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Abstract 
 

Eversince the development of farming humans have been implicitly linked with the 

landscape. Influences include the manipulation of natural environments by woodland clearance, 

field developments and animal husbandry. Development can also be determined by the 

identification and distribution of soils developed and modified by the addition of organic and 

inorganic components. Anthropogenic or amended soils have been identified in many forms across 

north west Europe that retain distinctive physical and chemical indications of historical agrarian 

and settlement history. This thesis researched the on-site distribution of anthropogenic and 

amended soils across different landuse areas and identified and quantified a range of black 

carbonised particles in order to investigate their role in the soils ability to retain high elemental 

concentrations of manuring and elements associated with domestic activity and industrial 

processes.  

Three sites in contrasting environments were chosen for analysis; in Fair Isle, the 

Netherlands and Ireland on the basis of an excellent agararian and settlement history and previous 

analysis of anthropogenic soils. The fieldwork results showed extremly deep plaggen soils in the 

Netherlands but considerably shallower horizons of amended arable soils on Fair Isle and in 

Ireland contrary to previous analysis. There was however, clear evidence of a reduction in 

anthropogenic and amended soils with increased distance from the farm centres as a result of less 

manuring.  

The soil pH, organic matter, particle size, magnetic susceptibility and bulk elemental 

analysis results showed unexpected increases in the amended soils of Fair Isle and Ireland and 

reflected a similar manuring process. In the Netherlands the deep plaggen soils had very low 

results reflecting modern arable farming. 

The micromorphology results illustrated distinctive characteristics associated with localised 

manuring techniques. On Fair Isle and in Ireland the main organic manuring material was peat and 

burnt peat, whereas in the Netherlands the plaggen soils were predominantly composed of 

meadowland and heathland turf. At all three sites there was a large number of black carbonised 

and black amorphous inclusions and point counting and image analysis results showed a decrease 

with depth and distance from settlement nucleii mirroring the fieldwork observations.  

The elemental analysis conducted has proved to be an extremly useful tool for the 

identification of various forms of black carbon and for identifying the provenance of high elemental 

concentrations. The oxygen:carbon ratios confirmed the origins of organic components used in the 

development of the amended and anthropogenic soils and the elemental analysis showed that at 

each site over 80% of visually unidentifiable amorphous black carbon particles were heavily 

decomposed carbonised inclusions. Overall the elemental concentrations within the black 

carbonised particles was very low but this reflected the elemental results found in the bulk soils 

and the inclusions contained higher concentrations of P, Ca, K, Fe and Al and considerably lower 

concentrations of elements associated with domestic activity or industry Zn, Cu, Ba, Cr, As and Pb. 
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1 SOIL AND ARCHAEOLOGY; A REVIEW OF PAST WORK 
AND THESIS DESIGN 

 
1.1    INTRODUCTION 
 

The study of human influence on soil development began in the mid 20th 

century by pedologists keen to develop the idea that anthropogenesis was a 

major factor in soil formation, and the classic conceptual models went some 

way to explaining how this occurred (Jenny, 1941; Simonson, 1959). However, 

anthropogenesis was always closely associated with natural soil forming 

processes and it was not until Bidwell and Hole (1965) and Yaalon and Yaron 

(1966) suggested that both direct human effects such as ploughing and 

manuring were as crucial to soil formation as indirect effects, deforestation and 

acidification, that interdisciplinary analysis and interaction of pedology and 

humanity, termed ‘metapedogenesis’ (Yaalon and Yaron, 1966). The 

development of metapedogenesis is, in part thanks to the discovery and 

analysis of anthropogenic soil in South America (Sombroek, 1966) and Europe 

(Pape, 1970; Conry, 1971; Davidson and Simpson, 1984) and detailed 

multidisciplinary analysis has shown distinct variations in these soils spatial, 

temporal and geochemical histories. A common factor found in many 

anthropogenic soils, however, is the presence of black inclusions which have 

been identified as charcoal, carbonised organics and black amorphous 

material. Like archaeological deposits and soils these black inclusions have 

been used to indicate the level of anthropogenic influence in settlements and 

within landscapes, however their key roles within anthropogenic soils are still 

relatively unknown.  

It is imperative that black inclusions should be properly understood 

using a multidisciplinary approach to identify, quantify and interpret their use, 

and to aid the interpretation of the form and function of anthropogenic soils 

within individual farmsteads and across large regional contexts. To understand 

how and why anthropogenic and amended soils were developed in the past a 

clear understanding of natural pedogenesis is needed, and this takes up the 

first part of this introductory chapter (section 1.2). This leads into a discussion 

on the interactions between humans and soils and the development and 

understanding of anthropogenesis (section 1.3). The history of the discovery 
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and analysis of anthropogenic soils is covered in the next two sections with 

emphasis on rural (section 1.4) and urban soils (section 1.5). In section 1.4 the 

three main study areas in the last four decades are discussed; Netherlands 

(section 1.4.1), Ireland (section 1.4.2) and Scotland (section 1.4.3). The nature 

of black carbon particles is covered in sections 1.6 and 1.7 and focuses upon 

the initial discovery and analyses in natural sediments and soils as well as the 

creation of the carbon combustion continuum and the development of black 

carbon analysis in natural soils. Sections 1.8 and 1.9 detail the analysis of 

black carbonised particles in archaeology and through micromorphology and 

this leads into the analysis and discussion of the key themes of the thesis 

(section 1.10), the project aims (section 1.11) as well as a full methodology of 

the field and laboratory work (section 1.12). 

 

1.2   NATURAL PEDOGENESIS  
 

Human impacts on soil profiles cannot be fully understood without 

knowledge of the processes which occur in natural pedogenesis. Currently the 

understanding is that soils are complex ecosystems juxtaposed between the 

atmosphere, lithosphere and a highly mobile hydrosphere and biosphere, in 

which humans are included, from the very large scale to the incredibly small 

(Brady and Weil, 2002). This modern view of soils has developed from over 

100 years of soil analysis from the concept of soil science by V.V. Dokuchaev 

and Hilgard in the late 19th century to the analysis with microphysical and 

chemical techniques including micromorphology and lipid analysis and the 

development of interdisciplinary interpretations of anthropogenic soils. 

 

Eq 1           S =ƒ(cl,o,r,p,t….) 

 

Hans Jenny’s ground breaking analysis of soils showed that soil 

formation could be illustrated as a formula (Table 1, Equation 1). Jenny (1941) 

expressed five particular physical and chemical factors (f) for soil creation (S), 

climate (cl), organics (o), relief (r), parent material (p) and time (t).  Each of the 

factors aids the formation of soils by a number of processes including the 
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physical and chemical soil properties. The physical property of soils is split into 

the quantities of inorganic sand, silt and clay particles deriving from geological 

and sedimentological sources with organic components of decaying plant and 

animal material.  

Organic material in soil is derived from plant and animal residues. Plants 

growing on the surface provide stability to the underlying soils by binding with 

roots and extracting excess water through root intake. On the surface plants 

prevent soil erosion by reducing or stopping surface water flow, especially on 

slopes, and increasing water intake. When the plants die they decay in situ and 

increase the organic content providing food for a range of animal species, 

which in turn increases humic and fulvic acids.   

 

Source No Equation Abbreviations Type 
Jenny (1941) 1 

 

S =ƒ(cl,o,r,p,t….) 

 

S = Soil formation 

ƒ = Factor 

cl = climate 

o = organics 

r = relief 

p = parent material 

t = time 

Factor 

Simonson 

(1959) 

2 

 

S =ƒ(a,r,t1,t2) 

 

S = Soil Formation 

ƒ = Factor 

a = additions 

r = removals 

t1 = transfers/translocations 

t2 = transformations 

Process 

Runge’s Energy 

Model (1973) 

3 S = ƒ(o,w,t) S = Soil Formation 

ƒ = Factor 

o = organics 

w = water available for leaching 

t = time 

Factor/Process

Johnson’s Soil 

Thickness Model 

(1985) 

4 T = D+U+R T = Thickness 

D = Deepening 

U = Upbuilding 

R = Removal 

 

Process 

Johnson & 

Watson-

Stegner’s 

Evolution Model 

(1987) 

5 S = ƒ(P,R) S = Soil Formation 

ƒ = Factor 

P = progressive pedogenesis 

R = retrogressive pedogenesis 

 

Process 

Table 1, Chronology of the development of the study of natural pedogenesis 
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Soils with high humus levels are more likely to have high numbers of 

faunal species. Such species range from very small microbial bacteria to large 

macro species and all assist with the breakdown and mixing of organic material 

by consumption and defecation. The action of faunal movement throughout a 

soil increases void space and substantially eases air and water movement. 

This transports mineral and organics in solution to lower soil horizons, keeping 

the soil pH at a semi neutral state.  

Chemically, soils are regarded as reservoirs for key elemental loadings, 

especially carbon and nitrogen, necessary for the continued existence of plant 

and animal species. The carbon cycle considers the movement of carbon 

through photosynthesis by plants and the transfer from atmosphere into the 

soil, the process by respiration of CO2 by plants and animals and addition of 

organic carbon from plants and animals to the soil profile. The nitrogen transfer 

within soils involves two main processes. First, mineralization involves the 

input of nitrogen from biological material into the soil and the change from 

organic to inorganic salts. Secondly, biological transfer or ‘fixation’ alters the 

nitrites to nitrates through a process of ‘nitrogen fixation’ especially by legumes 

e.g. clover, into a form which enables the absorption by plant roots.  

Balancing the chemical and physical properties of soil is fundamental for 

maintaining the transfer of nutrients around soil systems. Soils with a low soil 

pH are likely to contain less biological activity and therefore less mixing and a 

slower breakdown of organic material, however too much biological mixing can 

also lead to de-calcification and a decrease in soil pH. Oxidation, especially of 

iron and manganese, can lead to the development of thick impenetrable pans 

hindering the movement of water and nutrients through the soil profile. 

Increased water movement can also lead to the leaching of organics and the 

development of eluviated horizons deficient in silicate clays, iron and 

aluminium oxides.  

 

1.3 SOILS AND HUMAN INTERACTION 
 

Jenny’s equation (Table 1, Equation 1) remains fundamentally relevant 

to the understanding of soil formation, however, it has always been argued that 
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the role humans play in the development of soils is greatly underestimated 

(Davidson, 1982). The human role should have been included as an additional 

factor in the equation rather than simply as part of the larger organism group. 

Continued improvements in the understanding of human interaction with the 

landscape and soils has led to amendments in the original equation. However, 

Jenny (1941, p203) also stated that “a number of anthropogenic forming 

processes stand no direct relationship with soil forming factors”.  

Bidwell and Hole (1965) considered the effects of human influence on 

soil formation, producing a table of beneficial and detrimental processes on 

each of the five factors in Jenny’s equation. In addition, it has been suggested 

recently, that anthropogenic influence (a) should have been given new factor 

status (Effland and Pouyat, 1997) as illustrated in equation 2.   

 

Eq 2     S =ƒ(a,cl,o,r,p,t….) 

 

This concept is not a new one. Yaalon and Yaron (1966) have 

suggested that anthropogenic influence should constitute an entirely new factor 

and accordingly introduced the ‘6th’ factor called ‘metapedogenesis’. The 

introduction of this new factor suggested that soil and human impact upon soils 

should be analysed as a process-response which can occur at any stage and 

in any combination altering physical and chemical properties. A good example 

of the process of metapedogenesis is that which occurs through extensive 

deforestation, leading to increased surface run-off and erosion or the burning 

of fossil fuels affecting the acidity of rain. Schaetzl and Anderson (2005) argue 

against giving human influence a new factor status because of the time factor. 

They suggest that because anthropogenic alteration has occurred for only a 

comparatively short length of time compared to the other factors that the ‘a’ 

factor should not be given equal status, and instead humans should be seen 

as soil ‘modifiers’ rather than soil ‘formers’ (Schaetzl and Anderson, 2005). 

The development in the understanding of soil development, from 

Dukuchiev’s functional/factorial concept to a combination of factor-process-

response, was developed by Simonson (1959). He suggested that soils 

evolved through natural processes and that soils “may appear and disappear” 
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(Simonson, 1959, p154).  Simonson’s model considered two steps in soil 

genesis: the accumulation of parent material and the differentiation of parent 

material into horizons. The model was illustrated as an equation (Eq 3) which 

defined soil development as factors of addition (a) and removal (r) through the 

processes of transfers and translocations (t1 ) and transformations (t2)) within 

the horizons.  

 

Eq 3     S=ƒ(a,r,t1,t2) 

  

The aim of Simonson’s equation was to highlight the variability in the 

degree of processes occurring in soil forming processes across individual 

horizons rather than the different types of processes and this came under 

criticism that it was only one part of a larger soil formation system. Although 

the model was altered 19 years later (Simonson, 1978) it is still regarded as 

part of a larger model which needs to consider the initial state of soils, the 

processes those deposits have been subjected to and the duration of the 

subjection (Yaalon, 1975). Another issue with Simonson’s model is that it relies 

upon scientists having a good understanding of soil processes unlike Jenny’s 

equation; which was simpler and had the important factors of soil formation 

included. However, the model has been utilised very successfully in the 

analysis of quantifiable inputs and outputs within particular soil horizons 

especially in relation to anthropogenic action on soil (Schaetzl and Anderson, 

2005). 

Another factor-processional model of soil formation is Runge’s Energy 

Model which focuses particularly upon the intensity of two priority factors: 

climate and relief (Runge, 1973). However, a more direct factorial equation (Eq 

4) was developed by Johnson (1985) which took into consideration the direct 

addition of sediments to the soil surface which creates thick soil horizons and 

‘top-down’ pedogenesis (coined by Almond and Tonkin, 1999). This was seen 

as a development of Simonson’s model because it isolated soil horizons and 

examined the processes which affected their formation.  
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Eq 4     T = D+U+R 

Eq 4.1    Thicker Soils = D+U>R 

Eq 4.2    Thinner Soils = D+U<R 

 

Johnson’s soil thickness model worked on the premise that deepening 

was due to the downward migration of lower soil boundaries via leaching and 

weathering (Johnson, 1985). In the equation thickness (T) is in direct 

relationship to deepening (D) plus upbuilding (U) plus removal (R). Differences 

in this format would lead to either thickening (Eq 4.1) or thinning (Eq 4.2). 

Johnson described two methods of soil thickening:  either developmental, 

which is a slow process allowing natural pedogenesis to continue as in loess 

and alluvial environments; or retardant, a fast process in which natural soil 

formation cannot keep up with upbuilding leading to buried soils. The 

dynamism of the processes of addition and removal from the soil surface led 

Johnson to develop a second model, with Watson-Stegner, detailing the 

evolution of soil processes as complex systems rather than static layers 

(Johnson and Watson-Stegner, 1987). This was a development created by the 

Russian pedologist C.C. Nikiforoff who suggested that soil development was 

continuous and that soil processes do not occur at a fixed rate and are rather 

highly variable across soil types and landscapes.    

 

Eq 5     S = ƒ(P,R)  

 

Equation five shows  Johnson and Watson-Stegner’s model for soil 

development whereby soil development is formed by progressive (P) and 

retrogressive (R) pedogenesis. Progressive development includes the creation 

of horizons (Horizonation), the development of upbuilding and soil deepening 

and retrogressive processes including the removal of horizons (Hapoidisation), 

retardant upbuilding and soil thinning (Johnson and Watson-Stegner, 1987).  

The subdivision of anthropogenesis has been studied recently, with an 

emphasis upon human timescales, in order to fully understand man’s effect on 

soil development (Richter, 2007) (Fig 1). Richter’s model, summarised as SMX, 

SHX, SCX considers soil change and development across three timescales: 
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first, multimillennial pedogenesis, which emphasises Simonson’s model of 

formation and is most closely linked to traditional pedological studies; 

secondly, historic ecosystems affected by human impacts and thirdly, soil 

formation and human impacts in a contemporary ecosystem. 

 

 
Figure 1, Contemporary soil change across three time scales (Richter, 2007) 

 
Richter’s model reiterates earlier ideas that soils are ecosystems which 

are constantly changing, depending upon landuse at a range of scales, from 

the individual field to entire landscapes. As an example the model shows how 

acidification varied in a changeable landscape. Longterm analysis of the 

natural parent material based soils at Calhoun soil-ecosystem showed an 

original acid soil. However, with the development of agriculture came the input 

of lime and fertilisers to increase yield and this led to an overall decrease in 

acidification and increased ability of the soil to exchange calcium (Richter, 

2007). The modelling of anthropogenesis has been mirrored by the discovery 

and understanding of anthropogenic soils.   
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1.4 ANTHROPOGENIC SOILS 
 
1.4.1 A DEFINITION 

 

Identification, analysis and definition of rural anthropogenic soils began 

in mainland Europe and were initially found and described by Staring (1856) in 

the Netherlands. Over the next 100 years studies continued across north-west 

Europe and anthrosols were identified in Belgium (Niemeier and 

Taschenmacher, 1939; Edelman, 1950; Lindemans, 1952; Ameryckx 1960) 

and Germany (Niemeier and Taschenmacher, 1939; Fastabend and von 

Raupach, 1961; Muckenhausen, 1962). These highly distinctive dark coloured 

soils were called plaggen soils, from the German Plagge meaning ‘sod’ or ‘to 

cut sods’ (Siderius and de Bakker, 2003) from the distinctive method of their 

formation. J.C. Pape was the first to describe and map the plaggen soils in 

detail and he conducted his research in the Netherlands where the soils were 

extensive. Pape defined two distinctive plaggen soils. The first was the 

distinctive black, organic layer typically +500mm thick with inclusions of 

charcoal, earthenware and sand (Pape, 1970). He also described a less 

obvious lighter grey, brown coloured primary deposit which had an organic, 

loamy texture with charcoal and bleached sand fragments. This layer was 

called the brown plaggen soil and suggested that manuring had been 

conducted for many years (Pape, 1970; de Bakker, 1979). 

Both types of plaggen soils are typically composed of a range of organic 

components including grass sods, heather, peat, sand and forest litter. The 

brown plaggen soil was typically composed of turf and grass cut from “woeste 

gronden” (waste ground or non-cultivated meadowland areas) (Siderius and de 

Bakker, 2003) and heather sods cut from the shallow acidic podzolic soils with 

a small quantity of burning conducted for fuel (Pape, 1970). The black plaggen 

soil is far more homogeneous and its formation is associated with a dramatic 

increase in the rate of manuring (Holliday, 2004). The distinctive colour of the 

soil has been associated with the addition of Sphagnum as seen in post 

medieval plaggen soils at Valthe, Drenthe (van Smeerdijk at al., 1995). The 

origin of humus and inorganic material in the black plaggen soils is strongly 
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linked to a heather source together with more domestic waste including 

charcoal, brick, coal and ceramic fragments (van de Westeringh, 1988). 

Traditionally, these, materials were collected and used as bedding for farm 

animals before being placed on sandy soils. A detailed historical analysis by 

van de Westeringh (1970) describes three methods of manure preparation for 

different animal types. Sheep dung was mixed with heather and forest litter, 

young cattle manure was mixed with earth sods and forest litter and dairy cattle 

waste was used in its natural state and mixed with turf, sand and clay from 

meadow land. This suggests an extremely well organised and long running 

tradition of manuring and plaggen production (van de Westeringh, 1988). 

 

 
Figure 2, Sites where anthropogenic soils have been identified and analysed in 

Ireland (Adapted from Conry, 1971) 

 

Anthropogenic soils have also been identified and studied at a number 

of sites across the south and south west of Ireland (Conry, 1971; 1972; 1974; 

Conry and Diamond, 1971; Conry and Mitchell, 1971) (Fig 2). In each case 

they have been described as ‘Plaggen’ soils because of their distinctive black 
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to dark grey and brown colour and high calcium carbonate sand material 

(Conry, 1971). This terminology must be challenged as historical 

documentation from the 18th century indicates a poor recycling of organic 

material from farm yards (Armit, 1998) alongside research which suggests that 

the majority of Irish anthropogenic soils are formed directly from the addition of 

sea sand (Conry, 1971). Work in Ireland has shown that anthropogenic soils 

occur on a wide number of natural soil types and acidic geologies derived 

mainly from sandstone and glacial till.  

Of the sites outside the Dingle Peninsula where anthropogenic soils 

have been found, most work has been conducted at Ardfield on the south 

coast of County Cork. At this site an average of 1m of deepened soil was found 

at a number of contexts. Five anthropogenic soils were found with dark grey 

brown colours and calcareous sand and stones (Conry, 1971), but little 

attention was given to any specific organic or anthropogenic addition. The 

descriptive terminology suggests also that similar formation processes and 

materials are being used and the minimal soil geochemical analyses from 

Ireland only help to illustrate the distinct differences in formation with the 

Netherlands (Conry and MacNaeidhe, 1999). An increase in multidisciplinary 

analysis is vital, however, in order to further define anthropogenic soils from 

different geographical contexts.  

On the northern islands of Scotland more detailed interdisciplinary 

analysis of anthropogenic soils have illustrated considerable differences in 

typology and therefore varying definitions. In Scotland anthropogenic soils 

were initially identified in the Insch basin, Aberdeenshire (Glentworth, 1944) 

and later research on the island of Hirta, St Kilda revealed anthropogenic soils 

within an isolated island environment (Hornung, 1974). Further analysis on the 

remote northern isles of Orkney and Shetland found anthropogenic evidence in 

the soil horizons mapped by the Survey for Scotland’s of the Bilbster series 

(Soil Survey for Scotland, 1982). Detailed mapping of these soils highlighted 

the depth which in places exceeded 75cm and included a deep S or S/A 

horizon (Davidson and Simpson, 1984). From this analysis the Scottish 

anthropogenic soils were described as “Deepened Topsoils”. Such soils have a 

distinctive brown to dark brown colour due to a predominantly grass sod 
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manure, similar to the brown plaggen soils of the Netherlands (Davidson and 

Simpson, 1984; Simpson, 1985a).  

The analysis also showed, however, that there was a great deal of 

variation in anthropogenic soils across different parts of the landscape. Farm 

mounds on Orkney showed very different soils, typically very black soils 

intermixed with layers of ashes (Pringle, 1874) from building debris (Lamb, 

1980) or farmyard manure and house refuse (Grant,1843; Fenton, 1978). 

Results from detailed geoarchaeological and multi-disciplined analysis 

of Scottish anthropogenic soils illustrate that using the term ‘Plaggen’ to 

describe soil sequences in Ireland anthropogenic soils is incorrect and needs 

to be challenged. When compared to a range of sites from the Netherlands and 

the Scottish Islands the Irish anthropogenic soils illustrate little physical 

deepening despite occasional depths in excess of 850mm (Conry, 1971). A 

lack of detailed site-based fieldwork has not allowed any clear interpretations 

of spatial distribution. The work which has been conducted, however, does 

illustrate that human amendment with organic and inorganic material has 

occurred predominantly in cultivated areas and therefore should be named 

‘amended arable soils’.  

The difference between anthropogenic and amended arable soils should 

therefore be defined thus and used throughout the thesis: 

 

ANTHROPOGENIC SOILS:  

Soils which exist because of the absolute necessity to ‘create’ an organic ‘A’ 

horizon within landscapes which contain shallow, poor quality soils which are 

unable to support annual cultivation. Intensive manuring with organic and 

inorganic material leads to a distinctive ‘raised’ A horizons, typically black/dark 

brown colour and in excess of 500mm deep. e.g. Traditional ‘Plaggen’ soils of 

the Netherlands and Germany, Terra preta and mulata soils of the Brazillian 

Amazon and deepened topsoils of Orkney and Shetland, Scotland.  

 

AMENDED ARABLE SOILS: 

Natural ‘A’ horizons which have been manured with organic and inorganic 

inclusions to amend/improve an existing arable soil. These horizons 
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demonstrate a dark brown to brown colour but no distinctive deepening 

compared to natural soils. The horizons also contain evidence of organic and 

inorganic inclusions typically peat, turf and calcareous sand alongside 

archaeological material. e.g. Ireland and SW England.    

 

1.4.2 MULTIDISCIPLINARY ANALYSIS OF SCOTTISH ANTHROPOGENIC 

SOILS 

 

The analysis of deepened topsoils in Scotland and especially the 

Northern Isles has been very closely associated with multidisciplinary scientific 

analysis, archaeological excavations and landscape surveys and because of 

this the analysis of Scottish anthropogenic soils is at the forefront of spatial, 

temporal and geochemical analysis using techniques such as 

micromorphology, (Bryant and Davidson, 1996; Davidson and Carter, 1997; 

Simpson, 1997, 1998; Guttmann, et al., 2003; Mackenzie, 2006) particle size, 

(Bryant and Davidson, 1996; Simpson, 1997) magnetic susceptibility, (Dockrill 

and Simpson, 1994) stable carbon isotope analysis, (Simpson, 1985b; 

Simpson, 1997; Simpson, et al., 1999) image analysis, (Adderley, et al., 2002, 

2006) total phosphorus analysis (Guttmann, 2001) and multi-element analysis 

(Wilson, et al., 2005, 2006, 2008).  

Simpson (1985b) utilised stable carbon isotopes to characterise the 

farm mound soils at West Marwick, Orkney. He showed that, as well as being 

quite different in appearance to the deepened topsoils, their composition was a 

mixture of turf, manure, ashes and a small marine input: seaweed and shells. 

From this evidence Simpson concluded that different manuring strategies were 

being used within each farmstead, on various parts of the farm and on 

contrasting farms across the Orkney Islands of Sanday and North Ronaldsay 

(Simpson 1985b). Particle size and micromorphological analysis have been 

utilised to show that the deepened topsoils of Marwick on the Mainland of 

Orkney are composed of grassy turves from the upland landscape surrounding 

the farmsteads (Simpson, 1997). Total phosphorus, stable carbon isotope and 

thin section analysis results also suggest that the soils contained high organic 

content deriving from turf, seaweed and animal manure. Lipid biomarker 
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analysis was conducted with the aim of determining the source of the manures 

present in the Orcadian soils (Simpson, et al., 1999). Deep topsoils were also 

discovered at Quoygrew on Westray, Orkney and these horizons were found 

alongside fish middens and farm mounds (Simpson, et al., 2005). The field and 

micromorphological evidence suggested that the soils were formed with 

organic rich turves mixed with animal manure in a very similar manuring 

process as that used at Marwick (Simpson, et al 2005). However, the initial 

choice of site may have been as a result of the pre-existing organic rich 

midden and farm mound material present.  

At Tofts Ness, Sanday prehistoric deepened topsoils were analysed to 

determine prehistoric land management and answer questions about their 

formation and distribution (Simpson, et al., 1998). The identified anthropogenic 

horizons range from 300mm to 900mm deep and appear to have been formed 

from podzolised, grassy turf and burnt turf and ash (Simpson, et al., 1998). 

This soil formation process mirrors other areas around Orkney and also areas 

of prehistoric plaggen soils in the Netherlands (Pape, 1970).  

The deepened topsoils of Shetland have been analysed to a lesser 

extent than those on Orkney, however, in several areas the soils are directly 

associated with settlement sites which have undergone detailed archaeological 

excavations. Anthropogenic soils commonly occur in small areas as seen at 

South Nesting (Dockrill and Simpson, 1994), Hill of Taing (Dockrill, et al., 1998) 

and Underhoull (Mackenzie, 2006) but the soils at Old Scatness and on Papa 

Stour are much more widespread. The site of Old Scatness is a multiperiod 

settlement site occupied from the Early Bronze Age to the Early Modern period 

(Dockrill, 1998). It is unique because it has deepened topsoils associated with 

the period of most concentrated settlement activity on the site, between the 

Late Bronze Age and Early Iron Age transition, and this has enabled a 

distinctive chronsequence and spatial distribution of the soils and settlement to 

be determined (Simpson, et al., 1998b). Analysis of the soils has been 

conducted to determine micromorphology, particle size, total phosphorus 

(Simpson, et al., 1998b; Guttmann, et al., 2006), magnetic susceptibility (Batt 

and Dockrill, 1998; Dewar, et al., 2002) and optically stimulated luminescence 

(Burbidge, et al., 2001). The results of these analyses have illustrated a 
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distinctive similarity in date and formation with the Orcadian soil formation seen 

at Tofts Ness however the major difference between the two areas regards the 

use of peat.  

The second major area of deepened topsoil analysis in Shetland is on 

the isolated island of Papa Stour (Bryant and Davidson, 1996; Davidson and 

Carter, 1998). Detailed historical evidence indicates that during the Viking and 

Norse periods the island was a key trading and transport link between 

Scandinavia and Iceland. Detailed field and laboratory work indicate that the 

deepened topsoils have been formed in a similar continental style to that of the 

Netherlands (Pape, 1970) and at Marwick (Simpson, 1997). Bryant and 

Davidson (1996) showed that there are considerably deeper anthropogenic 

soils in the kaleyard than in the peripheral arable farmland and outfield areas. 

This difference in depth was attributed to a decrease in organic input from the 

centre of the farm outwards. The organic material was formed by removing turf 

from the upland areas, storing it in byres in order to absorb animal urine and 

faeces and then mixing it with seaweed and hearth waste (Davidson and 

Carter, 1998). Alongside rural areas urban sites also illustrate distinctive 

evidence of the development of anthropogenic soils. 

 

 1.5 URBAN SOILS 
 

The use of urban materials as manuring components for rural soils has 

been conducted for centuries, whether intentionally or not (Porteous, undated 

in Bridges, 1991) and that urban material has been drawn from a range of 

anthropogenic sources but most notably from middens, sewers, rubbish heaps 

and from building material. In western Europe the nature and composition of 

‘dark earth’ has been analysed in great detail with micromorphology. The 

results showed that the soil consists of the remnants of urban materials, wood, 

brick, stone, daub, wattle and also a considerable charcoal and burnt fraction 

component which has accreted over many years from the decay of buildings 

and build up of sediments through processes including burning, bioturbation, 

compaction and weathering (Goldberg and Macphail, 2006).  
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The horizon has been identified in major urban centres in the UK at 

London, York, Winchester (Macphail, 1983; Yule, 1990) and in France at Paris 

(Cammas, et al., 1996; Guyard, 2003), as well as in Germany, Italy and 

Belgium (Goldberg and Macphail, 2006). Dark earth was initially thought to 

have been created by the post Roman decline in urbanism, however detailed 

laboratory analysis showed that the development was in fact due to either a 

change in urban land use (Macphail et al., 2003) or in other cases due to a 

swift change to a rural agricultural area, for example in Buraburg, Nordhessen, 

Germany (Henning and Macphail, 2004). London’s Guildhall shows 

stratigraphic evidence of intensive Roman activity which after abandonment 

became a farmstead and then returned to urban use during the medieval 

period (Bateman, 1997).    

The use of micromorphology in the study of ‘dark earth’ has enabled a 

systematic study of the formation processes on a site based level. Richard 

Macphail has succeeded in determining that the horizon is a highly complex 

series of sedimentation phases beginning during the post Roman period, 

Saxon, medieval and continuing up to post World War II Berlin (Goldberg and 

Macphail, 2006). Goldberg and Macphail illustrate that at different sites ‘dark 

earth’ formation has reached certain phases. At Deansway, Worcestershire the 

evidence shows a change from urban landuse, with brown earth from midden 

deposits, to small scale occupation and pastoral use with a mature brown earth 

development occurring over 600 years (Macphail, 1994). A more complex 

sequence has been analysed at the Courage Brewery, Southwark in London, 

where three phases were interpreted. The sequence shows a shallow (10 – 

50mm) pararendzina layer packed with compacted anthropogenic occupation 

materials including lime mortar, plaster and brickearth floor layers of early 

Roman date. This initial horizon is overlain by a phase 2 dark earth soil 

consisting of calcareous brown earths with rich ash midden material associated 

with low level occupation and wasteland, indicating a move away from 

urbanism in the late Roman period (Macphail, et al., 2003). This is followed by 

total abandonment for over 600 years until A.D.1050 and the development of a 

dark brown calcareous earth interpreted as abandoned waste ground 

(Macphail, et al., 2003).      
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Most recently urban soils have also been analysed in and around the 

development of large medieval centres and their uses as highly fertile 

manuring material for personal ‘garden soils’ (Hortisols) as shown at St 

Andrews (Carter, 2001), Aberdeen (Murray, 1982), Perth (Bowler et al., 1995) 

and in agricultural land. At Nairn, Scotland, a process of “urban composting” 

appears to have been occurring where anthropogenic waste, including organic 

turf and animal dung was combined with charcoal, ash and sand, to soak up 

fluids and stored in large heaps before being deliberately relocated onto 

farmland creating a “deepened topsoil” (Davidson et al., 2006). This soil is not 

totally dissimilar to the classic ‘dark earth’ soils; they both have distinctly dark 

black colourations and contain a large quantity of urban anthropogenic 

inclusions. However, the ‘dark earth’s’ have been associated with in situ 

deposition and archaeological features clearly distinguished by 

micromorphology. Analysis has also taken place on Scottish Burghs at 

Pittenweem, Fife and Lauders, Borders across the burgh core, and radiating 

outwards towards the settlement hinterland and agricultural land, to determine 

the levels of human addition to the soil profile (Golding and Davidson, 2005). In 

each case evidence of manuring was more extensive in the core of the 

settlements creating a deeper topsoil horizon compared to arable areas.  

 

1.6   BLACK CARBON PARTICLES  
 

Common to all anthropogenically influenced soils is the presence of 

black organic and inorganic inclusions which are associated with the addition 

of a variety of materials to the soil. In natural soils and sediments these 

inclusions are known as amorphous carbonaceous material or black carbon 

(BC). The study of BC has been conducted for over 20 years, and the term 

was initially used by Novakov (1984) who described it as “combustion-

produced black particulate carbon having a graphitic microstructure” (Novakov, 

1984, p124). Goldberg (1985) in his book entitled “Black Carbon in the 

Environment”, showed for the first time that the chemical composition  of  BC 

consisted of <60% carbon and other elements including: hydrogen, oxygen, 

nitrogen and sulphur. He also conducted an in depth analysis into the 
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incomplete combustion formation process. Bullock (1985) placed BC in a larger 

landscape context by suggesting that, “Black Carbon is one of the ubiquitous 

materials circulating around the surface of the earth. It is found in air, soils, 

sediments, crustal rocks, meteorites, waters and ices. Its universality is related 

to its refractory nature with respect to reactions with its surroundings and to its 

origin in burning processes, which are widespread” (Bullock 1985, p69). The 

importance of BC as a global retainer of natural carbon was understood by the 

early 1980s (Seiler and Crutzen, 1980), however Bullock (1985) highlighted the 

fact that BC has an extremely long survival time and would therefore affect the 

Earth’s carbon pool. 

Early work on BC was conducted on natural soils, including charred 

plant materials in volcanic deposits as a possible source of humic material 

(Kumada, 1983). However, abundant charcoal fragments had been identified 

and mapped in Terra Preta anthrosols of the Brazilian Amazon as early as the 

1960s (Sombroek, 1966) and this divide clearly showed that a multidisciplinary 

approach was required for archaeologists and pedologists to understand the 

BC role in anthrosols.  

 
BC FORM 
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Figure 3, The black carbon combustion continuum model (Adapted from 

Hedges, et al., 2000) 

 

A further obstacle in early pedological and archaeological analysis was 

the assumption that charcoal was the singular form of BC. Charcoal makes up 
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a great deal of BC inclusions as shown by the extensive studies of fire-affected 

soils, especially in wooded areas (Wright and Bailey, 1982). Further BC has 

been shown to originate at temperatures between 250 - 500°C due to 

incomplete combustion (Baldock and Smernik, 2002). However, at lower 

temperatures slightly charred biomass, and char is formed (Mackay and 

Roberts, 1982) and, at higher temperatures, soot (Akhter et al., 1985) and 

ground black carbon (Smith, 2002). 

In 2000, BC was classified in the Combustion Continuum Model (CCM) 

which outlines all forms of black carbon from slightly charred biomass to soot 

and groundblack carbon (Hedges et al., 2000). The CCM (Fig 3) clearly shows 

how an increase in temperature forms each of the individual components, the 

inclusions size, remaining organic structure, reactivity, storage reservoir and 

the paleotracer range. The development of a clear model of the different 

variations of BC has proved to be indispensable to the analysis and formation 

of anthropogenic and amended arable soils but there are still some remaining 

problems. 

Massiello (2004) states that the understanding of the various 

components of BC is essential for accurate interpretation of black carbon data, 

however there are also discrepancies which, although focused on natural BC 

inclusions in natural soils, are also clearly relevant to anthropogenic soils. The 

problems occur in the limited range of techniques available for analysis and a 

lack of good reference material to aid analysis and interpretation (Masiello, 

2004). The three main problems are: 

 

1. A lack of common definition of black carbon. 

2. Potential under-reporting (i.e. failure to detect material understood to be 

fire derived). 

3. Potential over detection (i.e. material not derived from combustion). 

(Massiello, 2004) 

 

In 2000 a long term research project was set up by the United States 

Geochemical Society (USGS) with the aim of creating a large database of BC 

reference materials to enable the positive identification of different forms in a 
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variety of environmental contexts. Samples from across the combustion 

continuum were collected together with aerosols, sediment and soil as well as 

a set of materials which were shown to be potentially created during analysis. 

Two different soil types were taken: both with high levels of char. First, 

in a Pellustert, a common soil of the Vertisol order, characterised by a high clay 

content high nutrient capability and highly fertile. Such soils are common to 

Australia, India, East Africa and the USA. The second sample was from a 

10,000 year old German Chernozem, a distinctive black soil with a high level of 

organic matter. Both the Pellustert and the Chernozem contained large BC 

particles, which were analysed using UV-oxidation NMR methodology to 

ascertain that the inclusions made up between 30 to 50% of the total organic 

carbon in the soil (Schmidt et al., 1999; Skjemstad et al., 1999). 

There are a number of problems with the USGS’s reference collection. 

Firstly, there is a very narrow collection of samples and none from Scotland, 

Ireland, and the Netherlands. Secondly, the 10,000 year old chernozem does 

not fully represent a period of large scale farming or manuring in Europe 

(Conry and Mitchell, 1971; Spek, 1992). Previous fieldwork has shown that 

these soils contain very large numbers of black carbonised particles (Pape, 

1970; Conry, 1971; Davidson and Simpson, 1984) which has the potential to 

reveal information on past land use and agricultural methods. However, the 

analysis of BC in natural and anthropogenic soils has been conducted for 

many years. 

 

1.7   BLACK CARBON ANALYSIS IN SOILS STUDIES 
 

Past work on anthropogenic soils from around the world has shown that 

they contain an abundance of BC particles. Initially the identification of Terra 

Preta (Fimic Anthrosols) soils in the Amazonian basin highlighted the regular 

occurrence of BC particles (Sombroek, 1966). Investigations continued into the 

soil organic matter, nutrient holding capacity (e.g. N, P, Ca and K), soil pH 

values and moisture holding capacity (Smith, 1980; Zech, et al., 1990). Recent 

work has shown that BC makes up over 35% of the organic component and is 

responsible for the organic matter stability in the Terra Preta soils (Glaser, et 
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al., 2000) and contained 70 times more BC than surrounding soils (Glaser, et 

al., 2001). C14 dating also showed for the first time that these inclusions were 

between 1000 to 1500 years old and therefore had very high stability (Glaser, 

et al., 1998). 

Initially Saldarriaga and West (1986) suggested that the origin of the BC 

sink had been deposited from Holocene wildfires burning large areas of 

woodland. This conclusion has been determined from the analysis of charcoal 

in woods across the world, including Australia, where charcoal generated by 

natural fires has been shown to constitute around 30% of the organic carbon 

content in soils (Skjemstad, et al., 1996), Siberia (Clark, et al., 1998; Czimczik, 

et al., 2003), Norway (Ohlson and Tryterud, 2000) and Canada (Lynch, et al., 

2004). 

Analysis of the boreal forests in Sweden showed that charcoal derived 

from forest fires had an important rejuvenation effect on primary woodland 

species of trees including Betula pendula and Pinus sylvestris as well as on 

mosses and ferns. When analysed, these species absorbed 6.22 times more 

nitrogen from the soil than soils without charcoal (Wardle, et al., 2004). 

Before the onset of large scale land clearance for arable agriculture the 

majority of BC may well have been developed naturally but it would not have 

taken long for humans to increase the amount of charcoal present in the soils 

through the process of “slash and burn”. This process developed a sustainable 

agriculture through transforming soil horizons, improving nutrient availability 

and recycling natural components in a relatively organised manner. Erickson 

(2003, p201) states that “Amazonian peoples developed complex societies, 

developed sustainable and an intensive agriculture” and quite correctly states 

that a multidisciplinary approach to analysis of BC is essential. 

In contrast to the forested areas of the world there are also 

anthropogenic soils with high quantities of BC which have not been formed by 

the intense burning of forest or woodland. Czimczik and Masiello (2005, p87) 

state that “soils enriched in black carbon are not necessarily found in areas 

with the highest fire frequency or with the largest black carbon production 

(woody vegetation). Rather than high production, the accumulation of black 

carbon in soils requires that both input and protection are maximised”. One 
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such area is the North American grasslands (Collins, 1990) where many large 

scale fires were deliberately started by humans to directly alter their 

environment and therefore one might expect large amounts of charcoal in the 

soil as a result. However, it is clear from soil and pollen analysis conducted on 

the Scottish Islands that carbonised material is also present within 

anthropogenic soils which have had little to no tree cover either today or in the 

past, and this occurrence must be may due to human intervention (Simpson, 

1997; Davidson and Carter, 1998). 

Similar research on the Xanthic Ferralsols and Fimic Anthrosols (Terra 

Preta soils) of the Amazonian Basin determined whether BC particles could 

increase plant growth (Glaser, et al., 2002). The results showed that charcoal 

additions increased crop outputs of rice by 17% in the anthrosols but that the 

Ferralsols appeared to be improved by elemental additions of P, K and Cu. 

Analysis of the BC particles was conducted using the Thermal and Ultra Violet 

Oxidation and the benzene polycarboxylic acids (BPCA) method (Glaser, et al., 

1998), however, Simpson and Hatcher (2004) criticised the methods as 

creating drastic overestimations and unacceptable analytical errors affecting 

results and interpretations and suggested a sodium chlorite oxidation method 

as an alternative. Since 2004 the BPCA method of analysing BC particles has 

been amended several times to attempt to correct the methodological 

inaccuracies (Brodowski, et al., 2005). 

Since the creation of the BC reference database and the move towards 

a multidisciplinary research agenda, there has been a major increase in the 

amount of research into BC (Hammes, et al., 2007). However, many basic 

problems of characterisation and quantification still remain in a number of the 

methodologies including UV photooxidation (Skjemstad, et al., 1999), thermal 

optical transmittance and reflectance (Schmid, et al., 2001), Acid dichromate 

oxidation (Song, et al., 2002), chemo-thermal oxidation (Elmquist, et al., 2004), 

thermogravimetry coupled with differential scanning calorimetry (Lopez-Capel, 

et al., 2005). Quénéa et al (2005) have also attempted to solve the problems of 

over and under estimation with a detailed analysis of BC particles in forest and 

cultivated sandy soils. The study focused upon Refractory Organic 

Macromolecular Materials (ROMM’s) from the Landes de Gascogne region of 
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France. Quantification was conducted by chemothermal oxidation (CTO) but 

key to the investigation was the discovery of two types of BC highlighted 

through High Resolution Transmission Electron Microscopy (HRTEM): 

 

1. Irregularly shaped with randomly orientated basic polyaromatic units. 

(Predominant) 

2. Small spherical, highly organised, concentric “onion-like” microtexture. 

 

Examination of the BC after the CTO process showed that the “erratic” 

less well structured BC had all but been removed leaving only the highly 

organised material. When analysed against the hand-picked samples for 

woodland versus arable soil there was a 60% difference in the arable soils 

suggesting that the unstable form of BC was of natural origin. Theoretically 

then the closer to the source area for BC, the more stable the polyaromatic BC 

becomes. 

Quantification analysis was also conducted by Balabane et al., (2005) 

on agricultural soils containing coal fragments to gather data about the spatial 

distribution and morphology of BC. The research showed that four different 

morphological types could be classified according to their carbon content. 

 

1.8   BLACK CARBONISED PARTICLES AND ARCHAEOLOGY 
 

The amalgamation of scientific methods and archaeological analysis 

has greatly improved the current understanding giving detailed information on 

the formation, spatial variation, character and context within varying 

landscapes and sites. Within archaeological deposits and anthropogenic soils, 

artefacts and palaeoecological inclusions have been classified into three 

groups (Renfrew and Bahn, 2001) as follows:  

 

1. Primary – Residues or refuse deposited within an activity area 

2. Primary transported – Refuse deposited away from original area 

(rubbish dumped in the street)   
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3. Secondary use-related refuse – Removed and reused (infill of 

building or manuring fields) 

 

Evidence of burning have been interpreted in a number of forms by 

archaeologists. Combustion features such as hearths, ovens and fires have 

been analysed (Meignen, et al., 2001) alongside the differences between floor 

space and from open areas (Cammas, 1994) and domestic and stabling 

landuse areas (Matthews, et al., 1997).  

Within archaeology, the frequency, size and type of burnt materials have 

been used to determine anthropogenic effects on soils and interpret particular 

archaeological features. The varieties of burnt materials will depend upon the 

temperature of the fire in which they are combusted and the type of material 

burnt. The most common form of anthropogenic BC is large macro sized 

charcoal particles measuring millimetres and visible to the naked eye to 

excavators in the field.  

During the early development of farming areas woodland needed to be 

cleared in order to conduct arable and pastoral agriculture. This process 

involved felling trees with stone, and later metal axes, but this was time 

consuming and was expediated with man’s understanding of fire. The 

controlled burning of vegetation created open areas and provided nutrients to 

the soil in several forms. Carbon by-products formed from burning include: 

carbon dioxide and fine ash, which is lost as smoke into the atmosphere; 

coarser ash and charcoal deposited on the surface of the soil and burnt earth 

which is within the soil profile.  

The process of burning can have a number of effects on the soil. On the 

soil surface the humus is dried and burnt; trees can be uprooted encouraging 

erosion; deep rooted plants can be burnt and increase leaching; and micro-

organisms can be killed reducing the rate of organic breakdown. However, the 

benefits of burning include the creation a very organic, nutrient rich soil well 

suited for growing crops. The origin of small numbers of charcoal and ash 

inclusions within natural soils have been associated with natural forest fires 

started by lightning strikes, but usually carbonised deposits are found in distinct 

concentrations and are associated with deliberate woodland clearance.  
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Romans and Robertson (1975) have proposed that wood charcoal in 

buried topsoils is likely to be due to early woodland clearance for farmland and 

this was tested and reproduced in a simulation process at Umeå, an 

experimental farm in Sweden, in cultivated podzols (Cruise and Macphail, 

2003). Extensive work has also been carried out on tree-throw features to 

determine whether they contain evidence of deliberate felling. Concentrations 

have been located which contain considerable burning and charcoal evidence 

which suggests that in situ burning was carried out in the past (Barclay, et al., 

2003).  

 

1.9   BLACK CARBONISED PARTICLES AND MICROMORPHOLOGY 
 

Of all the methodologies employed, micromorphology is widely 

considered to constitute the best tool with which archaeologists and soil 

scientists can, through a multi-disciplinary approach, determine micro scale 

contexts for soils (Stoops, 2003). The results from micromorphology can be 

integrated with those from other techniques to form detailed local and regional 

interpretations. Initially utilised by Harrison (1933) to analyse weathering 

processes it was really pioneered by Kubiëna (1938) who advanced the 

understanding of soil formation processes (Kubiëna, 1970). Between the 1970s 

and the present micromorphological analysis and description has been 

developed with important systematic amendments from Bullock et al., (1985), 

Courty et al., (1989), FitzPatrick, (1993) and Stoops, (2003). 

Micromorphology has been utilised to analyse carbonised layers within 

prehistoric cave deposits (Karkanas, et al., 1999; Macphail, et al., 1997) The 

occupation of caves in the Palaeolithic period led to the development of 

distinctive anthropogenic soils which have been excavated throughout the 

Middle East (Goldberg and Bar-Yosef, 1998) and South Africa (Marean, et al., 

2000). These horizons are typically very dark coloured, organic rich soils and 

contain large quantities of charcoal and ash along with mineral, bone 

fragments and burnt earth (terra rosa) (Sherwood and Goldberg, 2001). 

Prominent archaeological features such as hearths and firebases have been 

interpreted through the discovery and analysis of burnt soils and the recording 
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of soil texture, colour and inclusions can indicate the type of feature present 

and the range of materials burnt, the duration and intensity of burning and the 

redeposition of burnt residues (Meignen, et al., 2001).  

The development of more complex settlement sites, such as tells, 

occupied in the eastern Mediterranean during the Neolithic and Bronze Age 

resulted in incredibly complex soil stratigraphies. Ongoing occupation over 

thousands of years has led to the cyclical building and destruction of houses, 

and this process has been interpreted as the creation of the occupation mound 

(Davidson, 1973). Micromorphological analysis at Çatal Höyük in Turkey has 

illustrated compacted floor sequences indicating a complex history of 

occupation as well as domestic, agricultural, industrial and ritual activities 

(Matthews, et al., 1996; 1997).  

At Tofts Ness on the island of Sanday, Orkney turf material was burnt 

and then deliberately added to arable soils as part of the manuring process 

utilised in the northern isles of Scotland. The carbonised fragments were found 

with burnt oxidised stones which indicates that the burning of vegetation as a 

method of clearance was carried out before turf stripping but were also 

incorporated with fine ash deposits from domestic hearths indicating that the 

raw turf was also being collected and used for fuel (Simpson, et al., 1998a). On 

the island of Papa Stour, Shetland, numerous carbonised and non-carbonised 

fragments were found in the arable soils and these were identifiable by their 

distinctive internal structures as peat and peaty-turf fragments and indicates 

the use of these raw materials as a fuel source. The inclusion of mineral 

fragments of rhyolite within the carbonised particles suggests that the source of 

the peaty turf fragments was from the island and had not been imported since 

rhyolite is found almost nowhere else in Shetland other than Papa Stour 

(Davidson and Carter, 1998).     

At Quoygrew, Orkney carbonised and non-carbonised peat fragments 

were analysed, using micromorphology, alongside bone, phytoliths and 

diatoms to determine the origin of a fish midden deposit and farm mound 

(Simpson, et al., 2005). In the fish midden the carbonised particles were in the 

form of fine grained calcium carbonate amorphous crystals associated with 

peat ash residue from burnt plant organics. The distribution of these crystals 
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through the deposit was found to be randomly orientated, and dusty coatings 

found upon the particles indicated post burial movement through the soil 

profile. In the farm mound there was a larger range of coarse and fine 

carbonised particles typically black in colour and a number of uncarbonised 

reddish-brown organic fragments interpreted as peat and turf fragments due to 

their distinctive internal structure and mineral content (Simpson, et al., 2005).  

 

Date Tofts Ness (Orkney) Old Scatness (Shetland) 

 Soils Middens Soils Middens 

Neolithic 0.5 – 5% 

charred 

peat/turf 

fragments and 

very rare wood 

charcoal 

2-5% charred 

peat/turf and 

very rare wood 

charcoal 

 

Charcoal from burnt 

peat and/or turf 

throughout the 

deposit 5 – 15% 

trace amounts of 

wood charcoal 

- 

Bronze 
Age 

<0.5-15% peat 

ash and 0-2% 

woody charcoal 

- 
 

Charcoal from burnt 

peat and/or turf 

throughout the 

deposit 5 – 15% 

trace amounts of 

wood charcoal 

- 

Iron Age Sandy soils with 

charred peat 

0.5-5% and 

<0.5% wood 

charcoal 

 

Large quantities 

of charred peat 

5 – 30% and 

wood charcoal 

0.5 – 2% 

 
 
 

0.5 – 2% charred 

peat/turf fragments 

with unburnt peat 

and shell sand which 

includes <0.5% fine 

charred material 

Large proportion 

of charred peat 

2-5% 3 samples 

5-15% 5 samples 

15-30% 3 samples 

Table 2, Summary of the distribution of carbonised particles from 

anthropogenic soils and middens from two multiperiod settlements from the 

Northern Isles of Scotland (Adapted from Simpson, et al 1998a; Davidson and 

Carter, 1998) 

 
Experimental work on the sources of components found in 

anthropogenic soils was conducted at Sanday, Orkney and Tofts Ness, 

Shetland. Alongside organic fragments of peat, turf and sheep and cow dung; 

carbonised fragments of peat ash, charred peat fragments, coal ash were 
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catalogued along with peaty turf particles created by burning at 400˚C and 

800˚C to represent an open fire and industrial hearth context. This work was 

conducted to try and quantify the types of organic fragments in a range of 

archaeological deposits and to aid interpretation (Guttmann, et al., 2006).  

The incorporation of a suite of carbonised particles allowed vital 

interpretations to be made about arable soils and midden archaeological 

deposits found during excavation (Table 2). Distinctive differences in the 

amounts of carbonised particles were found within the soils and middens from 

both sites. Peat and turf were the main materials burnt but in many of the soils 

peat ash was also identified by micromorphological analysis as a light yellow 

fine grained deposit, and at both sites there was very little wood charcoal 

suggesting peat and turf were the main fuel sources. The arable soils 

contained less carbonised particles than the middens in each period, however, 

at Old Scatness the Neolithic to Iron Age soil had a considerably higher 

percentage than Tofts Ness.  

 

Carbonised 
Particles Area 
(105µm2) 

LANDUSE 

KALEYARD RIG PLANTICRUE GRAZING 

Bragasetter 39.3 20.6 6.2 1.6 

The Biggins 
 

46.8 28.2 17.4 8.6 

Hamna Voe 
 
 

148.4 28.9 26.8 51.9 

Table 3, Summary of the areas of carbonised particles from four landuse areas 

across three farms on Papa Stour, Shetland (Adapted from Adderley, et al., 

2006) 

 

The black carbonised particles and inclusions of other domestic waste 

products including bone, shell and excremental pedofeatures suggested that 

the midden had been incorporated into an arable field system in a change of 
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landuse and had therefore become incorporated into the arable soil. The 

largest quantities of black carbonised particles came from the Iron Age 

middens found at both sites which amongst other anthropogenic components 

includes between 2-30% charred peat fragments.  

The use of image analysis to quantitatively assess different classes of 

manuring components has been conducted at three sites on Papa Stour, 

Shetland (Table 3) across a number of comparative landuse areas in order to 

interpret the manuring process (Adderley, et al., 2006). Four particular objects 

were chosen for analysis: carbonised organic material, rubified organic 

material and two forms of uncarbonised organic material. The analysis showed 

that there was a distinctive difference between the size of carbonised particles 

across each of the farmsteads and the four landuse areas reflecting the 

distance of particular areas to the source of domestic waste. Small localised 

difference represented variations in the historical manuring process and big 

anomalies like in the grazing area of Hamna Voe were ethnographically 

unexpected and possibly due to the burning of in situ organic material.   

Measurements of magnetic susceptibility expresses the ‘magnetizability’ of a 

material in minerals, rocks and soils which can be used to interpret 

environmental conditions at the time of deposition (Thompson and Oldfield, 

1986). The magnetic susceptibility of a sample is calculated by determining its 

attractiveness to a magnet but size, shape and mineralogy is of great 

importance to the result and various soils and sediments have a number of 

levels of magnetic behaviour.    

Of all the levels of magnetism the paramagnetic category occur most 

commonly in soils and sediments and include a range of particles with Fe2+, 

(Ferrous) Fe3+ (Ferric) or Mn2+ ions in a variety of sizes from very small clay 

particles (chlorite, smectite and glauconite), iron and manganese carbonates 

(siderite) and ferromagnesian silicates (olivine, amphiboles and pyroxene). 

Primary anthropogenic activities can also lead to increases in magnetic 

susceptibility within individual houses and settlements and fields where in situ 

increases in magnetic susceptibility occur (domestic and industrial fires and 

agricultural burning) and through secondary redistribution of domestic refuse 
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(charcoal, ash and burnt bone, pottery, smelting) on to agricultural areas as 

part of a manuring regime. 

 
Organic 
Manure 
Components 

Temperature 

400˚C 800˚C 

Humic Peat Dark red/brown/black colour 

with rubified texture and 

structural disruption. Frequent 

phytoliths and few diatoms 

Totally combusted fragments 

very dark brown to black. Very 

few phytolith and diatom 

inclusions 

Mineral 
Rich Turf 

Dark red/brown colour with 

rubified structure, very few 

phytoliths and very few 

diatoms 

Totally combusted fragments, 

very dark brown to black 

colouration. Very few phytolith 

and diatom inclusions 

Sheep 
Dung 

Fine mineral material light 

brown (ppl), grey (oil) 

Very fine mineral residue grey 

colour (ppl) white/grey (oil) 

Cow Dung Distinctive black isotropic 

organic material with rough to 

serrate edges 

Very fine mineral residue grey 

colour (ppl) white/grey (oil) 

Birch 
(Betula 

pubescens) 

Frequent charcoal fragments, 

rod like and rounded shape. 

Dark grey to brown (ppl) fine 

mineral material. 

Fine grained pale brown (ppl) 

and light grey (oil) 

Willow 
(Salix 

lanata) 

Macro charcoal fragments, 

with porous structure. Dark 

grey to brown (ppl) fine 

mineral material. 

Fine grained pale brown (ppl) 

and light grey (oil) 

Table 4, Summary table of micromorphological descriptions of ash residues 

from historical fuel resources (Adapted from Simpson, et al., 2003) 

 
Mineral magnetic measurements associated with black carbonised 

particles have been used to develop a technique for identifying particles 

formed by natural fires versus anthropogenic burning (Bellomo, 1993). The 

development of a suite of results has been used recently to provenance the 
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organic materials used as possible fuel sources. Samples of peat turf, fibrous 

peat, well humified peat and wood were burnt and the magnetic susceptibility 

of the resultant ashes and carbonised residues was tested and placed in a 

bioplot to enable comparison with samples from archaeological sites and 

ascertain a provenance (Peters et al., 2001). The susceptibility bioplot was 

tested against carbonised particles from an Iron Age hearth and medieval 

hearth and floor from a multidisciplinary site on the Isle of Lewis (Church and 

Gilmour, 1999). In each occasion the bioplot suggested that the carbonised 

material consisted of well humified peat and small quantities of peat turf both 

present in large quantities on the island and fits with a historical manuring 

tradition found elsewhere in the northern and western isles of Scotland.   

Magnetic susceptibility, gradiometry and archaeomagnetic data has 

been used for site prospection, dating and modelling of anthropogenic 

amendment across large multiperiod archaeological sites to interpret changes 

in landuse (Batt and Dockrill, 1998). At Old Scatness magnetic susceptibility 

was used to provenance burnt material found in Iron Age and Pictish middens. 

Both features contained dark grey fine organic and carbonised particles but the 

Iron Age feature also contained thin bands of red/orange layers and the 

analysis of these together with a series of organic analogues suggested that 

the features consisted of mainly burnt turf and peat (Dewar, et al., 2002). 

Fuel ash residues were analysed from several middens at two sites in 

Iceland and compared to a series of carbonised organic deposits taken to try 

and provenance fuel material (Table 4). At the high status site of Hofstadir 

analysis indicated that the fuel sources consisted of peat, mineral based turf 

and birch wood were used early in the development of the site but later there 

was a shift to wood ash residues from birch and willow for both low and high 

temperature burning. Peat was used in large quantities for high temperature 

burning throughout the settlement history. In contrast the low status site of 

Sveigakot initially utilised mineral based turf and some wood material but then 

shifted to burning cow and sheep dung with a complete absence of peat 

burning. Simpson et al., (2003) suggests that the change in fuel resources can 

indicate changes in the prosperity of sites. The eventual demise of Sveigakot 
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can be seen from the switch from a similar fuel source seen at Hofstadir to a 

considerably poorer source of fuel from animal dung. 

 

1.10 KEY RESEARCH THEMES 
 

It is clear that there is a fundamental link between black carbonised 

particles and elemental concentrations within natural and anthropogenic soils 

and archaeological features. However there are a number of key questions 

which require analytical attention and are the key themes of this thesis. Firstly, 

it is important that the various forms of BC should be categorised and 

quantified. Detailed descriptive micromorphology, zone count analysis and 

experimental work have shown that black carbonised particles within 

anthropogenic soils consist of charcoal and carbonised organic manure 

components however there are also a large number of black carbonised and 

black amorphous inclusions which remain unidentified and these inclusions 

require further analysis to determine their form and function within the soils.  

The identification of charcoal and carbonised particles forms the main 

part of the identification of archaeological features in soils. In many cases they 

are primarily inclusions associated with anthropogenic deposition within in situ 

features such as hearths, ovens, open fires and the destruction of structures by 

fire (Courty, et al., 1989). However they can also be secondary deposits 

associated with deliberate dumps in pits, middens and agricultural spreads 

attributed to the manuring of arable land.  

In the macro form archaeologists can easily identify carbonised particles 

by their black coloration and granular form, but micromorphology is needed in 

order to sub-categorize carbonised particles further. This is an essential 

practice in order to determine what materials have been burnt and to identify 

possible source manure materials.  

Charcoal is the most recognised carbonised particle in anthropogenic 

soils and well preserved fragments typically have a sub-rectangular shape and 

contain detailed internal structure. This structure takes the form of well ordered 

circular to semi-ovoid void spaces of progressively larger size (Plate 1) which 

fossilise the original anatomical structure of wood of the burnt fragment.  
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Plate 1, Two distinct charcoal particles (ppl) 
       

         
Plate 2, Turf and carbonised turf fragments (ppl) 
 

  
Plate 3, Peat and carbonised peat fragments (ppl) 
    

  
Plate 4, Two samples of amorphous black fragments (ppl and xpl) 
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In contrast the turf and peat fragments (Plates 2 and 3) contain 

irregularly shaped, elongate voids positioned in a roughly linear orientation. 

This arises from the compaction of organic material during the formation 

process and can contain inclusions of phytoliths, diatoms and spores. Detailed 

analysis of carbonised peat and turf fragments in the Northern Isles of Scotland 

has shown that these particles are particularly resistant to post burial 

pedogenesis and so the distinctive internal structure is retained (Davidson and 

Carter, 1998; Carter, 1998, Canti, 2003a). Previous work on these particles 

has shown that alongside the identifiable inclusions of carbonised particles 

there are also a large number of black amorphous particles (Plate 4) which 

have also been used to interpret past land practices (Davidson, et al., 2007). 

The categorisation and identification of the amorphous particles has also been 

analysed by experimental methods in order to try and replicate the carbonised 

particles as well as to understand the processes by which the particles were 

created (Simpson, 1997 and Guttmann, 2001).   

 

  
Plate 5, A fragment of burnt mineral material; black in plane polarised light (ppl) 

but red/orange in overhead incidental light (oil) 

 

The rarest forms of carbonised particles and the hardest to identify are 

the fragments of burnt/charred plant material and ash layers because of their 

structural delicacy. Very careful analysis of micromorphological samples can 

reveal discrete burning evidence in the form of very fine grained yellow 

concentrations with small charred particles (Guttmann, et al., 2006). However, 

it is far more common to find concentrations in middens and rubbish pits than 

anthropogenic soils (Carter, 1998) because of post burial reworking by 
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ploughing, leaching and biological consumption (Courty, et al., 1989). The 

addition of plant ash can be determined by the presence of microcrystalline, 

elongate silica crystals or vesicular, glassy slag remnants formed during the 

burning process (Canti, 2003b). The presence of these silica inclusions in large 

numbers has been used to interpret the clearance of vegetation by burning for 

arable agriculture (Simpson, et al., 1998).Interpretation of carbonised particles 

becomes extremely difficult when there is no internal structure. This can arise 

because of the way the slides have been produced and the cross section 

exhibits a slice of an inclusion in between void spaces or simply because the 

particle never contained any internal detail, either way this makes identification 

and interpretation extremely difficult and in many cases these particles are 

merely classed as amorphous black particles (Plate 4). The lack of internal 

detail can also lead to the misinterpretation of particles without proper 

descriptive analysis. Plate 5 also shows a black particle with little internal detail 

when viewed under plane polarized light (PPL) and interpretation at this stage 

may lead to the erroneous view that it was a fragment of BC. Under oblique 

incident light (OIL) however the fragment clearly has a reddish/orange 

colouration showing partial heating or burning and more of the internal detail is 

revealed indicating the mineral nature of the particle. 

Alongside detailed micromorphology, point counting and image analysis 

the form, provenance and nature of the black carbonised and black amorphous 

inclusions can be determined using elemental analysis. Specific elemental 

analysis of organic and inorganic inclusions has derived from the elemental 

analysis of anthropogenic soils. Anthropogenic manures, especially from 

settlements, contain distinctive concentrations of elements and therefore their 

addition to anthropogenic soils can aid the interpretation of the formation and 

development of soil horizons. On a broad scale the detection of Ca from the 

Irish Plaggen soils has been linked to the addition of beach sand (Conry, 

1971), and high P, N and K levels have indicated the addition of organic rich 

domestic manuring components (Holliday and Gartner, 2007). Elemental 

analysis has, however, also been utilised in a number of geoarchaeological 

problems to aid site prospection (Aston, et al., 1998; Schlezinger and Howes, 

2000) as well as determining archaeological features including domestic areas 
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(Middleton and Price, 1996), hearths (Pierce, et al., 1998) and industrial areas 

(Eschel, et al., 2002). Elemental analysis has also successfully been applied to 

the interpretation of landuse areas and manuring processes (Entwistle, et al., 

1998 and 2000; Wilson, et al., 2007) as well as the development of 

anthropogenic soils (Carter, 2001; Davidson, et al., 2006 and Davidson, et al., 

2007). Research into the significance of particular concentrations of elements 

and possible function areas has suggested that Ba, P and Ca are particularly 

good for identifying organic waste disposal areas, and have been studied in 

detail from both anthropogenic dumps and archaeological features (Parnell, et 

al., 2002) and manured arable soils (Wilson, et al., 2005; 2006 and 2008) 

whereas concentrations of Ca and Sr have been shown to occur commonly in 

hearths and Pb in hearths, middens and houses (Wilson, 2005). Particular 

elements have also been identified as being of minimal use in functional 

interpretation, namely Ti, Zr and Al (Wilson, 2005), but it is still important to test 

for these elements as there are a number of post depositional soil processes 

along with the effect of geology and hydrology which can all create a false 

impression of enhancement (Wilson, et al., 2008).  

Elemental analysis with scanning electron microscopy (SEM) has been 

used in the past to determine between organic and mineragenic sources 

(Skjemstad et al., 2002), the analysis of BC morphology in natural 

environments (Goldstein et al., 1992; Rose et al., 1994), oxygen:carbon ratios 

(Stoffyn-Egli et al., 1997) and trace element content (Stoffyn-Egli et al., 1997; 

Meharg et al., 2006; Wilson et al., 2008).  

For the Terra Preta soils analysis showed that the particles made up 

over 35% of the organic component and were responsible for organic matter 

stability (Glaser et al., 2000) as well as containing over 70 times more BC 

particles than surrounding soils (Glaser et al., 2001). Experimental work 

conducted to determine the benefits of BC to plant growth in Xanthic Ferralsols 

and Fimic Anthrosols showed that charcoal additions increased crop outputs of 

rice by 17% in the anthrosols and that the Ferralsols appeared to be improved 

by elemental additions of P, K and Cu (Glaser et al., (2002).   

Elemental analysis of the anthropogenic soils on the island of St Kilda 

illustrated distinctive concentrations of Pb and Zn and the results were linked to 
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the use of peat and turf ash especially in the kaleyard areas, because of a 

limitation in manuring components (Meharg et al., 2006). The research also 

suggested that the high levels of metallic elements was a rare occurrence 

among the islands of Scotland as few other surveys had discovered such high 

levels of elemental contamination (Meharg et al., 2006). However, higher levels 

of As have been identified in peat soils manured with seaweed (Castlehouse et 

al., 2003). Black carbonised particles identified in urban Scottish soils have 

also demonstrated high amounts of P and Ca associated in anthropogenic 

soils with high Sr, Hg, Zn, Cu, Ba, Cr, As and Pb (Davidson et al., 2006) 

alongside sites in Norway (Tijhuis et al., 2002) and China (Lu et al., 2003).  

Following the success of the research into identifying elemental 

differences from contrasting functional areas of small farmsteads (Wilson et al., 

2005), further research has been conducted upon the elemental concentrations 

within bone and black carbonised particles (Wilson et al., 2008). The results 

highlighted high levels of Zn and Cu in bone and mineral inclusions but only P 

and Ca in the carbonised particles even though the manually extracted 

charcoal inclusions from soils contained sources of Ca, Ba, Cu, Sr, Zn and Pb. 

Scanning electron microscopy analysis of charcoal inclusions did contain a 

wider suite of elements but these inclusions were old carbonised particles and 

considerably lower levels were found in more recently deposited charcoal 

inclusions leading Wilson (2008) to suggest that there was a significant level of 

post-depositional uptake.  

Clearly this is of great importance, as is the understanding of soil 

processes over time and the effects of leaching and podzolisation need to be 

considered alongside further research into the elemental loadings of the many 

forms of black carbonised particles. As Stoffyn-Egli et al., (1997) states, 

however, the greater challenge is to distinguish between BC particles and 

organic matter and more analysis and interpretation is required on the 

elemental content of black carbonised particles within anthropogenic soils to 

increase understanding of formation through history.  

It is felt that a reanalysis of anthropogenic and amended arable soils 

across a wider regional and European context is needed, and one which 

utilises a distinctive interdisciplinary approach; combining geoarchaeology, 
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environmental science and agrarian history in order to fully understand their 

form and function at a macro and micro analytical scale. 

 

1.11  THESIS AIMS 
 

1. To develop the understanding of knowledge of the spatial distribution of 

anthropogenic and amended arable soils across local and regional 

areas of NW Europe 

2. To clearly understand the soil formation processes, provenance of 

organic and inorganic input materials and the soils present state. This 

will allow clearer comparison and contrast between local and regional 

sites. 

