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Abstract
Research into the use of biochar for the remediation of contaminated soils has expanded rapidly 
over the past 5 yr. We review recent developments in the field and present the findings emanat-
ing from small-scale batch sorption experiments, through soil incubations and bioassays, to 
large-scale field experiments. We discuss the evidence that these experiments have contributed 
toward a mechanistic understanding of how biochar is capable of remediating soils contaminat-
ed with both organic and inorganic contaminants. The effects of biochar pyrolysis temperature, 
biochar source material, soil type, and contaminant type on the performance of biochars for 
remediation are identified. The risks associated with applying biochar to uncontaminated agri-
cultural soils are discussed. Knowledge gaps and questions are identified which, if addressed, 
will considerably advance the application of biochar as a soil remediation tool in the future.
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Biochars possess a number of remarkable properties that make them suit-
able for the remediation of contaminated soils, including a high internal surface 
area, negative charge, and resistance to degradation. Generally, the higher the 
temperature that organic material is pyrolyzed, the higher the surface area of 
the resulting biochar (Gomez-Eyles et al., 2013a), although there is evidence that 
some biochar pores collapse and decrease surface area at very high pyrolysis tem-
peratures (Lua and Guo, 1998). There is a considerable negative charge over the 
surface of biochar (Mukherjee et al., 2011), which attracts positively charged met-
als and organic compounds to the internal biochar surface from the soil solution. 
In doing so, the concentration of metals and organic contaminants in the soil 
solution can be reduced (Beesley et al., 2010), along with their current availability 
for uptake by organisms (i.e., their bioavailability [Semple et al., 2004]), or their 
potential to become available for uptake by organisms (i.e., their bioaccessibility 
[Semple et al., 2004; Gomez-Eyles et al., 2011; Houben et al., 2013a]).

The surface of biochars produced during pyrolysis at lower temperatures 
(200–400°C) are rich in “oxygen-containing functional groups” that enable the 
creation of surface complexes between cations (e.g., Cu2+, Ni2+, Cd2+, Pb2+, and Zn2+) 
and the biochar surface (Beesley and Marmiroli, 2011; Uchimiya et al., 2011a). 
This negative charge can also increase soil pH after biochar application to con-
taminated soils because the negative surface attracts hydrogen ions from the soil 
solution. A higher soil pH serves to further increase the sorption of metals from 
solution because of the deprotonation of pH-dependent cation exchange sites on 
soil surfaces (Rees et al., 2014b), especially in acidic soils.

Some biochars contain a considerable mineral ash component (e.g., up to 50% 
for manure manure-derived, or even 85% for bone meal–derived source materi-
als [Amonette and Joseph, 2009]). Minerals such as carbonates, phosphates, and 
sulfates can cause some toxic elements (e.g., Pb) to precipitate out of solution. 
Because the precipitates are rather insoluble (especially Pb salts, and especially at 
high pH), this mechanism can contribute considerably to the remediative capac-
ity of biochars (Cao et al., 2009).

Finally, biochar degrades very slowly with predicted C half-lives ranging 
from 102 to 107 yr (Zimmerman, 2010). Therefore, during the timescales that most 
soil remediation projects operate (~10 to 100 yr), biochar can be considered an 
inert material. An advantage of this recalcitrance is the potential to sequester soil 
contaminants for a long period of time. However, oxygen-containing functional 
groups on the surface of the biochar may release cations into solution over time 
as they are replaced with hydrogen ions (Kim et al., 2013).

Why Biochar Is a Suitable Soil Amendment  
for Remediation of Contaminated Soil

The objective of contaminated land remediation projects is to reduce the risk of 
harm that contaminants could cause to organisms. This is achieved by breaking or 
reducing source-pathway-receptor linkages (Bardos et al., 2002) (Fig. 1). A source is 
the physical location of a contaminant itself, or the location from which it is being 
emitted. A receptor is the location where it can cause harm (e.g., human tissue, 
other organisms, or water bodies). The pathway is the mechanism by which the 
contaminant moves from the source to the receptor. When a contaminant can move 
from a source to a receptor in sufficient doses to cause harm, then the contaminant 
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is considered a pollutant and the soil is considered polluted soil. In many cases the 
simplest (and most cost effective) method to remediate polluted soil is to remove 
the source of a contaminant (e.g., excavate it and deposit it elsewhere), or to remove 
the receptor (e.g., put a fence around the site to restrict access). However, these 
propositions are often impractical and expensive when widespread soil contamina-
tion occurs or when a contaminated site is in active use.

There are many pathways by which contaminants in soils may migrate from 
sources to receptors but most require the dissolution of a contaminant into the soil 
solution. Biochar breaks source-pathway-linkages by adsorbing contaminants on 
its surface and thereby reducing the concentration of contaminants in the soil 
solution (Beesley and Marmiroli, 2011). Remediation is achieved if biochar irre-
versibly adsorbs contaminants that come into the soil solution, eliminating the 
pathway to receptors (Fig. 1). After sorption on the surface of the biochar, con-
taminants can be considered unavailable to organisms and no longer pose a risk 
of causing harm.

Comparison of Biochar and Activated Carbon
Like biochar, activated carbon (AC) is produced by pyrolysis, usually of coal, but 
also waste biomass products like coconut shells. However, an extra activation step 
is involved in its manufacture usually using steam (Rittenhouse et al., 2014) but 
also chemicals (e.g., phosphoric acid (Lim et al., 2010), chitosan (Zhou et al., 2013), 
potassium hydroxide (Regmi et al., 2012), or hydrogen peroxide (Xue et al., 2012)). 
This activation further develops the inner pore structure of the carbons giving it 
a superior surface area (generally >900 m2/g N2 BET) relative to biochar (gener-
ally 1–350 m2/g N2 BET). This makes AC more favorable for the remediation of 

Fig. 1. Diagram to demonstrate 
the remediation of organic and 
inorganic contaminants in soil 
by biochar, breaking a source-
pathway-receptor linkage.
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hydrophobic organic contaminants (HOCs) because HOCs generally have greater 
affinity for higher surface area carbons (Cao et al., 2011; Gomez-Eyles et al., 2013a; 
Rittenhouse et al., 2014). The use of AC to break pollutant pathways has provided 
a new direction in the remediation of contaminated sediments, especially those 
impacted with HOCs (Ghosh et al., 2011), and is currently being deployed by the 
sediment remediation industry after successful reductions of HOC bioavailabil-
ity in field pilots (Beckingham and Ghosh, 2011; Cho et al., 2012).

Given the superior surface area and sorption capacity of ACs relative to 
biochars, ACs have been recommended as the most appropriate carbon amend-
ment for the remediation of HOC-impacted sediments (Gomez-Eyles et al., 2013b). 
However, when produced in bulk, biochar is cheaper than AC (<USD$1000 per 
ton vs. USD$2500 per ton) and is often produced from waste resources. Further-
more, biochar can be less detrimental to soil biota health than AC (Hale et al., 
2013), and can be more effective at stimulating plant growth than AC because 
of enhancements in soil quality (Denyes et al., 2013). Biochar is also generally 
less dense than AC, which could favor the kinetics of contaminant mass trans-
fer from the soil to the carbon as there are a higher number of particles per unit 
mass relative to AC if they are amended at the same dose and particle size. How-
ever, ACs will still possess a higher number of sorption sites for HOCs per unit 
mass and are therefore likely to be more effective at reducing HOC bioavailabil-
ity in most soils. Most comparative studies between the two have shown superior 
performance of the AC for HOCs (Cao et al., 2009; Cao et al., 2011; Gomez-Eyles 
et al., 2013b; Hale et al., 2012; Rittenhouse et al., 2014). However, in a recent field 
pilot their performance was not statistically different (Denyes et al., 2013). On the 
other hand, most comparative studies between the two for inorganic contami-
nants showed superior performance by the biochar relative to the AC (Cao et al., 
2009, 2011), although this was not the case for mercury (Gomez-Eyles et al., 2013b). 
Optimum amendment choice will therefore depend of the contaminants of con-
cern and may vary between different soils. Treatability studies using site-specific 
soils could be performed to aid amendment selection.

