observed in other 

imagery tasks, especially in mental rotation tasks. These effects have been explained by the 

modification in efficiency of more central processes (see chapter 3). 

Figure 37 : "Square ring" used in the 

image scanning task [adapted from 

Kosslyn et al.'s (1990)]. 
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Although interesting, this study is really too simple. Image scanning is assessed in a 

purely dichotomous way: Scanning or no scanning. Classical studies which assess the 

scanning abilities of young adults utilize different distances between the targets. 

Courbois (1994) has proposed a most interesting task to assess image scanning ability in 

children. He modified Kosslyn et al. 's (1990) task: Three distances were used: No 

scanning, scanning over a short distance, and scanning over a long distance. Four blocks 

composed of two contiguous rectangles served as stimuli. Two blocks were centered at the 

top and the bottom of the screen (referred to as the horizontal blocks), while the two others 

were centered on the right side and on the left side of the screen (referred to as the vertical 

blocks). The distance separating the two vertical blocks was approximately twice the 

distance separating the two horizontal blocks. The centre of the screen was empty and three 

of the eight rectangles were coloured at random in blue - supposed to represent water -

(different rectangles were coloured for each trial). In the imaginal condition. subjects (five 

and eight-year-olds) were required to press the space bar after memorising the location of the 

coloured rectangles. Once the space bar was depressed. the rectangles emptied and the 

"water" was replaced by a fish or a fisherman. When a fish was presented. subjects had to 

decide whether the fish was in a previously filled rectangle. When a fisherman was 

presented, subjects had to judge whether the rectangle on the opposite side had been filled 

in. In a control condition, the rectangles were not emptied when the fish or the fisherman 

was displayed. 

Courbois (1994) reported that RTs were significantly longer in the control condition than 

in the imaginal condition in an age categories. Moreover. RTs were longer in younger 

children - an effect also reported in Kosslyn et al. 's (1990) study. In addition, scanning 

times were significantly affected by the distance. But complementary analysis showed that 

distance affected RTs more clearly in the imaginal condition, and that the difference between 

RTs in both conditions is smaller for a short distance than for a long distance. Performance 
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(error rates) was significantly better in eight-year-olds, but was affected by distance in all 

age categories. 

Although distance affected RTs in the imaginal condition, Courbois (1994) suggests that 

his data do not validate an image scanning hypothesis. Indeed, the increase of RTs between 

short scanning and long scanning was less important in the imaginal condition than in the 

case of the perceptual control. Although scanning times were dependent on the scanned 

distance, the speed at which the attentional window was moved was identical (or even 

quicker) than the rate at which a visual pattern was scanned. According to Courbois (1994), 

such results could be explained if we consider that mental scanning is not imaginal but 

simply perceptual. Subjects would move their eyes to the cells on the opposite side of the 

fisherman and would respond on the basis of memory traces of the target cells. 

In summary, only two studies have been reported so far. However, conflicting results are 

observed from the studies. The task difficulty would possibly explain the differences 

between these two studies. 

Studies of elderly people 

Only one study (Dror & Kosslyn, 1994) assessed mental scanning abilities in the elderly. 

However, given that many studies have suggested that mental imagery and visual perception 

share many mechanisms (see Farah, 1988; Finke and Shepard, 1986), it might be reasonable 

to consider with interest the results reported by Folk and Hoyer (1992) which suggest that 

the ability to scan a perceptual image is not affected by ageing. 

Dror and Kosslyn (1994) presented elderly people (mean age: 63 - which is not very old!) 

and young adults with a square ring of boxes with three cells filled in black. Subjects were 

required to memorise the location of these cells. Once memorised, they press the space bar 

which resulted in a brief display (50 msec) of an arrow followed by the removal of the 
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pattern. The arrow pointed to one cell (that was possibly previously filled in) and the 

distance between the arrow and the cell could be zero, medium (1.2 cm) or long (2.1 cm). 

Subjects were required to judge as quickly as possible whether the arrow pointed to a 

previously filled cell. Results showed that scanning times increased with distance in the 

same way in both groups. Similarly, the overall level of performance was similar in both 

groups. It appears that mental scanning ability seems to be preserved with ageing. 

Conclusion 

Although it is difficult to draw accurate conclusions on the basis of three developmental 

studies, all of them showed significant effect of distance on scanning times in young 

children and elderly. However, if the distance effect can be associated with a mental 

scanning process in the elderly, it might be that another interpretation should be given to the 

results reported in the child studies: the distance effect could be interpreted in terms of 

activation of visual perception processes (specifically, eye movements). 

EXPERIMENT 48 

Experiment 4a was designed to assess mental scanning ability from childhood to old age. 

Five and eight-year-olds, young adults and elderly people were tested using the same task. 

The task is based on a research done by Dror and Kosslyn (1994) and Finke and Pinker 

(1982) -see above. Three patterns (fish) appeared at the periphery of the computer screen. 

Subjects were required to memorise the exact location of the fish. Once this was memorised, 

they pressed the space bar which resulted in the removal of the fish. Immediately after, an 

arrow was presented for 200 msec. The arrow pointed to a previously presented fish or 

somewhere else. Subjects were required to judge as quickly as possible whether or not the 

arrow pointed to a previously presented target. 
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Two versions of the task were used: A mental scanning task and a perceptual control (the 

fish were displayed on the screen at the same time as the arrow). Moreover, the effect on 

subjects' performance of irrelevant information during image scanning was tested. An 

animated mask filled the screen while the subjects were supposed to be scanning the image. 

RTs serve as indicators which test the use of a mental scanning process. A significant 

increase of RTs with distance in both experimental conditions was expected. Moreover, it 

was hypothesized that the irrelevant information should not affect the performance of young 

adults but should affect the ability of young children to scan a mental image. 

METHOD 

Subjects 

Four groups of subjects were tested: 48 5-year-olds (mean age: 5 years I month, ranged 

from 4 years 9 months to 5 years 3 months), 48 8-year-olds (mean age: 8 years 2 months, 

ranged from 7 years 9 months to 8 years 3 months), 48 young adults (mean age: 24 years, 

ranged from 19 years old to 32 years olds), and 48 elderly people (mean age: 73 years, 

ranged from 65 to 80 years of age). Gender was not controlled. 

All subjects were volunteers. The children (5 and 8-year-olds) were recruited in several 

public and private schools in the surroundings of Liege and Brussels, Belgium. The young 

adults were all students or staff members of the Department of Psychology at the University 

of Liege. The elderly people came from several sources (private contacts, leisure clubs, or 

old people's home), all in the Liege area. 

No subject suffered or had suffered from a neurological disease. 
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Material 

A 4 X 5 invisible grid covered the entire surface of the computer screen. Three cells in the 

perimeter were filled in with a fish pattern at random on each trial. When the space bar was 

pressed, an arrow was displayed for a period (different for the two tests - see below). The 

arrow was presented in one of the matrix cells but never in the cells composing the screen 

borders. The arrow was oriented at 0°,45° or multiple of 45°, and could be presented at three 

distances from the target (short, medium and long). The arrow could point either to one of 

the fish or anywhere else. Twenty four trials were administered, half with the arrow pointing 

to a fish, and half with the arrow pointing somewhere else. Subjects were required to say 

whether the arrow pointed to a fish. We expected YES responses for half the trials and NO 

for the other half. The trial ordering was random. 

Two tests were used: (I) an imagery test, and (2) a perceptual control. In the imagery 

test, the fish were immediately removed before a 200 msec presentation of the arrow. In the 

perceptual control, the fish and the arrow were presented until the subject responded. 

Two versions of each test were used, labelled: (1) NOMASK, and (2) ANIMASK. In 

the NOMASK version, the screen remained empty after the removal of the fish and the 

arrow in the imagery test, and the presentation of the fish and the arrow in the perceptual 

control. In the ANIMASK version, circles successively invaded the screen at high speed 

after the display/removal of the targets and the arrow. 

All the situations are represented in figure 38. 
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Imagery Test: NOMASK 
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200 msec 

Imagery Test: ANIMASK 
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Perceptual control: NOMASK 
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Perceptual control: ANIMASK 
...------~-.....,( 0 ~ ~CJCZ:j~:dii~ 
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Figure 38 : Schematic representation of the experimental situations : Imagery 

tests and perceptual control 
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Procedure 

Subjects' ability to scan an image was assessed individually. The subjects were 

comfortably seated in front of the computer screen at a normal distance (approx.imately 

50 cm). The key-board was at their disposal to respond and to control the arrow display. 

They were instructed that they would have to judge whether a displayed arrow pointed to a 

fish or not. In the imagery test, they were informed that the arrow would appear only for a 

very short period of time. The session began with a short training similar to the ex.perimental 

test, except that each correct response was reinforced by the onset of a short ascending 

sequence of sounds. Subjects were presented with three fish randomly displayed at the 

perimeter of the screen. When they estimated that they had sufficiently memorised the 

positions of the fish, they had to depress the space bar. Twenty msec later, an arrow was 

displayed for a particular period of time (see the different tests). If the arrow pointed at a 

fish, the subjects had to depress a designated key as quickly as possible. In the other case, 

the subject pressed another key. After the subject had responded, another set of three fish 

was presented. Reaction times and errors were recorded. Latencies were measured from the 

onset of the arrow. 

Half of the subjects were submitted to the NOMASK version of the test, and half to the 

ANIMASK version. Half of them were first presented with the imagery test followed by the 

perceptual control, and half were presented first with the perceptual control followed by the 

imagery test. The experimental design is schematically represented in table 13. 
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TABLE 13 

NOMASK version ANIMASK version 

Imagery> Perc. Or/ Imagery> Perc. Or! 

5-yr-olds: n = 12 5-yr-olds: n = 12 

8-yr-olds: n = 12 8-yr-olds: n = 12 

Young adults: n = 12 Young adults: n = 12 

Elderl~ peoEle: n = 12 Elderl~ peoEle: n = 12 

Perc. Ctr/ > Imagery Perc. Or! > Imagery 

5-yr-olds: n = 12 5-yr-olds: n = 12 

8-yr-olds: n = 12 8-yr-olds: n = 12 

Young adults: n = 12 Young adults: n = 12 

Elderly people: n = 12 Elderly people: n = 12 

RESULTS 

Analyses of variance included age (5 year-olds, 8 year-olds, young adults, and elderly 

people), tests (imagery versus perceptual control; in brief: IMA and PER), test versions 

(with or without an animated mask after the display of the arrow; in brief: NOMASK or 

ANIMASK), test order (imagery test followed by the perceptual control, or vice versa; in 

brief: IMA-PER and PER-IMA), and the scanning distance (short, medium, and long) as 

independent variables. The scanning distance and test variables were within subject 

variables, and the other variables were between subjects variables. Response times (RT) and 

errors served as dependent variables. As the distance to scan is only clearly defined when the 

arrow points to the target, only these trials have been analysed for the purpose of this 

experiment. Response times were submitted to analyses of variance (A NOV A) after the 
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removal of outliers. i.e. RT greater than 10 seconds and those exceeding 2 S.D. from the 

mean cell. 

Response times 

Results are reported in figure 39. A global ANDV A revealed a significant effect of Age. 

F(3.137) = 85.89, Test order. F(l.137) = 7.44. Test version, F( 1,137) = 77.52, and 

Distance. F(2.274) = 30.74. all with p < 0.05. Similarly. the interactions Test version x 

Age. F(3.137) = 20.89. Test version x Test order. F(l.137) = 7.87. Distance x Age. 

F(6.274) = 2.66. Distance x Test version. F(2.274) = 2.95. Distance x Test order, 

F(2.274) = 3.39. Distance x Age x Test order, F(6,274) = 3.7, and Distance x Age x Test 

versions x Test order, F(6.274) = 3.83. were significant with p < 0.05. 

Imagery test 

Subjects in four age categories performed the tests at a significantly different speed, 

F(3,141) = 78.77, p < 0.0001. and the RTs were differently affected by the scanning 

distance (interaction age x distance, F(6,282) = 2.17, p < 0.05) as well as when considered 

in interaction with the test versions, the scanning distance and the test order (interaction age 

x distance x test version x test order, F(6,282) = 3.85, p < 0.001). A global significant 

effect of distance was also observed, F(2,282) = 17.62, P < 0.000 I, and the scanning 

distance interacted significantly with the test version and the test order, F(2,282) = 3.67, 

P < 0.03. 

The other variables or interactions between variables did not significantly affect the 

reaction times [test version: F(1,141) = 0.74, p < 0.39; test order: F(l,14l) = 3.48, 

p < 0.06; age x test version : F(3.141) = 0.23. p < 0.88; age x test order : 

F(3,141) = 1.06, p < 0.37; test version x test order: F(1,141) = 0.14, p < 0.71; age x test 

version x test order: F(3.141) = 1.7. p < 0.17; distance x test version: F(2,282) = 2.83, 
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p < 0.06; distance x age x test version: F(6.282) = 0.7. p < 0.65; distance x test order: 

F(2,282) = 0.77, p < 0.47; and distance x age x test order: F(6,282) = 1.55, p < 0.161. 

The age categories behaved differently in the ANIMASK version of the test. In this case. 

RTs were globally different between the age categories, F(3,66) = 32.07, p < 0.0001. No 

other significant effect was observed [test order: F( I ,66) = 0.58. p < 0.45; age x test order: 

F(3,66) = 0, p < 1; distance x age : F(6,132) = 0.3, p < 0.94; distance x test order: 

F(2, 132) = 1.69, p < 0.18; and distance x age x test order: F(6, 132) = 1. p < 0.431. 

In the NOMASK version, age significantly affected the RTs, F(3,75) = 48.66, 

P < 0.0001, and interacted with the order, F(3,75) = 3.36, p < 0.02, with the distance, 

F(6,150) = 2.13, p < 0.05, and with the distance combined with the order, 

F(6, 150) = 3.75, p < 0.002. No significant effect of the test order was observed when 

considered independently of the other variables, F( I ,75) = 3.44, P < 0.07, nor when 

considered in interaction with distance, F(2, 150) = 2.58, p < 0.08. 

Consequently, complementary ANOV As have been computed for each age category 

considered separately. In the five year-oIds, RTs were a function of the scanned distance, 

F(2,62) = 4.54, p < 0.01, but the functions were different in the two test versions when 

considered in interaction with the test order (interaction distance x test version x test order, 

F(2,62) = 3.95, p < 0.02). The effects of the scanned distance in the different experimental 

situations are reported in table 14. As it appeared, when the children were submitted to the 

imagery test before the perceptual control (IMA-PER), the RT functions were independent of 

the scanned distance. However, in the other situation (PER-IMA), RTs were influenced by 

the scanned distance when no animated mask (ANIMASK) was displayed after the arrow 

presentation. No other significant effect was observed in the five-year-oIds [test version: 

F(l ,31) = 0.05, p < 0.83; test order: F(l ,31) = 1.71, p < 0.2; test version x test order: 

F(1 ,31) = 1.23, p < 0.28; distance x test version: F(2,62) = 1.01, p < 0.37; and distance x 

test order: F(2,62) = 1.23, p < 0.3]. 
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In the eight year-olds, RTs were significantly different in the two test versions 

(NOMASK versus ANIMASK), F( I ,38) = 4.41, P < 0.04, and they changed as a function 

of the scanned distance, F(2,76) = 13.25, p < 0.0001. As the test order did not significantly 

affect the results, F( 1 ,38) = 1.62, p < 0.21, and did not interact with other variables I test 

order x test version: F(1,38) = 0.82, p < 0.37; test order x distance: F(2, 76) = 0.25, p < 

0.78; test order x test version x distance: F(2,76) = 0.62, p < 0.541, the two subgroups 

being submitted to the tests in a different order were grouped together. As presented in table 

14 and in figure 39, RTs were significantly influenced by the scanned distance in all the 

experimental situations. This was also confirmed by the absence of a significant effect for 

the interaction between the distance and test version variables. F(2.76) = 1.67. p < 0.2. 

In the young adults, the scanned distance significantly influenced the RTs. 

F(2,72) = 17.04, p < 0.0001. but this influence was different in the two test versions 

(interaction distance x test version, F(2,72) = 3.79, p < 0.03) although the test version itself 

did not significantly affect the RTs, F( 1,36) = 1.22, P < 0.28. However, RTs were 

dependent on the scanned distance in all the experimental situations (see table 14). Results 

are displayed on figure 39. As for the eight year old children, all the young adults were 

combined for these complementary analyses; no order effect was observed Itest order: 

F(l,36) = 0.85, P < 0.36; test order x test version: F(l,36) = 1.09, p < 0.3; test order x 

distance: F(2,72) = 0.17, p < 0.84; test order x distance x test version: F(2,72) = 0.49, 

P < 0.61]. 

Finally, in the elderly people, RTs were significantly influenced by the scanned distance. 

F(2,72) = 6.8, P < 0.002. However, complementary analyses showed that the effect of the 

scanned distance disappeared in the ANIMASK version of the test (see table 14 and figure 

39). As for young adults and eight-year-olds, no single or combined effect of test order was 

observed [test order: F(l,36) = 0.02, p < 0.88; test order x test version: F(l,36) = 1.11, 

p < 0.3; test order x distance: F(2,72) = 2.4, p < 0.1; test order x distance x test version: 
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F(2,72) = 0.22, p < 0.8]. In addition, no global difference on RT was ob erved between 

test versions, F(I ,36) = O.OJ , P < 0.94, and test version did not significantly interact with 

distance, F(2,72) = 1.15, P < 0.32. 

