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Abstract 

 

Recent findings have shown that ACTN3 genotype regulates calcineurin signalling and thus 

muscle performance in mice. The aim of the present study was first to investigate 

associations of ACTN3 genotype with quantitative performance-related phenotypes in a 

cohort of native Lithuanian athletes and controls. The second aim was to identify variants 

within the Calsarcin family that were of a high enough frequency within the European 

population and investigate variation within these genotypes on performance-related 

associations. 407 participants (210 athletes, 197 controls: age 22 ± 4 years, BMI 23 ± 2 

kg/m2) performed a range of tests including: anthropometric tests; isokinetic dynamometry; 

30 m sprint, counter-movement jump; standing jump;     eco    i  ate te t  a   a   o2MAX 

test across three separate testing sessions. DNA from venous blood samples was genotyped 

through standard PCR and RFLP processes. ACTN3 R577X SNP R-allele carriers were faster 

than XX-homozygotes in a 0-10m stage of a 30m sprint (p < 0.01). Variation was identified at 

a suitable level for Calsarcin-1 (MYOZ2) and Calsarcin-3 (MYOZ3). As Calsarcins tether 

calcineurin at the sarcomeric z-line, it was hypothesised that any variation within the 

Calsarcin genes may alter calcineurin signalling and thus athletic performance.  MYOZ2 SNP 

rs9995277 (Calsarcin-1) G-allele was not associated with any performance phenotype. 

MYOZ3 SNP rs116090320 (Calsarcin-3) G-allele carriers showed significantly increased 

relative    2MAX (p = 0.01) and significantly lower isokinetic upper arm flexion strength at 90 

d/sec (N·m, p < 0.01) compared to AA-homozygotes. In conclusion, we are the first group to 

identify functional variation within genes encoding members of the Calsarcin family and 

have demonstrated for the first time that variation within MYOZ3 affects performance-

related phenotypes in humans.  
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Introduction 

 World-class elite athletes exemplify the successful interaction of nature (genetics) 

versus nurture (environment). The careful orchestration of lifestyle and environmental 

factors such as training and nutrition are as critical to success as the palette of genetic 

variation imparted on to the athlete: however, the genetic component of athletic 

performance remains one of the least understood yet one of the most critical dimensions to 

consider 1.   

 Whether there is a genetic component associated with athletic performance and or 

trainability is no longer questionable. It is widely recognised that physical performance as a 

phenotype is determined, in part, by the genes an individual has inherited from their 

parents and is very much a polygenic trait 2,3. The heritability of exercise-related phenotypic 

traits are typically ascertained by twin or family studies on a single period of assessment 4. 

Heritability expresses the variance explained by genetic factors as a proportion of the total 

variance for a particular phenotype 5. Heritability of physical performance-related 

phenotypes ranges from 31 to 85 % 2. For aerobic performance alone, the heritability is 

between 47 % to 74 % 6. Maximal oxygen uptake (  O2MAX) is one of the most important 

indicators that characterises aerobic performance 7. Baseline    2MAX has been reported to 

have a maximum heritability of 50 % with changes in    2MAX as a result of training having a 

maximum heritability of ~47 % 6,7. For muscular strength, accurate heritability estimates are 

less clear due to the number of ways in which this complex trait can be measured. 

Differences in study design for investigating muscular strength place the heritability 

between 14 % 8 and 96 % 9.  Although the range in heritability estimates may be large, it is 
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clear that there is a genetic component of exercise and more research aimed at identifying 

causal genes is required.  

This heritability is comprised of the combined influence of variations or 

polymorphisms in DNA sequences; although heritability studies themselves do not require 

any DNA, only knowledge of the relationships between the study participants. 

Polymorphisms in human DNA account for less than 1 % of the entire genome with the 

remaining 99 % plus of the sequence identical between individuals. That being said, there 

are still over 12-million potential sites of variation 4. Due to the nature of heritability studies, 

it is not possible to investigate the effect of variations in specific genes on given 

performance phenotypes. For this type of study, DNA must be collected, specific variations 

assessed and then associated with performance phenotypes. For association studies, 

athletes are often chosen as they are found at the extremes of human performance 10. By 

definition, polymorphisms which effect athletic performance are more likely to be identified 

in athletes compared to the general population as they would stand to gain the greatest 

advantage from such polymorphisms making them an ideal cohort to study 4,10; however, 

given the relatively small number of athletes, compared to the large number of possible 

SNP’ , i e tifyi    uitable SNP’  to i ve ti ate ca  be  ifficult compare  to Ge ome  i e 

Association Stu ie  which look at a lar e  umber of po  ible SNP’  i  o e  o 11. One of the 

most common types of genetic variation are single nucleotide polymorphisms (SNPs). A SNP 

occurs when one nucleotide changes within the sequence of a gene. To date, over 200 SNPs 

have been identified as having an effect on athletic performance 12. This type of variation 

can affect the expression or the function of a particular gene and thus lead to phenotypic 

variation 13. The consequences on phenotypic variation will depend on the gene affected by 
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the SNP; for example, a SNP affecting a gene involved in muscle contraction may affect 

athletic performance-related phenotypes. One such SNP is one of the most widely 

researched SNPs and occurs in the muscle structural protein α-Actinin-3. 

 

Skeletal α-Actinin Variants and Roles  

The α-Actinin-3 protein (encoded by the ACTN3 gene) is one of two highly similar (80 

% identical) calcium-insensitive, actin binding proteins that are present in skeletal muscle: α-

actinin-2 (encoded by ACTN2) and α-actinin-3. They diverged from each other in a single 

mutational event ~300 million years ago 10 but since then have remained highly conserved. 

This suggests that ACTN3 has a functional role out-with the role of ACTN2 and indeed they 

are differentially expressed spatially and temporally during embryonic development 14.  

The two isoforms, α-Actinin-2 and α-Actinin-3, form a lattice structure anchoring actin 

containing thin filaments at the sarcomeric Z-line (see Figure 1 below, from 15).  

 

Figure 1, α-Actinin localisation within the sarcomere. The  arcomeric α-Actinins are 

found at the Z-line (purple), where they anchor actin-containing thin filaments (blue) from 

adjacent sarcomeres. Anti-parallel  imer  of α-Actinin cross link actin filaments and stabilise 
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them against the force generated by the contractile apparatus (dashed arrows indicate 

direction of force). Figure adapted from 15.   

They stabilise the muscle contractile apparatus and contribute to tensile strength 

during muscle contraction 10,16. Α-Actinin-2 is present in all muscle-types including cardiac 

and oxidative type-1 skeletal muscle fibres. Α-Actinin-3 is found almost solely in glycolytic 

type-2 skeletal muscle. A  well a  their  tructural compo e t, α-Actinins also interact with 

an array of signalling proteins including metabolic enzymes such as glycogen phosphorylase 

(GPh) 17 and members of the Calsarcin family (Calsarcin 1, 2 and 3) which bind the calcium-

calmodulin-dependant phosphatase calcineurin to the α-Actinins at the sarcomeric z-line 18.  

A polymorphism in ACTN3, R577X (rs1815739), determines the presence or absence 

of functional α-Actinin-3 protein, giving rise to three genotypes; RR, RX and XX. 

Homozygosity for the 577X stop-codon results in complete deficiency of α-Actinin-3 protein 

in about 16 % of the global human population 19. The loss of functional α-Actinin-3 confers 

no disease phenotype suggesting that the related isoform α-Actinin-2 may somewhat 

compensate for the loss of α-Actinin-3; however, no up regulation of α-Actinin-2 is observed 

in ACTN3 XX humans, (Author ’ u publi he  ob ervatio   10). The frequency of the ACTN3 

XX genotype varies greatly, from ~25 % in Asian populations to <1 % in an African Bantu 

population with European frequency ~18 %. This suggests that ACTN3 genotype may confer 

differential fitness in humans under certain environmental conditions 10 and that the X-allele 

was positively selected during recent evolution of modern humans to the Eurasian 

environment 20. However, association studies would be required to ascertain any 

association between ACTN3 R577X genotype and performance-related phenotypes.  
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Early associations  

The prevalence of α-Actinin-3 deficiency in humans was first identified in a cohort of 

congenital muscular dystrophic (CMD) patients 19. Initially it was suggested that this 

deficiency may be a marker for a sub-set of patients with CMD. However, this was followed 

up and consequently found that the loss of α-Actinin-3 was in fact likely due to 

homozygosity for a single point mutation, causing a premature stop codon in ACTN3 

(R577X). This was not associated with any specific histopathological or clinical phenotype as 

ACTN3 XX homozygotes were present in both diseased and healthy participants 19,21   

 Due to the differing ACTN3 genotype frequencies, Yang et al. 10 followed this up, 

investigating the influence of ACTN3 genotype on factors which influence normal variation 

in muscle function. Since any effect on muscle function would be most readily observable at 

the extremes of human performance, they chose elite athletes as their cohort. Given the 

localisation of α-Actinin-3 in fast-twitch skeletal muscle fibres, they hypothesised and 

subsequently evidenced that the frequency of the ACTN3 XX genotype would differ 

according to athletic status thus indicating a potential effect on performance.  

They genotyped 426 unrelated Caucasian controls (292 female and 134 males) and 

301 elite white athletes from 14 different sports. Of the 301 elite athletes, a sub-set of 107 

(72 male and 35 female) were classified as specialist sprint or power competitors and 

included 32 Olympians (25 male an 7 female); 194 athletes (122 male and 72 female) were 

classified as specialist endurance athletes and included 18 Olympians (12 male and 6 

female). Genotype was not statistically significantly different between the three groups (p = 

0.996) nor between genders. As a whole, there were no significant difference between the 

controls and the elite athletes. When athletes were divided between Sprint / Power and 
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Endurance sub-sets and compared with controls, there was strong evidence of allele 

frequency variation between groups (p < 0.001). Sprint athletes had a lower frequency of 

the XX genotypes compared to controls (6 % vs. 18 %, p < 0.001) and there were no female 

Sprint / Power Olympians with the XX genotype. The Sprint / Power group also had a higher 

frequency of the RR genotype (50 % vs. 30 %) and a lower frequency of the RX genotype (45 

% vs. 52 %) compared with controls. Allele frequencies between Sprint / Power and 

Endurance migrated in opposite directions and differed significantly in both genders (male p 

< 0.001, female p < 0.05). Yang et al. 10 were the first group to investigate such associations 

with a skeletal muscle structural gene and the first to suggest a performance advantage - 

between ACTN3 577R allele and power and sprint performances. They also showed an 

association between the X-allele and endurance performance however this association was 

weaker and less clear.  

 

ACTN3, Power and Strength Performance in Humans 

Since the early work of Yang et al. 10, further replication has been undertaken in 

many other independent athletic and non-athletic cohorts. Similar findings were reported in 

Finnish elite athletes 22 with the ACTN3 XX genotypes frequency lower in the sprint group (n 

= 89) compared to the endurance group (n = 52). ACTN3 XX genotype was found to be 

completely missing in their top sprinters (n = 23) in line with findings in the female top-level 

sprint group of Yang et al. (2003). The ACTN3 RR genotype was conversely found to be 

higher in the sprint group and lower in the endurance group.  In a cohort of 486 Russian 

power-orientated athletes, the ACTN3 XX genotype was found to be significantly reduced 

(6.4 % vs. 14.2 % p < 0.0001) compared to 1197 controls with a significant linear trend (p < 
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0.0001) between athlete status (highly elite, elite, sub-elite, average, control) and ACTN3 XX 

genotype frequency  (3.4, 4.2, 7.3, 6.7 and 14.2 % respectively) 23. It could be suggested that 

these affects may be related to the developmental factors as Moran et al. 24 found no 

association between ACTN3 and sprinting performance in an unselected adolescent female 

population, in contrast to what would be expected in an elite female sprint population; 

perhaps due to the training environment and muscle physiology in trained, versus untrained 

individuals. These association studies paved the way for more in-depth analyses of the 

ACTN3 R577X genotype and more complex performance-related traits.   

Research evolved from simple association studies comparing genotypes between 

elite athletes versus non-athletic controls to assessing whether ACTN3 genotype is 

associated with specific performance related phenotypes and whether these findings can be 

identified in non-athletic cohorts of different ages or genders. In 2005, Clarkson et al. 25 

were the first to directly investigate ACTN3 genotype a   it ’ a sociation with baseline 

muscle phenotypes and subsequent changes following a resistance training regimen. The 

investigation was conducted with men (n = 247) and women (n = 352) and involved 12-

weeks of progressive resistance training on elbow flexor / extensor muscles of the non-

dominant arm. There was no association of ACTN3 R577X genotype and any muscular 

phenotype measured in men but, in women, the authors identified that  ACTN3 XX-

individuals had significantly lower baseline isometric maximal voluntary contraction (MVC) 

strength compared to ACTN3 RX (p < 0.01) and ACTN3 RR (p < 0.05) individuals.  Women 

were also found to have a significant association between ACTN3 genotype and 1-repetition 

max (1RM) response. Co ver ely to the author’  i itial hypothe i , and to what would be 

expected given the functional role of ACTN3 in the transmission of force across the z-line 
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(Yang et al. 2003), the ACTN3 RR women showed a significantly lower (p < 0.05) response in 

absolute 1RM to 12 weeks of training compared to their ACTN3 XX co-participants. The data 

suggested that women who were homozygous for the ACTN3 X-allele are at a significant 

disadvantage to those heterozygous or homozygous for the R-allele in terms of baseline 

strength as measured by MVC (a static test). However, they also demonstrate the largest 

improvement in 1RM (dynamic test) strength and thus are at an advantage in terms of 

developing dynamic muscular strength in response to resistance training. 

 Delmonico et al. 26 performed a similar training study to investigate whether the 

ACTN3 R577X polymorphism would affect knee extensor peak power in response to 

resistance training in older adults. Their results indicated that the ACTN3 R577X 

polymorphism influenced the response of quadriceps muscle power to 10-weeks of 

unilateral knee extensor strength training in older adults. Both men and women as separate 

groups significantly increased their 1RM (p < 0.001); however, the increase was significantly 

greater in men compared to women (p < 0.006). Delmonico and colleagues 26 were the first 

to demonstrate that increases in knee extensor peak power with strength training are 

influenced by ACTN3 genotype in both men and women with ACTN3 RR individuals showing 

a greater peak power response compared to their ACTN3 XX individuals. There were no 

significant differences in any phenotypic measurement at baseline between ACTN3 

genotypes for men but for women, XX homozygotes had a significantly higher peak power (p 

< 0.05) which has not been documented in the literature before. However, the authors 

acknowledged that their observed genotype frequencies differed from what was expected 

in Hardy-Weinberg equilibrium (p = 0.02). 
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Moran et al. 24 investigated the association of the ACTN3 R577X polymorphism on 

quantitative body composition and performance phenotypes in adolescent Greeks. This was 

the earliest study to break down strength, power and endurance performance into specific 

quantitative measures. They conducted their investigation in adolescents as in certain 

circumstances, genotype-phenotype associations within complex traits can be more 

effectively identified in such cohorts due to the confounding effects of the environment 

having had less time to take effect 24. They measured: body-mass index (BMI), triceps and 

subscapular skin-fold thickness (anthropometric data), handgrip strength, sitting basketball 

throw, vertical jump performance, 40m sprint time, agility run performance (tests of 

strength and / or power) and shuttle run performance (an endurance test) in each 

participant. A significant association was found in males (n = 511) for 40m sprint with ACTN3 

RR and RX individuals significantly faster (p < 0.004) than ACTN3 XX individuals however 

there was no difference between ACTN3 RR (n = 172) and ACTN3 RX (n = 242) individuals. 

