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Abstract 
 

 Algal blooms plague freshwaters across the globe, as increased nutrient loads 

lead to eutrophication of inland waters and the presence of potentially harmful 

cyanobacteria.  In this context, remote sensing is a valuable approach to monitor water 

quality over broad temporal and spatial scales.  However, there remain several 

challenges to the accurate retrieval of water quality parameters, and the research in this 

thesis investigates these in an optically complex lake (Lake Balaton, Hungary). 

This study found that bulk and specific inherent optical properties [(S)IOPs] 

showed significant spatial variability over the trophic gradient in Lake Balaton.  The 

relationships between (S)IOPs and biogeochemical parameters differed from those 

reported in ocean and coastal waters due to the high proportion of particulate inorganic 

matter (PIM).  Furthermore, wind-driven resuspension of mineral sediments attributed a 

high proportion of total attenuation to particulate scattering and increased the mean 

refractive index (n̅p) of the particle assemblage.  Phytoplankton pigment concentrations 

[chlorophyll-a (Chl-a) and phycocyanin (PC)] were also accurately retrieved from a 

times series of satellite data over Lake Balaton using semi-analytical algorithms. 

Conincident (S)IOP data allowed for investigation of the errors within these algorithms, 

indicating overestimation of phytoplankton absorption [aph(665)] and underestimation 

of the Chl-a specific absorption coefficient [a*ph(665)].  Finally, Chl-a concentrations 

were accurately retrieved in a multiscale remote sensing study using the Normalized 

Difference Chlorophyll Index (NDCI), indicating hyperspectral data is not necessary to 

retrieve accurate pigment concentrations but does capture the subtle heterogeneity of 

phytoplankton spatial distribution. 

The results of this thesis provide a positive outlook for the future of inland water 

remote sensing, particularly in light of contemporary satellite instruments with 

continued or improved radiometric, spectral, spatial and temporal coverage.  

Furthermore, the value of coincident (S)IOP data is highlighted and contributes towards 

the improvement of remote sensing pigment retrieval in optically complex waters. 
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1 Introduction 

 

1.1 Research context 

Freshwater lakes are important resources to the global biosphere, playing a vital 

role in biogeochemical cycling (McCusker et al., 1999), acting as conduits and reactors 

for carbon (Tranvik et al., 2009) and providing essential ecosystem services to society 

(Baron et al., 2002).  Lakes are valuable sites for drinking water, fishing, agriculture, 

transport, recreation, tourism and simply add to the aesthetics of a landscape.  However, 

the management of water quality is a major concern facing society today.  To confront 

this challenge in Europe, the Water Framework Directive (WFD) was adopted for 

protection, improvement and sustainable use of Europe’s freshwaters (European 

Commission, 2000).  This directive (2000/60/EC) requires all Member States of the 

European Union to aim to achieve “good and non-deteriorating ecological status” in 

rivers, lakes, estuaries, coastal and groundwaters, ideally by 2015 and ultimately by 

2027.  Other relevant EU regulations include the Bathing Water Directive (2006/7/EC), 

which requires monitoring of all bathing waters for bacteria, cyanobacteria and 

microalgae to obtain a minimum of “sufficient” quality threshold (European 

Commission, 2006).  The Habitats Directive (92/43/EEC) was implemented to protect 

Europe’s most endangered, vulnerable, rare or endemic species, which also requires 

protected sites to be managed in accordance with ecological needs of the species 

(European Commission, 1992).  Therefore, there is a great need to monitor the quality 

of European, and indeed, global freshwaters with efficient and accurate methods in 

order to establish and thus improve their ecological status. 

The traditional method for monitoring lake water quality is a point-sampling 

technique, with water samples taken from discrete locations.  However, this approach is 

vulnerable to influences from sampling bias, and may not adequately describe the true 

heterogeneity of the lake system.  It is necessary to ensure adequate sampling frequency 

in both time and space in order to gain an unbiased understanding of regional 

differences and long-term trends, although sampling frequency is often inadequate, at 

best fortnightly, but more often conducted on a monthly, quarterly or only annual basis 

(Rantajarvi et al., 1998).  More recently, monitoring buoy installations are available to 

monitor water depth, meteorological conditions, water quality parameters, and even 
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sondes to measure fluorescence (e.g. chlorophyll).  However, while these can provide 

high temporal resolution they still only provide very limited data spatially.  

Furthermore, the large number of lakes monitored globally, or even nationally, presents 

a substantial cost as well as a sheer logistical challenge to acquire monitoring data using 

traditional in situ methods. In fact, it was recently estimated that there are as many as 

117 million lakes, comprising ~3.7% of the Earth’s surface (Verpoorter et al., 2014).  

In this context, remote sensing can provide a more efficient means of monitoring 

lake water quality.  Remote sensing is a tool that provides a broad spatial and temporal 

context for point-based measurements (Rainey et al., 2003, Tyler et al., 2006). Such 

technology includes the use of satellite, airborne or handheld spectrometry to measure 

the radiometric properties of the water surface.  Recent advancements have enabled the 

possibility of extracting biophysical information from remotely sensed data, including 

satellite and airborne platforms (Aplin, 2005). 

Remote sensing has been widely applied to open ocean waters to extract 

information on their biogeochemical properties.  However, progress has been limited on 

the remote sensing of inland or coastal waters.  Remote sensing of inland waters is more 

complex due to greater contributions from optically active constituents (OACs) other 

than phytoplankton, including mineral particles, organic detritus and coloured dissolved 

organic matter (CDOM).  Specifically, the OACs in inland waters typically do not co-

vary over space and time, and their optical properties tend to be highly variable between 

and within water bodies (Palmer et al., 2015a).  In contrast, the dominant OAC in ocean 

waters is phytoplankton and their associated by-products.  Thus, the additional 

contributions from minerals, detritus and CDOM in inland waters present a challenge 

when retrieving the parameter of interest from remotely sensed imagery.   

Previous studies have applied remote sensing to estimate chlorophyll-a 

concentration in lakes, a widely accepted proxy for phytoplankton biomass, and 

developed algorithms for this purpose (Mittenzwey et al., 1992, Dekker, 1993, Gons, 

1999, George & Malthus, 2001, Ammenberg et al., 2002, Gons et al., 2002, Kutser, 

2004, Gons et al., 2005, Tyler et al., 2006, Hunter et al., 2008a, Hunter et al., 2010).  

However, the use of remote sensing for inland waters in the past has been restricted 

because of the spatial and spectral constraints posed by the lake setting.  Space-borne 

instruments that have been designed for ocean colour remote sensing tend to have 

coarse resolutions (0.3-1.1 km), which may only suit the largest lakes.  However, 

terrestrial observation satellites often have bands that are not optimally positioned and 
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resolution that is too coarse to allow isolation of features such as phytoplankton 

pigment absorption (Lindell et al., 1999, Tyler et al., 2006).  Therefore, it is pertinent to 

test and develop algorithms for the retrieval of biogeochemical data from lakes using 

hyperspectral technology, such as in situ and airborne remote sensing, which provide 

high resolution data over a flexible time series.  Such data can provide a useful 

framework with which to model the capabilities of satellite based sensors and inform 

the design of future systems.  

Advancement of the remote sensing of lakes also requires a detailed 

understanding of the bio-optical properties of the OACs.  With knowledge of the 

inherent optical properties (IOPs) of the water column, including absorption, scattering 

and backscattering, it has been recognised that the accuracy of bio-optical models for 

inland waters should greatly improve (Binding et al., 2008).  In fact, a recent review 

article identified a need for investigation of the variability of biogeochemical properties 

and IOPs in lakes, and their relationships (Mouw et al., 2015).  However, the IOPs of 

lakes have been little studied, and there is a lack of understanding about how they vary 

with biogeochemical composition.  Some studies also suggest marked seasonal 

variability in the optical properties of ocean water (Sathyendranath et al., 1999), coastal 

and shelf seas (Binding et al., 2005) and lake waters (Paavel et al., 2008, Zhang et al., 

2010). However, further observations of IOPs are required to improve the accuracy of 

remote sensing products in optically complex waters, and to understand the implications 

of this variability on retrieved biogeochemical parameters (Binding et al., 2008).  

It is further widely acknowledged that chlorophyll-a algorithms applied to 

standard ocean colour satellites perform poorly over inland waters (IOCCG, 2000, 

Darecki & Stramski, 2004, Reinart & Kutser, 2006, Ruiz-Verdu et al., 2008).  

Algorithm development for inland waters has been designated a priority area of 

research by the International Colour Coordinating Group and European Science 

Foundation (IOCCG, 2000).  Additionally, a recent review has acknowledged the 

challenges to remote sensing of inland and coastal waters, highlighting outstanding 

issues including limited satellite mission capability and a lack of in situ observations, 

algorithm development and processing capability (Mouw et al., 2015).  Mouw et al. 

(2015) identified a present lack of transferability for inland water algorithms, and 

suggested a coordinated comparison of algorithms is needed to identify the strengths 

and limitations of these.   
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Broadly, there remains need for further research to ultimately refine the 

approach for the application of remote sensing to lakes.  There is a lack of 

understanding about the within-lake variability in the IOPs, and how these vary with or 

are related to the biogeochemistry of the water column.  Furthermore, it is vital to test 

and improve the robustness of current algorithms for constituent retrieval with the goal 

of increased utility and transferability of algorithms for inland waters.  An increased 

knowledge of these areas would greatly improve progress towards the ultimate aim of 

operational use of remote sensing for inland waters. 

1.1.1 Thesis aims and structure 

The aim of this thesis is to explore in situ bio-geo-optical properties of and 

applications of remote sensing at a range of spatial, spectral and temporal scales in 

optically complex inland waters.  More specifically, this thesis aims to: (i) increase the 

present understanding of the within-lake variations in bio-geo-optical properties over a 

trophic gradient; (ii) investigate the use of satellite remote sensing for retrieval of 

phytoplankton and cyanobacterial pigments in highly turbid waters; and (iii) conduct an 

inter-comparison of coincident remote sensing datasets over a range of spectral and 

spatial resolutions for the retrieval of phytoplankton biomass. Ultimately, this thesis is 

meant to provide an in-depth case study of an optically complex lake with a view to 

understand how the variability in optical properties may affect retrievals of 

phytoplankton pigments using presently available algorithms.  This case study can 

provide an example of a large shallow lake with a wide range of biogeochemical and 

optical properties, which may inform remote sensing applications to similarly complex 

water bodies. 

This thesis is presented as a series of seven chapters (Figure 1.1).  The first two 

chapters introduce and provide a context for the field of remote sensing of inland 

waters, highlighting knowledge gaps and outlining thesis aims.  This is followed by two 

results chapters that focus on the variability of absorption coefficients [Chapter 3; 

(Riddick et al., 2015)] and scattering and backscattering coefficients (Chapter 4), and 

the relationships of these with biogeochemical parameters in Lake Balaton.  Chapter 5 

evaluates semi-analytical and bio-optical algorithms for the retrieval of cyanobacteria 

pigments using MERIS (MEdium Resolution Imaging Spectrometer) data, and 

investigates the sources of error using knowledge of the inherent optical properties 

(Riddick et al., in review).  The final results chapter combines four coincident remote 
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sensing datasets, including satellite, airborne and in situ observations, to assess the 

accuracy of chlorophyll-a retrieval and quantify within pixel variability (Chapter 6).  

Finally, the thesis concludes with Chapter 7, which provides a summary of the key 

conclusions from this work and identifies possibilities for future research. 

 

Remote sensing and bio-geo-optical properties of turbid, 

productive inland waters: a case study of Lake Balaton 

 

Chapters 1 and 2 

Introduction to remote sensing of inland water quality and the gaps 

in knowledge, followed by a review of the inherent optical properties 

and application of remote sensing for monitoring inland waters. 

 

Bio-geo-optical Properties Remote Sensing 

 

Chapter 3 

Spatial variability of 

absorption coefficients over a 

biogeochemical gradient in a 

large and optically complex 

lake 

 

Chapter 5 

Evaluation of algorithms for 

retrieval of cyanobacterial 

pigments in highly turbid, 

optically complex waters using 

MERIS data 

Chapter 4 

Scattering and backscattering 

of suspended matter in an 

optically complex shallow 

lake 

 

Chapter 6 

Multi-scale remote sensing 

observations of water quality in 

a large, turbid shallow lake 

 

Chapter 7 

A synopsis and critical assessment of the use of remote sensing for 

inland waters in light of the Lake Balaton case study presented, and 

comments on the future of remote sensing for monitoring the water 

quality of lakes. 

 

 

Figure 1.1 Outline of the thesis structure. 

 

1.1.2 Study site 

Lake Balaton, Hungary (46 51’ 3” N, 17 45’ 58” E; Figure 1.2) provides an 

ideal study site for the research conducted in this thesis.  Located in western Hungary, 

Lake Balaton is the largest freshwater lake in central Europe by surface area (595 km2) 

and has a mean depth of approximately 3 m (Herodek, 1986, Présing et al., 2001, Tyler 
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et al., 2006).  The lake is comprised of four basins, with a wetland system in the west 

(Kis-Balaton Water Protection System), which was engineered in the mid-1980s to 

early 1990s (Dömötörfy et al., 2003, Tyler et al., 2006).  The Zala River in the west is 

the main inflow to the lake, which typically produces a pronounced nutrient and trophic 

gradient across the lake.  The only outflow is a highly regulated channel in the east at 

Siófok. 

(a) 

 
(b) 

            
Figure 1.2 (a) Map of Lake Balaton and Kis-Balaton in western Hungary and (b) 

bathymetric map of Lake Balaton taken from Gallinaro et al. (2013). 

 

Lake Balaton has exhibited a history of eutrophication, and at its worst 

experienced hypereutrophic conditions in its westerly basins and eutrophic conditions in 

eastern basins due to increased nutrient loads in the 1970s (Herodek, 1986, Herodek et 



30 

 

al., 1995).  Blooms of filamentous cyanobacteria (Cylindrospermopsis raciborskii) 

dominated the plankton community in the 1980s and 1990s (Présing et al., 1996).  Since 

then, extensive waste water treatment and diversion schemes, the introduction of Kis-

Balaton wetlands, closure of nearby farms in 1987 and reduction of fertilizer use have 

all substantially reduced nutrient loading to Lake Balaton, resulting in lower algal 

biomass and improved water quality (Somlyódy et al., 1997, Présing et al., 2001). 

Prior to the research presented in this thesis, the optical properties of Lake 

Balaton have been not been studied.  Additionally, only limited applications of remote 

sensing for assessment of water quality have been presented (Buttner et al., 1987, 

Gitelson et al., 1993b, Svab et al., 2005, Tyler et al., 2006, Palmer et al., 2015c).  Thus, 

the research presented in this thesis presents: (i) a novel study of the bio-geo-optical 

properties of Lake Balaton and their spatial variability; and (ii) an investigation of 

remote sensing of phytoplankton over a range of temporal, spatial and spectral scales, 

expanding upon the emergent base of literature for the remote sensing of inland waters 

more broadly and of Lake Balaton, specifically.  
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2 Remote sensing of inland water quality 

 

2.1 Phytoplankton and eutrophication 

Phytoplankton are the basis of the pelagic food web and important regulators of 

biogeochemical cycling in lakes.  They comprise a diverse group of eukaryotic and 

some prokaryotic algae that tend to be dominated in freshwaters by six major groups, 

including chlorophytes (green algae), bacillariophytes (diatoms), chrysophytes (golden 

algae), cryptophytes (cryptomonads), dinophytes (dinoflagellates) and cyanophytes 

(cyanobacteria) (Schmid et al., 1998, Reynolds, 2006).  Other phyla such as 

haptophytes, xanthophytes, euglenophytes and raphidophytes are more rarely dominant, 

but can bloom in low alkalinity waters. 

Phytoplankton are considered highly sensitive indicators of environmental 

change and can provide evidence as to the ecological health of a lake.  For instance, 

when high nutrient loads (particularly nitrogen and phosphorus) are sustained for a 

period of time, the lake can change from a ‘desirable’ clear-water system, often 

dominated by macrophytes, to an ‘undesirable’ turbid system with elevated 

phytoplankton biomass (Scheffer, 2001).  This phenomenon is called eutrophication, 

and is generally associated with an increased frequency of harmful algal blooms 

(Downing, 2001, Smith, 2003, Glibert et al., 2005a, Glibert et al., 2005b, Ptacnik et al., 

2008).  There are about 300 bloom-forming species of phytoplankton, and about 60-80 

of these produce toxins (Alexandrium spp., Gymnodinium spp., Dinophysis spp., 

Pseudo-nitzchia spp., Nodularia spp., etc.) (Smayda, 1997, Landsberg, 2002, Kutser, 

2009).  Cyanobacteria blooms are of particular concern, as there are several known 

toxin-producing genera, including Microcystis, Anabaena, Anabaenopsis, Planktothrix, 

Aphanizomenon, Cylindrospermopsis, Raphidiopsis and Nodularia (Codd et al., 2005a). 

In addition to producing toxins, phytoplankton blooms can have other damaging 

effects to lake systems.  High phytoplankton biomass can reduce penetration of 

sunlight, and severely limit the growth of submerged vegetation (Kutser, 2009).  

Furthermore, decaying blooms can cause oxygen depletion in the water column, leading 

to mortality of animals (Anderson et al., 2002).  Particular environmental conditions 

favour the growth of potentially toxic cyanobacteria blooms, with specific risk factors 

including high nutrient concentrations, high phytoplankton biomass (chlorophyll-a>10 

μg l-1), low water colour and high alkalinity (Dokulil & Teubner, 2000, Wagner & 
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Adrian, 2009, Carvalho et al., 2011).  However, the long-term dominance of 

cyanobacteria is typically due to multiple factors, including nutrient concentrations, 

lake morphometry, water temperature, underwater light availability, mixing and food-

web structure (Dokulil & Teubner, 2000).  Thus, it is vital to ensure the quality of 

freshwater resources by reducing the likelihood of conditions likely to promote the 

growth of nuisance cyanobacteria blooms. 

2.2 Importance of monitoring water quality 

Some studies suggest that lakes are highly sensitive indicators for climate 

change (Adrian et al., 2009, Schindler, 2009).  Recent climate warming, in conjunction 

with other factors such as rainfall and flushing, may exacerbate poor water quality 

conditions in freshwater ecosystems, encouraging the development of harmful 

cyanobacteria blooms (Paerl & Huisman, 2008, Johnk et al., 2008).  Furthermore, the 

need for improved risk management to protect water resources, economies and human 

health has been recognised by national and international bodies (Scottish Executive, 

2002, WHO, 2003, WHO, 2004, Codd et al., 2005b).  Instances of dog and cattle deaths 

have been attributed to cyanobacterial blooms in lakes, and a well-documented case of 

several human fatalities at a dialysis centre in Brazil were attributed to cyanotoxins 

(microcystins) in the water supply (Carmichael et al., 2001).  Even though reported 

health effects may be relatively uncommon, many less severe or chronic effects may be 

unreported or unknown, and the threat of cyanobacterial blooms can significantly limit 

the use and access to freshwaters across Europe (and globally) to avoid these 

recognised health effects. It is therefore a priority to improve monitoring methods and 

develop quick response and alert systems for algal blooms, in order to prevent health 

impacts and limit their exposure to the public, pets and livestock.  In this way, remote 

sensing may prove to provide real-time monitoring of inland waters for the benefit of 

human health.  Additionally, remote sensing may also support the collection of water 

body status for lakes, as required by the Water Framework Directive (2000/60/EC) and 

Bathing Waters Directive (2006/7/EC) (European Commission, 2000; 2006). 

2.3 Remote sensing of inland waters 

Remote sensing is generally defined as an observation of the Earth’s surface 

(land or water) by means of reflected or emitted electromagnetic energy (Campbell, 

2006).  Remote sensing is a valuable tool because it offers a wide range of spatial and 
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temporal scales with which to investigate a landscape.  The benefit to lake ecological 

studies is that remote sensing provides a much more complete investigation than the 

traditional point sampling methods.   

Remote sensing can be divided into passive and active methods.  Active 

methods send a known signal from the sensor to the water and the return signal is 

detected and quantified based on the time delay and the known speed of light.  This 

approach is commonly referred to as Light Detection and Ranging, or LiDAR.  For 

instance, laser-induced fluorescence can be used to detect chlorophyll, coloured 

dissolved organic matter or pollutants (Mobley et al., 2016). A pulse of UV light is sent 

to the water surface, and the spectral character and strength of the induced fluorescence 

provides information about the location, type and concentration of fluorescing 

substances present.  The use of ship-mounted ultraviolet fluorescence LiDAR (UFL) 

was investigated for retrieval of water quality parameters in Lake Balaton in a recent 

PhD thesis, Palmer (2015).  Another example of active remote sensing is LiDAR 

bathymetry, where pulsed lasers (water-penetrating green wavelengths) are reflected off 

the water surface and sea or lake bottom in order to generate a bathymetry map of the 

water body.  Surface water salinity can also be deduced using spaceborne L-band radar 

(Burrage et al., 2008, Klemas, 2011, Tyler et al., 2016).   

Passive remote sensing methods involve detection of the light that is naturally 

emitted or reflected by the water body.  This includes optical and thermal remote 

sensing, which is detection of ambient light in the visible and infrared portions of the 

spectrum, respectively.  Thermal remote sensing can provide estimates of water surface 

temperature, using measurements of the thermal infrared between 8-14 μm (MacCallum 

& Merchant, 2012, Politi et al., 2012).  Most commonly, passive remote sensing 

involves the detection of sunlight that was backscattered in the water and returned to the 

sensor (Mobley et al., 2016).  Passive optical remote sensing can be used to acquire 

biogeochemical parameters indicative of water quality, including phytoplankton 

pigments, total suspended mater, turbidity and coloured dissolved organic matter, and 

this remote sensing method is the focus of the research in this thesis.        

2.3.1 History of remote sensing application to lakes 

Over four decades ago, airborne and satellite remote sensing were proved 

functional for the detection of phytoplankton blooms (Wrigley & Horne, 1974, Ostrom, 

1976).  Since then, remote sensing has been applied to various limnology studies, 
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including the compilation of lake inventories (Finlayson & Vandervalk, 1995, 

Verpoorter et al., 2014), monitoring of water resource use (Beeri & Phillips, 2007) and 

hazard assessment (McKillop & Clague, 2007, Quincey et al., 2007).  Most commonly, 

however, remote sensing is applied to extract water quality parameters in order to 

provide information on lake ecological status.  These include lake surface temperature  

(George, 1993, Kay et al., 2005, Politi et al., 2012, Grim et al., 2013), secchi disc depth  

(Harrington et al., 1992, Baban, 1993, Nellis et al., 1998, Torbick et al., 2013, Binding 

et al., 2015), coloured dissolved organic matter (Kutser et al., 2005a, Kutser et al., 

2005b, Zhang et al., 2007), lake carbon fractions (Kutser et al., 2015), suspended 

sediments  (Lathrop et al., 1991, Choubey & Subramanian, 1992, Schiebe et al., 1992, 

Binding et al., 2010, Song et al., 2014), and phytoplankton pigments such as 

chlorophyll-a (Mittenzwey et al., 1992, George & Malthus, 2001, Ammenberg et al., 

2002, Gons et al., 2002, Koponen et al., 2002, Kutser, 2004, Gons et al., 2005, Tyler et 

al., 2006, Doerffer & Schiller, 2007, Gitelson et al., 2008, Gilerson et al., 2010, 

Matthews et al., 2012, Mishra & Mishra, 2012) and phycocyanin (Schalles & Yacobi, 

2000, Vincent et al., 2004, Simis et al., 2005, Simis et al., 2007, Mishra et al., 2009, 

Hunter et al., 2010, Mishra et al., 2013, Ogashawara et al., 2013, Mishra & Mishra, 

2014, Li et al., 2015). 

2.3.2 Types of platform and sensors 

Remote sensing applied to freshwater studies, can include the use of spaceborne 

or airborne instruments.  Spaceborne (i.e. satellite-mounted) instruments have been 

widely applied to terrestrial and marine environments. However, satellite instruments 

often have larger spatial resolutions and/or broad spectral resolutions, which are less 

suitable for lake environments.  Satellite instruments can offer large scale regional 

coverage with recurring data acquisition, and some now provide hyperspectral 

resolution as well.  For instance, ocean colour satellite sensors have been used for 

inland waters, including MODIS (MODerate resolution Imaging Spectroradiometer), 

SeaWiFS (Sea-viewing Wide Field-of-view Sensor) and MERIS (Medium Resolution 

Imaging Spectrometer).  MODIS was a 12-bit sensor onboard the Terra and Aqua 

satellites that measured over a broad spectral range (405-14,385 nm) and provided 

complete coverage of the Earth every 1-2 days, however the spatial resolution is low 

(250-1000 m), particularly over the bands for retrieval of phytoplankton pigments (1000 

m for bands 8-16).  MODIS is succeeded by the Visible Infrared Imaging Radiometer 



35 

 

Suite (VIIRS), a sensor with a 12-bit radiometric resolution, 1 day revisit cycle and 750 

m spatial resolution over the spectral range 402-11,800 (22 bands).  Another commonly 

used ocean colour satellite was WiFS onboard SeaWiFS, a 10-bit sensor which 

measured over the spectral range of 402-885 nm (8 bands) with a 2 day temporal 

resolution, however spatial resolution was poor (1000 m).  MERIS was perhaps the 

most commonly applied ocean colour satellite to inland waters because it had an 

appropriate spectral range (390-1040 nm) with bands centred at phytoplankton pigment 

absorption peaks, and a 3-day revisit cycle with high radiometric sensitivity (16-bit).  

MERIS spatial resolution (300 m) still limits its use to larger water bodies.   

However, there are satellite-based instruments with improved spatial 

resolutions, though many of these data are only available for a fee.  For example, the 

11-bit sensor onboard Digital Globe’s Worldview-3 satellite can provide excellent 

spatial (1.24 m visible and near-infrared) and temporal (1 day) resolution of 

multispectral data (400-1040 nm; 8 bands).  Satellite instruments with hyperspectral 

resolution also presently exist.  For instance, HICO is a 14-bit sensor that measures 87 

spectral bands from 300-1000 nm, although it is geostationary (onboard the 

international space station).   Polor-orbiting satellites with hyperspectral capabilities 

include the Hyperion sensor onboard EO-1, which measures 220 bands from 400-2500 

nm with a spatial resolution of 30m, however the revisit time of 16 days (or <16 days 

with off-nadir viewing capabilities) may not be adequate to capture freshwater 

phytoplankton dynamics.  Other sensors specifically developed for land applications 

can be used over inland waters, e.g. Enhanced Thematic Mapper (ETM+) onboard 

Landsat 7 and the Operational Land Imager (OLI) onboard Landsat 8, which have lower 

radiometric resolutions (8- or 12-bit) but higher spatial resolutions than the ocean 

colour satellite instruments (30 m).  There exists a great range of temporal, radiometric 

and spatial resolutions among earth observation sensors that have been used or are 

presently available for assessing inland water quality, and a recent list can be found in 

Tyler et al. (2016).  A list of historic, current and future ocean colour sensors is 

available on the International Ocean Colour Coordinating Group (IOCCG) website 

(http://www.ioccg.org/sensors_ioccg.html).  However, note that some of these 

instruments are not optimised for measuring water-leaving reflectance over inland or 

coastal waters (Mouw et al., 2015).   

In contrast, airborne instruments can provide high spatial resolution and can 

offer hyperspectral technology applied over a flexible time span.  In this way, airborne 

http://www.ioccg.org/sensors_ioccg.html
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instruments can often provide a more detailed “snapshot” of the water body.  Recent 

airborne sensors include the Compact Airborne Spectrographic Imager (CASI-2), which 

was used by Hunter et al. (2008a) to achieve 2.5 m spatial resolution multispectral (13 

bands, 412-820 nm) imagery to capture a cyanobacteria bloom in Barton Broad.  The 

AISA Eagle spectrometer is a 12-bit hyperspectral (400-970 nm) sensor that can 

achieve high spatial resolution imagery of up to ~ 2 m, e.g. over Esthwaite Water and 

Loch Leven in Hunter et al. (2010).  The tandem AISA Hawk is a 14-bit hyperspectral 

sensor that measures over the spectral range 970-2450 nm and achieved up to 3.6 m 

spatial resolution in Hunter et al (2010).  The AISA Eagle and Hawk sensors were also 

used for the research in this thesis (Chapter 6), where 5 m spatial resolution data were 

collected over Kis-Balaton and Lake Balaton.  The AISA Fenix is a dual sensor which 

collects hyperspectral data in both the visible and SWIR wavelengths (380-2500 nm) 

and will succeed the AISA Eagle and Hawk sensors onboard the NERC Airborne 

Research and Survey Facility (ARSF) airplane (for further details see 

http://arsf.nerc.ac.uk/instruments/aisafenix.asp).   

The specifications for the sensors employed in this study and justification for the 

use of these particular instruments is provided in detail in Chapter 8 (Appendix – 

Supplementary Methods).  Table 7.1 in Chapter 7 also summarises relevant recently 

launched or forthcoming instruments for the remote sensing of inland waters.   

2.4 Principles of light in water 

The spectral characteristics of water bodies are determined by a combination of 

factors, including the radiation incident to the water surface, water surface roughness, 

air-water interface, in-water optical properties, and the angle of observation and 

illumination, with bottom reflectance an additional consideration in shallow waters 

(Campbell, 2006).  The spectral properties, or colour, of the water body are determined 

largely by scattered and reflected radiation within the water itself, and this is known as 

volume reflection (Campbell, 2006).  Water colour is also a result of wavelength-

dependent absorption, while the signals measured by remote sensing are derived from 

the backscattered photons that exit the water column.  More formally, when light 

penetrates the water column as downwelling irradiance (Ed), it is influenced by the 

absorption (a, m-1) and scattering (b, m-1) processes of pure water itself.  Additionally, 

absorption, scattering, reflection and diffraction of Ed occurs by the optically active 

constituents in the water (i.e. suspended and dissolved particulate matter) (Mobley, 

http://arsf.nerc.ac.uk/instruments/aisafenix.asp
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1994, Kirk, 1994).  The interaction of these processes in the first “penetration depth” or 

upper layer of the water column is the focus of remote sensing (Gordon et al., 1975).   

2.4.1 Optically Active Constituents 

The optically active constituents (OACs) vary depending on the water body.  

For instance, in open ocean waters (often termed “Case 1” waters), the primary OACs 

are pure water itself and phytoplankton (and associated by-products).  However, in 

inland and coastal waters (often termed “Case 2” waters), the water is more optically 

complex with the primary OACs including pure water, phytoplankton, CDOM (also 

known as humic substances, yellow substance or Gelbstoff) and tripton (minerals and 

detritus).  Therefore, the optical properties of ocean waters, by definition, primarily 

depend on, and are related to, the corresponding chlorophyll concentration in the water 

(Morel & Maritorena, 2001).  For example, the following well-documented relationship 

between particulate attenuation at 660 nm [cp(660)] and Chl-a concentrations in ocean 

waters is shown in Figure 2.1 (Loisel & Morel, 1998).  This linear relationship 

emphasises that the optically active particles in oceans are primarily comprised of 

phytoplankton (Chl-a), and therefore that light attenuation is almost entirely related to 

variations in the size, abundance, pigmentation and composition of phytoplankton.  It is 

thus relatively straightforward to develop remote sensing models for ocean waters that 

relate optical properties (e.g., scattering, absorption or reflectance) to Chl-a.  Due to 

their more complex nature, it is acknowledged that inland waters have more demanding 

requirements for water constituent retrieval algorithms (IOCCG, 2000).  In fact, it has 

been acknowledged that many single band Chl-a retrieval algorithms for inland waters 

do not enable distinction between phytoplankton-rich and sediment-rich waters, and 

many misinterpret CDOM as Chl-a (Kutser, 2009). 
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Figure 2.1 Particulate attenuation [cp(660)] as a function of Chl-a concentration in 

ocean waters (Loisel & Morel, 1998). 

2.4.2 Inherent and Apparent Optical Properties 

The inherent optical properties (IOPs) of the in-water constituents 

fundamentally include the absorption coefficient [a(λ), m-1] and volume scattering 

function [β(θ), m-1sr-1].  Other IOPs, including the scattering coefficient [b(λ), m-1], 

backscattering coefficient [bb(λ), m-1] and the coefficient of beam attenuation [c(λ),    

m-1], provide useful information about the underwater light climate and can be defined 

in terms of a(λ) and β(θ).  By definition, the IOPs are the optical properties of water that 

are independent of the ambient light field (Preisendorfer, 1976).  When light enters the 

water column photons are removed from its path by absorption, whereby the photon 

energy is converted to another form such as heat or the energy contained in a chemical 

bond (Mobley, 1994).  Total a(λ) is defined as the sum of absorption by particulate and 

dissolved constituents and water itself.  Light is also scattered by suspended particles, 

whereby the photon changes its direction and/or energy (Mobley, 1994). Scattering is 

described by the volume scattering function (VSF), β(θ), or the angular dependence, 

(θ), of scattered light from an incident unpolarised beam (Sullivan et al., 2013).  The 

scattering coefficient [b(λ)] is commonly defined as a measure of the total magnitude of 

scattered light (without regard to its angular distribution), while bb(λ) is defined as the 
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total light scattered in the backwards direction.  More specifically, the scattering 

coefficient, b(λ), is the integrated VSF from 0 to π radians (0° to 180°): 

𝑏(𝜆) = 2𝜋 ∫ sin(𝜃)𝛽(𝜃)𝑑𝜃
𝜋

0
   (2.1) 

Likewise, the backscattering coefficient, bb(λ), is the integral of the VSF in the 

backwards direction from π/2 to π (90° to 180°): 

𝑏𝑏(𝜆) = 2𝜋 ∫ sin(𝜃)𝛽(𝜃)𝑑𝜃
𝜋
𝜋
2⁄

  (2.2) 

The absorption and backscattering processes are wavelength dependent, and 

according to Beer’s Law, these properties can be expressed as a function of each OAC 

in the water column: 

𝑎(𝜆) = 𝑎𝑤(𝜆) + 𝑎𝑝ℎ(𝜆) + 𝑎NAP(𝜆) + 𝑎CDOM(𝜆)  (2.3) 

𝑏𝑏(𝜆) = 𝑏𝑏,𝑤(𝜆) + 𝑏𝑏,𝑝ℎ(𝜆) + 𝑏𝑏,NAP(𝜆)   (2.4) 

where 𝑎𝑤(𝜆)  is absorption by pure water, 𝑎𝑝ℎ(𝜆)  is absorption by phytoplankton, 

𝑎NAP(𝜆) is absorption by non-algal particles (tripton) and 𝑎CDOM(𝜆) is the absorption by 

CDOM.  Likewise, 𝑏𝑏,𝑤(𝜆) is backscattering by pure water, 𝑏𝑏,𝑝ℎ(𝜆) is backscattering by 

phytoplankton and 𝑏b,NAP(𝜆) is backscattering by non-algal particles (tripton).  It is 

generally assumed that CDOM is a non-scattering component. 

The sum of a(λ) and b(λ) is the beam attenuation coefficient [c(λ)], or the total 

light attenuated in the water column, via the following equation: 

𝑎(𝜆) + 𝑏(𝜆) = 𝑐(𝜆)     (2.5) 

The mass-specific representations, or specific inherent optical properties 

(SIOPs), are essentially the IOP per unit of constituent, and can be derived from 

measured values of IOPs and the measured concentrations of water constituents.  The 

most commonly applied SIOPs for the purposes of remote sensing constituent retrievals 

and bio-optical models include a*ph(λ) (Chl-a specific absorption coefficient, m2 mg-1), 

b*p(λ) (specific particulate scattering coefficient, m2 g-1) and b*bp(λ) (specific 

particulate backscattering coefficient, m2 g-1), and these are derived from Chl-a and 

total suspended matter (TSM) concentrations (mg m-3 and mg L-1, respectively) as 

follows: 

𝑎∗𝑝ℎ(λ) = 𝑎𝑝ℎ(λ)/[𝐶ℎ𝑙 − 𝑎]   (2.6) 

𝑏∗𝑝(λ) = 𝑏𝑝(λ)/[𝑇𝑆𝑀]    (2.7) 
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𝑏∗𝑏𝑝(λ) = 𝑏𝑏𝑝(λ)/[𝑇𝑆𝑀]   (2.8) 

Absorption and scattering by dissolved and particulate matter are key processes 

that influence the spectral shape and magnitude of the water-leaving reflectance signal 

measured by Earth-observing satellites (Morel & Prieur, 1977, Kirk, 1994, Mobley, 

1994).  Therefore, knowledge of the IOPs is of great importance towards furthering 

radiative transfer studies and the development of analytically-based inversion 

algorithms for aquatic remote sensing.  More specifically, Rrs(0+,λ) can be related to the 

IOPs via the following relationship, where f is an experimental constant dependent on 

the light field and volume scattering function and Q is a parameter accounting for 

geometrical attenuation of light exiting the water column (Gordon et al., 1975, Morel & 

Gentili, 1991, Dall'Olmo & Gitelson, 2005): 

𝑅𝑟𝑠(0+, 𝜆) ∝
𝑓

𝑄

𝑏𝑏(𝜆)

𝑎(𝜆)+𝑏𝑏(𝜆)
    (2.9) 

Variability in Rrs(λ) is also controlled by the particulate backscattering ratio 

(b̃bp): 

𝑏 𝑏𝑝 = 𝑏𝑏𝑝(𝜆)/𝑏𝑝(𝜆)    (2.10) 

where bbp and bp are the particulate scattering and backscattering coefficients, 

respectively (Mobley et al., 2002, Lubac & Loisel, 2007).  b̃bp is generally calculated 

using bbp and bp at 532 nm, however research in a range of waters (inland, coastal and 

ocean) has determined that this ratio should be constant at all wavelengths (i.e. no 

spectral dependence) (Whitmire et al., 2007).  The b̃bp is defined as the proportion of 

light scattered in the backwards direction, which can also provide information on the 

bulk refractive index and particle size and composition of the suspended particulate 

material (Boss et al., 2004).   

