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ABSTRACT

Mahogany, Swietenia macrophylla (Meliaceae) is the most valuable

hardwood species in Neotropics and is seriously threatened owing to

over-exploitation and habitat destruction. The population genetic

structure and mating system of S. macrophylla were studied in the

Brazilian Amazon for conservation purposes. Ten highly polymorphic

micro satellite markers were developed from an enriched genomic library

of S. macrophylla and combined in three multiplexed fluorescence-

based genotyping systems. The number of alleles per locus ranged from

11 to 25 (mean = 15.8). The probability of genetic identity (7x10- 15) and

the probability of paternity exclusion (0.999998) found over all loci

indicate the high discriminating power of these markers.

The genetic structure was investigated in seven populations 8-

2,103 km apart. High genetic diversity was detected within populations

(mean He = 0.761, range 0.719-0.800) and a significant level of

inbreeding was found (f = 0.046, P<0.0001, range 0.014-0.097)

indicating nonrandom mating of individuals within populations. Genetic

differentiation among populations was significant (A = 0.12 and p =

0.14, P<0.0001), but no clear pattern of isolation by distance was

found. Conservation strategies for mahogany should take into account

the existence of important genetic structuring of populations.

S. macrophylla seems to have adaptations that preferentially

produce outcrossed progeny but also allows for selfing. The high



vi

multilocus outcrossing rate (tm = 0.958) estimated for one population

indicated that, although there was a prevalence of outcrossing, selfing

was not negligible. Around 4-6% of seedlings in the population were

likely to have resulted from self-fertilization and substantial biparental

inbreeding was denoted by the significant difference between the

multilocus and singlelocus estimates (tm - ts = 0.14). Owing to the

species pre-adaptation to colonize newly open, disturbed habitats, many

of the remaining trees in logged areas may persist as viable individuals

which could be very important for population recovery and genetic

conservation programmes.



Chapter 1

General Introduction

Deforestation and habitat destruction of tropical forests

The destruction of tropical forests has been occurring at an

alarming annual rate of 100,000 to 200,000 km2 (Katzman 86 Cale,

1990; Whitmore, 1997). If impacts such as selective logging are

considered, the rate of tropical deforestation exceeds 200,000 km2

per year, or about 1.2% of the total extent of tropical forests in the

world (Laurance 85 Bierregaard, 1997). The tropical forests occupy

only 7% of the earth's land surface and support more than half of the

biodiversity of the planet making them the most biologically diverse

and ecologically complex biomes of the earth (Myers, 1986). Tropical

moist forests constitute 86% of the natural tropical forests and the

lowland evergreen rainforests represents nearly 50% of the moist

forests with the largest extent located in the Americas, especially in

the Amazon basin (Whitmore, 1997). Such forests are characterized

by not less than 100mm of precipitation in any month for two out of

three years, with a mean temperature of 24°C and usually occur at

altitudes below 1300m (Myers, 1986).

The Brazilian Amazon comprises an area of approximately five

million km2 (about the size of Western Europe) of which 4 million km2
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are covered by forests (Brazil, INPE 2000). Brazil is unquestionably

the richest country in the world in terms of overall terrestrial and

freshwater diversity. It is considered the most diverse country in

number of species of angiosperms plants (60,000), mammals (524),

and freshwater fishes (>3,000), the second one in number of species

of amphibians (517) and butterflies (3132), third in birds (1622), and

fifth in reptiles (468) (Mittermeyer et. al., 1997). In Central Brazilian

Amazonia more than 1,000 tree species were recorded in 2000 ha at

the Ducke Reserve, near Manaus (Ribeiro et al., 1999). Despite the

great biodiversity of the Brazilian Amazon forest, this biome is being

destroyed at an alarming speed. The deforested area in the Brazilian

Amazon by 1998 had reached 551782 km based on LANDSAT

satellite data interpreted at Brazil's National Institute for Space

Research (Brazil, INPE 2000). The size of the deforested area in the

Brazilian Amazon is now equivalent to the area of France.

The human activities causing most of the deforestation in the

Brazilian Amazon are cattle ranching, agriculture, and commercial

logging. The opening of the Brazilian Amazon frontier, and the

beginning of forest destruction, started in the early 1970s with the

building of roads into the forest and the starting of a colonization

process based on slash-and-burn agriculture and cattle ranching in

conjunction with a policy of incentive concessions for these practices

implemented by the Brazilian government.
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Logging has become an increasing economic activity in the

Brazilian Amazon region over the last two decades and it is expected

to increase even more rapidly in the medium-term future owing to the

diminishing of timber resources of the Asian forests. Generally,

logging in the Brazilian Amazon is highly selective focusing on a few

species of high commercial value both in national and international

markets (Uhl et al., 1991). Most of the timber exploitation in the

Brazilian Amazon is for the export market (Verissimo et al., 1998). In

terra firme (dryland) forests hundreds of kilometers of roads are being

built by logging companies to transport the logs to sawnmills and act

as a catalyst for deforestation by encouraging haphazard settlement,

agriculture, and pastures. Recently, Malaysian and other Asian

timber companies have started timber exploitation in the Brazilian

Amazon and are a source of great concern due to their aggressive

operations which have already lead to the severe depletion of the

timber stocks in their home countries (Whitmore, 1998). These

companies already own or control about 4.5 million of ha of the

Brazilian Amazon. They are buying large tracts of forest by means of

concessions received from the Brazilian government or purchasing

interests in local timber companies (Laurance, 1998).

To date, allied to logging activities, the spread of the soybean

cultivation into large areas of the Brazilian Amazon forest is

considered a great threat because this practice justifies government
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incentives for the cultivation and building of an infrastructure for

soybean transportation such as roads, railways and hydroways.

Fearnside (1999) considered that this infrastructure will cause more

destruction to the forest than the actual clearing of forest areas for

the soybean plantations.

Logging has deleterious effects on tropical forests at local to

regional scales and includes damage and mortality of trees,

significant canopy loss, soil erosion, frequent occurrence of fire,

invasion by vines and grasses, destabilization of watershelds,

depletion of biodiversity, increase of deforestation, climate change,

and threats to indigeneous peoples (Smith, 1981; Uhl 86 Vieira, 1989;

Verissimo et al., 1992; Laurance, 1998).

Habitat destruction and fragmentation resulting from human

activities has been recognised as the primary cause of the loss of

biological diversity, especially in tropical forests (Ehrlich, 1988).

Early, the studies were focused mainly on the ecological effects of

habitat destruction and fragmentation on species richness and

population composition and dynamics (Lovejoy et al., 1986; Powell 86

Powell, 1987). Recently, attention has been directed to the effects of

these disturbances on population genetics and their implications for

species conservation (Young et al., 1996).
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Population genetics and conservation

Genetic diversity provides the variability through which a

species can evolutionarily adapt to environmental changes and is

essential for the long-term survival of species (Fisher, 1958).

Deforestation and habitat destruction may result in losses of genetic

variation within species leading to the extinction of locally adapted

populations as well as reducing gene flow and sizes of effective

populations (Bawa, 1994; Hall et a/.,1996).

The level of genetic diversity and differentiation among

populations is affected by factors such as random genetic drift,

inbreeding, gene flow, and mating systems (Wright, 1931, 1943).

Together with demographic and environmental stochasticity, these

factors determine the persistence of populations in the long term

(Ellstrand 86 Elam, 1993). Thus, an understanding of the overall level

of genetic diversity and its distribution within and among populations

is fundamental for species conservation.

Demography and genetics have been considered important

subjects in conservation analyses of natural populations (Lande,

1988; Simberloff, 1988; Alvarez-Buylla et al., 1996). Demographic

criteria refer to the size and temporal change of populations and the

genetic ones refer to the genetic variation and its distribution within

populations (Alvarez-Buylla et a/.,1996). The significance of size of

populations for their breeding structure, genetics and evolutionary
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dynamics has been the central theme in conservation biology (Barrett

85 Kohn, 1991).

Effective population size and genetic drift - The population sizes

important to conservation genetics may not be necessarily equivalent

to the number of individuals in a population (Barrett & Kohn, 1991).

The number of breeding individuals are usually different to the total

population size due to factors such as temporal fluctuations in

numbers, nonrandom mating, high variance in reproductive success,

unequal sex ratios, age and size structure, and gene flow among

populations (Kimura 85 Crow, 1963; Crawford, 1984).

The concept of effective population size (Ne) , first proposed by

Wright (1931) refers to the size of an idealized population in which

individuals contribute equally to the gamete pool and have the same

amount of inbreeding or variation in allele frequencies as the "real"

population considered (N). It has been recognized as a general

indicator of the rate at which genetic drift proceeds to alter the

genetic composition of a population.

Genetic drift is an evolutionary process which produces

changes in allelic frequencies due to random sampling of gametes

(Wright, 1969). It tends to diminish genetic variation; ultimately,

leading to the fixation of one allele at each polymorphic locus (Kimura

85 Crow, 1963; Lande 85 Barrowclough, 1987). Thus, the effective size

of a population is central to the rate of loss of genetic variation. The
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rate of loss of genetic variation due to genetic drift will be higher in

populations with smaller effective sizes, whereas in large populations

its effects are trivial (Alvarez-Buylla et al., 1996).

The measures of effective population sizes are difficult to obtain

because estimates of Ne assumes that a discrete population can be

identified which, in most cases, is difficult to delimit objectively in

natural conditions (Alvarez-Buylla et al., 1996). Usually, information

on the size of a population is provided by estimates of neighborhood

size (Nb) , defined as a group equivalent to a panmictic unit within a

continuous distribution of individuals. Estimates of effective

population (Ne) and neighborhood size (N b) are scarce for plants but

they have been reported for some tropical tree species (Eguiarte et al.,

1993; Boshier et al., 1995a; Alvarez-Buylla et al., 1996).

Inbreeding - Inbreeding occurs due to matings between related

individuals or by self-fertilization. The main genetic consequence of

inbreeding in a population is to increase the frequency of

homozygous genotypes at the expense of the frequency of

heterozygous genotypes (Hartl, 1987). Populations of outcrossing

species carry a genetic load of deleterious mutations which is

expressed in homozygotes, but masked by the more frequent,

dominant alleles in heterozygous combination (Ledig, 1986). In the

short term, a loss of heterozygosity can reduce individual fitness

(inbreeding depression) and population viability (Charlesworth
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Charlesworth, 1987; Ellstrand 86 Elam, 1993; Nason 86 Hamrick,

1997). Inbreeding depression is defined as a reduction in fitness, due

to the expression of deleterious alleles in homozygosity, of

inbred/ selfed offspring compared with outbred/outcrossed offspring

and is influenced by factors such as the mating system and

population size (Charlesworth 85 Charlesworth, 1987; Barrett 85 Kohn,

1991).

The loss of heterozygosity or increase of the level of inbreeding

(F) in a population is a function dependent on the effective

population size (Ne ), ( AF = 1/(2Ne), Wright, 1931; Falconer, 1981) for

each generation. Small populations have increased rates of

inbreeding when compared to larger populations (Barret 85 Kohn,

1991). From a conservation biology point of view, large populations

are necessary to keep the level of inbreeding low and maintain high

levels of heterozygosity. Natural populations of outbreeding species

maintained in very small sizes would in the long-term collapse or be

fixed for midly deleterious genes diminishing their reproductive

capacity and consequently increasing the risk of extinction. In this

way, the species ability to respond to changing selection pressures

can be limited (Ledig, 1986; Templeton et al., 1990).

Gene flow — Gene flow, movement of genes among populations, plays

a critical role in determining the genetic structure of populations

(Slatkin, 1985). Restricted gene flow diminishes effective population
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size leading to more inbreeding within populations and consequently

more differentiation due to selective forces and genetic drift. On the

other hand, extensive gene flow will homogenize genetic differences

among populations even under selective pressure (Jain 85 Bradshaw,

1966).

The rate of gene flow is strongly related to the size of

populations and the distances between them. The gene exchange

among populations declines with increasing geographic distance.

Thus, widely isolated populations are likely to be more differentiated

than closely spaced populations (Bawa, 1994). As gene flow is

important in determining the distribution of genetic variation within

and among populations, its measurement has a high priority for

population genetics, management and conservation issues. In plant

species, the measurement of gene flow in natural populations has

been inferred by direct estimates of pollen and seed dispersal

distances. This method attempts to describe gene movement within

plant populations by monitoring the movement of pollen or seed

vectors or following marked pollen or seeds (Levin 85 Kerster, 1974).

The major criticism of this method is that the direct measure of

dispersal alone does not necessarily reflect movement of genes if the

breeding success of migrants is not taken into account (Whitlock 85

McCauley, 1999). Other measurements have been made by using

indirect methods to estimate gene flow from the distribution of
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genetic diversity among populations or from allele frequency data

using molecular markers (Wright, 1931; Slatkin, 1985; Slatkin &

Barton, 1989; Hamrick et al., 1995).

Studies using indirect estimates of gene flow among

populations of tropical tree species have shown that the gene

movement via pollen and seeds is extensive enough to overcome the

effects of genetic drift in these species, which is indicated by the

relatively low levels of genetic differentiation among populations

(Loveless, 1992; Hamrick, 1994)

Mating systems - Mating systems determine the mode of

transmission of genes from one generation to the next (Brown, 1989).

The system of mating of a species is described by the union of male

and female gametes in a population and their genetic dynamics. The

principal issue in mating systems is the degree of inbreeding which

will strongly influence the distribution of genetic variation within and

among populations (Bawa, 1994). The mating system is a major

factor determining the genetic structure of plant populations and

their susceptibility to loss of genetic diversity after habitat

destruction and fragmentation (Nason et al., 1997).

In plants, mating systems have been mainly characterized by

quantification of the degree of outcrossing. Outcrossing rates have

been estimated by segregation analysis of marker genes in progeny

arrays examining genotypes of half-sib families (offspring from a
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maternal plant) from mother plants of known or assigned genotype,

and calculating the relative proportion of seeds resulting from

inbreeding and outcrossing (Bawa, 1994). Most tropical tree species

are strongly outcrossed. Studies on reproductive biology have shown

that the great majority of tropical plants species are dioecious or self-

incompatible (Bawa, 1974; Chan, 1981; Bawa et al. 1985a, 1985b).

Additionally, studies using isozymes markers have confirmed the

prevalence of outcrossing in tropical tree species (O'Malley 86 Bawa,

1987; O'Malley et al., 1988; Murawski et al., 1990; Murawski 86

Hamrick, 1991; Eguiarte et al., 1992; Boshier et al., 1995b; Loveless

et al., 1998). Although dioecious and self-incompatible species are

not self-fertile, inbreeding may still occur due to mating among close

relatives and limited gene dispersal.

The use of molecular markers for assessment of genetic variation

in tropical tree species

Molecular marker technologies are increasingly being used to

analyse the organization of genetic variability in natural populations

of plants (Rafalski et al., 1996; Grattapaglia et al., 1997). An

understanding of the levels and distribution of genetic variation is

fundamental for the effective planning of in situ and ex situ genetic

conservation. The 'use of molecular markers in genetic studies

presents many advantages over analysis of morphological characters:
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(1) Molecular markers are neutral and not subject to environmental

effects because they have a genetic basis, (2) usually the protocols

and analytical processes are universal being readily applied to any

species, (3) a high level of polymorphism is found per locus compared

with the low level observed for morphological markers, (4) non-

destructive sampling of biological material (5) The genotype can be

studied from cells or tissues at different stages of the life cycle

(Ferreira 86 Grattapaglia, 1995).

A wide array of molecular markers are being applied to the

genetic analysis of populations. Two major classes of markers can be

identified: (1) markers that classify individuals into nominal genotypic

categories, but the categories can not be ordered or grouped. The

defining characteristics of this class of markers are that frequency

data are available for each genotypic category, but that the categories

cannot be ordered or grouped in any way, (2) markers which classify

individuals into genotypic categories that themselves may be grouped

according to degree of relationship (Milligan et al., 1994). In the first

class are included isozymes, restriction fragment length

polymorphisms (RFLP), random amplified polymorphic DNA (RAPD),

amplified fragment length polymorphisms (AFLP), and simple

sequence repeats (SSR, also called microsatellites). The second class

includes haplotype-based markers such as DNA sequences and

restriction site markers. The choice of the marker should be driven
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mostly by the particular application and interest in mind followed by

considerations of the necessary technical skills and facilities, costs

and limitations on the access to the technology (Grattapaglia et al.,

1997).

Isozymes have often been used to assess levels of genetic

variation within and among populations of tropical plant species

(Hamrick 86 Loveless, 1986; Loveless, 1992). Also, they have been

routinely used to examine evolutionary factors affecting the genetic

structure of plant populations such as mating systems (Hamrick,

1989; Barret 86 Eckert, 1990). Most of the studies on population

genetic structure and mating systems of tropical tree species were

carried out in Central America. The patterns of genetic organisation

found in these studies showed that most of the species had highly

outcrossed breeding systems and that levels of genetic variation

within populations were significantly higher than among populations

(Eguiarte et al., 1992; Boshier et al., 1993; Hall et al., 1994a; Chase

et. al., 1995; Loveless, 1998).

Among the DNA-based genomic marker technologies, RAPD

(random amplified polymorphic DNA) markers have been a very

popular tool used to assess genetic diversity within and between

populations of tropical tree species (Chalmers et al., 1992; Russell et

al., 1993; Gillies et al., 1997, 1999; Schierenbeck et al., 1997),

because of their ease of use, low cost and accessibility. However,
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RAPD markers present limitations for plant population genetic

studies because of their low information content per locus. They

typically display a dominant inheritance and, technically, only detect

one allele at a locus.

Microsatellites or SSR (simple sequence repeats) are expected

to be the ideal class of genetic markers for population genetic studies

because of their high information content (multiallelic nature), co-

dominant inheritance, high abundance and wide distribution in the

genome, and the ease of detecting polymorphisms by PCR assay

(Rafalski et al., 1996). The allelic variability observed at SSR loci

allows the unique genetic characterization of individuals in natural

populations and the estimation of genetic factors crucial for genetic

conservation and management of tropical trees under intensive

human effects. In recent years, the development and characterization

of microsatellite markers have been increasingly reported for tropical

tree species (Chase et al., 1996; White 86 Powell, 1997; Aldrich et al.,

1998; Ujino et al., 1998; Collevatti et al., 1999; Dayanandan et al.,

1999; Dick 86 Hamilton, 1999; Rossetto et al. 1999; Miwa et al., 2000;

Rodriguez et al., 2000). The perspective for the near future is an

increase in the use of this tool for population genetic investigation of

tropical tree species because of the novel library enrichment

strategies and rapid fluorescence-based automatic sequence

technologies (Rafalski et al., 1996; Grattapaglia et al., 1997).
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The case of mahogany

Swietenia macrophylla is one of three species in the genus

Swietenia (Meliaceae) known as American or "true" mahoganies, and

currently is the most commercially valuable hardwood species in the

Neotropics: one cubic meter of export-quality sawn wood is valued at

about US$ 700 in the international market (Verissimo et al., 1995).

The high-value of mahogany wood is related to its easy workability,

dimensional stability, durability and above all its attractive colour

(Lamb, 1966). Mahogany is mainly used as solid wood or veneer for

furniture and for doors and window frames, (Lamb, 1966; CITES,

1996). With the costs increasing and supplies diminishing the greater

usage in commerce is now as a veneer.

The Brazilian mahogany (S. macrophylla) has a wide geographic

range from Mexico through Central America and across the southern

Amazon basin of Bolivia and Brazil (Lamb, 1966; Pennington, 1981;

Rodan et al., 1992) and the largest reserves are in the Brazilian

Amazon (Lamb, 1966; Barros et al., 1992). It is an emergent tree, 30 -

50 m tall (Fig. 1.1), commonly with a straight and cylindrical trunk,

with frequent buttresses. The leaves are alternate, usually pinnate

with opposite or occasionally alternate pinnate (Lamb, 1966). The

species has wide ecological tolerance and occurs in a variety of

habitats in wet to seasonally dry, evergreen to deciduous, tropical to
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subtropical forests, with typically 800 - 2,500 mm of annual rainfall

and at altitudes from 0 to 1,400 m (Lamb, 1966; Whitmore, 1983).

The species reaches its optimum natural development under climatic

conditions of the tropical dry forest formation of Holdridge's system

(Holdridge et al., 1971; Lamb, 1966). Mahogany grows naturally in

various types of soils varying from deep, poorly drained, acidic clay

and swampy soils to well drained alkaline soils of the limestone

highlands, including soils derived from igneous and metamorphic

rocks (Lamb, 1966).