No other anthropometric, strength, power or endurance phenotype was found to reach 

statistical significance and no association as found for the 40m sprint in the female (n = 439) 

participants. Their results demonstrated that ACTN3 genotype influences sprinting ability in 

an unselected population of non-athletic Caucasians and was similar to the associations 

found in elite Caucasian sprint athlete status 10. Due to the lack of association with other 

strength / power phenotype, involving single muscle contraction events, the authors 

suggested that the ACTN3 R577X genotype influences the cyclical component of sprinting 

rather than the strength or power generation.   

In 2008, Walsh and colleagues 27 investigated the association of ACTN3 R577X 

polymorphism in a non-athlete population of differing ages across the lifespan. 454 men and 
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294 women aged 22-90 years old took part in the study which assessed body composition 

(via duel energy x-ray absorptiometry, DEXA) and isokinetic strength using an isokinetic 

dynamometer on the dominant lower limb for both the concentric and eccentric phases at 

30 ᴼ/s-1 (N·m) and 180 ᴼ/s-1 (N·m). ACTN3 XX homozygotic females displayed significantly 

lower levels of total body fat-free mass (FFM; p = 0.009) compared with ACTN3 RR 

homozygous women but not compared to heterozygotes. Female XX homozygotes displayed 

significantly reduced strength than RR + RX women (p = 0.049) during the shortening 

(concentric) phase at 30 ᴼ/s-1 (N·m) when lower limb FFM differences were covaried during 

the analyses. Results were similar in a sub-analysis of women over 50 years old for the 

eccentric phase at 30 ᴼ/s-1 (N·m). No significant results were reported for men with regard 

to any body composition or strength phenotype measured. The authors concluded that the 

absence of functional ACTN3 (XX genotype) influenced FFM and knee extensor strength in 

women but not men. 

 From 2003, 10 ACTN3 genotype has been associated with strength / power 

performance related phenotypes. Research has evolved considerably encompassing: 

association studies with elite athlete status 10, 22, 23, 28 training studies in athletes and older 

non-athletes 26, 29; and cross-sectional studies investigating associations with specific 

performance-related quantitative phenotypes in non-athletic cohorts 24,27. With regard to 

strength and power performance, ACTN3 XX genotype appears to be associated with 

reduced performance, especially in athletes. Non-athletic cohorts have reported mixed 

results with gender and ethnicity appearing to have a confounding role in associations with 

genotype and performance. Results from the above studies supports the possibility that 

although XX homozygosity may be detremental to strength or power-related phenotypes, it 
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may confer a positive association in endurance-type activities due to increased X-allele 

frequency in such cohorts.  Despite all the studies on the functional role of ACTN3, to 

understand by which specific mechanisms differing ACTN3 genotypes influence strength, 

power or endurance performance and or any alterations within skeletal muscle, numerous 

authors proposed that a mouse model should be generated. 

  

Mouse Model 

To characterise the phenotypic consequences of variation in the ACTN3 R577X SNP, 

MacArthur et al. 30 developed an ACTN3 KO mouse line through a targeted deletion of exons 

2-7 of ACTN3 in chimeric mice. The KO mice were found to have no detectable α-Actinin-3 

protein, assessed by either Immunohistochemistry or Western Blotting mimicking the 

ACTN3 XX genotype in humans and thus making them a valid candidate for study. The KO 

mouse line were morphologically similar to their wild-type (WT) littermates. They showed 

normal sarcomeric function and there was no substantial loss in glycolytic type-2 fibres 

identified. However, the authors established that a loss of α-Actinin-3 protein appears to be 

compensated for by an up-regulation in α-Actinin-2, which is expressed in all muscle fibres, 

with expression shifting from a preference in oxidative fibres to a more uniformed staining 

in all fibre-types.  

 

Exercise Capacity  

Following the ACTN3 genotype frequency findings in elite sprint and endurance 

athletes published by Yang et al. 10, MacArthur et al. 30 investigated whether there was any 

difference in athletic performance between the KO and WT mice. ACTN3 KO and WT 
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controls were subjected to a modified version of the intrinsic exercise capacity test where 

they were run on a motorised treadmill at increasing speeds until they reached exhaustion. 

There was a 33 % average increase in distance run in KO mice compared to WT littermates 

suggesting that the shift towards oxidative metabolism observed in the muscle of KO mice 

increases intrinsic endurance performance  

 MacArthur et al. 31 indicated mice deficient in α-Actinin-3 display significantly 

reduced grip strength compared to their WT littermates with a 7.5 % lower average grip 

strength in males (p < 0.007) and 6 % reduction in female mice (p = 0.02). To discern if the 

reduced grip strength was attributable to a reduction in muscle size, total body and isolated 

muscle mass was examined. It was found that male KO mice had a 4 % lower total body 

weight than WT controls (n = 27 & 32 respectively p < 0.001) with a similar effect found for 

female mice (p < 0.01). Dual-energy x-ray absorptiometry was used to analyse body 

composition and suggested that the reduced body mass was attributable to a reduction in 

lean mass (p < 0.001) with no significant difference in fat-mass between KO and WT mice. 

Analysis of a variety of skeletal muscles showed that there was a significant decrease in all 

fast-twitch muscles in the KO mice compared to WT littermates. The degree of reduction 

varied dependent upon muscle location with proximal muscles seeing a greater reduction in 

KO mice than more distal muscles. The postural soleus muscle (slow twitch) of KO mice was 

significantly heavier (p < 0.001) compared to WT mice in contrast with the fast-twitch 

muscles suggesting a compensatory increase due to the decreased size of surrounding 

muscles. 

The authors eluded from data not shown in their manuscript that the difference in 

muscle mass between mice-types stems from a reduction in cross-sectional area. 
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Immunostaining of transverse areas of the quadriceps (QUAD), spinalis thoracis (SPN), 

extensus digitorum longus (EDL) and soleus (SOL) muscles for myosin heavy chain (MyHC) 

type-1, 2A, 2X and 2B was used to examine the effects of α-Actinin-3 deficiency on fibre 

type proportions and sizes. The muscles chosen represented both proximal and distal 

muscles as well as muscles for which α-Actinin-3 should be both expressed and not 

expre  e  ( oleu ). Total  umber of fibre ’  i   ot  iffer betwee   T a   K  mice for the 

EDL and fibre-type proportions was equally similar for the EDL, SOL and SPN muscles 

indicating that the observed reduction in muscle mass in KO mice is not the result of a 

re uctio  i  the total fibre  umber  or a hi her proportio  of  low fibre ’, which are  maller 

in diameter than fast fibre ’, a   thu   u  e ti   a  pecific re uctio  i  fibre  ize. Further 

examination of isolated muscle contractile properties showed the EDL muscles of KO mice 

displayed a significantly reduced half-relaxation time compared to WT mice (p < 0.007) 

which is consistent with the shift in properties of predominantly fast-twitch EDL fibre ’ 

towards a slower, more oxidative type which would be expected to reduce the ability to 

generate rapid and repetitive forceful contractions required for sprint and power-based 

performances.  

 

Muscle Metabolism  

  MacArthur et al. 31 found that skeletal muscle samples from the KO mice showed 

more intense staining for markers of glycolysis and aerobic metabolism: NADH-tetrazolium 

reductase (p < 0.02) and succinate dehydrogenase, compared to WT specimens. Analysis of 

markers of mitochondrial biogenesis: cytochrome c oxidate and mitochondrial porin were 

found to be up-regulated in the muscle of KO mice, consistent with increased mitochondrial 
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density within the muscle fibres. Immunohistochemical analysis of a marker of fast glycolytic 

fibres, myosin heavy chain 2B, found no significant difference between the KO or WT 

specimens suggesting that the increased oxidative enzyme activity is not indicative of a 

change in muscle fibre type but of altered metabolism within the type-2b muscle fibres. To 

further substantiate their findings, two key enzymes involved in pyruvate metabolism: 

lactate dehydrogenase (LDH) and citrate synthase, were analysed. Activity of LDH was 16 % 

lower (p < 0.001) and citrate synthase was 22 % higher  (p < 0.05) in KO mice compared to 

WT indicating that the loss of α-Actinin-3 results in a significant shift from reliance on the 

anaerobic lactate pathway to the slower, more efficient aerobic pathway which is usually 

associated with slow muscle fibres. In a follow-up paper, the authors extended the 

metabolic analysis to include a palette of enzymes representative of a much broader sample 

of the metabolic network. As well as the aforementioned activity of citrate synthase and 

lactate dehydrogenase, they investigated the activity of hexokinase, glyceraldehyde-6-

phosphate dehydrogenase and phosphofructokinase, all enzymes of the glycolytic pathway, 

showing increases of 26 % and 62 % for hexokinase and glyceraldehyde-6-phosphate 

dehydrogenase respectively but no detectable change in phosphofructokinase activity. 

Mitochondrial enzyme activity was also found to be increased with citrate synthase, 

succinate dehydrogenase and cytochrome c oxidase showing activity levels ~25-39 % higher 

in KO muscle relative to WT. Hydroxyacyl-CoA dehydrogenase and medium chain acyl-CoA, 

enzymes involved in fatty acid-oxidation, were found to have activity 30-42 % higher in KO 

muscle suggesting that an absence of α-Actinin-3 re ult  i  a  i crea e  relia ce o  β-

oxidation of fatty acids. These data suggest that the muscle metabolism within fast fibres of 

KO mice shift reliance on anaerobic metabolism to the slower, more efficient, aerobic 

pathway.  
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 Quinlan et al. 20 provided further evidence that α-Actinin-3 deficiency alters muscle 

metabolism and evidenced that this results in an increase in muscle glycogen content in 

both mice and humans. Given that KO mice display significantly enhanced activity of key 

enzymes involved in glycolysis and aerobic metabolism 31, and the known link between 

sarcomeric  α-Actinins and GPh, Quinlan and colleagues 20 hypothesised and evidenced that 

KO mice would show altered glycogen metabolism. They expanded this research to include 

26 humans (n = 9 ACTN3 RR; n = 12 ACTN3 RX; n = 5 ACTN3 XX). Muscle biopsies obtained 

from the quadriceps of the participants showed that muscle glycogen content was 

significantly increased in XX individuals compared to RX individuals (p < 0.05) . There was no 

significant difference between ACTN3 XX and ACTN3 RR individuals however the authors 

acknowledged that there was no biometric data or information on exercise status as the 

biopsies were obtained from people who were undergoing testing but tested negative for 

malignant hyperthermia. KO mice were similarly found to have increased glycogen levels 

through a decrease in GPh. GPh levels were 27 % lower in KO mice compared to WT 

littermates (p < 0.001) 

 The authors explored the validity the KO mouse as a model of ACTN3 XX humans. In 

vivo assessment of reduced strength and lean mass were confirmed in vitro by 

demonstrating reduced force generation capacity in isolated hind-limb muscles, reduced 

muscle fibre size and altered metabolic activity compared to WT mice. They replicated the 

association of the XX genotype with enhanced endurance performance first suggested by 

Yang et al. 10 by showing that KO mice have a higher intrinsic endurance capacity than their 

WT littermates 31 and enhanced recovery from contraction-induced fatigue. Thus, the 
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ACTN3 KO mouse replicated the reported effects of α-Actinin-3 deficiency in humans 

providing important mechanistic insights.  

 

ACTN3 and Endurance Performance in Humans 

It can be hypothesised that the ACTN3 XX genotype may confer positive benefits to 

endurance performance in humans. Early work by Yang et al. 10 and Niemi & Majamaa 22 

was supported by the development of an ACTN3 KO mouse model (MacArthur et al. 2008) 

to aid such a hypothesis. However, the role of the ACTN3 X-allele within endurance 

performance has not yet been adequately elucidated. An increased frequency of the ACTN3 

X-allele within elite endurance cohorts has been documented in several, 10,16,22,32,33 but not 

all 34–36 studies further complicating any proposed hypothesis, role or mechanism of action.  

In 2003, Yang et al. 10 demonstrated a trend of the X-allele towards endurance 

athlete status and thus endurance performance with a significantly increased frequency of 

the ACTN3 X-allele in female endurance athletes (n = 36) compared to female sprint athletes 

(n = 25; p < 0.001).  Eynon et al. 32 performed a similar association study comparing ACTN3 

genotypes in Israeli top level athletes between a cohort of elite sprinters (n = 81) elite 

endurance athletes (n = 74) and non-athletic controls (n = 240). Similar to Yang et al. (2003), 

their data suggested an association between ACTN3 R-allele and RR-genotype and elite-level 

sprint performance with the R-allele and RR genotype percentage distribution significantly 

higher than endurance athletes (R allele frequency 70 % versus 53 %, p < 0.001; RR 

genotype 52 % versus 18 %, p < 0.001) and controls (R-allele frequency 55 %, p < 0.01; RR 

genotype 27.3 %, p < 0.001). The ACTN3 XX-genotype was conversely significantly higher in 

endurance athletes compared to sprinters (34 % versus 13 %, p = 0.002) and controls (13 %, 
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p = 0.002). Their data are in line with previously reported data regarding both ACTN3 alleles 

and athlete status; however, the authors propose that the X-allele and XX genotype are not 

‘critical’ to e  ura ce performa ce but likely ‘a  itive’ a  there wa   o  tati tical 

significance between elite and national level endurance athletes. 

In 2012, Eynon et al. 33 investigated the ACTN3 R577X polymorphism across three 

groups of Caucasian elite male European athletes In an attempt to offset controversy 

amongst the literature arising from between study differences in sample size and ethnicity. 

Spanish (n = 616; 343, 154 & 119), Polish (n = 571; 354, 112 & 105) and Russian (n = 254; 

111, 18 & 125) controls, endurance athletes and power athletes respectively were included 

in the study. Athletes were of a national or international level and controls were non-

athletic individuals. They observed that endurance athletes were significantly more likely to 

have an ACTN3 XX-genotype rather than an RR-genotype (p = 0.028) when compared to 

power athletes. Furthermore, world class competitive endurance athletes were significantly 

more likely to harbour the ACTN3 XX-genotype compared the RR or RX-variants when 

compared to national level endurance athletes (p = 0.038). Genotype frequency did not 

differ between national and world-class power athletes. This study was the largest of its 

kind and comprehensively supported the notion that ACTN3 R577X is associated with elite 

athletic performance.   

In contrast, Moran et al. 24 failed to find a y  uch a  ociatio . The author ’ 

investigated ACTN3 genotype on an adolescent, non-athletic cohort as described previously. 

They investigated associations with a range of performance and anthropometric tests and 

found no association was found for shuttle-run test which has previously been validated and 

found to be a reliable predictor of    2MAX 37 
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Similarly, Cię zczyk et al. 36 investigated the ACTN3 R577X polymorphism in a cohort 

of top-level Polish rowers. Their cohort contained 80 national-level competitive rowers (37 

elite rowers and 46 sub-elite rowers – no explanation within the literature as to the extra 

three rowers) and 204 unrelated control participants. Genotype frequency differed 

significantly between the athletes and control cohorts (RR 53.8 %, RX 38.8 %, XX 7.4 % 

versus RR 36.3 %, RX 46.1 %, XX 17.6 %; p < 0.01). They found no association with ACTN3 X-

allele and competitive rowing level. There was a significant association (p = 0.002) between 

the ACTN3 R-allele and rowing which reduced when the cohort was separated into elite (p = 

0.007) and sub-elite (p = 0.026) categories. The authors demonstrated that the ACTN3 X-

allele appears to have no benefit to endurance performance in rowers and on the contrary 

that the R-allele is advantageous with regard to competitive rowing. However, rowing 

requires a spectrum of performance traits. As well as a high    2MAX 21-30 % of performance 

in elite level rowing is contributed by anaerobic capacity. Increased muscle mass and 

strength as well as a low percentage of body fat are also determinants of a successful 

performance 38. The R-allele of ACTN3 has previously been associated with muscle mass and 

strength which may give insights into why this allele has been so strongly associated with 

the rowers in this cohort.   