Five-year-olds: Five-year-olds : 
Imagery> Percep . ctrl Percep . ctrl > Imagery 

6000 6000 

5000 5000 

4000 4000 

3000 ~ 3000 

2000 ....L-..,---r--_..---

S M L S M L 
Dis 1anc es Dis1ances 

Eight-year-olds Young adults 

2200 1100 

2000 1000/ 

1800 900 

1600 800 

1400 700 

1200 ..J........,-_,..-_~ 600 ....L--'---,..-_-r--

S M L S M L 
Distances Dis1ances 

Symbols used : 

-0-

Imagery lest, ANIMASK 

• 
Imagery lest, NOMASK 

-0-

Perceptual ctrl, ANI MASK 

• 
Perceptual ctrl, NOMASK 

Elderly people 
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1400 
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800 -'--r--,..--~ 
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Dis1ances 

Figure 39 : Reaction times as a function of distance (S = short; M = medium; L = long) 

in the four age categories in the different experimental conditions (Imagery test and 

perceptual control, with - ANIMASK - or without - NOMASK - an animated mask) _ 

see symbols used in the right corner of the figure. 
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TABLE 14 
Effect of scanned distance on RTs in msec in the Imagery test 

Five-year-olds : 
Imagery test followed by the perceptual control. 
ANIMASK version: 
Oistances Short 

NOMASK version: 

2497 
(SO: 488) 

Oistances Short 
2289 
(SO: 1253) 

Medium 
2735 
(SO: 569) 

Medium 
2077 
(SO: 504) 

Long 
3198 
(SO: 1472) 

Long 
2320 
(SO: 778) 

Fvalue 

F(2,8) = 0.81 
p < 0.48 

F(2,16) = 0.34 
p < 0.71 

-----------------------------------------------------------------------------------------------------------
Five-year-olds : 
Perceptual control followed by the imagery test. 
ANIMASK version: 
Oistances Short 

2713 
(SO: 1522) 

NOMASK version: 
Oistances Short 

2398 
(SO: 976) 

Medium 
2881 
(SO: 1788) 

Medium 
3219 
(SO: 1158) 

Long 
2785 
(SO: 1407) 

Long 
3821 
(SO: 1961) 

Fvalue 

F(2,20) = 0.39 
p < 0.68 

F(2,18) = 5.43 
p < 0.01 

-------------------------------------------------------------------------------.---------------------------
Eiiht-y~m:-olds ; 
ANIMASK version: Fvalue 
Oistances Short Medium Long 

1560 1667 1725 F(2,38) = 5.33 
(SO: 314) (SO: 294) (SO: 397) p < 0.009 

NOMASK version: 
Oistances Short Medium Long 

1398 1386 1623 F(2,42)= 10.02 
(SO: 299) (SO: 282) (SO: 450) p < 0.0003 

-----------------------------------------------------------------------------------------------------------
Y:QYDi adylts ; 
ANIMASK version: Fvalue 
Oistances Short Medium Long 

721 808 810 F(2,32) = 4.46 
(SO: 218) (SO: 164) (SO: 191) p < 0.02 

NOMASK version: 
Oistances Short Medium Long 

634 680 814 F(2,44)= 16.15 
(SO: 206) (SO: 207) (SO: 276) p < 0.0001 

-----------------------------------------------------------------------------------------------------------
Elder!):: ~Qlll~ ; 
ANlMASK version: Fvalue 
Oistances Short Medium Long 

913 1006 1035 F(2,40) = 1.62 
(SO: 295) (SO: 377) (SO: 322) p < 0.21 

NOMASK version: 
Oistances Short . Medium Long 

863 942 1082 F(2,36) = 7.67 
(SD: 473) (SO: 506) (SO: 647) p < 0.002 
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Perceptual control 

Patterns of response in the four age categories were different, F(3,143) = 76.67, 

p < 0.0001, but the differences depended on the test order (interaction age x order, 

F(3,143) = 3.32, p < 0.02) and when the effect of age was combined with the effects of the 

scanned distance and the test order (interaction age x distance x test order, 

F(6,286) = 3.43, p < 0.003). In addition, a global effect of test order, F(l,143) = 7.15, 

p < 0.008, and of distance, F(2,286) = 23.2, p < 0.0001, was observed. The distance also 

interacted significantly with test order, F(2,286) = 3.29, P < 0.04. 

No effect of other variables or interaction between variables was observed [test version: 

F(1,143) = 0.4, p < 0.53; age x test version: F(3,143) = 0.38, p < 0.76; test version x test 

order: F(1,143) = 0.22, p < 0.64; age x test version x test order: F(3,143) = 0.27, 

P < 0.85; distance x age : F(6,286) = 1.73, p < 0.11; distance x test version : 

F(2,286) = 0.93, p < 0.39; distance x age x test version: F(6,286) = 0.48, P < 0.83; 

distance x test version x test order: F(2,286) = 0.5, P < 0.61; and distance x age x test 

version x test order: F(6,286) = 1.65, p < 0.13]. 

The effect of age was observed both in the ANIMASK and NOMASK versions of the 

test, respectively with F(3,68) = 44.19, and F(3,75) = 35.21 (p < 0.0001). 

In the NOMASK version, distance, F(2,150) = 10.47, P < 0.000 1, and the interaction 

age x distance x test order, F(6,150) = 3.78, p < 0.002, were also observed to be 

significant. No other effect was observed in this version of the test [test order : 

F(1 ,75) = 2.6, p < 0.11; age x test order, F(3,75) = 2.28, P < 0.09; distance x age: 

F(6, 150) = 0.64, p < 0.7; and distance x test order: F(2, 150) = 2.49, p < 0.09]. 
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In the ANIMASK version, a global effect of test order, F(1,68) = 5.33, p < 0.02, and 

distance, F(2,136) = 15.39, P < 0.0001, was observed. The interaction between age and 

distance almost reached significance, F(6, 136) = 1.98, p < 0.07. No other significant effect 

was observed [age x test order : F(3,68) = 1.13, p < 0.34; distance x test order : 

F(2,136) = 0.9, p < 0.41; and distance x age x test order: F(6,136) = 0.43, P < 0.86]. 

To understand the psychological meaning of these statistical analyses, several ANOV As 

were computed on the age categories separately. In the Five year-olds, RTs were globally 

influenced by the test order, F(1,34) = 4.68, p < 0.04, and by the scanned distance, 

F(2,68) = 4.38, p < 0.02. In addition, the interaction distance x order was significant, 

F(2,68) = 3.88, p < 0.03. Table IS shows that the scanned distance affected the RTs both 

when the perceptual control was performed before the imagery test and when no mask was 

displayed after the presentation of the arrow. Means are shown in figure 39. Test version, 

F(l ,34) = 0.25, p < 0.62, test version x test order, F(1 ,34) = 0.18, p < 0.67, distance x 

test version, F(2,68) = 0.48, p < 0.62, and distance x test version x test order, 

F(2,68) = 1.49, p < 0.23, did not significantly affect RTs. 

In the Eight year-olds, RTs were significantly affected by the scanned distance, 

F(2,76) = 20.99, p < 0.0001. The effect of the scanned distance was identical in each 

experimental situation (see table 15 and figure 39). For these analyses, all eight-year-old 

subjects were grouped [no test order effect: F(1,38) = 0.02, p < 0.89; test order x test 

version: F(1,38) = 1.48, p < 0.23; test order x distance: F(2,76) = 1.59, p < 0.21; test 

order x test version x distance : F(2,76) = 0.68, p < 0.51]. Moreover, no effect of test 

version, F(2,38) = 0.26, p < 0.61, and of the interaction test version x distance, 

F(2,76) = 0.61, p < 0.54, was observed. 
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TABLE 15 
Effect of scanned distance on RTs in msec in the Perceptual control 

Five-year-oIds : 
Imagery test followed by the perceptual control. 
ANIMASK version: 
Distances Short 

NOMASK version: 

2849 
(SD: 696) 

Distances Short 
3546 
(SD: 2789) 

Medium 
3196 
(SO: 597) 

Medium 
3227 
(SD: 1222) 

Long 
3254 
(SD: 717) 

Long 
3142 
(SD: 1388) 

Fvalue 

F(2,14) = 1.53 
P < 0.25 

F(2,16) = 0.39 
p < 0.68 

-----------------------------------------------------------------------------------------------------------
Five-year-olds : 
Perceptual control followed by the imagery test. 
ANIMASK version: 
Distances Short 

3835 
(SO: 1725) 

NOMASK version: 
Distances Short 

4179 
(SD: 2236) 

Medium 
4277 
(SO: 1945) 

Medium 
4559 
(SO: 1897) 

Long 
4597 
(SO: 2183) 

Long 
5403 
(SO: 2851) 

Fvalue 

F(2,20) = 3.16 
p < 0.06 

F(2, 18) = 6.04 
P < 0.009 

-----------------------------------------------------------------------------------------------------------
Ei~ht-year-olgs : 
ANlMASK version: Fvalue 
Distances Short Medium Long 

1737 1803 1994 F(2,38) = 6.19 
(SD: 592) (SO: 499) (SO: 603) p < 0.005 

NOMASK version: 
Distances Short Medium Long 

1744 1791 2095 F(2,42) = 16.18 
(SD: 292) (SO: 356) (SO: 397) p < 0.0001 

-----------------------------------------------------------------------------------------------------.-----
YQyn~ ildylts : 
ANIMASK version: Fvalue 
Distances Short Medium Long 

760 774 849 F(2,32) = 5.72 
(SO: 228) (SO: 192) (SO: 259) p < 0.008 

NOMASK version: 
Distances Short Medium Long 

941 1001 1072 F(2,44) = 5.48 
(SO: 280) (SO: 343) (SO: 352) p < 0.008 

-----------------------------------------------------------------------------------------------------------
~lderly peo121~ ; 
ANIMASK version: Fvalue 
Distances Short Medium Long 

987 1229 1303 F(2,38) = 10.96 
(SO: 463) (SO: 723) (SO: 668) p < 0.0002 

NOMASK version: 
Oistances Short Medium Long 

1019 1164 1486 F(2,36) = 7.47 
(SD: 288) (SO: 499) (SO: 783) p < 0.002 
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In the young adults, the test versions, the test order, as well as the scanned distance 

significantly influenced the RTs, with FO ,36) = 6.99, F(l,36) = 8.72, and F(2,72) = 9.44 

respectively, all with p < 0.05. However, as the test order did not interact with the other 

variables [test order x test version: F(1,36) = 1.53, p < 0.22; test order x distance: 

F(2,72) = 0.24, P < 0.78; test order x distance x test version, F(2,72) = 0.11, P < 0.891, 

we grouped the young adults all together. RTs were significantly influenced by the scanned 

distance in all the experimental situations (see table 15 and figure 39) - a fact also suggested 

by the absence of significant effect of the interaction distance x test version, 

F(2,72) = 0.46, p < 0.63. 

Finally, in the elderly people, RTs were affected by the scanned distance, 

F(2,70) = 15.55, p < 0.0001. This effect was present in each experimental situation (see 

table 15 and figure 39). No other significant effect was observed [test version : 

F(1,35) = 0.37, p < 0.55; test order: F(1,35) = 0.38, p < 0.54; test version x test order: 

F(1,35) = 0, p < 1; distance x test version: F(2,70) = 1.23, p < 0.3; distance x test order: 

F(2,70) = 0.31, p < 0.74; and distance x test version x test order: F(2,70) = 0.6, 

p < 0.55]. 

Errors 

Results are reported in figure 40. We carried out a repeated measures ANOYA on errors 

for the different experimental tests with age (5-year-olds, 8-year-olds, young adults and 

elderly people), distance (short, medium and large), test version (ANIMASK and 

NOMASK), and order of condition (lma > Percep. ctrl and Percep. ctrl > Ima) as 

independent variables. 
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Imagery test 

ANOV As showed that subjects from the different age categories performed the test 

differently, F(3,175) = 15.35, p < 0.0001. Moreover, errors were different in the two test 

versions, F(1, 175) = to.27, p < 0.002, and were affected by the scanned distance, 

F(2,350) = 19.86, p < 0.0001. In some age categories, it appeared that test order affected 

the performances: age x test order, F(3, 175) = 3.14, p < 0.03. 

No other significant effect was observed [age x test version: F(3, 175) = 0.86, p < 0.46; 

test order: F(1,175) = 0, p < 0.99; test version x test order: F(1,175) = 1.21, P < 0.27; 

age x test version x test order : F(3,175) = 0.23, p < 0.88; distance x age : 

F(6,350) = 0.96, P < 0.45; distance x test version: F(2,350) = 1.12, P < 0.33; distance x 

age x test version : F( 6,350) = 0.63, p < 0.71; distance x test order : F(2,350) = 1.12, 

p < 0.33; distance x age x test order: F(6,350) = 0.97, p < 0.44; distance x test version x 

test order: F(2,350) = 0.95, p < 0.39; and distance x age x test version x test order: 

F(6,350) = 0.43, P < 0.86]. 

Differences across age categories were observed in both test versions: ANIMASK 

version, F(3,88) = 8.42, p < 0.0001, and NOMASK version, F(3,87) = 7.8, p < 0.0001. 

Similarly, a global significant effect of distance was observed in the ANIMASK, 

F(2,176) = 12.46, p < 0.0001, and in the NOMASK version, F(2,174) = 7.91, 

p < 0.0005. 

The other variables or interaction between variables did not affect performance in the 

ANIMASK version [test order : F(I,88) = 0.65, p < 0.42; age x test order: 

F(3,88) = 2.22, P < 0.09; distance x age: F(6, 176) = 0.19, p < 0.98; distance x test order: 

F(2,176) = 1.8, p < 0.17; distance x age x test order: F(6,176) = 0.78, p < 0.59], and in 

the NOMASK version [test order : F(1,87) = 0.56, p < 0.46; age x test order : 
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F(3,87) = 1.18, p < 0.32; distance x age: F(6,174) = 1.6, p < 0.15; distance x test order: 

F(2, 174) = 0.03, p < 0.97; distance x age x test order: F(6,174) = 0.61, P < 0.72]. 

Complementary analyses were carried out on each age category separately. In Five-year­

olds, performance was globally affected by the distance, F(2,88) = 5.02, p < 0.009. 

However, when the test versions were considered separately, this effect disappeared. No 

other significant effect was observed in this age category [test version: F(l,44) = 1.82, 

p < 0.18; test order: F(1,44) = 2.06, p < 0.16; test version x test order: F(I,44) = 0.35, 

p < 0.56; distance x test version: F(2,88) = 0.27, p < 0.76; distance x test order: 

F(2,88) = 0.04, p < 0.96; distance x test version x test order: F(2,88) = 0.16, p < 0.861. 

In eight-year-oIds, performance was globally different in the two test versions, 

F(1,43) = 12.29, p < 0.001. However, neither the distance, F(2,86) = 2.38, P < 0.1, nor 

the test order, F(1,43) = 1.98, p < 0.17, significantly affected performance. In addition, 

they did not interact with other variables [test version x test order: F(l,43) = 2.24, 

p < 0.14; distance x test version : F(2,86) = 0.54, P < 0.58; distance x test order: 

F(2,88) = 0.54, p < 0.58; distance x test version x test order: F(2,86) = 1.5, p < 0.231. 

In young adults, errors were influenced by the test version, F( 1 ,44) = 10.65, 

p < 0.002, and the distance, F(2,88) = 4.85, p < 0.01. Complementary analyses showed 

that the distance effect was only present in the ANIMASK version of the test whatever the 

test order, F(2,46) = 5.34, p < 0.008. No other variables or interaction between variables 

significantly affected performance [test order: F(1,44) = 1.01, p < 0.32: test version x test 

order: F(1,44) = 0.25, p < 0.62: distance x test version: F(2,88) = 2.43, p < 0.09: distance 

x test order: F(2,88) = 0.6, p < 0.55; distance x test version x test order: F(2,88) = 0.69, 

P < 0.5]. 
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Five-year-olds: Five-year-olds: 
Imagery> Percep. ctrl Percep. ctrl > Imagery 

60 60 

/ Symbols used : 
50 50 

--0-
40 40 Imagery lest, ANIMASK 

• 30 30 
Imagery test, NOMASK 

20 20 -0-

'/ 
Perceptual ctrl, ANIMASK 

10 10 • 
0 0 Perceptual ctrl, NOM ASK 

s M L S M L 

Distances Distances 

Young adults Eight-year-olds Elderly people 

1)0 1)0 60 

50 50 50 
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G 
20 
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Distances Distances Distances 

Figure 40 : Errors (in percents) as a function of distance (S = short; M = medium; 

L = long) in the four age categories in the different experimental conditions 

(Imagery Test and perceptual control , with - ANIMASK - or without - NOM ASK­

an animated mask) - see symbols used in the right corner of the figure. 
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Finally, in the elderly, both the distance, F(2,88) = 10.29, p < 0.000 I, and the test order, 

F(1,44) = 3.95, p < 0.05, affected performance. Moreover, the interaction between distance 

and test order almost reached significance, F(2,88) = 2.91, p <.0.06. The distance effect 

was observed in both version of the test: ANIMASK version, F(2,46) = 4, P < 0.03, 

NOMASK version, F(2,46) = 6.61, p < 0.003. No other significant effect was observed in 

the elderly people [test version: F(1,44) = 0.14, P < 0.71; test version x test order: 

F(1,44) = 0.01, p < 0.94; distance x test version: F(2,88) = 0.32, p < 0.72; distance x test 

version x test order: F(2,88) = 0.05, p < 0.95]. 

A summary of the distance effect on errors for each age category in each test version 

(considering test order in five-year-olds for a correspondence between the analysis of errors 

and RTs) is presented in table 16. Percentages are reported in figure 40. 