S. macrophylla is a monoecious species pollinated by bees and

moths (Styles 86 Khosla, 1976). It is leafless during the dry season

when the fruits mature and the seeds are dispersed by wind

(Whitmore, 1983). Mahogany tends to occur in widely scattered

patches and the average density in natural forests is about less than

one commercial-size tree per hectare (Whitmore, 1983, Verissimo et

al., 1995; Barros et al., 1992; Gullison 86 Hardner, 1993). This patchy

pattern of distribution is probably related to its mode of regeneration

that demands light-exposed areas. Mahogany regenerates in open

areas primarily after major disturbances such as river courses

changes, hurricanes, blowdowns, fire and the stands are made up of

one or few cohorts (Snook, 1996; Gullison et al., 1996). Studies on

growth rates of S. macrophylla indicate that trees take 105-150 years

to reach commercial size (80 cm at dbh) in natural forests of Bolivia
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(Gullison 85 Hubbel, 1992; Gullison et al., 1996). Snook (1993)

calculated that S. macrophylla requires on average, 120 years to

reach the 55 cm commercial diameter limit in Mexico.

S. macrophylla has been exploited throughout its natural range

since the beginning of the 20th century (Lamb, 1966; Rodan et al.,

1992). In the last decades, with the depletion of natural stands in

Central America, most of the extraction has turned to populations in

South America, especially in the Brazilian Amazon. Brazil is the main

exporter of mahogany in the world. From 1971 to 1992, Brazil

exported more than three million cubic meters of mahogany

(FUNATURA, 1992), 40% of which was sent to the United States and

35% to the United Kingdom. Basically all mahogany traded in the

international market is extracted from primary forests.

Mahogany extraction is based on selective logging, which

usually removes only the tallest trees of good form and with a dbh >

80 cm (Verissimo et a/.,1995; Gullison et al., 1996). Verissimo et al.

(1995) described in detail the extraction process of mahogany in the

Brazilian Amazon. Briefly, the logging operation consists of the

identification of mahogany-rich areas (currently reconnaissance of

remaining stocks is made using small aircraft; the species is

distinguished by its large, shiny, light-green crown), the location and

labelling of trees in the forest by woodsmen, tree felling using

chainsaws, opening of roads and log landings by bulldozers, and
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dragging of the boles to the log landings using skidders. Once at the

landings, the boles are cut into appropriated sections for transport to

the mills. Parts of the mahogany extraction process are illustrated in

Fig. 1.2.

In recent years, the conservation status of S. macrophylla has

been the subject of increasing concern due to over-exploitation and

habitat destruction (Rodan et al., 1992, Rodan & Campbell, 1996;

CITES, 1996). In Central America the species is already considered

commercially extinct. In Bolivia and Brazil regional commercial

extinctions have been reported and are increasing (Collins, 1990;

Verissimo et al., 1992; Gullison, 1995). In Brazil, S. macrophylla is

considered vulnerable. The Brazilian Botanical Society has included

S. macrophylla in a list of species in danger of extinction (Sociedade

Brasileira de Botanica, 1992).

Logging selectively removes the best individuals in terms of

growth and/or form, possibly resulting in genetically depleted

populations. Population reductions and genetic erosion have already

been reported in two of the three mahogany species (Swietenia

humilis and Swietenia mahoganz), which are presently listed in

Appendix II of the Convention of International Trade in Endangered

Species (CITES) (Styles, 1981; Rodan et al., 1992; CITES, 1996).

Swietenia macrophylla is not so protected. Inclusion in Appendix II

would control international trade in S. macrophylla by ensuring that
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trade is not detrimental to the survival of the species (Rodan 86

Campbell, 1996). Selective and intensive logging of S. macrophylla

populations may have a significant impact on its genetic structure

and population size, compromising the viability as evolutionary units.

The listing of S. macrophylla in Appendix II of the CITES has been

proposed but has failed on each occasion in the last decade.

Other impacts of mahogany logging are the damage caused to

the remaining vegetation by the felling of trees and opening up of

logging roads and landings, and the increased susceptibility to fire of

the remaining vegetation. The indirect impacts include the

acceleration of the deforestation process in the region of mahogany

logging and social impacts caused by illegal logging in Indian

reserves. Logging acts as a catalyst for deforestation owing to the

construction of roads, colonization along the opened areas, and the

conversion of the forest to agriculture use and pastures (Verissimo et

al., 1995; Fearnside, 1997). With the exhaustion of S. macrophylla

stocks in private lands, illegal extraction has been reported in nature

and Indian reserves in many Central and South American countries

(CEDI, 1993; Heringer, 1993; Verissimo et al., 1995; Watson, 1996,

Snook, 1996). Verissimo et al. (1998) reports that about 70% of the

protected areas in Pard State, Brazil, are economically accessible for

timber extraction. In the Brazilian Amazon, one-third of the

distribution range of S. macrophylla coincides with Indian reserve
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lands (Barros et al., 1992; Verissimo et al., 1995). In 1987, 69% of

the mahogany exported from Brazil came from the Indian KayapO

reserve in the eastern Amazon (CEDI, 1992). In 1992, mahogany

extractions were recorded in all 15 Indian reserves located in

Southern Park Brazil (CEDI, 1993). The social impacts of illegal

mahogany logging in Indian lands is a dramatic picture and

constitutes a matter of great concern for the maintenance of the

cultural integration of these traditional peoples (Watson, 1996).

Objectives of the study

Despite its importance, information on the extent and

distribution of genetic variation and the understanding of the

processes maintaining this variation in natural populations of

mahogany is scarce. Gillies et al. (1999) assessed the genetic diversity

of natural populations of S. macrophylla in Central America using

dominant RAPD markers. More recently, a study evaluated genetic

variation in a fragmented population of Swietenia humilis in

Honduras using microsatellite markers (White et al., 1999).

The main goal of the present study is to understand the

extent and distribution of genetic variation, the mating system and

gene flow in natural populations of S. macrophylla in the Brazilian

Amazon for conservation purposes. Chapter 2 reports on the

development and characterization of highly informative, semi-
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automated multilocus genotyping systems based on fluorescent

labelled multiplexed microsatellite markers for S. macrophylla to

comply with the need for large scale genetic analysis of natural

populations. Chapter 3 presents the estimates of genetic diversity for

seven populations of mahogany sampled at a broad geographical

scale, the partitioning of the genetic variation within and among

populations, the levels of genetic differentiation among them, and the

patterns of gene flow based on microsatellite loci. Chapter 4 reports

on the spatial genetic structure and the mating system of one

population of S. macrophylla based on the analysis of microsatellite

genotypes of adults (mothers) and half-sib seedlings. The patterns of

population genetic structure, gene flow, and the mating system are

discussed in terms of the conservation of S. macrophylla.



Figure 1.1 - Adult tree of mahogany (S. macrophylla) in Southeastern
Pard, Brazil (Photo: M.R.Lemes).



Figure 1.2 - Mahogany logging operation in the RondOnia State,
Brazilian Amazon, showing: (A) tree felling using chainsaw, (B) felled
mahogany with 2.17 m of dbh, (C) skidder used to drag the boles,
and (D) log landing with mahogany boles. (Photos: M. R. Lemes).



Chapter 2

Development and Characterization of Multiplexed

Fluorescence-based Systems of Microsatellite Markers

for Swietenia macrophylla

INTRODUCTION

The understanding of the organisation of genetic variation in natural

populations is a prerequisite for efficient conservation strategies in

tropical tree species. In the last two decades, genetic markers have

been developed and used to generate important data on the

population genetics of plants. Isozymes, the most widely used

markers to detect genetic variation in tropical tree species (Hamrick 85

Loveless, 1986, Loveless, 1992), refer to biochemical forms of an

enzyme identified by electrophoresis. The technique involves the

extraction of proteins, electrophoretic separation of the molecules on

a gel, and histochemical coloration so that polymorphisms can be

detected by allelic variation in the gene product (Wendel 86 Weeden,

1989). The main advantages of isozymes rely on their low cost and

accessibility and the codominant Mendelian inheritance of loci.

However, this class of markers shows limitations especially those due

to the lack of sufficient polymorphisms provided by loci to analyse
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critical genetic factors such as levels of heterozygosity, inbreeding,

and parentage relatedness of individuals in populations.

A number of DNA-based marker technologies have been

developed after the polymerase chain reaction (PCR, Mullis 86

Faloona, 1987). Among these molecular markers, microsatellites (also

called Simple Sequence Repeats, SSR) present the highest levels of

polymorphism making them potentially the most informative class of

markers for studies of genetic variation in plant populations (Rafalski

et al. , 1996).

Microsatellites are tandemly repeated sequences of DNA with

repeat lengths of 1 to 6 base pairs (bp) found in a wide variety of

eukaryote genomes (Hamada et al., 1982; Litt 86 Luty 1999; Tautz 86

Renz, 1984; Tautz, 1989; Weber 86 May, 1989; Lagercrantz et al.,

1993; Wang et al., 1994; Jarne 86 Lagorda, 1996; Powell et al., 1996;

Rafalski et al., 1996). They are readily analysed using PCR and locus

specific primers complementary to sequences flanking the repeat

region. The microsatellite loci exhibit mutation at a notably higher

rate than do non-repetitive sequences (Goldstein 86 Pollock, 1997).

The rates of mutation are of the orders of 10- 5 - 10-2 per generation,

two or three orders of magnitude higher than values for isozymes

(Weber &Wrong, 1993).

The mutational process that generates polymorphism at

microsatellite loci is poorly understood (Estoup et al., 1995). The
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predominant source of variation at SSR loci appears to be slippage

during DNA replication (Levinson 86 Gutman, 1987) which increases

or decreases the current number of repeats leading to high levels of

polymorphisms. However larger mutational steps are possible

presumably generated by processes other than slippage, such as

unequal crossing over (Weber 85 Wong, 1993; Stephan 85 Cho, 1994).

There is a debate about which models of mutation are most

appropriate for population genetic data analysis in microsatellites

(Jarne 86 Lagoda, 1996). Two models have been more frequently

applied to microsatellite data: the infinite allele model (JAM, Kimura 86

Crow, 1964) in which each mutation creates a new allele state with

no known relationship to other allelic states and the stepwise

mutation model (SMM, Ohta 86 Kimura, 1973) in which mutation

increases or decreases the allele value by one conceiving in this way

information about ancestral allelic states. Under the SMM similarly

sized alleles at microsatellite loci are less different in terms of

mutational steps than alleles of very different sizes (Jarne 86 Lagoda,

1996)

Microsatellites have become an attractive tool for population

genetic studies in plants (Condit 86 Hubbell, 1991; Morgante 86

Olivieri, 1993; Powell et al., 1996) because they are neutral, inherited

in a codominant Mendelian fashion, show extraordinarily high allelic

diversity with expected heterozygosities well over 50% and are
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uniformly and widely dispersed in plant genomes (Morgante 86

Olivieri, 1993; Wang et al., 1994). The development and

characterization of plant microsatellites was first reported in tropical

tree species by Conditt 86 Hubbell (1991). Since then, their use for

genetic studies in tropical tree species has been increasing (Chase et

al., 1996, White &Powell, 1997a, Brondani et al., 1998; Aldrich et al.,

1998; Ujino et al., 1998, Collevatti et al., 1999; Dayanandan et al.,

1999, Dick 86 Hamilton, 1999, Rosseto et al., 1999, Miwa et al., 2000,

Rodriguez et al., 2000) but is still limited probably due to the costs

and technical difficulties of obtaining such markers. The variability

observed at SSR loci allows individuals to be uniquely genotyped in

natural populations and the estimation of genetic factors that have

fundamental importance for the genetic conservation and

management of tropical trees under intensive human pressure.

Multiplexing PCR is the simultaneous amplification of several

genetic markers in a single reaction (Mitchell et al., 1997). The semi-

automated , fluorescence-based allele sizing system consists of the

amplification by PCR of a microsatellite locus in which one of the

primers is fluorescently labeled. The PCR products are analysed by

polyacrylamide gel electrophoresis using an automated DNA

sequencer which detects fluorescence emitted by the PCR products.

The multiplex PCR allied to fluorescence-based, semi-automated

allele size technology allow the simultaneous analysis of several SSR
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loci in a single lane gel increasing substantially the efficiency and

speed for genotyping plant genetic resources. Another advantage of

this system is the accuracy and reliability of allele sizing.

Amplification of SSR loci across closely related species has

been reported both in animals and plants, (Moore et al., 1991; Olsen

et al., 1996; Wu 86 Tanksley, 1993; Thomas 86 Scott, 1993; Kijas et

al., 1995; Dayanandan et al., 1997; Ujino et al., 1998; Collevatti et

al., 1999), because at many microsatellite loci, the priming sequences

flanking the tandem repeat motifs are conserved among related

species. This frequently allows the transferability of primers among

closely related species (Moore et al., 1991). Transferability among

closely related taxa is very advantageous considering the costs and

time needed for the development of microsatellite markers. To date, a

set of microsatellite markers for Swietenia humilis from Central

America has been reported (White 85 Powell, 1997a). Despite the

reported cross-species amplification of SSR loci developed for S.

humilis for 11 species of the Meliaceae (White 86 Powell, 1997b), this

approach failed for S. macrophylla in which most of the loci were not

informative.

In this chapter I report the development and characterization of

ten highly informative microsatellite markers for S. macrophylla. I

also developed high throughput semi-automated multilocus

genotyping systems based on fluorescent labelled multiplexed SSR
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loci for this species to comply with the need for large-scale analysis of

natural populations. The major aim is the application of this powerful

tool to understand the patterns of population genetic structure,

mating system and gene flow in S. macrophylla for conservation

purposes.

MATERIALS AND METHODS

Plant material and DNA isolation

Total genomic DNA was extracted from fresh expanded leaves

from a single individual of S. macrophylla to develop an (AG) enriched

genomic library. For the characterization of SSR loci, total genomic

DNA was extracted from fresh and/or dried expanded leaves of 121

individuals of S. macrophylla collected from four natural populations

in the Brazilian Amazon. Total genomic DNA extraction followed

standard CTAB procedure (Doyle 86 Doyle, 1987).

SSR-enriched genomic library construction

Genomic library construction was performed following protocols

developed at Du Pont (Rafalski et al., 1996) and optimised for tropical

tree genomes at EMBRAPA - Genetic Resources and Biotechnology,

Brasilia, Brazil (Brondani et al., 1998). Genomic DNA was digested with

three different restriction enzymes, MseI, Sau3A I and Tsp509, according
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to the manufacturer's instructions, aiming to select one that produced a

large amount of fractionated DNA in the 280-600 bp range. Sau3A I gave

the best results and was used thereafter. Approximately 50 pg of

genomic DNA was digested with Sau3A I (GATC) and fragments were

separated by electrophoresis in 1.5% agarose. Fragments between 280

and 600 bp were recovered by DEAE-cellulose NA-45 membrane

(Scheleicher and Schuell, NY) via electrophoresis. DNA fragments

(around 30 pig) were ligated to adaptors at the Sau3A I restriction site.

The fragments containing SSR sequences were selected by hybridization

with biotinilated oligonucleotides complementary to the repetitive

sequence AG/CT and recovered by streptavidin-coated magnetic beads.

Fragments were amplified by PCR and cloned into plasmid vector pGEM-

T (Stratagene, CA) and then transformed by electroporation into E. coli

strain XL 1-Blue and grown on agar plates containing ampicilin and

tetracycline. Transformants were picked out, streaked on 132-mm plates

(100 per plate) and regrown at 37°C for 12h. Duplicate plates containing

colonies from these transformants were stamped onto positively charged

nylon membranes (Hybond N, Amersham Pharmacia), grown, lysed,

denatured, neutralized and UV cross-linked.
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Selection and sequencing of positive clones and primer design

Transformants having SSR were identified by hybridization

with a poly (dA-dG) probe labelled with Digoxigenin-11-ddUTP, using

a DIG oligonucleotide 3'-end labelling kit (Boeringer Mannheim)

according to the manufacturer's instruction. The temperature used

for prehybridization and hybridization was 65°C for the poly AG/TC

oligonucleotide. Processed membranes were exposed to X-ray film for

2-3 hours at 37°C. Positive clones were picked and grown overnight

in liquid ampicilin LB media. Plasmid DNA was extracted by

miniprep. An anchored-PCR strategy was performed to determine the

presence of the SSR repeat and its position within the cloned insert

(Taylor et al., 1992; Rafalski et al., 1996). Agarose-gel analysis was

used to reveal clones containing SSR inserts and the direction within

the vector from which they were to be sequenced. DNA inserts were

sequenced on an Applied Biosystems 377 sequencer using dye-

terminator fluorescent chemistry (Applied Biosystems Incorporated).

Primer pairs complementary to sequences flanking the repeat unit

were designed using the PRIMER program (Lincoln et al., 1991).

Stringent criteria in primer design were observed in order to minimise

problems with spurious banding patterns generated during

amplification and to allow further development of single-reaction

multiplex PCR: (1) a primer T. of 72°C; (2) a maximum of 3°C

difference in T. between primer pairs; (3) GC content ranging from
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40% to 60%; and (4) absence of complementarity between primers.

Primers were synthesized by Operon Technologies Incorporated

(Alameda, California). The locus designation has sm which is an

abbreviation for "Swietenia macrophylla", followed by the colony

number from which they were sequenced.

PCR amplification and screening of SSR loci

Microsatellite-marker amplification for primer screening was

carried out in a 13 pi reaction, containing 0.9 iiM of each primer, 1

unit Tag DNA polymerase, 200 1.11\A of each dNTP, 1X reaction buffer

(10 mM Tris-HC1, pH 8.3, 50 mM KC1, 1.5 mM MgC12), DMS0 (50%),

and 7.5 ng of template DNA. PCR- amplifications were performed

using a MJ Research PT-100 thermal controller using the following

program for all loci: an initial denaturation at 96°C for 2 min,

followed by 30 cycles of 94°C for 1 min, 56°C for 1 min, and 72°C for

1 min, and a final elongation step at 72°C for 7 min. The PCR

products were analysed in 3.5% Metaphor agarose gels containing 0.1

jig/m1 of ethidium bromide in 1X TBE buffer (89 mM Tris-borate,

2mM EDTA pH 8.3) and sized by comparison to a 1Kb DNA ladder

standard (Gibco, MD). A total of 8 individuals of S. macrophylla was

used for primer screening on 3.5% agarose gels. The synthesised

primers that showed clear and robust band amplification in agarose

were selected for analysis of polymorphisms in PAGE (Polyacrylamide
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gel). The amplified products were resolved on 4% PAGE stained with

silver nitrate (Bassam et al., 1991) and sized by comparison to a 10

bp DNA ladder standard (Gibco, MD). A total of 16 individuals of S.

macrophylla was analysed for preliminary detection of polymorphisms

on PAGE.

Multiplexed fluorescence-based assays

The microsatellite markers that showed clearly interpretable

polymorphisms in silver stained denaturing PAGE were selected for

fluorescent-dye labelling. One primer of each pair was labelled at the

5' end with fluorescent dye, either 6-carboxyfluorescein (6-FAM),

tetrachloro-6-carboxyfluorescein (TET) or hexachloro-6-

carboxyfluorescein (HEX). The choice of the fluorescent-dye label for

each microsatellite primer selected was based on its observed allelic

range size previously detected in silver stained PAGE. Labelled

primers had PCR and fluorescence detection optimised in single tube

reaction before multiplexing assays. Up to three loci with overlapping

allele sizes could be multiplexed by labelling single primers with

different dyes. Primers that amplified products with non-overlapping

allelic range sizes were labelled with the same fluorescent dye. Three

multiplexed systems of microsatellite markers were developed and

optimised using 10 pairs of primers. Labelled primers were

synthesized at Operon Technologies Incorporated (Alameda,
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California).

PCR was performed in a final volume of 25 1.11 for multiplexed

reactions containing 1.25-2.0 IIM of each forward and reverse primer,

1 unit Taq DNA polymerase, 200 pM of each dNTP, lx reaction buffer

(10 mM Tris-HC1, pH 8.3, 50 mM KC1, 1.5 mM MgCl2), BSA (2.5

mg/ml), 5.0 ng of template DNA, and dH 20. For primers in single

PCR's, reactions were performed in a final volume of 10 pi containing

1.25-2.0 pM of each forward and reverse primer, 1 unit Taq DNA

polymerase, 200 pM of each dNTP, 1X reaction buffer (10 mM Tris-

HC1, pH 8.3, 50 mM KC1, 1.5 mM MgC1 2), BSA (2.5 mg/ml), 5.0 ng of

template DNA, and dH 20. Fluorescence detection was optimised for

the ten microsatellite markers by decreasing or increasing primer

concentration in multiplexed and single assays to resolve the most

accurate products. The standard PCR profile described in the

previous section was used for all loci.