In conflict with the positive data already explained, Grealy et al. 16 found no such 

association of ACTN3 XX-genotype on performance in their cross-sectional study of 196 

Ironman World Championship athletes. Similarly to Eynon et al. 33, Grealy and co-authors 16 

had a diverse ethnicity within their cohort, including athletes of: European (n = 60), South 

and North American (n = 6 & 104 respectively) Asian (n = 2) and Oceanasian (n = 23) 

descent. Allele frequencies were not significantly different between ethnicities and were 
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similar to those of similar ethnic origin in other literature and ACTN3 genotype was within 

Hardy-Weinberg equilibrium. The authors elucidated that ACTN3 genotype does not 

independently influence endurance performance within this cohort and that any such effect 

on endurance performance is likely to be complex in nature. 

Much evidence has been reported regarding the effect of ACTN3 X-allele and XX-

genotype on endurance athlete status and or performance following the early work of Yang 

et al. 10. There are equivocal findings amongst the literature with some elite endurance 

cohorts eliciting an association 10,32,33 whilst others 16,24,36 fail to do so. A meta-analysis by 

Alfred et al. 39 investigating ACTN3 genotype on athlete status concluded that there was no 

evidence, above what would be expected through chance, that the X-allele is more common 

amongst endurance athletes. However, what the consensus of the research does allude to is 

that investigations into the mechanisms underpinning the role of the ACTN3 X-allele on 

muscle function and thus endurance exercise are required. Despite the comprehensive 

characterisation of the ACTN3 KO mouse model 20,30,31 and the aforementioned association 

studies in humans, the underlying molecular mechanisms that link the absence of a 

structural protein to the reported endurance phenotype witnessed in the mouse model 

remains elusive. It is plausible to suggest an as yet unknown epistatic effect may be causal; 

however, given that ~1-billion people worldwide are homozygous for the ACTN3 X-allele, 

understanding the role of the X-allele is likely to prove beneficial to the wider field, yet 

despite numerous studies involving ACTN3 genotype and performance; few papers have 

explored potential mechanisms on performance. 
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ACTN3 and Calcineurin Signalling 

One of the most significant advances in understanding the potential mechanisms of 

ACTN3 on performance has been made by the work of Seto and colleagues 40. They 

identified one prospective down-stream target of ACTN3, the calcium-calmodulin-

dependent phosphatase calcineurin as a potential link between the ACTN3 XX-homozygosity 

and the suggested associations with endurance performance (Seto et al. 2013). It is well 

known that calcineurin signalling induces activation of the slow myogenic programme and 

thus plays a critical role in the remodelling of skeletal muscle 41,42 (See Figure 2, adapted 

from 41) and has also been shown to confer fatigue resistance in endurance runners 43.  

 

Figure 2, Model of calcineurin-dependent pathway linking particular patters of motor-

neuron activity to separate programmes of gene expression that establish phenotypic 

differences between slow and fast myofibres adapted from 41. Calcineurin, activated by 

calcium signalling, causes the translocation of transcription factors to the myocyte nuclei 

leading to growth and differentiation of myofibres.   
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Calcineurin is indirectly a  ociate  with the  arcomeric α-Actinins due to their mutual 

binding to Calsarcin, at the  sarcomeric Z-line 18,44. 

 Calsarcins perform a duel role within skeletal muscle; maintaining the structural 

integrity of the Z-disc by li ki   α-Acti i , γ-filamin and Telethonin and by tethering the 

 i  alli   pho phata e calci euri  to α-Actinin 18,44. There are three members of the 

Calsarcin family; Calsarcin-1, -2 and -3, encoded by the genes MYOZ2, MYOZ1 and MYOZ3 

respectively. Calsarcin-1 is expressed specifically in adult cardiac and oxidative type-1 and 

type IIa skeletal muscles. Calsarcins -2 and -3 are restricted to expression in the fast fibres of 

skeletal muscle. Frey et al. 45 demonstrated that Calsarcin-2 inhibits calcineurin signalling in 

vivo, suggesting that it possibly modulates exercise performance in mice through the 

regulation of calcineurin activity. Mice deficient in Calsarcin-2 (KO) displayed enhanced 

endurance capacity and their muscles exhibited a shift towards slower fibre-properties 

which mimics the phenotype observed in the ACTN3 KO mouse model generated by 

MacArthur and colleagues 30.   

In 2013, Seto et al. 40 provided a mechanistic explanation for the effect of ACTN3 

genotype on skeletal muscle. They raised the prospect that the α-Actinins act upstream of 

Calsarcin as key regulators of muscle fibre phenotypes. They go on to hypothesise that the 

phe otypic cha  e  ob erve  i  α-Actnin-3 deficient fast fibre ’ are due to increased 

calcineurin activity which, in turn, is regulated by the differential binding of α-Actinins to 

Calsarcins. 

To identify whether the phenotypic changes observed in α-Actinin-3 deficient 

muscles were associated with an increase in calcineurin activity, the authors examined the 

expression of a downstream regulator of calcineurin (RCAN), in ACTN3 KO and WT mice. 
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Although fold-change in RCAN1 isoform 4 (RCAN1-4) failed to reach significance at baseline 

(p = 0.057); following a single bout of endurance exercise, it was found to be up-regulated 

2.9-fold in KO mice (p = 0.004; n = 6 in each group) compared to WT littermates. This is 

consistent with potential increase in calcineurin activity due to the absence of α-Actinin-3. 

To provide further confirmation that calcineurin activity is increased in the KO mouse, Seto 

and colleagues assayed both total and calcium-independent phosphatase activity. As 

calcineurin is a calcium-dependent phosphatase, it can be measured by subtracting calcium-

independent from total phosphatase activity 40. The resulting calcineurin activity is 

consistent with that of RCAN1-4 with a 1.9-fold increase in KO versus WT mice and no 

difference between calcium-independent phosphatase (data not shown in author ’ 

manuscript). This indicates that, following a single bout of endurance exercise, calcineurin 

activity is increased, with this increase appearing greater in KO mice compared to WT mice; 

potentially linking calcineurin activity to the presence or absence of ACTN3 protein.  

A   arcomeric α-Actinins and calcineurin share the same N-terminal binding site on 

Calsarcins 44, Seto and colleagues developed a yeast 2-hybrid assay to investigate binding 

affinity between Calsarcins 1, 2 and 3 and α-Actinins 2 and 3. They discovered that 

Calsarcin-2 bi    to both  arcomeric α-Actinin isoforms with preference to α-Actinin-2 with 

binding 13.2-fold higher than for α-Actinin-3. There was no observed growth between 

Calsarcins-1 (encoded by MYOZ2) and Calsarcin-3 (encoded by MYOZ3) suggesting that 

i teractio   with  arcomeric α-Actinins is unique to Calsarcin-2. However, although the 

yeast 2-hybrid method is the most common method to investigate such protein to protein 

interactions, it has been estimated that the percentage of false negative results is 

approximately 45 % 46. In addition, the protein regions investigated by Seto and colleagues 
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differs across the three Calsarcins. The most significant interaction for Calsarcin-2 was found 

in the region of 1-90 amino acids. When this was expanded to 1-110 amino acids, the 

interaction was reduced in Calsarcin-2 and not found in Calsarcin-1 and Calsarcin-3. A 

further investigation of Calsarcin-2 in the 79-187 amino acid regions failed to distinguish an 

interaction suggesting that the identified interactions occurred in the 1 to 78 amino acids 

region. A  the author ’ have  ot exhau tively i ve ti ated the entirety of all three Calsarcin 

proteins, it is not possible to rule out that there is no interaction between the α-Actinins and 

Calsarcin-1 and -3.  

Subsequent tagging of Calsarcin-2 and calcineurin with increasing levels of α-Actinin-

2 in COS-1 fibroblast like-cells showed an inverse association between the binding of 

calcineurin with Calsarcin-2 and subsequent levels of α-Actinin-2. This showed that α-

Actinin-2 inhibits the binding of calcineurin to Calsarcin-2 thus increases calcineurin activity.  

To confirm that their observations are applicable and reproducible in humans, Seto 

et al. (2013) examined muscle biopsies from female humans with ACTN3 577RR (n = 5) and 

ACTN3 577XX (n = 6) genotype. Consistent with the KO mouse model, ACTN3 577XX humans 

displayed significantly increased RCAN1-4 levels compared to 577RR humans (p = 0.004). 

There was no investigation of Calsarcin variations and genotypes. This paper evidenced that 

calcineurin signalling is influenced by performance phenotypes and ACTN3 genotype. Thus it 

is probable that variations in genes of components of this mechanism are likely to influence 

performance.      

The work of Seto et al. 40 was instrumental in providing a mechanistic explanation for 

the effect of ACTN3 genotype on skeletal muscle. In vitro work in cells and yeast 2-hybrid 

systems and in vivo mouse and human trials has shown that α-Actinin-2 competes with 
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calcineurin for binding with Calsarcin-2. In α-Actinin-3 deficient muscle, α-Actinin-2 out 

competes calcineurin liberating it from Calsarcin-2 binding (See Figure 3 below, from figure 

7 of  40). 

 

Figure 3, Schematic of sarcomeric α-Actinin regulation of calcineurin signalling, 

adapted from figure 7 of  40. 

Activated calcineurin could account for the shift in oxidative properties of fast-twitch 

fibres towards a slower, more oxidative profile, enhanced baseline and subsequent 

response to endurance training and concomitant fibre-type shift. To ascertain whether such 

changes would have an effect on performance in humans, an association study investigating 

differing genotypes of Calsarcins and ACTN3 with quantitative phenotypes involving athletes 

and controls is required.  
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Aims & Hypotheses 

The present study intends to follow up the work of Frey et al. 45and Seto et al. 40 and 

investigate possible associations between Calsarcin (MYOZ) and ACTN3 genotypes on 

quantitative performance phenotypes in a cohort of Lithuanian athletes and controls. This 

cohort contains quantitative performance information not present in previous studies on 

athletes. No study has assessed variation in Calsarcin genotypes and subsequent effects on 

performance-related phenotypes.  

 It is hypothesise that carriers of the ACTN3 R-allele will have increased performance 

in power and strength-related phenotypes compared to X-allele homozygotes and that 

variation in Calsarcin genotypes will relate to performance phenotypes in a manner likely to 

be similar to that of ACTN3. Therefore, the aims of the present study are: to genotype the 

cohort for the ACTN3 R577X SNP and investigate associations with strength, power and 

endurance-related phenotypes; identify suitable SNPs for Calsarcin 1, 2 and 3 (encoded by 

MYOZ2, 1 and 3 respectively) genes, and finally to genotype the cohort for the identified 

MYOZ genes and investigate associations with strength, power and endurance-related 

phenotypes.  
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Methods 

 

Ethical Approval 

Ethical approval for the present study was granted by the Lithuanian State Bioethics 

Committee and the University of Stirling, School of Sport Research Ethics Committee and 

abides by the principles outline in the Declaration of Helsinki. Written informed consent was 

obtained from all participants prior to participation in the study. 

 

Participant Characteristics 

Four-hundred and forty-seven native Lithuanian males between the age of 17 and 37 years 

old were recruited to participate in this study from the Lithuanian Sports University (Kaunas, 

Lithuania). All participants were required to undertake a series of endurance, strength and 

power, anatomical and physiological tests. If participants were related, only the participant 

who competed at the highest competitive level was retained for analyses. All athletes were 

sub-divided into strength, sprint and power (SSP) and endurance (END) categories 

depending on their sport. The SSP sub-group included: weightlifters, bodybuilders, 

gymnasts, short distance swimmers, short distance runners and team sport players 

(handball, volleyball, basketball and football). Team sport athletes were included within the 

SSP sub-group as opposed to the END group as their sports require repeated high-intensity 

bouts of exercise eve  thou h they coul  pote tially  hare  imilaritie  with END phe otype  

 uch a  improve     2MAX. The END sub-group contained long-distance cyclists, modern 

pentathletes, orienteers, runners, skiers and walkers. If an athlete could not be classified 

into either group they were excluded from the study. A total of 407 participants (210 

athletes, 197 controls) were carried forward into the present study (see Table 1 for 

participant characteristics). Each athlete sub-group was divided by level of best performance 
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(Table 2). All athletes trained a minimum of twice per week whereas control participants did 

not take part in any organised physical activity more than twice per week.  

 

Table 1, Participant Characteristics 

  Overall      
(N = 407) 

Control       
(N = 197) 

Athletes      
(N = 210) 

Athlete Sub-groups 

    
SSP       

(N = 126) 
END      

(N = 84) 

Age (years) 22 ± 4 24 ± 4 21 ± 3 21 ± 3 21 ± 3 
Height (cm) 181 ± 6 180 ± 5 181 ± 18 183 ± 24 179 ± 5 
Body Mass (kg) 77 ± 10 77 ± 10 77 ± 12 81 ± 12 70 ± 6 
BMI  23 ± 2 24 ± 3 23 ± 2 24 ± 2 21 ± 1 
Training experience (yrs) 8 ± 4 N/A 8.04 ± 1 8 ± 1 6 ± 1 
Training volume (hr/wk) 11 ± 6 N/A 11.4 ± 1 10 ± 1 12 ± 1 

Fat Free Mass (kg) 63 ± 7 64 ± 6 66 ± 12 69 ± 14 62 ± 5 

             

Table 2, Highest Competitive Level for SSP and END Athletes 

Competitive Level SSP END Total 

International Level 8 12 20 
National Level 69 52 121 

Area Squad 25 14 39 

Other 24 6 30 

 

Phenotype Data 

Participants were required to attend the laboratory on three non-consecutive days to 

perform a detailed range of standardised physiological tests which were carried out by 

trained individuals. Participants attended each day after 12 hours rest; 12 hours fasted on 

day one – to allow a fasted venous blood sample to be drawn - and two hours fasted on 

days two and three.  

Upon entry to the study, participants were assigned a unique ID code so that all data 

could be stored in an anonymous manner. An 8 ml venous blood sample was collected from 

each participant and stored at -85 oC for DNA extraction at a later date.  
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The laboratory visits allowed for detailed phenotypic data to be collected including 

measures of anthropometrics, endurance, strength and power performance. For the present 

study, the selected tests are detailed below.  

For the assessment of strength and power, isokinetic dynamometry (IK) was 

performed for both extension and flexion of all limbs at 30  os-1 (N·m), 90 os-1 (N·m), and 180 

os-1 (N·m). Tests were performed on a Biodex System-3 Pro (Biodex Medical Systems Inc., 

Shirley, New York). Testing was performed following five minutes of cycling warm-up. 

Participants were given three attempts at each test with the best attempt recorded.  To 

account for dominance of a given arm or leg, data was combined and presented as upper 

limb / lower limb, flexion / extension at 30 os-1 (N·m), 90 os-1 (N·m), and 180 os-1 (N·m). 

Power was established through counter-movement jump (CMJ); squat jump (SJ), 30-

second Wingate test and a 30 m sprint. CMJ and SJ were performed on a tensoplatform 

(brand unknown) with arms akimbo and knees flexed to 90 degrees. The best of three 

attempts was taken for each test. 30 m sprint was timed using a laser sensor system (brand 

unknown). Participants were given two attempts; starting from a static standing position 

with only feet in contact with the ground. The 30-second Wingate test was performed on a 

mechanical veloergometer (Monark Exercise AB, Sweden. Model unknown). Participants 

were given two attempts following a warm-up with the best result retained for analysis. 

Aerobic capacity was ascertained through a ramp, trea mill,    2MAX test 47 however the 

model of the treadmill is unknown.  