In contrast to the IOPs, the apparent optical properties (AOPs) are dependent on 

the ambient light field.  AOPs are measurements provided by remote sensing 

instruments, whereas IOPs can be either measured in situ or in the lab (Lindell et al., 

1999).  The AOPs of interest to aquatic remote sensing typically include spectral 

irradiance reflectance [R(z,λ)], remote sensing reflectance [Rrs(0+,λ), sr-1] and water-

leaving reflectance [ρw(λ), sr-1].  Spectral irradiance reflectance was most commonly 

used in early ocean colour remote sensing, and is defined as the ratio of spectral 

upwelling [Eu(z, λ)] to downwelling [Ed(z, λ)] plane irradiances (Mobley, 1994): 

𝑅(𝑧, λ) =
𝐸𝑢(𝑧,λ)

𝐸𝑑(𝑧,λ)
   (2.11) 
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However, Rrs is more commonly applied in recent literature to ocean and inland water 

remote sensing, as it less sensitive than R to environmental conditions (e.g. sun angle or 

sky conditions) (Mobley, 1994).  Spectral remote sensing reflectance can be derived as 

the ratio between the water-leaving or upwelling radiance from the water surface (Lw) to 

downwelling solar irradiance (Ed) (Mobley, 1994, Lindell et al., 1999, Mueller et al., 

2003): 

𝑅𝑟𝑠(0+, λ, 𝜃 ∈ Ω𝐹𝑂𝑉; 𝜃𝑜) =
𝐿𝑤(0+,λ,𝜃,𝜙∈Ω𝐹𝑂𝑉;𝜃𝑜)

𝐸𝑑(0+,λ;𝜃𝑜)
 (2.12) 

where λ is wavelength, θ is the zenith angle, θo is the solar zenith angle, ϕ is the azimuth 

angle (where the sun’s azimuth is ϕo=0), and ΩFOV is the solid-angle field of view 

(FOV) of the radiometer.  The strict definition of Rrs may also include the subtraction of 

reflected skylight, and is measured with adherence to a defined geometry where (θ≈45° 

and ϕ=135-225° solar azimuth) (Pers. Comm. Hunter, P.D.).  The reflected skylight 

error term assumes the water to be totally absorbing (“black”) at λ=750 nm, and if it is 

further assumed that this term is not wavelength dependent (i.e. “white”) then a simple 

offset correction can be described by (Mueller et al., 2003): 

 

𝑅𝑟𝑠(0+, λ, 𝜃 ∈ Ω𝐹𝑂𝑉; 𝜃𝑜) = 𝑅′𝑟𝑠(0+, λ, 𝜃 ∈ Ω𝐹𝑂𝑉; 𝜃𝑜) − 𝑅′𝑟𝑠(0 + ,750, 𝜃 ∈ Ω𝐹𝑂𝑉; 𝜃𝑜)

       (2.13) 

Especially over turbid waters, sun glint and cloud radiance can contribute a non-zero 

value to 𝑅𝑟𝑠(0 + ,750, 𝜃 ∈ Ω𝐹𝑂𝑉; 𝜃𝑜).  However, this simple white-offset correction is 

presently not recommended for general use by the NASA Ocean Optics Protocols 

(Mueller et al., 2003).  

Water-leaving reflectance can then be related to remote sensing reflectance by a 

simple factor of pi: 

𝑅𝑟𝑠(𝜆) = 𝜌𝑤(𝜆)/𝜋   (2.14) 

Other AOPs include the remote-sensing ratio (RSR), diffuse attenuation coefficients (K 

functions) and mean cosines ( ̅μ) (Mobley, 1994). 

2.5 Remote sensing algorithm types for extraction of in-water 

constituents 

The retrieval of in-water constituents from radiometric measurements is 

achieved through the use of a model (or algorithm) that empirically relates or physically 

inverts the measured radiances or reflectances to derive IOPs and/or constituent 
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concentrations.  In general, there are two main approaches for algorithms that extract 

concentrations of in-water constituents from remotely sensed data: empirical (and semi-

empirical) and semi-analytical (or analytical), and these are described in further detail 

below.  A summary of empirical procedures for retrieval of biogeochemical parameters 

in inland and coastal waters is provided in Matthews (2011), and a review of retrieval 

algorithms for optically deep and complex waters (2006-2011) can be found in 

Odermatt et al. (2012).  

2.5.1 Empirical, semi-empirical and semi-analytical algorithms 

The most straightforward empirical method is to correlate the value of a single 

spectral band with the measured parameter of interest, deriving an algorithm by simple 

regression.  However, single channel algorithms tend to be less effective in inland 

waters, where the same band may be used to retrieve more than one parameter (e.g. 

phytoplankton pigments and suspended sediments) (Kutser, 2009).   

Another common empirical approach is the band-ratio, where a ratio of two 

reflectance bands (Ri) are used to estimate a parameter, p, where 𝛼 , 𝛽  and 𝛾  are 

regression coefficients (IOCCG, 2000): 

𝑝 = 𝛼
𝑅1

𝑅2

𝛽
+ 𝛾    (2.15) 

A band-ratio algorithm employing R1=665 and R2=709 has proved effective for 

retrieval of Chl-a concentrations in eutrophic inland waters (Mittenzwey et al., 1992, 

Dekker, 1993, Gons et al., 2002, Gurlin et al., 2011).  Empirical algorithms have been 

widely used and are relatively simple to derive and apply, generally producing robust 

results for the particular lake studied. In fact, on occasion they have been found to be 

more robust than complex analytical models, e.g. (Ogashawara et al., 2013).   

Semi-empirical or semi-analytical models are a variation which employ prior 

knowledge of the optical properties of the parameter(s) of interest to optimise empirical 

models.  Empirical and semi-empirical algorithms do not require detailed information 

on the IOPs, which is often not available or not measured in situ.  For instance, the 

Ocean Chlorophyll 4 (OC4) algorithm and its predecessors developed for SeaWiFS can 

be considered semi-empirical because they do not involve any knowledge or 

assumptions about the IOPs, but the choice of wavelengths used for the maximum band 

ratio is based on physics rather than statistics (O'Reilly et al., 1998).  An example of a 

semi-analytical algorithm is the Chl-a retrieval algorithm developed by Gons et al. 

(Gons, 1999, Gons et al., 2002, Gons et al., 2005), which has been further adapted by 
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Simis et al. (2005) for the retrieval of PC in inland waters.  The Gons et al. (2005) semi-

analytical algorithm is a band ratio approach, but it employs knowledge of the 

relationship between IOPs and Rrs(λ), and estimates aph(665) rather than Chl-a directly.  

Pigment concentration is then calculated using knowledge of the Chl-a specific 

absorption coefficient. 

2.5.2 Other algorithm approaches 

Other algorithms for the retrieval of Chl-a concentrations have focused on using 

peaks in the spectrum caused by chlorophyll fluorescence or phytoplankton scattering 

(Matthews, 2011).  Examples of these have included the Maximum Peak Height 

algorithm (MPH) (Matthews et al., 2012, Matthews & Odermatt, 2015), Maximum 

Chlorophyll Index (MCI) (Gower et al., 2005), Fluorescence Line Height (FLH) 

(Gower et al., 1999) and the Reflectance Line Height (RLH) or Scattered Line Height 

(SLH) algorithms (Dierberg & Carriker, 1994, Yacobi et al., 1995, Schalles et al., 

1998).  The FLH algorithm, for example, measures height of the peak at 685 nm from a 

linear baseline between points on either side of the peak (Dierberg & Carriker, 1994, 

Giardino et al., 2005).   

More recently, artificial neural network type approaches have been investigated 

for coastal and inland waters [e.g. Case 2 Regional (Doerffer & Schiller, 2007), Free 

Universität Berlin (FUB/WeW) (Schroeder et al., 2007), Eutrophic Lake and Boreal 

Lake (Doerffer & Schiller, 2008), CoastColour (Brockmann Consult, 2014), Regional 

neural network for rias Babcas (NNRB) (Gonzalez Vilas et al., 2011, Spyrakos et al., 

2011) and multilayer perceptron neural network (MLPN) (Ioannou et al., 2013)  

processors].  Neural network type algorithms typically require a large training set of 

IOPs and AOPs as input and provide IOPs and/or concentrations as the output (Doerffer 

& Schiller, 2007, Schroeder et al., 2007, Doerffer & Schiller, 2008).  Some of these are 

now available as plug-ins in the widely used BEAM software (Brockmann Consult), 

providing ease and accessibility of these more complex algorithms.  However, these 

approaches have not been trained using data from lakes, therefore their utility in inland 

waters might be limited as a result. 

2.5.3 Inversion of bio-optical models (analytical algorithms) 

It is important to have knowledge of the variability of spectral characteristics of 

lakes in order to parameterise bio-optical models, which is another method of extracting 

water quality parameters from satellite or airborne water reflectance signatures.  Bio-
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optical models can be used to model the AOPs as a function of the IOPs, thus 

generating a synthetic dataset from which algorithms can be derived to extract the water 

quality parameter(s) of interest (either semi-empirically, semi-analytically or 

analytically) (Kirk, 1994).  The semi-analytical (or analytical) approach models the 

water-leaving reflectance [ρ(0+,λ)] or remote sensing reflectance [Rrs(0+,λ)] in terms of 

the IOPs through radiative transfer modelling (Dekker et al., 2001, Matthews, 2011).  

The so-called ‘forward’ model derives ρ(0+,λ) from the IOPs using an approximation of 

the radiative transfer equation (RTE), called the reflectance approximation (Morel & 

Prieur, 1977, Zaneveld, 1995), or through direct solution of the RTE using models such 

as Hydrolight (Mobley, 1994).  The ‘inverse’ model conversely solves for the IOPs and 

concentrations of in-water OACs from ρ(0+,λ) measured by satellite, airborne or in situ 

methods.  Inverse bio-optical models can be solved via optimisation or multiple 

nonlinear regression procedures to produce semi-analytical or inversion algorithms 

(IOCCG, 2000).  Inversion models have been commonly developed for Chl-a retrievals 

in ocean and coastal waters, e.g. the Quasi-Analytical Algorithm (QAA) (Lee et al., 

2002), Garver–Siegel–Maritorena Model (GSM) (Maritorena et al., 2002) and the 

adaptive Linear Matrix Inversion Method (aLMI) (Brando et al., 2012).  However, 

inversion methods have also been applied to inland waters, e.g. Modular Image 

Processing system (MIP) (Heege & Fischer, 2004).  In general, the applicability of 

physics-based analytical approaches is reliant on appropriate parameterisation, and this 

requires a priori knowledge of the SIOPs for the optical water type of interest. 

2.6 Remote sensing of phytoplankton pigments 

Several previous studies have applied remote sensing to estimate bulk 

phytoplankton biomass (chlorophyll-a concentration) in lakes, using various algorithms 

and sensor types.  The phytoplankton pigment Chl-a is the most commonly derived 

parameter in remote sensing of lakes, as it provides a proxy for bulk phytoplankton 

biomass.  Apart from Chl-a, there is an increasing body of literature interested in the 

remote sensing of phycocyanin (PC) as a bio-marker pigment for cyanobacteria.  

Although PC is found in other phytoplankton phyla (e.g. cryptophytes), there is 

increasing evidence that PC can be a proxy for cyanobacteria biomass [e.g. (Horváth et 

al., 2013a)].  An overview of literature on the remote sensing retrieval of phytoplankton 

pigments Chl-a and PC is provided below. 
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2.6.1 Phytoplankton pigments and optical discrimination 

The primary pigment used as a general proxy for phytoplankton biomass is 

chlorophyll-a (Chl-a).  This is a light-harvesting pigment that is common to nearly all 

taxonomic groups, therefore it is a bulk signal unable to discriminate between 

phytoplankton taxa.  However, phytoplankton contain a range of accessory pigments in 

addition to Chl-a, including carotenoids and phycobiliproteins, and many of these are 

specific to certain algal taxa (Rowan, 1989, Richardson, 1996).  For example, peridinin 

(dinoflagellates), alloxanthin (cryptophytes), fucoxanthin and diadinoxanthin (diatoms), 

and zeaxanthin and phycobiliproteins (cyanobacteria) are potential biomarker pigments 

for the respective phytoplankton functional groups (Jeffrey et al., 1997).  A study by 

Hunter et al. (2008b) was able to discriminate four phytoplankton groups (brown, 

green, blue-green and red) in laboratory experiments after measuring their spectral 

reflectance signatures, and the spectral signatures of 6 freshwater phytoplankton groups 

are shown in Figure 2.2.  In ocean waters, the phytoplankton absorption spectra has 

been found to vary in magnitude and spectral shape depending on pigment composition 

(Sathyendranath et al., 1987, Hoepffner & Sathyendranath, 1991) and cell size (Ciotti et 

al., 2002).  In light of these findings, for example, Sathyendranath et al. (2004) 

developed a bio-optical algorithm for distinguishing diatom populations in the North 

West Atlantic Ocean, although similar research has yet to be done for lakes. 
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Figure 2.2 Hyperspectral reflectance signatures of six phytoplankton genera examined 

in laboratory mesocosm experiments with broadly equivalent Chl-a concentrations. 

Reproduced from (Hunter et al., 2008b). 

However, apart from Chl-a, phycocyanin (PC) is the most commonly retrieved 

pigment by remote sensing, and has proved effective in distinguishing potentially toxic 

cyanobacteria in inland waters (Dekker, 1993, Schalles & Yacobi, 2000, Vincent et al., 

2004, Simis et al., 2005, Simis et al., 2007, Hunter et al., 2008a, Mishra et al., 2009, 

Hunter et al., 2010, Mishra et al., 2013, Ogashawara et al., 2013, Mishra & Mishra, 

2014).  Phycocyanin is a phycobiliprotein, which is a pigment-protein, amino acid 

storage complex common to cyanobacteria, Rhodophyta and some cryptophytes 

(Williams et al., 1980, Horváth et al., 2013a).   A reflectance “trough” at approximately 

620 nm distinguishes this pigment, and is a result of strong absorption by PC at this 

wavelength.  An overview of remote sensing of cyanobacteria and other intense 

phytoplankton blooms in inland waters is also provided by Kutser (2009). 

The benefit of distinguishing phytoplankton functional groups by their optical 

properties is that taxa-specific bio-optical models can then be developed for application 

to remotely sensed data for mapping and quantifying both phytoplankton abundance 

and composition (Gege, 1998, Matthews, 2011).  In terms of lake water quality and 

management, this would clearly be beneficial if blooms of known potentially toxic 

cyanobacteria genera could be discriminated from non-toxic phytoplankton blooms. 

2.6.2 Remote sensing of chlorophyll-a 

Single band Chl-a algorithms for satellite sensors [e.g. Landsat and AVHRR 

(Advanced Very High Resolution Radiometer)] have proven to work in inland waters 
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when there have been very high concentrations of phytoplankton (Galat & Verdin, 

1989, Kahru et al., 1993, Kahru & Mitchell, 2000).  In such situations where 

cyanobacteria are in sufficiently high concentrations, the optical properties of the water 

are almost completely determined by phytoplankton at all wavelengths of the visible 

and near infrared (NIR) portions of the spectrum (Kutser, 2009).  Thus, in these cases a 

single band Chl-a retrieval algorithm may be sufficient. 

However, band ratio algorithms for Chl-a tend to be more robust than single 

band algorithms.  Band ratio algorithms are less sensitive to interference from other 

optically active constituents in the water column and artefacts resulting from the 

incomplete atmospheric correction (assuming such artefacts are spectrally neutral over 

the wavelengths used in the ratio).  Blue-green band ratios are operationally employed 

for Chl-a retrieval from ocean colour satellite instruments (e.g. MODIS/MERIS OC3/4 

algorithms), however these have had limited success in inland waters (George & 

Malthus, 2001, Kutser, 2009).  The ratio of reflectance at approximately 700 nm to 670 

nm has been more widely used to estimate Chl-a concentrations for inland waters, with 

some studies showing especially strong correlations between modelled and measured 

Chl-a concentrations (Mittenzwey et al., 1992, Gitelson et al., 1993b, Dierberg & 

Carriker, 1994, Gons, 1999, Flink et al., 2001, Harma et al., 2001, Kallio et al., 2001, 

Ammenberg et al., 2002, Gons et al., 2002, Koponen et al., 2002, Kallio et al., 2003, 

Gons et al., 2005, Jiao et al., 2006, Menken & Brezonik, 2006, Duan et al., 2007, 

Hunter et al., 2008a, Hunter et al., 2009, Hunter et al., 2010).  

Additionally, various three-band or multiple-band ratio approaches (Mittenzwey 

et al., 1991, Gitelson et al., 1993b, Harma et al., 2001, Koponen et al., 2002, Dall'Olmo 

et al., 2003, Dall'Olmo & Gitelson, 2005, Zimba & Gitelson, 2006, Gitelson et al., 

2008, Gitelson et al., 2009, Moses et al., 2009, Le et al., 2009b) have proved effective 

for estimating Chl-a concentration in coastal and inland waters.  In particular, indices 

using band differences have retrieved accurate concentrations of Chl-a in turbid 

productive coastal waters, e.g. the Normalized Difference Chlorophyll Index (NDCI) 

(Mishra & Mishra, 2012).  These band difference indices build on similar widely-

applied algorithms for detection of terrestrial vegetation [e.g. NDVI (Normalized 

Difference Vegetation Index)].  The NDCI is explored in Chapter 6 and further detail 

on this algorithm is supplied in Chapter 8 (Appendix – Supplementary Methods). 

Another technique presented in the literature includes using the first derivative 

of reflectance at a specified wavelength to estimate Chl-a concentrations.  Derivative 
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transformations of reflectance spectra have been applied to inland waters in several 

studies, using wavelengths of 620, 638 and 661 nm (Malthus & Dekker, 1995), 690 nm 

(Rundquist et al., 1996, Han & Rundquist, 1997) and 429 and 695 nm (Fraser, 1998) 

and 670 nm (Hunter et al., 2008b). 

 Supervised classification methods have also been employed for Chl-a retrieval 

(Koponen et al., 2002, Subramaniam et al., 2002, Huang et al., 2014a).  Classification 

methods have been based on, for example, the magnitude of the 490-channel reflectance 

and the spectral shape of Rrs at 443, 490 and 555 nm (Subramaniam et al., 2002) or 

more operational water classification schemes such as the Water Quality Classification 

of Inland Waters in Finland and the Organisation for Economic Cooperation and 

Development Lake Classification Scheme (Koponen et al., 2002). 

More complex neural network type algorithms (Schiller & Doerffer, 1999, 

Huang & Lou, 2003, Pozdnyakov et al., 2005, Doerffer & Schiller, 2007, Doerffer & 

Schiller, 2008) have been further used to map and quantify Chl-a.  One of the most 

common types of neural networks for remote sensing is the Multi-Layer Perceptron 

(MLP), which might consist of layers including radiances at certain wavelengths, an 

internal layer and a layer indicating the number of parameters (Pozdnyakov et al., 

2005).  Each neuron in a network is connected to all neurons in the other layers and 

assigned an associated weight.  The MERIS Case 2 coastal water algorithm is based on 

a neural network which relates the bi-directional water leaving radiance reflectances 

with IOPs (Doerffer & Schiller, 2007).  The neural network is trained with simulated 

reflectances based on a large dataset from European waters. 

Bio-optical modelling approaches, where reflectance spectra are simulated from 

measurements of the IOPs and OACs, are an increasingly common analytical method 

applied to remote sensing of phytoplankton.  Such models are described in detail by 

Pierson and Stromback (2001), however there have been many recent advances 

particularly with bio-optical inversion algorithms.  For instance, a well-cited algorithm 

was developed for Chl-a retrieval in ocean waters called the Quasi-Analytical 

Algorithm (QAA) (Lee et al., 2002).  Since its development, the QAA has been 

validated in inland waters as well, including Lake Taihu (Le et al., 2009a), Lake Poyang 

(Huang et al., 2014b) and Mississippi aquaculture ponds (Mishra et al., 2014).  A 

similar bio-optical inversion algorithm has been proposed for lakes called the IOP 

Inversion Model of Inland Waters (IIMIW), which retrieved Chl-a with a mean relative 

error of 22% in Indiana Reservoirs (Li et al., 2013).  In general, however, there remains 
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very limited validation of inland water bio-optical algorithms with independent 

datasets. 

2.6.3 Remote sensing of phycocyanin 

 

While limited in comparison to Chl-a, PC retrieval algorithms are of increasing 

interest to inland water remote sensing for the monitoring of potentially toxic 

cyanobacteria blooms.  A recent performance review of empirical PC algorithms is 

presented in Ogashawara et al. (2013).   

As for Chl-a, reflectance band-ratios or band differences have proven effective 

for PC retrieval in lakes.  One of the earliest approaches for estimating PC 

concentrations in lakes was conducted by Dekker (1993) using a semi-empirical 

baseline algorithm relating Rrs at 600, 648 and 624 nm.  Schalles and Yacobi (2000) 

developed a band-ratio algorithm for the hypereutrophic Carter Lake, where a ratio of 

reflectance for the peak at 650 nm and trough at 625 nm was an effective predictor of 

phycocyanin concentration.  Vincent et al. (2004) applied a spectral ratio model for the 

retrieval of phycocyanin in the western basin of Lake Erie.  Mishra et al. (2009) adapted 

the spectral band ratio algorithm by using reflectance at the wavelengths 700 and 600 

nm, in order to reduce sensitivity of the algorithm to chlorophyll absorption.  This band 

ratio was further modified in Ogashawara et al. (2013), using Rrs at 724 and 600 nm.  In 

Lac des Allemands, Dash et al. (2011) developed an empirical inversion algorithm to 

estimate PC concentration from Rrs at 510.6 and 556.4 nm using the Oceansat-1 satellite 

Ocean Colour Monitor (OCM).   

Building on the band-ratio approach and the Gons et al. (2002, 2005) algorithm 

for Chl-a retrieval, Simis et al. (2005) developed a semi-analytical algorithm for PC 

retrieval for the band settings of MERIS.  This algorithm is tested in Chapter 5 and 

presented in detail in Chapter 8 (Appendix – Supplementary Methods).  Again, this 

algorithm combines the empirical and analytical approaches, through using the band 

ratio (709:620 nm) and knowledge of the (specific) inherent optical properties. 

A study on the Laurentian Great Lakes used the change in spectral shape at 681 

nm was to distinguish cyanobacteria blooms (Wynne et al., 2008).  Several studies have 

also employed various three-band empirical algorithms for PC retrieval (Hunter et al., 

2008b, Hunter et al., 2010, Song et al., 2013, Mishra & Mishra, 2014).  For example, 

Hunter et al. (2010) used the difference between the inverse of Rrs at 615 and 600 nm, 

multiplied by Rrs at 725 nm, which is an approach based on the medium-independent 
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model for pigment retrieval developed by Dall’Olmo (2003).  Other approaches for PC 

retrieval have included a four-band semi-analytical algorithm (Le et al., 2011), and a 

three-band and baseline algorithm (Li et al., 2012).  More recently, a PC Index (PCI) 

algorithm was developed by Qi et al. (2014), which uses Rrs(620) normalised against a 

linear baseline between Rrs(560) and Rrs(665). 

The QAA algorithm for Chl-a retrieval developed by Lee et al. (2002) has also 

been adapted to estimate PC concentrations.  Becker et al. (2009) used non-negative 

least squares fitting to total absorption calculated from the QAA and published PC 

absorption spectra to estimate PC concentrations in Lakes Erie and Ontario.  Mishra et 

al. (2013) also extended the QAA to retrieve PC absorption at 620 nm, based on the 

assumptions that aph(620) is approximately equal to the sum of Chl-a and PC at this 

wavelength and that aph(665) is predominately due to Chl-a.  An alternative bio-optical 

inversion model that was developed for estimation of Chl-a concentration (IIMIW) (Li 

et al 2013) was also further adapted for PC retrieval by Li et al. (2015).  The 

adaptations to the IIMIW partitioned non-water absorption into contributions from 

phytoplankton, CDOM and PC, and this model in particular was found to be a good 

predictor for low PC concentrations in central Indiana reservoirs (≤50 mg m-3) (Li et al., 

2015).  However, these bio-optical inversion methods for PC retrieval have received 

little to no validation with independent datasets, therefore it is unknown how 

transferable these algorithms are to other inland water types.  The bio-optical inversion 

models by Mishra et al. (2013) and Li et al. (2015) are tested in Chapter 5 and outlined 

in further detail in Chapter 8 (Appendix – Supplementary Methods). 

2.7 Considerations for the remote sensing of inland waters 

In addition to the optical complexity of inland waters, several other factors 

present obstacles towards the progression of remote sensing of inland waters. These are 

mainly to do with either the inherent nature of inland water bodies or limitations of 

instrument capability and processing.  A recent review of the challenges and 

recommendations for coastal and inland water colour remote sensing is presented by 

Mouw et al. (2015).  Similarly, Palmer et al. (2015b) presents an editorial for a special 

issue in Remote Sensing of Environment, which outlines the challenges and progress to 

date for the remote sensing of inland waters. 
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2.7.1 Satellite mission capability 

The size and shape of lakes is frequently too small for the use of currently 

available satellite sensors.  Many satellite-based instruments were developed for ocean 

colour monitoring (e.g. MERIS and MODIS), therefore the spatial resolution is often 

too coarse (>300 m).  Alternatively, satellite instruments developed for terrestrial 

applications (e.g. Landsat) may retrieve turbidity/total suspended matter, but have 

insufficient spectral and radiometric resolution for retrieval of phytoplankton pigments 

in inland waters.  With the exception of MERIS and MODIS, most past and current 

satellite sensors do not measure over a large spectral region between 555 and 670 nm, 

which also does not capture the PC absorption peak at ~620 nm (Mouw et al., 2015).  

Many instruments on satellite platforms also lack sufficient revisit frequency to capture 

the ephemeral dynamics of inland waters.  An airborne survey over Barton Broad 

(Norfolk, UK) demonstrated the marked variability in cyanobacteria spatial distribution 

over a matter of mere hours (Hunter et al., 2008a).  However, with the exception of 

geostationary satellites, few instruments are available with a frequent revisit time in 

order to capture these dynamics in lakes.  Furthermore, the balance between instrument 

radiometric sensitivity and dynamic range is a challenge to inland water remote sensing.  

Even instruments with high signal-to-noise ratios (SNR) tend to saturate over highly 

turbid waters (Mouw et al., 2015). 

2.7.2 Geography of inland waters 

Another factor affecting inland water remote sensing is the proximity of land, 

which is also linked to lake size and shape.  Firstly, the pixel may include both water, 

land and/or emerging vegetation (i.e. pixel contamination or mixed pixels), especially 

for coarse resolution data.  Secondly, the adjacency effect may mask pixels adjacent to 

land or clouds.  Pixels adjacent to land or clouds are affected by stray light 

contamination from these “bright” features, which can present difficulty for 

atmospheric correction of these pixels (Santer & Schmechtig, 2000, Meister & 

McClain, 2010).  Recent studies have focused on developing approaches to correct for 

or minimise the adjacency effect [e.g. (Kiselev et al., 2015, Sterckx et al., 2015)]. 

In shallow waters, the contribution of bottom reflectance is an additional 

consideration for aquatic colour remote sensing (Lee et al., 1994, Maritorena et al., 

1994, Lee et al., 1998).  Therefore, algorithms developed for optically deep waters are 

typically not suitable for shallow waters (Mouw et al., 2015).  Bottom properties are 
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typically heterogeneous within inland waters, which adds further complexity to 

quantifying the contribution from bottom reflectance. 

2.7.3 Algorithms 

It is widely acknowledged that the retrieval algorithms for biogeochemical 

parameters from ocean waters break down over coastal and inland waters (IOCCG, 

2000).  The recent algorithm developments for inland waters are lacking in 

reproducibility, with multiple approaches and typically limited validation of algorithms 

with independent datasets.  Algorithms tend to be dataset-, region- or sensor-specific, 

however further intercomparison exercises have been recommended to evaluate the 

applicability of current algorithms to certain water types and conditions (Mouw et al., 

2015).   

2.7.4 In situ data  

In situ data is required in order to develop or validate algorithms for retrieval of 

water quality parameters.  In order to advance inland water remote sensing, it is 

therefore paramount to have coincident (S)IOP and biogeochemical data alongside 

collection of AOP data.  However, such in situ datasets are scarce, and few adequately 

characterise the large range of inland water body types in order to provide independent 

validation of current in-water algorithms.  Specifically, there is a present lack of 

information about variations in (S)IOPs, in terms of both seasonal, spatial and regional 

differences in these properties.  These variations result in a degree of uncertainty in the 

retrieved water quality products.  Therefore it has been recommended that efforts 

continue to characterise SIOPs, in particular, in optically complex waters (Mouw et al., 

2015).  This deficiency may be addressed in part by advances in in situ technology for 

measuring water column optical properties, with instruments that more accurately and 

reliably measure IOPs.  Additionally, coincident in situ AOP data and aerosol vertical 

distribution measurements are required for the development and validation of 

atmospheric correction algorithms.  The accuracy of satellite- or airborne- measured 

Rrs(λ) largely depends on improved atmospheric correction (Hu et al., 2013), therefore 

these in situ data are fundamental towards improving inland water remote sensing. 

2.7.5 Atmospheric correction 

As over 90% of the light that reaches a satellite sensor over water derives from 

the atmosphere, the largest potential source of error and uncertainty in remote sensing 
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from airborne and spaceborne instruments is the residual error from atmospheric 

correction (IOCCG, 2010, Mouw et al., 2015).  Ocean colour instruments may be 

atmospherically corrected using a variation of the “black-pixel” assumption, which is 

that Rrs in the NIR is negligible (i.e. water absorption is high) and therefore any NIR 

reflectance measured is atmosphere-derived (Gordon & Wang, 1994).  However, inland 

waters have high concentrations of scattering materials, especially suspended 

particulate matter, which can contribute to Rrs in the NIR and therefore results in 

overcorrection (Siegel et al., 2000).  As the short wave infrared (SWIR) wavelengths 

have a higher absorption coefficient than the NIR, SWIR bands have been proposed as 

an alternative for atmospheric correction (Wang & Shi, 2007, Aurin et al., 2013). 

Furthermore, atmospheric correction is complicated by nearshore or inland 

concentrations of absorbing aerosols and gaseous emissions (Gordon, 1997).  There is a 

lack of measurement of anthropogenic emissions, and these can vary significantly 

during a day (Tzortziou et al., 2015).  Stray light contamination from nearby bright 

pixels (i.e. land or clouds) is another challenge to accurate atmospheric correction over 

inland water bodies (Santer & Schmechtig, 2000, Meister & McClain, 2010).  The 

collection of in situ observations coincident with remote sensing data will provide a 

necessary step towards improvements in atmospheric correction, e.g. the Aerosol 

Robotic NETwork-Ocean Colour (AERONET-OC) series of photometers for incident 

surface measurements for SeaWiFS ocean colour data (Zibordi et al., 2009, Mouw et 

al., 2015).  

2.7.6 Operational 

Lastly, Mouw et al. (2015) have recently identified that existing remote sensing 

capacity building efforts are still needed to better link data users and data providers.  

Presently, there is limited access to satellite data, with tailored products available for 

some regions, but further data and product access is required to advance inland water 

remote sensing.  Several international organizations presently exist to further the use of 

remote sensing for management and observation of inland and coastal waters [see Table 

5 in Mouw et al. (2015)].  However, with the aim of ultimately applying remote sensing 

towards operational water quality monitoring, increased data access, expanded user 

outreach and training and implementation of a more user-driven community are still 

needed.   
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2.8 Previous remote sensing studies of Lake Balaton 

There have been relatively few remote sensing studies conducted on Lake 

Balaton to date.  The earliest published use of satellite data on the lake was conducted 

by Buttner et al. (1987).  This study used Landsat MSS data to retrieve Chl-a and 

suspended matter via simple empirical relationships between satellite-measured 

radiances and in situ water quality data.  Other early studies were conducted using 

biogeochemical and in situ spectral irradiance measurements from Lake Balaton (1985, 

1986 and 1988) in combination with various inland and coastal waters in the former 

USSR, Hungary, Bulgaria and Germany (Gitelson, 1993, Gitelson et al., 1993a, 

Gitelson et al., 1993b).  Gitelson et al. (1993b) developed reflectance band ratio and 

empirical algorithms for retrieval of Chl-a, TSM and dissolved organic matter (DOM) 

concentrations in these waters, and used simulated Landsat-MSS data to test the 

accuracy of derived concentrations.  This work provided some of the first maps of Chl-

a and TSM spatial distribution over the Keszthely basin of Lake Balaton (Figure 2.3).  

These early results indicate the utility a trophic gradient for algorithm testing, as 

algorithms performed differently depending on trophic state.  However, these studies by 

Gitelson et al. (1993) only used in situ reflectance and simulated satellite data, and 

serve as a basis for future studies using satellite-based platforms. 
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Figure 2.3 Chl-a (top) and TSM (bottom) distribution maps for Lake Balaton in June 

1988 as retrieved from simulated Landsat-MSS data. Reproduced from Gitelson et al. 

(1993b). 

Subsequently, Sváb et al. (2005) used principal component analysis (PCA) to 

identify spectrally unique end-members, finding that spectral linear mixture modelling 

combined with multivariate regression analysis can estimate phytoplankton biomass.  

This study used coincident phytoplankton biomass and in situ and laboratory 

reflectance measurements, from which they simulated Landsat TM and Enhanced 

Thematic Mapper Plus (ETM+) data.  Tyler et al. (2006) took this research the step 

further and derived estimates of Chl-a concentrations from Landsat TM imagery using a 

linear mixture modelling approach.  These studies provided a foundation for using 

Landsat TM data to retrieve Chl-a concentrations in the context of high suspended 

sediment concentrations. 

Additional remote sensing on Lake Balaton has included a recent meta-study by 

MacCallum and Merchant (2012), which used Lake Balaton as one of 258 large lakes to 

retrieve surface water temperatures from (Advanced) Along-track Scanning 

Radiometers (ATSR-2 and AATSR) imagery between 1995 and 2009. 

Most recently, Palmer et al. (2015c) retrieved Chl-a concentrations in Lake 

Balaton using a 5-year time series of MERIS data.  In this study, the Fluorescence Line 

Height (FLH) algorithm retrieved the most accurate Chl-a concentrations of the 6 
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algorithms tested.  Using the FLH algorithm, Palmer et al. (2015a) undertook a study of 

phytoplankton phenology using 10 years of MERIS data to examine phytoplankton 

seasonality metrics.  These papers formed part of a PhD thesis by Stephanie Palmer 

(Palmer, 2015), which further investigated atmospheric correction of MERIS data and 

the use of Ultraviolet Fluorescence Light detection and ranging measurements of water 

quality in Lake Balaton.   

Lake Balaton is also now part of several ongoing European and global initiatives 

to further the remote sensing of inland waters, including Globolakes 

(globolakes.stir.ac.uk), Diversity 2 (diversity2.info) and INFORM (copernicus-

inform.edu) projects.   

These studies on Lake Balaton form the context to the August 2010 field 

campaign on Lake Balaton, which is the fundamental dataset used for the case study 

presented in this thesis.  Further detail on this campaign is provided in Chapter 8 

(Appendix – Supplementary Methods).  Prior to this thesis, the optical properties of 

Lake Balaton have not been characterised.  Thus, this thesis presents a novel study of 

the bio-geo-optical properties of Lake Balaton and their spatial variability and 

relationships.  Secondly, this thesis provides an investigation of remote sensing of 

phytoplankton over a range of temporal, spatial and spectral scales, expanding upon the 

emergent base of literature for remote sensing of this optically complex shallow lake.  

Additionally, no prior testing of PC retrieval algorithms has been conducted on Lake 

Balaton, despite the ongoing prevalence of significant summer blooms of nitrogen-

fixing cyanobacteria.   

2.9 Summary and research priorities 

Recent advances have shown that remote sensing can be a valuable tool for the 

monitoring of inland water quality, providing information over vast temporal and 

spatial scales.  However, there remain many challenges in obtaining useful information 

from remotely sensed imagery over shallow, optically complex waters.  Firstly, little is 

known about the within lake spatial variability of in-water bio-geo-optical properties 

and how the relationships between (S)IOPs and biogeochemical parameters differ from 

those reported in ocean and coastal waters.  Further study of the nature of (S)IOPs in 

turbid waters will provide context for algorithm validation studies and support 

algorithm parameterisation, e.g. for a “menu” of inland water algorithm types, as 

suggested in Mouw et al. (2015).   
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Secondly, there remains a dearth of validation studies which assess retrieval of 

phytoplankton pigments using independent datasets collected from inland waters.  

