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Abstract: In Lewis Carroll’s Through the Looking Glass and What Alice
Found There, Alice enters through a mirror into the realm reflected. It is,
of course, left-right reversed but this is only the start of the fun and games
when Alice explores the world on the other side of the mirror. Borrow-
ing, if only in part, Carroll’s theme of inversion, my aim is to take a look
at classical logic in something of an inverted way, or, to be more exact, in
three somewhat inverted ways. Firstly, I come at proof of the completeness
of classical logic in the Lindenbaum–Henkin style backwards: I take for
granted the existence of a set Σ for which it holds, for some formula φ, that
ψ /∈ Σ if, and only if, Σ ∪ {ψ} ` φ then read off the rules of inference
governing connectives and quantifiers that most directly yield the desired
(classical) semantic properties. We thus obtain general elimination rules
and what I have elsewhere called general introduction rules. Secondly, the
same approach lets us read off a different set of rules: those of the cut-free
sequent calculus S ′ of (Smullyan, 1968). Smullyan uses this calculus in
proving the Craig–Lyndon interpolation theorem for first-order logic (with-
out identity and function symbols). By attending very carefully to the steps
in Smullyan’s proof, we obtain a strengthening: if φ ` ψ, 0 ¬φ and 0 ψ
then there is an interpolant χ, a formula employing only the non-logical vo-
cabulary common to φ and ψ, such that φ entails χ in the first-order version
of Kleene’s 3-valued logic and χ entails ψ in the first-order version of Gra-
ham Priest’s Logic of Paradox. The result, which is hidden from view in
natural deduction formulations of classical logic, extends, I believe, to first-
order logic with identity. Thirdly, we look at a contraction-free “approxima-
tion” to classical propositional logic. Adding the general introduction rules
for negation or the conditional leads to Contraction being a derived rule,
apparently blurring the distinction between structural and operational rules.

Keywords: Completeness proof for classical first-order logic,
Lindenbaum–Henkin construction, general elimination rules, general
introduction rules, Craig interpolation lemma, Kleene’s strong three-valued
logic, Logic of Paradox, Łukasiewicz’s infinite-valued logic, Contraction
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1 Introduction

Speaking of A. J. Ayer’s criticism of Sartre’s philosophy of le néant, the
Norwegian philosopher Arne Næss said,

Characteristically the critic’s appeal in this case is not to our sci-
entific sensibilities and the logical calculus of predicates but to
that much respected tribunal in British philosophy, Alice through
the Looking Glass. (Næss, 1968, p. 318)

To give it its proper title, this work, the second of the Reverend Charles
Lutwidge Dodgson’s Alice books, is Through the Looking-Glass and What
Alice Found There. Alice enters through a mirror into the realm reflected.
It is, of course, left-right reversed but this is only the start of the fun and
games when Alice explores the world on the other side of the mirror.

I shall not invoke Through the Looking-Glass as a tribunal (however,
exactly, one might do that). I want only to borrow, and only in part, Lewis
Carroll’s theme of inversion.1 My aim is to take a look at classical logic in
something of an inverted, back-to-front way, or, to be more exact, in three,
distinct but related, somewhat back-to-front ways.

First I’ll come at the Lindenbaum–Henkin proof of completeness back-
wards, obtaining rules with a view to showing that the maximal, consistent
extension has the properties required of the set of formulas. Then I’ll look
at a refinement of the Craig–Lyndon Interpolation Theorem for Classical
First-Order Logic using a formulation of first-order logic derived from the
first part. Thirdly, I’ll develop what can reasonably be called a contraction-
free variant of Classical First-Order Logic. Replacing standard rules for
negation or the conditional with the rules obtained in the first investigation,
i.e., by changing what would normally be thought of as operational rules,
we re-introduce contraction (at the cost of proofs without the subformula
property).

2 Ideal rules for proving completeness2

In outline the orthodox procedure when proving the completeness of classi-
cal logic in the Lindenbaum–Henkin style is as follows:

1On the looking-glass theme and inversion in Carroll’s writings, see (Carroll, 1970, n. 4,
pp. 180–83).

2This section is in part a reworking of material drawn from (Milne, 2008, 2010, 2015).
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1. Starting from a (possibly empty) set of premises, Σ, and a formula, χ,
that is not derivable from the set and given an enumeration of formulas
in the language, one expands the premise set successively adding just
those formulas whose addition does not lead to the derivability of the
initially underivable sentence.

2. In the limit this procedure yields a set of sentences Σ∞ for which, for
all formulas φ of the language,

φ /∈ Σ∞ if, and only if, Σ∞ ∪ {φ} ` χ.

3. We then use the rules of the logic to show that Σ∞ has exactly the
closure properties it would have were it the set of formulas true (sat-
isfied) in a model. As ψ /∈ Σ∞, there is, then, a model in which all
members of Σ are true and χ is not.

Let us go at this from the opposite end—Carrollian inversion! Suppose
that we have a set of formulas possessing the closure properties of a set of
formulas true (satisfied) in a model as classically understood. What would
be the best rules for showing this?

You may think that this isn’t a very precise question so let me show you
what I have in mind. Consider conjunction, first of all. Here we need that
φ ∧ ψ ∈ Σ∞ if, and only if, φ ∈ Σ∞ and ψ ∈ Σ∞. First, I’ll contrapose
this: φ ∧ ψ /∈ Σ∞ if, and only if, φ /∈ Σ∞ or ψ /∈ Σ∞. Next, I’ll recast this
in terms of the Lindenbaum–Henkin condition of non-membership:

◦ if Σ∞ ∪ {φ} ` χ then Σ∞ ∪ {φ ∧ ψ} ` χ;

◦ if Σ∞ ∪ {ψ} ` χ then Σ∞ ∪ {φ ∧ ψ} ` χ;

◦ if Σ∞ ∪ {φ ∧ ψ} ` χ then Σ∞ ∪ {φ, ψ} ` χ.