3. To develop a more complete understanding of the form and function of 

anthropogenic and amended arable soils at a microscopic level. In 

particular a detailed analysis of the form and function by identification 

and analysis of organic and inorganic manuring components alongside 

post burial soil processes.  

4. To understand in more detail the role of black carbon particles present 

within anthropogenic and amended arable soils and determine their 

importance to local/regional manuring strategies; ability to provide 

palaeoenvironmental information regarding the soils form and function 

and their role as retainers and transporters of key elements. 

 

The main aims of the thesis will be answering a number of localised, site 

based objectives which will develop the understanding of the form and function 

of anthropogenic and amended soils but will also allow the main aims of the 

thesis to be addressed.   

The first objective of this thesis is to spatially understand the soils 

present in a range of landuse areas at three small marginal farms across north 

west Europe. The sites will be located at Shirva, Fair Isle; a small marginal, 

isolated croft farmstead, part of the Shetland group of islands and is an ideal 

example of an island landscape. The second site is Olthof, in the Netherlands 

a marginal, continental site with an excellent historical record of plaggen 
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manuring and recent archaeological and geoarchaeological investigation. The 

third site is at Caheratrant, County Kerry, Ireland. The site is a marginal, 

coastal area on the Dingle Peninsula with a history of organic manuring 

especially with calcium carbonate sands a process distinctive to SW Ireland.  

Each site was chosen in order for a direct comparison of the soils 

associated with three main landuse areas the kaleyard or garden area, the 

arable infield area defined by historical and cartographical documentation and 

arable evidence of the ground surface including field boundaries, rig and furrow 

and local history sources.  

The anthropogenic soils discovered on Orkney and Shetland have been 

found over 1.25m deep in places and yet unlike Papa Stour (Bryant and 

Davidson, 1996; Davidson and Carter, 1998), Fair Isle has been under 

explored even though the historical facts indicate that during the Viking and 

Norse periods the island was an important trading point between people 

travelling between Scandinavia, Iceland and Greenland. Analysis conducted on 

the island in 1994 showed that prehistoric anthropogenic soils were present to 

the north of the island (Chrystall, 1994) however, historical sources show that 

occupation since the Viking has been confined to the southern half of the 

island (Hunter, 1997), an area never analysed for deepened anthropogenic 

topsoils. The key questions for Fair Isle are therefore: 

 

1. Do deepened topsoils exist in the southern half of Fair Isle where 

settlement has been present and arable agriculture conducted in the 

past? 

2. What is the form and spatial distribution of any anthropogenic soils on 

Fair Isle, and how do they compare with spatial, chemical and physical 

analyses from Orkney, Shetland and the Western Isles? 

3. Are there any fragments of charcoal, black carbonised and black 

amorphous inclusions and what do these indicate about manuring 

practices? 

 

In the Netherlands extensive anthropogenic soils, formed by the 

traditional plaggen process, have been found across large areas of the country 
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and are in some areas over 1.5m deep (Pape, 1970; de Bakker, 1979; van 

Smeerdijk, et al., 1995, van Mourik 1997). The initial mapping of the plaggen 

soil identified two distinct types; the brown plaggen soil and the black plaggen 

soil indicative of the application of two different types of manure (Pape, 1970). 

At Olthof, despite multiple archaeological excavations, the plaggen soils have 

not been thoroughly assessed in the context of the settlement history (Appels, 

2003), however, geochemical and physical analysis was conducted on the 

soils in the context of modern day landuse areas to determine differences in 

the manuring inputs (Dercon, et al., 2005). The key questions for Olthof, the 

Netherlands are therefore:  

 

1. Do brown and black plaggen soils exist at Olthof and what is their form 

and spatial distribution in relation to natural heathland and meadowland 

soils? 

2. How do the plaggen soils at Olthof compare with the spatial, chemical 

and physical analyses from other areas of the Netherlands? 

3. Is there any macro evidence of organic or inorganic inclusions of 

anthropogenic origin and what can these indicate about input from 

settlement centres? 

 

Extensive field analysis in Ireland has lead to the discovery of 

anthropogenic soils across the south and west of the country (Conry, 1971) 

especially with calcareous beach sand and organic material.  Early analysis 

however focussed simply upon the identification and did not take into 

consideration the spatial distribution, form or function of the soils (Conry, 

1971).  At Caheratrant anthropogenic soils were identified through minimal 

fieldwork (Conry and Mitchell, 1971) and therefore a number of key research 

questions are still to be answered: 

 

1. Do the Irish anthropogenic soils constitute plaggen soils as determined 

in the Netherlands and Orkney? 

2. Do anthropogenic soils exist across large areas of Caheratrant farm or 

are the soils restricted to Conry’s sample area? 
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3. Is there any spatial pattern of anthropogenic input between the 

settlement centre and arable land at the hinterland of farming areas? 

4. What macro evidence exists of organic and inorganic inclusions to the 

soils?  

 

The second objective is to determine the physical and chemical state of 

the identified soils in the contrasting landuse areas in order to fully understand 

the complexities between human additions and natural variations. This would 

be done by analysing: 

 

Soil pH:  

To ascertain the present state of the soils and determine the influence of 

anthropogenic additions and parent material upon the soils at each of the sites 

and within the varying landuse areas. 

 

Loss on Ignition:  

To determine the different quantities of soil organic matter present in the soils 

and to indicate the possible addition by manuring. 

 

Particle Size Analysis:  

To determine the nature and texture of the anthropogenic soils and compare 

them with other organic and natural soil horizons and sediments. The analysis 

would also indicate differences in the physical nature of soil e.g. structure, 

drainage, organics which in some cases can be attributed to human action. 

 

Magnetic Susceptibility:  

Conducted on a range of soils at the three sites in order to determine the 

extent of anthropogenic addition in and around the settlement centres, and to 

compare and contrast the different anthropogenic soils and landuse areas.  

 

Multi-Element Analysis:  

Conducted on a range of soils from the three sites to determine the 

concentration of key elements (Ca, P, Pb, Na, Mg, K, Fe, Al, Ba, Cd, Co, Cr, 
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Cu, Mn, Ni, Sr, Ti, V, Y, Zn, As) which can indicate the addition of organic and 

inorganic materials to the soils and therefore can be used to interpret of the 

formation and development of soil horizons. 

The third objective of the thesis is to analyse the micromorphology of 

the soil horizons from the three sites in order to describe the overall texture, 

composition and characteristics of the soils and quantify a full range of organic 

and inorganic inclusions. This will allow the following key questions to be 

analysed: 

 

1. How does the soil micromorphology compare and contrast between 

individual horizons and landuse areas at the three sites? 

2. Is there more evidence of organic and inorganic manuring inclusions in 

the areas closest to the centre of settlements versus outfield arable 

areas? 

3. Does the micromorphological evidence at Fair Isle indicate similarities in 

manuring methods and inputs found on other isolated Scottish Islands? 

4. What are the key micromorphological similarities and differences 

between the Dutch black plaggen and brown plaggen soils? 

5. How widespread was the use of calcareous sand across the farm of 

Caheratrant and is there any micromorphological evidence of mixing 

with organic material? 

 

Zone count analysis of the soils will also be used to quantify a range of 

organic and inorganic inclusions including peat, turf, amorphous red/brown 

fragments, mineral inclusions and plant inclusions. This will illustrate the key 

manuring materials used in various soil horizons and in different landuse 

areas. The same analysis will also be used to quantify the range of black 

carbonised and black amorphous particles including charcoal, burnt peat, burnt 

turf, amorphous black particles and black minerals and this will also aid the 

interpretation of the soil formation processes and input materials. The black 

carbonised and black amorphous inclusions will also be quantified using image 

analysis in order to create a data suit of inclusions to compare and contrast 
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with the zone count and micromorphological analysis. These methodologies 

will allow the following key questions to be answered: 

 

1. What are the densities and sizes of key organic and inorganic inclusions 

at each of the sites and are there any variations between soil horizons, 

landuse areas and sites? 

2. What are the densities and sizes of black carbonised and black 

amorphous inclusions in soil horizons, landuse areas and between the 

three sites?  

3. What are the density and sizes of void spaces in black carbonised 

particles and what does this suggest about input materials? 

4. Are there any significant similarities between the density and size of 

black carbonised and black amorphous inclusions as determined by the 

zone counting and image analysis? 

 

A fourth objective of the thesis is to determine the elemental composition 

of the black carbonised particles, black amorphous particles and organic 

inclusions. This will be of specific importance in characterising the very small 

carbonised and amorphous particles which cannot be identified through the 

zone counting or image analysis process. Importantly though the elemental 

analysis will also highlight differences in beneficial and detrimental elemental 

loadings. Results from these particles will be compared with other organic 

inclusions, and the matrices of the soils to ascertain the extent of elemental 

transfer between black carbonised particles and soil. This will allow the 

following key questions to be analysed: 

 

1. What are the relative densities of organic and inorganic black 

carbonised particles? 

2. What are the key elemental compositions of the black carbonised and 

black amorphous inclusions and how do they compare to the elemental 

results of other organic and inorganic inclusions and the bulk 

multielement results? 
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3. Do the black carbonised particles contain higher concentrations of 

elements associated with anthropogenic activity than black amorphous 

inclusions? 

4. Do the black carbonised particles within soil horizons in the 

kaleyard/garden areas contain higher elemental concentrations than 

carbonised particles in landuse areas further away from the farm 

centre? 

5. Are there higher concentrations of Ca in black inclusions at Fair Isle and 

Caheratrant because of the use of calcareous beach sand? 

   

1.12 METHODOLOGIES 
 
1.12.1 FIELDWORK 

  

At each site the spatial distribution of soils across the farms was 

analysed by conducting a detailed auger survey at 100m intervals, except 

where more detailed profiles were required, in gardens, kaleyards and small 

enclosures; in these instances the interval was reduced to 50m or 30m. Since 

no previous work had been conducted on the identification of anthropogenic 

soils in the southern arable area of Fair Isle the auger survey was conducted 

on three farmsteads; Shirva, Leogh and Taing to determine whether any 

anthropogenic soils were present in the agricultural areas and if so to 

determine their extent. Shirva and Leogh were chosen as these had 

reasonably well documented histories and were regarded as original foci of 

settlement for over 1000 years since the Viking occupation. They were also 

located to the west and south west of the island within traditionally the best 

agricultural land. In contrast, Taing was selected because it has a considerably 

shorter settlement history, from its foundation between A.D.1836 and A.D.1845 

and its desertion around 100 years later and was located on much poorer land 

to the east. The spatial distribution of the soils on Fair Isle was then compared 

to the soils present at Olthof, the Netherlands and Caheratrant, Ireland.  

At each site the auger surveys were located to analyse the soil profiles 

across a number of landuse areas with distance from the settlement nuclei. On 
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Fair Isle and at Caheratrant the farms were divided into the kaleyards, the 

arable infield and outfield and upland areas, whereas In the Netherlands the 

sampling areas were divided into the garden, adjacent to the main farm 

buildings, an arable infield area and the upland area.   

After the auger survey was conducted a series of nine test pits were 

excavated in a range of landuse areas to enable the detailed recording of the 

soil horizons present. The test pits measured 1m x 0.5m2 and were excavated 

down to the natural soils or geology, when the depth of the soil horizons 

exceeded 1.20m the test pits were extended to 1m2 in accordance with the 

health and safety mitigation. At each test pit the soil horizons, Munsell colour 

and presence of organic and inorganic inclusions and charcoal were recorded, 

bulk samples taken and Kubiena tins for micromorphological investigation. 

Complementing the test pits was a series of samples taken with a ‘Dutch’ 

auger at metre intervals radiating out from each side of the test pit. The 

samples were taken every 200mm (one auger head) until the natural subsoil 

was found. Contamination was limited by removing any outer soil from the core 

and only taking the internal soil. 

 

Site No of Satellite 
Cores 

% of Total No of Bulk 
Samples  

% of Total 

Fair Isle 171 18.36 39 28.05 

Netherlands 467 50.16 57 41.00 

Ireland 293 31.47 43 30.93 

TOTAL 931  139  

Table 5, Breakdown of the bulk sampling numbers from three study sites 

 

1.12.2 SOIL pH 

 

In total 1070 bulk soil samples were taken with 139 from the 30 test pits 

and 931 from the 120 satellite cores with between 4 to 7 samples per test pit 

and 5 to 11 samples per core (Table 5). All the soil samples were transported 

back to the University of Stirling air dried and sieved to less than 2mm for 

laboratory analysis. The soil pH was determined by following the methods of 
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Avery and Bascomb (1982) and the University of Stirling. A 10g sample of air 

dry soil was weighed and placed within a 50ml beaker. To this 25ml of distilled 

water was added, stirred and allow to stand for 30 minutes. Whilst the 

suspension was standing, the pH meter was calibrated using the pH 4 and pH 

7 buffer solutions. Extra care was taken to make sure that the temperature 

setting of the meter was at the solution temperature. The electrode was placed 

into the beaker of pH 7 buffer and adjusted until the calibration control on the 

meter read 7. It was then withdrawn, rinsed with distilled water and inserted 

into the pH 4 buffer and adjusted to check that the meter read 4. If it did not, 

the temperature control was adjusted accordingly. After 30 minutes the soil 

samples were restirred and the electrode carefully placed into the suspension. 

The pH readings were recorded to 1 decimal place once the reading became 

stable. The electrode was then withdrawn and rinse with distilled water before 

placing into the next sample.  

 For particularly peaty soil horizons, the pH was determined on fresh soil 

material. A sample was weighed and a mass of moist soil equivalent to 2.5g 

dry soil was determined by calculating the percentage moisture content. To this 

50ml of distilled water and 4ml calcium chloride solution was added, stirred and 

left to stand for 30 minutes. The pH was calculated as determined above. 

 

1.12.3 SOIL ORGANIC MATTER 

 

Alongside soil pH analysis of soil organic matter (SOM) was also 

determined to ascertain variations in different landuse areas and identify areas 

of organic addition by manuring. The measurement of soil organic matter 

(SOM) has traditionally been done in several ways, either through acid 

digestion or by weight loss on ignition. The first method known as the Walkley-

Black method is very good for measuring the organic content of soils with less 

than 2% organic material but for soils with over 2% a process of measurement 

by loss on ignition is the preferred method.  

Loss on Ignition (LOI) involves taking an oven dried soil and subjecting it 

to high temperatures. The resultant weight loss can be correlated with 

oxidisable organic carbon and water, even though there is no direct 
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relationship between level of organic matter and soil organic carbon (Ball, 

1964). In this thesis the (LOI) was conducted using the standard methodology 

of the University of Stirling.      

A 10 g subsample of air dry fine earth was oven dried at 105OC for 4 

hours and stored in a dessicator before use. A clean and dry porcelain crucible 

was weighed to an accuracy of 0.01g (W1), filled with oven-dry soil and 

reweighed (W2). The filled crucible was then placed in the furnace set to 450oC 

and left for a 41/2 hour cycle. The crucibles were then transferred to a 

dessicator with tongs until cool before finally reweighing (W3). The LOI was 

determined using the equation: %LOI = W2-W3/W2-W1 x 100 

Great care was taken not to test the soils at too high a temperature as 

clay particles may be altered, affecting weight loss and resultant soil organic 

content. Extreme temperatures have also been recorded altering soft calcium 

carbonate mineral components affecting organic matter results (Rowell, 1994). 

 

1.12.4 PARTICLE SIZE ANALYSIS 

 

The particle size analysis was conducted at two levels, initially as part of 

the textural recording of the soils found in the excavations, and this allowed the 

analysis of horizons at each landuse area as well as between the three sites. 

To assess the amount of clay present within samples and the overall micro 

texture of the soils a more detailed analysis was needed. Air dried bulk soil 

samples were taken and sieved to <2mm, then placed in the oven for 4 hours 

at 350˚C to remove the organic content but not breakdown the delicate clay 

micelles. 50ml of distilled water was added to the soil along with 2ml of sodium 

hexametaphosphate (Calgon) solution to disaggregate the soil into its 

individual textural components and this was gently agitated for 2 hours. Small 

samples were then carefully placed into an LS230 Coulter Counter in order to 

measure the diffracted light from the particles. There are a number of methods 

for measuring particle size analysis e.g. sieving through progressively sized 

sieves, pipette analysis and image analysis (Allen and Thornley, 2004) but the 

laser granulometry method is able to detect particles to 0.004µm making it 

especially good for fine grained silty clay soils. However, there has been a 
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great deal of debate over the validity of the results from laser granulometry 

because of the underestimation of fine clay in relation to pipette analysis 

(Beuselink, et al., 1998) and Konert and Vandenberghe, (1997) have 

suggested that the variation was due to the non-sphericity of fine particles. 

What was clear, however, was that the laser granulometry method was 

considerably quicker than the hydrometer method, which can take up to 8 

hours depending upon the rate of settling, and therefore more samples could 

be tested in a shorter period and a greater range of results gathered on the 

micro-textural features of the anthropogenic soils.  In archaeology particle size 

analysis has been utilised to determine environmental conditions on sites (Catt, 

1999) and to characterize and interpret domestic deposits from complex 

microstratigraphical domestic layers (Macphail, 2003) to extremely large tell 

structures (Davidson, 1973 and Rosen, 1986).  

 

1.12.5 MAGNETIC SUSCEPTIBILITY 

 

Magnetic susceptibility was conducted at the three sites in order to 

determine the extent of anthropogenic addition in and around the settlement 

centres, and to compare and contrast the different anthropogenic soils and 

landuse areas. The measurement of magnetic susceptibility can be conducted 

in the field at very close intervals (2cm) using a field probe and this has 

revealed human addition in midden and pit sequences (Dewar, et al., 2002 and 

Batt and Dockrill, 1998), however, accuracy and precision with results are 

maintained more easily from laboratory tested sieved dry soils (Dearing, 1999). 

The bulk samples were collected from the sample test pits and cores in order 

to keep the results comparable with the other bulk analysis, micromorphology 

and especially with the analysis on the black carbonised particles, due to their 

direct influence on magnetic susceptibility.  

Small samples (10cm3) were tested using a Bartington MS2 dual 

frequency susceptibility meter on both the low and high frequency setting in 

order to detect the total concentration of ferrimagnetic minerals as well as the 

ultrafine ferromagnetic minerals present, which was not available on the field 

probe. From the data collected the frequency-dependant susceptibility was 
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calculated illustrating the ultrafine ferromagnetic minerals within a larger 

superparamagnetic grain size. The results are displayed as mass specific 

magnetic susceptibility (x10-6mg3kg-1). 

 

1.12.6 SOIL MULTI-ELEMENT ANALYSIS 

 

Soil multi-element analysis was conducted on 500 bulk soil samples to 

determine the elemental distributions and concentrations across the three 

study sites and across the different landuse areas, including natural samples. 

A process of Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-

AES) was chosen for the analysis as previous projects have shown that the 

method offers the best combination of ultra-low detection limits, rapid analysis 

of a range of elements and low interference levels. This technique was used in 

order to determine whether the anthropogenic and amended arable soils at the 

three sites contained characteristic elemental signatures aiding provenance of 

manure material, whether there were distinctive patterns in elemental loading 

in settlement centres compared to outfield areas and most importantly, the 

chemical relationship between the soil and the black carbon particles (chapter 

7). Each of the sample soils were sieved to <2mm and oven dried at 105˚C for 

four hours before a 5g sub-sample was removed and digested in 5ml 

concentrated nitric acid at 120˚C for one hour before being filtered and made to 

a 100ml solution with distilled water . The prepared solutions were then 

analysed in the geochemistry laboratory at Royal Holloway, University of 

London using a Perkin Elmer Optima 3300RL ICP-AES for the detection of 21 

elements (Ca, P, Pb, Na, Mg, K, Fe, Al, Ba, Cd, Co, Cr, Cu, Mn, Ni, Sr, Ti, V, 

Y, Zn, As). Standard reference samples from all the elements and three 

external reference solutions were also taken alongside blank samples and 

replicates chosen at random in order to maintain analytical quality control. 

 

1.12.7 SOIL MICROMORPHOLOGY 

 

Alongside the bulk soil samples a total of 75 undisturbed soil samples 

were extracted in 80mm by 40mm Kubiena tins from the three landuse areas at 
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the sample sites and micromorphological slides were produced at the 

University of Stirling. The Kubiena samples taken were acetone dried, 

impregnated with epoxy resin then cut and bonded to glass slides. These were 

then lapped until a thickness of 30µm and finally polished using 3µm diamond 

paste but no cover slips were applied to enable elemental analysis with a 

scanning electron microscope. This follows the standard method of production 

at the University of Stirling (http://www.thin.stir.ac.uk/methods.html). 

Each of the slides was described with an Olympus BX50 petrological 

microscope at six magnifications (x1.25, x2, x4, x8, x10 and x40) and with a 

range of light (plane polarized (ppl), cross polar (xpl) and oblique incident (oil). 

The range of light sources was selected in order to identify the coarse rock and 

mineral components, coarse and fine organics, pedofeatures, microstructure, 

fabric arrangement, groundmass and relative soil distribution. Background soil 

descriptions are illustrated in twelve summary tables (Appendix **) 

Descriptions of the slides were based on Bullock, et al., (1985); Fitzpatrick, 

(1993) and Stoops, (2003) and important textural and contextual images were 

taken using AnalySIS v.3.0 © and saved in JPEG and TIFF formats.  Key 

images are diplayed within the text and also in the appendix.  

 

1.12.8 ZONE COUNT AND IMAGE ANALYSIS 

 

In order to identify and quantify inclusions within the soils a process of 

zone counting, image acquisition and colour based thresholding were 

conducted using optical microscopy and image analysis software. The three 

quantification methodologies were conducted on 25 3 x 3mm (9mm-2) sample 

squares randomly selected by Random Number Generator for Excel v:2.1.5.25 

(http://www.ablebits.com/excel-random-generator-assistant-free-addins/index.php). 

This sample area equates to a 15 x 15mm (225mm-2) area or 5.5% of the total 

slide 75mm x 55mm (4125mm-2) slide. This sample size area was selected to 

enable a fair analysis of each of the anthropogenic/amended soil horizons 

alongside natural soils.    
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225mm2 or 
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18sq (55mm) x  
25sq (75mm) 

3x3mm 
squares 

Fig 4a 
Grid square L7 
analysed with 
zone count 

Fig 4b 
Grid square L7 
analysed with 
image analysis. 
The resultant 
black carbon and 
black amorphous 
inclusions are 
shaded grey 

Fig 4, Micromorphological slide (18 x 25sqs; 55 x 75mm) gridded up 
into 3 x 3mm-2 squares for zone count and image analysis 
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Figures 4, 4a and 4b illustrate how each of the micromorphological 

slides were subdivided for each the two analyses. Each used a fixed setting of 

x4 magnification with strict regulations on the intensity of light, the aperture, 

diaphragm and lbd (light balancing daylight) filters were all equally set. The grid 

squares were coloured red to ensure the AnalySIS software did not include 

black grid lines in the data set. In each analysis the grid squares were 

positioned using the motorised stage facility to ensure exact replication of 

analysis areas.    

The zone count process identified and quantified nine classes of organic 

and mineral inclusions. These include organic fragments: peat, turf, red/brown 

amorphous and plant material; carbonised fragments: charcoal, burnt peat, 

burnt turf and black amorphous material; and inorganic mineragenic inclusions. 

The zone count quantified these inclusions and was recorded using mm-2.  

Figure 4a represents the sample square area ‘L7’ and includes several 

very large carbonised fragments of peat and charcoal alongside clear quartz 

mineral, unburnt peat, red/brown amorphous material and void space. Figure 

4b shows the same square with the black carbonised and black amorphous 

inclusions identified by the AnalySIS software. The use of both quantitative 

(image analysis) and qualitative (zone counting) data collection in the same 

squares allowed constant monitoring of the two methodologies. In both cases 

however a minimal data size of 500µm2 was set to reduce human error in the 

data set. The image analysis was used to quantify the density (µm-2/225mm-2) 

and area (µm-2) of black carbonised and black amorphous inclusions and the 

density (µm-2/225mm-2) and area (µm-2) of internal void space which might 

assist with the identification and provenance of the inclusions.  

 

1.12.9 SCANNING ELECTRON MICROSCOPY ANALYSIS 

 

The uniform sample area developed for the zone counting and image 

analysis was also used to determine the detailed elemental identification of a 

range of organic and inorganic inclusions. In total 1548 fragments were 

analysed including 1250 black carbonised particles and black amorphous 

inclusions that exceeded 500µm2 as well as 61 organic inclusions, 87 mineral 

fragments and 89 soil matrices samples. 57 resin samples were also taken to 
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compare and contrast the elemental results with background elemental 

readings (Table 6). 

A set of 19 elements were gathered from selected from uncovered 

micromorphological slides from the kaleyards of the three sites on a Jeol 6460 

LV SEM-EDS linked to an Oxford InCA X-sight EDX detector with a 

silicon/lithium film window at the University of Stirling. The elemental data was 

captured using the ‘spot’ and ‘surface area’ function in order to gain accurate 

results for the determination of oxygen:carbon ratios analysed using the 

methods set out by (Stoffyn-Egli, et al., 1997) and the elemental composition of 

the inclusions which might indicate possible areas of provenance and data 

which could be compared and contrasted to the bulk soil elementary results. 

The usual procedure of coating samples with carbon to reduce surface 

charging was omitted as this would have seriously affected the results, 

however if charging was still a problem it could have been solved with gold 

coating but after a number of tests on uncoated samples it was decided that 

charging was not a serious problem. 

 

 
 

 
 
 
 
 
 
 
 

 

Site Black  
Particles 
<500µm2 

Black  
Particles 
+500µm2 

Organic Mineral Matrix Resin 

Fair Isle Shirva 95 276 14 14 25 11 
Busta 78 279 8 12 11 11 
Leogh 68 216 18 23 27 7 

Netherlands Olthof 37 41 0 19 12 13 
Ireland Caheratrant 52 112 21 19 14 15 

TOTAL (1548) 330 924 61 87 89 57 
% 21.5 59.6 3.9 5.6 5.7 3.7 

Table 6, Number of inclusions analysed with Scanning Electron Microscopy 

(SEM) from a kaleyard and garden areas 
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2 STUDY SITE 1: FAIR ISLE, SCOTLAND 
 

2.1 INTRODUCTION 
 

Fair Isle, or frioar-øy from the Old Norse, is located in the North Atlantic 

Ocean, 26 miles from the southern end of mainland Shetland and the island of 

North Ronaldsay, Orkney (Fig 5). The island is 3 miles (4.8km) long by 1.5 

miles (2.4km) wide with a total area of 1402 acres (768ha). Before John 

Hunter’s 1997 book entitled “Fair Isle: The Archaeology of an Island 

Community”, Fair Isle had received very little analysis compared to the 

Shetland and Orkney Islands where there is a wealth of historical, 

archaeological and pedological material with which to analyse and interpret 

past land use history (Fenton, 1978). 

 
Figure 5, Location map of Fair Isle and the Orkney and Shetland Islands 
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2.2 THE GEOLOGY AND SOILS OF FAIR ISLE 
 

The island’s geology (Fig 6) was originally studied in 1879 by Heddle 

who mapped the rock formations. More recent geological fieldwork showed 

that the majority of the central area of the island is composed of a fine grained, 

quartz rich, sandstone. Around the west and north east edges of the island are 

deposits of a more resistant pebbly sandstone and conglomerate. Both 

deposits were identified as belonging to the Lower to Middle Old Red 

Sandstone series of Devonian age (408 – 374 ma) called the Downtonian 

Series (Mykura, 1972 and Mykura et al., 1976). Drift deposits were identified 

and analysed around the same time and identified as glacial tills with reddish, 

brown colours deriving from later Permo-Triassic Sandstones (Flinn, 1970). 

The island contains over 15 transcurrent faults which run roughly north west to 

south east but the Old Red Sandstone’s existence is due to crustal movement 

in the Walls Boundary Fault which runs northwards through Shetland and to 

the south east of Orkney and into mainland Scotland, as a possible extension 

of the Great Glen Fault (Flinn, 1961).  

The soils of Fair Isle (Fig 7) were mapped in the early 1980s by the Soil 

Survey for Scotland (SSoS) who categorized the soils into two types both of 

the Skelberry Association. In the northern area of the island soils are typically 

peaty podzols and peaty rankers which occur on hill sides with steep and very 

steep slopes which are moderately to very rocky. These soils typically have 

North Atlantic heather moorland heath and blanket peat with some grass. To 

the south the soils are peaty gleys, noncalcareous gleys with some peat and 

saline gleys. These occur in the undulating lowland with gentle to strong slopes 

which are slightly rocky. The vegetation on these soils is typically North Atlantic 

heather moor, arable and permanent pasture and swampy areas (Soil Survey 

for Scotland, 1982). 

Importantly the SSoS also mapped areas of deepened topsoils on West 

Mainland, Orkney which were characterized by dark organic soils in excess of 

750mm deep. Similar soils identified on other Orcadian Islands; North 

Ronaldsay, Sanday and Stronsay (Simpson, 1985) and Shetland Islands; 

Scatness, Papa Stour (Davidson and Simpson, 1994) and Unst (MacKenzie, 



 
 
 

56 
 

2006) have been interpreted as anthropogenic soil due to the inclusions of 

organic and domestic inclusions (Davidson and Simpson, 1984). 

 

 
Figure 6, Solid geological map of Fair Isle (After Mykura, 1972) 
 

 
Figure 7, Soil map of Fair Isle (Soil Survey for Scotland, 1982) 
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2.3 THE HISTORY OF FAIR ISLE 
 
2.3.1 EARLY ACTIVITY AND SETTLEMENT 
 

The history and archaeology of Fair Isle has been analysed in great 

detail over the last 20 years which has resulted in John Hunter’s book “Fair 

Isle: The Archaeology of an Island Community”. Sections 2.3 and 2.4 illustrate 

a summary of this work. Human activity on Fair Isle during the prehistoric 

period is expressed in dykes, field boundaries, burnt stone mounds and house 

platforms. The best preserved evidence survives in the northern half of the 

island where there has been no later disturbance by settlement or agricultural 

practice, however the intensive removal of peat for fuel throughout Fair Isle’s 

occupation may have inadvertently removed evidence leaving only a fraction of 

what was originally present. By far the most distinctive feature, which has 

played an important role throughout the island’s history, is the feelie dyke. This 

runs for 1.2km across the centre of the island, from Gunnawark to Haswalls, 

and separates the upland area from the lowland. Today it is an impressive 

feature 8m wide by 2m high and, as Hunter (1997) suggests, may well have 

been considerably larger in the past and its construction required major 

planning and organisation with a suitably sized population.  

Field systems and settlement evidence are concentrated into four areas 

on the island. Three of the areas are north of the feelie dyke and the fourth is 

to the east of the lowland area. The first area, Ferny Cup, is on the eastern 

side of the upland area and has a clear area of prehistoric houses with small 

tracts of relict landscape including lynchets, field boundaries (for terracing) and 

cairns. The houses in the south of the island have a well planned design and 

are typically ‘figure of eight’ shaped with varying wall thickness, averaging 

1.5m. Similar houses were identified at the Scord of Brouster (Whittle et al., 

1986), an important Neolithic settlement site on mainland Shetland. To the 

west is a third possible prehistoric foci, at Burrashield. There are a large 

number of burnt mounds, over 20 small rectangular enclosures (averaging 5m 

by 3m) and two large parallel boundary ditches, possibly land divisions as well 

as a small cairn. However, there is also a great deal of post medieval 

disturbance which has hampered interpretation of this landscape. Excavation 
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of one of the enclosures showed no evidence for early activity (Hunter 1997). 

The fourth area analysed by John Hunter is called ‘The Rippack’ and is to the 

south of the feelie dyke and provides a good contrast with the other three 

areas. The evidence includes field boundaries, cairns, planticrues and a likely 

settlement location within the southern arable agricultural zone. There are a 

number of burnt mounds which might well be the only remaining evidence of 

prehistoric activity in the area. Hunter does outline three other possible intense 

activity areas in the south of the island at Vaasetter, Pund and The Houll but all 

of these sites show no physical evidence and any earthworks which are 

present are likely to have been used in later settlement development or 

destroyed by intense agricultural activity (Hunter, 1997). 

Prehistoric and Bronze Age evidence is present but its fragmentary 

nature and lack of material culture makes interpretation very difficult. In the 

north of the island constant degradation of the peat resources has removed a 

great deal of evidence whilst in the southern zone occupational and agricultural 

changes to the landscape have left only islands of information.    

Towards the end of the Bronze Age the climate of north west Europe 

changed dramatically forcing the population of Fair Isle to move to the south of 

the island, inhibiting growth. This translocation fossilised the Neolithic and 

Bronze Age features to the north of the feelie dyke with the majority of Iron Age 

evidence lying to the south. The limited amount of excavation of Iron Age 

features, like the earlier periods, makes it very difficult to analyse the 

landscape in the period but there are features which have been postulated as 

of this period (Hunter, 1997). The most common evidence is walling from field 

systems and enclosed pasture, most of which is likely to be late Iron Age/Early 

Viking period and is located to the south of the island but there are smaller 

concentrations at Burrashields and the Buness Peninsula, possibly in 

association with the Landberg prominantory fort (Lamb, 1980). The Landberg 

prominantory fort is the only obvious broch site, with other possible sites likely 

to have been heavily disturbed by later activity. The site is located to the east 

of the island on Buness, measures 45m by 12m (430m2) and was excavated in 

the 1970s by Lamb. There are a number of extensive earthworks, now heavily 

eroded, towards the landward side, interpreted as ramparts and within the fort 
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several possible hut depressions, and a larger building possibly of later date, 

as suggested from pottery remains. In the north east corner there is an area of 

deepened soil, around 1m thick, derived from a series of middens (Hunter, 

1997).    

The coming of the Vikings coincided with the earliest written documents 

which mention Fair Isle and its positional importance between Orkney and 

Shetland. A written document called ‘Njal’s Saga’ indicates that there is 

permanent occupation on the island prior to the occupation by the Vikings one 

particular reference in the document suggests that the island is “home to David 

the White who wintered with Kari” (Magnusson and Pálsson 1960 p135). 

However, the majority of the historical references at the beginning of the 11th 

century are within the ‘Orkneyinga Saga’ written in the 13th century. It illustrates 

the feuding between Earl Paul of Orkney and Earl Rognvald of Shetland for 

control of Fair Isle (Pálsson and Edwards, 1978). 

The importance of the island for both men of the island can be seen 

from two separate incidences both involving the beacon on Ward Hill. The first 

saga involves a farmer on the island called Dagfinn Hloduisson who was 

placed in charge of the beacon on Ward Hill by Earl Paul to warn the 

Orkadians of an impending attack by Rognvald’s men. At this stage the island 

was under Orkadian control, however Rognvald was able to trick Dagfinn into 

lighting the beacon which alerted Earl Paul’s men and ended with Thorstein, of 

North Ronaldsay, murdering Dagfinn. The second saga is also concerned with 

the beacon and Shetland gaining control of the island. Rognvald went to Fair 

Island with three men, supposedly his sons, and took a house with the express 

purpose of gaining the confidence of the beacon keeper, Eirik. One of the men, 

Uni, doused the beacon so as to make it useless and Rognvald was able to 

travel unseen by Earl Paul. These important early documents show that Fair 

Isle was a busy inhabited island which because of its important geographical 

position, commanded significant control of key fishing grounds and trade links 

between Scandinavia and Greenland. Viking settlers must therefore have been 

encouraged to inhabit Fair Isle and the place names given to their villages and 

farms remain to this day and indicate early occupation sites.   
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2.3.2 PLACE NAME EVIDENCE FOR THE THREE STUDY SITES 

 

The names of all the settlements analysed in this thesis are discussed in 

John Hunter’s book “Fair Isle the Archaeology of an Island Community” except 

Taing, which is interestingly overlooked possibly because of its generalistic 

terminology. On both Shetland and Orkney the name derives from (Tangi ON) 

means ‘rocky’ or ‘a tongue of land’ and is commonly found in rocky, coastal 

areas. Its use on Fair Isle may refer to a particular area of coastline, the 

adjacent Sheep Rock or as a reference to shallow, rocky, poor quality 

agricultural soils. The derivation of Shirva and Leogh also appear to have 

origins in the geography of their positions, Shirva or (Skirva ON) relates to 

‘rocky ground’ and Leogh or (Loekr ON) means ‘boggy or flat ground’ (Hunter 

1997), names which  even today match closely the settlement locations. The 

name Busta has been interpreted in more detail and much like the continued 

evolution of the settlements on and around the same sites. It is thought that the 

name has developed equally possibly deriving from bólstaðr or bustaðr, the old 

Norse to Bouster or Bister meaning portion, lot, or dwelling place (Hunter, 

1997). Further details on the settlements and population, however, are detailed 

in the documentary evidence (Section 2.3.3).     

 

2.3.3 SETTLEMENT AND POPULATION IN DOCUMENTARY SOURCES 

 

Although there is evidence for Prehistoric activity on Fair Isle there is 

general agreement that large scale permanent settlement began on Fair Isle 

around A.D. 800 and the sagas are the first written documents which give a 

vague indication of the likely population around the period A.D. 800 – 1050 

(Hunter, 1997). It has also been assumed that the settlements under 

investigation in this thesis were founded around this time. Unlike Shetland and 

Orkney, no high status, multiperiod settlement site has been identified like the 

spectacular sites at Jarlshof (Hamilton, 1956), Underhoull (Small, 1966), 

Buckquoy (Richie, 1977), Birsay (Hunter, 1986) and Scatness (Dockrill et al., 

1994). However small scale settlements are likely to have been founded 

around this time but detailed surveys failed to locate any evidence (Hunter 
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1997) suggesting existing settlements are upon the sites of earlier settlement 

foci (Table 7). 

The first record of population on the island comes in 1588 after the 

wrecking of the ‘El Gran Grifon’, flagship of the Spanish Armada and the diary 

entries made by a survivor as to the state of the island (Ker, 1920). This and an 

early 17th century report by Richard James identified 16-17 houses but does 

not indicate the distribution of occupation (MacGillivray, 1953). Fenton (1978) 

suggests a population density on Shetland of between 6.6/6.8 per house; and 

Hunter (1997) extrapolates this interpretation to suggest a population of around 

115. A more detailed description was written in 1680 by Kay who discusses 

population, settlement and landuse and states. 

 

“ This Isle is indifferently fertile, so far as it is manured, yielding greater 

increase than any land in Zetland: but the cultivated ground is but little, 

lying altogether in the South end of the Isle: the rest they reserve for 

pasture and fuel, though the most part of the Isle might be made good 

corn land. There is no grain here but Oats and Beer whereof they 

seldom want as much as serves themselves.” (Bruce 1908 p55)  

 
 

Late 18th century Laird’s reports outline the island’s struggle with poverty 

(Ballantyne, 1993) but also mention, for the first time, three settlements by 

name at Leogh, Shirva and Gaila/Busta combined. Hunter (1997) suggests that 

these settlements are the foci seen in the earlier accounts, which have 

undergone evolution. The documents outline the buying of the four settlements 

by James Stewart of Brough in 1766. An idea of the size may be interpreted 

from how much the tunships were bought for. At this time Shirva may have 

been the largest settlement as it was purchased for 48 Merks. Leogh followed 

and could conceivably have been half the size, as only 24 Merks were paid. If 

this is correct it would make both Gaila and Busta very small occupation sites 

and only worth 12 Merks each, and purchased together.  
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KEY = N/R – Not Recorded, * - Present 

MAP & DOCUMENTARY EVIDENCE – 1588 TO 1891 

Demographi
c Data – 
Population 
& 
Settlement. 

1588 – 
Population  
Report 

e. 17th C. 
James’ 
Report 

1680 – 
Kay’s 
Descriptio
n 

1695 – van 
Keulen’s 
Map 

1750 & 1752 – 
Mackenzie 
Charts 

1764 – 
Lairds’ 
Reports 

1771 – 
Robertson
’s Visit 

L. 18th C. 
1st 
Statistical 
Account 

1790 – 
1838 
Rev. 
Mill’s 
Diary 

1804 – 
Fotheringhame’
s Visit 

1814 –  
Scott’s 
Visit 

1836 – 
Thomas
’ Map 
 

1845 – 2nd 
Statistical 
Account 

Census 1841 – 1891 

Population Estimated 
115 

Estimated 
115 - - - - 170 220 230 - 

250 230 230 - 
250 - 232 

POPULATION 

2
3
2 

2
7
9 

1

3
8
0 

2
2
6 

2
1
4 

2 

2
2
3 

YEAR 
1
8
4
1 

1
8
5
1 

1
8
6
1 

1
8
7
1 

1
8
8
1 

1
8
9
1 

SHIRVA N/R N/R N/R N/R N/R * N/A * N/R N/R N/R 
8 

house
s 

* * * * * * * 

LEOGH N/R NR NR NR NR * N/A * NR NR NR 
7 

house
s 

* * * * * * * 

BUSTA N/R N/R N/R N/R N/R 
Busta & 

Gaila 
togethe

r 

N/A * N/R N/R N/R 
5 

house
s 

* * * * * * * 

TAING N/R N/R N/R N/R N/R N/R N/A N/A N/R N/R N/R 
Single 
dwellin
g Unit 

* * * * * * * 

Comments 
Rough 

indication of the 
number of 

houses 16 – 17 

Rough 
indication of the 

number of 
houses 16 – 17 

Topographic
al & 

Landscape 
use 

description 

1st map 
Schematic 
overview of 

island 

Schematic 
overview of 

settlement at 
Utra and Gaila 

1st to 
mention 
S,L and 

B by 
name 

Population 
analysis. 

Settlements 
not 

mentioned 

1st definitive 
account of 

island 

Populatio
n 

analysis 
Population analysis 

Populatio
n 

analysis 

1st 
detailed 

and 
reliable 

map 
 

2nd definitive 
account of 
settlement, 
population 
and land 

use 

1. 
Population maximum. 

2. 1891 census affected by lighthouse 
constructors. 

Table 7, Map and documentary evidence from Shirva, Leogh, Busta and Taing on Fair Isle 1588 - 1891 
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Further documentary evidence is provided with the report of a visit by 

James Robertson in 1771. Robertson noted the population at around 170 

living in 4 tunships (Hibbert, 1822); these may well be the four suggested in 

the Laird’s reports but they are not named within the document. The number 

of residents on a broad scale could be estimated at around 42 people per 

tunship and with 5 per household suggesting 8 or 9 houses in each, but if the 

settlement sizes were imbalanced as suggested through the purchase prices, 

then it would be considerably harder to estimate the population in any one of 

the tunships.  

A clearer representation comes from the First Statistical Account (FSA) 

recorded in the 1790s. The population appears to have risen to around 220 

occupying the same four tunships, highlighting internal expansion rather than 

the development of new settlement sites (Hunter, 1997). The document states 

that: 

 

  “The houses are confusedly thrown together as chance, whim, or 

conveniently directed, into four clumps or towns, under the fine 

sounding names of Shewah (Shirva), Lioh (Leogh), Bustah (Busta), 

and Gelah (Gaila) (sic). These four little towns, as they are called, 

contain the inhabitants, of which there are 32 families, about 7 persons 

in each; 106 males, and 114 females; in all, 220. (OSA XIX p436). 

 

Between the 1790s and 1830s the island’s population increased greatly 

and this was recorded through the documentary evidence of Reverend John 

Mills, Fotheringhame’s visit of 1804 and Scott’s visit of 1814 which indicated 

populations of in excess of between 230 to 250 people, but do not add to the 

understanding of the settlement organisation or location (Laughlan, 1982). 

Although the population of Fair Isle was rising steadily in the early 19th 

century the increase of food imports from the mainland suggests that the 

islanders were finding it harder to feed themselves (Laughlan, 1982). This 

may well have been due to the new farms at Setter and Taing developed to 

reduce the numbers occupying individual farms. Although these new 

settlements had not been recorded before, Hunter, (1997), suggests that they 



 
 
 

64 
 

may well have been located upon considerably earlier settlements, possibly of 

Norse or Viking origin.  

From 1841 onwards censuses were conducted on a 10 year cycle and 

they detail precise male and female occupants and settlement density. These 

accounts also break down the inhabitants for each of the settlements. Shirva 

had a population of 82 divided into 15 families, Leogh 50 people in 8 families, 

Busta 50 people in 5 families and Gaila 32 people in 8 families, however the 

outlying settlements at Taing and Setter are not mentioned. Their existence is 

in no doubt as they are clearly marked on Thomas’s map of 1839. Later 

census illustrate more detail, in 1851 the census details individual dwellings 

and roads and the 1861 census, taken at the population maximum of 380, 

mentions a total of 53 units as well a large increase in the numbers of 

settlements. From 1861 onwards there has been a gradual decrease in 

population. 

 

2.3.4 HISTORICAL & MODERN MAP EVIDENCE FOR THE STUDY SITES 

 

The earliest map of the island was drawn by van Keulen in 1695 and 

this was followed by Mackenzie’s map of 1750, which depicts 8 houses with a 

different building to the north, and Mackenzie’s second map of 1752, which 

shows two houses at the southern end of the island and these appear to be 

located in the rough positions of the settlements of Gaila and Utra and are 

described as farmhouses. Considerable caution is needed when interpreting 

these maps as Mackenzie’s maps illustrate a shrinkage in population and 

settlement size from 8 to 2 and yet late 16th to mid 18th century documentary 

evidence all show a stable or slowly rising population. The first map detailing 

demographic data was produced in 1839. Thomas’s Map of 1839 shows the 

locations of Shirva, Leogh, Busta, Gaila, as well as Taing, Setter the school 

and church (Figure 8). Shirva contains 8 houses, six of which are in a 

clustered regular row orientated west to east behind two other buildings, more 

roughly aligned and distinctly separate from the nucleated arrangement. The 

organised settlement may be a result of expansion in the village with the older 

foci located further to the south towards ‘The How’. The arrangement of Gaila 
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also shows irregular nucleation with five small buildings appearing to roughly 

encircle a larger rectilinear building. This may represent a large farmstead 

with associated outbuildings or possibly a misrepresentation of The Haa, a 

high status laird’s house, with smaller houses as adjuncts located extremely 

close to Gaila.  Both Leogh and Busta show regular cluster style 

arrangements with seven and five properties in each of similar size. The map 

clearly defines the settlements of Shirva, Leogh, Busta and Gaila within the 

south of the island in an area called ‘cultivated land’, but between the arable 

area and the now deserted upland area are two smaller occupation sites at 

Setter and Taing. 

 

 
Figure 8, Thomas' 1839 map of Fair Isle showing the settlements of Shirva, 

Leogh, Busta and Taing (Thomas, 1839) 

 

Both are likely to be isolated farmsteads as they only contain 1 or 2 

buildings. A point to note is there are also two other possible settlements 

denoted as ruins on the map between Setter and Taing . They may, however, 
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be planticrues or sheep enclosures which show as such features on later 

maps and may have been misinterpreted by Thomas during the drawing of 

the map. The modern Ordnance Survey map of the island (Figure 9) shows a 

drastic reduction in size of the original settlements. Shirva and Leogh are now 

no more than large croft/farmsteads sites with many old farmhouses recycled 

as outbuildings and barns. Of all the settlements Shirva has remained almost 

intact and has only shrunk as a direct result of the population decline. There 

are five buildings, four of which are part of Shirva croft but the fifth has been 

rented to other islanders. 

 

 
Figure 9, Ordnance Survey map of south Fair Isle including Shirva, Leogh, 

Busta and Taing (Ordnance Survey EDINA, 2005) 
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Leogh contains five buildings but these are split between Lower Leogh, 

Leogh and Upper Leogh, with a share of the original farmland for the grazing 

of sheep. Busta is still present as a small farm but not specifically marked on 

the map as the large farm of Springfield now dwarfs the once most dominant 

settlement on the eastern side of the island. The greatest change is evident at 

the now deserted settlement of Taing. Unnamed on the modern map it is 

marked simply as a cluster of building outlines (Figures 8, 9 and 11) which 

have been systematically surveyed in detail (Hunter, 1997). 

 

2.4 ARCHAEOLOGICAL EVIDENCE FROM FAIR ISLE 
 
2.4.1 FIELD SYSTEM EVIDENCE 
 

 
Figure 10, Extract from Hunter's survey of field systems across Shirva and 

Leogh (Adapted from Hunter, 1997) 
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The field systems on the island in the land of the four settlements were 

surveyed by Hunter between 1984 and 1987, and show distinctive 

characteristics (Figs 10 and 11). Overall there is a distinct concentration of 

rigs in the west of the island corresponding with the documentary evidence of 

the oldest settlements but the field system size and regularity increase 

towards the north from patchy irregular rig around The Haa and the now 

deserted settlement of Gaila to very large sub-rectangular arable plots around 

the modern farms of Setter and Field together with the area of arable 

expansion above the feelie dyke, a result of population pressure on the land.    

 

 
Plate 6, Rig systems in former arable outfield at Shirva 
 

The field systems associated with Shirva and Leogh (Plate 6) have the 

most clearly defined arable field system evidence with a mixture of distinctive 

north east to south west and north west to south east orientated areas of rig 

with remarkable similar shape. The largest rig systems occur in the outfield 

and areas with better drainage as can be seen in the southern end of the 

Leogh. However, this area may be the remnants of an earlier arable field 

system layout as the surface evidence is poorly preserved and where it can 
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be seen, the rig is very patchy and is in thinner, longer strips associated with 

earlier ploughing techniques.  

In contrast to the western side of the island the rig and field systems on 

the eastern side are much sparser (Fig 11). Around Taing there is very little 

evidence of any arable field systems except for a large block of rig running 

north east to south west and several much smaller blocks running west to 

east. The age of the rigs is unknown but it is likely that these earthworks are 

the only remnants of a possible larger arable landscape created with the 

development of Taing. Indeed the overall lack of earthworks on the eastern 

side of the island suggests that the features that are present are associated 

with later settlements. The two surveys clearly contrast the difference 

between the old arable landscape and the existing pastoral landscape 

consisting of much larger fields and enclosures. However, the main 

boundaries between the farmland of each of each of the settlements have 

remained and been made permanent with the creation of fences. 

 

 
Figure 11, Extract from Hunter's survey of field systems across Taing 

(Adapted from Hunter, 1997) 
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2.4.2 SETTLEMENT EVIDENCE 

 

Archaeological evidence of settlement on Fair Isle between the 

medieval, post medieval and modern periods has been interpreted by detailed 

earthwork surveys in and around the existing settlements compiled by John 

Hunter. Shirva has the most complex earthworks of all the settlements on the 

island, reflecting its complex morphology through history (Plates 7 and 8). 

Today there are three houses each comprising a small kaleyard and small 

infield areas, however, the earthwork evidence reveals that there were once 

six buildings to the east. These may well have still been present until the mid 

1800s as the same number are denoted in Thomas’s map. Three of the 

buildings are truncated by the modern road and appear to show no correlation 

with either the modern road or an earlier road further east and may therefore 

be earlier structures. Two further buildings are also present 60m to the north 

(Plate 10) and two 50m to the west (Plate 9). All the buildings have similar 

rectangular shapes, ranging from 10m to 20m long by 4.5m to 5m wide, with a 

mixture of bi-partite and tri-partite internal segmentation.  

 

 
Plate 7, Earthworks to the west of Shirva 
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Plate 8, Earthworks of small tripartite building to the north of Shirva 
 

 
Plate 9, Building with surviving masonry wall on the northern side of Taing 

surrounded by poor heath farmland 

 

At Leogh no building earthworks are evident around the settlements of 

Upper and Lower Leogh but two structures were identified 150m to the south 
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and these consist of a tri-partite building 15m by 7.5m and a less distinctive 

structure possibly an outbuilding or wall for a kaleyard.  

Taing has two buildings with more distinct rectangular form, 

foundations and a standing wall. The northerly building (Plates 9 and 10) is 

10m by 2.5m with bi-partite internal partitions and a semi-circular structure 

interpreted as a corn drier (Hunter, 1997). To the north and east are two large 

square enclosures which may have been kaleyards or areas to hold livestock. 

The second building to the south is 11m by 3m with a bi-partite division and 

an additional square feature at the west end of uncertain interpretation. The 

earthwork survey failed to discover any buildings at Busta and as Hunter 

states this may well be because the existing settlements have evolved in the 

same locations destroying any archaeological evidence.  

 
 2.5 FIELDWORK RESULTS 

 
Fieldwork on the island initially consisted of a detailed auger survey of 

three settlements; Shirva, Leogh and Taing to determine whether any 

anthropogenic soils were present in the agricultural areas and if so to 

determine their extent. Shirva and Leogh were chosen as these had well 

documented histories and were regarded as original foci of settlement since 

the Viking occupation (sections 2.3.1 to 2.3.4). They were also located to the 

west and south west of the island within traditionally the best agricultural land. 

In contrast Taing was selected because of a considerably shorter settlement 

history, between A.D.1836 – 1845 and its desertion around 100 years ago 

and was located on much poorer land to the east (section 2.4). The key 

fieldwork questions are outlined in section (1.11) and the methodology in 

section (1.12). The results section includes an analysis of the spatial 

distribution of the soils at Shirva, Leogh and Taing (section 2.6). There is a 

more detailed analysis of the texture and composition of the soils found in five 

landuse areas; buildings, kaleyards, infields, outfields and upland areas 

(section 2.7). The results are then analysed within the individual farm history 

and the geography on the island (section 2.8) and between other Shetland 

and Orkney Islands (section 2.9). (Raw data in appendices 1 and 2).  
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2.6 THE SPATIAL DISTRIBUTION OF SOILS IDENTIFIED IN THE 
AUGER SURVEY AT SHIRVA, LEOGH AND TAING 

 
2.6.1 FARMSTEAD 1: SHIRVA 
 

The first process to be conducted on the island was a detailed auger 

survey of three farms (Shirva, Leogh and Taing) in order to determine the 

range, texture, composition and distribution of soils and also to analyse the 

level of anthropogenic amendment to the soils. 56 cores were taken in total 

across the three farms. Shirva was then sampled in more detail with 7 test pit 

excavations to sample the soils in three comparative landuse areas (Fig 12). 

 
Figure 12, Auger and test pit locations across Shirva 
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Figure 12 shows the location of the 19 auger positions (2 kaleyard, 3 

infield, 9 outfield and 6 upland) across the farmland of Shirva. Four transects 

have been created which display the soil horizons across the settlement. In 

transects 1 and 2 (Fig 13) soil horizons Ap 1 and 2 are fairly uniform across 

the site, ranging from 50mm to 80mm, and vary very little in texture and 

composition. The most extensive horizon, Ap 3, has a more variable depth 

ranging from 400mm on the top of slopes to +500mm in lower areas as a 

result of downslope movement. In two cores a buried peat soil (H) was 

identified and in the down slope of the infield and outfield area and these may 

be pockets of remnant peat soil. Transects 1 and 4 illustrate the spatial 

distribution of the soils across the three main areas of the farm. Interestingly 

the kaleyards actually contain a relatively shallow sequence of soils compared 

to the outfield area which suggests that if anthropogenic manuring is occurring 

then the emphasis appears to be in the main arable infield and outfield areas 

of the farm rather than the small garden enclosures. Sections three and four 

(Fig 14) illustrate the soil profiles on the western edge of the farmland and its 

relationship with the upland stratigraphy. In cores 12 and 13 of transect 3, the 

natural peat horizons were found along with a leached E horizon and a sandy 

B horizon and these horizons thin slightly downslope. The soils are heavily 

organic with rootlets and inclusions of quartz grains and some black 

amorphous particles. In core 10, transect four the upland area is less steep 

and partially terraced and the sediments appear to have been utilised for 

cultivation due to the presence of rig features. The texture and composition of 

the upland peaty soils (H1 to H3) also differ distinctively from the natural soils 

on the steeper slope to the south. On the whole the soils appear to have been 

initially upland peat horizons but the colours are generally darker ranging from 

a greyish brown to a dark greyish brown with a higher sand texture and black 

amorphous inclusions. A distinctive mottled horizon was also found which was 

greyish brown and heavily mixed with the H horizon through bioturbation or 

possibly ploughing but only small plough marks were identified. The organic 

Ap horizons are present in cores 15 and 10. The upper horizons are relatively 

uniform across the farm but the Ap-3 horizon is remarkably thick in places 

between 250 – 300mm and thins up the shallower eastern slope.   
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Figure 13, The distribution of soils across Shirva farmstead in transects 1 and 2 
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Figure 14, The distribution of soils across Shirva farmstead in transects 3 and 4 
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2.6.2 FARMSTEAD 2: LEOGH 

 

At Leogh 20 cores were taken across the farmland with 3 in the 

kaleyard area, 3 in the infield, 11 in the outfield and 2 cores in the upland area 

(20-39) (Fig 15). Four transects were produced of the soil stratigraphy across 

Leogh (transects 5 to 8), (Figs 16 and 17) and transect 8 illustrates clearly the 

distribution of soil horizons across each of the landuse areas from upland to 

kaleyard.  

 
 

Figure 15, Auger and test pit locations across Leogh 
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There is a general increase in depth of the Ap horizons from the 

outfield to the infield areas and a further increase in the kaleyard possibly as a 

result of increased organic amendment to the soils. The variation is most 

clearly seen in the Ap-3 horizon as the Ap-1 and Ap-2 horizons vary very little 

across the farm 

The Ap3 horizon ranges in depth from 150mm to 600mm and, as seen 

at Shirva, the depth increases downslope especially in transect 6 where the 

landsurface drops away to the south. In places, however, there are variations 

in the distribution of the Ap-3 horizon especially in transect 5. 

Transects seven and eight (Fig 17) illustrate the variations in soil 

between the upland area and the lowland agricultural zone. The change in 

slope mirrors the change in landuse and this is also reflected in the soils. In 

cores 32 and 38 the soil horizons are very shallow and consist of a typical 

upland peat soil. In places these soils thin dramatically and are overlain by 

organically enhanced Ap horizons where cultivation has occurred in the past. 

Compared to the organic soils in the infield and outfield areas however there 

is only minimal evidence of agriculture in the marginal areas of the farm.   
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Figure 16, The distribution of soils across Leogh farmstead in transects 5 and 6 
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Figure 17, The distribution of soils across Leogh farmstead in transects 7 and 8 
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2.6.3 FARMSTEAD 3: TAING 

 

At Taing, 17 cores were taken (40-56) with 2 in the building, to 

determine whether there were any occupation horizons, 4 in the kaleyard, 2 in 

the infield area, 7 in the outfield/upland area (Fig 18). From the data collected 

three transects were produced and these revealed a very different 

stratigraphy from the other two settlements (Figures 19 and 20). 

 

 
 

Figure 18, Auger locations across Taing 
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Only one Ap horizon was identified across the farm and it was 

considerably less widespread than in the other two settlements. The horizon 

ranges from 40mm to 70mm deep and consists of a greyish brown to brown 

(10YR 5/1 to 3/3) silty clay loam with rootlets, quartz and sandstone 

inclusions. Compared to the Ap-1 horizons from Shirva and Leogh the soil at 

Taing contained very little anthropogenic evidence and only few, small 

fragments of charcoal and black amorphous inclusions. Despite the shallow 

depth of the Ap soil horizon there is a slight increase towards the centre of the 

settlement which indicates minimal manuring, however there is also surface 

evidence that the natural peaty soils have also been used in the past for 

cultivation especially around the margins of the farm in all the transects but 

especially cores 40,48,50,52 and 56. Below the Ap horizon are a number of 

distinctive natural peaty horizons (H1 to H3) and these range in depth 

between 50mm to 350mm and have a distinctive dark brown to dark greyish 

brown colour (10YR 2/2 to 3/2) and have a silty sand clay texture with peaty 

inclusions along with some small quartz fragments.  
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Figure 19, The distribution of soils across Taing farmstead in transects 9 and 10 
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Figure 20, The distribution of soils across transect 11 
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2.7 THE DISTRIBUTION OF SOIL HORIZONS ACROSS FIVE LANDUSE 
AREAS 

 
2.7.1 BUILDINGS 
 

The majority of cores were taken from agricultural areas which are 

analysed below, however at Taing, two cores were taken through the 

southern building in two sections of the tripartite structure. This was 

conducted to determine the stratigraphy through a building and to see 

whether there was any evidence of burning or manure storage horizons or 

possible changes in landuse. No other buildings at Shirva or Leogh were 

sampled as no clear stratigraphy was evident.  

 

 
Plate 10, Southern tripartite building at Taing 

 

The building shown in plate 10 was sampled at the northern and 

southern end and is recorded in cores 47 and 48. The stratigraphy did not 

show any clearly definable burnt layers or compacted floor layers but did have 

a considerable depth of what appeared to be an amended soil suggesting the 

farm had been developed upon an area of arable farmland. The upper layers 

in the building (Ap 1 to 3) consisted of greyish brown to brown (10YR 4/2 to 

3/3) and some dark grey (10YR 5/2) coloured silty clay loams with inclusions 
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of rootlets, quartz grains and charcoal/coal material. These soils were 220mm 

and 290mm deep at the two localities and most likely represent occupation 

deposits within the structures and sit directly upon the B horizon, a distinctive 

dark reddish brown to yellowish brown subsoil (10YR 4/4 to 5/6). At the 

boundary between the two soils, however, a mixture of coal and burnt clay 

was found which is the only evidence of a possible hearth although the 

inclusions were heavily fragmented and well rounded and therefore may 

represent the storage of manuring material rather than from in situ burning. 

 

  
Plate 11, Test pit 1 showing pre and post excavation of stony horizon with 

post hole and overlying arable soils 

 

At Shirva a distinctive archaeological feature was uncovered when test 

pit one was excavated (Plate 11). There was no trace of the structure on the 

surface as the feature had been buried below 340mm of anthropogenic soil 

which did show clear rig morphology orientated north to south. The absolute 

extent of the feature was undetermined due to the size of the exploratory 

excavation, however it was clear that there had been a sizeable structure on 

the site from the compacted stony deposit which was 600mm deep and was 

composed of a number of lithologies including sandstone, dolorites, 

mudstones, quartzites, schists and granite of various size and shape. 

Surrounding the large stones was a very dark humic soil with inclusions of 

plant material, building debris and charcoal. On the south side of the test pit a 

large post-hole was identified, 370mm in diameter with a sub-rounded to sub-
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square shape and very distinctive sharp sides and a flat base which appeared 

to contain a number of tabular sandstone blocks not deliberately placed but 

acting as post pads. The feature was identified because of the fill of the post 

hole, a very distinctive dark brown to grey black coloured (10YR 2/2 to 3/1) 

silty sand loam, possibly originating from the later enhanced arable soil, with 

very small inclusions of quartz fragments and some charcoal (Fig 21).  

 

 
 

Figure 21, Section drawing of test pit 1 showing the dense stoney horizon and 

overlying arable soils 

 

2.7.2 KALEYARDS  

 

Four kaleyards were sampled by the auger in order to determine the 

range of depths of soils present and to assess anthropogenic influence upon 
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their origin and formation. Each of the kaleyards assessed are in different 

states, Shirva and Leogh are disused kaleyards within extant farmsteads, 

Busta has a kaleyard which is still used by the farm for growing vegetables 

(Plate 12) and Taing has a kaleyard located within a deserted farmstead.     

 
Plate 12, Busta kaleyard looking west 
 

The kaleyards were identified from maps and field walkovers and were 

typically small sub-square to sub-rectangular enclosed areas measuring on 

average 10 – 15m by 9 – 12m and associated with a croft building. In all but 

the Busta kaleyard the vegetation consisted of short grass, weeds and short 

tree species. The identification of kaleyards was also assisted by the changes 

in landsurface height. This was most evident at Shirva and Leogh where a 

difference of 300mm to 450mm was observed, however at Taing there was 

little to no variation with surrounding areas. At Busta, the kaleyard had a very 

subtle concave topography from the movement of soil by human and natural 

processes leading to degradation of soil in the middle of the kaleyard and a 

build up of soil towards the edges of the enclosure and an increase in ground 

level with the surrounding infield field system. This gave the impression of 

substantial depth, but sampling showed a depleted stratigraphy.
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Figure 22, Section drawing and photograph of Shirva kaleyard soil horizons in test pit 2 
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Figure 23, Section drawing and photograph of Busta kaleyard soil horizons in test pit 8 
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Figure 24, Section drawing and photograph of Leogh kaleyard soil horizons in test pit 9 
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The deepest arable horizons were located at Shirva, Busta and Leogh 

with just over 400mm of amended arable soils. Based upon the auger survey 

three test pits were excavated in the kaleyards at Shirva, Leogh and Busta 

(Figures 22 to 24) and these contain very distinctive soil horizons. 

The upper soil horizon (Ap-1) consists of a dark brown to dark greyish 

brown (10YR 3/3 to 10YR 5/2) silty clay loam with large fragments of mineral 

and organic inclusions including medium sized charcoal and amorphous black 

particles along with highly degraded peat fragments and some modern brick, 

tile and ceramics inclusions. At each site the Ap-1 horizon had a very similar 

range of depths from 50 – 100mm with a very clear boundary with the layer 

below.  

The Ap-2 horizon is also fairly uniform across each of the sites and 

ranges from 50 – 80mm. The horizon is a dark brown colour (10YR 3/3) with a 

silty clay loam texture and large quantities of organic material in the form of 

partially decomposed plant material, large peat fragments and some brick and 

post medieval pottery.  

The most extensive horizon at all the sites is the Ap-3 horizon which is 

a dark brown to brown/grey colour (10YR 3/3 to 4/2) with areas of dark grey 

(10YR 4/1) and a silty clay sand loam texture. The soil horizon also contains 

inclusions of sub-rounded sandstone and quartz fragments, medium sized 

charcoal and amorphous black particles along with highly degraded peat 

fragments. The horizon ranges from 270 – 390mm with the deepest soils at 

Busta and slightly shallower deposits at Shirva and Leogh. 

 

2.7.3 INFIELD AREAS 

 

At Shirva three cores (3, 5 and 8) were taken and three test pits (1,3 

and 4), (Figs 25, 26 and 27) excavated in the infield area. Three cores were 

located close to the settlement centre (3, 5 and 8) and they each had a 

shallow stratigraphy ranging from 350mm to 380mm in the north and 540mm 

to 570mm to the south, highlighting a deepening of soils towards the southern 

end and several large terraced fields.  
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Figure 25, Section drawing and photograph of the soil sequence and 

archaeological features at Shirva in test pit 1 
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Figure 26, Section drawing and photograph of the soil sequence at Shirva in 

test pit 3 
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Figure 27, Section drawing and photograph of the soil sequence at Shirva in 

test pit 4 
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The Ap-1 horizon is 40mm to 60mm deep and consists of a brown to 

dark brown (10YR 2/3 to 3/3) sandy silty loam texture with quartz fragments, 

rootlets and charcoal inclusions. Beneath that is a similar Ap-2 horizon, 

typically 30mm to 40mm thick, and contains slightly less organic inclusions. 

To the south the Ap-1 and 2 horizons contain large peaty organic material.  

The Ap-3 horizon is the deepest and ranges from 290mm to 420mm 

and is characterised by a dark grey to dark greyish brown (10YR 5/2 to 3/2) 

soil with areas of very dark brown and even black (10YR 2/2 to 2/1) especially 

towards the southern edge of the settlement. Throughout the horizon the 

texture is a distinctive sandy silt loam with inclusions of sandstone fragments, 

organic material, charcoal and some heavily degraded building material in the 

form of slate and brick. The Ap-3 horizon in the northern infield has a sharp 

boundary with the distinctive dark yellowish brown (10YR 5/6) silty sand clay 

subsoil (B) and there is substantial mixing.  

 

2.7.4 OUTFIELD AREAS 

 

At Shirva the three test pits (5,6,7) were excavated in areas identified 

as having the most extensive stratigraphy (Figs 28 to 30). Test pit 5 was 

located directly west of the farm complex in an area of broad distinctive rig. 

Test pit 6 was located in the north west corner of the outfield area in an area 

of narrower, less well defined rig orientated on a different alignment to the 

surrounding rig. Test pit 7 is located to the south of Shirva’s outfield on a 

distinctive incline and amongst north to south orientated rig.  

At each of the test pits, three distinctive soil horizons are present and 

these include an Ap-1 soil horizon, typically a dark brown (10YR 2/2 to 3/3) 

silty sand clay loam with quartz fragments and some organics with a uniform 

range across the site from 60mm to 90mm. Under the Ap-1 horizon is a 

second thin organic layer (Ap-2) which ranges from 50mm to 90mm and 

consists of a dark brown (10YR 2/2 to 3/3) silty clay loam with inclusions of 

organic peat fragments and small charcoal fragments together with sandstone 

lithics. The most extensive horizon, in the outfield, is a very organic Ap-3 
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horizon ranging from 230mm to 270mm in the centre to 310mm to 360mm at 

the southern end.  

This horizon is typically dark brown to grey, black (10YR 3/3 to 3/2 and 

2/1) colour with a silty clay loam texture and frequent organic peats, humified 

plant material and charcoal fragments. Within test pit 5 and 6 a less distinctive 

soil horizon (Ap-4) is present with a distinctive lighter brown to dark grey 

colour (10YR 5/3 to 5/1) and a silty clay sand loam texture with inclusions of 

organics and charcoal fragments and lithic material. In test pit 6 the horizon 

contains large pieces of fragmented peat from the H horizon below which has 

a very dark brown to grey black colour (10YR 2/2 to 2/1) with a loamy peat 

texture and possibly constitutes a buried podzolic soil which has been heavily 

disturbed by ploughing action and ranges from 120mm to 170mm. At each of 

the test pits the natural was identified as a light yellow, white to red orange 

(10YR 7/6 to 8/1) sandy soil (B) with a medium to coarse texture and heavy 

iron staining representing heavily weathered Old Red Sandstone.   
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Figure 28, Section drawing and photograph of the soil sequence at Shirva in test pit 5 
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Figure 29, Section drawing and photograph of the soil sequence at Shirva in test pit 6 
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Figure 30, Section drawing and photograph of the soil sequence in Shirva in test pit 7 
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2.7.5 NATURAL SOILS IN UPLAND AREAS 

 

In the upland areas of Shirva and Leogh where arable farming was not 

conducted, very distinctive peat soil sequences were found (H1 to H3). The 

peat horizons range from <100mm in the central and southern upland areas 

where considerable stripping has occurred in the past to over 1.5m deep at 

the northern end of the island stripping has not occurred.  