There is a need to extend validation exercises to a larger range of lake optical water 

types in order to determine the uncertainties and limits of applicability for current 

algorithms, particularly those for the retrieval of parameters such as phycocyanin that 

have received less attention in the literature.  Existing retrieval algorithms lack 

transferability amongst inland waters (i.e. are generally either site- or instrument-

specific), and further testing of these alongside knowledge of the (S)IOPs in optically 

complex waters may elucidate the mechanisms behind algorithm success or failure.   

Finally, the current use of satellite-based remote sensing instruments remains 

limited by the available technology, which is typically directed towards the needs of 

ocean colour or terrestrial applications.  Thus, to achieve operational real-time 

monitoring of inland waters, further research is needed to understand algorithm 

transferability between sensors with different capabilities and how this influences the 

efficacy of the retrieved products (e.g. for water resource management). 

2.9.1 Thesis in context 

With regard to the current state of the science, this PhD thesis attempts to 

address some of the present shortcomings in the field of remote sensing of inland 

waters.  In particular, this thesis aims to contribute towards the knowledge of the 

variability of bio-geo-optical properties and the application of a range of remote sensing 

methods for assessment of phytoplankton in optically complex shallow lakes.  Specific 

objectives for each results chapter are outlined as follows: 

 

Chapter 3 – To investigate if and how bulk and specific absorption coefficients vary 

spatially across a trophic gradient in Lake Balaton and the relationships with 

biogeochemical properties in comparison to other published studies in ocean, 

coastal and inland waters. 

 

Chapter 4 – To examine the spatial variability of scattering and backscattering 

properties (bulk and specific) within an optically complex lake, with particular 

investigation of the relative contributions to particulate attenuation in the water 

column.  

 



58 

 

Chapter 5 – To evaluate the performance of existing PC retrieval algorithms in an 

optically complex shallow lake using a time series of MERIS data, provide a 

detailed assessment of a semi-analytical PC retrieval algorithm and its sources 

of error using knowledge of the (S)IOPs, and to investigate the change in 

algorithm performance over a range of temporal matchup windows. 

 

Chapter 6 – To assess the remote sensing of phytoplankton blooms using a novel 

coincident dataset of satellite (MERIS and Landsat 5 TM), airborne (AISA 

Eagle) and in situ water-leaving reflectance, with a focus on the ability to 

retrieve Chl-a concentrations at different spatial scales using the Normalized 

Difference Chlorophyll Index (NDCI). 

 

Using these results, this thesis will critically evaluate the use of remote sensing for 

monitoring phytoplankton populations in shallow and optically complex inland waters. 
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3 Spatial variability of absorption coefficients over a 

biogeochemical gradient in a large and optically complex 

shallow lake 
 

This chapter is based on the following publication: 

Riddick, C.A.L., Hunter, P.D., Tyler, A.N., Martinez-Vicente, V., Horváth, H., Kovács, 

A.W., Vörös, L., Preston, T. and Présing, M. (2015) Spatial variability of absorption 

coefficients over a biogeochemical gradient in a large and optically complex shallow 

lake. Journal of Geophysical Research – Oceans, 120: 7040-7066. doi: 

10.1002/2015JC011202. 

 

3.1 Introduction 

Understanding the sources and magnitude of variability in light absorption in 

lakes and reservoirs is fundamentally important to studies concerned with 

photochemistry (Moran & Zepp, 1997, Bertilsson & Tranvik, 2000), photosynthesis 

(Blache et al., 2011), primary production (Tilstone et al., 2005, Lee et al., 2011), heat 

and energy transfers (Jolliff et al., 2008, Dera & Wozniak, 2010) and biogeochemical 

models (Ciavatta et al., 2014).  The absorption and scattering of light (termed inherent 

optical properties, IOPs) are also key processes influencing the magnitude and spectral 

distribution of the water-leaving reflectance signal measured by Earth-observing 

satellites (Mobley, 1994, Kirk, 1994).  Remote sensing has allowed for characterization 

of water bodies at improved spatial and temporal scales with the aim of monitoring 

water quality operationally in ocean, coastal and, more recently, inland waters.  

However, remote sensing algorithms developed for retrieval of physical and 

biogeochemical properties in open ocean waters are often inaccurate when applied to 

more turbid and optically complex inland waters (Sathyendranath et al., 1999, IOCCG, 

2000, Binding et al., 2008).  Inland waters typically have higher concentrations of 

phytoplankton biomass, detritus, inorganic particulates and colour dissolved organic 

matter (CDOM), and large percentages of suspended particulates can be land-derived.  

Moreover, the biogeochemical properties of inland waters do not co-vary over space 

and time, resulting in potentially large variability in the IOPs of the optically active 

constituents (OACs) (Binding et al., 2008, Palmer et al., 2015b).  In order to improve 

the performance of algorithms for the retrieval of biogeochemical parameters in lakes it 
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is vital that we develop a better understanding of the variability in the absorption and 

backscattering coefficients (a(λ) and bb(λ); m-1) of the main OACs in lakes [i.e., 

phytoplankton, non-algal particles (NAP) and coloured dissolved organic matter 

(CDOM)] and their mass-specific representations [a*(λ) and bb*(λ); m2 mg-1].  When 

light enters the water column photons are removed from its path by absorption, and a(λ) 

is defined as the sum of absorption by particulate and dissolved constituents and water 

itself. Light is also scattered by suspended particles, and the scattering coefficient [b(λ)] 

is commonly defined as a measure of the total magnitude of scattered light (without 

regard to its angular distribution). bb(λ) can therefore be defined as the total light 

scattered in the backwards direction. The sum of a(λ) and b(λ) is the beam attenuation 

coefficient [c(λ)], or the total light attenuated in the water column.  Knowledge of the 

IOPs is particularly important for radiative transfer studies and the development of 

analytically-based inversion algorithms.  The bio-optical properties of open ocean 

(Morel & Maritorena, 2001) and coastal waters (Babin et al., 2003b) have been 

extensively studied over the last four decades, but our knowledge of these properties in 

lakes and other inland waters remains comparatively poor (Luis Perez et al., 2011, 

Zhang et al., 2011), particularly for highly turbid and productive water bodies.  

In spite of the fact that lakes represent only ~3.7% of the Earth’s total non-

glaciated land surface (Verpoorter et al., 2014), the variability in their absorption and 

scattering coefficients is likely to be far greater than that encountered in the oceans, 

shelf seas and coastal waters due to the close proximity of land.  Surface run-off from 

land exerts a strong influence on the composition and concentration of dissolved and 

particulate matter in lakes.  In turn, absorption and scattering by dissolved and 

particulate materials affect the spectral shape and magnitude of the remote sensing 

reflectance [Rrs(λ)] measured by satellite sensors (Morel & Prieur, 1977, Kirk, 1994).  

Knowledge of the variability of mass-specific inherent optical properties (SIOPs) is 

thus necessary for the interpretation of water-leaving reflectance signals. More 

formally, Rrs can be related to a(λ) and bb(λ), where f is an experimental constant 

dependent on the light field and volume scattering function and Q is a parameter 

accounting for geometrical attenuation of light exiting the water column (Gordon et al., 

1975, Morel & Gentili, 1991, Dall'Olmo & Gitelson, 2005):  
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The absorption and backscattering coefficients can be further partitioned into the 

contributions from each optically active constituent:  

         NAP CDOMph wa a a a a          (3.2)  

       , ,NAP ,b b ph b b wb b b b         (3.3) 

where aph(λ), aNAP(λ), aCDOM(λ) and aw(λ) represent the absorption coefficients for 

phytoplankton, NAP, CDOM and water, and bb,ph(λ), bb,NAP(λ) and bb,w(λ) represent the 

backscattering coefficients for phytoplankton, NAP and pure water respectively.  It is 

generally assumed that CDOM is non-scattering. 

The relative contribution of the dissolved and particulate constituents to 

absorption and backscattering budgets varies significantly between different water 

types.  Moreover, changes in size and composition of the constituents can result in 

marked changes in the SIOPs.  For instance, the mass-specific particulate scattering 

coefficient [b*p(555)] was reported to vary in ocean and coastal waters based on the 

proportion of organic versus mineral particles, and particle water content, apparent 

density and refractive index (Babin et al., 2003a).  The variability of SIOPs is a major 

source of uncertainty in the interpretation of water-leaving reflectance signals, in the 

retrieval of biogeochemical properties and in estimates of primary production 

(Dall'Olmo & Gitelson, 2005, Gilerson et al., 2010, Tilstone et al., 2012).  The 

improved parameterisation of remote sensing algorithms for turbid lakes and other 

optically complex waters thus relies on a comprehensive knowledge of the mass-

specific absorption and scattering coefficients of lake water constituents and on an 

understanding of the sources and magnitude of their variability across different lake 

types.  In particular, knowledge of the absorption properties at the wavelengths of ~440, 

620 and 675 nm have direct implications for the remote sensing retrievals of 

phytoplankton pigments, including chlorophyll-a (Chl-a) and phycocyanin (PC), in 

order to distinguish potentially harmful cyanobacteria blooms in lakes (Simis et al., 

2005, Kutser et al., 2006, Hunter et al., 2010, Mishra et al., 2013).  

The (S)IOPs of inland waters have been relatively poorly studied, but the limited 

research to date suggests that they exhibit significant variability.  Luis Perez et al. 

(2011) found that the absorption and mass-specific absorption coefficients of particulate 

matter in Laguna Chascomús, Argentina show significant seasonal variability.  In Lake 

Taihu, China both spatial and seasonal differences were found in the absorption 
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coefficients of phytoplankton, with significantly lower aph(440) and aph(665) recorded 

in the winter (Zhang et al., 2010).  While no spatial differences were found in the Chl-a 

specific absorption coefficient, a*ph(440) was significantly higher in spring, and 

a*ph(665) was highest in spring and summer in Lake Taihu (Zhang et al., 2010).  

Seasonal variations in a*ph(λ) in Lake Taihu have also been associated with the seasonal 

changes in community composition, and a*ph(λ) increased with the succession from 

chlorophytes to cyanophytes (Zhang et al., 2012).  In contrast, in Lake Onondaga, USA 

mean annual a*ph(676) remained nearly uniform over a five-year study period (Perkins 

et al., 2014).  a*ph(440) was observed to decline during a particular interval where 

diatoms dominated, however no statistically significant or recurring trends in a*ph(λ) 

were reported in this study (Perkins et al., 2014).  Some evidence for regional 

differences in SIOPs has also been reported in studies where multiple water bodies were 

investigated.  For instance, in several eutrophic turbid inland waters in China there were 

large regional differences in a*ph(675) and a*NAP(440), with variations in a*ph(675)  

ranging from 0.002-0.285 m2 mg-1 (Shi et al., 2013).  Another study on three productive 

reservoirs in South Africa found differences in a*ph(440) related to trophic class and the 

presence of monospecific cyanobacteria blooms (Matthews & Bernard, 2013).  Spatial 

differences in optical properties within a single water body have also been reported, 

although chiefly with regard to IOPs rather than SIOPs.  Following a wind event in 

western Lake Erie, spectral variations in a(λ) and its contributing components was 

reported, and more modest wavelength dependencies for bp(λ)  and bbp(λ) which were 

consistent with observations reported for coastal systems (O'Donnell et al., 2010).  

Similarly, spatial heterogeneity in IOPs and apparent optical properties (AOPs) has 

been reported in Lake Champlain, with uncoupled variation between absorption and 

biogeochemical parameters (O'Donnell et al., 2013).  A study by Effler et al. (2012) 

demonstrated both spatial and temporal differences in the IOPs in Oneida Lake, NY, 

with the sum of aNAP, aCDOM and aph at 440 nm ranging from 0.9-2.0 m-1 over the 

summer months (June-August).  This study further found a high contribution from 

CDOM to a(440), however variations in NAP and phytoplankton ultimately drove 

absorption dynamics.  Thus, while it has been widely documented in previous studies 

that IOPs and AOPs are variable in both time and space along with variations in the 

optically active constituents (OACs), further knowledge is required to characterise the 

relationships between IOPs and OACs in other systems, given the wide range of 

biogeochemical composition in inland waters.  In particular, there are few 
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measurements of the mass-specific IOPs (SIOPs) in inland waters.  Therefore, the focus 

of this study is to characterise the extent and cause of the spatial variability of the 

SIOPs within a large turbid freshwater system.  

In particular, the main aims of this study are: (1) to improve our quantitative 

knowledge of the absorption coefficients of dissolved and particulate matter in highly 

productive and turbid lake systems; and (2) to determine the magnitude and sources of 

spatial variability in the absorption coefficients of the in-water constituents across 

biogeochemical gradients.  This study builds on previous research on the bio-optical 

properties of lakes by extending measurements into highly minerogenic waters with 

marked variability in both phytoplankton biomass and terrestrial inputs of CDOM.  It is 

anticipated this work will progress our understanding of the underwater light field and 

water-leaving radiative signals in lakes and inform the parameterisation and selection of 

remote sensing algorithms for the retrieval of biogeochemical parameters in different 

lake optical types. This additionally includes an understanding of the uncertainties and 

biases on the resulting products. 

3.2 Methods 

3.2.1 Study site 

Lake Balaton is the largest freshwater lake in central Europe by surface area 

(596 km2) and one of the most intensively studied.  The lake is very shallow with a 

mean depth of approximately 3 m and, as such, bottom sediments are frequently 

resuspended in the water column (Herodek, 1986, Présing et al., 2001, Tyler et al., 

2006).  This results in high concentrations of suspended mineral particles that can 

readily exceed 50 mg L-1 from resuspension during strong wind events. The lake is 

comprised of four basins and an adjoining a wetland system (Kis-Balaton) to the west.  

The main inflow into the lake is the Zala River on the western shore, and the only 

outflow is a highly regulated channel at Siófok in the east.  Nutrient inputs from the 

Zala River typically produce a pronounced trophic gradient from west to east.  Whilst 

the hydrobiology and hydroecology have been comprehensively studied, there is 

presently no published information on the optical properties of Lake Balaton. 

At its worst, Lake Balaton experienced hypereutrophic conditions in its westerly 

basins and eutrophic conditions in eastern basins because of increased nutrient loads in 

the 1970s (Herodek, 1986).  Blooms of filamentous cyanobacteria (Cylindrospermopsis 
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raciborskii (Wołoszynska) Seenayya and Subba Raju) dominated the summer plankton 

community in the 1980s and 1990s (Présing et al., 1996).  Since then, extensive waste 

water treatment and diversion schemes, the introduction of Kis-Balaton wetlands, 

closure of nearby farms in 1987 and reduction of fertilizer use have all substantially 

reduced nutrient loading to Lake Balaton, resulting in lower phytoplankton biomass and 

improved water quality (Somlyódy et al., 1997). 

3.2.2 Water sampling 

Field measurements in Lake Balaton and Kis-Balaton were conducted at 38 

stations over a one-week period in August 2010 (Figure 3.1), with the aim of collecting 

data on the spatial variability in the light absorption budget over a gradient from the 

highly productive, high phytoplankton biomass waters in western basins and Kis-

Balaton to the low chlorophyll, low CDOM waters in the eastern basins.  Daily average 

wind speed was also measured during each sampling occasion at automatic stations in 

order to investigate variations in the IOPs during resuspension events (Table 3.1; 

Central-Transdanubian Water Directorate).  At each station, a surface water sample was 

divided into subsamples for subsequent filtration or preservation.  Subsamples for the 

determination of pigment concentrations and laboratory measurements of particulate 

absorption were filtered on the boat immediately after sample collection under low 

vacuum pressure through 25 mm GF/F filter papers (Whatman, nominal pore size 0.7 

µm).  Depending on the turbidity, between 20 and 70 mL of water was filtered.  Filter 

papers were flash frozen in liquid nitrogen for <12 hours and stored in a -80°C freezer 

until analysis (no more than 6 months).  Further subsamples for CDOM and total 

suspended matter (TSM) were kept cool and in the dark on the boat and processed in 

the laboratory within 24 hours.  Finally, one subsample was collected for phytoplankton 

enumeration and preserved in Lugol’s solution immediately after collection.   



65 

 

 

Figure 3.1 Map of Lake Balaton and Kis-Balaton indicating the location of the basins 

and 38 sampling stations. 

 

Table 3.1 Daily average wind speed over the sampling period at Basin 4 (Siófok, Lake 

Balaton). 

Date Average 

Wind Speed 

(m s-1) a 

Daily 

Maximum 

Wind Speed 

(m s-1) 

17-Aug 3.2 7.6 

18-Aug 2.4 7.7 

19-Aug 2.5 5.7 

20-Aug 2.9 7.0 

21-Aug 1.8 3.1 

22-Aug 1.4 3.3 

23-Aug 2.4 5.1 

24-Aug 2.7 9.2 

25-Aug 5.6 13.6 

26-Aug 3.6 5.1 

All dates 2.9 13.6 
a Average of hourly wind speed measurements at Basin 4. 
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3.2.3 In situ optical measurements 

To measure the IOPs in situ two optical instrument packages were deployed.  

The first consisted of an AC-S (WET Labs Inc.) in situ spectrophometer interfaced with 

a CTD (Sea-Bird Electronics) recording temperature, salinity and pressure (depth).  

This package also included an ECO-BB3 (WET Labs Inc.) backscatter meter.  These 

instruments were mounted in a black metal cage and deployed over a beam, which 

extended the cage approximately 1.5 m away from the boat.  Simultaneously, an AC-9 

(WET Labs Inc.) in situ spectrophometer was deployed with and without a 0.2µm 

AcroPak filter (Pall Corporation) for separation of dissolved and particulate 

contributions to absorption.  Because Lake Balaton is highly turbid and very well 

mixed, all measurements were made just below the water surface within the first optical 

depth.  Prior to data collection, the AC-S and AC-9 were flushed and debubbled for 5 

minutes.  Five-minute casts were subsequently executed at each station with the data 

recorded to a DH4 data logger (WET Labs Inc.). 

An AC-S and AC-9 (WET Labs Inc.) were deployed to collect absorption (a) 

and attenuation (c) measurements.  The AC-S collected hyperspectral spectra over 84 

wavelengths, from 401-755 nm at ~4 nm resolution, while the AC-9 collected data at 9 

wavelengths only (412, 440, 488, 510, 532, 555, 650, 676 and 715 nm).  The AC-S was 

only utilised in Basins 1-4, while AC-9 data was collected in Kis-Balaton as well.  The 

AC-S or AC-9 raw data was corrected for the time lag associated with the flow rate for 

the instrument, then was merged with the CTD data for temperature, salinity and 

pressure.  Using the CTD data, the effects of temperature and salinity on pure water 

absorption and attenuation were removed with wavelength-dependent corrections 

according to Pegau et al.(1997).  To correct for instrument drift, a pure water calibration 

was subtracted from both attenuation and absorption data.  The proportional scattering 

correction of Zaneveld et al. (1994) was applied to absorption data to account for 

inefficient collection of the scattered light within the AC-S or AC-9 reflecting tube.  

The proportional scattering correction is used here to be consistent with recent studies 

(Leymarie et al., 2010, Slade et al., 2010, Astoreca et al., 2012).  All AC-S and AC-9 

data were also screened for any data out with two standard deviations in order to 

eliminate any error from bubbles or large particles.   
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3.2.4 Chlorophyll-a 

Frozen GF/F filter papers were thawed from -80°C in the dark prior to analysis 

for pigments and particulate absorption.  Chlorophyll-a (Chl-a) was measured in 

triplicate via spectrophotometry (Shimadzu UV-1601) after a hot 90% methanol 

extraction following Iwamura et al.(1970).  The hot methanol method was used here 

because it has been previously found to provide the most complete extraction of Chl-a 

for the phytoplankton types found in Lake Balaton (M. Présing, pers. comm.).   

The spectrophotometric method was also validated against samples analyzed 

using high-performance liquid chromatography (HPLC).  Pigments were extracted in 

acetone containing an internal standard (apo-carotenoate) after Martinez-Vicente et al. 

(2010) and separated using a reverse-phase Hypersil 3 mm C8 MOS-2 column on 

Thermo-separations© and Agilent© instruments with photodiode array detection 

(Barlow et al., 1997, Llewellyn et al., 2005).  Pigments were quantified against 

commercial phytoplankton pigment standards (DHI Lab Products, Denmark).  The 

spectrophotometric Chl-a data showed strong agreement with Chl-a results determined 

using HPLC methods (R2=0.987, p<0.001).  Results presented hereafter are based on 

the Chl-a data from spectrophotometry because the HPLC measurements were not 

replicated.   

3.2.5 Phycocyanin 

Phycocyanin was extracted in a solution of 15 ml 0.05M phosphate buffer 

(pH=6.8). The solution was then subjected to sonication over ice for 15 seconds 

(Ultrasonic Homogenizer 4710 Series with micro-tip and 50% duty cycle, Cole-Parmer 

Instrument Co., USA) as in Horváth et al. (2013a).  The extracts were clarified by 

filtration (Whatman GF/C filter) and the absorption was measured on a 

spectrophotometer (Shimadzu UV-1601, Shimadzu Corp., Japan).  Phycocyanin 

concentrations were calculated using the equations of Siegelman and Kycia (1978).  

Clear outlying values were discarded so the PC concentrations were the mean of 

(minimum) two replicates. 

3.2.6 Biomass and phytoplankton counts 

Phytoplankton species were enumerated with an inverted plankton microscope 

(Utermöhl, 1958).  The wet weight of each species was calculated from cell volumes 

(Németh & Vörös, 1986).  At least 25 cells (or filaments) of each species were 

measured to determine biomass and at least 400 were counted. 
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3.2.7 Total suspended matter  

TSM was obtained by gravimetric analysis.  500-1500 ml of water was filtered 

under low-vacuum pressure (<700mbar, -50kpa) through a pre-ashed (furnace at 450°C) 

and pre-weighed 47 mm GF/C filter paper (Whatman).  Following filtration, filter 

papers were dried for 24 hours in a clean oven at 60°C and subsequently weighed to 

obtain TSM.  Filters were then placed in a furnace at 450°C overnight and subsequently 

weighed to obtain particulate inorganic matter (PIM).  Particulate organic matter (POM) 

was calculated as the difference between TSM and PIM. 

3.2.8 Coloured dissolved organic matter absorption 

Water samples were filtered into clean glassware through 0.2 μm nucleopore 

membrane filters (Whatman) and measured according to Tilstone et al. (2002) within 24 

hours of collection.  Absorption of the filtrate was determined on a spectrophotometer 

(Shimadzu UV-1601) with a 5 cm quartz glass cuvette over the range of 350-800 nm, 

using MilliQ water as a reference.  The absorption coefficient of CDOM (aCDOM) was 

calculated using the following equation:  

   CDOM 2.303 /a D r      (3.4) 

where D(λ) is the measured absorption at a given wavelength and r is the cuvette path 

length in meters.  A baseline correction was applied by subtracting the mean value of 

aCDOM(λ) in 5 nm interval around 685 nm (Babin et al., 2003b).  This wavelength was 

used because there is negligible aCDOM at 685 nm and the effects of temperature and 

salinity on water absorption are small (Pegau et al., 1997).  The spectral slope of the 

CDOM absorption curve (SCDOM) was calculated over the wavelength range of 400-500 

nm using an exponential function fitted by non-linear regression (Twardowski et al., 

2004, Perkins et al., 2009). 

3.2.9 Laboratory measurement of particulate absorption 

The absorbance of the material on the filter was measured from 350-750 nm 

according to the ‘transmittance-reflectance’ method of Tassan and Ferrari (1998) using 

a dual beam spectrophotometer (Lambda 2, PerkinElmer Inc.) retro-fitted with a 

spectralon coated integrating sphere.  Absorption was measured before and after 

bleaching with a 1% solution of NaClO to obtain total particulate absorption [ap
spec(λ)] 

and absorption by non-algal particles [aNAP(λ)], respectively.  The pathlength 
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amplification correction of Tassan and Ferrari (1998) was applied, and absorption by 

phytoplankton [aph(λ)] was calculated as the difference between ap
spec(λ) and aNAP(λ).  

Chlorophyll-specific absorption coefficients [a*ph(λ)] were obtained by dividing aph(λ) 

by the respective Chl-a concentration.  An exponential function was fitted by nonlinear 

regression to the aNAP(λ) spectra, and the spectral slope of aNAP(λ) (SNAP) was obtained.  

Wavelengths 350-750 nm were used in fitting the exponential function, disregarding the 

ranges 400-480 nm and 620-710 nm to avoid any residual pigment absorption, as in 

Babin et al. (2003b).  The data from three stations (26, 27 and 30) were discarded for 

the purposes of SNAP calculation due to extremely low values of aNAP(440). 

3.3 Results 

3.3.1 Comparison of in situ and laboratory measured absorption 

Bulk absorption coefficients [a(λ), m-1] measured in situ were compared with 

summed laboratory measurements of particulate and CDOM absorption [a(λ) = ap(λ) + 

aCDOM(λ)].  Linear regressions of laboratory and in situ total absorption measurements 

at three wavelengths (440, 555 and 676 nm) are shown in Figure 3.2.  There was some 

agreement between in situ and lab measurements, with roughly the same distribution 

but some differences in absolute values.  In situ measurements generally correlated well 

with laboratory measurements, with R2 values of 0.743-0.843 (p<0.001) for the AC-S 

and 0.871-0.967 (p<0.001) for the AC-9.  However, there was a particular lack of 

sensitivity in the AC-9 and, to a lesser extent, the AC-S data to variations in absorption 

at 555 nm.  Additionally, in situ measurements over-estimated laboratory total 

absorption at these wavelengths by a factor of 1.1-2.1 (AC-S) and 1.5-2.5 (AC-9), with 

improved agreement in the red portion of the spectrum (676 nm) (Figure 3.2).  In 

contrast, a previous study by Leymarie et al. (2010) found measured a(λ)+aw(λ) (total 

non-water and water absorption) to be underestimated when using the proportional 

scattering correction, with the errors highest in the red portion of the spectrum.  In the 

present study, it is expected that the overestimate of absorption is due to the scattering 

errors in the AC-9 and AC-S measurements which were not resolved by the 

proportional scattering correction (Mckee et al., 2008).  Scattering increases at shorter 

wavelengths, thus a smaller difference (i.e. better agreement) would exist between the 

in situ and laboratory absorption measurements at longer wavelengths.  Furthermore, 

there was a marked discrepancy between the two datasets of in situ absorption 
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coefficients (at 440nm, absolute error = 0.041-0.31 m-1). In general, the lab data more 

accurately reflected the spatial variability in absorption and had greater sensitivity, 

particularly in waters with low absorption.  Thus, for the purpose of this study, 

laboratory measured absorption and specific absorption coefficients will be considered 

only, and in situ results are solely presented in the methods for comparison. 
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Figure 3.2 Comparison of total non-water absorption [a(λ)=aph(λ)+aNAP(λ)+aCDOM(λ)] from in situ (AC-S or AC-9) or laboratory methods at (a) 

440, (b) 555 and (c) 676 nm. Axes are on logarithmic scale and dashed line represents the 1:1 line.  
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3.3.2 Variability in optically active constituents  

 The Chl-a and TSM data collected during the sampling campaign are shown in 

Figure 3.3 in relation to the annual cycle for these parameters.  In all four basins, Chl-a 

concentrations peaked in early August immediately prior to the sampling campaign due 

to the development of a cyanobacterial bloom over much of the lake and remained high 

during the sampling campaign in three of the four basins.  TSM concentrations were 

more variable over the year, with a marked peak in early summer in all basins and a 

winter peak in Basin 1 due to wind-driven resuspension.  The sampling campaign was 

undertaken during a period with TSM concentrations mostly slightly lower than the 

annual mean (22 ± 21 mg L-1) but these were not atypical for Lake Balaton. 

  



73 

 

 

Figure 3.3 Annual variation in chlorophyll-a (Chl-a) concentrations (a-d) and total suspended matter (TSM) concentrations (e-h) for 2010 in 

Lake Balaton Basins 1-4.  Solid dots are mean daily values measured during the August 2010 campaign, with error bars indicating standard 

deviation.  Annual data provided by the routine monitoring at a single station in each basin by the Balaton Limnological Institute. 
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The stations sampled in Lake Balaton and Kis-Balaton during summer 2010 

demonstrated significant variability in the concentration of optically active constituents 

(Table 3.2).  Mean Chl-a concentrations ranged from ~160 mg m-3 in Kis-Balaton to 

~10 mg m-3 in Basin 4, and phytoplankton biomass ranged from ~70,000 to ~2,800 mg 

m-3, over the trophic gradient from west to east across the system.  TSM ranged from 

~40 mg L-1 in Kis-Balaton to 13 mg L-1 in Basin 4, with POM comprising the majority 

of TSM in Kis-Balaton (67%) and PIM comprising the majority of TSM in Basins 1-4.   

The greatest contribution of PIM to TSM (81%) was observed in Basin 3.  Chl-a was 

strongly linearly correlated with POM (R2=0.97, p<0.001, n=38) with mean Chl-a:POM 

= 0.00395±0.00110.  Total phytoplankton biomass was also linearly correlated with 

POM (R2=0.88, p<0.001, n=38) with mean total biomass:POM = 0.998±0.583.  The 

mean PC:POM ratio for all basins is 0.00321±0.00145 (R2=0.75, p<0.001, n=38), 

although this linear relationship had more dispersion than that for Chl-a or total 

biomass with POM.  Stations in the east of Basin 3 and west of Basin 4 had markedly 

higher concentrations of TSM because wind-driven resuspension of bottom material 

was more prevalent in these basins during sampling than elsewhere.  Chl-a, PC and 

ratios of POM and PIM at each station are shown in Figure 3.4, while the gradients in 

Chl-a and PC concentrations over distance from the Zala River are presented in Figure 

3.5.   
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Table 3.2 Mean Biogeochemical Parameters (Standard Deviation) for each basin and Kis-Balaton a 

 Kis-

Balaton 

(n=3) 

 Basin 1 

(n=4) 

 

 Basin 2 

(n=8) 

 Basin 3 

(n=8) 

 Basin 4 

(n=15) 

 Lake 

Meanf 

(n=35) 

 Units 

Chl-a 166.51 (83.15) 32.74 cde (5.40) 21.12 bde  (6.71) 8.24 bc (1.91) 10.80 bc (2.30) 15.08 (8.90) mg m-3 

PC 156.27 (176.68) 22.33 de (7.41) 15.62 d (4.56) 6.19 bc (2.05) 9.95 b (2.67) 11.80 (6.19) mg m-3 

TSM 40.98 (13.28) 14.41 - (5.82) 10.36 - (1.78) 12.55 -  (11.23) 15.37 - (6.11) 13.47 (7.01) mg L-1 

POM 27.53 (8.63) 6.09 de (1.23) 4.71 de (1.41) 2.41 bc (0.53) 3.41 bc (0.49) 3.78 (1.43) mg L-1 

PIM 13.44 (11.54) 8.32 - (4.79) 5.65 - (1.63) 10.14 - (10.96) 11.97 - (6.04) 9.69 (6.98) mg L-1 

Total 

Biomass 

70839 (53637) 7062 cde (1780) 3916 bd (1376) 1854 bc (603) 2851 b (821) 3348 (1832) mg m-3 

Cyano 

Biomass 

55876 

 

(58954) 5756 cde (1810) 3456 bd (1163) 1232 bc (759) 2134 b (671) 2644 (1658) mg m-3 

Cyano 

Biomass 

57 

 

(50) 81 - (8) 88 - (6) 64 - (27) 74 - (17) 76 (19) % 

 

a Chl-a, chlorophyll-a measured by spectrophotometry; PC, phycocyanin; TSM, total suspended matter; POM, particulate organic matter; PIM, 

particulate inorganic matter; Total Biomass, all phytoplankton biomass; Cyano Biomass, cyanobacteria biomass only.   

b,c,d,e Numerical superscripts designate statistically significant differences between the respective parameter in Basins 1-4 using Tukey’s Honest 

Significant Difference method (p<0.01, adjusted for multiple comparisons), where superscript b=significantly different to Basin 1, 

c=significantly different to Basin 2, d=significantly different to Basin 3, e=significantly different from Basin 4, -=not significantly different from 

any basin.   

f Lake Mean includes the 35 stations in the main basin only (not including Kis-Balaton). 
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Cyanobacteria biomass was found to correlate strongly with measured PC 

concentrations (R2=0.97, p<0.001, n=38), and total biomass showed a strong linear 

relationship with Chl-a (R2=0.96, p<0.001, n=38).  PC concentrations were highest in 

Kis-Balaton (156 mg m-3) with decreasing concentrations from Basins 1 to 3 (22 to 6 

mg m-3) and a slight increase in Basin 4 (10 mg m-3), which corresponds to the 

abundance of nitrogen fixing cyanobacteria (Figure 3.4).  In almost all stations, 

cyanobacteria comprised the majority of the phytoplankton (up to 96%) with the most 

abundant species being Cylindrospermopsis raciborskii, which typically comprised 

over 50% of the cyanobacterial biomass in the lake.  Phytoplankton composition at each 

station is shown in Figure 3.4c, indicating the dominance of cyanobacteria, with an 

increasing presence of cryptophytes, chlorophytes, dinophytes and heterokontophytes in 

Basins 3 and 4.   
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Figure 3.4 Barplots of (a) the ratio of particulate inorganic matter (PIM:TSM) and particulate organic matter (POM:TSM), (b) chlorophyll-a 

(Chl-a) and phycocyanin (PC) concentrations and (c) phytoplankton community composition (% total biomass) at all stations in order from west 

to east. 



78 

 

 

Figure 3.5 Plots of (a) chlorophyll-a (log[Chl-a (mg m-3)]) and (b) phycocyanin 

(log[PC (mg m-3)]) as a function of distance from the Zala River during the Lake 

Balaton sampling campaign. 

Unusual stations to note include KB1, 30, 31 and 35.  KB1 is nearest to the 

inflow from the Zala River and this area typically has lower biomass than the rest of 

Kis-Balaton, and generally has lower cyanobacteria biomass as well.  In 2010, the 

inflow was high, therefore high turbidity and turnover prevented the development of 

cyanobacterial blooms (M. Présing, pers. comm.).  Stations 30, 31 and 35 had low 

percentages of N-fixing cyanobacteria and larger communities of cryptophytes and 

dinophytes present, although total cell biomass was relatively low (<2,100 mg m-3).  

These three stations were sampled on 24 and 26 August 2010, when high wind speeds 

caused increased turbulent mixing (Table 3.1), potentially encouraging the dominance 

of larger phytoplankton cells (e.g. dinoflagellates) at the surface.      

Chl-a, CDOM and TSM were plotted against each other in order to investigate 

the relationships between these OACs (Figure 3.6).  A weak but significant linear 

relationship was found between log(TSM) and log(Chl-a) (R2=0.306, p<0.001, n=38; 

Figure 3.6a), similar to that reported for Lake Taihu (Zhang et al., 2010) and European 

coastal waters (Babin et al., 2003b).  However, the increased scatter around this 

relationship in Lake Balaton is likely attributed to the large proportion of minerals in 

the suspended matter.  Log[aCDOM(440)] and log(Chl-a) also co-varied linearly (Figure 

3.6b; R2=0.714, p<0.001, n=38), a relationship that has been reported in a range of 

coastal waters (Babin et al., 2003b).  In Lake Balaton, this is likely due to the fact that 

both CDOM and Chl-a decrease with increasing distance from the Zala River. 
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However, this relationship broke down in Kis-Balaton and Basin 1, which are closest to 

the river inflow.  No significant linear relationship was reported between 

log[aCDOM(440)] and log(TSM) (R2=0.132, p=0.025, n=38; Figure 3.6c).  Again, in 

Lake Balaton much of the TSM was comprised of PIM due to resuspension, thus a 

strong relationship with CDOM was not expected. 

 

 

Figure 3.6 (a) Total suspended matter (TSM) as a function of chlorophyll-a (Chl-a) and 

CDOM absorption at 440 nm [aCDOM(440)] as a function of (b) Chl-a and (c) TSM.  

Equations represent significant linear regressions on log(data).    
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As the campaign was conducted over several days, any effect of sampling date 

on the measured concentrations was assessed using a generalised linear model, and the 

only significant relationship was observed for PIM (p<0.001).  This was likely due to 

differences in the wind-driven resuspension of mineral particles from the lake bottom.  

Thus, most of the variability observed in the biogeochemical constituents can be 

assumed to be due to local differences in fluvial input, biological productivity and in-

lake processing of particulate and dissolved material. 