Following PCR, one ill of 1:10 diluted reaction of each multiplex

was added to 0.25 pl of GeneScan 500 ROX internal size standard

labelled with a fourth fluorescent label (Applied Biosystems

Incorporated), 0.45 pl of loading buffer (25 mM EDTA and 50mg/m1

Blue-Dextran) and 2.3 pl of deionized formamide. The reactions were

heated to 95°C for 3 minutes, chilled on ice and electrophoresed in

5% denaturing PAGE in an ABI Prism 377 DNA sequencer (Applied

Biosystems Incorporated). Each gel was run for 2 hours at 3000V and
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50-30 mA. Following the gel run, data collection and analysis, as well

as automatic sizing of amplified products, was done using GeneScan

672, version 1.1 (ABI, 1993).

Sizing of fluorescence-based amplified products

The scoring of amplified products was carried out using the

Genotyper, version 1.1 (ABI, 1994). To check accuracy and

reproducibility of allele scoring, I evaluated intra and inter-gel

variation in sizing of fragments. DNA of 8 individuals at 5 loci was

amplified, electrophoresed and GeneScan run 4 times in the same

gel. This procedure was performed in three gels to evaluate inter-gel

variation in sizing of fragments. An analysis of variance (ANOVA) was

performed to evaluate intra and inter-gel differences in allelic sizing

using the program Statistica (STATSOFT, 1995).

Analysis of inheritance and characterization of microsatellite

loci

In order to evaluate the inheritance of the microsatellites, I

performed a segregation analysis in two open-pollinated half-sib

families. I collected and germinated 16 seeds per mother tree. DNA

was extracted from fresh leaves for seedlings and dried leaves for

mother trees using the protocol cited above. PCR amplification for

analysis of allele segregation was performed as described previously
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for the multiplex assays. For characterization of the ten microsatellite

loci developed, 121 individuals of S. macrophylla from four

populations were used. The mean number of alleles per locus, allelic

frequency, and observed and expected heterozygosities estimated

under the Hardy-Weinberg equilibrium were computed for each locus

and averaged over all loci using Genetic Data Analysis program (GDA

- Lewis 86 Zaykin, 1998). We estimated two parameters of genetic

information content for parentage studies for each locus: (1)

probability of genetic identity (I) (Paetkau et al., 1995) and (2)

Paternity exclusion probability (Q) (Weir, 1996). The probability of

genetic identity (I) was calculated for each locus using the formulae:

I = E p4 i E E ppipip
j>i

where p i and pi are the frequencies of the ith and jth alleles in a given

population. The probability of paternity exclusion (Q) was calculated

for each locus using the formulae:

Q = E Pu ( 1 - Pu) 2 1/2 E E P2uP2 v (4 - 3Pu 313u)
u vou

where pu and pv are the frequencies of the uth and vth alleles in a

given population, considering u v. The combined probability of

genetic identity, IC = 1-1 Ii, and the combined probability of paternity

exclusion, QC =	 (1-Qi)], were also estimated for the combined

loci set.
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RESULTS

SSR-enriched genomic library, sequence characterization of SSR

and primer design

Digestion of S. macrophylla DNA with three restriction enzymes

revealed that Sau 3AI produced the most adequate digestion profile

for library construction with a range of fragments between 280 and

600 bp. The genomic library was screened with the dinucleotide

repeat (AG). After the enrichment step, approximately 300 clones

were screened from which 168 were scored as positive (56%). From

these positive clones, 126 (75%) were selected for sequencing after

anchored-PCR analysis. A total of 43 (34%) useful sequences allowed

the design of primers using PRIMER program version 0.5 (Lincoln et

al., 1991).

Primer screening of SSR loci

Using a single PCR program, twenty (46%) of the 43 pairs of

primers designed and tested showed very clean and easily

interpretable PCR products, and 17 pairs of primers (39%) amplified

clearly interpretable PCR products but also showed non-specific

amplification of secondary bands in agarose. A total of 6 primer pairs

(14%) did not amplify any product at all. In total 85% of the primer
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pairs yielded clearly interpretable PCR products under a single set of

PCR conditions.

The set of 20 pairs of primers that showed very clean and

clearly interpretable PCR products in agarose was selected to

evaluate polymorphism in 16 individuals of S. macrophylla in silver-

stained denaturing PAGE using the same PCR conditions. Two of the

20 primer pairs tested were monomorphic. A total of 18 pairs of

primers showed polymorphism and 12 of them were selected for

fluorescent-dye labelling. Fig. 2.1 shows polymorphism detected in 6

SSR loci during screening of primers in PAGE.

Multiplexed fluorescence-based microsatellite systems

I developed and optimised three multiplex systems of

microsatellite markers for S. macrophylla using 10 of the 12 pairs of

primers selected for fluorescent-dye labelling as following: Multiplex 1:

One triplex single reaction (sm01-TET, sm34-FAM and sm47-FAM)

plus 1 biplex single reaction (sm22-TET and sm40-HEX). The triplex

and biplex were combined before electrophoresis and loaded in a

single lane gel creating a pentaplex system. Multiplex 2: Composed of

two single primer reactions (sm31-FAM and sm46-FAM) that were

combined before electrophoresis and loaded in a single lane gel.

Multiplex 3: One biplex single reaction (sm45-TET and sm51-HEX)
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plus 1 single primer reaction (sm32-FAM) were combined before

electrophoresis forming a triplex set.

Sizing of alleles

Variation in fragment sizes were not significant, neither within

(F=0.00038, p=0.99999, ANOVA) nor between (F=0.001016,

p=0.974578, ANOVA) gels when analysed by Genotyper. A priori the

scoring of amplified products using Genotyper is accurate and

reproducible.

Characterization of Microsatellite Loci and Analysis of

Inheritance

All repeat sequences found were simple and perfect, like the

categories of repeat motifs identified by Weber (1990), with repeat

motif size ranging from 18 to 31 (Tab. 2.1). For the ten microsatellite

loci evaluated I identified a total of 166 alleles among 121 individuals

of S. macrophylla and the two opened-pollinated half-sib families (32

individuals). Considering only the 121 adult individuals genotyped,

an average of 15.8 alleles was detected per locus. All ten loci were

hypervariable, with the least and most variable loci showing 11 and

25 alleles respectively. The mean expected heterozygosity was 0.84

and the mean observed heterozygosity was 0.73. The allele frequency

distributions for the 10 loci are shown in Fig. 2.2. For some loci 2 or
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3 alleles were particularly frequent. At other loci, i.e. sm31, sm32,

sm45 and sm46 alleles were distributed more uniformly.

Analysis of codominant Mendelian inheritance of the ten

microsatellite loci was performed with two heterozygous mother trees

and their open-pollinated half-sib families. All loci exhibited patterns

expected under Mendelian inheritance. Each of the 16 sibs shared at

least one allele with the mother for all 10 loci analysed. Fig. 2.3 and

2.4 exhibit electropherograms showing inheritance and segregation in

the families 21301 and 30704 (heterozygous mother and 5 sibs)

analysed for locus sm01 and sm47, respectively.

The paternity exclusion probability (Q) was estimated for each

locus and showed high values for all loci (Tab. 2.2). The combined

probability of paternity exclusion (QC) using all 10 loci was 0.999998,

which indicates that there is a probability of 99.9998% of correctly

excluding a random father in the population who is not the true

father. Probability of genetic identity ranged from 0.009 to 0.12 with

a combined value of 7.0 x 10- 15 considering all loci.

DISCUSSION

This study has shown that (AG) microsatellites are present in the S.

macrophylla genome and can be used to as highly polymorphic

markers. Before developing microsatellite markers, I attempted to
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transfer SSR markers developed for Swietenia humilis (White 86

Powell, 1997a) to samples of S. macrophylla. Transferability of these

markers was reported for 11 species of Meliaceae, including S.

macrophylla (White 86 Powell, 1997b). However tests have showed that

for 12 S. humilis SSR markers analysed, 7 (58%) did not present

polymorphism, 3 (25%) did not amplify and only 2 (17%) were

informative presenting polymorphism for S. macrophylla in silver-

stained 4% PAGE. In total, 83% of the SSR markers developed for S.

humilis were not informative for S. macrophylla. These results

indicate that although homology of flanking regions of simple

sequence repeats exist among the Meliaceae species, which allows

amplification of products, it does not necessarily indicate the

presence of a microsatellite between these flanking regions and in

consequence polymorphism was not observed.

The method used was very efficient in developing microsatellite

markers for S. macrophylla. After the enrichment step, I was able to

detect 56% of positive clones. Of these, 75% were selected for

sequencing after using an anchored-PCR strategy and 34% of these

sequences allowed primer design. In total, 85% of the primer pairs

designed yielded clearly interpretable PCR products under a single

set of PCR conditions. The overall efficiency of microsatellite marker

development in S. macrophylla was thus 14.3% (0.56x0.75x0.34) for

yield of primer sequences and 12.1% (0.56x0.75x0.34x0.85) for
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obtaining informative loci. The efficiency in obtaining sequences

suitable for primer design and informative loci for S. macrophylla was

3.5 and 12 times higher, respectively, than that found for S. humilis

by White 85 Powell (1997a). Other studies with tropical tree species

that allowed estimates of the same parameters showed an efficiency

of 8.8 for yield of primer sequences and 6.3% yielding informative loci

in Eucalyptus spp. (Brondani et al., 1998) and 2.7% and 1.4%

respectively, for Caryocar brasiliense (Collevatti et al., 1999).

Considering the efficiency from data sequencing to the

obtaining of operationally useful SSR loci (loci that generated clearly

interpretable PCR products), this study showed an efficiency of 29%

(0.34x0.85). This value is higher than that found for S. humilis 16%

(0.68x0.24) and C. brasiliense 7% (0.14x0.54) but lower than the

efficiency of 63% (0.87x0.72) found for Eucalyptus spp. (Brondani et.

al., 1998). The higher efficiency of SSR development found for

Eucalyptus spp. (Brondani et al., 1998) and S. macrophylla (present

study) is probably due to the use of an anchored-PCR screening

strategy in these two studies, which improves the yield considerably

by eliminating false positives and positive clones with repeats

positioned too close to the vector (Rafalski et al., 1996).

To date this study represents the first report on the

development and characterization of multiplex PCR and fluorescence-

based systems of microsatellite markers for a neotropical tree species.
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Multiplexed assays have been documented using SSR loci in many

eukaryotes, such as humans (Edwards et al., 1991; Urquhart et al.,

1995), cattle (Glowatzki-Mullis et al., 1995), polar bear (Paetkau et

al., 1995), trout (Olsen et al., 1996, Wenburg et al., 1996), and in

plants (Kijas et al., 1995, Mitchell et al., 1997, Rosseto et al., 1999).

High-throughput genotyping systems based on fluorescent-labelled

multiplexed SSR loci were developed for S. macrophylla to comply

with the need for large scale analysis of natural populations.

Multiplexing is the combination of allele fragments from more than

one locus from an individual in a single lane of an electrophoretic gel.

This can be achieved by co-amplification of multiple loci in the same

PCR, mixing of amplified loci after PCR, or both (Olsen et al., 1996).

Here I considered both approaches. I was able to co-amplify up to

three loci in a single PCR tube and was able to resolve up to five loci

in a single gel lane.

The use of SSR markers combined with fluorescence-based

DNA detection and semi-automated fragment analysis has the

potential to act as a powerful tool to improve plant genetic

conservation considering accuracy, informativeness, automation and

cost effectiveness (Mitchell et al., 1997). Multiplexed systems of

fluorescently-labelled SSR loci represent a tremendous potential

increase in speed and efficiency of genetic data collection relative to

manual methods of single-locus analysis, such as allozymes
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(Wenburg et al., 1996), and even multilocus analysis, such as SSR

markers in silver stained denaturing polyacrylamide gels.

Accuracy and reproducibility of DNA fragment sizing is

essential for correct genotyping with microsatellites (Haberl 86 Tautz,

1999). The Genescan and Genotyper softwares consider that the

maximum difference between estimates of allele sizing should be �

0.5 bp for accurate evaluation. However, it should be considered that

when evaluating dinucleotide microsatellites this maximum difference

may be up to 1 bp and that allelic variation will be at least 2bp.

Attention should be given to consistent differences across PCR

reactions in allele sizing, usually by plus or minus one nucleotide.

These single base pair differences may be caused by incorporation of

dATP to the 3 end of PCR products by DNA Taq polimerase during

amplification (Clark, 1988). The differences in size estimates of

fragments did not vary significantly, either within or between gels

(respectively p=0.99999 and p=0.974578) demonstrating the high

accuracy and efficiency in allele sizing which allows reliable and

repeatable genotyping.

The informativeness of microsatellites tends to increase with

the increasing numbers of repeats (Weber, 1990). This means that

loci with greater numbers of repeats are more likely to be

polymorphic. This was observed in S. macrophylla. The sm31 locus,

the longest in number of repeats (AG)31, was the most informative of
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the loci developed, detecting 25 alleles. The mean number of alleles

per locus was 15.8 for 10 loci (range 11-25), higher than that

observed in S. humilis for the same number of loci analysed (9.7

alleles per locus - range 4-23) (White 86 Powell, 1997a). The mean

expected (He) and observed heterozygosity (Ho) for S. macrophylla was

0.84 and 0.73, respectively. These values are amongst the highest

found for tropical tree species (Tab. 2.3).

We found a combined probability of identity - probability that

two individuals selected at random from a population would have

identical genotypes - of 7.0x10- 15 , considering all 10 loci. Collevatti, et

al (1999) found a value of 3.1 x 10- 17 for C. brasiliense, also analysing

10 loci. Paetkau et al. (1995) found overall probability of identity

ranging from 1.0 x 10- 6 to 2.1 x 10-7 within four populations of polar

bears (Ursus maritmus) for 8 SSR loci. These results are quite

impressive and show the potential usefulness of microsatellite

markers for genetic studies, especially for breeding structure and

paternity.

Combined with this, very high values for single locus (0.52 to

0.87) and combined probability of paternity exclusion (0.999998)

were found. Collevatti et al. (1999) also found a very high combined

probability of paternity exclusion (0.99999995) and single locus

probability of paternity exclusion ranging from 0.69 to 0.95 for 10

SSR loci surveyed in C. brasiliense in Central Brazil. Dick 86 Hamilton
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(1999) found expected exclusion probabilities for single loci varying

from 0.23 to 0.87, with a multilocus expectation of > 0.995 for an

Amazonian tree, Dinizia excelsea (Fabaceae). Dayanandan et al.

(1999) found paternity exclusion probability for SSR loci in Carapa

guianensis, a species of Meliaceae, ranging from 0.14 to 0.77, with an

overall joint paternity exclusion probability for the three SSR loci

studied of 0.93. These results indicate the tremendous power of the

microsatellite loci developed for population genetic structure, gene

flow, breeding structure and parentage studies in S. macrophylla.
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Figure 2.1 - Screening of 6 SSR loci in silver-stained denaturing
polyacrylamide gels showing DNA polymorphisms in 16 individuals of S.
macrophylla. First lane of panels (a), (b), and (c) and last lane of panels
(d), (e), and (f) are 10 bp ladder (Gibco). Panels: (a) locus sm01, (b)
locus sm22, (c) locus sm45, (d) locus sm32, (e) locus sm51, and (1) locus
sm31.
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microsatellite loci of S. macrophylla. X-axis - allele size in base pairs,
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Figure 2.3 - Electropherograms showing pattern of segregation in an
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sizes in base pairs. The scale at the right of each panel indicates
fluorescence intensities of the peaks.
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Chapter 3

Population Genetic Structure and Gene Flow in

Swietenia macrophylla in the Brazilian Amazon

INTRODUCTION

The rates of deforestation and habitat fragmentation of tropical

forests worldwide have been increasing alarmingly in the last decades

(Katzman 86 Cale, 1990; Whitmore, 1997; Bawa 86 Seidler, 1998). The

consequences of habitat destruction, fragmentation, and also

selective logging represent a significant threat to the maintenance of

biodiversity and biological processes in tropical forest ecosystems

(Bawa, 1994, Young et al., 1996). Genetic diversity in tropical forest

trees is endangered as a consequence of such habitat disturbances.

Deforestation and fragmentation of tropical forests can lead to losses

of genetic variation of tree species by causing extinction of locally

adapted populations as well as reduction of effective sizes and gene

flow, and disruption of their pollen and seed vector associations

(Bawa, 1994; Hall et al., 1996; Nason et al., 1997). Selective logging

practice also threatens genetic diversity of tree species causing

dysgenic selection due to continuous exploitation of large, superior

individuals and increasing level of inbreeding due to reduction in
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stand density (Bawa, 1994). In this context, the understanding of the

distribution and levels of genetic variation within tropical tree species

is crucial for devising effective conservation and sound management

strategies.

Genetic structure refers to the distribution of genetic variation

in space and time. Many historical and evolutionary factors influence

the distribution of gene frequencies in populations and shape their

genetic structures, among which dispersal (gene flow), mutation,

selection, genetic drift, and the mating system play fundamental roles

(Wright, 1931, 1937, 1943). Mutation, natural selection, and genetic

drift will lead to genetic differentiation while gene flow will counteract

differentiation among populations by exchange of gametes,

individuals, or groups of individuals in space (Slatkin, 1987).

Population differentiation may occur by a well-characterised

evolutionary process known as isolation by distance (Wright, 1943)

where pairs of populations that are located more distantly

geographically would show greater genetic distance, assuming

constant rates of migration. The mating system refers to the mode of

transmission of genes from one generation to the next. By the

analyses of the plant's mating system it is possible to determine

levels of inbreeding in populations, a crucial component of population

structuring (more fully discussed in Chapter 4). Beside the strictly

genetic events, ecological and life history traits must also be taken
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into account as important features in determining genetic structure

of plant populations (Loveless 86 Hamrick, 1984; Loveless, 1998).

Population genetic studies of tropical trees have shown that

most of the species exhibit high levels of genetic diversity and gene

flow, genetic variation mostly occurs within rather than among

populations, and the species are mainly outcrossed (Hamrick 86

Loveless, 1989; Alvarez-Buylla et al., 1996). The great majority of

these studies were developed over relatively small spatial scales and

have employed isozymes as genetic markers to quantify genetic

diversity and estimation of population genetic structure parameters

(Hamrick 86 Loveless, 1986; Hamrick 86 Murawski, 1991; Loveless,

1992, 1998; Alvarez-Buylla 86 Garay, 1994; Murawski 86 Bawa, 1994;

Hall et al. , 1994a, 1994b).

With the advent of PCR (Polymerase Chain Reaction) in the late

1980s, a number of DNA marker technologies have been developed.

Among these RAPD markers (Random Amplified Polymorphic DNA,

Welch 86 McClelland, 1990; Williams et al., 1990) have been

increasingly used and have contributed significantly to the rapid

assessment of genetic variability in many organisms. The RAPD

procedure does not require prior knowledge of the target genome,

only small amounts of DNA are required, and the technique is

relatively simple and inexpensive. The main disadvantage of RAPD as

a molecular marker for population genetic studies is its dominant
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inheritance. Compared to co-dominant markers, this peculiarity

reduces the accuracy of the estimation of allele frequencies necessary

for population genetic analysis with RAPD's. However, this problem

can be reduced by indirect methods available to estimate allele

frequencies from dominant fragment frequencies (Lynch 85 Milligan,

1994; Isabel et al., 1999). Most of the population genetic studies of

tropical trees species using RAPD's have highlighted genetic diversity

and the hierarchical analysis of the distribution of genetic variation

within and among populations (Chalmers et al., 1992; Russel et al.,

1993; Gillies et al., 1997; Schierenbeck et al., 1997).

Comparisons have been made between dominant RAPDs and

codominant markers such as isozymes and RFLP to evaluate genetic

diversity and distribution of genetic variation within and between

populations in plant species. Although caution should be taken in

such comparisons, in general both dominant (RAPD) and codominant

(RFLP and isozymes) markers have shown congruence in the

evaluation of the partitioning of genetic variation in plant populations

(I\I - Goran et al., 1994, Isabel et al., 1995, Buso et al., 1998).

In the last few years, microsatellites or simple sequence repeats

(SSR) have become an attractive tool for population genetic studies in

plants owing to their codominant inheritance, multiallelic nature and

abundance and wide distribution in plant genomes. The variability

observed at SSR loci allows the accurate characterization of
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individuals in natural populations and estimates of genetic

parameters such as levels of inbreeding, heterozygosity, gene flow,

and mating system, that have fundamental importance for the genetic

conservation and management of tropical trees under intensive

human pressure. Recently, the development and characterization of

micro satellite markers have been reported for tropical tree species

(Chase et al., 1996; White 86 Powell, 1997; Aldrich et al., 1998; Ujino

et al., 1998; Collevatti et al., 1999; Dayanandan et al., 1999; Dick 86

Hamilton, 1999) allowing application in population genetic studies.