Body fat percentage and body mass data was collected for anthropometric 

measures. Body fat percentage was ascertained through the Tanita skin-fold calliper 

assessment of seven sites and calculated according to the Durnim and Womersley Equation 
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48. Body mass was ascertained through Tanita scales however the model is not known 

(Tanita Europe BV, Amsterdam, The Netherlands).  

Participants underwent the anthropometric testing and venous blood sample 

collection on day 1. Strength and power tests were performed on day 2 and aerobic capacity 

testing was performed on day 3 although these were non-consecutive days.  

 

DNA Extraction 

DNA was extracted from blood samples using the NucleoSpin® Columns (Macherey-Nagel, 

GmbH & Co, Düren, Germany) and Qiagen buffers (QiAamp® DNA Minikit, Qiagen, Limburg, 

Netherlands) and stored in 1.5 ml microcentrifuge tubes at -20 oC. Qiagen (Q) buffers were 

chosen over Macherey-Nagel (MN) due to prolonged issues surrounding poor to zero DNA 

yields. A protocol, adapted from both the MN and Q protocols, was developed following the 

on-going issues with MN buffers. See Appendix 1 for details of the protocol used. The issue 

was not identified after two months of investigation and as such, Qiagen buffers were 

chosen. Any sample yielding < 10 ng/µL of DNA was re-extracted. . 

Samples were randomly assigned to a well on one of five 96-well plates (STARLAB 

GmbH, Hamburg, Germany) in a 1-in-10 dilution and stored at -20 oC.  Each plate contained 

one duplicate sample from all other plates and negative controls (dH2O) for quality control 

purposes.  
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Genotyping 

ACTN3 Assay Design 

Primers were designed using Primer3 Web (version 4.0.0. http://www.primer3.ut.ee/). 

1,000 bp Flanking sequences of each identified SNP were inserted and GC-Clamp was set at 

one. Custom primers were ordered from Integrated DNA Technologies (BVBA 

Interleuvenlaan, Leuven, Belgium). Primers for ACTN3 are shown in Table 4 and primers for 

the chosen Calsarcin genes are shown in Table 7.  

Restriction enzymes (RE) for each of the identified variants were identified using 

NEBcutter version 2.0. (http://nc2.neb.com/NEBcutter2/) and are shown in Table 5 for 

ACTN3 and Table 9 for the chosen Calsarcin genes. 

 

ACTN3 PCR and RFLP conditions 

All genes were genotyped using a standard polymerase-chain reaction (PCR) and restriction-

fragment-length-polymorphism (RFLP) protocol. See Table 3 for PCR conditions for ACTN3, 

Table 4 for ACTN3 primer sequences and Table 5 for details of RFLP information. 

Table 3, PCR Conditions for ACTN3. 

ACTN3  

Temp. Time 

 
95⁰C 

2.5 
minutes 

 
95⁰C 

45 
seconds 

 
5 ⁰C 

15 
seconds 

35     
cycles 

72⁰C 
25 

seconds 

 
72⁰C 

10 
minutes 

  

 

http://www.primer3.ut.ee/
http://nc2.neb.com/NEBcutter2/
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Table 4, Primer sequences for ACTN3 
      

Gene Primer Sequence Direction 

ACTN3 
5’-CTGGGCTGGAAGACAGGAG-3' Forward 

5’-AGGGTGATGTAGGGATTGGTG-3' Reverse 

 

Table 5, RFLP Information for ACTN3 

            

Gene 
Restriction 

Enzyme 

Digestion 
Incubation 
Temp (ᵒC) 

Digestion 
Time 

(hours) 
Agarose Gel Used 

Allele Fragment 
Length 

ACTN3 DdeI 37 2 
Tris-Acetate-EDTA 

(2 %) 
  R - 192bp 

X - 98bp 

      
 

Calsarcin Bioinformatics 

We aime  to i e tify  uitable ca  i ate SNP’  from the Cal arci -1, -2 and -3 genes 

(encoded by genes MY Z2, MY Z1 a   MY Z  re pectively). SNP’  for these genes were 

investigated using the 1,000 Genomes Browser  

(http://browser.1000genomes.org/index.html/), searched in November 2013.  

 

The work of Seto and colleagues 40 focused on the interaction of ACTN3 and MYOZ1 

(Calsarcin-2). They did not investigate the other Calsarcins -1 and -3 (MYOZ2 and MYOZ3 

respectively) following results of their yeast-2-hybrid experiments. As previously discussed, 

the yeast-2-hybrid experiment, albeit the most popular method of investigating protein-

protein interactions, is estimated to result in a large percentage of false-negative results 46. 

ACTN3 is however known to bind to Calsarcins within the sarcomeric z-line  18. Given the 

known associations between ACTN3 and Calsarcins as well as the interaction between 

Calsarcins and calcineurin signalling and the known role of calcineurin signalling on the 

http://browser.1000genomes.org/index.html/
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remodelling of skeletal muscle 41 it is possible to suggest that all members of the Calsarcin 

family are suitable candidates for study.  

 

Stop  Gai e , Mi  e  e  aria t a    ’ UTR  aria t  for each gene were analysed as these 

were mo t likely to cau e fu ctio al variatio  that coul  re ult i  phe otypic variatio .  ’ 

UTR variants were further screened for their likelihood of affecting miRNA binding sites. 

SNPs with a European minor allele freque cy (EMAF) of ≤  . 5 were exclu e  a  the 

required affect size for such a rare variant would have been unrealistically large given the 

size of this cohort.  

 

No variants matching the criteria were identified for Myozenin-1 (Calsarchin-2) and thus the 

present study cannot further the work of Seto and colleagues 40. However, two variants 

were identified for Myozenin-2 (Calsarcin-1; rs62326346 and rs9995277; EMAF 0.31 and 

0.27 respectively), both withi  the  ’ UTR a   o e varia t for Myoze i -3 (Calsarcin-3), 

(r 116 9  2   EMAF  .1 ) withi  the  ’ UTR.   

 

Following identification of SNPs, rs-numbers were input into a microRNA (miRNA) related 

SNP database (http://www.bioguo.org/miRNASNP2/ - version 2.0; searched in December 

2 1 ) to a certai  if the i e tifie  SNP  lea  to  ai   or lo  e  i  a  e e   ’UTR microRNA 

binding sites and thus theoretical alterations in gene regulation (See Table 6). Micro-RNA’  

are endogenous 20-25 nucleotide long non-co i   ribo ucleic aci   (RNA’ ) which are 

transcribed by the RNA polymerase II and play an important role in regulating gene 

expression at the protein and messenger-RNA (mRNA) level 49 by imperfectly pairing to the 
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 ’-UTR of target mRNAs 50 They have been shown to both inhibit 51 and activate  52 

translation. 

 

Previous associations of identified miRNA’s 

MYOZ2 rs62326346 was found to have both gained and lost a single miRNA binding 

site for miRNA-145 and miRNA-2355 respectively. A detailed search of the literature found 

no association with any human skeletal muscle phenotypes.  

MYOZ2 rs9995277 was found to have gained no miRNA binding sites but lost 5 

binding sites within the miRNA-30 family (a, b, c, d & e). The miRNA-30 family are found 

within human skeletal muscle 49 and an inverse association between reduced miRNA-30 

family levels and number of superficial slow-twitch muscle fibres has been found in 

Zebrafish 53.  

MYOZ3 rs116090320 was found to have gained miRNA binding sites in MiRNA-4291 

and lost binding sites in MiRNA-374b and MiRNA-4524a and b. No data were found to 

suggest a role of miRNA-4291 or miR-4524 a and b, however miRNA-374b is found in 

Table 6, MYOZ2 and MYOZ3 Associated 3'UTR  Variant Micro RNA Binding Sites 

GENE rs No. MiRNA SNP Location 

E. Change 
Kcal/mol 

Effect Entries Wild T SNP T 

MYOZ2 

62326346 

2355-5p 

chr4:120108263 

-24.7 0 LOSS 1 

145-5p -18.8 -19.7 GAIN 1 

3925-3p -18.1 -19 GAIN 1 

9995277 

30a-5p 

chr4. 120108603 

-18.6 -8.3 LOSS 1  

30c-5p -14.8 -7.7 LOSS 1 

30d-5p -18.6 -8.3 LOSS 1 

30b-5p -17.1 -7.7 LOSS 1 

30e-5p -16.4 -8.3 LOSS 1 

MYOZ3 116090320 

374b-3p 

chr5. 150058413 

-21.8 -21.9 LOSS 2 

4524a-5p -22.2 -21.9 LOSS 2 

4524a-5p -25.2 -24.9 LOSS 2 

4291 0 -24.4 GAIN 2 
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skeletal muscle and is also found to be up-regulated during myogenic differentiation in 

CD56+ Myoblasts in vitro 49.  

Due to data related to possible performance-associated functions, MYOZ2 

rs9995277 and MYOZ3 rs116090320 were chosen as the most likely candidates. Thus, the 

following hypotheses are made. MYOZ2 rs9995277 and MYOZ3 rs116090320 will be 

associated with phenotypes representative of components of sprinting speed including tests 

of strength and power as well as relating to endurance related phenotypes as suggested by 

the pote tial effect  of their  ow  tream miRNA’ . A   uch, both  e e  were i ve ti ate  

for associations with body mass and body fat percentage as anthropomorphic measures; 

30m sprinting time, Wingate relative peak-power and fatigue index as well as counter-

movement jump (CMJ) height and static jump height (SJ) as measures of power. Further to 

this, isokinetic upper and lower limb strength was ascertained as measures of strength. For 

endurance related associations, relative    2MAX was used.  

 

MYOZ2 and MYOZ3 Assay Design 

Primers for both genes were designed in an identical manner as the process for ACTN3. 

Table 7 details primers used for MYOZ2 and MYOZ3. PCR conditions for each gene are 

detailed in Table 8. RFLP restriction enzymes were identified using the same online 

application, NEBcutter version 2.0, as ACTN3 and are displayed in table 9.  
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Table 7, Primer Sequences for MYOZ2 and MYOZ3 

Gene Primer Sequence Direction 

MYOZ2 
5’-CAATTCCTCCCATTTCAATTCAG- ’ Forward 
5’-GTCACCAACTTCCACACTAC- ’ Reverse 

MYOZ3 
5’-CATGCAACTGCTGCTCTAGG- ’ Forward 

5’-GCAAAAGGAAAATGCAATCG- ’ Reverse 

 

 
Table 8, PCR Conditions for both MYOZ2 and MYOZ3 

  

Temp. Time 

 
95⁰C 

2.5 
minutes 

 
95⁰C 

45 
seconds 

 
54.8⁰C 

15 
seconds 

35     
cycles 

72⁰C 
25 

seconds 

 
72⁰C 

10 
minutes 

  

Table 9, RFLP Restriction Enzymes Identified for MYOZ2 and MYOZ3 

Gene 
Restriction 

Enzyme 

Digestion 
Incubation 
Temp (ᵒC) 

Digestion 
Time 

(hours) 

Agarose 
Gel Used 

Uncut 
Length 

Allele 
Fragment 

Length 

MYOZ2 NLAIII 37 1 Tris-
Borate-

EDTA (3 %) 

155 
  A - 128bp 
G - 27bp 

MYOZ3 BspCNI 25 3 182 
  A - 150bp 

G - 32bp 
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Statistics 
Hardy-Weinberg equilibrium test (HWE) was performed on each SNP to ascertain if the 

observed genotype frequencies matched our expected frequencies using a Chi squared 

analysis. Comparisons between different athletic groupings (SSP and END) were analysed 

using Chi squared contingency tables. Odds ratios (OR) and 95 % confidence intervals were 

calculated to estimate the likelihood of an individual being assigned to one of the athletic 

groups (SSP or END) depending on the genotype of the individual. The significance of the OR 

was determined by a Chi squared contingency table. These analyses were performed using 

Microsoft Excel 2013. Significance was accepted as Chi-squared p < 0.05.  

For quantitative phenotype associations with genotype, phenotype data was tested 

for normality using the Ryan-Joiner test. Non-normally distributed data was transformed 

using a Box-Cox transformation to give better approximations of the normal distribution. 

The data were z-scored by group and one-way ANOVAs were performed to determine 

associations between genotypes and specific phenotype data.   

The Sidak correction for multiple testing was applied to correct for false discovery 

using the SISA website (http://www.quantitativeskills.com/sisa/). Differences were accepted 

as significant where p < 0.012 determined by Sidak correction unless stated otherwise. 

Statistical analyses were performed on Minitab 16.0 statistical software (Minitab Ltd, 

Coventry, United Kingdom). Data were back-transformed for the purposes of display in 

tables. 

 

  

http://www.quantitativeskills.com/sisa/
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Results 

Genotyping 

For the purposes of quality control and to ensure the reliability of the genotyping, 15 

samples were duplicated across the five 96-well plates and a negative control sample (dH2O) 

was present at different locations on each plate. Both repeat samples and negative controls 

matched with 100 % concordance in all three genotypes suggesting that genotyping was 

accurate and reliable. 

 

ACTN3  

Genotype Distribution 

Genotyping was over 99 % successful (405/407 samples successfully genotyped). ACTN3 

R577X genotype distributions (RR = 36 %, RX = 52 %, XX = 12 %, see Table 10) was consistent 

with H E (p =  . 5 ). Allele freque cie  withi  the whole cohort were: ƒ(R) =  .62 a   ƒ(X) = 

0.38. Notably, no XX-genotype was present in the international level strength athletes 

(Table 11).  

 

Table 10, ACTN3 Allele Frequency within the Cohort. N = 405, Genotype data presented as n 

(%). Percentage refers to percentage of a given genotype within specific subgroups. Allele 

frequency (ƒ)  ive  i  perce ta e. 

Genotype SSP END Athletes Control ALL 

RR 48 (38) 31 (37) 79 (38) 68 (35) 147 (36) 
RX 62 (49) 46 (55) 108 (51) 101 (52) 209 (52) 
XX 16 (13) 7 (8) 23 (11) 26 (13) 49 (12) 
R (ƒ) 63 64 63 61 62 
X (ƒ) 37 36 37 39 37 

n = 126 84 210 195 405 
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Table 11, Athlete Highest Level of Performance and ACTN3 Genotype. Data presented as n 

(%) where percentage refers to within specific performance level of a specific sub-group. 

Although there is no significant difference in genotype distribution between sub-groups, it 

should be noted that there is no incidence of ACTN3 XX genotype in international level SSP 

athletes.  

Highest Level of 
Performance 

SSP (n = 126) END (n = 84) 

RR RX XX RR RX XX 

International 4 (50) 4 (50) 0 3 (25) 8 (67) 1 (8) 
National Level 26 (38) 37 (54) 6 (9) 18 (35) 29 (56) 5 (10) 
Area Squad 6 (24) 12 (48) 7 (28) 7 (50) 6 (43) 1 (7) 
Other athlete 12 (50) 9 (38) 3 (13) 3 (50) 3 (50) 0 

  

Comparisons between different sub-groups were analysed yet no significant genotype 

differences between any pair wise combinations of sub-groups was detected (p > 0.05).  

Given the results of the quality control measures and that the data was consistent with 

HWE; associations with ACTN3 genotype and performance associations were investigated 

(Table 12).  