3.3.3 Variability in the inherent optical properties 

In general, the IOPs were variable across the system, with the most distinctly 

different properties exhibited in the westernmost portion, Kis-Balaton (Table 3.4).  As 

with biogeochemical parameters, the measured (S)IOPs were tested for the effect of 

sampling date using a generalised linear model. ap(440) was the only parameter with a 

significant relationship with sampling date (p<0.001).  Figure 3.7 illustrates the 

gradients of aph(440), aNAP(440) and aCDOM(440) across the lake over increasing 

distance from the Zala River.  Table 3.3, Table 3.4 and Table 3.5 summarise the bulk 

and specific IOPs and statistics for the four basins and Kis-Balaton, and Table 3.6 

provides a summary of the optical properties of other large lakes from selected previous 

studies for comparison. 
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Figure 3.7 Plots of (a) log(aph(440) [m-1]), (b) log(aNAP(440) [m-1]) and (c) log(aCDOM(440) [m-1]) as a function of distance from the Zala River 

during the Lake Balaton sampling campaign. 
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The relative contributions of optically active substances to total absorption for 

the 38 stations sampled on Lake Balaton is shown in Figure 3.8 for selected 

wavelengths.  At all wavelengths (440, 555, 620 and 675 nm), aNAP(λ) was the smallest 

contributor, consistently making up less than 35% of the total absorption.  At 440 nm, 

aCDOM comprised between 33-76% and aph between 23-62% of absorption, while at 555 

nm there was a wider range of composition with no clear trend by basin.  Absorption at 

620 nm included a higher percentage of absorption by phytoplankton (39-95%), 

although up to 48% and 32% were attributed to aCDOM and aNAP, respectively.  At 675 

nm over 70% of absorption was due to aph at all sites, with less than 10% due to aCDOM 

and up to 23% due to aNAP, although it was noted that CDOM and NAP had a greater 

contribution at 620 nm as compared to 675 nm.  Thus, aNAP and aCDOM can contribute 

markedly to absorption at the wavelengths where PC and Chl-a absorb strongly (620 

and 675 nm).   
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Figure 3.8 Ternary plot indicating absorption by phytoplankton (aph), non-algal 

particles (aNAP) and coloured dissolved organic matter (aCDOM) at (a) 440nm, (b) 

555nm, (c) 620nm and (d) 675nm.  Unique symbols indicate the basin and the sampling 

date 26 August is highlighted in red.  Particulate absorption coefficients were measured 

in the laboratory by a dual beam spectrophotometer, and CDOM absorption was 

measured by spectrophotometry.   

3.3.3.1 CDOM absorption 

CDOM absorption at 440 nm in Lake Balaton ranged from 0.093-2.93 m-1. 

There was a gradient of aCDOM(λ) across the lake (Figure 3.9), with aCDOM(440) highest 

in the west (Kis-Balaton, 2.82 m-1) where the Zala River enters and lowest in the east 

(Basin 4, 0.18 m-1).  Additionally, the difference in aCDOM(440) was statistically 

significant between the four basins (Table 3.5).  The mean value for the spectral slope 

of CDOM (SCDOM) was 0.018 nm-1 in Kis-Balaton and 0.020 nm-1 in the Lake Balaton. 
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Figure 3.9 Spectra of absorption by colour dissolved organic matter [aCDOM(𝝀)] for all stations in Kis-Balaton and Lake Balaton by basin.  Note 

the different y-axis scale for Kis-Balaton.   
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SCDOM was found to decrease exponentially with increasing aCDOM(440) 

(p<0.001, n=38; Figure 3.10).  However, this relationship is driven by the larger range 

of SCDOM values in Basin 4, and the mean SCDOM excluding Basin 4 varied over a much 

narrower range (0.0183±0.000822).  There was no significant difference in SCDOM 

values across the four basins (ANOVA p>0.01).  Stations in Basin 4 had the greatest 

range in SCDOM (0.015 to 0.041 nm-1), whereas the SCDOM values in the western basins 

and Kis-Balaton had much less variation (Table 3.5).  This is likely due to the large 

influence of the Zala River on CDOM concentrations in the west of Lake Balaton, 

while complex interactions between localised fluvial inputs and increased contributions 

from authochthonous sources (phytoplankton decomposition) may play a larger role in 

the more variable CDOM concentrations observed in the east of the lake.   

 

Figure 3.10 Plot of the slope of CDOM absorption coefficient (SCDOM) as a function of 

CDOM absorption at 440 nm [aCDOM(440)].   

 

3.3.3.2 Phytoplankton absorption 

Particulate absorption at 440 [ap(440)] was generally dominated by 

phytoplankton, with aph(440) contributing up to 90% of the total particulate absorption 

(Basin 2).  Phytoplankton absorption coefficients at 620 and 675 nm exhibited a 

decreasing gradient from west to east, with the lowest aph at both wavelengths in Basin 

3.  Mean aph(675) ranged from 0.078 m-1 (Basin 3) to 1.55 m-1 (Kis-Balaton), and 

aph(620) ranged from 0.038 m-1 (Basin 3) to 0.85 m-1 (Kis-Balaton) (Table 3.5).   
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Chl-a concentration showed a strong relationship with aph(440) (R2=0.93, 

p<0.001, n=38; Figure 3.11a), although a greater amount of scatter was noted around 10 

mg m-3 Chl-a with a slightly steeper slope than that found for oceans (Bricaud et al., 

1995).  Chl-a was also related to aph(675), with a coefficient of determination of 0.95 

for a fit by least squares (p<0.001, n=38; Figure 3.11b).  Similarly, phycocyanin 

concentrations were positively correlated with phytoplankton absorption at 620 nm, but 

phycocyanin itself only explained 81% of the variability in aph(620) (Figure 3.11c).  

However, when Chl-a and PC were summed, 93% of the variability in aph(620) was 

explained, which reflects the contribution of Chl-a to phytoplankton absorption at 620 

nm (Figure 3.11d). 

 

 

Figure 3.11 Scatterplots of the phytoplankton absorption coefficient (aph) at (a) 440 nm 

as a function of chlorophyll-a (Chl-a), (b) 675 nm as a function of Chl-a, (c) 620 nm as 

a function of phycocyanin (PC) and (d) 620 nm as a function of the summed pigments, 

PC + Chl-a. Chl-a results are by spectrophotometry and PC results are a selected 

average of the results by spectrophotometry.  Absorption coefficients were measured in 

the lab by spectrophotometry. Note axes are on logarithmic scale. Solid line is a 

regression curve by least squares fit, and the dashed line in (a) is the fit from ocean 

waters in Bricaud et al. (1995).  
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Phytoplankton absorption coefficients were also strongly related to 

phytoplankton biomass.  Using nonlinear regression by least squares fit, 88% of the 

variability in aph(675) was explained by total phytoplankton biomass, while 73% of that 

in aph(620) was explained by cyanobacteria biomass.  However, using a sum of 

cyanobacteria and cryptophyte biomass, a higher percentage of variability in aph(620) 

was explained (84%).  Higher aph(675) and aph(620) values corresponded with 

increased total phytoplankton and cyanobacteria biomass, respectively (Figure 3.12). 
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Figure 3.12 Regression of (a) total biomass, (b) cyanobacterial biomass and (c) cyanobacteria and cryptophyte biomass against the absorption 

coefficient of phytoplankton (aph) at (a) 675 nm and (b and c) 620 nm, respectively.  Absorption coefficients were measured in the laboratory by 

a dual beam spectrophotometer.  Solid lines represent regression curves by least squares fit. 
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Mass-specific phytoplankton absorption spectra are shown for the four basins 

and Kis-Balaton in Figure 3.13.  All stations show the distinctive Chl-a absorption 

maxima peaks at c.a. 440 nm and 675 nm, and all stations (except for KB1) 

demonstrate a smaller absorption peak at c.a. 620 nm due to the presence of 

phycocyanin.  Stations in Basins 3 and 4 also had distinct peaks in the UV portion of 

the spectrum at approximately 360 nm, which were not visible in the spectra for Kis-

Balaton and Basins 1 and 2.   
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Figure 3.13 Spectra of mass-specific absorption by phytoplankton [a*ph(λ)] for all stations in Kis-Balaton and Lake Balaton by basin. 
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The mean Chl-a specific absorption coefficient at 440 nm [a*ph(440)] was 0.022 

m2 mg-1 in Lake Balaton and 0.017 m2 mg-1 in Kis-Balaton (Table 3.3 and Table 3.4).  

There was greater variation in mean a*ph(440) across the basins and Kis-Balaton than 

observed for mean a*ph (675), ranging from 0.017-0.023 m2 mg-1 (Table 3.4 and Table 

3.5).  The mean a*ph(675) for the four lake basins was 0.010 m2 mg-1 (Table 3.3) and 

was slightly lower in Kis-Balaton (0.0088 m2 mg-1;Table 3.4).  Mean values for 

a*ph(675) showed little variation across the basins and Kis-Balaton, with a narrow range 

of 0.0088 – 0.011 m2 mg-1 (Table 3.4 and Table 3.5). 

The specific absorption coefficient of phytoplankton showed variability across 

pigment concentrations (Figure 3.14).  a*ph(440) and  a*ph(675) varied by ~200% and 

~150%, respectively, within the same basin on the same sampling date (i.e. Basin 2; 

Figure 3.14a and b), while a*ph(620) showed less variability and a slight positive trend 

over increasing phycocyanin concentrations (Figure 3.14c).  Previous studies in ocean 

waters have found a*ph(λ) to decrease across increasing Chl-a concentrations, due to 

variations in pigment composition and pigment packaging (Bricaud et al., 1995, 

Bricaud, 2004).  Although similar patterns were evident in Lake Balaton at 440 nm and 

675 nm (Figure 3.14a and b), the relationships were not significant.  
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Figure 3.14 Variability of (a) a*ph(440) and (b) a*ph(675) over concentrations of chlorophyll-a (Chl-a) and (c) a*ph(620) as a function of 

phycocyanin (PC) concentrations.  Specific absorption coefficients were measured in the laboratory on a dual beam spectrophotometer, and PC 

and Chl-a results are from spectrophotometry.  Note x-axes are on log scale. 
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3.3.3.3 NAP absorption 

Figure 3.15 shows the absorption spectra for non-algal particles for each basin 

and Kis-Balaton.  aNAP(440) was 2 to 3 times higher in Kis-Balaton than in the lake 

basins, and was also significantly different between Basin 1 and Basins 2, 3 and 4 

(Table 3.5).  In general, marked variability was reported across the lake, with aNAP(350) 

ranging from up to 1.6 m-1 in Kis-Balaton to <0.1 m-1 in Basins 3 and 4 (Figure 3.15).  

Note that a small amount of residual pigment absorption can occasionally be observed 

in the spectra in the region of Chl-a absorption (~675 nm), due to incomplete bleaching.  

Residual pigment absorption in the aNAP spectra propagated to an error of up to 5% in 

the calculated values of aph(675), therefore this effect on aph(λ) was considered 

minimal. 
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Figure 3.15 Spectra of absorption by non-algal particles [aNAP(𝝀)] for all stations in Kis-Balaton and Lake Balaton by basin. Note the different 

y-axis maximum for Kis-Balaton. 

 



 

95 

 

 

aNAP(λ) spectra followed a decreasing exponential shape, with a mean slope 

(SNAP) of 0.0146 nm-1 (coefficient of variation = 26%), ranging from 0.011 – 0.025 nm-1 

across all basins (Table 3.3).  There were no significant differences in SNAP found 

between the basins (Table 3.5).  SNAP generally declined with an increasing ratio of 

inorganic particulates, although the linear relationship was not significant (R2= 0.0507, 

p>0.1, n=35), with the greatest variability in SNAP at lower ratios of PIM:POM (Figure 

3.16a).  SNAP was negatively correlated to aNAP(440) for aNAP(440) <0.1 m-1 (Figure 

3.16b).  At TSM greater than ~10 mg L-1 and aNAP(440) greater than ~0.1 m-1, SNAP 

remained relatively constant (~0.01 nm-1).  

 

 

Figure 3.16 Scatterplots of SNAP (the spectral slope of aNAP) as a function of (a) the 

ratio of particulate inorganic to organic matter (PIM:POM) and (b) absorption by non-

algal particles at 440 nm [aNAP(440)].  The linear regression in (b) is for aNAP(440) <0.1 

m-1 only. 

 

Scatterplots of aNAP(440) as a function of TSM and PIM are shown in Figure 

3.17.  When applying a linear regression with a null intercept to aNAP(440) as a function 

of TSM, a significantly lower slope (0.0069) exists than that previously found in coastal 

waters (0.031) by Babin et al.(2003b) (Figure 3.17a) and thus presumably lower 

aNAP*(440). The proportion of aNAP(440) to particulate absorption [ap(440)] is 

additionally correlated with PIM (Figure 3.17b), indicating the strong influence by the 

mineral component of TSM towards non-algal particle absorption. 
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Figure 3.17 Correlation between (a) total suspended matter (TSM) and absorption by 

non-algal particles [aNAP(440)] and (b) particulate inorganic matter (PIM) and the 

proportion of absorption by non-algal particles to absorption by particulate matter 

[aNAP(440):ap(440)].  In plot (a), dashed line is a linear regression with null intercept 

indicating the relationship found across the range of TSM in coastal waters in Babin et 

al. (2003b) [aNAP(440)=0.31*TSM], and the solid line is a linear regression with null 

intercept for Kis-Balaton and Lake Balaton. The solid line in plot (b) is a linear 

regression. 
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Table 3.3 Absorption coefficients for the main basins of Lake Balaton only (n=35). 

IOP Min Median Max Mean St Dev Units 

aCDOM(440)  0.093 0.32 1.35 0.39 0.30 m-1 

       

SCDOM(400-500)  0.015 0.018 0.041 0.020 0.0057 nm-1 

ap(440)  0.11 0.31 1.04 0.39 0.24 m-1 

ap(675) 0.050 0.12 0.49 0.17 0.11 m-1 

aNAP(440) 0.00 0.054 0.22 0.059 0.046 m-1 

SNAP
 a 0.011 0.013 0.025 0.015 0.0039 nm-1 

aph(350) 0.057 0.15 0.46 0.18 0.094 m-1 

aph(440) 0.11 0.24 0.91 0.33 0.22 m-1 

aph(620)  0.020 0.049 0.24 0.073 0.053 m-1 

aph(675)  0.048 0.11 0.45 0.16 0.11 m-1 

a*ph(350) 0.0036 0.012 0.029 0.013 0.0061 m2 mg-1 

a*ph(440) 0.010 0.022 0.032 0.022 0.0046 m2 mg-1 

a*ph(620) 0.0029 0.0045 0.0083 0.0047 0.0011 m2 mg-1 

a*ph(675) 0.0055 0.0095 0.010 0.010 0.0020 m2 mg-1 
a Results for SNAP disregard stations 26, 27 and 30 (n=32). 

 

Table 3.4 Absorption coefficients for Kis-Balaton stations only (n=3). 

IOP Min Median Max Mean St Dev Units 

aCDOM(440) 2.69 2.85 2.93 2.82 0.12 m-1 

SCDOM(400-500) 0.017 0.018 0.018 0.018 0.00058 nm-1 

ap(440) 1.89 3.32 4.94 3.38 1.52 m-1 

aNAP(440) 0.30 0.49 0.54 0.44 0.13 m-1 

SNAP 0.011 0.012 0.013 0.012 0.0011 nm-1 

aph(350) 1.58 1.79 2.02 1.80 0.22 m-1 

aph(440) 1.40 3.02 4.39 2.94 1.50 m-1 

aph(620)  0.34 0.77 1.44 0.85 0.55 m-1 

aph(675)  0.60 1.51 2.52 1.55 0.96 m-1 

a*ph(350) 0.0080 0.011 0.018 0.012 0.0051 m2 mg-1 

a*ph(440) 0.016 0.017 0.019 0.017 0.0015 m2 mg-1 

a*ph(620) 0.0039 0.0049 0.0057 0.0048 0.00089 m2 mg-1 

a*ph(675) 0.0069 0.0095 0.0099 0.0088 0.0017 m2 mg-1 
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Table 3.5 Mean absorption coefficients (standard deviation) by basin. 

IOP Basin 1 

(n=4) 

 Basin 2 

(n=8) 

 Basin 3 

(n= 8) 

 Basin 4 

(n=15) 

 Units 

aCDOM(440)  1.09 bcd (0.21) 0.48 ad (0.077) 0.34 ad (0.038) 0.18 abc (0.058) m-1 

SCDOM (400-500) 
 0.018 - (0.00058) 0.018 - (0.00071) 0.019 - (0.00076) 0.023 - (0.0079) nm-1 

ap(440)  0.85 bcd (0.16) 0.52 acd (0.24) 0.23 ab (0.074) 0.29 ab (0.064) m-1 

aNAP(440)  0.13 bcd (0.062) 0.043 a (0.031) 0.037 a (0.050) 0.059 a (0.026) m-1 

SNAP 0.013 - (0.00090) 0.017 - (0.0048) 0.017 - (0.0048) 0.014 - (0.0029) nm-1 

aph(350) 0.29 - (0.048) 0.21 - (0.13) 0.14 - (0.049) 0.15 - (0.073) m-1 

aph(440)  0.71 cd (0.13) 0.47 cd (0.24) 0.19 ab (0.050) 0.23 ab (0.058) m-1 

aph(620)  0.17 cd (0.019) 0.11 cd (0.062) 0.038 ab (0.012) 0.049 ab (0.015) m-1 

aph(675)  0.36 bcd (0.078) 0.22 acd (0.11) 0.078 ab (0.020) 0.11 ab (0.026) m-1 

a*ph(350) 0.0092 - (0.0020) 0.0096 - (0.0039) 0.016 - (0.0051) 0.014 - (0.0067) m2 mg-1 

a*ph(440) 0.022 - (0.0060) 0.022 - (0.0041) 0.023 - (0.0048) 0.022 - (0.0015) m2 mg-1 

a*ph(620)   0.0052 - (0.00047) 0.0048 - (0.0016) 0.0046 - (0.00083) 0.0045 - (0.0012) m2 mg-1 

a*ph(675)  0.011 - (0.00067) 0.010 - (0.0028) 0.0094 - (0.0011) 0.010 - (0.0021) m2 mg-1 
a,b,c,d Numerical superscripts designate statistically significant differences between the respective parameter in Basins 1-4 using Tukey’s Honest 

Significant Difference method (p<0.01, adjusted for multiple comparisons), where superscript a=significantly different to Basin 1, 

b=significantly different to Basin 2, c=significantly different to Basin 3, d=significantly different from Basin 4 and -=no significant differences 

between basins.  
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Table 3.6 IOP and SIOPs from selected previous studies for comparison. 

(S)IOP Min Max Mean StDev Units Location Source  

aCDOM(440) 0.33 45.89 7.99 7.93 m-1 Chagan Lake Wang et al. (2011) 

aCDOM(440) 0.11 2.00   m-1 Western Lake Erie O’Donnell et al. (2010) 

aCDOM(440) 0.073 

0.105 

0.234 

1.607 

0.145 

0.186 

0.049 

0.439 

m-1 Lake Superior Effler et al. (2010) 

aCDOM(440) 0.27-0.46 1.52- 2.36 0.71-0.91 0.20-0.35 m-1 Lake Taihu Zhang et al. (2010) 

aCDOM(440) 0.08 0.75 0.23  m-1 Lake Erie Binding et al. (2008)  

aCDOM(440) 0.27-0.38 1.52-2.36 0.71-0.98 0.26-0.22 m-1 Lake Taihu Zhang et al. (2007) 

aCDOM(442) 0.43 14.5 2.65  m-1 15 boreal lakes Ylöstalo et al. (2014)  

SCDOM (400-500)   0.0165  nm-1 Lake Erie O’Donnell et al. (2010) 

SCDOM (400-500) 0.0090-

0.0111 

0.0139-

0.0169 

0.0107-

0.0134 

0.0016-

0.002 

nm-1 Lake Superior Effler et al. (2010) 

SCDOM(350-500) 0.011 0.025 0.0176 0.0020 nm-1 European coastal 

waters 

Babin et al. (2003b) 

SCDOM(400-500) 0.0178 0.0190 0.0186  nm-1 Oneida Lake Effler et al. (2012) 

SCDOM(350-700) 0.0155 0.020 0.0182  nm-1 15 boreal lakes Ylöstalo et al. (2014)  

SNAP(482-

618,712-750) 

0.0113 0.0145 0.0128  nm-1 Oneida Lake Effler et al. (2012) 

SNAP(380-

400,480-620,710-

730) 

0.0089 0.0178 0.0123 0.0013 nm-1 European coastal 

waters 

Babin et al. (2003b) 

SNAP(482-

618,712-730) 

  0.013  nm-1 Western Lake Erie Peng and Effler (2013) 

a*ph(440) 0.005 0.084 0.018-

0.056 

0.007-

0.021 

m2 mg-1 3 small reservoirs Matthews and Bernard (2013) 

a*ph(440)   0.026 0.008 m2 mg-1 Lake Kasumigaura Yoshimura et al. (2012) 

a*ph(440) 0.013 0.505 0.086  m2 mg-1 Lake Erie Binding et al. (2008)  

a*ph(440)   0.033  m2 mg-1 Laurentian Great Perkins et al. (2013) 
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(S)IOP Min Max Mean StDev Units Location Source  

Lakes 

a*ph(440)   0.035  m2 mg-1 Onondaga Lake Perkins et al. (2014) 

a*ph(440)   0.048-

0.083 

0.012-

0.021 

m2 mg-1 Lake Taihu Huang et al. (2015) 

a*ph(443)^ ~0.008 ~0.095   m2 mg-1 European coastal 

waters 

Babin et al. (2003b) 

a*ph(675)   0.0199-

0.0274  

 m2 mg-1 Lake Chascomus Luis Perez et al. (2011) 

a*ph(675)   0.0288  m2 mg-1 Lake Taihu Sun et al. (2010) 

a*ph(675)   0.018 0.005 m2 mg-1 Lake Kasumigaura Yoshimura et al. (2012) 

a*ph(676) 0.002 0.042  0.009 m2 mg-1 Long Island Sound Aurin et al. (2010) 

a*ph(676) 0.008 0.020 0.014  m2 mg-1 15 boreal lakes Ylöstalo et al. (2014)  

a*ph(670) 0.007 0.157 0.040  m2 mg-1 Lake Erie Binding et al. (2008)  

a*ph(676)   0.0171  m2 mg-1 Onondaga Lake Perkins et al. (2014) 

a*ph(676)^ ~0.004 ~0.035   m2 mg-1 European coastal 

waters 

Babin et al. (2003b) 

^ Estimated from Figure 6 in Babin et al. (2003b). 
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3.4 Discussion 

3.4.1 Contributions to the absorption budget 

Using the ternary approach proposed by Prieur and Sathyendranath (1981), the 

relative contributions to the absorption budget were characterised in this study.  At 675 

nm at least 70% of absorption is attributed to phytoplankton, with up to 30% of 

absorption accounted for by NAP and CDOM (Figure 3.8). However, relative 

contributions were more variable in the blue portion of the spectrum (440 nm), where 

phytoplankton comprised between 20-70%, CDOM between 30-80% and NAP up to 

30% of the absorption budget (Figure 3.8).   In contrast, in coastal waters it has been 

reported that NAP can form an even greater percentage of up to 80% of the non-water 

absorption at 442 nm, although a similar contribution was observed from CDOM 

(Babin et al., 2003b, Tilstone et al., 2012).  In ocean waters, an approximately equal 

contribution to non-water absorption has been measured from CDOM (40-50%) and 

phytoplankton (30-60%) at 440 nm (Bricaud et al., 2010), although varying over a 

much narrower range than found in Lake Balaton.  This indicates greater variations in 

the contributions to non-water absorption than that reported for ocean waters, 

suggesting that inland waters may indeed exhibit more variability in optical properties 

than oceans.  It is also important to note that the contribution of NAP to non-water 

absorption in Lake Balaton is higher than that reported in ocean waters (e.g. up to 20% 

and typically below 10% at 440 nm in the South Pacific) (Bricaud et al., 2010).  

Contributions of CDOM and NAP were also relatively high at 620 nm (up to 48% and 

32%, respectively) and 675 nm (up to 10% and 23%, respectively), wavelengths of 

particular interest for remote sensing retrievals of PC and Chl-a pigments.  Similar 

instances were reported in some European coastal waters, where up to 60% of total 

absorption at the PC (620 nm) and Chl-a (665 nm) absorption peaks was due to 

particulate detritus, and aCDOM occasionally contributed over 80% of absorption at 620 

nm (Babin et al., 2003b).  Similar findings were also reported in three South African 

reservoirs, where up to 60% and 30% of absorption was attributed to CDOM, while 

NAP contributed up to >90% and 60% at 620 and 675 nm, respectively (Matthews & 

Bernard, 2013).    The high contribution of NAP and CDOM at these wavelengths 

therefore must be considered in bio-optical models for pigment retrieval at these 

wavelengths.  
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3.4.2 Variability in the IOPs 

A distinct gradient in optical properties was also observed along the trophic 

gradient of Lake Balaton.  Basin 1 is phytoplankton-dominated water, while Basin 4 is 

mineral-dominated water, as shown by a decrease in the organic fraction of TSM from 

west to east, paralleled with a decrease in total phytoplankton biomass (Table 3.2).  

Total non-water absorption [ap(λ) and aCDOM(λ)] generally decreases from Basin 1 to 4 

as the water progresses from phytoplankton-dominated to mineral-dominated. The 

significance of this is that phytoplankton particles have different absorption properties 

than mineral particles.  Phytoplankton pigments absorb strongly in the blue and red 

portion of the spectrum (Mobley, 1994), while inorganic particles have the highest 

absorption in the blue portion of the spectrum and near exponential decrease in 

absorption across the spectrum (Babin et al., 2003b).  Therefore, this gradient in 

CDOM, phytoplankton and mineral particles creates differences in both the quantity 

and quality of the underwater light field across Lake Balaton.   

The IOPs in Lake Balaton generally show marked variability across the basins 

from the eutrophic western portion where biological particles dominate to the 

oligotrophic eastern basins with greater relative influence of minerogenic particles.  As 

expected, Kis-Balaton and Lake Balaton had higher CDOM absorption than coastal 

(aCDOM(443) <1 m-1) (Babin et al., 2003b) or marine waters (aCDOM(375)=0.06-4.2 m-1, 

although values >1 m-1 are rare) (Bricaud et al., 1981), with levels markedly higher than 

hyperoligotrophic ocean waters [aCDOM(370) typically <0.04 m-1 (Morel et al., 2007)].  

However, mean CDOM absorption in Lake Balaton (aCDOM(440) = 0.58 m-1) was 

comparable with other shallow inland waters, with absorption coefficients higher than 

the oligotrophic Lake Superior (Effler et al., 2010) or Lake Erie (Binding et al., 2008), 

but lower than organic rich lakes such as Lake Taihu and Chagan Lake in China (Zhang 

et al., 2007, Zhang et al., 2010, Wang et al., 2011).   

Comparisons of SCDOM should be viewed cautiously because there is no 

commonly agreed standard wavelength range or method for calculating its value and 

approaches vary greatly in the literature.  However, compared to studies with similar 

methods of calculation, mean SCDOM for Lake Balaton (0.020 nm-1) is generally higher 

than reported values for marine (0.014 ± 0.0032 nm-1) (Bricaud et al., 1981), European 

coastal waters (0.0176 ± 0.0020 nm-1) (Babin et al., 2003b) and the oligotrophic Lake 

Superior (0.0107-0.0134 nm-1) (Effler et al., 2010), but comparable to that reported for 

the shallow and eutrophic Oneida Lake (0.0186 nm-1) (Effler et al., 2012).  Fichot and 



 

103 

 

Benner (2012) have shown that SCDOM is a sensitive tracer of terrigenous dissolved 

organic carbon (DOC) in river-influenced ocean margins with lower values observed in 

more terrestrially-influenced waters.  The pool of DOC in Lake Balaton is likely to be 

dominated by allochthonous material, certainly in the western parts of the lake closer to 

the inflow of the Zala River where mean SCDOM was lower (0.018 nm-1).   

3.4.3 Relationships between aph(λ), Chl-a and phytoplankton biomass 

This study also found aph(675) to correlate linearly with the Chl-a concentration 

(Figure 3.11b), although large variability existed in the aph(λ) parameter, especially at 

stations with higher concentrations of Chl-a. aph(675) was further related to total 

phytoplankton biomass (Figure 3.12a), while aph(620) varied linearly with the sum of 

cyanobacteria and cryptophyte biomass (Figure 3.12b and c).  aph(620) has not been 

specifically investigated in previous studies, and here we show a good relationship with 

PC concentrations, although a stronger correlation exists at this wavelength with 

summed PC and Chl-a pigments (Figure 3.11d).  This wavelength (620 nm) is of 

importance in order to distinguish potentially harmful cyanobacteria blooms, and the 

correlation shown here for Lake Balaton is evidence for its future application to remote 

sensing algorithms for phycocyanin retrieval. 

It is important to note that although there was a strong positive dependency of 

aph(λ) on Chl-a (Figure 3.11a and b), this relationship was different from that observed 

in ocean waters, particularly at the 440 nm peak (Bricaud et al., 1995).  In Lake 

Balaton, there was greater absorption by phytoplankton at 440 nm per unit Chl-a than 

found in ocean waters in Bricaud et al. (1995), and this has also been reported in the 

English Channel (Babin et al., 2003b) and more recently, Lake Onondaga (Perkins et 

al., 2014) and three South African reservoirs (Matthews & Bernard, 2013).  However, 

the contrary was found in the North Sea and Western English Channel coastal waters, 

with slightly lower aph(442) per unit Chl-a (Tilstone et al., 2012).   Given that the 

Bricaud et al. (1995) relationship was established over a narrower range of Chl-a (<30 

mg m-3), it is unsurprising that this relationship is different over the wider range of Chl-

a concentrations found in Lake Balaton (~5-250 mg m-3).  It was suggested by Babin et 

al. (2003b) that the deviance from the Bricaud et al. (1995) relationship was likely a 

result of differences in phytoplankton cell size, given the widely accepted observation 

that oligotrophic waters are typically picoplankton-dominated while eutrophic waters 

are typically microplankton-dominated. In Lake Balaton, the dominant phytoplankton 
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group (N-fixing cyanobacteria) was comprised of mainly Cylindrospermopsis 

raciborskii, with Aphanizomenon flos-aquae, Aphanizomenon issatschenkoi, Anabaena 

aphanizomenoides and Planktothryx agardhii also present.  The cell size of these 

dominant cyanobacteria species was in the region of 100-200 µm, classifying this 

phytoplankton group as microplankton.  Other large species were present in smaller 

numbers, including dinophytes (e.g. Ceratium hirundinella; 25-100 µm = 

microplankton) and large colonial diatoms (e.g. Melosira granulate, 1200 µm = 

microplankton), and the presence of these microplankton may account for the greater 

aph(440) observed in Lake Balaton as compared to ocean waters.  

  The increased scatter found in the relationship between aph(440) and Chl-a in 

Lake Balaton at ~10 mg m-3 Chl-a (Figure 3.11a) is also evident in coastal waters from 

the study by Babin et al. (2003b) (see Figure 7f therein), where it appears there is 

increased scatter in aph(443) from ~0.3-10 mg m-3 Chl-a.  In Lake Balaton, the greatest 

variation in aph(440) was observed in Basins 3 and 4, and it is expected that this 

increased scatter is a result of variations in the phytoplankton community.  Indeed, the 

eastern basins (Basins 3 and 4) comprised a more diverse phytoplankton community, 

with generally a greater range of community composition between the stations as 

compared to the western basins where N-fixing cyanobacteria composed anywhere 

from 14-86% of the total biomass (Figure 3.4).  This increased phytoplankton diversity, 

and thus increased variations in cell size, in the eastern basins would account for the 

greater variations in aph(440) per unit Chl-a that were observed in this portion of Lake 

Balaton. 

3.4.4 Chl-a specific absorption 

The Chl-a specific absorption coefficient [a*ph(λ)] has been identified as a major 

source of uncertainty in accurately retrieving Chl-a in turbid productive waters 

(Dall'Olmo & Gitelson, 2006).  The mean a*ph(440) ranged from 0.017-0.023 m2 mg-1  

across Kis-Balaton and the four lake basins.  In comparison, a*ph(443) varies over a 

much broader range in ocean [~0.01-0.18 m2 mg-1; from Figure 1 in (Bricaud et al., 

1995)] and coastal waters [~0.008-0.10 m2 mg-1; from Figure 6 in (Babin et al., 2003b)].  

However, measured a*ph(440) in Lake Balaton is within the range measured in three 

small oligotrophic to hypereutrophic reservoirs (0.005-0.084 m2 mg-1) (Matthews & 

Bernard, 2013).  Comparable a*ph(440) were also reported in Lake Kasumigaura (0.026 

m2 mg-1) (Yoshimura et al., 2012), while higher coefficients were reported in Lake Erie 
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(0.086 m2 mg-1) (Binding et al., 2008) and Onondaga Lake, New York, USA (0.035 m2 

mg-1) (Perkins et al., 2014).  Mean a*ph(675) values varied over a narrow range across 

the four basins and Kis-Balaton (0.0088 – 0.011 m2 mg-1).  The mean a*ph(675) in 

Balaton is at the lower end of the range reported for ocean waters (~0.005-0.06 m2 mg-1) 

(Bricaud et al., 1995), and most similar to the coastal waters in the Baltic and Adriatic 

Seas (Babin et al., 2003b) or Long Island Sound (median a*ph(676)=0.010 m2 mg-1) 

(Aurin et al., 2010).   While a*ph(675) in Lake Balaton falls on the low end of the range 

for highly turbid lakes such as the hypereutrophic Lake Chascomus, Argentina 

(a*ph(675)=0.0199-0.0274 m2 mg-1) (Luis Perez et al., 2011) and eutrophic Lake Taihu, 

China (mean a*ph(675)=0.0288 m2 mg-1) (Sun et al., 2010), it was similar to the alkaline 

hypereutrophic to mesotrophic conditions in Onondaga Lake (mean a*ph(676)=0.0171 

m2 mg-1) (Perkins et al., 2014).  

Previous studies document that a*ph(λ) decreases from oligotrophic to eutrophic 

waters, due to the ‘pigment package effect’ and changes in species composition and 

thus pigmentation (Bricaud et al., 1995).  However, in Lake Balaton, there was no clear 

trend of decreasing a*ph(440) or a*ph(675) across increasing concentrations of Chl-a 

(Figure 3.14ab), although any trend in a*ph(λ) may be unclear in this study simply due 

to the relatively small sample size of 38 stations or the relatively small Chl-a gradient in 

Lake Balaton.  Similarly, a*ph(620) showed a narrow range across the basins (~0.002-

0.008 m2 mg-1), and a general trend of increasing a*ph(620) across increasing 

phycocyanin concentrations (Figure 3.14b).  It has recently been suggested that a*ph(λ) 

varies greatly with phytoplankton species composition; for example, in Lake Taihu 

a*ph(λ) increased with the succession from chlorophytes to cyanophytes (Zhang et al., 

2012).  Lake Balaton was dominated by cyanobacteria during the sampling period, 

which is possibly why no significant changes in a*ph(λ) were observed between basins.  

However, there were variations in phytoplankton community composition within the 

non-dominant functional groups, including a greater percentage of chlorophytes, 

dinophytes and diatoms (heterokontophytes) in Basins 3 and 4 (Figure 3.4).  In 

particular, the slightly greater abundance of microplankton in Basin 3 (96%, compared 

to 87-95% in Basins 1, 2 and 4), including dinoflagellates (Gymnodinium sp., 25 µm), 

diatoms (Synedra acus v. rad, 110 µm) and chlorophytes (Schroederia robusta, 80 µm; 

Staurastrum paradoxum, 40 µm), may explain the low mean a*ph(675) measured in this 

basin (0.0094 m2 mg-1).  Larger cells are subject to a greater package effect and thus 

decreased absorption efficiency.  Thus, the observed variations in a*ph(λ)  may be a 
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result of changes in pigment packaging within the different cell types due to variations 

in cell size with the change in phytoplankton community composition.   

3.4.5 Phytoplankton and CDOM absorption in the UV 

The phytoplankton absorption peak in the UV in Basins 3 and 4 corresponds 

with decreased CDOM absorption in these eastern basins [mean aCDOM(440) 0.34 and 

0.18 m-1, respectively], compared with the CDOM absorption in the western basins 

[mean aCDOM(440) ranges from 0.48-2.82 m-1].  As CDOM absorbs strongly in the 

lower wavelengths (see Figure 3.9), it may serve as a UV protectant for phytoplankton 

and other organisms.  It is possible that the cyanobacteria in the eastern basins of Lake 

Balaton are compensating for this decrease in CDOM by producing a pigment to absorb 

harmful UV rays.  In a recent study on the Florida Keys, phytoplankton were found to 

produce mycosporine-like amino acids (MAAs) to absorb ultra-violet (UV) light, with a 

peak in aph at ~315-360 nm, to compensate for low CDOM absorption (Ayoub et al., 

2012).  There are inchoative results of MAA production by Cylindrospermopsis 

raciborskii in Lake Balaton [A.W. Kovács, pers. comm.], and many marine 

cyanobacteria species have been documented to produce MAAs (Sinha et al., 2007).  