The perspective for the near future is an increase in the use of this

tool for population genetic investigation of tropical tree species due

mainly to novel library enrichment strategies and rapid fluorescence-

based automatic sequence technologies (Rafalski et al., 1996).

The Brazilian mahogany (Swietenia macrophylla) is the most

valuable hardwood species from the Neotropics: one cubic meter of

export-quality sawn wood is valued at about US$ 700 (Verissimo et

al., 1995) in the international market. The production of mahogany is

about 500,000 m3 /year in the Brazilian Amazon. Most of mahogany

exploitation has been conducted in a non-sustainable way. In recent

years, the conservation status of S. macrophylla has been the subject

of increasing concern due to overexploitation and selective logging

over natural populations. A listing of this species in Appendix II of the

Convention on International Trade in Endangered Species (CITES)
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has been proposed but has failed many times in the last few years.

There is an urgent need for effective conservation and management

strategies of this high-value forest resource and estimates of

population genetic parameters are critical in this context. Despite its

importance, little information exists on the extent and distribution of

genetic variation in natural populations of S. macrophylla over their

geographical range (but see Gillies, 1999).

In this chapter I report the use of a battery of fluorescent

labelled, multiplexed microsatellite markers developed for S.

macrophylla to estimate population genetic parameters for seven

populations of mahogany sampled at a broad geographical scale.

Also, the estimates of population differentiation based on dominant

RAPD markers were compared with co-dominant microsatellites for

two populations. The main aim of this study is understanding the

extent and distribution of genetic variation at microsatellite loci and

the patterns of gene flow in populations of S. macrophylla in the

Brazilian Amazon.
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MATERIALS AND METHODS

Population sites, collection of samples and DNA extraction

Mature trees of S. macrophylla were sampled from seven

populations in the native range of the species near the southern

boundary of the Brazilian Amazon region. Sample sites were located

8-2103 km apart. The location of the populations is illustrated in

Figure 3.1: (1) Municipio de Agua Azul do Norte (A. Azul) ca. 060

54.0'S, 50° 16.0W, (2) Marajoara Management Project (Maraj) ca. 07°

50.0'S, 50° 16.0W, (3) Municipio de Pimenta Bueno (P.Bueno) ca. 12°

21.6'S, 61°26.4W, (4) Fazenda Cachoeira Parecis A (Cach.A) ca. 120

30.1'S, 61 0 29.9W, (5) Fazenda Cachoeira Parecis E (Cach.E) ca. 12°

34.4'S, 61°29.9W, (6) Reserva Extrativista Chico Mendes, (C.Mendes)

ca. 100 25.0'S, 69° 18.0W, and (7) Municipio de Pontes e Lacerda (P.

Lacerda) ca. 150 04.6'S, 59 0 09.4W). The collections were made

between May 1996 and September 1998. Leaf samples were collected

from 24-34 individuals per population. The leaves were dried,

preserved in silica gel, and stored at -20°C until DNA extraction. Total

genomic DNA was extracted from the leaves following standard CTAB

procedure (Doyle 86 Doyle, 1987). DNA quantification was performed

by comparison with standard concentrations in ethidium bromide-

stained 1% agarose gels.
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Microsatellite analysis

Microsatellite analysis of all 194 individuals from seven

populations was made using 10 sets of microsatellite loci developed

and optimised for S. macrophylla using Applied Biosystem's

fluorescence-based technology. Multiplexing of six reaction

(multiplexed or single primers) mixes allowed genotyping one

individual into three gel lanes (see Chapter 2). In multiplexed

reactions PCR amplifications were carried out in a final volume of 25

pl containing 1.25-2.0 pM of each forward and reverse primers, 1 unit

Taq DNA polymerase, 200 pM of each dNTP, lx reaction buffer (10

mM Tris-HC1, pH 8.3, 50 mM KC1, 1.5 mM MgC12), BSA (2.5 mg/ml),

5.0 ng of template DNA, and dH20. In single primers reactions each

amplification was performed in a volume of 10 pl containing 1.25-2.0

pM of each forward and reverse primers, 1 unit Taq DNA polymerase,

200 pM of each dNTP, 1X reaction buffer (10 mM Tris-HC1, pH 8.3, 50

mM KC1, 1.5 mM MgC12), BSA (2.5 mg/ml), 5.0 ng of template DNA,

and dH20. The PCR conditions were as follows: an initial

denaturation at 96°C for 2 min followed by 30 cycles of 94°C for 1

min, 56°C for 1 min and 72°C for 1 min; and a final elongation step at

72°C for 7 min. Amplified products were electrophoresed in 5%

denaturing polyacrilamide gel with internal standard in an ABI Prism

377 sequencer. Fluorescent products were automatically analysed

using GeneScan 672 version 1.1 and Genotyper version 1.1 softwares
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(ABI, 1993, 1994).

RAPD analysis

Genetic parameters using RAPD and microsatellite markers

were analysed for the same individuals in two populations of S.

macropylla (Maraj and P. Bueno, 1323 km apart) in order to compare

estimates of population genetics using dominant and co-dominant

markers. A total of 271 primers from Operon Technologies (Alameda,

CA, USA) primer kits OPA, AB, C, D, G, I, J, K, L, N, 0, P, R, U, X, W,

Y and Z were screened with S. macrophylla DNA in eight individuals.

Of these, only 45 primers that provided very consistent amplification

products, signal strength, resolution of bands, and polymorphism

were selected to use in the population analysis. Twenty-four

individuals were analysed from each population. RAPD amplification

were carried out as described in Ferreira 86 Grattapaglia (1995). Each

10 Ml reaction mixtures contained 7.5 ng of genomic DNA, 10 mM

Tris-HC1 pH 8.3, 1.5 mM MgC12 , 1.0 [tg/41 of BSA, 0.2 mM of each

dNTP, 0.4 p.M 10-mer primer and 1U of Taq DNA polymerase.

Amplifications were performed using a MJ Research PT-100 thermal

controller programmed for 40 cycles of : 1 min at 92 0C, 1 min at 35

0C, 2 min at 72 0C; and a final elongation step at 72 0C for 7 min.

Amplification products were separated by electrophoresis in 1.5%

agarose gels in lx TBE (Tris-Borate-EDTA) buffer system. Gels were
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stained with ethidium bromide, and then visualised and

photographed under UV light. Band sizes were determined by

comparison with a 1Kb ladder in each gel. For microsatellite analysis

the ten pairs of primers developed for S. macrophylla were used as

described in the previous section.

Data analysis

To estimate overall levels of genetic diversity, the following

measures were calculated for all populations: the mean number of

alleles per locus (A), the Ho and He, the mean observed and expected

heterozygosities respectively. The genetic parameters were calculated

for each locus and averaged over all loci using the GDA program

(Lewis 86 Zaykin, 1999). Tests for departure from the Hardy-Weinberg

equilibrium (HW) were made by using the U-test (Raymond 86

Rousset, 1998) and the inbreeding coefficient (f) (Weir 86 Cockerham,

1984) considering both hypotheses of heterozygote deficiency and

excess. These analyses were performed using Genepop version 3.1.b

program (Raymond 86 Rousset, 1998). Estimation of exact-P values

was determined by the Markov chain method (Guo 86 Thompson,

1992).

The extent of the genetic differentiation of populations was

investigated by calculating fixation indices based on two models: the

Infinite Allele Model (JAM) (Kimura 86 Crow, 1964) and the Stepwise
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Mutation Model (SMM) (Ohta 86 Kimura, 1973). The JAM considers

that mutation creates a new allele state with no known relationship

to other allelic states while the SMM conceives information about

ancestral allelic states (Jarne 86 Lagoda, 1996). Under the SMM

similar size alleles at microsatellite loci are less different in terms of

mutational steps than alleles with very different size (Jarne 86 Lagoda,

1996). The unbiased estimates of Wright F-statistics (Weir 86

Cockerham, 1984) was calculated under the former model by the

FSTAT program version 2.9.1 (Goudet, 2000). Analogous to Wright" s

FST, 0 measures divergence in allele frequencies among populations,

whereas f (similar to FIS) measures the correlation of allele

frequencies within individuals within populations and F (similar to

FIT) is related to the correlation of allele frequencies within individuals

in different populations (Cockerham, 1969). Values of 0 were

calculated over all loci and populations and for each pairwise

comparison of populations. Statistical significance of the observed 9

values was tested using the exact G-test (Goudet et al., 1996) and by

bootstrapping over loci with 95% nominal confidence interval (Weir,

1996). P-values were obtained after 1000 permutations. Significance

tests of differentiation between each pair of populations were carried

out after considering Bonferroni corrections implemented by FSTAT

program version 2.9.1 (Goudet, 2000). Genetic differentiation under

the SMM was assessed by p, an estimator of Slatkin's RST (Slatkin,
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1995) analogous to 0. The estimate of p was obtained by calculating

the between - and within - population components of variance using

allele sizes expressed in terms of the standardized number of repeats.

It was calculated using the program RST CALC, version 2.2 (Goodman,

1997) over all loci and populations and for pairwise comparisons of

populations. Significance levels were determined after 1000

bootstraps with 95% nominal confidence intervals and permutation

tests (Lynch 86 Crease, 1990) were made to determine if observed

values of p were significantly different from zero.

Indirect estimates of gene flow among populations were

calculated based on the mean number of migrants among

populations per generation (Nm). Values of Nm were estimated by two

methods: (1) Estimates from 0 (similar to Wright's FST) and p (similar

to Slatkin's RsT) by the relationship: Nm = 1/4(1/XsT -1) where N is

the effective population size, m is the rate of migration, and XST is

either the coefficient of genetic differentiation between populations 0

or p; (2) Private allele method (Slatkin, 1985a; Barton 86 Slatkin,

1986) which considers the average frequency of rare alleles for

estimating the value of Nm. The estimates of overall and pairwise Nm

based on 0 and private alleles methods were calculated using

Genepop version 3.1 b program (Raymond 86 Rousset, 1998).

Estimates of overall and pairwise Nm based on the p estimator were

calculated using program RsT CALC version 2.2 (Goodman, 1997).
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The isolation-by-distance model (Wright, 1943) was tested by

correlating values of the population pairwise 0 and p estimators

against the logio of the population pairwise geographical distance

values. The statistic used was the Spearman Rank correlation

coefficient and significance was determined after 1000 permutations

of a Mantel procedure (Mantel, 1967). The Mantel test was made

using the program GENEPOP version 3.1.c (Raymond 85 Rousset,

1998).

A comparison between two classes of markers was performed

in order to evaluate the extent of genetic variation in the exact same

individuals (24 individuals from each population) of two populations

of S. macrophylla (Maraj and P.Bueno 1323 km apart) using

dominant RAPD and co-dominant microsatellite markers. Data

regarding RAPD markers were recorded as presence and absence of

fragments, and the data were entered into a binary data matrix.

Individuals exhibiting a band were interpreted as homozygous for the

dominant allele (AA) or heterozygous (Aa), whereas individuals with

no fragment were considered as recessive homozygous (aa). Genetic

parameters based on RAPD were calculated considering the loci for

which fragment frequencies were less than 1 - 3/n, where n is the

population sample size (Lynch 85 Milligan, 1994). The allele

frequencies used to estimate RAPD's FST were corrected for deviations

from the Hardy-Weinberg equilibrium using the inbreeding coefficient
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(f) estimated from microsatellite loci (Isabel et al., 1999). To assess

the partitioning of genetic variation within and between populations

an analysis of molecular variance (AMOVA) was conducted as

described by Excoffier et al. (1992) using the program ARLEQUIN

(Schneider et al., 1997). Two AMOVA's were made one using RAPD

and the other using microsatellite data.

RESULTS

Genetic variation

The multiplexing approach employed in this study allowed the

analysis of up to five loci into a single gel lane (Fig. 3.2). All

microsatellite loci surveyed for S. macrophylla were highly

polymorphic. A total of 181 alleles were detected for 194 individuals

from the seven populations. The average number of alleles over all

loci was 18.1 alleles (range 13 - 27) (Tab. 3.1), whereas the mean

number of alleles observed per locus per population over all

populations was 9.3 (range 7.6-10.3) (Tab. 3.2). The total number of

alleles detected in a single population, considering all loci, varied

from 76 for P.Bueno to 103 for Cach.A. Generally alleles showed a

relatively even distribution of frequencies (Appendix I). Forty-two

private alleles (alleles restricted to a single population) were found in

mahogany from the seven populations surveyed at the 10
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microsatellite loci. Private alleles constituted 23.2% of all alleles. All

populations contained private alleles and the number detected per

population varied from 4 alleles for A.Azul and P.Bueno to 11 for

C.Mendes (Tab. 3.2). Except for alleles 152 (locus sm32), 68 (locus

sm34) and 146 (locus sm45) detected in the P.Lacerda population,

which occurred at frequencies of 27.3%, 28.3% and 25% respectively,

all the private alleles occurred with a relatively low frequency varying

between 1.5 to 12.5% (Appendix I). The mean observed heterozygosity

(Ho) was 0.73 and ranged from 0.37 for locus sm34 to 0.90 for locus

sm45. The mean expected heterozygosity (He) was generally higher

than Ho (with only three loci showing the opposite trend). The mean

He was 0.76 and ranged from 0.51 for locus sm34 to 0.89 for locus

sm31 (Tab. 3.1). The observed heterozygosity (Ho) per population

ranged from 0.69 to 0.77 and the expected heterozygosity (He) per

population ranged from 0.72 to 0.80 (Tab. 3.2).

Hardy-Weinberg Equilibrium

Of the 70 tests of conformity to Hardy-Weinberg proportions

that were made, twelve showed a significant departure from expected

proportions at the 5% level. Based on the inbreeding coefficient, f

(Weir and Cockerham, 1984), eleven of the deviations were due to a

deficit of heterozygotes and only one, in locus sm45 in the C.Mendes

population, was due to an excess of heterozygotes (Tab. 3.3). The
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mean overall f considering all populations was 0.046. Although it

represents a low value, it is significantly different from zero and

suggests a not negligible amount of inbreeding detected in S.

macrophylla populations.

Population differentiation, substructuring, and gene flow

The unbiased estimates of Wright's F-statistics (Weir 86

Cockerham, 1984) and the estimate of genetic differentiation p

(Goodman, 1997) calculated overall populations of S. macrophylla for

each and over all loci are presented in Tab. 3.4. Overall, the mean

coefficient of inbreeding f was low but significantly different from zero

(f = 0.046, 95% C.I. 0.0004-0.0918, p<0.0001) indicating a

nonrandom mating of individuals within populations. The value of F,

the measure of inbreeding that considers both the effects of non-

random mating within and among populations, was different from

zero (F= 0.155, 95% C.I 0.091-0.241, p<0.0001)) indicating

population substructuring.

The two overall measures of genetic population differentiation

A and p showed close values for the combined data from all

populations each significantly greater than zero (0 = 0.116, 95% C.I

0.073-0.176 and p= 0.144, 95% CI 0.134-0.195, p<0.0001)

suggesting that there is a significant degree of genetic differentiation

among populations of S. macrophylla in the Brazilian Amazon.
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Despite consistent patterns of genetic differentiation over all

populations using both estimators 0 and p , non congruent values of

0 and p were found in the pairwise comparisons between mahogany

populations (Tab. 3.5).

For all loci combined and all populations pooled, the number

of individuals assumed to migrate among populations per generation

(Nm) was very similar calculated using either FsT/RsT based

approaches (Wright, 1951; Slatkin, 1995) or the private allele method.

The values found were Nm[0] = 1.905, Nm[p] = 1.584 and Nm[pal =

1.932, respectively. In the pairwise comparisons among populations,

the highest number of migrants per generation was found between

A.Azul and Maraj (107 km apart) considering both the 0 and p

methods (Nm = 6.43 and 12.45, respectively). For the private alleles

method, the highest value of Nm in pairwise comparisons was

observed between Cach.A and P.Bueno (Nm = 2.11) populations 17

km apart. Therefore, the estimates of migration between populations

of S. macrophylla in the Brazilian Amazon showed no consistent

patterns with low to high levels of gene flow (range 0.685 - 12.455)

occurring in pairwise population comparisons (Tab. 3.5).

Isolation-by-distance

The test of isolation by distance showed no significant

correlation between pairwise comparisons of either 0 or p versus logio
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distance (p = 0.786 and 0.841 respectively) for 21 pairwise

combinations of seven populations. If the population Cach.E is

excluded from the analysis (this population, located in a deep valley

at the slopes of the Chapada dos Parecis mountains, exhibited a high

differentiation from the two neighbouring populations, Cach.A and P.

Bueno) the correlation was positive but still not significant (p = 0.582

and 0.626, respectively). Therefore, there was no clear evidence of a

pattern of isolation by distance for the S. macrophylla populations in

the Brazilian Amazon.

Comparison of dominant RAPD and codominant microsatellite

markers

A total of 78 polymorphic RAPD fragments were scored in 48

individuals of two populations studied using 45 pairs of primers. The

mean number of RAPD fragments detected per primer was 1.7. The

78 polymorphic RAPD loci showed frequencies less than 1-3/n and

all were considered for calculations of genetic parameters. Correcting

fragment frequencies from the Hardy-Weinberg equilibrium using an

average within population inbreeding coefficient (f) estimated from

microsatellites had almost no effect in the estimation of RAPD FST

(Fgr= 0.2432918 and 0.2432925 without and with correction

respectively).



Chapter 3: Genetic Structure and Gene Flow in S. macrophylla 	 72

The hierarchical analysis of the genetic structure based on an

analysis of molecular variance (AMOVA) using 78 dominant RAPD

markers in two populations studied were congruent with other

AMOVA data using ten co-dominant microsatellite loci for the same

individuals (Tab. 3.6). Most of the genetic variation (75% for RAPD

analysis and 92% for microsatellites) was detected within

populations. However, a significant proportion of the variation was

found between populations (24.7% p<0.0001 for RAPD and 8%

p<0.0001 for SSR).

DISCUSSION

The present study has highlighted the utility of microsatellite

markers for investigating the genetic variability and structuring of S.

macrophylla populations. The fluorescence-based technology used

allied to the multiplexing of up to five microsatellite loci from an

individual in a single lane gel greatly improved the speed and

efficiency of population genotyping of S. macrophylla. A more

extensive use of this genetic tool will certainly improve knowledge on

genetic structure and mating system of tropical trees in the near

future and provide a genetic basis for policies of conservation and

management of valuable natural resources such as mahogany.
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Genetic Diversity and the Hardy-Weinberg Equilibrium

The levels of genetic diversity observed for S. macrophylla,

mean number of alleles detected per locus (A= 18.1) and the average

gene diversity (He = 0.76), are within the range observed for other

tropical tree species using microsatellite markers (Aldrich et al.,

1998; Ujino et al., 1998; Dayanandan et al., 1999; Rosseto et al.,

1999; Collevatti et al., 1999; White et al., 1999). These studies found

that the mean number of alleles per locus ranged from 7.9 to 18.3

and the average value of expected heterozygosity (He) ranged from

0.55 to 0.83. As expected for microsatellite loci with high mutation

rates, the values are substantially higher when compared with other

kinds of markers such as isozymes. Loveless 86 Hamrick (1987)

studying genetic variation in eight tree species in Barro Colorado,

Panama found the number of alleles per polymorphic locus ranging

from 1.43 to 2.64 and values of gene diversity (H) ranging from 0.106

to 0.273. Loveless (1992) in a review about isozyme variation in 37

tropical tree species found an average gene diversity (H) ranging from

0.038 to 0.216.

Deviations from Hardy-Weinberg genotypic expectations were

found in this study with a significant deficit of heterozygotes in eleven

of 70 tests made. In only one case (locus sm45 at population C.

Mendes) was there observed a departure from HWE due to a

significant excess of heterozygotes. As observed in Tab. 3.3, four out
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of seven populations analysed had values of f (coefficient of

inbreeding) significantly greater than zero indicating an excess of

homozygotes. In the other three populations values of f were also

positive but not statistically significant.

Several explanations could be put forward for the finding of a

deficit of heterozygotes. One is the possibility of the occurrence of

null alleles. Null alleles are undetectable alleles due to a mutation in

the flanking primer sequences (Callen et al., 1993). Some studies

have documented the presence of null alleles at microsatellite loci

occurring at frequencies of up to 15% (Callen et al., 1993; Paetkau 86

Strobeck, 1995; Pemberton et al., 1995; Jarne 86 Lagoda, 1996).