The Research Scientist’s Toolbox
As research scientists developing techniques for the remediation of contami-
nated soils with biochar, we have a number of tools and techniques available to us. 
Research on the remediation of contaminated soils with biochar can take place at a 
variety of scales. These range from highly controlled microcosm environments in 
the laboratory to field experiments conducted under prevailing ambient conditions. 
Environmental research usually evolves from the laboratory to the field, often 
alongside a reduction in the number of treatments tested. In this chapter we will 
highlight recent literature and discuss the contribution that each of the following 
experimental approaches (summarized in Table 1) have made to our understand-
ing of the science behind the application of biochar for soil remediation.

•	 Batch sorption studies
•	 Biochar–soil incubations
•	 Bioassays
•	 Field experiments
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Batch Sorption Studies
Batch sorption experiments enable researchers to quantify the capacity of a bio-
char to adsorb contaminants from a solution. Biochar is mixed with a solution 
containing a known concentration of a contaminant for a known time period 
under controlled temperature conditions. For metals and readily soluble organic 
contaminants the solution can be separated from the biochar (usually by centrifu-
gation and/or filtration). The concentration of contaminant remaining in solution 
is then measured. For HOCs, detection can be more challenging because of the 
extremely low concentrations of these chemicals in the freely dissolved phase. 
Instead, equilibrium passive sampling methods are employed. Plastic polymers 
submerged in the solution accumulate HOCs and can be used to infer freely 
dissolved concentrations (Ghosh et al., 2014). The difference between the concen-
tration at the start and the end of the incubation is used to infer the quantity of 
contaminant adsorbed to the surface of the biochar. The concentration of pollut-
ants that are adsorbed is calculated by subtracting the end concentration from the 
concentration at the start.

Sorption Isotherms
By determining the quantity of contaminant adsorbed to the biochar surface at 
constant temperature and a range of contaminant concentrations, an adsorption 
isotherm can be generated. The adsorption isotherm can then be fitted to a model. 
The two most common models for fitting sorption isotherms on biochars are the 
Freundlich and Langmuir models (Fig. 2). The Langmuir model assumes that 
the adsorbate forms a monolayer over a homogenous surface (Sparks, 2003). The 
model assumes that there is a maximum number of identical sites where sorption 
can occur. Therefore, the maximum adsorption capacity of a given biochar can 
be derived by fitting the model to experimental data. Comparing the adsorption 
capacities of different biochars allows researchers to predict their relative perfor-
mance at reducing the bioavailability of contaminants in soils. For example, Chen 
et al. (2011) showed that the maximum Cu and Zn sorption capacities of a 450°C 
pyrolyzed corn straw–derived biochar was double that of a hardwood-derived 
biochar pyrolyzed at 600°C. Gomez-Eyles et al. (2013b) also conducted a series of 
sorption isotherms to evaluate biochar sorption capacity of HOCs, mercury, and 
methylmercury relative to ACs. The Langmuir model has recently been fitted to 
batch sorption data for several biochar source materials, but mostly inorganic 
contaminants and often in combination with the Freundlich model (Table 2).

Fig. 2. Idealized Langmuir and Freundlich 
models for the adsorption of contami-
nants on the surface of biochar. Ca is the 
concentration of contaminant adsorbed 
on the biochar, Ce is the equilibrium con-
centration of contaminant in solution, 
b is the Langmuir maximum adsorption 
capacity, Kf represents the Freundlich 
relative sorption capacity, n and a are 
adsorption constants for the Freundlich 
and Langmuir models, respectively.
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Table 2. A summary of recent publications that fit batch sorption data to Langmuir and/
or Freundlich models.†

Biochar source 
material Contaminant(s) Model(s) fitted R2 Reference

Meat and bone 
meal

Zn Langmuir 0.825 Betts et al. 
(2013)

Swine manure Cr(III) Langmuir and 
Freundlich

0.641–0.999
0.636–0.996

Wnetrzak et al. 
(2014)

Almond shell Ni and Co Langmuir and 
Freundlich

0.989–1.000
0.896–0.995

Kılıç et al. 
(2013)

Rice husk and 
dairy manure

Pb, Cu, Zn, and 
Cd

Langmuir and
Freundlich

Rice husk: 
0.96–0.99
Dairy manure: 
0.74–0.98
Rice husk: 
0.82–0.89
Dairy manure: 
0.86–0.97

Xu et al. (2013)

Swine and 
dairy manure

Cu, Zn, Cd and 
Pb

Langmuir and
Freundlich

Swine manure: 
0.979–0.999
Dairy manure: 
0.969–0.999
Swine manure: 
0.821- 0.997
Dairy manure: 
0.765–0.994

Kołodyńska et 
al. (2012)

Sawdust Methyl blue Langmuir and 
Freundlich

0.994
0.865

Wang et al. 
(2013)

Municipal 
waste

As(V) Langmuir and 
Freundlich

0.961–0.992
0. 859–0.995

Jin et al. (2014)

Crop residues Cd Freundlich 0.939–0.964 Sun et al. 
(2014)

Tree bark and 
vine shoot

Cd, Cu, Ni, Pb, 
and Zn

Freundlich Tree bark: 
0.94–0.99
Vine shoot: 
0.98–0.99

Venegas et al. 
(2015)

Wheat straw Hexachloroben-
zene

Freundlich 0.93 Song et al. 
(2012)

Cottonseed 
Hull

Deisopropylat-
razine

Freundlich 0.99–0.84 Uchimiya et al. 
(2012)

Beech wood Imazamox, 
methyl-
desphenyl-
chloridazon, 
metazachlor 
oxalic acid, and 
metazachlor 
sulfonic acid

Freundlich  >0.95 Dechene et al. 
(2014)

Maple wood Napthalene, 
Benzene and 
1,4-dinitroben-
zene

Freundlich 0.85–0.99 Lattao et al. 
(2014)

Pine wood, 
peanut hull, 
hardwood, acai 
pit, poultry 
litter, and 
phragmites

PCBs, PAHs, and 
DDTs

Freundlich 0.50–1.0 Gomez-Eyles et 
al. (2013)

† R2 values are given for each model in line with the Model(s) fitted column. Level of precision 
reflects that reported in the referenced publication.
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The Freundlich model is an empirical equation that has the advantage of 
allowing different sorption sites to have different adsorption energies (Sparks, 
2003). The sites with the highest adsorption energy “fill up” first. This allows the 
model to be applied to adsorption on heterogeneous surfaces. The Freundlich 
model has been recently used to model the sorption of a large range of organic 
and inorganic contaminants to biochars produced from several different source 
materials (Table 2). However, the Freundlich equation does not allow the cal-
culation of a maximum adsorption capacity. Several recent papers publish the 
constants associated with both the Langmuir and Freundlich models fitted to 
experimental data on the sorption of contaminants to biochar (Table 2).

Batch Sorption Studies to Elucidate Biochar Sorption Mechanisms
Batch sorption studies can also be very useful to improve our mechanistic 
understanding of how contaminants sorb to biochar. Better understanding these 
mechanisms is important as biochar production parameters (e.g., source material, 
final pyrolysis temperature, heating rate, and duration or surrounding gases) can 
be manipulated to produce biochars with optimum characteristics (e.g., surface 
area, pore size distribution, and surface chemistry) for the sorption of a contami-
nant of concern (Lattao et al., 2014; Sun et al., 2012a; Uchimiya et al., 2011b).