 In the upland areas around the southern agricultural end of the island 

the peat horizons are found alongside shallow soils of the Skelbury 

Association (Plate 13) these soils have a 100 – 120mm thick H1 horizon 

typically dark grey brown to brown coloured (10YR 4/2 to 3/2) with a silty sand 

texture. Beneath the H1 horizon is a thicker 180 – 220mm light yellow orange 

(10YR 5/6) silty sand and a 55 – 75mm dark grey (10YR 3/2) silty sand B1 

and B2 horizons. 

 

 
Plate 13, Natural soil sequence present on Fair Isle sampled from the west of 

Shirva (see Fig 11). 
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Context Location Description Range of 
Depths (mm) Farm Transects Test 

Pits 

Ap-1 All All All Silty sand loam with peaty organics and some clay in wetter areas. Dark brown 

(10YR 3/3) to dark greyish brown (10YR 5/2) with inclusions of quartz, charcoal, 

rootlets and lithics. 

25 – 100 

Ap-2 Shirva 

Leogh 

1 to 8 All Silty sand loam with peat areas. Dark greyish brown (10YR 4/2) to dark grey (10YR 

4/1) and dark brown (10YR 3/3) with inclusions of sandstone and quartz, charcoal. 
40 – 120 

Ap-3 Shirva 

Leogh 

1 to 8 All Silty loam to silty sand loam with organics. Typically very dark brown (10YR 2/2), 

dark grey brown (10YR 3/2) with areas of very dark greyish brown to black (10YR 

3/2 to 2/1) especially in kaleyard areas. Inclusions of charcoal, black amorphous 

particles, sandstone, peaty organics, lithics. 

200 – 500 

Ap-4 Shirva 

Leogh 

1,2,3,5,7 

and 8 

3,5,6 
 

Silty loam with large a large sand component and organic fragments with small clay 

quantities. Dark grey brown (10YR 4/2) to brown (10YR 5/3) and some areas of 

dark brown (10YR 2/2). Inclusions of quartz sand, sandstone, small lithic 

fragments. Contains remnants of buried peaty soils (AH horizon typically Black 

colour 10YR 2/1) 

100 – 250  

Table 8, Summary of all arable soils identified with auger surveys and test pits from three farms on Fair Isle 
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Table 9, Summary of all natural soils identified in auger surveys and test pits on Fair Isle

Context 
 

Location Description Range of 
Depths (mm) Farm Transects Test Pits 

H All 2,5, 

6,7 

6 
 

Sandy loam with a large quantity of peat (+85%). Distinctive dark brown colour (10YR 2/2) with 

organic plant and peat fragments and inclusions of quartz sand grains and some foreign lithics.  
100 

H1 All 3,5, 

7,8 

/ 
 

Loamy peat soil with a distinctive dark yellowish brown (10YR 4/6) to dark brown (10YR 2/2) 

(7.5YR 3/2) colour with high organic component of roots and plant material and some inorganic 

mineral inclusions of quartz.  

80 – 250  

H2 All 3,5, 

8 

/ 
 

Loamy peat soil with patches of sandy and clay areas. With a very distinctive dark greyish brown 

(10YR 4/2) to greyish brown (10YR 5/2) and areas of very dark greyish brown to black (10YR 2/1 

to 2/2).Inclusions of small sub-rounded quartz grains and peaty organics.  

70 – 200  

H3 All 3 / Silty peat soil with sand and clay patches. Distinctive dark greyish brown (10YR 4/2) to greyish 

brown (10YR 5/2) colour.  Contains inclusions of small sub-rounded quartz grains and peaty 

organics. 

180 

E Shirva 

Taing 

3, 

11 

/ 
 

Silty sand with a very light grey to grey colour (10YR 7/1 to 6/1) and in places blanched white 

(10YR 8/1) no inclusions of any organics but some large inorganic fragments of quartz and lithics 

becoming coarser towards the base of the deposit. 

130 – 150 

B1 Shirva 

Leogh 

Taing 

3,4,5 

6,7,8,9 

10,11,12 

All 
 
 

Clay silty sand soil with a distinctive dark yellowish brown (10YR 4/4) to yellowish brown (10YR 

6/6) and in places light grey (10YR 6/1) colour. Seen in almost all the cores the deposit contains 

very little organic material save the material moved down by bioturbation. Large sandstone and 

lithic fragments +30mm and characteristic strong brown (7.5YR 5/8) coloured iron nodules. 

+100 

B2 Leogh

Taing 

6,7,8 

10, 11,12 

/ 
 

Silty sand soil with a light grey (10YR 6/1) to yellowish brown (10YR 5/6) colour. No organic 

inclusion contained within but does contain larger lithic fragments, quartz particles and sandstone 
 +250 

C Leogh 6 Natural Silty sand abraided till deposit. Dark Iron rich colour (7.5YR 5/8) strong brown with no organics +100 
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2.8 DISCUSSION OF THE SOIL RESULTS FROM FAIR ISLE 
 

Distinctive organic soil horizons were found at each of the sample sites 

and in each of the landuse areas and these soils are summarised in tables 8 

and 9. Overall the soils have similar dark colours, have distinctive silty sand 

textures and contain larger quantities of organic and anthropogenic inclusions 

compared to the natural soil horizons. The evidence from the field analyses 

(sections 2.6 and 2.7) suggests that these soils have been amended by 

manuring by humans in order to create and maintain soils for arable farming. 

However, the range of depths of the soils is not as extensive as the deep 

topsoils and anthropogenic soils found in other areas of Orkney and Shetland 

and contain considerably less evidence of settlement waste such as ceramics 

and bone material and therefore should not be classed as ‘anthropogenic 

soils’ as described in section 1.4.1. Instead it is suggested that these soils be 

described as ‘amended arable soils’. The distribution of these amended soils 

is also highly variable across the kaleyard, infield and outfield areas 

suggesting that each farm on Fair Isle had very individual methods of 

manuring based upon a limited resource.    

The distribution of amended soils at each of the sites is illustrated in 

figure 31. Surprisingly the deepest horizons are present at Shirva outfield with 

an average depth of 580mm and this may represent an extensive manuring 

programme across the entire outfield as a result of settlement and agricultural 

expansion or more likely because of the movement of soils down slope. The 

older farms at Busta, Shirva and Leogh have considerably deeper 

stratigraphies of Ap horizons (490mm – 500mm) compared to less than 

100mm at Taing. The same pattern can be seen in the infield and outfields at 

Shirva and Leogh where a distinctive regularity in soil depth is present and 

suggests that a very similar manuring strategy was being employed by the 

oldest farmsteads across the whole site rather than concentrating on a 

particular landuse area.  

 At Taing there is considerably less amended soil across the farm 

reflecting the farms late formation and development during the period when 

the population reached 360 in 1860. There is however a clear decrease in 

depth with distance from the settlement centre illustrating a focus of manuring 
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in the kaleyard area, emphasising the importance of developing a good soil for 

vegetables. The lack of amended soil in the infield and outfield areas is 

probably a reflection of the short period of time in which the farm was 

occupied and also because of a lack of organic material to use as manure.  

 Of the organic soils identified several localities have a thin Ap-4 horizon 

which is the oldest enhanced soil in the arable area of the island. Its apparent 

random occurrence in the infield and outfield areas of Shirva and Leogh and 

organic nature suggests it was a precursory amended soil developed in small 

areas available for crop growth. 

 

 
 

  

 

 The extent of the Ap-3 horizon across every arable area illustrates a 

huge development in manuring strategy on the island. Inclusions seen in core 

and test pit samples show distinctive evidence of the use of peat from upland 

areas for fuel, bedding for animals and building material before deposition on 

the land. The Ap-2 and Ap-1 are texturally very similar to Ap-3 suggesting an 

unchanged manuring process however they are considerably shallower and 
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Figure 31, Average depths of arable soil horizons across three landuse areas

on Fair Isle 
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may indicate a slower rate of addition since the decline in arable agriculture 

on the island since the early 20th century.    

In several areas of the island distinctive rig features associated with 

arable farming have been mapped but are within definite upland areas and 

again illustrate how population and land pressures led the islanders to 

develop farmland on the poorer soils. It appears that farmers were utilising 

upland soils for cultivation with either minimal or no anthropogenic 

enhancement.   

 

2.9 FAIR ISLE IN CONTEXT 
 

 The amended soils identified in the agricultural area of Fair Isle 

represent the development of an arable soil since humans moved from 

occupying the upland to the lowland area and there is a great deal of 

evidence to suggest that the manuring tradition on Fair Isle was developed 

from the early days of occupation (Table 10).  

  

 Chrystall, (1994) Pears (this volume) 

Area of study Burn of Furse (Upland) mid/late 

Bronze Age settlement 

Arable farmland (Lowland) Early 

Viking to Modern Period 

Depth of 

Anthropogenic 

soils 

Test Pit 1 – 290mm 

Test Pit 2 – 400mm 

Test Pit 3 – 670mm  

Kaleyard – 400mm to 500mm 

Infields – 400mm to 420mm  

Outfields – 420mm to 580mm 

Colour Black Dark brown, grey, black 

Texture Sandy silt loam Silty loam to silty sand loam 

Inclusions Fine roots and many sub-

angular stones 

Charcoal, black amorphous 

particles, sandstone, peaty 

organics, lithics. 

Table 10, Comparison of the soils identified by work conducted in the upland 

and lowland areas of Fair Isle 

 

 The soils identified in the auger and test pit survey in the arable soils 

are in many respects similar to the soils identified by Chrystall, (1994). The 

range of depths identified are very similar between 290mm to 400mm with an 
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exception of test pit 3 which was interpreted as a midden deposit due to the 

frequency of burnt bone fragments and carbonised plant material. Both 

studies highlight the use of peat as the main manuring component creating 

the dark coloured silty loam texture but the inclusions of calcium carbonate 

particles in the upland anthropogenic soils suggest that seaweed was also 

used, however no evidence was found in this analysis for the addition of 

seaweed or calcareous sand. In the lowland arable soils there were more 

visible carbonised particles, especially charcoal and peat, in the soils 

suggesting a greater input from domestic sources than in the upland area 

where no macro carbonised particles were identified. 

 The amended soils found on Fair Isle differ considerably from the 

anthropogenic soils from other Northern Isles (Table 11). On Orkney 

anthropogenic soils were identified on three islands with the deepest soils well 

over 1m at Westray and were typically dark brown calcareous sandy loam 

soils with inclusions of shell material and small charcoal fragments. At Tofts 

Ness on Sanday the anthropogenic soils occur alongside a number of 

distinctive farm mound features composed of domestic and organic waste. 

The soils are typically dark to very dark grey colour with blocky structure and 

small charcoal particles. At Marwick on West Mainland the soils are typically 

dark greyish brown to dark brown coloured silty loams with fine charcoal 

particles.  

  

Authors (Date) Orkney 

Site Depth 

Davidson and Simpson, 

(1984) 

West Howe, Marwick 

Netherskail, Marwick 

(West Mainland) 

200 – 800mm  

200 – 600mm 

Simpson et al., (1998a) Tofts Ness (Sanday) 275 – 900mm 

Simpson et al., (2005) Quoygrew (Westray) 630 – 1125mm 

Table 11, Anthropogenic soils on Orkney 
 

 On the Shetland Islands (Table 12) the deepest anthropogenic soils 

have been identified recently on Unst, however these are isolated horizons 

associated with anthropogenic dumps and more widespread deeper soils 
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have been identified at Scatness and directly associated with the multi-period 

sites at Old Scatness and Jarlshof. These soils are typically dark coloured and 

highly organic and located in an area with a large resource of organic 

material. The site of Papa Stour has also been analysed for anthropogenic 

soils and analysis at a number of the small farmsteads has revealed a range 

of soils from 200mm to 750mm, especially in the kaleyards. 

 On St Kilda in the North Atlantic there are over 1.5m of anthropogenic 

soils in association with addition of peat and turf creating very dark grey, 

brown/black soils with black carbonised particle inclusions from the input of 

domestic waste (Meharg et al., 2006). Texturally the anthropogenic soils on 

Fair Isle are very similar to the Orcadian and Shetland soils and the frequent 

presence of charcoal and carbonised particles is strong indication of 

anthropogenic input. In terms of distribution the Fair Isle soils fit very closely 

with the depth of soils found at Papa Stour which reflects the utilisation of 

peat, turf and seaweed as manure materials and probably a similar 

management strategy because of the size of the island and limited resource. 

 

Authors (Date) Shetland 

Site Depth 

Bryant and Davidson, (1996) Olligarth (Papa Stour) Planticrue: 200mm   

Kaleyard: 650mm  

Field: 250mm  

Davidson and Carter, (1997) East Biggins,  

Gardie,  

Hamnavoe,  

North Banks  

(Papa Stour) 

750mm  

740mm  

300mm 

480 – 600mm 

Simpson et al., (1998b) Old Scatness (Scatness) +600 – 800mm 

MacKenzie, (2007) Underhoull (Unst) 150 – 300mm with 

areas in excess of 

1150mm  

Table 12, Anthropogenic soils on Shetland 
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3 STUDY SITE 2: OLTHOF, THE NETHERLANDS 
 
3.1 INTRODUCTION 
 

The farmstead of Olthof is located in the central-eastern part of the 

Netherlands in the province of Overijssel (Fig 32). The site is situated 3 miles 

(5km) south of the city of Deventer and 0.6 miles (1km) east of the town of 

Epse. The river Ijssel runs north-north west, south-south east 0.9 miles 

(1.5km) to the east and the border between the provinces of Overijssel and 

Gelderland; the course of the river has varied and now lies to the north of the 

farmstead.  

 
 

Figure 32, Location map of the Netherlands and the research site at Olthof on 

the Gelderland-Overijssel border 
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3.2 GEOLOGY AND SOILS OF THE NETHERLANDS 
 

Compared to other areas of Europe the Netherlands has a relatively 

short geological history. The oldest rocks originate from the Palaeozoic era 

and are situated in the very north and south of the country and consist of 

distinctive Carboniferous limestone (359 – 299Ma) and Permian sandstones 

(299 – 251Ma).  

During the Mesozoic Triassic sands and evaporites were deposited 

(250 – 200Ma) and rising sea levels in the Anglo-Paris basin, during the 

Cretaceous, (145 – 65Ma) led to flooding and the deposition of thick chalk 

layers, common in the north of the country. Most of the deposits present in the 

Netherlands date from the Cenozoic to the Holocene. Between 40 – 25Ma 

Oligocene clays were deposited across the east of the country and between 

24 – 5Ma distinctive highly organic coal seams around Maastricht in the south 

east. In the central and southern zones, around Breda, cyclical clay and sand 

layers are commonplace and these were deposited in the Pliocene (5 – 

1.5Ma) from rising and falling sea levels associated with ice movement.  

During the late Cenozoic the Netherlands was covered by two large ice 

sheets. The Elsterian and Saalian Ice Ages had major effects upon the Dutch 

landscape with the deposition of thick layers of glacial till in the form of large 

lateral moraines and till plains. This was followed by the deposition of 

alluvium, peats and loams with the slow withdrawal of the ice. A later ice age, 

the Weichselian, never reached the Netherlands but very distinctive aeolian 

sands were deposited which are present in great depths across the central-

southern part of the country.  

In many respects the Holocene represents the greatest change to the 

geology of the Netherlands with the ever rising sea level after the last ice age 

eroding the coastline at a rate of 65cm per century and humans creating 

extensive arable deposits from organically rich soils and through the process 

of reclamation. In the last 3000 years large areas of sand were deposited 

together with peat development in natural lowland areas, especially in the east 

of the country around Drenthe and Groningen.  

Around the site of Epse the geology is characterised by Pleistocene 

deposits including large areas of aeolian sand in the form of dunes and 
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plateaus with large areas of coarser river gravel in the form of long thin, 

elongate strips separating the upland wind-blown sands from lower land which 

contains the fertile river alluvium deposits which mark the old path of the river 

Dortherbeek. The small misfit streams to the north of Olthof represent the 

valleys created by the glacial meltwater at the end of the last ice age. At this 

time the Dortherbeek and neighbouring Schipbeek drained into the 

Koerhuisbeek before emptying into the Ijssel and these were responsible for 

the coarse river sands and alluvial deposits (Fig 33).  

 

 
 

Figure 33, Detailed digital map of the Pleistocene geology around Olthof farm, 

Epse (Alterra Wageningen, 2006) 
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Figure 34, Soil map around Olthof farmstead between the River Dortherbeek 

and heathland based upon the A.D. 1832 map (Ultsnede Kadastrale Atlas 

1832 in Appels, 2003) 

 
 

Today the Dortherbeek is considerably smaller but historically flooding 

has still occurred depositing alluvial soils. To the south of the farmstead the 

land is higher and is covered by thick layers of cover sand and thin podzolic 

heathland soils. The most distinctive soils typical of this region of the 

Netherlands are the expansive anthropogenic soils known as “Plaggen” soils, 

named after the process of formation. These manuring horizons are located 

on the hinterland between the alluvial and heathland soils and mirror the 

location of the farmsteads (Fig 34).  
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3.3 THE HISTORY AND ARCHAEOLOGY OF THE NETHERLANDS 
 

3.3.1 AGRICULTURAL AND LANDSCAPE HISTORY IN EUROPE 
 

Throughout north west Europe the development and organisation of the 

landscape into farmland and natural areas began with a “slash and burn” 

culture in the Neolithic period. The increase in population and development of 

larger farmsteads put huge pressures on the landscape, and as a result 

communities had to develop more complex methods and laws to keep farming 

sustainable. This situation was especially common in marginal areas such as 

the south east of the Netherlands.  

Changes in the intensive use of arable agriculture over time led to the 

development of the classic systems of field rotation, but these occurred at 

various times across north west Europe depending upon a number of factors.  

It has been suggested that the agricultural progression in Sweden was almost 

similar for a thousand years from the end of the Iron Age to the 9th and 10th 

centuries (Myrdal, 1997) with a transformation into a two field rotation system 

in the middle to late 10th centuries and this continued until the 13th century 

when a three field system was developed. Myrdal suggests that a similar 

system occurred in Denmark, but the three field system is more evident later 

in the 15th century (Frandsen, 1983). The dating of the field systems in this 

part of Scandinavia was conducted by an analysis of palaeo-field boundaries 

and the dating of carbonised particles in buried soils beneath them (Lindquist, 

1976). 

 In Denmark there is both a close agricultural link between mainland 

Europe and a socio-cultural link with the Scandinavian Peninsula. Arable 

farming increases with the migration of people from Germany and the 

development of semi-permanent farms in the 9th to 11th centuries (Poulsen, 

1997). Around this time Denmark was split into two distinctive areas between 

the open field system, classically block shaped (Hoff, 1990) present in the 

west of Denmark around Jutland and the smaller fields and small holdings in 

the west of the country. In western Jutland it has been suggested that the 

sandy soils were manured as early as the 9th century in the rural environment 

(Poulsen, 1997) and also in the hinterland of the expanding urban areas of 

Ribe (Madsen, 1980; van Mourik 1990). The expansion of productivity after 
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the 13th century was in part due to the increase of manure into the small fields 

in both rural and urban areas (Andrén 1986) but it has also been associated 

with the increase of cattle numbers and the development of the mouldboard 

plough (Poulsen, 1997). As with the agricultural landscape of Ireland (chapter 

4) the spade was also a key tool in Danish farming, and was most likely the 

preferred tool for poorer landowners with small fields and no oxen. Poulsen 

(1997) suggests that later in the 12th and 13th centuries the two technologies 

were used simultaneously especially in the lowlands of the west to produce 

and clear dykes. 

With the reduction of productivity in the mid 14th century through 

famines and plagues large farms changed from an arable to pastoral system, 

trading with mainland Europe for arable products. Smaller farms, however, 

continued a self-sufficient system until the 16th century and the onset of 

enclosures (Poulsen, 1997).  

The region of Europe known as Flanders (modern Belgium) also has a 

very detailed, closely linked agrarian history and with Germany and the 

Netherlands has large areas of heavily manured arable soils. A system of 

small localised farms was present in the early medieval period with small 

arable areas intensively manured (Thoen, 1988) as in Scandinavia. But a 

period of intense urbanisation in the 11th century changed the farming system 

to a more intensive two field system. Thoen (1997) describes how Flanders 

could be split into three agricultural areas in the medieval period based upon 

“soil and seigneurial management”  

 

a) Coast – with typically grazed cattle and sheep on upland moorland, 

saline clay soils and heathland. From 12th century onwards change 

to peat digging for fuel.  

b) Southern Flanders – loamy soils for cereal growth 

c) Central Flanders – sandy soils with extensive agriculture from the 

12th century onwards 

(Adapted from Thoen, 1997) 

 

The 12th century was a period of major change in the area, especially in 

the southern areas where increased manuring also occurred with farmyard 
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manure and dung. Debate has continued for a number of years as to whether 

a three field agricultural system was ever in place in central Flanders (Derville, 

1988; Morimoto, 1994) and it has been suggested that the area had a system 

of large enclosed fields surrounded by smaller fields with non-permanent 

boundaries and represented both the landscape of the large rich farmsteads 

and smallholder’s land (Thoen 1993 and 1997). The reclamation of marginal 

land does continue, however, and by the late 14th century there are very large 

areas of semi and total amendment for arable agriculture. 

Even though a localised methodology of arable farming was being 

utilised, it did not stop the manuring process which continued in the manner of 

a three field system with infield areas receiving more stable manure (Thoen, 

1993). Thoen also suggests that in the later Middle Ages the very large 

farmsteads start practising a four field system (Thoen, 1995), perhaps 

because of the limitations on smaller farms in the past and the continued 

prosperity of the larger, wealthier ones. It is not until the major agricultural 

increase of the 18th century that the majority of Flemish arable landscape 

utilises a typical three field system (Thoen, 1997). 

 

3.3.2 AGRICULTURAL AND LANDSCAPE HISTORY IN THE 

NETHERLANDS 

 

The earliest extensive farming in the Netherlands was the development 

of Bronze Age field systems preserved today only in the small heathland 

areas not seriously damaged by later agricultural development (Baher et al., 

1968). The majority, however, date to the Iron Age (Bradley, 1978) and show 

a high level of agricultural understanding. Small intensive Scandinavian field 

systems dating to the pre-Roman period have been uncovered in southern 

Denmark which according to Widgren (1988) represent semi-permanent 

cultivation but anthropogenic soils have also been discovered in the area 

which suggests a more permanent settled farm landscape (Widgren, 1988; 

Spek, 1992). It has also been suggested that land reclamation began in 8th to 

9th century in southern Sweden (Berglund, 1990), possibly in response to a 

rising population and the need for agricultural land. However, it has been 

suggested that farms were fairly fluid until the 11th century when they became 
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more permanent in the landscape a process termed “wandering settlements” 

(Hoppenbrouwers, 1997).   

By the early medieval period the population of north west Europe had 

increased steadily, especially in Germany and France, but more marginal 

areas like the Netherlands had a low population density with an agrarian 

system to match a typical simple infield-outfield system which was fairly 

intensively cultivated and manured (van Zanden,1999). The rate of agricultural 

development, however, depended upon the rural socio-economy and 

urbanisation and therefore there were distinctive differences between rural 

areas within the Netherlands (Hoppenbrouwers, 1997).  

In the provinces of Gelderland and Overijssel there were numerous 

small farms and field systems located upon the natural sandy soils and in 

order for arable farming to be conducted, heavy manuring was required. The 

raw materials for this process were collected from upland heathland and 

lowland floodplain areas due to the farmers’ right to use ‘wasteland’. But due 

to over exploitation in the mid 13th century and the lack of common ground for 

the grazing of cattle and sheep, the process of ‘marking waste’ was conducted 

which created common laws or ‘markerechten’ dating back to the early 14th 

century (Heringa, 1983). This process reduced the cutting down of woodland, 

destruction of heathland, digging of peat and turf and grazing of animals. This 

led to a much more organised farming process and a more sustainable 

landscape. In contrast in the west and north (Drenthe province), the farms 

were far larger and common land was owned by larger landowners such as 

the King, Bishop of Utrecht and the Count of Holland, and so the availability of 

wasteland and manure components was seriously restricted (van Zanden, 

1999). 

The development of reclamation history has been studied in detail in 

Drenthe where it has been suggested that permanent settlement occurred 

later than other regions of the Netherlands (Bardet et al., 1983; Roymans and 

Kortland, 1993). The settlement of Valthe was analysed and here five stages 

of reclamation have been uncovered from the small, single field system of the 

early middle ages situated close to the original foci of the settlement, through 

to the expansion in the 13th century where the ever enlarging rural population 

needed to increase yield production. Later during the 15th to 17th centuries the 
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settlement has a change of landlord and the agricultural landscape enlarges 

again. But in the post medieval period and proto-modern era the settlement is 

unable to expand any further due to landscape and urbanisation pressures, 

therefore the existing land is utilised to its full potential by increased manuring 

(van Smeerdijk et al., 1994). The infield/outfield system of agriculture was 

maintained within Dutch farming until well into the 17th century (Bieleman, 

1992) with the extraction of organic material from upland/marginal areas. In 

Anloo around 1700, landowners were able to cut two carts of sods from 

common land but in 1810 that had increased to 20 cart loads (Bieleman, 

1985), a year after the attempted abolition of the ‘marks’ law in the same 

province (van Zanden, 1999). The strains on collecting organic manuring 

components were also being stretched by a cooling of the post medieval 

climate (1650 – 1850) which affected the growth of woodland and heathland 

and increased coversand deposition. The ‘mark’ law, where still enforced, 

therefore ordered the planting of trees, sowing sandoats and maintenance of 

heath (van Zanden, 1999). 

    As well as ‘mark’ law another process which hindered the collection 

of organic manuring components was the process of ‘specialization’ to either 

pastoral or arable farming. This agricultural split affected smallholders and 

tennant farms most heavily as a shift from an all round producing farm to 

either pastoral or arable one altered the ability to maintain a good quality 

sustainable agricultural landscape. Only the very largest and richest farms 

would have been able to ‘buy’ themselves out of this kind of the situation and 

poorer and medium sized farms would have had to have gone through partial 

break ups or total desertion.    

 

3.3.3 THE DOCUMENTARY HISTORY OF OLTHOF FARMSTEAD 

 

The earliest record of a settlement at Olthof dates from A.D. 1280 and 

outlines an ownership issue over a watermill between the monastic site of Ter 

Hunnepe and an “Antiquam Curiam” or Ancient Court which is the literal 

translation of Olthof and is located in the same place as the farm is today. The 

link between the two sites is also mentioned in a valuation document dating to 

A.D. 1494 which shows that the monastic site owns the farmstead which is 
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named as “Aldenhoff”. Control of the farm and its land continued into the early 

19th century even after the dissolution of the monastery after the 80 years war 

(A.D. 1568 – 1648) due to the stability and wealth of the estate. It was finally 

given to the Kingdom of the Netherlands after the French occupation in A.D. 

1811 and shortly afterwards Olthof was bought as an individual estate in its 

own right. At the time of purchase in A.D.1813 by Mr Derek Olthof the 

farmstead had 18 hectares of land with a house, two barns and two haystacks 

(Appels, 2003).  

 

3.3.4 OTHER FARMSTEADS – AZINK, KLEIN BUSSINK, KRUKKELAND 

 

As well as Olthof, research into three other settlements was conducted 

by Archaeologie Deventer. Directly west of Olthof along the sandy ridge is the 

farm of Azink, which is located in a small cluster with Krukkeland and Spijker 

Azink. Originally the site was called Old Azink which probably originates at the 

same time as Olthof and indeed also has an extant timber framed aisled hall, 

however historical documentation suggests the farmstead to have been in 

existence since the late 15th century. In a document of A.D.1509 the farm is 

under the ownership of the Duke of Gelre (Appels, 2003) not the monastery of 

Ter Hunnepe as all the other farms were. The size of the farm is not detailed 

in the early 19th century but it may be assumed to have been very large as a 

document of 1881 shows that the farm was undergoing a process of division 

as the farm was sold with only 11 hectares (27.18 acres) and 16 hectares 

(39.53 acres) split between other farmers. To the east of Azink is Krukkeland; 

this farm has a large ‘L’ shaped timber framed building from which the farm 

takes its name and measures 14 x 12m. Historically the farm dates from 

around A.D.1628 and was occupied by builders/workmen from Ter Hunnepe 

monastery. It has been described in early documents as an “undervalued” 

farm suggesting a relatively small size, however, by the end of the French 

occupation the prosperity appears to have increased as the farm contains a 

house, shed, haystack and owns 11 hectares (27.18 acres) of forest and 

meadow (Appels, 2003). Spijker Azink is considerably smaller than the other 

two sites and has a late 19th century building on the site. The name “Spijker” 

indicates nails and therefore the farm could be associated with horse rearing 
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typical of other farms in the area, especially Klein Bussink.  Klein Bussink 

itself is located further to the west from Olthof on the coversand ridge and is 

the fourth farmstead with a good historical record. The farm is dominated by a 

classic timber framed aisled hall building (14m by 14m) which has been dated 

to the 16th to 17th century by architectural details. However, the oldest 

documentary evidence is from A.D.1494 where Bussink is mentioned as part 

of the Ter Hunnepe estate since A.D.1266. The pretext “Klein” (Small or Little) 

mentioned in A.D.1572 suggests a split and the possibility of a Large Bussink. 

A “Groot” Bussink is discussed but no further historical or archaeological 

evidence has been found for the site, possibly because they may have 

occurred on the same site (Appels, 2003). As with the other farms in the area, 

Klein Bussink was sold after the French Occupation of the Netherlands and an 

inventory of A.D.1813 had the farm consisting of a house, a shed, a sheep 

store, a hay stack, a bakehouse with forest, meadows and agricultural land 

totalling 20 hectares (49.4 acres) (Appels, 2003). There are a number of other 

settlements in the area around Olthof mainly to the west of Klein Bussink 

which all date from the mid 19th century onwards and have developed as 

individual houses rather than farm complexes. Nieuwenhuis or New House 

was built in the 1930s as a private house as was the building at Malberg built 

upon an island of anthropogenic soil. To the east of Olthof is the farmstead of 

Nijhof which may have been part of the same farm in the past but ever since 

the building of the railway has been split. No detailed historical work has been 

conducted on Nijhof but the sites are very similarly sized with equal amounts 

of arable, woodland and pastoral land.  

 

3.3.5 MAP EVIDENCE FOR OLTHOF FARMSTEAD 

 

The earliest map of the area is the A.D.1612 map which shows the landscape 

around the Gelderland and Overijessel border. Confusingly it is drawn from 

the south and places the two provinces the wrong way around. The focus of 

the map is upon the landscape around the land belonging to a monastic 

building (Plate 35a). The building has a distinctive square cloister shape and 

has a sub-rectilinear enclosure around it with a gatehouse. The landscape 

within the church land is composed of a heavily wooded area with small 
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openings possibly for arable fields. There are no other buildings in the area 

except a watermill and the chapel of St Anthonis is shown along with several 

villages (Fig 35b).  

The map evidence of the site in A.D.1668 (Plate 36) shows a more 

detailed landscape of the monastic lands in a correctly orientated map, and 

Olthof appears for the first time across the border in Gelderland. Both the 

A.D.1612 and A.D.1688 maps show very specific areas of the Dutch 

landscape associated with the monastic lands with much of the surrounding 

landscape missed out. This illustrates the complexity and social standing of 

boundaries in the Dutch landscape but Olthof obviously has important links 

with the religious complex as it is shown on the map in an area of no other 

detail. The landscape in the late 17th century is a particularly rural one with 

very few urban areas except the monastic complex in the north west of the 

map which appears as a large enclosed building in ruins. There are several 

large buildings also within the complex which are not in the A.D.1612 map and 

these may represent the reoccupation of the site after the abandonment of the 

monastery. Today the new A1 motorway runs almost directly over the top of 

the complex and although it is not recorded on any other maps it does show 

that the landscape is a mixture of irregularly sized fields with both arable and 

pastoral agriculture with large areas of woodland together with an excellent 

system of mills and drainage dykes, especially towards the east of the map 

between the Schipbeek and the Oosterbeek. 

A more generalised map of the area was produced in the early years of 

the 18th century (Plate 37). The map is orientated with west at the top of the 

page but clearly shows the city of Deventer with the characteristic gridded 

internal urban structure within an internal boundary wall and a larger external 

defensive wall with distinctive triangular towers. Overall the scale of the map 

is too large to show Olthof, however the nearby settlements of Epse and 

Tolhuys are shown as small symbols alongside the main north-south road 

between Deventer and Zutphen. The dotted line following the Dorterbeek is 

the boundary between Gelderland and Overijssel and it runs parallel with its 

floodplain, clearly marked as the grey strip. This area would have been 

utilised by settlements alongside the Dorterbeek as grazing and meadowland 

for cattle and sheep. 
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(a)                                                                                                  (b) 

 

Figure 35a+b, Map of A.D. 1612 showing the Gelderland and Overijssel border (a) and detailed map of the monastic complex and 

lands of Ter Hunneppe to the north of Olthof (b) (Berendtsz, 1612; in Appels, 2003) 

  

.  
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Figure 36, Map showing the landscape around Olthof farm circa A.D. 1668 (van Wijk, 1668; in Appels, 2003) 
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Figure 37, Map showing the landscape around Epse and Deventer circa A.D. 1710 (Appels, 2003) 
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Figure 38, Map showing the landscape around Olthof farmstead A.D. 1807 (Appels, 2003) 
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The map of 1807 (Fig 38) clearly shows the clustering of small 

farmsteads in and around small clearings of heathland in the upland areas. 

There is a distinctive regular series of small roads linking the farms with 

villages and towns of Epse and the city of Deventer and in places individual 

houses have also begun to appear in an irregular row style. Olthof is located 

on the border between a large area of heathland and open land possibly an 

area of lowland reclamation, which today is beneath the new A1 road and the 

Deventer junction. Olthof is depicted as a single small building with a small 

road running through to the north continuing to the old site of the monastic 

range of buildings shown in earlier maps.  

 
Figure 39, Map of the landscape around Olthof farmstead dated A.D. 1832 

(Ultnede Kadastrale Atlas 1832 in Appels, 2003) 

 

In 1832 the first very detailed maps of the Dutch landscape were 

produced (Fig 39). They were similar to the British Tithe and First Edition 

Ordnance Survey maps and utilised a number system which gave the landuse 

at the time reproduced in the soil and landuse map (Fig 34, section 3.2). This 

is the first detailed survey of the individual buildings in the areas and Olthof at 

the time consists of the main farm building which has clearly developed over 

time but changed very little to the present day.  
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Figure 40, Map of the landscape around Olthof farm dated A.D. 1846-48 (Topographical and Military Map of the Netherlands 1850) 
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Figure 41, Map of the landscape around Olthof farm dated A.D. 1866-67 (Chromotopographical map of the Netherlands, 1867) 
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With it are two smaller out buildings to the south and two smaller round 

structures present within a distinct area of woodland surrounding a large field. 

A photo taken in 1950 of the farm shows two large grain storage buildings in a 

slightly different position and archaeological evidence from the area has 

shown that the design of the structures has varied very little since the early 

medieval period.  

The landscape of the area in the early to mid 19th century (Figs 40 and 

41)  shows a distinctive split between the reclaimed land to the west of the 

river Ijssel with large rectilinear fields created by increased drainage of 

lowland marsh. To the east of the river in the old landscape area there is a 

palimpsest of old and new reclaimed land in the low meadowland and also in 

the heathland. The fields are very dense suggesting pressure on the 

landscape and the number of settlements and farmsteads on the upper sand 

bars has increased from the map of 1807.  

Around Olthof there has been little change in the field arrangement 

especially with Nijhof and overall the fields are considerably larger than fields 

of newly developed farms and most of the farmland is bounded by woodland 

strips or lines of individual trees.The anthropogenic development of the 

landscape between the late 1840s and the 1860s is very evident across the 

whole eastern Netherlands and this is exemplified in figures (40) and (41).  

The farms of Olthof and Nijhof have been split by the building of the railway 

between Deventer and Zutphen which would have meant a loss of land to 

both farms but overall there has been an increase in the size of the arable 

fields. The changes in landuse are more clearly defined on the 1860s map 

which shows clear differences between the arable farm land (white/beige), 

pasture (light green), woodland (green) and heathland (dark green). 
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3.4 ARCHAEOLOGICAL RESEARCH AROUND OLTHOF FARMSTEAD 
 

A key reason for selecting Olthof farm for further investigation was due 

to the extensive geoarchaeological work conducted on the farm and 

surrounding landscape over the last 10 years. The work was conducted by 

Archaeologie Deventer, a commercial archaeological group and was carried 

out in response to the development of the new A1 motorway running west to 

east across the Netherlands and the proposed development of a 120 hectare 

area called North Epse (Epse-Noord). In all four major excavations have been 

conducted around the farm and therefore a very clear settlement history can 

be determined. The following text is a précis of the detailed archaeological, 

historical and cartographical material from the archaeological report “Between 

Deventer and Epse: 10,000 years of habitation history in the area of North 

Epse” (Appels, 2003).  

The oldest archaeological artefacts found in the vicinity of Olthof are a 

large number of worked flints dating from the middle to late Neolithic (approx 

6000 to 4500 BP). The flints have been found in the form of rough scrapers 

and extremely ornate arrow heads with distinctive barbs. Most of the important 

Neolithic finds were located on the sandy ridge where Olthof farm is now 

located as well as sandy bars close to the River Ijssel indicating possible 

hunting areas or seasonal occupation areas close to water sources. The 

earliest archaeological features were located beneath a thick cover of aeolian 

sand and consisted of several subtle stake holes and small pits which were 

dated to the early Bronze Age (approx 4500 – 3700 BP) from small sherds of 

pottery produced in the local vicinity. Middle to late Bronze Age features were 

also located on the edge of the upland and alluvial areas and consisted of a 

series of small pits containing settlement waste however no evidence of 

occupation was uncovered. Like the Neolithic evidence Iron Age features 

were found in a distinctive pattern on the sandy ridges towards the south west 

of the assessment area towards the east bank of the River Ijssel. The 

excavations by Archaeologie Deventer uncovered a complete building plan 

buried beneath deep anthropogenic soils. The house had a distinctive 

rectilinear shape (17m by 9m) and was surrounded by 36 small 500mm post 
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holes which are typical of buildings of this age in the Netherlands (Appels, 

2003). Along with the farm building other Iron Age features in the area include 

a number of large storage pits used for storing excess grain. These were 

found in the high sandy areas and dated by C14 methods on ceramics to 

approx 2700 – 2600 BP. In other wetter areas of the landscape grain was 

stored in above ground stores and evidence for these has been found as 

discrete postholes 200 – 300mm in size and between 1.5m2 and 2m2
.  

Archaeological evidence between the end of the Iron Age and beginning of 

the early medieval period is scarce and has led to interpretations that rural 

activity decreased and did not increase again until the early 12th century A.D. 

as a direct response to the increase of urban centres and the demand for 

agricultural produce.  

 

 
Figure 42, Aerial photograph of the 2003 archaeological excavation to the 

east of Olthof (Appels, 2003) 

 

In the Epse-Noord area the onset of the 12th century population boom 

was mirrored in the archaeological evidence. Excavations (Figures 42 and 43) 
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revealed two farms which may have been precursors to the existing farms at 

Azink and Olthof and the evidence found suggested that the building form had 

changed from the prehistoric bi-partite one to an aisled hall design. The 

building at Olthof was 23m long and 11.5m wide with an 8m wide central area 

and smaller 1.75m wide aisles for the use of farm animals (Appels, 2003). The 

building must have been a very similar size to the existing Olthof farm as in 

places the internal postholes were over 1m diameter indicating a sizeable 

structure. The importance and status of the site is reinforced by the presence 

of an outbuilding measuring 12m by 5m and in the same orientation. To the 

west of Olthof and the north of Azink a second large building dating to the 

early medieval period was excavated. This building had a similar aisled hall 

structure and measured 17.5m by 3.5 to 5.5m (Appels, 2003). It was dated to 

the 11th/12th century A.D. using pottery found in the post holes and by its plan 

which resembled other farm buildings in Zutphen (Groothedde, 1996).  

Both the excavations at Olthof revealed that the early farmsteads had 

numerous phases suggesting a long period of occupation and time to develop 

large boundary ditches, possibly created as a defensive structure due to an 

instable socio-political landscape or merely as a clear boundary feature 

between occupation areas and farmland. At Olthof the ditch found was 4m 

wide and contained early medieval pottery and at the Dortherbeek site the 

two-phase boundary feature was between 1.25 to 3.5m wide and dated from 

A.D. 1100 to A.D. 1540 suggesting over 400 years of occupation. Figure 42 

also shows the outline of the old excavation which investigated the supposed 

site of St Anthonis’s chapel. The excavations did not reveal any occupation 

evidence but did uncover a very large 3m wide moat, dated with pottery to the 

13th century A.D., encircling an area 33m in diameter (Appels, 2003). The 

negative evidence for the chapel has been interpreted as levelling in the 

1980s by deep ploughing, but the archaeologists are certain that it is the 

location as the limited archaeology is complemented by historical 

documentation and old maps of the area, discussed in sections 3.3.3 to 3.3.5. 

Archaeological work conducted on the site was to the north west of Olthof (Fig 

44). 
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Figure 43, Aerial photograph of the 2005/2006 trial trench excavations to the 

north west of Olthof farm (Google Earth, 2008) 

 

 
Figure 44, Photograph of the 2007 archaeological excavation of the 12th 

century farm building and well to the north east of Olthof farm (Archaeological 

Deventer, 2007) 
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Preliminary results of the work have shown a number of subtle 

prehistoric features preserved beneath the anthropogenic soils, including 

grain storage pits but no direct evidence of settlement. Most recently in July 

2007 the area directly to the north east of the farm was excavated (Fig 44) 

and another large timber framed aisled farm building was found with internal 

postholes measuring in excess of 750mm together with two outer ranges with 

smaller postholes. Along with the building a very large well was excavated 

which measured +7m in diameter and over 1.5m deep, and as with the 

previous farms found in the immediate area was associated with a large, 

possibly defensive, boundary ditch. The features were all contemporary and 

pottery fragments indicated a date of around the early 12th century A.D.  

 

3.5 THE SPATIAL DISTRIBUTION OF SOILS IDENTIFIED IN THE AUGER 
SURVEY ACROSS OLTHOF 

 

Sections 3.5 and 3.6 illustrate the results of the fieldwork analysis 

conducted in an attempt to answer the key questions outlined in section 1.11, 

and this was done by utilising the methodologies detailed in section (1.12). 

The results of the auger survey and test pit excavation revealed a number of 

soils which have been affected by humans in various quantities. This section 

discusses the variety and distribution of anthropogenic soils found across the 

settlement by interpreting the transect diagrams and comparing the diversity 

and range with the natural geographical landscape. Four transects composed 

of 23 cores illustrate the varying distributions of the soils across the site 

(sections 3.5.1 to 3.5.4). Transects 1, 2 and 3 illustrate the soil sequence 

between the old heathland area and the floodplain of the Dortherbeek and 

transect 4 illustrates the soil sequence along the axis of the Pleistocene sandy 

ridge (Fig 45). The soils are then analysed across four landuse areas; the 

garden (section 3.6.1), the inner and outer arable landscape (sections 3.6.2 

and 3.6.3) and the reclaimed heathland and meadowland soils (section 3.6.4). 

The overall fieldwork results from Olthof are discussed in section 3.7 where 

comparisons with previous work are made. (Raw data in appendices 3 and 4). 
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Figure 45, Location map of auger points and test pit excavations around 

Olthof farm 

 
3.5.1 TRANSECT ONE  

 

Transect one consists of 8 cores (1 to 8) and is orientated south to 

north and incorporates a range of land uses (Fig 46). The anthropogenic soils 

(Ap-1 and Ap-2) increase in depth towards the farmstead from 200mm to 

420mm before increasing to 700mm directly adjacent to the garden area, and 

decreasing slightly to 630mm to the north of the sandy ridge. The soils range 

from very dark grey to black (10YR 3/1 to 2/1) and have a distinctive sandy 

loam texture with inclusions of small sub-rounded quartz fragments and very 

small organic fragments and charcoal particles.  

In the cores around the farmstead there are slightly more organic and 

charcoal particles as well as ceramic and some degraded brick fragments. In 

cores 6 to 8 the anthropogenic soils are completely absent and replaced by a 

sandy silt alluvial deposit (A1 and A2) ranging from 650mm to 780mm. The 
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alluvial soils have a typically dark yellowish brown to light brown colour (10YR 

4/4 to 3/4) with sandy silt textures and inclusions of small, rounded lithic 

fragments, some degraded organics and iron and manganese staining and 

concretions. Below the anthropogenic soils, in cores 2 and 3, a thin (100mm) 

remnant soil (Ah) is present with a yellowish brown colour (10YR 3/4 to 3/6), a 

silty sand texture and organic and quartz fragments. At the base of the 

sequence is a light grey to grey (10YR 7/1 to 6/1) with silty sand texture which 

derives from the natural coversands.  

 

3.5.2 TRANSECT TWO   

 

Transect two consists of seven cores (9 to 15) and is orientated south 

to north from the old heathland across the inner arable area and into the 

lowland, floodplain pasture area (Fig 47). The anthropogenic soils (Ap-1 to 

Ap-2) range from 225mm in cores 9 to 11 to between 525mm and 975mm in 

the central area. Core 15 is located in the floodplain of the Dortherbeek and 

no anthropogenic soils are present in this area. In the heathland area the 

plaggen soils are typically greyish brown to dark greyish brown (10YR 5/2) 

indicating partial leaching. The soils are sandy loams with few organic 

inclusions and almost no black charcoal or carbonised fragments. In the 

central infield area the soils change to a much darker grey to black colour 

(10YR 3/1 to 2/1) with a typical sandy loam texture and an increase in the 

amount of organic and black carbonised particles (Ap-1). Beneath the upper 

plaggen soil is a very dark greyish brown buried soil with a sandy silt loam 

texture and organic inclusions and some charcoal particles. In three of the 

cores a dark yellowish brown (10YR 3/4 to 3/6) silty sand buried podzol (Ah) is 

present with fine grained mineral fragments and heavily decomposed 

organics. The remnant soil appears to fill small hollows in the natural 

sediments where agricultural activity has been unable to incorporate it into the 

existing soil stratigraphy. The sequence in the lowland area consists of a 

300mm deep A1 clay sandy silt with quartz inclusions and roots. Beneath the 

anthropogenic and the buried soils are a series of 150mm to 350mm silty 

sand horizons (B1 and B2) with no organic material. 
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Figure 46, The distribution of anthropogenic and natural soils across Olthof farmstead in transect 1 
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Figure 47, The distribution of anthropogenic and natural soils across Olthof farmstead in transect 2 
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Figure 48, The distribution of anthropogenic and natural soils across Olthof farmstead in transect 3 
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Figure 49, The distribution of anthropogenic and natural soils across Olthof farmstead in transect 4 
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3.5.3 TRANSECT THREE 

 

Transect 3 is located to the very east of Olthof’s farmland and consists 

of six cores (16 to 21) from the old heathland to the pasture in the floodplain 

area (Fig 48). Interestingly this transect reveals a remarkably uniform depth of 

upper anthropogenic soil (Ap-1) ranging from 275mm to 350mm across the 

old heathland area and this increases to 480mm on the northern side of the 

coversand ridge. The plaggen soil ranges from a dark greyish brown to black 

colour (10YR 3/1 to 2/1) with a sandy loam texture and quartz inclusions plus 

small infrequent charcoal fragments with some coarse organic fragments.  

A dark greyish brown to brownish yellow coloured (10YR 3/1 to 2/1) 

buried anthropogenic soil was identified beneath the plaggen soil on the 

coversand ridge (Ap-2) and this has a sandy silt loam texture with very few 

organic fragments and black carbonised particles. The soil ranges in depth 

from 170mm to 200mm. In the old heathland area is a buried podzolic soil 

(Ah) which ranges from 100mm to 300mm and consists of a dark reddish grey 

to dark grey brown (2.5YR 3/3) organic silty sand with large areas of leaching 

and iron and sesquioxide concentrations. In the floodplain area the upper soil 

is identical to the organic clay sandy silt soils (A1) seen in transects 1 and 2, 

and ranges from 300mm. Below the A horizon are a series of white to 

yellowish brown (10YR 6/4 to 7/3) silty sands (B1 and B2) with very fine 

grained quartz grains. Beneath the B horizon is a very light grey to grey 

coloured (10YR 6/4 to 7/6) silty sand clay horizon (A2) with few coarse plant 

fragments and contains a thin dark grey to black coloured silty clay loam 

buried peaty soil (H) with large plant and woody fragments with fine grained 

lithic fragments.  

 

3.5.4 TRANSECT FOUR 

 

Transect 4 analyses the range in depth across the coversand ridge 

where the majority of the anthropogenic soils are located (Fig 49). The 

transect is 6 cores (3,4,13,19,22 and 23) as well as data from 3 test pits and 

an archaeological section. The most striking observation is the marked 
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increase in depth of anthropogenic soils from the arable land to the garden 

area (400mm to 700mm). There also appears to be a thickening of the 

anthropogenic soils around the east of the farm exactly where archaeological 

evidence of an older settlement was found and these horizons may represent 

degraded soils from that period of settlement. The plaggen soil (Ap-1) is 

typically a very dark greyish brown to black (10YR 3/1 to 2/1) and becomes 

almost exclusively black closer to the farmstead, between core number 4 and 

test pit 8.  

The level of organic and anthropogenic inclusions also increases 

towards the farm, especially plant and turf fragments, and the size and 

number of black carbonised particles. The depth of the plaggen soil ranges 

from 150mm at the outer extremities on the border with the natural soils, 

400mm to 600mm in the arable land and 750mm to 900mm in the garden. To 

the west of the farm the Ap-1 horizon steadily decreases in depth, possibly 

because of an increase in the slope angle and subsequent surface erosion. 

Beneath the Ap-1 horizon is a dark grey to black Ap-2 horizon which is located 

in most of the cores taken and is composed of an organic sandy loam with 

inclusions of plant fragments and very small carbonised particles. This ranges 

in depth from 200mm to 600mm and mirrors very closely the Ap-1 horizon and 

may represent a leached plaggen soil. The least distinctive anthropogenic soil 

is the Ap-3 horizon. This horizon ranges from 150mm to 350mm and has a 

very subtle grey to light brown colour (10YR 3/1 to 2/1) with a silty sand loam 

texture and almost no organic inclusions and a very small number of black 

particles, possibly carbonised particles or iron concretions.  

In several cores a buried podzolic soil (Ah) was found and at each 

location (13 and the archaeological section) the horizon is very thin, around 

100mm, and consists of a dark yellowish brown (10YR 3/4 to 3/6) silty sand 

with a fine grained structure. These thin lenses probably correspond with the 

remnant of considerably deeper soils truncated by plough or spade activity at 

the beginning of arable activity on the site. Beneath the anthropogenic soils a 

distinctive series of silty sands was identified (B1 and B2) of light yellow to 

white colour (10YR 6/4 to 7/3) ranging from 200 – 400mm in depth with fine 

grained quartz and high iron content. 
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3.6 THE SPATIAL DISTRIBUTION OF SOIL HORIZONS ACROSS 
DIFFERENT LANDUSE AREAS 

 
 
3.6.1 GARDEN SOILS 
 

Olthof’s garden enclosure (Plate 14) measures 15m by 7m and is 

situated to the north west of the main farm building. The area was used to 

grow vegetables and fruit for the farm but more recently, was changed into a 

small garden area with a centrally grassed area, plant beds along with small 

trees and shrubs. 

 

 
Plate 14, Photograph of Olthof garden looking north (B. Pears) 

 
 

Two test pits were excavated in the garden area (test pits 4 and 8) and 

in both deep anthropogenic soils are present ranging from 1.4 to 1.6m deep 

(Figs 50 and 51). In both test pits 4 and 8 is a very deep Ap-1 horizon which 

ranges in depth from 720 – 900mm and has a distinctive dark grey to black 

colour (10YR 3/1 to 2/1) and a sandy loam texture. 
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Figure 50, Section drawing and photograph of Olthof garden soil horizons in test pit 4 
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Figure 51, Section drawing and photograph of Olthof garden soil horizons in test pit 8 
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Within the soils are inclusions of small organics and charcoal fragments 

as well as post-medieval to modern pottery and building debris in the form of 

brick and tile. Below the Ap-1 horizon is a slightly lighter coloured dark grey to 

grey/black (10YR 3/1 to 2/1) sandy loam soil (Ap-2) which ranges from 

380mm to 500mm deep. The plaggen horizon appears to have been 

moderately leached of nutrients and indeed the organic inclusion and 

carbonised particles were fewer in number and smaller in size. In test pit four 

is a thin, heavily disturbed E horizon with a very coarse, angular boundary 

with the Ap-2 boundary. The dark yellowish orange (10YR 5/6) sand appears 

to have undergone considerable leaching and contains almost no organic 

fragments and no carbonised or anthropogenic inclusions. The horizon occurs 

sporadically across the garden as it is not present in test pit 8. A third more 

discrete anthropogenic soil (Ap-3) is present in both test pits and ranges from 

150mm to 250mm thick and has a much lighter grey to light brown colour 

(10YR 5/2) with patches of brownish grey. The sandy loam has very small 

remnants of organic inclusions but contains very few macro size black 

carbonised particles. Beneath the anthropogenic soils is a light grey to white 

coloured (10YR 6/4 to 7/3) silty sand which has interpreted as a B horizon. 

The boundaries between the Ap-3 and B horizons in both test pits are fairly 

smooth and undisturbed, suggesting that during the initial manuring of the 

garden there was minimal disturbance with spades and an emphasis on 

increasing the depth of the soil. 

 

3.6.2 INNER ARABLE SOILS 

 

Outside the garden, the inner arable area at Olthof was assessed using 

a number of cores and test pits, however identifying this area was extremely 

difficult because of the expansion of fields and removal of boundaries in the 

early 20th century. Three test pits were located within 100m of the farm and at 

each, three distinctive anthropogenic soils are present (Figs 52 to 54). The 

Ap-1 horizon is a light grey to black, (10YR 3/1 to 2/1) silty sand loam with a 

fine mineral content and inclusions of organic fragments and charcoal. The 

soil ranges from 130mm to 320mm with a clear deepening towards the 

garden.  
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Figure 52, Section drawing and photograph of soil horizons in the Olthof inner 

arable area in test pit 1 
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Figure 53, Section drawing and photograph of soil horizons in the Olthof inner arable area in test pit 3 
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Figure 54, Section drawing and photograph of soil horizons in the Olthof inner arable area in test pit 6 
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The second anthropogenic soil (Ap-2) is also present in each of the test 

pit and ranges from 320mm to 340mm, at the north east extremity, but 

increases to 420mm to 630mm close to the centre of the farm. The soil is a 

dark brown to black coloured (10YR 3/1 to 2/1) silty sand loam with inclusions 

of organic fragments, small degraded pottery and small carbonised particles. 

The Ap-3 horizon is a considerably lighter coloured sandy loam with 

considerably less organic and carbonised inclusions. The depth of the soil 

ranges from 110mm to 250mm and is typically a light brown to grey coloured 

(10YR 5/2) silty sand loam with medium to fine grained mineral inclusions, 

predominantly quartz fragments, as well as very small, degraded organic 

fragments and rare charcoal particles. In all three sections the boundaries 

between the Ap-2 horizon and natural sandy B soils is irregular with frequent 

evidence of post burial mixing from biological activity.  

Test pits 1 and 3 (Figs 52 and 53) reveal two distinctive archaeological 

features, which due to the limitations in the size of the excavations and the 

time constraints could not be investigated fully. The feature in test pit one 

[102] is a small gully or pit orientated north, north east to south, south west 

with steep rounded edges and a semi flat base. Within the feature is a single 

light brown (10YR 4/2) silty sand loam (101) with a high mineral content, 

possibly from running water, particularly towards the base and inclusions of 

degraded organics, similar to the Ap-3 horizon. 

No dating evidence was found in the feature, however the remarkable 

similarity of the Ap-3 horizon and the fill (101) may indicate deliberate infilling 

when manuring began. The feature in test pit 3 [301] is located in the northern 

corner of the test pit, measures 450mm by 350mm with a sub-rounded shape 

with steep edges, sharp breaks of slope and a highly irregular base. Within 

the cut of the feature is a highly mixed dark brown (10YR 3/4) sandy silty loam 

(301) with large rooty fragments, a range of mineral and lithic fragments and 

laminations of dark brown, red (10YR 2/3) iron staining. The date of the 

feature could not be ascertained as no artefacts were found within the fill and 

therefore was interpreted as a tree-bowl, possibly cleared as a result of the 

need for an increase in arable farmland.  
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3.6.3 OUTER ARABLE SOILS 

 

Two test pits were excavated in the outfield areas of Olthof farm, one to 

the south east and one to the north west along with a third pre-existing 

archaeological profile (Figs 55 to 57). The stratigraphy in the test pits includes 

three distinctive anthropogenic soils (Ap-1 to 3), the remnants of a podzolic 

soil (Ah), eluviated horizon (E), natural sandy soils (B) and upper Pleistocene 

sand (C). Test pit 2 contains the deepest sequence of anthropogenic soils 

found in the outfield which mirrors an anomaly seen in the auger transects. 

The upper Ap-1 horizon is composed of a light grey to black coloured (10YR 

3/1 to 2/1) organic rich silty sand loam with frequent, small charcoal fragments 

less than 2mm and some post-medieval pottery fragments. The horizon 

ranges from 140mm to 160mm in test pit 2, to over 500mm in test 5 and is 

most likely a direct result of intensive ploughing and surface soil movement. 

Horizon Ap-2 is very similar horizon Ap-1 but shows considerably less mixing 

and has a black silty sandy loam with a high numbers of organic inclusions 

but smaller, rarer black carbonised particles. Test pit 5 and the archaeological 

section have between 180 to 220mm of the Ap-2 horizon but on the south 

east side of the farm in test pit 2 the horizon is 700mm deep and contains 

small, degraded ceramic fragments and a higher proportion of organic and 

black carbon particles which suggests input was occurring at different rates. 

The third anthropogenic soil (Ap-3) is a very distinctive dark brown to 

grey colour (10YR 5/2) with a distinctive organic content and partially leached 

in places. The sandy loam horizon has a highly mixed boundary with the 

plaggen soil (Ap-2) and much lower quantities of organic fragments and black 

carbonised particles. Across the three sections, and the augers, the Ap-3 

horizon is very consistent ranging from 120mm to 170mm suggesting relative 

uniformity in the addition of manure in the outfield area. In test pit 5 and the 

archaeological section is a very distinctive dark brown to grey coloured 

remnant of a podzolic soil (Ah).  The horizon contains some organics but no 

anthropogenic inclusions. In both places the boundary between the old soil 

and the anthropogenic horizons was very irregular and angular which 

suggests truncation by ploughing.  
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Figure 55, Section drawing and photograph of soil horizons in the Olthof outer arable area in test pit 2 
 



 
 
 

152 
 

   
 

Figure 56, Section drawing and photograph of soil horizons in the Olthof outer arable area in test pit 5 



 
 
 

153 
 

  
Figure 57, Section drawing and photograph of soil horizons in the Olthof outer arable area in an archaeological section 
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Below the podzol a leached light yellow to white (10YR 7/3) silty sand 

(E) was identified with no organic or anthropogenic inclusions and beneath 

that a light yellow (10YR 6/4) loamy silt sand (B) with very small organic 

fragments originating from post burial mixing.  

In the archaeological section part of a steep sided feature was 

uncovered which might be part of a pit or ditch with a rounded base and 

measuring 740mm wide by 130mm deep and containing four distinctive fills. 

Each of the fills were dark yellow, grey to brown coloured silty sands with 

minimal organics and red, orange iron mottling and staining. The four fills 

(75mm to 95mm) were not horizontally deposited and heavily mixed and had 

no anthropogenic inclusions which suggested that the feature was a tree-bowl 

similar to the one found in test pit 3.  

 

3.6.4 UPLAND AREAS AND NATURAL SOILS 

 

As well as the test pits excavated on the farmland on the Pleistocene 

ridge a range of test pits were also excavated in natural environments in order 

to record the natural soil stratigraphy. Four test pits were excavated in total 

with two in the old heathland (7 & 11) (Figs 58 and 59), and two in the alluvial 

meadowland of the Dortherbeek (9 & 10) (Figs 60 and 61). Historically the 

area to the south of the farm had been heathland before alteration to farmland 

and it was assumed, before the fieldwork began, that a distinctive podzolic 

profile would be found as seen in the modern heathland. 

Both the auger survey and test pits reveal a distinctive anthropogenic 

soil (Ap-1) with a distinctive dark grey to black (10YR 3/1 to 2/1) silty loam 

with some organic fragments and very few charcoal fragments. It is very 

extensively mixed through ploughing action and ranges from 300mm to 

400mm in both test pits and the auger survey. In test pit 7 is a thin 100mm to 

120mm thick Ap-2 horizon which is identical to the Ap-1 but may have been 

situated beneath the plough and avoided mixing. The boundary between the 

Ap-1 and Ap-2 soils is very gradual and indistinct in places and it has been 

assumed that the two are actually the same soil and represent the total effect 

of manuring since heathland clearance.  
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Figure 58, Section drawing and photograph of Olthof old heathland soil horizons in test pit 5 
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Figure 59, Section drawing and photograph of old heathland soil horizons in 

test pit 11 

 

 

 

 



 
 
 

157 
 

 

Test pit 7 also shows very distinct evidence of an extensive podzolic 

soil (Ah). Ranging from 450mm to 490mm the old heath soil is a dark 

yellowish brown with dark reddish grey areas (10YR 3/4 to 2.5YR 3/3) with a 

silty sand loam texture and few organic inclusions. The horizon appears in the 

majority of the cores taken across the area mainly as thin remnants (130mm 

to 150mm) and heavily truncated by ploughing, but in test pit 7 the layer is 

unusually thick and appears to be filling a small hollow 7 to 10m across. In 

places the horizon has been very heavily disturbed and mixed by animal 

burrowing and large fragments of podzolic soil had been mixed into the 

natural coversand horizon (C) below.  

In the floodplain of the Dorterbeek the soil sequence is very different 

(Figs 60 and 61). In both the auger survey and the test pits the upper soil is 

typically a thin 90mm to 130mm, dark greyish, brown coloured (10YR 4/4) 

clay sandy silt with fine grained mineral inclusions coarsening down profile 

(A1). Beneath is a light brown, light grey (10YR 6/4 to 7/6) clay sand silt (A2) 

with fine quartz fragments, which varies from 300mm to 400mm. Both the A 

horizons have high organic levels but no anthropogenic inclusions and there 

is no mixing through agricultural activity. In test pit 9 (Fig 60) is a third alluvial 

horizon, ranging between 375mm to 390mm, and has a distinctive light brown 

(10YR 7/6) clay silt with very little coarse lithic or organic inclusions, but does 

have areas of darker orange, red (7.5YR 6/8) iron and manganese staining 

from repeated waterlogging (A3). Test pit 9 also contains evidence of a blue, 

grey sandy clay palaeochannel soil similar to the horizon seen in core 21 

(Transect 3, Fig 48). This horizon has a large quantity of iron and manganese 

translocation. In test pit 10 (Fig 61) the A1 and A2 horizons are located above 

two very dark red, orange coloured (10YR 6/6 to 7.5YR 6/8) iron rich soils with 

large mineral nodules throughout (Bs1 and Bs2). 
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Figure 60, Section drawing and photograph of soil horizons in Olthof meadowland test pit 9 
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Figure 61, Section drawing and photograph of soil horizons in Olthof meadowland in test pit 10 
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Context Location Description Range of 
Depths (mm) Transects Test Pits 

Ap-1 

(Black) 

All 1,2,3,4,5,

6,7,11, 

Arch. 

Section 

Light grey to black (10YR 3/1 to 2/1) coloured silty sand loam with inclusions of fine to medium 

grained quartz sand fragments 250 – 500µm sub rounded shape, with medium sphericity. Charcoal, 

10 – 15% occurrence between 500um to 1mm. Considerably less ceramics than other areas. Sandy 

laminations throughout, yellow/grey colours with a coarser quartz texture. 

150 – 900 

Ap-2 

(Black) 

All 1,2,3,4,5,

6,7,8,11, 

Arch. 

Section 

Dark grey and black (10YR 3/1 to 2/1) sandy loam (40%, 60%) inclusions of fine to medium grained 

quartz sand fragments 250 – 500µm sub rounded shape, Increased amount of organic material 

+60% and charcoal 20 – 25%. 

400 – 600 

Ap-3  

 (Brown) 

1 and 4 1,2,3,4,5,

6,7,8, 

Arch 

Section 

Grey to light brownish grey colour (10YR 5/2) silty sand loam (20%, 40%, 40%) quartz sand 

inclusions sub-rounded and well sorted throughout the horizon. Some charcoal present 10 – 15% 

mostly degraded to <250µm, no ceramic fragments, organic material has no defining structure. 

200 – 450  

Table 13, Summary of all anthropogenic soils identified during fieldwork at Olthof farm, the Netherlands 
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Context Location Description Range of 
Depths (mm) Transects Test 

Pits 

A1 1,2,3 9,10 Dark yellowish, brown (10YR 4/4 to 3/4), Sandy silt (40%, 60%) with inclusions of quartz fragments <125µm well 

rounded and well sorted slight coarsening down profile. High organic content +60% mainly rootlets.  
350 – 420  

A2 1,2 9,10 Yellow to Light brown coloured (10YR 6/4 to 7/6) Sandy, silt (40%, 60%) with inclusions of quartz fragments 125 

– 250µm well sorted, fine grained sub-rounded shape 20 – 30%. Fe increase seen through darker orange 

staining 

210 – 400 

Ah All / Very distinctive dark reddish grey (2.5YR 3/3) to dark yellowish brown (10YR 3/4 to 3/6) coloured silty sand (20% 

to 80%) with inclusions of fine quartz fragments less than 125µm few organics and heavily leached in places. 

Typical remnant podzolic soil. Present in test pit 7 as a fill of a treebowl.  

100 – 200 

H 2 / Very dark grey to black (10YR 3/1 to 2/1) Silty clay loam (40%, 20%, 40%)  Very high organic content +85% with 

large woody fragments and peaty inclusions. Quartz sand <125mm at <10%. 
200 

Bs-1 & 2 1 10 7.5YR 6/8 Reddish yellow colour  Silty clay (30%, 70%) with  Very heavily iron rich  silty clay deposit with 

inclusions of Fe lumps 5 – 10mm at 10% occurrence.  
200 – 250 

B1 1,2,3,4 All Varies in colour from light grey (10YR 7/1 to 6/1) to yellow and yellowish brown (2.5YR 7/8 and 10YR 6/4 Silty 

sand (30%, 70%) with a high mineral content especially fine grained quartz (possibly from aeolian origin) 

between 250 – 500µm with patches of darker yellow/orange coloured iron sand +500um. Quartz sub rounded 

shape with medium sphericity.  

200 – 400+ 

B2 1,3 / 

 

Colour from light grey and grey (10YR 7/1 to 6/1) to light brownish grey (10YR 6/2) and areas of white (10YR 

8/1) with a Silt sand (20%, 80%) texture and very small clay quantities.  Quartz fragments +60% , well sorted 

and size range 250 – 500um. With sub-rounded to sub-angular shape. 

200 – 400+ 

C / 7,10,11

Arch 

Section 

Light grey to light yellowish brown (10YR 7/1) to (10YR 6/4) medium to fine sandy gravel (70%-30%). Medium to 

well sorted with sub-rounded to rounded quartz fragments. No distinguishable organic inclusions. Natural 

Coversand horizon with fine terrace gravels.   

250+ 

Table 14, Summary of all natural soils identified during the fieldwork at Olthof farm, the Netherlands 



 
 
 

162 
 

3.7 DISCUSSION OF ANTHROPOGENIC SOILS AT OLTHOF 
 

A summary of the soils at Olthof shows that there are distinct textural 

differences between the natural and anthropogenic horizons (Tables 13 and 

14). There is also a distinct variation in the distribution of anthropogenic soils 

at each of the four landuse areas is summarized in figure 62. The deepest 

anthropogenic soils are in the garden area with a sequence of over 1.5m. In 

the arable areas the depths of soils are much shallower and less distinctive 

with the sequence ranging from 600mm to 1000mm and a progressive 

shallowing away from the garden area.  

 
 

 

 

The shallowest soil sequence is in the old heathland area with a 

distinctive heavily disturbed plaggen soil developed since the reclamation of 

the heath into farmland. In each of the areas the Ap-1 horizon ranges the 

most from 730mm to 910mm in the garden, to 150mm in the arable areas. In 

test pit 5 and the archaeological section the Ap-1 horizon is unusually deep 

from 430mm to 510mm and this may be due to the movement of soil down the 

slope to the north west of the farmstead or perhaps as a direct result of an 

Range of depths of anthropogenic soils from three landuse 
areas at Olthof, The Netherlands
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Figure 62, Range of depths of anthropogenic soils from different landuse

areas at Olthof 
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increase in manuring in this particular arable area, but the auger survey 

shows a general shallowing of anthropogenic soils away from the farm centre. 

The depth of the Ap-2 horizon is far more uniform across the different 

landuse areas ranging from 410mm to 490mm in the garden and 435mm to 

500mm in the close arable areas. Further away from the farm the arable area 

has a considerably shallower Ap-2 horizon ranging from 190mm to 210mm 

and a remnant horizon (110mm) in test pit 7. An unusually deep layer of Ap-2 

is present in test pit 2 and this may represent an area of increased manuring 

just outside the central area of the farm. The Ap-2 horizon in the cores taken 

around the test pit (12, 13 and 23) has a considerably shallower depth from 

260mm to 325mm suggesting that the sequence in test pit 2 is abnormal. The 

shallowest of the anthropogenic soils found is the Ap-3 horizon and it ranges 

from 130mm to 240mm across all the landuse areas with the deepest 

horizons in the garden and inner arable area and 130mm to 160mm in the 

outer arable area.  