Perceptual control 

A global ANOV A revealed a significant effect of age on errors, F(3, 175) = 3.0, 

p < 0.03, as well as a global effect of distance, F(2,350) = 22.72, p < 0.0001. 

Performance in the perceptual control test was not affected by other variables or interaction 

between variables [test version : F(1,175) = 1.0 I, p < 0.31; age x test version : 

F(3,175) = 1.82, p < 0.14; test order: F(l,175) = 0.5, p < 0.48; age x test order: 

F(3,175) = 0.23, p < 0.87; test version x test order: F(1,175) = 0.49, p < 0.48; age x test 

version x test order: F(3,175) = 0.43, p < 0.73; distance x age: F(6,350) = 1.7, p < 0.12; 

distance x test version : F(2,350) = 1.31, p < 0.27; distance x age x test version : 

F(6,350) = 0.56, p < 0.76; distance x test order: F(2,350) = 1.18, p < 0.31; distance x 

age x test order : F(6,350) = 1.86, p < 0.09; distance x test version x test order : 
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F(2,350) = 1.73, p < 0.18; distance x age x test version x test order: F(6,350) = 1.47, 

p < 0.19]. 

In the ANIMASK version of the test, the scanned distance significantly influenced error 

rates, F(2,176) = 9.8, p < 0.0001. Moreover, a complex interaction between independent 

variables also appeared to be significant: distance x age x test order, F(6,176) = 2.68, 

P < 0.02. This effect will be decomposed in further analyses. No other significant effect 

was observed in this test version [age: F(3,88) = 0.76, p < 0.52; test order: F(1,88) = 0, 

p < 1; age x test order: F(3,88) = 0.08, p < 0.97; distance x age: F(6,176) = 1.2, 

p < 0.31; distance x test order: F(2,176) = 0.9, p < 0.41]. 

In the NOMASK version, significant effects of age, F(3,87) = 3.79, p < 0.01, and 

distance, F(2,174) = 13.87, p < 0.0001, were observed. The other variables or interaction 

between variables did not affect performance [test order: F(1 ,87) = 0.9, p < 0.34; age x test 

order: F(3,87) = 0.54, P < 0.65; distance x age: F(6, 174) = 1.06, p < 0.39; distance x test 

order: F(2,174) = 1.92,p < 0.15; distance x age x test order: F(6,t74) = 0.81, p < 0.56]. 

Complementary ANOVAs showed that no independent variables significantly affected 

younger children's performance [test version: F(1,44) = 3.03, p < 0.09; test order: 

F(1,44) = 0.56, p < 0.46; test version x test order: F(1,44) = 0.71, p < 0.4; distance : 

F(2,88) = 2.24, p < 0.11; distance x test version: F(2,88) = 1.89, p < 0.16; distance x test 

order: F(2,88) = 0.47, p < 0.63; distance x test version x test order: F(2,88) = 0.54, 

p < 0.58]. 

Distance did appear to significantly affect performance in the eight-year-olds, 

F(2,86) = 3.96, p < 0.02, in the young adults, F(2,88) = 6.58, p < 0.002, and in the 

elderly people, F(2,88) = 12.39, p < 0.0001. 
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No other significant effect was observed in the eight-year-olds [test version 

F(1,43) = 0.79, p < 0.38; test order: F(1,43) = 0.02, P < 0.88; test version x test order: 

F(1,43) = O.lS, p < 0.67; distance x test version: F(2,S6) = 0.S2, p < 0.44; distance x test 

order : F(2,86) = 2.29, p < 0.11; distance x test version x test order : F(2,S6) = 1.71, 

p < 0.19], in the young adults [test version : F(1,44) = 0.26, p < 0.61; test order: 

F(1,44) = 0.3, p < 0.87; test version x test order: F(l,44) = 0.26, p < 0.61; distance x test 

version : F(2,8S) = O.OS, P < 0.93; distance x test order : F(2,SS) = 1.09. p < 0.34; 

distance x test version x test order: F(2.88) = 1.91, P < 0.15], and in the elderly people 

[test version: F(l,44) = 0.04. p < 0.84; test order: F(l,44) = 0.11. p < 0.74; test 

version x test order: F(1,44) = 0.21, p < 0.65; distance x test version : F(2,88) = 0.17, 

p < 0.S5; distance x test order: F(2.SS) = 2.72, p < 0.07; distance x test version x test 

order: F(2,S8) = 2.06, p < 0.13]. 

A summary for the Distance effect in the two test versions is presented in table 17, and 

errors (in %) are reported in figure 40. 

DISCUSSION 

Experiment 4a was designed to assess mental scanning abilities from childhood to old 

age. A modified version of Finke and Pinker (1982) and Dror and Kosslyn (1994) tasks was 

used. Subjects were required to judge as quickly as possible whether an arrow (briefly 

presented) pointed to a target in a previously memorised pattern. The arrow was presented 

immediately after the removal of the memorised pattern, and the distance between the target 

and the arrow could be short, medium or long. Subjects did several versions of the task. 

The main hypothesis states that if mental scanning is taking place while the subject is 

solving the task. RTs should be linearly dependent on the scanned distance. Results were 

somewhat divergent from this basic hypothesis. A second major hypothesis was that RTs 

should be longer in younger children - a result which is not intrinsically associated with the 

scanning process. 
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TABLE 16 
Effect of scanned distance on errors in the Imagery Test 

Number of correct responses (max: 4) and standart deviations are reported 

five-year-olds ; 
Imagery test followed by the perceptual control. 
ANIMASK version: 
Distances Short 

2.25 
(SD: 1.48) 

NOMASK version: 
Distances Short 

2.91 
(SD: 1.5) 

Medium 
2.08 
(SD: 1.37) 

Medium 
2.75 
(SD: 1.48) 

Long 
1.75 
(SD: 1.42) 

Long 
2.33 
(SD: 1.61) 

Fvalue 

F(2.22) = 1.75 
P < 0.2 

F(2.22) = 1.24 
p < 0.31 

---------------------------------------------------------------.-------------------------------------------
Eive-year-olds : 
Perceptual control followed by the imagery test. 
ANIMASK version: 
Distances Short 

3.0 
(SD: 1.12) 

NOMASK version: 
Distances Short 

3.16 
(SD: 0.83) 

Medium 
2.58 
(SD: 1.24) 

Medium 
3.08 
(SD: 1.24) 

Long 
2.25 
(SD: 1.24) 

Long 
2.58 
(SD: 1.24) 

Fvalue 

F(2,22) = 1.21 
p < 0.32 

F(2,22) = 1.44 
P < 0.26 

-----------------------------------------------------------------------------------------------------------
Biibt-y~m:-Qlg~ : 
ANIMASK version: FvaIue 
Distances Short Medium Long 

3.45 3.08 3.0 F(2,46) = 1.65 
(SD: 0.88) (SD: 0.71) (SD: 1.1) p < 0.2 

NOMASK version: 
Distances Short Medium Long 

3.78 3.56 3.65 F(2,44) = 0.95 
(SD: 0.67) (SO: 0.66) (SO: 0.57) p < 0.39 

-----------------------------------------------------------------------------------------------------------
XQUD& agults : 
ANlMASK version: FvaIue 
Distances Short Medium Long 

3.66 3.29 2.95 F(2,46) = 5.34 
(SD: 0.56) (SO: 0.62) (SO: 0.99) p < 0.008 

NOMASK version: 
Distances Short Medium Long 

3.71 3.71 3.58 F(2,46) = 0.44 
(SO: 0.55) (SO: 0.46) (SO: 0.58) p < 0.65 

-----------------------------------------------------------------------------------------------------------
f;Iderly ~~l~ : 
ANIMASK version: FvaIue 
Oistances Short Medium Long 

3.41 3.08 2.75 F(2,46) = 4.0 
(SO: 0.71) (SO: 0.82) (SO: 0.94) p < 0.03 

NOMASK version: 
Oistances Short Medium Long 

3.45 3.29 2.7 F(2,46) = 6.6 t 
(SD: 0.77) (SO: 1.08) (SO: 1.12) p < 0.003 
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TABLE 17 
Effect of scanned distance on errors in the Perceptual Control 

Number of correct responses (max: 4) and standart deviations are reported 

Five-year-olds : 
Imagery test followed by the perceptual control. 
ANIMASK version: 
Distances Short 

3.5 
(SO: 1.16) 

NOMASK version: 
Distances Short 

3.16 
(SD: 1.34) 

Medium 
3.83 
(SO: 0.38) 

Medium 
2.75 
(SO: 1.54) 

Long 
3.5 
(SO: 0.79) 

Long 
2.75 
(SO: 1.6) 

Fvalue 

F(2,22) = I 
P < 0.38 

F(2,22) = 1.28 
p <0.3 

-----------------------------------------------------------------------------------------------------------
Five-year-olds : 
Perceptual control followed by the imagery test. 
ANIMASK version: 
Distances Short 

3.75 
(SO: 0.86) 

NOMASK version: 
Distances Short 

3.58 
(SD: 0.66) 

Medium 
3.58 
(SO: 1.16) 

Medium 
3.16 
(SO: 0.83) 

Long 
3.41 
(SO: 1.16) 

Long 
3.25 
(SO: 0.96) 

Fvalue 

F(2,22) = 2.75 
p < 0.09 

F(2,22) = 1.18 
P < 0.32 

-----------------------------------------------------------------------------------------------------------
Eil:ht-year-old~ ; 
ANIMASK version: Fvalue 
Oistances Short Medium Long 

3.66 3.58 3.5 F(2,46) = 0.74 
(SO: 0.86) (SO: 0.88) (SO: 1.02) p < 0.48 

NOMASK version: 
Distances Short Medium Long 

3.91 3.82 3.52 F(2,44) = 3.54 
(SO: 0.28) (SO: 0.65) (SO: 0.59) p < 0.04 

-----------------------------------------------------------------------------------------------------------
YQUnl: adults ; 
ANlMASK version: Fvalue 
Distances Short Medium Long 

3.83 3.83 3.5 F(2,46) = 3.17 
(SO: 0.48) (SO: 0.38) (SO: 0.58) p < 0.05 

NOMASK version: 
Medium Distances Short Long 

3.83 3.75 3.45 F(2,46) = 3.34 
(SO: 0.38) (SO: 0.53) (SO: 0.65) p < 0.04 

-----------------------------------------------------------------------------------------------------------
Bld~rly pe<>P-I~ : 
ANIMASK version: Fvalue 
Distances Short Medium Long 

3.71 3.54 3.04 F(2,46) = 5.07 
(SO: 0.85) (SO: 0.65) (SD: 0.85) p < 0.01 

NOMASK version: 
Medium Long Distances Short 

3.75 3.41 3.00 F(2,46) = 6.91 
(SO: 0.84) (SO: 1.01) (SO: 1.25) p < 0.002 

172 



Two tasks were used: An imagery task and a perceptual control task. In the imagery task, 

subjects had to judge whether the arrow pointed to a target after the removal of the to-be­

memorised pattern. In contrast, in the perceptual task, the decision was taken while the 

targets and the arrow were simultaneously presented. In both tasks, it was expected that 

distance should affect scanning times. However, subjects should respond more quickly in 

the perceptual control task than in the imagery task. Indeed, in the perceptual control task, a 

single eye movement is necessary to respond. 

Two versions of the tasks were used. An animated mask was displayed immediately after 

the presentation of the arrow. It was expected that this irrelevant information should not 

affect subjects' performance if their scanning process is mature. Based on previously 

published studies, it was hypothesised that this mask could interfere with the scanning 

process in younger children. However, it should not influence eight-year-olds, young 

adults, or elderly. 

Global analysis revealed that the RTs were influenced by age. The mean RT to respond 

decreased from five-year-olds, to eight-year-olds, to elderly people and young adults. This 

probably reflects an increase in speed processing with child development (see Kail, 1986, 

1991) and a parallel decrease in the elderly (see Feyereisen, 1994). This issue has already 

been theoretically addressed in chapter 2 while reviewing the literature on mental rotation 

abilities. 

Surprisingly, overall RTs were longer in the perceptual control than in the imagery task. 

In fact, although subjects were also required to respond as quickly as possible in the 

perceptual control, they preferred to be sure of their judgement before responding (which 

resulted in an increased processing time). Moreover, in this condition, the experimental 

situation did not force them to respond quickly. Indeed, the pattern remained at their disposal 

during the information processing. In the imagery task, if they were slow in responding, 
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there was a higher risk of forgetting the location of the targets. The more time they took to 

judge whether the arrow pointed to a target, the longer they had to keep the pattern in short 

term memory. It is interesting to notice that young adults responded far more quickly in the 

ANIMASK version of the perceptual task: The mask invaded the screen and made the 

judgement more difficult, which forced them, perhaps, to shorten their processing time. 

The main hypothesis for this experiment, i.e. the effect of distance on scanning times, 

was verified. However, complementary analyses on each age category considered 

independently showed different patterns across age. 

RTs were always dependent on distance in young adults and eight-year-olds. Such results 

are not really surprising since several studies have demonstrated distance-dependence in 

such tasks in young adults (e.g. Kosslyn, Ball & Reiser, 1978; Finke and Pinker, 1982). 

Moreover, there is a consensus between developmental psychologists that after eight years 

of age the imagery subsystems are well developed (see Dean, 1990). However, although the 

scanning process seems to be well developed in these subjects, it is interesting to observe 

that the mask seemed to interfere with the analogical process. In young adults, task versions 

and distance interact significantly, and in eight-year-olds, RTs were globally longer in the 

ANIMASK version of the tasks. In addition, errors increased significantly in the ANIMASK 

version in both groups of subjects, particularly for the long distance. 

Patterns are somewhat different in younger children and in elderly. Indeed, if distance 

influenced RTs in the NOMASK version of the imagery task, this effect disappeared in the 

ANIMASK version. Although the reasons are unclear, the mask interfered with the 

analogical process (this issue will be reconsidered in the general discussion). However, 

unlike the other groups of subjects, errors were equal in both versions of the task. 

In fact, to be precise, these patterns were observed in five-year-olds when subjects were 

first presented with the perceptual control followed by the imagery task. Indeed, error rates 
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were higher in this condition (except for the control task with the interfering mask). The 

difference observed between the two task orders could be due to the difficulty younger 

children had in understanding the instructions for the task. Being presented with the 

perceptual control first might have helped them understand the imagery task. It is, however, 

interesting to notice that error rates were always higher in the ANIMASK version of the 

imagery task, particularly in the IMA-PER condition where error rates are consistent with 

guessing. This suggests that when more constraints are imposed on the memory and 

attentional systems, young children are particularly poor in transformational imagery tasks. 

It appears from experiment 4a that scanning abilities (as reflected by distance dependence) 

are well developed by the age of 8. Moreover, it seems that this new set of data suggests that 

scanning abilities might not be functioning as well in five-year-olds and in elderly people. Of 

course, RTs were observed to be dependent on distance in a condition which was in fact 

almost the same as those used by Kosslyn et al (1990) and Dror and Kosslyn (1994), for 

children and for the elderly respectively -, but when a mask interfered with the scanning 

processes, this effect was suppressed. Mental scanning abilities seem to be weak in young 

children and seem to be affected by ageing. The results of experiment 4a will be discussed 

again in the general discussion in parallel to the data reported in experiment 4b. 

EXPERIMENT 4b 

In Kosslyn, Ball and Reiser (1978), subjects had to memorise a pattern and to keep it in 

long term memory. A mental image of the pattern had to be generated from long term 

memory, and mental scanning is carried out on this memory trace. In contrast, in Finke and 

Pinker (1982), mental scanning takes place on a pattern representation which is not 

generated from long term memory. In Pinker and Finke (1982), subjects were required to 

maintain a visual pattern in short term memory immediately followed by a briefly presented 
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arrow. The arrow took the form of an iconic representation (see for a classical work on 

iconic memory: Sperling, 1960), i.e. a situation very close to visual perception. 

Consequently, the cognitive processes engaged in both tasks might be somehow different. 

In experiment 4b, the tasks were similar to those used in experiment 4a but a retention 

interval time was imposed between the removal of the to-be-memorised pattern and the 

arrow display. As a consequence, subjects had a pattern in short term memory which was to 

be scanned later. 

The main advantage of this new procedure is to engage some memory processes (at least 

others than those associated with an iconic memory) in a mental scanning task. It is clear that 

in such a situation, subjects are not confronted with a task similar to that carried out by 

Kosslyn et al. (1978) - they do not have to generate a mental image from associative memory 

_ but are required to maintain a visual (and/or spatial) short term representations in the visual 

buffer. Mental scanning takes place necessarily on a memory representation. 

If subjects use a scanning process, RTs should increase as a function of distance between 

the arrow and the target. However, in this task, mental scanning abilities interact with the 

ability to maintain vi suo-spatial information in short term memory. We know that image 

maintenance in young children (e.g. Kosslyn et al., 1990; Wilson et al., 1987) and elderly 

(e.g. Van der Linden, 1994) is poor (see also chapters 5 and 6). Consequently, the memory 

component in this task might affect the performance of both children and the elderly. 
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METHOD 

Subjects 

Twenty four five-year-oIds (mean age: 5,01, ranged 4;09 to 5;03), 24 eight-year-oIds 

(mean age: 8;02, ranged 7;09 to 8;03), 24 young adults (mean age: 19 years of age, ranged 

18;01 to 24;03) and 24 elderly (mean age: 70;02, ranged 66;02 to 77;04) were tested. 

Subjects were recruited through the same channels as in experiment 4a. 