The maximum metal sorption capacity of a biochar generally increases with 
pyrolysis temperature to a peak around 350–400°C, after which sorption decreases 
with pyrolysis temperature (Kołodyńska et al., 2012; Uchimiya et al., 2011b; Zhang 
et al., 2013a). This peak is concurrent with a peak in the cation exchange capacity 
of biochar found in the same temperature range (Gomez-Eyles et al., 2013a). Sev-
eral studies report contrasting mechanisms of metal sorption between high and 
low pyrolysis temperature biochars (Dong et al., 2013; Gomez-Eyles et al., 2013a; 
Harvey et al., 2011; Uchimiya et al., 2010). Metal sorption on low-temperature 
biochars primarily occurs because of ion exchange with oxygen-containing func-
tional groups such as hydroxyls, carboxyls, and phenols (Dong et al., 2013). After 
high-temperature pyrolysis, the C/O ratio of the biochar increases (Uchimiya et 
al., 2011b) and the surface becomes more electronegative (Fig. 3). Consequently, 
metal sorption primarily occurs because of an electrostatic interaction between 
the positively charged metal ions and negative charge associated with delocal-
ised p-electrons on aromatic structures (Harvey et al., 2011). The chemisorption 
of metals by inner sphere complex formation is generally much stronger than the 
physisorption of metals via cation–p interactions.

In general, biochars with higher surface areas have an enhanced ability to 
sorb HOCs, and increasing pyrolysis temperatures can enhance biochar surface 
area (Gomez-Eyles et al., 2013a) (Fig. 3), although there is some evidence that bio-
char pores collapse and decrease surface area at very high pyrolysis temperatures 
(Lua and Guo, 1998). For example, by keeping all other production parameters 
constant, Chen et al. (2008) clearly demonstrate how increasing pyrolysis tem-
perature increased BET-N2 surface area, and this in turn favored the sorption 
of naphthalene and nitrobenzenes. However, BET-N2 surface area on its own 
cannot fully predict HOC sorption to carbons (Bucheli and Gustafsson, 2000; 
Chun et al., 2004; Wang and Xing, 2007). Pignatello et al. (2006) point out how 
N2 sorption isotherms performed at 77 K can provide a good measure of biochar 
mesoporosity, but fail to quantify microporosity as N2 diffusion into micropores 
is severely limited at these temperatures. Instead, the authors couple the use of 
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77 K N2 isotherms with CO2 sorption isotherms conducted at 273 K to get an 
accurate measurement of both meso- and microporosity. Lattao et al. (2014) used 
measures of both of these parameters and others likely to affect HOC sorption 
to biochar in a comprehensive study to better understand the factors controlling 
sorption. All these parameters on their own failed to predict sorption, although a 
model relating sorption to a weighted sum of micro- and mesoporosity was more 
successful. Hydrophobic organic contaminant sorption therefore depends on a 
complex interrelationship between the contaminant properties (e.g., hydropho-
bicity, polarity, and steric size and/or shape) and the biochar properties. Further 
studies are needed to better understand these relationships so biochar produc-
tion from remediation purposes can be optimized.

Summary
Batch sorption experiments and the fitting of adsorption isotherm models (e.g., 
the Langmuir and Freundlich models) have enabled researchers to observe the 
effects of biochar production parameters (e.g., pyrolysis temperature and source 
material) on the sorption capacity of the resulting biochar. Furthermore, combi-
nation with complimentary biochar characterization (e.g., C/O ratio and surface 
area) has improved our understanding of the mechanisms of sorption.

Biochar–Soil Incubations
Laboratory incubations of biochar–soil mixtures enable us to test the performance 
of a biochar as a soil amendment to reduce contaminant mobility. Incubations offer 
advantages over batch sorption studies because they capture both the (i) desorp-
tion of contaminants from the soil surface and (ii) adsorption of contaminants 
on the surface of the biochar. Batch sorption experiments only assess the latter. 

Fig. 3. Conceptual diagram depicting the mechanisms of organic and inorganic 
contaminant sorption to high-temperature and low-temperature biochar. After low-
temperature pyrolysis (300–500°C) a high density of oxygenated functional groups 
provides cation exchange sites for optimal metal sorption. After high-temperature 
pyrolysis (>500°C) the biochar increases in aromaticity and there is greater sorption of 
organic compounds by cation–p interactions.
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Therefore, soil–biochar incubations are likely to provide more robust predictions 
of biochar remediation performance in the field, if they are performed using field 
contaminated soils. Like batch sorption studies, conditions (e.g., temperature and 
moisture) are often well controlled to ensure reproducibility. Typically, biochar is 
mixed with a contaminated soil and incubated at a given moisture content for a 
known period of time. The mobility of the contaminant in the soil–biochar mix is 
then determined by extracting a known quantity of the soil with an aqueous solu-
tion or mild solvent (e.g., CaCl2, chelating agents, butanol, methanol, or acids) or 
an infinite hydrophobic sink (e.g., cyclodextrin or Tenax) to predict the contami-
nant fraction that can become available for uptake or degradation (Reichenberg 
and Mayer, 2006). The concentration of contaminant present in the extraction 
solution can then be determined analytically. There is consensus in more recent 
work that measuring freely dissolved concentrations of organic and inorganic 
contaminants with passive samplers (e.g., solid-phase micro extraction [Jonker 
et al., 2007], polyethylene [Adams et al., 2007], POM [polyoxymethylene] [Jonker 
and Koelmans, 2001], ethyl vinyl acetate [EVA] [Andrade et al., 2014], triolein-
embedded cellulose acetate membranes [TECAM] [Tao et al., 2009], or diffusive 
gradients in thin films [Zhang et al., 2001]) can provide the best indication of the 
actual bioavailability of contaminants in soils (Gomez-Eyles et al., 2012; Nolan 
et al., 2005). These methods enable an assessment of the efficacy of a particular 
biochar by its ability to reduce the mobility or availability of contaminants in 
contaminated soils.

Chemical Methods to Assess Contaminant Mobility  
and Availability in Soil–Biochar Mixtures

Column-leaching experiments have been widely adopted to determine the effect 
of biochar on the mobility of contaminants in soils. Experiments can involve the 
one-time introduction of water to the top of a column containing a soil–biochar 
mix or the circulation of water through a column until equilibrium is reached. 
Beesley and Marmiroli (2011) constructed flow-through columns to determine the 
capability of biochar to immobilize Cd and Zn. Although considerable dissolved 
carbon was leached from the soil–biochar mix, Cd and Zn were immobilized 
and the immobilization could not be reversed by leaching with water at pH 
5.5. The leachability of pentachlorophenol from soil was assessed in a column-
leaching experiment and was reduced by 43% after amendment with bamboo 
biochar (Xu et al., 2012). Cabrera et al. (2011) showed that biochars with higher 
surface areas decreased the leaching of the herbicides fluometuron and 4-chloro-
2-methylphenoxyacetic acid in an agricultural soil.

Soil porewater can be extracted from soils with Rhizon soil moisture sam-
plers which mimic the uptake of water by plant roots. The concentration of 
contaminants in the extracted porewater can be determined analytically. Rhizon 
samplers enable repeated extraction of porewater from pots, columns, or soil pits 
with minimal disturbance of the soil profile. They consist of a porous plastic mate-
rial connected to a tube to which a vacuum can be applied to draw water out of 
the soil. The samplers can be inserted horizontally into pots or columns through 
predrilled holes and remain in place for the duration of an experiment, enabling 
repeat sampling (Karami et al., 2011; Sizmur et al., 2011c). Beesley et al. (2010) 
showed that biochar consistently reduced Cd concentrations 10-fold in porewa-
ter samples extracted from a multi-element polluted soil with Rhizon samplers. 
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Park et al. (2011) used Rhizon samplers to repeatedly collect porewater from pots 
amended with chicken manure and green waste–derived biochars. The biochars 
reduced Cd and Pb porewater concentrations but increased Cu concentrations. In 
contrast, Karami et al. (2011) showed that biochar reduced porewater Cu concen-
trations when sampled every 4 wk with Rhizon samplers inserted in pots.