However it seems unlikely to be occurring in S. macrophylla because

no null/null homozygotes were detected in any loci when genotypes

of 400 progenies and 25 mother trees were analysed in a mating

system study carried out in the Maraj. population (M.R. Lemes,

unpublished data). Also no mismatches between a mother and her

offspring were observed (i.e. all individual offspring displayed at least

one maternal allele).

Heterozygote deficits can also be due to the existence of

undetected breeding subunits within populations, the Wahlund effect

or assortative mating which generally increases the frequency of

homozygous genotypes in the population at the expense of

heterozygous genotypes (Hartl, 1987). In fact, inbreeding seems to be
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the most probable cause for the heterozygote deficit in S.

macrophylla. The low, but not negligible, level of inbreeding detected

in S. macrophylla populations is in agreement with data from the

mating system study of the Maraj population (Chapter 4), where 4.2%

of seeds resulted from self-fertilizations or correlated matings. The

excess of heterozygotes detected in one locus (sm45) at population

C.Mendes was probably a sampling artefact caused by a relatively

small sample size. The great number of alleles detected in

microsatellite loci usually occurring at low frequencies may lead to

bias when the sample size is small. Theoretical studies have

highlighted the effect of sample sizes on the performance of different

genetic parameters estimated for loci with multiple alleles (Ewens,

1972; SjOgren 86 WyOrli, 1994). Ruzzante (1998) using a microsatellite

data set has showed that the variance in estimates of some genetic

distance and structure measures may be influenced by the number of

individuals and loci surveyed.

When compared to the other SSR loci in this study, the locus

sm34 exhibited the highest coefficient of inbreeding for four out of

seven populations studied and over all populations (Tab. 3.3). This

result is intriguing and suggests that selection could be acting at this

SSR locus favouring individuals with allele sizes 70-72 base pairs,

which are much more frequent than other alleles in all populations

(Appendix I).
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Genetic differentiation and gene flow

Genetic differentiation among populations of S. macrophylla

were analysed by calculating 0 (Weir 86 Cockerham, 1984) and p

(Goodman, 1997) estimators which are based on the assumption of

the Infinite Allele Model (Kimura 86 Crow, 1964) and the Stepwise

Mutation Model (Ohta 86 Kimura, 1973), respectively. It has been

suggested that for microsatellites the stepwise model might be more

appropriate (Valdes et al., 1993; Goldstein et al., 1995; Slatkin, 1995;

Goldstein 86 Pollock, 1997) because it takes into account the

mutational properties of microsatellite loci. The multilocus values of

genetic differentiation based on 0 (0.12) and p (0.14) were very close

in this study, indicating a moderate but significant (p<0.0001) degree

of differentiation among populations of S. macrophylla in the

Brazilian Amazon which is in accordance with the tendency observed

for tropical tree species in general (Hamrick, 1994). The value of 0

estimator (0.12) obtained for S. macrophylla was similar to the mean

GST (0.11) value found for 37 different tropical taxa using isozymes

(Loveless, 1992). However, caution should be taken when comparing

estimates of genetic differentiation among studies owing to variation

in geographical scale, life history traits and class of genetic marker

used.
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Few studies have reported assessment on genetic variation in

natural populations of tropical tree species using microsatellites

(Chase et al., 1996; Aldrich et al., 1998; Rosseto et al., 1999; White et

al., 1999; Dayanandan et al., 1999). The two species of Meliaceae

studied with microsatellites so far, Carapa guyanensis in Costa Rica

(Dayanandan et al., 1999) and Swietenia humilis in Honduras (White

et al., 1999), exhibited much lower levels of genetic differentiation (p =

0.041 and 0.032, respectively) among populations (or fragments of

population) than that found for S. macrophylla using the same

estimator. These differences should be interpreted with caution since

the spatial scale of the studies with C. guianensis and S. humilis

(populations up to 44 km apart) contrasts with the extensive

sampling along of the geographic distribution of S. macrophylla in

this study (up to 2100 km). The spatial scale is important because

patterns of differentiation may reflect factors such as mating systems,

selection, population size and pollen and seed dispersal distances

(Alvarez-Buylla et al., 1996).

The moderate, but statistically significant, genetic

differentiation among populations of S. macrophylla may reflect the

balance of several ecological factors which historically have

influenced gene flow distances in this species. Mahogany is a

monoecious species with minute flowers pollinated by a diverse array

of generalist insects, such as small-sized bees, moths and thrips
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(Styles, 1972; Styles 86 Khosla, 1976; Howard et al., 1995). Although

little is known about the effectiveness of these small generalist

insects as long-distance pollinators, it is generally accepted that they

have limited foraging ranges. The pollination by small diverse insects

probably promotes pollen flow at less extensive distances than other

more specialised systems, such as pollination by bats or by large or

medium-sized bees (Frankie et al., 1976; Bawa, 1990). The short

distance pollination systems enhance genetic differentiation because

the opportunities for gene exchange declines between populations.

Among several life history traits examined in a review of

patterns of genetic organisation in tropical plants, Loveless (1992)

found that seed dispersal mechanisms contributed to significant

levels of population differentiation between species. Abiotic modes of

dispersal (wind and gravity) showed more than twice as much

population differentiation (mean GST = 0.14) as species dispersed by

biotic agents (mean GST = 0.05). The genetic differentiation observed

among populations of S. macrophylla, an anemochorous species with

median seed dispersal distance of only 32-36 m (Gullison et al.,

1996), is in accordance with the common tendency observed for

tropical tree species abiotically dispersed.

Gene flow greater than one individual per generation can

prevent neutral alleles being fixed due to random genetic drift

(Wright, 1931; Slatkin, 1985b). The estimates of Nm obtained using
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different statistics derived from B , p, and calculated by the private

alleles were in agreement (averaging 1.8 migrants per generation).

This value, however, seems not to be high enough to totally override

the effects of drift, resulting in a moderate level of differentiation

among populations of S. macrophylla. Genetic evidence suggest that

gene flow among local populations is high in tropical tree species, but

geographically distant populations show moderate levels of genetic

differentiation (Loveless, 1992). High Nm values may also indicate

substantial movement of genes by pollen and seeds among

populations. The Nm estimates varied considerably (range 0.43-

29.94) in a study carried out with 14 tropical tree species in Barro

Colorado, Panama (Hamrick 86 Loveless, 1989). Generally it depends

on dispersal seed ecology, pollination syndrome and mating system

(Ellstrand, 1992).

Slatkin (1995) proposed that allele-frequency-based (0)

statistics should overestimate gene flow relative to RST (p), however in

the present study the overall Nm estimate derived from p was not

lower than Nm from 0. Here the biases proposed were not observed.

The same tendency on estimates of migrants per generation using

different approaches were also found in other studies with

microsatellite data (Goodman ,1998). Although many studies have

addressed the estimation of gene flow in natural populations by

indirect methods, the usefulness of these indirect estimates is a
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matter of controversy. Whitlock & McCauley (1999) pointed out that

only rarely can genetic data based on Wright's F-statistics be

translated into an accurate estimate of gene flow (Nm). The authors

highlighted the violation of the assumptions of the island model

(Wright, 1931) underlying the translation of FST statistics into Nm in

natural systems and the consequences on the quantitative and

qualitative conclusions from indirect studies of gene flow.

The geographical distance among populations was not

significantly correlated with genetic differentiation suggesting that

other processes than simple isolation by distance are acting to

structure populations of S. macrophylla. Other tropical tree species

have shown similar tendencies of deviation from isolation by distance

model (Hall et al., 1994b; Chase et al., 1995; Loveless, 1998). The

more conspicuous failure of the isolation by distance model is

represented by the pair of populations Cach.A and Cach.E, only 8 km

apart, but exhibiting the second highest value of 0 in pairwise

comparisons (Tab. 3.5). Topographic barriers may restrict gene flow

and have an important role in the genetic isolation of these

populations, since the former is located in a flatland plato of the

Brazilian Shield whereas the later is set in a deep valley at the

undulate slopes of the Serra dos Parecis mountains. Another possible

explanation is that distinct selective pressures in the two different

habitats lead to population differentiation, despite geographical
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proximity. Many geographical features can restrict gene flow between

sets of populations such as rivers and mountains (Whitlock &

McCauley, 1999). In all pairwise population comparisons p values

indicate significant differentiation between populations at level

p<0.001 except for the pair Agua Azul X Marajoara that showed

significant differentiation at p<0.05. This pair of populations that are

107 km apart showed the lowest genetic difference and largest

migration rate estimated either by 0 and p.

Dominant RAPD versus codominant microsatellite markers

In the present study the distribution of genetic variation

inferred by the two different classes of markers (RAPD and

microsatellites) were in accordance. Most of the genetic variation was

present within rather than among populations which is in agreement

with most tropical trees species (Heywood & Fleming, 1986; Buckley

et al., 1988; Eguiarte et al., 1992; Hamrick, 1994, Hall et al., 1994a;

Hall et al., 1996; Schierenbeck et al., 1997; Gillies et al., 1997).

Nevertheless, significant genetic differentiation was found among

populations. Such results are expected for species with a patchy

distribution pattern such as mahogany. Gillies et al. (1999) using

RAPD markers to assess genetic diversity in populations of S.

macrophylla from Central America also found the same tendency.

Although both classes of molecular markers have shown a
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significant differentiation among populations, estimates are rather

different in magnitude (FsT = 0.25 and 0.08, for RAPD and SSR

respectively). While RAPD markers are biallelic and do not allow

direct estimation of heterozygosities, microsatellite markers are

highly multiallelic. As microsatellite markers typically present high

heterozygosities within populations the magnitude of differentiation

estimated by FST tends to be small (Hedrick, 1999). This fundamental

difference in the genetic basis of the two classes of markers

implicates in a non-totally legitimate interpretation of values in direct

comparisons.

Implications for conservation

The Brazilian mahogany (Swietenia macrophylla) is threatened

throughout its range due to over-exploitation and habitat destruction

which has clearly reduced its population sizes. Reduction may

become so intense that these populations may not constitute viable

units in the long term owing to the prevalence of genetic drift and

inbreeding causing loss of genetic variation (Bawa 86 Ashton, 1991).

Therefore the long-term survival of this high-value forest resource

requires urgent protection of their populations over its geographical

distribution.

The knowledge of the levels and distribution of genetic

variation is of fundamental importance for the establishment of
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effective and efficient conservation strategies for tropical tree species

under intense human pressure. Results from a genetic study based

on RAPD markers suggest that selective logging reduces genetic

diversity within S. macrophylla populations in Central America

(Gillies et al., 1999). The current study, based on highly informative

microsatellite markers, reports high genetic diversity within

populations and the existence of significant genetic structuring of S.

macrophylla populations along the Brazilian Amazon.

Such findings indicate the urgent need for conservation of

multiple populations along the distribution range, with a relatively

large number of individuals per population to ensure that allelic and

genotypic diversity will be maintained in S. macrophylla populations.

The reserve areas for canopy tropical tree species that occur at

densities of one adult or less per hectare (Bawa & Ashton, 1992) such

as S. macrophylla (Barros et al., 1992; Verissimo et a/.,1995) should

be very large to maintain the high intrapopulation genetic variation

and to avoid inbreeding and genetic drift (Eguiarte et al., 1992).

Furthermore, since genetic differentiation seems not to be correlated

with geographic distance, populations of S. macrophylla only 8-15 km

apart can exhibit a high level of differentiation if physical barriers

avoid gene flow among them. The occurrence of such

microgeographical differentiation emphasizes the importance of

maintaining populations in their diverse habitats, especially in areas
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with mosaic of topography and soils.

As pollen and seeds of S. macrophylla can not be dispersed over

long distances, the alarming fragmentation caused by selective

logging practice and by conversion of the forest into plantations and

pastures is likely to reduce the chances for colonization of new sites,

despite the ability of this species to regenerate in disturbed habitats

(Snook, 1996).

Studies on genetic variation of tropical plants have emphasized

that the breeding system significantly influences genetic diversity

within and among populations (Hamrick 86 Loveless, 1989). According

to Hamrick et al. (1991) the first step in designing an effective

management strategy for an endangered tree species should be the

determination of its breeding system. The mating system, a major

component of the breeding system is the subject of the investigation

reported in the next chapter for S. macrophylla.

Efforts for ex situ conservation strategies seems not to be very

practical for conservation of genetic diversity of tropical forest trees

(Eguiarte et al., 1992). The main reasons for the ineffectiveness of ex

situ conservation for most tropical forest species are: (1) Difficulties in

collecting the quantities of seeds necessary to preserve at least part of

the genetic variation present in a population, (2) problems with long-

term storage of seeds, (3) limited capabilities of many large woody

species for cultivation, and (4) possible lack of maintenance of
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mechanisms of pollination in. ex situ conditions (Bawa 85 Ashton,

1991; Eguiarte et al., 1992).

In the case of Brazilian mahogany (S. macrophylla) most efforts

should be directed towards in situ conservation strategies allied to

effective policies to regulate its exploitation. With depletion of natural

stocks in private lands, illegal extractions of mahogany have been

reported from National Parks, and Indian reserves in Brazil and other

countries (Rodan et al., 1992). Unfortunately, there is no reason for

optimism about the conservation of the mahogany in the Brazilian

Amazon. The distribution range of S. macrophylla coincides with the

areas of higher deforestation rates such as south Pard, Tocantins,

north Mato Grosso, RondOnia and Acre States. The paucity of official

conservation policies and the weakness of the Brazilian environment

agencies contrast with the strength of the economic pressures which

lead to uncontrolled logging and replacement of the forest by

extensive cattle ranch pastures or soybean monoculture for

exportation. To date, these are the main threats for effective viability

of S. macrophylla populations in the Brazilian Amazon.



Table 3.1 - Genetic parameters of ten microsatellite loci in seven
populations of S. macrophylla. The repeat motif, total number of
alleles, He (expected mean heterozygosity) and range, FI, (observed
mean heterozygosity) and range.

Locus Repeat	 Number
motif	 of alleles

He (range) 11„ (range)

sm01 (AG)19 18 0.707 (0.222-0.904) 0.697(0.235-0.920)

sm22 (AG)18 17 0.759 (0.525-0.837) 0.698(0.500-0.823)

sm31 (AG)31 27 0.893 (0.807-0.922) 0.830(0.783-0.967)

sm32 (AG)20 17 0.854 (0.774-0.900) 0.772(0.559-0.880)

sm34 (AG)19 17 0.508 (0.358-0.775) 0.366(0.208-0.581)

sm40 (AG)19 13 0.704 (0.629-0.769) 0.739(0.592-0.840)

sm45 (AG)21 17 0.853 (0.802-0.889) 0.902(0.781-0.970)

sm46 (AG)20 17 0.841 (0.790-0.901) 0.824(0.760-0.875)

sm47 (AG)24 17 0.688 (0.379-0.836) 0.693(0.360-0.853)

sm51 (AG)22 21 0.803 (0.715-0.903) 0.750(0.500-0.909)

Mean over all loci 18.1 0.761 (0.719-0.800) 0.727(0.665-0.766)



Table 3.2 - Microsatellite diversity in seven populations of S.
macrophylla averaged over ten microsatellite loci. N, sample size
per locus; A, number of alleles per locus; PA , number of private
alleles; H., observed heterozygosity ; He, expected heterozygosity,
and coefficient of inbreeding (f).

Population N A PA He He f

A. Azul 29.7 8.7 4 0.758 0.747 0.014

Cach.A 32.0 10.3 6 0.749 0.728 0.028

Maraj 24.9 9.4 5 0.800 0.740 0.076

P.Lacerda 23.3 9.4 7 0.789 0.766 0.029

C.Mendes 34.0 10.0 11 0.719 0.688 0.044

Cach.E 24.0 9.6 7 0.777 0.754 0.031

P.Bueno 23.3 7.6 4 0.735 0.665 0.097

Over all populations 27.3 9.3 43 0.761 0.727 0.046



Table 3.3 - Coefficient of inbreeding (f) (Weir 86 Cockerham, 1984) for each and
over all loci in seven populations of S. macrophylla.

Locus A.Azul Cach. A Maraj P. Lacerda C.Mendes Cach. E P. Bueno Over all

sm01 0.074 -0.034 -0.018 -0.172 -0.062 0.007 0.302" 0.015

sm22 -0.055 -0.012 0.131 0.082 -0.009 0.106 0.314" 0.082*

sm31 -0.050 0.062" 0.083 0.139 0.141 0.103* 0.031 0.072***

sm32 0.033 0.018 0.021 0.095 0.281 0.151* 0.060 0•097*

sm34 0.035 0.362* 0.333" 0.596* 0.347* 0.113 0.208 0.283***

sm40 0.232* -0.053 -0.125 -0.169 0.025 -0.179 -0.119 -0.050

sm45 0.021 0.049 -0.090 -0.090 -0.213"* -0.096 0.013 -0.058

sm46 0.020 0.009 0.091 -0.058 0.087 0.082 -0.095 0.021

sm47 0.197 0.029 0.275*** 0.006 -0.026 -0.126 -0.004 -0.008*

sm51 0.038 -0.004 0.171 -0.033 -0.049 0.123 0.345*" 0.068

Over all 0.014 0.028" 0.076" 0.029 0.044 0.031* 0.097*" 0.046"*

Significant departures from Hardy-Weinberg expectations at * p � 0.05, "p � 0.01, ***p �. 0.001

Estimation of exact P-values by the Markov chain method



Table 3.4 - Unbiased estimates of Wright's F-statistics (Weir and
Cockerham, 1984) and estimate of genetic differentiation p
(Goodman, 1997) for each and over all loci in seven populations of S.
macrophylla. Significance is based on permutation testing (1000
times) with 95% confidence intervals (CIs) for all estimates over all
loci.

Locus f (SE) F (SE) O(SE) P

sm01 0.015 (0.048) 0.226 (0.103) 0.214 (0.092) 0.191

sm22 0.073 (0.044) 0.174 (0.037) 0.109 (0.033) 0.089

sm31 0.072 (0.028) 0.106 (0.029) 0.037 (0.008) 0.139

sm32 0.095 (0.040) 0.166 (0.054) 0.078 (0.021) 0.195

sm34 0.277 (0.071) 0.522 (0.069) 0.340 (0.065) 0.022

sm40 -0.039 (0.057) 0.051 (0.043) 0.087 (0.033) 0.123

sm45 -0.058 (0.040) 0.019 (0.025) 0.073 (0.021) 0.184

sm46 0.019 (0.027) 0.071 (0.024) 0.053 (0.009) 0.084

sm47 -0.008 (0.037) 0.150 (0.045) 0.157 (0.055) 0.145

sm51 0.055 (0.049) 0.105 (0.045) 0.053 (0.017) 0.190

Over all 0.046 * (0.024) 0.155 * (0.041) 0.116 * (0.028) 0.144*(0.001)

Upper Bound 0.0918 0.2413 0.1757 0.1950

Lower Bound 0.0004 0.0908 0.0730 0.1340

*p<0.0001



Table 3.5 - Pairwise multilocus estimates of 0, p, and Nm considering the
seven populations of S. macrophylla. Calculations of Nm were based on 0, p,
and private alleles methods. 95% confidence intervals for p and Nm(p) are
shown in parenthesis.