 

 Dercon et al., (2005) Pears (this volume) 

Area of study Olthof farmstead, the 

Netherlands 

Olthof farmstead, the 

Netherlands 

Depth of 
Anthropogenic 
soils 

Present Landcover 
Pasture – 1350mm 

Arable – 860mm 

Woodland – 760mm  

Landuse Areas 
Garden – 1477mm 

Inner Arable land– 815mm  

Outer Arable land – 775mm 

Natural soils – 400mm  

Colour Dark brown, dark grey brown 

to black 

Dark brown, grey, black 

Texture Silty sand loam Sand loam to silty sand loam

Inclusions Large quantity of quartz 

mineral with some organic 

and carbonised particles 

Charcoal, black amorphous 

particles, sandstone, peaty 

organics and some ceramics 

Table 15, Range of anthropogenic soils found from two studies at Olthof 

farmstead
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The analysis of the anthropogenic soils at Olthof was initially conducted 

as part of a larger pan-European analysis of anthropogenic soils (Dercon et 

al., 2005) it allows direct comparison of the distribution of the soils in the two 

studies, summarized in Table 15.   

Both studies at Olthof reveal enhanced depths of anthropogenic soils. 

Dercon et al., (2005) focussed upon three different existing landuse areas and 

the deepest plaggen horizon was located in the pasture area which correlates 

most closely to the depth of soils found in the garden. The similarity in the 

range of depths from the garden outwards suggests that the area used for 

arable farming was much larger and was extensively manured. The evidence 

from the current work suggests that even marginal upland areas were stripped 

of their natural heathland soil, probably for organic manure components, and 

arable areas developed in their place, some of which are still utilised to this 

day.  

 

Authors (Date) Anthropogenic soils 

Site Depth 

Pape (1970) Eibergen, Gelderland, 

Netherlands 

Black plaggen – 1350mm 

Brown plaggen – 750mm  

Eckelmann (1980) Osnabruck, Germany 

Vorden, 

Quackenbruck, 

Osnabruck 

 

plaggen soil – 650mm 

plaggen soil – 500mm 

plaggen soil – 1000mm 

Blume and Kalk (1986) Sylt, Denmark Black plaggen – 580mm 

Elwert and Finnern 

(1993) 

Seeth, Schleswig-

Holstein, Germany 

Black plaggen – 660mm 

 

van Smeerdyk et al 

(1995) 

Valthe, Drenthe, 

Netherlands 

Test Pit 1 – 380mm  

Test Pit 2 – 480mm 

Test Pit 3 – 600mm 

van Mourik (1997) Weert, Limburg, 

Netherlands 

Black Plaggen – 750mm 

 

Table 16, Anthropogenic soils in mainland Europe 
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Distinct similarities are also seen between the colour, texture and 

inclusions found in the two projects, showing overall consistency in the range 

of anthropogenic horizons found across the farm. On a larger scale the 

anthropogenic soils identified at Olthof fit into an ever increasing database of 

sites analysed for the range and distribution of anthropogenic soils (Table 16).  

The extensive occurrence of plaggen soils across north west Europe 

shows that anthropogenic enhancement led to deepened soil horizons. In 

Flanders and North Brabant mean plaggen depth was between 700mm to 

1000mm (Pape, 1970), but more detailed field sampling of the plaggen soils in 

Eibergen found distinctive areas of very deep black plaggen soils of over 

1350mm close to the settlement centre and very similar depth to the garden 

soils found at Olthof. Pape (1970) also identified a brown plaggen soil which 

was shallower than the black plaggen soil, but thicker than the brown coloured 

anthropogenic soil found at Olthof, possibly because of a different rate of 

manuring and less post burial mixing and truncation. A range of 

anthropogenic soils were analysed across a number of sites in Europe. In 

Germany the plaggen soils were analysed in three landuse areas and ranged 

from 500mm to 1000mm in depth. At Vorden the plaggen soils were located 

upon the dune sands and a truncated podzolic soil and were in excess of 

650mm and a black colour. At the two other sites sampled at Quackenbruck 

and Osnabruck the anthropogenic soils ranged from 500mm to 1000mm but 

had much lighter dark grey brown to brown colour and were located upon river 

loams and loess loams (Eckelmann, 1980). These soils are similar to the 

brown plaggen soils at Olthof and occur away from the centre of settlement 

and towards the marginal areas of arable farmland whereas at Vorden the 

black plaggen soil appears to be much closer to a farmstead centre. Another 

site sampled on dune sand and an old podzol soil at Seethe, Germany also 

revealed a black plaggen soil with a 660mm deep stratigraphy (Elwert and 

Finnern, 1993). 

  At Valthe in Drenthe province three soil profiles were excavated 

across the settlement at a number of landuse areas (van Smeerdyk et al., 

1995). The profile closest to the settlement centre contains the deepest 

sequence of two distinctive black to very dark brown plaggen soils with many 



 
 
 

166 
 

anthropogenic inclusions including pottery, brick and charcoal fragments. 

Further away from the centre of Valthe the sequence shallows from 480mm to 

380mm and are typically black to dark greyish brown with less anthropogenic 

inclusions (van Smeerdyk, et al., 1995). This pattern mirrors the change in 

depth found at Olthof and historical geography suggests that the areas with 

the deeper soils sequences occur in the area of the oldest field systems 

dating from the early Middle Ages, but the majority of the black plaggen soil 

was deposited from A.D.1450 onwards (Spek, 1996).    

The soils found at Olthof farm mirror the anthropogenic soil sequences 

found on the site through the analysis by Dercon et al (2005) and on a wider 

regional context from analysis at other Dutch site and sites in Denmark and 

Germany (Eckelmann, 1980; Blume and Kalk, 1986). Two distinctive 

anthropogenic soils were found including a brown plaggen soil and a more 

extensive black plaggen soil representing two distinctive manuring stages. 
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4 STUDY SITE 4: CAHERATRANT, DINGLE PENINSULA, 
IRELAND 

 
4.1 INTRODUCTION 
 

Caheratrant is a dispersed settlement located on the southern side of 

the Dingle Peninsula in County Kerry, Ireland (G.R. V3735, 9826) (Figs 63 

and 64). The parish, of the same name, is situated on a smaller peninsula 

with Ventry Harbour to the north and Dingle Bay to the south. Caheratrant 

parish is surrounded by four other parishes: Kilfarnnoge to the east, 

Kilvickadownig and Caherbullig to the west and Ventry to the north. Raheen, a 

fifth parish, splits Caheratrant in two creating two distinct outliers. The 

northern part is composed of lowlying salt marsh flooded at high tide and 

reclaimed farmland to the west of a raised seabank and road.  

 

 
Figure 63, Map of Ireland the Dingle Peninsula and the field site at 

Caheratrant 

 

Presently the area is very sparsely inhabited, and the majoritory of the 

total population live in Caheratrant located in the southern part. The village is 
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composed of four farms located around a small nucleus of temporary holiday 

homes and several isolated properties. The orientation of parishes around 

Ventry Harbour and others on the Dingle Peninsula reflects the need to share 

the calcareous sand placed on farmland to decrease soil acidity levels, and 

within Caheratrant the farmsteads have very distinctive land ownership 

patterns which are orientated as strips between the beach and the cliffs.  

 

 
Figure 64, Location map of Ventry Bay and Caheratrant on the southern edge 

of the Dingle Peninsula, County Kerry, SW Ireland (1:50,000 Ordnance 

Survey Ireland 2005) 

 

4.2 GEOLOGY AND SOILS OF THE DINGLE PENINSULA 
 

The Dingle Peninsula has over 140 million years of geological history 

expressed through a number of lithologies ranging from the Silurian to the 

Carboniferous periods (Fig 65). As a general trend the oldest rocks are part of 
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the Dunquin Group and are located towards the south and west and consist of 

distinctive marine fossiliferous limestone and a number of volcanic rhyolites 

both of the Wenlock (428 – 421Ma) and Ludlow epochs (421 – 414Ma) 

(Holland, 1969).  

 

 

 
Figure 65, Geological map of the Dingle Peninsula, County Kerry, SW Ireland 

(The Geological Survey of Ireland – Sheet 20 Bedrock Series 1:100,000, 

2007) 

 

The Silurian rocks were heavily deformed and lifted by the Acadian 

transpression which also led to denudation of the Caledonide mountains 

within mainland Ireland and the deposition of the Dingle Group, a mudstone, 

sandstone and coarse conglomerate rock. The deposits are characteristically 

red/orange coloured rocks and make up the majority of the peninsula 

including Mt Brandon (953m), the highest peak on the Peninsula, and 4th 

highest in Ireland. There has been great debate as to the age of the Dingle 

Group around the contact area with the Dunquin Group as many of the 

contacts are heavily faulted or unconformable (Todd et al., 1988) but 

generally the lithostatigraphy is of Early Devonian age consisting of the lower 

Old Red Sandstone (408-387Ma). Further uplift in the late Devonian led to the 

reactivation of many faults and the erosion of Middle Devonian (387-384Ma) 

rocks leaving an unconformity with the Upper Devonian rocks (374-360Ma). 
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These consist of upper Old Red Sandstone and are located towards the 

eastern end of the peninsula.The youngest rocks are of Lower Carboniferous 

age (360 – 320Ma).  

 
Soil Type Topography Altitude Drainage Vegetation Geology 
Brown 
Podzolic 

Rolling 76m O.D. Well 
Drained  

Short 
Grassland 

Till, mixture of 
ORS, shaly 
sandstone and 
shale 

Brown Earth Gently Rolling 50m O.D. Well 
Drained 

Short 
Grassland 

Till of ORS & 
Carboniferous 
Limestone 

Grey Brown 
Podzolic 

Gently Rolling 50m O.D. Well 
Drained 

Short 
Grassland 

Till of ORS & 
Carboniferous 
Limestone 

Lithosols 
 

Summit of 
mountains 

+360m 
O.D. 

Excessively Heather Only Old Red 
Sandstone 

Blanket Peat 
 
 

Mountainous +280m 
O.D.  

/ Heather and 
Grass 
species 

Glacial Till 

Peaty 
Podzol 
 

Very hilly, near 
mountain 
summit 

290m O.D. Excessively 
below peat 

Heather, 
Purple Moor 
Grass, Deer 
Grass 

Old Red 
Sandstone 

Table 17, Natural soil sequences on the Dingle Peninsula (Adapted from 

Gardiner and Radford, 1980) 

 

These consist of distinctive marine limestones and are located at the 

very eastern periphery as well as in the Magharee and Inch peninsulas. 

Around 270 million years ago the Variscan orogeny once again uplifted and 

folded the rocks of the peninsula to their current orientation (Price and Todd, 

1988). During the Pleistocene the peninsula was covered by ice from the 

Elsterian/ Munsterian glaciation, and even after the ice had retracted from the 

rest of mainland Ireland, an ice-mass remained over Cork and Kerry until the 

end of the Midlandian advance. The ice severely scoured the landscape and 

deposited a poorly sorted sandy calcareous till across the peninsula and upon 

which shallow soils developed. There are a number of natural soil types 

present on the Dingle peninsula (Table 17) which are located in very particular 

geographic locations. The majority of arable soils are Brown Earths and 

Brown Podzolics on a range of underlying geologies. In upland, mountainous 

areas the soils are shallower and dominated by large rocky fragments 

(Lithosols) and in lowland areas where drainage is poor thick peaty podzols 
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are present which allow heather and in recent years coniferous woodland to 

grow. The land cover on the peninsula is dominated by mixed arable and 

small areas of pastoral land. In the upland areas are moors and heathland, 

marked as light green, and patches of peat soils and estuarine deposits 

(Figure 66). 

 
 

 

 
Figure 66, Modern land cover map across the Dingle Peninsula, County 

Kerry, SW Ireland (CORINE Land Cover Ireland 1:500,000 1990) 

 
 

4.3 THE HISTORY AND ARCHAEOLOGY OF THE DINGLE PENINSULA  
 

The Dingle Peninsula has a very unique and complex history but there 

are distinctive gaps in the archaeological record due to a lack of investigation. 

The Dingle Peninsula was initially inhabited in the Mesolithic period c.6000 by 

hunter gatherers as shown by excavations at Ferriters Cove (Woodman et al., 

1984; 1999). Between c. 4000 – 2000BC there is a distinct lack of Neolithic 

evidence and it had been suggested that the Peninsula was not occupied 

during this period, but palynological research has shown that there is 

considerable human settlement and cereal cultivation occurring 3895 – 2965 
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BC (Lynch, 1981). A survey conducted by Mitchell (1989) on Valencia Island 

identified eight pre-bog field systems interpreted as Early Bronze Age (2000 – 

1400BC) and thought to represent farmsteads and settlements as well as a 

very high number of ritual and funerary monuments in the form of standing 

stones and cairns marking large tomb sites. Settlements increased in size 

during the Iron Age (500BC – A.D. 400) and became more nucleated. On the 

Dingle Peninsula promontory forts located on the coast as well as inland on 

important tribal boundaries indicate increased competition for limited 

resources. Archaeological evidence of settlement and human activity 

increases markedly in the Early Christian Period (5th to 12th Century A.D.) with 

over 450 ringforts, high status dwellings, as well as the atypical Dingle 

Peninsula ‘Beehive’ huts or Clochauns, a lower status structure. Settlements 

developed slowly until the Norman colonisation in A.D. 1177 and were 

relatively unaltered by Viking raids in the 10th and 11th centuries who most 

likely used the peninsula as a trading point and whose legacy today remains 

in many of the place names present in the villages (Sections 4.3.1 and 4.3.2). 

The Normans did not have any direct effect on the peninsula until at least A.D. 

1200 when incursion into Kerry brought numerous castles and tower-forts with 

large areas of land controlled by the ‘landed-class’. Around the Ventry area of 

the Dingle Peninsula, the ‘Knights of Kerry’, a small branch of the powerful 

Fitzgerald family, founded the castle at Rahinnane and made it their chief seat 

in the area.  

A combination of Viking trading and sub-settlement and Norman 

colonial actions had developed the main town of Dingle into a thriving, well 

defended site. The town, the largest on the Peninsula, had clearly marked 

burgage plots still visible today, 3 castles and fortified residences and a 

number of late medieval churches. The majority of the population lived in 

small villages and settlements and worked the land, a process which 

continued until very recently but unlike mainland Ireland the landscape has 

been very well preserved to permit the study of landscape and agricultural 

history.   
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4.3.1 THE HISTORY OF CAHERATRANT  

 

The name Caheratrant derives from the prefix “caher” meaning fortified 

place and the personal family name “Trant” which can be traced back to the 

Dingle Peninsula for over 800 years. There are records of people with the 

name Trant in the Barony of Cocaguiney, thought to derive from Danish 

settlers in south west Ireland but they are certainly in place by the Norman 

invasion in A.D. 1171 (O'Laughlin, 1999). The first documentation for a castle 

in the Caheratrant area comes with the crenulation documents for Phillip Trant 

to build a fortified inhabitance in A.D. 1272, but its location has been lost for 

many years and no archaeological work has been conducted to locate it, 

however it may well have taken the form of a classic Irish tower castle as 

seen at Rahinnane. By the late 16th century certain members of the Trant had 

made names for themselves including Garret Trant a renowned merchant in 

the 1580s, and Richard Trant, the first Sovereign under the Dingle charter in 

A.D. 1585 (O'Laughlin, 1999).  

The population of Ventry Parish in A.D. 1659 was 149 which was 13% 

of the total population of the Barrony of Corcaguiny (1181), or the area 

covering the Dingle Peninsula today. One particular member of the Trant 

family is noted as a “tituladoe” in the A.D. 1659 census of Ventry Parish. This 

position was given to a principal person of the parish with land and title and 

possibly living in Caheratrant. The data indicates that at this period the 

settlement had one of the highest populations in the parish (16%), larger even 

than Ventry, suggesting prosperity and rapid growth. Wealth and power in the 

vicinity may also be postulated by the lack of English in the parish. Rural 

areas were on the whole left alone by Cromwell’s increasing English military 

presence in Ireland but Dingle and other important trading venues were the 

places selected for the “plantation of the English and Scots” between A.D. 

1556 to 1620.  

The development of the settlement is lost from the records for the next 

150 years, but prosperity declined sharply with the onset of the devastating 

Irish Potato Famine of 1845 – 1850 with over 32,000 people starving to death 

and over 55,880 emigrating to Europe and the Americas from county Kerry 
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alone. Alongside the famine and emigration there are also records of a 

number of evictions which took place in the parish and were published in 

English newspapers leading to semi to total desertion of whole farms and 

settlements. In January 1849 the Times stated: 

 

‘From the lands of Cahirtrant, the property of Lord Ventry and in a 

parish whence that nobleman's title is derived, 36 families, comprehending 

188 souls, have been expelled’ ("Evictions in Dingle" London Times 6th Jan 

1849) 

 

However, Caheratrant farm continued to be worked and by the late 19th 

century, had changed ownership to the O’Shea’s who own the farm to this 

day. Detailed marriage records from the mid 19th century show that the family 

are mostly farmers and have grown to a considerable size with two sons and 

a daughter married in the space of three years. The settlement at Caheratrant 

has increased in size also and at the same time of the O’Shea marriages 

there are at least five other families with various occupations.  

 

4.3.2  MAP EVIDENCE AND FIELD SIZES 

 

Irish Ordnance Survey maps of the area drawn in the early 1960s 

clearly show the field systems had a range of sizes and orientations. 

Caheratrant parish has a distinctive nucleated/clustered form of buildings in 

the north of the area with a number of smaller isolated farmsteads further 

south but situated roughly on the 20m contour, using the slope to protect 

properties from the prevailing Atlantic wind from the south west. A small 

manorial farm called Toberkievan, located on the edge of Ventry bay is also 

present but its farmland has been considerably reduced by cliff erosion.  In 

Kilfarnoge parish there are also several small farmsteads but the main 

settlement site is the large manorial farmstead of Coon. In Raheen there are 

no occupation sites except a small manorial farmstead called Balbunie 

located near the beach.  
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Figure 67, 1963 Ordnance Survey map of Caheratrant illustrating the variations in field sizes between neighbouring Kilfarnoge and 

Raheen (1963 Ordnance Survey map of the Dingle Peninsula, County Kerry Sheet) 
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The field systems in each of the parishes are very different and reflect 

a range of land uses in the past, as illustrated in figures 67 and 68 and 

appendix 5. In Caheratrant, the parish contains very distinctive elongated, 

rectilinear fields, orientated north-south between the upland and Ventry Bay. 

In the assessment area the fields have a very distinctive north west to south 

east orientation and the overall field size is slightly larger (average 2.01 acres) 

compared to an average of 1.24 acres in the parish as a whole.  
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Figure 68, Average area of fields from Caheratrant and neighbouring parishes 

(Error bars show 95% of the mean) 

 

 In the northern area of the parish where a large quantity of reclaimed 

land is located, fields are considerably larger averaging 3.55 acres, possibly 

because the land was divided for grazing and for coniferous tree plantations 

and not for arable land. Certainly the quality of the land is much lower than 

around the settlements and the map shows that many of the fields have poor 

quality peaty marsh land. The field sizes in the surrounding parishes of 

Kilfarnoge and Raheen are very different and suggest different landuse 

histories. In Kilfarnoge the fields are considerably larger than Caheratrant and 

average 7.57 acres with no clear fixed orientation and a mixture of square and 
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semi-rectilinear shapes. In Raheen the field sizes average 2.32 acres and 

have semi-square to rectilinear shape, orientated north west to south east. At 

Kilfarnoge the landuse has almost always been pastoral and the field sizes 

and shapes and lack of anthropogenic soils reflect this history. It is not known 

whether anthropogenic soils are present in Raheen, but there has been 

considerable expansion and reclamation of old peat and marshlands which 

are expressed in the larger, regular field sizes and shapes and markings of 

marshland on the map, suggesting poorer arable areas.  

 
4.4 THE SPATIAL DISTRIBUTION OF SOILS IDENTIFIED IN THE 

AUGER SURVEY AT CAHERATRANT 
 

Sections 4.4 and 4.5 illustrate the results of the fieldwork analysis 

conducted in an attempt to answer the key questions outlined in section 1.11, 

and this was done by utilising the methodologies detailed in section (1.12). 

The results of the auger survey and test pit excavation revealed a number of 

soils which have been affected by humans in various quantities as well as a 

range of natural soils. Section 4.4 also discusses the variety and distribution 

of amended arable soils found across the settlement by interpreting the 

transect diagrams and comparing the diversity and range with the natural 

geographical landscape. 11 transects (sections 4.4.1 to 4.4.5) illustrate the 

varying distributions of the soils across the farm. The soils are then analysed 

across three landuse areas; the kaleyard (section 4.5.1), the inner arable land 

(section 4.5.2) and outer arable land (section 4.5.3). The overall fieldwork 

results from Caheratrant are discussed in section 4.6 where comparisons with 

previous work are made.   

Twenty seven cores were taken across the farmstead at Caheratrant to 

investigate the range and distribution of soils (Fig 69) and the results are 

illustrated in transects 1 to 11. Transect 1 includes the outer and inner arable 

land and kaleyard of the farm and also the kaleyard of an adjacent farm as 

well as an abandoned field directly next to Ventry Strand where calcareous 

sands were collected for byre bedding material. Sections 2 to 11 are smaller 

sections across the different landuse areas with three across the outer arable 
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land and upland area (transects 2, 3 & 4), six transects across the arable land 

(transects 5, 6, 7, 8, 9 and 10) and one section across the kaleyard (transect 

11). (Raw data in appendices 6 and 7) 

 

 
 

Figure 69, Location map of auger and test pit excavation across Caheratrant 

(1963 Ordnance Survey map of the Dingle Peninsula, County Kerry Sheet.
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4.4.1 TRANSECT 1 

 

Transect 1 (Fig 70) is compiled from the data from 9 cores, 4 test pits and 

two natural sections in order to show the soil sequence across Caheratrant from 

the outfield/upland area in the south to the lowland fields next to Ventry Strand. 

The first three cores (4a, 5 and 4b) contain a very shallow sequence of natural 

peaty organic soil (H) directly above the natural till (C). Organo-mineral horizons 

(Ap-1 and Ap-2) first appear in the outfield in core 11 and gradually increase in 

depth downslope from 305mm to 562mm with particularly deep horizons at cores 

16 (550mm) and 25 (562mm). The Ap-1 horizon varies from 170mm at the 

southern end of the outer arable land and increases to 212mm and 220mm at 

cores 13 and 16 before rapidly deepening to 350mm at core 19, and then levelling 

off to 195mm to 220mm in the inner arable land and kaleyard areas. The Ap-2 

horizon has a more variable depth ranging from 100mm to 335mm with a gradual 

increase in depth from the outer arable area to the centre of the farmstead. In the 

arable area both soils have distinctive dark grey to light brown (10YR 5/2 to 4/2) 

silty sand loams with some small sub-rounded quartz particles, heavily degraded 

calcium carbonate particles and small charcoal particles indicating minimal 

manuring. Closer to the farm the number and size of organic and black carbonised 

particles increases and the soil colour becomes a darker grey to dark grey brown 

(10YR 5/2 to 3/3). The transect indicates that between the two kaleyards the 

organic Ap soil horizons vary little in depth ranging between 545mm to 560mm and 

thin to 305mm at an abandoned arable area at Ventry Strand where the organic 

soil is covered by a 180mm deep stony storm horizon..  

A natural track section contains 670mm of organic Ap horizons, however, 

the build up is most likely due to the movement of soil downslope by a mixture of 

water transportation and ploughing action leading to the development of a 

headland. The section does however reveal a distinctive organic rich palaeosol 

which has been buried by the movement and build up of the arable soils. 
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Figure 70, Distribution of soil horizons across Caheratrant farm in transect 1 
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4.4.2 TRANSECTS 2, 3 AND 4 

 

Transects 2, 3 and 4 (Fig 71 and 72) show the change in soil types 

from the upland to the outer arable land of the farm and the change from 

shallow natural peat soils to moderately enhanced organic soils. The most 

distinctive observation is the change in height from 39.6m around cores 4a, 

4b and 5 to 21.7m at core 8 as well as the steep slope angle. In the steep, 

upland areas the soils present are typically shallow (140mm to 150mm) highly 

organic peaty soils (H) with no anthropogenic inclusions or amendment, but in 

the flatter areas shallow organic soils (Ap-1) are present. These range from 

80 to 100mm and have a typical loamy sand silt texture and light yellow to 

brown colour and rare anthropogenic inclusions. A very indistinct, shallow 

(40mm) Ap-2 horizon is present within core 2 and it consists of a light grey to 

brown (10YR 5/2 to 5/3) silty sand loam with quartz and some shell inclusions 

which are well rounded and heavily degraded. Like the Ap-1 horizon though, 

inclusions of anthropogenic material is rare.  

 

4.4.3 TRANSECTS 5, 6, 7 AND 8 

 

Transects 5, 6, 7 and 8 (Figures 72 to 74) are located across the outer 

arable area. The slope angle of the fields is significantly shallower and the 

organic Ap horizons are deeper possibly because of an increase in organic 

and anthropogenic amendment. At transect five the Ap soil horizons increase 

in depth from 220mm to 305mm. In cores 10 and 11 the soil sequence 

consists of an Ap-1 horizon, typically dark grey to light brown colour (10YR 

5/2 to 4/2) with a silty sand loam texture and more degraded shell and quartz 

fragments, but still few visible charcoal and organic fragments suggesting 

limited input from the farm. The Ap-2 horizon increases from 65mm to 135mm 

and consists of a light grey to light brown (10YR 5/2 to 5/3) silty sand loam 

with quartz and calcium carbonate inclusions. Below the Ap soil horizons in 

core 9 and 12 is a light grey to white (10YR 7/1 to 8/1) leached eluviated silty 

sand horizon with fine grained quartz inclusions with a thin 40mm iron rich Bs 

horizon. 
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Figure 71, The distribution of soil horizons across Caheratrant farmstead in transects 2 and 3 
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Figure 72, The distribution of arable soils across Caheratrant farmstead in transect 4 and 5 
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Figure 73, The distribution of soil horizons across Caheratrant farmstead in transect 6 and 7 
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These soil horizons may be the remnants of an old podzolic soil 

associated with the organic peat soils seen in the upland area of the site and 

have been removed through the process of reclamation to expand arable 

land. Through transects 6, 7 and 8 the Ap soil horizons increase in depth from 

300mm to 550mm with steadily increasing anthropogenic inclusions especially 

charcoal, organic fragments and coarse degraded ceramic fragments 

suggesting increased addition through a manuring process. 

 

4.4.4 TRANSECTS 9 AND 10 

 

Transects 9 and 10 (Figs 74 and 75) consist of data from 6 cores 20,  

22, 23, 24, 25 and 26 and represents the arable landscape around the farm. 

The organic Ap soil horizons range from 475mm to 525mm but there are also 

two areas in transect 10 where the soils exceed 560mm towards the north 

west of the site due to soil movement downslope by water and ploughing 

processes giving a false indication of soil deepening by anthropogenic 

addition. However, around the farm the fields are flatter and appear to be 

deepened as a direct result of manuring. The soil sequence in the area 

includes an Ap-1 horizon, dark brown to dark greyish brown (10YR 5/1 to 5/3) 

organic rich silty sand loam with a large quantity of quartz and shell particles 

and strongly degraded charcoal fragments. In both transects the depth of the 

Ap-2 horizon increases considerably through transects 5,6,7 and 8 and 

ranges from 275mm to 300mm, suggesting an increase in the level of 

manuring and organic addition in the past. The soil has a light grey to grey 

brown (10YR 5/1 to 5/2) silty sand loam texture with shell and quartz 

fragments and degraded charcoal and organic particles. 

 

4.4.5  TRANSECT 11 

 

Transect 11 consists of two cores and the data from test pits one and 

two (Fig 75). The transect shows that the land surface around the two test pits 

has been increased by organic addition and manuring deepening the Ap-1 

and Ap-2 horizons. The Ap-1 ranges from 495mm in core 24 to 580mm 

downslope in core 26 with a very uniform 530mm to 535mm of Ap soil 
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horizons in the kaleyard. Of the two soils the Ap-2 horizon shows the greatest 

increase in depth from other transects, and ranges from 285mm to 310mm 

whereas the Ap-1 horizon is more consistent and ranges from 215mm to 

230mm. Texturally, however, both soils within the kaleyard are considerably 

different to the soils identified in cores 24 and 26. The Ap-1 horizon is typically 

a dark grey, brown (10YR 5/1 to 5/2) silty sand loam with a large quantity of 

sub-rounded to rounded quartz and shell fragments and larger charcoal 

fragments. The Ap-2 horizon is also darker in colour from dark grey to dark 

greyish brown (10YR 5/2 to 3/3) with coarse anthropogenic inclusions of 

ceramics and charcoal fragments. This suggests that the kaleyard areas have 

had the most anthropogenic amendment and that the level of manuring 

decreases with distance from the farm. 
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Figure 74, The distribution of soil horizons across Caheratrant farmstead in transects 8 and 9 
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Figure 75, The distribution of soil horizons across Caheratrant farmstead in transects 10 and 11 
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4.5 DISTRIBUTION OF SOIL HORIZONS ACROSS THREE LANDUSE 
AREAS 

 
4.5.1 KALEYARD SOILS 
 

Two kaleyards were assessed at Caheratrant to determine the 

distribution of soil horizons. At Caheratrant farm the old kaleyard has been 

completely removed and transformed into a small orchard which has since 

been abandoned and was in no state for sampling. A second kaleyard area 

was located just to the north west of the farm and it has a distinct elongate 

shape and measures 25m by 4.5m and had been manured in exactly the 

same way as the old kaleyard with turf, peat and calcareous sand (Plate 15).  

 

 
Plate 15, Photo of isolated kaleyard north west of Caheratrant farm (B.Pears) 
  

For direct comparison to the separate kaleyard, a test pit was 

excavated within the old kaleyard of the neighbouring farm. Both farms had 

been owned by the O’Shea family, and an identical manuring regime was 

practised; both used a very traditional Irish method of spade delling which is 

still conducted today in other parts of the parish (Plate 16).  
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Plate 16, Photo of distinctive spade delling in kaleyard area as used at 

Caheratrant farm (D. Davidson, 2007) 

 

Two test pits (1 and 2) were excavated in Caheratrant kaleyard and 

both revealed two distinctive organo-mineral horizons (Ap-1 and Ap-2) which 

ranged from 520mm to 535mm deep (Figs 76 and 77). The Ap-1 horizon is a 

typically dark grey, brown (10YR 5/2 to 4/2) silty sand loam with large quantity 

of sub-rounded to rounded quartz and shell fragments and larger charcoal 

fragments. The Ap-2 horizon is also darker in colour from dark grey to dark 

greyish brown (10YR 5/2 to 4/2) with coarse charcoal fragments. Beneath the 

Ap horizons a dark yellow, orange (10YR 6/4 to 5/6) sandy silt clay (B) soil 

was found with large inclusions of sub-rounded sandstone fragments. The soil 

sequence in test pits 1 and 2 differs considerably from the horizons found in 

the old kaleyard. The upper most horizon (Ap-1) in test pit 10 (Fig 78) has a 

light brownish grey (10YR 6/2) sandy silt with some organic inclusions and 

stone fragments and reworked B horizon which has a yellow, orange colour 

(10YR 5/8) clay sandy silt and is most likely a redeposited natural soil as it 

occurs sporadically, ranging from 30mm to 50mm. 
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Figure 76, Section drawing and photograph of soil horizons at Caheratrant kaleyard in test pit 1 
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Figure 77, Section drawing and photograph of soil horizons at Caheratrant kaleyard in test pit 2 
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Figure 78, Section drawing and photograph of soil horizons at Caheratrant kaleyard in test pit 10 
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Below the reworked soil is a very distinctive thin 20mm to 30mm yellow 

(10YR 7/8 to 8/8) sand sediment composed almost entirely of shell sand and 

some small organic particles. The sand horizon is likely to represent a dump 

of calcareous sand added to the soil to reduce soil acidity. Below the shell 

sand is a second distinctive organic soil (Ap-2) which ranges from 200mm to 

210mm, has a dark grey to dark brown colour (10YR 4/1 to 3/3) and a sandy 

silt loam texture. Within the soil are inclusions of organic material in the form 

of peat, black carbonised particles and mineral inclusions especially small 

sub-rounded quartz and degraded shell fragments. Beneath the Ap-2 horizon 

is a second, coarser calcium carbonate horizon which ranges from 90mm to 

110mm and consists of a black to dark grey (10YR 2/1 to 3/1) poorly sorted 

sandy gravel. The inclusions consist of quartz (2mm to 25mm), shell 

fragments (<2mm to 10mm) and very small black carbonised particles 

(<1mm). This horizon represents a second dump of calcareous sand and 

gravel which has been mixed with domestic refuse in farmyards. A third 

organic soil (Ap-3) is present beneath the coarse gravel and this consists of a 

dark grey to very dark brown (10YR 4/1 to 2/2) sandy silt loam with inclusions 

of small quartz fragments and small degraded shell fragments. At the base of 

the sequence there is a light yellow, brown (10YR 6/4) sandy silt clay and 

interpreted as a B horizon. 

 

4.5.2 INNER ARABLE SOILS 

 

The inner arable area at Caheratrant farm was assessed with a number 

of cores and three test pits (Figs 79 to 81). Transects 9 and 10 show that 

there is a considerable depth of organic soils and test pits 3, 4 and 8 illustrate 

a similar pattern with the soils ranging from 495mm to 525mm. The Ap-1 

horizon is typically a dark grey brown to light brown (10YR 4/1 to 5/3) silty 

sand loam with small degraded organic material, charcoal fragments and root 

and quartz particles. Beneath the upper organic soil is the Ap-2 horizon, a 

distinctive grey brown to brown (10YR 5/2 to 5/3) silty sand loam with small 

shell inclusions, charcoal and rounded quartz inclusions.  
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Figure 79, Section drawing and photograph of soil horizons in the inner arable area at Caheratrant in test pit 3 
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Figure 80, Section drawing and photograph of soil horizons in the inner arable area at Caheratrant in test pit 4 
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Figure 81, Section drawing and photograph of soil horizons in the inner arable area at Caheratrant in test pit 8 
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At the base of the sequence is the uppermost natural soil consisting of 

a light yellow brown (10YR 6/4 to 6/8) sand silt clay B horizon and pale yellow 

to brown to yellow (10YR 7/4 to 7/6) sandy clay poorly sorted till (C). In the 

three test pits the Ap-1 soil ranges from 180mm to 220mm and as seen in the 

auger survey the Ap-2 horizon is deeper and ranges from 275mm to 300mm, 

especially in test pit 8 towards the bottom of the gentle slope, but there is very 

little variation in the quantity of anthropogenic inclusions throughout the three 

pits suggesting a similar rate of organic and mineral input. 

 

4.5.3 OUTER ARABLE SOILS 
 
 

Three test pits (5, 6 and 7) (Fig 82 to 84) were excavated in the outer 

arable area of Caheratrant farm and each has a different depth of organic Ap 

soil horizons from 495mm at test pit 5, 380mm at test pit 6 and 215mm at test 

pit 7. At test pit 5 the Ap-1 horizon is very similar to the inner arable soils but 

is typically a dark yellowish brown (10YR 4/4) silty sand loam with 

considerably less organic and charcoal inclusions but a very similar quantity 

of sand sized quartz and shell fragments. The soil horizon ranges from 

205mm to 220mm and has a very irregular but distinctive boundary with the 

Ap-2 horizon. In test pit 6 the Ap-1 soil is a lighter brown (10YR 4/1 to 5/3) 

silty sand loam with a few degraded organics and almost no carbonised 

particles and thinned to 165mm to 180mm. By test pit 7, located furthest away 

from the farm, the Ap-1 horizon is only 80mm to 100mm thick and composed 

of a dark grey, light brown (10YR 4/1 to 5/3) silty sand loam with almost no 

organic inclusions or shell sand additions. The second organic soil (Ap-2) 

thins in a very similar way to the Ap-1 horizon from 280mm at test pit 5 to 

125mm at test pit 7. The colour and texture range from a brown (10YR 4/3) 

silty clay loam with inclusions of heavily degraded organic particles and very 

small charcoal fragments which occur sporadically through the horizon at test 

pit 5 and 6 to a light grey (10YR 7/2) silty sand loam with almost no organic 

inclusions or carbonised particles and minimal shell or calcium carbonate 

sand inclusions. 
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Figure 82, Section drawing and photograph of soil horizons in the outer arable area of Caheratrant in test pit 5 
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Figure 83, Section drawing and photograph of soil horizons in the outer arable area of Caheratrant in test pit 6 
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Figure 84, Section drawing and photograph of soil horizons in the outer arable area of Caheratrant in test pit 7 
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In several of the test pits a thin 40mm to 50mm iron rich horizon (Bs) is 

present above a lighter yellow, orange B and C horizon marking the beginning 

of the natural till sediments. 

 

4.5.4 NATURAL SOILS IN UPLAND AREAS 

 

  The majority of upland areas and natural soil sequences are situated to 

the south and west of Caheratrant on the steep slopes of Mount Eagle. 

However, there are also a number of natural soil sequences closer to the farm 

especially at the southern end as highlighted in transects 1, 2, 3, and 4 

(Sections 4.4.1 and 4.4.2) and in many of the cliff sections bordering Dingle 

Bay (Plate 17).  

 
Plate 17, Photo of natural peat soils and underlying till in the upland area of 

Caheratrant 

 

The soils in the upland areas consist of distinctive shallow (150mm) 

peaty soil (H) with high levels of organic material but no anthropogenic 

inclusions. Rig evidence on the surface of the upland areas indicates that in 

the past even these poor quality, shallow soils have been used to grow crops 

and that reclamation of upland areas into outer arable farmland has been 
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conducted. To the west of Caheratrant is a large area of pastoral fields which 

have in the past provided peat to all the farms in the parish, but today only 

shallow peaty H horizons remain and are either used for grazing animals or 

growing coniferous plantations. Deep peat horizons are very limited today due 

to the extreme levels of extraction for manure from the mid 1700s to early 

1900s.  

Two extra sections (Figs 85 and 86) were also analysed as they 

provide excellent examples of a distinctive buried soil beneath the organic Ap 

horizons and beneath a storm deposit. Directly adjacent to Caheratrant farm 

is a small trackway which was used in the past to transport cartloads of sea 

sand up to the fields and to drive cattle to the upland grazing areas (Fig 85). 

The section reveals an extensive build-up of organic soil, because of 

extensive downslope movement through plough action and surface erosion. 

As a result the Ap-1 horizon is a 200mm to 220mm deep dark greyish brown 

(10YR4/2) silty sand loam with organic inclusions and a number of large well 

rounded quartzite pebbles (20-50mm). Beneath the Ap-1 horizon is a second 

deepened Ap-2 soil consisting of a dark yellowish brown (10YR 4/4) iron rich 

silty sand loam with organic inclusions and small carbonised fragments and 

quartz grains. The section also reveals a very distinctive 280mm to 300mm 

buried peat soil (H). The layer is intact at the base but the border with the Ap 

soils is heavily disturbed, possibly by plough action, with large angular 

fragments of palaeosol in the lower Ap-2. The buried soil is dark brown (10YR 

2/2 to 2/1) and with a peaty loam texture and plant inclusions, but no 

anthropogenic input. Below the soil is a heavily leached eluviated horizon (E) 

consisting of a light grey to white (10YR 7/1 to 8/1) silty sand with no organic 

inclusions. Beneath the buried soil and leached horizons were a sequence of 

brownish yellow B soils, iron rich soils (Bs) with a typical brownish yellow 

colour (10YR 6/6) and laminated in places and the natural olive green (2.5Y 

5/3) coarse grained, poorly sorted till (C).  
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Figure 85, Section drawing and photograph of soil horizons in an open track section 
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Figure 86, Section drawing and photograph of soil horizons in an open beach section 
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The second natural section is directly adjacent to Ventry Strand in an 

old disused field and has been exposed by continual marine erosion (Fig 86). 

The section has a 275mm to 295mm thick organic Ap-1 horizon. The soil has 

a distinctly dark brown to very dark greyish brown colour (10YR 2/2 to 3/2) 

with a silty sand loam texture with large charcoal and organic fragments as 

well as quartz and shell inclusions.     

Overlying the Ap soil horizon is a 160mm to 200mm thick, dark grey, 

brown (10YR 4/1 to 4/2) silty loam sand (A1). The horizon contains a large 

number of very poorly sorted, well rounded lithic inclusions ranging from 2mm 

to 100mm, and coarsening towards the base of the sequence where a 

grouping of very large quartzite pebbles occurred. This horizon is present as a 

result of sea storms depositing large quantities of stones and mineral rich 

marine sediment onto the old field, and as a result, has, buried the amended 

soil. Beneath the arable soil is a distinctive olive grey to olive (2.5Y 5/3) sandy 

silt clay B horizon with inclusions of large sub-rounded to sub-angular 

sandstone fragments together with translocated iron leading to red/orange 

colouration. In places the upper C, till horizon has a dark grey (2.5Y 3/1) 

sandy clay texture and extremely poorly sorted fragments of sandstone and 

schist.  

 

4.6 DISCUSSION OF THE SOIL HORIZONS AT CAHERATRANT  
 

Distinctive organic soil horizons are present across Caheratrant farm 

and their texture and composition are quite different to the natural soil 

horizons in the area. The soils are summarised in tables 18 and 19. Overall 

the Ap horizons have similar dark colours, distinctive silty sand textures and 

contain larger quantities of organic and anthropogenic inclusions compared to 

the natural soil horizons. The evidence from the field analyses suggests that 

these soils have been amended by manuring in order to create and maintain 

soils for arable farming. However, the depths of the soils are considerably 

shallower than the Dutch plaggen soils and appear to composed mainly of 

peat and turf mixed with calcareous beach sand.  
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Context Location Description Range of 
Depths (mm) Transects Test Pits 

Ap-1  All All Dark grey to light brown (10YR 5/2 to 4/2) silty sand loam (20%, 40%, 40%) with quartz and shell 

inclusions 250µm to 500µm sub-rounded shape with an increase in charcoal and carbonised material 

and some heavily degraded organic material <125µm. Rootlets throughout soil and iron concentrations 

towards base.  

80 – 400 

Ap-2 All All Light grey, brown (10YR 5/2 to 5/3) silty sand loam (20%, 40%, 40%) with quartz and shelly inclusions 

which increase towards the base of the horizon. Mineral grains small 250µm to 500µm sub-rounded 

and partially spherical (+20%) occurrence. Charcoal and carbonised particles frequent <1mm to 5mm 

at 15-20% occurrence. 

40 – 360 

Ap-3 / 10 Brown to dark brown (10YR 5/3 to 5/4) silty sand loam (20%, 40%, 40%) with fine grained quartz 

inclusions. Mineral grains are mainly 250µm to 500µm but there are also (10 – 20%) of larger rounded 

gravel fragments of quartz and silica fragments mixed in from the calcareous gravel material above. 

Anthropogenic inclusions include charcoal and carbonised particles <1mm at 20-30% occurrence 

200 

Table 18, Summary of all arable soils identified with auger surveys and test pits at Caheratrant, Ireland 
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Context Location Description Range of 
Depths (mm) Transects Test Pits 

H 1,2,3,4 Open Dark brown to very dark brown (10YR 3/3 to 2/2) silty sand loam (45%, 10%, 45%). Highly 

organic peaty soil with very frequent rootlets with no anthropogenic inclusions. 
150 

E 5 Open Light grey to white (10YR 7/1 to 8/1) silty sand (40%, 60%), well sorted quartz fragments, 

<500µm strongly leached layer with no organic or charcoal inclusions. 
140 

B 1,2,5,6,7,8,

9,10,11 

All Brownish yellow (10YR 6/6 to 6/8) sandy silt clay (10%, 25%, 65%) with few to no organic 

inclusions except post-burial movement from Ap horizons. Strongly iron stained with medium to 

large sub-rounded sandstone fragments <2mm in places.  

40 – 360 

Bs 5,6,7,8 6 Red to yellowish red (2.5YR 5/6 to 5YR 5/6) sandy silt clay (30%, 10%, 60%). Distinctive iron rich 

horizon with large +2mm to 5mm sub-rounded to sub-angular lithic fragments and iron nodules. 

No organic inclusions.  

40 – 110 

C All 3,5,6,7

Open, 

Beach 

Brownish yellow to yellowish brown (10YR 6/8 to 5/8) sandy clay (20%, 80%) with very poorly 

sorted fragments of Old Red Sandstone 50mm to +100mm with sub-rounded to sub-angular 

shape and other foreign lithics (limestones and basalts).  

+100 

Table 19, Summary of all natural soils identified with auger surveys and test pits at Caheratrant, Ireland 
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These soils are more consistent with the amended arable soils similar 

to the ones identified on Fair Isle rather than the extensively deepened 

horizons found in the Netherlands and Orkney. The distribution of organic Ap 

soil horizons at each of the three landuse areas is illustrated in figure 87. The 

kaleyard sequences have the deepest amended soils ranging from just over 

500mm to 550mm, a good 200mm deeper than the soils in the inner arable 

land which range from 375mm to 412mm.  

 

 
 

 

 

In the outer arable fields the depth of enhanced soil has a much larger 

range with test pit 5 mirroring closely the depth of soils in the inner arable land 

and at the furthest extremity the amended soils are only 200mm deep. Two 

amended soils are present at each of the test pits, except for the kaleyard 

sequence in test pit 10. Here a third amended soil is present bounded by 

distinctive calcium carbonate beach sand and gravel horizons. No such sandy 

organic manure horizons were identified in test pits 1 and 2, but the soil 

colour, texture and inclusions were very similar, suggesting a greater level of 

mixing of added manure material. Alternatively, the sequences at test pit 1 

Range of depths of amended arable soils from three landuse 
areas at Caheratrant, Ireland
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Figure 87, Range of depths of amended arable soils from different landuse

areas at Caheratrant 
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and 2 represent a relatively new kaleyard sequence because of the 

development of an orchard in the old kaleyard and the sequence at test pit 10 

represents a more typical kaleyard hortisol sequence developed over a much 

longer period. The depth of the Ap-2 horizon is considerably deeper than any 

of the other test pits, also suggesting an increase of addition from the creation 

of the new kaleyard area whereas in the other landuse areas there is little 

difference in depth between the Ap-1 and Ap-2 horizons suggesting a more 

constant process of addition over time.   

 
 Conry & Mitchell (1971) Pears (this volume) 

Area of study Caheratrant, Ireland Caheratrant, Ireland  

Depth of  

soils 

Infield – 400mm to 480mm  Kaleyard – 525mm 

Inner Arable Land – 395mm  

Outer Arable Land – 240mm  

Colour Very dark grey to brown/very 

dark brown 

Dark grey to brown and black 

in places 

Texture Silty sand loam Sand loam to silty sand loam 

Inclusions Shell sand and quartz mineral 

with organics 

Organics fragments, quartz and 

shell fragments and carbonised 

particles 

Table 20, Range of amended soils found during two studies at Caheratrant 

farmstead 

 

The sequence of amended soils in the inner arable fields (test pits 3, 4 

and 8) are extremely consistent and this continues in test pit 5 in the outer 

arable fields suggesting that there is little difference in the manuring 

programme. This interpretation is backed up by the field description of the 

soils which have a very similar texture, colour and anthropogenic inclusions 

whereas the soils in test pits 6 and 7 are considerably lighter in colour and 

contain much less organic fragments and carbonised material. The amended 

soils were initially identified at Caheratrant as part of a much wider analysis of 

Irish Plaggen soils by Michael Conry in the early 1970s, summarised in table 

20.  
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Conry and Mitchell’s analysis of the soils of Caheratrant was based 

upon minimal excavation in a carefully considered location in the infield area 

of the farm. The soil was a distinctive very dark grey to brown/very dark brown 

silty sand loam with a very large quantity of shell sand and quartz, and 

interpreted as a plaggen soil.   

Conry’s fieldwork at Caheratrant has been placed into a more detailed 

localised context by the present work, which has shown a very similar depth 

of anthropogenic soils in the infield areas from both auger transects and test 

pit data. However, it is clear that there is far more variation in colour, texture 

and inclusion from test pit to test pit as well as across landuse areas. The 

focus of Conry’s work was, however, on a much larger scale and was aimed 

to detail the range of plaggen soils across different areas of Ireland. As a 

result over four locations were sampled, as illustrated in table 21. After initial 

mapping, (Section 4.3.2) Conry focussed upon the south west of the country 

and in particular County Cork and County Kerry (Conry, 1969). Two sites in 

Cork revealed a range of anthropogenic soils. At Donoure 970mm of 

anthropogenic soil was found in five distinctive horizons, all very similar to 

each other with a distinctive dark greyish brown coarse sandy loam with 

beach stones and calcareous inclusions.   

 

Authors (Date) Anthropogenic soils 

Site Depth 

Conry (1971) Donoure, Ardfield, 

Clonakilty, Cork 

Plaggen Soil – 970mm 

Conry (1971) Pillmore, Youghal, 

Cork 

Plaggen Soil – 480mm 

Conry (1971) Cloghaneanode, 

Castlegregory, Kerry 

Profile 1 – 270mm 

Profile 2 – 850mm  

Conry (1971) Ballydavid, Murreagh, 

Kerry 

Plaggen Soil – 910mm 

Table 21, Depths of plaggen soils identified in Ireland 
 

 A shallower profile was found at Pillmore where 480mm of a dark 

greyish brown sandy loam with a similar number and type of inclusion 



 
 
 

212 
 

suggesting a large addition of organic and beach sand material. The 

difference in depth of anthropogenic soils at different sites was also clearly 

seen in County Kerry. At Castlegregory two sections were excavated within 

20m of each other and both showed a very different depth of plaggen soil. 

Profile 1 was a non-manured arable soil with a variable profile between 

200mm to 270mm of a black peaty sand with no recorded organic or 

anthropogenic inclusions. Profile 2 was considerably deeper, 850mm, plaggen 

soil and consisting of a very dark grey loamy sand with beach sand and a 

black peaty sand with some calcareous material but no recorded 

anthropogenic inclusions. The second site analysed in further detail by Conry 

was at Ballydavid near Murreagh, also on the northern side of the peninsula. 

The anthropogenic soils were 910mm deep with a typical reddish brown to 

dark brown coarse sandy loam to loamy sand with beach sand. Conry’s work 

on the distribution of the anthropogenic soils across the south west of Ireland 

was extremely important, however, the lack of detailed geoarchaeological 

recording has made interpreting the context of deposition extremely difficult. 

The deepened sequence at Castlegregory occurs in the grounds of an old 

farm and therefore the sequence of 850mm could well be a kaleyard hortisol 

but without the knowledge of the landuse history this cannot be confirmed. At 

Ballydavid the exact locality of Conry’s test pit is unknown and this lack of 

information is key as the sequence could occur close to Murreagh and be 

more of an urban anthrosol or hortisol to explain a depth of 910mm.  

 The identification and field analysis of plaggen soils by Conry in Ireland 

was a very important step forward in the analysis of anthropogenic soils in 

Europe, however further soil analysis is needed including soil pH, soil organic 

matter and multi-element analysis in order to more fully understand the 

processes by which these amended soils developed. Indeed comparative 

analysis of the geochemistry of anthropogenic and amended soils from each 

of the sites and in a range of historic landuse areas has not been conducted. 

More detailed analysis and interpretation is urgently required to fully 

understand their form and function at a local and regional scale.  
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5 BULK PHYSICAL AND CHEMICAL ANALYSES OF SOILS 
 
5.1 INTRODUCTION 
 

Chapter five discusses and interprets the results from physical and 

chemical analyses of bulk samples taken from the anthropogenic and 

amended arable soils (Ap-1 to Ap-4) from the test pits of the three study sites. 

The results are analysed on a local scale from horizon to horizon and 

between landuse areas as well as on a wider regional scale between the sites 

in order to interpret cultural addition to the amended and anthropogenic soils. 

The five analyses utilised were soil pH, loss on ignition (LOI), particle size 

analysis, magnetic susceptibility and multi-element analysis. These tests have 

been shown in other studies (chapter 1, section 1.4.2) to assist with 

quantifying human influence in anthropogenic soils and allow comparison with 

similar soils, formation materials and changes in landuse.  

The structure of the chapter is in a number of sub-headings; initially the 

sampling strategy and preparation followed by the results of the techniques 

used; soil pH (section 5.2), loss on ignition (section 5.3), particle size (section 

5.4), magnetic susceptibility (section 5.5) and multi-element analysis (section 

5.6) from the main landuse areas at each of the three sites used. The final 

section (5.7) is a discussion and interpretation of the results with detailed 

reference to the field results discussed in chapters two, three and four and the 

consideration of results with other physical and chemical results from 

anthropogenic and natural soils.  

 

5.2 SOIL pH RESULTS FROM FAIR ISLE, THE NETHERLANDS & 
IRELAND 

 

Soil pH is the measurement of the concentration of H+ ions in soil and 

is directly affected by chemical, biological and physical soil properties (Brady 

and Weil, 2002). The measurement is expressed as negative logarithms of 

the H+ ion concentrations on a scale from 1 to 14 with 1 to 6 acidic and 8 to 14 

alkaline and 7 representing neutral. The change of soil pH in soils is 

determined by the mobility of cations and different soil textures have different 

abilities to maintain soil chemistry. Typically sandy soils are more acidic due 
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to leaching from water movement through soil horizons which commonly wash 

alkaline base elements (Ca, Mg, K and Na) out leaving concentrations of 

hydrogen. In clay soils and organic rich soils the micelles can retain cations 

and therefore maintain chemical stability through a ‘buffering capacity’.   

The aim of the soil pH measurement was to ascertain the influence of 

anthropogenic additions and parent material upon the soils at each of the 

sites and within the landuse areas. Traditionally soil pH analysis has been 

used within archaeology because the data are very easily gathered from small 

samples and the variability in results between archaeological deposits, 

anthropogenic soils and natural soils can indicate a range of human 

influences on landscapes and settlements.  

Anthropogenic activity is interpreted from soil pH values by analysing 

the differences in results from sample soils and natural horizons (Entwhistle et 

al., 2000). Different soil pH values affect archaeological soils and artefacts in 

a number of ways. Acidic soils damage delicate organic inclusions as well as 

bone, pottery and the corrosions of copper and iron but good for the 

preservation of pollen, diatoms and some macrobotanical material which can 

protect delicate organic material if waterlogged. Alkaline conditions are good 

for the preservation of molluscs, bone and phytoliths but pollen is oxidised 

and salt encrustations are commonplace (Renfrew and Bahn, 1996, Goldberg 

and Macphail, 2006).  

The soil pH was determined in the laboratory following the methods of 

Avery and Bascomb (1982) and the methodology used is summarised in 

chapter 1, section 1.13. Figures 88 to 90 illustrate the soil pH results from 

each of the sites and by each landuse area. (Raw data in appendix 8). 

 

5.2.1 SOIL pH RESULTS FROM FAIR ISLE 

 

The soil pH results from Fair Isle illustrate some very interesting 

results. In the three kaleyard areas there is a subtle difference between the 

three sites and through the soil horizons (Fig 88). At Shirva the highest results 

occur in the Ap-1 horizon (pH 5.8 – 6.7) with lower results in the Ap-2 and Ap-

3 horizons (pH 3.9 – 6.1) these amended soils are all higher than the natural 
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soils indicating the addition of domestic refuse, peat and turf alongside 

seaweed and possibly calcareous sand.   

 

 
Figure 88, Soil pH results from amended arable soils from three kaleyard 

areas on Fair Isle  

 
A different pattern of soil pH results is evident at Busta. The range of 

results is higher than at Shirva in all the amended horizons illustrating a 

different manuring strategy. Unlike Shirva the range of soil pH results is 

slightly higher in the Ap-2 and Ap-3 horizons (pH 5.0 – 6.6) illustrating a 

slightly higher input of organic and inorganic material earlier in the history of 

the area. Both Shirva and Busta kaleyard have clear increases in soil pH 

compared to the natural. At Leogh, however, the results are comparable with 

the B horizon. Overall the range of results is considerably higher than the 

other kaleyards and again illustrates a different strategy of manuring. The 

difference in results may also be closely related to post burial soil processes 

occurring since the cessation of manuring and the movement of soil water.  

Clearer variations in soil Ph results can be seen in the results from the 

three different landuse areas from Shirva (Fig 89). As discussed the kaleyard 
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results have a small range with a clear decrease of results with depth 

illustrating the clear input of organic and inorganic material.  

 

 
Figure 89, Soil pH results from amended arable soils from three landuse 

areas at Shirva, Fair Isle 

 

 By contrast the amended soil sequence in the infield area show a slight 

increase with depth from pH 4.2 – 5.2 in the Ap-1 to Ap-3 horizons. This 

suggests that manuring was conducted at a higher level in the past when the 

area was used for arable agriculture, whereas more recently addition has 

decreased because of a landuse change from arable to pastoral. The widest 

range of soil Ph results are present in the outfield area. There is a distinct 

increase with depth mirroring the infield areas which shows a possible change 

of landuse (pH 4.6 – 6.7). There is a considerably lower pH in the Ap-4 

horizon which is similar to the B and H horizons and illustrates that the initial 

amended arable soils were formed of the mixing of the natural peat horizon 

with organic and inorganic material. The increase in addition of manuring 

material during the arable stage therefore leads to much higher soil pH in the 

Ap-2 and Ap-3 horizons. 
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5.2.2 SOIL pH RESULTS FROM OLTHOF, THE NETHERLANDS 

 

The range of soil pH results from Olthof, the Netherlands are illustrated 

in Fig 90. Overall the results have a considerably wider range compared to 

the results from Fair Isle. The results from Olthof garden increase slightly with 

depth illustrating the addition of heathland and meadowland turves alongside 

settlement waste and carbonised particles. In the Ap-1 and Ap-2 horizons the 

results range from pH 4.0 to 6.9 which illustrate the input of podzolic 

heathland turves alongside carbonised material. The low results may also be 

due to the leaching and post burial mixing. The results from the Ap-3 horizon 

range from pH 5.7 – 7.4 and mirror the addition of the meadowland turf 

resulting in the brown plaggen soil.    

 

 
Figure 90, Soil pH results from anthropogenic soils from three landuse areas 

at Olthof, the Netherlands 

 

 In the infield area the results also show an increase with depth 

between the Ap-1 to Ap-3 horizons reflecting a similar pattern of amendment 
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to the garden area. The results in the black plaggen soil (Ap-1 and Ap-2) 

range from pH 3.0 to 5.8 and brown plaggen soil (Ap-3) pH 4.0 to 6.4 

suggesting a range of anthropogenic additions and also significant post burial 

alteration and mixing. A similar pattern of results is also present in the outfield 

area but there is a closer relationship with the manuring system of the infield 

rather than the garden area.  

 In the black plaggen soil horizons there is more variation between the 

Ap-1 (pH 3.7 to 5.2) horizon and the Ap-2 (pH 4.5 to 5.6) horizon illustrating a 

distinct variation in the organic and inorganic input alongside more post burial 

mixing. The overall results are lower than the in the garden area and illustrate 

considerably less input of settlement waste and carbonised particles and an 

emphasis of organic manuring.    

 

5.2.3 SOIL pH RESULTS FROM CAHERATRANT, IRELAND 

 

 The range of soil pH results from Caheratrant, Ireland are illustrated in 

Fig 91. Overall the amended arable soils in the kaleyard have considerably 

higher results than the inner arable area and outer arable areas as a result of 

a focus of manuring in the areas directly adjacent to the centre of the farms.  

In the kaleyard area the soil pH results range from 6.9 to 9.0 in the Ap-1 

horizon and 6.2 to 8.7 in the Ap-2 horizon. These results are considerably 

higher than the results from the C horizon (5.5 to 6.5) and show that there has 

been the addition of calcareous beach sand alongside the addition of 

domestic waste material and organic peat and turf. The soil pH results from 

the Ap-3 horizon are even higher (7.9 to 8.2) and indicate a greater emphasis 

of organic and inorganic addition to the kaleyard in the early history of the 

area. The higher results may also be due to less weathering and post burial 

breakdown of manuring components than the overlying horizons. 

 In the infield area the soil pH results are lower and more akin with the 

natural soils. There is a slight increase in the range of results between the Ap-

1 (4.4 to 6.6) and Ap-2 (5.2 to 6.7) horizons. The field analysis illustrated that 

inclusions of calcareous sand and organic peat and turf were added to the 

soils but the Ph results show that there is a marked difference in 

enhancement between the kaleyard and infield.    
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Figure 91, Soil pH results from amended arable soils from three landuse 

areas at Caheratrant, Ireland 

 

A similar range of soil pH results are also present in the amended 

arable soils in the outfield area. The outfield areas results range from 4.8 to 

6.2 in the Ap-1 horizon and 5.2 to 6.2 in the Ap-2 horizon. The similarity of the 

results in the infield and outfield suggest that a very similar manuring regime 

is in place in these landuse areas and that arable activity has created 

considerable mixing between the horizons. The results are very similar to the 

natural C horizon but are higher than the natural peat soils which are the main 

organic manuring components in the area.    

 

5.2.4 SOIL pH RESULTS FROM UPLAND AREAS AND NATURAL SOILS  

 

At each site the soil pH of the natural sandy soil is, in most cases, very 

similar or slightly lower than the soil pH of the amended or anthropogenenic 

soils. The natural sediments on Fair Isle (soil pH 3.5 – 5.0) and Olthof (soil pH 

4.9 – 6.0) contain moderately acidic soils but at Caheratrant (soil pH 6.0 to 

7.9) the results are considerably higher as a result of having more calcium 

carbonate in the till and this may have assisted the development of a higher 
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soil pH in the anthropogenic soils. The natural peat soils on Fair Isle (soil pH 

3.9 to 4.3) and at Caheratrant (soil pH 3.9 to 4.5) have very similar values but 

in places the peat results from Caheratrant are considerably more acidic with 

a soil pH of less than 3.5 and the addition of these soils may have required 

more intensive sanding. At Olthof the soil pH of the natural sandy soils is 

slightly less than the plaggen soils, ranging from soil pH 4.9 to 6.0. At all three 

sites a buried peaty palaeosol was found but the soil pH results differ from the 

undisturbed horizons indicating distinct post burial alteration by ploughing and 

biological mixing. At Shirva (soil pH 5.5 – 5.8) and Caheratrant (soil pH 6.6 – 

6.9) buried peaty palaeosols increased in soil pH because of the higher soil 

pH in the natural sediments. At Olthof, however, the buried soil has 

considerably lower values (soil pH 5.0 to 5.2) more akin to the anthropogenic 

soils.  

 

5.2.5  DISCUSSION AND COMPARISON OF SOIL pH RESULTS WITH 

PAST WORK 

 

The results from this research project can be directly compared to past 

work conducted on the three sites to enable comparable interpretation. In 

Scotland the soil pH of anthropogenic soils was initially identified by 

Glentworth (1944) who analysed a range of soils from the Insch valley and 

showed that “80% of the deep topsoils had a soil pH of 6.0+” (Glentworth, 

1944 in Simpson, 1985). In the Northern Isles the soil pH of the anthropogenic 

soils present at Marwick ranged from soil pH 5.6 – 6.2 (Simpson, 1997) and at 

Nairn, Dercon, et al., (2005) showed that modern land use could affect the soil 

pH of anthropogenic soils ranging from soil pH 5.6 – 5.9 in arable areas, soil 

pH 5.5 – 5.7 in pastoral areas and soil pH 4.5 – 5.0 in deciduous woodland. 

On Fair Isle the range of soil pH values across all landuse areas is 4.3 – 6.8, 

moderately acidic to almost neutral level which accords with past results from 

other Scottish deepened topsoils but the results can also be interpreted 

between landuse areas. The soil pH results from a variety of landuse areas 

mirror those from Greaulin, Isle of Skye where the onsite soil pH was higher 

than off site areas, especially kaleyards (Entwistle, et al., 1998). Both the 

results from the kaleyards indicate a similar range (5.5 – 6.5, Entwistle, et al., 
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1998) and (4.9 – 6.8 section 5.2.1) with a slightly more acidic infield (<5.5 – 

6.0 Entwistle, et al., 1998) and (4.3 – 5.7, section 5.2.1) and a similar range in 

the outfield (<5.5 – 6.0 Entwistle, et al., 1998) and (4.9 – 5.9 section 5.2.1). 

This suggests possible similarities between the manuring methodologies and 

that the added components were very similar (peat, turf, seaweed) and also 

that environmental conditions are likely to have been similar.  

Results from Olthof in the Netherlands (section 5.2.2) can be directly 

compared to results from the black and brown plaggen soils (Pape, 1970), 

historical landuse (van Smeerdyk, et al., 1995) and present day landuse 

(Dercon, et al., 2005). Both types of plaggen soils were identified at Olthof 

and by combining all the data from the different horizons a range in soil pH 

results was calculated. In the black plaggen soils a range of soil pH 4.0 – 6.0 

was found, considerably less acidic than for the black plaggen results 

identified by Pape (soil pH 3.8 – 3.9). In the brown plaggen soils a soil pH 

range of 4.6 – 5.9 was identified compared to a soil pH of 3.9 – 4.2 in Pape’s 

analysis. In both cases the soils became less acidic with the change from 

black to brown plaggen soil, however the overall soil pH is considerably lower 

in Pape’s work, possibly because this project utilised a larger data set in a 

number of landuse areas. The soil pH figures and ranges are more closely 

linked to the analysis conducted by van Smeerdyk, et al., (1995) at Valthe 

where an infield area was compared to several outfield fields manured at 

different times in the past. The results ranged very little, from soil pH 3.8 – 4.4 

(inner arable) to soil pH 4.0 – 4.8 (outer arable), but the soils were slightly 

more acidic. In this analysis the inner arable area revealed a large range 

between soil pH 4.0 and 6.0 and 4.0 – 4.8, suggesting that whilst there was 

no differentiation in the natural soils, there was a different localised change in 

soil pH in the infield areas because of a range of environmental factors, 

including different manuring strategies, post burial leaching and surface 

landuse change. Recent analysis of anthropogenic soil pH has considered the 

role of modern landuse and vegetation cover as a factor in differing soil 

chemistry (Dercon, et al., 2005; Mackenzie, 2006). A number of the sample 

areas were placed in a range of modern landuse areas namely: arable, 

pastoral and woodland. In the arable areas a range of soil pH 4.0 – 6.0 was 

identified compared to a range of soil pH 4.4 – 4.9 which indicates some 
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variability, but the results but still show a moderate acidic soil. In the pasture 

area a range of soil pH 4.7 – 5.6 was identified by Dercon, et al., (2005) 

compared to a similar range between soil pH 4.0 – 5.8. The greatest 

difference came in the woodland samples where Dercon revealed a range 

between soil pH 3.6 – 4.8 but this analysis indicated a higher range between 

soil pH 4.8 – 5.5, possibly because the test pit excavated in this thesis was 

only on the very edge of a small wooded area whereas Dercon’s samples 

were taken from a pit positioned in the middle of a wood. Nevertheless the 

results gathered in both analyses are very similar.  

In Ireland soil pH (section 5.2.3) has been used very successfully to 

assist the interpretation of sanded soils, especially in the coastal areas where 

calcareous beach sand has been used in a substantial way to decrease the 

acidity of the upland soil (soil pH 4.0 – 4.5). Conry’s interpretation of the soil 

pH results from four sites on the Dingle peninsula showed that sanded soils 

(soil pH 7.3 – 8.4)  had considerably higher soil pH than unsanded ones (soil 

pH 5.8 – 6.0) (Conry, 1971). This pattern was also found at Caheratrant (soil 

pH 7.8 – 8.5 sanded) to (soil pH 4.9 – 6.1 unsanded) but on closer analysis 

within test pit sequences and also across different landuse area more varied 

patterns of sanding could be seen through the soil pH values. The older 

kaleyard sequence (test pit ten) had distinctive horizons of almost pure 

calcareous sand and gravel giving very high soil pH values (7.8 – 8.5) but 

there were also horizons of more neutral anthropogenic dumps and 

redeposited natural horizons with a lower soil pH ranging from 6.8 – 7.0. In 

the inner and outer arable areas there were areas of moderate acidity (soil pH 

4.9 – 6.1) and also distinctive areas of neutrality (soil pH 6.8 – 7.1) alongside 

areas which appeared to have no direct sanding ranging from soil pH 4.0 – 

5.2. If the use of calcareous sand is taken as a marker for anthropogenic 

manuring, then there is clearly an increase towards the centre of the farm and 

a focus in kaleyards with less regular additions in the inner arable areas and 

even rarer additions in the outer arable areas and reclaimed and semi-upland 

areas. 
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5.3 SOIL ORGANIC MATTER RESULTS FROM FAIR ISLE, THE 
NETHERLANDS & IRELAND 

 
Soil organic matter (SOM) comprises stable organic matter partially 

disintegrated and heavily decomposed plant and animal residue together with 

other organic compounds broken down by microbial activity. It heavily 

influences the physical, chemical and biological properties of soil (Brady and 

Weil, 2002). Organic matter helps to bind mineral particles which in turn 

creates a granular structure and forms the basis on which plant species may 

grow and continually add more organic material. Soil organic matter is a major 

source of soil nutrients in the form of phosphorus, sulphur and nitrogen and 

increased fertility (Brady and Weil, 2002). High nutrient levels can be 

maintained through careful management of tillage and grazing but more 

importantly can be very easily lost through a lack of organic or mineral 

manuring, erosion of soils by water and wind, intensive deep cultivation or 

overgrazing (French, 2003).  

Most soils contain a range of organic matter in a range of forms 

depending upon environmental conditions, therefore identifying and 

interpreting human influence on soil organic content arises with detailed 

sampling of a range of soils alongside analysis of natural sequences in order 

to compare and contrast natural results with anthropogenically enhanced 

sequences. Humans can affect the level of input of soil organic matter 

indirectly by inhabiting a site but more commonly anthropogenic increases in 

soil organic matter is most evident from the deliberate process of manuring 

with natural components (turf, peat, seaweed etc) and waste deposits from 

settlements. The anthropogenic effects of soil organic matter can also be 

used to interpret human effects on the landscape (Crowther, 1997).  