Equilibrium passive samplers can be used to infer the freely dissolved 
concentration of HOCs in the soil porewater which ultimately determines its 
equilibrium partitioning concentration in soil organisms (Gomez-Eyles et al., 
2012; Reichenberg and Mayer, 2006). Polyoxymethylene and EVA have been used 
to evaluate biochar effectiveness at reducing polycyclic aromatic hydrocarbons 
(PAHs) and organochlorine bioavailability. No significant reduction in PAH con-
centrations in porewater were found by Brennan et al. (2014b), and only slight 
reductions in some DDT (dichlorodiphenyltrichloroethane) metabolites were 
reported by Andrade et al. (2014). However, Wang et al. (2013) measured reduced 
bioavailability of PCBs (polychlorinated biphenyls) using TECAM, and these 
reductions correlated strongly with reductions in uptake by plant roots.

Chemical extractions are often used to determine the bioavailability of con-
taminants in soils or soil–biochar mixtures (Gomez-Eyles et al., 2010; Rittenhouse 
et al., 2014; Xu et al., 2012). These extractions have the disadvantage that the amount 
of contaminant extracted is dependent on the strength of the solvent selected, and 
not only on the bioavailability of the contaminant. Extractions involve agitating 
a sample in a known volume of extractant solution for a known period of time, 
then centrifuging and/or filtering to separate the solid and solution phases. The 
concentration of metals in the solution is then determined analytically. Farrell et 
al. (2013) compared five different chemical extractions (water, 0.01 M CaCl2, 0.05M 
ethylenediaminetetraacetic acid [EDTA], 0.5 M acetic acid, and 1 M NH4NO3) to 
determine which was the most suitable for predicting plant uptake. None of the 
extractions were deemed suitable for multi-element polluted soils but EDTA, 
acetic acid, and water extractions were each significantly correlated with three 
metals (EDTA and acetic acid were correlated with Mo, As, and Cd, while water 
was correlated with Mo, As, and Pb). Water extractions were also used by Gomez-
Eyles et al. (2011) to reveal a reduction in Cu mobility due to biochar amendment 
concurrently with a reduction in Cu uptake by earthworms. Large reductions 
in water extractable Cu, Pb, and Zn were also found after biochar addition to a 
mine soil (Sizmur et al., 2011e). Xu et al. (2012) reported 56 and 65% reduction in 
distilled water and methanol extractable pentachlorophenol after biochar amend-
ment. A popular choice of extracting solution is 0.01 M CaCl2 because it has a 
similar ionic strength as soil porewater (Houba et al., 2000). Calcium chloride has 
been used to show that biochar reduces extractable Co, Cu, and Ni in a depleted 
mine soil (Rodríguez-Vila et al., 2014), reduces Cd, Zn, and Pb bioavailability in a 
smelter-impacted soil (Houben et al., 2013b), and reduces Cd availability in con-
taminated rice paddies (Cui et al., 2011) and wheat fields (Cui et al., 2012). Cao et 
al. (2011) found amending a soil with a dairy-manure-derived biochar reduced 
0.01 M CaCl2 extractable atrazine by 66 to 81%. EDTA is a chelating agent capable 
of binding considerable concentrations of metals in solution. An EDTA extraction 
was used to demonstrate that a sewage sludge biochar reduced the bioavailability 
of As, Cr, Co, Ni, and Pb (but not Cd, Cu, and Zn) in a contaminated rice paddy 
soil (Khan et al., 2013). Ethylenediaminetetraacetic acid extractable soil Cd was 
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also reduced after addition of oil mallee biochar and wheat chaff biochar in Cd-
contaminated soil (Zhang et al., 2013b).

Depletive sampling techniques provide an infinite hydrophobic sink that 
remove all organic contaminants that readily enter the soil solution, and can 
therefore give a measure of the “rapidly desorbing fraction.” This contaminant 
fraction is regarded as bioaccessible (currently bioavailable + potentially bioavail-
able [Semple et al., 2004]), and has been shown to provide a good measure of 
the total amount of HOCs readily available for degradation (Cornelissen et al., 
1998; Reid et al., 2000). Reductions in PAH and hexachlorobenzene bioaccessibil-
ity after biochar amendment have been measured using cyclodextrin extractions 
and correlate well with reductions in uptake by earthworms (Gomez-Eyles et al., 
2011; Song et al., 2012). Wang et al. (2013) also reported correlations in reduced 
PCB bioaccessibility measured using cyclodextrin and reduced PCB bioaccumu-
lation in plant root tissues.

Biochar–Soil–Contaminant Interactions
Biochar–soil incubations allow researchers to account for any interactions 
between the soil components (e.g., organic matter and minerals), the biochar, and 
the contaminant which are not captured in clean isotherm studies. These inter-
actions include the fouling, for example, pore blocking and/or scavenging, of 
the biochar surface by organic matter that reduces their efficacy to sorb HOCs 
(Pignatello et al., 2006), and subsequent reductions in dissolved organic matter 
concentrations that are known to play a major role on the complexation of heavy 
metals in solution (Gomez-Eyles et al., 2011; Weng et al., 2002).

Biochar increases the pH of a contaminated soil if the pH of the biochar 
is greater than the pH of the soil it is added to (Beesley et al., 2010; Sizmur et 
al., 2011e). This is due to the creation of metal oxides from base cations (e.g., K, 
Ca, Si, and Mg) during pyrolysis (Novak et al., 2009). Therefore, biochar source 
materials with the greatest mineral concentrations result in the highest biochar 
ash components and have the highest pH (Lehmann et al., 2011). It is therefore 
intuitive that they will produce the greatest increase in soil pH following applica-
tion. By increasing the soil pH, the solubility of metal cations in the soil solution 
decreases. As a result, metals can precipitate out of solution, particularly as phos-
phates (Uchimiya et al., 2010). Biochars produced from manure source materials 
have particularly high mineral ash contents and can immobilize considerable 
concentrations of metals by this mechanism (Cao and Harris, 2010, Uchimiya et 
al., 2010). However, high phosphate concentrations in biochar may also result in 
mobilization of arsenate (Beesley et al., 2014).

For a biochar to be effective in reducing contaminant bioavailability in an 
amended soil, it has to improve its sorptive properties. Elevating the soil pH can 
increase the number of pH-dependent cation exchange sites on the soil surface. 
Therefore, biochar removes metals from the soil solution not only by adsorb-
ing metals on its own surface, but also by increasing the metals adsorbed by the 
soil itself. Houben et al. (2013b) demonstrated that the immobilization of Cd, Zn, 
and Pb was almost entirely due to an increase in soil pH. The metal availability 
(assessed with a 0.01M CaCl2 extraction) was similar in control and biochar-
amended soils at a given pH, but the biochar increased the acid-neutralizing 
capacity of the soil, effectively buffering the soil against future decreases in pH 
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and preventing the leaching of metals. Separating the immobilization of metals 
due to sorption on the biochar surface from the (pH mediated) effect of sorp-
tion on the soil surface is difficult but has been attempted by Rees et al. (2014a) 
who constructed a two-column experiment. Leachate was circulated sequentially 
through columns containing contaminated soil and biochar separately to deter-
mine the relative sorption of Cu, Pb, and Zn on both the biochar and the soil.