Population Comparison Distance
(km)

0(*) pC') (95% CI) Nm [0] Nm [pa] Nm El
(
 *) (95% CI)

Cach.A - Cach.E 8 0.165 0.110(0.090-0.166) 1.26 0.97 2.01 (1.244-2.519)

Cach.A - P.Bueno 17 0.043 0.105 (0.072-0.170) 5.60 2.11 2.13 (1.205-3.170)

Cach.E - P.Bueno 24 0.152 0.074 (0.060-0.130) 1.40 0.96 3.12 (1.677-3.901)

A.Azul - Maraj 107 0.037 0.020 (0.006-0.073) 6.43 1.96 12.45 (3.054-28.075)

P.Lacerda - Cach.E 375 0.081 0.074 (0.044-0.142) 2.83 1.14 3.13 (1.495-5.321)

Cach.A - P.Lacerda 381 0.142 0.078 (0.051-0.140) 1.51 0.70 2.95 (1.526-4.595)

P.Lacerda - P.Bueno 389 0.144 0.111 (0.078-0.176) 1.49 0.73 2.00 (1.148-2.919)

Cach.A - C.Mendes 882 0.148 0.177 (0.132-0.242) 1.44 1.00 1.16 (0.775-1.615)

C.Mendes - Cach.E 884 0.142 0.072 (0.049-0.133) 1.51 0.68 3.23 (1.627-4.736)

C.Mendes - P.Bueno 884 0.133 0.060(0.046-0.110) 1.63 1.30 3.89(2.022-5.136)

P.Lacerda - C.Mendes 1216 0.139 0.115 (0.078-0.185) 1.55 0.81 1.93 (1.096-2.881)

Maraj - P.Lacerda 1258 0.063 0.175 (0.132-0.250) 3.72 1.10 1.18 (0.750-1.625)

A.Azul - P.Lacerda 1307 0.083 0.150 (0.104-0.228) 2.75 0.74 1.41 (0.838-2.122)

Maraj - P.Bueno 1323 0.080 0.155 (0.117-0.227) 2.92 1.17 1.36 (0.851-1.883)

Cach.A - Maraj 1334 0.084 0.136 (0.102-0.197) 2.71 1.38 1.58 (1.010-2.146)

Maraj - Cach.E 1337 0.082 0.088 (0.055-0.154) 2.81 1.72 2.60 (1.357-4.276)

A.Azul - P.Bueno 1342 0.108 0.140 (0.091-0.208) 2.07 0.95 1.55 (0.948-2.466)

A.Azul - Cach.A 1355 0.129 0.117(0.090-0.173) 1.70 1.10 1.88 (1.178-2.529)

A.Azul - Cach.E 1358 0.103 0.104 (0.075-0.170) 2.17 0.95 2.16 (1.218-3.078)

Maraj - C.Mendes 2101 0.130 0.186 (0.152-0.243) 1.73 1.18 1.09 (0.777-1.396)

A.Azul - C.Mendes 2103 0.170 0.223 (0.178-0.291) 1.25 1.10 0.87 (0.608-1.153)

*For all pairwise comparisons of 0, non-adjusted p-values, p<0.001. For corrected p-values
using standard Bonferroni procedure, p<0.05.
**For all pairwise comparisons of p and Nrn[p] p<0.001,except for pair A.Azul X Maraj.,
where p<0.05.



Table 3.6 - Comparison of genetic differentiation estimates based on
AMOVA data in two populations of S. macrophylla using RAPD and
SSR markers. The data show the degrees of freedom, sum of squared
deviation (SSD), mean squared deviation (MSD), variance component
estimate, percentage of total variation contributed by each
component.

Source of variation
	

d.f.	 SSD	 MSD	 Variance	 % Total
components

RAPD
Between populations	 1	 98.15	 98.15	 3.63	 24.66
Within population	 46	 509.87	 11.08	 11.08	 75.34
Total	 47	 608.02	 12.9	 14.71

SSR
Between populations	 1	 18.02	 18.02	 0.30	 8.25
Within population	 94	 318.69	 3.39	 3.39	 91.75
Total	 95	 336.70	 3.54	 3.69

Fs1 (RAPD) = 0.246
Fs-r (SSR) = 0.082
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Figure 3.1 - Range of Swietenia macrophylla in South America and the
locations of the seven populations sampled: (1) Agua Azul, (2)
Marajoara, (3) Pimenta Bueno, (4) Cachoeira Parecis A, (5) Cachoeira
Parecis E, (6) Chico Mendes, and (7) Pontes e Lacerda
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Genescan 500 Rox internal size standard.



Chapter 4

Mating System, Genetic Diversity, and Spatial Genetic

Structure in a Population of Swietenia macrophylla in
the Brazilian Amazon.

INTRODUCTION

The mating system determines how the transition of genotypic

frequencies from one generation to the next occurs in a population

(Ritland, 1988). The classification of the mating system in plants is

based on the genetic relatedness between the male and female

gametes (derived from the pollen and the ovule respectively) in the

newly formed zygotes (Ritland, 1983), and it can be measured as the

proportion of mature seeds resulting from selfing or outcrossing

events (Murawski & Hamrick, 1991). Mating system is an important

factor determining how genetic variation is distributed among

subdivisions of a population and among individuals in those

subpopulations, as well as among progenies and among individuals

within progenies, with a direct impact on the long-term maintenance

of genetic variation in existing populations. The susceptibility of a

population to the loss of genetic diversity and inbreeding depression
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following logging or habitat fragmentation depends, to a considerable

extent, on the characteristics of its mating system.

The pattern of mating in tropical trees is probably very

complex, reflecting the influence of several genetic and ecological

factors such as the demography of adult trees, flowering intensity,

synchronism of flowering phenology among and within individuals,

nature and intensity of the self-incompatibility mechanisms, foraging

behaviour of pollinators, and selective abortion of young fruits.

Although many plant populations and species appear to produce

mixtures of selfing and outcrossing progeny (Barrett 86 Husband,

1990), most tropical trees exhibit morphological and physiological

adaptations which promote outcrossing and prevent or reduce selfing

(Bawa, 1990). As a result, the mating system of the majority of

tropical trees investigated so far using allozymes showed

predominant or complete outcrossing (O'Malley 86 Bawa, 1987;

O'Malley et al., 1988; Murawski et al., 1990; 1994b; 1994b;

Murawski 86 Hamrick, 1991; 1992a; 1992b; Eguiarte et al., 1992;

Alvarez-Buylla 86 Garay, 1994; Hall et al., 1994b; 1996; Boshier et

al., 1995b; Doligez 86 Joly, 1997; James et a/.,1998; Loveless et al.,

1998). Additionally, many studies have shown that the inbreeding of

biparental origin is very low or undetectable among tropical trees

(Eguiarte et al., 1992; Murawski 86 Hamrick, 1992a, 1992b; Hall et

al., 1994b; Boshier et al., 1995b; Doligez 86 Joly, 1997; James et al.,
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1998; Loveless et al., 1998). These findings contrast with previous

ideas stating that autogamy and inbreeding would be favoured in

the widely spaced conspecific tropical forest trees (Fedorov; 1966).

Based on data available so far, only species belonging to the guild of

the fast growing, gap-colonizer tropical trees, with light-requiring

juveniles and adults persistent in the mature forest, as the

bombacaceous Ceiba pentandra and Cavanillesia platanifolia and the

dipterocarp Shorea trapezifolia, exhibit a mixed mating system

(Murawski 86 Hamrick; 1991; 1992a; 1992b; Murawski et al., 1994).

Swietenia macrophylla is the most valuable hardwood species

in the Neotropics. The conservation status of this species has been

the subject of increasing concern due to the over-exploitation by

selective logging and increasing habitat destruction. Despite the high

socio-economic importance of S. macrophylla, information on the

processes maintaining genetic variation in natural populations of this

species is still scarce. In this study, the outcrossing rate and other

mating system parameters were estimated for a population of S.

macrophylla in the Brazilian Amazon using ten highly polymorphic

microsatellite loci. The main aim is to understand how the mating

system may be contributing to shape and maintain the genetic

structure of the population and to infer how the logging and habitat

fragmentation may affect the reproduction of remaining individuals

and the recovering capacity of the population. These findings,
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coupled with information on pollination and seed dispersal

mechanism, may have important implications for the long term

conservation and management of this valuable hardwood species.

MATERIALS AND METHODS

Study site

Field work was conducted in the Marajoara Management

Project (ca. 070 50'S, 500 16W) in the south of Path State, Brazil. The

management area of the project has around 4,100 ha (13 km long by

3.15 km wide) of selectively logged forest sub-divided into 13 plots

with approximately 340 ha (1.08 km by 3.15 km each). Genetic

samples for the present study were only collected from trees in plots

1, 2, and 3, at the eastern half of the project's area. The western half

of the project's area was logged for mahogany in 1985, at an

unknown intensity. Plots 1, 2, and 3, were selectively logged between

1992-1994 by the SEMASA logging company, which harvested 268

mahogany stems, leaving at least 108 standing stems as seed trees

(J. Grogan, personal communication). Therefore, overall stand density

in these three plots was reduced from approximately one tree per 2.7

ha (0.37/ha) to one tree per 9.4 ha (0.11/ha). At the study area, S.

macrophylla is nearly always found at the greatest densities on low

ground, flat areas with poorly drained soils, or along the banks of
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small streams, sharing this habitat with the palm species Orbignya

phalerata and Maximiliana maripa (J. Grogan, personal

communication; M. R. Lemes, personal observation). Mahogany is not

usually found on the denser and taller up-slope or mid-slope forest

communities.

Spatial genetic structure

Twenty-two mapped adult trees on plots 2 and 3 were used to

analyse the spatial genetic structure within the adult population.

Leaves were collected and genomic DNA extracted following standard

CTAB procedure (Doyle 86 Doyle, 1987). All trees were genotyped at

ten microsatellite loci combined in multiplexed fluorescence-based

systems developed for S. macrophylla (Chapter 2). PCR conditions

were as described in Chapter 2. PCR products were electrophoresed

in 5% polyacrylamide gel in a ABI Prism 377 sequencer and analysed

using Genescan and Genotyper programs (ABI, 1993; 1994).

Mating system analysis

Seeds and leaves were collected from 25 adult trees in the

study area. Seeds from a given family were sampled from the same

capsule and germinated in a greenhouse. For the polymorphism

assay and estimates of mating system parameters, genomic DNA was

extracted from the leaves of 400 seedlings of 25 open-pollinated
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families (16 seedlings/family) and the 25 maternal trees using

conventional CTAB procedure (Doyle 86 Doyle, 1987). All seedlings

and mother trees were genotyped at ten microsatellite loci as

described above.

Data analysis

The occurrence of spatial genetic structuring was tested by a

pairwise correlation analysis between the spatial distance and the

number of alleles in common among the trees. A given pair of trees

could share 0, 1 or 2 alleles per locus, or 0 to 20 when considering

the 10 SSR loci together. Thus, a positive correlation coefficient

would be expected if the related individuals (i.e., trees bearing a

higher number of alleles in common) are spatially closer than

unrelated ones.

The inbreeding coefficient (f) for each locus for the parent and

seedling generations was calculated by the formula f = 1 - (Ho/He),

where Ho is the observed proportion of heterozygotes and He is the

expected heterozygosity in Hardy-Weinberg equilibrium. Deviations

(excess or deficiency) of heterozygotes from the Hardy-Weinberg

proportions were tested for adults and seedlings by calculating the U-

test (Raymond 86 Rousset, 1998) and the inbreeding coefficient (Weir

86 Cockerham, 1984) using Genepop version 3.1.b program (Raymond
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86 Rousset, 1998). Estimation of exact-P values was determined by

the Markov chain method (Guo &Thompson, 1992).

Mating system analysis was based on the mixed mating model of

Ritland 86 Jain (1981) by using the multilocus mating system program

MLTR (Ritland, 1996). The MLTR program only allows the analysis of

up to eight alleles. When the number of alleles exceeded eight, the

alleles were sorted by frequency and the following criteria were applied

to pool the alleles into the eight allelic classes allowed by MLTR: allelic

classes from 1 to 6 were represented respectively by the alleles with 1st

to 6th higher frequencies in the locus; allelic class 7 by the 7 th and 8th

alleles pooled, and allelic class 8 by the remaining alleles pooled.

MLTR estimation method is based upon the maximum-

likelihood procedure (Ritland 86 Jain, 1981; Ritland 86 El-Kassaby,

1988). The expectation-maximization method was used for maximizing

the likelihood equation for both population and individual family

estimates. The MLTR program estimated the following mating system

parameters: multilocus outcrossing rate (ti.), minimum variance single

locus outcrossing rate (ts), average single locus inbreeding coefficient of

maternal parents (f), correlation of outcrossing rate within progeny

arrays (rt), correlation of outcrossed paternity within progeny arrays

(rp), and gene frequencies of the pollen and ovule pools (p). The

correlated mating system estimates (rp and rt) were based on the

progeny-pair model (Ritland, 1989). The variances were estimated



Chapter 4: Mating System of S. macrophylla 	 101

based on 1000 bootstraps re-sampled within progeny arrays, in the

case of population estimates, and individuals within progeny arrays, in

the case of individual family estimation.

The chi-square test for goodness of fit of progeny frequencies to

expectations proposed by Ritland (1983), present in MLT, was omitted

from MLTR due to the ambiguous results generated (MLTR readme file,

Ritland, 1996). If a high number of polymorphic loci are used in the

analysis, like the present study, the multilocus estimates tend to be

robust and the violations of the assumptions of the mixed-mating

system model have a minor impact in the estimates of the mating

system parameters.

The detected outcrossing rate (td) estimate for a given fruit was

obtained by dividing the number of detected ('unambiguous')

outcrossing progenies by the total number of progeny genotypes in

that fruit. The presence of an allele in a progeny genotype that was not

present in the maternal tree indicated that this progeny

unambiguously resulted from an outcross event (Shaw et al. 1981).

RESULTS

Genetic variation in adults and seeds

Nearly all 25 adult trees and 400 offspring were genotyped for

the 10 SSR loci developed for S. macrophylla. All offspring individuals
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displayed at least one maternal allele, suggesting Mendelian

inheritance and showing no evidence of null alleles in this

population. The pattern of segregation in the open-pollinated progeny

of the tree 66 (mother tree and six sibs) at locus sm01 is shown in

Fig. 4.1.

Data on number of alleles, heterozygosity and inbreeding

coefficient per locus for the adult and seedling cohorts are shown in

Tab. 4.1. The number of alleles per locus ranged from 4 to 13

(average 9.4) among the seed parents and from 8 to 21 (average 15.3)

among the seedlings. Heterozygozity, or the expected proportion of

heterozygous individuals under the Hardy-Weinberg equilibrium, was

very similar (H 0.80) in the adult and offspring stages. No excess of

heterozygotes (i.e., f significantly negative) was found among

seedlings or adults for any of the 10 loci. The inbreeding coefficient of

nine out of 10 loci were significantly positive for seedlings, suggesting

an excess of homozygous individuals at this stage, whereas only three

loci showed significant positive departures from the Hardy-Weinberg

proportions, for adults. Over all loci, the inbreeding coefficient was

significantly positive for adults and seedlings, pointing out an overall

heterozygote deficiency for both stages if the sampled population is

considered to be a single panmictic unit. The inbreeding coefficient in

seedlings was slightly higher than in adults (f = 0.109 and 0.076
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respectively) suggesting no (or weak) selection favouring

heterozygotes from seed to the adult stage.

Spatial genetic structure

Spatial distance and number of alleles in common among the 22

trees (231 pair combinations) had a range of 29-2,889 m and 0-10

alleles respectively (Fig. 4.2). No significant correlation was found

between distance and number of alleles in common (r = -0.0115, P =

0.862) indicating that the spatial distribution of adult genotypes could

not be distinguished from a random one at least on the scale of the

sampled area. Even pairs of trees more highly related genetically (e.g.

those trees exhibiting 8 to 10 alleles in common) were not

systematically associated with short distance between them.

Mating system

Estimates of multilocus (tm) and single locus (ts) outcrossing rates

using 10 SSR loci (Tab. 4.2) suggest that S. macrophylla is a

predominantly outcrossed species (tm = 0.958 ± 0.025; mean ts = 0.819

± 0.025). The values of ts for each locus were consistently lower than tm,

except for the locus sm31. The large difference between the multilocus

and single locus estimates (tm - ts = 0.139 ± 0.029) provides evidence

that, in spite of the high outcrossing rate, a considerable inbreeding of

biparental origin (caused by correlated or 'consanguineous' matings)
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contributed to the genetic structure of this population. The correlation

of outcrossed paternity within the progeny arrays was relatively high

and had low variance (multilocus rp = 0.555, range 0.428-0.660),

indicating that the probability of a randomly chosen pair of progeny

from the same capsule being full sibs is slightly higher than 50%.

Multilocus outcrossing rates for individual trees varied from 0.38

to 1.00 (Tab. 4.3). The inbreeding in the population was concentrated

mainly in two trees (trees 3 and 18, tm = 0.68 and 0.38 respectively)

whereas the remaining trees were highly or totally outcrossed.

Genotypic data analysis from the progeny arrays found that 377

seedlings (94% of the total) unambiguously resulted from outcrossed

matings, exhibiting at least one locus with a different allele from those

present in the maternal parent. The remaining 23 seedlings had

genotypes consistent with a self-fertilization origin, but may also result

from outcrossing to an individual having a similar genotype (cryptic

outcrossing). The detected outcrossing in maternal trees 3 and 18 was

also relatively low (td = 0.44 and 0.38 respectively). The mean family

estimate of detected outcrossings (t d = 0.94) was similar to the value

obtained for the population multilocus estimate (tm = 0.958). Values of

td and tm family estimates were strongly correlated (r = 0.979, P =

0.0002, N = 25). Apomixis was ruled out in this population of S.

macrophylla since none of the 400 seedlings had multilocus genotype

identical to its mother tree.
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DISCUSSION

Genetic diversity in adults and seeds

An excess of heterozygotes has been commonly reported for

natural populations of temperate trees (Bush 86 Smouse, 1992) and

for some tropical trees (Eguiarte et al., 1991; Doligez 86 Joly, 1996),

whereas a significant excess of homozygotes among adult trees has

been rarely found (but see White et al., 1999; Gibson 86 Wheelwright,

1995). The excess of homozygous seeds in S. macrophylla for a high

proportion of the loci, despite a high outcrossing rate, is likely to have

arisen via self-fertilization in a few individuals and/or

consanguineous matings (see below). This homozygote excess

suggests some level of self-compatibility and/or weak selection

against the homozygous zygote genotypes. The slightly higher

inbreeding coefficient in seeds than in adults could also be a

reflection of an increase in the selfing rate produced in the population

subsequent to logging, but further evidence is necessary for this

conclusion, since no pre-logging estimate is available.

The inbreeding coefficient found in the adult cohort (f = 0.076)

is considerably higher than that expected if the inbreeding was only

due to selfing (feq = 1 - t / 1 + t = 0.021), suggesting that population

has not reached inbreeding equilibrium. The high proportion of
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homozygous genotypes in the adult stage, although less than in the

seed generation, also suggests that selection against inbred seedlings

and juveniles, if any, seems not to be strong enough to totally

overcome the excessive production of homozygous seeds by maternal

trees. The Wahlund effect, which is a sampling error showing

deficiency of heterozygotes relative to the Hardy-Weinberg

expectations owing to undetected population subdivision, seems not

to be the main reason for the heterozygote deficit, since no spatial

genetic structuring was found on the scale of the area studied. The

presence of null alleles has been detected in microsatellite markers

and has also been cited as a possible cause for the deficiency of

heterozygotes (Jarne 86 Lagoda, 1996). As no mismatches between

progeny and maternal tree were detected for the 10 microsatellite loci

assayed among the 25 families, it is unlikely that null alleles had any

influence in the estimate of the proportion of homozygotes in the

Marajoara population.

The clumped distribution of mahogany trees probably reflects

the species adaptation for colonizing new open areas resulting from

large hydrological disturbances, fires, or blow-downs (Gullison et al.,

1996). Mahogany populations established in new areas are likely to

have experienced demographic bottlenecks due to the putative small

number of founders. Previous theories predict that after demographic

bottlenecks and/or prolonged inbreeding, most of the recessive
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deleterious mutations would be exposed to selection and purged from

the inbred populations, reducing the genetic load (Lande 86 Schemske,

1985; Uyenoyama, 1986). Therefore, a plausible explanation for the

current excess of homozygous trees and the putative weak selection

against homozygotes observed for this population of S. macrophylla

may be that individuals with lower levels of recessive detrimental or

lethal mutations (consequently, with more tolerance for selling) had

adaptive advantages during the sporadic colonization events.

It is noteworthy that other species of mahogany from Central

America, S. humilis, with similar life history traits, also exhibited a

significant deficit of heterozygotes among adult trees (White et al.,

1999). Ocotea tenera (Lauraceae), a gap colonist tree, also exhibited a

heterozygote deficiency in Costa Rica (Gibson 86 Wheelwright, 1995). In

contrast, populations of two other Meliaceae species, Carapa procera

and C. guianensis, with distinct life history traits (animal-dispersed

seeds, shade tolerant juveniles with mid-story regeneration) showed no

departure from Hardy-Weinberg genotypic proportion (Hall et al.,

1994b; Doligez 86 Joly, 1996; Dayanandan et al., 1999).

Spatial distribution of genotypes

Based on the relatively short distance pollination and seed

dispersal mechanisms one would predict that some spatial pattern

could be found in the distribution of maternal tree genotypes, as a
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result of a within-population isolation by distance process. Several

other factors which are not mutually exclusive may explain the lack

of genetic structure found among adults of S. macrophylla in the

Marajoara population, such as: (1) the predominance of outcrossing

in most trees combined with an asynchrony between male and female

flower maturation and among individual flowering periods are likely

to allow mating between trees from different neighbouring areas; (2)

dispersal of small pollinator insects can be wind-mediated (Nason et

al., 1996; Byrne et al., 1988) promoting pollen flow at distances long

enough to blur the structure existing in the founding population after

a few generations; (3) distances of the established saplings and

juveniles from the maternal tree may be larger than those

experimentally detected by Gullison et al. (1996) for seed dispersal

(mean of 32-36m), due to factors such as lower availiability of

suitable sites or higher seed predation in the vicinity of the fruiting

adult, contributing to the erosion of the original spatial structure; (4)

multiple founder or distinct colonization events could shape complex

genetic structures which are currently indistinguishable from a

random pattern.