What we are looking for are generally applicable rules of inference that
guarantee this as directly as possible. What we read off the first condition
is that when φ together with side premises entails χ then φ ∧ ψ together
with those same side premises also entails χ. Likewise, from the second
condition we read off that when ψ together with side premises entails χ
then φ ∧ ψ together with those same side premises also entails χ. We set
these out as follows:
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φ ∧ ψ

[φ]m
.
.
.
χ

m ∧-elimination (l);χ
φ ∧ ψ

[ψ]m
.
.
.
χ

m ∧-elimination (r).χ

These are no more than transcriptions of the standard elimination rules in
what is sometimes called the general elimination format. (See (Milne, 2015,
p. 192) for references.) Terminology: we say that the conjunction occurs
categorically and that the conjuncts occur hypothetically in these rules.

We read off the third condition that when φ ∧ ψ together with side
premises entails χ then those same side premises together with φ and ψ
suffice to entail χ. We may write this thus:

φ ψ

[φ ∧ ψ]m
.
.
.
χ

m ∧-introduction.χ

(Here the conjunction occurs hypothetically, the conjuncts categorically.)
From this, which promises to be the most straightforward case, we see

that introduction rules are very different in form from the norm. Usually, the
introduced connective occurs as main connective in a formula which stands
as conclusion of the application of the rule:

φ ψ .
φ ∧ ψ

In our rule the introduced connective occurs as main connective in a formula
which is an assumption apt for discharge in the application of the rule. In
effect, the standard rule is the special case when χ is φ ∧ ψ.

In a small step in the direction of familiarity, disjunction gives us these
conditions:

◦ if Σ∞ ∪ {φ} ` χ and Σ∞ ∪ {ψ} ` χ then Σ∞ ∪ {φ ∨ ψ} ` χ;

◦ if Σ∞ ∪ {φ ∨ ψ} ` χ then Σ∞ ∪ {φ} ` χ;

◦ if Σ∞ ∪ {φ ∨ ψ} ` χ then Σ∞ ∪ {ψ} ` χ;

and hence these rules:
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φ

[φ ∨ ψ]m
.
.
.
χ

m ∨-introduction (l);χ

ψ

[φ ∨ ψ]m
.
.
.
χ

m ∨-introduction (r);χ

φ ∨ ψ

[φ]m
.
.
.
χ

[ψ]m
.
.
.
χ

m ∨-elimination.χ

The standard ∨-elimination rule is already in general elimination format.
In the case of the conditional, we get something really different. First, we

have that φ→ ψ ∈ Σ∞ if, and only if, φ /∈ Σ∞ or ψ ∈ Σ∞. Contraposing,
φ → ψ /∈ Σ∞ if, and only if, φ ∈ Σ∞ and ψ /∈ Σ∞. Hence, recasting in
terms of the condition of non-membership:

◦ if Σ∞ ∪ {ψ} ` χ then Σ∞ ∪ {φ, φ→ ψ} ` χ;

◦ if Σ∞ ∪ {φ→ ψ} ` χ then φ ∈ Σ∞;

◦ if Σ∞ ∪ {φ→ ψ} ` χ then Σ∞ ∪ {ψ} ` χ.

The first clause gives us the general elimination form of modus (ponendo)
ponens:

φ→ ψ φ

[ψ]m
.
.
.
χ

m →-elimination.χ

The third clause too is straightforward in its import:

ψ

[φ→ ψ]m
.
.
.
χ

m →-introduction (c).χ

It’s the second clause, and, in particular, what to do with that φ ∈ Σ∞ in
the consequent, that at first sight poses a problem. But we can think of it
this way: the clause as a whole tells us that Σ∞ ∪ {φ → ψ}’s entailing χ
suffices for φ’s belonging to Σ∞. And φ belongs to Σ∞ if, and only if, the
assumption that adding φ to Σ∞ lets us derive χ is equivalent to saying that
Σ∞ itself entails χ. Putting this in the form of a rule, we get:
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[φ]m
.
.
.
χ

[φ→ ψ]m
.
.
.
χ

m →-introduction (a).3χ

Here’s another way to think about this. If Σ∞ ∪ {φ → ψ} ` χ only if
φ ∈ Σ∞ then there’s an incoherence in having both Σ∞ ∪ {φ → ψ} ` χ
and Σ∞ ∪ {φ} ` χ, i.e., φ /∈ Σ∞. Now, in context, ‘Σ∞ ` χ’ is a way of
expressing that incoherence, for our starting point is, exactly, that Σ∞ 0 χ.

These both help when we turn to negation, as we now do. We have that
¬φ ∈ Σ∞ if, and only if, φ /∈ Σ∞. We have, on the one hand, that that
¬φ ∈ Σ∞ and that φ ∈ Σ∞ are jointly incoherent. On the first way, this
gives us the familiar ¬-elimination rule, ex falso quodlibet:

φ ¬φ
¬-elimination.χ

We have, on the other hand, that that ¬φ /∈ Σ∞ and that φ /∈ Σ∞ are
jointly incoherent. On the second way, this gives us the Rule of Dilemma as
¬-introduction rule:

[φ]m
.
.
.
χ

[¬φ]m
.
.
.
χ

m ¬-introduction.χ

Before we turn our attention to rules for the quantifiers, let’s look at
these propositional logic rules a little more closely. We’ve read the rules
off the closure properties of a set of formulas true (satisfied) in a model
as classically understood. If the rules capture those properties, rather than
just being in some way consequences of them, then, in another backwards
journey, we should be able to read the semantic constraints off the rules.
And so we can. We read them as follows: label categorically occurring
subformulas as true, hypothetically as false; label formulas in which the
connective of interest occurs the other way around—hypothetical = true,
categorical = false. Doing this we revisit the utterly familiar:

◦ the ∧-elimination (l) rule tells us that φ ∧ ψ is false when φ is false;
3Elsewhere I have called this ‘Tarski’s Rule’ (Milne, 2008, 2010) for it bears the same

relation to the tautology sometimes called ‘Tarski’s Law’ as the better known Peirce’s Rule
does to Peirce’s Law.
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◦ the ∧-elimination (r) rule tells us that φ ∧ ψ is false when ψ is false;

◦ the ∧-introduction rule tells us that φ ∧ ψ is true when φ and ψ are
both true;

◦ the ∨-elimination rule tells us that φ ∨ ψ is false when φ and ψ are
both false;

◦ the ∨-introduction (l) rule tells us that φ ∨ ψ is true when φ is true;

◦ the ∨-introduction (r) rule tells us that φ ∨ ψ is true when ψ is true;

◦ the→-elimination rule tells us that φ→ ψ is false when φ is true and
ψ is false;

◦ the→-introduction (a) rule tells us that φ→ ψ is true when φ is false;

◦ the→-introduction (c) rule tells us that φ→ ψ is true when ψ is true;

◦ the ¬-elimination rule tells us that ¬φ is false when φ is true;

◦ the ¬-introduction rule tells us that ¬φ is true when φ is false.

Now consider the binary connective with the truth-table (exclusive dis-
junction) in Table 1.

φ+ ψ
ψ

t f

φ
t f t
f t f

Table 1: Truth-table for exclusive disjunction

We can read off two +-introduction rules. In the order top right, bottom left
we get:

φ

[ψ]m
.
.
.
χ

[φ+ ψ]m
.
.
.
χ

m;
χ

[φ]m
.
.
.
χ ψ

[φ+ ψ]m
.
.
.
χ

m.χ

And we can read off two +-elimination rules. In the order top left, bottom
right we get:
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φ+ ψ

[φ]m
.
.
.
χ

[ψ]m
.
.
.
χ

m;
χ

φ+ ψ φ ψ .
χ

We can go backward and forward between introduction and elimination
rules and truth-tables. (And we can do this for connectives of any arity;
see (Milne, 2015, §8.4.3) for more on this.)

We turn to the quantifiers and return to classical logic. We have that
∀xφ(x) ∈ Σ∞ only if, for all terms t, φ(t) ∈ Σ∞. Contraposing, ∀xφ(x) /∈
Σ∞ if, for some t, φ(t) /∈ Σ∞; and so, for any t, Σ∞ ∪ {∀xφ(x)} ` χ
if Σ∞ ∪ {φ(t)} ` χ which gives us the familiar elimination rule (recast in
general elimination form):

∀xφ(x)

[φ(t)]m
.
.
.
χ

m ∀-elimination.χ

For the introduction rule for the universal quantifier—and the elimination
rule for the existential quantifier—we have to take a more adventurous,
and possibly less convincing, line; this is because parametric occurrences
of names are not like ordinary individual constants—they really only exist
in proofs, not in the model theory.4 And tied in with that is the fact that
we haven’t really made provision for φ(a) occurring in the enumeration of
formulas used when obtaining Σ∞. Still, let’s press on. (Allez en avant, et
la foi vous viendra!) Somewhat in the style of Kit Fine’s theory of arbitrary
objects (Fine, 1985), we introduce a name ‘a’ which behaves syntactically
as an individual constant but which we treat as though it were the name of
a “generic”, “representative” object. As such we attribute to a just those
properties possessed by all elements in the (notional) domain. With that
in place, we have that φ(a) ∈ Σ∞ if, and only if ∀xφ(x) ∈ Σ∞. Con-
sequently, Σ∞ ∪ {∀xφ(x)} ` χ if Σ∞ ∪ {φ(a)} ` χ. How does ‘a”s
status as name for a generic representative manifest itself?—In our making
no specific assumptions about a. So we obtain the rule

4Put another way, although grammatically they are proper names in a language, they have
no determinate reference (nor sense). For more on this, see (Milne, 2007, §§1 & 2).
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φ(a)

[∀xφ(x)]m
.
.
.
χ

m ∀-introductionχ

where a does not occur in any
premise upon which φ(a) de-
pends.

In similar fashion we obtain the rules for the existential quantifier:

φ(t)

[∃xφ(x)]m
.
.
.
χ

m ∃-introduction.χ

and

∃xφ(x)

[φ(a)]m
.
.
.
χ

m ∃-eliminationχ

where a occurs neither in χ nor
in any side premise upon which
χ depends.

These rules are all classically sound and, since we can obtain standard
rules from them, they are complete. Moreover, the rules for ∧, ∨,→, ¬ and
∃ give us a classically complete system with the subformula property for the
{∧,∨,→,¬,∃}-fragment of classical, first-order logic (Milne, 2010, §3.3;
Sandqvist, 2012).

As one quick example, the intuitionistically invalid (φ → ψ) → ψ `
φ ∨ ψ can be derived like this:

[φ]4 [φ ∨ ψ]2
2 ∨-i

φ ∨ ψ

(φ→ ψ)→ ψ [φ→ ψ]4 [ψ]1
1 →-e

ψ [φ ∨ ψ]3
3 ∨-i

φ ∨ ψ
4 →-i .

φ ∨ ψ

Addendum At Hejnice, Melvin Fitting asked whether we get anything
new if we apply the line of argument developed here to intuitionist logic
rather than classical. I said then that I suspected that one gets nothing essen-
tially new. That is indeed the case. Perhaps the conditional will be sufficient
illustration.

In the canonical Kripke model, nodes are prime theories and we have
that
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φ→ ψ /∈ Σ∞ iff, for some prime theory ∆ such that Σ∞ ⊆ ∆,
φ ∈ ∆ and ψ /∈ ∆.