Biochars are likely to be more effective in soils where contaminants are more 
bioavailable. Superior AC effectiveness in reducing mercury and methylmercury 
bioavailability has been reported in sediments with lower native sediment–water 
partition coefficients than in sediments where the contaminants were already 
tightly bound (Gilmour et al., 2013). Gomez-Eyles et al. (2013b) reported much 
higher bioavailability reductions in PCB-impacted sediments after amendment 
with AC than biochar. These higher reductions in bioavailability were related to 
the higher sorption capacity of the ACs that were generally 1 to 2 orders of mag-
nitude higher than the biochars. As the sorptive capacity of the sediments used in 
that study was already high before amendment, it was concluded that the biochars 
did not provide a sufficient enhancement of the sorptive properties of the native 
sediment, whereas the AC did. However, in other sediments or soils where the 
native bioavailability is lower to start off with (e.g., soils with low native organic 
carbon and black carbon contents) the addition of biochar amendments will have 
a larger impact on the sorptive capacity of the soil with a subsequent reduction 
in HOC bioavailability. Similarly for heavy metals, biochars have been shown to 
be highly effective in reducing metal mobility in sandy–acidic mine soils (Sizmur 
et al., 2011e), but smaller bioavailability reductions have been observed in calcer-
ous soils where the metals are already strongly bound (Gomez-Eyles et al., 2011).

Summary
The methods used to assess the mobility of contaminants in soils are becom-
ing increasingly sophisticated, and there is a general move toward assessing 
the mobility of contaminants in biochar-remediated soil with passive samplers 
instead of chemical extractions. Biochar applied to soil has been shown to reduce 
contaminant mobility in leachate, porewaters, water extractions, 0.01 M CaCl2 
extractions, EDTA extractions, and cyclodextrin extractions. Mixing biochar with 
soil also enables researchers to understand the interactions between biochars 
and soil and elucidate indirect mechanisms for biochar-reducing contaminant 
mobility. For example, the application of biochar to soil often increases the pH, 
which increases the pH-dependent cation exchange capacity of soils and results 
in higher metal removal from the soil solution.

Bioassays
Bioassays (or biological assays) employ organisms in determining the availabil-
ity, uptake, and toxicity of contaminants in soils. Experiments to assess the effect 
of biochar on soil contaminant remediation often involve introducing organisms 
into contaminated soil mixed with biochar (alongside a biochar-free control soil). 
The growth of the organism, the uptake of contaminants by the organism, or the 
symptoms of toxicity expressed by the organism are then assessed. Bioassays 
add another layer of complexity to the systems studied in both batch sorption 
experiments and soil–biochar incubations. The processes that can be captured by 
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bioassays include (i) the desorption of contaminants from the soil surface, (ii) the 
adsorption of contaminants on the surface of the biochar, (iii) the uptake of con-
taminants by an organism, and (iv) the transport of contaminants to a site of toxic 
action. Bioassays are therefore better able to predict the effect of biochar on the 
bioavailability and toxicity of contaminants in soils than soil–biochar incubations.

The majority of bioassays conducted to demonstrate a reduction in contami-
nant bioavailability after biochar application use either plants or earthworms as 
test organisms. Both plants and earthworms are at the base of the terrestrial food 
chain. Therefore, reducing the uptake of contaminants to plants and earthworms 
minimizes trophic transfer to humans and predatory mammals and birds (Armit-
age and Gobas, 2007; Peralta-Videa et al., 2009). This is particularly the case for 
contaminants that biomagnify through food webs (e.g., methylmercury and PCBs).

Earthworms
Earthworms are important soil organisms because they regulate soil structure, 
accelerate the rate of organic matter decomposition, and increase nutrient avail-
ability to plants. Earthworms are therefore considered keystone species and 
ecosystem engineers (Jones et al., 1994; Jouquet et al., 2006). It is for these reasons 
that it is important to reduce the bioavailability of contaminants to earthworms 
to below a level where these ecosystem services are not significantly affected. 
Furthermore, because earthworms are easy to culture in laboratories, have inti-
mate contact with the soil, and do not require special permits for their use in 
ecotoxicology, they are excellent test species for bioassays.

Significant reductions in earthworm bioaccumulation have been reported 
after biochar amendment for a number of contaminants including PAHs and Cu 
(Gomez-Eyles et al., 2011), PCBs (Denyes et al., 2012), Pb (Cao et al., 2011), atrazine (Cao 
et al., 2011; Wang et al., 2014), and hexachlorobenzene (Song et al., 2012). However, 
other studies have found no effect or very modest reductions in bioaccumulation. 
For example, Andrade et al. (2014) found biochar amendments had no effect or 
slightly increased dieldrin and 4,4¢-DDT bioaccumulation in E. fetida. The same 
study reported drops in 4,4¢-DDD (dichlorodiphenyldichloroethane) and 4,4¢-
DDE (dichlorodiphenyldichloroethylene) bioaccumulation, but these reductions 
were generally lower than those achieved by compost amendments. Similarly, 
Denyes et al. (2013) found significant reductions in PCB bioaccumulation after 
manually mixing AC into the soil, but not for biochars. However, significant 
reductions were observed for both amendments when mechanically mixing 
the carbons into the soils for 24 h. Gomez-Eyles et al. (2011) reported significant 
reductions in Cu mobility after biochar application, but not for As, Cd, Co, Ni, 
and Zn. These contrasting results suggest the success of biochar amendments is 
likely to be biochar and soil specific. Both the sorptive quality and quantity of 
the biochar, and the native bioavailability of the contaminants in the receiving 
soil, will ultimately control whether the amendment is effective. Other factors 
like the soil properties (e.g., organic matter content), the mixing regime, and even 
the earthworm species will also influence how effective biochar is in reducing 
earthworm bioaccumulation. Wang et al. (2014) reported larger reductions in 
atrazine bioaccumulation for endogeic earthworms (Metaphire guillelmi) that live 
and feed in soil than for epigeic earthworms (Eisenia fetida) that live and feed 
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in the soil litter. It was hypothesized that biochar was particularly effective at 
reducing atrazine absorption through the earthworm gut.

Despite reducing bioaccumulation, minor toxic effects of biochar on earth-
worm health have been reported. Gomez-Eyles et al. (2011) recorded a reduction 
in earthworm weight in a hardwood-derived biochar-amended soil contami-
nated with PAHs and metals relative to an unamended soil. Decreased earthworm 
growth rate was also observed by Jakob et al. (2012) after addition of ACs to a PAH-
contaminated soil. Earthworms feed by allowing dissolved organic molecules to 
diffuse across their gut wall. Therefore, biochar may also reduce nutrient absorp-
tion in the earthworm gut. The more effective the biochar is at adsorbing organic 
molecules, the greater impact this is likely to have on earthworm growth rates.

Earthworms are known to ingest biochar (Lehmann et al., 2011) and act as 
mixing and dispersing agents for biochar in soils (Ameloot et al., 2013), and may 
therefore benefit remediation. Concurrently, the inoculation of earthworms into 
contaminated soils has the potential to become a commonly used practice dur-
ing land remediation and restoration (Butt, 1999; Sizmur et al., 2011a). However, 
in the absence of biochar, earthworms can increase contaminant mobility in soils 
through their feeding, burrowing, and casting activities (Sizmur et al., 2011b; 
Sizmur et al., 2011d). Therefore, it is prudent to investigate whether earthworm 
activity in biochar-amended soils increases or decreases the mobility of metals. 
Sizmur et al. (2011e) inoculated L. terrestris earthworms into a former mine soil 
contaminated with Cu, Pb, and Zn after biochar amendment and found that the 
earthworms had no significant effect on the metal mobility. However, biochar 
application reduced the concentrations of water soluble metals by >95%, so any 
earthworm mediated increase in mobility may have been buffered by this very 
effective biochar.