 

Associations 

ACTN3 is associated with sprinting speed but no other performance phenotype in the 

present study (Table 12).  
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Table 12, Association of ACTN3 Genotype and Performance Phenotypes  

N = 405 (RR = 147; RX = 209; XX = 49). v denotes the percentage of the variance explained by 

the genotype. LCL denotes lower 95 % confidence limit. UCL denotes upper 95 % confidence 

limit. CMJ = counter-movement jump. IKLL = combined isokinetic strength for both lower 

limbs. IKUL = combined isokinetic strength for both upper limbs. Significance accepted as p < 

0.012. Significant results are in Bold Italics. Results of p < 0.05 are in italics. 

  Genotype Mean (LCL to UCL) 

CMJ height (cm) 

RR 39.099 (39.017 to 39.18) 

RX 39.117 (38.257 to 39.976) 

XX 38.018 (36.25 to 39.786) 

 
v = 0, p = 0.529 

Static jump height (cm) 

RR 32.14 (31.27 to 33.011) 

RX 32.328 (31.603 to 33.054) 

XX 30.975 (29.482 to 32.468) 

 
v = 0.13, p = 0.289 

Body Mass (kg) 

RR 76.769 (75.027 to 78.512) 

RX 76.836 (75.402 to 78.27) 

XX 78.007 (77.71 to 78.305) 

 
v = 0, p = 0.761 

IKLL Extension 30 d/sec., N·m 

RR 129.966 (123.695 to 136.237) 

RX 130.219 (125.009 to 135.429) 

XX 128.263 (118.017 to 138.509) 

 
v = 0, p = 0.93 

IKLL Flexion 30 d/sec., N·m 

RR 129.446 (123.29 to 135.601) 

RX 129.699 (124.528 to 134.87) 

XX 132.763 (122.633 to 142.894) 

 
v = 0, p = 0.849 

IKLL Extension 90 d/sec., N·m 

RR 131.002 (124.654 to 137.35) 

RX 129.861 (124.574 to 135.148) 

XX 127.359 (116.939 to 137.779) 

 
v = 0, p = 0.843 

IKLL Flexion 90 d/sec., N·m 

RX 130.538 (124.306 to 136.771) 

RX 128.186 (122.976 to 133.396) 

XX 135.446 (125.2 to 145.692) 

 
v = 0.42, p = 0.457 

IKLL Extension 180 d/sec., N·m 

RR 130.37 (124.06 to 136.68) 

RX 129.729 (124.442 to 135.016) 

XX 127.999 (127.266 to 128.732) 

 
v = 0, p = 0.93 
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IKLL Flexion 180 d/sec., N·m 

RR 130.757 (124.428 to 137.086) 

RX 128.264 (122.939 to 133.59) 

XX 133.802 (123.401 to 144.202) 

 
v = 0.27, p = 0.616 

IKUL Extension 30 d/sec., N·m 

RR 133.604 (127.411 to 139.798) 

RX 126.667 (121.495 to 131.838) 

XX 133.122 (122.721 to 143.522) 

 
v = 0.33, p = 0.2 

IKUL Flexion 30 d/sec., N·m 

RR 132.036 (128.813 to 135.258) 

RX 128.681 (125.98 to 131.383) 

XX 130.061 (124.736 to 135.387) 

 
v = 0, p = 0.729 

IKUL Extension 90 d/sec., N·m 

RR 134.08 (127.886 to 140.274) 

RX 126.133 (120.903 to 131.362) 

XX 132.227 (121.942 to 142.511) 

 
v = 0.53, p = 0.142 

IKUL Flexion 90 d/sec., N·m 

RR 131.061 (124.713 to 137.409) 

RX 128.829 (123.522 to 134.135) 

XX 132.025 (121.567 to 142.484) 

 
v = 0, p = 0.804 

IKUL Extension 180 d/sec., N·m 

RR 132.637 (126.424 to 138.85) 

RX 127.03 (121.839 to 132.22) 

XX 133.821 (123.518 to 144.125) 

 
v = 0.13, p = 0.291 

IKUL Flexion 180 d/sec., N·m 

RR 130.605 (124.334 to 136.876) 

RX 128.807 (123.539 to 134.074) 

XX 131.313 (120.855 to 141.772) 

 
v = 0, p = 0.87 

Wingate Relative Peak Power (w/kg) 

RR 10.922 (10.757 to 11.087) 

RX 11.108 (10.972 to 11.244) 

XX 10.784 (10.506 to 11.062) 

 
v = 0.93, p = 0.062 

Wingate Fatigue Index (%) 

RR 10.968 (10.802 to 11.134) 

RX 11.049 (10.913 to 11.185) 

XX 10.925 (10.647 to 11.204) 

 
v = 0, p = 0.638 

Sprint 0-10m (s) 

RR 1.884 (1.862 to 1.893) 

RX 1.867 (1.848 to 1.873) 

XX 1.916 (1.882 to 1.937) 

 
v = 2.25, p = 0.004 

Sprint 10-20m (s) 

RR 1.337 (1.325 to 1.349) 

RX 1.327 (1.317 to 1.337) 

XX 1.347 (1.325 to 1.368) 

 
v = 0.34, p = 0.19 

Spring 20-30m (s) RR 1.26 (1.246 to 1.273) 
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RX 1.248 (1.237 to 1.259) 

XX 1.266 (1.243 to 1.289) 

 
v = 0.21, p = 0.245 

Sprint Total (s) 

RR 4.484 (4.448 to 4.521) 

RX 4.441 (4.411 to 4.472) 

XX 4.524 (4.46 to 4.588) 

 
v = 1.13, p = 0.04 

Re ative   O2MAX (ml/kg/min) 

RR 53.259 (51.851 to 54.667) 

RX 55.109 (53.884 to 56.334) 

XX 55.448 (53.081 to 57.815) 

 
v = 0.71, p = 0.105 

Body Fat (%) 

RR 14.469 (13.769 to 15.169) 

RX 14.127 (13.535 to 14.719) 

XX 14.824 (13.609 to 16.038) 

  v = 0, p = 0.541 

  
 

 

In the present study, in line with the hypothesis, an association between ACTN3 genotype 

and performance was identified. There is an association between ACTN3 genotype and 

sprinting performance as has previously been documented in the literature 10,22,24. No 

association was found between ACTN3 genotype and any other strength, power or 

endurance related phenotype (Table 12); however, ACTN3 is most widely associated with 

sprinting speed 10,24. Thus, it is believe that the cohort is of a sufficient quality to investigate 

associations between new candidate genes and performance that have not previously been 

investigated in the literature.  
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MYOZ2 

Genotype Distributions 

Genotyping was 100 % successful (407/407 samples genotyped). MYOZ2 genotype 

distributions (AA = 9 %, AG = 45 %, GG = 46 %. See Table 13) were consistent with HWE (p = 

 .285) a   allele freque cie  withi  the whole cohort were: ƒ (A) = 0.31 a   ƒ (G) = 0.69. 

 

Table 13, MYOZ2 Allele Frequency Within the Cohort (n = 407). 

Genotype data presented as n (%). Percentage refers to within specific subgroups. Allele 

frequency (ƒ)  ive  i  perce ta e.  

Genotype SSP END CON ALL 

AA 7 (6) 11 (13) 17 (9) 35 (9) 

AG 56 (44) 36 (43) 92 (47) 184 (45) 
GG 63 (50) 37 (44) 88 (45) 188 (46) 

A (ƒ) 70 58 126 254 
G (ƒ) 182 110 268 560 

n = 126 84 197 407 

 

Table 14, MYOZ2 Genotype and Athlete Highest Level of Performance 

Data presented as n (%) where percentage refers to within specific performance level of a 

specific sub-group. 

Highest Level of 
Performance 

SSP (n = 126) END (n = 84) 

AA AG GG AA AG GG 

International 1 (12) 2 (25) 5 (63) 0 5 (42) 7 (58) 
National Level 4 (6) 32 (46) 33 (48) 7 (14) 21 (40) 24 (46) 
Area Squad 1 (4) 10 (40) 14 (56) 3 (21) 6 (43) 5 (36) 
Other athlete 1 (4) 12 (50) 11 (46) 1 (16) 4 (67) 1 (17) 

 

No significant genotype differences were detected between any pair wise combinations of 

sub-groups (p > 0.05).  
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Associations 

MYOZ2 is not associated with any performance phenotype tested. (Supplementary Table 1). 

A sub analysis was performed on each sub-group independently to investigate whether any 

associations were masked by training stimulus. No association between any sub-group and 

any performance-related phenotype was identified (Table 15). 

 

Table 15, Independent Sub-group Analysis of MYOZ2 Genotype and Performance 

Phenotypes. N = 407 (126, 84, 197 for SSP, END and CON sub-groups respectively). Geno 

refers to Genotype. v denotes the percentage of the variance explained by the given 

genotype. LCL denotes lower 95 % confidence limit. UCL denotes upper 95 % confidence 

limit. IKLL = combined lower-limb isokinetic strength. IKUL = combined upper-limb isokinetic 

strength. Significance accepted at p < 0.008 for each sub-group as determined by Sidak 

correction. Results of p < 0.05 marked in italics. 

  

CON Sub-Group SSP Sub-Group END Sub-Group 

 
Geno Mean (LCL to UCL) Mean (LCL to UCL) Mean (LCL to UCL) 

CMJ height (cm) 

AA 38.307 (35.316 to 41.298) 39.726 (35.055 to 44.397) 38.686 (34.854 to 42.517) 

AG 38.839 (37.535 to 40.143) 39.189 (37.508 to 40.869) 40.59 (38.515 to 42.666) 

GG 39.277 (37.96 to 40.593) 38.728 (32.715 to 44.742) 37.601 (35.613 to 39.588) 

 
v = 0, p = 0.806 v = 0, p = 0.881 v = 2.63, p = 1.32 

Static jump 
height (cm) 

AA 30.624 (28.073 to 33.176) 31.917 (27.915 to 35.92) 30.559 (27.347 to 33.772) 

AG 31.905 (30.799 to 33.012) 32.41 (30.97 to 33.85) 33.98 (32.239 to 35.72) 

GG 32.604 (31.475 to 33.732) 31.86 (26.708 to 37.012) 30.803 (30.174 to 31.431) 

 
v = 0.09, p = 0.34 v = 0, p = 0.861 v = 6.6, p = 0.026 

Body Mass (kg) 

AA 73.872 (68.868 to 78.875) 74.936 (67.043 to 82.83) 75.993 (69.651 to 82.336) 

AG 78.693 (76.537 to 80.85) 78.125 (75.438 to 80.813) 77.559 (73.958 to 81.161) 

GG 75.715 (73.495 to 77.935) 76.108 (73.421 to 78.796) 76.676 (73.223 to 80.129) 

 
v = 1.59, p = 0.08 v = 0, p = 0.526 v = 0, p = 0.896 

IKLL Extension 
30 d/sec., N.m 

AA 120.22 (102.275 to 138.165) 104.519 (82.947 to 126.092) 133.319 (110.203 to 156.435) 

AG 132.838 (125.274 to 140.402) 130.088 (120.054 to 140.122) 128.117 (114.996 to 141.238) 

GG 127.831 (119.765 to 135.896) 132.346 (127.522 to 137.17) 130.608 (117.893 to 143.324) 

 
v = 0, p = 0.382 v = 0.64, p = 0.262 v = 0, p = 0.92 

IKLL Flexion 30 
d/sec., N.m 

AA 128.326 (110.671 to 145.982) 121.113 (88.928 to 153.298) 136.123 (113.49 to 158.757) 

AG 133.259 (125.811 to 140.707) 133.304 (123.232 to 143.377) 129.149 (116.298 to 142) 

GG 126.718 (118.826 to 134.61) 127.96 (118.351 to 137.569) 128.788 (116.323 to 141.253) 
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v = 0, p = 0.49 v = 0, p = 0.646 v = 0, p = 0.847 

IKLL Extension 
90 d/sec., N.m 

AA 118.036 (99.801 to 136.27) 109.428 (76.799 to 142.057) 129.743 (106.279 to 153.206) 

AG 134.338 (126.697 to 141.979) 132.498 (127.288 to 137.708) 131.638 (118.305 to 144.972) 

GG 127.297 (120.64 to 133.954) 129.657 (119.913 to 139.401) 128.384 (121.804 to 134.964) 

 
v = 0.7, p = 0.194 v = 0, p = 0.417 v = 0, p = 0.943 

IKLL Flexion 90 
d/sec., N.m 

AA 129.945 (112.058 to 147.832) 119.199 (86.686 to 151.712) 129.911 (106.872 to 152.95) 

AG 134.112 (126.626 to 141.599) 133.234 (123.065 to 143.403) 128.812 (115.73 to 141.895) 

GG 125.171 (117.183 to 133.16) 128.123 (118.417 to 137.829) 130.988 (118.31 to 143.665) 

 
v = 0.3, p = 0.281 v = 0, p = 0.622 v = 0, p = 0.973 

IKLL Extension 
180 d/sec., N.m 

AA 115.274 (97.213 to 133.335) 113.67 (81.35 to 145.99) 129.441 (106.113 to 152.77) 

AG 135.769 (128.205 to 143.332) 132.763 (122.652 to 142.874) 134.044 (120.807 to 147.281) 

GG 126.222 (118.156 to 134.287) 127.833 (118.088 to 137.577) 126.215 (113.383 to 139.047) 

 
v = 1.91, p = 0.063 v = 0, p = 0.491 v = 0, p = 0.708 

IKLL Flexion 180 
d/sec., N.m 

AA 126.461 (108.4 to 144.522) 123.052 (89.805 to 156.298) 128.344 (105.035 to 151.653) 

AG 133.126 (125.563 to 140.69) 131.91 (121.297 to 142.523) 132.353 (119.116 to 145.59) 

GG 126.99 (118.924 to 135.055) 128.29 (118.275 to 138.304) 128.137 (115.324 to 140.949) 

 
v = 0, p = 0.515 v = 0, p = 0.821 v = 0, p = 0.895 

IKUL Extension 
30 d/sec., N.m 

AA 124.028 (105.89 to 142.166) 97.018 (66.01 to 128.026) 131.108 (108.243 to 153.974) 

AG 126.628 (113.603 to 139.652) 133.895 (124.093 to 143.698) 125.004 (109.22 to 140.788) 

GG 134.869 (127.131 to 142.606) 127.678 (118.339 to 137.017) 134.202 (121.621 to 146.783) 

 
v = 0.29, p = 0.282 v = 2.78, p = 0.082 v = 0, p = 0.607 

IKUL Flexion 30 
d/sec., N.m 

AA 124.863 (106.551 to 143.175) 89.761 (57.788 to 121.734) 127.408 (103.925 to 150.891) 

AG 132.559 (124.899 to 140.22) 136.465 (126.643 to 146.286) 130.414 (117.081 to 143.747) 

GG 127.955 (119.773 to 136.136) 127.541 (117.989 to 137.092) 130.241 (117.313 to 143.17) 

 
v = 0, p = 0.617 v = 5.04, p = 0.021 v = 0, p = 0.975 

IKUL Extension 
90 d/sec., N.m 

AA 122.802 (104.703 to 140.901) 99.725 (68.562 to 130.887) 131.144 (119.393 to 142.895) 

AG 128.597 (121.013 to 136.18) 134.011 (124.055 to 143.968) 128.878 (115.795 to 141.96) 

GG 132.874 (124.789 to 140.959) 126.706 (117.135 to 136.277) 130.553 (117.875 to 143.23) 

 
v = 0, p = 0.544 v = 2.38, p = 0.106 v = 0, p = 0.978 

IKUL Flexion 90 
d/sec., N.m 

AA 125.892 (107.542 to 144.243) 93.363 (61.12 to 125.606) 124.267 (101.17 to 147.364) 

AG 132.703 (125.023 to 140.382) 134.892 (124.896 to 144.887) 133.514 (120.393 to 146.635) 

GG 127.586 (119.385 to 135.786) 128.869 (119.241 to 138.498) 128.281 (115.565 to 140.997) 

 
v = 0, p = 0.608 v = 3.39, p = 0.056 v = 0, p = 0.748 

IKUL Extension 
180 d/sec., N.m 

AA 126.528 (108.39 to 144.666) 105.034 (73.312 to 136.756) 122.876 (100.455 to 145.298) 

AG 129.376 (121.774 to 136.979) 134.523 (124.605 to 144.441) 133.494 (120.758 to 146.229) 