On the other hand, it is also possible that some weak spatial

structure was present at the Marajoara adult population, but it could

not be detected because of the small number of genotyped trees

(around 6% of the trees originally present in the stand) used in the
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pairwise analysis. Thus, further work genotyping a higher proportion

of trees in the stand would be necessary to produce a finer scale view

of the genotypic distribution in this population. Using less

polymorphic isozyme markers, Doligez 86 Joly (1996) also found no

spatial pattern in established individuals of another Meliaceae

species, Carapa procera, in French Guiana. Similarly, Hamrick et al.

(1993) did not find any clear pattern of genotypic distribution in

adults of Platypodium elegans and Alseis blackiana, both species, like

S. macrophylla, pollinated by small insects and wind-dispersed. In

contrast, other neotropical tree species such as Cordia alliodora

(Boshier et al., 1995b), Ocotea tenera (Gibson 85 Wheelwright, 1995),

and Swartzia simplex (Hamrick et al., 1993) exhibited significant

spatial genetic structure in adults. In sum, it is still difficult to

predict which and how ecological and historical factors determine the

degree of genetic structure and shape the genetic architecture within

adult populations of tropical trees.

Mating system

There is no other study on the mating system of tropical trees

using microsatellite markers to make comparisons with the data

presented here for S. macrophylla. The high outcrossing estimate for

23 out of 25 trees points out that most individuals of S. macrophylla

in the Marajoara population are completely or predominantly
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outcrossed. High estimates of outcrossing rate have also been

reported for the majority of the rain forest tree species in the

neotropics investigated so far using isozyme markers (O'Malley 86

Bawa, 1987; O'Malley et al., 1988; Murawski et al., 1990; Murawski

86 Hamrick, 1991; Eguiarte et al., 1992; Alvarez-Buylla 86 Garay,

1994; Hall et al., 1994b; Boshier et al., 1995b; Doligez 86 Joly, 1997;

James et al. 1998; Loveless et al., 1998). The multilocus outcrossing

estimate found here for S. macrophylla using microsatellites (tm =

0.958) was similar to the ones recorded for the Meliaceae species

Cedrela odorata (tm = 0.969) and Carapa guianensis (tm = 0.967 and

0.986) in Costa Rica (James et al., 1998; Hall et al., 1994b), but

considerably higher than the one found for Carapa procera (tm =

0.78) in French Guiana (Doligez Joly, 1997), using isozymes.

Multilocus outcrossing rates (tm) estimated among families were

not evenly distributed among maternal trees. It was as high as 1.0 or

as low as 0.38, implying that the degree of self-incompatibility, or the

level of dichogamy, may be variable among individuals. A wide range

in individual outcrossing rates have also been observed in other

neotropical tree species, such as Ceiba pentandra and Cavallinesia

platanifolia (Murawski 86 Hamrick, 1992.; 1992b; Murawski et al.,

1990). These two bombacaceous species are, like S. macrophylla,

early successional trees that colonize large gaps, with light-requiring

juveniles and the long life cycle individuals persisting in the mature
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forest as emergent trees. The ability to reproduce by selfing may be

advantageous for tree species that disperse seeds into spatially and

temporally unpredictable environments (Murawski et al., 1994) such

as open areas formed by tree-fall gaps, blow-downs or landslides.

Data on the mating system of S. macrophylla, C. pentandra, and C.

platanifolia suggest that tropical trees belonging to this ecological

class probably have plastic mating systems which permit that even

single individuals will eventually set seeds when colonizing large

gaps.

Evidence of inbred matings in the Marajoara population was

given by the significant excess of homozygote seeds (f = 0.11) and by

the considerable biparental inbreeding denoted by the difference

between the multilocus and the mean singlelocus estimate of

outcrossing rate (tm - ts = 0.14). Both mating parameters suggest that

gametes are not uniting totally at random from adults to seed

generations probably due to factors such as self-fertilization and/or

'consanguineous' mating (Ritland &Jain, 1981).

Given that S. macrophylla is a monoecious species, self-

pollination is potentially possible. Monoecism enhances outbreeding

but does not necessarily ensure outbreeding as effectively as dioecism

or as an efficient self-incompatibility mechanism. Although temporal

separation between maturation of male and female flowers has been

cited in the Meliaceae at inflorescence level (Styles, 1971), it is
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probable that some overlapping of flowering times of the two sexes

may occur on individual trees, allowing self-pollination. The relatively

high biparental inbreeding denoted by the tm - ts estimates is an

intriguing point, since no spatial genetic structure among adults was

found within the population. It could, however, be explained if the

assortative mating would instead reflect the existence of a higher

overlapping in the flowering phenology between genetically related

individuals, as suggested for Carapa procera (Doligez & Joly, 1996).

The genetic relatedness between pairs of progeny sampled from

the same capsule was strongly positive and did not differ significantly

among capsules (correlation of outcrossing paternity rp = 0.555,

ranging from 0.428 to 0.660), suggesting that pollen loads were

composed of pollen from a small number of sources. In consequence,

individual flowers were fertilized by few, probably from one to three,

pollen donors. A decrease in rp, however, would be expected if the sib-

pairs were sampled from different capsules on the same tree, since

these capsules were likely to be derived from flowers pollinated on

different days.

Measures of outcrossing based on the number of detected

outcrossers provide a reliable and useful indication of the minimum

number of outcrossed progeny (Shaw et al., 1981; Brown et al.,

1985), despite the simplistic approach. When a large number of

highly polymorphic loci are used, as in the current study of S.
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macrophylla, it is likely that the detected outcrossing represents a

close estimate of the actual outcrossing. Owing to the high exclusion

probability (Weir, 1996) of the ten microsatellite loci used here (P >

0.9999), the fraction of undetected (cryptic) outcross progeny was

probably very low. This is likely to be the main reason for the strong

correlation found between tm and td among families. Consequently,

the estimated selfing rate (s = 1 - tm = 4.2%) in this study probably

represents principally matings resulting from self-fertilization. The

unique family discrepancy found, the considerably higher tm than Li

in tree 3 (0.63 versus 0.44), was probably caused by the high allele

frequencies of this maternal tree in the pollen pool, which inflate the

estimates of the expected proportion of undetected outcross events

(Cruzan et al. 1994; Brown et al., 1985; Shaw et al., 1981).

Overall, this population of S. macrophylla seems to have

adaptations that preferentially produce outcrossed progeny but also

allow for selfing. Around 80% of maternal trees had 100% of the

seeds in the sampled fruit resulting from outcrossing. Despite the

high outcrossing, the potential for inbreeding in this population was

not negligible. For some families the estimated and detected

outcrossing rate was lower, suggesting the occurrence of variable

degrees of self-incompatibility or different levels of dichogamy among

individuals. In the Marajoara population, around 4-6 % of the seeds

probably originated by self-fertilization, whereas the difference
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between tm and ts suggested that nearly 14% were derived from

biparental inbreeding due to correlated or 'consanguineous' mating.

The origin of the biparental inbreeding exhibited by the trees in the

Marajoara population is still unclear since no spatial genetic

structuring was found among adults. A possible explanation may be

a temporal genetic structuring caused by a higher flowering

synchrony among genetically related trees, but further studies

comparing flowering phenologies and demographic genetics are

necessary to test for this hypothesis.

The findings described above on the mating system of S.

macrophylla have some consequences for its conservation biology.

Owing to its generalist pollination system and some level of tolerance

for selling, S. macrophylla seems to be very resilient to environmental

disturbances, setting fruits and seeds even at low densities of adult

trees. Although the effect of logging on the seed output is still an

unanswered question, the remaining trees in the Marajoara

population have maintained their capacity of annually setting fruits

with predominantly outcrossed seeds, even in an intensively logged

area, where tree density dropped to less than 30% of the one

originally found. In fact, fruit- and seed-setting in S. macrophylla has

been observed in anthropic landscapes located outside of its

distribution range, as in the urban areas of Brasilia, in Central
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Brazil, and Manaus, in Central Amazon (M. R. Lemes, pers.

observation).

Despite the observed high genetic diversity within populations,

this species seems to have the ability to cope with some levels of

inbreeding, as suggested by the excess of homozygotes found among

adult trees and by the significant proportion of selfed offsprings in

some progeny arrays. These traits, likely reflecting the gap-colonist

life history of S. macrophylla, suggest that population reductions due

to logging and fragmentation may not seriously affect the

reproductive potential of all remaining individuals, as occurs with

most tropical rain forest tree species, which probably kept high

genetic loads (Alvarez-Buylla et al., 1996). Moreover, since the pollen

and seed vectors of S. macrophylla, widespread small generalist

insects and wind respectively, are most likely not affected by logging

activities, the pollination and dispersal capabilities persist even in

these already exploited, disturbed areas.

In conclusion, many of the remaining trees in logged areas and

relict fragments may persist as viable individuals . and would be very

important in the future for long term population recovery and genetic

conservation programmes. Therefore, intensive logging followed by

the replacement of the forest habitat by pastures and extensive

plantations, as has been occurring at alarming rates throughout the

Brazilian Amazon, seems to be the main short term threat for the
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maintenance of S. macrophylla populations. On the other hand, low

intensive logging management projects, leaving a proportion of

reproductive trees, followed by economic activities which conserve the

remaining arboreal covering (e. g. extraction of non-timber forest

products, agroforestry) may represent the best strategy for combining

conservation and economic usage of the Brazilian mahogany in areas

with increasing human pressure. Additionally, initiatives for the

establishment of new public and private reserves and protected areas

are urgently necessary for the genetic conservation of the Brazilian

mahogany and of many other highly threatened valuable tropical tree

species.



Table 4.1 - Heterozygosity (H) and coefficient of inbreeding (1) of
the adult trees and offsprings for ten microsatellite loci of
Swietenia macrophylla at Marajoara area.

Locus Generation N No. H f
alleles

sm01 parents 25 13 0.904 -0.018'
offspring 393 17 0.903 0.079**

sm22 parents 25 9 0.826 0.13 l ns

offspring 398 17 0.724 0.120*

sm31 parents 25 13 0.914 0.083*
offspring 398 19 0.911 0.018***

sm32 parents 25 10 0.899 0.021'
offspring 396 14 0.892 0.071**

sm34 parents 25 10 0.775 0.333**
offspring 387 21 0.782 0•435***

sm40 parents 25 10 0.749 -0.125'
offspring 394 14 0.786 0.099***

sm45 parents 24 10 0.881 -0.090"
offspring 393 18 0.896 -0.011'

sm46 parents 25 8 0.834 0.091'
offspring 392 11 0.823 0.095*

sm47 parents 25 4 0.494 0.275***
offspring 393 8 0.465 0.200***

sm51 parents 25 7 0.722 0.171"
offspring 396 14 0.723 0.064***

Over all loci parents 9.4 0.799 0.076***
offspring 15.3 0.800 0.109***

Significance levels as: ns P> 0.05, * P < 0.05, ** P < 0.01, *** P < 0.001



Table 4.2 - Singlelocus (ts) and multilocus (tin) outcrossing rate
estimates, index of correlated matings (rp), and maximum likelihood
estimates of ovule and pollen frequency of the most common allele of S.
macrophylla in Marajoara area. Standard deviations are shown in
parentheses.

Locus ts rP ovule pollen

sm01 0.876 (0.076) 0.640 (0.094) 0.200 (0.065) 0.161 (0.049)

sm22 0.721 (0.077) 0.449 (0.085) 0.220 (0.060) 0.291 (0.060)

sm31 0.982 (0.026) 0.428 (0.067) 0.220 (0.052) 0.229 (0.042)

sm32 0.822 (0.065) 0.499 (0.081) 0.180 (0.051) 0.077 (0.027)

sm34 0.291 (0.057) 0.660 (0.093) 0.320 (0.083) 0.086 (0.068)

sm40 0.724 (0.105) 0.618 (0.135) 0.400 (0.060) 0.327 (0.066)

sm45 0.908 (0.053) 0.475 (0.083) 0.240 (0.047) 0.055 (0.021)

sm46 0.852 (0.080) 0.579 (0.077) 0.280 (0.074) 0.233 (0.060)

sm47 0.537 (0.183) 0.515 (0.079) 0.667 (0.050) 0.697 (0.142)

sm51 0.891 (0.069) 0.492 (0.121) 0.373 (0.073) 0.433 (0.055)

average ts = 0.819 (0.046)

multilocus tm = 0.958 (0.025) rp = 0.555 (0.050)

tm - ts = 0.139 (0.029)



Table 4.3 - Number of unambiguous outcrossed seedlings and
estimates of outcrossing rate (t.) for 25 families of Swietenia
macrophylla in the Marajoara area.

Tree	 No. of	 No. of unambiguous	 Outcrossing rate
seedlings	 crossed seedlings (%)	 (± SE) 

1 16 16(100) 1.00 (0.00)
2 16 16 (100) 1.00 (0.00)
3 16 7(43.75) 0.63 (0.13)
4 16 16 (100) 1.00 (0.00)
5 16 16 (100) 1.00 (0.00)
6 16 15 (93.75) 0.94 (0.06)
7 16 16 (100) 1.00 (0.00)
8 16 16 (100) 1.00 (0.00)
9 16 16 (100) 1.00 (0.00)

10 16 16(100) 1.00 (0.00)
11 16 16(100) 1.00 (0.00)
12 16 16(100) 1.00 (0.00)
13 16 16(100) 1.00 (0.00)
14 16 16 (100) 1.00 (0.00)
15 16 14 (87.50) 0.88 (0.09)
16 16 16 (100) 1.00 (0.00)
17 16 16 (100) 1.00 (0.00)
18 16 6 (37.50) 0.38 (0.13)
19 16 16 (100) 1.00 (0.00)
20 16 16 (100) 1.00 (0.00)
21 16 15 (93.75) 0.94 (0.06)
22 16 16 (100) 1.00 (0.00)
23 16 16 (100) 1.00 (0.00)
24 16 16 (100) 1.00 (0.00)
25 16 16 (100) 1.00 (0.00)
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pollinated progeny of the tree 66 (mother and 6 sibs) using fluorescence-based
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fragment sizes in base pairs. The scale at the right indicates fluorescence
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Chapter 5

Concluding Remarks

1. This study revealed the presence of (AG) microsatellite loci in the

Swietenia macrophylla genome. The set of ten highly polymorphic

microsatellite markers developed and characterized for S.

macrophylla constitutes a very useful tool for the understanding of

the levels and distribution of genetic variation which is crucial for

effective conservation genetics programmes and management of

natural populations of this species.

2. Using an enriched genomic library and anchored-PCR screening

prior to sequencing, the efficiency of micro satellite marker locus

development for S. macrophylla, from data sequencing to

operationally useful SSR loci, was 29%, a high value compared to

other tropical tree studies.

3. The three high throughput semi-automated multilocus genotyping

systems based on fluorescent labelled multiplexed microsatellite

loci developed for this species allowed a large-scale analysis of

natural populations. The number of alleles per locus ranged from

11 to 25 with a mean value of 15.7 and expected heterozygosity

varied from 0.72 to 0.91 (mean = 0.84). These values are amongst

the highest ones found for tropical tree species.
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4. The probability of genetic identity over all loci was 7 x 10- 15 and

the combined probability of paternity exclusion was 0.999998,

indicating the high discriminating power of these genotyping

systems for genetic relatedness studies. All microsatellite loci

showed Mendelian inheritance and segregation in open-pollinated

families.

5. The multilocus values of genetic differentiation (0 = 0.12 and p =

0.14, P<0.0001) indicate a moderate but significant degree of

differentiation among populations of S. macrophylla in the

Brazilian Amazon, which is in accordance with the tendency

observed for most tropical tree species. Since S. macrophylla is a

gap-colonist tree, the level of population differentiation would be

inflated by historical factors which enhance inbreeding and drift

such as population bottlenecks and founder effects. The short

distance pollination and seed dispersal systems probably also

have contributed to the genetic isolation and differentiation among

populations.

6. The inbreeding coefficient (f) was positive for all populations and

the mean overall value of f (0.046, P<0.0001) was low but

significantly different from zero. The heterozygote deficit detected

in the overall population probably resulted from population

substructuring and some level of inbreeding.
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7. Tests of isolation by distance revealed that there was no positive

pairwise correlation between geographic distance and genetic

differentiation among populations, estimated by either 0 or p. The

indirect estimates of gene flow obtained using different statistics

derived from 0 , p, and calculated by the private alleles were in

agreement (mean Nm = 1.8 ). This value seems not to be high

enough to totally override the effects of drift, resulting in a

moderate level of differentiation among populations of S.

macrophylla.

8. The hierarchical analysis of the genetic structure based on

analysis of molecular variance (AMOVA) using dominant RAPD

markers was congruent with AMOVA data using co-dominant

microsatellite loci for the same individuals. Most of the genetic

variation was detected within rather than between populations

suggesting the existence of significant structuring of the genetic

variation in S. macrophylla populations. These results are

expected for a species with a patchy distribution such as

mahogany.

9. Conservation strategies for mahogany in the Brazilian Amazon

should take into account the existence of important genetic

structuring of populations throughout its geographical range. This

population differentiation leads to the need to conserve a

representative number of populations with a relatively large
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number of individuals per population, since most of the genetic

variability occurs within populations.

10.Genetic differentiation seems not to be necessarily correlated with

geographic distance, since populations of S. macrophylla only 8-15

km apart can exhibit a high level of differentiation if physical

barriers prevent gene flow among them. The occurrence of such

microgeographical differentiation emphasizes the importance of

maintaining populations in their diverse habitats, especially in

areas with a mosaic of topography and soils.

11. Swietenia macrophylla seems to have adaptations that

preferentially produce outcrossed progeny but also allow for

selfing. The high estimate of the multi-locus outcrossing rate (tm =

0.958 ± 0.025) for the 25 trees of the Marajoara population using

10 SSR loci indicates that S. macrophylla is a predominantly

allogamous species.

12.Levels of outcrossing were not evenly distributed among maternal

trees, ranging from 0.38 to 1.00. The inbreeding in the sampled

population was concentrated mainly in two trees which exhibited

tin values of 0.68 and 0.38 respectively, whereas the remaining 23

trees were highly or totally outcrossed. These data suggest the

occurrence of a variable degree of self-incompatibility and/or

dichogamy among individual trees of S. macrophylla. The ability to
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cope with some levels of inbreeding is likely to be a reflection of

the gap-colonist life history of S. macrophylla.

13.Genotypic data analysis from the progeny arrays found that 94%

of the seedlings in the sampled population were unambiguously

resulted from outcrossed matings. The remaining 23 seedlings had

genotypes consistent with a self-fertilization origin. Apomixis was

ruled out since none of the 400 seedlings had a multilocus

genotype identical to its mother tree.

14.The large difference between the multi-locus and single-locus

outcrossing estimates (tm - ts = 0.139 ± 0.029) provides evidences

that, in spite of the high out-crossing rate, a considerable

inbreeding of biparental origin has contributed to the genetic

structure of this population. Although spatial genetic structure

among adults was not detected, the relatively high biparental

inbreeding denoted by the tm - ts estimates could be explained if

the assortative mating would reflect the existence of a higher

overlapping in the flowering phenology among genetically related

individuals.

15.The genetic relatedness between pairs of progeny sampled from

the same capsule was strongly positive and did not differ

significantly among capsules (correlation of outcrossing paternity

rp = 0.555, range 0.428-0.660), suggesting that pollen loads were

composed of pollen from a small number of sources. In
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consequence, the probability of a randomly chosen pair of progeny

from the same capsule being full sibs is slightly higher than 50%

and individual flowers were likely to have been fertilised by only 1-

3 pollen donors.

16.Despite a high outcrossing rate, S. macrophylla exhibited an

excess of homozygous individuals in the seed and adult cohorts

for a high proportion of loci. The excess of homozygotes among

seeds is likely to have arisen via self-fertilization in the few self-

compatible trees or by consanguineous' matings. Given that S.

macrophylla is a monoecious species, self-pollination is potentially

possible. Historical factors related with the gap-colonizer life

strategy of S. macrophylla, such as founder effects and population

bottlenecks, are likely to have exposed populations for prolonged

inbreeding and also contributed to the observed homozygote

excess in the current adult generation.