Plants
Reductions in both organic and inorganic contaminant bioaccumulation have 
been reported in different plant species (e.g., Cucurbita pepo, Brassica napus and Zea 
mays) after biochar amendment (Brennan et al., 2014b; Denyes et al., 2012; Denyes 
et al., 2013; Houben et al., 2013a). However, the success of the biochar treatment is 
likely to depend on the factors previously discussed for earthworms (biochar sor-
pitive capacity, bioavailability of contaminants in soil before application, species 
selection, and biochar mixing regime). For example Denyes et al. (2013) found that 
the biochar amendment was only effective at reducing PCB bioaccumulation in 
C. pepo after vigorously mixing the biochar into the soil, and Hartley et al. (2009) 
did not observe a substantial alteration in As uptake into Miscanthus foliage fol-
lowing biochar application.

As well as reducing contaminant bioaccumulation by lowering bioavailability, 
biochar has also been found to increase germination rates and reduce the phyto-
toxicity of contaminants to plants species. During early seedling establishment, 
Beesley et al. (2014) found that the germination and root length of Lolium perenne 
cultured in porewaters extracted from a former mine soil contaminated with As, 
Cd, Cu, Pb, and Zn was increased if the soil was first remediated by application of 
a biochar produced from the pyrolysis of orchard residues. Germination and root 
elongation of Lepidium sativum in contaminated sediment-soil mixtures polluted 
with both organic and inorganic contaminants was also improved by biochar 
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amendment (Jośko et al., 2013). Brennan et al. (2014b) showed an increase in maize 
(Zea mays) biomass and chlorophyll content after biochar produced form pine 
woodchip and maize stubble was added to soils contaminated with PAHs, As, 
Cu, and Zn. Furthermore, biochar promoted the development of fine maize roots, 
crucial to water and nutrient uptake in Cu- and As-contaminated soil (Brennan 
et al., 2014a). Houben et al. (2013a) found that the availability of Cd, Zn, and Pb 
to Brassica napus decreased with increasing biochar applications. Applications of 
1% resulted in 100% mortality after 12 wk, but the 10% amended soils produced 
larger plants with lower metal concentrations than the 5% amended soils. The 
authors suggest that B. napus can be grown as an energy crop on contaminated 
land and the biomass pyrolyzed and returned to the soil to benefit remediation.

The introduction of plants to contaminated land helps to bind the soil and 
prevent erosion (Tordoff et al., 2000). Subsequently, by establishing a vegetative 
cover the risk of pollutants migrating off site to water courses is reduced (Rob-
inson et al., 2009). There are several authors that report little or no increase in 
plant growth after biochar amendment alone, but an increase in plant growth 
when biochar is added alongside organic or inorganic fertilizers that cannot be 
explained by the fertilizer alone (Chan et al., 2007; Steiner et al., 2007; Van Zwieten 
et al., 2010; Yamato et al., 2006). Biochars, as well as immobilizing contaminants, 
can also affect the bioavailability of nutrients in soils. While some biochars can 
release nutrients into soils, it is often the case that nutrients in soil sorb to the 
biochar, which is why only modest increases in plant growth are observed after 
addition of biochar to unfertilized soils. When biochar is applied alongside fertil-
izer the biochar can reduce leaching and increase the efficiency of the fertilizers. 
In contaminated soils, biochar is able to reduce the toxicity of contaminated soil, 
improve plant germination rates, and reduce plant uptake of pollutants, but it can 
only increase plant biomass in soils where fertilizer is also applied (Fig. 4). There-
fore, when applying biochar to remediate and revegetate contaminated soils it is 
recommended to apply in combination with fertilizer (Beesley et al., 2014; Beesley 
et al., 2011; Karami et al., 2011; Sizmur et al., 2011e).

Summary
Bioassays to assess the effect of biochar applications on the bioavailability of con-
taminants have chiefly employed earthworms and plants as test organisms. Some 
bioassays have revealed reductions in the uptake of metals by earthworms and 
plants, but several studies have failed to register significant reductions. These 
contrasting outcomes may be due to differences in the biochar sorpitive capacity, 
the bioavailability of contaminants in soil before application, species selection, 
and the biochar mixing regime. Biochar has been found to increase growth and 
reduce the symptoms of toxicity in plants but, contrastingly, reduce the growth 
of earthworms. Both plants and earthworms may benefit contaminated soil reme-
diation because of erosion prevention and enhanced mixing of biochar and soil.

Field Experiments
Field experiments offer perhaps the best opportunity to test the performance of 
a biochar for the remediation of a contaminated soil in a measured and realistic 
way. By applying biochar to contaminated soils in situ, experiments are exposed 
to prevailing ambient conditions rather than the temporally homogenous 
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conditions provided by micro- and mesoscale laboratory and glasshouse trials. 
Biochar is incorporated into soils (or applied to the surface) in plots of a given 
area and then compared with biochar-free control plots (Bian et al., 2014). To 
account for the inherent variability of soils (particularly at contaminated sites, 
which are often more heterogeneous than arable soils), good statistical design 
must be employed (i.e., replication, randomization, and blocking) (Welham et al., 
2014). To avoid cross-contamination, buffer strips are included between exper-
imental plots (Hammond et al., 2013). Field experiments are usually costly to 
conduct, and the number of treatments that can be tested is often more limited 
than in laboratory experiments. Therefore, field experiments tend to only trial the 
use of biochars that have already undergone laboratory testing (i.e., batch sorp-
tion, soil incubations, or bioassays). Measurements can be made in each plot of a 
field experiment over time to test the performance of the remediation. For exam-
ple, vegetation, invertebrates, porewater, or leachate can be surveyed or sampled, 
often simultaneously with climatic data collected from a local weather station.

Lessons Learned from the Field Application  
of Activated Carbon to Contaminated Sediments

For the reasons listed above, there are very few examples of field experiments 
in which biochar has been applied to contaminated soils, particularly those 
contaminated with organic pollutants. However, much can be learned from 
previous experiments that have assessed the potential for AC to remediate 

Fig. 4. Conceptual model of bio-
char and fertilizer applications 
to contaminated soils. When 
soil is unamended (1.) contami-
nants are taken up into plant and 
earthworm tissues. Fertilizer appli-
cations (2.) increase plant growth 
but not contaminant bioavailabil-
ity. Biochar application (3.) reduces 
contaminant bioavailability, but 
only by adding biochar and fer-
tilizer simultaneously (4.) is plant 
growth maximized while reducing 
the bioavailability of contami-
nants to plants and earthworms.
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contaminated sediments. For example, field pilots with AC have shown that 
it will take the carbon amendments several years to be fully effective in the 
field, as the mass transfer of HOCs from native organic matter onto introduced 
carbons can be a slow process, especially for the bulkier and more hydropho-
bic HOCs (Beckingham and Ghosh, 2011). Initial reductions in the field may 
therefore be more modest than predicted from initial well-mixed batch sorption 
studies; however, valuable information from AC pilot studies will enhance the 
effectiveness of biochars in future soil field pilots for HOCs. For example, the 
benefits of using the smallest particle size carbon practical (Zimmerman et al., 
2005) and mixing the biochar into the soil effectively to speed up HOC mass 
transfer (Cho et al., 2009) will be equally applicable to biochar as they are for 
AC. Denyes et al. (2013) found no significant reductions in PCB bioaccumulation 
after manually mixing biochars and AC into soil, but did find significant reduc-
tions when the amendments were mechanically mixed into the soil for 24 h. 
Benthic organisms have been shown to help with this mixing in a process called 
bioturbation (Sun and Ghosh, 2007), so it likely that a rich soil fauna (e.g., earth-
worms) would also enhance biochar performance. The kinetics of mass transfer 
could be slower in soils than sediments, as mass transfer occurs through the 
aqueous phase and will therefore be minimal when the soil is dry. Therefore, 
keeping soils as water saturated as possible will also help contaminant transfer 
onto the biochar.