An earlier study also details the presence of UV-screening compounds in terrestrial 

cyanobacteria mats, including MAAs and scytonemin (Cockell & Knowland, 1999).  In 

freshwater lakes the literature is scarce, with Microcystis aeruginosa as the only 

documented cyanobacteria species found to produce MAAs (Liu et al., 2004).  It is 

therefore possible that one of the most dominant cyanobacteria in Lake Balaton are 

producing MAAs or similar photo-protective pigments in response to UV stress in the 

eastern basins where there are lower concentrations of CDOM. 

3.4.6 SIOPs and distance from the Zala River 

The SIOPs varied greatly from west to east across Lake Balaton, principally 

based on the distance from the main source of nutrients and organic matter, the Zala 

River.  Each station was assigned a distance from the Zala River, and significant 

differences (p<0.05) were found where none were previously observed using the four 

basin designations (Figure 3.18).  a*ph(350) was found to increase with increasing 

distance from the Zala River over a decreasing CDOM gradient (Figure 3.18ac).  Given 

that a single species comprised the dominant phytoplankton over the study period, it is 

theorised that the change in a*ph in the UV portion of the spectrum is linked to the 

variable production of photoprotective pigments.  Additionally, a significant change in 
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SCDOM was measured with increasing distance from the Zala River (Figure 3.18b). The 

western basins have a larger terrestrial input to CDOM, given the proximity to the river, 

and this is reflected in the lower values of SCDOM.  It is important to note that this 

positive correlation is driven by a small number of stations >60 km from the Zala River, 

and a subsequent in-depth spatial investigation of SCDOM would clarify this relationship.  

In bio-optical models for retrieval of IOPs and pigments from remote sensing, the 

aCDOM(λ) absorption spectrum is often derived from an assumed or estimated SCDOM 

(Lee et al., 2002, Mishra et al., 2013, Li et al., 2013, Li et al., 2015).  As such, SCDOM 

may be a prime source of error in the parameterisation of analytical models, with 

further propagation of errors to retrieved pigment concentrations. 

 

 

Figure 3.18 Variation of (a) log [a*ph(350)] (m2 mg-1) and (b) log (SCDOM) (nm-1) over 

increasing distance from the Zala River inflow, and (c) relationship between 

log[a*ph(350)] (m2 mg-1) and log [aCDOM(350)] (m-1).  

3.4.7 aNAP(λ) and suspended matter 

Lake Balaton is often characterised by high and heterogeneous concentrations of 

suspended minerals due to the wind-induced resuspension of dolomite limestone bottom 

sediments (Tyler et al., 2006), with lake mean PIM concentrations comprising over 

70% of TSM.  Most of the variability in TSM concentrations in this study was 

explained by PIM (57%), and significantly more so if the 3 Kis-Balaton stations are 

excluded (96%) (Kis-Balaton is dominated by phytoplankton, with POM comprising up 

to 92% of the TSM at station KB2).  The proportion of aNAP(λ) was also significantly 

correlated with PIM, demonstrating the large contribution from inorganic matter to non-

algal particulate absorption (Figure 3.17).  A study on mineral absorption found that 

mineral absorption in the Irish Sea decreases from blue to red, with a slight increase 
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between 450 and 550 nm (Bowers & Binding, 2006).  This does not seem to be the case 

in Lake Balaton, and in fact, the spectra sometimes show a slight dip in this wavelength 

range.  This can largely be explained by the difference in sediment types, specifically 

the siliceous sediments of the Irish Sea (Bryant et al., 1996) contrasting with the 

dolomitic sediments of Lake Balaton (Tyler et al., 2006). 

The slope of the aNAP(λ) curve (SNAP) was similar across all basins, with a mean 

value of 0.015 ± 0.004 nm-1.  Other studies have reported similarly narrow ranges of 

SNAP, however mean SNAP in Lake Balaton was distinctly higher than that reported in 

ocean [0.0094±0.0018 (Bricaud et al., 2010) and 0.011±0.0025 (Bricaud et al., 1998)] 

or coastal waters (Babin et al., 2003b, Bowers & Binding, 2006).  Comparable values 

were reported for the turbid waters of western Lake Erie (Peng & Effler, 2013), 

although maximum SNAP values in Lake Balaton were higher.  Babin et al. (2003b) 

hypothesized that the observed variations in SNAP in coastal waters were a result of the 

differences in the proportion of mineral versus organic matter. Differences related to 

NAP composition were found in this study, with lower mean SNAP reported in Kis-

Balaton where the highest proportion of organic matter was measured (46-92% POM), 

while higher mean values were reported in Basins 2 and 3 where PIM comprised up to 

90% of TSM (Basin 3).  SNAP also generally declined with an increasing ratio of 

inorganic particulates, but followed a distinctly linear decreasing pattern with aNAP(440) 

for values of aNAP(440)<0.1 m-1 (Figure 3.16).  Bricaud et al. (2010) also found a 

decrease in SNAP over a low range of aNAP(440) in ocean waters (<0.05 m-1), which they 

attributed to the variable abundance and nature of organic particles comprising the NAP 

pool (e.g. weakly coloured versus coloured particles). It is likely that the differing 

nature of organic particles which make up the NAP in Lake Balaton also contributes to 

the observed variations in SNAP, particularly for low levels of TSM (<10 mg L-1) and 

aNAP(440) (<0.1 m-1). 

3.4.8 Effect of wind-driven resuspension 

Another potential source of variability in the optical properties of Lake Balaton 

is the change in the composition and size distribution of particles, as often occurs 

during resuspension events.  The absorption measured at stations sampled on 26 August 

2010 in this study indicated a marked difference in contributions from phytoplankton, 

non-algal particles and CDOM to total absorption (Figure 3.8).  The mean wind speed 

on 26 August at Siófok was 3.6 m s-1, which is higher than the daily averages from the 
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other 7 sampling dates (Table 3.1).  Additionally, the maximum wind speed on the 

previous day (25 August) was 13.6 m s-1. As the generally accepted threshold for 

turbulent mixing in shallow lakes is 4 m s-1 (Hunter et al., 2008a), it is likely that the 

water column was affected by substantial resuspension of sediments on 26 August.  

This difference in sampling conditions may explain some of the variability in the 

(S)IOPs seen in this study, as wind-driven resuspension of sediments has been shown to 

cause significant increases in light absorption, scattering and attenuation particularly in 

shallow inland or coastal waters (Zhang et al., 2006, Verspecht & Pattiaratchi, 2010, 

Liu et al., 2014).  Due to highly variable winds across Lake Balaton, both temporally 

and spatially, future study should include anemometer readings taken alongside the 

optical measurements at each station in order to investigate this effect further.  There is 

also a lag time effect from weather conditions from the previous day, which should be 

considered when interpreting the effect on optical properties.   

3.5 Conclusions 

In summary, the IOPs in Lake Balaton show distinct spatial variability, with 

decreasing absorption coefficients across a decreasing trophic gradient of Chl-a and 

phytoplankton biomass.  aNAP was significantly correlated with PIM, which indicates 

the strong influence of mineral particles on non-water absorption in Lake Balaton.  

Specific phytoplankton absorption [a*ph(675)] was variable across Chl-a 

concentrations, with no clear trend across the basins, likely due to the dominance of one 

cyanobacteria species across the lake (Cylindrospermopsis raciborskii).  However, 

significant differences were reported in a*ph(350) and SCDOM over increasing distance 

from the Zala River and a decreasing CDOM gradient.  This is likely to be linked to the 

variable production of photoprotective pigments (i.e. MAAs), as opposed to variations 

in the phytoplankton community composition.  While this study was suitable for 

demonstrating the spatial variability in (S)IOPs in Lake Balaton, further investigation 

into seasonal variations is pertinent.  With regard to the wider implications for remote 

sensing, bio-optical models for inversion of constituents such as Chl-a must consider 

the full range of values for (S)IOPs in that water body in order to avoid significant 

uncertainties in the retrieved values.  This has implications for algorithm applications in 

large shallow lakes with variable biogeochemistry across basins, such as Lake Balaton, 

and calls into question whether a single algorithm for constituent extraction is suitable 

across the entire lake.  Large lakes with variable biogeochemistry may require basin-
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specific remote sensing algorithms for accurate parameter retrieval [e.g. (Campbell et 

al., 2011)]  This research will furthermore contribute towards progressing bio-optical 

models using absorption and scattering measurements to improve remote sensing 

retrieval in optically complex waters. 
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4 Scattering and backscattering of suspended matter in an 

optically complex, shallow lake 

 

4.1 Introduction 

Scattering is quantified as the volume scattering function (VSF), β(θ), or the 

angular dependence, (θ), of scattered light from an incident unpolarised beam (Sullivan 

et al., 2013).  The scattering coefficient, b(λ), is the integrated VSF from 0 to π radians 

(0° to 180°): 

𝑏(𝜆) = 2𝜋 ∫ sin(𝜃)𝛽(𝜃)𝑑𝜃
𝜋

0
   (4.1) 

and the backscattering coefficient, bb(λ), is the integral of the VSF in the backwards 

direction from π/2 to π (90° to 180°): 

𝑏𝑏(𝜆) = 2𝜋 ∫ sin(𝜃)𝛽(𝜃)𝑑𝜃
𝜋
𝜋
2⁄

  (4.2) 

Knowledge of the scattering properties of the water column can provide 

pertinent information on underwater radiative transfer processes, as well as the nature 

and dynamics of the optically active constituents (OACs) in the water itself (Sullivan et 

al., 2013).  Optical scattering is an inherent optical property (IOP) and is therefore 

independent of ambient light (Loisel et al., 2006).  However, the magnitude and spectral 

pattern of particulate scattering is generally affected by the concentration, size 

distribution, composition and shape of the suspended particles (Peng & Effler, 2016).  

Particularly in turbid waters, high concentrations of total suspended matter (TSM) and 

variable composition of inorganic and organic fractions (PIM and POM, respectively) 

can result in significant variations in scattering properties.  Scattering by the OACs 

alters the underwater light climate in lakes, and can thus affect the emergent light 

reflected from the water surface and detected by remote sensing systems (Snyder et al., 

2008).  Therefore, it is vital to understand the variability of scattering properties in 

inland waters to minimise the uncertainty of retrieved parameters from remote sensing 

instruments. 

 More specifically, particle concentration and composition have an effect on 

backscattering (Mobley, 1994, Twardowski et al., 2001, Jonasz & Fournier, 2007), 

therefore characterization of the bb(λ) coefficient can inform studies of particle 

dynamics, biogeochemical cycling and remote sensing (Ulloa et al., 1994, Twardowski 

et al., 2001, Boss et al., 2004, Sullivan et al., 2005, Loisel et al., 2007, Stramski et al., 
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2008, Sun et al., 2009, Dall'Olmo et al., 2009, Twardowski et al., 2012).  For example, 

optical measurements of attenuation or backscattering have been used to infer the 

concentration (e.g. Jerlov, 1976) or bulk composition (Twardowski et al., 2001, Boss et 

al., 2004, Loisel et al., 2007, Peng et al., 2009) of suspended particles.  In ocean waters, 

the particulate backscattering coefficient [bbp(λ)] has also been suggested as a proxy for 

estimates of phytoplankton biomass, due to the significant contribution of large 

phytoplankton to particulate backscattering (Dall'Olmo et al., 2009).  Particulate 

scattering and backscattering coefficients have also been widely used as proxies for 

TSM concentration in coastal waters (Babin et al., 2003a, Boss et al., 2009).  Use of 

light scattering metrics as proxies for water quality parameters provides information on 

the temporal and spatial dynamics of these parameters through the use of in situ optical 

instruments.  In situ optical instruments could provide increased temporal frequency of 

water quality measurements, as compared to traditional water sampling and laboratory 

analysis methods.  Therefore, knowledge of the scattering properties in the water 

column is of importance to understanding the dynamic in-water particle concentrations 

and compositions. 

Knowledge of the backscattering coefficient is also particularly of use in semi-

analytical and analytical inversion algorithms, which estimate bbp(λ) for the retrieval of 

in-water constituents from remote sensing systems.  These algorithms are based on the 

radiative transfer theory that specifies remote sensing reflectance, Rrs(λ), is proportional 

to bb/(a+bb), where a is the absorption coefficient (Gordon et al., 1975).  Given this 

relationship, the sum of particulate backscattering [bbp(λ)] and the backscattering 

coefficient of pure water bbw(λ) can contribute greatly to variability in the spectral shape 

of Rrs(λ) in the upper layer of the water column, and therefore retrievals of 

biogeochemical parameters from Rrs(λ) (e.g. chlorophyll-a (Chl-a) or TSM 

concentration).  It has recently been shown that changes in particle composition and 

thus scattering properties have an impact on Rrs(λ) in the near infrared, affecting the 

remote sensing retrieval of Chl-a in turbid inland (Qi et al., 2015) and coastal waters 

(Gilerson et al., 2007, Mckee et al., 2007).  Variations in scattering properties in inland 

waters thus impact the accuracy of remote sensing to retrieve water quality parameters, 

therefore it is vital to better quantify this variability and reduce errors in retrieved 

concentrations. 

Variability in Rrs(λ) is also controlled by the particulate backscattering ratio, b̃bp, 

which is defined as: 
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�̃�𝑏𝑝 = 𝑏𝑏𝑝(𝜆)/𝑏𝑝(𝜆)  (4.3) 

where bbp(λ) and bp(λ) are the particulate scattering and backscattering coefficients, 

respectively (Mobley et al., 2002, Lubac & Loisel, 2007).  b̃bp is generally calculated 

using bbp and bp at 532 nm, and research in a range of inland, coastal and ocean waters 

indicates that this ratio should be constant at all wavelengths (i.e. no spectral 

dependence) (Whitmire et al., 2007).  The b̃bp is the proportion of light scattered in the 

backwards direction, also known as the backscattering efficiency, and it can provide 

information on the bulk refractive index and particle size and composition of the 

suspended particulate material (Boss et al., 2004).   

 It has generally been reported that particulate attenuation, scattering and 

backscattering coefficients increase with greater concentrations of total suspended 

matter, while the mass-specific coefficients vary with the nature of particles (i.e. size, 

shape, structure, refractive index and composition) (Neukermans et al., 2012).  

However, the relationship between suspended particles and light scattering has been 

mainly studied in ocean and coastal waters to date (Twardowski et al., 2001, Babin et 

al., 2003a, Boss et al., 2009, Martinez-Vicente et al., 2010, Xi, 2015), while there is 

little information available on inland waters (Sun et al., 2009, Shi et al., 2014, Lyu 

Heng et al., 2015).  Recent studies of scattering properties in lakes have included the 

shallow eutrophic Lake Taihu, where scattering parameters were closely related to 

particulate inorganic mater (PIM) as opposed to particulate organic matter (POM) or 

Chl-a, and there was a wider range in b*p than reported for coastal waters (Sun et al., 

2009).  In Poyang Lake, b*p(700) declined exponentially with increasing TSM 

concentration (Wu et al., 2013).  Shi et al (2014) studied scattering in three eutrophic 

Chinese lakes, finding that b*p(532) was positively correlated with the ratio of 

PIM:TSM.  Lyu et al. (2016) confirmed distinctive relationships between b̃bp and water 

quality parameters in these same three Chinese lakes, attributed to the differing 

concentrations of OACs in each lake and thus differing relative contributions of organic 

and inorganic particles to scattering and backscattering.  Other studies on American 

lakes have measured scattering properties for the purpose of parameterizing bio-optical 

models (Peng & Effler, 2016) or optical closure (O'Donnell et al., 2010, Peng & Effler, 

2012, O'Donnell et al., 2013).  Recent studies on the relationships between scattering 

properties and OACs in inland waters have been geographically limited and focused on 

primarily eutrophic lakes (e.g. Lake Taihu, Lake Chaohu, Lake Dianchi).  There is 
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generally a lack of information on optical scattering and backscattering properties in 

European lakes, and particularly large shallow lakes with a trophic gradient and a high 

concentration of inorganic particulates. 

 There is a broad range of biogeochemical composition comprising inland 

waters, therefore scattering is expected to vary greatly from ocean waters.  For example, 

it has been suggested that minerogenic particles play a more dominant role in scattering 

in coastal (Stramski et al., 2001, Loisel et al., 2007) and inland waters (Peng et al., 

2007, Peng & Effler, 2016).  Minerogenic particles have a higher scattering efficiency 

than phytoplankton, and PIM is considered to have the greatest mass-specific 

backscattering coefficient of the particulates (Stramski et al., 2001).  For example, 

Babin et al. (2003a) reported a significantly higher value of mass-specific particulate 

scattering [b*p(550)] for ocean waters as compared to coastal waters, which was 

attributed to the dominance of organic or inorganic (minerogenic) particles, 

respectively.   Particles in inland waters are also likely to demonstrate greater spatial 

and temporal variability than in oceans, particularly in shallow dynamic lacustrine 

systems with frequent resuspension of sediments.  Frequent resuspension may also 

change the particle size distribution and thus scattering properties, with greater 

concentrations of larger particles present in the water column.  Stramski et al. (2007) 

found increases in b*p(λ) for terrigenous minerogenic sediment samples following 

settling (preferential loss of larger particles).  Therefore it may be expected that changes 

in the particle size due to variable resuspension may also alter the scattering properties 

in lakes.  Additionally, point-source delivery (e.g. river input) of nutrients and total 

suspended matter, as well as highly dynamic surface algal blooms may generate 

variability on much smaller spatial scales than for most open ocean waters (Mouw et 

al., 2015).  For instance, some inland or coastal phytoplankton species have the ability 

to develop a bloom or substantially expand bloom size in a matter of hours (Hunter et 

al., 2008a, Hu & Feng, 2014).  River flow rate and runoff events may further affect 

scattering properties in inland waters.  Peng and Effler (2012) found that abrupt 

increases in flow rate and total suspended matter caused corresponding substantial 

increases in bp(660) and decreases in b*p(660) in Esopus Creek.  Thus, preliminary 

work indicates that scattering properties in inland and coastal waters may be distinct 

from those in ocean waters, and are affected by the dynamic processes inherent in these 

systems.   
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 Therefore, this study aims to quantify the variability of the scattering and 

backscattering properties in a large and optically complex shallow lake, and how optical 

scattering is related to the biogeochemistry of a dynamic minerogenic-dominated 

system.  Additionally, Chapter 3 found the bulk and specific absorption properties of 

Lake Balaton to vary significantly, with differing relationships to those reported in 

ocean waters (Riddick et al., 2015), therefore the present study provides a 

complementary investigation of the corresponding differences in bulk and specific 

scattering properties.  In this chapter, relationships between scattering properties and 

the concentration and composition of total suspended matter will be qualified and 

placed in context of other inland, coastal and marine studies, with the aim of 

determining the drivers of the optical scattering properties in a large, turbid lake.  Lake 

Balaton serves as a case study of a lake with a trophic gradient and a high concentration 

of particulate inorganic matter, therefore providing an example of a complex optical 

scenario. 

4.2 Methods 

4.2.1 Study area 

Lake Balaton is a large shallow freshwater lake in Europe, with a mean surface 

area of 596 km2 and mean depth of approximately 3 m (Herodek, 1986, Présing et al., 

2001, Tyler et al., 2006).  The lake is subdivided into four basins (Figure 4.1), with an 

engineered wetland system in the west (Kis-Balaton) constructed in the mid-1980s to 

early 1990s (Tyler et al., 2006).  The sediments are predominantly comprised of 

dolomite limestone, rich in fine particles of calcium and magnesium (Svab et al., 2005, 

Tyler et al., 2006).  Lake Balaton is shallow, and as such, the sediments are frequently 

resuspended in the water column due to wind-driven mixing.   

Lake Balaton is by nature subject to substantial variations in the particle 

assemblage.  Seasonal variations in the phytoplankton population are well documented, 

with small blooms in winter/spring and more severe blooms of nitrogen-fixing 

cyanobacteria occurring in the late summer months (Mozes et al., 2006, Hajnal & 

Padisak, 2008, Palmer et al., 2015a).  The relative contributions to the particle 

assemblage in Lake Balaton also vary spatially across the lake, with waters dominated 

by biological particles in the west and a greater proportion of mineral particles in the 

eastern basins (up to 81% PIM in Basin 3; Chapter 3) (Riddick et al., 2015).  Lake 
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Balaton is further subject to episodic changes due to resuspension driven by wind or 

storm events, resulting in highly heterogeneous distribution of total suspended matter 

(typically ~3-300 mg L-1) (Tyler et al., 2006). 
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Figure 4.1 Map of Lake Balaton indicating 4 basins and 35 station locations. 
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4.2.2 Water sampling 

Field measurements in Lake Balaton were conducted at 35 stations between 19th 

and 26th August 2010 (Figure 4.1).  Surface water samples were collected and filtered 

on the boat under low vacuum pressure through GF/F (Whatman) filter papers.  

Depending on water clarity between 20 and 70 mL of sample water was filtered, and 

filter papers were flash frozen in liquid nitrogen for <12 hours.  Samples were stored in 

a -80°C freezer and analyzed within 6 months.   

4.2.3 In situ optical measurements 

The instruments deployed in situ consisted of a WET Labs AC-S and ECO-

BB3, along with a Seabird CTD to record the temperature, salinity and pressure (depth).  

These were deployed in a black metal cage over a beam that extended the cage 

approximately 1.5 m from the boat hull.  A WET Labs AC-9 was concurrently deployed 

at the same location.  The instruments were submerged just below the water surface and 

de-bubbled for at least five minutes before measurements commenced.  Five-minute 

casts were subsequently recorded to a data logger at each station with the data from the 

AC-S monitored in real-time for quality assurance. 

4.2.4 Chlorophyll-a 

Frozen GF/F filter papers were thawed from -80°C and chlorophyll-a (Chl-a) 

was measured spectrophotometrically (Shimadzu UV-1601) after a hot 90% methanol 

extraction, as in Iwamura et al. (1970). Three replicates were analysed for Chl-a from 

each station.  The concentration (mg m-3) of Chl-a was determined according to the 

following formula, where 𝐴665 is the measured absorbance at 665 nm: 

[𝐶ℎ𝑙 − 𝑎] = 13.9 × 𝐴665.  (4.4) 

4.2.5 Phycocyanin 

Frozen GF/F filter papers were thawed from -80°C and the pigment was 

extracted in a solution of 15 ml 0.05M phosphate buffer (pH=6.8).  A minimum of two 

replicates were analyzed for measurement of phycocyanin (PC) concentration, with 

outlying values discarded.  Following the method of Horváth et al. (2013a), samples in 

the buffer solution were subjected to sonication over ice for 15 seconds (Ultrasonic 

Homogeniizer 4710 Series with micro-tip and 50% of duty cycle, Cole-Palmer 

Instrument Co., USA).  The solution was clarified by filatration (Whatman GF/C), and 

extract absorption was measured on a spectrophotometer (Shimadzu UV-1601, 
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Shimadzu Co., Japan).  Phycocyanin concentrations (mg m-3) were calculated using the 

following equation of Siegelman and Kycia (1978): 

[𝑃𝐶] = (𝐴615 − 0.474 × 𝐴652)/5.34 (4.5) 

where 𝐴𝑥 is the measured absorbance at x wavelength (nm).   

4.2.6 Biomass and phytoplankton counts 

Phytoplankton samples were preserved in Lugol’s solution immediately after 

collection. Algal species were enumerated with an inverted plankton microscope 

(Utermöhl, 1958). The wet weight of each species was calculated from cell volumes 

(Németh & Vörös, 1986).  At least 25 cells (or filaments) of each species were 

measured to determine biomass and at least 400 were counted. 

4.2.7 Total suspended matter and inorganic/organic fractions 

Total suspended matter (TSM) was measured by filtration and gravimetric 

analysis.  500-1500 ml of the water sample was filtered under low-vacuum pressure 

(<700mbar) through a pre-ashed (furnace at 450°C) and pre-weighed GF/C filter paper.  

Following filtration, filter papers were dried overnight in a clean oven at 60°C and 

subsequently weighed to obtain TSM.  Filters were then placed in a furnace at 450°C 

overnight and subsequently weighed to obtain particulate inorganic matter (PIM).  

Particulate organic matter (POM) was then calculated by simple subtraction. 

4.2.8 Absorption by coloured dissolved organic matter  

Water samples were filtered into clean glassware through 0.22 μm nucleopore 

membrane filters (Whatman) within 24 hours of sample collection, according to 

REVAMP and IESCA protocols (Tilstone et al., 2002, Tilstone & Martinez-Vicente, 

2012).  Absorption of the filtrate was determined on a spectrophotometer with a 4 or 5 

cm cuvette over the range of 350-800 nm, using filtered MilliQ as a reference blank.  

The absorption coefficient of CDOM (aCDOM) was calculated using the following 

equation:  

𝑎𝐶𝐷𝑂𝑀(𝜆) = 2.303𝐷(𝜆)/𝑟  (4.6) 

where D(λ) is the measured absorption at a given wavelength and r is the cuvette path 

length in meters.  A baseline correction was applied by subtracting the mean value of 

aCDOM in a 5 nm interval around 685 nm (Babin et al., 2003b).  This wavelength was 
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applied because there is negligible aCDOM at 685 nm and small effects of temperature 

and salinity on water absorption (Pegau et al., 1997). 

4.2.9 Particulate attenuation and scattering coefficients 

An AC-S (WET Labs) collected hyperspectral absorption (a) and attenuation (c) 

measurements over 84 wavelengths, from 401-755 nm at ~4 nm resolution. 

Simultaneously, an AC-9 collected a and c data at 9 wavelengths (412, 440, 488, 510, 

532, 555, 650, 676 and 715 nm).  The AC-S and AC-9 raw data were corrected for the 

time lag associated with the flow rate for the instrument, and then merged with the CTD 

data for temperature, salinity and pressure.  Using the CTD data, the effects of 

temperature and salinity on pure water absorption and attenuation were removed with 

wavelength-dependent corrections.  To correct for instrument drift, a pure water 

calibration was applied to both attenuation and absorption data.  The proportional 

scattering correction of Zaneveld et al. (1994) was applied to absorption data to account 

for inefficient collection of the scattered light within the AC-S reflecting tube.  While 

other scattering corrections exist, the proportional scattering correction is used here for 

consistency with previous work on Lake Balaton (Chapter 3; Riddick et al., 2015) and 

comparable studies elsewhere (Leymarie et al., 2010, Slade et al., 2010, Astoreca et al., 

2012).  The AC-S data for each station were screened for any outliers (±2 σ) in order to 

eliminate measurements adversely affected by bubbles.  Particulate attenuation [cp(λ)] 

was calculated by subtraction of aCDOM(λ) from the total attenuation coefficient [cp(λ) = 

cpg(λ)–aCDOM(λ)].  The particulate scattering coefficient [bp(λ)] was then calculated by 

subtracting the AC-S measured absorption from attenuation [bp(λ)=cpg(λ)-apg(λ)].  It 

was assumed that scattering of the dissolved fraction (i.e. CDOM) is negligible, i.e. 

bpg(λ) = bp(λ). 

4.2.10 Particulate backscattering coefficients 

Particle backscattering coefficients [bbp(λ)] were derived from measurements 

collected with an ECO-BB3 backscatter meter (WET Labs). The calibration was 

performed by the manufacturer immediately prior to sampling, and it was assumed that 

there was no drift in the calibration coefficients and/or dark counts. The ECO-BB3 

measures the total volume scattering function [βt (λ,124)] from a centroid angle of 

scattering (124) at 3 wavelengths (λ= 470, 532 and 650 nm). The transformation of the 
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raw counts into bbp(λ) was done following the manufacturer’s user guide (WET Labs, 

2010) and the methods as in Slade and Boss (2015).  

Firstly, the instrument raw counts were converted into an uncorrected value of 

the volume scattering function, [βu(λ,124)]: 

𝛽𝑢(𝜆, 124°) = 𝑠(𝜆)[𝑟𝑎𝑤(𝜆) − 𝑑(𝜆)] (4.7) 

Where s and d are scaling and dark counts factors, respectively, with values supplied by 

the manufacturer.  The scaling factors change with time at a typical rate of 10%, 4% 

and 3% per year for blue, green and red wavelengths, respectively (Sullivan et al., 

2013).  As this sampling campaign was conducted over 10 days, the expected maximum 

change over time is about 0.3% of the signal, and retrospective laboratory tracking from 

2013-2015 of the scaling factor on this ECO-BB3 has corroborated this assumption 

(Martinez-Vicente, pers. comm.).   

Secondly, βu(λ,124) was corrected to account for the light attenuation within 

the instrument path length using an attenuation factor, K(λ): 

𝐾(𝜆) = 𝑒𝑥𝑝 (𝐿𝑎𝑝𝑔(𝜆))    (4.8) 

Where L is the effective pathlength (0.015 m) and apg(λ) is the absorption due to 

particulate and dissolved matter.  apg(λ) was simultaneously measured by the AC-9, and 

these data were processed using the temperature 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙𝑐
𝑒 scattering correction 

from Roettgers et al. (2013) and pure water calibrations measured before and after the 

campaign.  In each case, the nearest wavelengths to the ECO-BB3 wavelengths were 

applied (i.e. 488, 532 and 660).  βt(λ,124) is then calculated as: 

𝛽𝑡(𝜆, 124°) = 𝛽𝑢(𝜆, 124°) × 𝐾(𝜆)   (4.9) 

 Thirdly, the value of the volume scattering function of water was subtracted 

from βt(λ,124) using the model by Zhang et al. (2009) with fixed temperature and 

salinity values of 24.0 C and 0.4 psu, respectively.   

 Finally, the volume scattering function of the particles at 124° was extrapolated 

to the backwards direction using a conversion factor of χp(124)=1.08 as in Sullivan et 

al. (2013): 

𝑏𝑏𝑝(𝜆) = 2𝜋𝜒𝑝(124°) × [𝛽𝑡(𝜆, 124°)−𝛽𝑤(𝜆, 124°)] (4.10) 

Mean bbp(λ) values were calculated over 1-5 min measurement periods. 
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The specific backscattering coefficient [b*bp(532)] was calculated by dividing 

bbp(532) by the respective concentration of TSM.  The particulate backscattering ratio 

(b̃bp) was calculated as the ratio of particulate backscattering at 532 nm, as measured by 

the ECO-BB3, to particulate scattering at 531.3 nm, as measured by the AC-S: 

𝑏 𝑏𝑝 =  𝑏𝑏𝑝(532)/𝑏𝑝(531.3)  (4.11) 

This ratio represents the fraction of light scattered in the backwards direction 

(Neukermans et al., 2012). 

It was noted that the BB3 saturated at approximately bbp(532) = 0.22 m-1, and 

this occurred at stations with high concentrations of TSM.  This has been similarly 

reported in other lacustrine studies using in situ optical instruments for measurement of 

backscattering (Gallegos et al., 2008, O'Donnell et al., 2010).  Saturation occurred at six 

stations (3, 31-35), and with the exception of Station 3 these stations are located in 

Basin 3.  As Basin 3 (including Stations 31-35) was sampled on August 26th during and 

after windy conditions, there were high concentrations of suspended sediments as a 

result of wind-driven resuspension (see Chapter 3; Riddick et al., 2015).  Therefore, 

these stations have been excluded from analysis and only unsaturated stations are 

considered.   

4.2.11 Bulk refractive index and particle size discrimination slope 

The cp(λ) spectra measured by the AC-S can be described by a hyperbolic 

equation as follows (Twardowski et al., 2001): 

𝑐𝑝(𝜆) = 𝐴𝜆−𝛾    (4.12) 

where γ is the hyperbolic slope of the cp(λ) spectrum and A is the amplitude. γ is related 

to the shape of the particle size distribution (PSD) or Junge exponent, ξ, most simply by 

(Boss et al., 2001): 

𝜉 = 𝛾 + 3    (4.13) 

For more general cases of PSDs with finite limits, ξ can be related to γ according to a 

nonlinear fit (Boss et al., 2001): 

𝜉 = 𝛾 + 3 − 0.5exp(−6𝛾)   (4.14) 

In this study, both relationships were used to estimate ξ. 
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 The bulk refractive index, n̅p, was estimated using the model by Twardowski et 

al. (2001), a method which has been previously employed in inland waters (Sun et al., 

2009).  n̅p was estimated according to the following equation: 

𝑛 𝑝 = 1 + 𝑏 𝑏𝑝
0.5377+0.4867(𝜉−3)2[1.4676 + 2.2950(𝜉 − 3)2 + 2.3113(𝜉 − 3)4] (4.15) 

4.3 Results 

4.3.1 Nature of suspended particles across the basins 

The four basins sampled in Lake Balaton during summer 2010 demonstrated 

marked variability in biogeochemical composition (Table 4.1).  Total suspended matter 

concentrations ranged from ~4 to 50 mg L-1, with the highest mean concentration in 

Basin 4 (~15 mg L-1).  There was a gradient in PIM from east to west, with PIM 

comprising ~55% of TSM in Basins 1 and 2, and up to 75% of suspended particles in 

Basin 4.  Basin 3 had notably high mean concentrations of TSM and PIM with high 

standard deviation (Mean 13 ± 11 mg L-1 and 10 ± 11 mg L-1, respectively) due to 

wind-driven resuspension on the sampling date for this basin [see Table 3.1 in Chapter 

3; Riddick et al. (2015)].    

This gradient in TSM composition is also driven by variability in phytoplankton 

abundance across the lake.  Mean Chl-a concentrations ranged from ~33 mg m-3 in the 

most westerly basin (Basin 1) to ~8 mg m-3 in the east (Basin 3).  Similarly, total 

phytoplankton biomass ranged from ~1854 to ~7062 mg m-3 from east to west, 

confirming a trophic gradient across the lake during this study (Riddick et al., 2015).  

The most abundant species in all basins was the nitrogen-fixing cyanobacteria 

Cylindrospermopsis raciborskii, which has been noted to dominate summer algal 

blooms in Lake Balaton in recent years.  However, an increasing presence of other 

phytoplankton groups was noted from west to east, with a greater abundance of 

cryptophytes, chlorophytes, dinophytes and heterokontophytes in Basins 3 and 4 [see 

Figure 3.4c in Chapter 3; Riddick et al. (2015)]. 

Variations in the material inputs from the Zala River are an additional 

mechanism behind the observed biogeochemical gradient in Lake Balaton, as the river 

is the main inflow, providing a major input of nutrients and dissolved and particulate 

matter to the western shore.  This results in the pronounced gradient in phytoplankton 

abundance, with the highest mean phytoplankton biomass in the Keszthely basin (Basin 

1; 7062 mg m-3).  The Zala River also generates a gradient in CDOM, with the highest 
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aCDOM(440) in Kis-Balaton (2.82 m-1) to the lowest in Basin 4 (0.18 m-1) (Chapter 3; 

Riddick et al., 2015). 
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Table 4.1 Mean (± standard deviation) biogeochemical parameters for each basin in Lake Balaton, including chlorophyll-a (Chl-a), phycocyanin 

(PC), total suspended matter (TSM), particulate organic matter (POM), particulate inorganic matter (PIM), the ratio of PIM:TSM, phytoplankton 

biomass (Total Biomass) and cyanobacteria biomass (Cyano Biomass; mg m-3 and % biomass) (table adapted from Table 3.2 in Chapter 3; 

Riddick et al., 2015). 

 Basin 1  

(n=4) 

Basin 2  

(n=8) 

Basin 3  

(n=8) 

Basin 4  

(n=15) 

Lake Mean 

(n=35) 

Units 

Chl-a 32.74 ± 5.40 21.12 ± 6.71 8.24 ± 1.91 10.8 ± 2.30 15.08 ± 8.90 mg m-3 

PC 22.33 ± 7.41 15.62 ± 4.56 6.19 ± 2.05 9.95 ± 2.67 11.80 ± 6.19 mg m-3 

TSM 14.41 ± 5.82 10.36 ± 1.78 12.55 ±11.23 15.37 ± 6.11 13.47 ± 7.01 mg L-1 

POM 6.09 ± 1.23 4.71 ± 1.41 2.41 ± 0.53 3.41 ± 0.49 3.78 ± 1.43 mg L-1 

PIM 8.32 ± 4.79 5.65 ± 1.63 10.14 ± 10.96 11.97 ± 6.04 9.69 ± 6.98 mg L-1 

PIM:TSM 0.55 ± 0.11 0.55 ± 0.12 0.70 ± 0.15 0.75 ± 0.08 0.67 ± 0.14 - 

Total 

Biomass 

7062 ± 1780 3916 ± 1376 1854 ± 603 2851 ± 821 3348 ± 1832 mg m-3 

Cyano 

Biomass 

5756 ± 1810 3456 ± 3456 1232 ± 759 2134 ± 671 2644 ± 1658 mg m-3 

Cyano 

Biomass 

81 ± 8 88 ± 6 64 ± 27 74 ± 17 76 ± 19 % 
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4.3.2 Relative contributions of absorption and scattering to total attenuation 

Attenuation due to particulate and dissolved matter in Lake Balaton is mostly 

due to particulate scattering (Figure 4.2).  In this study, bp(λ) accounts for up to 85-99% 

of attenuation, however a study of four Finnish lakes found it only comprised 38-84% 

of total attenuation (when absorption of pure water is included) (Paavel & Arst, 2009).  

There also exists a clear absorption gradient across the basins, with the highest 

proportion of attenuation due to absorption [ap(λ) + aCDOM(λ)] in Basin 1 (Figure 4.2).   