Material 

The material was the same as in experiment 4a except that a retention interval of 2 seconds 

was introduced between the removal of the fish and the display of the arrow. Moreover, no 

perceptual control was used in the present experiment. 

Procedure 

Subjects were distributed among two groups. The first group was submitted to the mental 

scanning task without an animated mask, and the second group was submitted to the task 

with an animated mask (12 subjects from each age category were tested in each condition). 

The procedure was basically identical to that used in experiment 4a. The difference was 

that a retention interval of 2 seconds was imposed after the removal of the fish and before the 

presentation of the arrow for 200 msec. The procedure is presented in figure 41. In 

summary, subjects were presented with three fish. They were asked to memorise the 

location of these three fish. Once memorised, they pressed the space bar which removed the 

fish from the screen. Then, after 2 seconds (retention time), an arrow was presented. It 

could point to a previously presented fish or not. Subjects were required to indicate as 

quickly as possible whether the arrow pointed to a previously presented target. In the mental 
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scanning condition (in brief: NOMASK version), the screen remained empty after the offset 

of the arrow. In the animated mask version (in brief: ANIMASK version), the screen was 

invaded with circles after the disappearance of the arrow. 

~ 

200 msec 

~ 

200 msec 

Figure 41 : Schematic representation of the experimental situations 

RESULTS 

In experiment 4b analyses were applied that were similar to those in experiment 4a. 

ANOV As were computed on reaction times for "YES trials" as distance scanned is only 

controlled in such trials. Age (five-year-olds, eight-year-olds, young adults and elderly), and 

test version (ANIMASK versus NOMASK) were between-subject independent variables. 

Distance scanned (short, medium or long) was a within-subject independent variable. 
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Reaction Times 

RT means are reported in figure 42. A global ANOV A carried out on RT means revealed 

a significant effect of age, F(3,l15) = 25.02, p < 0.0001, test version, F(I, 115) = 12.15, 

P < 0.0007, and distance, F(2,230) = IS.92, p < 0.0001. Moreover, several significant 

interactions were observed: distance x age, F( 6,230) = 7.13, p< 0.000 1, distance x test 

version, F(2,230) = 11.7, p < 0.0001, and distance x age x test version, F(6,230) = 2.96, 

P < O.OOS. The interaction between age and test version was not significant, 

F(3, 115) = 1.86, p < 0.14. 

Complementary analyses were computed to understand the complex interactions. 

Considering the test version independently, significant effects of age, F(3,5S) = 13.66, 

distance, F(2, 116) = 20.13, and age x distance, F(6, 116) = 6.28, all with p < 0.000 1, were 

shown in the ANIMASK version. However, in the NOMASK version, only an effect of age 

was reported, F(3,57) = 12.98, p < 0.0001. The effects of distance, F(2,114) = 0.99, 

P < 0.38, and the interaction distance x age, F(6,114) = 1.37, p < 0.23, were not 

significant. 

In five-year-olds, RTs were shown to be significantly different in the two test versions, 

F(1,30) = 7.21, p < 0.01, and were globally affected by distance, F(2,60) = 14.62, 

p < 0.0001. However, as a significant interaction was reported between test version and 

distance, F(2,60) = 7.06, p < 0.002, another ANOV A carried out on the test versions 

considered separately showed that the distance effect was only really present in the 

ANIMASK version, F(2,34) = 14.8, p < 0.0001. This effect was not observed in the 

NOMASK version, F(2,26) = 1.27, p < 0.29. 
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Figure 42 : Reaction times (in msec) as a function of distance (S = short; M = 

medium; L = long) in the four age categories in the different experimental 

conditions (Imagery task and perceptual control, with - ANIMASK - or without -

NOMASK - an animated mask) - see symbols used on the right side of the figure. 
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In eight-year-olds, no significant effect was observed [test version: F( 1,31) = 0.29, 

p < 0.59; distance: F(2,62) = 2.63, p < 0.08; distance x test version: F(2,62) = 0.17, 

p < 0.84]. As a consequence, distance did not affect RTs either in the ANIMASK, 

F(2,30) = 1.12, p < 0.34, or in the NOMASK version, F(2,32) = 1.67, p < 0.2. 

Young adults showed that RT patterns were significantly dependent on distance, 

F(2,44) = 3.52, p < 0.04. The effect of test version was almost significant, 

F(1,22) = 3.99, p < 0.06, but did not interact with distance, F(2,44) = 0.58, p < 0.57. 

When test versions were considered separately, the effect of distance disappeared 

[ANIMASK : F(2,22) = 2.17, p < 0.14; NOMASK : F(2,22) = 1.81, p < 0.191. 

In elderly people, the analyses showed a significant effect of distance, F(2,64) = 3.18, 

P < 0.05, which also interacted with test version, F(2,64) = 4.16, p < 0.02. The test 

version alone did not affect RTs, FO ,32) = 0.83, p < 0.37. In fact, the distance affected 

RTs in the ANIMASK version of the task, F(2,30) = 4.27, p < 0.02, but not in the 

NOMASK version, F(2,34) = 0.39, p < 0.68. 

Error rates 

The global ANOV A revealed only one significant effect: the interaction between the age 

and distance variables, F(6,252) = 2.36, p < 0.03. The other variables or interaction 

between variables did not affect error rates [age: F(3, 126) = 2.01, p < 0.12; test version: 

F(1,126) = 1.57, P < 0.21; age x test version: F(3,126) = 1.4, P < 0.25; distance: 

F(2,252) = 2.01, p < 0.14; distance x test version: F(2,252) = 1.73, p < 0.18; distance x 

age x test version: F(6,252) = 0.39, p < 0.89]. 

In fact, only age significantly affected performance in the NOMASK version of the task, 

F(3,63) = 2.86, p < 0.04. We did not observe a significant effect of distance, F(2, 126) = 
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0.26, p < 0.77, and of the interaction between distance and age, F(6, 126) = 1.27, p < 

0.28. In the ANIMASK version of the task, distance had an effect on errors, F(2, 126) = 

3.82, p < 0.02, but neither age, F(3,63) = 0.54, p < 0.66, nor the interaction distance x age, 

F(6, 126) = 1.51, p < 0.18, affected performance. 

Complementary analyses showed that errors were a function of distance only in elderly 

people, F(2,70) = 4.58, p < 0.01, but this effect was really only observed while they were 

submitted to the ANIMASK version of the task, F(2,34) = 6.01, p < 0.006 INOMASK : 

F(2,36) = 0.42, p < 0.66]. The interaction between distance and test version was not 

significant, F(2,70) = 1.93, p < 0.15. In addition, no global difference was observed 

between test versions, F(1,35) = 0.15, p < 0.7. 

No significant effect could be reported in the other age category. In the five-year-olds, 

the following results were observed: test version: F(l,36) = 3.6, p < 0.07; distance: 

F(2,72) = 1.44, p < 0.24; distance x test version: F(2,72) = 1.33, p < 0.27. Similar results 

were observed in the eight-year-olds : test version: F(l,32) = 0.53, p < 0.47; distance: 

F(2,64) = 2.38, p < 0.1; distance x test version: F(2,64) = 0.21, P < 0.81, and in the 

young adults: test version: F( 1,23) = 0.26, p < 0.61; distance: F(2,46) = 1.45, p < 0.24; 

distance x test version: F(2,46) = 0, p < 0.99. 

When test versions were considered separately, no effect of distance was observed in the 

NOMASK version, F(2,34) = 2, p < 0.15, and in the ANIMASK version, F(2,38) = 0.24, 

p < 0.78, in the five-year-olds. Similar results were observed in the eight-year-olds : 

NOMASK : F(2,32) = 0.62, p < 0.55; ANIMASK : F(2,32) = 1.96, p < 0.16, and in the 

young adults: NOMASK: F(2,24) = 0.6, p < 0.6; ANIMASK: F(2,22) = 0.92, p < 0.41. 

Error rates are reported in figure 43. 
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Figure 43 : Errors (in percent) as a function of distance (S = short; M = medium ; 
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DISCUSSION 

The purpose of experiment 4b was to assess mental scanning abilities in children, young 

adults and the elderly with a task requiring maintenance of vi suo-spatial information in short 

term memory. Mental scanning had to be carried out on a short term memory representation. 

As a consequence, subjects were not only required to scan across a pattern but also had to 

keep this pattern in the visual buffer for a certain period of time. 

Distance effects on RTs should also be observed in such situations if mental scanning is 

effectively used while solving the task. In addition, the retention interval might affect 

performances of children and the elderly. 

As in experiment 4a, a global reduction in processing speed was observed in children and 

the elderly. Such a result is a classical one. It demonstrates that processing speed is reduced 

in childhood and old age. In addition, RTs were globally higher in the ANIMASK version 

of the task whatever the age category. 

The most interesting results in the present experiment concern the distance effects on RTs 

across ages. In fact, it is not clear whether a mental scanning process (as defined in previous 

work) has been used to solve the task in all age categories. In fact, classical RT patterns 

were observed only in young adults (although error rates were higher than in experiment 4a­

comparison of figures 40 and 43). RTs were dependent on the scanned distance. This effect 

was significant when task versions were joined. When considered separately, the distance 

effect could not be observed. However, as the interaction between task version and distance 

was not significant, we could reasonably think that increasing the sample of subjects would 

have led to a significant effect of distance when task versions were considered individually. 
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In eight-year-olds, distance did not significantly affect RTs. However, surprisingly, there 

was a tendency to observe an inverted-U RTs function. Such a pattern was in fact also 

observed in five-year-olds and the elderly for the ANIMASK version of the task. In these 

subjects, distance significantly affected RTs, but not linearly; medium distance was 

associated with the highest RT values (see figure 42). 

Such results are particularly puzzling and do not confirm the scanning hypothesis. An 

interpretation might be that for short and long distances, subjects are using the screen 

borders to respond. It would result in shorter RTs. Indeed, when the distance between the 

arrow and the target is "medium", the arrow is displayed somewhere in the center of the 

screen, which makes it more difficult to reference to a frame. Without such help, these trials 

would be more complicated and would result in higher RTs. Indeed, there is a hint of 

evidence for better performance for short and long distances in eight-year-olds and the 

elderly (especially in the ANIMASK version) - although it is not significant. Eight-year-olds 

and the elderly committed fewer errors in the short and long distance conditions. 

For the overall experiment, we should stress the fact that error rates were high in all age 

categories (especially in younger children). However, we should also take into account the 

fact that there were only a few trials in a task. Future work should consider this issue and 

propose a methodology which attempts to reduce errors in subjects. 

Consequently, the administration of the current task to children and the elderly failed to 

confirm the scanning hypothesis. When scanning has to be carried out on a short term 

representation, the distance effect observed in experiment 4a was suppressed. This 

suppression cannot be explained by the interference of the mask since no difference was 

observed between task versions in experiment 4b. The condition in which the scanning is 

carried out seems to be the sole explanation for such results. 
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Indeed, it is not surprising to observe different RT patterns in a task which involves 

image maintenance capacity. Several studies have reported the difficulty young children and 

elderly people have in keeping vi suo-spatial information in short term memory (see above). 

CONCLUSION 

Experiments 4a and 4b were designed to study the development of mental scanning ability 

from a life-span perspective. Previously published studies made accurate predictions of 

children'S and elderly people's abilities difficult. Indeed, the results reported from child 

psychology studies were contradictory (see Kosslyn et ai;, 1990, Courbois, 1994). In the 

elderly, only Dror and Kosslyn (1994) reported evidence for good mental scanning ability. 

However, this experiment did not consider any control condition [which has been 

particularly critical in rejecting the scanning hypothesis in the study on children done by 

Courbois (1994)]. 

When mental scanning was carried out in a condition which does not require the 

maintenance of visual information in short term memory (experiment 4a), the scanning 

hypothesis was verified in all subjects. RTs were significantly dependent on the distance 

between the arrow and the target. In such a condition, the targets were available as icons 

when the judgment was made. However, when the scanning process was in "conflict" with 

the presentation of irrelevant information (an animated mask), the distance effect disappeared 

in younger children and in the elderly. 

Kosslyn (1994) has proposed that two different mechanisms might be involved in image 

scanning: The first process shifts the attention window, and the second transforms the 

contents of the visual buffer. In the present experiment, the first mechanism was probably 

used. This first mechanism may be assimilated to imaged saccades. My interpretation of the 

data reported in experiment 4a is that such imaged saccades might explain the distance effect. 
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Indeed, no delay was imposed between the removal of the pattern and the presentation of the 

arrow. Consequently, an iconic trace was probably still present in the visual buffer when the 

arrow appeared. The scanning process involved in this task is probably similar to those used 

in scanning external visual patterns. 

When the mask was displayed, the scanning process was in conflict with distracting 

information - information which, in fact, probably masked the iconic trace of the target 

pattern. As the mask progressively invaded the screen, the information processing speed 

became lower and the distracting effect of the mask became more powerful. In five-year-olds 

and in the elderly, information processing speed was lower than in the other subjects. As a 

result, they should have suffered the most from the animated mask. But in fact, the mask 

affected performance in all subjects: Error rates were globally significantly higher in the 

ANIMASK version of the imagery task. 

So, although it was hypothesized that the scanning process itself would be affected by the 

introduction of a mask after the arrow display, it seems that its main effect could have been 

on the iconic trace. Such an interpretation might be consistent with what has been observed 

in experiment 4b. 

Indeed, in experiment 4b, subjects had to keep the pattern in short term memory for two 

seconds before the presentation of the arrow. Consequently, subjects not only had to scan 

the pattern but also had to maintain it through active processes in the visual buffer. Image 

maintenance and mental scanning might have been in conflict during this particular task. As 

far as image maintenance is concerned, this ability is particularly poor in children and in the 

elderly (see Kosslyn et ai;, 1990; Wilson et ai., 1986; Bruyer, 1994; see also chapters 5 and 

6). In fact, in this condition, the RT patterns did not validate the scanning hypothesis either 

in the NOMASK version or in the ANIMASK version l . 

The absence of a significant effect of the task version in experiment 4b supports the idea that the mask 
did not affect the scanning process itself in experiment 48 but rather suppressed the iconic trace of the 
pattern and the arrow since it was superimposed on it in the visual buffer. 
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Consequently, most of the data reported in these experiments invalidate the scanning 

hypothesis especially when subjects have to scan across a pattern maintained in short term 

memory. It seems that young children and the elderly are poor at maintaining vi suo-spatial 

information in short term memory. In the task, the major characteristic of the pattern is the 

localisation of the target rather than its structure. I would hypothesise that this is again 

evidence for a poor ability to maintain spatial characteristics in short term memory. It could 

be evidence for a immaturity of some aspects of the dorsal system (see Kosslyn, 1994) or 

the spatial component of the VSSP (see Logie, 1995), i.e. the subsystems in charge of the 

processing of the spatial characteristics of a visual pattern. 

Does the distance effect observed in experiment 4a in the NOMASK version of the 

imagery task reflect the use of a mental scanning process? Results observed in the 

perceptual control seem to invalidate this hypothesis. Indeed, based on some results reported 

by Pinker (1980), it was expected that scanning speed should be quicker in the perceptual 

control than in the imagery task. In the perceptual control, a single saccade is necessary to 

judge the correspondence between the arrow and the target. In contrast, in the imagery task, 

a shifting of the attentional window on the visual buffer is necessary. A comparison of the 

RT functions in the imagery task and perceptual control on figure 27 should convince us that 

scanning speed is globally equal in both conditions in most age categories - RT functions are 

more or less parallel (except in the elderly where the scanning speed is even less in the 

imagery task than in the perceptual control). There is however, a tendency to get a greater 

scanning speed for the perceptual control in young adults. Consequently, even in the 

experimental condition where RTs are dependent on distance, we should be cautious in 

interpreting this chronometrical index as an evidence for mental scanning in children and the 

elderly. 

Moreover, error rates were not significantly affected by the mask in experiment 4b but were greatly 
affected by it in experiment 4a. We should have observed a similar effect in experiment 4b if the mask 
had an effect on the scanning process itself. 
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In summary, with the exception of young adults where some evidence for mental 

scanning has been observed in these experiments, the data does not support the hypothesis 

claiming the use of mental scanning in children and in the elderly. Most of the data reported 

in these two experiments invalidate the scanning hypothesis, particularly when this process 

is in conflict with other imagery subsystems, namely image maintenance. However, other 

studies will be necessary to understand which strategies children and the elderly are using 

when they are submitted to a mental scanning task, and how to explain the interference 

between image maintenance and scanning abilities. 
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Chapter seven 

General conclusion 

Several experiments have been presented to evaluate the development of visuo-spatial 

short term memory in a life-span perspective. Visuo-spatial short term memory has been 

assessed through transformational imagery tasks. The age categories selected. i.e. five-year­

olds. eight-year-olds. young adults and elderly people. seem to be key ages to assess the 

development of imagery. Indeed. most developmental psychologists accept the idea of poor 

transformational imagery abilities in preoperational children and have suggested that imagery 

subsystems might be affected by ageing. However. to my knowledge. no previous study 

has assessed mental imagery abilities in a life-span perspective using the same set of tasks 

for all age categories. 

The first set of experiments (chapters 3. 4 and 5) concerned the development of mental 

rotation abilities. A review of the literature suggested that young children (specifically so­

called preoperational children) and the elderly are poor at rotating a mental image of a visual 

pattern. However. as some mental rotation abilities have been reported while using 

Shepard's paradigm. I wanted to focus my attention on the role of the first steps necessarily 

taken while performing a mental rotation task, namely the encoding of the rotated stimulus 

and its maintenance in STM. Indeed, Cooper and Shepard (1973) suggest that these two 

steps necessarily precede the rotation itself. If these steps were immature or deteriorated with 

ageing, mental rotation would be carried out on a flimsy basis. 