Biochar Applications to Contaminated Soils in the Field
Unlike organic contaminants, there are a few examples of field trials that use bio-
char to remediate metal contaminated soils. A suite of sequential cropping field 
experiments under a rice–wheat rotation that were designed to test the effect of 
biochar on the uptake of Cd from contaminated paddy fields in China have been 
recently reported (Bian et al., 2013). These were conducted in response to high 
levels of Cd found in rice from the region. Wheat straw biochar reduced the con-
centration of Cd in rice (Bian et al., 2014; Cui et al., 2011) and wheat (Cui et al., 
2012) up to 3 yr after applications of 20 to 40 t/ha. The biochar increased the soil 
pH, reduced the CaCl2 extractable Cd, and increased the soil organic carbon. The 
mass transfer of Cd from the soil to the biochar surfaces may have been faster in 
this experiment than experiments in arid environments because of the annual 
flooding inherent to rice paddies.

Beesley and Dickinson (2011) used a moderately polluted urban garden soil 
in the United Kingdom to study the impacts of a wood-derived biochar applied 
over the surface of the soil on the concentrations of metals, soluble C, and N in 
porewater at depths of 25, 50, and 75 cm below the soil surface. Their aim was to 
determine whether dissolved C from the weathering of biochar in situ, over the 
course of 1 yr, impacted on metal leaching and export from the soil profile by 
association of soluble C complexes. Soil was circumneutral in pH, 6% organic mat-
ter, and up to 30, 170, 360, and 450 mg/kg Cd, Cu, Zn, and Pb, respectively. Biochar 
caused similar increases in soluble carbon within the soil profile, as a compara-
tive greenwaste compost amendment, but greatly increased As solubility. It was 
noted that the effects of the surface application of biochar, in common with green-
waste compost, only had an impact on the metal-organic carbon dynamics in the 
top 25 cm of soil profile, while lower depths were largely unaffected.
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Summary
Field experiments enable researchers to demonstrate technology to practitio-
ners and are not often used to unravel mechanisms or investigate hypotheses. 
Research on the application of biochar for soil remediation is in its infancy and 
there are only a few field experiments that specifically trial the application of bio-
char for this purpose. A suite of field experiments to remediate Cd-contaminated 
paddy fields in China have demonstrated that biochar can reduce Cd uptake by 
wheat. However, an experiment in the United Kingdom has demonstrated that 
biochar application to the surface of contaminated urban soils can increase the 
solubility of As deeper in the soil profile. Because research into the application of 
AC to contaminated sediments has progressed further than biochar applications 
to contaminated soils, lesson can be transferred and used to make recommenda-
tions. These recommendations include (i) reducing bicohar particle size as much 
as possible, (ii) thoroughly mixing biochar with soil mechanically or by encour-
aging earthworm activity, and (iii) keeping soil moisture as elevated as possible.

Implications for the Application of Biochar  
to Uncontaminated Agricultural Soils

Biochar inherently contains varying levels of organic pollutants such as PAHs, 
dioxins, or furans which are produced during pyrolysis (Garcia-Perez, 2008; Hale 
et al., 2012) and metals which are present in contaminated source material and 
concentrated after pyrolysis (Hossain et al., 2010; Kim et al., 2012; Matsuura et al., 
2009). Therefore, the application of biochar to agricultural soil could potentially 
carry a significant risk to human health by contaminating soils used for growing 
crops or keeping livestock, unless appropriate measures are taken to minimize 
these risks.

Organic Contaminants Associated with Biochar
As discussed previously, biochar is particularly effective at adsorbing and seques-
tering organic contaminants (Beesley et al., 2010; Denyes et al., 2012; Gomez-Eyles 
et al., 2013b). As a result, enhanced sorption of hydrophobic organic compounds 
such as PAHs could decrease microbial mineralization by decreasing bioavail-
ability to degrading organisms (Quilliam et al., 2013b; Rhodes et al., 2008, 2010; 
Song et al., 2012; Xia et al., 2010; Xin et al., 2014). This sorption is generally viewed 
as positive as it will result in reduced toxic effects by the contaminant and mini-
mize HOC transfer up the food chain. However, when soil is contaminated with 
readily degradable or volatile organic compounds that could dissipate out of soils 
naturally (e.g., aliphatic hydrocarbons, low molecular weight PAHs, and chlori-
nated solvents), sorption to biochar may extend contaminant life time in the soil by 
reducing mineralization rates (Rhodes et al., 2008). On the other hand, some stud-
ies have found increasing degradation rates after biochar amendment (Qin et al., 
2013; Sneath et al., 2013). This increased degradation is likely to be a consequence 
of biochar reducing the immediate toxicity of the freshly spiked contaminant to 
degrading bacteria. If contaminant bioavailability is not the limiting factor, the 
addition of biochar can help by reducing the risk of overloading the soil’s biodeg-
radation capacity (Bushnaf et al., 2011; Meynet et al., 2014). More recent research 
points toward coupling the reduced risk provided by contaminant sorption to 
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the biochar, with increased degradation by coating the carbon with contaminant 
degrading biofilms (Chen et al., 2012). The biochar surface could provide a source 
of high contaminant concentration for the organisms to feed on, and the biofilm 
would provide a suitable habitat for the bacterial community. Successful results 
have already been reported using this technology in ACs to enhance PCB dechlo-
rination in impacted sediments (Kjellerup et al., 2014; Payne et al., 2013). However, 
a recent study of field-aged biochar in agricultural soil has demonstrated mini-
mal natural colonization of the external (and internal) surfaces of wood-derived 
biochar (Quilliam et al., 2013a). Survival of a biofilm on biochar surface may 
therefore not be long enough to degrade contaminants because of the limitation 
of C in this particular niche (Quilliam et al., 2013a).

Despite having a strong sorption capacity for HOCs, biochar does not always 
decrease leaching, and in particular situations could actually increase the risk of 
HOC leaching if the application of biochar results in the release of considerable 
amounts of dissolved organic carbon (DOC) (Quilliam et al., 2013b). The sorp-
tion of HOCs to DOC and small pyrolyzed dust particles could also have other 
important downstream implications, (e.g., earthworm ingestion and subsequent 
bioaccumulation in food chains). Dissolved organic carbon release decreases 
with increasing biochar pyrolysis temperature and is also lower for hardwood 
source materials than grasses (Mukherjee and Zimmerman, 2013). This is consis-
tent with recommendations given by Hale et al. (2012) that lower PAH and dioxin 
concentrations in biochars can be achieved by using woody source materials and 
pyrolyzing slowly (for several hours) at higher temperatures (between 500 and 
600°C). Therefore, careful selection of source material and pyrolysis conditions 
will help to reduce the risk of HOC pollution when applying biochar to uncon-
taminated soils.