On the one hand, as in the classical case, we have, then, that if Σ∞∪{ψ} ` χ
then Σ∞ ∪ {φ, φ→ ψ} ` χ and we get again the general elimination form
of modus (ponendo) ponens. On the other hand, given the Lindenbaum–
Henkin construction in the completeness proof for intuitionist logic, a prime
theory ∆ such that Σ∞ ⊆ ∆, φ ∈ ∆ and ψ /∈ ∆ exists if, and only if,
Σ∞ ∪ {φ} 0 ψ. That Σ∞ ∪ {φ → ψ} ` χ and that Σ∞ ∪ {φ} ` ψ are,
then, incoherent constraints. This leads to the rule

[φ]m
.
.
.
ψ

[φ→ ψ]m
.
.
.
χ

m →.χ

which is nothing other than a rewriting of the standard→-introduction rule.

3 An intriguing feature of classical logic

Our formulation of first-order classical logic does not have the subformula
property. It does, however, satisfy this constraint: if Σ ` φ then there is a
derivation of φ from Σ in which at most ¬φ, subformulas of members of
Σ ∪ {φ}, and negations of proper subformulas of members of Σ ∪ {φ} oc-
cur (as follows from Theorem 8 of (Milne, 2010, p. 210). This fact hints
at—only hints at, every so light-handedly—a rather different treatment of
negation, a treatment very much against the grain in proof-theoretic seman-
tics but one which allows a uniform treatment of rules. (So much against
the grain that in Carrollian spirit one might say its stands the proof-theoretic
semantics/inferentialist account of negation on its head.)

We could get ourselves a whole lot more rules by noting facts such as
this: ¬(φ ∧ ψ) ∈ Σ∞ if, and only if, ¬φ ∈ Σ∞ or ¬ψ ∈ Σ∞. Recast in
terms of the Lindenbaum–Henkin condition of non-membership, we obtain:

◦ if Σ∞ ∪{¬φ} ` χ and Σ∞ ∪{¬ψ} ` χ then Σ∞ ∪{¬(φ∧ψ)} ` χ;

◦ if Σ∞ ∪ {¬(φ ∧ ψ)} ` χ then Σ∞ ∪ {¬φ} ` χ;

◦ if Σ∞ ∪ {¬(φ ∧ ψ)} ` χ then Σ∞ ∪ {¬ψ} ` χ.

These give us the rules:
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¬φ

[¬(φ ∧ ψ)]m
.
.
.
χ
m ¬∧-introduction (l);χ

¬ψ

[¬(φ ∧ ψ)]m
.
.
.
χ
m ¬∧-introduction (r);χ

¬(φ ∧ ψ)

[¬φ]m
.
.
.
χ

[¬ψ]m
.
.
.
χ
m ¬∧-elimination.χ

We can proceed similarly for disjunction, the conditional and the quan-
tifiers, obtaining, for example,

¬φ(t)

[¬∀xφ(x)]m
.
.
.
ψ

m ¬∀-introduction.
ψ

and

¬∀xφ(x)

[¬φ(a)]m
.
.
.
ψ

m ¬∀-elimination
ψ

where a occurs neither in ψ nor
in any premise other than ¬φ(a)
upon which ψ depends.

Noting too that since ¬¬φ /∈ Σ∞ if, and only if, φ /∈ Σ∞, we have the
rules

φ

[¬¬φ]m
.
.
.
ψ

m ¬¬-introduction;
ψ

¬¬φ

[φ]m
.
.
.
ψ

m ¬¬-elimination.
ψ

Albeit that they fall out of the Lindenbaum–Henkin conditions just as
much as the rules above, these rules serve just as short cuts in a system with
¬-introduction and ¬-elimination. But these rules, together with the rules
we already have for conjunction, disjunction, and the universal and existen-
tial quantifiers, but not the rules for negation and the conditional, all have a
common structural feature: in the introduction rules, all side premises occur
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categorically; in the elimination rules, all side premises occur hypotheti-
cally.

And now, with negations in play, we can replace conditions such as φ ∈
Σ∞ with ¬φ 6∈ Σ∞, i.e., Σ∞∪{¬φ} ` χ to obtain rules of the same shapes:

¬φ

[φ→ ψ]m
.
.
.
χ

m →-i,χ
ψ

[φ→ ψ]m
.
.
.
χ

m →-i,χ

φ→ ψ φ

[ψ]m
.
.
.
χ

m →-e;
χ

φ ¬ψ

[¬(φ→ ψ)]m
.
.
.
χ

m ¬ →-i,χ

¬(φ→ ψ)

[φ]m
.
.
.
χ

m ¬ →-e,
χ

¬(φ→ ψ)

[¬ψ]m
.
.
.
χ

m ¬ →-e.χ

Now, rewrite these rules in the following ways.
Introduction rules Give each subformula φi a sequent to itself of the form
Γi ` φi,∆i. These serve as the premises of right introduction rules. Give
the formula introduced a sequent to itself of the form Γ ` ?(φ1, φ2, . . .),∆
where Γ is the union of the antecedent side formulas Γi in premise sequents
and ∆ is the union of the succedent side formulas ∆i in premise sequents.
This serves as the conclusion of the rule.
Elimination rules Give each subformula φi a sequent to itself of the form
Γ, φi ` ∆i. These serve as the premises of left introduction rules. Give
the formula eliminated a sequent to itself of the form Γ, ?(φ1, φ2, . . .) ` ∆
where, as before, Γ is the union of the antecedent side formulas in premise
sequents and ∆ is the union of the succedent side formulas in premises se-
quents. This serves as the conclusion of the rule.
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For example, ∧-introduction yields

Γ1 ` ψ,∆1 Γ2 ` φ,∆2 R ∧-i,
Γ1,Γ2 ` ψ ∧ φ,∆1,∆2

∧-elimination gives us the pair of rules

Γ, ψ ` ∆ ,
Γ, ψ ∧ φ ` ∆

Γ, φ ` ∆
L ∧-i.