 

 
 

Figure 4.2 Mean attenuation by basin due to particulate scattering, CDOM absorption 

and particulate absorption at (a) 440, (b) 555, (c) 620 and (d) 675 nm.  The attenuation 

due to pure water absorption has been subtracted from the total attenuation and 

therefore not included in these graphs.  The ratio axis is scaled to 0.2 for ease of 

viewing, however note that b(p) continues to 1.0 in all plots.  The abbreviations b(p), 

a(CDOM) and a(p) are used for bp(λ), aCDOM(λ) and ap(λ).   
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Particulate attenuation at 660 nm is plotted against Chl-a, TSM, POM and PIM 

to explore the contribution of each parameter to beam attenuation (Figure 4.3).  There is 

a weak positive exponential relationship between cp(660) and Chl-a (R2=0.151, 

p=0.0929; Figure 4.3a). However, a much stronger correlation exists between cp(660) 

and TSM (R2=0.838, p<0.001), with 68% of the variability in cp(660) explained by PIM 

as opposed to just 23% by POM (Figure 4.3c and d).   

 

Figure 4.3 Particulate attenuation at 660nm [cp(660)] plotted against (a) chlorophyll-a 

(Chl-a), (b) total suspended matter (TSM), (c) particulate organic matter (POM) and (d) 

particulate inorganic matter (PIM).  Solid lines and equations represent best-fit power 

functions.  

4.3.3 Variability in scattering, backscattering and attenuation coefficients 

Particulate backscattering [bbp(λ)] at 532 nm ranged from 0.0557 to 0.227 m-1, 

while mass specific backscattering [b*bp(λ)] varied from 0.0104 to 0.0186 m2 g-1 in 

Basins 1-4 (Table 4.2).  Particulate attenuation [cp(660)] measured by the AC-S ranged 

from 1.58 to 19.9 m-1 (Table 4.2).  Other studies have measured cp at 650 nm, however 

it is noted there was minimal difference (<0.5%) between the values at either 

wavelength, therefore cp(660) is used for analysis purposes here.  Particulate scattering 
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[bp(531.3)], as calculated from the difference of apg(λ) and cpg(λ) measured by the AC-

S, ranged from 1.58 to 20.46 m-1, and the mass specific scattering coefficient ranged 

from 0.36 to 1.14 m2 g-1 in Basins 1-4 (Table 4.2).   

 

Table 4.2 Summary of scattering, backscattering and attenuation coefficients for Lake 

Balaton.  

(S)IOP n Min Median Max Mean St Dev Units 

bbp(532)  29 0.0557 0.164 0.227 0.156 0.0500 m-1 

b*bp(532)  29 0.0104 0.0148 0.0186 0.0146 0.00199 m2 g-1 

bp(531.3) 35 1.58 8.96 20.46 9.35 4.45 m-1 

b*p(531.3)  35 0.36 0.69 1.14 0.71 0.17 m2 g-1 

b̃bp(532)  29 0.0146 0.0205 0.0352 0.0208 0.00369 - 

cp(650)  35 1.58 8.22 19.9 8.67 4.35 m-1 

cp(660)  35 1.58 8.25 19.9 8.67 4.35 m-1 

 

 

The mean ratio of backscattering to scattering in Lake Balaton (b̃bp) was 0.0208 

± 0.00369, which is within the range reported for many coastal studies (Boss et al., 

2004, Mckee & Cunningham, 2006, Loisel et al., 2007, Whitmire et al., 2007, Snyder et 

al., 2008).  Compared to Lake Taihu, bb̃p varied over a similar range (0.005-0.027) (Sun 

et al., 2009), although b̃bp was notably higher in Lake Balaton.  As previously stated, 

the backscattering ratio applied in the present study was calculated at 532 nm for 

consistency with the literature.  However, it is important to note that this study found a 

sizeable difference in b̃bp if calculated at either 470 or 650 nm (the other two 

wavelengths at which bbp(λ) was measured), with mean percent differences of +31% 

and -48%, respectively (Figure 4.4).  Wavelength dependency of b̃bp was also recently 

reported in three Chinese lakes, with generally decreasing b̃bp across increasing 

wavelength (Lyu Heng et al., 2015).  This refutes the generally accepted concept that 

b̃bp is spectrally independent, as found by Whitmire et al. (2007) in a range of inland 

(Crater Lake, USA), coastal (Southern California coast, Gulf of California, USA) and 

marine waters (mid-Atlantic Bight off New Jersey, USA).  Whitmire et al. (2007) had a 

significantly larger sampling size (n=9,154), therefore the wavelength dependence of 

b̃bp may be specific to the turbid, productive waters of Lake Balaton.   
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Figure 4.4 (a) The particulate backscattering ratio (b̃bp) for each station (n=29) over the 

three wavelengths at which in situ bbp was measured, and linear regression plots for 

bb̃p(532) as a function of (b) b̃bp(470) and (c) b̃bp(650). 

The mean bbp(532) was highest in Basin 4 (0.174 m-1), while the lowest bbp(532)  

was recorded in Basin 3 (0.101 m-1 ; Table 4.3).  Mean bbp(532) declined from west to 

east, across Basins 1 to 3.   In contrast, the mean b*bp(532) was highest in Basin 2 

(0.0157 m2 g-1) and lowest in Basin 4 (0.0138 m2 g-1).  As observed with bbp(532), 
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particulate scattering coefficients [bp(531.3)] declined from west to east (Basins 1 to 3), 

with the highest bp(531.3) measured in Basin 1 (11.2 m-1).  Mass-specific scattering 

coefficients [b*p(531.3)] were higher in the westerly basins (Basins 1 and 2; 0.774-

0.891 m2 g-1), and lower in the east of the lake (Basins 3 and 4; 0.626-0.638 m2 g-1).  

Conversely, the mean backscattering ratio was lower in Basins 1 and 2 (0.0188 and 

0.0180, respectively), and slightly higher in Basins 3 and 4 (0.0242 and 0.0214, 

respectively).  Particulate attenuation coefficients [cp(650) and cp(660)] were highest in 

Basin 1 (10.1 m-1) with a decreasing gradient across Basins 1 to 3, producing a similar 

pattern to that observed in of bbp(532), bp(531.3), Chl-a, PC, TSM, POM and total and 

cyanobacteria biomass. 
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Table 4.3 Mean ± standard deviation of backscattering and scattering coefficients in Lake Balaton by basin. 

(S)IOP Basin 1  

(n=4)* 

Basin 2  

(n=8) 

Basin 3  

(n=8)* 

Basin 4  

(n=15) 

Units 

bbp(532) 0.170 ± 0.0396 0.164 ± 0.0371 0.101 ± 0.0578 0.174 ± 0.0397 m-1 

b*bp(532) 0.0145 ± 0.000839 0.0157 ± 0.00144 0.0146 ± 0.00229 0.0138 ± 0.00213 m2 g-1 

bp(531.3) 11.2 ± 4.67 9.43 ± 3.21 7.95 ± 6.97 9.57 ± 3.43 m-1 

b*p(531.3) 0.774 ± 0.0351 0.891 ± 0.164 0.626 ± 0.150 0.638 ± 0.11 m2 g-1 

b̃bp 0.0188 ± 0.000450 0.0180 ± 0.00237 0.0242 ± 0.00579 0.0214 ± 0.00138 - 

cp(650)  10.1 ± 4.64 8.49 ± 3.12 7.56 ± 6.92 8.96 ± 3.33 m-1 

cp(660)  10.1 ± 4.66 8.49 ± 3.12 7.56 ± 6.92 8.97 ± 3.32 m-1 

* For bbp(532), b*bp(532) and b̃bp , outliers were removed where the ECO-BB3 saturated. For these parameters, n=3 for 

Basin 1 and n=3 for Basin 3. 
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4.3.4 Relationships between scattering coefficients and biogeochemical 

parameters 

When the ‘saturated’ stations were excluded (Stations 3, 31, 32, 33, 34 and 35), 

bbp(532) measured by the BB3 agreed well with scattering coefficients [bp(531.3)] 

measured by the AC-S (Figure 4.5; R2=0.85, p<0.001).   

 

Figure 4.5 Scatterplot of bp(531.3) and bbp(532) as measured by the AC-S and BB3, 

respectively. Solid line is a linear regression and vertical error bars are standard 

deviation of mean bbp(532). 

bp(531.3) and bbp(532) increased with increasing concentrations of TSM (Figure 

4.6a,e), although only a weak negative relationship was found between b̃bp and TSM 

(Figure 4.6i).  However, a stronger positive relationship was found between b̃bp and the 

proportion of PIM (Figure 4.6l).  In fact, if the high b̃bp value is removed from the figure 

(0.035; Station 30), the determination coefficient increases (R2=0.391) and there is 

strong evidence that the relationship is significant (p<0.001).  It is noted that Station 30 

was sampled on 24 August when wind speeds were high (daily maximum of 9.2 m s-1), 

therefore this station may be considered an outlier from the dataset.  Thus, future work 

(where backscattering measurements do not saturate under windy conditions) could 

include wind as a predictor in models for backscattering and scattering coefficients as a 

function of TSM, PIM and POM. 

Particulate scattering and backscattering at 531.3 and 532 nm, respectively, 

increased significantly (p<0.001) with greater concentrations of PIM (Figure 4.6b, f).  
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There was no significant correlation between b̃bp and PIM, in contrast to that reported in 

Lake Taihu by Sun et al. (2009) (Figure 4.6j).  However, it is expected that b̃bp would 

exhibit a stronger relationship with an indicator of particle size and composition as 

opposed to concentration, and a stronger relationship was indeed found with PIM:TSM 

(Figure 4.6l).  Additionally, no correlations were found between POM and bp(531.3) or 

bbp(532) (Figure 4.6c, g), which indicates a strong influence of PIM on scattering in 

Lake Balaton.  Positive correlations were also found between bp(531.3), bbp(532) and 

the ratio of PIM (Figure 4.6d, h, l). 

The backscattering ratio (b̃bp) showed a significant (R2=0.556, p<0.001) decline 

with increasing concentration of organic particles (Figure 4.6k).  Thus, with increasing 

POM there is a concurrent decrease in scattering efficiency.  The particulate 

backscattering ratio has been similarly linked to the POM:TSM and the ratio of 

particulate organic carbon (POC) to TSM in ocean and coastal waters (Loisel et al., 

2007, Neukermans et al., 2012). 

Particulate scattering and backscattering coefficients and the ratio between these 

were also plotted against Chl-a concentrations.  bp(531.3) and bbp(532) increased with 

increasing Chl-a concentration, although there was a lot of scatter around these 

relationships with low significance (p<0.05; Figure 4.7a, b).  However, the 

backscattering ratio significantly declined with increasing Chl-a concentrations (b̃bp = 

0.0355 [Chl-a]-0.213; R2=0.472, p<0.001), following a similar pattern to that observed in 

Lake Taihu (Sun et al., 2009). 
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Figure 4.6 Scatterplots of bp(531.3), bbp(532) and b̃bp against concentrations of TSM (a, d, g), PIM (b, e, h) and POM (c, f, i).  Solid lines and 

equations are for regression curves by least squares fit. 
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Figure 4.7 Scatterplots of of (a) bp(531.3), (b) bbp(532) and (c) b̃bp as a function of Chl-a concentration.  Solid lines and equations are for 

regression by least squares fit, with the exponential fit from Lake Taihu shown as a dashed line (Sun et al., 2009). 
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Scattering efficiency was plotted as a function of phytoplankton and 

cyanobacteria biomass.  As with Chl-a and POM, b̃bp decreased over the increasing 

gradient of phytoplankton biomass (Figure 4.8a), with a particularly high determination 

coefficient for the relationship between b̃bp and cyanobacteria biomass (R2=0.727; 

p<0.001; Figure 4.8b).  A similar relationship was found between b̃bp and the ratio of 

cyanobacteria to total phytoplankton biomass (Figure 4.8c).  However, these 

relationships between b̃bp and biomass were driven by a single point with high 

backscattering efficiency (Station 30). 
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Figure 4.8 Backscattering ratio (b̃bp) as a function of (a) total phytoplankton biomass, (b) cyanobacteria biomass and (c) ratio of cyanobacteria to 

total biomass.  Solid lines are best-fit power functions. 
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b*p(531.3) was significantly related with the ratio of PIM:TSM and POM:TSM 

(Figure 4.9a,b).  However, b*p(531.3) was negatively correlated with PIM:TSM, in 

contrast to the positive relationship reported in three turbid Chinese lakes (Shi et al., 

2014), likely driven by differences in particle size in Lake Balaton.  Significant positive 

linear relationships were also found between b*p(531.3) and Chl-a and PC (Figure 

4.9c,d).  b*bp(532) varied from 0.0104 – 0.0186 m2 g-1 (Table 3.3), and no significant 

relationships were found between b*bp(532) and any measured biogeochemical 

parameter.  For comparison, b*bp(532) in Lakes Taihu, Chaohu and Dianchi ranged 

from 0.0018-0.0206 m2 g-1, a similar range to that reported for Lake Balaton. 

 

 

Figure 4.9 The mass-specific scattering coefficient (b*p(531.3) ; m2 g-1) as a function of 

(a) PIM:TSM , (b) POM:TSM, (c) Chl-a and (d) PC.  Solid lines are best-fit linear 

regressions.  Grey dashed line in (a) represents the linear relationship from 3 turbid 

Chinese lakes in Shi et al. (2014). 
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4.3.5 Backscattering ratio, bulk refractive index and particle size distribution 

The estimated slope of the particulate size distribution (ξ) was linearly related to 

bb̃p.  Using two models, ξ was estimated as a function of γ, the hyperbolic slope of the 

cp(λ) spectrum.  When ξ was estimated as γ+3, this relationship was b̃bp = 0.0119 ξ – 

0.0200 (R2=0.261, p<0.01; Figure 4.10a), while estimation of ξ as in Boss et al. (2001) 

generated a linear relationship of b̃bp = 0.00877 ξ – 0.00874 (R2=0.246, p<0.01; Figure 

4.10b).  When plotted over bulk refractive index (n̅p) contours, the high b̃bp observed in 

Lake Balaton are indicative of high PIM:TSM ratios across all basins.  In this study, n̅p 

ranged from 1.15 to 1.24 (Figure 4.10), markedly higher values than that reported for 

Lake Taihu (1.02-1.17) (Sun et al., 2009).  Mean n̅p values were higher in Basins 3 and 

4 than Basins 1 and 2, corresponding to higher and lower PIM:TSM ratios, respectively 

(Table 4.4). 

 

 

Figure 4.10 Scatterplot of particulate backscattering ratio [b̃bp = bbp(532): bp(531.3)] 

against the PSD slope (ξ). Solid curves are overlaid to represent the refractive index 

contours (n̅p) as calculated by Twardowski et al. (2001), ranging from 1.02 to 1.20 by 

increments of 0.02. 
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Table 4.4 Mean ± standard deviation of PIM ratios and refractive index (n̅p) values, as 

calculated according to Twardowski et al. (2001). 

Basin n̅p PIM:TSM 

1 1.17 ± 0.0034 0.55 ± 0.11 

2 1.16 ± 0.011 0.55 ± 0.12 

3 1.18 ± 0.031 0.70 ± 0.15 

4 1.18 ± 0.0065 0.75 ± 0.079 

Lake Mean 1.17 ± 0.016 0.67 ± 0.14 

 

 

4.4 Discussion 

4.4.1 Contributions to particulate attenuation 

In this study, particulate scattering was found to account for a very high 

percentage of total light attenuation (up to 85-99%; Figure 4.2), with a mean bp(531.3) 

of 9.35 m-1.  Coastal studies have found much lower values of particulate scattering, 

with mean bp(532) values of 0.555 ± 0.272 m-1 in the English Channel (Martinez-

Vicente et al., 2010) and 0.959 ± 0.739 m-1 in the North Sea (Tilstone et al., 2012).  The 

level of scattering in Lake Balaton is more consistent with a mineral-dominated water 

body.  High mineral suspended sediment content was also reported in the Irish Sea 

(63% on average), and this study also found a broader range for bp(555) of 0.04-6.32 m-

1 (Bowers & Binding, 2006).  Therefore scattering contributes greatly to the underwater 

light field in Lake Balaton, and thus has a large impact on the remote sensing signal 

[i.e. Rrs(λ)] reflected from the lake surface. 

The particulate attenuation coefficient in Lake Balaton was strongly correlated 

with TSM, particularly PIM (Figure 4.3).  This contrasts with the strong relationship 

between cp(660) and Chl-a found in open ocean waters (cp(660)= 0.65[Chl-a]0.80) 

(Loisel & Morel, 1998).  Suspended matter in ocean waters is dominated by 

phytoplankton, and the direct relationship between Chl-a (phytoplankton biomass) and 

the IOPs of the water column is well-documented.  In Lake Balaton, however, there is a 

higher concentration of suspended minerals due to the presence of dolomite limestone 

bed sediments (Tyler et al., 2006), with lake mean PIM concentrations comprising over 

70% of the mean TSM.  In this study, nearly all of the variability in lake TSM 

concentrations was explained by PIM (96%).  Algae have a low backscattering 

efficiency, so the mineral particles in Lake Balaton contribute more strongly than 
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phytoplankton to cp(660), resulting in a better correlation with TSM than Chl-a.  The 

scatter caused by non-algal particles is not accounted for in the cp(660) relationship to 

Chl-a in ocean waters.   

4.4.2 Variability in the scattering and backscattering properties, and 

relationships with optically active particles 

The scattering properties in Lake Balaton generally indicate a gradient across 

the basins, from the eutrophic western portion to the oligotrophic eastern basins.  This 

was observed most distinctly with a decline in particulate scattering [bp(531.3)] and 

particulate attenuation [cp(660)] coefficients alongside diminishing concentrations of 

Chl-a, TSM, POM and phytoplankton and cyanobacteria biomass (Table 4.1; Table 

4.3).  Similar spatial variability of absorption properties was also recorded across the 

lake in Chapter 3 (Riddick et al., 2015).  However, only minimal differences in bbp(532) 

were measured across the basins.   

The inorganic particles in Lake Balaton are comprised mainly of dolomite 

limestone, which gives the lake its characteristic milky blue colour.  Minerogenic 

particles in general have a higher relative refractive index and therefore tend to be more 

efficient backscatterers than organic particles [see Table 6 in Babin et al. (2003a)].  

Specifically, the refractive index of dolomite is ~1.60 (nω=1.679-1.681; 

www.mindat.org), markedly higher than the organic particles (e.g. phytoplankton and 

detritus) that comprise the majority of marine total suspended matter.  Thus, in Lake 

Balaton it is unsurprising that a stronger relationship was found between bp(531.3) or 

bbp(532) and PIM as opposed to POM (Figure 4.6).  In fact, in Lake Taihu, it was found 

that due to low ratios of POM:PIM, the impact of organic matter absorption on the 

scattering coefficient was negligible (Sun et al., 2009).  In Lake Balaton, PIM typically 

comprises over 50% of the TSM, therefore it is likely that the effect of organic matter 

on the scattering coefficient is similarly low. 

The mass-specific backscattering coefficient in this study showed showed a 

coefficient of variation of ~14% across the lake (b*bp(532) = 0.0146 ± 0.00199 m2 g-1).  

This suggests that variability of b*bp in Lake Balaton is primarily driven by the 

consistently high percentage of PIM across the lake (>50%), therefore b*bp is 

correspondingly high across the lake.  However, the mass-specific scattering coefficient 

varied over a larger range than that observed in studies of coastal waters (b*p (531.3) = 

0.36-1.14 m2 g-1; see Table 4.5 for comparison with other studies).  This is likely due to 
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the broader range of Chl-a and TSM in Lake Balaton than coastal waters previously 

studied.  However, b*p(555) in Lake Taihu varied over a much wider range than Lake 

Balaton (0.14-1.57 m2 g-1), although this is likely accounted for by the markedly greater 

range of Chl-a and TSM in Lake Taihu (Chl-a = 40.59 ±72.11 mg m-3; TSM = 33.92 ± 

24.18 mg L-1) (Sun et al., 2009). 

4.4.3 Backscattering ratio, bulk refractive index and particle size distribution 

The particulate backscattering ratio (b̃bp) represents the fraction of light scattered 

in the backwards direction.  In Lake Balaton, b̃bp was significantly related to POM, Chl-

a and phytoplankton and cyanobacteria biomass, according to a declining power 

function.  This is in contrast to Lake Taihu, where only a weak negative relationship 

was found between b̃bp and Chl-a, and b̃bp was significantly negatively correlated to 

PIM (R2 = 0.757) (Sun et al., 2009).  In Lake Balaton, there were no significant 

differences in PIM concentrations across the four basins, while POM, Chl-a and 

phytoplankton and cyanobacteria biomass did vary significantly across the lake 

(p<0.01, see Table 3.2 in Chapter 3; Riddick et al., 2015).  Thus, the change in b̃bp 

across Lake Balaton is likely related to the decreasing gradient in phytoplankton 

biomass from west to east. The scattering efficiency may also change in relation to 

phytoplankton cell size, as smaller cells are more efficient scatterers (Vaillancourt et al., 

2004).  In Lake Balaton, the phytoplankton community in the western basins was 

mainly composed of large N-fixing cyanobacteria cells (100-200 µm), comprising up 

85% of the community at these stations (Riddick et al., 2015).  However, the 

mesotrophic eastern basins had a more diverse community, with greater abundance of 

smaller celled phytoplankton such as chlorophytes and diatoms.  Diatoms, for example, 

are more efficient scatterers than comparably sized cyanobacteria due to their siliceous 

cell walls. 

The backscattering ratio was plotted as a function of the estimated hyperbolic 

slope of the PSD, or Junge coefficient (ξ).  There was little difference between the 

estimates of ξ using the two methods of calculation from the hyperbolic slope of the cp 

spectrum (γ).  The Boss et al. (2004) correction is for more general cases of hyperbolic 

PSDs with finite limits, and is important for flat PSDs encountered in e.g. bottom 

boundary layers, which is likely not significant in Lake Balaton. In either case, b̃bp was 

positively linearly correlated with ξ (R2>0.25, p<0.01; Figure 4.10).  In contrast, no 

significant relationship between b̃bp and ξ has been reported in other studies on inland 
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(Sun et al., 2009), coastal or ocean waters (Twardowski et al., 2001, Boss et al., 2004).  

This indicates a strong contribution of particle size on the scattering efficiency in Lake 

Balaton, where the higher relative abundance of finer mineral particles contribute more 

to scattering properties in the eastern basins, while the presence of larger algal cells 

contribute more to scattering properties in the western basins. 

The bulk particle refractive index (n̅p) reproduces the bulk scattering properties 

of a particle assemblage, and is equivalent to the mean of the individual refraction 

indices weighted by particle size (Twardowski et al., 2001).  In seawater, typically n̅p 

values above 1.15 are waters dominated by inorganic sediments, while waters where 

n̅p≈1.04 are dominated by phytoplankton (Boss et al., 2004).  Relative to these 

guidelines for ocean waters, n̅p values in Lake Balaton were high, ranging from 1.15-

1.23.  This is markedly higher than the range of n̅p reported in Lake Taihu, where 

stations with high PIM:TSM ratios had a maximum n̅p of 1.17 and those with high 

POM:TSM ratios had a peak n̅p value of 1.11 (Sun et al., 2009).  This is likely because 

Lake Balaton has a greater proportion of “hard” inorganic suspended matter than Lake 

Taihu, due to resuspension of the dolomite limestone sediments.  This again indicates 

the significant contribution from the resuspended mineral particles to the scattering 

properties in Lake Balaton.  Interestingly, the highest n̅p in Lake Balaton was recorded 

at Station 3 in Basin 3, the basin sampled under particularly windy conditions with 

notable resuspension of sediments in the water column.  This indicates that sediment 

resuspension causes an increase in the mean refractive index of the particle assemblage, 

as a result of the higher proportion of suspended minerogenic particles. 
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Table 4.5 Table of bulk and mass-specific scattering and backscattering coefficients and the backscattering ratio in other recent studies. 

(S)IOP Min Max Mean St Dev Units Study Area Reference 

bp(532)  3.32 48.09 20.17 9.35 m-1 Lake Taihu Sun et al. (2009) 

bp(560) 0.115 3.84 0.959 0.739 m-1 North Sea Tilstone et al. (2012) 

bp(555) 0.04 6.32 1.22 - m-1 Irish Sea Bowers and Binding (2006) 

bp(532) 0.125 1.76 0.555 0.272 m-1 English Channel Martinez-Vicente et al. (2010) 

bp(532) - - 0.52-

5.08 

0.31-

2.69 

m-1 US coastal waters Snyder et al. (2008) 

bp(532) 2.23 44.21 19.55 10.61 m-1 Lake Taihu Lyu et al. (2015) 

bp(532) 12.04 55.63 28.66 12.13 m-1 Lake Chaohu Lyu et al. (2015) 

bp(532) 11.51 26.08 16.97 3.30 m-1 Lake Dianchi Lyu et al. (2015) 

b*p(555)  0.14 1.57 0.67 0.22 m2g-1 Lake Taihu Sun et al. (2009) 

b*p(532) 0.29 0.79 0.58 0.08 m2g-1 Lakes Taihu, Chaohu, 

Dianchi 

Shi et al. (2014) 

b*p(532) 0.12 1.07 0.58 0.15 m2g-1 Lake Taihu Lyu et al. (2015) 

b*p(532)  0.50 1.01 0.66 0.10 m2g-1 Lake Chaohu Lyu et al. (2015) 

b*p(532) 0.21 0.82 0.40 0.13 m2g-1 Lake Dianchi Lyu et al. (2015) 

b*p(555)  - - 0.51 1.9 m2g-1 European coastal waters Babin et al. (2003a) 

b*p(555) - - 0.97 1.9 m2g-1 Atlantic Babin et al. (2003a) 

b*p(560) 0.030 2.018 0.469 0.313 m2g-1 North Sea Tilstone et al. (2012) 

b*p(555) - - 0.22 0.02 m2g-1 Irish Sea Bowers and Binding (2006) 

b*p(532) 0.177 0.735 0.366 0.30 m2g-1 English Channel Martinez-Vicente et al. (2010) 

bbp(532) 0.09 0.25 0.22 0.03 m-1 Lake Taihu Sun et al. (2009) 

bbp(532) 0.0955 0.1892 0.1780 0.0113 m-1 Lake Taihu Lyu et al. (2015) 

bbp(532) 0.1804 0.1879 0.1834 0.0020 m-1 Lake Chaohu Lyu et al. (2015) 

bbp(532) 0.1814 0.1883 0.1839 0.0014 m-1 Lake Dianchi Lyu et al. (2015) 
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(S)IOP Min Max Mean St Dev Units Study Area Reference 

bbp(532) - - 0.008-

0.114 

0.008-

0.078 

m-1 US coastal waters Snyder et al. (2008) 

b*bp(532) 0.0018 0.0206 0.0069 0.0036 m2g-1 Lake Taihu Lyu et al. (2015) 

b*bp(532)  0.0022 0.0117 0.0051 0.0025 m2g-1 Lake Chaohu Lyu et al. (2015) 

b*bp(532) 0.0027 0.0075 0.0043 0.0011 m2g-1 Lake Dianchi Lyu et al. (2015) 

b̃bp(532) 0.005 0.027 0.013 0.005 - Lake Taihu Sun et al. (2009) 

b̃bp(532) 0.0042 0.0444 0.131 0.0092 - Lake Taihu Lyu et al. (2015) 

b̃bp(532) 0.0032 0.0152 0.0074 0.0033 - Lake Chaohu Lyu et al. (2015) 

b̃bp(532) 0.0072 0.0150 0.0109 0.0019 - Lake Dianchi Lyu et al. (2015) 

b̃bp 0.005 0.035 - - - New Jersey coastal waters Boss et al. (2004) 

b̃bp 0.005 0.050 - - - Irish Sea McKee and Cunningham 

(2006) 

b̃bp 0.0024 0.0417 - - - English Channel and 

North Sea 

Loisel et al. (2007) 

b̃bp 0.005 0.060 0.013 - - Gulf of California, Mid-

Atlantic Bight and Crater 

Lake 

Whitmire et al. (2007) 

b̃bp 0.005 0.060 0.008-

0.023 

0.002-

0.008 

- US coastal waters Snyder et al. (2008) 
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4.5 Conclusions 

This study reported a higher contribution of particulate scattering to total light 

attenuation in Lake Balaton (over 85%) as compared to previous studies in coastal 

waters, findings that are consistent with a mineral- as opposed to phytoplankton-

dominated water body.  Furthermore, cp(660) was strongly correlated to TSM, 

particularly PIM, in contrast to the well-documented relationship between cp(660) and 

Chl-a reported in ocean waters, highlighting the distinct scattering properties in Lake 

Balaton. 

The backscattering and scattering coefficients demonstrated variability across 

the four basins of Lake Balaton.  In particular, bp(531.3) and bbp(532) declined across a 

decreasing gradient of optically active substances (including TSM, Chl-a, total 

phytoplankton biomass).  However, little variation was observed in the mass-specific 

backscattering properties, indicating that b*bp(532) variability is primarily driven by the 

high concentrations of PIM across the lake.  b̃bp was significantly negatively related to 

the organic fraction of TSM, Chl-a and phytoplankton and cyanobacteria biomass, in 

contrast to previous studies where only a weak relationship was reported with Chl-a.  

This demonstrated a link between scattering efficiency and the decreasing gradient in 

phytoplankton biomass and changing phytoplankton community across Lake Balaton 

(west to east).  High bulk refractive indices also indicated a significant contribution 

from dolomite particles to the scattering properties in Lake Balaton, with the highest n̅p 

values recorded during a period with significant wind-driven resuspension of sediments. 

These findings quantify the scattering properties of Lake Balaton, and 

demonstrate the importance of fine mineral particles to the scattering and attenuation of 

light in inland waters.  This has implications for the backscattering coefficients 

estimated by bio-optical models and semi-analytical algorithms, which can be a major 

source of error in the retrieval of water quality parameters (e.g. Chl-a).  Given the 

prevalence of inorganic particles in inland water bodies such as Lake Balaton, these 

findings must be considered for the further improvement of Earth observation methods 

for inland waters. 
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5 Evaluation of algorithms for retrieval of cyanobacterial 

pigments in highly turbid, optically complex waters 

using MERIS data 
 

This chapter is based on the following manuscript in review: 

 

Riddick, C.A.L., Hunter, P.D., Domínguez Gómez, J.A, Martinez-Vicente, V., Présing, 

M., Horváth, H., Kovács, A.W., Vörös, L., Zsigmond, E. and Tyler, A.N. (in review) 

Evaluation of algorithms for retrieval of cyanobacterial pigments in highly turbid, 

optically complex waters using MERIS data.  

 

5.1 Introduction 

It has recently been estimated that there are as many as 117 million lakes on 

Earth covering approximately 3.7% of the planet’s non-glaciated land surface 

(Verpoorter et al., 2014).  While they comprise only a small fraction of the Earth’s land 

surface, inland water bodies play a fundamental role in many global and regional 

biogeochemical processes (Cole et al., 2007, Bastviken et al., 2011).  Lakes are also 

highly sensitive to environmental perturbation and change impacting their airsheds and 

watersheds.  For example, inputs of nutrients derived from anthropogenic sources to 

lakes have increased in recent years, with freshwater eutrophication recognised as one 

of the most universally widespread ecological, economic and social issues affecting the 

quality of freshwaters globally (Smith, 2003).   

More commonly known as blue-green algae, cyanobacteria are notorious bloom-

forming prokaryotes that often dominate the phytoplankton community in nutrient-

enriched freshwaters. Blooms of cyanobacteria can have profound and often highly 

adverse impacts on lake ecosystems (Paerl et al., 2011).  Some species of cyanobacteria 

can fix dissolved dinitrogen gas into organic nitrogen thus allowing them to outcompete 

other phytoplankton species and thrive in conditions with a low nitrogen to phosphorus 

ratio (Schindler, 1977, Smith, 1983, Downing, 2001, Ferber, 2004, Horváth et al., 

2013a).  Other adaptations such as the ability to store excess nutrients such as 

phosphorus (Antenucci et al., 2005), low light requirements (Reynolds et al., 2002), 

increased growth rates at higher temperatures (Paerl & Huisman, 2009) and buoyancy 

regulation mechanisms (Wagner & Adrian, 2009) further allow cyanobacteria to 

prosper in warmer, nutrient enriched waters.   
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Cyanobacteria can also pose significant risks to animal and human health, as 

many species produce cyanotoxins with neurotoxic, hepatotoxic, cytotoxic, genotoxic, 

endotoxin and tumor-promoting properties (Codd et al., 2005a).  It is therefore vital to 

that we develop methods for the accurate and rapid assessment and monitoring of 

cyanobacteria blooms in lakes.  Earth-observing satellites can provide data at a spatial 

and temporal resolution to permit rapid detection and monitoring of cyanobacteria 

populations in lakes on an operational basis.  To this end, this study aims to assess the 

capability of semi-analytical and inversion algorithms for retrieval of cyanobacterial 

pigments from inland waters using data from MERIS (the MEdium Resolution Imaging 

Spectrometer that was flown on the Envisat satellite) captured over the highly turbid, 

optically complex waters of Lake Balaton, Hungary.  The ultimate aim of this research 

is to rigorously validate algorithms that can be used for near real-time operational 

detection and monitoring of cyanobacterial blooms in lakes.  

5.1.1 Satellite remote sensing of cyanobacteria blooms 

Remote sensing is used operationally for monitoring phytoplankton in the global 

ocean, but remote sensing of inland waters has not progressed as rapidly due to the 

greater complexity in the atmospheric and in-water optical properties of lakes (Palmer 

et al., 2015b).  Chlorophyll-a (Chl-a) can be retrieved with algorithms from remote 

sensing measurements as an indicator of total phytoplankton biomass (Gons et al., 

2002, Kutser, 2004, Tyler et al., 2006).  However, Chl-a does not provide information 

about the phytoplankton community composition or reliably indicate the presence of 

potentially toxic cyanobacteria blooms.  More useful information can be acquired by 

also estimating the concentration of phycocyanin (PC), an indicator pigment for 

cyanobacteria (Simis et al., 2005, Kutser et al., 2006, Ruiz-Verdu et al., 2008, Kutser, 

2009, Hunter et al., 2010, Li et al., 2012, Duan et al., 2012, Song et al., 2013).  The 

unique optical properties of cyanobacteria mean that they can be distinguished from 

other phytoplankton using knowledge of the shape and magnitude of the remote-sensing 

reflectance [Rrs (0
+,λ)] signal observed during blooms (Hunter et al., 2008b). 

Chl-a and PC can be most simply estimated from Rrs(0
+,λ) using empirical 

algorithms incorporating [Rrs(0
+,λ)] band-ratios or band-differences targeting the main 

absorption features for these pigments at ~665 nm and ~620 nm, respectively.  The 

reflectance band-ratio Rrs(665)/Rrs(709) has been used effectively for retrieval of Chl-a 

absorption in eutrophic waters (Mittenzwey et al., 1992, Dekker, 1993, Gons et al., 
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2002, Gurlin et al., 2011), while three-band empirical methods (Dall'Olmo et al., 2003, 

Gitelson et al., 2008) and semi-analytical methods (Gons, 1999, Gons et al., 2002, Gons 

et al., 2005) have also been developed for inland waters. Inversion models have been 

more commonly developed for Chl-a retrieval in ocean and coastal waters, e.g. the 

Quasi-Analytical Algorithm (QAA) (Lee et al., 2002), Garver–Siegel–Maritorena 

Model  (GSM) (Maritorena et al., 2002) and the adaptive Linear Matrix Inversion 

Method (aLMI) (Brando et al., 2012), with some limited application of inversion 

methods to inland waters, e.g. Modular Image Processing system (MIP) (Heege & 

Fischer, 2004).  Other models specifically developed for Chl-a retrieval from MERIS 

have included the Maximum Peak Height algorithm (MPH) (Matthews et al., 2012, 

Matthews & Odermatt, 2015), Maximum Chlorophyll Index (MCI) (Gower et al., 2005) 

and Fluorescence Line Height (FLH) (Gower et al., 1999).  More recently, artificial 

neural network type approaches have been investigated and are available as plug-ins in 

the widely used BEAM software (Brockmann Consult), e.g. Case 2 Regional (Doerffer 

& Schiller, 2007), Free Universität Berlin (FUB/WeW) (Schroeder et al., 2007), 

Eutrophic Lake and Boreal Lake (Doerffer & Schiller, 2008) processors, although these 

were primarily developed for and validated in coastal waters. 

PC has been estimated from Rrs (0
+,λ) with a semi-empirical baseline algorithm 

(Dekker, 1993), reflectance band differences or band ratios (Schalles & Yacobi, 2000, 

Vincent et al., 2004, Mishra et al., 2009, Dash et al., 2011, Ogashawara et al., 2013), a 

nested band ratio or semi-empirical algorithm (Simis et al., 2005), spectral shape 

algorithm (Wynne et al., 2008), three-band empirical algorithms (Hunter et al., 2008b, 

Hunter et al., 2010, Song et al., 2013, Mishra & Mishra, 2014), non-linear least-square 

fitting to total absorption derived from the quasi-analytical algorithm (QAA) (Becker et 

al., 2009), a four-band semi-analytical algorithm (Le et al., 2011), a three-band and 

baseline algorithm (Li et al., 2012), extension of the QAA for Chl-a retrieval (Mishra et 

al., 2013), a PC Index algorithm (Qi et al., 2014) and an inherent optical property (IOP) 

inversion model (Li et al., 2015).   