17.Due to its generalist pollination system and some level of tolerance

for selfing, S. macrophylla seems to be resilient to environmental

disturbances such as those caused by logging, setting fruits and

seeds even at low densities of adult trees. Therefore, the remaining

individuals in logged areas or in relict fragments may be very

important for long term population recovery and genetic

conservation programmes.
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The knowledge of the levels and distribution of genetic variation

is of fundamental importance for the establishment of effective and

efficient conservation strategies for tropical tree species under intense

human pressure such as Swietenia macrophylla. The high genetic

diversity detected within populations and the existence of significant

structuring of S. macrophylla populations along the Brazilian

Amazon, found in the current study, indicate the urgent need for

conservation of multiple populations along the distribution range,

with a relatively large number of individuals per population to ensure

that allelic and genotypic diversity will be maintained in S.

macrophylla populations.

Another important factor in designing an effective management

strategy for an endangered tree species should be the determination

of its breeding system. (Hamrick et al., 1991). The high multilocus

outcrossing rate (tin = 0.958) estimated for one population in this

study, indicated that, although there was a prevalence of outcrossing,

selfing was not negligible. Owing to the species pre-adaptation to

colonize newly open, disturbed habitats, many of the remaining trees

in logged areas may persist as viable individuals which could be very

important for population recovery and genetic conservation

programmes. Therefore, intensive logging followed by the replacement

of the forest habitat by pastures and extensive plantations, as has

been occurring at alarming rates throughout the Brazilian Amazon,
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seems to be the main short term threat for the maintenance of S.

macrophylla populations, because pollen and seeds dispersal

mechanisms can not occur over long distances.

Initiatives for the establishment of new public and private

reserves and protected areas are urgently necessary for the genetic

conservation of the Brazilian mahogany and of many other highly

threatened valuable tropical tree species.
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Appendix I. Allelic frequencies for ten microsatellite markers in seven
populations of S. macrophylla. Mean observed and expected
heterozigosities , Ho and He, are listed for each population and each
locus and also mean expected heterozygosity over all populations for
each locus. Private (rare) alleles are present in bold.

Locus Allele size A. Azul Cach.A Maraj P.Lacerda C.Mendes Cach. E P.Bueno Mean He
(bp) 

	

sm01 261	 0.000	 0.453	 0.040 0.000	 0.000	 0.000	 0.563

	

263	 0.222	 0.000	 0.160 0.478	 0.882	 0.417	 0.021

	

265	 0.000	 0.047	 0.000 0.022	 0.015	 0.000	 0.042

	

267	 0.000	 0.000	 0.000	 0.000	 0.000	 0.104	 0.188

	

269	 0.056	 0.063	 0.000 0.022	 0.000	 0.000	 0.042

	

271	 0.000	 0.000	 0.020 0.022	 0.000	 0.063	 0.000

	

273	 0.093	 0.000	 0.100 0.000	 0.000	 0.000	 0.000

	

275	 0.056	 0.016	 0.040 0.000	 0.000	 0.021	 0.042

	

277	 0.037	 0.000	 0.180 0.000	 0.029	 0.042	 0.000

	

279	 0.185	 0.078	 0.040 0.043	 0.000	 0.000	 0.000

	

281	 0.056	 0.000	 0.000 0.043	 0.000	 0.042	 0.000

	

283	 0.019	 0.047	 0.100 0.000	 0.000	 0.000	 0.042

	

285	 0.074	 0.172	 0.060 0.043	 0.029	 0.063	 0.021

	

287	 0.167	 0.047	 0.140	 0.152	 0.029	 0.125	 0.042

	

289	 0.019	 0.063	 0.020 0.022	 0.000	 0.021	 0.000

	

291	 0.000	 0.016	 0.080	 0.087	 0.000	 0.083	 0.000

	

293	 0.000	 0.000	 0.020 0.065	 0.015	 0.021	 0.000

	

295	 0.019	 0.000	 0.000 0.000	 0.000	 0.000	 0.000

	

Ho	 0.815	 0.781	 0.920	 0.875	 0.235	 0.792	 0.458

	

He	0.879	 0.756	 0.904	 0.740	 0.222	 0.800	 0.652	 0.702 

	

s m22 119	 0.019	 0.000	 0.000	 0.000	 0.000	 0.063	 0.000

	

121	 0.000	 0.000	 0.000 0.000	 0.000	 0.000	 0.021

	

125	 0.000	 0.000	 0.000 0.000	 0.044	 0.000	 0.000

	

129	 0.000	 0.000	 0.040 0.000	 0.000	 0.104	 0.000

	

131	 0.000	 0.016	 0.020	 0.000	 0.000	 0.000	 0.188

	

135	 0.000	 0.000	 0.000 0.000	 0.015	 0.063	 0.000

	

137	 0.000	 0.031	 0.220	 0.273	 0.029	 0.167	 0.063

	

139	 0.352	 0.156	 0.140	 0.205	 0.309	 0.000	 0.354

	

141	 0.019	 0.000	 0.000	 0.091	 0.206	 0.000	 0.000

	

143	 0.000	 0.000	 0.020 0.000	 0.206	 0.000	 0.000

	

145	 0.000	 0.000	 0.000 0.000	 0.029	 0.000	 0.021

	

147	 0.000	 0.031	 0.100	 0.068	 0.015	 0.092	 0.000

	

149	 0.333	 0.672	 0.300	 0.182	 0.103	 0.208	 0.354

	

151	 0.167	 0.063	 0.140	 0.000	 0.000	 0.042	 0.000

	

153	 0.111	 0.000	 0.000	 0.000	 0.029	 0.063	 0.000

	

155	 0.000	 0.031	 0.020	 0.091	 0.015	 0.000	 0.000

	

161	 0.000	 0.000	 0.000 0.091	 0.000	 0.000	 0.000

	

Ho	 0.778	 0.531	 0.720 0.783	 0.823	 0.750	 0.500

	

He	0.738	 0.525	 0.826	 0.846	 0.816	 0.837	 0.724	 0.760

	

sm31 80	 0.000	 0.031	 0.000 0.196	 0.000	 0.042	 0.000

	

82	 0.000	 0.031	 0.000	 0.130	 0.132	 0.042	 0.000

	

84	 0.000	 0.000	 0.000 0.022	 0.000	 0.000	 0.000

	

92	 0.000	 0.000	 0.000 0.022	 0.000	 0.000	 0.000

	

94	 0.017	 0.000	 0.020 0.000	 0.044	 0.000	 0.000

	

96	 0.000	 0.031	 0.000 0.000	 0.000	 0.083	 0.000

	

98	 0.000	 0.016	 0.000	 0.000	 0.029	 0.063	 0.000
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100	 0.000	 0.016	 0.040 0.000	 0.000	 0.000	 0.000
102	 0.000	 0.063	 0.000 0.022	 0.000	 0.000	 0.000
104	 0.000	 0.000	 0.060 0.022	 0.088	 0.000	 0.000
106	 0.067	 0.016	 0.000	 0.022	 0.029	 0.021	 0.000
108	 0.133	 0.031	 0.040	 0.022	 0.059	 0.000	 0.065
110	 0.067	 0.000	 0.060	 0.065	 0.147	 0.250	 0.043
112	 0.067	 0.141	 0.140	 0.087	 0.074	 0.083	 0.304
114	 0.133	 0.094	 0.060	 0.000	 0.118	 0.042	 0.000
116	 0.100	 0.000	 0.180	 0.152	 0.088	 0.021	 0.000
118	 0.117	 0.109	 0.060	 0.109	 0.088	 0.000	 0.196
120	 0.083	 0.219	 0.140	 0.087	 0.088	 0.208	 0.261
122	 0.100	 0.047	 0.080	 0.000	 0.000	 0.083	 0.065
124	 0.050	 0.000	 0.040	 0.000	 0.000	 0.021	 0.022
126	 0.033	 0.031	 0.000	 0.000	 0.015	 0.021	 0.000
128	 0.017	 0.000	 0.080	 0.022	 0.029	 0.021	 0.000
130	 0.017	 0.000	 0.000 0.000	 0.000	 0.000	 0.000
132	 0.000	 0.000	 0.000 0.022	 0.015	 0.000	 0.000
134	 0.000	 0.125	 0.000 0.000	 0.000	 0.000	 0.022
136	 0.000	 0.000	 0.000 0.000	 0.000	 0.000	 0.022
138	 0.000	 0.000	 0.000	 0.000	 0.015	 0.000	 0.000
Ho	 0.967	 0.844	 0.840 0.792	 0.794	 0.792	 0.783
He	 0.921	 0.898	 0.914 0.909	 0.922	 0.880	 0.807	 0.893

sm32 146	 0.000	 0.016	 0.000 0.000	 0.000	 0.000	 0.000
152	 0.000	 0.000	 0.000 0.273	 0.000	 0.000	 0.000
154	 0.000	 0.000	 0.000 0.205	 0.000	 0.167	 0.000
156	 0.032	 0.172	 0.000	 0.023	 0.132	 0.063	 0.313
158	 0.081	 0.047	 0.000	 0.023	 0.397	 0.000	 0.042
160	 0.000	 0.031	 0.140	 0.114	 0.221	 0.250	 0.125
162	 0.113	 0.359	 0.160	 0.045	 0.074	 0.104	 0.188
164	 0.081	 0.016	 0.040	 0.000	 0.015	 0.125	 0.104
166	 0.177	 0.016	 0.140	 0.000	 0.059	 0.083	 0.000
168	 0.000	 0.016	 0.120	 0.159	 0.015	 0.063	 0.021
170	 0.129	 0.078	 0.140	 0.068	 0.059	 0.042	 0.063
172	 0.113	 0.078	 0.100	 0.068	 0.029	 0.021	 0.083
174	 0.113	 0.078	 0.060	 0.000	 0.000	 0.000	 0.000
176	 0.113	 0.063	 0.060	 0.000	 0.000	 0.063	 0.063
178	 0.032	 0.016	 0.040 0.023	 0.000	 0.000	 0.000
180	 0.016	 0.016	 0.000	 0.000	 0.000	 0.000	 0.000
184	 0.000	 0.000	 0.000 0.000	 0.000	 0.021	 0.000
Ho	 0.871	 0.812	 0.880 0.739	 0.559	 0.750	 0.792
He	0.900	 0.827	 0.899 0.854	 0.774	 0.880	 0.841	 0.854

sm34 40	 0.048	 0.000	 0.000 0.000	 0.000	 0.000	 0.000
44	 0.000	 0.000	 0.040 0.000	 0.000	 0.000	 0.000
68	 0.000	 0.000	 0.000 0.283	 0.000	 0.000	 0.000
70	 0.613	 0.000	 0.340 0.630	 0.000	 0.750	 0.000
72	 0.032	 0.766	 0.320 0.000	 0.794	 0.083	 0.696
74	 0.000	 0.000	 0.020	 0.022	 0.118	 0.000	 0.043
76	 0.145	 0.078	 0.120	 0.000	 0.000	 0.000	 0.174
78	 0.000	 0.000	 0.000 0.000	 0.015	 0.000	 0.000
82	 0.016	 0.000	 0.000 0.022	 0.000	 0.000	 0.000
84	 0.016	 0.000	 0.020 0.043	 0.000	 0.042	 0.000
86	 0.016	 0.156	 0.000	 0.000	 0.015	 0.125	 0.043
88	 0.081	 0.000	 0.040 0.000	 0.044	 0.000	 0.022
90	 0.000	 0.000	 0.060	 0.000	 0.000	 0.000	 0.000
92	 0.000	 0.000	 0.000	 0.000	 0.015	 0.000	 0.000
94	 0.000	 0.000	 0.020 0.000	 0.000	 0.000	 0.022
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96	 0.032	 0.000	 0.000 0.000	 0.000	 0.000	 0.000
106	 0.000	 0.000	 0.020 0.000	 0.000	 0.000	 0.000
H.	 0.581	 0.250	 0.520	 0.208	 0.235	 0.375	 0.391
He	0.601	 0.389	 0.775	 0.518	 0.358	 0.422	 0.492	 0.508

sm40 120	 0.000	 0.000	 0.040 0.000	 0.000	 0.000	 0.000
122	 0.000	 0.000	 0.000 0.000	 0.000	 0.042	 0.000
126	 0.000	 0.000	 0.020 0.000	 0.029	 0.021	 0.000
128	 0.000	 0.000	 0.000	 0.000	 0.015	 0.021	 0.000
130	 0.000	 0.000	 0.020 0.000	 0.000	 0.125	 0.000
132	 0.204	 0.047	 0.240	 0.136	 0.441	 0.542	 0.130
134	 0.389	 0.469	 0.440	 0.591	 0.221	 0.146	 0.413
136	 0.167	 0.281	 0.060	 0.045	 0.191	 0.021	 0.348
138	 0.111	 0.047	 0.040	 0.045	 0.074	 0.083	 0.022
140	 0.000	 0.156	 0.060	 0.114	 0.000	 0.000	 0.065
142	 0.019	 0.000	 0.020	 0.068	 0.000	 0.000	 0.000
144	 0.111	 0.000	 0.060	 0.000	 0.029	 0.000	 0.000
146	 0.000	 0.000	 0.000 0.000	 0.000	 0.000	 0.022
Ho	0.592	 0.719	 0.840 0.739	 0.706	 0.792	 0.783
He	0.769	 0.683	 0.748 0.629	 0.723	 0.674	 0.701	 0.704

sm45 140	 0.000	 0.016	 0.000 0.000	 0.000	 0.000	 0.000
146	 0.000	 0.000	 0.000 0.250	 0.000	 0.000	 0.000
148	 0.000	 0.000	 0.000 0.068	 0.000	 0.000	 0.000
150	 0.016	 0.156	 0.000	 0.045	 0.132	 0.208	 0.341
152	 0.032	 0.047	 0.000	 0.159	 0.353	 0.000	 0.045
154	 0.000	 0.031	 0.104	 0.023	 0.088	 0.208	 0.136
156	 0.145	 0.375	 0.208	 0.159	 0.029	 0.125	 0.182
158	 0.097	 0.016	 0.021	 0.000	 0.221	 0.000	 0.045
160	 0.161	 0.016	 0.125	 0.000	 0.015	 0.083	 0.000
162	 0.000	 0.016	 0.083	 0.114	 0.059	 0.125	 0.023
164	 0.097	 0.078	 0.208	 0.068	 0.074	 0.104	 0.068
166	 0.145	 0.078	 0.083	 0.045	 0.029	 0.042	 0.091
168	 0.097	 0.078	 0.063	 0.045	 0.000	 0.021	 0.000
170	 0.161	 0.063	 0.063	 0.000	 0.000	 0.063	 0.068
172	 0.032	 0.016	 0.042 0.023	 0.000	 0.000	 0.000
174	 0.016	 0.016	 0.000 0.000	 0.000	 0.000	 0.000
178	 0.000	 0.000	 0.000 0.000	 0.000	 0.021	 0.000
H.	 0.871	 0.781	 0.958	 0.956	 0.970	 0.958	 0.818
He	0.889	 0.821	 0.881	 0.876	 0.802	 0.876	 0.829	 0.853 

sm46 190	 0.000	 0.078	 0.000 0.091	 0.088	 0.000	 0.021
194	 0.000	 0.000	 0.000 0.000	 0.088	 0.000	 0.000
196	 0.000	 0.250	 0.000 0.068	 0.015	 0.083	 0.000
198	 0.000	 0.000	 0.000 0.000	 0.015	 0.000	 0.000
200	 0.000	 0.000	 0.000 0.023	 0.000	 0.042	 0.042
202	 0.000	 0.188	 0.180 0.227	 0.074	 0.042	 0.000
204	 0.274	 0.141	 0.200 0.068	 0.044	 0.271	 0.208
206	 0.161	 0.047	 0.280 0.250	 0.074	 0.146	 0.208
208	 0.306	 0.125	 0.120	 0.023	 0.221	 0.042	 0.313
210	 0.097	 0.141	 0.080	 0.023	 0.103	 0.021	 0.000
212	 0.129	 0.016	 0.100	 0.114	 0.029	 0.208	 0.167
214	 0.032	 0.000	 0.000	 0.114	 0.132	 0.063	 0.042
216	 0.000	 0.000	 0.020 0.000	 0.059	 0.000	 0.000
218	 0.000	 0.016	 0.020 0.000	 0.044	 0.021	 0.000
220	 0.000	 0.000	 0.000 0.000	 0.015	 0.000	 0.000
222	 0.000	 0.000	 0.000 0.000	 0.000	 0.042	 0.000
226	 0.000	 0.000	 0.000 0.000	 0.000	 0.021	 0.000
H.	 0.806	 0.844	 0.760 0.869	 0.823	 0.792	 0.875
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He	0.790	 0.852	 0.834	 0.852	 0.901	 0.862	 0.800	 0.842
sm47 100	 0.000	 0.000	 0.040 0.000	 0.000	 0.000	 0.000

110	 0.000	 0.000	 0.000	 0.000	 0.015	 0.000	 0.000
114	 0.000	 0.000	 0.000 0.000	 0.074	 0.000	 0.000
118	 0.000	 0.031	 0.000	 0.000	 0.000	 0.396	 0.000
120	 0.774	 0.313	 0.680	 0.283	 0.088	 0.063	 0.438
122	 0.000	 0.031	 0.000	 0.022	 0.147	 0.000	 0.104
124	 0.032	 0.031	 0.060	 0.022	 0.250	 0.313	 0.083
126	 0.161	 0.203	 0.220	 0.152	 0.265	 0.063	 0.229
128	 0.000	 0.031	 0.000	 0.326	 0.088	 0.000	 0.021
130	 0.000	 0.125	 0.000	 0.109	 0.074	 0.021	 0.063
136	 0.000	 0.016	 0.000	 0.000	 0.000	 0.083	 0.000
138	 0.000	 0.031	 0.000	 0.000	 0.000	 0.000	 0.021
140	 0.000	 0.000	 0.000	 0.000	 0.000	 0.063	 0.042
142	 0.000	 0.016	 0.000 0.087	 0.000	 0.000	 0.000
144	 0.000	 0.125	 0.000 0.000	 0.000	 0.000	 0.000
146	 0.032	 0.016	 0.000 0.000	 0.000	 0.000	 0.000
148	 0.000	 0.031	 0.000 0.000	 0.000	 0.000	 0.000
Ho 	 0.452	 0.812	 0.360 0.792	 0.853	 0.833	 0.750
He	0.379	 0.836	 0.494	 0.785	 0.831	 0.742	 0.747	 0.688 

sm51 138	 0.000	 0.000	 0.000 0.024	 0.015	 0.000	 0.000
144	 0.000	 0.016	 0.000 0.000	 0.000	 0.000	 0.000
146	 0.000	 0.016	 0.000	 0.000	 0.132	 0.000	 0.000
148	 0.000	 0.000	 0.000 0.000	 0.015	 0.000	 0.000
150	 0.065	 0.047	 0.020 0.000	 0.044	 0.000	 0.000
152	 0.000	 0.000	 0.000 0.000	 0.044	 0.000	 0.000
154	 0.000	 0.000	 0.020	 0.048	 0.000	 0.063	 0.000
156	 0.016	 0.047	 0.320	 0.119	 0.162	 0.083	 0.000
158	 0.210	 0.156	 0.400	 0.190	 0.324	 0.354	 0.318
160	 0.468	 0.125	 0.160	 0.238	 0.103	 0.250	 0.364
162	 0.048	 0.109	 0.060	 0.143	 0.074	 0.000	 0.068
164	 0.161	 0.000	 0.000	 0.000	 0.015	 0.021	 0.091
166	 0.000	 0.047	 0.000 0.024	 0.015	 0.021	 0.114
168	 0.000	 0.063	 0.000 0.071	 0.029	 0.000	 0.000
170	 0.000	 0.063	 0.000	 0.071	 0.000	 0.083	 0.000
172	 0.016	 0.156	 0.020	 0.048	 0.015	 0.042	 0.023
174	 0.000	 0.000	 0.000	 0.000	 0.015	 0.021	 0.000
176	 0.016	 0.141	 0.000	 0.024	 0.000	 0.000	 0.000
178	 0.000	 0.000	 0.000 0.000	 0.000	 0.042	 0.023
180	 0.000	 0.016	 0.000 0.000	 0.000	 0.000	 0.000
182	 0.000	 0.000	 0.000 0.000	 0.000	 0.021	 0.000
Ho	0.742	 0.906	 0.600 0.909	 0.882	 0.708	 0.500
He	0.715	 0.903	 0.722 0.879	 0.842	 0.806	 0.757	 0.803
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