Inorganic Contaminants in Biochar
Certain source materials can contain significant levels of indigenous heavy metals 
(e.g., sewage sludge or preservative-treated waste wood), and as metals with high 
boiling points (e.g., Pb, Ni, Cu, Zn, and Cr) are rarely transferred into bio-oil or 
become volatilized (except Hg, As, Cd, and Se) during pyrolysis or combustion 
(Van Wesenbeeck et al., 2014), metal enrichment of biochar is inevitable (Hossain 
et al., 2010; Kim et al., 2012; Matsuura et al., 2009). Biochars produced from 
waste materials are inherently variable both spatially and temporally because 
of the variability in the composition of the source material. Yoshida and Antal 
Jr. (2009) found that biochar produced by pyrolyzing sewage sludge from a water 
treatment plant on the island of Oahu, Hawaii, contained metal concentrations 
below that preventing application to land. However, biochar produced from a 
nearby treatment plant on the same island contained elevated concentrations of 
Zn, Mo, and Cr that prevented their legal application to soils in Hawaii according 
to USEPA threshold values (Van Wesenbeeck et al., 2014). However, when cherry 
tomatoes were grown in soils amended with biochar produced from sewage 
sludge, the fruit was found to contain metal concentrations considerably lower 
than the Australian maximum permitted concentrations in food (Hossain et al., 
2010). These findings indicate that although some biochars may contain elevated 
concentrations of metals, their bioavailability to plants is likely to be very low.

The consequences of applying biochar produced from contaminated waste 
wood source material are only now becoming evident (Lucchini et al., 2014a), 
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with implications for metal bioavailability and plant growth. Streams of waste 
wood, containing even small levels of preservative-treated wood used to produce 
biochar destined for soil application could pose a risk to soil quality and crop pro-
duction, and pose a considerable environmental risk (Jones and Quilliam, 2014; 
Omil et al., 2007; Praharaj et al., 2002). Biochar made from waste wood source 
materials containing varying levels of contaminated timber can increase con-
centrations of soil available Cu, leading to changes in soil microbial community 
dynamics and uptake by crop plants. However, greater uptake does not necessar-
ily result in a reduction of plant biomass. Subsequently, a thorough analysis of the 
source material intended for biochar production is critical before land application 
to avoid increasing the pollutant load of the soil or the availability or mobility 
of indigenous contaminants (Lucchini et al., 2014b; Madrid et al., 2007; Pérez-
de-Mora et al., 2006). Recently, it has been demonstrated that biochar produced 
from waste forest residue contains an inherently low metal content (Lucchini et 
al., 2014b), and although biochar made from this source material caused small 
changes to metal fractionation, total metal concentrations in both soil and plant 
tissue remained unaltered.

Pesticides
In an agricultural context, the property of biochar that gives it such great potential 
for remediating contaminated sites (i.e., readily binding organic pollutants and 
heavy metals) can also significantly influence pesticide behavior in agricultural 
soils (Eibisch et al., 2015; Kookana, 2010). Sorption may decrease the efficacy of 
soil-applied agrochemicals by influencing their bioavailability and susceptibility 
to leaching, while the implications of biochar on pesticide behavior, particularly 
in the longer term, remains poorly understood (Cabrera et al., 2014). Biochar can 
induce the rapid and strong sorption of herbicides, which can reduce leaching, 
mineralization, and efficiency (Graber et al., 2012; Reid et al., 2013). Reduced leach-
ing must be balanced with increased soil residence time since sorption to biochar 
may limit herbicide availability to microbial communities and suppress biodeg-
radation in soils (Mello De Capitani et al., 2007). Evidence suggests that the effect 
of biochar on herbicide behavior is dependent on pyrolysis conditions, source 
material, and soil type (Sun et al., 2012b). Consequently, the longer term effects 
of biochar on pesticide sorption are unclear. Contrasting studies report either 
decreased sorption of herbicides by field-aged biochar (Martin et al., 2012) or the 
same effect as fresh biochar on sorption and microbial mineralization (Jones et 
al., 2011). Biochar application to soil, therefore, could potentially reduce the dis-
sipation of foliar-applied pesticides and decrease the risk of human exposure and 
environmental contamination, but importantly could significantly affect the effi-
cacy of soil-applied herbicides.

The Human Health Implications  
of Applying Biochar to Agricultural Soils

Although still poorly understood, there are several public health concerns associ-
ated with amending soil with biochar or wood ash. Breathing in small particles 
of biochar, either during its production or application, or after wind erosion 
from soil, can cause the serious respiratory disease pneumoconiosis (Mello 
De Capitani et al., 2007). The potential for biochar or wood ash dust to contain 
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considerable concentrations of metals further increases the risk to human health 
(Uski et al., 2012). Because of the difficulty in determining whether a source mate-
rial is contaminated there is an urgent need for an improved understanding of 
the public health risk of applying biochar or wood ash to land, including irrita-
tion to eyes and mucous membranes by airborne pollutants (Vassilev et al., 2013). 
One potential strategy to lower human exposure is the pelletization of biochar 
and wood ash which would greatly reduce airborne particulate loss both pre- and 
postspreading, and may result in a better slow-release fertilizer (Gómez-Rey et al., 
2012). However, this is likely to increase costs.

Contaminants applied to soils in biochar could also leach through soils and 
enter groundwater, or be ingested by soil organisms and biomagnify through 
food webs, causing toxicity at higher tropic levels. However, the greatest expo-
sure risk comes from consuming crop plants that have accumulated considerable 
concentrations of metals in their edible parts. The potential for human exposure 
to toxic concentrations of metals will depend on the capacity for root uptake by 
individual crop species and the ability of the plant to sequester the contami-
nant without adversely effecting its growth. Uninformed growing (or grazing) of 
crops in soil amended with biochar made from a contaminated source material 
could potentially deliver toxic levels of metals to the human food chain.

Summary and Future
A large number of published studies have used batch sorption techniques to 
compare biochars, model sorption of contaminants on the surface of biochar, 
and to elucidate the mechanisms responsible. Laboratory incubations of bio-
char with contaminated soils have employed a wide range of chemical methods 
to assess the availability or mobility of contaminants after incubation. They 
have also revealed indirect effects of biochar on contaminant availability by, for 
example, modifying soil pH. Bioassays of earthworms or plants have been used 
in combination with chemical extractions to determine the impact of biochar on 
the bioavailability and bioaccessibility of contaminants in soil. The bioassays, 
in turn, must also consider the impact of the soil organisms themselves on the 
fate of contaminants sorbed to biochar surfaces. Only a small number of field 
trials have been conducted at contaminated sites to assess the use of biochar for 
soil remediation. Preliminary results are encouraging though, indicating that 
biochars are able to reduce metal contamination of edible crops grown on con-
taminated soils.

Because biochars are processed materials, they incur costs in time and 
energy to produce. Therefore, in the future biochars will be applied to land only 
if (i) they add value to agricultural systems (e.g., fertilizing crops), (ii) they reduce 
the prevalence of contaminants (e.g., remediating soils or safely disposing of 
contaminated feedstock), and (iii) they are as readily available and cost effective 
as other options (e.g., composts). A step back to consider the geographical and 
global context is required now that biochar research is maturing. There has been 
a technological and commercial push for biochar production without sufficient 
demand; in the future, biochars will only be produced where demand exists for 
them. Demand is likely to be for small batches of bespoke biochars designed for 
specific purposes, such as:
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•	 Co-application with fertilizers, to prevent rapid leaching of 
nutrients to from soils to waters

•	 Remediation of soils and waters where contamination poses a risk 
to the environment

•	 Disposal of low value or contaminated feedstocks
Circularizing the production of biochar is likely to form the focus on the 

next decade of research. Biochars will increasingly be produced in situ where and 
when there is a demand for them. This will reduce the burden of transportation 
of feedstocks to and biochars from centralized production facilities, and develop 
local-scale or mobile, easily operable facilities producing biochars on demand 
and blending them with other waste products. There will still be a need for dem-
onstration trials to prove the value of biochars and assess the environmental risks 
incurred by producing biochars from mixed sources. This will ensure that bio-
chars are deployed to their maximum potential environmental value.
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