Γ, ψ ∧ φ ` ∆

¬∧-introduction gives us the pair of rules

Γ ` ¬ψ,∆ ,
Γ ` ¬(ψ ∧ φ),∆

Γ ` ¬φ,∆
R ¬∧-i.

Γ ` ¬(ψ ∧ φ),∆

¬∧-elimination yields

Γ1,¬ψ ` ∆1 Γ2,¬φ ` ∆2 L ¬∧-i.
Γ1,Γ2,¬(ψ ∧ φ) ` ∆1,∆2

The existential quantifier gives us

Γ, ψ(a) ` ∆
L ∃-i;

Γ,∃xψ ` ∆

Γ ` ψ(t),∆
R ∃-i

Γ ` ∃xψ,∆
where the parametric name a does not occur in any member of Γ or ∆.

The negated existential quantifier gives us

Γ,¬ψ(t) ` ∆
L ¬∃-i;

Γ,¬∃xψ ` ∆

Γ ` ¬ψ(a),∆
R ¬∃-i

Γ ` ¬∃xψ,∆
where, again, the parametric name a does not occur in any member of Γ or
∆.

In these rules, by construction, the subformulas of interest and the for-
mula containing the (left or right) introduced connective/quantifier all occur
on the same side of the turnstile. Not so in the case of the standard sequent-
calculus negation rules:

Γ ` ψ,∆
L ¬-i;

Γ,¬ψ ` ∆

Γ, ψ ` ∆
R ¬-i.

Γ ` ¬ψ,∆

But as induction on length of proof shows, any sequent derived using the
left negation rule can be obtained without it when we include axioms of the
form φ,¬φ ` , where φ is atomic; likewise, any sequent derived using the
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right negation rule can be obtained without it when we include axioms of
the form ` φ,¬φ, where φ is atomic.

With axioms of the forms φ ` φ and ¬φ ` ¬φ, φ atomic, what we have
here is the cut-free sequent calculus S ′ of (Smullyan, 1968). Smullyan
(1968, Ch. XV, §1) uses this calculus in proving first the Craig then the
Craig–Lyndon interpolation theorem for first-order logic (without identity
and function symbols). By attending very carefully to the steps in Smullyan’s
proof, we obtain a refinement of the interpolation theorem for classical first-
order logic. The first step towards that refinement is to note that when we
drop axioms of the form ` φ,¬φ we have a cut-free sequent calculus for
the first-order variant of Kleene’s strong three-valued logic (e.g., van Ben-
them, 1988, Avron, 1991, 2003, Busch, 1993; the second, to note that when,
instead, we drop axioms of the form φ,¬φ ` we have a cut-free sequent
calculus for Graham Priest’s Logic of Paradox (Avron, 1991, 2003).

Exactly because of what we noted about where the formulas of interest
stand with respect to the turnstile, we have immediately that Γ ` iff
Γ `K3 and ` ∆ iff `LP ∆. And if Γ ` ∆, Γ 0 and 0 ∆ then at least
one axiom, either of the form φ ` φ or of the form ¬φ ` ¬φ, must be used.
In a derivation of Γ ` ∆, we associate φ with the axiom φ ` φ, ¬φ with the
axiom ¬φ ` ¬φ; we associate nothing with axioms of the forms φ,¬φ `
and ` φ,¬φ. We then push the interpolants downwards, changing them
as appropriate given the rule employed. The aim is to associate interpolants
with all and only those sequents Γ′ ` ∆′ in the derivation such that Γ′ 0
and 0 ∆′.

For example, the interpolant, if there is one, is unchanged by L ∧-i, R
∨-i, L ¬∨-i, R ¬∧-e, L ¬¬-i, R ¬¬-i, L ∀-i, R ∃-i, L ¬∃-i, R ¬∀, and by
Weakening/Augmentation, and none is introduced if there isn’t one associ-
ated with the premise sequent.

The other rules give rise to less straightforward stipulations. I’m not go-
ing to go through all of them. Here are two:

R ∧-i Let η be such that Γ1 `K3 η and η `LP φ,∆1 and only non-logical
vocabulary common to both Γ1 and ∆1 ∪ {φ} occurs in η; let θ be such
that Γ2 `K3 θ and θ `LP ψ,∆2 and only non-logical vocabulary common
to both Γ2 and ∆2 ∪ {ψ} occurs in θ. By R ∧-i, Γ1,Γ2 `K3 η ∧ θ. By
R ∧-i, η, θ `LP φ ∧ ψ,∆1,∆2; by two applications of L ∧-i, η ∧ θ `LP

φ ∧ ψ,∆1,∆2. And only non-logical vocabulary common to both Γ1 ∪ Γ2

and ∆1 ∪∆2 ∪ {φ ∧ ψ} occurs in η ∧ θ.
If no interpolant is associated with Γ1 ` φ,∆1 but Γ2 `K3 θ and θ `LP

14



Logic Through the Looking-Glass

ψ,∆2 and only non-logical vocabulary common to both Γ2 and ∆2 ∪ {ψ}
occurs in θ, then, (i) if Γ1 ` , no interpolant is associated with Γ1,Γ2 `
φ ∧ ψ,∆1,∆2 and Γ1,Γ2 ` by Weakening and (ii) if ` φ,∆1 then θ
is taken as the interpolant, for we have both that Γ1,Γ2 `K3 θ and that
θ `LP φ ∧ ψ,∆1,∆2. Likewise, mutatis mutandis, if no interpolant is
associated with Γ2 ` ψ,∆2 but there is one associated with Γ1 ` φ,∆1.

If no interpolant is associated with Γ1 ` φ,∆1 and none with Γ2 `
ψ,∆2, none is associated with Γ1,Γ2 ` φ ∧ ψ,∆1,∆2. If Γi ` then
Γ1,Γ2 ` by Weakening, i = 1, 2. If ` φ,∆1 and ` ψ,∆2 then
` φ ∧ ψ,∆1,∆2 by R ∧-i.