GG 131.242 (123.138 to 139.346) 126.444 (116.796 to 136.092) 128.722 (116.372 to 141.071) 

 
v = 0, p = 0.88 v = 1.48, p = 0.167 v = 0, p = 0.7 

IKUL Flexion 180 
d/sec., N.m 

AA 128.346 (109.996 to 146.697) 99.086 (67.364 to 130.808) 116.766 (94.055 to 139.477) 

AG 131.255 (123.556 to 138.954) 133.836 (123.919 to 143.754) 136.193 (123.304 to 149.083) 

GG 128.515 (120.256 to 136.774) 127.564 (117.916 to 137.212) 128.037 (115.534 to 140.541) 

 
v = 0, p = 0.881 v = 2.18, p = 0.113 v = 0.35, p = 0.325 

Wingate 
Relative Peak 
Power (w/kg) 

AA 10.862 (10.392 to 11.333) 11.73 (10.996 to 12.463) 11.025 (10.45 to 11.601) 

AG 10.958 (10.753 to 11.162) 10.967 (10.701 to 11.233) 11.252 (10.903 to 11.6) 

GG 11.072 (10.857 to 11.288) 10.94 (10.693 to 11.187) 10.779 (10.461 to 11.097) 
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v = 0, p = 0.631 v = 1.81, p = 0.129 v = 2.38, p = 0.153 

Wingate Fatigue 
Index (%) 

AA 10.966 (10.852 to 11.079) 11.067 (10.334 to 11.8) 11.139 (10.551 to 11.727) 

AG 10.984 (10.779 to 11.188) 11.116 (10.847 to 11.384) 11.092 (10.736 to 11.448) 

GG 11.021 (10.807 to 11.236) 10.887 (10.635 to 11.139) 10.877 (10.554 to 11.201) 

 
v = 0, p = 0.96 v = 0, p = 0.471 v = 0, p = 0.603 

Sprint 0-10m (s) 

AA 1.879 (1.868 to 1.89) 1.884 (1.813 to 1.956) 1.866 (1.81 to 1.922) 

AG 1.876 (1.857 to 1.896) 1.873 (1.847 to 1.899) 1.863 (1.831 to 1.894) 

GG 1.882 (1.861 to 1.903) 1.884 (1.86 to 1.908) 1.9 (1.868 to 1.931) 

 
v = 0, p = 0.926 v = 0, p = 0.839 v = 1.12, p = 0.24 

Sprint 10-20m 
(s) 

AA 1.352 (1.316 to 1.387) 1.313 (1.258 to 1.369) 1.319 (1.275 to 1.362) 

AG 1.335 (1.32 to 1.351) 1.342 (1.322 to 1.362) 1.32 (1.296 to 1.345) 

GG 1.327 (1.311 to 1.343) 1.328 (1.309 to 1.347) 1.351 (1.326 to 1.375) 

 
v = 0, p = 0.428 v = 0, p = 0.477 v = 1.79, p = 0.184 

Spring 20-30m 
(s) 

AA 1.27 (1.231 to 1.309) 1.229 (1.169 to 1.289) 1.248 (1.2 to 1.296) 

AG 1.251 (1.234 to 1.268) 1.261 (1.239 to 1.283) 1.249 (1.235 to 1.263) 

GG 1.255 (1.238 to 1.272) 1.252 (1.232 to 1.272) 1.262 (1.249 to 1.276) 

 
v = 0, p = 0.67 v = 0, p = 0.582 v = 0, p = 0.755 

Sprint Total (s) 

AA 4.499 (4.391 to 4.607) 4.426 (4.256 to 4.595) 4.428 (4.295 to 4.561) 

AG 4.463 (4.416 to 4.51) 4.477 (4.416 to 4.539) 4.429 (4.355 to 4.504) 

GG 4.465 (4.417 to 4.513) 4.463 (4.406 to 4.52) 4.516 (4.442 to 4.589) 

 
v = 0, p = 0.833 v = 0, p = 0.838 v = 1.22, p = 0.23 

Relative 
VO2max 

(ml/kg/min) 

AA 58.076 (54.035 to 62.118) 50.025 (42.724 to 57.325) 52.183 (46.983 to 57.383) 

AG 53.304 (47.912 to 58.696) 54.111 (51.777 to 56.444) 54.855 (51.905 to 57.805) 

GG 54.989 (53.131 to 56.848) 55.239 (53.022 to 57.456) 54.808 (52.066 to 57.549) 

 
v = 1.69, p = 0.087 v = 0, p = 0.376 v = 0, p = 0.651 

Body Fat (%) 

AA 14.332 (12.278 to 16.385) 13.367 (10.169 to 16.566) 14.82 (12.153 to 17.487) 

AG 14.811 (13.916 to 15.706) 14.921 (13.793 to 16.049) 13.491 (12.086 to 14.896) 

GG 13.827 (12.906 to 14.748) 13.911 (12.839 to 14.983) 15.02 (13.633 to 16.408) 

 
v = 0.13, p = 0.328 v = 0, p = 0.375 v = 0.53, p = 0.301 
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MYOZ3  

Genotype Distribution 

MYOZ3 genotyping was 100 % successful (407/407 samples genotyped). Due to only one G-

allele homozygote being identified for MYOZ3, this individual was grouped with all other G-

allele carriers and analysis was performed on G-allele carriers and AA-homozygotes (Table 

16). MYOZ3 genotype distributions (AA = 84 %, G-allele carriers = 16 %) was consistent with 

H E (p =  .122) a   allele freque cie  withi  the whole cohort were: ƒ  (A) =  .91 a   ƒ (G) = 

0.09.  

 

Table 16, MYOZ3 Allele Frequency within the Cohort (n = 407).  

Genotype data presented as n (%). Percentage refers to within specific subgroups. Allele 

freque cy (ƒ)  ive  i  perce ta e.  

 

 

Table 17, MYOZ3 Genotype and Athlete Highest Level of Performance.  

Data presented as n (%) where percentage refers to within a specific sub-group.  

Highest Level of 
Performance 

SSP (n = 126) END (n = 84) 

AA 
G-Allele 
Carriers AA 

G-Allele 
Carriers 

International 8 (100) 0 8 (67) 4 (33) 
National Level 55 (80) 14 (20) 40 (77) 12 (23) 
Area Squad 23 (92) 2 (8) 10 (71) 4 (29) 
Other athlete 21 (88) 3 (12) 6 (100) 0 

 

Genotype SSP END CON ALL 

AA 107 (85 64 (76) 170 (86) 341 (84) 
G 19 (15) 20 (24) 27 (14) 66 (16) 
A (ƒ) 92 88 93 92 
G (ƒ) 8 12 7 8 

N = 126 84 197 407 
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No significant genotype differences between any pair wise combinations of sub-groups was 

detected (p > 0.05); however, notably no incidence of G-allele carriers was found within the 

international level SSP sub-group of athletes.  

Associations 

MYOZ3 genotype is significantly associated with relative    2MAX and upper-limb isokinetic 

flexion strength at 90 d/sec (N·m) but no other performance related phenotypes (Table 18).  

 

 
Table 18,  Association of MYOZ3 Genotype and Performance Phenotypes.  

N = 407 (AA = 341; G-allele carriers 66). v denotes the percentage of the variance explained 

by the genotype. LCL denotes lower 95 % confidence limit. UCL denotes upper 95 % 

confidence limit. CMJ = countermovement jump. IKLL = combined isokinetic strength for 

both lower limbs. IKUL = combined isokinetic strength for both upper limbs. Significance 

accepted as p < 0.012. Significant results marked in bold italics. Results of p < 0.05 marked 

in italics.  

 
Genotype Mean (LCL to UCL) 

CMJ height (cm) 

AA 38.748 (38.077 to 39.419) 

G-allele carriers 40.218 (38.707 to 41.729) 

 
v = 0.51, p = 0.083 

Static jump height (cm) 

AA 31.812 (31.242 to 32.381) 

G-allele carriers 33.602 (32.312 to 34.891) 

 
v = 1.29, p = 0.014 

Body Mass (kg) 

AA  77.344 (76.217 to 78.47) 

G-Allele Carriers 74.937 (72.472 to 77.401) 

 
v = 0.46, p = 0.094 

IKLL Extension 30 d/sec., N·m 

AA 130.8 (126.728 to 134.871) 

G-allele carriers 125.005 (116.013 to 133.997) 

 v = 0.09, p = 0.251 

IKLL Flexion 30 d/sec., N·m 

AA 131.052 (129.007 to 133.098) 

G-allele carriers 124.976 (116.081 to 133.872) 

 
v = 0.13, p = 0.224 

IKLL Extension 90 d/sec., N·m 
AA 131.357 (127.228 to 135.486) 

G-allele carriers 123.12 (113.954 to 132.285) 
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v = 0.42, p = 0.109 

IKLL Flexion 90 d/sec., N·m 

AA 130.594 (126.523 to 134.665) 

G-allele carriers 126.884 (117.853 to 135.914) 

 v = 0, p = 0.464 

IKLL Extension 180 d/sec., N·m 

AA 130.53 (126.42 to 134.64) 

G-allele carriers 126.164 (117.037 to 135.291) 

 
v = 0, p = 0.394 

IKLL Flexion 180 d/sec., N·m 

AA 130.671 (126.541 to 134.8) 

G-allele carriers 125.886 (116.759 to 135.013) 

 v = 0, p = 0.351 

IKUL Extension 30 d/sec., N·m 

AA 130.175 (126.103 to 134.246) 

G-allele carriers 127.261 (118.153 to 136.368) 

 
v = 0, p = 0.568 

IKUL Flexion 30 d/sec., N·m 

AA 131.858 (127.767 to 135.949) 

G-allele carriers 120.39 (111.186 to 129.594) 

 
v = 1.05, p = 0.027 

IKUL Extension 90 d/sec., N·m 

AA 130.457 (126.385 to 134.528) 

G-allele carriers 125.284 (116.138 to 134.43) 

 
v = 0.01, p = 0.313 

IKUL Flexion 90 d/sec., N·m 

AA 132.296 (128.205 to 136.387) 

G-allele carriers 118.281 (109.115 to 127.446) 

 
v = 1.71, p = 0.007 

IKUL Extension 180 d/sec., N·m 

AA 130.62 (126.568 to 134.672) 

G-allele carriers 125.229 (116.16 to 134.298) 

 v = 0.03, p = 0.289 

IKUL Flexion 180 d/sec., N·m 

AA 131.721 (127.65 to 135.792) 

G-allele carriers 119.163 (109.997 to 128.328) 

 v = 1.34, p = 0.015 

Wingate Relative Peak Power (w/kg) 

AA 10.992 (10.884 to 11.1) 

G-allele carriers 11.03 (10.791 to 11.269) 

 
v = 0, p = 0.777 

Wingate Fatigue Index (%) 

AA 11.03 (10.923 to 11.138) 

G-allele carriers 10.843 (10.604 to 11.082) 

 
v = 0.25, p = 0.162 

Sprint 0-10m (s) 

AA 1.879 (1.869 to 1.889) 

G-allele carriers 1.881 (1.857 to 1.904) 

 
v = 0, p = 0.898 

Sprint 10-20m (s) 

AA 1.334 (1.326 to 1.342) 

G-allele carriers 1.328 (1.31 to 1.346) 

 
v = 0, p = 0.569 

Spring 20-30m (s) 

AA 1.254 (1.237 to 1.272) 

G-allele carriers 1.257 (1.237 to 1.276) 

 
v = 0, p = 0.831 

Sprint Total (s) 
AA 4.469 (4.445 to 4.493) 

G-allele carriers 4.459 (4.403 to 4.515) 
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v = 0, p = 0.754 

Re ative   O2MAX (ml/kg/min) 

AA 53.967 (53.042 to 54.892) 

G-allele carriers 56.914 (54.889 to 58.939) 

 
v = 1.55, p = 0.01 

Body Fat (%) 

AA 14.482 (14.024 to 14.94) 

G-allele carriers 13.57 (12.524 to 14.616) 

 
v = 0.36, p = 0.119 

 

 

Following identification of significant results pertaining to MYOZ3 genotype and 

performance phenotypes, an independent analysis of each individual sub-group was 

performed in an attempt to identify the root of the significant result within the entire cohort 

(Table 19). Associations similar to the whole cohort analysis were observed within the 

subgroups; however, due to the multiple testing corrections, no results reached significance 

(p < 0.008).  

 

Table 19, Independent Sub-group Analysis of MYOZ3 Genotype and Performance 

Phenotypes.  

N = 407 (126, 84, 197 for SSP, END and CON respectively). Geno refers to genotype. AA 

denotes AA-homozygosity. G-AC denotes G-allele carriers. v denotes the percentage of the 

variance explained by the given genotype. LCL denotes lower 95 % confidence limit. UCL 

denotes upper 95 % confidence limit. IKLL = combined lower-limb isokinetic strength. IKUL = 

combined upper-limb isokinetic strength. Significance accepted at p < 0.008 for each sub-

group as determined by Sidak correction. Results of p < 0.05 marked in italics. 
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CON Sub-Group SSP Sub-Group END Sub-Group 

 
Geno Mean (LCL to UCL) Mean (LCL to UCL) Mean (LCL to UCL) 

CMJ height (cm) 

AA 38.675 (37.734 to 39.616) 38.933 (37.722 to 40.143) 38.634 (37.06 to 40.208) 

G-AC 41.005 (38.61 to 43.401) 39.295 (36.467 to 42.123) 40.071 (37.325 to 42.817) 

 v = 1.1, p = 0.078 v = 0, p = 0.818 v = 0, p = 0.377 

Static jump 
height (cm) 

AA 31.76 (30.959 to 32.56) 31.914 (30.867 to 32.962) 31.782 (30.433 to 33.13) 

G-AC 34.34 (32.299 to 36.382) 33.124 (30.706 to 35.541) 33.094 (30.741 to 35.447) 

 v = 2.18, p = 0.022 v = 0, p = 0.37 v = 0, p = 0.377 

Body Mass (kg) 

AA 77.301 (75.697 to 78.905) 77.54 (75.5 to 79.58) 77.129 (74.473 to 79.785) 

G-AC 74.681 (69.486 to 79.876) 73.752 (68.995 to 78.508) 76.394 (71.719 to 81.068) 

 v = 0.19, p = 0.243 v = 0.87, p = 0.154 v = 0, p = 0.377 

IKLL Extension 
30 d/sec., N·m 

AA 129.26 (123.568 to 134.952) 133.261 (126.006 to 140.516) 131.087 (126.108 to 136.065) 

G-AC 131.737 (117.632 to 145.842) 113.613 (97.095 to 130.13) 126.583 (109.95 to 143.216) 

 v = 0, p = 0.75 v = 3.13, p = 0.035 v = 0, p = 0.377 

IKLL Flexion 30 
d/sec., N·m 

AA 130.593 (125.016 to 136.169) 132.133 (124.781 to 139.484) 130.541 (120.951 to 140.131) 

G-AC 126.502 (123.067 to 129.936) 119.407 (102.601 to 136.214) 128.164 (111.82 to 144.507) 

 v = 0, p = 0.592 v = 0.76, p = 0.177 v = 0, p = 0.377 

IKLL Extension 
90 d/sec., N·m 

AA 130.233 (124.463 to 136.002) 133.538 (126.167 to 140.909) 130.918 (120.98 to 140.855) 

G-AC 128.057 (113.662 to 142.451) 111.814 (94.969 to 128.659) 127.073 (110.17 to 143.976) 

 v = 0, p = 0.784 v = 3.78, p = 0.022 v = 0, p = 0.377 

IKLL Flexion 90 
d/sec., N·m 

AA 130.199 (124.546 to 135.853) 131.424 (123.956 to 138.891) 130.329 (120.584 to 140.073) 