However, the practical use of some of the algorithms developed for pigment 

retrieval, particularly for PC, is limited by the spectral coverage and resolution available 

with current satellite instruments (Ruiz-Verdu et al., 2008).  While the MERIS sensor is 

no longer operational, the data archive remains immensely useful for algorithm 

development and validation studies, particularly because the OLCI instrument on the 

European Space Agency’s recently launched Sentinel-3 satellite has a strong MERIS 
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heritage.  Importantly, MERIS had a spectral band centered at 620 nm near the PC 

absorption maximum that could be used for PC retrieval (OLCI will also have this 

band).   

The semi-empirical algorithm for PC estimation developed by Simis et al. 

(2005) (hereafter referred to as Simis05) and the related algorithm for Chl-a retrieval by 

Gons (1999) and adapted by Simis et al. (2005) (hereafter referred to as Gons05) were 

specifically tailored to the bands for MERIS.  More recently, other MERIS- and 

(potentially) OLCI-compatible algorithms for PC retrieval have been developed and 

published, including the adapted quasi-analytical (QAA) algorithm developed by 

Mishra et al. (2013) and the IOP Inversion Model of Inland Waters (IIMIW) by Li et al. 

(2015), hereafter referred to as Mishra13 and Li15, respectively.  These three 

algorithms were identified as the most relevant PC retrieval methods presently available 

for MERIS data, and were thus selected for this study.  

5.1.2 MERIS phycocyanin algorithms 

Gons05 and Simis05 algorithms have proved effective for retrievals of 

phytoplankton pigments.  The Gons05 algorithm is naturally considered here for Chl-a 

retrievals, as it was the foundation upon which the Simis05 PC algorithm evolved. 

Gons05 was calibrated in the shallow eutrophic freshwaters of Ijssel Lagoon, 

Netherlands (Chl-a = 4-185 mg m-3), with initial validation in well-mixed and optically 

deep lakes in The Netherlands, the Scheldt Estuary (The Netherlands and Belgium), 

Lake Taihu (China), the Hudson/Raritan Estuary (USA) and the North Sea (Belgian 

coast) (Gons, 1999, Gons et al., 2000, Gons et al., 2002).  As a progression of Gons05, 

Simis05 was initially calibrated in the well-mixed and eutrophic Lakes Loosdrecht 

(Chl-a = 48-98 mg m-3, PC = 22-80 mg m-3) and IJsselmeer (Chl-a = 23-92 mg m-3, PC 

= 0.8-65 mg m-3) in The Netherlands, and has subsequently obtained accurate PC 

retrievals in mostly eutrophic inland waters with moderate to high cyanobacterial 

biomass, including Spanish lakes and reservoirs (Simis et al., 2007), Indiana reservoirs 

(Randolph et al., 2008, Li et al., 2012, Song et al., 2013), Spanish and Dutch lakes and 

reservoirs (Ruiz-Verdu et al., 2008), shallow eutrophic UK lakes (Hunter et al., 2010) 

and eutrophic lakes in East China (Duan et al., 2012). The Simis05 algorithm in 

particular has undergone limited testing with independent datasets of inland waters, and 

there is a need for validation in waters with differing optical properties.  
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Inversion models work by first retrieving the inherent optical properties (IOPs) 

from an Rrs(λ) spectrum, including the estimation of the particulate backscattering 

coefficient [bbp(λ)] and the total absorption coefficient [at(λ)] or non-water absorption 

coefficient [at-w(λ)].  at(λ) or at-w(λ) is then partitioned into the individual components 

related to absorption by pigments (Chl-a and PC), non-algal particles and coloured 

dissolved organic matter (CDOM).  Chl-a and PC concentrations are subsequently 

estimated from the phytoplankton absorption [aph(λ)] and phycocyanin absorption 

[apc(λ)] coefficients, respectively, based on knowledge of the specific absorption 

coefficients for these pigments.  As an inversion model, the Mishra13 algorithm builds 

upon the QAA algorithm for Chl-a retrieval (Lee et al., 2002), which was developed for 

oceans and has been widely validated in ocean, coastal and more recently inland waters.  

The Mishra13 model was calibrated for PC retrieval in turbid and highly productive 

aquaculture ponds (Mishra et al., 2013). Similarly, the Li15 inversion model extends the 

IIMIW algorithm for Chl-a retrieval (Li et al., 2013), and was calibrated using three 

central Indiana reservoirs (Li et al., 2015).  However, to our knowledge at the time of 

writing the Mishra13 and Li15 algorithms have yet to be validated with independent 

datasets.   

It is vital to investigate whether remote sensing algorithms are transferable to 

other lakes with differing optical and biogeochemical properties, and further 

understanding is required of the uncertainties over the full range of optical water types 

(Mouw et al., 2015, Palmer et al., 2015b). Many validation studies have also used in 

situ measurements of subsurface reflectance, however this ignores the differences in 

spectral and radiometric resolutions of satellite sensors and the potentially confounding 

effects of the atmosphere on retrievals.  Moreover, to date there have simply been very 

few attempts to validate PC inversion algorithms using satellite data such as MERIS.  

To address this deficiency, this study aims to apply PC algorithms to a novel MERIS 

dataset on Lake Balaton (Hungary), a site with recurrent summer cyanobacteria blooms, 

a gradient of phytoplankton biomass and CDOM, and unique optical properties that are 

highly influenced by inorganic particulates.   

More specifically, this study aims to test PC retrievals with the Simis05, 

Mishra13 and Li15 algorithms over a large optically complex shallow lake.  PC 

retrievals within 1 day of in situ measurements are compared and the best-performing 

algorithm is investigated in greater detail over a range of matchup windows.  Pigment 

retrievals from the best-performing algorithm are validated with a time series of 
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pigment and cell count data from 2007-2011.  Finally, the sources of error are examined 

by validating retrievals of aph(λ) and bb(λ) with a dataset of IOP measurements from 

August 2010.   

5.2 Methods 

5.2.1 Study site 

Lake Balaton (46.8°N, 17.7°E; Figure 5.1) is the largest shallow lake in Europe 

by surface area (592 km2), with a mean depth of just 3.2 m.  It has a large catchment, 

dominated by the Zala River, and a history of eutrophication and summer cyanobacteria 

blooms.  The lake itself typically has a gradient in phytoplankton biomass and Chl-a, 

with the highest Chl-a concentrations occurring in the western Keszthely basin (~3-45 

mg m-3), and lower phytoplankton biomass and Chl-a in the eastern Siófok basin (~3-20 

mg m-3).  Cyanobacteria biomass tends to peak in late summer (anywhere from June-

October), with PC values up to ~60-100 mg m-3 in the westernmost basins (Horváth et 

al., 2013a).  In recent years, summer cyanobacteria populations in Lake Balaton are 

dominated by nitrogen-fixing species, including Cylindrospermopsis raciborskii 

[(Wolosz.) Seenayya et Subba Raju], Aphanizomenon flos-aquae [(L.) Ralfs], 

Aphanizomenon issatschenkoi [(Ussatzew.) Proschkina-Lawrenko], Anabaena 

aphanizomenoides and Anabaena spiroides (KLeb.). During a bloom, cyanobacteria 

often contribute to >70% of the total phytoplankton biomass (Horváth et al., 2013a).  

Kis-Balaton is a reservoir system on the Zala River to the west of the lake, consisting of 

an upper and lower reservoir, with generally very high phytoplankton biomass and Chl-

a concentrations (typically ~50-250 mg m-3).   

In spite of the often high concentrations of phytoplankton that occur in Lake 

Balaton during the summer, light attenuation is largely determined by the frequent 

resuspension of mineral particles from the lake bottom. Total suspended matter in the 

lake is mostly of inorganic origin, with concentrations are typically in the order of 18-

28 mg L-1 (2010 annual mean), but can exceed 100 mg L-1 during windy periods.  These 

high loads of mineral particles contribute significantly to light absorption and 

scattering; absorption by non-algal particles [aNAP(440)] is typically 0.2 m-1 and 

particulate backscattering [bbp(532)] varies between 0.04-0.2 m-1 (Chapter 3 and 

Chapter 4; Riddick et al., 2015)(Riddick et al., in review)(Riddick et al., in 

review)(Riddick et al., in review)(Riddick et al., in review).  These fine particles have a 
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high backscattering efficiency (bbp:bp up to 0.03) and thus contribute strongly to the 

water-leaving radiative signal and impart the lake with its characteristic turquoise 

colour. 

Lake Balaton also demonstrates highly localised concentrations of colour 

dissolved organic matter (CDOM), with CDOM absorption coefficients [aCDOM(440)] 

typically ranging from 0.09–1.4 m-1 with the highest CDOM absorption observed at the 

mouth of the Zala River [aCDOM(440) up to 9.5 m-1] where water rich in dissolved 

organic carbon produced in Kis-Balaton is discharged into the lake.   However, CDOM 

is rapidly diluted and bleached through photodegradation as water passes through the 

system. 

 



 

154 

 

 

 

Figure 5.1 Map of Lake Balaton, indicating the five regularly monitored stations (BLI) (Keszthely, Szigliget, Balatonszemes, Siófok and 

Tihany) and the 35 locations from the August 2010 field campaign. 
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5.2.2 Routine monitoring programmes 

Lake Balaton is regularly monitored by Balaton Limnological Institute (BLI, 

MTA CER) at a bi-weekly to monthly frequency at up to 5 stations on the lake, thus it 

has an extensive archive of data for satellite validation studies.  In this study, we 

compiled the routine Chl-a concentration and phytoplankton count data from the years 

2007-2011 and more recent measurements of the PC concentrations from the years 

2010-2011.  In addition, further Chl-a data from 2007-2011 were obtained from the 

Central Transdanubian (Regional) Inspectorate for Environmental Protection, Nature 

Conservation and Water Management [Közép-dunántúli Környezetvédelmi, 

Természetvédelmi és Vízügyi Felügyelőség (KDT KTVF)].  However, for consistency 

with previous publications, the abbreviation KdKVI has been used throughout.  The 

water sampling and Chl-a extraction methods of both BLI and KdKVI are detailed in 

Palmer et al. (2015c), and the two data sets show good agreement when the Chl-a 

concentration was measured on the same day and at the same station.  

5.2.2.1 Chlorophyll-a 

Water samples were collected as depth integrated over the water column at each 

station.  A 5-litre sample was stored in the dark on ice before Chl-a extraction, within 

24 hours.  Samples were filtered under low vacuum pressure through GF/C (Whatman) 

filter papers and subsequently extracted in 90% hot methanol.  Depending on the 

sample turbidity, between 500 and 1,500 mL was filtered.  Sample absorbance was 

measured spectrophotometrically (Shimadzu UV-1601), as in Iwamura et al. (1970).  

The concentration (mg m-3) of Chl-a was then determined by the following equation, 

where 𝐴𝑥 is the measured absorbance at wavelength x (nm):  

[𝐶ℎ𝑙 − 𝑎] = 17.12(𝐴666 − 𝐴750) − 8.68(𝐴653 − 𝐴750)  (5.1) 

KdKVI routine monitoring consists of water samples collected at the surface, 

followed by filtration under low vacuum pressure through GF/C (Whatman) filter 

papers.  Chl-a was extracted in ethanol and measured spectrophotometrically, with 

concentration calculated as in Equation 5.1. 

5.2.2.2 Phycocyanin 

The samples collected for BLI routine monitoring were depth integrated over 

the first 2-3.5 metres of the water column, depending on the maximum sample depth at 

each station.  A 5-litre sample was stored in the dark on ice before PC extraction, within 
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24 hours.  Samples were filtered under low vacuum pressure through GF/C (Whatman) 

filter papers and subsequently extracted in a solution of 15 mL 0.05M phosphate buffer 

(pH=6.8).  Depending on the sample turbidity, between 70 and 450 mL of water was 

filtered.  Filter papers in the buffer solution underwent one freeze-thaw cycle as in 

Sarada et al. (1999), and phycocyanin was extracted by sonication over ice for 15 

seconds (Ultrasonic Homogeniizer 4710 Series, Cole-Palmer Instrument Co., USA), as 

detailed in Horváth et al. (2013a) (Method E).  Finally, extracts were filtered (GF/C 

Whatman) and the absorption measured on a spectrophotometer (Shimadzu UV-1601, 

Shimadzu Co., Japan).  Phycocyanin concentrations were calculated using the following 

equation (Siegelman & Kycia, 1978), where 𝐴𝑥  is the measured absorbance at 

wavelength x (nm):   

[𝑃𝐶] = (𝐴615 − 0.474 × 𝐴652)/5.34   (5.2) 

5.2.2.3 Phytoplankton biomass 

Depth integrated water samples were collected in a 50 mL polyethylene 

container and preserved in Lugol’s solution immediately after collection for analysis 

within 6 months. At least 25 cells (or filaments) of each species were measured to 

determine biomass and at least 400 were counted using an inverted plankton 

microscope (Utermöhl, 1958).  The wet weight of each species was then calculated 

from cell volumes (Németh & Vörös, 1986). 

5.2.3 MERIS validation campaign 

In addition to the routine monitoring programmes, a separate sampling 

campaign for MERIS validation was conducted from 18-26th August 2010 to coincide 

with an Envisat MERIS overpass on 22nd August 2010.  IOP measurements and water 

samples were collected at 35 stations during this campaign. Large volume water 

samples (5 L) were taken from the surface (~0.5 m) using an acid-rinsed wide-necked 

polyethylene carboy for subsequent analysis of pigments (Chl-a and PC), 

phytoplankton absorption and phytoplankton counts.  Samples were stored on ice in the 

dark prior to analysis for pigments.   

5.2.3.1 Chlorophyll-a 

For the August 2010 sampling campaign, the following Chl-a extraction method 

was applied.  A subsample of a 5 L surface water (0.5 m) sample was filtered on the 

boat immediately after sample collection under low vacuum pressure through GF/F 
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(Whatman) filter papers.  Depending on the water clarity at the location (using Secchi 

depth), between 20 and 70 mL of sample water was filtered.  Filter papers were then 

flash frozen in liquid nitrogen for <12 hours and placed in a -80°C freezer until analysis 

(no more than 6 months).  Frozen GF/F filter papers were thawed in the dark from -

80°C and chlorophyll-a was measured spectrophotometrically (Shimadzu UV-1601), as 

for the BLI routine monitoring programme above. 

5.2.3.2 Phycocyanin 

For the August 2010 PC data, subsamples of a 5 L surface water (~0.5 m) 

sample were filtered on the boat immediately after sample collection under low vacuum 

pressure through GF/F (Whatman) filter papers.  Depending on the water clarity at the 

location (using Secchi depth), between 20 and 70 mL of sample water was filtered.  

Filter papers were then flash frozen in liquid nitrogen for <12 hours and placed in a -

80°C freezer until analysis (no more than 6 months).   Frozen GF/F filter papers (2 

replicates) were thawed from -80°C and the pigment concentration was obtained 

according to the method described above for BLI routine monitoring. 

5.2.3.3 Phytoplankton biomass 

A subsample of a 5 L surface water sample was collected in a 50 mL 

polyethylene container and preserved in Lugol’s solution immediately after collection 

for analysis within 6 months. Phytoplankton biomass was subsequently measured 

following the counting method from the BLI routine monitoring programme, detailed 

above.  

5.2.3.4 Measurement of absorption and backscattering coefficients 

Particulate absorption measurements were made during the August 2010 

campaign only.  A subsample of a 5 L water sample was filtered on the boat 

immediately after sample collection under low vacuum pressure.  Depending on the 

location, 20-70 mL of water was passed through GF/F (Whatman) filter papers and the 

filters were immediately flash frozen in liquid nitrogen for <12 hours prior to storage at 

-80°C.  All samples were analyzed within 6 months of collection.  Frozen GF/F filters 

were defrosted in the lab from -80°C in the dark.  The absorbance of the material on the 

filter was measured from 350-750 nm using a dual beam spectrophotometer retro-fitted 

with Spectralon coated integrating spheres, according to the ‘transmittance-reflectance’ 

method of Tassan and Ferrari (1998).  Absorption of the filter was measured to obtain 
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total absorption (aT), absorption by non-algal particles (aNAP) and absorption by 

phytoplankton (aph) as in Chapter 3 and Riddick et al. (2015). 

Particle backscattering coefficients [bbp(λ)] were derived from measurements 

collected with an ECO-BB3 backscatter meter (WET Labs). The calibration was 

performed by the manufacturer immediately prior to sampling, and it was assumed that 

there was no drift in the calibration coefficients and/or dark counts. The ECO-BB3 

measures the total volume scattering function [βt (λ,124)] from a centroid angle of 

scattering (124) at 3 wavelengths (λ= 470, 532 and 650 nm). The transformation of the 

raw counts into bbp(λ) was done following the manufacturer’s user guide (WET Labs, 

2010) and the methods as in  Slade and Boss (2015).  Mean bbp(λ) values were 

calculated over 1-5 min measurement periods.   Detail on this method is provided in 

Chapter 4, Section 4.2.10.  

5.2.3.5 In situ radiometry 

In situ radiometry was collected with a HyperSAS (Hyperspectral Surface 

Acquisition System; Satlantic) for validation of the atmospheric correction of MERIS 

data.  Three radiometers were positioned at a height of 3.5 m from a pole at the bow of 

the boat.  The boat was positioned on station to point radiance sensors at a relative 

azimuth angle of 135° from the sun.  The three radiometers measured downwelling 

irradiance [Es(λ)], surface radiance of the water [Lt(λ)] and sky radiance [Lsky(λ)].  The 

latter two parameters are used to calculate the water-leaving radiance [Lw(λ)] after 

correction for air-sea interface reflection using the following equation (Mueller et al., 

2000): 

Lw(λ) = Lt(λ)- ρsky Lsky(λ)    (5.3) 

Where ρsky
 , the air-sea interface reflection coefficient, is estimated for sunny conditions 

as a function of wind speed (W) in m s-1: 

ρsky = 0.0256 + 0.00039*W+0.000034*W2   (5.4) 

The HyperSAS raw data was processed to level 3a using Satlantic ProSoft software 

(v.7.7.10).  After processing, all spectra underwent quality control for any outliers due 

to variable cloudiness or sun glint due to sea state.  Remote sensing reflectance, Rrs(λ) 

(sr-1), was then calculated with the following equation: 

Rrs(λ) = Lw(λ)/ Es(λ)    (5.5) 
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5.2.4 MERIS data processing 

MERIS full resolution full swath (FRS) 300 m Level-1b data for Lake Balaton 

were obtained for a period of 5 years (2007-2011) from the European Space Agency’s 

Merci system (https://earth.esa.int/web/guest/data-access/online-archives).  The 

geolocation of the data was improved using the AMORGOS (Accurate MERIS Ortho-

Rectified Geo-location Operational Software) v.4.0 processor.  Images with high cloud 

cover were discarded, leaving 34 images with matching Chl-a data, 21 images with 

matching cell biomass data and 5 images with matching PC data (within 7 days of 

overpass date).  The MERIS data were atmospherically corrected using the Self-

Contained Atmospheric Parameters Estimation for MERIS data (SCAPE-M) automatic 

atmospheric correction processor developed by Guanter et al. (2010), following the 

SCAPE-M_B2 implementation as in Domínguez Gómez et al. (2011).  SCAPE-M_B2 

is an improved version of SCAPE-M, which corrects MERIS band 2 with an 

interpolation between the values of band 1 and band 3 (Domínguez Gómez et al., 2011).  

It is noted that this is the first implementation of the SCAPE-M_B2 correction to 

MERIS FRS data, as opposed to FR (full resolution) data, and the intention is that 

SCAPE-M_B2 will be adapted to OLCI data in the future.  SCAPE-M and SCAPE-

M_B2 have been shown to compute accurate water-leaving reflectances for lakes, 

particularly for highly turbid waters (Yang et al., 2011a, Yang et al., 2011b, Agha et al., 

2012, Jaelani et al., 2013, Medina-Cobo et al., 2014).  

Following atmospheric correction with SCAPE-M_B2, water-leaving 

reflectance [ρw(λ)] was extracted from the MERIS images using BEAM VISAT v.4.11 

(Brockmann Consult, v.4.11).  ρw(λ) was converted to remote sensing reflectance 

[Rrs(λ)] by the following equation: 

𝑅𝑟𝑠(𝜆) = 𝜌𝑤(𝜆)/𝜋   (5.6) 

Each algorithm was then applied to the extracted remote sensing reflectances, and the 

best performing algorithm was implemented using the Graph Processing Framework in 

BEAM to produce mapped time-series products.  

5.2.4.1 Validation of atmospheric correction 

The SCAPE-M_B2 atmospheric correction was validated using the MERIS data 

from 22 August 2010 and the August 2010 MERIS validation campaign in situ data.  

Same-day (± 1 day) matchups with in situ Rrs were considered (n=7), as this was 

considered a suitable approach for a validation over a dynamic lake system.  However, 

https://earth.esa.int/web/guest/data-access/online-archives
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all available matchups of MERIS SCAPE-M_B2 and in situ Rrs from the August 2010 

campaign are presented here for completeness (n=30).  Rrs was compared at all 15 

MERIS bands with in situ Rrs collected by HyperSAS radiometry.  HyperSAS Rrs data 

was simulated to the 12 MERIS bands using the spectral response functions, assuming a 

Gaussian distribution around the MERIS band center.  At each station with coincident 

data, Rrs for each MERIS band was also plotted over the range of in situ Rrs measured 

by the HyperSAS at the respective station (n=30). 

5.2.4.2 Validation datasets and strategy 

In August 2010, 35 PC and Chl-a measurements were collected specifically for 

matchup with MERIS overpasses.  The mean PC or Chl-a retrieval for a 3x3 pixel 

kernel was extracted for matchup with in situ data.  To reduce the effects of spatial 

variability on the validation, any retrieved pigments with a standard deviation >2 were 

removed, similar to the methods for spatial homogeneity employed in Goyens et al. 

(2013) and Jamet et al. (2011).  Matchups were generally discarded due to cloud cover 

or where there was interference from land pixels (adjacency effect), leaving 29 Chl-a 

and 28 PC matchups.  Following the same approach, an additional 52 Chl-a matchups 

were available from BLI routine monitoring campaigns from 2008-2011 at five lake 

sites (Keszthely, Szigliget, Szemes, Tihany and Siófok), as well as 113 matchups from 

KdKVI monitoring from 2007-2011 (Keszthely, Balatonszemes, Szigliget and Siófok), 

yielding a total of 194 in situ Chl-a concentrations were matched with MERIS 

retrievals.  An additional 12 PC matchups were also available from BLI routine 

monitoring in 2011 (Keszthely, Szigliget, Szemes and Siófok), for a total of 40 in situ 

PC concentrations available for matchup with MERIS retrieved PC (±7 days).  29 

matchups were available with aph(λ) and bb(λ) data from the August 2010 campaign (±7 

days), following the same approach as for pigment matchups.  Algorithm retrievals 

were validated with field data for time constraints of ± 1, 3 and 7 days of a MERIS 

overpass, with duplicate matchups discarded (i.e. where more than one sampling date 

corresponded to the same MERIS image for a particular station).  

The performance of Simis05, Mishra13 and Li15 algorithms were compared for 

PC retrievals from MERIS data, using matchups within 1 day of in situ PC 

measurements from 2010 and 2011 (n=22).  The Gons05 and Simis05 algorithms were 

implemented for Chl-a and PC retrieval, respectively, as in Simis et al. (2005), using 

a*Chl(665)=0.0139 m2 mg-1 [Uncorrected Chl-a; (Gons et al., 2005)] and 
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a*pc(620)=0.007 m2 mg-1 (Simis et al., 2005).  A constant spectral slope of aCDOM(λ) 

(SCDOM = 0.020 nm-1) was applied in the Li15 model [See Table 3, Step 9 in Li et al. 

(2015) and Chapter 8 - Appendix], as this was the mean measured value for Lake 

Balaton in 2010.  Additionally, the Mishra13 algorithm was applied using two different 

values of a*pc(620) from Simis et al. (2005) and Mishra et al. (2013) (0.007 and 0.0048 

m2 mg-1, respectively).  

The strength of the relationship between the algorithm estimated values and 

measured values was evaluated using least-squares regression analysis.  The agreement 

(goodness of fit) is reported by the coefficient of determination (R2) and associated p 

value.  Algorithm accuracy was quantified with measures of error, including the Root 

Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE) and Bias. 

RMSE and bias were also calculated in log space (RMSElog and Biaslog, respectively). 

5.3 Results 

5.3.1 Pigment and cell counts 

Inter-annual variations in cell counts are shown from 2007-2011 for total 

phytoplankton and cyanobacteria biomass, alongside Chl-a and PC pigments (Figure 

5.2).  Lake Balaton generally has a spring (January-March) diatom bloom, which is 

indicated by the smaller peaks in phytoplankton biomass and Chl-a.  This is followed 

by a late summer (August-October) bloom in cyanobacteria, as indicated by the larger 

peaks in phytoplankton biomass and Chl-a.  Keszthely is the westernmost basin, which 

has higher Chl-a concentrations than Tihany in the east.  Both Keszthely and Tihany 

show the same timing of peaks in phytoplankton abundance, although the late summer 

cyanobacteria bloom is more prolific in Keszthely, with cyanobacteria biomass 

reaching nearly an order of magnitude higher than that in Tihany. 
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Figure 5.2. Inter-annual variations in (a,b) chlorophyll-a, (c,d) phytoplankton biomass 

and (e,f) cyanobacteria biomass at Keszthely and Tihany stations (BLI data).  

 

Previous research over the same time period has shown that phycocyanin 

concentrations have a strong linear relationship to cyanobacteria biomass in field 

samples from Lake Balaton (R2=0.94, CV=1.7%) (Horváth et al., 2013a).  This is 

important because it not only demonstrates that satellite retrieved PC concentrations can 

be used as an indicator of cyanobacterial biomass, but it also allows the use of 

cyanobacterial cell counts for partial-validation of the PC algorithms.  Lake Balaton, 

like many other lakes, has longer and more complete data on phytoplankton cell counts 

than on PC measurements.  However, it is important to note that this strong relationship 

between PC and cyanobacteria biomass may not be found in other lakes. 

5.3.2 Validation of atmospheric correction 

MERIS remote sensing reflectance spectra atmospherically corrected with 

SCAPE-M_B2 were compared to in situ measurements made with a HyperSAS which 
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were convolved to the MERIS bands using spectral response functions.  Scatterplots of 

data from the same day as the MERIS overpass (22 August 2010) showed good 

agreement at all 12 bands compared (RMSElog<0.205, Biaslog<0.197, MAPE<58.7%, 

n=7; Figure 5.3).  However, agreement was poorest over the NIR wavelengths (Bands 

10-12) and blue portion of the spectrum (Band 1).  

MERIS SCAPE-M_B2 Rrs(λ) spectra are presented alongside in situ Rrs(λ) for 

all stations in Figure 5.4 and Figure 5.5.  For same-day matchups (stations 16-22), 

MERIS bands generally fell reasonably within the range of in situ Rrs(λ).  However, for 

matchups out with the ±1 day matchup window, Rrs(λ) was frequently under- (stations 

1-15) or over-estimated (e.g. stations 29-30).  Note that the NIR range for stations 10, 

14 and 24 shows high standard deviation for MERIS Rrs(λ) because these 3x3 pixel 

windows were impacted by the adjacency effect (i.e. were influenced by land pixels). 
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Figure 5.3. Validation of MERIS data atmospherically corrected with SCAPE-M_B2 

with in situ reflectance data, including scatter plots of Rrs(λ) at each band.  Scatterplots 

include all stations with in situ data (n=30), with same day matchups shown in red 

(n=7).  Statistics correspond to the same day matchups only. 
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Figure 5.4. Validation MERIS data atmospherically corrected with SCAPE-M_B2 with 

in situ HyperSAS reflectance data for stations 1-15.  MERIS data is the mean of a 3x3 

pixel window with error bars indicating standard deviation.  HyperSAS radiometry is 

shown as a range of minimum to maximum recorded at each station. 
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Figure 5.5. Validation MERIS data atmospherically corrected with SCAPE-M_B2 with 

in situ HyperSAS reflectance data for stations 16-30.  MERIS data is the mean of a 3x3 

pixel window with error bars indicating standard deviation.  HyperSAS radiometry is 

shown as a range of minimum to maximum recorded at each station.  Same-day 

matchups include stations 16-22 only, shown in red (n=7).  Note the different ranges for 

y-axis values. 

 

5.3.3 Algorithm performance 

The performance results for each algorithm tested (Simis05, Mishra13 and Li15) 

are provided in Figure 5.6, with associated details and measures of error in Table 5.1.  

The Simis05 algorithm retrieved PC concentrations with an RMSE of 11.8 mg m-3, with 

a near 1:1 relationship with measured PC concentrations (MERIS Retrieved PC = 

0.722*Measured PC + 8.95; Figure 5.6a).  The Mishra13 algorithm had the poorest 
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relationship between retrieved and measured PC, with an R2 value of 0.00836 using 

a*pc(620) values from both Simis et al. (2005) and Mishra et al. (2013) (RMSE= 22.3 

and 22.9 mg m-3, respectively).  While PC retrievals with Li15 had a similar coefficient 

of determination (R2=0.716) as Simis05 retrievals, agreement was poor (MAPE=205%) 

with negative PC retrievals for in situ concentrations <10 mg m-3.  Additionally, both 

Mishra13 and Li15 PC retrievals deteriorated markedly at high PC concentrations.  In 

particular, a marked decrease in the RMSE was observed for Li15 retrievals for in situ 

PC<50 mg m-3 (RMSE = 20.2 mg m-3).  The Simis05 semi-analytical algorithm 

retrieved PC with higher accuracy and better agreement with in situ concentrations than 

either of the inversion models, therefore the performance of the Simis05 algorithm was 

investigated in further detail for the remainder of this study.   
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Figure 5.6 Phycocyanin retrieval performance for a)Simis05, b)Mishra13 and c)Li15 algorithms using MERIS data from 2010-2011 (n=22).  

Matchups are within 1 day of in situ phycocyanin measurements.   Mishra13 was applied using a*pc(620)=0.007 m2 mg-1 from Simis et al. 

(2005) and a*pc(620)=0.0048 m2 mg-1 from Mishra et al. (2013). 
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Table 5.1 PC retrieval statistics for Simis05, Mishra13 and Li15 algorithms using MERIS data from 2010-2011 (n=22 unless specified 

otherwise).  Matchups are within 1 day of in situ phycocyanin measurements. 

Model B m R2 p RMSE 

mg m-3 

RMSElog Bias Biaslog MAPE 

% 

Simis05 8.95 0.722 0.710 <0.0001 11.8 0.272 3.92 0.147 77.0 

Mishra13 a 

 

11.8 0.0358 0.00836 0.686 22.3 0.246 -5.62 0.0664 61.2 

Mishra13 b 17.3 0.0522 0.00836 0.686 22.9 0.330 0.0987 0.230 104 

Li15 -26.2 2.55 0.716 <0.0001 46.3 0.503 1.84 0.0349 205 

Li15 c -26.0 2.82 0.697 <0.0001 20.2 0.561 -6.90 0.00889 222 
a a*pc(620) = 0.007 m2 mg-1 as in Simis et al. (2005) 
b a*pc(620) = 0.0048 m2 mg-1 as in Mishra et al. (2013) 
c for in situ PC<50 mg m-3 only (n=19). 
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5.3.4 Chlorophyll-a retrieval 

As the performance of the Simis05 algorithm is partly based on that of its 

predecessor, the Gons05 algorithm was initially validated for chlorophyll-a retrieval. 

Chl-a was retrieved from MERIS after estimating the absorption coefficient of 

phytoplankton at 665 nm.  At ±1, 3 and 7 day matchup intervals, the Gons05 algorithm 

retrieved Chl-a with high accuracy using all three datasets for validation (R2>0.75 and 

RMSE<12 mg m-3; Figure 5.7).  However, there was increased scatter in the 

relationship at Chl-a concentrations <10 mg m-3 (±7 days: RMSElog=0.476, 

MAPE=208%, n=98) compared to those stations with higher Chl-a concentrations, >10 

mg m-3 (±7 days: RMSElog=0.384, MAPE=142%, n=159).  When Chl-a retrievals were 

restricted to those stations also used for PC validation, there was better agreement 

between MERIS retrieved and in situ Chl-a (R2=0.866-910, p<0.0001, RMSE=8.47-

10.4 mg m-3; Figure 5.8).  Furthermore, retrievals validated with surface samples from 

August 2010 only (Table 5.3) had higher R2 values (R2=0.906-0.943, p<0.0001) and 

were closer to the 1:1 line (MAPE=50.0-58.9%) than those validated with integrated 

samples routinely taken by BLI (R2=0.723-0.810, p<0.0001, MAPE=107-112%; Table 

5.4) or surface samples from the KdKVI dataset (R2=0.784-0.786, p<0.0001, 

MAPE=165-169%; Table 5.5). 

Gons05 Chl-a retrievals were also partially-validated with phytoplankton counts 

(Figure 5.9).  There was good agreement between the Chl-a values retrieved from 

MERIS and total phytoplankton biomass, with little difference in the R2 values for ±1 

(R2=0.667, p<0.001), 3 (R2=0.698, p<0.001) and 7 (R2=0.636, p<0.001) day matchups 

(Table 5.2).  There was no noticeable difference for validation using surface (August 

2010) versus integrated (BLI) samples (Table 5.3 and Table 5.4).   
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Figure 5.7 Retrievals of Chl-a from MERIS at matchups with measured Chl-a within 

(a) ±1 day, (b) ±3 days and (c) ±7 days.  Retrievals shown are mean pixel values within 

2 standard deviations.  Linear regression results shown are for all data.  Dashed line is 

1:1. 
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Figure 5.8 Retrievals of Chl-a from MERIS at matchups with measured Chl-a within 

(a) ±1 day, (b) ±3 days and (c) ±7 days, using only those matchups used for Simis05 

retrievals of PC.  Retrievals shown are mean pixel values within 2 standard deviations.  

Linear regression results shown are for all data.  Dashed line is 1:1. 
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Figure 5.9 Retrievals of Chl-a from MERIS at matchups with measured phytoplankton 

biomass from (a) ±1 day, (b) ±3 days and (c) ±7 days. Retrievals shown are mean pixel 

values within 2 standard deviations.  Solid line is a linear regression for all data. 
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5.3.5 Phycocyanin retrieval 

Phycocyanin concentrations were retrieved from MERIS data after estimation of 

apc(620), and were validated with measured concentrations from the August 2010 

campaign and BLI routine monitoring data.  The PC concentrations retrieved using 

Simis05 showed good agreement with the in situ data for matchups ±3 days of the 

overpass (R2=0.663-0.710, p<0.0001, RMSE <11.8 mg m-3) (Figure 5.10 and Table 

5.2).  However, the agreement between the PC concentrations retrieved from MERIS 

and those measured in situ deteriorated markedly from the ±1 to ±7 day matchup 

windows, with R2 values decreasing from 0.710 (p<0.0001) to 0.433 (p<0.0001), and 

increasing RMSE (11.8 mg m-3 to 18.3 mg m-3).  At all three time intervals, retrievals 

validated with data taken from the surface samples during August 2010 (Table 5.3) 

showed higher R2 values for matchups ±7 days (R2=0.718, p<0.0001) than those 

validated with the integrated samples routinely taken by BLI (R2=0.580, p<0.01; Table 

5.4).  Additionally, PC retrievals at all three time windows showed better agreement 

with the August 2010 surface samples (MAPE=59.3-71.6%) than the BLI integrated 

samples (MAPE=71.7-86.4%).  As with Chl-a retrievals, the Simis05 algorithm did not 

accurately retrieve PC values below approximately 5 mg m-3, and this was most 

noticeable with the greater matchup timeframe (e.g. at ±7 days: MAPE=126% for PC<5 

mg m-3, MAPE=52% for PC>5 mg m-3). 
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Figure 5.10 Retrievals of PC from MERIS at matchups with measured PC from (a) ±1 

day, (b) ±3 days and (c) ±7 days.  Retrievals shown are mean pixel values within 2 

standard deviations.  Linear regression results shown are for all data.  Dashed line is 

1:1.   
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Retrievals of PC from the Simis05 algorithm were also compared with measured 

cyanobacteria biomass (Figure 5.11).  There was significant scatter around the linear 

regression, however PC estimates were still found to be significantly related to 

cyanobacteria counts with R2 values from 0.462 (p<0.001) to 0.525 (p<0.001) 

depending on the temporal window used for the matchups.  There was no evidence of 

degradation in the relationship between PC retrievals and cyanobacteria biomass, with 

correlation coefficients actually improving from ±1 to 7 days.  Although, this is perhaps 

simply due to the greater number of matchups at ±3 and ±7 days and the increased data 

range as compared to ±1 day.  It should also be noted that determination coefficients 

improved very slightly when a linear regression was performed using PC estimates as a 

function of combined cyanobacteria and cryptophyte biomass (R2 = 0.489-0.554, 

p<0.0001). The relationship between retrieved Chl-a and phytoplankton biomass was 

stronger than the relationship between retrieved PC and cyanobacterial biomass at all 

three matchup intervals (see Table 5.2).   
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Figure 5.11 Retrievals of PC from MERIS at matchups with measured cyanobacteria 

biomass from (a) ±1 day, (b) ±3 days and (c) ±7 days.  Retrievals shown are mean pixel 

values within 2 standard deviations.  Solid line is a linear regression for all data. 
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Figure 5.12 Time series of estimated PC from MERIS (Simis05 algorithm) for May-

September 2008. 
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An example time-series of the mapped PC products produced using the Simis05 

algorithm is shown in Figure 5.12 for 2008.  Retrieved PC concentrations show a 

significant peak in late summer during the cyanobacteria bloom, from mid-August into 

September.  A gradient in PC is indicated across the lake, with the highest concentration 

generally in the western basins.  It is also noted that a smaller spike in estimated PC is 

shown in western basins in the image for 26 May 2008 (Figure 5.12), however this is 

not mirrored by the cyanobacteria cell counts (Figure 5.2e-f).  It is known that algae 

containing chlorophyll b or c (1+2) also have a reflectance minima (absorption peak) 

around the same wavelength as PC absorption (~640 nm).  In particular, laboratory 

measurements of diatom cultures have reported a reflectance minima (absorption peak) 

around the same wavelength as PC absorption (~640nm), possibly related to the high 

concentrations of chlorophyll c (1+2) found in diatoms (Hunter et al., 2008b).  Thus, it 

could be that in large enough numbers (i.e. a diatom bloom), the pigments of other algal 

groups are incorrectly interpreted by the Simis05 algorithm as phycocyanin.  Indeed, 

increasing diatom abundance was recorded in Lake Balaton from May-June 2008, and 

this may be responsible for the false positive. 