L ¬∀-i Let Γ,¬φ(a) `K3 η and η `LP ∆ where the parameter a does not
occur in any member of Γ or ∆ and only non-logical vocabulary common
to both Γ ∪ {¬φ(a)} and ∆ occurs in η. The parameter a does not occur in
η hence, by L ¬∀-i, Γ,¬∀xφ `K3 η and η `LP ∆.

If no interpolant is associated with the sequent Γ,¬φ(a) ` ∆, where the
parameter a does not occur in any member of Γ or ∆, then none is associ-
ated with Γ,¬∀xφ ` ∆. If Γ,¬φ(a) ` then, by L ¬∀-i, Γ,¬∀xφ ` (as
the parameter a does not occur in any member of Γ).

The difference between what I do and what Smullyan did is that where
I associate nothing with axioms of the form φ,¬φ ` and ` φ,¬φ, he
associates, respectively, the constants f and t. This smooths out his stipula-
tions for the awkward rules. As indicated by the above, I have to be quite
careful with what I stipulate for some of the connectives, quantifiers, and
combinations of these with negation.

Matters are so set up that if an interpolant φ is associated with a sequent
Γ ` ∆ then φ can be derived from Γ without appeal to an axiom of the
form ` ψ,¬ψ and ∆ can be derived from φ without appeal to an axiom
of the form ψ,¬ψ ` . In other words, with ‘`’ as classical consequence, if
Γ ` ∆, then

(i) Γ `K3 , or

(ii) `LP ∆, or

(iii) Γ 0 , 0 ∆, and there’s an interpolant φ such that Γ `K3 φ and
φ `LP ∆

where being an interpolant means that φ contains only non-logical vocab-
ulary common to Γ and ∆. (Lyndon’s parity constraints are also satisfied.
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In (Milne, in press-b) I take a related approach: I use block tableaux and
extend the result to classical first-order logic with identity (but not function
symbols). In (Milne, in press-a) I give a semantic proof of the analogous
result for classical propositional logic.)

We have that in classical logic, without identity and function-symbols,
derivations can be limited to three kinds: those in which the premises are
classically and so K3-inconsistent, those in which the conclusion is classi-
cally and so LP -logically true, and the rest in which there is an interpolant
such that the first part of the derivation comprises a K3 derivation from an-
tecedent to interpolant and the second part comprises an LP derivation from
interpolant to succedent.

The use of the negated rules is essential to the line of argument here but
the result stands however one has formulated classical logic (without iden-
tity and function-symbols). However, neither K3 nor LP has a straight-
forward natural deduction formulation so this fact about classically valid
sequents tends to be lost from view.

4 A contraction-free approximation to classical logic

I really did come at what I’m about to describe backwards—completely
backwards. This section owes its origin to Francesco Tonci Ottieri, a stu-
dent in my undergraduate logic class at the University of Stirling in the
Spring Semester in 2015. He came to see me one day with a diagrammatic
account of the semantics of indicative conditionals. It took us—him and me,
independently—a while to realise that the diagrammatic aspect was but one
way of assigning values to formulas subject to the sole constraint

Schema 1 v(φ→ ψ) = v(φ)− v(ψ).

Under Schema 1, v(φ→ ψ) + v(ψ → χ) = v(φ→ χ). We will follow
Ottieri in taking this to vindicate hypothetical syllogism.5

We’ll call this Schema 2:

v(φ→ ψ) = v(ψ)− v(φ).

While Schema 1 and Schema 2 do just as good a job with hypothetical
syllogism, Scheme 2, but not Scheme 1, gives us that v(φ) + v(φ → ψ) =
v(ψ). This we take as vindicating modus (ponendo) ponens.

5Ottieri employs Schema 1 as the basis of his algebraic demonstration in (Ottieri, in press).
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Should we want our conditionals to contrapose and, more exactly, more
demandingly, should we want φ→ ψ and ¬ψ → ¬φ to take the same value,
both schemata give us

for any formulas φ and ψ, v(φ) + v(¬φ) = v(ψ) + v(¬ψ).

The only way for this to work out is that, for some constant value K and all
formulas φ,

v(¬φ) = K − v(φ).

This gives us, as a consequence, that v(¬¬φ) = v(φ).
Introducing a (falsum) constant, ⊥, to which K is assigned as value,

Schema 2, but not Schema 1, then gives us

v(¬φ) = v(φ→ ⊥),

leading to the familiar identification of ¬φ with φ→ ⊥.
Both schemata give us that v(φ → φ) = 0, suggesting that 0 has some

special role to play.
Schema 2, but not Schema 1, gives us this:

v(φ1) + v(φ2) + . . .+ v(φn) + v(ψ) T v(χ)

(if, and) only if

v(φ1) + v(φ2) + . . .+ v(φn) T v(ψ → χ).

Once we sort out a little detail, we’ll read this as vindicating Conditional
Proof/→-introduction.

Given what Schema 2 gets us, and what Schema 1 doesn’t, we’ll adopt
Schema 2 as the preferred evaluation scheme for conditionals for the time
being: for any formulas φ and ψ, v(φ→ ψ) = v(ψ)− v(φ).

Classically, φ ∧ ψ is equivalent to ¬(φ → ¬ψ). v(¬(φ → ¬ψ)) =
K − ((K − v(ψ))− v(φ)) = v(φ) + v(ψ).

Setting v(φ ∧ ψ) = v(φ) + v(ψ), we have, for all formulas φ, that
v(φ∧¬φ) = K. On the model of hypothetical syllogism and modus ponens
above, setting v(φ ∧ ψ) = v(φ) + v(ψ) vindicates ∧-introduction. We also
have that v(φ ∧ ψ) ≥ v(φ) and that v(φ ∧ ψ) ≥ v(ψ).