The second set of experiments (chapter 6) considered another imagery subsystem. namely 

"mental scanning". Very few studies have been published on the development of this 
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subsystem and the data reported so far is ambiguous. In Kosslyn's (1994) theory, mental 

scanning is conceived as another transformational imagery process. As with mental rotation, 

it requires the maintenance of a visual pattern in short term memory. 

Image maintenance ability has been assessed with reference to Kosslyn's (1994) model 

although Baddeley's (1986) working memory model - specifically, Logie's (1995) revision 

of the VSSP - has sometimes been considered while interpreting the data. 

Kosslyn's (1994) model was presented extensively in chapter l. Several subsystems 

were discussed which are involved in high level vision. Among them, some units are 

particularly relevant for the purpose of the present thesis. A visual buffer acts as a structure 

in which mental images are generated. Images are generated from information kept in 

associative memory reprocessed by two encoding subsystems: The ventral and dorsal 

subsystems. The ventral subsystem processes the "visual" characteristics of the pattern, i.e. 

mainly deals with the structure of the image. The dorsal subsystem processes the "spatial" 

information in parallel. It encodes both the localisation of the objects in space, and the spatial 

relations between object features. This subsystem is particularly interesting when we 

consider transformational imagery. Indeed, transformational imagery mainly modifies the 

spatial characteristics of the pattern. 

Baddeley's (1986) working memory is a system with a limited capacity for temporary 

storage and manipulation during information processing. A central executive is responsible 

for complex decision and control processes. It is helped by two slave systems: One 

responsible in the storage of auditory information - the articulatory loop - and one for visuo­

spatial information - the VSSP. Logie (1995) has recently investigated the VSSP system. 

The system comprises a temporary visual store and a temporary spatial store. Long term 

memory representations are at the origin of image generation. According to Logie (1995), 

the visual store is subject to decay and is sensitive to new information coming in. The spatial 

store is used to plan movement, and to rehearse the information kept in the visual store. 
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Spatial and visual components provide temporary storage of information for the central 

executive which uses it to solve specific tasks. 

In consequence, these two different theoretical models suggest the existence of two 

related but different subsystems to store visual and spatial information. This distinction is 

based on behavioural data collected in young adults (e.g. dual-task studies, see for instance, 

Baddeley & Lieberman, 1980) and on neuropsychological data (e.g. Farah, Hammond. 

Levine & Calvanio. 1988). It is interesting to find some developmental evidence for a 

dissociation between both subsystems. This has been considered in the present thesis. 

Experiment 1 compared mental rotation abilities in young children, young adults and the 

elderly using the same set of tasks. Mental rotation tasks were selected from published 

studies. Basically, they consisted in comparing two stimuli where one was rotated in the 

picture plane: Pandas (Marmor. 1975). Cones (Marmor, 1975) and Mannequins (Lejeune, 

1994). They were constructed on the basis of Shepard's studies in young adults. 

Experiment 1 confirmed that five-year-olds and the elderly people are poor at mental rotation 

tasks. 

Experiment 2 considered the association which might exist between mental rotation ability 

and short term memory capacity. Some previously published studies (e.g. Childs & Polich, 

1979; Waber. Carlson & Mann, 1982) suggested that the difficulty young children have in 

solving a mental rotation task might be traced to their difficulty in maintaining visual 

information in short term memory. In parallel, some studies have demonstrated that the 

memory span for visual patterns is smaller in young children (Wilson. Scott & Power, 

1987) and in the elderly (Feyereisen & Van der Linden. 1992) than in young adults. Is this a 

source of explanation for poor mental rotation abilities in young children and in the elderly? 

A correlational approach between tasks was used in testing this hypothesis. Performance in 

mental rotation tasks used in experiment 1 was correlated with a classical memory span 

tasks. Again. poorer mental rotation performance was found in five-year-olds and the elderly 
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than in eight-year-olds and young adults. Similarly, visual short term memory capacity was 

observed to be smaller in younger children and in the elderly. A correlational analysis 

between the two sets of tasks suggested that mental rotation abilities and STM span are 

related across ages. 

Does it mean that mental rotation is totally related to visual short term memory? In fact. 

the memory task used in experiment 2 - although a classical one - considers visual memory 

as a single structure. However, we know that Kosslyn (1994) as well as Logie (1995) have 

suggested that visual short term memory is a dual system: structural and spatial. In fact, the 

spatial subsystem is fundamental for successful mental rotations. Consequently, the memory 

task used in experiment 2 was too superficial to independently assess the development of 

both subsystems. 

That is why experiments 3a to 3c had to be carried out. Mental rotation tasks were used to 

assess the ability to maintain visual and spatial information in STM. The mental rotation 

tasks were derived from Cooper and Shepard's (1973) study. From Shepard and Metzler's 

(1971) pioneering work, we know that when subjects have to compare two rotated stimuli, 

they are rotating a mental image of one of the stimuli before carrying out the comparison. In 

such studies, RTs served as evidence for the use of such a process: RTs were linearly 

dependent on stimulus orientation. However, when young adults are provided with 

information on the structure and the orientation of the to-be-presented stimulus, RTs become 

independent of the orientation. Subjects have the ability to maintain such information in STM 

before the presentation of the target. Their visual memory trace makes the activation of a 

mental rotation process unnecessary. 

In two published developmental studies (Childs & Polich, 1978; Waber, Carlson & 

Mann, 1982), it appeared that young children are poor at maintaining such information in 

STM: Even when provided with structural and orientation information on the target, RTs 

remain dependent on stimulus orientation. At that time, visual short term memory was 
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conceived as a single structure; the dissociation between the visual and spatial subsystems 

had not yet been proposed. The authors claimed that RTs are dependent on stimulus 

orientation because young children cannot keep visual information in memory and have, 

consequently, to carry out the mental rotation although they were provided with advanced 

information on the target. Another interpretation of these data could be that what was lost in 

young children is the spatial information (the stimulus orientation) rather than the structural 

information. 

In experiment 3a, Childs and Polich's (1978) and Waber et al. 's (1982) results were 

reproduced in five-year-olds when they were provided with information 1000 msec before 

the display of the target. Flat functions were observed in eight-year-olds, young adults and 

elderly people. However, when the retention interval was reduced to 500 msec, RTs became 

independent of stimulus orientation in all subjects. It seems that reducing the retention 

interval allows all subjects to keep the information in STM and exempt them from the use of 

mental rotation. 

In experiment 3b, an interfering mask was displayed during the retention interval. This 

irrelevant information made the maintenance of the information provided in STM even more 

difficult in younger children and in the elderly. In such conditions, stimulus orientation 

affected RT functions. In other words, orientational information was lost in younger 

children and in the elderly. Since orientation is processed by the dorsal system or the spatial 

component of VSSP, I should hypothesise that this system is not mature in five-year-olds 

and is affected by ageing. Indeed. it appeared in experiment 3c that these subjects are well 

able to keep structural information in STM. When the provided information was structurally 

different from the target, all subjects immediately noticed the mismatch between them. 

Reconsidering Kosslyn's (1994) model. I suggest that such data tends to provide some 

developmental evidence for a dissociation between the dorsal and ventral subsystems. It 

seems that the two subsystems develop at different speeds. The ventral subsystem might be 
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better developed earlier than the dorsal subsystem. Similarly, the data suggest that the same 

ventral system is not yet affected by ageing when the dorsal subsystem has already begun to 

deteriorate. 

Again, if an interpretation of visual STM as a single structure has to be rejected, the 

dorsal subsystem should not be conceived as a single subsystem. The data reported in 

experiments 3a, 3b and 3c should not be interpreted as evidence for an immaturity of the 

dorsal system as a whole. Indeed, Ellis, Katz and Williams (1987) and Shumann-Hengsteler 

(1992) have shown that the memorisation of object position is immediately effective and 

evolves little with age. Moreover, position would be automatically encoded (Andrade & 

Meudell, 1993; Ellis, 1990, 1991). In fact, Kosslyn (1994) has suggested that this system 

might be decomposed into at least two units: The "Coordinate Spatial Relations Encoding" 

and the "Categorical Spatial Relations Encoding". Koenig, Reiss and Kosslyn (1990) 

provided some developmental evidence for poorer functioning of the first subsystem than the 

second one in young children. 

Logie (1995) has suggested that two related systems assist the central executive when 

visuo-spatial information has to be kept in STM. Among them, a spatial store is not only 

responsible for maintaining the spatial characteristics of the stimulus but also helps to 

rehearse the information in the visual store. In terms of Logie's model, I suggest that the 

difficulty young children and the elderly have in keeping orientation in STM could be due to 

an immaturity/deterioration of the spatial store at these ages (which consequently could also 

result in poor mental rehearsal abilities). 

In fact, these difficulties in maintaining spatial information in STM were also observed in 

the two last experiments. In experiments 4a and 4b, mental scanning ability was assessed in 

a life-span perspective. Mental scanning development has been considered in parallel with 

mental rotation development since it has to be considered as a transformational imagery 

system as well. Indeed, Kosslyn (1994) suggested that one of the mechanisms involved in 
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mental scanning consisted of transforming the contents of the visual buffer. It replaces the 

representation kept in the visual buffer by a new one formed from the content of the image 

which is contiguous to the previous representation. 

In a mental scanning task, subjects are required to memorise a visual pattern before the 

activation of the mental scanning itself. In such tasks, the critical aspect of the pattern to be 

memorised is not the structure of the pattern but rather the accurate location of several 

details. As a consequence, subjects are confronted with the necessity to activate several 

cognitive subsystems involved in the spatial analysis of the pattern. The dorsal subsystem 

seems again to be a good candidate for this purpose. 

It appeared in experiments 4a and 4b that the mental scanning process is affected by the 

necessity to maintain the localisation of some details in the visual buffer during task solving. 

It was particularly the case in five-year-olds and in the elderly, although such observations 

should also be applied to eight-year-olds in particular conditions. When subjects were 

required to keep the pattern for 2 seconds in STM, the observed RT patterns were 

fundamentally different from those observed in classical studies with young adults. Indeed, 

in these latter studies, scanning times were dependent on the scanned distance, i.e. on the 

distance between the two relevant details of the pattern. In my experiments, this distance 

effect was observed only when the constraints on the maintenance of the pattern in memory 

were minimal, i.e. the pattern had to be maintained during a period which can be assimilated 

to an iconic memory trace. 

When the retention of the pattern was longer or when the iconic trace was interfered with 

irrelevant information, the scanning process was somehow disrupted. However, although 

disrupted, performances were better than chance level. These results are somewhat puzzling 

and I do not have another interpretation to offer. Other studies are necessary to understand 

how children and elderly solve the task. Single case studies might help us to understand their 

strategies. 
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In summary 

Several tasks have been used to assess the development of vi suo-spatial short term 

memory. Transformational imagery tasks were used to provide developmental evidence for a 

dissociation between the spatial and visual components of the so-called vi suo-spatial STM. 

If the tasks are valid - a topic that I address below -, it seems that young children and 

elderly might have some difficulties in keeping the spatial characteristics (orientation and 

location) of a visual pattern in STM. In terms of Kosslyn's (1994) model, we might say that 

these difficulties could be related to an immaturity of the dorsal system - at least some 

aspects of it. In terms of Logie's (1995) model, an inefficiency of the temporary spatial store 

could account for these difficulties. 

Consequently, explanations for the difficulties young children and the elderly encountered 

while carrying out a mental rotation or a mental scanning task (or generally, to a 

transformational imagery task) should not be sought in the processes engaged in the 

transformation of images themse1 ves. Indeed, Shepard (1984) has considered that these 

processes might be innate. Rather, we should consider the development of related processes, 

especially the development of the structure in which mental images take place. 

The validity of the tasks used in the experiments 

Mental rotation tasks 

Since Marmor's two studies on the development of mental rotation, developmental 

psychologists have thought that mental chronometry might be the unique way to assess 

mental rotation in a developmental perspective. However, as seen in chapter 2, the 

interpretations of chronometrical data in children as well as in the elderly are ambiguous, 
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especially since experimental conditions have been different across published studies (see 

Dean, 1990). Courbois (1994) has proposed several criticism which might be reconsidered 

in the context of the present thesis. 

We might worry about the ecological validity of such tasks. Indeed, in our everyday life 

activities, we rarely need to discriminate between normal and mirror-reversed versions of a 

visual pattern. It could explain why young children find it difficult to use a process which is 

in fact most of the time useless. However, its artificial character might be useful in assessing 

some aspects of related process as seen in this thesis. 

The use of a paradigm classically applied in young adults might be questionable when 

applied to children or the elderly. I think that developmental psychologists should stress the 

differences they observe while testing young and old subjects. These differences - although 

difficult to interpret - are rich in information. Difficulty in reproducing young adults' results 

is not always synonymous with a misfunctioning of the cognitive system of children or the 

elderly. Similarly, similar results could sometimes receive a different interpretation. To 

illustrate this issue, Lejeune (1994) reported that RTs increasing as a function of stimulus 

orientation in young children should not necessarily be interpreted in terms of the activation 

of a mental rotation process. In his study, he showed rather that this linear trend reflects the 

time to set a psychophysical judgment of the location of some stimulus details. This 

interpretation was based on an detailed analysis of error rates. 

Shepard and Cooper (1982) claimed that the linear trend of RTs is not sufficient to deduce 

the use of a mental rotation process. We have to be sure that the product of mental rotation is 

available for other processing, and that the rotation is continuous. i.e. the representation is 

moved through the different intermediate steps during the rotation. As mentioned by Dean 

(1990), these two conditions have not yet been explored in developmental studies. 
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Finally, in these mental rotation tasks, two end-states of stimuli have to be compared. In 

such a context, is it fundamentally necessary to use mental rotation as defined in the 

pioneering study (Shepard & Metzler, 1971) ? In fact, Dean (1990) and myself (Lejeune & 

Decker, 1994) have proposed that in tasks using stimuli rotated in the picture plane, other 

perceptual processes might be used. This interpretation was in fact initially proposed by 

Piaget and Inhelder (1966). These perceptual processes would engage the activation of 

multiple eye movements to compare the rotated stimulus to the same stimulus in its canonical 

(or learned) orientation. I think that depth rotations might avoid such processes, or at least, 

necessarily engage other transformational imagery subsystems (see Lejeune & Decker, 

1994). 

In conclusion, in the light of these previous comments, mental chronometry does not 

seem to provide clear and absolute evidence for the use of imagery processes in children and 

probably in the elderly. However, whatever the interpretation of the RT patterns, it does not 

invalidate the data and the interpretations reported in the present thesis. Indeed, the purpose 

of this thesis was not to understand how subjects solve a mental rotation task at different 

ages but rather to investigate the development of related processes, namely the ability to 

maintain vi suo-spatial information in STM, and how these related processes affect 

information processing during a mental rotation task. 

Mental scanning tasks 

The mental scanning tasks used in my experimental contribution are probably the most 

critical ones. Introspectively, we have the impression of being able to scan the image of a 

well known pattern. Kosslyn et al. 's (1978) pioneering study, although open to criticism, 

was probably the best study to assess mental scanning ability. The new paradigm (see Finke 

& Pinker, 1982) is fundamentally different from the first one. Image scanning is no longer 

carried out on an image generated from long term memory but rather on an iconic trace. This 

iconic trace has its origin in the stimulation of the retina by a pattern displayed on a computer 
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screen. A problem is that this computer screen is a two-dimensional space (Pylyshyn, 

1984). Consequently, there might be a risk of confusion between the screen properties and 

those of the visual buffer. Eye movements might explain RTs patterns: The time required to 

move the eyes would result in increased RTs (the longer the distance to scan is, the bigger 

the eye movements are). 

It is not obvious that the processes engaged in this new paradigm are similar to those 

observed with Kosslyn's (1978) method. However, it is unthinkable that we could use 

Kosslyn's method in developmental studies - especially with children. In fact, in an 

unpublished study, I (Lejeune, 1993) tried to use Kosslyn's method with young children but 

only negative results could be reported. Children did not seem to understand the instructions 

and encountered real difficulties in memorizing the accurate locations of the details on the 

general pattern. 

Other general methodological issues 

Subject sampling 

A central issue in developmental studies is the age of the subjects. We have seen in 

chapter 2 that age categories in previously published studies on mental rotation have not 

always been the same. However, it seems that a distinction between preoperational and 

operational children is relevant. Consequently, the selection of the ages five and eight in 

children is relevant. However, the level of operativity has not been measured in children. 

Consequently, it might be that some of them had a level of operational development different 

from that supposed to be attained on the basis of their chronological age. 

Moreover, in children, age categories were spread over six months. So, a child in the 

"five-years-old" category could have been four years and nine months old or five years and 

three months old. Six months in the life of a child is quite a long period of time. However, 
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this is a classical way to define an age category. This could partially explain why the 

individual differences were important in children. I have analysed the data from means, i.e. I 

have probably included in the same set of data, performance of children who had different 

levels of development. I think that we would gain in developmental studies by accurately 

analysing individual performance. 

Similarly, the age of the elderly people generally varied between 65 and 80 years-old. 

They were all supposed to be healthy. However, the limits between normal and pathological 

development in elderly are often tiny (see AssaI & Machado, 1993). Consequently, subjects 

tested were probably at a different level of development. With the elderly, we are also 

confronted with huge individual differences; this is a common issue while investigating 

ageing (see Ferrandez, 1993). Here again, single case studies would be valuable. 