In archaeological deposits, soil organic matter analysis has been used 

alongside other soil chemical methods (soil pH, section 5.2, particle size 

analysis, section 5.4 and elemental analysis, section 5.5) to identify the 

differences and development of compacted organic floor deposits through 

experimental archaeology at Butser (Macphail and Cruise, 2001) and Umeå 

(Engelmark and Linderholm, 1996). In anthropogenic soils, soil organic matter 

analysis has been utilised to indicate the level of human input (Pape, 1970; 
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Conry, 1971; Davidson and Simpson, 1984; Adderley, et al., 2000), to 

determine the input in a variety of different landuse areas across a settlement 

(Bryant and Davidson, 1996; Entwistle, et al., 1998) and used to analyse the 

levels of soil organic matter before and after manuring (Simpson, 1985; 

Entwistle, et al., 2000). 

The results of the soil organic matter were analysed using loss on 

ignition (LOI) and the methodology used in this project is described in chapter 

1; section 1;13. A full list of data is displayed in (appendix 9) and the data is 

displayed by site Fair Isle (section 5.3.1), the Netherlands (section 5.3.2) and 

Ireland (section 5.3.3) and figs 91 to 93. 

 

5.3.1 LOSS ON IGNITION RESULTS FROM FAIR ISLE 

 

The LOI results from Fair Isle have very distinctive patterns which are a 

consequence of the addition of organic material and are also due to the soils 

ability to retain organic matter (Fig 92). At all three landuse areas there is a 

distinct decrease in mean percentage LOI with depth as a result of organic 

manuring and a regular post burial breakdown over time. 

 

 
Figure 92, Mean percentage loss on ignition at three kaleyards from Fair Isle 
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In Shirva kaleyard the mean results decrease from 17.69% in the Ap-1 

horizon to 8.27% in the Ap-3 horizon suggesting a considerable addition of 

peat and turf organic material. The high percentage LOI in the kaleyard clearly 

illustrates the importance of the areas directly adjacent to the farms. The 

range of results in the Ap-1 indicates, however, that there is large variation in 

the results. This may be due to the infrequency of organic addition or possibly 

because of high levels of mixing resulting in the decomposition of organic 

components. In the Busta kaleyard area the Ap-1 horizon has a mean 

percentage LOI of 12.29% to 7.40% in the Ap-3 horizon. These results 

suggest that there has been a fairly consistent input of organic inclusions into 

the soil horizons alongside a similar level of post burial breakdown. A slightly 

greater contrast between the upper and lower amended arable soils is evident 

in the Ap-1 horizon at Leogh kaleyard. The results decrease with depth from 

14.16% (Ap-1) to 6.21% (Ap-3). The similar pattern of results from all three 

kaleyards illustrates a very similar overall pattern of manuring with organic 

material over time along with distinctive post burial decomposition. 

 

 
Figure 93, Mean percentage loss on ignition from three landuse areas at 

Shirva, Fair Isle 
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A similar decrease in results with depth is evident in the three different 

landuse areas at Shirva (Fig 93) but there are a number of distinctive 

differences. As discussed the results from Shirva kaleyard show a clear 

decrease with depth with particularly high results in the Ap-1 horizon. Similar 

peaks in LOI results are also present in the upper horizons of the infield area 

(14.87%) and the outfield area (12.93%) and these may relect an increase in 

the input of organic manure or because of the presence of grass since the 

change from arable to pastoral landuse. There are more distinctive 

differences in the infield and outfield area results in the Ap-2 and Ap-3 

horizons. In the infield the mean results range from 10.24 to 10.51% and the 

outfield results range from 6.81 to 7.43%. These results suggest that  the 

traditional manuring of the infield and the outfield appears to have occurred in 

a very similar way possibly as a result of the careful management of a limited 

organic peat and turf source. Certainly in all cases the amended arable soils 

contain considerably higher percentage LOI compared to the natural soils of 

the island. 

 

5.3.2 LOSS ON IGNITION RESULTS FROM OLTHOF, THE 

NETHERLANDS   

 

The results from the Netherlands are considerably lower than at Shirva, 

however a similar pattern is evident (Fig 94). The Ap-1 horizon contains a 

higher mean percentage (3.81%) than the Ap-2 horizon (2.79%) and Ap-3 

horizon (2.00%) which have levels closer to the natural (1.02%), indicating a 

steady increase of organic material in the lower anthropogenic soils, then a 

distinctive increase in the upper horizons which fits the hypothesis of 

increased manuring in the upper black plaggen soil than in the brown plaggen 

soil. The range of results from the different soils is much less defined than 

from Fair Isle, possibly because less organic material was added to the soils 

but this seems unlikely due to the depth of anthropogenic soil excavated 

(+1.75m); a far more likely explanation is that the organic levels have been 

subjected to severe post burial leaching by soil water flowing easily through 

the sandy soils removing organic matter since manuring ceased.  
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In the inner arable area the LOI results are very similar to the garden 

results with a steady reduction with depth from 3.51% in the Ap-1 horizon to 

1.85% in the Ap-3. The range of results in the anthropogenic soils is also very 

similar with very slightly higher ranges in the Ap-1 and Ap-2 horizons 

suggesting similar post burial process are occurring in the inner arable area 

but perhaps at a more uniform rate. 

 

 
Figure 44, Mean percentage loss on ignition from three landuse areas at 

Olthof, the Netherlands 

  

The mean LOI results in the outer arable areas at Olthof are highest in 

the Ap-1 (4.08%) and similar results in the Ap-2 horizons (3.33%) and reflect 

the addition of heathland turf but also the remnants of existing organic 

material left over from recent crop growth. In the Ap-3 horizon the results are 

slightly lower (2.11%) but have a similar range suggesting a similar organic 

input rate over time. The natural soils have a lower percentage still (1.02%).  
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5.3.3 LOSS ON IGNITION RESULTS FROM CAHERATRANT, IRELAND 

 

  The LOI results from Caheratrant are illustrated in Fig 95 and have a 

distinctive distribution across the site. In the kaleyard area the mean LOI 

values decrease down profile from 8.94% in the Ap-1 horizon, 5.34% in the 

Ap-2 horizon, 4.21% in the Ap-3 horizon, indicating a higher organic input in 

the upper amended horizons and an increase in post burial processes over 

time. The range in results in the Ap-1 horizon also, indicates localised 

changes in soil organic matter through the increased addition in places and 

post burial depletion. The Ap-3 horizon has a very low organic level and its 

proximity with the natural soil may have resulted in the very similar results. 

   

 
Figure 95, Mean percentage loss on ignition from three landuse areas at 

Caheratrant, Ireland 

 
In the inner and outer arable areas the LOI results are highest in the 

Ap-1 horizon (6.90%) and (6.88%), indicating considerably less organic 

manure addition compared to the kaleyard. Alternatively, the LOI results in the 

upper horizon of these areas may represent the continued addition of manure 

by the grazing of cattle on the old arable area, a process which would mask 
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past manuring activity. The Ap-2 horizons in the two areas are also similar 

(4.12%) and (4.02%) suggesting that throughout the history of the two areas 

there has been a similar pattern of organic input and no distinct change of 

landuse. This interpretation fits well with the agrarian history of the site which 

has only includes arable and pastoral farming. In all the amended soil 

horizons there is a clear increase compared to the natural soils (<3.50%). 

 

5.3.4 LOSS ON IGNITION RESULTS FROM UPLAND AREAS AND 

NATURAL SOILS 

 

At each site samples of the natural organic manuring components and 

natural soils and sediments were collected in order to determine the loss on 

ignition and aid the interpretation of the results gathered from the amended 

and anthropogenic soils. Organic results are highest in the peat and turf 

samples from Fair Isle (92 – 94%) and Caheratrant (79 – 88%) but high 

results are also present in seaweed samples (58 – 65% Shirva) and (71 – 

77% Caheratrant), both of which could have easily led to higher loss on 

ignition results in the anthropogenic soils. By contrast, at Olthof, the 

meadowland horizons have between 5 – 7% loss on ignition and the 

heathland soils, used in the development of the black plaggen soils, only 7 – 

9%. The distinctive low loss on ignition results in both types of manure at 

Olthof is reflected in the low results at each landuse area, and may explain 

the depth of anthropogenic soils if constant, heavy manuring was required to 

maintain the soil fertility. The three buried soils identified at each of the sites 

illustrate a decrease in loss on ignition compared with the natural horizons. 

The most obvious reduction is seen at Shirva where the peaty palaeosol 

contains only 10 – 12% as a direct result of truncation by heavy ploughing. At 

Caheratrant, less truncation and burial by colluviation has resulted in the 

buried peat containing 40 – 42%, however the remnant, buried heathland soil 

in Olthof outfield illustrated only a minor reduction in loss on ignition (2 – 5%) 

because it was concentrated in a tree-bowl feature.    
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5.3.5 DISCUSSION AND COMPARISON OF THE LOSS ON IGNITION 

RESULTS WITH PAST WORK 

 

The first study to analyse soil organic matter in anthropogenic soils 

took place in the Netherlands. Pape, (1970) showed that the percentage loss 

on ignition differed between the black plaggen 5.3 – 6.1% and brown plaggen 

soils 2.8 – 4.2% and that an increase in the soil organic matter increased with 

soil colour because of the manuring components (Pape, 1970). Overall the 

Dutch samples taken at Olthof (section 5.3.2) mirror Pape’s results and show 

that the black plaggen soils range from 2 – 6% with an outlier of 9% and the 

brown plaggen soils range from 1 – 4%. The results from the analysis of the 

natural components also compare to direct statements from Pape who 

suggests that the “A1 material of heather sods, from which the black plaggen 

soil in particular have developed, already had a higher organic matter content 

than the material of grass sods. Moreover, it is less affected biologically. In 

brown plaggen soils with approximately 10% clay, the organic matter content 

of approximately 3% corresponds with what is often encountered in alluvial 

soils” (Pape, 1970 p241 – 42). The results in figure 94 also show that there is 

a difference in the organic levels between the two main components of 

plaggen soils but that more detailed sampling across a single site indicates 

much more variation in the soil organic content based upon addition, mixing 

and post burial pedogenesis. 

In Ireland loss on ignition was conducted on a range of soils from 

coastal sites in order to determine organic input by manuring (Conry, 1971).  

The highest organic levels identified were in both the sanded (1.9 – 5.5%) and 

non-sanded (6.2%) anthropogenic soils of Castlegregory on the Dingle 

Peninsula. Conry’s sampling was very limited and the results suggest that 

there is a higher organic level in the more acidic soils whereas the sanding 

process was conducted to add mineral to the soils and raise the soil pH. At 

Caheratrant the sample areas did show a large range of results and there 

were areas where natural peaty soils revealed a higher organic level than the 

anthropogenic soils (section 3.5.3). At other areas sampled by Conry the 

organic level of anthropogenic soils was even lower, Clonakilty, County Cork 

(1.0 – 2.9%), Ballydavid, County Kerry (0.8 – 1.5%), Pillmore, County Cork 
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(0.7 – 1.2%) (Conry, 1971). Historically, these areas were very well manured 

with calcareous sand and manure and the low LOI results suggest that since 

the end of the addition of organic material the soil has lost a large amount of 

organic components.  

In Scotland the deep topsoils of Orkney were the first to have loss on 

ignition analysis conducted upon them and this revealed an equally low but 

consistent sequence of results ranging from 2.0 – 3.1% and decreasing with 

depth regularly (Davidson and Simpson, 1984). More recent approaches to 

analysis have taken into consideration the different landuse areas (van 

Smeerdyk, et al., 1995; Bryant and Davidson, 1996 and Entwistle, et al., 

1998). The soil organic matter of the infield and outfield areas were analysed 

at Valthe in Drenthe and the results showed that the infield ranged from 2.8 – 

4.9% whereas in the outfield areas a range between 2.2 – 6.0% was found 

with a minimal 1.2 – 1.3% in the natural soils (van Smeerdyk, et al., 1995). A 

similar pattern was identified by Entwistle, et al., (1998) who increased the 

sample size and showed that at Grealin on the Isle of Skye, the offsite loss on 

ignition levels were higher than the on site results. In the majority of the 

kaleyards tested the percentage loss on ignition ranged from 10 – 15% on 

Fair Isle though, the overall range from the kaleyard is 9.3 – 17.7% but within 

that there was much more variation which reflects methods of manuring 

specific to individual farms (Fig 92). The infield areas at Grealin were very 

mixed with an almost equal number of fields with little organic matter (1 – 4%) 

to some with over 20%, but clear patterns were evident in fields around 

particular farms averaging 10 – 15%. At Shirva there was a minor drop in 

organic content in the infield soils but many areas maintained a similar 

average of 8 – 15% in upper layers and 3 – 8% in lower horizons (Fig 93). 

There was a major difference in the results, however, from the outfield areas 

which at Grealin were almost all over 20%, but at Fair Isle had decreased 

further to 5 – 10%. This may be because of the limited quantity of natural 

undisturbed organic soils still present on the island or because of arable 

activity in the upland areas which could have decreased the available of 

organic material (Entwistle, et al., 1998). The comparison of Grealin with Fair 

Isle may not be an entirely fair one because of the size of the island and 

therefore the quantity of available manuring material. In 1996 loss on ignition 
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analysis at Ollligarth on the island of Papa Stour, Shetland showed very high 

percentages suggesting high organic levels as a result of poor drainage. In 

the kaleyard the results ranged from 16.6 – 17.8% whereas in the infield area 

the results were considerably lower and ranged from 3.9 – 10.6% (Bryant and 

Davidson, 1996). The Fair Isle results are more concordant with Bryant and 

Davidson’s results suggesting a similar method of manuring was undertaken 

in both areas. The evidence at Fair Isle indicates an enormous level of peat 

removal which would be responsible for high organic levels. As with some 

examples from Fair Isle and Ireland, in places a remnant peat horizon was 

identified with a high organic content and a similar horizon was encountered 

at Papa Stour with an LOI percentage of 38.6% suggesting a landuse change 

after the removal of the overlying peats for manure. 

However, it is also very important to understand the process and level 

of organic loss in anthropogenic soils subsequent to their formation. Dercon, 

et al., (2005) measured the LOI in a number of anthropogenic soils from a 

range of modern landuse areas. Direct comparisons of the Olthof results show 

that the modern arable areas had a range of between 2.2 – 4.7% and in this 

analysis ranged from 2.0 – 6.0% with an outlier of 9.0% in the modern 

pastoral areas. Dercon’s results indicate a range between 1.3 – 3.0% and the 

results from this analysis complement that data ranging from 1.0 – 4.0%. The 

highest percentage loss on ignition identified by Dercon was in the woodland 

area (2.4 – 6.3%) and again a very similar range was identified in the present 

work (3.0 – 6.0%).  

 

5.4 PARTICLE SIZE RESULTS FROM FAIR ISLE, THE NETHERLANDS 
& IRELAND 

 

Particle size analysis is the measurement of sand, silt and clay 

particles within a soil or sediment. The quantification of this enables the 

texture and particle size distribution of the soil to be determined. On the whole 

the particle size of soils is determined by the nature and texture of underlying 

sediments and the geology of the site, but the analysis can also be utilised to 

indicate unnatural variations in texture and changes in the physical nature of 

soil e.g. structure, drainage, organics which in some cases can be attributed 
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to human action. The three areas under analysis are all located on very 

similar sandy geologies and this was to enable a fairer comparison of the 

particle sizes present in the anthropogenic soils and attempt to interpret any 

differences. This detailed analysis will complement the soil texture analysis 

conducted in the field which has already illustrated that many of the soils have 

predominantly silt and sand textures. The particle size methodology is 

discussed in chapter 1, section 1.13 and the graphs in the following section 

illustrate the results site by site; Fair Isle (5.4.1 to 5.4.3), the Netherlands 

(5.4.4 to 5.4.6) and Ireland (5.4.7 to 5.4.9). (Raw data in appendix 10). 

 

5.4.1 PARTICLE SIZE RESULTS FROM FAIR ISLE KALEYARDS 

 

 
Figure 96, Particle size results from test pit 2, Shirva kaleyard, Fair Isle 

 
 

The particle size results from the three kaleyards on Fair Isle have very 

similar particle size distributions, however there are small textural differences 

throughout the amended horizons which may be due to varieties in input 

material (Fig 96). At Shirva the particle size results in the amended soils is 

very consistent, between 60 – 500µm, and the volume increases with depth 

towards the natural which has a similar range of results. This similarity 
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suggests a large input from natural sources deriving from either the deliberate 

addition of peat and turf, sanding or marked post depositional mixing. There is 

a very small peak of coarser sediment in the upper Ap-1 horizon which 

decreases with depth and this may correspond to the addition of modern 

waste material in the form of brick, tile and stone fragments or possibly an 

increase in carbonised particles.  

 

 
Figure 97, Particle size results from test pit 8, Busta kaleyard, Fair Isle 
 
 

The particle size results from Busta kaleyard (Fig 97) reveal a different 

textural pattern which suggests different methods of soil development and 

post burial processes. Like Shirva most of the amended horizons have a soil 

texture between 60 – 500µm but there are a larger percentage of results 

which are over 1000µm indicating coarser grained material, possibly 

anthropogenic material. There is also a larger finer grained component to the 

soil horizons from the breakdown of organic inclusions and the natural till 

soils, most likely from deep mixing through the regular use of a soil rotivator.   
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Figure 98, Particle size results from test pit 9, Leogh kaleyard, Fair Isle 

 

   

The particle size results from Leogh (Fig 98) are very similar to the 

results from Shirva and the amended horizons are dominated by particles 

diameters of between 40 – 500µm. The soils have very similar particle size to 

the natural sandy soils and this suggests input from organic fragments with 

large quantities of natural mineral material alongside considerable mixing from 

spade and plough action. The Ap horizons also contain some finer grained 

inclusions which may derive from the organic manuring components or from 

the frequent washing of silt and clay particles downslope with time. Evidence 

of the inclusion of anthropogenic material in the soils is inferred from the 

inclusion of coarser material over 1000µm which decreases with depth from 

the Ap-1 to the Ap-3 horizons and is absent from the natural soils. This is 

likely to be fragments of mineral and black carbonised and amorphous 

fragments added to the soils as part of the manuring process. Overall the 

kaleyards on Fair Isle have very similar particle size diagrams suggesting very 

similar methods of manuring over time, and this maybe a direct reflection of 

the limited resources available on the island. 
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5.4.2 PARTICLE SIZE RESULTS FROM SHIRVA INFIELD 

 

Compared to the kaleyards the infield area of Shirva (Fig 99) has a 

much more varied particle size distribution, although there is a clear pattern of 

particle size between 60 – 500µm.  The soil horizons in test pits 1, 3 and 4 

have very similar results suggesting a similar manuring process, with a large 

input of sand particles in the organic material. Interestingly there is a larger 

finer clay and silt component, possibly from the natural till or from peat and 

turf fragments included in the manure. The lack of a distinctive coarse tail over 

1000µm suggests that less anthropogenic material from settlement centres 

was added to the infield areas. The archaeological feature found during 

fieldwork was sampled and this has a considerably coarser particle size than 

the surrounding horizons due to the inclusions of very large stone fragments 

along with a very sandy, organic rich packing sediment which may also 

contain evidence about the structures construction and destruction.   

 

 
 

Figure 99, Particle size results from test pits 1, 3 & 4 Shirva infield, Fair Isle 

 
 
 



 
 
 

237 
 

 
5.4.3 PARTICLE SIZE RESULTS FROM SHIRVA OUTFIELD 

 

The amended soils in the outfield area at Shirva have the most diverse 

range of particle size distributions (Fig 100). The Ap soil horizons at all three 

outfield test pits contain considerably more silt and clay particles than the 

natural soil horizons as a result of the inclusion of fragments of the peaty H 

horizon. The palaeosol also contains a large amount of coarser grained sandy 

inclusions ranging from 100 – 400µm, derived from considerable mixing with 

the natural and amended soils. The arable soils contain a very diverse range 

of results from 60 – 1000µm and this variation may be closely linked with the 

mixing of coarser natural sandy till (1000 – 2000µm) during ploughing. The 

coarse fraction may be due to amendment with waste material from the 

centres of the farms, but the field evidence discussed in chapter 2, section 

2.6.4 suggests that very little waste input was occurring in the outfield areas 

unlike the kaleyard and infield areas. 

 

 
 

Figure 100, Particle size results from test pits 5, 6 & 7 Shirva outfield, Fair Isle 
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5.4.4 PARTICLE SIZE RESULTS FROM OLTHOF GARDEN 

 

The particle size results from the garden at Olthof show very distinctive 

uniformity throughout the anthropogenic horizons with most of the soils 

containing particles between 60 – 600µm (Fig 101). The graph also shows 

that the soils contain almost no fine grained silt and clay particles but a more 

varied coarse fraction between 600 – 2000µm, derived either from the natural 

coversands or from the addition of coarse human waste material from farms. 

Field evidence revealed the presence of large amounts of building material 

including brick, tile and stone. The particle size results of the anthropogenic 

soils and the natural coversands are very similar suggesting either a source 

from considerable mixing by ploughing or from the addition of heathland and 

meadow turves which have a similar particle size and make the boundary 

between the brown and black plaggen soil almost impossible to determine. 

 

 
 
Figure 101, Particle size results from test pits 4 & 8 at Olthof garden, the 

Netherlands 
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5.4.5 PARTICLE SIZE RESULTS FROM OLTHOF INNER ARABLE AREA 

 

The particle size results from the Olthof inner arable area (Fig 102) are 

more diverse than the results from the garden but the anthropogenic soils still 

contain a particle size between 100 – 600µm. The three sample areas 

illustrate a very slight increase in coarse sand inclusions with depth and there 

are very few fine grained silt or clay particles below 40µm. By comparison the 

coarse fraction of the soil horizons is much more variable, illustrating either 

the input of more anthropogenic waste material in the form of brick, tile, 

pottery and bone or the addition of coarser sands from the natural soils used 

as manure. There are particularly coarse fractions in the Ap-1 and Ap-2 

horizons suggesting more material from settlements was incorporated into the 

soils during the development of the black plaggen soils.  

 
Figure 102, Particle size results from test pits 1, 3 & 5 at Olthof inner arable 

area, the Netherlands 

 
The lack of coarser anthropogenic inclusions in the brown plaggen 

soils may be due to post burial breakdown or transportation by soil organisms 

resulting in a loss of information regarding the formation of the horizons. The 

results may also reflect the Coulter Counter’s inability to accurately measure 
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above 2000µm and possible ‘settling’ above 500µm which would affect the 

results. 

 

5.4.6 PARTICLE SIZE RESULTS FROM OLTHOF OUTER ARABLE AREA 

 

The particle size results from the Olthof outer arable area are illustrated 

in figure 103 and like the inner arable farmland and garden area they have 

very similar particle size results in the anthropogenic soils compared to the 

natural. Each of the anthropogenic soils contain results between 60 – 600µm 

with very little fine grained silts and clays (<60µm) and a more variable 

amounts of coarser sands (+600µm). In each of the test pits sampled there is 

a very slight increase in particle size with depth illustrating substantial mixing 

with the natural but also a distinctively lower volume of inclusions, suggesting 

the inclusion of coarser natural sediment or possibly anthropogenic material 

from settlements. The former is likely to be the case as very little 

anthropogenic inclusions were found in the outfield soils during fieldwork. 

 

 
Figure 103, Particle size results from test pits 2, 5 & 11 at Olthof outer arable 

areas, the Netherlands 
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5.4.7 PARTICLE SIZE RESULTS FROM CAHERATRANT KALEYARD 

 

The particle size results from Caheratrant show the greatest variation 

of all the kaleyards analysed (Fig 104. Overall the amended Ap horizons and 

the natural till soil contain a much larger fine grained component (<100µm) 

and a highly variable coarse fraction due to the incorporation of beach sand 

and till in the manuring process. In test pits 1 and 2 the soil horizons contain 

mainly sediment between 100 – 400µm which mirrors very closely the particle 

size of the beach sands used to increase the soil pH.  

There is also a coarse component within the soils which most likely 

derives from the addition of charcoal, black carbonised particles, pottery and 

bone found in the field analysis. The natural soils in test pits 1 and 2 contain 

considerably coarser particle size results and considerable mixing by 

ploughing may have also transported these into the amended soils. In test pit 

10 the buried sanding horizons have very distinctive particle size results. 

 

 
Figure 104, Particle size results from test pits 1 and 10, Caheratrant kaleyard, 

Ireland 
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The upper horizon is composed of sand between 100 – 400µm and 

appears to have been added directly to the kaleyard. The lower horizon is 

much coarser with results mainly between 1000 – 2000µm alongside a clearly 

coarser gravel component identified during fieldwork. The particle size 

analysis suggests that this horizon was probably mixed with organic material 

before being added to the kaleyard as a slightly higher fine grained 

component was found along with charcoal, organic and burning evidence from 

the fieldwork. The amended soils in test pit 10 contain very similar grain sizes 

to test pits 1 and 2 and illustrate a similar manuring regime across the farm. At 

each of the sample areas the Ap soil horizons contain more fine grained 

material than the natural tills soils and the results may derive from the addition 

of peat and turf.  

 

5.4.8 PARTICLE SIZE RESULTS FROM CAHERATRANT INNER ARABLE 

AREA 

 

 
Figure 105, Particle size results from test pits 3, 4 & 8 Caheratrant inner 

arable area, Ireland 
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Like the kaleyard soils, the inner arable soils at Caheratrant contain 

highly variable particle size (Fig 105). Each of the amended soils contains 

inclusions between 100 – 400µm which derived from the natural sands and 

the addition of beach sand. The silt and clay inclusions are particularly 

prominent in the upper Ap-1 horizon as a result of the addition of organic turf 

and peat but the amount of inclusions over 400µm has increased particularly 

in the Ap-2 horizons due to mixing with the particularly coarse natural soils. 

The very coarse inclusions in both amended horizons may be present 

because of the addition of coarse fragments from settlement centres but the 

fieldwork evidence suggests that most of the coarse fraction is natural stone 

material and the anthropogenic inclusions which are present are considerably 

smaller.  

 

5.4.9 PARTICLE SIZE RESULTS FROM CAHERATRANT OUTER ARABLE 

AREA 

 

 
 

Figure 106, Particle size results from test pits 5, 6 & 7 Caheratrant outer 

arable area, Ireland 
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The particle size results from the soils in the outer arable area at 

Caheratrant show that there is an even more pronounced influence from the 

natural soils and inconclusive evidence of manuring (Fig 106). In test pits 5 

and 6 particle size evidence shows a distinct peak in the Ap-1 horizon 

between 100 – 400µm which suggests that sanding is being conducted in this 

particular area. By contrast the furthest test pit from the farm (7) contains an 

organic soil with much coarser inclusions more akin to the natural soils and 

this suggest minimal input from sanding. However, manuring in the outfield 

generally appears to have been conducted until fairly recently as the lower 

amended soils in test pits 5 and 6 contain particle sizes very similar to the 

natural alongside minimal evidence of settlement material added. Compared 

to the inner arable area the level of fine grained silt and clay has also 

decreased suggesting considerably less input from organic peat and turf and 

only minimal manuring. 

 

5.4.10 DISCUSSION OF PARTICLE SIZE RESULTS FROM THE THREE 

FARMS 

 

The particle size results from the three sites show that the area closest 

to the farm centres (kaleyards and gardens), (Figs 96, 97, 98, 101 and 104) 

are dominated by similar range of particle size (100 – 1000µm) which is very 

closely linked to the particle size of the natural soils and indicates that the 

addition is derived either from the addition of mineral rich organic turf and peat 

fragments or from heavy mixing from ploughing or spade delling. Overall the 

fine grained clay and silts, in the soils (100µm), decrease with distance from 

the centre of the farms outwards indicating less manuring with fine grained 

organic material and an increase of post burial decomposition (Figs 95 to 

106). The fine components (<100µm) also decrease with depth as a result of 

post burial decomposition of organic manuring components but there are 

distinctive local variations. 

At Shirva and Caheratrant the fine grained clay and silt fractions may 

derive from turf and peat organics extracted from upland areas but the fine 

grained material may also come from sediment movement from the other 

landuse areas. Evidence for anthropogenic additions to the organic soils was 
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evident at Shirva and Caheratrant through the identification of coarser 

particles, which could be interpreted as deriving from the addition of human 

waste material in the form of bone, pottery and carbonised particles (Figs 96 

& 102). In contrast at Olthof the fine grained (<100µm) component is very low 

and illustrates a lack of clay and silt in heathland soils used in the 

development of the black plaggen soils. Heavy leaching and post burial 

decomposition has also removed fine grained soil components in the brown 

plaggen soil which was developed with the meadowland turf. The uniform 

results from Olthof indicate a very different manuring process and post burial 

decomposition to the other sites but small differences in the particle size data 

show that there are similar patterns of organic and anthropogenic inputs to the 

soils (Figs 101 to 103).    

 

5.4.11 DISCUSSION AND COMPARISON OF PARTICLE SIZE RESULTS 

WITH PAST WORK 

 

Analysis of the particle size of anthropogenic soils has revealed a very 

high sand component with smaller amounts of fine mineral components. 

Pape’s analysis in the Netherlands showed that the particle size of the deep 

stratigraphies varied very little between horizons (0-450mm 5.0-6.0-89%, 450-

750mm 6.0-6.5-87.5%, 750-1100mm 6.0-9.0-85%) and also between the 

black and brown plaggen soils (Pape, 1970), a pattern which has also been 

observed in the analysis of plaggen soils in northwest Germany (Eckelmann, 

1980; Blume and Kalk, 1986 and Elwert and Finnern, 1993), although it was 

also suggested that in places the silt levels were typically higher, between 10-

20% with practically no clay (de Bakker, 1980). The particle size analysis in 

Ireland was conducted in order to identify and quantify the level of calcareous 

sand addition (Conry, 1971). The anthropogenic soils at Donoure, Pillmore 

and Ballydavid all contained relatively high sand percentages between 72-

78.5% which are just comparable with the levels identified in this analysis, 

however, more detailed comparison may not be drawn as the context of 

Conry’s sample pits is not known. At Castlegregory, Conry compared a 

considerably higher percentage sanded anthropogenic soil in close proximity 
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to a farm building (89%) and an unsanded arable soil (68.5%) and the results 

fit closely with the kaleyard results (72.4 – 89.4%) found here.  

In Scotland particle size analysis was conducted on the anthropogenic 

soils identified at Quinni on the Mainland of Orkney (Davidson and Simpson, 

1985). The results included higher levels of clay and silt (26.0 – 27.2% and 

64.5 – 65.9%) with sand increasing slightly towards the base of the sequence. 

This may occur as a result of the addition of organic turf and peat manures to 

the soil profile or more likely as a direct result of the influence of the natural 

sandy parent material. The sand results were, however, much higher in all 

three landuse areas and may point towards the possible use of beach sand as 

part of the manuring process. Higher sand levels were found at Marwick, 

West Mainland, Orkney where detailed particle size analysis was conducted 

at 100mm intervals (Simpson, 1997). The results showed an overall increase 

in sand component (32.0 – 43.1%), possibly because of the sites proximity to 

the sea and use of sea sand. However, the clay and silt levels remained high, 

indicating the continued use of highly organic turf and peat in the formation of 

the deep topsoils. Larger sand percentages were identified in the 

anthropogenic soils on Papa Stour, Shetland where results ranged from 15 – 

40% clay and silt to 45 – 80% sand (Carter and Davidson, 1998). Like Fair 

Isle, Papa Stour also had a limited quantity of organic manure components 

and may have needed to use a large range of materials to maintain the arable 

soils. At Papa Stour, however, Carter and Davidson (1998) used particle size 

analysis to show that the anthropogenic soils can contain high sand levels 

from natural wind-blown sand. Particle size analysis across a number of 

modern landuse areas was conducted at Olthof, the Netherlands and Nairn, 

Scotland and both sites revealed high sand levels (78 – 90% Olthof) and (83 – 

87% Nairn) (Dercon, et al., 2005), possibly through the use of fine sand as a 

component to absorb fluids in byres (Pape, 1970).  
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5.5 MAGNETIC SUSCEPTIBILITY RESULTS FROM FAIR ISLE, THE 
NETHERLANDS & IRELAND 

 

Magnetic susceptibility can be used by a large range of disciplines from 

geologists to hydrologists to answer a number of analytical questions from 

simple individual identification, concentration and total volume to interpretation 

of formation, transportation and sediment signaturing.  In geoarchaeology, 

magnetic susceptibility has been utilised to identify subtle biological 

formations of maghaematite in topsoils illustrating slight environmental 

changes (Longworth, et al., 1979). More common uses of magnetic 

susceptibility involve archaeological soils which have either been subjected to 

burning or heating (Tite and Mullins, 1971) and this has been utilised to 

determine form and function of anthropogenic and natural fires (Bellomo, 

1993). Batt and Dockrill (1998) and Peters, et al., (2000) combined magnetic 

susceptibility with other analytical methods to interpret multiperiod sites at Old 

Scatness, Shetland and Galson, Isle of Lewis as well as to show distinctive 

differences between domestic and arable landuse areas. Magnetic 

susceptibility has also been used to analyse domestic “dark earth” soils 

(Crowther and Barker, 1995; Crowther, 2003) and “urban garden soils” used 

in the identification of anthropogenic additions to arable farmland from 

settlement centres (Carter, 2001; Davidson, et al., 2006).   

Magnetic susceptibility was conducted and analysed using the 

methods outlined by Dearing, 1999 and the methodology is described in 

chapter 1; section 1:13. The full list of data is displayed in (appendix 11) and 

the data is analysed firstly by site; Fair Isle (section 5.5.1), the Netherlands 

(section 5.5.2) and Ireland (section 5.5.3) and then discussed in section 5.5.4. 

 

5.5.1 MAGNETIC SUSCEPTIBILITY RESULTS FROM FAIR ISLE 

 

The magnetic susceptibility results from the three kaleyard areas have 

three very different patterns which represent distinctive variations in the 

organic and inorganic material added (Fig 107). At Shirva the Ap-1 and Ap-2 

horizons contain considerably higher results than the natural soils 

(255±9.02x10-6mg3kg-1 to 277±11.72x10-6mg3kg-1). This shows that 
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amendment may have included larger amounts of hearth residue, carbonised 

particles and anthropogenic waste. There is a distinctive difference between 

the upper horizons and the Ap-3 horizon which has a considerably lower 

magnetic susceptibility (88.14±7.21x10-6mg3kg-1) and may represent the post 

burial breakdown of anthropogenic additions. The results are still considerably 

higher than the natural and the results from Leogh and may represent a focus 

on the addition of organic material and less addition from settlement centres.  

 

 
Figure 107, Mean magnetic susceptibility results at three kaleyard areas on 

Fair Isle 

 

The results from Busta are more consistent and show very little change 

with depth between the Ap-1 and Ap-2 horizons (209.81±13.95 to 

218.74±10.16) and the Ap-3 horizon (189.77±9.07) this illustrates that a 

similar strategy of addition has been conducted throughout the history of the 

kaleyard possibly because of the sites location on the east of the island and 

the focus upon the use of domestic waste residue. In contrast to the results 

from Shirva and Busta are the magnetic susceptibility figures from Leogh. 

Overall the soils illustrate a subtle increase compared to the natural soils with 

a very slight decrease with depth (63.81±5.38 to 49.82±4.63).The results 
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show that at Leogh there appears to be an emphasis on organic amendment 

with peat and turf (section 5.3.1) but considerably less material from hearth 

material and carbonised material from settlement centres. The results 

gathered from Fair Isle may illustrate the addition of ferrimagnetic minerals 

rather than anthropogenic material. Dearing, 1999 suggests that results over 

100x10-6mg3kg-1 are likely to originate from this source and carbonised 

particles and topsoils have lower results.  

 

 
Figure 108, Mean magnetic susceptibility at three landuse areas at Shirva, 

Fair Isle 

 

The results from the three landuse areas at Shirva illustrate key 

variations (Fig 108). As discussed in the kaleyard the upper two soil horizons 

contain considerably higher results and suggest a focus of the addition of 

anthropogenic waste and carbonised material. The results in the upper 

horizons of the infield have similar results to the Ap-3 horizon of the kaleyard 

(100.22±6.19x10-6mg3kg-1 and 93.75±5.15x10-6mg3kg-1) suggesting a similar 

level of addition with time. Results from the outfield however are very different 

and suggest a different pattern of addition. Unlike the other landuse areas 

there is an increase in mean magnetic susceptibility with depth. In the Ap-1 to 
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Ap-3 horizons there is an increase from 77.14±4.05x10-6mg3kg-1 to 

99.18±6.52x10-6mg3kg-1 a pattern similar to the infield and lower kaleyard 

horizons. In the Ap-4 and H horizon there is a distinctive increase of magnetic 

susceptibility and this is a result of the increased addition of anthropogenic 

material in order to increase the nutrient of the main arable soils. The results 

may also have been increased by the process of paring and burning of the 

remnant H horizon and then mixed into the Ap-4 horizon.   

 

5.5.2 MAGNETIC SUSCEPTIBILITY RESULTS FROM OLTHOF, THE 

NETHERLANDS 

 

Overall the magnetic susceptibility results from Olthof illustrate 

distinctive decreases with depth in each landuse area (Fig 109). In the garden 

area the black plaggen soil in the Ap-1 and Ap-2 horizons have similar results 

ranging from 44.97±6.68 to 46.08±3.73 and suggest that there has been a 

larger input of domestic material and carbonised particles.  

 

 
Figure 109, Mean magnetic susceptibility at three landuse areas at Olthof, the 

Netherlands 
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In comparison the brown plaggen soils contain much lower amendment 

but there does appear to be a comparable input with the Ap-3 horizon in the 

inner arable area. The black plaggen soil in the inner arable area contains 

lower magnetic susceptibility results (30.27±1.43x10-6mg3kg-1 to 

35.86±1.54x10-6mg3kg-1 indicating less domestic input. The lowest results at 

Olhof are present in the outer arable area. In the black plaggen soil there is a 

small increase compared to the natural soils and this might represent the 

distribution of carbonised heathland turves since the increase in farming. In 

contrast the brown plaggen soils contain comparable results with the natural 

and this suggests very little to no addition with domestic waste or carbonised 

inclusions.  

 

5.5.3 MAGNETIC SUSCEPTIBILITY RESULTS FROM CAHERATRANT, 

IRELAND 

The magnetic susceptibility results from Caheratrant, Ireland show a 

very different pattern to the sites on Fair Isle and Olthof (Fig 110). In all three 

landuse areas there is an increase in mean magnetic susceptibility with depth 

and considerably less distinctive results between the kaleyard and outer 

arable area. In the kaleyard the Ap-1 and Ap-2 horizons have very similar 

results ranging from 77.35±3.55 to 93.31±7.13x10-6mg3kg-1 and the results in 

the neighbouring kaleyard illustrate similar figures. The Ap-3 horizon has a 

considerably higher magnetic susceptibility result (184.90±13.73x10-6mg3kg-1) 

and suggests a larger input of domestic waste, hearth ash and carbonised 

particles possibly as a result to increase the nutrience of the kaleyard. The 

distinctive calcareous sand horizons (CaCO3) also have variable results 

suggesting different levels of mixing with farmyard manure and hearth 

residue. The upper horizon has a figure of 48.02±6.19x10-6mg3kg-1 and was 

not found with any organic or carbonised material in the field. This therefore 

most likely represents material added directly to the kaleyard soil. In 

comparison the lower sand horizon was found with a considerably higher 

magnetic susceptibility result (109.11±12.13x10-6mg3kg-1) and organic 

inclusions found in the field show that mixing with farmyard manure and 

carbonised material is more likely. 
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Figure 110, Mean magnetic susceptibility results at three landuse areas at 

Caheratrant, Ireland 

 

In comparison to the kaleyard the inner arable (33.08 to 79.98x10-

6mg3kg-1) and outer arable areas (46.71 to 91.57x10-6mg3kg-1) have a very 

different pattern of magnetic susceptibility results. Both show an increase with 

depth and indicate a higher input of anthropogenic material during the 

development of the arable soils. The reduction in results into the Ap-1 horizon 

must represent a change in manuring strategy perhaps as the landuse 

changed from arable to pastoral. The results across all the landuse areas 

might also represent the input of ultra/basic and ferrimagnetic minerals from 

the natural and beach sand material. This site has the greatest variation in 

lithologies and is the only site to use a mineragenic form of manure both of 

which could affect the magnetic susceptibility results. 
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5.5.4 DISCUSSION OF THE MAGNETIC SUSCEPTIBILITY RESULTS 

FROM THE THREE FARMS 

 

The results from the magnetic susceptibility analysis from the different 

landuse areas of the three sites can be compared in order to try and 

determine the level of anthropogenic addition to the soils. Overall the results 

show distinctive variations between the landuse areas and sites. The highest 

results were identified at Shirva (277±11.72x10-6mg3kg-1) (Figs 107 and 108) 

and Caheratrant (184.90±13.73x10-6mg3kg-1) (Fig 110) and indicate the 

significant input of settlement material including hearth residue, carbonised 

material and household waste. Both sites also have very similar soil chemistry 

including soil pH (section 5.2) soil organic content (section 5.3) and particle 

size (section 5.4). In contrast the results from Olthof are considerably lower 

(46.09±3.73) (Fig 109) but these results are still considerably higher than the 

natural soil horizons and indicate that the areas adjacent to the farm nuclei all 

have distinctive enhancement with anthropogenic material. The distinctive 

variations between the sites must occur as a result of different manuring 

regimes and possibly as a result of higher ferrimagnetic minerals including 

iron and manganese identified in high levels during the fieldwork.  

Across each of the sites there is however, a decline in the mean 

magnetic susceptibility results from the settlements outwards as was 

hypothesised, according with the idea that most domestic addition occurred 

closest to the farmstead. At Shirva and Caheratrant the infield and inner 

arable results from the amended soils are still considerably higher than Olthof 

and have only declined by a small amount. At Olthof there is a larger variation 

between the black and brown plaggen soil and almost certainly derives from 

the natural parent material. This pattern continues in the outer arable area 

and in each of the anthropogenic soil horizon mirror results in the natural 

soils, but at the other sites different processes appear to be occurring. At 

Caheratrant the upper amended soils in the outer arable area have lower 

magnetic susceptibility results compared to the Ap-2, indicating considerably 

higher input from the centre of farms. At Shirva though, there is a slight 

increase in mean results between the Ap-1 and Ap-4 horizons and the values 

are similar to the infield area. These higher results are extremely interesting 
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as it suggests that the outfield area is receiving a large amount of material 

from the farm a process unusual to outfield area in the northern isles of 

Scotland. An alternative explanation to the irregular magnetic susceptibility 

results is that carbonised particles have been added to the soil in the past by 

stubble burning or through the process of paring and burning (Fenton, 1978).      

 

5.5.5 DISCUSSION OF MAGNETIC SUSCEPTIBILY RESULTS WITH PAST 

WORK 

 

The magnetic susceptibility analysis in this thesis is the first to have 

been done at the three sites sampled therefore a direct comparative analyses 

cannot be conducted. However the extensive use in archaeological projects in 

similar contexts may help to interpret the results. Dearing (1999) showed that 

different composite materials had a range of results (Fig 111). Of particular 

relevance to this project are the results from topsoils (0.01 -+10 x10-6mg3kg-1) 

and burned soils (+0.1 – 100 x10-6mg3kg-1) which have distinctive ranges into 

which all the results from this project fit, but importantly there is also a 

significant number of geological materials which might also affect the results 

(sections 5.5.1 to 5.5.3).  

 

 
Figure 111, Range of magnetic susceptibility results from soils and rocks 

(Dearing, 1999) 
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Across each of the sites the magnetic susceptibility results are 

surprisingly high especially when compared to results gathered from the heart 

of domestic areas, for example Roman and Saxon ‘beaten floors’ from 

London have revealed magnetic susceptibility results of over 3000 x10-8SIkg-1 

(Macphail, et al., 2003). However other more detailed, systematic field studies 

of pits and middens have revealed a much more variable pattern dependent 

upon materials added and levels of preservation. Iron Age and Pictish 

middens tested every 20mm at Old Scatness, Shetland revealed a subtle 

down profile increase in results ranging from 3.0 – 9.0x10-6mg3kg-1 (Pictish) 

and 4.0 – 8.0x10-6mg3kg-1 (Iron Age) with distinctive bands of 15 – 26x10-

6mg3kg-1 from dark red burnt laminations (Dewar, et al., 2002). At the same 

site results from the domestic horizons were compared to the results from the 

anthropogenic soils in the fields and this showed that midden material was 

being added to the soils due to infrequent peaks in the magnetic susceptibility 

results (Dockrill and Simpson, 1994 and Batt and Dockrill, 1998).  

 

5.6 SOIL MULTI-ELEMENT ANALYSIS FROM FAIR ISLE, THE 
NETHERLANDS & IRELAND 

 

The occupation of sites with time will affect the local landscape in a 

number of physical and chemical ways. One of the most direct ways is by the 

accidental or deliberate creation of anthropogenic waste and its distribution as 

manure upon arable farmland areas. This occupation waste typically consists 

of a mixture of organic and inorganic components including decomposed and 

carbonised organic material (peat and turf), mineral material, food waste 

(animal bone), animal faeces and human nightsoil and domestic waste 

especially ceramics and industrial debris. The addition of these components 

can therefore significant enhance the elemental concentrations in the soils 

and their analysis and interpretation can be a very useful tool in the 

determination of source manuring material, settlement distribution and past 

landuse.  

Multi elemental analysis was therefore conducted upon the 

anthropogenic and amended soil horizons found on Fair Isle, the Netherlands 

and Ireland were examined in order to determine whether the soils contained 
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characteristic elemental signatures which might aid provenance of manuring 

materials. The analysis also aimed to highlight distinctive patterns of 

elemental concentrations in the areas closest to the settlement centres and 

compare them to the furthest arable areas. Finally the multi-elemental 

analysis hoped to define a clear chemical relationship between the soil and 

the black carbon particles (chapter 7) in order to more clearly understand the 

physio-chemical relationship between the two. In total the soil samples were 

analysed for 21 elements and the results are discussed on a site by site basis 

between Shirva (section 5.6.1), Olthof (section 5.6.2) and Caheratrant 

(section 5.6.3). There is then a summary of the results from the three sites 

(section 5.6.4) and a discussion of the results with multi-element results from 

previous analyses (section 5.6.5). The methodology for the multi-elemental 

analysis is described in chapter 1; section 1:13 and raw data in appendix 12.  

 

5.6.1 SOIL MULTI-ELEMENT RESULTS FROM SHIRVA, FAIR ISLE 

 

The soil multi-elemental results from Shirva illustrate that in each of the 

landuse areas there are a range of similar elements deriving from 

anthropogenic and natural sources (Fig 112). In the kaleyard there are 

specifically high mean concentrations of Ca (167.54±10.60ppm) and P 

(121.90±8.37ppm) suggesting significant input through manuring with organic 

and carbonised material a result which mirrors the other geochemical 

analyses. The specifically high Ca results may also indicate the use of 

calcareous sea sand in the manuring process. The results are not as dramatic 

as the Ca results from Caheratrant suggesting that it was not placed directly 

onto the fields but most likely derives from inorganic material attached to 

seaweed and added periodically. The Ca results in the kaleyard are 

considerably higher than the infield (50.07±16.94ppm) and outfield 

(43.10±2.07ppm) and suggest that the kaleyard received more manure but 

the similar results indicate a similar manuring regime. The results are very 

similar to the natural B horizon (48.24±3.84ppm) which indicates that the Ca 

derives from the underlying soil and not from manuring. There a number of 

other elemental concentrations which are higher in the natural than in the 
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amended arable soils and also indicate an origin from the underlying soil 

horizons. 

 
Figure 112, Soil multi-elemental results from three landuse areas at Shirva, 

Fair Isle (Error bars show 95% confidence interval of the mean) 

   

The concentrations of Mg (141.21±8.21ppm) and K (69.90±6.17ppm) 

are higher in the natural soils and therefore the values in the amended soils 

may be due to an increase in mixing by biological and physical processes 

between the horizons, however they may also derive from the addition of turf 

and peat organic manures which contain mineragenic material. The addition 

of organic material in the infield and outfield areas can be inferred from the 

concentration of P. The infield area (118.74±7.33ppm) contains a 

concentration akin to the kaleyard and indicates a similar addition of organic 

material. The outfield however contains only a slightly higher concentration 

(57.59±3.22ppm) than the natural soil (43.69±2.87ppm) and suggests minimal 

organic addition however it is more likely illustrating an increased 

concentration in the B horizon because of heavy mixing between the 

amended arable soils, natural soils and buried H horizon. Mixing between all 

the horizons in the kaleyard probably explains the high Fe (471.50±9.22ppm) 

and Al (351.25±18.10ppm) results. However, the results are considerably 
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higher than in the B horizon and may indicate input of organic peat and turf 

material.  

The distinctive elemental concentrations of K and Mg in the amended 

soil horizons may also be derived from the influence of sea-spray and indeed 

the concentration of Na is fairly uniform throughout (19.31±2.86ppm – 

25.04±2.04ppm) and higher than in the natural soils. Importantly the high 

concentration of Fe and Mn may also be derived from the input of elements in 

sea spray and there can be increased precipitation of these elements into the 

soil profile.  

Interestingly, although the concentrations of Ba (6.66±1.13ppm), Pb 

(7.99±2.32ppm), Sr (2.85±0.34ppm) and Zn (6.28±1.10ppm) are very low 

there are distinctively higher concentrations in the kaleyard compared with the 

outfield and the natural soils. This indicates that alongside organic manure, 

domestic waste, carbonised particles and hearth residues are also being 

added to the soils but have been seriously depleted by post burial mixing and 

leaching since the cessation of manuring in this area.  

 

5.6.2 SOIL MULTI-ELEMENT RESULTS FROM OLTHOF, NETHERLANDS  

 

The multi-element results from the anthropogenic soils at Olthof 

illustrate an interesting distribution between the three landuse areas (Fig 113). 

The plaggen soils in the garden area contain distinctive concentrations of Ca 

(49.27±4.81ppm) and P (38.02±5.41ppm) which illustrates distinctive 

amendment with organic manure including turf and domestic waste material 

including hearth waste and carbonised particles. In the inner arable 

(73.79±5.44ppm) and outer arable areas (28.18±3.67ppm) however the 

results suggest that manuring has been conducted using organic material only 

as the concentrations of P decrease gradually and are considerably higher 

than the natural soils. The concentrations of Ca however in the inner 

(19.82±1.84ppm) and outer arable (6.99±4.63ppm) areas are more consistent 

with the natural soils. Alongside Ca and P the anthropogenic soils also include 

distinctive concentrations of Fe (428.38±16.56ppm to 488.44±12.04ppm) and 

Al (334.87±3.91ppm to 408.94±8.21ppm), in the garden and inner arable 
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areas. These most likely represents the addition of the natural heathland and 

meadowland soils which contain large quantities of these elements.    

 
Figure 113, Soil multi-elemental results from three landuse areas at Olthof, 

the Netherlands (Error bars show 95% confidence interval of the mean) 

 

Evidence for the addition of organic and inorganic material from a 

domestic source is scant and the elemental record in the soils suggests that 

no anthropogenic material was added. Apart from only trace levels of Ba and 

Zn there is no concentrations of elements such as Pb, Cd, Cu, Mn, Sr, and As 

which might be interpreted as deriving from a domestic source. Instead the 

elemental record of Na, Mg, K and Mn all suggest the primary addition of 

organic manure heavily mixed with the natural soils alongside distinctive post 

burial leaching. Intensive leaching of the Dutch anthropogenic soils appears to 

have even removed the evidence of modern farming as chemical fertilisers 

rich in K, P and N which are used in the inner and outer arable areas do not 

appear to have registered in the analysis. The results gathered here bear far 

similar resemblance to the natural turf manures used in the production of the 

brown and black plaggen soils.    
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5.6.3 SOIL MULTI-ELEMENT RESULTS FROM CAHERATRANT, IRELAND 

 

The multi-elemental results from Caheratrant are illustrated in figure 

114. The results show very clearly that Ca amendment has occurred on a 

huge scale within all the kaleyards analysed with results regularly exceeding 

800ppm. Interestingly however the Ca results from the inner arable and outer 

arable are considerably lower than the natural soil horizons (91.46±8.27ppm). 

 

 
Figure 114, Soil multi-elemental results from three landuse areas at 

Caheratrant, Ireland (Error bars show 95% confidence interval of the mean) 

 

There is clear evidence from the historical and geoarchaeological work 

conducted on the Dingle Peninsula that sanding was occurring regularly the 

low results demonstrated here however seem to suggest that it was 

concentrated in the kaleyard areas. Further spot analysis of inner arable 

areas have illustrated that sanding was occurring with results ranging 

between 300 – 500ppm. This suggests that at Caheratrant sanding was 

conducted in very specific areas and that the areas sampled in this project are 

examples of inner arable areas that were not sanded. In the kaleyard areas 

there is no doubt that sanding took place as the CaCO3 horizons contain 
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between 1917.70ppm to 3334.90ppm. The kaleyard areas also contain the 

highest concentrations of P (45.84±8.12ppm) suggesting it also received the 

largest quantity of organic manure with the calcareous sand. There is 

however also evidence that the inner (17.83±6.17ppm) and outer arable areas 

(15.49±4.54ppm) also received some organic manure as the results are 

considerably higher than the underlying natural soil horizons (7.37±1.84ppm). 

Like the other two sites the amended soils at Caheratrant also contain high 

concentrations of Fe, Al, Mg and small amounts of K and Mn which probably 

derive from the addition of organic turf and peat manure mixed with the 

natural soils and sea spray which, like Fair Isle, is highly prevalent in the 

coastal environment. In each of the cases the concentrations of the elements 

are very similar between the different landuse areas and suggest that no 

major enhancement has been conducted outside the central nucleus of the 

farm. The lack of Ba, Pb, Cd, Cu, Mn, Sr, Zn and As also indicate a distinctive 

lack of domestic waste material added to any of the landuse areas and if it 

was it has not left any evidence of an elemental signature or significant 

leaching has removed any elemental evidence that was present.  

 

5.6.4 DISCUSSION OF THE MULTI-ELEMENT RESULTS FROM THE 

THREE SITES 

 

Overall the results from the three sites contain relatively disappointing 

multi-element signatures however there are a number of distinctive 

relationships between the results and the other geochemical analyses 

conducted. Figure 115 shows the concentrations of P, Ca, K and Mg in 

amended arable soils and anthropogenic horizons from the three sites. The 

results clearly illustrate that the calcareous sand added at Caheratrant has 

increased the soil pH above 7.0 but other key elements including P, K and Mg 

have not been so dramatically increased perhaps as a result of the direct 

application of the sand. At Shirva the majority of the soils with higher pH 

contain slightly higher concentrations of P, Ca, K and Mg possibly because of 

the addition of organic manure of because of heavy mixing with the natural 

soils which have pH and elemental results which are more consistent 

especially away from the kaleyards.   



 
 
 

262 
 

 
Figure 115, Mean multi-elemental concentrations of P, Ca, K & Mg and soil 

pH from Shirva, Olthof and Caheratrant 

 

 
Figure 116, Mean multi-elemental concentrations of Ba, Cu, Pb, Sr & Zn and 

soil pH from Shirva, Olthof, and Caheratrant 
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In contrast the results of the concentrations of Ba, Cu, Pb, Sr and Zn 

(elements associated with the addition of domestic waste and hearth ash) 

show distinctly higher results at Shirva in moderately acidic soils (pH6.0 – 

6.5). The soils at Caheratrant show slightly higher concentrations in the soils 

around pH7.5 but generally the results are much lower suggesting either 

leaching or considerably less addition of domestic material. At Olthof the pH 

and concentrations of all the elements illustrated in figures 115 and 116 are 

much lower than the other sites and the variations in soil Ph are 

indistinguishable. This may be because of the sandy nature of the soils and 

the leaching of elements. 

The elemental concentrations from the three sites also illustrate distinct 

patterns with the loss on ignition data Figs 117 and 118. At Shirva the 

concentrations of P, Ca, K and Mg are fairly evenly spread throughout the 

soils and suggest either the addition of organic manure to each landuse area. 

The results also indicate that the elemental concentrations may derive from 

mixing with natural soil horizons. The results from the concentrations of Ba, 

Cu, Pb, Sr and Zn indicate that domestic waste was added frequently to the 

soils possibly mixed in with organic components. The results illustrate 

particularly high concentrations of Pb and Zn in the kaleyard soils which might 

derive from minor industrial activity but also possibly from the residues from 

fires as the concentrations of Ba, Cu and Sr also range between 3 – 6ppm 

compared to <1ppm in the natural soils. At Caheratrant there is a clear 

concentration of P, Ca, K and Mg in the soil horizons in the kaleyard and 

considerably lower results in the other areas as a result of organic and 

inorganic manuring with peat, turf and sea sand. Results of Ba, Cu, Pb, Sr 

and Zn are lower with a slight increase in the kaleyard possibly from the 

addition from the sand or from waste material. The figures indicate however 

that if domestic material is added it is reserved for the kaleyard and not for the 

arable areas which have results akin to the background level. The results from 

Olthof are considerably lower than the other two sites and suggest the uniform 

addition of organic material with very little domestic waste and carbonised 

particles. This pattern is typical of a heavily leached soil which may have had 

higher soil geochemical results in the past but it has gradually reduced since 

the end of manuring.  
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Figure 117, Mean multi-elemental concentrations of P, Ca, K & Mg and mean 

% loss on ignition from Shirva, Olthof and Caheratrant 

 

 
Figure 118, Mean multi-elemental concentrations of Ba, Cu, Pb, Sr & Zn and 

mean % loss on ignition from Shirva, Olthof and Caheratrant 
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Figure 119, Mean multi-elemental concentrations of P, Ca, K & Mg and mean 

magnetic susceptibility from Shirva, Olthof and Caheratrant  

 

 
Figure 120, Mean multi-elemental concentrations of Ba, Cu, Pb, Sr and Zn 

and mean magnetic susceptibility from Shirva, Olthof and Caheratrant 
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Analysis of the multi elemental results can also be made with the 

magnetic susceptibility results in order to determine whether there are 

patterns which illustrate the input of carbonised particles, ash and burnt 

residues into the soils (Figs 119 and 120). At Shirva there is a distinctive 

group of elements including P, Ca and Mg from the kaleyard with considerably 

higher elemental concentrations and magnetic susceptibility than the natural 

soils and these might derive from manuring. A similar peak is also present in 

the results of Ba, Cu, Pb, Sr and Zn and like the pH and loss on ignition 

results illustrates distinctive anthropogenic input throughout the history of the 

kaleyard. There is also a secondary lower group which corresponds to the 

infield and outfield areas and shows that some manuring may have occurred 

in the past possibly when the farm has a higher number of houses.  

The results from Caheratrant also mirror those from the comparison 

with the pH and loss on ignition results. The high Ca results have highly 

variable magnetic susceptibility ranges possibly mirroring different source 

areas. There appears to have been minimal mixing with domestic waste and 

farm material though as the results of Ba, Cu, Pb, Sr and Zn are considerably 

lower. The organic material also appears to have been rarely mixed with 

domestic and carbonised material as the group of P, Ca, K and Mg between 

125-200ppm and 15-100x10-6mg3kg-1 is not replicated in the concentrations of 

elements in figure 120. Instead the elements have only slightly higher 

concentrations than the natural soils and are likely to derive from Fe and Al 

which exceed 400 to 800ppm.  

Once again the results from Olthof are considerably lower than the 

other sites and mirror the results in figures 115 to 118. The concentrations of 

P, Ca, K and Mg are slightly higher in the upper black plaggen soils but the 

smooth decrease with depth indicates that there has been a constant leaching 

of elements with time.  

The elemental results gathered in this thesis are just a few of the many 

projects which have also analysed elemental concentrations and therefore to 

clearly understand the wider implications of these figures a comparative 

discussion must be undertaken. 
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5.6.5 DISCUSSION AND COMPARISON OF MULTI-ELEMENT RESULTS 

FROM PAST WORK 

 

Multi element analysis has been conducted on a range of 

anthropogenic soils and archaeological features from across the three 

assessment areas. In the Netherlands the anthrosols contained high P values 

typically between 1130 – 1350ppm in the black plaggen soil, and 920 – 

2120ppm in the brown plaggen soil (Pape, 1970) these results are 

considerably higher than the results gathered in this analysis (Figs 112, 113 

and 114) suggests either large scale regional variations in results, or the soils 

at Olthof have gone through extreme leaching possibly as a result of modern 

agriculture.  

 

Landuse 

 

Horizon 

P(ppm) 

Dercon, et al., 2005 Pears, this volume 

Pasture Arable Woodland Garden Inner 

Arable 

Outer 

Arable 

Ap-1 670 758 943 49 35 19 

Ap-2 863 731 1102 36 29 10 

Ap-3 643 880 561 31 / / 

Ap-4 341 837 / / / / 

Ap-5 223 / / / / / 

Natural 415 384 318 9 15 3 

Table 22, Mean P results in plaggen soils from different landuse areas at 

Olthof 

 

Total P results from Olthof were also gathered by Dercon, et al., (2005) 

from a range of modern landuse areas (Table 22). Their results were lower 

than the values ascertained by Pape but were still considerably higher than 

values calculated in this work.  The difference in results may be due to the 

different methods used to extract the P values; ICP-AES over sodium 

hydroxide fusion. Patterns in elemental distribution can still be seen between 

the soil horizons. The highest P results were identified in the woodland area 
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which was closest to the kaleyard of the farm but results from the pasture and 

arable areas are less definable to sample areas. Elemental analysis by Pape 

and Dercon is focussed on the amount of soils P, which is excellent evidence 

of anthropogenic manuring but as more recent analyses have demonstrated 

no one element can be used to determine anthropogenic activity (Wilson, 

2008). When compared to the results from the other elements the general 

trend in concentration is very low but there is a distinctly higher P in the 

kaleyard area and less in the peripheral areas of the farm suggesting less 

organic and settlement waste.  

 

Site Soil Depth P (ppm) 

Valthe-Lienstucken, Infields Plaggen (0-300mm) 1650 

Plaggen (300-600mm) 1130 

Natural (B horizons 600+mm) no results

Valthe-Blickackers, Open Fields Plaggen (0-260mm) 860 

Plaggen (260-480mm) 720 

Natural (B horizons 480+mm) no results

Valthe-Colckackers, Open fields Plaggen (0-260mm) 690 

Plaggen (260-380mm) 440 

Natural (B horizons 480+mm) no results

Table 23, Mean P results from Valthe, Drenthe, the Netherlands (van 

Smeerdijk, et al., 1995) 

 

Phosphorus values in plaggen soils were also determined from 

comparative landuse area at Valthe in Drenthe (van Smeerdijk, et al., 1995), 

(Table 23). The results from Valthe were high and similar to the values found 

by Pape and Dercon but like the results from Olthof there were clear patterns 

of distribution with depth and distance from the settlement centres suggesting 

clear variations in the manuring process across different parts of farm. At both 

Olthof and Valthe the upper black plaggen soil illustrates a higher P value 

than the underlying brown plaggen soil, and this may mark the onset of 

increased organic manuring at the beginning of the post medieval period (van 

Smeerdijk, et al., 1995).  
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As well as P the Dutch plaggen soils were also tested for a range of 

elements (Figs 113) and although the results were generally low they were 

consistent with the phosphorus results and indicate that manure from 

settlement centres may have been added to the soils along with organic 

manures but that the values may have been heavily affected by leaching. Low 

multi element results were also gathered at the Roman site of Nistelrode 

(Oonk et al., 2009a) compared to two farms on clay and sandy clay soils the 

elemental results from sandy soils inside the building were considerably lower 

than the other sites and indicated large amounts of post burial leaching. Much 

like the plaggen soils at Olthof the archaeological site at Nistelrode also 

contained much lower concentrations of Ca, As, Pb, Zn, Ni, Cr, V, Sn, Sr and 

Ba and the lower results maybe as a result not of less addition but of an 

inability of sandy soils to retain elements (Oonk, et al., 2009b).  

Low multi-element results were also found at Caheratrant, Ireland, 

however the results from other analysis in Ireland suggest that this is a normal 

occurrence. In the 1970s the anthropogenic soils from Donoure, 

Cloghansheskeen, Pillmore and Ballydavid were tested for concentrations of 

P, K and Mg (Conry 1971), (Table 24) as a direct comparison to the Dutch 

plaggen soils. Conry’s soil chemistry results are highly variable between the 

four sites because of variable geology, manuring practices and post burial 

alteration. However, there are distinctly higher concentrations of all the 

elements in the anthropogenic horizons. The concentration results of P, K, 

and Mg found at Caheratrant mirror these results and are most closely 

associated with the sites at Castlegregory and Dingle, a pattern with 

corresponds with the depth of the soils (chapter 4, section 4.7) and soil pH 

and loss on ignition results (chapter 5, sections 5.2.3 and 5.3.3).  At 

Castlegregory and Caheratrant there are similar values of P and K indicating 

organic input but there are considerably higher Mg values which could 

indicate more input from hearths and fires. Unlike the results found at Olthof 

the P, K and Mg values from Caheratrant are as low as the results found by 

Conry and gives validation to the results from the Netherlands. 
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Author Site Horizon P (ppm) K (ppm) Mg (ppm) 

C
onry, 1971; 1974 and C

onry and M
itchell, 1974 

 Donoure, Ardfield, 
Klonakilty 

Ap-11 104 170 860 
Ap-12 75 170 940 
Ap-13 12 80 1368 
Ap-21b 8 90 1672 
Ap-22b 1 155 215 
natural 1 70 98 

Cloghansheskeen, 
Castlegregory 

Ap-1 52 26 492 
Ap-2 50 20 472 
Apb 29 10 133 
natural 2 37 33 

Pillmore. Youghal Ap-11 60 203 400 
Ap-12 13 190 540 
Ap-13 16 161 400 
Ap-2b 13 120 292 
natural 3 59 479 

Ballydavid, Dingle Ap-11 15 50 568 
Ap-12 13 18 684 
Ap-2b 1 22 118 
natural 1 18 50 

P
ears, 
this 

volum
e 

Caheratrant, Dingle Ap-1 53 17 151 
Ap-2 32 15 138 
Ap-3 26 12 158 
Natural 10 14 171 

Table 24, Mean elemental concentrations of P, K and Mg in Irish plaggen soils 

 

More recent work by Conry incorporated the analysis of a larger suit of 

elements including Ca, Na, Mn, Cu, Zn, B, Se and Co to determine the 

amount of anthropogenic input into Irish plaggen soils (Conry and 

MacNaeidhe 1999). The anthropogenic soils from the two sites show very 

similar values of P, K and Mg and this indicates a similar amount of organic 

additions to the soils, however the results of other elements associated with 

anthropogenic input highlight some distinct variations between the two sites 

(Table 25). The values of Ca at Castlegregory are extremely high in the 

plaggen soil (22091 – 24625ppm) indicating far more input from calcareous 

sea sand than at Caheratrant. Results of Cu, Zn and Co are also higher at 

Castlegregory and suggest that more material from settlement centres has 

been added to the site. Further evidence of the lack of input from settlement 

centres comes when the Caheratrant soils are compared to the natural soils 
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sampled by Conry and MacNaeidhe (1999). The elemental results from 

Cloghaneanode, Castlegregory include similar amounts of K, Mg, Mn, Zn and 

Co which may have derived from the natural soils. It seems likely therefore 

that manuring at the sample areas of Caheratrant consisted of mainly organic 

manuring with peat and turf and occasional beach sand but less input of 

anthropogenic waste from settlement centres.    

 

Sites Horizon Elemental Concentration (ppm) 

  P K Mg Ca Na Mn Cu Zn B Se Co 

1. Ap-1 53 17 151 924 13 26 0.63 2.46 / / 0.27 

 Ap-2 32 15 138 337 7 25 0.47 1.80 / / 0.28 

 Ap-3 26 12 158 128 15 25 0.31 1.90 / / 0.28 

 Natural 10 14 172 198 4 24 0.36 1.86 / / 0.34 

2. Ap-1 60 51 396 22091 36 14 4.46 17.2 1.9 0.45 4.56 

 Ap-2 36.8 27 426 24625 19 30 8.40 6.89 1.0 0.30 4.62 

 Apb 19.2 21 62.1 5820 26 5 2.40 3.14 2.0 1.00 1.95 

 Natural 1.3 12 9.7 900 0 1 0.37 0.52 0.1 0.10 4.48 

1. Caheratrant, Dingle (Pears, this volume) 2. Cloghanesheskeen, Dingle 

(Conry and MacNaeidhe 1999) / - No Data 

 

Table 25, Mean multi-elemental values for two soil horizons from Caheratrant 

 

In Scotland and on the Scottish Islands multi element analysis has 

been used to identify anthropogenic soils and archaeological features. Indeed 

the deepened topsoils of Orkney were located partly by identifying total 

phosphate levels of 438 – 588mg/100g (Davidson and Simpson, 1984). At 

Olligarth, Papa Stour the deepened topsoils from four landuse areas had high 

phosphate levels ranging from 216 – 279mg/100g in the kaleyard to as little 

as 58mg/100g in some infield areas (Bryant and Davidson, 1996). Phosphate 

results from four farm mounds on Tofts Ness, Sanday ranged from 140 – 

500mg/100g and illustrated clear anthropogenic soil and midden horizons 

associated with human occupation (Simpson, et al., 1998).  
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The results from Fair Isle are, like the other two sample sites, 

disappointingly low and at first glance appear to suggest limited 

anthropogenic input especially when compared to the results collected by 

Fiona Chrystall in the upland anthropogenic soils. Chrystall’s results of P 

clearly show a pronounced increase of total phosphorus in the anthropogenic 

soils (205 to 365mgP/100g) indicating high levels of organic manuring 

(Chrystall, 1994).  