These last two suggest that we should take as our criterion of valid-
ity: the inference from φ1, φ2, . . . , φn to ψ is valid, which we write as
φ1, φ2, . . . , φn  ψ, if, and only if, under every valuation v,
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v(φ1) + v(φ2) + . . .+ v(φn) ≥ v(ψ).6,7

From this we get Gentzen’s rule for→-introduction: if φ1, φ2, . . . , φm 
ψ and χ1, χ2, . . . , χn, τ  υ then φ1, φ2, . . . , φm, χ1, χ2, . . . , χn, ψ →
τ  υ, for if v(φ1) + v(φ2) + . . . + v(φm) ≥ v(ψ) and v(χ1) + v(χ2) +
. . . v(χn) + v(τ) ≥ v(υ) then v(φ1) + v(φ2) . . . v(φm) + v(χ1) + v(χ2) +
. . . v(χn) + (v(τ)− v(ψ)) ≥ v(υ).

Commutativity of addition gives us the structural rule Permutation (Ex-
change) in the antecedent.

Transitivity/Cut falls out, for if

v(φ1) + v(φ2) + . . .+ v(φn) + v(χ) ≥ v(τ)

and
v(ψ1) + v(ψ2) + . . .+ v(ψn) ≥ v(χ)

then—obviously!—

v(φ1) + v(φ2) + . . .+ v(φn) + v(ψ1) + v(ψ2) + . . .+ v(ψn) ≥ v(τ).

Weakening/Augmentation/Monotonicity falls out if we insist that for-
mulas take only non-negative values. This gives 0 its special status, as the
minimum value, and since, then, for any formula φ,K−v(φ) = v(¬φ) ≥ 0,
K is the maximum attainable value. We obtain the standard ⊥-elimination
rule, ⊥  φ, and ex falso quodlibet or Explosion, φ,¬φ  ψ, for all formu-
las φ. (We could stipulate that K = 1 —but why bother? As long as K > 0
we get what we want and avoid trivialisation.)

From Augmentation via Conditional Proof we get the positive paradox
of material implication: ψ  φ → ψ. Explosion and Conditional proof get
us the negative paradox: ¬φ  φ→ ψ.

Restricting to non-negative values forces a small change in the way we
treat conditionals and consequently conjunctions.

Schema 3 v(φ→ ψ) = max{v(ψ)− v(φ), 0}.
6This might put the reader in mind, as it does me, of Dorothy Edgington’s uncertainty

semantics for classical logic augmented with Adams’ conditionals(Edgington, 1992): there an
inference is valid if under no probability distribution is the sum of the uncertainties of the
premises less than the uncertainty of the conclusion (where uncertainty = 1 - probability).

7Had we put this criterion for validity in place sooner, we could have weakened contrapo-
sition so as to require only that, for all φ and ψ, v(φ→ ψ) ≥ v(¬ψ → ¬φ) and obtained the
same stipulation for negation.
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As a quick run through verifies, this makes no difference to any of the sub-
stantive claims made concerning conditionals under Schema 2 and validity
and its preservation above. It does draw what we’re doing closer to the
evaluation clauses for connectives of Łukasiewicz’s infinite-valued logic,
especially as these are presented in, for example, Restall, 1994. The validity
criterion is, however, non-standard and does give us something different.

If we use the classical equivalent ¬φ → ψ to define (intensional) dis-
junction, we find that ∨-elimination fails (although obviously disjunctive
syllogism is sound). On the other hand, under Schema 3, but not Schema 2,
Łukasiewicz’s definition of disjunction as (φ → ψ) → ψ gives us exactly
the familiar (extensional) disjunction:

v((φ→ ψ)→ ψ) = max{v(ψ)− v(φ→ ψ), 0}
= v(ψ)− v(φ→ ψ)

= v(ψ)−max{v(ψ)− v(φ), 0}
= v(φ) if v(φ) ≤ v(ψ)

= v(ψ) otherwise.

That is v((φ → ψ) → ψ) = min{v(φ), v(ψ)}. We adopt this as our evalu-
ation clause for disjunction. It vindicates the standard rules for disjunction.

What we end up with is a contraction-free “approximation” to classi-
cal propositional logic which includes the standard, intuitionist introduction
and elimination rules for ∧, ∨,→ and ¬ and Double Negation Introduction
and Double Negation Elimination; these rules, however, are read with mul-
tisets, not sets, of assumptions and those rules which permit discharge of an
assumption in their application are restricted to allow discharge of only one
occurrence of the assumption (including one in each branch in the case of
∨-elimination). It’s obvious that

φ→ (φ→ ψ) 1 φ→ ψ.

(And since we have taken what are usually thought of as intensional con-
junction and extensional disjunction, we should expect some classical dis-
tributivity principles to fail—e.g., φ ∨ (ψ ∧ χ) 1 (φ ∨ ψ) ∧ (φ ∨ χ).)

The semantics can be given what, at first sight at least, seems a reason-
ably natural interpretation. We regard the numbers as measuring the “poten-
tial for introducing error” into our reasoning. Error permeates from occur-
rences of assumptions down to conclusions. Each time you use an assump-
tion, you open up a channel through which error may permeate; discharging

19



Peter Milne

the assumption closes the channel. That, I think, is the picture. Steps of rea-
soning are vindicated if, of necessity, the conclusion has no greater potential
for error than the sum of the error potentials of the assumptions on which it
depends.8,9

5 Drawing the strands together

Our “ideal rules” are designed with proof of the completeness of classical
first-order logic in mind. As far as that job is concerned, they are ideal.
The elimination rules closely match Gentzen’s. The introduction rules are
different but ask yourself this: Where did Gentzen get his introduction rules
from? He doesn’t tell us but I think it’s fair to say that he didn’t pluck
them out of thin air. He got them, I think, from intuitionism. Given the
time and his interests, intuitionism was the obvious source for rules which
are somehow supposed to display meaning in conditions for proof. But
once we have the idea of reasoning with assumptions, we can look again
at the role of rules of inference. There are two things one needs to know
about logically complex assumptions: how to move on, having made one
(elimination rules), and how to make do without them (introduction rules).