The different levels of development in children and the elderly which have not been 

controlled in my experiments might explain why I observed some differences across 

experiments for an identical task in a same age category (see for instance. mental rotation 

performances in experiments 1 and 2). 

Another aspect which could have been interesting in studying the development of imagery 

is the sex variable. It is now commonly shown that males are usually more efficient than 

females in spatial processing (at least in young adults). This aspect has not been addressed in 

the present thesis. 

Material used 

The application of methodologies used in young adults to children and elderly should not 

only be considered with reference to theoretical issues but also with reference to the 

adequacy of the material used to test particular groups of subjects. Specifically, the material 

basically consisted most of the time in the presentation of visual stimuli on a computer 
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screen. If it is more and more common for a child to use computers in the context of hislher 

games, elderly people are often reluctant to use computers. These machines seem often to be 

mysterious to them and their comments during task solving make me think that they are 

scared by the situation. It could also influence their information processing times. 

However, as previous studies used similar methodologies, comparisons across 

experiments are possible. In the near future, new paradigms should be formulated to avoid 

the interference of a particular material on the performance of subjects. 

Perspectives 

At present, most of the developmental studies have tried to show differences between 

children, the elderly and young adults. Young adults have been considered as the reference. 

Methodologies used with young adults have been applied to different age categories and 

different patterns of responses have emerged. It has led to the conclusion that children and 

elderly are poorer at performing imagery tasks than young adults. 

However, I think that most developmental studies have considered imagery from a 

perspective that is too general. Mental rotation, mental scanning, or other transformational 

imagery sub systems have been considered in a very simplistic way. Their development has 

been approached as if they consisted of small individual boxes in a cognitive system. 

Developmental psychology has approached imagery the way it was conceived in the first 

theoretical models of imagery (see Kosslyn, 1980). Indeed, in these models, the whole 

system consisted of the juxtaposition of a set of boxes. The ROTATE box referred to the 

mental rotation process, just as the SCAN box referred to the mental scanning process. 

Contemporary cognitive psychology tries to decompose complex processes into several 

subsystems. Indeed, Kosslyn (1994) modified his early model of imagery functioning in 

light of research in the neurosciences. He demonstrated that the former "boxes" (especially 
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those concerning the transformational imagery subsystems) have to be considered in 

connection with several subsystems of high level vision. Imagery architecture is a complex 

system with multiple interconnected units. In this reformulation of the initial model. he did 

not refer to developmental studies. I think that it is also the role of developmental 

psychology to consider the development of these subsystems in the functioning of complex 

processes such as mental rotation or mental scanning. The relation between transformational 

imagery sub systems and the ability to maintain vi suo-spatial information has been studied in 

this thesis. 

However, a huge amount of work has still to be done to decompose the different 

subsystems and to understand their genesis. In this thesis, only a small aspect has been 

considered. Even for this aspect, namely the maintenance of visuo-spatial information in the 

visual buffer, many studies are required to understand the complexity of this process. The 

experiments reported have suggested a decomposition between the visual and the spatial 

components. It appeared that both components could develop differently across ages: The 

spatial component could be more sensitive to age. However. this spatial component itself is 

not yet clearly defined. It seems that the "dorsal system" in Kosslyn's (1994) model might 

be itself decomposed into other units. Kosslyn (1994) himself wrote with humour that 

although his model seems to be complicated and has been sometimes described as an 

encyclopedia, it is not yet probably sufficiently complex to account for the different 

processes humans can carry out. 

Other aspects of the whole system will have to be considered in future research. Some 

have already approached the relationship between imagery and visual perception (for 

instance in the context of object recognition, see Lejeune, 1992b). The memorisation of 

location (e.g. Ellis, Katz & William, 1987) has also been considered. Attentional processes 

also seem to be a good candidate to account for developmental differences. Indeed, the 

transformational imagery sub systems have been proposed to be strongly related to the 
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central executive in Logie's (1995) model. The understanding of the development of such a 

system in the context of imagery tasks seems to be necessary. 

The decomposition of the "Big Picture" will have to go through the creation of new 

methodologies as well. You may recall that the history of imagery has been stormy (sec 

chapter 1), and debates were resolved thanks to the use of new approaches, especially 

neuroscientific ones. Developmental studies should also be innovative in their approach. 

They should not be limited to the methodologies used in young adults. Moreover, I am 

firmly convinced that developmental psychology would gain from the analysis of single case 

performances. We have seen the development of a similar necessity in neuropsychology. 

Individual differences are too broad and mean values might hide reality. Piagetian studies 

were in this context far more informative than any other developmental studies. 

The time is ripe for an integration of several approaches. Developmental psychology has 

its role to play in the understanding of cognitive functions. It has a seat in the Parliament of 

Science besides general cognitive psychology, neuropsychology, comparative psychology, 

and neurobiology. I am convinced that developmental psychology will shed some light on 

the complex network of the imagery subsystems. 
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APPENDIX 1 

Experiment 1: 

Mental rotation tasks 
Means and standard deviations as a function of task, stimulus orientation and age. 

Five-year-o annequms as Ids M . Tt k 

(f flY 120° lSOO 

m: 5.79 m: 5.45 m: 5.00 m: 3.91 

s: 0.41 s: 0.97 s: 1.1 s: 1.06 

lve-year-o s: ones ld C Tt k as 

(f flY lWO 180° 

m: 5.83 m: 5.45 m: 4.71 m: 3.45 

s: 0.38 s: 0.72 s: 1.3 s: 1.67 

F" Ids L Tt k lve-year-o as 

(f flY lWO 180° 

m: 5.83 m: 5.45 m:4.2 m: 3.63 

s: 0.38 s: 0.72 s: 1.88 s: 1.81 

h EigJ t-year-o Ids M . Tt k annequms as 

(f flY 120° lSOO 

m: 4.41 m: 4.12 m: 3.95 m: 3.29 

s: 1.44 s: 1.54 s: 1.39 s: 0.95 

E"h 19, t-year-o Ids C ones Tt k as 

(f flY lWO lSOO 

m:4.75 m: 4.25 m: 3.95 m: 3.70 

s: 1.32 s: 1.35 s: 1.48 s: 1.54 

E· h Ids L Tt k 19, t-year-o as 

(f flY lWO lSOO 

m: 4.75 m: 4.12 m: 3.54 m: 3.54 

s: 1.45 s: 1.29 s: 1.66 s: 1.66 
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APPENDIX 1 (continued) 

Young adl M . ~ k u ts: annequms as 

<Y flY 120° 180° 

m: 5.75 m: 5.62 m: 5.41 m: 4.41 

s: 0.67 s: 0.64 s: 1.05 s: 0.65 

d 1 C oung a u ts: ones ~ k as 

<Y flY lWO lSOO 

m: 5.5 m: 5.75 m: 5.66 m: 5.66 

s: 0.83 s: 0.60 s: 0.63 s: 0.86 

~ adl L~k oung u ts: as 

<Y flY lWO lSOO 

m: 5.62 m: 5.70 m: 5.62 m: 5.25 

s: 0.64 s: 0.62 s: 0.92 s: 0.98 

Elderly people: annequms as M . ~ k 

<Y flY lWO lSOO 

m: 5.25 m: 5.00 m: 4.83 m: 3.58 

s: 1.03 s: 1.14 s: 1.09 s: 1.21 

I I C Elderty peopje: ones ~ k as 

<Y flY 120° lSOO 

m: 5.54 m: 5.50 m: 5.04 m:4.66 

s: 1.10 s: 1.10 s: 0.99 s: 1.01 

Elderl"v peopi e: as I L~ k 

<Y flY lWO lSOO 

m: 5.13 m: 5.25 m: 4.83 m:4.66 

s: 1.65 s: 1.36 s: 1.37 s: 1.49 
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APPENDIX 2 

Experiment 2: 

Mental rotation tasks 
Means and standard deviations as a function of task, stimulus orientation and age. 

F ive-year-o Ids M • T'i k annequms as 

(J' flY tZOO lSOO 

m: 0.16 m: 1.33 m: 2.83 m: 3.58 

s: 0.57 s: 1.55 s: 1.69 s: 2.27 

lve-year-o Ids C ones T'i k as 

(J' flY 1 ZOO lSOO 

m: 1.16 m: 2.91 m: 3.08 m: 0.58 

s: 1.11 s: 1.92 s: 2.1 s: LSI 

F' Ids L T'i k lve-year-o as 

(J' flY I ZOO lSOO 

m: 0.58 m: 1.66 m: 2.25 m: 3.66 

s: 1.51 s: 1.96 s: 2.3 s: 2.01 

Eight-year-o annequms as Ids M . T'i k 

(J' flY 1 ZOO lSOO 

m: 0.33 m:0.5 m:0.66 m: 1.58 

s: 0.88 s: 1.00 s: 1.61 s: 1.56 

E' ht 19l -year-o Ids C ones Task 

(J' flY 1 ZOO lSOO 

m: 0.25 m: 0.41 m: 0.58 m: 1.33 

s: 0.86 s: 1.16 s: 0.79 s: 1.49 

E'h IdsLT'i k tgl t-year-o as 

(J' flY 120° lSOO 

m: 0.08 m:0.25 m:0.5 m: 0.91 

s: 0.28 s: 0.45 s: 0.67 s: 1.24 
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APPENDIX 2 (continued) 

diM . ~ k Young a u ts: annequms as 

(J' flY 12CY' lSOO 

m:0.25 m:O m: 0.16 m: 0.41 

s: 0.45 s: 0 s: 0.38 s: 0.9 

d It C oung a u s: ones ~ k as 

(J' flY 12CY' lSOO 

m:0.08 m:0.08 m:O m:O 

s: 0.28 s: 0.28 s: 0 s: 0 

~ ad It L ~ k oung u s: as 

(J' flY 12CY' lSOO 

m: 0.16 m: 0.33 m: 0.16 m:0.33 

s: 0.38 s: 0.77 s: 0.38 s: 0.88 

1M· ~ k Elde~ly: annequms as 

(J' flY 12CY' lSOO 

m: 1.00 m: 0.41 m: 1.16 m: 1.66 

s: 1.2 s: 0.99 s: 1.11 s: 1.43 

Elde I C ~ k rty: ones as 

(J' flY 12CY' lSOO 

m: 1.25 m: 1.83 m: 1.58 m: 2.41 

s: 1.28 s: 1.69 s: 1.62 s: 2.46 

Eld I L ~ k erty: as 

(J' flY 12CY' lSOO 

m: 1.08 m: 1.25 m: 1.58 m: 2.5 

s: 1.44 s: 1.28 s: 1.72 s: 1.38 
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APPENDIX 3 

Experiment 3a: 

Mental rotation tasks 
Means and standard deviations as a function of experimental condition, and age. 

Five-year-olds: Without advanced information 

(f f:IY 120" lSOO 24()0 3000 

m: 3300 m: 4597 m:4368 m: 4857 m:4204 m: 3704 

s:979 s: 1241 s: 1966 s: 1424 s: 1405 s: 1187 

me: 3.5 me: 3.58 me: 3.33 me: 3.25 me: 3.00 me: 3.33 

s: 0.77 s: 0.49 s: 0.75 s: 0.82 s: 0.89 s: 0.6 

Five-year-olds: Advanced information, retention interval: 1000 msec. 

(f f:IY 120° 180° 24()0 3000 

m: 2773 m: 3537 m: 3306 m: 4479 m: 3673 m: 3318 

s:877 s: 1119 s: 1180 s: 1500 s: 1010 s: 1297 

me: 3.6 me: 3.41 me: 3.16 me: 2.91 me: 3.08 me: 3.58 

s: 0.41 s: 0.58 s: 0.75 s: 1.39 s: 1.11 s: 0.8 

Five-year-olds: Advanced information, retention interval: 500 msec. 

(f f:IY 120° 180° 24()0 3000 

m: 2565 m: 2855 m: 2711 m: 2842 m: 2405 m: 2541 

s:738 s: 990 s: 1111 s:845 s:636 s:786 

me: 3.83 me: 3.41 me: 3.66 me: 3.33 me: 3.33 me: 3.75 

s: 0.41 s: 1.02 s: 0.4 s: 0.87 s: 0.93 s: 0.42 
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APPENDIX 3 (continued) 

Eight-year-olds: Without advanced itiformation 

(f (J:f lWO lSOO 24()0 3000 

m: 1853 m: 2428 m: 2555 m: 2985 m: 2494 m: 2227 

s:583 s: 1225 s: 1357 s: 1041 s: 1338 s: 1117 

me: 4.00 me: 3.5 me: 3.75 me: 3.66 me: 3.33 me: 3.58 

s: 0.00 s: 0.84 s: 0.42 s: 0.61 s: 0.98 s: 0.38 

Eight-year-olds: Advanced in/ormation, retention interval: 1000 msec. 

(f (J:f lWO lSOO 24()0 3000 

m: 1466 m: 1707 m: 1653 m: 1404 m: 1455 m: 1456 

s:228 s: 429 s:337 s: 198 s:282 s:350 

me: 3.91 me: 3.83 me: 4.00 me: 3.83 me: 3.91 me: 4.00 

s: 0.2 s: 0.26 s: 0.00 s: 0.26 s: 0.2 s: 0.00 

Eight-year-olds: Advanced information, retention interval: 500 msec. 

(f (J:f lWO lSOO 24()0 3000 

m: 1529 m: 1561 m: 1472 m: 1656 m: 1446 m: 1394 

s:556 s: 411 s:292 s:477 s: 389 s:366 

me: 3.66 me: 3.91 me: 3.75 me: 3.66 me: 3.83 me: 3.91 

s: 0.26 s: 0.2 s: 0.42 s: 0.82 s: 0.26 s: 0.2 
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APPENDIX 3 (continued) 

Young adults: Without advanced information 

(f' (f:f 12QO 1SOO 24()0 3000 

m:847 m: 1087 m: 1150 m: 1464 m: 1203 m: 1022 

s:224 s: 378 s:387 s:430 s:368 s:369 

me: 3.91 me: 3.83 me: 3.91 me: 3.75 me: 3.83 me: 3.75 

s: 0.2 s: 0.26 s: 0.2 s: 0.42 s: 0.26 s: 0.27 

Young adults: Advanced information, retention interval: 1000 msec. 

(f' (f:f l2QO 180° 24()0 3000 

m:660 m: 851 m:798 m:758 m: 796 m: 760 

s: 185 s:250 s: 215 s: 221 s:225 s:254 

me: 3.66 me: 3.58 me: 3.66 me: 3.5 me: 4.00 me: 3.83 

s: 0.41 s: 0.58 s: 0.25 s: 0.63 s: 0.00 s: 0.26 

Young adults: Advanced information, retention interval: 500 msec. 

(f' (f:f l2QO lSOO 24()0 3000 

m:597 m:626 m:577 m:614 m: 583 m: 563 

s:98 s: 153 s: 130 s:201 s: 113 s: 104 

me: 3.91 me: 3.58 me: 3.66 me: 3.41 me: 4.00 me: 3.83 

s: 0.20 s: 0.58 s: 0.61 s: 0.66 s: 0.00 s: 0.41 
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APPENDIX 3 (continued) 

Elderly people: Without advanced information 

(f (f:f lWO lSOO 2400 3000 

m: 1717 m: 2710 m: 2981 m: 4276 m: 2907 m: 2209 

s:774 s: 1680 s:2306 s:3864 s:2205 s: 1160 

me: 3.75 me: 3.58 me: 3.66 me: 3.91 me: 3.75 me: 3.83 

s: 0.42 s: 0.37 s: 0.61 s: 1.39 s: 0.61 s: 0.41 

Elderly people: Advanced iriformation, retention interval: 1000 msec. 

(f (f:f IWO 1800 2400 3000 

m: 2419 m: 3180 m: 3414 m: 3347 m: 2856 m: 3680 

s: 1701 s: 2541 s:3658 s:3041 s:2776 s:5362 

me: 3.91 me: 3.75 me: 3.41 me: 3.00 me: 3.41 me: 3.58 

s: 0.2 s: 0.42 s: 0.74 s: 1.04 s: 0.73 s: 0.66 

Elderly people: Advanced information, retention interval: 500 msec. 

(f (f:f 1200 lSOO 2400 3000 

m: 2312 m: 3304 m: 2766 m: 2840 m: 2523 m: 2770 

s: 1696 s:2333 s: 2611 s:2572 s:2363 s:2885 

me: 3.58 me: 3.83 me: 3.83 me: 3.66 me: 3.66 me: 3.5 

s: 0.38 s: 0.25 s: 0.26 s: 0.61 s: 0.41 s: 0.54 
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APPENDIX 4 

Experiment 3b: 

Mental rotation tasks 
Means and standard deviations as a function of experimental condition, and age. 

F' IdsRt (' 't 11000 lve-year-o e en IOn In erva , msec. 

(f flY lWO 180° 

m: 2175 m: 2838 m: 3205 m: 3214 

s: 423 s: 801 s: 1225 s: 1392 

me: 1.00 me: 1.91 me: 2.25 me: 2.83 

s: 1.04 s: 1.24 s: 1.54 s: 2.48 

F' Ids R t t . t I 500 lve-year-o e en IOn In erva , msec. 

(f flY 120° 1SOO 

m: 2307 m: 2632 m: 2800 m: 3534 

s: 591 s: 392 s: 612 s: 1343 

me: 0.91 me: 2.41 me: 2.41 me: 3.00 

s: 1.56 s: 1.16 s: 1.16 s: 1.8 
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APPENDIX 4 (continued) 

E' h Ids R t ttl 1000 IX, t-year-o : e en IOn In erva, msec. 