G-AC 128.265 (114.199 to 142.332) 122.887 (105.83 to 139.944) 128.778 (112.183 to 145.372) 

 v = 0, p = 0.803 v = 0, p = 0.371 v = 0, p = 0.377 

IKLL Extension 
180 d/sec., N·m 

AA 129.646 (123.896 to 135.396) 132.416 (125.046 to 139.787) 129.924 (120.006 to 139.842) 

G-AC 131.692 (117.356 to 146.029) 114.181 (97.413 to 130.949) 129.949 (113.066 to 146.833) 

 v = 0, p = 0.796 v = 2.48, p = 0.054 v = 0, p = 0.377 

IKLL Flexion 180 
d/sec., N·m 

AA 130.055 (124.362 to 135.747) 131.228 (123.491 to 138.966) 131.549 (121.708 to 141.39) 

G-AC 129.161 (114.979 to 143.344) 121.831 (104.446 to 139.217) 125.244 (108.476 to 142.012) 

 v = 0, p = 0.909 v = 0, p = 0.336 v = 0, p = 0.377 

IKUL Extension 
30 d/sec., N·m 

AA 128.94 (126.026 to 131.853) 130.848 (123.497 to 138.2) 132.647 (122.98 to 142.314) 

G-AC 136.065 (128.79 to 143.339) 119.601 (102.582 to 136.619) 122.066 (105.626 to 138.506) 

 v = 0, p = 0.365 v = 0.38, p = 0.237 v = 0.25, p = 0.377 

IKUL Flexion 30 
d/sec., N·m 

AA 130.616 (127.683 to 133.549) 131.895 (124.466 to 139.324) 135.425 (125.797 to 145.054) 

G-AC 125.684 (118.371 to 132.997) 119.405 (101.672 to 137.137) 114.024 (97.565 to 130.483) 

 v = 0, p = 0.533 v = 0.54, p = 0.206 v = 5.03, p = 0.377 

IKUL Extension 
90 d/sec., N·m 

AA 129.609 (123.898 to 135.321) 130.593 (123.222 to 137.964) 132.709 (123.042 to 142.376) 

G-AC 131.918 (117.717 to 146.12) 118.538 (112.537 to 124.539) 121.886 (105.427 to 138.345) 

 v = 0, p = 0.768 v = 0.5, p = 0.218 v = 0.32, p = 0.377 

IKUL Flexion 90 
d/sec., N·m 

AA 131.668 (125.938 to 137.399) 131.721 (124.254 to 139.189) 135.135 (125.622 to 144.647) 

G-AC 119.168 (104.889 to 133.447) 120.739 (102.967 to 138.51) 114.865 (98.657 to 131.074) 

 v = 0.82, p = 0.113 v = 0.22, p = 0.267 v = 4.53, p = 0.377 

IKUL Extension 
180 d/sec., N·m 

AA 129.97 (124.278 to 135.663) 130.465 (123.055 to 137.874) 132.781 (123.326 to 142.236) 

G-AC 129.682 (122.446 to 136.918) 122.385 (105.038 to 139.732) 121.679 (105.586 to 137.772) 

 v = 0, p = 0.971 v = 0, p = 0.404 v = 0.49, p = 0.377 

IKUL Flexion 180 AA 131.129 (125.379 to 136.879) 130.893 (123.561 to 138.226) 134.866 (125.372 to 144.359) 
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d/sec., N·m G-AC 121.543 (106.956 to 136.131) 119.594 (102.325 to 136.864) 115.643 (99.473 to 131.813) 

 v = 0.23, p = 0.233 v = 0.35, p = 0.241 v = 3.98, p = 0.377 

Wingate 
Relative Peak 
Power (w/kg) 

AA 11.016 (10.863 to 11.168) 10.975 (10.782 to 11.169) 10.952 (10.695 to 11.209) 

G-AC 10.888 (10.508 to 11.269) 11.117 (10.672 to 11.563) 11.129 (10.696 to 11.563) 

 v = 0, p = 0.543 v = 0, p = 0.567 v = 0, p = 0.377 

Wingate Fatigue 
Index (%) 

AA 11.056 (10.906 to 11.206) 10.988 (10.794 to 11.181) 11.028 (10.771 to 11.285) 

G-AC 10.635 (10.259 to 11.011) 11.052 (10.607 to 11.498) 10.912 (10.478 to 11.345) 

 v = 1.64, p = 0.043 v = 0, p = 0.795 v = 0, p = 0.377 

Sprint 0-10m (s) 

AA 1.88 (1.865 to 1.894) 1.875 (1.856 to 1.893) 1.881 (1.857 to 1.905) 

G-AC 1.872 (1.835 to 1.909) 1.899 (1.856 to 1.942) 1.872 (1.83 to 1.914) 

 v = 0, p = 0.719 v = 0.01, p = 0.316 v = 0, p = 0.377 

Sprint 10-20m 
(s) 

AA 1.334 (1.323 to 1.346) 1.334 (1.319 to 1.348) 1.331 (1.312 to 1.35) 

G-AC 1.32 (1.291 to 1.349) 1.328 (1.294 to 1.361) 1.337 (1.305 to 1.37) 

 v = 0, p = 0.375 v = 0, p = 0.752 v = 0, p = 0.377 

Spring 20-30m 
(s) 

AA 1.256 (1.243 to 1.268) 1.254 (1.238 to 1.27) 1.248 (1.232 to 1.265) 

G-AC 1.244 (1.213 to 1.275) 1.255 (1.219 to 1.292) 1.272 (1.236 to 1.307) 

 v = 0, p = 0.515 v = 0, p = 0.952 v = 0.34, p = 0.377 

Sprint Total (s) 

AA 4.473 (4.44 to 4.507) 4.463 (4.419 to 4.507) 4.461 (4.405 to 4.518) 

G-AC 4.418 (4.328 to 4.509) 4.484 (4.381 to 4.586) 4.482 (4.382 to 4.582) 

 v = 0.12, p = 0.268 v = 0, p = 0.722 v = 0, p = 0.377 

Re ative    2MAX 
(ml/kg/min) 

AA 54.216 (52.974 to 55.457) 53.92 (52.203 to 55.637) 53.403 (51.293 to 55.514) 

G-AC 56.081 (52.756 to 59.406) 57.134 (53.417 to 60.851) 57.788 (54.917 to 60.66) 

 v = 0.04, p = 0.302 v = 1.25, p = 0.128 v = 3.95, p = 0.377 

Body Fat (%) 

AA 14.552 (13.895 to 15.209) 14.445 (13.623 to 15.266) 14.36 (13.288 to 15.432) 

G-AC 12.948 (11.296 to 14.599) 13.707 (11.762 to 15.653) 14.246 (12.344 to 16.148) 

 v = 1.11, p = 0.079 v = 0, p = 0.496 v = 0, p = 0.377 
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Discussion 

 

Genetic diversity significantly contributes to performance-related phenotypes. In the 

present study, the associations of ACTN3, MYOZ2 and MYOZ3 genotypes on performance 

related phenotypes was investigated in a large Lithuanian cohort of athletes and controls. 

Unfortunately, due to the size of the cohort and the low EMAF of MYOZ1 (Calsarcin-2) SNPs, 

this study was unable to further the work of Seto et al. 40 regarding Calsarcin-2. However, 

Calsarcin-1 and Calsarcin-3 (MYOZ2 and MYOZ3) are suitable candidates as they are similarly 

li ke  to α-Actinins and are both present in skeletal muscle 18,44 performing similar roles. 

The large phenotype database encompasses a complex range of strength, power, and 

endurance, and anthropometrical data which is believed to be more in-depth than in 

previous literature and presents the unique advantage of investigating the association of 

these genes with complex quantitative performance-related traits in a spectrum of detail 

not previously reported.  

 

The present study identified certain associations with two out of the three SNPs and 

quantitative performance-related phenotypes. The R-allele of ACTN3 is associated with 

sprinting speed which is in line with previous literature 10,22,24. The MYOZ2 rs9995277 SNP 

was found not to be associated with any physiological measure (Supplementary Table 1); 

however, the MYOZ3 G-allele is associated with increased relative    2MAX and lower 

isokinetic upper-limb flexion strength at 90 d/sec (N·m) compared to AA-homozygotes.   

 

Genotype distribution for all three genes were consistent with HWE (p = 0.053, 0.285 and 

0.122 for ACTN3, MYOZ2 and MYOZ3 respectively). ACTN3 genotype distribution was similar 
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to findings in previous research 10,24 including a Lithuanian athletic cohort 54. It is believed by 

this study that currently no genotype distribution data exists for MYOZ2 and MYOZ3 as this 

are the first investigation of these genotypes in this context in humans. However, MYOZ2 

allele frequencies in the cohort are identical to the EMAF reported in the 1000 Genomes 

 ataba e (ƒ (A) =  . 1) a    imilar for MY Z  (EMAF ƒ (G)  .1   pre e t  tu y ƒ (G) 0.09) 

suggesting that the genotyping is accurate and reliable. This is further strengthened with the 

quality control measures which have been previously described and matched with 100 % 

concordance. Tables 10, 13 and 16 details the number and frequency percentage of ACTN3, 

MYOZ2 and MYOZ3 by sub-group respectively. There was no difference in frequency of any 

allele or genotype between END, SSP, or CON subgroups (p > 0.05) which, for ACTN3,  is in 

line with some 28,34,35,55 but not all 10,22,32 literature.  

 

ACTN3 

The initial findings demonstrate that ACTN3 R577X genotype influences sprint performance 

but no other power-related, strength or endurance phenotype (Table 12). The in-depth 

phenotype data-set allowed the investigation of 30m sprint-time by 10m stages. An 

association between ACTN3 genotype and 0-10m sprint-time was found but not with total 

sprint-time as previously reported in other literature 24. Post-hoc analysis showed that the 

RR and RX-genotype participants were significantly faster than the XX-homozygotes which is 

in line with a similar study by Moran et al. 24. Upon correction for sub-group, the SSP group 

were identified to be the fastest overall, compared to both the END and CON sub-groups (p 

< 0.01). This suggests in-line with other data 10,22,32 that the ACTN3 R-allele is an important 

performance-related factor in power-orientated sport. 
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Lack of a lower prevalence of the XX genotype in the SSP sub-group overall is 

contradictory to what has been reported previously in some strength and or power based 

cohorts 10,22,29,32,56 but not all 28,30,35,55. The SSP sub-group does contain athletes which are 

spread across a range of competitive levels, from non-competitive to Olympians (Table 11), 

and a multitude of sports, some of which have data suggesting little to no role of ACTN3 

genotype on performance 57,58. This may account for the genotype distribution results 

obtained; however, it should be noted that there was no case of the ACTN3 XX-genotype in 

international level SSP athletes (Table 11) which is in line with other data 10,22 and suggests 

that the ACTN3 R-allele is strongly associated with sprint performance at the most elite 

level.  

Associations with other power-related phenotypes including standing and counter-

movement jumps and Wingate test were explored; however, no association was found 

between ACTN3 and any other power-related phenotype (Table 12). The data is in line with 

Ruiz et al. 57 who investigated the association of ACTN3 R577X genotype on explosive leg-

power in elite female volley-ball players. Similar to data in the present study (Table 12), the 

authors established that ACTN3 appears to have no effect on explosive leg-power, 

determined by squat and counter-movement jumps by Ruiz et al. 57 and in the present 

study.  

Seto et al. 40 revealed that in absence of α-Actinin-3 (ACTN3 XX-genotype in humans 

and ACTN3 KO in mice); α-Actinin-2 out-competes calcineurin for binding with Calsarcin-2 

(MYOZ1 gene). The authors postulated that this activated calcineurin could account for the 

shift in oxidative properties of fast-twitch fibres - of which Calsarcin 1, 2 and 3 are present – 

leading to an enhanced response to endurance training in ACTN3 KO mice compared to WT 

littermates. The present study was unable to identify a suitable MYOZ1 (Calsarcin-2) 
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candidate and thus could not replicate the work of Seto et al. 40; however, we investigated 

associations between both MYOZ2 and MYOZ3 genotypes and performance-related 

phenotypes in a sub-set of ACTN3 XX-homozygotes (N = 49, CON = 26; SSP = 16; END = 7). 

No association was identified with any anthropomorphic, strength, power or endurance-

related phenotype (data not shown) suggesting, in line with the yeast-2-hybrid experiment 

performed by Seto and colleagues 40 that there is possibly no interaction between α-Actinin-

3 XX-genotype and Calsarcin-1 and -3.  

 Findings in the present study are in line with what would be expecting regarding 

ACTN3 and performance given previous research 10,24,39 and are in line with our hypothesis. 

This data provides additional evidence that ACTN3 577R allele is strongly associated with 

sprinting speed 10,22,24,33 but less so for other indices of strength or power in males 25,27. 

Similarly the data provides more evidence which suggests no association of ACTN3 577X 

allele on any endurance-related phenotype 16,24,36. The quality control measures and ACTN3 

results suggest the current cohort was suitable for investigating genotypes which have not 

previously been investigated in this context in humans. 

  

MYOZ2 

The present study is the first to investigate the MYOZ2 rs9995277 gene with complex 

quantitative performance-related phenotypes in a cohort comprising both athletes and 

control participants. MYOZ2 rs9995277 (Calsarcin-1) is not associated with any performance 

phenotype (Supplementary Table 1).  

In humans, Calsarcin-1 (MYOZ2) is expressed in cardiac and oxidative type-1 and 

type-IIa skeletal muscle fibres 18. Although little research exists pertaining to the role of 

calsarcin-1 in skeletal muscle, there is much more research based around the association of 
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Calsarcin-1 and cardiac hypertrophy. Mice lacking Calsarcin-1 have shown increased 

sensitivity to calcineurin signalling - as would be expected given the role of the Calsarcin in 

tethering calcineurin. Over activation of calcineurin results in the stimulation of pathological 

cardiac hypertrophy 59 and increased number of type I, slow twitch muscle fibres in 

Calsarcin-1 KO mice 60. 

 ariatio  i  the  ’UTR of MY Z2 r 9995277 (G → A) causes the loss of miRNA 

binding sites for the miR-30 family. Similar to Calsarcin-1, miR-30 is present in both cardiac 

and skeletal muscle 49. In cardiac muscle, the down-regulation of miR-30 promotes 

myocardial hypertrophy through excessive autophagy 61. In skeletal muscle, miR-30a, -c, -d, 

and –e are found to be significantly up-regulated during myogenic differentiation in CD56+ 

primary myoblasts and myotubes isolated from healthy humans in a study by Dmitriev and 

colleagues 49. The authors confirmed that this miRNA family may target genes involved in: 

the regulation of protein phosphorylation and kinase activity, cell cycle control, intracellular 

transport, cytoskeleton organisation, protein ubiquitination, DNA damage response and 

nucleotide bio-synthesis in human skeletal muscle. In zebra fish, inhibition of the miRNA-30 

family increased numbers of superficial slow-muscle fibres during embryonic development 

53.  

MYOZ2 rs9995277 genotype appears to have no effect on any performance-related 

phenotype in the participants that comprise the cohort in this study. 

 

MYOZ3 

The present study is the first to investigate and subsequently associate MYOZ3 rs116090320 

(Calsarcin-3) with complex, quantitative performance-related phenotypes in a large 

Lithuanian cohort of athletes and controls. The in-depth phenotype database allows the 
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investigation of associations between genes and performance in a spectrum of detail. G-

allele carriers appear to have a  i crea e  relative    2MAX (p = 0.01) compared to AA-

homozygotes but also decreased strength in upper-limb flexion isokinetic dynamometry 

performed at 90 d/sec (N·m. p < 0.01). In the independent sub-group analysis, there appears 

to be a trend toward G-allele carriers being weaker than AA-homozygotes in a number of 

isokinetic tests flexion tests of strength, particularly in the END sub-group; however, due to 

the multiple testing correction applied in this analysis (p < 0.008), none of these results 

reached significance.  