Our rules for the {∧,∨,→,¬,∃}-fragment do have the subformula prop-
erty. This property doesn’t carry over when we add the rules for the universal
quantifier, the “constant domains inference” ∀x(φ(x) ∨ ψ(a)) ` ∀xφ(x) ∨
ψ(a) being an obvious source of trouble. It might not be a great hardship to
read “∀x” as “¬∃x¬” but it would be good to have a better understanding of
what it is about the universal quantifier that leads the “ideal rules” approach
into trouble—if trouble it is. Rather than see it as a problematic feature
of classical logic, we can see it as a prompt to rethink how to incorporate
negation. Our starting point, in the search for rules ideally suited to proving
completeness, gives us a lead, as we saw.

8There’s some loose analogy here with aggregation of risk considerations drawn up against
multi-premise closure of knowledge under competently deduced consequence—see, e.g.,
(Hawthorne, 2004, p. 47). As far as I am aware, epistemologists haven’t brought such consid-
erations to bear against Contraction; they worry about the risk accruing to belief in premises,
not the uses of those premises in deductions.

9At Hejnice, Walter Carnielli, Libor Běhounek, and Chris Fermüller, I think, all pointed
out to me that one can carry out this exercise in a weaker structure than a closed interval of
the non-negative real numbers under the standard ordering with 0 as one end-point. But partly
because it’s how, set on course by Ottieri, I came across it and partly because it has, or at least
seems to have, this natural reading, I prefer to stick with the way just outlined.
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Those rules helped us see that classically valid first-order inferences di-
vide into those with inconsistent premises, those with logically true conclu-
sions, and the rest. Very roughly, when deriving one of the rest, you can
proceed initially as though you don’t care that truth and falsity are exhaus-
tive, reach a “middle point”, and proceed thereafter as though you do now
care about that but not that truth and falsity are mutually exclusive.

Given a set Γ of formulas, let ¬Γ be the set {¬φ : φ ∈ Γ}. We have that

Γ `K3 ¬∆ if, and only if, ∆ `LP ¬Γ.

So there’s a sense in which the advocate of Kleene’s three-valued logic can
recapture every classically valid inference; and likewise the advocate of
Priest’s Logic of Paradox. But neither of these logics is proof-theoretically
nice, at least not in any of the ways inferentialists have come to value. Hav-
ing negation play a special role, as it does in Smullyan’s calculus, may be a
first step to addressing those misgivings but may also, I suppose, just be a
case of swapping one mystery for another.

Gentzen’s introduction and elimination rules, restricted by a “discharge
policy” that allows formula-instances to be discharged only one at a time,
where Gentzen allows any number of instances of the formula in question
on which the intermediate conclusion depends to be discharged in an appli-
cation of the rule, give us a logic weaker than classical. Restricted this way,
the standard proof of the Law of Excluded Middle,

[φ]1
∨-i

φ ∨ ¬φ [¬(φ ∨ ¬φ)]2
⊥-i⊥

1 ¬-i¬φ
∨-i

φ ∨ ¬φ [¬(φ ∨ ¬φ)]2
⊥-i⊥

2 ¬-i
¬¬(φ ∨ ¬φ)

DNE,
φ ∨ ¬φ

is blocked when we try to discharge both occurrences of the assumption
¬(φ∨¬φ) at the same time. We can turn this into a sound proof—sound with
respect to the “error potential” semantics—of the conditional ¬(φ∨¬φ)→
(φ ∨ ¬φ) but that’s not quite the same thing—really, not at all the same
thing. The structural rule of Contraction, i.e., the liberal discharge policy, is
important. But now, here’s a question: What makes a rule structural?

Section 1’s “general introduction rules” ¬-introduction (Dilemma) and
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→-introduction (a) (Tarski’s Rule) are not sound in the error potential se-
mantics. This can be seen very straightforwardly because neither φ ∨ ¬φ
nor φ ∨ (φ→ ψ) must take the value 0. If, within that framework, we wish
to amend the evaluation clauses so as to make them sound, we are forced to
two-valuedness. At this point, something remarkable happens. The validity
criterion becomes equivalent to this:

under every valuation the conclusion takes the value 0 when all
the premises do.

With that being the case, occurrences of a formula greater than one in num-
ber in the premises cease to make a difference, i.e., Contraction is now
sound. For example, whereas we had φ, φ  φ ∧ φ but not φ  φ ∧ φ,
we now have the latter. We can derive it as follows:

φ

[φ]1 [φ]2
∧-i

φ ∧ φ
→-i (c)

φ→ (φ ∧ φ) [φ→ (φ ∧ φ)]1
1 →-i (a)

φ→ (φ ∧ φ) [φ→ (φ ∧ φ)]2
2 →-i (a)

φ→ (φ ∧ φ)
→-e

φ ∧ φ

At the cost of failure of the subformula property, we can work around re-
tention of the illiberal discharge policy—a structural feature—by exploiting
what was introduced as an operational rule.

Do general introduction rules blur the boundary between the operational
and the structural? I suspect that they do. If so, is that a bad thing? It’s
tempting to think that the answer must be yes but I’m not sure why.

∗ ∗ ∗

I have to say that I find these explorations on the other side of the mirror
intriguing. I rather think they must have implications for inferentialism re-
garding the meaning of logical connectives and quantifiers—proof-theoretic
semantics as the topic is often called. I have to say too, though, that I am
at present far from clear as to what exactly those implications might be.
Ending on that note, I’ll take my cue from Lewis Carroll:
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The Red Queen shook her head. “You may call it ‘nonsense’
if you like,” she said, “but I’ve heard nonsense, compared to
which that would be as sensible as a dictionary!”
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