(f (fJ' lWO lSOO 

m: 1827 m: 1765 m: 1838 m: 1859 

s: 411 s: 211 s:256 s:312 

me: 0.75 me: 0.83 me: 1.33 me: 1.5 

s: 0.62 s: 0.93 s: 1.55 s: 1.78 

E" h Ids R t t' . t I 500 19j t-year-o e en IOn In erva , msec. 

(f (fJ' lWO lSOO 

m: 1636 m: 1748 m: 1725 m: 1673 

s:230 s:244 s: 237 s:286 

me: 0.16 me: 0.66 me: 0.83 me: 0.5 

s: 0.38 s: 0.77 s: 1.26 s: 0.52 
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APPENDIX 4 (continued) 

YI d I R t' . t I 1000 oung a u ts: eten IOn m erva • msec. 

(f (l'f 12(f 1SOO 

m:933 m: 1102 m: 1043 m: 1034 

s: 174 s:312 s: 182 s:290 

me: 0.33 me: 0.42 me: 0.75 me: 0.5 

s: 0.65 s: 0.51 s: 0.86 s: 0.79 

dl R oung a u ts: I 500 etentlOn mterva • msec. 

(f (l'f 12(f 1SOO 

m:935 m: 1076 m: 1054 m:993 

s:256 s:269 s:206 s: 197 

me: 0.33 me: 0.08 me: 0.25 me: 0.41 

s: 0.65 s: 0.28 s: 0.45 s: 0.51 
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APPENDIX 4 (continued) 

Eld I I R erty peopi e: 1 1000 etentwn mterva, msec. 

(f ({'f 12QO 1SOO 

m: 2091 m: 2296 m: 2610 m: 2894 

s:302 s:506 s:553 s: 848 

me: 0.75 me: 0.91 me: 1.25 me: 2.41 

s: 0.86 s: 0.79 s: 0.86 s: 0.99 

ld I 1 R E e~ty people: I 500 etentwn mterva , msec. 

(f ({'f 12QO 1800 

m: 2287 m: 2463 m: 2709 m: 2783 

s: 460 s:368 s: 519 s: 433 

me: 0.25 me: 1.42 me: 1.83 me: 2.66 

s: 0.45 s: 0.79 s: 1.19 s: 0.88 
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APPENDIX 5 

Experiment 3c: 

Mental rotation tasks 

Reaction times: Means and standard deviations as a function of experimental condition, and 

age (1 > 1m: L normal followed by L mirror-reversed; 1 > 1: L normal followed by L normal; 

c > c: C followed by C; and c > 1: C followed by L normal). 

F" Ids R t 1" t I 500 lve-year-o e en IOn In erva, msec 

(f (JJ' tWO lSOO 

m(l > 1m): 2305 m(l > 1m): 2672 m(l > 1m): 2576 m(l > 1m): 2618 

s: 791 s:792 s: 1057 s:969 

m(l > 1): 2451 m(l > I): 2605 mO > I): 2594 m(l > I): 2634 

s:991 s:835 s: 915 s:929 

m(c > c): 2405 m(c > c): 2516 m(c > c): 2519 m(c > c): 2526 

s:862 s:696 s:900 s:819 

m(c > 1): 2314 m(c > 1): 2408 m(c > I): 2388 m(c > 1): 2383 

s:683 s:698 s:715 s:692 

F" IdsRt t ·t 11000 lve-year-o e en IOn In erva , msec 

(f (JJ' lWO lSOO 

m(l > 1m): 2556 m(l > 1m): 3207 m(l > 1m): 3424 m(l > 1m): 4470 

s: 853 s: 924 s: 1253 s: 1455 

m(l > 1): 2533 m(l > 1): 2857 m(l > 1): 3094 m(l > 1): 3836 

s: 825 s:809 s:864 s:954 

m(c > c): 2505 m(c > c): 2723 m(c > c): 2884 m(c > c): 3092 

s: 818 s: 844 s:831 s:991 

m(c > 1): 2308 m(c > 1): 2409 m(c > 1): 2384 m(c > 1): 2416 

s: 797 s: 761 s: 853 s:764 
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APPENDIX 5 (continued) 

E" h Ids R t "t I 500 19, t-year-o eten IOn In erva , msec 

0' (JY lWO lSOO 

m(l > 1m): 1365 m(1 > 1m): 1503 m(l > 1m): 1525 m(l > 1m): 1680 

s:469 s:419 s:357 s: 431 

m(l > I): 1362 m(l > I): 1482 m(l > I): 1476 m(l > I): 1588 

s:376 s: 407 s:339 s: 430 

m(c > c): 1372 m(c > c): 1445 m(c > c): 1449 m(c>c): 1515 

s: 441 s: 444 s: 391 s: 421 

m(c > I): 1247 m(c > I): 1279 m(c > I): 1263 m(c>l): 1310 

s: 381 s:369 s:396 s: 410 

E" h Ids R l' "nt I 1000 ig, t-year-o eten IOn I erva, msec 

0' (JY lWO lSOO 

m(l> 1m): 1427 m(l > 1m): 1653 m(1 > 1m): 1633 m(l > 1m): 1559 

s:268 s:340 s:269 s: 198 

m(l > I): 1451 m(l > I): 1557 m(l > I): 1644 m(l > I): 1570 

s:288 s:259 s:337 s:229 

m(c > c): 1425 m(c > c): 1393 m(c > c): 1480 m(c > c): 1549 

s:305 s:279 s:363 s:253 

m(c > I): 1382 m(c > I): 1386 m(c > I): 1442 m(c > 1): 1423 

s: 197 s: 282 s:227 s:245 
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APPENDIX 5 (eontinued) 

oung ad I R u ts: 'nt 1 500 etentlOn I erva, msec 

(f (JJ' 12()O lSOO 

m(l > 1m): 585 mO > 1m): 592 mO > 1m): 595 m(1 > 1m): 623 

s: 110 s: 128 s: 130 s: 150 

m(l > 1): 568 m(l > 1): 575 m(l > I): 581 mel > 1): 586 

s: 109 s: 111 s: 116 s: 114 

m(e >e): 571 m(e >e): 574 m(e >e): 584 m(e >e): 584 

s: 111 s: 112 s: 117 s: 112 

m(e> 1): 581 m(e >1): 585 m(e > I): 582 m(e > 1): 589 

s: 110 s: 105 s: 113 s: 109 

y: ad 1 R t t' 't 1 1000 e ounK u ts e en Ion In erva , ms c 

(f (JJ' 12()O lSOO 

m(1 > 1m): 655 m(l > 1m): 775 m(1 > 1m): 768 mO > 1m): 770 

s:225 s:233 s:230 s: 199 

m(l > I): 652 mO > 1): 665 mO > 1): 676 m(l > I): 679 

s:220 s: 217 s:230 s:231 

m(e >e): 651 m(e > e): 649 m(e > e): 666 m(e > e): 665 

s: 198 s: 186 s: 210 s: 193 

m(e > 1): 663 m(e > 1): 679 m(e > 1): 686 m(e> I): 685 

s:212 s:229 s:234 s: 232 
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APPENDIX 5 (continued) 

Ide 1 I R E rly peOpie: . t 1 500 etentlOn In erva , msec 

(f (JY lWO lSOO 

m(l > 1m): 2124 m(l> 1m): 2724 m(l > 1m): 2695 m(l > 1m): 2922 

s: 1490 s: 1907 s:2317 s:2466 

m(l > I): 2326 m(l > I): 2455 m(l > I): 2629 m(l > I): 2778 

s: 1776 s: 1783 s:2248 s: 22] 2 

m(c > c): 2222 m(c > c): 2457 m(c> c): 2619 m(c>c): 2612 

s: 1598 s: 1918 s:2147 s: 210] 

m(c > I): 2013 m( c > I): 2082 m(c > I): 2314 m(c > I): 2313 

s: 1459 s: 1484 s: 2110 s:2005 

Id I 1 R E erly peoPJ e: 't 11000 etentlOn In erva , msec 

(f (JY lWO lSOO 

m(l > ]m): 2032 m(l > 1m): 2445 m(] > 1m): 3296 m(l > 1m): 3662 

s: 1217 s: 1307 s:2338 s:2383 

mO > I): 2040 mO > 1): 2303 mO > 1): 2805 mO > I): 3089 

s: 1195 s: 1268 s: 1441 s: 1686 

m(c > c): 2045 m(c > c): 2163 m(c > c): 2435 m(c > c): 2536 

s: 1229 s: 1251 s: 1351 s: 1329 

m(c > 1): 1871 m(c > 1): 1943 m(c > 1): 1926 m(c > 1): 1962 

s: 1179 s: 1179 s: 1213 s: 1181 
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APPENDIX 5 (continued) 

Experiment 3c: 

Mental rotation tasks 

Errors: Means and standard deviations as a function of experimental condition, and age (l > 

1m: L normal followed by L mirror-reversed; I > I: L normal followed by L normal; c > c: C 

followed by C; and c > I: C followed by L normal). 

F' Ids R t" . t I 500 lve-year-o e en IOn In erva, msec 

cr (JY 12()O lSOO 

mO > 1m): 0.25 m(l > 1m): 0.16 m(l > 1m): 0.33 m(l > 1m): 0.4] 

s: 0.45 s: 0.38 s: 0.65 s: 0.66 

m(l > I): 0.33 m(l > I): 0.25 m(l>I):0.]6 m(l > I): 0.5 

s: 0.65 s: 0.62 s: 0.38 s: 0.67 

m(c > c): 0.25 m(c > c): 0.25 m(c > c): 0.33 m(c > c): 0.5 

s: 0.45 s: 0.45 s: 0.65 s: 0.79 

m(c > I): 0.16 m(c > I): 0.25 m(c > I): 0.16 m(c > I): 0.33 

s: 0.38 s: 0.45 s: 0.38 s: 0.65 

F' Ids R t t . t 1 1000 lve-year-o e en IOn In erva , msec 

cr (JY 12()O lSOO 

m(l > 1m): 0.41 m(l > 1m): 0.5 m(l > 1m): 0.75 m(l > 1m): 1.16 

s: 0.51 s: 0.67 s: 0.75 s: 0.38 

m(l > I): 0.33 mO > I): 0.41 mO > 1): 0.66 m(l > I): 1.08 

s: 0.49 s: 0.51 s: 0.65 s: 0.28 

m(c > c): 0.41 m(c > c): 0.66 m(c > c): 0.66 m(c > c): 0.91 

s: 0.66 s: 0.65 s: 0.49 s: 0.66 

m(c > 1): 0.25 m(c > 1): 0.41 m(c > I): 0.33 m(c > I): 0.4] 

s: 0.45 s: 0.51 s: 0.49 s: 0.51 

249 



APPENDIX 5 (continued) 

h Ids R I 500 Eigl t-year-o . etentlOn mterva , msec 

(f flY l:ZOO lSOO 

mO > 1m): 0.08 mO > 1m): 0.08 mO > 1m): 0.08 m(1 > 1m): 0.25 

s: 0.28 s: 0.28 s: 0.28 s: 0.62 

mO > I): 0.08 m(l > 1): 0.08 m(l > I): 0.08 m(1 > I): 0 

s: 0.28 s: 0.28 s: 0.28 s: 0 

m(c > c): 0.16 m(c > c): 0 m(c > c): 0.08 m(c > c): 0.25 

s: 0.38 s: 0 s: 0.28 s: 0.62 

m(c > 1): 0 m(c > 1): 0.16 m(c> 1): 0 m(c > 1): 0.08 

s: 0 s: 0.38 s: 0 s: 0.28 

E' h Ids R t t' . terval 1000 19l t-year-o e en IOn m , msec 

(f flY l:ZOO lSOO 

mO > 1m): 0.25 mO > 1m): 0.16 m(l > 1m): 0.25 m(1 > 1m): 0.33 

s: 0.45 s: 0.38 s: 0.45 s: 0.65 

m(1 > I): 0.16 mO > I): 0.08 mO > I): 0.16 m(1 > 1): 0.25 

s: 0.38 s: 0.28 s: 0.38 s: 0.62 

m(c > c): 0.16 m(c > c): 0.25 m(c > c): 0.16 m(c > c): 0.16 

s: 0.57 s: 0.45 s: 0.57 s: 0.38 

m(c > 1): 0.08 m(c> I): 0.08 m(c > 1): 0.25 m(c > 1): 0.08 

s: 0.28 s: 0.28 s: 0.62 s: 0.28 
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APPENDIX 5 (continued) 

YI ad It R t ti t 1 500 oung u s: e en on In erva , msec 

(f (fJ' 12Cf lSOO 

m(l > 1m): 0.25 m(l > 1m): 0.08 m(l > 1m): 0.16 m(1 > 1m): 0.25 

s: 0.45 s: 0.28 s: 0.38 s: 0.45 

m(1 > 1): 0.08 m(1 > 1): 0.08 m(1 > 1): 0.16 m(1 > 1): 0.16 

s: 0.28 s: 0.28 s: 0.38 s: 0.38 

m(c > c): 0.25 m(c > c): 0.08 m(c > c): 0.16 m(c> c): 0.25 

s: 0.62 s: 0.28 s: 0.38 s: 0.62 

m(c > 1): 0.08 m(c > 1): 0.08 m(c > 1): 0.16 m(c > 1): 0.25 

s: 0.28 s: 0.28 s: 0.38 s: 0.62 

YI d It R t ttl 1000 oung a u s e en Ion In erva, msec 

(f (fJ' 12Cf lSOO 

m(l > 1m): 0.08 m(1 > 1m): 0.16 m(1 > 1m): 0.16 m(1 > 1m): 0.5 

s: 0.28 s: 0.38 s: 0.38 s: 0.67 

m(1 > I): 0.08 m(l > 1): 0 m(1 > 1): 0.16 m(l > 1): 0.33 

s: 0.28 s: 0 s: 0.38 s: 0.65 

m(c > c): 0 m(c > c): 0.08 m(c > c): 0.25 m(c > c): 0.16 

s: 0 s: 0.28 s: 0.45 s: 0.38 

m(c > I): 0 m( c > 1): 0.08 m(c > 1): 0.08 m(c > I): 0.16 

s: 0 s: 0.28 s: 0.28 s: 0.38 
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APPENDIX 5 (continued) 

ldl I R E erly peOp4 e: I 500 etentlOn mterva , msec 

(f fff 1 ZOO lSOO 

m(l > 1m): 0.16 mO > 1m): 0.16 mO > 1m): 0.08 mO > 1m): 0.33 

s: 0.38 s: 0.38 s: 0.28 s: 0.49 

m(1 > 1): 0.16 m(1 > I): 0.16 m(1 > I): 0.08 m(l > 1): 0.33 

s: 0.38 s: 0.38 s: 0.28 s: 0.49 

m(c > c): 0.25 m(c > c): 0.16 m(c > c): 0.08 m(c > c): 0.33 

s: 0.45 s: 0.38 s: 0.28 s: 0.49 

m(c> I): 0.08 m(c > I): 0.08 m(c > I): 0.33 m(c > I): 0.16 

s: 0.28 s: 0.28 s: 0.65 s: 0.38 

d I I R . t I 1000 El erly peopi e: etentlOn m erva , msec 

(f fff I ZOO lSOO 

mO > 1m): 0.58 m(1 > 1m): 0.41 m(1 > 1m): 0.91 mO > 1m): 1.08 

s: 0.51 s: 0.51 s: 0.66 s: 0.66 

mO > I): 0.41 mO > 1): 0.41 m(l > 1): 0.75 m(1 > I): 0.91 

s: 0.51 s: 0.51 s: 0.62 s: 0.28 

m(c > c): 0.33 m(c > c): 0.33 m(c > c): 0.66 m(c > c): 0.58 

s: 0.49 s: 0.49 s: 0.49 s: 0.51 

m(c> I): 0.16 m(c > 1): 0.25 m(c > 1): 0.25 m(c > I): 0.5 

s: 0.38 s: 0.45 s: 0.45 s: 0.52 
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APPENDIX 6 

Experiment 4a 

Means and standard deviations 

Five-year-olds: Perceptual Control - ANlMASK version -

de Ii P On r maKer~ > erceptlOn 

Short -Yes Medium- Long - Yes Short -No Medium- Long - No 

Yes No 

m: 3.5 m: 3.83 m: 3.5 m: 2.91 m: 3.0 m: 3.2 

s: 1.16 s: 0.38 s: 0.79 s: 1.44 s: 1.21 s: 1.19 

Five-year-olds: Imagery task - ANIMASK version -

deli P On r magery > erceptlOn 

Short -Yes Medium- Long - Yes Short -No Medium- Long - No 

Yes No 

m: 2.25 m: 2.08 m: 1.75 m: 2.0 m: 2.16 m: 1.91 

s: 1.48 s: 1.37 s: 1.42 s: 1.53 s: 1.26 s: 1.56 

Five-year-olds: Perceptual Control- ANlMASK version -

Ii Order Perception> magery 

Short -Yes Medium- Long - Yes Short -No Medium- Long - No 

Yes No 

m: 3.75 m: 3.58 m: 3.41 m: 3.25 m: 3.75 m: 3.5 

s: 0.86 s: 1.16 s: 1.16 s: 0.75 s: 0.45 s: 0.67 

Five-year-olds: Imagery task - ANIMASK version -

de P Ii On r erceptlOn > maKery 

Short -Yes Medium- Long - Yes Short -No Medium- Long - No 

Yes No 

m: 3.0 m: 2.58 m: 2.5 m: 1.75 m: 1.75 m: 2.0 

s: 1.12 s: 1.24 s: 1.24 s: 1.05 s: 0.96 s: 1.04 
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APPENDIX 6 (continued) 