 

 Olligarth, Papa Stour Shirva, Fair Isle 

 Mean P (ppm) Mean P (ppm) 

Landuse area Bryant and Davidson, (1996) Pears, (this volume) 

Kaleyard 5667 133 

Infield 3091 109 

Outfield / 54 

Upland 0 4 

Table 26, Mean P results from Olligarth, Papa Stour and Shirva, Fair Isle. / = 

No Data 

 

The multi element results from the three landuse areas at Shirva do 

mirror the pattern of distribution found at Olligarth, Papa Stour (Table 26). The 

results of both sites do, show a decrease in phosphorus with distance from 

the centre of settlement centres indicating less organic manuring in the outer 

areas of the farmsteads.  
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Site Greulin, Isle of Skye Olligarth, Papa Stour Nairn Hirta, St Kilda Shirva, Fair Isle 
Authors Entwistle, et al., 1998, 2000 Wilson, et al., 2005, 

2008 
Davidson, 
et al ., 2006 

Meharg, et al., 2006 Pears, (this volume) 

Concentration µg/g mg/kg mg/kg µg/g Kaleyard 
mg/kg 

Infield 
mg/kg 

Outfield 
mg/kg 

Elements On-field On-field Off-field Garden Arable Outfield Anth Nat Anth Upland Nat. Anth Nat. Anth Nat. Anth Nat 
Ca  3930 4880 1840 1740 930 760 / / / / / 168 93 49 30 43 22 
Mg 24100 25100 16300 / / / / / / / / 129 162 92.5 20 106 172 
K 818 939 430 / / / / / / / / 57 77 61 50 61 83 
P 1440 2691 1010 1980 1320 450 932 440 1000-

5000 
<1000 1000-

2000 
122 70 119 47 58 14 

V 115 131 140 / / / / / / / / 0.5 0.7 0.4 0.2 0.2 0.1 
Cr 189 196 283 / / / / / / / / 0.7 1.0 0.5 0.2 0.5 0.8 
Co 50.5 46.6 35.1 / / / / / / / / 0.5 0.4 0.4 0.4 0.3 0.2 
Ni 213 187 157 / / / / / / / / 0.8 0.6 0.4 0.3 0.4 0.5 
Cu 102 102 70.3 / / / 7 3.5 / / / 2.2 0.7 0.9 0.5 0.7 0.5 
Zn 126 155 107 71.2 34.2 15.3 17 14 50-500 <50 <50 6.2 2.3 1.4 1.0 1.0 0.9 
Rb 6.69 9.7 3.13 / / / / / / / / / / / / / / 
Sr 123 142 43.2 43.6 25.9 14.5 / / / / / 3.0 0.9 1.3 0.7 3.1 0.3 
Y 8.71 8.69 4.3 / / / / / / / / 0.2 0.1 0.1 0.1 0.2 0.1 
Cs 1.12 1.31 0.65 / / / / / / / / / / / / / / 
Ba 115 121 50.2 142 109 19.3 / / / / / 7.0 2.0 2.6 1.7 3.1 1.1 
Pb 7.79 11.05 10.2 / / / 11 7 10-100 5-35 0-70 8.0 2.0 1.4 1.0 0.7 0.2 

Table 27, Table of mean multi-element data from amended and anthropogenic soils across Scotland and the Scottish Islands 
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Anthropogenic soils from Quoygrew, Orkney have also been shown to 

contain very high phosphorus results between 5380 – 5600mg/kg but are 

much lower than the results from a farm mound (4950 – 10950mg/kg) and 

smaller fish middens (3310 – 5510mg/kg) (Simpson, et al., 2005).  

The low elemental concentrations of phosphorus in the sample soils on 

Fair Isle also continues in the quantities of other elements associated with 

anthropogenic input and other analyses in Scotland and the Scottish Islands 

have revealed much higher values and more conclusive evidence of 

anthropogenic input from settlement centres (Table 27). At Greulin the values 

of Ca, Mg, K, P, Cu, Zn, Sr and Ba were considerably higher than at Shirva 

and suggest a high input of food waste and hearth material (Entwistle, et al., 

1998). At Shirva although these elements have the highest values they 

appear to be much more closely associated with background values. The 

extensive analysis of the elemental composition of the soils from Olligarth, 

Papa Stour show much more conclusive differences in concentrations 

between landuse areas (Wilson, et al., 2005). In the garden, arable and 

outfield areas (which roughly equate to the kaleyard, infield and outfield used 

in this project) there are big differences between the concentrations of Ca, P, 

Zn, Sr and Ba suggesting a longer history of manuring on Papa Stour or 

better retention of elements by the soils. 

The low elemental results from Shirva, Fair Isle may be due to the 

simple fact that little to no inorganic manure from settlement centres was 

added to the soils and the main material added was organic which would 

temporarily raise the fertility of the soil but leaves no lasting elemental 

signature.   

 

5.7 SUMMARY OF BULK ANALYSES OF SAMPLE SOILS FROM THE 
THREE FARMS 

 

The bulk physical and chemical analyses conducted on the soils 

present at the three sites illustrate a number of important factors in their 

formation. The sandy geologies have typically given the soils sandy textures 

and moderately acidic soil pH (section 5.2) a pattern seen on other sites with 

anthropogenic soils (Pape, 1970; Conry, 1971; Dercon, et al., 2005). 
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However, there is distinct variation in the loss on ignition results (section 5.3) 

indicating differences in the addition of organic manures between different 

landuse areas and between the three sites. This variation can be seen most 

clearly at Shirva and Caheratrant where peat was used predominantly as 

organic manure. The use of heathland and meadowland turf at Olthof along 

with increased post burial breakdown has resulted in lower organic results. 

Evidence of organic and inorganic waste input from settlement centres has 

been less distinctive especially at Olthof. At this site the magnetic 

susceptibility and multi-element results (chapter 5, sections 5.5.2 and 5.6.2) 

suggest very little amendment with midden, hearth or industrial waste, unlike 

similar sites (Pape, 1970; Bryant and Davidson, 1995; Simpson, et al., 1998; 

Wilson, et al., 2005). Despite the low results however, distinct patterns in 

manuring could be determined between different landuse areas and at each 

of the three sample sites there is a clear reduction in results of loss on 

ignition, magnetic susceptibility and multi-element with distance from the farm 

nuclei, indicating less input. This pattern mirrors the results of other sites 

where anthropogenic soils are present (Bryant and Davidson, 1995; Wilson, et 

al 2005).  

Results from the fieldwork and bulk soil analyses have highlighted a 

number of important issues. Firstly the deepest anthropogenic soil sequences 

were found at Olthof (chapter 3, section 3.6.1) but the pH, loss on ignition, 

magnetic susceptibility and elemental concentrations have been considerably 

lower than at other sites analysed (Shirva and Caheratrant) and in previous 

analysis (Pape, 1970; Dercon, et al 2005). Secondly, at Shirva (chapter 2, 

2.6.1 and 2.7.2) very shallow, moderately amended soils were found with 

higher numbers of anthropogenic inclusions and with more evidence of 

manuring with organic and inonorganic material. As indicated previously these 

differences may be due to variations in the manuring process, post burial 

removal of elemental evidence by the movement of soil water and ploughing 

or possibly because elemental concentrations are being with held in 

inclusions of carbonised organic and inorganic particles. To understand these 

soils further, analysis with micromorphology must be undertaken.   
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6 SOIL MICROMORPHOLOGY & THE QUANTIFICATION OF 
MANURING INCLUSIONS 

 
6.1 INTRODUCTION 
 

This chapter discusses and interprets the micromorphology of the 

amended and anthropogenic soils from the three farm sites. The broad aim is 

to investigate the microscopic detail of the horizons in order to gain 

information about soil formation and evidence of post depositional soil 

processes. This will complement the fieldwork (chapters 2 to 4), bulk soil 

analysis, as discussed in chapter 5, section 5.8 as well as determine the 

range and diversity of black carbonised particles (chapter 7). 

Micromorphology allows the identification and detailed analysis of soil and 

inclusions, which can lead to more detailed interpretation of soil forming 

processes. Therefore, it is very important to define and describe the different 

forms of organic, mineral and anthropogenic inclusions, in order to increase 

understanding of soil forming processes in the soils at the three sites.  

Micromorphological analysis can reveal the extent of anthropogenic 

input into soils, however it is extremely important to understand that there are 

complex soil processes acting upon different inclusions which may lead to 

erroneous interpretations of formation processes. In order to maximise 

micromorphological potential, this chapter analyses the micromorphological 

description and characterisation of the soil horizons from each landuse area 

across each site (Fair Isle; section 6.2, the Netherlands; section 6.3 and 

Ireland; section 6.4) with a particular focus on the organic and inorganic 

inclusions indicative of the manuring process. There is also a full cross site 

discussion of these results in section 6.5. The second part of the chapter 

focuses upon the identification and quantification of black carbonised particles 

and black amorphous particles by a process of zone counting and image 

analysis (sections 6.6 and 6.7). The quantitative analysis of identifiable 

organic and inorganic inclusions was split into nine distinct categories 

including peat, burnt peat, turf, burnt turf, charcoal, amorphous black and 

red/brown fragments, mineral inclusions and plant inclusions 

The methodology for the micromorphology and zone counting is 

described in chapter 1, section 1.13. The raw data from the micromorphology, 
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zone count and image analysis is illustrated in appendices 13-16 and 

summary results are displayed within the text alongside key photographs.  

 

6.2 MICROMORPHOLOGY RESULTS – FAIR ISLE 
 
6.2.1  ROCK AND MINERAL INCLUSIONS 
 

Within each of the kaleyard sequences on Fair Isle there is a large 

quantity of quartz fragments of varying sizes but mainly sub-rounded to sub-

angular shape with no distinctive alteration with depth (Plate 18a). The quartz 

particles are directly comparable with the quartz fragments found in the C 

horizon at each of the sites and this suggests that they have a natural origin 

and are not part of beach sand addition but quantities may have increased 

accidentally through the addition of turf and peat.  

 

    
18a, Quartz Fragments 500μm (ppl) 18b, Calcite 100μm (xpl)  

   
18c, Quartzite 500μm (xpl)   18d, Sandstone 2mm (ppl) 

 

Plates 18a-d, Rock and mineral inclusions from the three sites on Fair Isle 
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Small calcite fragments are clearly identifiable at the three kaleyards 

(Plate 18b), typically dark grey, elongate particles with radial mineral 

structure. At Shirva there is little change in the quantity with depth (Fig 121) 

but at Busta and Leogh the numbers steadily decrease down profile (Figs 122 

and 123). Rock and sediment fragments in the horizons include sandstone 

and quartzite from which the high quartz quantities derive. Both increase in 

number with depth at Shirva and Busta but Leogh contains a much lower 

level. Much rarer inclusions of mudstone and schist are also identifiable in the 

upper amended soils but the samples are very small and derive from the 

natural till sediments. Like the kaleyards, the infield and outfield areas are 

also dominated by quartz (Figs 121 to 125), the inclusions are typically clear 

to white/yellow colour with a sub-angular to sub-rounded shape.  

The quartz may derive from several places, in the infield area (Fig 124) 

there is a larger quantity of silica based rock materials including quartzite and 

sandstone from the natural Old Red Sandstone (Plate 18c and 18d), whereas 

in the outfield there is considerably less sandstone and a lower level of 

quartzite suggesting that the high quartz level is coming from the deposition of 

organic manure such as peat and turf and this mirrors the field observations. 

Both areas have high quantities of iron oxide which are consistent throughout 

the amended soils and this may derive from the breakdown of iron within the 

peat and turf manuring components or from the C horizon. This pattern is 

particularly evident in the Ap-3 horizon of the outfield (Fig 125) where 

biological mixing and translocation had transported iron from the H and C 

horizons into the Ap horizons. Manganese inclusions also increase with depth 

at both landuse areas with slightly higher levels in the outfield sequence, 

especially in the Ap-2 horizon possibly because of the free movement of water 

through the soil (Figs 124 and 125). Compared to the kaleyard areas the 

infield and outfield areas contain almost no inclusions of foreign lithics or 

softer mudstone fragments, possibly because of the absence of glacial till.   

 

6.2.2. FINE MINERAL STRUCTURE AND ORGANICS 

 

The fine mineral component changes very little across the different 

contexts and between the three sites (Figs 121 to 123), (Plates 19a, 19b, 
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19c). The colour ranges from very dark brown to reddish brown and patches 

of yellow orange in places which contrasts markedly with the natural soil 

which has a considerably lighter yellow to orange colour (Plate 19d).  

 

   
19a, Shirva kaleyard microstructure  19b, Busta kaleyard microstructure  

500μm (ppl)     500μm (ppl) 

  
19c, Leogh kaleyard microstructure  19d, Natural microstructure 500µm 

1mm (ppl)     (ppl) 

 

Fig 19a-d, Fine organo-mineral microstructures from kaleyards on Fair Isle 

 

The microstructures are all typically intergrain microaggregate but there 

are variations at Shirva. The Ap-3 horizon has denser patches of vughy and 

chamber voids suggesting more biological action and in the Ap-4 horizon 

there are a number of sub-angular blocky structures, associated with an 

increase in organic and silty clay particles. 
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(1) Frequency levels for coarse mineral components (Bullock et al (1985) t trace, * very few, ** few, *** frequent/common, **** dominant/very dominant 
(2) Frequency level for textural pedofeatures (Bullock et al 1985)  t trace, * rare, ** occasional, *** many 
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Groundmas
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Related Distribution 
 
 
 
 

 
1 

 
0 - 80 

 
Ap-1 

 
 
 
****       **     **       *       * 

 
Dark Brown to light 
yellow/orange 
colour, 
hetrogeneous + 
spotted limpidity 

 
 
 
***     **     ***     **       *       * 

 
 
 
***     **      **      *    

 
 
 
**      **       t       **     **   ** 
 
 

 

 
Intergrain 

micro-
aggregate 
structure 

 
Random, 

moderately 
to poorly 
sorted 

 
Stippled, 
Flecked  

 
Upper 50mm has a (25-30%) close porphyric distribution with (5-10%) 
fine monic distribution. From 50 – 80mm (10 -15%) close porphyric 
distribution and (20-25%) fine monic and open porphyric distribution  

 
2 

 
60 - 140 

 
Ap-2 

 
 
 
****     ***     **        *       t 

 
Brown to very dark 
Brown with patches 
of yellow/orange, 
hetrogeneous + 
spotted limpidity 

 
 
 
**      **     ***     **       *       * 

 
 
 
***     **       t       t 

 
 
 
***    **               *      **   ** 

 
Intergrain 

micro-
aggregate 
structure 

 
Random, 

moderately 
to medium 

sorting 

 
Stippled, 
Flecked  

 
Open Porphyric (+60%) with patches of Double Porphyric (20%) and 
Fine Monic (<10%) and Double Spaced Fine Enaulic (<10%) in most of 
the context towards base the c/f distribution becomes more Double 
Spaced Fine Enaulic to Close Porphyric. 

 
3 

 
180 - 260 

 
Ap-3 

 
 
 
 
****      ***     *        t        t 

 
Dark Brown, dark 
orange with very 
dark reddish/orange 
patches, 
hetrogeneous + 
spotted limpidity 

 
 
 
 
**     **     **       **       **       t 

 
 
 
 
**     *        *        * 

 
 
 
 
***    ***      t       *      **   **        

 
 
 

 

 
Intergrain 

micro-
aggregate + 
patches of 

dense vughy 
and 

occasional 
chamber 
structure 

 
Random, 

medium to 
well sorted 
structure 

 
Stippled, 
Flecked  

 
Double Porphyric (+45) and Open Porphyric (+30) with small areas 
(<10%) of Fine Monic  

 
4 

 
240 - 320 

 
Ap-3 

 
 
 
****     ***     **                 t 

 
Dark Brown to 
reddish-orange 
colour, 
hetrogeneous + 
dotted limpidity 

 
 
 
*       t       t                   t 

 
 
 
**     t      t     

 
 
 
*       *       t               ***  *** 

 
Intergrain 

micro-
aggregate + 

of sub-
angular 
blocky 

structure 

 
Random, 

medium to 
well sorted 
structure 

 
Stippled, 
Flecked  

 
Distinctive Double spaced fine enaulic distribution (+40%) with areas of 
close porphyric (15-20%) and smaller patches of fine monic/open 
porphyric (<10%) 

 
5 

 
300 - 380 

 
Ap-3 

 
 
 
****       **    ** 

 
Dark 
Brown/red/orange 
becoming lighter 
yellow/orange(360-
380mm), 
hetrogeneous, 
spotted limpidity 

 
 
 
*      *       * 

 
 
 
* 

 
 
 
T                              ***  *** 

 
 
 

 
Very blocky 

structure with 
some micro-
aggregate 
structure 

within voids 

 
Random, 

medium to 
well sorted 
structure 

 
Stippled, 
Flecked  

 
Double spaced fine enaulic distribution across (+40%) of the slide with 
a more close to single spaced porphyric (15 – 20%) towards base of 
deposit with small areas of fine monic (<5%) 

Figure 121, Summary table of micromorphology from a sequence of soils at Shirva kaleyard, Fair Isle 
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(1) Frequency levels for coarse mineral components (Bullock et al (1985) t trace, * very few, ** few, *** frequent/common, **** dominant/very dominant 
(2) Frequency level for textural pedofeatures (Bullock et al 1985)  t trace, * rare, ** occasional, *** many 
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Microstructure 

 
 
 

Coarse 
Material 

Arrangement 

 
 
 

Groundmass 
'b' Fabric 

 
 
 
Related Distribution 
 
 
 
 

 
1 

 
0 - 80 

 
Ap-1 

 
 
 
 
****      **      ***             ** 
 
 
 

 
Dark 
brown/reddish 
orange colour with 
areas of lighter 
yellow/orange. 
Hetrogeneous + 
spotted limpidity 

 
 
 
 
***   ***      **     **      ***     ** 

 
 
 
 
***    **      **      ** 

 
 
 
 
***    **      **     ***    ***    *** 

 
Intergrain 

micro-
aggregate 
structure 

 
Random, with 

medium to 
moderately 
well sorted 

microstructure 

 
Stippled, 
Flecked 

 
Very closely packed double spaced porphyric structure (+40%) with 
smaller areas of open porphyric (<20%) and more compact single 
spaced porphyric (10 – 15%)   

 
2 

 
130 - 210 

 
Ap-2 

 
 
 
****      ***     ***              * 

 
Dark brown to 
orangey/reddish 
colour. 
Hetrogeneous + 
spotted limpidity 

 
 
 
***   **      ***     *       **      * 

 
 
 
***   **      *        * 

 
 
 
***    *       **      **    **     ***  

 
Intergrain 

micro-
aggregate 
structure 

 
Random, with 

medium to 
moderately 
well sorted 

microstructure 

 
Stippled, 
Flecked 

 
Very closely packed double spaced porphyric structure (+40%) with 
smaller areas of open porphyric (<20%) and more compact single 
spaced porphyric (10 – 15%)  

 
3 

 
260 - 340 

 
Ap-3 

 
 
 
****     ***      ***              

 
Light brown with 
patches of light 
yellow/orange 
colour. 
Hetrogeneous + 
spotted limpidity 

 
 
 
**    **      **       t                 t 

 
 
 
**    **      t         t 

 
 
 
**     t        t       **     **    *** 

 
Intergrain 

micro-
aggregate 
structure 

 
Random, with 

medium to 
moderately 
well sorted 

microstructure 

 
Stippled, 
Flecked 

 
Predominantly double spaced fine enaulic (+30%) with areas of double 
spaced porphyric (+20%) but also small areas of open porphyric (5-10%) 

 
4 

 
390 - 470 

 
Ap-3 

 
 
 
****     ***      ***               t 

 
Brown to light 
brown, orange 
grey yellow colour. 
Hetrogeneous + 
spotted limpidity 

 
 
 
*     *       *        t 

 
 
 
**   *       t          t 

 
 
 
*     *        *       **      *    **** 

 
Intergrain 

micro-
aggregate 
structure 

 
Random, 

Medium to 
moderately 
well sorted 

microstructure 

 
Stippled, 
Flecked 

 
+60% double spaced porphyric with small areas of quartz dominated 
close porphyric areas towards the bottom of the context 

Figure 122, Summary table of micromorphology from a sequence of soils at Busta kaleyard, Fair Isle 
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(1) Frequency levels for coarse mineral components (Bullock et al (1985) t trace, * very few, ** few, *** frequent/common, **** dominant/very dominant 
(2) Frequency level for textural pedofeatures (Bullock et al 1985)  t trace, * rare, ** occasional, *** many 

 
Figure 123, Summary table of micromorphology from a sequence of soils at Leogh kaleyard, Fair Isle 

Site - FAIR ISLE, 
LEOGH 
Location - Kaleyard 
Test Pit - 9 
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Microstructure 

 
 
 

Coarse 
Material 

Arrangement 

 
 
 

Groundmass 
'b' Fabric 

 
 
 
Related Distribution 
 
 
 
 

 
1 

 
20 - 70 

 
Ap-1 
 

 
 
 
****       **      **      t       t 

 
Light brown with 
areas of dark 
yellow orange 
colour 
Hetrogeneous + 
spotted limpidity  

 
 
 
**      *        **     t        t        * 

 
 
 
***    **       t        * 

 
 
 
**      **       *       *    ***    *** 

 
Intergrain 

micro-
aggregate 
structure 

 
Random, 

Moderately 
sorted fabric 
with areas of 
well sorted 
fine grained 

areas 

 
Stippled, 
Flecked 

 
Areas of closely packed fine monic distribution (10-15%) becoming more 
open spaced porphyric (20-25%) and double spaced porphyric (20-25%) 
towards the base of the context 

 
1 

 
70 - 100  

 
Ap-2 

 
 
 
****      *        * 

 
Dark yellow to light 
brown colour with 
areas of darker 
brown orange 

 
 
 
**     *        **       t          

 
 
 
***   ***      t        t 

 
 
 
*       ***     **      **    ***   ***        

 
Intergrain 

micro-
aggregate 
structure 

 
Random, 

Moderately to 
poorly sorted 

fabric with 
small areas of 
poorly sorted 

fabric 

 
Stippled, 
Flecked 

 
Double spaced porphyric distribution (10-20%) with areas of fine monic 
distribution (5-10%) and towards the base of the slide increasing areas 
of coarser double spaced fine enaulic (10-15%) 

 
2 

 
120 - 200 

 
Ap-2 

 
 
 
****     *        **      t 

 
Dark 
yellow/orange 
reddish brown 
colour 

 
 
 
**    t         *        * 

 
 
 
**    *    

 
 
 
*      **       *        **     **   ***        

 
Intergrain 

micro-
aggregate 
structure 

 
Random, 

Moderately to 
poorly sorted 

fabric with 
small areas of 

very poorly 
sorted fabric 

 
Stippled, 
Flecked 

 
Double spaced porphyric distribution and double spaced fine enaulic 
predominant (+30%) with areas of single spaced porphyric (5 – 10%)  

 
3 

 
220 - 300  

 
Ap-3 

 
 
 
****       t      *** 

 
Dark orangey, 
reddish brown 
colour 

 
 
 
*    *        *          t 

 
 
 
**    t       t 

 
 
 
**   ***      t         t       *    ** 

 
Intergrain 

micro-
aggregate 
structure 

 
Random, 

Moderately 
sorted fabric 
with small 

areas (<10%) 
poorly sorted 

fabric 

 
Stippled, 
Flecked 

 
Double spaced porphyric distribution and double spaced fine enaulic 
predominant (+30%) with areas of single spaced porphyric (5 – 10%)   

 
4 

 
320 - 380 

 
Ap-3 

 
 
 
****      * 

 
Very dark orangey 
reddish brown 
colour with 
patches of very 
light yellow and 
darker brown 

 
 
 
*   *       **          t        t   

 
 
 
*             ** 

 
 
 
*      *               t              **         

 
Intergrain 

micro-
aggregate 
structure 

 
Random, 

Moderately 
sorted fabric 
with small 

areas (<10%) 
poorly sorted 

fabric 

 
Stippled, 
Flecked 

 
Double spaced fine enaulic structure and areas of single spaced 
porphyric   

 
4 

 
380 - 400 

 
B 

 
 
 
****             ** 

 
Light yellow, dark 
reddish orange 
colour 

 
 
 
n/a 

 
 
 
**           ** 

 
 
 

•                  **** 

 
Intergrain 

micro-
aggregate 
structure 

 
Random,  

Moderately 
sorted fabric 
with small 

areas (<10%) 
poorly sorted 

fabric 

 
Mineragenic, 

Granular 

 
Predominantly Coarse Monic distribution (+40%) with smaller areas of 
double spaced fine enaulic (10-15%) and (<5%) fine monic   



 
 
 

283 
 

 
 

 
(1) Frequency levels for coarse mineral components (Bullock et al (1985) t trace, * very few, ** few, *** frequent/common, **** dominant/very dominant 
(2) Frequency level for textural pedofeatures (Bullock et al 1985)  t trace, * rare, ** occasional, *** many 
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Microstructure 

 
 
 

Coarse 
Material 

Arrangement 

 
 
 

Groundmass 
'b' Fabric 

 
 
 
Related Distribution 
 
 
 
 

 
1 

 
20 - 100  

 
Ap-1 

 
***       ***     **     

 
Dark brown, reddish 
orange colour with 
patches of lighter 
yellow/brown. 
Hetrogeneous + 
spotted limpidity 

 
**      **      *               ***     ** 

 
***     **      **      * 

 
**      **              ***    *      *** 

 
Intergrain 

micro-
aggregate 
structure 

 
Random, 

Moderately to 
medium 

sorting with 
areas of well 

sorted 

 
Stippled, 
Flecked 

 
Open Porphyric (+60%) with patches of Double Poryphic (20%) and Fine 
Monic (<10%) and Double Spaced Fine Enaulic (<10%) in most of the 
context towards base the c/f distribution becomes more Double Spaced 
Fine Enaulic to Close Porphyric 

 
2 

 
120 - 200 

 
Ap-2 

 
***       ***    ***  

 
Dark brown, reddish 
orange colour with 
patches of lighter 
yellow/brown. 
Hetrogeneous + 
spotted limpidity 

 
**     *        *                ***    * 

 
***     **      **       

 
**     **               **     **     ***     

 
Intergrain 

micro-
aggregate 
structure 

 
Random, 

Medium to 
well sorted 
structure 

 
Stippled, 
Flecked 

 
Double spaced porphyric structure (+60%) with areas of open porphyric  
(10-15%) and some close porphyric (<5%) 

 
3 

 
200 - 280 

 
Ap-3 

 
***      ***    *** 

 
Dark orangey/reddish 
brown colour with 
areas of lighter brown 
yellow/orange, 
associated with finer 
grained matrix. 
Hetrogeneous + 
spotted limpidity 

 
*      *        t                 **     * 

 
**      *        *        

 
**     **               **     **     ***               

 
Intergrain  

micro-
aggregate 
structure 

 
Random, 

Medium to 
well sorted 
structure 

 
Stippled, 
Flecked 

 
Double spaced porphyric structure (+60%) with areas of open porphyric  
(10-15%) and some close porphyric (<5%)  

 
4 

 
320 - 400  

 
Ap-3 

 
***     ****   ****              * 

 
Dark red/brown 
colour throughout 
deposit with larger 
patches of 
yellow/orange 
towards base 
(fragments of C 
horizon). 
Hetrogeneous + 
spotted limpidity 

 
*     t         *                 **     t 

 
***   ** 

 
t       t                  *    **      ***     

 
Intergrain 

micro-
aggregate 
structure 

 
Random, 

Moderately to 
medium 

sorting with 
areas of well 

sorted 

 
Stippled, 
Flecked 

 
Mostly double spaced porphyric structure (+50%) with (10-15%)  

Figure 124, Summary table of micromorphology from a sequence of soils at Shirva infield, Fair Isle 
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(1) Frequency levels for coarse mineral components (Bullock et al (1985) t trace, * very few, ** few, *** frequent/common, **** dominant/very dominant 
(2) Frequency level for textural pedofeatures (Bullock et al 1985)  t trace, * rare, ** occasional, *** many 
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Microstructure 

 
 
 

Coarse 
Material 

Arrangement 

 
 
 

Groundmass 
'b' Fabric 

 
 
 
Related Distribution 
 
 
 
 

 
1 

 
80 - 160 

 
Ap-1 

 
***        **               t 

 
Dark 
brown/red/orange 
hetrogeneous + 
spotted limpidity 

 
*        **     ***      *      ***     ** 

 
***     ***     **      **    

 
*         *      **      ***   **     ***              

 
Intergrain 

micro-
aggregate 
structure 

 
Random, 

medium to 
well sorted 
with <5% 

medium to 
poorly sorted  

 
Stippled, 
Flecked 

 
Double spaced fine enaulic (+45%) with small areas (15 – 20%) single 
spaced porphyric structure. The fills of voids has a distinctive double 
spaced porphyric structure with areas of fine monic structure 

 
2 

 
200 - 280  

 
Ap-2 

 
***        *      **                

 
Dark brown to 
brown/reddish colour 
with areas of lighter 
brown/orange, 
Hetrogeneous, dotted 
limpidity  

 
*        **     ***             ***     **      

 
***     ***     **      **    

 
**      **       *      ***    **     ***       

 
Intergrain 

micro-
aggregate 
structure 

 
Random, Fine 

to medium 
well sorted 

microstructure 
across slide 
with very fine 

structure 
around voids 

 
Stippled, 
Flecked 

 
Double spaced porphyric (30 – 40%) with areas of coarser single spaced 
porphyric (<15%) and small patches of double spaced fine enaulic (<5%) 

 
3 

 
320 - 400  

 
Ap-2 

 
***       ** 

 
Light reddish/brown 
to dark brown/orange 
colour, 
Homogeneous + 
dotted limpidity 

 
*        *       *               ***     **      

 
**       *        * 

 
**      **       *      ***   ***     ***              

 
Fine 

microaggregate 
structure 

 
Random, Fine 

to medium 
sorting of 

microstucture 
and fining 

towards voids 

 
Stippled, 
Flecked 

 
Double spaced fine enaulic (+30%) distribution with areas of finer double 
spaced porphyric (10 – 15%)  

 
4 

 
440 - 520  

 
Ap-3 

 
***       t        *                 t 

 
Dark orange, brown 
to dark brown colour, 
Homogeneous + 
spotted limpidity 

 
t        *       *                  **     *      

 
*         *        * 

 
t        *       *       **    ***     ***       

 
Fine 

microaggregate 
structure 

 
Random, Fine 

to medium 
sorting less 
well sorting 

towards base 

 
Stippled, 
Flecked 

 
Double spaced fine enaulic at the top of the slide (+40) with some areas 
of open porphyric (10 – 15%) and gradually reverts to a single spaced 
porphyric (+30%) + close porphyric (5-10%) 

 
5/6. 

 
530 - 610  

 
Ap-3 

 
****     *                 t 

 
Dark red, dark, dark 
yellow colour, 
Homogeneous, 
spotted limpidity 

 
        t       ***               ***     ** 

 
*         *        * 

 
t        *       *       ****  **     ****               

 
Intergrain 

micro-
aggregate 
structure 

 
Random, 

medium to 
well sorted 

composition 

 
Stippled 

 
Double spaced porphyric distribution (+30%) with increasing close 
porphyric towards lower context. Fine matrix has very small areas (<5%) 
double spaced fine enaulic 

 
6 

 
610 - 660  

 
H 

 
**        * 

 
Very dark brown, 
reddish/dark orange 
colour, hetrogenous 
+ spotted limpidity 

 
                ****             ****    ** 

 
*         *        * 

 
                  **     ****  **    ****               

 
Spongy, 

microgranular 
structure 

 
Random, 

Medium to 
poorly sorted 

 
Mineragenic, 

Granular 

 
Distinctive close porphyric (40%) to chitonic (30%) distribution across 
context with areas of single spaced fine enaulic (+10%) and single 
spaced porphyric (+10%)  

 
6 

 
660 - 690  

 
B 

 
****     *        **                * 

 
Light brown to yellow, 
orange, 
homogeneous 

 
                  *                  *      t 

 
t 

 
         t         *        *     *    ****      

 
Intergrain micro-

aggregate structure 
to semi-single grain 
structure and some 

bridged grain 
structure 

 

 
Random, 

Intergrain micro-
aggregate 

structure to semi-
single grain 

structure  
 

 
Mineragenic, 

Granular 

 
Sub close porphyric (30%) to sub chitonic (30%) distribution with some 
single spaced porphyric (20%)  

Figure 125, Summary table of micromorphology from a sequence of soils at Shirva outfield 
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Towards the natural soil the microstructure becomes almost entirely 

granular with very occasional intergrain microaggregate areas. The 

groundmass ‘b’ fabric in each of the soil horizons is stippled and flecked due 

to the high level of organic particles present in the fine soil fabric and as a 

direct result the levels of fine organic material decreases with depth at each of 

the sequences. The presence of fine organic inclusions varies across the soil 

horizons (Figs 121 to 125). At all three landuse areas there are a few to 

frequent number of black, brown and orange amorphous fragments which 

might be associated with organic additions to the soils but each decrease with 

depth (Figs 121 to 125). The more delicate cell residues also decrease but 

are only found in the upper 200mm at Shirva and Leogh with almost none at 

Leogh, possibly because of post burial consumption by soil organisms (Plate 

20a and 20b).  

 

  
20a, Seed case 50μm (ppl)  A043 Plant residue 200μm (ppl) 

 

Plate 20a-d, A seed case and plant residue from three kaleyards on Fair Isle 

 

The coarse organic inclusions are considerably easier to identify than 

the small amorphous fragments and reveal input differences between the 

amended soils and across the three farms. Charcoal fragments are greatest in 

the Ap-1 horizon at both Shirva and Busta but at Leogh the numbers are 

considerably lower, suggesting less input from the farm centre (Figs 121 to 

123), (Plate 21a and 21b). At Shirva the Ap-2 and Ap-3 horizons contain less 

charcoal, but at Busta the level is fairly even, and at Leogh there are also low 

levels throughout the horizons.  
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21a, Charcoal 200μm (ppl)            21b, Charcoal 500μm (ppl) 

  
21c, Burnt peat 2mm (ppl)   21d, Peat 500μm (ppl) 

 

Fig 21a-d, Large organic inclusions from the three kaleyards on Fair Isle 

 

Carbonised peat and turf inclusions are also relatively high at the three 

sites and especially in the Ap-1 horizon. At Shirva there is a high number in 

the upper 250mm but a very distinctive decrease in the Ap-3 and natural soils 

(Fig 121), (Plate 21c, 21d and 22a). At Busta there are very high numbers of 

peat and burnt peat fragments in all three Ap horizons and less turf and 

carbonised turf inclusions (Fig 122), (Plate 22c). At Leogh the number of burnt 

peat and turf fragments is considerably lower throughout the sequence and 

the horizons have much higher levels of peat and turf fragments (Fig 123), 

(Plate 22d). This suggests that Leogh kaleyard has much less input from 

settlement centres than the other sites, and the soil stratigraphy was built up 

utilising mainly organic components.  Delicate lignified tissues and spores are 

also present in greater abundance at Shirva and Busta in each of the soil 

horizons than at Leogh.  

 



 
 
 

287 
 

  
22a, Degraded turf 500μm (xpl)  22b, Turf 500μm (ppl) 

  
22c, Turf 500μm (ppl)   22d, Carbonised peat 1mm (ppl) 

 

Plate 22a-d, Large organic inclusions from the three kaleyards on Fair Isle 

 

The soil horizons in the infield have a dark brown colour with areas of 

reddish brown and some lighter yellow patches, with an intergrain 

microaggregate structure throughout and distinctive stippled and flecked 

groundmass (Plate 23a). The relative distribution of the structure ranges from 

open porphyric to double porphyric suggesting an increase in pore space, 

most likely due to the movement of soil organisms and this theory is 

complemented by the excremental pedofeature evidence (Fig 124). In the 

outfield area the fine organic material is also dark brown to dark reddish 

brown with dotted limpidity from the high level of organic and iron 

translocation (Plate 23b). The microstructure varies from an intergrain 

microaggregate structure, in the Ap-1 and Ap-2 horizons, to a finer 

microaggregate in the Ap-3 horizon and a distinctive spongy microgranular 

structure in the buried H horizon (Fig 125). 
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23a Microstructure with carbonised 23b Microstructure 500μm (ppl) 

peat 1mm (ppl) 

 

Plate 23a-b, Fine organo-microstructures from the infield and outfield at 

Shirva, Fair Isle 

 

  
24a, Plant residue 1mm (ppl)  25b, Plant fragment 200μm (ppl) 

 

Plate 24a-b Large plant inclusions from Shirva infield & outfield on Fair Isle 

 

The groundmass has a stippled and flecked appearance but towards 

the base of the sequence there is a larger mineragenic and granular fabric 

coinciding with the sandy C horizon. As observed in the infield area the upper 

soil horizons have a distinctive double spaced porphyric to fine enaulic 

structure indicating an equal if not larger amount of void space from soil 

microbial activity and plant growth. Fine organic inclusions in the amended 

soils include amorphous black, brown and orange particles which decrease 

with depth and at both the infield and outfield areas.  
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At both landuse areas the Ap-1 and Ap-2 horizons contain the most 

amorphous inclusions and a small quantity of cell residue usually within small 

degraded void spaces (Plate 24a and 24b). In the infield area there is a 

decrease in the number of particles, but a distinctive increase in the Ap-3 

horizon possibly due to heavy mixing with the natural which appears to have 

removed any evidence of organic inclusions.  

 

  
25a, Carbonised peat 500μm (ppl) 25b, Burnt peat & turf 1mm (ppl) 

  
25c, Unburnt peat with degraded   25d, Heavily degraded peat in B 

edges from H horizon 2mm (ppl) 

 

Plate 25a-d Large organic inclusions from Shirva infield & outfield on Fair Isle 

 

The coarse organic inclusions clearly illustrate a reduction in charcoal 

inclusions between the kaleyard and infield/outfield areas and both areas 

demonstrate a reduction with depth. The infield area has high numbers of 

carbonised and uncarbonised peat fragments indicating a specific manuring 

programme (Fig 124), (Plate 23a, 25a and 26b). By contrast, the outfield area 

the Ap-1 and Ap-2 horizons are dominated by uncarbonised peat fragments 
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(Plate 25c and 25d), burnt peat fragments (Plate 26a) and minimal turf 

inclusions (Plate 26b), and indicate a different manuring regime (Fig 125). 

  
26a, Burnt peat 2mm (ppl)   26b, Turf 200μm (ppl) 

  
26c, Plant fragment 500μm (ppl)  26d, Plant residue 100μm (ppl) 

 

Plate 26a-d Large organic inclusions from Shirva infield & outfield on Fair Isle 

 

There is a reduction in the amount of peat in the Ap-2 and Ap-3 

horizons but an increase in the lower Ap-3 horizon as a result of the breaking 

up of the buried peat horizon (H), probably by ploughing or spading action. 

The amount of lignified tissue and plant spores decreases with depth in the 

infield and reflects the high level of organics from the addition from peat and 

possibly from the growth of small plants. There is a surprisingly high level of 

lignified tissue and spores in the outfield area especially in the Ap-1 and Ap-2 

horizons, which possibly reflect the growth of crops (Plate 26c and 26d). The 

quantity of lignified tissue may also derive from the peat as the H horizon 

contains a dominant level of plant material and spores.  

 

 



 
 
 

291 
 

6.2.3  PEDOFEATURES    

 

The soils on Fair Isle contain a range of pedofeatures illustrating post 

burial processes. At Shirva and Busta the most common form of pedofeatures 

are excremental, typically small clustered spheroidal and ellipsoidal shaped 

fragments of digested soil fabric with rounded edges (Plate 27a and 27b).  

 

  
27a, Excremental pedofeatures  27b, Excremental pedofeatures 

500μm (ppl)     1mm (ppl) 

 

Plate 27a-b Excremental pedofeatures from the three sites on Fair Isle 

 

These features are typical formed by earthworms within small discrete 

worm casts and are present in each of the kaleyards in large numbers (Figs 

121 to 123). At Busta the excremental pedofeatures are prevalent throughout 

each of the soil horizons but at Shirva and Leogh they are concentrated in the 

Ap-1 and Ap-2 horizons. The soil horizons also contain a large number of 

manganese and iron oxide nodules, and at each site inclusions increase with 

depth (Plate 28a) and are clearly influenced by the natural soils which contain 

very high numbers (Figs 121 to 123). 

Also present in the samples are silt and clay infills associated with the 

degradation and movement of organics, and clay minerals. At Shirva there is 

a slight increase between the Ap-1 and Ap-2 horizons but a rapid decrease in 

the Ap-3 and natural horizon either representing a pattern of less organic 

input or because the soil horizon has undergone post burial soil processes for 

a longer period (Plate 28b)(Fig 121).   



 
 
 

292 
 

  
28a, Fe/Mn nodule 500µm (ppl)  28b, Silty void fill 1mm (ppl) 

 

Plate 28a-b Fe/Mn nodules and silty void pedofeatures from Fair Isle 

 

In the infield the excremental pedofeatures are mainly concentrated in 

the upper Ap-1 horizon which mirrors the majority of the organic microfabric 

and inclusions. In the Ap-2 horizon there are considerably less excremental 

features suggesting either a minimal manuring regime or a possible 

degradation of organic content (Fig 124). In the outfield, where there is still a 

high organic content, the amount of excremental pedofeatures are much more 

consistent, with soil microbiological degradation to a depth of over 520mm. In 

the lower Ap-3 and H horizon there is actually an increase in excremental 

pedofeatures and the peat fragments illustrate distinctive linear and elongate 

void spaces (Fig 125). The sandy nature of the soils and frequency of worm 

casts allows the easy movement of water through the soil and this has 

developed silt and clay infills in void spaces and in the lee of larger inclusions. 

The soils in the infield have a consistent level of void infill, suggesting regular 

movement of material through the profile by mixing and soil water but in the 

outfield there is far less fine grained infills because there is too much 

disturbance from mixing. Nevertheless, the Ap-2 horizon does have a larger 

amount of clay and silt infills (Figs 121 to 125) which suggests that the later 

manuring process may have been similar to the infield regime.  
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6.3 MICROMORPHOLOGY RESULTS – THE NETHERLANDS 
   

6.3.1. ROCK AND MINERAL INCLUSIONS 
 

 In all the landuse areas at Olthof quartz is the dominant mineral 

present and there is little to no variation in any of the horizons (Plate 29a and 

29b). The mineral is typically sub-rounded to sub-angular and derives from 

the coversand soils. There are, however, some subtle variations in shape 

between the black and brown plaggen soils (Figs 126 to 128). In the upper 

Ap-1 and Ap-2 horizons the quartz is more sub-angular shaped and mainly 

clear to grey coloured under plane polarised light.  In the Ap-3 horizon there is 

more of a mixture of sub-rounded and sub-angular fragments and the grains 

are more frequently iron stained and have thin dark coloured cementations. 

The variety in form may indicate the different types of organic additions being 

added to the soils as particle size and micromorphological analysis of the 

heathland and meadowland soils show very interesting similarities to the black 

and brown plaggen soils. Alongside the quartz there is also a small level of 

quartzite most prevalent in the Ap-1 and Ap-2 horizons of the inner arable 

area (Fig 127) and this may derive from either the heathland or meadowland 

turves.  

 

  
29a, Quartz grains 500μm (ppl) 29b, Large quartz grains 500μm (ppl) 

 

Plate 29a-b Quartz minerals from the plaggen soils from Olthof, Netherlands 
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 (1) Frequency levels for coarse mineral components (Bullock et al (1985) t trace, * very few, ** few, *** frequent/common, **** dominant/very dominant 
(2) Frequency level for textural pedofeatures (Bullock et al 1985)  t trace, * rare, ** occasional, *** many 

 
 
 

Site – NETHERLANDS, 
OLTHOF 
Location – Garden 
Test Pit - 8 
 

 
Coarse Rock & Mineral  

Components 
 (<10µm) 

(1) 

  
Coarse Organics 

(1) 

 
Fine Organics 

(1) 

 
Pedofeatures 

(2) 

    

Sl
id

e 
N

o 

D
ep

th
 (m

m
) 

C
on

te
xt

 

Q
ua

rtz
 

  Sa
nd

st
on

e 
 Q

ua
rtz

ite
 

 M
ud

st
on

e 
 Sc

hi
st

 

 
 

 
 

Fine Mineral 

C
ha

rc
oa

l 
 Bu

rn
t P

ea
t 

 Pe
at

 
 Tu

rf 
 Li

gn
ifi

ed
 T

is
su

e 
 Sp

or
es

 
 

Am
or

ph
ou

s 
Bl

ac
k 

 Am
or

ph
ou

s 
Br

ow
n 

 Am
or

ph
ou

s 
O

ra
ng

e 
 C

el
l R

es
id

ue
 

Si
lt 

In
fil

ls
 

 C
la

y 
In

fil
ls

 
 O

rg
an

ic
 C

oa
tin

gs
 

 Ex
cr

em
en

ta
l F

ea
tu

re
s 

 M
an

ga
ne

se
 N

od
ul

es
 

 Iro
n 

O
xi

de
 N

od
ul

es
 

 Am
or

ph
ou

s 
C

ry
pt

o-
 

C
ry

st
al

lin
e 

co
at

in
gs

 

 
 
 
 
Microstructure 

 
 
 

Coarse 
Material 

Arrangement 

 
 
 

Groundmass 
'b' Fabric 

 
 
 
Related Distribution 
 
 
 
 

 
1 

 
120-200 

 
Ap-1 

 
****       *   

 
Dark brown coloured 
with areas of very 
dark orangey/reddish 
brown + lighter yellow 
orange deposits. 
Spotted Limpidity 

 
**                       *        *       t 

 
***    **       *      *** 

 
*       **              **     **      **                

 
Mostly intergrain 
microaggregate 

structure 

 
Random, with 

well sorted 
microstructure 

 
Stippled, 
Flecked 

 
+60% single spaced porphyric structure with <20% close 
porphyric and smaller areas of close monic (<5%)  

 
2 

 
350-430 

 
Ap-1 

 
****       * 

 
Brown to dark brown 
coloured 
microstructure with 
areas of yellow/grey 

 
**                       t        t        t 

 
***    **      *       ** 

 
**     **               **     **     **                

 
Intergrain 

microaggregate 
structure 

 
Random, with 

well sorted 
microstructure 

 
Stippled, 
Flecked 

 
Single spaced porphyric structure (+30%) with <20% close 
porphyric  

 
3 

 
580-660 

 
Ap-1 

 
****       * 

 
Dark brown to 
reddish/orange with 
dark yellow patches 

 
*                                t         t 

 
**     **      *        *  

 
**     **               **     **    ***                

 
Intergrain 

microaggregate 
structure 

 
Random, with 

well sorted 
microstructure 

 
Stippled, 
Flecked 

 
Distinct single spaced porphyric structure with areas of close 
porphyric structure 

 
4 

 
860-940 

 
Ap-2 

  
****       t 

 
Very dark brown and 
large areas of dark 
reddish/orange grey 
colour 

 
*                        t 

 
**     t        t          t 

 
**     **               **     **    **                

 
Intergrain 

microaggregate 
structure 

 
Random, with 

well sorted 
microstructure 

 
Stippled, 
Flecked 

 
Mostly single spaced porphyric structure (+45%) with areas of 
close porphyric structure (10 -15%) and some double spaced 
porphyric structure (<5%) 

 
5 

 
1170-1250 

 
Ap-2 

 
****       t 

 
Dark orange, with 
large areas of light 
orange, dark yellow 
and darker brown 

 
*                        *      t 

 
**     t        t          t 

 
**     **               **     **    **       

 
Intergrain 

microaggregate 
structure 

 
Random, with 

well to very well 
sorted 

microstructure 

 
Stippled, 
Flecked 

 
+60% single spaced porphyric structure with 5-10% close 
porphyric structure and <5% coarse monic structure 

 
6 

 
1350-1430 

 
Ap-3 

 
****      t 

 
Light 
orange/brown/reddish 
yellow colour 

 
*                        *     t          t 

 
*     *        *           

 
       *                 **      t    ***                

 
Mainly 

intergrain 
microaggregate 
structure with 

areas of bridged 
grain structure and 

between quartz 
grains and organic 
material together 

with areas of single 
grain structure 

<5%. 

 
Random, with 

well to very well 
sorted 

microstructure 

 
Stippled, 
Flecked + 

Mineragenic 
& Granular 

 
Double spaced porphyric structure +40% but also single spaced 
porphyric structure towards the bottom of the deposit (30%) with 
areas of coarse monic structure  

 
7 

 
1470-1550 

 
Ap-3 

 
****     

 
Dark orange/dark 
yellow,red colour 

 
t                        t     t 

 
t              * 

 
t     t                  *       t    *** 

 
Intergrain 

microaggregate 
structure with 

areas of bridged 
grain structure and 

single grain 
structure 

 
Random, with 

well to very well 
sorted 

microstructure 
with clear fibrous 
structure typical 

of grassland soils 

 
Stippled, 
Flecked + 

Mineragenic 
& Granular 

 
Mainly single spaced porphyric structure +40% with large areas 
of double spaced porphyric and some close porphyric structure 

 
8 

 
1630-1771 

 
B 

 
****     

 
Light yellow,  
grey/orange colour 

  
               t 

 
                         t       *    **** 

 
Bridged grain 
structure and 
single grain 

structure with very 
small areas of 

intergrain 
microaggregate 

structure 

 
Random, with 

very well sorted 
microstructure 

 
Mineragenic 
& Granular 

 
Close porphyric structure with areas of coarse monic structure 

Figure 126, Summary table of micromorphology from a section of soils at Olthof garden, the Netherlands 
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(1) Frequency levels for coarse mineral components (Bullock et al (1985) t trace, * very few, ** few, *** frequent/common, **** dominant/very dominant 
(2) Frequency level for textural pedofeatures (Bullock et al 1985)  t trace, * rare, ** occasional, *** many 

 
Figure 127, Summary table of micromorphology from a section of soils at Olthof inner arable area, the Netherlands 
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Microstructure 

 
 
 

Coarse 
Material 

Arrangement 

 
 
 

Groundmass 
'b' Fabric 

 
 
 
Related Distribution 
 
 
 
 

 
1 

 
400 - 480 

 
Ap-1 

 
****     *      * 

 
Dark brown colour 
with large areas of 
reddish orange and 
yellow as well as light 
yellow grey colour. 
Spotted Limpidity  

 
**                       **      **      * 

 
***    **       *       * 

 
t        *       *        **      *      ** 

 
Microaggregate 

but there are 
very small 

patches (<5%) 
bridged 
granular 
structure 

 
Random, with 

medium to 
well sorted 

microstructure 

 
Stippled, 
Flecked 

 
Mostly double spaced fine enaulic (+40%) and double spaced 
porphyric (40%) with a small quantity of single spaced porphyric 
structure   

 
2 

 
560 - 660 

 
Ap-2 

 
****   *       **                 

 
Dark brown/red 
colour with areas of 
brown/orange and 
lighter yellow. 
Spotted Limpidity 

 
**                        *        *      * 

 
**     *        *         
 

 
t        *       *        **      t       ** 

 
Intergrain 

micro-
aggregate 
structure 

 
Random, with 

medium to 
well sorted 

microstructure 

 
Stippled, 
Flecked 

 
Double spaced porphric structure (35 – 45%) with areas of open 
porphryric (<10%) and more compact single spaced porphyric 
(+20%) 

 
3 

 
710 - 790 

 
Ap-3 

 
****             * 

 
Brown to dark 
orange/yellow colour. 
Spotted Limpidity 

 
*                         *        *      t 

 
*      t         t        t 

 
t        *       *        **              ** 

 
Intergrain 

micro-
aggregate 
structure 

 
Random, with 

medium to 
well sorted 

microstructure 

 
Stippled, 
Flecked 

 
Double spaced porphric structure (35 – 45%) with areas of open 
porphryric (<10%) and more compact single spaced porphyric 
(+20%) 

 
4 

 
910 - 960 

 
BS 

 
***               t 

 
Brown to dark 
orange/yellow colour. 
Spotted Limpidity 

 
t                          t        * 

 
*      t   

 
t        t                 t                **    

 
Intergrain 

micro-
aggregate 
structure + 
Single grain 

structure 

 
Random, with 

medium to 
well sorted 

microstructure 

 
Stippled, 
Flecked 

 
Double spaced porphric structure (35 – 45%) with areas of open 
porphryric (<10%) and more compact single spaced porphyric 
(+20%) 

 
4 

 
960 - 990 

 
B 

 
****              t 

 
Light yellow to light 
orange colour 

 
 

                            t                ***  
Single grain 

structure 
throughout 

 
Random, with 

medium to 
well sorted 

microstructure 

 
Mineragenic, 

Granular 

 
Close porphyric structure (+40%) with areas of close monic 
structure (20%) and (<5%) chitonic structure with the movement 
of iron around quartz particles 
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(1) Frequency levels for coarse mineral components (Bullock et al (1985) t trace, * very few, ** few, *** frequent/common, **** dominant/very dominant 
(2) Frequency level for textural pedofeatures (Bullock et al 1985)  t trace, * rare, ** occasional, *** many 

 
Figure 128, Summary table of micromorphology from a section of soils at Olthof outer arable area, the Netherlands

Site – NETHERLANDS, 
OLTHOF 
Location – Outer Arable 
Test Pit - 11   
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Microstructure 

 
 
 

Coarse 
Material 

Arrangement 

 
 
 

Groundmass 
'b' Fabric 

 
 
 
Related Distribution 
 
 
 
 

 
1 

 
0 - 80  

 
Ap-1 

 
****             * 

 
Dark brown coloured 
matrix with patches of 
lighter 
orange/yellow/red 
areas. Spotted 
Limpidity 

 
*                         *       **      * 

 
**      **      *        t 

 
*        *        t      **      **      *** 

 
Intergrain 

micro-
aggregate 
structure 

 
Random, with 

well sorted 
microstructure 

 
Stippled, 
Flecked 

 
Majority double spaced fine enaulic (+45%) with large areas of single 
spaced porphyric (+20) and (5-10%) close porphyric 

 
2 

 
80 - 160  

 
Ap-1 

 
****             * 

 
Dark orange, light 
brown colour with 
patches of dark 
red/brown colour. 
Spotted Limpidity 

 
*                        **       **      * 

 
**       *       * 

 
t        t        t      ***     **      *** 

 
Intergrain 

microaggregate 
structure with 

very small 
areas of single 
grain structure 

(<5%) 
 

 
Random, with 

well sorted 
microstructure 

 
Stippled, 
Flecked 

 
+30% double spaced fine enaulic with smaller areas of sinle spaced 
porpyric (15%) and <5% chitonic where microaggregate structure joins 
with single grain structure 

 
3 

 
160 - 240  

 
Ap-1 

 
****    

 
Dark brown to 
reddish/orange 
colouration. Spotted 
Limpidity 

 
*                         *        *       t 

 
*        t       t 

 
        t                 *       *      *** 

 
Intergrain 

microaggregate 
structure with 

very small 
areas of single 
grain structure 

(<5%) 
 

 
Random, with 

well sorted 
microstructure 

 
Stippled, 
Flecked 

 
Mainly double spaced fine enaulic structure (+30%) with very small 
isolated areas of close porphyric (<15%) 

 
4 

 
240 - 270  

 
Ap-1 

 
****    

 
Dark brown to 
reddish/orange 
colouration. Spotted 
Limpidity 

 
t                         t         t       

 
t        t 

 
        t                 *       t     **** 

 
Intergrain 

microaggregate 
structure with 

very small 
areas of single 
grain structure 

(<5%) 
 

 
Random, with 

well to very 
well sorted 

microstructure 

 
Stippled, 
Flecked 

 
Mainly double spaced fine enaulic structure (+30%) with very small 
isolated areas of close porphyric (<15%) 

 
4 

 
270 - 320  

 
B 

 
****    

 
Clear to 
yellow/orange colour 
with patches of dark 
red. Spotted Limpidity 
 

  
* 

                                  t     ****  
Single grain 

structure 
throughout 

 
Random, with 

well to very 
well sorted 

microstructure 

 
Mineragenic, 

Granular 

 
Almost entirely close porphyric (+80%) with smaller areas 10 – 15% 
coarse monic fabric 

 
5 

 
320 - 400  

 
B 

 
****    

 
Clear to 
yellow/orange colour 
with patches of dark 
red 

  
* 

                                  t     ****  
Single grain 

structure 
throughout 

 
Random, with 

well to very 
well sorted 

microstructure 
 

 
Mineragenic, 

Granular 

 
Almost entirely close porphyric (+80%) with smaller areas 10 – 15% 
coarse monic fabric 
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6.3.2 FINE MINERAL STRUCTURE AND ORGANICS 

 

The fine mineral structure has a number of variations between horizons 

and landuse areas. Overall the black plaggen soil (Ap-1 and Ap-2), (Plate 30a 

and 30b) is considerably darker in colour than the brown plaggen soil (Ap-3), 

(Plate 30c and 30d) presumably because of the different input material and 

level of post burial pedogenesis, but there are distinct variations between the 

different landuse areas.  

  
30a, Black plaggen microstructure  30b, Black plaggen microstructure  
500μm (ppl)     1mm (ppl) 

  
30c, Brown plaggen microstructure 30d, Brown plaggen microstructure 

1mm (ppl)     1mm (ppl) 

 

Plate 30a-d Fine organo-mineral microstructures from Olthof, Netherlands 

 

In the garden and inner arable areas the upper soil horizons (Ap-1 and 

Ap-2) have a dark brown coloured soil with areas of orange and red. In the 

outer arable areas the black plaggen soil is a slightly lighter colour, typically 

brown, orange with some darker areas (Fig 128), (Plate 31a). In the lower Ap-

3 horizon the soil is a considerably lighter colour, ranging from light orange to 
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dark yellow in the garden soils, dark orange/brown in the inner arable soils 

and dark orange to dark yellow in the outer arable soils. The microstructure of 

the majority of the soil horizons show a distinctive intergrain microaggregate 

structure, but there are areas of bridged granular structure particularly in the 

Ap-3 horizon due to extensive leaching of organic material (Plate 31b). 

  
31a, Microstructure 500μm (ppl) 31b, Natural microstructure 1mm 

(ppl) 

 

Plate 31a-b Fine organo-mineral microstructures from Olthof, Netherlands 

 

  
32a, Black amorphous particle  32b, Plant material 200μm (ppl) 

500μm (ppl) 

 

Plate 32a-b Black amorphous and plant material from Olthof, Netherlands 

 

The natural soil has a bridged grain to single grain structure. The 

groundmass of the soils is also very similar throughout with the majority of 

horizons demonstrating a stippled, flecked fabric with a random, well sorted 

microstructure and mainly single to double spaced porphyric distribution (Figs 

126 to 128). This indicates that the soils were more organic in the past and 
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the large number of void space derive from post burial decomposition of 

organic material by soil organisms and leaching from the movement of soil 

water. Inclusions of fine organic particles vary across the different landuse 

areas and indicate variations in manuring materials. In the garden there is a 

frequent amount of black amorphous particles (Fig 126), (Plate 32a) in the 

upper Ap-1 horizon alongside a slightly lower amount of amorphous brown, 

orange particles and cell residue (Plate 32b). But levels of fine organics 

decrease with depth in the Ap-2 and Ap-3 horizons suggesting less input of 

carbonised and organic particles from burning/ash residues.  

 

  
33a, Turf 500μm (ppl)   33b, Degraded turf fragment A088  

200μm (ppl) 

  
33c, Degraded turf fragment 200μm (ppl) 33d, Burnt turf 500μm (ppl) 

 

Plate 33a-d Large organic inclusions from Olthof, Netherlands 

 

In the inner arable area there is a very similar pattern with the 

amorphous black particles dominant in the black plaggen soils but less in the 

brown plaggen soil, and a much lower amount of cell residue, possibly 
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because of damage by plough action (Fig 127). In the outer arable area the 

Ap-1 horizon has the largest concentration of fine grained particles but the 

numbers quickly decrease with depth and the reclaimed outfield area has an 

even lower level of fine organic particles. Coarse organic inclusions consist of 

very small charcoal, turf and plant residue fragments, but remarkably the 

numbers of inclusions are very low in each of the areas sampled because of 

post burial degradation (Fig 128).  

 

  
34a, Burnt turf 500μm (ppl)   34b, Charcoal 200μm (ppl) 

  
34c, Charcoal 200μm (ppl)   34d, Charcoal 500μm (ppl) 

 

Plate 34a-d Large organic inclusions from Olthof, Netherlands 

 

Turf fragments are lowest in the garden area with minimal evidence 

whereas in the inner and outer arable areas there is a clear reduction in 

organics with depth (Plate 33a, 33b, 33c and 33d). This inverse relationship 

may exist because although the manuring process occurred in all the landuse 

areas, manuring continued long after the garden had been abandoned and 

the soft turf fragments would have been easily degraded and consumed by 
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soil organisms. The best evidence for higher levels of organics in the garden 

comes from the presence of the more resistant carbonised inclusions of 

charcoal (Plate 34b, 34c and 34d) and infrequent burnt turf (Plate 33d and 

34a). The garden has particularly high results in the Ap-1 horizon and a 

slightly lower level in the Ap-2 and Ap-3 horizons (Fig 126).  There is a similar 

level of charcoal in the inner and outer arable areas (Figs 127 and 128) but a 

considerably lower level in the reclaimed arable land, suggesting little to no 

input from settlement centres.  

 

6.3.3 PEDOFEATURES 

 

By far the most common pedofeatures present in the plaggen soils 

from Olthof are the distinctive clusters of excremental material. In the garden 

there is a consistent level of excremental evidence from the Ap-1 to the Ap-3 

horizon, indicating a high level of biological activity and organic mixing (Plate 

35a and 35b). The lower brown plaggen soil and natural C horizon, however, 

contain much less evidence of biological activity (Fig 126). The black plaggen 

soil in the inner arable area contains slightly less excremental clusters but the 

quantity is relatively consistent with depth and there is a definite difference 

between the black and brown plaggen soils (Fig 127). The two comparative 

outer arable areas have contradictory results and this is possibly due to the 

continued use of the reclaimed outfield providing a higher level of organic 

input and encouraging more biological activity (Fig 128). Other, less frequent 

pedofeatures include silt and clay infills washed into voids by the movement of 

water through the soil profile (Plate 35c, 35d). At the other landuse areas 

there are a much lower number of silt and clay infills possibly because of the 

continuation of ploughing in these areas increasing void space and allowing 

more infiltration. Iron and manganese inclusions are also present in large 

numbers in the anthropogenic soils in the garden (Fig 126) and these may 

derive from the increased addition of turves compared to the inner and outer 

arable areas (Fig 127 and 128).  
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35a, Excremental pedofeatures  35b, Excremental pedofeatures 

500μm (ppl)     500μm (ppl) 

  
35c, Iron rich organic void coating  35d, Grain coatings 200μm (ppl) 

500μm (ppl) 

 

35a-d Soil pedofeatures from Olthof, Netherlands 

 

6.4   MICROMORPHOLOGY RESULTS – IRELAND  
 
6.4.1 ROCK AND MINERAL COMPONENTS 
 

 Of all the areas sampled, the Irish amended arable soils have the 

greatest range of mineralogies present (Figs 129 to 132) and, like the other 

sites, quartz is in abundance in all the soils derived from the natural 

sandstone geology or added from beach sands or with peat and turf 

inclusions (Plate 36a and 36b). The quartz is typically white to yellow/grey 

colour with sub-rounded to rounded shape and is fairly well sorted (500µm – 

1.25mm). The next most abundant mineral present, because of its association 

with shell sand, is calcite (Plate 36c and 36d). It is typically white to yellow in 

colour under plain polarized light and pinkish red under cross polarized light.  
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36a, Quartz fragments 500μm (ppl) 36b, Large quartzite particle 500μm 

(ppl) 

  
36c, Calcite & shell carapace 100μm 36d, Calcite 500μm (ppl) 

 

Fig 36a-d Rock and mineral inclusions from Caheratrant, Ireland 

 

The particles are sub-rectangular in shape and have platy laminar 

structures throughout. In places the particles retain the shape of shells which 

indicates a marine origin. Overall the regular distribution of calcite in the three 

landuse areas shows that its addition to the amended soils was a major 

contributing factor to their development. In the kaleyards there is a large 

quantity throughout the Ap-1 to Ap-3 horizons and the inclusions have a 

distinctive smaller and more angular shape from extensive mixing (Figs 129 

and 130). In test pit 10 the soil horizons contain a very similar quantity of 

calcite but these are two very distinctive calcite rich sand horizons (chapter 4, 

section 4.5.1). Both these horizons contain larger, more rounded inclusions 

and appear to have undergone less mixing and also contain larger quantities 

of other lithic fragments (sandstone, quartzite, and schist) as well as nodules 
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of iron oxide and manganese than the amended soils. In the inner and outer 

arable areas there are progressively less and less calcitic inclusions indicating 

less input from beach sand in the hinterland areas of the farm (Figs 131 and 

132). The natural sandy till does contain calcite along with iron oxide and a 

range of other elemental concentrations as shown in chapter 5, section 5.6.3 

and heavy mixing may also be a reason for the high results.   

 

6.4.2  FINE MINERAL STRUCTURE AND ORGANICS  

 

  
37a, Microstructure 500μm (ppl)   37b, Microstructure 500μm (xpl) 

  
37c, Microstructure 500μm (ppl)   37d, Microstructure 500μm (ppl) 

 

Plate 37a-d Organo-mineral microstructures from Caheratrant, Ireland 

 

The fine mineral structure of the soils is heavily influenced by the 

amount of iron in the soils. In the kaleyard the soils have a distinctive dark 

brown/orange to light brown/red colour with some yellowish red patches (Fig 

129 to 130), (Plate 37a and 37b). In the inner and outer arable areas 

however, the soils are dark orange to reddish/grey colour with some orange 
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as a result of higher soluble iron levels (Figs 131 and 132), (Plate 37c and 

37d). The outer arable area has the shallowest sequence of soils (chapter 4, 

section 4.5.3) and the colour is greatly influenced by mixing with the much 

lighter grey/yellow/orange natural soil (C) (Plate 36a).  

 

   
38a, Peat 200μm (ppl)    38b, Degraded peat 500μm (ppl) 

  
38c, Burnt peat 500μm (ppl)  38d, Burnt peat 500μm (ppl) 

 

Plate 38a-d Large organic inclusions from Caheratrant, Ireland 

 

The microstructure of the Ap-1 to Ap-3 horizons are almost all 

intergrain microaggregate structure except for the highly mineragenic sandy 

horizons which have a mixture of bridged granular structure and single grain 

structure (Figs 129 to 132). These horizons indicate that the beach material 

was not mixed with organics prior to being added to the kaleyard sequence. 

The soils have a stippled and flecked groundmass whereas in the 

mineragenic beach sand and natural till soils there is a distinctive mineragenic 

and granular fabric. The fine organic inclusions present in the soils range from 

the amorphous black, brown and orange particles to fine grained organics but 
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there is variability between horizons and across landuse areas, which could 

be attributed to anthropogenic activity. Black amorphous fragments are very 

frequent in all the landuse areas especially the upper Ap-1 horizon and in 

particular the Ap-2 and Ap-3 horizons in the kaleyard sequence in test pit ten 

(Fig 130). These inclusions are either heavily degraded organic inclusions or 

possibly mineragenic fragments from sediment collected from the beach, as 

the mineragenic horizon also has a high number of black amorphous 

particles. In comparison, the brown and orange amorphous particles are 

present in much lower numbers in the mineral rich sand horizon, but in the 

amended soil there is only a slight difference in the quantity of these particles 

due to post burial degradation of organic fragments or ashy remnants.  

Fine plant cell fragments were found most frequently in the lower 

amended soils of the kaleyard (Figs 129 and 130), but in the inner and outer 

arable areas far fewer fragments are identifiable and the ones that were had 

been degraded by soil micro-organisms (Figs 131 and 132). Alongside the 

fine organic inclusions there are also a large number of larger coarse organic 

fragments.  