Calsarcin-3, encoded by the MYOZ3 gene is exclusively expressed in skeletal muscle 

44 with enrichment in fast-type fibres. As Calsarcins tether calci euri  to α-Actinin at the 

sarcomeric z-lines, any variation within the Calsarcins may alter calcineurin activity and 

subsequently may affect promote a more oxidative phenotype which has been observed in 

mouse models and proposed in humans 40,45 although only for Calsarcin-1.  

Calcineurin activation has been shown to promote differentiation and fibre type 

specialisation toward a slow-twitch phenotype and is dependent upon the frequency of 

motor neuron activity 41,42. Prolonged periods of tonically active motor neurones stimulate a 

shift towards the slow-twitch oxidative myofibre phenotypes through changes in 

intracellular concentrations of several signalling molecules including calcium (Ca2+). As 

calcineurin is a Ca2+-calmodulin dependent phosphatase, increased levels of Ca2+ will lead to 

calcineurin activation 62.  

Activated calcineurin causes the dephosphorylation of number of transcription 

factors including members of the nuclear family of activate T-cells (NFATs) from the 

cytoplasm to the nucleus 63 at specific points during myocyte generation and formation and 

this pathway is known as the Ca2+ / Calcineurin / NFAT pathway. During myocyte 
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development, NFATc3 is translocated into myoblast nuclei, NFATc2 is shuttled into emerging 

myotube nuclei and NFATc1 moves into mature myoblast nuclei. At this point, molecular or 

tonic motor nerve activity results in increased calcineurin mediated signalling, altering the 

phenotype of the skeletal muscle and leading to hypertrophy or fibre type switching toward 

a slow myogenic profile respectively 62,64.  

The MYOZ3 rs116090320 polymorphism results in both losses and gains of miRNA 

binding sites. MiR-374b and miR-4524b binding sites are lost and there is a gain in binding 

sites for miR-4291 (Table 6). As the G-allele of MYOZ3 is associated with endurance related 

phenotypes, even though it is predominantly expressed in fast-type fibres 44, it could be 

 u  e te  that the role of the e miRNA’  may alter the fu ctio  of the Calsarcin-3 protein, 

increasing calcineurin activity and resulting in fast-twitch fibres eliciting a more oxidative 

phenotype. If fast-fibres were to elicit a more oxidative phenotype, this may help explain 

the significantly reduced upper-limb flexion strength observed. A number of isokinetic 

upper-limb flexion tests appeared to trend toward being lower in G-allele carriers however, 

only flexion strength at 90 d/sec (N·m) achieved significance. MiR-374b is found in skeletal 

muscle and up-regulated during myogenic differentiation 49. Given that the G-allele carriers 

see a reduction in binding sites for this miRNA, it is postulated that this miRNA may be 

associated with muscular strength or mass which may explain the observed reduction in 

upper-limb flexion strength (Table 18). Neither miR-4291 nor miR-4524a have been 

associated with any skeletal muscle phenotypes however, similarly to miR-374b, affecting 

their binding sites with MYOZ3 (G-allele carriers) may potentially have an effect on 

performa ce a   thu  the role of the e miRNA’  warra t  further i ve ti atio .    

The Ca2+-calcineurin-NFAT mechanism 41,64 may explain the MYOZ3 result in the 

present study. Although it cannot be deduced from the current study, work by Seto et al. 40 
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suggests that enhanced endurance related phenotypes may be the result of activated 

calcineurin and a resulting shift in fibre-type properties toward a slower, more oxidative 

phenotype. The G-allele carriers in this cohort are aerobically superior compared to their 

AA-homozygotic co-participants regardless of athlete sub-group although they appear to 

have reduced upper-limb flexion strength. 

 

Moving Forward 

These results demonstrate for the first time, the association of a calcineurin-tethering, 

skeletal muscle specific gene (MYOZ3) with quantitative performance-related phenotypes in 

humans. The in-depth phenotype data-set has given this study the ability to investigate 

associations with specific components of otherwise complex performance phenotypes.  

 Due to the criteria for selecting suitable SNPs and the size of the cohort, the present 

study was unable to identify a suitable SNP for MYOZ1 (Calsarcin-2) with a minor allele of a 

 uitable freque cy (≥ 5 %) at the time of searching. Thus, unfortunately, this study was 

unable to further the work of Seto and colleagues 40 however, such a study would be 

beneficial to the wider literature. 

 The G-allele carriers of MYOZ3 rs116090320 demonstrate an i crea e  relative 

   2MAX and decrease upper-limb flexion strength. It is proposed that this research is 

repeated in another cohort to investigate the reproducibility of the current findings. Further 

to this, investigation of the roles of micro-RNA’  a  ociate  with MY Z  r 116 9  2  to 

discern other genes that they may be associated with and their link within skeletal muscle 

differentiation and proliferation should be conducted.  
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Limitations 

Although this cohort is relatively large, containing both endurance and strength athletes as 

well as control participants and has what we believe to be the most in-depth exercise-

performance related phenotypic dataset, there are limitations. The size of the cohort meant 

we were unable to identify a suitable MYOZ1 candidate due to the requirement of an EMAF 

≥ 5%. The selection criterion has some overlap between control participants and athletes. 

Although control participants do not take part in any sports, they can train regularly up to 

twice per week. The athletes were defined as having trained more than a minimum of twice 

per week. It could be suggested that training in the control sub-group may have impaired 

the results somewhat. Equally, athletes who did not compete at even area level were 

included in the cohort and it could be suggested that there may be little difference in 

performance attributes between these individuals and any control participant who may 

have trained up to twice per week.  Additionally, some athletes were included who 

participate in sports which have shown little to no association with ACTN3 57,58.  

The testing protocol, although in-depth could perhaps have been spread out farther. 

Tests of maximal strength, and maximal power were all completed within a single day. It is 

unknown whether participants were fed between strength and power tests or how long 

they were given to rest between, which could have affected maximal power results.  

Finally, it is noted that the unknown brand and or model types of the testing 

equipment used means that it would be difficult to exactly repeat this study however it is 

likely all equipment was of a high standard as the data collection was performed at a 

national institute for sport.   
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Conclusion 

The current study is the first group to investigate variations within genes that encode the 

Calsarcin-1 and Calsarcin-3 proteins. We have identified, for the first time, that variation 

within one of these genes significantly alters performance related phenotypic traits. The in-

depth, complex, quantitative phenotypic data-set and large cohort of athletes and control 

participants has presented the unique ability to investigate associations of genes with 

specific, measurable, performance-related traits which are associated with more complex 

performance related phenotypes. 

In conclusion, this study provides additional evidence that the ACTN3 R577X SNP, R-

allele is associated with sprint performance and that the X-allele is not associated with 

endurance performance. Variants of the Calsarcin family that are of a high enough 

frequency within the European ethnicity have been identified and one of these variants is 

associated with athletic performance. It has been identified that variation within the MYOZ3 

rs116090320 SNP – which encodes the Calsarcin-3 protein - significantly affects relative 

   2MAX and isokinetic upper-limb flexion strength in European males. This study has 

identified a new family of gene not previously associated with human athletic performance 

that warrants repetition and further investigation.  
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Supplementary Table 

 

Supplementary Table 1, Association of MYOZ2 Genotype and Performance Phenotypes.  

N = 407 (35, 184 and 188 for AA, AG and GG respectively). v denotes the percentage of the 

variance explained by the genotype. LCL denotes lower 95 % confidence limit. UCL denotes 

upper 95 % confidence limit. CMJ = counter-movement jump. IKLL = combined isokinetic 

strength for both lower limbs. IKUL = combined isokinetic strength for both upper limbs. 

Significance accepted as p < 0.012. 

 
Genotype Mean (LCL to UCL) 

CMJ height (cm) 

AA 38.71 (36.61 to 40.811) 

AG 39.282 (38.36 to 40.203) 

GG 38.76 (37.863 to 39.657) 

 
v = 0, p = 0.705 

Static jump height (cm) 

AA 30.871 (29.077 to 32.665) 

AG 32.454 (31.67 to 33.239) 

GG 31.998 (31.606 to 32.391) 

 
v = 0.16, p = 0.269 

Body Mass (kg) 

AA 74.751 (71.266 to 78.235) 

AG 78.305 (76.775 to 79.835) 

GG 76.038 (74.519 to 77.557) 

 
v = 0.96, p = 0.054 

IKLL Extension 30 d/sec., N·m 

AA 121.913 (109.081 to 134.744) 

AG 131.177 (125.717 to 136.638) 

GG 129.881 (124.382 to 135.38) 

 
v = 0, p = 0.43 

IKLL Flexion 30 d/sec., N·m 

AA 129.678 (116.981 to 142.374) 

AG 132.531 (127.148 to 137.915) 

GG 127.533 (122.092 to 132.975) 

 
v = 0, p = 0.442 

IKLL Extension 90 d/sec., N·m 

AA 120.423 (107.36 to 133.486) 

AG 133.311 (127.793 to 138.83) 

GG 128.291 (122.695 to 133.886) 

 
v = 0.48, p = 0.151 

IKLL Flexion 90 d/sec., N·m 

AA 128.2 (115.33 to 141.071) 

AG 132.903 (127.462 to 138.345) 

GG 127.285 (121.785 to 132.784) 

 
v = 0.03, p = 0.352 
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IKLL Extension 180 d/sec., N·m 

AA 119.585 (106.637 to 132.532) 

AG 134.573 (129.093 to 140.053) 

GG 126.747 (121.19 to 132.305) 

 
v = 1.19, p = 0.041 

IKLL Flexion 180 d/sec., N·m 

AA 126.518 (113.493 to 139.543) 

AG 132.637 (127.099 to 138.175) 

GG 127.64 (122.044 to 133.236) 

 
v = 0, p = 0.404 

IKUL Extension 30 d/sec., N·m 

AA 121.955 (109.104 to 134.806) 

AG 128.447 (122.987 to 133.908) 

GG 132.383 (126.865 to 137.902) 

 
v = 0.14, p = 0.288 

IKUL Flexion 30 d/sec., N·m 

AA 120.022 (107.538 to 132.506) 

AG 133.362 (127.862 to 138.861) 

GG 128.264 (122.668 to 133.859) 

 
v = 0.54, p = 0.134 

IKUL Extension 90 d/sec., N·m 

AA 121.77 (108.92 to 134.621) 

AG 130.199 (124.738 to 135.659) 

GG 130.443 (124.905 to 135.981) 

 
v = 0, p = 0.459 

IKUL Flexion 90 d/sec., N·m 

AA 120.121 (107.077 to 133.165) 

AG 133.501 (128.002 to 139) 

GG 128.146 (122.57 to 133.723) 

 
v = 0.58, p = 0.125 

IKUL Extension 180 d/sec., N·m 

AA 121.883 (109.051 to 134.715) 

AG 131.631 (126.209 to 137.053) 

GG 129.192 (123.673 to 134.711) 

 
v = 0, p = 0.38 

IKUL Flexion 180 d/sec., N·m 

AA 119.891 (106.963 to 132.819) 

AG 132.901 (127.44 to 138.361) 

GG 128.107 (122.55 to 133.664) 

 
v = 0.49, p = 0.148 

Wingate Relative Peak Power (w/kg) 

AA 11.087 (10.761 to 11.412) 

AG 11.011 (10.864 to 11.158) 

GG 10.967 (10.822 to 11.113) 

 
v = 0, p = 0.785 

Wingate Fatigue Index (%) 

AA 11.04 (10.714 to 11.366) 

AG 11.042 (10.895 to 11.189) 

GG 10.947 (10.802 to 11.092) 

 
v = 0, p = 0.643 

Sprint 0-10m (s) 

AA 1.876 (1.844 to 1.907) 

AG 1.872 (1.858 to 1.886) 

GG 1.886 (1.872 to 1.899) 

 
v = 0, p = 0.414 
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Sprint 10-20m (s) 

AA 1.333 (1.309 to 1.358) 

AG 1.334 (1.323 to 1.345) 

GG 1.331 (1.321 to 1.342) 

 
v = 0, p = 0.953 

Spring 20-30m (s) 

AA 1.254 (1.228 to 1.281) 

AG 1.253 (1.241 to 1.265) 

GG 1.255 (1.243 to 1.267) 

 
v = 0, p = 0.969 

Sprint Total (s) 

AA 4.462 (4.387 to 4.536) 

AG 4.46 (4.427 to 4.494) 

GG 4.474 (4.441 to 4.506) 

 
v = 0, p = 0.847 

Re ative   O2MAX (ml/kg/min) 

AA 54.876 (51.959 to 57.793) 

AG 53.848 (52.564 to 55.131) 

GG 55.031 (53.772 to 56.289) 

 
v = 0, p = 0.422 

Body Fat (%) 

AA 14.276 (12.828 to 15.724) 

AG 14.582 (13.955 to 15.209) 

GG 14.096 (13.474 to 14.719) 

 
v = 0, p = 0.561 
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Appendix 1 
 

Protocol for Extracting DNA from Whole Blood 

This protocol is devised from two existing protocols due to recurring issues with a 

chaotropic agent found in some of the buffers of the Macherey-Nagel (MN) DNA extraction 

kit. This protocol is devised using two existing protocols: Macherey-Nagel (MN, Genomic 

DNA from Tissue User Manual, NucleoSpin® June 2014/Rev .14, Macherey-Nagel GmbH & 

Co. KG, Düren, Germany) and Qiagen (Q, QIAmp DNA Mini Kit, Qiagen, Hilden, Germany). 

Samples were extracted in batches of twelve for logistical reasons within the laboratory at 

the University of Stirling.   

 

Before starting, ensure blood samples are thawed to room temperature; work surface has 

been disinfected (use both Virkon solution and EtOH sprays) Ensure water bath is set at 70 
oC. Add the Buffer BE bottle (MN) to the water bath to heat up for use later in the protocol.  

 

 In a 1.5 ml Microcentrifuge Tube (MCF), add 25 µL of Proteinase K (MN), 200 µL Whole 

Blood and 200 µL Buffer AL (Q) 

 Vortex for 10-15 s then pulse in a centrifuge to remove liquid from the inside of the lid 

and ensure all mixture is at the base of the MCF 

 Incubate at 70 oC for 15mins (MN) (70oC because we are using MN Proteinase K) 

 Pulse centrifuge to remove liquid from the lid.  

 Add 200 µL EtOH, Vortex for 10-15 s, Pulse Centrifuge to remove liquid from lid. 

 Add mixture to Neucleospin Columns inside 2 ml Collection Tubes (CT) 

 Centrifuge at 6,000 – Max x g (spun at 20,000 x g) for 1 minute. (Speed x g does not 

affect yield/quantity of DNA, only noise within the laboratory) 

 Add Neucleospin Columns to new CT, discard original CT.  

 Add 500 µL Buffer AW1 (Q), Centrifuge at 6,000 – max x g (20,000 x g) for 1 minute 

 Empty CT and replace 

 Add 500 µL Buffer AW2 (Q), Centrifuge at 6,000 – max x g (20,000 x g) for 3 minutes 

  Discard CT. Place Spin Column inside 1.5 ml clear MCF tube 

 Add 200 µL Buffer BE (MN) (Buffer BE kept in water bath at 70oC according to protocol 

from MN) 

 Centrifuge for 1 minute at 6,000 x g (MN protocol used for MN buffer) 

 Discard Spin Column.  

 Label and store sample in -20 oC for analysis of DNA yield, PCR and RFLP in the future.  

We spun in our centrifuge at 20,000 x g as it was not particularly noisy however, the speed 
at which the samples are spun (between 6,000 – max) does not affect yeild or quality of 
DNA sample.  