Five-year-olds: Perceptual Control - SCAN version -

o de Ii P Ii r maRer\) > erceptlOn 

Short -Yes Medium- Long - Yes Short -No Medium- Long - No 

Yes No 

m: 3.16 m: 2.75 m: 2.75 m: 3.16 m: 2.83 m: 2.83 

s: 1.34 s: 1.54 s: 1.6 s: 1.4 s: 1.52 s: 1.58 

Five-year-olds: Imagery task - SCAN version -

de Ii P Oli r mager. II> erceptlOn 

Short -Yes Medium- Long - Yes Short -No Medium- Long - No 

Yes No 

m: 2.91 m: 2.75 m: 2.33 m: 2.25 m: 2.16 m: 2.58 

s: 1.5 s: 1.48 s: 1.61 s: 1.06 s: 1.4 s: 1.51 

Five-year-olds: Perceptual Control- SCAN version­

Ii Order Perceptlon > magery 

Short -Yes Medium- Long - Yes Short -No Medium- Long - No 

Yes No 

m: 3.58 m: 3.16 m: 3.25 m: 2.58 m: 2.91 m: 3.16 

s: 0.66 s: 0.83 s: 0.96 s: 1.08 s: 0.9 s: 0.83 

Five-year-olds: Imagery task - SCAN version -

Ii Order Perceptlon > magery 

Short -Yes Medium- Long - Yes Short -No Medium- Long - No 

Yes No 

m: 3.16 m: 3.08 m: 2.58 m: 2.33 m: 2.25 m: 2.33 

s: 0.83 s: 1.24 s: 1.24 s: 1.15 s: 1.13 s: 0.98 
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APPENDIX 6 (continued) 

Eight-year-olds: Perceptual Control- ANIMASK version -

Order Imaiery > P erceptlOn 

Short -Yes Medium- Long - Yes Short -No Medium- Long - No 

Yes No 

m: 3.66 m: 3.5 m: 3.41 m: 3.5 m: 3.75 m: 3.83 

s: 1.15 s: 1.16 s: 1.37 s: 0.67 s: 0.45 s: 0.38 

Eight-year-olds: Imagery task - ANIMASK version -

rde l P erceptlOn r mafler~ > 0 

Short -Yes Medium- Long - Yes Short -No Medium- Long - No 

Yes No 

m: 3.58 m: 3.16 m: 2.75 m: 2.0 m: 2.25 m: 2.25 

s: 0.66 s: 0.71 s: 1.28 s: 0.73 s: 1.13 s: 1.48 

Eight-year-old,s: Perceptual Control- AN/MASK version -

Ii Order Perceptzon > magery 

Short -Yes Medium- Long - Yes Short -No Medium- Long - No 

Yes No 

m: 3.66 m:3.66 m: 3.58 m: 3.75 m: 3.83 m: 3.75 

s: 0.49 s: 0.49 s: 0.51 s: 0.45 s: 0.38 s: 0.45 

Eight-year-olds: Imagery task - ANIMASK version -

de P Ii 0" r erceptzon > magery 

Short -Yes Medium- Long - Yes Short -No Medium- Long - No 

Yes No 

m: 3.33 m:3.0 m: 3.25 m: 2.5 m:3.0 m: 2.0 

s: 1.07 s: 0.73 s: 0.86 s: 0.9 s: 0.95 s: 0.85 
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APPENDIX 6 (continued) 

Eight-year-olds: Perceptual Control - SCAN version -

de l P On r mager > erceptzon 

Short -Yes Medium- Long - Yes Short -No Medium- Long - No 

Yes No 

m:4.0 m:4.0 m: 3.33 m: 3.75 m: 3.91 m: 3.75 

s: 0.0 s: 0.0 s: 0.65 s: 0.45 s: 0.28 s: 0.45 

Eight-year-olds: Imagery task - SCAN version -

Order Imagery> P erceptzon 

Short -Yes Medium- Long - Yes Short -No Medium- Long - No 

Yes No 

m:4.0 m: 3.66 m: 3.91 m: 3.16 m: 3.75 m: 3.41 

s: 0.0 s: 0.65 s: 0.28 s: 0.83 s: 0.45 s: 0.51 

Eight-year-olds: Perceptual Control - SCAN version -

de P l On r erceptzon > magery 

Short -Yes Medium- Long - Yes Short -No Medium- Long - No 

Yes No 

m: 3.81 m: 3.63 m: 3.72 m: 3.54 m: 3.63 m: 3.81 

s: 0.4 s: 0.92 s: 0.46 s: 0.93 s: 0.5 s: 0.4 

Eight-year-olds: Imagery task - SCAN version -

l Order Perception> magery 

Short -Yes Medium- Long - Yes Short -No Medium- Long - No 

Yes No 

m: 3.54 m: 3.45 m: 3.36 m: 3.27 m: 3.0 m: 2.63 

s: 0.93 s: 0.68 s: 0.67 s: 1.19 s: 1.26 s: 1.28 
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APPENDIX 6 (continued) 

Young adults: Perceptual Control- ANIMASK version-

de l P 0" r ma~er v> erceptlon 

Short -Yes Medium- Long - Yes Short -No Medium- Long - No 

Yes No 

m:4.00 m: 3.66 m: 3.58 m: 3.91 m: 3.91 m: 3.66 

s: 0.0 s: 0.49 s: 0.51 s: 0.28 s: 0.28 s: 0.65 

Young adults: Imagery task - ANIMASK version -

Order Imagery> P erceptlon 

Short -Yes Medium- Long - Yes Short -No Medium- Long - No 

Yes No 

m: 3.75 m: 3.08 m: 2.83 m: 2.75 m: 3.0 m: 2.83 

s: 0.45 s: 0.66 s: 1.02 s: 0.96 s: 1.12 s: 0.83 

Young adults: Perceptual Control - ANIMASK version -

de P l 0" r erceptlon > magery 

Short -Yes Medium- Long - Yes Short -No Medium- Long - No 

Yes No 

m: 3.66 m:4.0 m: 3.41 m: 3.75 m: 3.58 m: 3.83 

s: 0.65 s: 0.0 s: 0.66 s: 0.45 s: 0.51 s: 0.38 

Young adults: Imagery task - ANIMASK version -

de P l 0" r erceptlon > maRery 

Short -Yes Medium- Long - Yes Short -No Medium- Long - No 

Yes No 

m: 3.58 m: 3.5 m: 3.08 m: 3.08 m: 3.8 m: 2.75 

s: 0.66 s: 0.52 s: 0.99 s: 0.79 s: 0.99 s: 0.96 
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APPENDIX 6 (continued) 

Young adults: Perceptual Control- SCAN version -

de Ii P 0,., r magery > erceptzon 

Short -Yes Medium- Long - Yes Short -No Medium- Long - No 

Yes No 

m: 3.75 m: 3.75 m: 3.5 m: 3.83 m: 3.75 m: 3.83 

s: 0.45 s: 0.45 s: 0.67 s: 0.38 s: 0.45 s: 0.38 

Young adults Imagery task - SCAN version -

Order Image,"- > P erceptzon 

Short -Yes Medium- Long - Yes Short -No Medium- Long - No 

Yes No 

m: 3.66 m: 3.66 m: 3.58 m: 3.58 m: 3.75 m: 3.91 

s: 0.65 s: 0.49 s: 0.66 s: 0.66 s: 0.45 s: 0.28 

Young adults: Perceptual Control- SCAN version­

Ii Order Perceptlon > magery 

Short -Yes Medium- Long - Yes Short -No Medium- Long - No 

Yes No 

m: 3.91 m: 3.75 m: 3.41 m: 3.83 m:4.0 m: 3.91 

s: 0.28 s: 0.62 s: 0.66 s: 0.38 s: 0.0 s: 0.28 

Young adults: Imagery task - SCAN version -

OdeP Ii ,., r erceptlon > ma1!ery 

Short -Yes Medium- Long - Yes Short -No Medium- Long - No 

Yes No 

m: 3.75 m: 3.75 m: 3.58 m: 3.83 m: 3.75 m: 3.58 

s: 0.45 s: 0.45 s: 0.51 s: 0.38 s: 0.45 s: 0.66 
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APPENDIX 6 (continued) 

Elderly: Perceptual Control - ANIMASK version -

de Ii ~ Oli r magery> ercepFon 

Short -Yes Medium- Long - Yes Short -No Medium- Long - No 

Yes No 

m: 3.41 m: 3.75 m: 3.16 m: 3.5 m: 2.91 m: 3.58 

s: 1.16 s: 0.62 s: 0.83 s: 0.79 s: 1.16 s: 0.79 

Elderly: Imagery task - ANIMASK version -

o de Ii P Ii r magery > ercej!JlOn 

Short -Yes Medium- Long - Yes Short -No Medium- Long - No 

Yes No 

m: 3.58 m: 3.5 m: 2.75 m: 2.25 m: 2.66 m: 2.5 

s: 0.66 s: 0.52 s: 0.96 s: 0.96 s: 1.07 s: 0.79 

Elderly: Perceptual Control - ANIMASK version -

de P Ii Oli r erceptlOn > magery 

Short -Yes Medium- Long - Yes Short -No Medium- Long - No 

Yes No 

m:4.0 m: 3.33 m: 2.91 m: 3.33 m: 3.33 m: 3.66 

s: 0.0 s: 0.65 s: 0.9 s: 1.15 s: 0.88 s: 0.65 

Elderly: Imagery task - ANIMASK version -

OdeP Ii Ii r erceptzon > magery 

Short -Yes Medium- Long - Yes Short -No Medium- Long - No 

Yes No 

m: 3.25 m: 2.66 m: 2.75 m: 2.75 m: 2.66 m: 1.91 

s: 0.75 s: 0.88 s: 0.96 s: 1.21 s: 0.88 s: 0.79 
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APPENDIX 6 (continued) 

Elderly Perceptual Control - SCAN version -

Ode L P 11 r mager. v> erceptlOn 

Short -Yes Medium- Long - Yes Short -No Medium- Long - No 

Yes No 

m: 3.66 m: 3.5 m: 2.75 m: 3.91 m: 3.83 m: 3.58 

s: 1.15 s: 1.16 s: 1.42 s: 0.28 s: 0.38 s: 0.79 

Elderly: Imagery task - SCAN version -

Ode l P Ti r ma~er. > erceptlOn 

Short -Yes Medium- Long - Yes Short -No Medium- Long - No 

Yes No 

m: 3.58 m: 3.66 m: 2.75 m: 3.0 m: 2.75 m: 3.08 

s: 0.51 s: 0.65 s: 1.13 s: 0.85 s: 1.42 s: 1.16 

Elderly: Perceptual Control - SCAN version -

Ode P l Ti r erceptlOn > magery 

Short -Yes Medium- Long - Yes Short -No Medium- Long - No 

Yes No 

m: 3.83 m: 3.83 m: 3.25 m: 2.75 m: 3.08 m: 2.75 

s: 0.38 s: 0.88 s: 1.05 s: 1.13 s: 0.79 s: 1.05 

Elderly: Imagery task - SCAN version -

Ode P l 11 r erceptlOn > magery 

Short -Yes Medium- Long - Yes Short -No Medium- Long - No 

Yes No 

m: 3.33 m: 2.91 m: 2.66 m: 3.25 m: 3.0 m: 3.25 

s: 0.98 s: 1.31 s: 1.15 s: 0.96 s: 0.95 s: 0.75 
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APPENDIX 7 

Five-year-o Ids P erceptua ontro -Ie I AN/MASK versIOn. 

Short -Yes Medium- Long - Yes Short -No Medium- Long - No 

Yes No 

m: 3.62 m: 3.71 m: 3.45 m: 3.08 m: 3.37 m: 3.33 

s: 1.01 s: 0.85 s: 0.97 s: 1.13 s: 0.96 s: 0.96 

Ive-year-o Ids l : magery tas k AN/MASK - versIOn 

Short -Yes Medium- Long - Yes Short -No Medium- Long - No 

Yes No 

m: 2.62 m: 2.33 m: 2.12 m: 1.87 m: 1.95 m: 1.95 

s: 1.34 s: 1.31 s: 1.36 s: 1.29 s: 1.12 s: 1.3 

Five-year-o Ids P erceptua ontro -Ie I SCAN versIon 

Short -Yes Medium- Long - Yes Short -No Medium- Long - No 

Yes No 

m: 3.37 m: 2.95 m: 3.0 m: 2.87 m: 2.87 m:3.0 

s: 1.05 s: 1.23 s: 1.31 s: 1.26 s: 1.22 s: 1.25 

Ive-year-o Ids Ii : magery tas k SCAN - versIOn 

Short -Yes Medium- Long - Yes Short -No Medium- Long - No 

Yes No 

m: 3.04 m: 2.91 m: 2.45 m: 2.29 m: 2.21 m: 2.45 

s: 1.19 s: 1.34 s: 1.41 s: 1.08 s: 1.25 s: 1.25 
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APPENDIX 7 (continued) 

E"h iI(, t-year-o Ids P erceptua IC I ANIMASK ontro - versIOn 

Short -Yes Medium- Long - Yes Short -No Medium- Long - No 

Yes No 

m: 3.66 m: 3.58 m: 3.5 m: 3.62 m: 3.79 m: 3.79 

s: 0.86 s: 0.88 s: 1.02 s: 0.57 s: 0.41 s: 0.41 

h Eil(l t-year-o Id I s: magery tas k AN/MASK - versIOn 

Short -Yes Medium- Long - Yes Short -No Medium- Long - No 

Yes No 

m: 3.45 m: 3.08 m:3.0 m: 2.25 m: 2.62 m: 2.12 

s: 0.88 s: 0.71 s: 1.1 s: 0.84 s: 1.09 s: 1.19 

h EigJ t-year-o Ids P erceptua IC 1 SCAN ontro - versIOn 

Short -Yes Medium- Long - Yes Short -No Medium- Long - No 

Yes No 

m: 3.91 m: 3.82 m: 3.52 m: 3.65 m: 3.78 m: 3.78 

s: 0.28 s: 0.65 s: 0.59 s: 0.71 s: 0.42 s: 0.42 

Eight-year-olds: Imagery task - SCAN version -

L Order Perception> mal(ery 

Short -Yes Medium- Long - Yes Short -No Medium- Long - No 

Yes No 

m: 3.78 m: 3.56 m: 3.65 m: 3.21 m: 3.39 m: 3.04 

s: 0.67 s: 0.66 s: 0.57 s: 0.99 s: 0.98 s: 1.02 
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APPENDIX 7 (continued) 

Young adl P u ts: erceptua IC I ANIMASK ontro - versIOn. 

Short -Yes Medium- Long - Yes Short -No Medium- Long - No 

Yes No 

m: 3.83 m: 3.83 m: 3.5 m: 3.83 m:3.75 m: 3.75 

s: 0.48 s: 0.38 s: 0.58 s: 0.38 s: 0.44 s: 0.53 

Young ad I l u ts: magery tas k ANIMASK - versIOn 

Short -Yes Medium- Long - Yes Short -No Medium- Long - No 

Yes No 

m: 3.66 m: 3.29 m: 2.95 m: 2.91 m: 3.04 m: 2.79 

s: 0.56 s: 0.62 s: 0.99 s: 0.88 s: 1.04 s: 0.88 

Young adl P u ts: erceptua I SCAN IC ontro - versIOn 

Short -Yes Medium- Long - Yes Short -No Medium- Long - No 

Yes No 

m: 3.83 m: 3.75 m: 3.45 m: 3.83 m: 3.87 m: 3.87 

s: 0.38 s: 0.53 s: 0.65 s: 0.38 s: 0.33 s: 0.33 

Young ad I l k SCAN u ts: magery tas - versIOn 

Short -Yes Medium- Long - Yes Short -No Medium- Long - No 

Yes No 

m: 3.71 m: 3.71 m: 3.58 m: 3.71 m: 3.75 m: 3.75 

s: 0.55 s: 0.46 s: 0.58 s: 0.55 s: 0.44 s: 0.53 
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APPENDIX 7 (continued) 

Eld I P tiC t I AN/MASK erly: erceprua on ro - version 

Short -Yes Medium- Long - Yes Short -No Medium- Long - No 

Yes No 

m: 3.71 m: 3.54 m: 3.04 m: 3.41 m: 3.12 m: 3.62 

s: 0.85 s: 0.65 s: 0.85 s: 0.97 s: 1.03 s: 0.71 

Eld I 1 t k AN/MASK erly: ma ery as - versIOn 

Short-Yes Medium- Long - Yes Short -No Medium- Long - No 

Yes No 

m: 3.41 m: 3.08 m: 2.75 m: 2.5 m: 2.66 m: 2.21 

s: 0.71 s: 0.82 s: 0.94 s: 1.1 s: 0.96 s: 0.83 

Eld I P erceptua erly: Ie I SCAN ontro - versIOn 

Short -Yes Medium- Long - Yes Short -No Medium- Long - No 

Yes No 

m: 3.75 m: 3.41 m: 3.00 m: 3.33 m: 3.45 m: 3.16 

s: 0.84 s: 1.01 s: 1.25 s: 1.01 s: 0.72 s: 1.01 

Eld I 1 k SCAN eny: ma~ ery tas - versIOn 

Short -Yes Medium- Long - Yes Short -No Medium- Long - No 

Yes No 

m: 3.45 m: 3.29 m:2.7 m: 3.12 m: 2.87 m: 3.16 

s: 0.77 s: 1.08 s: 1.12 s: 0.89 s: 1.19 s: 0.96 
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