In the kaleyards the amended soils contain a mixture of peat (Plate 38a 

and 38b) and carbonised fragments of peat (Plate 38c and 38d), turf, lignified 

tissue and fungal spores alongside charcoal fragments. Of the three amended 

horizons, the Ap-1 contains mainly peat, burnt peat and charcoal with small 

organic rich turf fragments and these inclusions decrease in size and number 

with depth. The Ap-2 horizons contained almost no turf or peat especially 

towards the base of test pit one, however there was a greater quantity of 

charcoal, peat and turf fragments in test pit ten (Figs 129 and 130). The soils 

in the inner arable area contain fewer particles of charcoal and burnt peat and 

some peat fragments but a considerably greater number than in the outer 

arable soils (Figs 131 and 132).  
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(1) Frequency levels for coarse mineral components (Bullock et al (1985) t trace, * very few, ** few, *** frequent/common, **** dominant/very dominant 
(2) Frequency level for textural pedofeatures (Bullock et al 1985)  t trace, * rare, ** occasional, *** 

 
 

Figure 129, Summary table of micromorphology from a sequence of soils at Caheratrant kaleyard, Ireland 
 

 
 
 
 

Site – IRELAND, 
CAHERATRANT I 
Location - KALEYARD 
Test Pit - 1 
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Microstructure 

 
 
 

Coarse 
Material 

Arrangement 

 
 
 

Groundmass 
'b' Fabric 

 
 
 
Related Distribution 
 
 
 
 

 
1 

 
60-140 

 
Ap-1 

 
***     ***    ***    **      **      t         

 
Dark orange, light 
brownish red colour + 
spotted limpidity 

 
**      **      **      *       **     ** 

 
***     **      **      * 

 
*       **       *      ***    *** 

 
Intergrain 

microaggregate 
structure 

 
Random, with 

moderately 
sorted 

microstructure 

 
Stippled, 
Flecked 

 
Distinctive double spaced porphyric structure (+40%) with areas of 
compact single spaced porphyric (15-20%) and small areas of open 
porphyric (5-10%) 

 
2 

 
170-250 

 
Ap-1 

 
***    ***      **      *        *       * 

 
Light orange, dark 
yellow/reddish brown + 
spotted limpidity 

 
**      *       **      t       ***     **      

 
***     **      *       * 

 
*       ***     *       ***   *** 

 
Intergrain 

microaggregate 
structure 

 
Random, with 

well sorted 
microstructure 

 
Stippled, 
Flecked 

 
Clear mixtures of fabrics from double spaced porphyric (30-40%) to 
areas of double spaced fine enaulic (10-15%) and finer semi chitonic 
structure (5-10%)  

 
3 

 
280-360 

 
Ap-2 

 
***    ***       *       *         t       t 

 
Dark red/orange, 
yellowy brown colour + 
spotted limpidity 

 
**     *         *      t        **      * 

 
**      **      *       * 

 
*       **      *        **   *** 

 
Intergrain 

microaggregate 
structure 

 
Random, with 

moderately 
sorted 

microstructure 

 
Stippled, 
Flecked 

 
Double spaced porphyric (30-40%) with some double spaced fine 
enaulic (10-15%) and finer semi chitonic structure (5-10%)  

 
4 

 
390-470 

 
Ap-2 

 
***    **         *       *         t       t 

 
Dark orange, red to 
brown to dark brown 
colour + spotted 
limpidity 

 
**     *         *      t        **      * 

 
**      *        **     * 

 
t       **      t         **   *** 

 
Intergrain 

microaggregate 
structure 

 
Random, with 
moderately to 

well sorted 
microstructure 

 
Stippled, 
Flecked 

 
(+30-35%) single spaced porphyric structure with areas of chitonic 
structure (10-15%) and close porphyric structure (10-15%) 

 
5 

 
500-580 

 
Ap-2 

 
****  **         t        *        *       * 

 
Dark orange to light 
yellow/brown colour 
with large areas of 
red/brown + spotted 
limpidity 

 
*       t         t      t         ** 

 
**     *         *       t 

 
*      **      *         **  **** 

 
Intergrain 

microaggregate 
structure 

 
Random, with 
moderately to 

well sorted 
microstructure 

 
Stippled, 
Flecked 

 
(+30-35%) single spaced porphyric structure with areas of chitonic 
structure (10-15%) and close porphyric structure (10-15%) 

 
6 

 
610-680 

 
Ap-2 

 
****  **         t        t        t       ** 

 
Dark orange to brown to 
dark red/orange with 
yellow patches + 
spotted limpidity 

 
t        t        t                 * 

 
*      **       *        * 

 
t      *                   t   **** 

 
Intergrain 

microaggregate 
structure 

 
Random, with 
moderately to 

well sorted 
microstructure 

 

 
Stippled, 
Flecked 

 
Distinctive single spaced porphyric structure (20-25%) with areas of 
open porphric (5-10%)  
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(1) Frequency levels for coarse mineral components (Bullock et al (1985) t trace, * very few, ** few, *** frequent/common, **** dominant/very dominant 
(2) Frequency level for textural pedofeatures (Bullock et al 1985)  t trace, * rare, ** occasional, *** many 

 
 

Figure 130, Summary table of micromorphology from a sequence of soils at Caheratrant kaleyard, Ireland 
 

Site – IRELAND, 
CAHERATRANT II 
Location - KALEYARD  
Test Pit - 10 
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Microstructure 

 
 
 

Coarse 
Material 

Arrangement 

 
 
 

Groundmass 
'b' Fabric 

 
 
 
Related Distribution 
 
 
 
 

 
1 

 
400-460 Ap-2 

 
****   ***      *      **               ** 

 
Dark brown with 
areas of dark orange, 
red and yellow/brown 
colours + spotted 
limpidity 
 

 
***     **     ***     **     ***     ** 

 
****   ***     **     ** 

 
**     ***      *       **   ***        

 
Intergrain 

microaggregate 
structure 

 
Random, with 
moderately to 

well sorted 
microstructure 

 
Stippled, 
Flecked 

 
Double spaced porphyric structure (+40%) with areas of compact single 
spaced porphyric (15-20%) and small areas of open porphyric (5-10%) 

 
1 

 
460-480 CaCO3 

 
****  ****   ****   ****            *** 

 
Dark brown with 
areas of dark orange, 
red and yellow/brown 
colours 

 
*       t                           *        

 
***    **      **      t 

 
                  *            ***   

 
Mostly bridged 
grain structure 
(+50%) with 

areas of single 
grain structure 

(20%) and 
some intergrain 

micro-
aggregate 

structure (10-
15%) mostly at 
the boundary 

with layer 
above 

 

 
Random, with 
moderately to 

well sorted 
microstructure 

 
Mineragenic 
& Granular 

 
A close porphyric and coarse monic structure (40-60%) 

 
2 

 
520-600 Ap-3 

 
****  ***     *        *                ** 

 
Dark brown with 
areas of dark orange, 
red and yellow/brown 
colours + spotted 
limpidity 

 
***     **     ***     **     ***    ** 

 
****   **      **        * 

 
**    ***      *      **    **** 

 
Intergrain 

micro-
aggregate 
structure 

 
Random, with 
moderately to 

well sorted 
microstructure 

 
Stippled,  
Flecked 

 
Double spaced porphyric structure (+40%) with areas of compact single 
spaced porphyric (15-20%) and small areas of open porphyric (5-10%) 
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(1) Frequency levels for coarse mineral components (Bullock et al (1985) t trace, * very few, ** few, *** frequent/common, **** dominant/very dominant 
(2) Frequency level for textural pedofeatures (Bullock et al 1985)  t trace, * rare, ** occasional, *** many 

 
 

Figure 131, Summary table of micromorphology from a sequence of soils at Caheratrant inner arable area, Ireland 
 
 
 
 
 

Site – IRELAND, 
CAHERATRANT 
Location – Inner Arable 
Test Pit -  3 
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Arrangement 

 
 
 

Groundmass 
'b' Fabric 

 
 
 
Related Distribution 
 
 
 
 

 
1 

 
40-120 

 
Ap-1 

 
****    ***            **               t 

 
Dark orange red with 
brownish, orange red 
colour patches + 
spotted limpidity 

 
**      **       *              ***     * 

 
***     **      *       * 

 
*        *              ***       *     *** 

 
Intergrain 

micro-
aggregate 
structure 

 
Random, with 
moderately to 

well sorted 
microstructure 

 
Stippled, 
Flecked 

 
Double spaced porphyric (30-35%) with areas of open porphyric 
(10-15%) and close porphyric (10-20%) 

 
2 

 
140-220 

 
Ap-1 

 
***     ***             **               t 

 
Dark brown colour 
with areas of dark 
reddish/orange + 
spotted limpidity 

 
*       **       *               **      * 

 
**       *      *        * 

 
t         *              ***      **    *** 

 
Intergrain 

micro-
aggregate 

structure very 
small areas of 
bridged grain 

structure (<5%) 

 
Random, with 

well sorted 
microstructure 

 
Stippled, 
Flecked 

 
Single spaced porphyric structure throughout deposit (+45%) 
with areas of double spaced porphyric and close porphyric (15-
20%) 

 
3 

 
240-320 

 
Ap-2 

 
***    **        t        * 

 
Dark 
brown/reddish/orange 
colour + spotted 
limpidity 

 
*       *        *               ***     * 

 
*        *      *         * 

 
          *      **      **       **   **** 

 
Intergrain 

micro-
aggregate 

structure very 
small areas of 
bridged grain 

structure (<5%) 

 
Random, with 

well sorted 
microstructure 

 
Stippled, 
Flecked 

 
Single spaced porphyric structure throughout deposit (+45%) 
with areas of double spaced porphyric and close porphyric (15-
20%) 

 
4 

 
340-420 

 
Ap-2 

 
****   **       t         *              t 

 
Dark brown colour 
with areas of dark 
reddish/orange + 
spotted limpidity 
 

 
*       *        *               ***     * 

 
*        *      *         * 

 
          *      *        *        **   **** 

 
Intergrain 

micro-
aggregate 

structure very 
small areas of 
bridged grain 

structure 
(<10%) 

 

 
Random, with 

well sorted 
microstructure 

 
Stippled, 
Flecked 

 
Single spaced porphyric structure throughout deposit (+30%) 
with areas of double spaced porphyric and close porphyric (25-
35%) 
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(1) Frequency levels for coarse mineral components (Bullock et al (1985) t trace, * very few, ** few, *** frequent/common, **** dominant/very dominant 
(2) Frequency level for textural pedofeatures (Bullock et al 1985)  t trace, * rare, ** occasional, *** many 

 
 
 

 
 
 
 

 

Site – IRELAND, 
CAHERATRANT 
Location – Outer Arable 
Test Pit - 7   
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Microstructure 

 
 
 

Coarse 
Material 

Arrangement 

 
 
 

Groundmass 
'b' Fabric 

 
 
 
Related Distribution 
 
 
 
 

 
1 

 
80-160 

 
Ap-1 

 
***      *                *               * 

 
Dark brown to dark 
orange, yellow colour 

 
t        t        *       t       *       * 

 
***     **      **      t 

 
**      **              **       t       ** 

 
Intergrain 

microaggregate 
structure 

 

 
Random, with 

medium to 
well sorted 

microstructure 
 

 
Stippled, 
Flecked 

 
Double spaced porphyric structure (40-45%) with areas of 
close porphyric (15-20%) 

 
2 

 
180-260 

 
Ap-2 

 
****     t       t        **              * 

 
Brown to very dark 
brown and areas of 
light brown to 
red/dark red 
 

 
         t                         *       t 

 
***     *        ** 

 
*        *                *       t       *** 

 
Intergrain 

microaggregate 
structure 

 
Random, with 

poor to 
medium 
sorted 

microstructure 
 

 
Stippled, 
Flecked 

 
Single spaced porphyric (40-50%) with areas of close 
porphyric structure (30-35%)  

 
3 

 
280-360 

 
C 

 
****            **      ***            **   

 
Mineral component is 
grey, dark grey, 
yellow colour. 
Matrices yellow, 
orange with areas of 
darker red, brown 
colour 
 

 
                                   * 

 
*              

 
         *      t          *             **** 

 
Intergrain 

micro-
aggregate 
structure 

 
Random, with 

medium to 
well sorted 

microstructure 

 
Mineragenic 
& Granular 

 
Fine matrices has a single spaced porphyric structure (40-
45%) with areas of close porphyric structure (30-35%) 

Figure 132, Summary table of micromorphology from a sequence of soils at Caheratrant outer arable area, Ireland 
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6.4.3 PEDOFEATURES 

 

 The three landuse areas sampled contain a number of pedofeatures 

(Figs 129 to 132), the most common of which are excremental and indicate a 

high level of biological activity in the soil horizons (Plate 39a). These features 

consist typically of large fine grained clusters of digested soil material with 

very distinctive rounded edges and small organic inclusions and occurred in 

elongate worm cast voids. In the kaleyards these were most common in the 

upper 250mm of the Ap soil horizons and decrease gradually with depth (Figs 

129 and 130).  

 

  
39a, Microstructure 500μm (ppl) 39b, Fe rich organic material 500µm 

(ppl) 

 

Plate 39a-b Soil pedofeatures from Caheratrant, Ireland 

 

A similar pattern occurs in the inner and outer arable areas and shows 

that the majority of the worm activity is located in the areas of highest organic 

content (Figs 131 and 132). Alongside the excremental features are a number 

of silt and clay infills which occur as a result of the movement of fine grained 

soil components down profile by soil water through void spaces. These infills 

are typically light brown to reddish orange and fine grained with a semi-

granular and non-laminated structure. Their distribution in the inner and outer 

arable areas is fairly uniform with a decrease down profile (Figs 131 and 132) 

but in the kaleyards the number of clay infills increases slightly with depth in 

the Ap-1 horizon before becoming more consistent in the Ap-2 horizon but 

then increasing again in the Ap-3 horizon, probably as a result of the different 
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periods of organic addition and because of the movement of water through 

the beach sand horizon above (Figs 129 to 132). Organic coatings are also 

present in the amended soils but these are much rarer than the other 

pedofeatures and are mainly within the upper horizons of the kaleyard. 

However, an unusually high level are present in the Ap-2 horizon of the inner 

arable area and this has been attributed to the high level of iron present within 

the soil microstructure and organic inclusions (Figs 129 and 130) (Plate 39b).   

 

6.5 DISCUSSION OF THE MICROMORPHOLOGY RESULTS 
 

The micromorphological analysis of the soil horizons from the three 

sites enables interpretations to be made about soil formation processes which 

can aid the fieldwork and bulk laboratory analysis (chapters 2 to 5). The soils 

analysed from the different landuse areas on Fair Isle have remarkable 

textural similarity but there are also a number of distinctive differences which 

allow key inferences to be made regarding soil development. The colour, 

general microstructure, groundmass and coarse rock and mineral inclusions 

vary very little in all of the soil horizons and are of little assistance with the 

interpretation of the development of the soils, however, there are distinctive 

differences in the organic and inorganic inclusions. All the kaleyard areas 

have higher levels of organic fragments (peat, turf) and carbonised particles 

(charcoal, peat, turf) and black and brown amorphous particles which indicate 

a higher input from settlement waste (Figs 121,122,123,126,129 and 130). 

But there are small differences in the organic and carbonised particles present 

in the kaleyards from the three farmsteads which reflect the local development 

of amended hortisols and also the effects of post burial soil dynamics on 

manure components. In the infield area at Shirva there is a similar input to the 

kaleyard but, on a smaller scale, with no turf input and an increase in the plant 

evidence suggesting that the infield areas were used for harvesting grass and 

small crops (Fig 124). In the outfield areas there is minimal input from the 

centre of settlements (charcoal, burnt peat, burnt turf) but an increase in peat 

inclusions from a buried soil horizon (Fig 125).  

Previous micromorphological analysis of Prehistoric arable soils from 

Fair Isle has shown that the soils are similar to the soils associated with 
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Shirva (Chystall, 1994). The majority of the soils have channel and chamber 

microstructure reddish, brown to greyish brown with dotted and speckled 

limpidity indicating the input of organics which have been consumed by 

earthworms and enchytraeids. At both sites quartz and rock fragments are 

very common and there are many inclusions of fine organics and 

pedofeatures associated with the bioturbation of a manured soil. There are 

also clear differences which suggest that a very different manuring process 

was conducted. Along with the considerably higher total P values the soils 

also contain calcium carbonate grains which have been deposited with the 

addition of seaweed (Chrystall, 1994). A predominantly marine source of 

manure is not uncommon in the Northern Isles of Scotland (Davidson, 2002) 

but it is usually combined with terrestrial organic material.  

Similarities and differences can also be seen between the 

micromorpholgical results from Fair Isle and other sites from the northern 

isles. At Olligarth on Papa Stour, Shetland the micromorphological results of 

the anthropogenic soils illustrated clear similarities with the results determined 

in this research and suggests similar manuring regimes are occurring at both 

localities. Despite the obvious difference in soil depth seen in the field 

(chapter 2, sections 2.6 and 2.7) and the variations in multi-elemental results 

(chapter 5, sections 5.6.1) the soils contain similar classifications of organic 

material typically light brown with porphyric distribution, an undifferentiated b-

fabric and spongy to intergrain microstructure alongside abundant carbonised 

and peat fragments and spherical excrement (Bryant and Davidson, 1996). 

Micromorphological results from the infield, outfield and natural soils on Fair 

Isle also mirror the results determined at Olligarth. In Bryant and Davidson’s 

work the arable fields analysed contain micromorphological evidence 

suggesting manuring had been occurring with organic peaty turf resulting in 

similar soil textures to the kaleyard. At Shirva the occurrence of a more 

intergrain microaggregate structures indicates a higher degree of organic 

breakdown by ploughing and post burial decomposition. Both the sites on Fair 

Isle and Olligarth illustrate a clear reduction in black amorphous inclusions, 

ash and burnt stone associated with waste material from the centre of the 

farms. 
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At Tofts Ness on Sanday, Orkney the micromorphological evidence 

suggested that the principal manuring material was grassy turf due to the 

presence of slightly weathered quartz grains, iron depleted sandstones and 

siltstones and phytoliths (Simpson, et al., 1998). The micromorphological 

evidence presented in this chapter includes very few of any of the evidence 

found at Tofts Ness and therefore considerably less turf input. However there 

is more evidence of the input of carbonised organic material in the form of 

burnt peat, rubified stone and fine ashes indicating that this is a process which 

is occurring across the Northern Isles. Distinctive micromorphological 

evidence of the addition of domestic waste to arable soils has been found at 

Quoygrew on Westray, Orkney (Simpson, et al., 2005). The arable soils 

contained frequent phytoliths and a high mineral content indicating manuring 

with turves alongside domestic waste but in contrast settlement features 

included micromorphological evidence of waste material including fish bones, 

ash crystals, rubified mineral grains, black charred peat, herbaceous and 

woody tissue.   

The micromorphology results from Olthof are very similar to other 

analyses conducted on the plaggen soils. Mucher, et al., (1990) described the 

plaggen soils as predominantly silty sands with common root and faunal 

channels, faecal pellets and some charcoal. The micromorphological 

evidence from Olthof complements the results found by Mucher, et al., (1990) 

and also shows that the source organic material derives from brook sediments 

and heathland coversands because of the presence of iron cemented sand 

grains and small deposits of grey/orange silty clay infills (Figs 126 to 128). 

Both investigations show differences between the lower brown plaggen soil 

and the upper black plaggen soil identified in the field (Pape, 1970). In 

Mucher’s conclusions he suggests that the majority of decomposition of 

organic inclusions must have occurred before its addition to the arable fields 

as this would have led to higher variations in decomposition and more 

deformation and disturbance of pollen zones. The results so far from this 

analysis suggest the contrary. It is well known that pollen grains can withstand 

very acidic soils (Dimbleby, 1967 p112) (chapter 5, section 5.2.2) whereas 

evidence of the decomposition of organic inclusions in similar freely drained 

soils has been shown to be an extremely fast process <200 years (Davidson, 
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2002) and in extreme cases <40 years (Davidson and Carter, 1998). Indeed 

the micromorphological evidence presented in chapter 6, section 6.3.3 shows 

clearly that very heavy decomposition of organic material has occurred in situ 

by biological activity as a result of the addition of rich organic manure to the 

soil. The frequent occurrence of excremental pedofeatures and the lack of 

black carbonised and amorphous fragments suggest either limited storage in 

farm areas or strengthens the idea that organic inclusions were rapidly broken 

down after deposition.      

 Micromorphology was also used to investigate the plaggen soils at 

Valthe, Drenthe (van Smeerdijk, et al., 1995). Throughout the brown and 

black plaggen soil horizons the groundmass, mineralogy and excremental 

pedofeatures were very similar indicating heavy, continuous mixing by 

biological action. Very similar results were determined in this analysis (chapter 

6, section 6.3.1 – 6.3.3). Most importantly van Smeerdijk’s micromorphology 

analysis also revealed very few black carbonised particles indicating very little 

input from settlement waste even though earlier historical and pedological 

analyses have possibly over emphasised the addition of settlement waste 

(Pape, 1970).   

Between the sites on Fair Isle, the Netherlands and Ireland the 

microstructure evidence suggests that although the soils have very different 

appearances in the field, the detailed micromorphological analysis illustrates 

distinctive similarities. At all three sites quartz is a very dominant mineral due 

to the similar sandy geologies (Plates 18a, 29a and 36a) and the addition of 

turf and peat organics has led to a distinctive dark brown to brown, reddish 

orange coloured fine mineral fabric with mostly intergrain microaggregate, 

stippled to flecked microstructure and distinctively high levels of iron and 

some manganese (Plates 19, 30 and 37). The addition of organic manuring 

components and digging and ploughing over time has lead to an open, well 

aerated, freely draining soil with high numbers of soil organisms. The 

cessation of arable farming may have led to many of the amended soils slowly 

reverting back to acidic podzolic soils but the pattern of manuring can still be 

recognised from one landuse area to another based upon the inclusions of 

coarse and fine organics. The micromorphological analysis of the coarse 

organic inclusions at the three sites illustrates the main materials used in the 
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manuring process. At Shirva this is peat and carbonised peat (Plate 21 and 

22), Olthof heathland and meadowland turf (Plate 33) together with charcoal 

(Plate 34) and at Caheratrant peat, turf, carbonised peat and charcoal (Plate 

38,. There are, however, several issues with distribution which require 

discussion. At Olthof and Caheratrant there is a very distinctive reduction in 

both coarse and fine organic inclusion with distance from the settlement 

centre. However more detailed analysis of the amorphous black particles is 

needed in order to try and quantify them within the context of comparative 

horizons and landuse areas. At Shirva the abundance of peat on the island 

and the need to create arable land has in the outfield created an inverse 

relationship where the development of amended soil above a relict peaty 

podzol has actually increased the number of coarse organic inclusions even 

though they were not added as part of a manuring regime. 

 The micromorphology results clearly illustrate that at each of the sites 

there is an overall decrease of organic and carbonised inclusions with depth 

and with distance from the farm centre and that the variety of manuring 

components also decrease at each site suggesting distinctive management of 

available materials. More accurate analysis using zone counting (section 6.6) 

and image analysis (section 6.7) provides an alternative approach for 

quantifying the various manuring components.     
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6.6  ZONE COUNT ANALYSIS FROM FAIR ISLE, THE NETHERLANDS 
AND IRELAND 

 

6.6.1 ZONE COUNT RESULTS FROM KALEYARDS AND GARDENS 

 

The zone count results from the kaleyards and garden areas illustrate 

the range of organic and inorganic inclusions which are used as the main 

manuring components (Fig 133). At Shirva and Caheratrant there is a 

considerably higher density of peat and burnt peat fragments than at Olthof 

which have a higher density of turf and burnt turf inclusions. Across each of 

the sites however there are variations in each of the soil horizons. At Shirva 

the peat inclusions range from 26 – 39±8.7/225mm-2 in the Ap-1 to Ap-3 

horizons, whereas at Caheratrant there is a slight increase with depth from 

19±5.2/225mm-2 in the Ap-1 horizon to 26±5.2/225mm-2 in the Ap-3 horizon, 

possibly because of an increase in input but also because of an increased 

breakdown by post burial processes. The more resistant burnt peat fragments 

show a marked decrease in density with depth at Shirva from 21±3.5/225mm-2 

(Ap-1) to 12±3.5/225mm-2 (Ap-3) where as at Caheratrant the density is more 

variable (12 – 21±4.2/225mm-2), suggesting a more consistent input of 

organics with an increase in mixing and decomposition. At Olthof the density 

of turf inclusions is higher than at the other sites and there is a much higher 

density in the black plaggen soil (18 – 27±5.8/225mm-2) than in the brown 

plaggen soil (8-10±5.8/225mm-2) as a result of post burial decomposition. 

There is a similar pattern with the burnt turf inclusions, however, the Ap-1 

horizon has a lower density than expected (14±9.5/225mm-2), possibly 

reflecting the lower levels of carbonised input from farms towards the end of 

the development of plaggen soils. There is a very small density of turf and 

burnt turf particles at Shirva and these are likely to have been inadvertent 

additions mixed in with peat inclusions, but at Caheratrant there is an increase 

of turf inclusions in the Ap-1 horizon directly associated with the cutting of turf 

in the kaleyards from the delling process. Charcoal inclusions are most 

frequent in Olthof garden and Caheratrant kaleyard because of the presence 

of wood used for fuel.  
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Figure 133, Zone count 
results for mean 
density/225mm-2 of organic 
and inorganic inclusions from 
soil horizons within kaleyards 
and garden areas at Shirva, 
Fair Isle; Olthof, the 
Netherlands and Caheratrant, 
Ireland. Error bars represent 
95% confidence interval of the 
mean 
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The amount of charcoal at Olthof is the same as the turf and burnt turf 

fragments with the highest density in the black plaggen soil (16 – 

28±5.8/225mm-2) and lower amounts in the Ap-3 horizon (10±5.8/225mm-2) 

which indicates an increase in domestic waste material in the latter 

development of the amended soils. At Caheratrant the density of charcoal is 

slightly lower than in the Netherlands possibly because of the larger range of 

available fuel resources. The Ap-1 and Ap-2 horizons have similar results (14 

– 18±4.1/225mm-2) with less in the Ap-3 horizon. Mineral inclusions are the 

most prolific across all the sites and at each site there is a gradual increase 

with depth, but there is also a high density in the amended soils from the 

organic inputs as well as mixing with the natural. The black amorphous 

inclusions at the three sites are highly abundant compared to the burnt peat, 

turf and charcoal fragments. At Shirva there is a very slight increase in density 

with depth from 934-1100±248/225mm-2 and almost none in the natural soil. 

At Olthof the black plaggen soil contains between 553±160/225mm-2 in the 

Ap-1 horizon and 905±160/225mm-2 in the Ap-2 horizon, possibly as a result 

of the decomposition of burnt turf and charcoal fragments but the brown 

plaggen soil (Ap-3) also contains a high density (689±160/225mm-2) which 

contradicts the carbonised fragment evidence. This suggests that there is 

either a large amount of mixing with the black plaggen soil or the amorphous 

inclusions are not organic fragments and have not undergone degradation. 

Alternatively, the particles may be organic and are the remnants of 

considerably larger black carbonised fragments which have been heavily 

degraded. The black amorphous particles decrease in density with depth at 

Caheratrant from 1310±278/225mm-2 in Ap-1, 1017±278/225mm-2 in Ap-2 and 

822±278/225mm-2 in the Ap-3 horizon. This suggests that if the particles are 

deliberately added, then there is an increase in the later stages of manuring, 

however, the calcareous sands also contain numerous black mineral 

fragments, so the number of amorphous inclusions may indicate sanding 

patterns. Alongside the black amorphous particles are a larger density of 

red/brown amorphous inclusions. At Shirva there is an increase with depth 

from 307-653±129/225mm-2 and at Caheratrant there is a smaller increase 

from 376-491±108/225mm-2 but at Olthof there is a large increase in the black 
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plaggen soil from 188-594±119/225mm-2 and a lower level in the brown 

plaggen soil (315±119/225mm-2). Like the black amorphous particles these 

inclusions may be organic and inorganic and so could indicate different 

processes occurring within the Ap soil horizons. Plant material density was 

also counted as this can indicate possible organic input materials or crop 

species grown. At Shirva the density of plant inclusions decreases with depth 

from 70-42±15/225mm-2 and at Caheratrant the density decreases from 64-

30±15/225mm-2 and have the characteristics of peaty organics. At Olthof the 

density of plant fragments increases with depth in the black and brown 

plaggen soils (15-29±6/225mm-2) but poor preservation and biological 

decomposition makes species identification very difficult. 

 

6.6.2 ZONE COUNT RESULTS FROM INFIELD AND INNER ARABLE 

AREAS 

 

The zone counting results from the infield and inner arable areas of the 

three sites reveal the density of organic and inorganic components which 

indicate manuring strategies (Fig 134). Overall peat inclusions at Shirva are 

lower than in the kaleyard area and there is an inconsistent amount between 

the Ap-1 to Ap-3 horizons from 16-30±4.8/225mm-2  indicating similar levels of 

addition but also high amounts of mixing by ploughing, a process not 

occurring in the kaleyard. In the Ap-4 horizon there is a slight increase in peat 

inclusions which mirror the increase of elemental enhancement (chapter 5, 

section 5.7.2). At Caheratrant there is a distinctive decrease in peat inclusions 

from 24-15±5.2/225mm-2 in the Ap-1 and Ap-2 horizons to a minimal level in 

the natural soils (6±5.2/225mm-2) presumably present because of mixing by 

biological activity. The burnt peat inclusions at Caheratrant have a very similar 

pattern to the peat with 14±4.1/225mm-2 in the Ap-1 horizon and 

4±4.1/225mm-2 in the Ap-2 which suggests much less input from the 

settlement centre than in the kaleyard. At Shirva there is also slightly less 

burnt peat than in the kaleyard but there is a more distinctive decrease with 

depth between the Ap-1 (17±2.8/225mm-2), Ap-2 (9±2.8/225mm-2) and Ap-3 

(5±2.8/225mm-2) horizons.  
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Figure 134, Zone count 
results for mean 
density/225mm-2 of organic 
and inorganic inclusions from 
soil horizons within infield and 
inner arable areas at Shirva, 
Fair Isle; Olthof, the 
Netherlands and Caheratrant, 
Ireland. Error bars show 95% 
confidence interval of the 
mean 
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This could be as a direct result of the level of input in each horizon or 

partial decomposition, but the same increase is still present in the Ap-4 

horizon 11±2.8/225mm-2 which may represent a buried soil developed when 

the area was used for a different purpose. Of the three sites turf inclusions are 

most frequent at Olthof but compared to the garden soils the density is 

significantly lower. The black plaggen horizons (Ap-1 and Ap-2) have between 

10-16±3.1/225mm-2 inclusions whereas the brown plaggen soils have 

7±3.1/225mm-2. The amounts of burnt turf at Olthof are far higher than the 

unburnt fragments and this may reflect an increase in input or a better ability 

to resist decomposition, however in each of the soil horizons there are 

between 22-27±6.3/225mm-2 carbonised turf particles. This regularity in the 

density of burnt peat with depth may derive from modern ploughing action 

thoroughly mixing the black and brown plaggen soils and there are a number 

of other inclusions which demonstrate this. At Shirva there is an increase in 

the density of turf inclusions from the kaleyard, especially in the Ap-1 horizon 

8±1.3/225mm-2 but a significantly lower density in the Ap-2 and Ap-3 horizons 

(1-2±1.3/225mm-2) and a slightly higher level in the Ap-4 horizon. This 

variation may derive from an increase in unburnt organic materials used for 

manuring in the infield area, or from the use of peaty turf material from a 

different upland source. The considerably lower density of burnt turf suggests 

that if it is being used, it is not being burnt. The upper amended soils at 

Caheratrant also show a slight increase in turf inclusions (4±1/225mm-2) but 

the results are far lower than in the kaleyard and indicates that turf is being 

used less as a manure in either its natural or burnt form. Overall the charcoal 

results are lower in the inner arable area compared to the kaleyard and 

between the three sites Olthof has values of between 6-9±2/225mm-2 

fragments in the black plaggen soil and 8±2/225mm-2 in the Ap-3 horizon. At 

Shirva no charcoal was identified in the Ap-1 horizon but between the Ap-2 to 

the Ap-4 horizon there is a decrease from 3-1±0.5/225mm-2. A reduction down 

profile is also present at Caheratrant from 0-2±0.5/225mm-2. All the infield and 

inner arable areas have an overall increase of mineragenic material with 

depth as a result of mixing with the natural and from the addition of peat and 

turf manure. At Shirva the density of mineral inclusions ranges from 720-

1831±183/225mm-2, at Olthof there is between 1307-2762±320/225mm-2 and 
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at Caheratrant the mineral inclusions range from 1473-2130±189/225mm-2. 

Much like the kaleyard sequences the soil horizons in the infield and inner 

arable areas also contain a large number of both black and red/brown 

amorphous inclusions. At Shirva there is an increase with depth in both 

including 330-815±165/225mm-2 black and 104-442±83/225mm-2 red/brown 

fragments, possibly as a result of an increase in post burial decomposition of 

burnt and unburnt organics. At Caheratrant the results are also similar (1141-

1171±386/225mm-2 black) and (582-688±206/225mm-2 red/brown) between 

the Ap-1 and Ap-2 horizons from addition or decomposition of existing 

inclusions. The results at Olthof are different, however, with a slightly higher 

number of black amorphous particles in the black plaggen soil (1124-

1178±266/225mm-2) and a slightly lower level in the brown plaggen horizon 

(821±266/225mm-2). The density of red/brown amorphous inclusions 

decrease between the Ap-1 and Ap-2 horizons from 542-300±116/225mm-2, 

then increase to 457±116/225mm-2 in the Ap-3 horizon. The plant residue 

inclusions have a similar pattern to the kaleyards. At Shirva the plant material 

decreases with depth from 64-20±11.5/225mm-2, at Olthof there is a similar 

pattern with a reduction down profile and a distinctive change between the 

black and brown plaggen soils. At Caheratrant there is a larger reduction 

between the amended soil horizons (78-9±24/225mm-2). 

 

6.6.3 ZONE COUNT RESULTS FROM OUTFIELD AND OUTER ARABLE 

AREAS 

 

A systematic zone count was also conducted for the soil horizons in the 

outfield and outer arable areas of the three sites (Fig 135). At Shirva there is 

an overall decrease in density of peat inclusions in the Ap-1 and Ap-2 

horizons compared to the kaleyard and infield areas, however, there is an 

increase from 8-30±6/225mm-2 in the Ap-3 horizon because of the truncation 

of the remnant peaty H horizon. The use of an existing organic rich buried 

peat soil makes it very difficult to determine between peat added as a manure 

and peat soil mixing by post burial mixing of the H horizon. What is clear, 

however, is that in the peat are also very low amounts of burnt peat material 

suggesting a limited amount of additional manuring.  
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At Caheratrant the peat and burnt peat results are considerably lower 

than in the kaleyard and inner arable areas, suggesting that only minimal 

manuring was being conducted in the outer areas of the farm. Turf levels at 

Olthof, which are so prevalent in the kaleyard area, are considerably lower in 

the shallow black plaggen soil (3-5±1.4/225mm-2) in the reclaimed heathland 

area, and this may be due to the use of modern fertilisers in the soils and the 

obliteration of delicate organic particles by modern ploughing. The density of 

carbonised turf particles also decrease in the outfield and outer arable area 

(<2±0.5/225mm-2) indicating a decrease in the use of carbonised manure from 

settlements in outer arable land areas. The use of turf and burnt turf at Shirva 

and Caheratrant is minimal and the very low levels demonstrate a high level 

of mixing of numerous manuring components which occurred in the 

settlement centres. The charcoal levels at Shirva are very low but the level is 

higher than the amount recorded in the inner arable area and this 

demonstrates a distinct irregularity in manuring across the farm and the 

complexity of developing and maintaining good quality arable soils in such a 

restricted landscape. At Olthof and Caheratrant the density of charcoal 

inclusions in the outer arable areas is very low indicating very small inputs 

from settlement centres. Despite the very low levels of identifiable black 

carbonised and uncarbonised particles the density of black amorphous 

inclusions is still high and in places not much different from the inner arable 

areas. Mineragenic inclusions are very high illustrating the interaction 

between the natural and anthropogenic soils and many of the black 

amorphous particles may be of mineral origin, however they may also be the 

remnants of heavily degraded organic inclusions and indicate how the soils 

developed. At Shirva the Ap-1 and Ap-2 horizons contain between 383-

401±109/225mm-2 particles with a slight increase in the Ap-3 horizon 

(522±109/225mm-2). If organic they may well be strongly decomposed peat 

inclusions from the buried H soil horizon and the density of the red/brown 

amorphous inclusions mirror this pattern. At Olthof the number of black 

amorphous particles is lower than in the garden and inner arable areas and 

the density increases with depth from 35-90±25/225mm-2. These particles 

may well be fragments of degraded carbonised particles which have been 
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broken down over time from larger particles but alternatively they may also be 

small concretions of iron commonly found in the natural soils. A similar pattern 

is evident from the red/brown particles which demonstrate a decrease with 

depth from 67-10±16.4/225mm-2 and may also derive from an organic source. 

At Caheratrant the pattern of black and red/brown amorphous particles is very 

similar, decreasing down profile and illustrating that the amended soils have a 

much higher number than the natural soils. As seen in all the other landuse 

areas, the density of plant inclusions decreases with depth at each site 

suggesting a gradual increase in post burial soil processes on the plant 

material. The results from Olthof are surprisingly low for an area with 

continued arable agriculture but may represent the speed at which new 

organic material added to the soil is broken down. At Shirva and Caheratrant 

the upper amended soil horizons illustrate slightly higher densities than in 

other landuse areas possibly because of the change from an arable 

landscape to a grassland one.   

 

6.6.4   DISCUSSION OF THE ZONE COUNT RESULTS  

 

The zone count analysis alongside the micromorphology of the 

amended soils from the three sites details a number of very important points 

about the soils development. The results from zone counting highlight that 

each site utilised a distinctive manuring process involving many different raw 

materials. Across each of the sites and landuse areas there is an overall 

reduction in the density of particles with depth and away from the centre of 

farm areas, especially large carbonised particles of peat, turf and charcoal 

(Figs 133 to 135). Interestingly, however, the zone count shows a much larger 

number of black amorphous particles present and these may well be 

fragments of heavily decomposed carbonised organics or mineral fragments 

associated with manuring or post burial processes. The next stage of this 

thesis is to attempt to quantify the identifiable black carbonised particles and 

the black amorphous particles with image analysis in order to get a more 

detailed idea of the density and size of the inclusions.  
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6.7  THE QUANTIFICATION OF BLACK PARTICLES BY IMAGE 
ANALYSIS 

 

6.7.1 DENSITY AND SIZE OF BLACK PARTICLES IN KALEYARD AND 

GARDEN SOILS 

 

The mean density of black particles is greatest at Shirva where 

between 3024-4788±346µm-2/225mm-2 inclusions are present in the amended 

soils (Fig 136). Overall the density of particles is highly variable and indicates 

a very high level of addition but also a large amount of mixing throughout the 

sequence. At the other two sites there are considerably less black particles. 

Busta kaleyard demonstrates an overall decrease in density with depth from 

1995-1211±189µm-2/225mm-2 (Fig 136) whereas at Leogh there is a fairly 

stable density throughout 974-1082±38µm-2/225mm-2 suggesting a much 

lower addition and less post burial alteration of carbonised material (Fig 136). 

In a wider context the density of inclusions identified at Shirva is also 

considerably higher than the kaleyard at Caheratrant and the garden area at 

Olthof. At the Irish site there is a stable density throughout each of the soil 

horizons (863-711±27µm-2/225mm-2), whereas at Olthof the density of black 

inclusions decrease with depth from 820-144±30µm-2/225mm-2 (Fig 137).  

The mean size of the black particles analysed from Fair Isle is 

illustrated in figure 138. Although the kaleyard at Shirva contains the highest 

density of black carbonised and amorphous particles the largest mean 

inclusions are present at Busta, especially in the Ap-2 horizon (7610±1526µm-

2) as a result of recent additions. Overall, however, the soil horizons contain a 

larger average particle size possibly because carbonised material has been 

added until very recently and post burial degradation occurs at different rates 

to the other sites. At Shirva the soil horizons have a very similar mean size 

range, which decreases slightly with depth from 5792±1202µm-2 (Ap-1) to 

4617±760µm-2 (Ap-3) (Fig 138).  
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Figure 136, Mean density (µm-2/225mm-2) of black carbonised and black 

amorphous particles from three kaleyards on Fair Isle identified with image 

analysis 

 

 
Figure 137, Mean density (µm-2/225mm-2) of black carbonised and black 

amorphous particles from kaleyard and garden areas on Fair Isle, the 

Netherlands and Ireland identified with image analysis. 
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Figure 138, Mean size (µm-2) of black carbonised and black amorphous 

particles from three kaleyards on Fair Isle identified with image analysis 

 

 
Figure 139, Mean size (µm-2) of black carbonised and black amorphous 

particles from kaleyard and garden areas on Fair Isle, the Netherlands and 

Ireland identified with image analysis 
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            The similarity in size but the variety in density of black amorphous 

particles suggests that the level of degradation is slow and fairly uniform 

throughout the formation of the amended soils. The soil horizons at Leogh 

contain the smallest size of black inclusions, but like Shirva the results differ 

very little throughout the soil horizons. The results range from 2368±480µm-2 to 

2217±274µm-2 and suggest that they have undergone the most post burial 

alteration (Fig 138). At Olthof and Caheratrant the results are even more 

contrasting and this is a reflection of input and post burial change (Fig 139). At 

Olthof the particles density is low and so is the average size of inclusions 

(1609±929µm-2/225mm-2 Ap-1 to 1147±811µm-2/225mm-2 Ap-3) which is likely 

to be due to the rapid breakdown of organic inclusion by biological and chemical 

action. At Caheratrant the size of the black amorphous and carbonised particles 

is considerably larger suggesting less post burial degradation, but the variation 

in size is also very large suggesting variations in the amount of mixing and 

alteration after deposition.  

 

6.7.2 DENSITY AND SIZE OF BLACK PARTICLES IN INFIELD AND INNER 

ARABLE SOILS 

 

 The mean density from the infield and inner arable areas are illustrated 

in figure 140. In the upper soil horizons at Shirva there is a much lower 

density of black particles than in the kaleyard, the density decreases from 

879±579µm-2/225mm-2 to 397±579µm-2/225mm-2. However, there is a huge 

increase in the Ap-3 horizon to 2738±579µm-2/225mm-2 possibly because of 

the addition of carbonised particles to a new arable soil developed in an old 

occupation area. Alternatively, the small black inclusions may derive from an 

archaeological feature below and have been mixed into the Ap-3 horizon by 

plough action. At Olthof the density of black carbonised particles and 

amorphous particles varies very little between the garden and the inner arable 

area but there is still a distinctive decrease with depth from 850±226µm-

2/225mm-2 (Ap-1) to 503±111µm-2/225mm-2 (Ap-2) and 305±33µm-2/225mm-2 

(Ap-3). Figure 140 suggests that input in the inner arable area is not dissimilar 

from the garden area but that there is a clear increase in addition between the 

brown and black plaggen soils. 
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Figure 140, Mean density (µm-2/225mm-2) of black carbonised and black 

amorphous particles from infield and inner arable areas from Fair Isle, the 

Netherlands and Ireland identified with image analysis 

 

 
 
Figure 141, Mean size (µm-2) of black carbonised and black amorphous 

particles from infield and inner arable areas at Fair Isle, the Netherlands and 

Ireland identified with image analysis 
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The density of particles in the inner arable area at Caheratrant (Fig 

140) ranges from 942±226µm-2/225mm-2 to 869±69µm-2/225mm-2 which is a 

slight increase to the numbers identified in the kaleyard, most likely because 

an increase in the decomposition of larger carbonised particles from physical, 

biological and chemical action. 

The infield and the inner arable soil horizons contain a variety of sizes 

of black carbonised and amorphous particles (Fig 141). At Shirva the 

inclusions gradually increase in size with depth from 2661±688µm-2 to 

5279±1016µm-2 possibly indicating the inclusion of more anthropogenic 

material during the early development of the Ap-3 horizon or that post 

depositional processes have been more active in the upper layers. A clear 

difference in size is very evident however, between the infield of Shirva and 

the other two sites. At Olthof the mean size of the particles is much smaller 

across each horizon but the results are relatively consistent. In the black 

plaggen soils (Ap-1 and Ap-2) the mean particle size decreases from 

1972±305µm-2 to 1348±126 µm-2 but there is a distinctive increase in the 

brown plaggen soil (2155±220µm-2) suggesting either a similar level of input 

into the plaggen soils from settlement centres, a change in the rate of 

decomposition of the particles or the inclusion of dark opaque iron concretions 

which are common in the natural and Ap-3 horizons. At Caheratrant the 

average size of black inclusions decreases with depth from 3019±475µm-2 in 

the Ap-1 horizon to 2232±345µm-2 in the Ap-2 horizon. The results are 

considerably lower than results from the kaleyard suggesting a much smaller 

influence from material added from settlement centres but the error factor was 

much more consistent and may indicate the addition of organic material with a 

similar degradation rate i.e. peat and turf.  

 

6.7.3 DENSITY AND SIZE OF BLACK PARTICLES IN OUTFIELD AND 

OUTER ARABLE SOILS 

 

In the outfield area (Fig 142) the density of particles identified in the 

upper soil horizons at Shirva outfield is very large with 1966±288µm-2/225mm-

2 in the Ap-1 horizon and 2216±288µm-2/225mm-2 in the Ap-2 horizon, as a 

result of the addition of the breakdown of a peaty organic buried soil to the 
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arable soil horizons. In the Ap-3 horizon there is a decrease in density 

(877±288µm-2/225mm-2) suggesting either a reduction in the addition of black 

amorphous particles or post burial decomposition. The high density of 

particles in the outfield and in the natural sand horizon most likely derives 

from the disturbed H horizon which contains over 2321±288µm-2/225mm-2. By 

comparison the density of inclusions identified in the outer arable soils at 

Olthof is considerably lower than in the other areas which range from 36-

48±6.5µm-2/225mm-2 and at Caheratrant the density of particles decreases 

with depth from 618-236±37µm-2/225mm-2 indicating very little input from 

settlement centres. 

In the outer arable areas the results from each site clearly illustrate that 

the areas furthest from the farm contain the smallest black carbonised 

particles (Fig 143). At Olthof and Caheratrant the results are consistently low 

and vary very little with depth. At Olthof the means range from 1593±194µm-2 
to 1577±99µm-2 and in Ireland the results decrease from 2053±108µm-2 to 

1592±124µm-2 indicating little to no addition of waste from settlement centres, 

a considerably shallower profile of anthropogenic soils and manuring by direct 

addition of organic and mineral materials. At Shirva the outfield results 

illustrate a very different process. In the upper soil horizons (Ap-1 and Ap-2) 

the size of black inclusions is very low (1957±609µm-2 to 1904±375µm-2) and 

suggests little input of domestic material, however, the Ap-3 horizon illustrates 

a greatly increased size (8858±2049µm-2) directly relating to the disturbance 

of the underlying buried organic H horizon which contains humified peat 

fragments averaging 23215±5152µm-2. The large error in both the Ap-3 and H 

horizons suggests that post burial degradation has been occurring and 

confirms the theory that the H horizon is a naturally occurring soil and has 

been incorporated into the development of the Ap-3 horizon rather than 

deliberately added as a manure. If this is the case then the outfield at Shirva 

does fit into the model of reduced input from settlement centres as seen at the 

other sites.   
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Figure 142, Mean density (µm-2/225mm-2) of black carbonised and black 

amorphous particles from outfield and outer arable areas from Fair Isle, the 

Netherlands and Ireland identified with image analysis 

 

 
 
Figure 143, Mean size (µm-2) of black carbonised and black amorphous 

particles from outfield areas from Fair Isle, the Netherlands and Ireland 

identified with image analysis 
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6.7.4 DENSITY AND SIZE OF VOID SPACES IN BLACK PARTICLES IN 

KALEYARD AND GARDEN SOILS 

 

Alongside determining the density and size of black particles it is also 

important to calculate the density and size of void spaces in order to try and 

identify whether the particles have an organic origin. It is hypothesised that 

the particles with a higher density and size of void spaces are more likely to 

be carbonised organics and ones with an absence of void space may have an 

inorganic or mineragenic origin. The results collected from section 6.7.4 will 

also provide a comparative data set to compare against the elemental 

analysis from individual black particles discussed in chapter 7.  

On Fair Isle the black particles within the soil horizons in the three 

kaleyards have relatively similar densities of void spaces with several 

exceptions (Fig 144 and 145). At Shirva the inclusions in the Ap-1 horizon 

have a considerably higher density of void spaces (25.3±4.87µm2/225mm-2) 

with an average size of 785±269µm2 suggesting that the upper soil horizons 

contain more black carbonised particles, and there has been less post burial 

degradation. The sequence at Shirva shows a distinctive decrease in density 

and size of void spaces with depth which may indicate a reduction in organic 

inclusions. At Busta the mean density of void spaces in black particles also 

decreases with depth from 9.72±1.72µm2/225mm-2 (Ap-1) to 

4.43±0.60µm2/225mm-2 (Ap-3) and the size of those voids decreases from 

600±282µm2 (Ap-1) to 317±88µm2 (Ap-3), possibly indicating a similar level of 

addition of carbonised particles over time. A more diverse set of results is 

seen at Leogh where the average density of voids is highest in the Ap-2 

horizon (7.58±0.81µm2/225mm-2) but the mean size of the voids decreases 

with depth from 115±52µm2 to 74±17µm2. At Olthof there is almost no 

variation in the density of voids (7.66±1.16 to 7.29±1.98µm2/225mm-2) or the 

size (58.6±19.7µm2 to 51.2±18.5µm2) in the soil horizons which suggests a 

large quantity of organic inclusions have been degraded and many are 

fragmented without void spaces (Fig 146 and 147).  
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Figure 144, Mean density (µm2/225mm-2) of void space within black inclusions 

from three kaleyards on Fair Isle identified with image analysis 

 

 
Figure 145, Mean size (µm2) of void space within black particles from three 

kaleyard areas on Fair Isle identified by image analysis 
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Figure 146, Mean density (µm2/225mm-2) of void space within black particles 

in kaleyard and garden areas from Fair Isle, the Netherlands and Ireland 

identified by image analysis 

 

 
Figure 147, Mean size (µm2) of void space within black particles in kaleyard 

and garden areas from Fair Isle, the Netherlands and Ireland identified by 

image analysis 
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At Caheratrant (Fig 146 and 147) the black particles in the Ap-1 

horizon have the highest density of void spaces (16.79±1.40µm2/225mm-2) 

and a lower density in the Ap-2 and Ap-3 horizons (4.34±0.41µm2/225mm-2 to 

4.84±0.73µm2/225mm-2) but the mean sizes of the voids are much more 

variable with similar results in the Ap-1 and Ap-3 horizons (221±99µm2 and 

225±135µm2) but smaller void space in the Ap-2 horizon 102±54µm2 

suggesting considerable mixing between the context and organic breakdown.  

 
 
6.7.5 DENSITY AND SIZE OF VOID SPACES IN BLACK PARTICLES IN 

INFIELD AND INNER ARABLE SOILS 

 

The mean density of void spaces from the infield and inner arable 

areas (Fig 148) decreases with depth at Shirva and Caheratrant but at Olthof 

there is a very small increase, however, there is considerable variation in the 

size of those voids (Fig 149). At Shirva the density of void space in the black 

inclusions is between 13.17±1.43µm2/225mm-2 in the Ap-1 horizon and 

4.90±0.25µm2/225mm-2 in the Ap-3 horizon but there is a distinctive increase 

in average size with depth from 129±39µm2to 458±151µm2 indicating either an 

increase in organic inclusions within the soil horizons, or an increase in 

biological and chemical degradation. In Ireland the density of void spaces 

within black particles decreases from 10.48±1.82µm2/225mm-2 to 

3.84±0.35µm2/225mm-2 and the size decreases with depth from 102±29µm2 to 

41±16µm2 suggesting an overall decrease of organic inclusions. As seen in 

other landuse areas the plaggen soils at Olthof contain the lowest densities of 

internal voids and overall they are much smaller than from the other sites. The 

voids identified in the inner arable size increase from 2.72±0.39µm2/225mm-2 

(Ap-1) to 5.42±0.48µm2/225mm-2 (Ap-3) but the size of those spaces vary 

very little from the black to the brown plaggen soil (59±15µm2 to 54±9µm2) 

suggesting similar levels of addition and degradation of black carbonised 

particles during the development of the anthropogenic soils.     
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Figure 148, Mean density (µm2/225mm-2) of void space within black particles 

from infield and inner arable areas from Fair Isle, the Netherlands and Ireland 

identified by image analysis 

 

 
Figure 149, Mean size (µm2) of void space within black particles from infield 

and inner arable areas from Fair Isle, the Netherlands and Ireland identified 

by image analysis 
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6.7.6 DENSITY AND SIZE OF VOID SPACES IN BLACK PARTICLES IN 

THE OUTFIELD AND OUTER ARABLE SOILS 

 

The presence of the buried H horizon in the Shirva outfield explains the 

huge increase in the density and size of void spaces in black particles (Figs 

150 and 151). The density of voids increases from 5.84±0.47µm2/225mm-2 to 

7.91±0.44µm2/225mm-2 between the Ap-1 to Ap-3 horizons and the mean size 

increases from 59±10µm2 to 301±129µm2 possibly as a result of 

anthropogenic input and the mixing of the buried H horizon into the 

development of the arable soil horizons.  

 

 
Figure 150, Mean density (µm2/225mm-2) of void space within black particles 

from outfield and outer arable areas from Fair Isle, the Netherlands and 

Ireland identified by image analysis 

        

Evidence for mixing is also clear in the H horizon itself which has a 

mean void density of 15.95±1.88µm2/225mm-2 and mean void size of 

2811±433µm2. This complements the interpretation of high organic contents 

in this landuse area and mirrors the zone count and micromorphological 

evidence (this chapter, sections 6.2 and 6.6) and loss on ignition results 
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(chapter 5, section 5.3). In the outer arable areas at both Olthof and 

Caheratrant the density and size of voids are far smaller than at Fair Isle 

possibly indicating a much higher number of black amorphous particles and a 

greater level of post burial breakdown.   

 
Figure 151, Mean size (µm2) of void space within black particles from outfield 

and outer arable areas from Fair Isle, the Netherlands and Ireland identified 

by image analysis 

 

6.8 A COMPARISON OF BLACK PARTICLE DENSITY RESULTS AS 
IDENTIFIED BY ZONE COUNTING AND IMAGE ANALYSIS 
 

The results of the density of black particles identified by zone counting 

and image analysis are illustrated in figures 152 to 154. At Shirva the 

percentage density of black particles identified by zone counting decreases 

down profile from 42 – 24% indicating a gradual reduction in inclusions 

associated with anthropogenic amendment to the soils. By comparison the 

image analysis results range from 26 – 43% with the highest percentage in 

the Ap-2 horizon. This demonstrates that there is considerable variation in the 

black particles throughout the soil horizons. 
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At Olthof the zone count results illustrate a very close mean distribution 

(16 – 19%) in the black and brown plaggen soils. However, the deviation of 

the results is much higher than at the other two sites (5 – 35%) and suggests 

that the inclusions are very small with little to no internal structure. The image 

analysis results illustrate a more distinct decrease down profile from 54 – 10% 

suggesting more addition of black inclusions in the black and brown plaggen 

soils. The zone count results from Caheratrant decrease down profile from 35 

– 24% and like the results from Olthof there is a fairly high variation in the 

range of results indicating a range of possible inclusions. The image analysis 

results in the Ap horizons demonstrate less variation (30 – 37%) than the 

zone counting results and this suggests that there may be more smaller black 

inclusions possibly associated with the addition of calcareous sand.  

In the infield area (Fig 153) at Shirva the zone counting results 

decrease with depth from 26 – 35% with similar variations in values and <3% 

in the natural. The results also show a higher density of black particles in the 

Ap-4 horizon which has been shown to contain a higher loss on ignition  and 

multi-element component suggesting more anthropogenic addition in the past. 

The image analysis results also indicate a variation in the Ap-4 horizon (46%) 

and between 10 – 21% in the Ap-1 to Ap-3 horizons. At Olthof there is a sharp 

reduction in density with depth with 30 – 50% in the black plaggen soil and 

20% in the brown plaggen soil but there is a large variation in results 

suggesting a range of sizes. The image analysis results illustrate a lower 

percentage density in the black plaggen soil horizons (35 – 37%) and in the 

brown plaggen soil (25%) also indicating a large percentage of very small 

inclusions. At Caheratrant the zone counting in the Ap-1 and Ap-2 horizons 

show a very similar pattern to the results from Shirva. The results range from 

34 – 35% but the image analysis results are considerably higher (48 – 52%) 

indicating the majority of black particles are either heavily decomposed 

fragments or possibly mineral inclusions.   

In the outer arable areas (Fig 154) the density of black particles 

increases with depth from 21 – 25% with a very low percent in the natural soil. 

Black amorphous particles were identified by the zone counting in each of the 

horizons but the image analysis results show a similar decrease down profile 

towards the H horizon.  
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Figure 152, Percentage density of black particles identified by zone counting and image analysis in kaleyard and garden areas
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Figure 153, Percentage density of black particles identified by zone counting and image analysis in infield and inner arable areas 



. 

345 
 

0

5

10

15

20

25

30

35

40

45

50

A
p-

1

A
p-

2

A
p-

3

A
H

N
at

ur
al

A
p-

1

A
p-

2

A
p-

3

A
H

N
at

ur
al

A
p-

1

A
p-

2

N
at

ur
al

A
p-

1

A
p-

2

N
at

ur
al

A
p-

1

A
p-

2

N
at

ur
al

A
p-

1

A
p-

2

N
at

ur
al

Point Count Image Analysis Point Count Image
Analysis

Point Count Image
Analysis

Shirva, Fair Isle Outfield Olthof, Netherlands Outer
Arable Area

Caheratrant, Ireland Outer
Arable Area

M
ean percentage density of black inclusions

 
Figure 154, Percentage density of black particles identified by zone counting and image analysis in outfield and outer arable areas 
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The analysis of the H horizon by zone counting and image analysis has 

highlighted the importance of using both techniques in identifying 

anthropogenic inclusions in soil horizons. The zone count results did not 

identify any black carbonised or black amorphous inclusions because the 

horizon was dominated by organic inclusions. The image analysis results, by 

contrast, identified a density of over 30% because of the very dark brown to 

black colour of the humified peat fragments. At Olthof there were clear 

differences between the results from the zone counting and image analysis. 

The zone counting results indicate a small density of black particles in both 

the black and brown plaggen soils (2 – 4%) The image analysis results of the 

same horizons indicate between 34 – 46% density possibly because many of 

the inclusions are extremely small and below the threshold of identification 

used in the zone counting.  

The image analysis may also be identifying small mineral and heavily 

rubified inclusions as black particles and so indicating an erroneous density. 

Despite the differences in density both sets of results clearly show an 

increase with depth possibly as a result of increased manuring or because of 

the breakdown of inclusions added to the soil horizons by post burial 

processes. At Caheratrant there is also a large variation in the results. The 

zone count results in the Ap-1 and Ap-2 horizons (19 – 20%) are considerably 

higher than the natural soils, but like the Dutch soils, the image analysis 

results indicate higher densities (36 – 46%). Again this suggests that the 

image analysis is identifying black mineral or rubified organic particles or 

extremely weathered black carbonised particles, indicating much higher input 

from settlement centre than the loss on ignition, multi-element or fieldwork 

analysis has suggested. It is highly likely that because of the variation in the 

results from the zone counting and image analysis that in the outfield and 

outer arable areas the black inclusions are not anthropogenic inclusions and 

therefore cannot be used to indicate human amendment to soils.  
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6.9 A DISCUSSION OF THE ZONE COUNT AND IMAGE ANALYSIS 
RESULTS FROM THE THREE FARMS 

 

The use of zone counting and micromorphology to identify and quantify 

a range of organic and inorganic manuring inclusions are still relatively new 

forms of interpreting anthropogenic additions to soils but the results presented 

here for the site of Olthof and Caheratrant represent the first detailed analysis 

using these techniques. At Shirva the results can be compared to the image 

analysis results from Papa Stour, Shetland (Bryant and Davidson, 1996; 

Adderley, et al., 2006). Both studies measured the mean size and area of 

opaque minerals along with the area, mean size and number of large voids. 

Bryant and Davidson’s results showed that the black, opaque minerals were 

consistent with the micromorphological description of the organic material and 

inclusions. Bryant and Davidson concluded that the mean size and shape of 

the opaque minerals indicated the relative amount, size and distribution of 

large, macro carbonised particles. This has also been determined at Shirva, 

Olthof and Caheratrant, however, the majority of black amorphous and 

carbonised inclusions are extremely small and results can be underestimated 

unless used alongside zone counting. Spatially Bryant and Davidson’s results 

mirror those found at each of the sites analysed in this project. The kaleyard 

and garden soil sequences contain the largest density and size of opaque 

minerals with a decrease away from the settlement centre, however, there 

appears to be a completely inverse relationship between the depth of soils in 

the field and the quantity of black amorphous and carbonised inclusions. The 

shallow arable soils of Shirva, Busta and Leogh kaleyards (chapter 2, section 

2.6 and 2.7) contain the largest area and size of black inclusions (chapter 6, 

section 6.6.1 and 6.6.3) and this relationship is also present in the zone 

counting results (chapter 6, section 6.8.1 to 6.8.3). At Olthof the zone count 

analysis illustrated a very different manuring regime to the other sites (section 

6.6.1 to 6.6.3) which has resulted in considerably deeper plaggen soils 

(chapter 3, section 3.5 and 3.6) but also more micromorphological evidence of 

post burial mixing and decomposition by biological action and ploughing 

leading to smaller black amorphous inclusions (chapter 6, section 6.3.3). 

Inverse relationships with image analysis results were also determined on 
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Papa Stour, Shetland (Adderley, et al., 2006). At the isolated farm of Hamna 

Voe the shallow arable soils contained larger concentrations of uncarbonised 

turf than at the larger farms of Bragasetter and The Biggins. The results may 

be due to better preservation but it appears that Hamna Voe and Bragasetter 

was putting more emphasis on the addition of turf manure and less on fuel 

residue (Adderley, et al., 2006). This contradicts the relationship on Fair Isle 

where there appears to be a lack of organic manuring to deliberately raise the 

soil profile and an emphasis on the input of uncarbonised and carbonised 

peat inclusions. At each of Adderley’s farms there is a gradual reduction in the 

area of carbonised organic material from the farm to the grazing land and this 

pattern is repeated at each of the sample sites in this project but overall the 

mean area of the inclusions is considerably larger possibly due to the larger 

sample size. The density and size of void spaces identified by image analysis 

in the black amorphous and carbonised particles complements the hypothesis 

that most of the black inclusions are of organic origins and mirrors the zone 

count results (chapter 6, section 6.6.1 to 6.6.3) and past image analysis work 

(Bryant and Davidson, 1996; Adderley, 2006). The results of 

micromorphology, zone counting and image analysis have also made it 

abundantly clear that many of the black amorphous inclusions are extremely 

small and without any internal structure and therefore need to be identified 

and provenanced using their elemental compositions.   
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7 ELEMENTAL ANALYSIS OF BLACK CARBONISED 
PARTICLES 

 
7.1 INTRODUCTION 
 

The broad aim of this chapter is to investigate further the elemental 

composition of the black carbon particles and the black amorphous inclusions 

in a range of arable soils from the three farm sites. This enables further 

classification of the variety of black inclusions identified in the 

micromorphology, zone counting and image analysis (chapter 6) and will aid 

interpretation about material inputs and post depositional processes acting 

upon these inclusions.  

Previous analysis of the amended and anthropogenic soils within the 

gardens and kaleyards of the three sites has shown clearly that the areas 

closest to the farm centres have the highest density and area of black 

carbonised and amorphous inclusions (chapter 6, sections 6.7 and 6.8). The 

elememental analyses of the black particles was conducted in order to answer 

three main aims; first, can black amorphous particles be identified and 

categorised based upon the ratio of C:O? Secondly, do the O:C ratios of black 

carbonised particles illustrate possible source materials for the organic 

components in the soils? Lastly, do the black carbonised particles contain 

distinctive concentrations of elemental loadings associated with 

settlement/agriculture/industry and if so how do the results compare and 

contrast to the total multi-elemental results gathered in chapter 5? 

In order to accomplish this, scanning electron microscopy (SEM-EDS) 

was utilised to complement the bulk soil analysis, discussed in chapter 5, by 

allowing comparative analysis of the elements present in the soil and the 

black particles and so indicate possible reservoirs with distinctive signatures 

of phosphorus, sodium, potassium, calcium, associated with organic additions 

and contaminant elements lead, strontium, barium, zinc, copper, arsenic, 

sulphur and chlorine. The results from the SEM-EDS analysis would also 

complement the micromorphological analysis (chapter 6) to aid the 

identification of black amorphous and black carbonised particles which had 

not been identified using optical microscopy, zone counting and image 

analysis methodologies. Alongside the black carbonised and black 
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amorphous particles SEM-EDS analysis would also be conducted upon 

mineral and organic inclusions, the soil groundmass and the 

micromorphological slide in order to accurately compare and contrast the 

range of elements found and to aid the provenance for the inclusions. The 

sampling strategy and methodology for the chapter is detailed in chapter 1, 

section 1.13 but this chapter is split into several components; The SEM-EDS 

results are discussed in section (7.2) and these are broken down into the 

quantification of black amorphous and carbonised particles (section 7.2.1), the 

percentage carbon content in each landuse area, across the three farm sites 

(sections 7.2.2) and the oxygen to carbon ratio analysis (section 7.2.3). 

Section 7.2.4 describes the elemental concentrations from the black 

carbonised particles at each landuse area of each farm and this is followed by 

a discussion of the elemental results (section 7.3) and an overall discussion of 

elemental concentrations from bulk soil analysis and black carbonised 

particles (section 7.4). (Raw data in displayed in appendix 17). 

 

7.2     SCANNING ELECTRON MICROSCOPY RESULTS 
 
7.2.1 BLACK CARBONISED PARTICLES AND BLACK AMORPHOUS 

PARTICLES 
 

A key research question was the distinction between black carbonised 

particles and black amorphous fragments. The problem was partially resolved 

using a combination of detailed micromorphological description (chapter 6, 

sections 6.4 to 6.6) and quantification of internal void space (chapter 6, 

section 6.8.1), however, the determination of the elemental composition of the 

inclusions in question could aid the identification of the particles, complement 

the earlier analysis work and aid the interpretations of the development of 

amended soils (chapter 5).  

The carbon data from all 1254 black inclusions which were analysed 

were tabulised and for each site differentiate between carbonised organics 

and black amorphous fragments (Table 28). The results show that at each site 

the vast majority of fragments tested contain carbon concentrations over 40% 

and are therefore are likely to be fragments of carbonised particles. At the 

three Fair Isle sites the number of carbonised particles ranges from 98.2-
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99.4% with slightly less at Olthof (89.7%) and 83.5% at Caheratrant. At all the 

sites there were very few positively identified black amorphous particles and 

these may be mineral fragments 

 

 

 
 
7.2.2 CARBON CONCENTRATION RESULTS FROM THREE KALEYARDS 

ON FAIR ISLE 
 

Carbon results from inclusions within the kaleyards of Fair Isle are 

illustrated in figures 155 to 157. At Shirva (Fig 155) the majority of BC 

particles contain between 60-90% carbon and there is a similarly high level of 

carbon in the organic fragments. This has led to similar carbon percentages in 

the organic groundmass of the amended soils in the kaleyard where the 

mineral inclusions contain less than 40% carbon. The mineral inclusions 

contain considerably lower carbon concentrations (10-30%) and the resin 

results were also clustered between 15-30%. At Busta (Fig 156) there is a 

similar pattern of carbon distribution between the soil components. The macro 

and micro black carbon particles contain between 65-95% carbon indicating 

an addition of burnt material into the soils. The organic groundmass inclusions 

also mirror the black carbonised results (50-80%) suggesting a high level of 

mixing and breakdown of carbon organic materials.  

Site Total No of 
Black 
particles 
analysed 

No & % Black 
Carbonised 
Particles 

No & %  
Black 
Amorphous 
Particles 

Fair Isle Shirva 371 369 (99.46) 2 (0.54) 
Busta 357 351 (98.31) 6 (1.69) 
Leogh 284 279 (98.23) 5 (1.77) 

Netherlands Olthof 78 70 (89.74) 8 (10.26) 
Ireland Caheratrant 164 137 (83.53) 27 (16.47) 

Table 28, Number of black carbonised particles and black amorphous 

inclusions from kaleyard and garden areas at five farmsteads 
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Figure 155, Carbon and oxygen percentages from various inclusions at Shirva 

kaleyard 

 

 
Figure 156, Carbon and oxygen percentages from various inclusions at Busta 

kaleyard 
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As expected the mineral fragments tested contains the lowest 

quantities of carbon (10-30%) and the resin results are also clustered 

between the 20-40% carbon. 

The results from Leogh (Figure 157) are similar to the other kaleyard 

sites on Fair Isle. The majority of the carbonised particles have concentrations 

of carbon between 60-80%. This suggests that most of the black fragments 

are organic and probably derive from carbonised turf and peat fragments. The 

organic groundmass also has a similar carbon concentration illustrating a key 

relationship between the manuring material added and the overall carbon 

levels in the amended soils. There is no clear relationship between the black 

inclusions analysed and a mineral source as the carbon concentrations are 

considerably lower 5-20% and the resin of the slides ranges from 20-30% 

carbon. 

 

 
Figure 157, Carbon and oxygen percentages from various inclusions at Leogh 

kaleyard 
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7.2.3 CARBON CONCENTRATION RESULTS FROM OLTHOF GARDEN 

 

The carbon concentrations from the inclusions within the anthropogenic 

soils from Olthof have a range of distinctive patterns (Fig 158). Overall the 

macro and micro carbonised particles contain a similar range of 

concentrations between 60-100% but there are also a number of particles with 

between 10-50% carbon and these may well equate to black mineragenic 

inclusions. The majority of the black particles contain a higher carbon 

concentration than the organic groundmass (20-40%) which indicates a ability 

to retain elemental concentrations. The distinctive range of results in the 

organic inclusions suggests considerable post burial degradation which 

mirrors the results from the zone counting (chapter 6, section 6.7.2) and 

image analysis (chapter 6, section 6.9). The mineral inclusions from Olthof 

contain between 5-20% carbon and the resin has an unusually large range 

from 20-60% carbon indicating slight differences in the chemistry of the slides. 

 

 
Figure 158, Carbon and oxygen percentages from various inclusions at Olthof 

garden  
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7.2.4 CARBON CONCENTRATION RESULTS FROM CAHERATRANT 

KALEYARD 

 

The carbon concentration results from inclusions taken from 

Caheratrant kaleyard show a very similar pattern to the other sites (Fig 159). 

Once again the micro and macro BC particles contain between 60-80% 

carbon with two outliers between 80-100% carbon possibly from different 

manuring events. There is, however, slightly more variation between the black 

inclusions and the organic groundmass which suggests that burnt organic 

material was added less frequently than organic manure and sea-sand. The 

difference may also indicate a higher degree of post burial breakdown of 

organic material over time.   

 

 
Figure 159, Carbon and oxygen percentages from various inclusions at 

Caheratrant kaleyard  

 
The mineral results from Caheratrant are also unlike any from the other 

sites and range from 20-50% with considerable cross over with the organic 

groundmass results. It is already clearly understood that calcium carbonate 

beach sand was added to the Irish soils (chapter 5, sections ***) and this may 
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have increased the concentrations of carbon in the soils and the organic 

inclusions. As identified at the other sites the percentage carbon in the resin 

ranges from 20-30% and illustrates a distinctly uniform resin chemistry used in 

the production of the slides.  

 

7.3 OXYGEN:CARBON RATIO RESULTS FROM FAIR ISLE, THE 
NETHERLANDS AND IRELAND 

 

Figure 160 shows the results of the O:C ratio results for the analysed 

micro black carbonised particles. The majority of the data from the five sites 

occurs between 0.15-0.44% and suggests that the majority of the black 

inclusion analysed are carbonised organic fragments of peat and turf.   

These results are directly comparable with the evidence from the 

micromorphology (chapter 6, section 6.3 to 6.5) and zone counting results 

(chapter 6, section 6.7). There are, however, outliers of values which suggest 

that other materials are present in the soils possibly as a result of 

anthropogenic addition. At Olthof there is a very high percentage between 

0.00-0.09% which indicates the addition of wood charcoal. But there are also 

large quantities at Busta and Shirva, especially in the upper amended soil 

horizons. The presence of small charcoal particles is difficult to explain as 

there are very few trees on the island and the particles may derive from 

imported wood or charcoal brought to the island as fuel and then added to the 

garden with other manure material. There is also a peak of results between 

0.10-0.14% (softwood carbonised particles) at Busta which received wood 

from outside the island for fuel and roofing material until the late 18th century 

(Fenton, 1978). Values for the O:C ratio over 0.45% have considerably fewer 

results and most likely represents the background non-black carbonaceous 

material and heavily decomposed organic fraction within the amended soils. 

At Caheratrant there is a fairly high percentage of charcoal and carbonised 

softwood but considerably higher amounts of burnt peat and turf inclusions 

mirroring the farms on Fair Isle. 
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Figure 161, O:C ratio results from black carbonised particles +500µm2 from the kaleyard and garden areas of five farmsteads 
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Figure 161 shows the O:C ratios for the black carbonised particles above 

500µm2. Like the micro black carbonised fraction the macro sized particles are 

clustered within the 0.15-0.44% range which is associated with carbonised peat and 

turf fragments. The sites on Fair Isle have a very similar pattern of distribution, 

mainly between 0.30-0.39% with smaller outliers either side. This indicates very 

similar material input, which coincide with the predominant use of carbonised and 

uncarbonised peat material. At Olthof there are very few results in the turf and peat 

category and significantly larger peaks between 0.00-0.19% suggesting a much 

higher input of charcoal and carbonised softwoods as seen in the micro black 

carbonised fraction. At Caheratrant there are a large number of results in the peat 

and turf category, but also a large number in the non-black carbonaceous matter 

probably from the addition of beach sand and plant material included from spade 

delling which is, in places, still practised.  

 
7.4 ELEMENTAL CONCENTRATIONS FROM BLACK CARBONISED 

PARTICLES AND ORGANIC INCLUSIONS FROM FAIR ISLE, OLTHOF 
AND CAHERATRANT 

 
7.4.1 ELEMENTAL CONCENTRATIONS FROM SHIRVA KALEYARD 
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Figure 162, Mean percentage concentration of elements in black carbonised 

particles +500µm2 from Shirva kaleyard (Error bars show 95% confidence interval of 

the mean) 
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Figures 162 and 163 illustrate the elemental concentrations within black 

carbonised particles in the kaleyard at Shirva. There is an overall higher elemental 

concentration in the larger carbonised particles suggesting better retention but both 

the small and large black carbonised particles contain a wide range of elements.  
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Figure 163, Mean percentage concentration of elements in black carbonised 

particles <500µm2 from Shirva kaleyard (Error bars show 95% confidence interval of 

the mean) 
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Figure 164, Mean percentage concentration of elements in organic inclusions from 

Shirva kaleyard (Error bars show 95% confidence interval of the mean) 
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In the larger black carbonised fragments (Fig 162) there is distinctive 

elemental evidence to suggest minimal mixing of carbonised inclusions with organic 

manure especially K (1.68±0.28%), Ca (1.35±0.23%), Al (1.15±0.22%), P 

(0.79±0.18%) along with smaller concentrations of Pb, Zn, S and Cl elements 

associated with hearth residues and small industrial areas within settlements.  

The small black carbonised inclusions from Shirva kaleyard (Fig 163) contain 

13 elements including Ca, Na, Mg, K, Fe, Ba, Mn, Zn, P, S, Cs and Cl all with results 

between 0.02 to 0.13% concentration except Al (0.42±0.06%) which may be due to 

the elements frequent presence in the natural B horizons. The similar diversity of 

elements to the large black carbonised fragments suggest that the micro black 

carbonised particles were probably once part of the larger inclusions and the smaller 

elemental concentrations is due to an increase in post burial breakdown and 

leaching of elements. The lower results in the smaller black carbonised particles may 

also be due to the smaller surface areas upon which ionic binding could take place. 

Overall the elemental concentrations within the black carbonised particles 

from Shirva is very low and indicates minimal industrial pollution but the elements 

present may well have been absorbed during the burning process in settlement 

hearths and when mixed with organic manures. 
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Figure 165, Mean percentage concentration of elements from soil groundmass 

samples from Shirva kaleyard (Error bars show 95% confidence interval of the 

mean) 
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Compared to the black carbonised particles the elemental results found within 

the organic inclusions (Fig 164) and the soil groundmass (Fig 165) are much less 

diverse. In the organic inclusions (Fig 164) seven elements were found alongside C, 

O and Si. Of these there are higher concentrations of Na (4.05±1.42%), K 

(1.93±0.85%), Al (1.83±0.67%) and Mg (1.58±0.66%) which occur commonly in peat 

and turf material but may also derive from atmospheric deposition. Overall there is 

very little evidence of the transfer of elements between the black carbonised 

particles and the organic inclusions but there is small concentrations of Ca 

(0.99±0.15%), P (0.58±0.29%) and S (0.38±0.22) which may derive from the 

kaleyard hortisols or more likely from natural sources. Elemental results from the 

amended soil groundmass (Fig 165) reveal very high Fe percentages (7.37±2.92%) 

likely to derive from the natural soils, but there are also high levels of Mg 

(1.00±0.30%), Al (1.81±0.53%) and K (0.31+/-0.11%) which could also derive from 

the natural soil or from the breakdown of organic and black carbonised particles 

which may also have added trace amounts of As (0.07±0.06%) and S (0.13±0.07%) 

to the soil 

 

7.4.2 ELEMENTAL CONCENTRATIONS FROM BUSTA KALEYARD 

 

Within the amended soils in Busta kaleyard the black carbonised particles 

contain a very similar variety of elements as seen at Shirva. However, unlike Shirva 

the elemental concentrations in the micro carbonised particles are higher than in the 

larger carbonised fragments (+500µm2), (Figures 166 and 167).  Overall the 

elemental concentrations are low but there are distinctive differences between the 

large and small inclusions. In the large carbonised particles (Fig 166) there are 

higher concentrations of Al (0.44±0.02%), Fe (0.24±0.09%) and Br (0.20±0.03%). 

Alongside these however, are smaller concentrations of elements including Ca, Na, 

Mg, K, Mn and P, which range between 0.06 to 0.12%, as well as very small 

loadings of Ba (0.02±0.01%), Cu (0.02±0.01), Zn (0.04±0.02%), S (0.07±0.01%) and 

Cs (0.02±0.01%), typical of burning within settlement centres and mixing with 

anthropogenic waste.  
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Figure 166, Mean percentage concentration of elements in black carbonised 

particles +500µm2 from Busta kaleyard (Error bars show 95% confidence interval of 

the mean) 
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Figure 167, Mean percentage concentration of elements in black carbonised 

particles <500µm2 from Busta kaleyard (Error bars show 95% confidence interval of 

the mean) 
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Figure 168, Mean percentage concentration of elements in organic inclusions from 

Busta kaleyard (Error bars show 95% confidence interval of the mean) 
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Figure 169, Mean percentage concentration of elements from soil groundmass 

samples from Busta kaleyard (Error bars show 95% confidence interval of the mean) 
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The small black carbonised particles (Fig 167) show higher percentage 

concentrations of Fe (0.44±0.29%), Al (0.80±0.09%), Ca (0.51±0.07%), K 

(0.29±0.13%), P (0.25±0.04%) and Na (0.17±0.06%) as well as smaller 

concentrations of S (0.27±0.04%), As (0.04±0.03%), Zn (0.08±0.03%) and Cu 

(0.05±0.01%) possibly from the mixing of burnt residue from fires and hearths with 

organic manures prior to addition to the kaleyard. The results from Busta appear to 

differ from those at Shirva indicating different burning and manuring processes over 

time and suggest that the micro sized black carbon particles may derive from the 

residue of fires burnt in settlement centres whereas the larger fragments may equate 

to burnt organic fragments carbonised away from settlement areas.  

The organic inclusions of peat and turf tested from Busta (Fig 168) show 

higher values for Al (0.69±0.13%) and P (0.37±0.10%) as well as low concentrations 

of Ca, Na, Mg and Fe but only very small traces of elements associated with mixing 

with ash and hearth residues (Cu, Zn, S), however the results vary considerably than 

those from Shirva suggesting possible mixing between the organic fragments and 

micro black carbonised particles. Within the soil groundmass at Busta (Fig 169) there 

are greater values of Na (1.76±0.56%) and Al (1.57±0.26%) alongside smaller 

concentrations of Ca (0.04±0.03%), Mg (0.23±0.06%), K (0.31±0.19%) and P 

(0.11±0.01%). These elements possibly may originate from either natural soil 

sources or the breakdown of organic inclusions but unlike the black carbon particles 

and organic inclusions there is much less elemental evidence of the addition of 

settlement waste.  

 

7.4.3 ELEMENTAL CONCENTRATIONS FROM LEOGH KALEYARD 

 

Elemental results from Leogh kaleyard are illustrated in figures 170 to 173. 

The small carbonised particles (Fig 171) within the kaleyard include distinctive 

concentrations of Mn (1.61±0.23%), Al (0.79±0.08%) and Fe (0.57±0.23%) as seen 

at Shirva and Busta alongside smaller percentages of Ca, Na, Mg, K and P 

indicating similar processes of manuring and post burial breakdown.  
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Figure 170, Mean percentage concentration of elements in black carbonised 

particles +500µm2 from Leogh kaleyard (Error bars show 95% confidence interval of 

the mean) 
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Figure 171, Mean percentage concentration of elements in black carbonised 

particles <500µm2 from Leogh kaleyard (Error bars show 95% confidence interval of 

the mean) 
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There are also small concentrations of Ba (0.01±0.005%), Pb (0.23±0.08%) 

Br (0.04±0.02%), Cl (0.07±0.03%) and S (0.19±0.04%) suggesting the inclusion of 

burnt material alongside unburnt organics. The results from the macro black 

carbonised particles (Fig 170) are lower than the small inclusions but there are 

similar patterns of elemental concentration including Al (0.45±0.04%) and Mn 

(0.31±0.26%) and smaller percentages of Ca (0.06±0.005%), Na (0.11±0.03%), Mg 

(0.08±0.03%), K (0.07±0.01%), Fe (0.12±0.02%), Ti (0.06±0.02%) and P 

(0.14±0.01%). There is also very little difference in the concentration of elements 

associated with hearth residues and industrial activity in the larger inclusions with 

very low concentrations of Ba (0.02±0.01%), Zn (0.04±0.01%), S (0.07±0.01%) and 

Cl (0.03+/-0.003%) but the results still suggest that the smaller inclusions are 

retaining some elemental concentration.  
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Figure 172, Mean percentage concentration of elements in organic inclusions from 

Leogh kaleyard (Error bars show 95% confidence interval of the mean) 

 

The similarity in the elemental results suggest that the large and small black 

carbonised particles may have been burnt together or at least mixed together before 

being added to the garden hortisols, possibly because of a different manuring regime 

to the larger farms at Shirva and Busta. Interestingly the unburnt organics (Fig 172) 

are also likely to be the main input material at Leogh as the elemental results are 
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surprisingly high, especially in Fe (2.03±0.59%), P (0.54±0.18%), Al (0.72±0.20%) 

and smaller quantities of Ca (0.22±0.14%), Mn (0.23±0.09%) and K (0.16±0.09%). 

The high Fe content is also present in the soil groundmass (Fig 173) with Mn, Al, Mg 

and Br but the large standard errors suggests a distinctive variation in results and 

large amounts of mixing and post burial translocation through the soil profile by soil 

water. The soil groundmass at Leogh has no evidence of anthropogenic manuring 

from settlement centres, possibly because the evidence has been removed from the 

soil profile by post burial leaching.  Of all the farms on Fair Isle, Leogh kaleyard has 

been deserted the longest whereas amended additions have continued at Shirva and 

Busta until recently and probably includes modern dumps of material.    
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Figure 173, Mean percentage concentration of elements from soil groundmass 

samples from Leogh kaleyard (Error bars show 95% confidence interval of the mean) 
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7.4.4 ELEMENTAL CONCENTRATIONS FROM OLTHOF GARDEN 

 

Of all the areas analysed, Olthof contains the fewest black carbon particles 

and the majority of the ones analysed are smaller than 500µm2. Like Fair Isle 

inclusions the large black carbonised particles contain higher concentrations of Fe 

(3.20±1.10%), Al (2.71±0.18%), P (2.68±0.22%), K (2.34±0.38%), Ca (2.28±0.25%) 

and Na (2.00±0.09%) (Fig 174). In contrast the smaller carbonised particles contain 

lower percentage concentrations of Fe (2.20±0.47%), Al (1.00±0.19%) and P 

(0.47±0.24%) and considerably lower concentrations of Ca, Na, Mg and K (Fig 175).  
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Figure 174, Mean percentage concentration of elements in black carbonised 

particles +500µm2 from black plaggen soils in Olthof garden(Error bars show 95% 

confidence interval of the mean) 

 

These results contradict the understanding that an increase in post burial 

breakdown would increase the surface area of the black carbon particles and 

therefore the binding surfaces. In this case the breakdown of the black carbonised 

particles and high post burial leaching must be removing elemental evidence from 

the soil horizons. 
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Figure 175, Mean percentage concentration of elements in black carbonised 

particles <500µm2 from black plaggen soils in Olthof garden (Error bars show 95% 

confidence interval of the mean) 
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Figure 176, Mean percentage concentration of elements in black carbonised 

particles <500µm2 from brown plaggen soils in Olthof garden (Error bars show 95% 

confidence interval of the mean) 
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Figure 177, Mean percentage concentration of elements from soil groundmass 

samples from the black plaggen soils in Olthof garden (Error bars show 95% 

confidence interval of the mean) 
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Figure 178, Mean percentage concentration of elements from soil groundmass 

samples from the brown plaggen soils in Olthof garden (Error bars show 95% 

confidence interval of the mean) 
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The results suggest that on average, the small black carbonised particles are 

more affected by post burial degradation and this increases the elemental 

concentration in the groundmass (Fig 178). The micromorphological analysis 

(chapter 6, section 6.4) and oxygen to carbon ratio analysis (chapter 7, section 7.5) 

show that most of the black carbon particles in the Dutch hortisols are charcoal 

particles, however, they do not contain high concentrations of elements associated 

with anthropogenic activity. The micro black carbonised particles also contain low 

concentrations of Zn (0.37±0.08%), Pb (0.12±0.08%0, Ba (0.03±0.02%), As 

(0.02±0.01%) and S 0.04±0.01%) which could be attributed to the mixing of material 

burnt in settlement centres. The evidence is strengthened by the fact that neither the 

macro black carbonised particles or the organic groundmass show any evidence of 

similar elemental concentrations. Clear evidence of elemental variation over time can 

be seen between the results from the black and the brown plaggen soils (Figs 175 

and 176). In the black plaggen soil horizons there are more elements present than in 

the brown plaggen soils and in every case the concentrations are higher. The brown 

plaggen soils typically have concentrations of Ca (0.55±0.40%), Al (0.72±0.27%) and 

P (0.75±0.20%) alongside smaller concentrations of Na, Mg, Fe and K (Fig 176). 

There is however, no evidence of any mixing with elements from hearths or industrial 

areas within settlements. Results from the micromorphological analysis of the 

plaggen soils at Olthof (chapter 6, section 6.4) reveal very few whole organic 

inclusions, due to the poor level of preservation. Therefore, no comprehensive 

elemental data could be gathered from these particles, but this does suggest that the 

small and large black carbonised fragments may explain how the plaggen soils are 

able to retain some soil elements even if the turf organic inclusions are broken down 

by post burial processes. Evidence of the poor retention of elements by the black 

and brown plaggen soils can be seen in the soil groundmass results (Fig 177 and 

178). In both anthropogenic soils there are considerably less elements present than 

in the black carbonised particles suggesting that leaching has removed much of the 

elemental evidence, as determined in the bulk soil chemistry results (chapter 5, 

sections 5.2.1, 5.3.1, 5.4.4, 5.6.1). The black plaggen soil contains Ca, Na, Mg, K , 

Al, P and S and the brown plaggen soil contains similar concentrations of Na, Mg, K 

and Al all of which may be of natural or anthropogenic origin and certainly occur 

within the natural sandy soils and meadowland turves used as manure. The error 

bars in the brown plaggen soils of figures 176 and 178 are much more varied than in 
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the other samples and suggest that there is much more variation in the results due to 

mixing with the natural soil horizons. 

 

7.4.5 ELEMENTAL CONCENTRATIONS FROM CAHERATRANT KALEYARD 

 

Elemental results for the micro particles of black carbonised inclusions (Fig 

180) show high concentrations of Fe (2.18±0.76%) and P (0.59±0.12%), but the 

fragments over 500µm2 (Fig 179) contain more Ca (0.40±0.17%), Na (0.19±0.03%), 

Al (1.32±0.13%), Mg (0.24±0.05%), K (0.27±0.03%), Mn (0.09±0.03%) and Ti 

(0.19±0.03%) per particle, a pattern more like Olthof than the Fair Isle farms. The 

larger carbonised particles also contain very small amounts of Ba (0.02±0.01%), Pb 

(0.03±0.01%) and As (0.01±0.005%) which most likely derive from natural sources.  
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Figure 179, Mean percentage concentration of elements in black carbonised 

particles +500µm2 from Caheratrant kaleyard (Error bars show 95% confidence 

interval of the mean) 

 

In contrast, the smaller carbonised particles contain a wider range of 

elemental evidence including Cu (0.36±0.27%), Zn (0.21±0.10%) and S 

(0.38±0.08%) suggesting that the two fractions of carbonised particles derive from 

different sources and represent carbonised wood or peat/turf fragments which have 
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been burnt after being used or stored in domestic areas. Organic fragments in the 

garden hortisol (Fig 181) show that there are concentrations of Al (1.08±0.21%), K 

(0.64±0.08%), Mg (0.53±0.07%), Na (0.17±0.13%) and Ca (0.34±0.14%) present 

from organic additions, and also concentrations of Cu (0.42±0.15%), Zn 

(0.19±0.08%), S (0.52±0.16%) and Cl (0.19±0.14%). These elements may occur 

naturally within the soils, a result of absorption after the breakdown of carbonised 

charcoals and ashes or possibly derive from the mixing of burnt and un-burnt 

manuring components prior to addition. By comparison the soil groundmass results 

(Fig 182) show higher values for Fe (1.30±0.13%), Al (0.81±0.33%) and Ca 

(0.54±0.23%) which may occur from the addition of peat and turf organics or from 

the natural soil. The values of P (0.46±0.12%) may originate from the degradation of 

organic and black carbonised inclusions. The soil groundmass shows no evidence, 

however, of any distinctive evidence of elements associated with the addition of 

amended waste, suggesting either retention by the inclusions, or a slow release 

which enables the elements to be lost by leaching. 
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Figure 180, Mean percentage concentration of elements in black carbonised 

particles <500µm2 from Caheratrant kaleyard (Error bars show 95% confidence 

interval of the mean) 
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Figure 181, Mean percentage concentration of elements in organic inclusions from 

Caheratrant kaleyard (Error bars show 95% confidence interval of the mean) 
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Figure 182, Mean percentage concentration of elements from soil groundmass 

samples from Caheratrant kaleyard (Error bars show 95% confidence interval of the 

mean) 
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7.5 DISCUSSION OF THE ELEMENTAL RESULTS IN BLACK CARBONISED 
PARTICLES IN KALEYARDS AND GARDENS FROM THE THREE FARMS 
 

The elemental results from the amended inclusions in hortisols from the 

kaleyard and garden areas can be used to determine a number of key conclusions. 

On Fair Isle the three kaleyards at Shirva, Busta and Leogh all contain organic 

inclusions and soil groundmass with very similar elemental signatures and typically 

contain moderate percentage concentrations of Fe, Al, K, Mg, Na, Ca, Mn and P. 

These elements occur readily in the peat and turf organic manures as well as in the 

black carbonised particles and the natural soils. The soil groundmass contains only 

very small amounts of metals and pollutants compared to the black carbonised 

particles which by comparison contain higher concentrations of Pb, Zn, S, Ba, As, Cs 

and Cu, typical evidence of burning in occupation areas and settlement centres. The 

elemental transfer of metals between the black carbon particles, organic particles 

and the soil matrix appears to be minimal, as only small traces of S, Cu, Zn and As 

were found at Shirva and Busta. However, the micro black carbonised particles 

appear to be very resilient to post burial degradation and have an ability to retain 

high elemental concentrations. Elemental results in the soil groundmass, organic 

inclusions and even the large black carbonised particles are considerably lower and 

suggest that the inclusions are more susceptible to post burial chemical, biological 

and physical breakdown. In a wider context the elemental results from the black 

carbonised particles at Olthof indicate a different type of carbonised material, which 

because of the high acidity of the soil are present in fewer numbers than at any of 

the sites but results from the O:C ratio analysis suggest that the majority are more 

resistant charcoal and carbonised softwoods. At Caheratrant there is a 

predominance of carbonised peat and turf fragments mixed with calcareous beach 

sand and some charcoal fragments. The elemental results from Olthof show 

distinctive concentrations of Ca, Al, P and Fe in the micro black carbonised particles 

but unlike Fair Isle, higher values of Ba, Pb, As, Zn and S in the larger black 

carbonised particles. Considerable leaching in the plaggen soils at Olthof has 

resulted in rapid degradation of organic inclusions and a groundmass with very low 

elemental concentrations and contains only minimal amounts of Fe, Na, Al and P 

and no evidence of elements associated with settlement fire residue. It is therefore 

concluded that the majority of the black carbonised particles in the plaggen soils are 
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highly resistant charcoal fragments, able to retain elemental concentrations better 

than the less resilient organic fragments and the soil groundmass. At Caheratrant, 

like Fair Isle, the smaller black carbonised particles contain higher quantities of Fe 

and P than the large inclusions but very similar concentrations of Na, K and Mg and 

lower concentrations of Cu, Zn and S suggesting that there is similarity between the 

two size fractions. There is likely to have been more mixing of carbonised particles 

and organic fragments as the range of elements present are very similar which may 

derive from the reuse of organic and charcoal material in animal byres or from mixing 

in storage areas before being added to the garden soil profile.  

 

7.6 DISCUSSION OF THE ELEMENTAL CONCENTRATION RESULTS FROM 
BULK SOIL ANALYSIS AND WITHIN BLACK CARBONISED PARTICLES 
IN KALEYARD AND GARDEN SOILS 

 

The elemental concentration results from the bulk samples and the black 

carbonised particles (Table 29) illustrate some clear similarities and differences 

which may be attributable to manuring. As discussed in chapter 5, section 5.6 the 

elemental results from the bulk samples at Shirva (section 5.6.1) and Caheratrant 

(section 5.6.2) contain the highest amounts of P, Ca, Zn, Fe, Al and Na, whereas at 

Olthof the elemental values are considerably lower (section 5.6.3). From these 

results alone one might suggest that less manuring from organic and domestic waste 

occurring at Olthof but the historical and fieldwork data (chapter 3, section 3.5 and 

3.6) indicate considerably deeper anthropogenic horizons manured over many 

hundreds of years as seen in plaggen soils across the Netherlands (Pape, 1970; 

Spek 1992; van Smeerdijk, et al., 1995; van Mourik 1997). Reductions in the 

elemental values must therefore have been occurring as a result of increased post 

burial degradation of the manuring components and leaching of key signature 

elements.  

The bulk elemental results also complement the results found from the 

micromorphology, zone counting and image analysis, in that the largest elemental 

signatures occur in the soils with the most organic inclusions. Table 29 also contains 

the elemental results from the black carbonised particles.  
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Elemental Concentrations 

Bulk Samples  
(chapter 5, section 5.7) 

Black Carbonised Particles  
(chapter 7, section 7.6) 

Elements S O C Elements S O C 

P xxx xx xx P xx/xxx xx x 

Ca xxx xx xxxx Ca xxx xx xx 

Pb xx x t Pb x t t 

Ba x xx x Ba t t t 

Cu x x x Cu - - x 

Sr xx x xxx Sr - - - 

Cl t - t Cl t - t 

Cs t - - Cs t - - 

S xx - t S x - x 

Zn xx x xx Zn t t t 

As - x xx As t - t 

Mg xxx x xx Mg x t x 

K xxx x x K xx/xxx t x 

Fe xxxx xx xxxx Fe xx xx xx/xxx 

Al xxxx xx xxx Al xxxx xx xx/xxx 

Na xxx x xxx Na xxx x x 

Mn xxx xx xxx Mn t - t 

Ti x t t Ti - t t 

Key: Shirva – S, Olthof – O, Caheratrant – C  

xxxx – v. high, xxx – high, xx – medium, x – low, t – trace, - no data.   

 

Table 29, Table of elemental concentrations in the bulk amended and anthropogenic 

soils and the black carbonised particles from kaleyard and gardens at Shirva, Olthof 

and Caheratrant 

 

At the three sites there appears to be an association between the most 

common elements (P, Ca, K, Fe and Al) found in the soils and the black carbonised 

particles, possibly because of better ionic binding and post burial transfer of 

elements between the organic soil groundmass and the black carbonised particles. 
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These common elements occur readily in the organic components used in the 

development of amended soils but can also occur naturally and may derive from 

external sources such as the atmosphere, sea water, soils and sediments. Patterns 

in the elements associated with human activity (Pb, Ba, Cu, Sr, Cl, Cs, S, Zn and As) 

are less common in the black carbonised particles than the bulk soil samples at each 

of the sites. This suggests that either carbonisation occurred away from any sources 

of human occupation or industry, leading to a lack of elemental enhancement, or the 

particles did contain larger levels of elements but they were leached out quickly into 

the soils and subsequently led to higher elemental results in the bulk samples.  

Elemental analysis from black carbon particles from the terra preta soils have 

demonstrated similar high results of C alongside lower quantities of P, Si, Ca, and Fe 

(Liang, et al., 2006) and traces of Al, Si and P in smaller fragments from organic 

inclusions with a high mineral content (Glaser, et al., 2000). The results also mirror 

those gathered by Schaefer, et al., (2004) where distinctive concentrations of P, Si, 

Al, Fe, Mn, Ti and Mg in the were found in the soil matrices, however, Schaefer does 

not analyse the elemental concentration of the black carbon particles but the results 

from all three analyses show a very similar suit of elements. Experimental analysis 

by Lehmann, et al., 2003 showed that the inclusion of charcoal led to better retention 

of P, Ca, Mn and Zn in the soils alongside other anthropogenic inclusions of fish 

fragments (Lima, et al., 2002)  

 In Scotland the black carbonised particles at Nairn were related to higher P 

values in anthropogenic soils (Davidson, et al., 2006) and on St Kilda the black 

carbonised particles contained high concentrations of Pb, Cu and Zn and related to 

the widespread distribution of peat ash across the Village Bay arable farmland 

(Davidson, et al., 2007a). On Fair Isle the Pb, Cu and Zn results are considerably 

lower and indicate far less peat ash input into the kaleyard and is more akin to the 

manuring process seen on South Uist (Davidson, et al., 2007a). Alongside high 

results of Cu and Zn the particles also contained higher concentrations of Fe, O and 

Ti similar to many of the black carbonised particles from all three sites indicating 

distinctive elemental effect from the natural soils. The groundmass of the 

anthropogenic soils at St Kilda were very similar to the results from Fair Isle and 

other than being dominated by C and O also contains P, Al, Fe, Na, Ca and K 

related to manuring with organic inclusions (Davidson, et al., 2007a).    
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More detailed elemental mapping of the anthropogenic soils from St Kilda shows 

higher concentrations of Ca, Cu, Pb, Zn, Ba, Sr in the black carbonised particles and 

the results from the three sites illustrate considerably lower results which indicates a 

very different process of manuring. However, the results also show high Fe, Ca and 

moderate to low P levels which is similar to the garden and kaleyard soils (Wilson, et 

al., 2008). The low results may reflect the mobility of elements in the soils and to 

some extent the limits of the techniques used.  

 The limited elemental analysis of organic inclusions from the Netherlands 

have shown distinctive concentrations of Ca, Mg, K and Na in prominent soil 

inclusions associated with a small farm house (Oonk, et al., 2009a, 2009b and 

2009c) and the results are directly related to the highest concentration of Ca, Cu, P 

and Zn in the bulk soil analysis. At Olthof the results of Ca, Mg, K and Na are also 

very similar between the bulk and black carbonised particles and are directly 

associated with anthropogenic additions to the soils, but, the results are lower than 

from the results taken directly adjacent from the house.    
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8 CONCLUSIONS 
 
8.1 INTRODUCTION 
 

The research themes developed in this project were undertaken in order to 

more fully understand the process by which humans develop soils for arable farming. 

The analysis was conducted in a range of geographical localities across Europe with 

particular focus on the quantification of black carbonised and black amorphous 

particles and their significance as cultural resources in the soil. The project design 

outlined in chapter 1 and summarised in table 30 was developed so that each 

chapter can be taken as an individual piece of research. Accordingly, each chapter 

contains separate summaries of analysis, interpretations and conclusions. The 

results are detailed in each chapter and summarised in table 31. This chapter draws 

upon the key developments chapters 2 to 7 in order to re-evaluate the site based 

aims outlined in section 1.11 and the  to further understand the spatial distribution, 

character and history of manuring processes and the specific use of carbonised 

organic fragments.  

 
8.2 THE SPATIAL DISTRIBUTION OF AMENDED AND ANTHROPOGENIC 

SOILS ACROSS SMALL FARMSTEADS IN NORTH WEST EUROPE 
 

• Macro and microscopic analysis of the soils from Fair Isle showed clear 

evidence of anthropogenic additions to the soil at Shirva, Busta and Leogh, 

but distinctive deepening of the topsoil horizons has not occurred as found on 

other Orkney and Shetland islands. 

• At Shirva and Leogh the amended soil horizons deepen away from settlement 

centres as a result of the input of more organic manures (Peat) in the infield 

and outfield areas and post depositional soil movement. 

• The oldest settlements on Fair Isle (Shirva and Leogh) have considerably 

deeper amended soil horizons than the farms developed to cope with 

population pressures in the 1860s (Taing). 
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Chapter 8 Aims Methods Site Farm Chapter  Section 
8.2  
         

1. The spatial distribution of soils Auger survey  Fair Isle Shirva 2 2.6.1 
Leogh 2 2.6.2 
Taing 2 2.6.3 

Netherlands Olthof 3 3.5.1 to 3.5.4 
Ireland Caheratrant 4 4.4.1 to 4.4.5 

Test pit excavations Fair Isle Shirva 2 2.7 
Netherlands Olthof 3 3.6 
Ireland Caheratrant 4 4.5 

8.3 2. The physical and chemical state of soils Soil pH. Fair Isle Shirva, Busta, Leogh 5 5.2.1 
Netherlands Olthof 5 5.2.2 
Ireland Caheratrant 5 5.2.3 

Loss on ignition Fair Isle Shirva, Busta, Leogh 5 5.3.1 
Netherlands Olthof 5 5.3.2 
Ireland Caheratrant 5 5.3.3 

Particle size  Fair Isle Shirva 5 5.4.1 to 5.4.3 
Busta 5 5.4.1 
Leogh 5 5.4.1 

Netherlands Olthof 5 5.4.4 to 5.4.6 
Ireland Caheratrant 5 5.4.7 to 5.4.9 

Magnetic susceptibility Fair Isle Shirva, Busta, Leogh 5 5.5.1 
Netherlands Olthof 5 5.5.2 
Ireland Caheratrant 5 5.5.3 

Multi-element analysis Fair Isle Shirva 5 5.6.1 
Netherlands Olthof 5 5.6.2 
Ireland Caheratrant 5 5.6.3 

8.4 3. Soil micromorphology of the soils Soil micromorphology Fair Isle Shirva, Busta, Leogh 6 6.2 
Netherlands Olthof 6 6.3 
Ireland Caheratrant 6 6.4 

8.5  
 
 
 
 
 

4.The quantification of organic and inorganic inclusions Zone counting  
 
 

Fair Isle Shirva, Busta, Leogh 6 6.6 
Netherlands Olthof 6 6.6 
Ireland Caheratrant 6 6.6 

Image analysis Fair Isle Shirva, Busta, Leogh 6 6.7 
Netherlands Olthof 6 6.7 
Ireland Caheratrant 6 6.7 

8.6 5.The elemental composition of black carbonised, black amorphous 
and organic inclusions 

SEM-EDS analysis; O:C ratios Fair Isle Shirva 7 7.2.2 + 7.3  
Busta 7 7.2.2 + 7.3  
Leogh 7 7.2.2 + 7.3  

Netherlands Olthof 7 7.2.3 + 7.3  
Ireland Caheratrant 7 7.2.4 + 7.3  

SEM-EDS analysis; multi-
elemental analysis 

Fair Isle Shirva 7 7.4.1 
Busta 7 7.4.2 
Leogh 7 7.4.3 

Netherlands Olthof 7 7.4.4 
Ireland Caheratrant 7 7.4.5 

Table 30, Summary table of the broad aims, methods and result locations in the thesis 
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Site Physical & Chemical State of the Soils Micromorphology and Particle Quantification Elemental Composition 
 Soil 

Depth 
pH LOI 

(I) 
Particle 
size 

MS 
(II) 

Multi Element (/-no data, t-trace, *-low, **-medium, 
***-high, ****-v. high) 

Micromorphology 
& Zone Count 

Image 
Analysis 

SEM analysis in the kaleyards and 
gardens  

 P C
a 

M
g 

K Al N
a 

F
e 

M
n 

P
b 

B
a 

C
u 

Sr S Z
n 

p b
p 

t b
t 

c b
a 

a
m

p
l 

m bp voids  P C
a 

M
g 

K A
l 

N
a 

F
e 

B
a 

Z
n 

S 

d a d a 

S
hirva, Fair Isle 

K
aleyard 
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m 
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*
*
* 

*
*
* 

*
*
* 

*
* 

*
*
*
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* *
*
*
* 

* * * * / / * *
*
* 

*
*
* 

t t t *
*
* 

*
*
* 

*
*
* 

*
*
*
* 

*
*
*

*
*
* 

*
*
* 

*
*
*

B
l
a
c
k 

*
*
*

*
*
*

* *
*

*
*
*
* 

*
*
* 

*
* 

t t * 

Infield 
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mm 
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57 – 
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*
*
* 

* *
*
* 

*
* 

*
*
*
* 

* *
*
*
* 

*
* 

t t / / / t *
*
* 

*
*
* 

* t t *
*
* 

*
* 

*
* 

*
*
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*
*
*

*
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*
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*
*
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* *
*
*
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* 
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*
*
* 
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C
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*
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* t t *
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Table 31, Summary of the main results from the amended arable and anthropogenic soils at the three sites 
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• Black plaggen soils in the Netherlands are prolific across each landuse 

area but the brown plaggen soils are considerably shallower and are 

concentrated around the centre of Olthof and other archaeological 

settlement areas. 

• Despite the distinctive depth both the black and brown plaggen soils 

contain very little macro evidence of anthropogenic input from 

settlement centres, as a result of post burial breakdown.  

• Macro and microscopic evidence of the arable soils from Caheratrant 

illustrate clear evidence of human amendment, but distinctive 

deepening of the topsoil has not occurred and therefore the soils 

should not be termed “plaggen” soils. 

• The amended arable soils at Caheratrant show distinctive increases in 

depth towards the settlement centre and clearly illustrate that manuring 

was being conducted over a wide area but focussed in the kaleyard 

areas.  

 

The initial aim of the thesis was to analyse the distribution of amended 

and anthropogenic soils across a number of sites and landuse areas in order 

to test the theory that the deepest stratigraphies were located closest to 

settlement centres. This was conducted using a detailed archeo-historical and 

geoarchaeological methodology as a result of similar interdisciplinary studies 

from north west Europe and the results of which are discussed in chapters 2,3 

and 4.  

At each of the sites a well organised localised manuring technique was 

determined especially on Fair Isle where the limited peat resource was 

extracted and added to the soil through a careful recycling process similar to 

the island of Papa Stour (Bryant and Davidson, 1996). This interpretation was 

determined from the fieldwork results (chapter 2, sections 2.6 and 2.7) and 

micromorphological evidence (chapter 6, section 6.3). The deepest 

anthropogenic soils were found at Olthof and the soils had very distinctive 

mineragenic textures with far less organic inclusions suggesting less input of 

recycled domestic material (chapter 3, section 3.5.1 to 3.5.4 and 3.6). The 

fieldwork analysis highlighted the occurrence of both the black and brown 

plaggen soil across the entire site which complemented the work of Pape 
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(1970) as well as historical and archaeological research and suggests that the 

farm size has not changed considerably since its construction (Appels, 2003) . 

The fieldwork survey was also able to show that over the site the depth of the 

brown plaggen soil varied very little suggesting a similar level of organic 

addition to each of the landuse areas but that the manuring levels increased 

with the development of the black plaggen soils, especially in the garden area 

(chapter 3, section 3.6), a result which mirrored the results found by Dercon, 

et al., (2005).  Localised manuring strategies could also be determined on Fair 

Isle where the soil profiles differed considerably from other marginal island 

areas. The kaleyard sequences at Shirva, Busta and Leogh (chapter 2, 

sections 2.7.1) are remarkably shallow compared to soil depths at Marwick 

(Davidson and Simpson, 1984), Papa Stour (Bryant and Davidson, 1996) and 

St Kilda (Meharg, et al., 2006) and indicated a limited manuring history, 

however, the inclusion of high quantities of macro-anthropogenic inclusions 

including charcoal and burnt peat fragments (chapter 6, section 6.6) indicated 

the addition of more domestic waste material possibly to reserve the peat 

material for fuel, as suggested by Fenton (1978), and for use in the infield and 

outfield areas. Manuring across the entire farm at Shirva and Leogh may have 

been developed because of the need to utilise as much space as possible for 

cultivation and increase yields. The fieldwork and historical documentation 

show that the amended arable soils at the older farms are considerably 

deeper than the amended arable soils at Taing (chapter 2, section 2.6.3), 

(occupied for a considerably shorter length of time) and the natural soils on 

the island. At Caheratrant the fieldwork revealed a distinctive localised 

manuring strategy which differed between landuse areas (chapter 4, section 

4.5.1 to 4.5.4). In the kaleyards highly organic household waste was mixed 

with very large quantities of calcareous beach sand and was distributed in 

such a way that clear stratigraphical difference could be determined, reflecting 

the last addition before desertion (chapter 4, section 4.5.1). The inner and 

outer arable areas were characterised by the addition of far less peat and turf 

organics and beach sand and considerably less input from domestic sources, 

suggesting infrequent distribution of waste material (chapter 4, section 4.5.2). 

Past analysis on Irish anthropogenic soils indicated a development similar to 

the Dutch plaggen process and has even been called “Irish Plaggen” soil 
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(Conry, 1971). However the research conducted in this thesis suggests that 

the soils should be regarded as amended arable soils similar to those from 

Fair Isle and agrees with the comments put forward by Mackenzie, (2007, 

p33) that these soils do not constitute plaggen soils. Landuse changes 

throughout history have also been determined through the mapping of the soil 

horizons at the three sites. At Shirva and Caheratrant peat cutting for fuel led 

to the draining of naturally wet areas of land and in some areas agricultural 

soils were developed by initially ploughing the remnant organic horizon before 

the addition of more manuring components leading to the burial of the natural 

soil profile (chapter 2 and 4, sections 2.7.4 and 4.6.4). At Shirva the shrinkage 

of the domestic area and the demand for arable land led to the development 

of an amended soil above a once occupied area and this has preserved 

underlying archaeological features. A similar process has occurred at Olthof 

where prehistoric farms constructed directly upon the coversand ridges have 

been totally buried by the development of plaggen soils as a result of the 

increase in population and demand for agricultural land (Appels, 2003). It is 

therefore imperative that amended and anthropogenic soils be treated as 

cultural horizons which are interpreted alongside the structural evidence in 

order to determine the landscape history of a site.  

 

8.3 THE PHYSICAL AND CHEMICAL STATE OF AMENDED AND 
ANTHROPOGENIC SOILS 

 

• The overall soil pH results from the anthropogenic and amended soils 

were very similar at all three farms as a result of manuring with 

moderately acidic organic material (peat and turf). However, extensive 

sanding at Caheratrant across each land use area led to higher soil pH 

results. 

• The loss on ignition results from Fair Isle and Caheratrant were 

considerably higher than at Olthof which considerably contrasted the 

spatial distribution of the soils discovered and indicates a high degree 

of post burial breakdown of organic inclusions.    

• The soils analysed at all three farms contained very high fine sand 

contents as a result of mixing with natural soils and from the addition of 
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organic manures. At Fair Isle and at Caheratrant the soils also 

contained much larger sand sized particles which were a mixture of 

anthropogenic additions and natural inclusions.  

• The magnetic susceptibility results indicate that alongside organic 

manure domestic waste, carbonised material and hearth ash were 

added to the soils at all three sites especially those on Fair Isle. 

• Overall the multi-element results are very low especially the key 

elements associated with organic and inorganic manuring. Patterns of 

distribution could still be determined across landuse areas with a 

general decrease from settlement centres outwards at each site. On 

Fair Isle and at Olthof concentrations of the key elements P, Ca, Mg, K, 

Cu, Ni, Sr, Cs, Ba and Pb were considerably lower than results from 

previous analysis but at Caheratrant the results were much more 

consistent.  
 

The physical and chemical state of the amended and anthropogenic 

soils at the three sites ranged considerably. At Shirva the soil pH results were 

very similar to other isolated Scottish islands including Skye (Entwistle, et al., 

1998 and 2000) (chapter 5, section 5.2.1). At Caheratrant kaleyard the large 

quantities of calcium carbonate beach sand added to the anthropogenic soils 

led to distinctly higher soil pH results which mirrored the results determined by 

(Conry, 1971), (chapter 5, section 5.2.3). The deliberate process of sanding to 

increase the soil pH appears to be occurring on a much more sporadic basis 

outside the kaleyard. Micromorphology (chapter 6, section 6.5) and historical 

evidence illustrated by Conry and Mitchell, (1974) has clearly shown that it is 

occurring but the results may be directly affected by increased mixing by 

ploughing and biological action. The soil pH results gathered from Olthof were 

also very similar to the results gathered in past analysis (Pape, 1970) but this 

research has clearly shown that there are very subtle variations in results 

between the black and brown plaggen soils, as a result of modern ploughing 

and increased leaching (chapter 5, section 5.2.2) especially in the garden 

area. Similar patterns of results were also found on Fair Isle and this might 

indicate smaller additions of domestic waste material or acidic peat and turf 

organics (chapter 5, section 5.2.1). At Caheratrant the kaleyard sequence 
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contained clearly identifiable horizons of organic soils and beach sands which 

were identifiable by physical characteristics and the distinctive soil pH values. 

At each site the soil pH of the natural manuring components was determined 

(chapter 5, section 5.2.4). At Fair Isle and Caheratrant the peat soils 

contained low soil pH results and this may explain the decrease in results in 

the amended soil pH. However, unlike Caheratrant no direct evidence was 

found for the deliberate raising of the soil pH in the amended soils on Fair Isle 

as was suggested in the anthropogenic soils found by Chrystall (1994).  

The amount of soil organic matter was also analysed in order to 

determine the level of amendment at each site. The results showed clear 

indications, along with other tests, of the amended and anthropogenic soils 

ability to retain organic additions since the abandonment of the farms. Overall, 

at each of the sites the loss on ignition results decreased with depth 

suggesting the input of less organic manure. The highest results were found 

in the kaleyard areas at Fair Isle and Caheratrant (chapter 5, section 5.3.1 

and 5.3.3) with a gradual decrease away from the farm centres. At Olthof the 

loss on ignition results were considerably lower in all the landuse areas but a 

similar pattern of results could still be seen suggesting a higher input of 

organic matter in the area directly adjacent to the farm (chapter 5, sections 

5.3.2). The quantity of organic material within the soils is however very reliant 

upon the modern landuse as suggested by Dercon, et al., (2005). At Fair Isle 

and Caheratrant the landscape is dominated by short grass and arable 

agriculture has not been conducted for over 100 years (chapter 2 and 4, 

sections 2.4.1 and 4.5.1) whereas at Olthof the continuation of arable farming 

and in particular deep ploughing may explain the low loss on ignition results 

(chapter 5, section 5.3.2). Low results were also found in the garden even 

though this landuse area was out of use today and this may be due to the 

amount of organic material in the heathland and grassland turves compared 

to the extremely high quantities in the peats used at the other sites. At 

Caheratrant the distinctive calcium carbonate horizons in the kaleyards had 

very low loss on ignition results which suggested that there was minimal 

mixing with organic material or that the organic content had been removed 

from the soil horizons by biological consumption and mixing (chapter 5, 

section 5.3.2). The results also illustrated clear variations with depth and can 
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be fundamentally linked with past and present landuse. At Fair Isle and 

Caheratrant the sites are covered by short grass but at Olthof there are a 

mixture of arable, wooded and grass environments and this has also led to 

distinctive variations in results as determined by Dercon, et al., (2005). Past 

changes in landuse were also found in an infield area of Shirva (chapter 2, 

sections 2.7.3). The soil sequence illustrated loss on ignition results very 

similar to those from Shirva and Busta kaleyards and suggested that in the 

past organic additions were considerably higher (chapter 5, section 5.3.1). 

Two buried peat soils were also identified at Shirva and Caheratrant with very 

high organic contents and these possibly indicate two areas of peat extraction 

which have been transformed into arable areas because of land pressures 

and due to the high organic content which would be ideal for the development 

of an amended soil (chapter 2 and 4, sections 2.4.1 and 4.5.1).  

Particle size results from the soils of the three sites was very similar as 

a direct result of the local sandy geologies (chapter 5, section 5.4). But there 

are a number of other possible processes by which coarse particles may have 

entered the soil horizons. At each of the sites the natural soils have 

demonstrated high levels of sand sized particles and it is highly likely that 

mixing by ploughing and soil organisms has occurred but it is also very likely 

that the process of organic extraction from upland areas has also moved large 

quantities of sand particles into the arable soils as found on Orkney by 

Simpson, (1997). This process has been demonstrated at each of the sites 

through the micromorphological results (chapter 6, sections 6.2). Along with 

the sand it is also clear that silt and clay levels within the soils have derived 

from the addition of organic manures and it is these size fractions which are 

responsible for the storage of organic material. In Ireland the sand sized 

particles have also derived from the addition of calcareous sand and evidence 

from micromorphological analysis (chapter 6, section 6.5.1) demonstrated a 

dominance of calcite inclusions suggesting widespread addition across a 

number of landuse areas. On Fair Isle the low levels of calcite and dominance 

of quartz in the soils led to the suggestion that beach sand was not used on 

the island because of a lack of source material (chapter 6, section 6.3.1). The 

absence may also be due to the high soil pH results of the natural peats used 

for manuring compared to the more acidic peats used in Ireland. If this is the 
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case it is unusual for the Scottish Island area as past research has clearly 

shown that the addition of beach sand was a common occurrence (Fenton, 

1978; Davidson and Simpson, 1984; Simpson, 1997). On Fair Isle the likely 

source of the fine mineral material is from wind blown sand and till which has 

also been shown to make up high levels of coarse particles in anthropogenic 

soils on Papa Stour (Carter and Davidson, 1998), (chapter 6, section 6.3.2). 

Across the Netherlands the process of plaggen manuring traditionally 

incorporates large quantities of sand inclusions present in organic heathland 

turves. But the use of the meadowland material has illustrated a small 

increase in silt and clay particles which are distinctive in the floodplain alluvial 

soils utilised in the early medieval period (Spek, 1992; Dercon et al 2005), 

(chapter 6, section 6.4.1 to 6.4.3). At Caheratrant and Fair Isle the amount of 

silt and clay particles in the amended arable soils may also derive from the 

natural till soils as demonstrated in chapter 6, sections 6.2 and 6.4, but they 

have been used to demonstrate differences between sites which may be due 

to anthropogenic amendment (Conry, 1971; Chrystall, 1994).  

Elemental analysis of the soils was undertaken in order to determine 

the amount of human additions to the soils (chapter 5, sections 5.6.1 to 5.6.3). 

The results illustrate that at each of the sites there is far lower overall 

elemental concentrations than previous work has concluded illustrating either 

less input from settlement sources or the increase in post burial leaching by 

the movement of soil water through the soil profile. (Pape, 1970; van 

Smeerdijk, et al., 1995; Bryant and Davidson, 1996; Entwistle, et al., 1998 and 

2000; Dercon, et al., 2005; Simpson, et al., 2005; Wilson, et al., 2005 and 

2008; Davidson, et al., 2006; Meharg, et al., 2006). 

Despite this, there were higher concentrations of P, Ca, Pb, Ba, Cu, Sr, 

Cd, Zn and As in the amended and anthropogenic soils than in the natural 

soils indicating either deliberate or accidental addition with time. At Fair Isle 

and Caheratrant the higher silt and clay levels in the soil has led to higher 

elemental concentrations whereas at Olthof the results were considerably less 

at each of the landuse areas (chapter 5, sections 5.6.1 to 5.6.3). The 

evidence also indicated a distinct reduction in P, Ca, Pb, Ba, Cu, Sr, Cd, Zn 

and As with the distance from the centre of settlements suggesting less input 

from hearths, fires and carbonised organic materials. At Shirva the amended 
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soils in the kaleyards and infield areas contained considerably higher amounts 

of phosphorus than the outfield area and although there were trace 

concentrations of other elements present these derived from the natural soils 

(chapter 5, sections 5.6.1 to 5.6.2). Past landuse changes at Shirva infield 

were detectable based upon the higher quantities of P, Ba, Cd, Cu, Ni, St and 

Ti in the Ap-4 horizon. The elemental evidence mirrored the organic content 

(chapter 5, section 5.3), soil pH (chapter 5, section 5.2) and magnetic 

susceptibility results (chapter 5, section 5.5) in suggesting that this was likely 

to have been an old kaleyard area within the proximity of a deserted farm 

house. Elemental variations from the black and brown plaggen soils at Olthof 

were remarkably similar but small variations were detectable in the black 

plaggen soils which mirrors the increase in rate of addition and change from 

the meadowland green turf to heathland turf. This pattern was most 

distinguishable in the garden area because of an increase in anthropogenic 

input with considerably less evidence of domestic waste in the inner and outer 

arable areas and increased elemental concentrations deriving from the natural 

coversands (chapter 5, section 5.6.2). At Caheratrant the most prolific 

element present was calcium as a direct use of calcareous beach sands and 

results from the kaleyards were particularly high and mirror the results 

determined by Conry and MacNaeidhe, (1999) (chapter 5, section 5.6.3). 

Results from the inner and outer arable areas were considerably lower and 

may derive from the natural till soils as well as from anthropogenic addition 

(chapter 5, sections 5.6.3). Overall despite the low results found during the 

multi-element testing at each of the sites it is clear that there are a number of 

elements which can be used to highlight the input of domestic waste and 

carbonised particles but in some places these elements have been found in 

small quantities in the natural soils making interpretation difficult. A number of 

elements were shown to increase with depth (Fe, Mg, Al, Mn, Ni, Ti) which 

suggested more influence from the natural soils and may have become 

included into the amended soils by heavy mixing as well as organic manuring 

components.  

The results gathered from the bulk analyses have complemented the 

interpretations discussed in section 8.2 and although there are distinct 

similarities in manuring methods, the size of the farms, geology and pedology 
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the resultant anthropogenic soils have illustrated key differences across 

landuse areas and changes with depth 

 

8.4 THE TEXTURE, COMPOSITION AND CHARACTERISTICS OF THE 
AMENDED AND ANTHROPOGENIC SOILS 

 

• At each site the kaleyard and garden areas contain the most evidence 

of organic and inorganic manuring with a decrease away from the 

centre of the farmsteads. 

• The amended arable soils from Shirva, Fair Isle and Caheratrant, 

Ireland contain more organic and inorganic evidence of the addition of 

manuring materials than at Olthof, the Netherlands, due to modern 

ploughing, soil organisms and leaching. 

• Micromorphological evidence from Fair Isle suggests that the main 

organic component used in the arable soils is peat but that the 

manuring methods are on a considerably smaller scale to other sites 

on Orkney and Shetland. 

• The black and brown plaggen soils of Olthof contain very similar 

micromorphological evidence with the main organic component 

consisting of meadowland and heathland turf.  

• At Caheratrant micromorphological evidence shows that the calcareous 

sands were added to arable soils in a wide range of landuse areas but 

that the mixing with organic peat and turf occurred mainly in the 

kaleyard and inner arable areas. 

• Micromorphological evidence of silty/clay laminations and excremental 

pedofeatures at each farm illustrates a higher biological and chemical 

breakdown of organic components than in natural soils as a result of 

manuring and cultivation.  
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8.5   THE IDENTIFICATION AND QUANTIFICATION OF MANURING 
COMPONENTS USED IN THE DEVELOPMENT OF AMENDED AND 
ANTHROPOGENIC SOILS 

 

• Across each of the farms and landuse areas there is a reduction in the 

density and size of organic inclusions with depth especially peat, turf, 

and charcoal and carbonised organic inclusions due to natural post 

burial breakdown by organic and chemical processes.  

• The kaleyard and garden soils contain the highest densities of black 

carbonised and black amorphous inclusions suggesting a greater input 

from settlement centres a pattern which mirrors the organic manuring 

process. 

• The infield, outfield and arable areas contain considerably lower 

densities of organic inclusions and carbonised particles due to less 

anthropogenic addition.   

• The void space results from Fair Isle and Caheratrant are larger than at 

Olthof suggesting more post burial breakdown of large carbonised 

particles.  

• The use of zone counting and image analysis have complemented 

each other and highlighted similar patterns of the density and size of 

organic and inorganic manuring inclusions, especially black carbonised 

particles.  

 

The description, identification and quantification of manuring 

components in the soil horizons was conducted by micromorphology (chapter 

6, sections 6.2, 6.3 and 6.4) zone counting (chapter 6, section 6.6) and image 

analysis (chapter 6, section 6.7). The results have shown that the input of 

organic materials from Shirva and Caheratrant are very similar with distinctive 

concentrations of peat and carbonised peat inclusions alongside red and 

brown amorphous organics (chapter 6, section 6.2 and 6.4). These are similar 

results to past work conducted on Papa Stour, Shetland (Bryant and 

Davidson, 1996; Davidson and Carter, 1998; Adderley, et al., 2006). At Olthof, 

however, there are higher number of charcoal inclusions along with more turf 

and carbonised turf particles (chapter 6, section 6.3), results which develop 
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further the micromorphology of plaggen soils originally described by van de 

Westeringhe, 1988 and van Smeerdijk, et al., 1995. Across each landuse area 

large numbers of black amorphous particles were found and to assist the 

zone counting analysis a process of quantification by image analysis was 

conducted with particular focus upon the density and size of the particles and 

void spaces within the inclusions. At Fair Isle the greatest density of black 

amorphous particles were found in the kaleyard of the oldest and largest 

farmsteads (chapter 6, section 6.6.1) and the zone counting results illustrated 

a similar pattern (chapter 6, section 6.6.1 to 6.6.3). Of those amorphous 

particles identified there were also less distinctive patterns in the overall 

density and size of void spaces. In the kaleyard there was a clear link 

between the density of black carbonised particles with the density of void 

space (chapter 6, section 6.6.1 and 6.6.3) suggesting that a large number of 

particles thought to be amorphous black particles are likely to be small 

indistinct carbonised inclusions or heavily decomposed organic inclusions. In 

the infield and inner arable areas there was a decrease with depth in the 

number of black particles (chapter 6, section 6.6.2) however, the size of those 

particles increased with depth suggesting less breakdown and more 

conclusive evidence that there had been a change in landuse in the past. 

Complications in the image analysis methodology were clearly seen in the 

analysis of the buried peat soil horizons at Shirva and Caheratrant (chapter 2 

and 4, sections 2.7.4, 4.6.4). The number of organic black fragments 

increased dramatically throughout the amended soil because of the very 

heavy mixing of the organic horizon but the analysis of the size of the 

inclusions and the void spaces present did highlight key differences between 

inclusions in the other landuse areas and acted as a partial experimental 

analysis by which other soils on Fair Isle could be compared (chapter 6, 

section 6.6). Difficulties did arise however with determining the differences 

between the deliberately added black peat organics and material deriving 

from the buried soil. This particular sequence of soils highlights clearly why 

analysis of the form and development of anthropogenic soils must be 

conducted using a range of qualitative and quantitative processes. Overall 

however, the combination of micromorphology, zone counting and image 

analysis (chapter 6, sections 6.2, 6.3, 6.4, 6.6 and 6.7) has successfully 
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highlighted the range in organic inclusions within the amended soil horizons. 

The black particles identified by the image analysis were different from other 

particles as they clearly contained heavily rubified edges from biological, 

physical and chemical breakdown and therefore represent highly humified 

peats not black carbonised particles, a process used to identify laboratory 

produced carbonised inclusions (Simpson, et al., 2003). At Olthof and 

Caheratrant the number of black amorphous particles were considerably 

lower than on Fair Isle which goes directly against the hypothesis that the 

farms with deeper anthropogenic soils would contain more carbonised 

particles and this must be due to the use of carbonised peat as a main 

manuring source alongside the soils ability to retain organic and carbonised 

particles. At each site however, there does seem to be a clear reduction in 

density and size of amorphous black particles with distance from the centre of 

the farms suggesting that the focus of deposition was in the garden hortisols 

(chapter 6, section 6.8.1 to 6.8.3). This complemented the zone counting 

analysis which also illustrated differences between the number and size of 

inclusions in the plaggen soils (chapter 6, section 6.7.1 to 6.7.3). At each 

landuse area there was a clear decrease in size with depth in the black 

plaggen horizons as a result of very heavy modern ploughing which has 

resulted in the increased breakdown of a large number of black inclusions, 

mirroring the results found at Valthe, Drenthe by van Smeerdjik, et al., (1995). 

In the brown plaggen soil however there appears to be a slight increase in 

number either because the carbonised particles, added during the medieval 

period, have been less affected by post-medieval ploughing or because heavy 

mixing of the black plaggen soil has created increased downwards movement 

of black amorphous particles. A similar pattern was also witnessed in the 

infield and outfield areas when addition was historically less abundant and 

particle degradation seems to have been affected to an even greater extent 

by biological, physical and chemical action. In contrast to this, the mean 

density and size of voids from Olthof suggested that in the garden the little 

variation between the results in the black amorphous particles could indicate 

the addition of charcoal material with very similar rates of decomposition 

indicating addition and mixing by spade rather than deep ploughing (Conry, 

1971). At Caheratrant kaleyard the zone counting and image analysis both 
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illustrated a distinctive decrease of carbonised particles and black amorphous 

particles with depth which showed that traditional Irish spade techniques 

(Gailey, 1970) were in part preserving the smaller black amorphous inclusions 

(chapter 6, section 6.6 and 6.7). Unlike the other two sites the infield and 

outfield areas at Caheratrant revealed relatively high numbers of black 

amorphous particles but the sizes and number of void spaces were very small 

and may result from the addition of beach sand and heavy mixing with the 

natural.     

 

8.6 THE ELEMENTAL COMPOSITION OF BLACK CARBONISED, 
BLACK AMORPHOUS AND ORGANIC INCLUSIONS IN AMENDED 
AND ANTHROPOGENIC SOILS FROM KALEYARD AND GARDEN 
SOILS 

 

• Elemental analysis has shown that at each farm over 80% of black 

amorphous inclusions tested may be classed as black carbonised 

particles; Shirva, Fair Isle 99%, Olthof, Netherlands 89%, Caheratrant, 

Ireland 83%. 

• At each site the O:C ratios of black carbonised particles ranged from 

0.00 to 0.49 illustrating organic source materials including carbonised 

peat and turf at Shirva and Caheratrant (0.20-0.49) and charcoal and 

carbonised softwoods at Olthof (0.00-0.49).  

• Overall the mean elemental concentrations in the black carbonised 

particles is very small and reflects the low results determined in the 

multi-elemental results from the bulk soil analysis but there are 

concentrations of P, Ca, K, Fe and Al which have not been identified in 

any other organic inclusions.  

• At Fair Isle and at Caheratrant the larger black carbonised particles 

contain higher concentrations of P, Ca, K, Fe and Al as a result of less 

post burial decomposition. At Olthof the increase breakdown of black 

carbonised particles has resulted in considerably lower elemental 

concentrations.  

• Concentrations of elements associated with human settlement and 

activity including the disposal of food and household debris, animal and 
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human faeces and industrial waste(Pb, Ba, Cu, Sr, Cl, S, Zn, and As) 

are considerably lower at all three sites suggesting burning away from 

industrial and settlement centres or that the elements were not 

prevalent in the organic fuel material.  
 

The utilisation of multi-element analytical techniques has proved to be 

extremely useful in determining the difference between black amorphous and 

black carbonised fragments (chapter 7, sections 7.2 and 7.3). The overall soil 

elemental composition at each of the sites was identified using ICP-AES and 

this revealed a suit of elements which were comparable with other 

anthropogenic soils to indicate possible human additions and natural 

concentrations. More detailed elemental concentrations were gathered from 

specific inclusions within the anthropogenic soils with the SEM-EDS analysis 

to aid identification of black carbonised particles and their roles in loading and 

post-depositional retention of specific elements. The multi-element results 

(chapter 7, section 7.2.2 to 7.2.4) illustrated that at each of the sites the 

number of amorphous black particles was very small once the quantity of 

carbon was determined and indicates that in the kaleyard areas the addition 

of carbonised material in the past was likely to have been a major additional 

factor (chapter 7, sections 7.4.1 to 7.4.5) The density and size of carbonised 

particles identified today is therefore a result of addition and post depositional 

breakdown and this varies at each of the sites. This work has concluded, 

however, that because of the range of formation processes, the assumption is 

that black inclusions within the soil horizons are “carbonised” and this can 

lead to erroneous conclusions regarding formation. Elemental analysis of 

black inclusions was restricted to the kaleyard areas because of the high 

numbers identified by the micromorphology, zone counting and image 

analysis (chapter 6, sections 6.2, 6.3, 6.4, 6.6, 6.7)  but more detailed analysis 

of the buried peat horizons at Shirva and Caheratrant would have aided the 

distinction between manuring materials added from settlement centres. The 

use of the scanning electron microscope has clearly proven to be a highly 

successful method to identify the elemental concentrations in black 

carbonised particles and organic inclusions within amended and 

anthropogenic soil horizons and more work is needed to separate natural 
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background elemental levels and concentrations associated with manuring. 

Oxygen to carbon ratios (chapter 7, section 7.3) have aided the identification 

and interpretation of possible source materials from each site and the results 

complement the micromorphological results (chapter 6, sections 6.2, 6.3 and 

6.4). The results suggest that the majority of black particles are carbonised 

derivations of peat and turf fragments with larger numbers of charcoal at 

Olthof because of the increased availability of wood. The elemental results 

from the bulk soil samples illustrated small increases in elements associated 

with anthropogenic additions (chapter 5, section 5.6) and the SEM-EDS 

analysis suggested that the increases were being retained by a range of 

organic inclusions including the black carbonised particles possibly as a result 

of post burial elemental cycling. Small patterns could however be seen in the 

range of elements present in the black carbonised particles across the 

different landuse areas at each of the sites indicating a reduction of settlement 

and carbonised waste with distance from the farm centres and mirroring other 

bulk soil analyses.  

The low elemental results gathered in both the bulk soil samples 

(chapter 5, section 5.6) and the black carbonised inclusions (chapter 7, 

section 7.4) are unlike the results gathered from other settlement sites. At Fair 

Isle the physical depth of the amended arable soils in the kaleyards (chapter 

2, section 2.7.2) is directly contradictory to the density and size of black 

carbonised particles and the elemental concentrations within the soils and the 

carbonised inclusions is very different to the anthropogenic soils identified on 

Shetland (Wilson, et al., 2005; Davidson, et al., 2007). However, it is clear that 

the isolated island communities had very individual methods of developing 

arable soils. On Fair Isle the limited peat resource appears to have been used 

mainly as a for fuel in domestic fires resulting in large quantities of black 

carbon in all landuse areas but with limited elemental concentrations such as 

P, Al, Fe, Na, K, Ca unlike the organic and carbonised peat inclusion in the 

anthropogenic soils at Olligarth, Papa Stour (Wilson, et al., 2005), Nairn 

(Davidson, 2006) and St Kilda (Davidson, et al., 2007).  

A similar process appears to have occurred at Caheratrant where 

amended arable soils were developed using peat and turf (chapter 6, section 

6.3) and mixed with black carbonised particles which like Fair Isle contained 
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low elemental concentrations (chapter 7, section 7.4.5). The results 

determined in this thesis mirrored closely the results from soils analysed by 

Conry and MacNaeidhe, (1999).  

The elemental results in the black carbonised particles mirrored the 

results from the Dutch plaggen soils and demonstrated a reverse relationship 

with depth to the farms on Fair Isle (chapter 3, section 3.5). Past elemental 

analysis has however shown that post burial breakdown and leaching has 

occurred even around the centre of settlement areas leading to almost a 

complete loss of elemental information (Oonk, et al., 2009a; Oonk, et al., 

2009b). The elemental results do however correspond with the interpretation 

that charcoal particles are able to retain elemental data better than other black 

carbonised particles (Lehmann, et al., 2003) as the majority of black carbon 

particles identified at Olthof were of charcoal origin.  

Despite the low elemental concentrations at all three sites the 

elemental results suggest a decrease in manuring with carbonised particles 

away from settlement centres as predicted and the ability for the black 

carbonised particles to retain small traces of elements over long periods of 

time.  

 

8.7 SUMMARY 
 

 This thesis set out to determine similarities and differences between a 

range of anthropogenically amended and created soils from across north west 

Europe, and to analyse their role in determining the occupation and agrarian 

history in a variety of marginal geographical locations. The results ascertained 

in this thesis have illustrated clear differences between the type and 

distribution of soils at the three sites and the variations are directly associated 

with the availability of manuring material, traditional agrarian processes and 

natural soil processes acting upon the horizons and inclusions within them. 

Despite the clear differences there were also distinctive similarities in the soil 

distribution across landuse areas and geochemistry, which make these 

horizons exceptionally important to the complete understanding of the history 

of a site and this thesis has emphasised that only with a clear multidisciplinary 

analysis of sites and landscapes can a more complete understanding of 
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human influence be fully understood. Table 31 illustrates the major analytical 

findings of this thesis and each of the aims are discussed in chapter 8, 

sections 8.1 to 8.6 but the key aims illustrated in chapter 1, section 1.12 

require summarising. This project has clearly shown that on Fair Isle there is a 

highly unique method of agrarianism being conducted which has created 

highly distinctive anthropogenically amended soils. Unlike other Shetland and 

Orkney islands they are not particularly deep, but compared to the shallow 

podzolic natural soils and unsuccessful occupation sites there is clear 

evidence of organic and inorganic inclusions which have created distinctive 

horizons. Deep anthropogenic soils were encountered at Olthof, the 

Netherlands where a considerably larger supply of meadowland and 

heathland turf was available to ‘create’ an organic horizon to grow crops. The 

distribution of these soils mirrored that of Shirva and Caheratrant with an 

emphasis on the manuring of areas directly around the farm centre. However, 

the geochemistry of the Dutch soils displayed surprisingly low pH and organic 

levels as well as fewer organic and carbonised inclusions. This was clear 

evidence of the distinctive post burial removal of manuring evidence and the 

reversion back to a podzolic soil indeed the exceptional depth of plaggen soils 

in the Netherlands may be a direct response by humans to dealing with 

extremely poor soils which lose added organic material very quickly. The soils 

at Olthof illustrated no clear way in which the farmers had tried to raise the pH 

which was in complete contrast to the soils analysed at Caheratrant, Ireland. 

This coastal site had a long tradition of the addition of calcareous sand to 

arable a garden soils resulting, once again, in deepened soil horizons around 

the farmsteads. There was also distinctive evidence to suggest that a similar 

manuring process to that of Fair Isle was being conducted, by which, the soils 

were regularly amended but not deliberately deepened other than in the 

kaleyards. The location of both Fair Isle and Caheratrant on the very edge of 

inhospitable environments would have required expert farming skills and it 

seems likely that the nurturing of crops within well sheltered kaleyards 

containing deeper organic and nutrient rich soils would have been essential to 

the survival of populations. One of the most important inclusions added the 

soils at all three sites alongside organic material was a range of carbonised 

inclusions. Whether deliberately or accidentally added to the soils this thesis 
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has clearly shown that the highest density and area of inclusions actually 

derive from the shallowest soil sequence which in turn must have a direct 

relationship with the ability of the soils to retain nutrience and evidence of 

manuring. At Olthof historical documentation has shown clearly that material 

from settlements was often added to the soils and the absence of evidence 

does not indicate a lack of domestic addition. However, the current intensive 

arable activity on the site has increased the post burial decomposition of 

inclusions and therefore evidence of historic agrarianism. 

The final contribution that this thesis has made is in furthering the 

understanding of the elemental composition of manuring components 

especially the carbonised particles. These inclusions are a frequent constant 

to both anthropogenically amended soils and archaeological horizons and it 

has been demonstrated here that there are distinctive patterns between the 

landuse history of a site, the geochemistry of soils and of the carbonised 

inclusions. Despite being small, the elemental concentrations within the burnt 

turf, peat and charcoal inclusions at Shirva and Caheratrant were enough to 

illustrate subtle landuse variation and even in the poorly preserved fragments 

at Olthof smaller reductions in elemental concentration could be seen. The 

low results may represent typical background results for marginal rural sites 

and further analysis on carbonised particles in urban and industrial areas 

might illustrate higher concentrations.         
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