5.3.6 IOP retrievals 

The Gons05 semi-analytical algorithm was deconstructed and the component 

parts were validated using the IOP measurements from the August 2010 sampling 

campaign on Lake Balaton.  The Gons05 algorithm retrieves aph(665) based on the 

equation by Gons et al. (2005) using a correction factor, γ, introduced by Simis et al. 

(2005).  This study compared the retrieved aph(665) against those determined using 

filter-pad absorption measurements.  The retrieved values for aph(665) were found to 

over-estimate the measured aph(665) by a factor of 2 (Figure 5.13a). The coefficient of 

determination for least squares linear regression was 0.836, however the error was high 

(RMSElog=0.444, Biaslog=0.430, MAPE=178%; Table 5.2).  Summed absorption by 

Chl-a and PC at 620nm was also retrieved with Simis05 and compared to measured 

aph(620) from August 2010 (Figure 5.13b).   Again, the coefficient of determination was 

high (R2=0.834) but the values retrieved with Simis05 were found to over-estimate 

measured pigment absorption by a factor of 3 (RMSElog=0.645, Biaslog=0.635, 

MAPE=346%; Table 5.2). It is important to note, however, that filter-pad absorption 

measurements can be subject to significant errors due to unresolved issues with path-
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length amplification (McKee et al., 2014), therefore some of this error may be a result 

of the method itself. 

 

Figure 5.13 Retrieval of (a) aph(665) and (b) aph(620) using Simis05 for 22 August 

2010 with matchups ±7 days (n=29). 

 

The Gons05 and Simis05 algorithms estimate bb(λ) from reflectance at 778.75 

nm based on the assumption that it is spectrally invariant over the wavelengths used in 

the algorithm (Gons, 1999).  This assumption was tested using bb(λ) coefficients 

measured at three wavelengths with an ECO-BB3 at 35 stations during the August 2010 

sampling campaign (Figure 5.14a).  Backscattering was highest at 470 nm, with lower 

coefficients at 532 and 650 nm.  Measured bb(λ) coefficients at 650 nm were then 

compared with the retrieved bb(λ) coefficient from MERIS band 12 (778.75 nm) using 

the image from 22 August 2010 (Figure 5.14b).  bb(650) was chosen because it lies 

between the 620 nm and 665 nm bands used in the Gons05 and Simis05 algorithms.  If 

backscattering was spectrally neutral and the algorithms were accurately retrieving the 

bb(λ) coefficient a correlation between MERIS retrieved bb(778.75) and measured 

bb(650) may be expected.  However, there was no linear relationship between the 

measured and retrieved bb(λ) coefficients (R2=0.0004, p=0.9; Table 5.2). The 

assumption of spectral neutrality may be reasonable based on the flat trend between 532 

and 650 nm (Figure 5.14a), although it is unknown how bb(λ) varies between 650 and 

780 nm. In general, the retrieved bb(λ) coefficients also showed significantly less 

variation across the stations sampled in Lake Balaton than was actually measured. 
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Figure 5.14 (a) Spectra of backscattering at 3 wavelengths as measured by the ECO-

BB3 during the August 2010 field campaign (n=35) and (b) linear regression of 

estimated bb(779) from Simis05 and measured bb(650) (n=29). 

 

5.3.7 Time series analysis 

The pigment concentrations retrieved from MERIS (±7 days) using Gons05 and 

Simis05 were compared alongside the available time series of pigment and cell biomass 

data (Figure 5.15).  Generally, MERIS retrieved concentrations of Chl-a and PC 

followed the interannual patterns of peaks for in situ Chl-a, phytoplankton biomass and 

cyanobacteria biomass.  However, retrieved pigments tended to match the variability 

better in Keszthely (Figure 5.15 a,c,e) than in Tihany (Figure 5.15 b,d,f). 
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Figure 5.15 MERIS retrieved concentrations of Chl-a (a-d) and PC (e-f) over the time series of in situ measurements of Chl-a (a-b), 

phytoplankton biomass (c-d) and cyanobacteria biomass (e-f) at Keszthely and Tihany. 
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Table 5.2 Least squares linear regression results (y=mx+b) for Chl-a, PC, aph and bb using Gons05 and Simis05 algorithms for all data, including 

integrated and surface samples. 

 Matchup 

interval 

n x y B m R2 p RMSE 

mg m-3 

RMSElog Bias Biaslog MAPE 

% 

PC 1 day 22 Measured PC MERIS 

Retrieved PC 

8.95 0.722 0.710 <0.0001 11.8 0.272 3.92 0.147 77.0 

 3 day 30 Measured PC MERIS 

Retrieved PC 

7.44 0.777 0.663 <0.0001 11.5 0.261 3.77 0.110 71.0 

 7 day 40 Measured PC MERIS 

Retrieved PC 

9.41 0.443 0.433 <0.0001 18.1 0.269 -1.63 0.0191 61.7 

 1 day 33 Cyanobacteria 

biomass 

MERIS 

Retrieved PC 

7.72 0.00494 0.462 <0.0001  -  - - - - 

 3 day 41 Cyanobacteria 

biomass 

MERIS 

Retrieved PC 

5.66 0.00539 0.525 <0.0001  -  - - - - 

 7 day 64 Cyanobacteria 

biomass 

MERIS 

Retrieved PC 

6.18 0.00488 0.494 <0.0001  -  - - - - 

Chl-a 1 day 136 Measured  

Chl-a 

MERIS 

Retrieved Chl-a 

8.98 1.11 0.801 <0.0001 11.9 0.394 10.4 0.329 151 

 3 day 156 Measured  

Chl-a 

MERIS 

Retrieved Chl-a 

8.53 1.11 0.803 <0.0001 11.5 0.382 9.97 0.319 143 

 7 day 194 Measured  

Chl-a 

MERIS 

Retrieved Chl-a 

8.56 1.06 0.767 <0.0001 11.2 0.369 9.38 0.296 132 

 1 day 28 Phytoplankton 

biomass 

MERIS 

Retrieved Chl-a 

6.42 0.00527 0.667 <0.0001  -  - - - - 

 3 day 40 Phytoplankton 

biomass 

MERIS 

Retrieved Chl-a 

6.62 0.00515 0.698 <0.0001  -  - - - - 

 7 day 61 Phytoplankton 

biomass 

MERIS 

Retrieved Chl-a 

7.43 0.00480 0.636 <0.0001  -  - - - - 



 

184 

 

Table 5.3 Least squares linear regression results (y=mx+b) for Chl-a, PC, aph and bb retrievals using Gons05 or Simis05 algorithms, validated 

with surface samples only (August 2010 only). 

 Matchup 

interval 

n x y b m R2 p RMSE 

mg m-3 

or m-1 

RMSElog Bias Biaslog MAPE 

% 

PC 1 day 14 Measured PC MERIS 

Retrieved PC 

-1.28 1.77 0.836 <0.0001 11.7 0.254 7.79 0.174 71.6 

 3 day 22 Measured PC MERIS 

Retrieved PC 

-4.15 1.87 0.799 <0.0001 11.3 0.246 6.18 0.189 65.4 

 7 day 28 Measured PC MERIS 

Retrieved PC 

-5.95 1.85 0.718 <0.0001 10.3 0.248 3.89 0.042 59.3 

 1 day 14 Cyanobacteria 

biomass 

MERIS 

Retrieved PC 

-2.48 0.00737 0.660 <0.001  -  - - - - 

 3 day 22 Cyanobacteria 

biomass 

MERIS 

Retrieved PC 

-3.04 0.00743 0.745 <0.0001  -  - - - - 

 7 day 28 Cyanobacteria 

biomass 

MERIS 

Retrieved PC 

-3.88 0.00731 0.709 <0.0001  -  - - - - 

Chl-a 1 day 13 Measured  

Chl-a 

MERIS 

Retrieved 

Chl-a 

2.22 1.45 0.943 <0.0001 12.2 0.203 10.9 0.199 58.9 

 3 day 23 Measured  

Chl-a 

MERIS 

Retrieved 

Chl-a 

2.38 1.38 0.930 <0.0001 10.2 0.198 8.71 0.189 55.9 

 7 day 29 Measured  

Chl-a 

MERIS 

Retrieved 

Chl-a 

0.995 1.41 0.906 <0.0001 9.19 0.185 7.36 0.167 50 

 1 day 13 Phytoplankton 

biomass 

MERIS 

Retrieved 

Chl-a 

3.24 0.00633 0.656 <0.001  -  - - - - 

 3 day 23 Phytoplankton 

biomass 

MERIS 

Retrieved 

3.88 0.00588 0.736 <0.0001  -  - - - - 
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 Matchup 

interval 

n x y b m R2 p RMSE 

mg m-3 

or m-1 

RMSElog Bias Biaslog MAPE 

% 

Chl-a 

 7 day 29 Phytoplankton 

biomass 

MERIS 

Retrieved 

Chl-a 

2.22 0.00587 0.682 <0.0001  -  - - - - 

aph 

(665) 

7 day 29 Measured 

aph(665) 

MERIS 

Retrieved 

aph(665) 

0.0663 2.06 0.836 <0.0001 0.228 0.444 0.197 0.430 178 

aph 

(620) 

7 day 29 Measured 

aph(620) 

MERIS 

Retrieved 

apc+ aChl-a 

(620) 

0.0758 3.12 0.834 <0.0001 0.279 0.645 0.242 0.635 346 

bb(λ) 7 day 29 Measured 

bb(650) 

MERIS 

Retrieved 

bb(779) 

0.0938 -0.0603 0.0043

4 

0.734 - - - - - 
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Table 5.4 Least squares linear regression results (y=mx+b) for Chl-a and PC retrievals using Gons05 and Simis05 algorithms, respectively, 

validated with integrated samples only (BLI, 2007-2011). 

 Matchup 

interval 

n x y b m R2 p RMSE 

mg m-3 

RMSElog Bias Biaslog MAPE 

% 

PC 1 day 8 Measured PC MERIS 

Retrieved PC 

6.94 0.664 0.910 <0.001 12.1 0.301 -2.86 0.100 86.4 

 3 day 8 Measured PC MERIS 

Retrieved PC 

6.94 0.664 0.910 <0.001 12.1 0.301 -2.86 0.100 86.4 

 7 day 12 Measured PC MERIS 

Retrieved PC 

9.55 0.379 0.580 <0.01 29.5 0.324 -13.4 -0.026 71.7 

 1 day 19 Cyanobacteria 

biomass 

MERIS 

Retrieved PC 

11.2 0.00421 0.405 <0.01  -  - - - - 

 3 day 19 Cyanobacteria 

biomass 

MERIS 

Retrieved PC 

11.2 0.00421 0.405 <0.01  -  - - - - 

 7 day 36 Cyanobacteria 

biomass 

MERIS 

Retrieved PC 

10.1 0.00430 0.474 <0.0001  -  - - - - 

Chl-a 1 day 18 Measured  

Chl-a 

MERIS 

Retrieved Chl-a 

8.26 1.03 0.810 <0.0001 9.73 0.331 8.60 0.271 109 

 3 day 20 Measured  

Chl-a 

MERIS 

Retrieved Chl-a 

8.81 1.02 0.798 <0.0001 10.2 0.337 9.09 0.281 112 

 7 day 52 Measured  

Chl-a 

MERIS 

Retrieved Chl-a 

9.12 0.950 0.723 <0.0001 10.7 0.334 8.33 0.249 107 

 1 day 15 Phytoplankton 

biomass 

MERIS 

Retrieved Chl-a 

8.27 0.00438 0.692 <0.001  -  - - - - 

 3 day 17 Phytoplankton 

biomass 

MERIS 

Retrieved Chl-a 

9.82 0.00417 0.660 <0.0001  -  - - - - 

 7 day 37 Phytoplankton 

biomass 

MERIS 

Retrieved Chl-a 

10.3 0.00432 0.640 <0.0001  -  - - - - 
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Table 5.5 Least squares linear regression results (y=mx+b) for Chl-a retrievals using the Gons05 algorithm, validated with KdKVI surface 

samples only (2007-2011). 

 Matchup 

interval 

n x y b m R2 p RMSE 

mg m-3 

RMSElog Bias Biaslog MAPE 

% 

Chl-a 1 day 105 Measured Chl-a MERIS 

Retrieved Chl-a 

9.52 1.09 0.784 <0.0001 12.22 0.421 10.6 0.355 169 

 3 day 113 Measured Chl-a MERIS 

Retrieved Chl-a 

9.27 1.09 0.786 <0.0001 12.0 0.416 10.4 0.352 165 

 7 day 113 Measured Chl-a MERIS 

Retrieved Chl-a 

9.27 1.09 0.786 <0.0001 12.0 0.416 10.4 0.352 165 
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5.4 Discussion 

5.4.1 Algorithm performance for pigment retrievals at 1 day matchups 

The Gons05 and Simis05 algorithms retrieved pigment concentrations (Chl-a 

and PC, respectively) in Lake Balaton with high accuracy (see Table 5.2 to Table 5.5 

for a summary of retrieval parameters and errors).  Chl-a concentrations were retrieved 

from MERIS using ±1 day matchups with high accuracy (R2=0.801, p<0.0001; 

RMSE=11.9 mg m-3).  PC concentrations were also retrieved with high accuracy from 

MERIS with a ±1 day temporal window (R2=0.710, p<0.0001; RMSE=11.8 mg m-3).  

With same day matchups as the golden standard, this study can attest to the good 

performance of Gons05 and Simis05 algorithms for pigment retrievals in Lake Balaton. 

We compared three models for PC retrieval from MERIS data in Lake Balaton, 

and of these Simis05 provided the most accurate retrievals.  While a stronger linear 

relationship was found between MERIS retrieved and in situ PC using Li15, this model 

significantly underestimated PC values <10 mg m-3 and over-estimated for 

concentrations ~10-100 mg m-3.  The Li15 model was developed using three reservoirs 

in Indiana (Eagle Creek, Geist and Morse Reservoirs), where PC concentrations ranged 

from 0.73-370 mg m-3, while the PC validation dataset for Lake Balaton varied over a 

narrower range (2.34-113 mg m-3).  However, the discrepancy in performance using 

Li15 is more likely related to the high concentration of inorganic particles in Lake 

Balaton (in August 2010, 3-30 mg L-1 and comprising up to 91% of the TSM), therefore 

the model coefficients developed for the reservoirs may not be appropriate in Lake 

Balaton.  Although TSM concentrations were relatively similar between the Indiana 

reservoirs and Lake Balaton, we are unaware as to what fraction of the TSM in the 

Indiana reservoirs was comprised of organic or inorganic particles and cannot therefore 

compare.  In contrast, PC retrievals from the Mishra13 algorithm had no significant 

relationship with in situ PC, although agreement with in situ PC improved greatly for 

lower PC concentrations (<50 mg m-3).  This is unexpected as Mishra13 was developed 

using a training set from hypereutrophic aquaculture ponds (Chl-a = 59.4-1376.6 mg m-

3; PC = 68.1-3032.5 mg m-3).  Both the Mishra13 and Li15 inversion algorithms were 

also developed using in situ reflectance measurements, and recommended different 

methods for conversion of above surface to below surface Rrs(λ).  Ultimately, the 

Simis05 algorithm was found to outperform these more complex inversion algorithms 
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over the range of PC concentrations found in Lake Balaton.  Although there were also 

differences in the water chemistry and optical properties of the lakes used to calibrate 

Simis05, Lake Loosdrecht and Lake IJsselmeer are noted to have generally high 

absorption by non-algal particles (up to 50% of water constituents), not unlike Lake 

Balaton (up to 40%) [see Chapter 3 (Riddick et al., 2015)]. 

5.4.2 Ability to retrieve biomass using Simis05 and Gons05 

The estimated PC and Chl-a concentrations from MERIS were also partially-

validated using microscopy-based estimates of cyanobacteria and total phytoplankton 

biomass, respectively.  PC and Chl-a retrievals with Gons05 and Simis05 did predict 

cell biomass with good accuracy, with (R2>0.4, p<0.01) with surface and/or integrated 

samples for ±1, 3 and 7 day temporal windows (Table 5.2, Table 5.3 and Table 5.4). 

The coefficients of determination were lower for the linear regressions between 

retrieved pigments and cell biomass (R2=0.462-0.698, p<0.0001) in contrast to 

measured pigments (R2=0.433-0.803, p<0.0001), when using the complete dataset for 

validation (Table 5.2).  This was expected due to the variability in PC cell quotas 

among freshwater cyanobacteria taxa. The exception to this was for the ±7 day PC 

matchups, where MERIS retrieved PC was explained marginally better by 

cyanobacteria biomass (R2=0.494, p<0.0001) than by measured PC (R2=0.433, 

p<0.0001). 

It is particularly useful to retrieve cyanobacteria counts in the case that PC data 

is unavailable, but an archive of cyanobacteria biomass data exists.  A previous study 

has demonstrated that phycocyanin concentrations have a strong linear relationship to 

cyanobacteria biomass in field samples from Lake Balaton (R2=0.94, CV=1.7%) 

(Horváth et al., 2013a).   Although, this may not be the case in other lakes, where 

intracellular PC content in cyanobacteria can vary in response to environmental 

stressors, such as nitrogen limitation or increased irradiance (photoacclimation). 

Recently, cell counts were successfully retrieved from numerous lakes in the eastern 

US, with a significant positive correlation between MERIS retrieved and in situ 

cyanobacteria cell counts for matchups within 7 days of MERIS overpass (Lunetta et 

al., 2015).  Although both Lunetta et al. (2015) and the present study found significant 

scatter around this relationship, both studies confirm the capability of remote sensing 

for monitoring cyanobacteria cell counts in lakes. 
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Additionally, there was little variation in accuracy at the three matchup ranges 

when validating with cell counts, with no apparent degradation in PC or Chl-a retrieval 

capability within ±7 days of image acquisition.  It was noted, however, that the 

relationship between retrieved Chl-a and phytoplankton biomass was better than that 

for retrieved PC and cyanobacterial biomass.  This is perhaps because PC may be more 

spatially variable within a pixel.  Although in its time MERIS provided the best 

available resolution for satellite application to lakes, the pixel size (300 m) is still quite 

large given that cyanobacteria blooms can vary markedly over a few metres or hours 

(Hunter et al., 2008a).  Therefore it is likely the time difference between in situ samples 

and MERIS overpass causes this discrepancy. 

5.4.3 Temporal windows for satellite validation 

There was a notable impact on retrieval accuracy depending on the temporal 

window for validation matchups.  When the complete in situ pigment dataset is 

considered, Chl-a retrievals deteriorated only slightly over the ±1 to 7 day windows, 

with no noticeable difference at ±3 days, and slightly lower R2 at ±7 days.  R2 values 

ranged from 0.767-0.801 (p<0.0001) and the RMSE ranged from 11.2-11.9 mg m-3 for 

the three temporal windows, confirming the Gons05 algorithm can retrieve Chl-a 

concentrations in Lake Balaton within 7 days of MERIS overpass.  When considering 

the KdKVI surface Chl-a dataset only, there was no notable decrease in retrieval 

accuracy (Table 5.5).  This is simply due to the consistently large sample size for the 

KdKVI validation dataset, which varied little with increasing temporal windows 

(n=105, 113 and 113 for ±1, 3 and 7 days, respectively).  In contrast, PC concentrations 

were retrieved at a matchup interval of ±7 days with notably poorer agreement than 

same day matchups.  Use of in situ Chl-a data collected within 1 day of the MERIS 

image yielded the best R2 of 0.710 (p<0.0001), while using data within 7 days of the 

image resulted in a R2 of 0.433 (p<0.0001) and the highest RMSE (18.3 mg m-3) (Table 

5.2).   

The difference in ability to retrieve Chl-a and PC at larger temporal windows 

may be twofold.  First, simply the number of samples for Chl-a which matched to the 

satellite images is greater than the number of samples for in situ PC measurement, with 

n=136-194 and n=22-40 for Chl-a and PC, respectively (Table 5.2).  It may be that 

further in situ PC data are required to obtain better validation with MERIS retrieved PC 

at a ± 7 day interval.  Secondly, PC is mostly representative of cyanobacteria in Lake 
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Balaton, while Chl-a is a proxy for general phytoplankton abundance.  It is well known 

that cyanobacteria form surface scums and migrate vertically in the water column, 

therefore these ephemeral spatial dynamics may not be captured by satellite remote 

sensing if the in situ sample is temporally distant from the time of image capture 

(Hunter et al., 2008a).  This is likely to be the most important factor affecting PC 

retrievals, particularly when the time of data acquisition by the satellite is several days 

apart from the time of in situ data collection.  For example, Cylindrospermopsis 

raciborskii typically form subsurface maxima or are found dispersed throughout the 

water column, rather than as a surface bloom (Fabbro & Duivenvoorden, 1996, Saker & 

Griffiths, 2001, Falconer, 2001, Everson et al., 2009, Antunes et al., 2015).  Given that 

C. raciborskii commonly formed the majority of the phytoplankton community in Lake 

Balaton during August 2010 (which comprises 70% of the PC dataset), and given that 

the August 2010 field work was conducted during high solar irradiance, it is possible 

that the PC surface samples may not accurately represent the cyanobacteria present in 

the entire water column or alternatively, the subsurface population had less influence on 

the water-leaving radiative signal. 

5.4.4 Impact of dataset used and sampling methods 

MERIS retrieved Chl-a from the Gons05 algorithm validated with the August 

2010 surface samples only had the highest accuracy, with the highest R2 (0.943, 

p<0.0001) for ±1 day matchups (Table 5.3).  These Chl-a samples were intentionally 

collected at the surface during the 2010 field campaign for the purpose of satellite 

validation, and it is therefore unsurprising that these data align well with MERIS 

retrieved Chl-a. As signal penetration in turbid lakes can be very limited, it is expected 

that surface samples would be more comparable with satellite retrievals.  However, PC 

was retrieved with the highest accuracy within ±1 day when validated with integrated 

samples from BLI only (R2=0.910, p<0.001; Table 5.4), although this is based on a 

small sample size (n=8) and the error is higher (RMSE=12.1 mg m-3, MAPE=86.4%) 

than that for retrievals validated with surface samples only (RMSE=11.7 mg m-3, 

MAPE=71.6%). 

5.4.5 Sources of error in the retrieval of (S)IOPs 

In the case of both Chl-a and PC pigment retrievals, concentrations were over-

estimated by the models, and this is most notable for Chl-a retrievals.  This can be 

explained, in part, due to the application of constant a*ph(665) and a*pc(620) 
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coefficients for calculating Chl-a and PC concentrations, respectively.  These 

coefficients are taken from previous studies (Gons et al., 2005, Simis et al., 2007) and 

may not be representative of the phytoplankton community in Lake Balaton during the 

period of analysis, which was often dominated by the subtropical cyanobacterium C. 

raciborskii.  The specific absorption coefficient (or absorption efficiency) may also 

vary across the lake or between phytoplankton communities due to differences in 

pigmentation, physiology, cell size and pigment packaging effects (Bricaud et al., 

1995).  The mean measured a*ph(665) during August 2010 in Lake Balaton was 0.0075 

m2 mg-1 Chl-a (±0.0015), while Gons et al. (2005) employed a higher value of 0.0139 

m2 mg-1 Chl-a.  If the lower a*ph(665) measured for Lake Balaton was used in the 

Gons05 algorithm to retrieve Chl-a, retrieved values of Chl-a would actually be 

overestimated and poorer representations of in situ Chl-a.  Subsequent studies have also 

investigated measurement of a*pc(620) in laboratory algal cultures using a timed 

bleaching procedure, although this method was deemed unsuitable for mixed 

phytoplankton communities and thus it was not employed in this study (Simis & Kauko, 

2012).  More recently, a*pc(625) was estimated by subtracting the effect of chlorophylls 

at 625 nm, and a*pc(625) was found to vary widely for low PC concentrations (<10 mg 

m-3) (Yacobi et al., 2015). The phycocyanin specific absorption coefficient published in 

Simis and Kauko (2012) was a*pc(622)=0.0071 m2 mg-1 PC and the range 

recommended by Yacobi et al. (2015) was a*pc(625)=0.007-0.008 m2 mg-1, which both 

agree with the value of 0.007 m2 mg-1 recommended in Simis et al. (2005, 2007) and 

which was adopted in this study.  However, given the lower value of a*ph(665) 

measured in Lake Balaton, it is plausible that the published data for a*pc(620) may also 

misrepresent the phytoplankton community in Lake Balaton. 

The error in the Gons05 and Simis05 algorithms is further illuminated by the 

retrieval of the phytoplankton absorption coefficients.  aph(665) was over-estimated 

compared to the measured values from the August 2010 sampling campaign (Figure 

5.13).  However, because the standard algorithm uses a higher a*ph(665) coefficient 

than that measured in Lake Balaton, the errors effectively cancel out resulting in 

relatively good agreement between the measured and MERIS retrieved Chl-a 

concentrations.  The a*ph(665) coefficient measured for the August 2010 dataset was 

lower (0.0075 m2 mg-1), and substituting this into Gons05 actually results in greater 

errors, with Chl-a overestimated by a factor of 1.9 for matchups ±7 days (R2=0.730, 

p<0.001, RMSElog=0.621, Biaslog=0.579, MAPE=347%; Compare with results in Table 
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5.2).  In fact, for the August 2010 dataset only, substitution of the Balaton a*ph(665) 

results in an even greater over-estimate by a factor of 2.5.  This suggests the errors 

within the application of the Simis05 algorithm to Lake Balaton lie within the estimate 

of the IOPs [aph(λ) and bb(λ)] rather than the SIOPs [a*ph(λ)]. 

The bb(λ) coefficient was estimated by the Simis05 algorithm at MERIS band 

12, or 778.75 nm, as in Gons et al.(1999). During the August 2010 campaign 

backscattering was measured by an ECO-BB3, which does not measure explicitly at 

this wavelength (779 nm), however it is useful to examine the assumptions that are also 

employed in the Simis05 semi-analytical algorithm.  From the in situ measurements, it 

was found that there was little difference in bb(λ) across the 3 wavelengths measured 

(Figure 5.14a).  It is therefore a valid assumption that backscattering is spectrally 

neutral across all wavelengths (Gons, 1999).  However, it was also shown that there is 

no significant linear relationship (R2=0.000446, p=0.913) between bb(λ) measured in 

situ and that estimated with Simis05 (Figure 5.14b).  Although the in situ backscattering 

coefficient is measured at a different wavelength, it is reasonable to expect to see a 

relationship between retrieved and measured bb(λ).  As this is not the case, the bb(λ) 

estimation by the Gons05 and Simis05 algorithms is a potential source of error to PC 

retrievals.  Additionally,he measured particulate bb(532) in Lake Balaton during August 

2010 varied over a wide range from 0.06-0.34 m-1, with a high mean ratio of 

backscattering to total suspended matter (bb(532):TSM = 0.016). This was mainly due 

to the high percentage (~40-90%) of inorganic mineral sediments that were frequently 

resuspended in Lake Balaton (Chapter 4).  The unique biogeochemical composition and 

distinctive optical properties in Lake Balaton may then explain why the backscattering 

coefficient is not estimated well by the Gons05 and Simis05 algorithms.  

When measured bb(650) is substituted into the Gons05 algorithm for each 

station in the August 2010 dataset, Chl-a is over-estimated by a factor of 2.8 for a ±7 

day matchup window (R2=0.883, p<0.0001, RMSElog=0.376, Biaslog=-0.341, 

MAPE=133%).  Thus, as with substitution of a*ph(665), applying the measured bb(650) 

actually results in higher errors than Chl-a retrievals using estimated bb at MERIS band 

12 and does not improve the algorithm (see Table 5.3).  In the case that bb(λ) was 

measured at the same wavelength as MERIS band 12 (779 nm), the Chl-a retrievals 

would perhaps be more precisely compared. However, adjustment of the bb(λ) 

coefficient does not seem to appreciably alter the Chl-a retrievals from Gons05, or at 

least not as significantly as with the modification of a*ph(665). 
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5.4.6 Applicability of algorithms 

There was a distinct lower limit for MERIS retrieval of pigments (Figure 5.7; 

Figure 5.8 Figure 5.9; Figure 5.10; Figure 5.11).  This is perhaps most noticeable on the 

PC plots, and especially in the figures for ±7 day matchups.  This may suggest 

differences in the water sampling methods, where the routine monitoring data for Chl-a 

is derived from to depth-integrated samples but the August 2010 Chl-a data were 

determined from surface samples.  The effect is a much higher accuracy for the August 

2010 samples as opposed to the routine monitoring (Figure 5.7).  Additionally, the 

euphotic depth (Zeu) in Lake Balaton in August 2010 was typically less than 1.7 m.  

Thus, it not surprising that the water-leaving reflectance signal measured by MERIS 

shows stronger agreement with surface rather than depth-integrated samples.   

Quite possibly this minimum in retrieved pigments is due to limitations of 

MERIS itself or the Gons05 and Simis05 algorithms.  The pigment retrievals from 

Gons05 and Simis05 fit in with the interannual patterns of in situ Chl-a, phytoplankton 

biomass and cyanobacteria biomass (Figure 5.15).  However, it was noted that the most 

accurate retrievals were in the western basin, where Chl-a is generally higher (<60 mg 

m-3), than in the east of Lake Balaton (Tihany), where Chl-a levels are predominantly 

lower (<20 mg m-3).  The Gons05 algorithm may therefore not be appropriate for Chl-a 

retrieval in waters with low phytoplankton biomass (e.g. where Chl-a <10 mg m-3).  

This is further supported by the poor accuracy and high scatter for retrievals when Chl-

a is low (Figure 5.7).  Gons et al. (2008) found that MERIS retrieved Chl-a values were 

poorly predicted by Gons05 at Chl-a <5 mg m-3 in oligotrophic lakes, which was 

attributed to weak emerging light flux, masking of the red Chl-a absorption peak by 

absorption of water, and an increased influence of Chl-a fluorescence that is not taken 

into account by the algorithm.  To address this issue, Domínguez Gómez et al. (2011) 

applied a different version of the Normalised Difference Chlorophyll Index (NDCI) for 

values of Chl-a greater or less than a threshold of 17 mg m-3, as water-leaving 

reflectance is very low for Chl-a<17 mg m-3.  This is further corroborated by a recent 

study, where the fluorescence line height (FLH) algorithm retrieved Chl-a from MERIS 

most accurately at higher Chl-a concentrations (Palmer et al., 2015c).  It is therefore 

possible that Gons05 and Simis05 algorithms have limited applicability.  These 

algorithms were designed for and perform optimally in eutrophic lakes as opposed to 

mesotrophic or oligotrophic waters, and are insensitive to changes in Chl-a below 10 

mg m-3.  In addition, PC retrieval with Simis05 may also be limited by interference of 
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chlorophyll-b, particularly when cyanobacteria biomass is low and the community is 

dominated by other eukaryotic phytoplankton groups, whichmay be a factor in the over-

estimation of PC when Chl-a is low.  It may be that the Simis05 and Gons05 algorithms 

are better considered as part of an ensemble approach, as a single algorithm is unlikely 

to work in all conditions, even within a single lake system. 

5.5 Conclusions 

With the recent launch of ESA’s Sentinel-3 Ocean and Land Colour Instrument 

(OCLI), it is a crucial time to explore the historic archive of data from satellite 

instruments, such as MERIS, to investigate and improve retrievals of inland water 

quality.  In recent years, there has been vast improvement to both the availability of 

ESA instrument data (with the MERCI system) and the tools for data analysis (e.g. 

Beam), and this has allowed for corresponding advances in the remote sensing of inland 

waters.  There have also been developments in the atmospheric correction of MERIS 

data, including this study as the first instance of implementing SCAPE-M_B2 for the 

correction of MERIS FRS data.  Field data and research on the optical properties of 

water and the development of bio-optical models has also been furthered with the 

accessibility of and tools available for MERIS data.   

Specific to this study, the Simis05 and Gons05 semi-analytical algorithms 

performed well to retrieve PC and Chl-a pigment concentrations in Lake Balaton, 

respectively.  Phytoplankton and cyanobacteria biomass were also retrieved, albeit to a 

lesser degree of accuracy, demonstrating a critical step towards the monitoring of 

medium-term changes in cyanobacteria abundance in lakes.  While accuracy for Chl-a 

retrieval was fairly consistent within ±7 days of the MERIS overpass, PC retrievals 

deteriorated with increased time between the image acquisition and ground sampling.  It 

is therefore imperative that samples for phycocyanin analysis are collected as 

temporally close as possible to the date and time of the MERIS overpass.  Additionally, 

the retrievals from Gons05 and Simi05 algorithms matched the interannual patterns in 

Chl-a and biomass, although in situ data were better predicted in the more eutrophic 

western basin than the meso- to oligotrophic eastern basin of Lake Balaton. Although 

Gons05 and Simis05 perform well in Lake Balaton, the IOP measurements enabled this 

study to address the sources of error in estimates of aph(λ) and bb(λ).  Estimated bb(λ) 

was found to be unrelated to measured bb(λ), while aph at 665 and 620 nm was 

overestimated by the algorithms, then subsequently overcorrected by using a higher 
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a*ph(665) than measured in Lake Balaton.  While substituting Balaton specific IOPs 

into the algorithms did not improve Chl-a retrievals, knowledge of the IOPs did 

elucidate the sources of error within the Gons05 and Simis05 algorithms.   

This study provides additional evidence for the success of Chl-a and PC 

retrieval algorithms using MERIS data in an emblematic European lake, with a view to 

facing new challenges for remote sensing of inland waters with the recently launched 

OLCI at match-up timescales of up to 7 days.  Furthermore, this study proves the 

effectiveness of collecting IOP measurements alongside pigment and satellite data, in 

order to analyse the performance of pigment retrieval algorithms and the ability to tune 

a semi-analytical algorithm to the waterbody of interest.  In this way, future work can 

generate more informed decisions on the parameterisation of models (e.g. via optical 

classification) in order to improve pigment retrievals and achieve model transferability 

among inland waters.  There remains abundant opportunity for future work on the 

success of water quality algorithms for MERIS (and OLCI), and the ability to 

accurately retrieve parameters in a range of inland waters within the constraints (i.e. 

spatial and spectral resolution) of contemporary satellite instruments. 
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6 Multiscale remote sensing observations of water quality 

in a large, turbid shallow lake 

 

6.1 Introduction 

Phytoplankton blooms, often dominated by nuisance cyanobacteria, plague 

inland waters across the world.  Blooms of potentially-toxic cyanobacteria can have an 

adverse impact on water quality, and it is suggested that warmer climates are increasing 

the dominance of cyanobacteria, especially in shallow lakes (Kosten, 2012).  Harmful 

algal blooms can form surface scums with unpleasant odours, generate anoxic 

conditions in the water column and pose a risk to human health due to the production of 

toxins (Codd et al., 2005a).  However, traditional methods for the detection of 

phytoplankton blooms are costly and do not provide the spatial information necessary to 

adequately capture the heterogeneity of phytoplankton populations.   

Remote sensing has been widely applied for the monitoring of phytoplankton in 

oceans, with more recent progress in developing remote sensing for coastal and inland 

waters.  Chlorophyll-a (Chl-a) is a commonly retrieved pigment from remotely sensed 

data in order to quantify total phytoplankton biomass in freshwaters (Mittenzwey et al., 

1992, Gons, 1999, Schalles & Yacobi, 2000, George & Malthus, 2001, Gons et al., 

2002, Dall'Olmo et al., 2003, Kutser, 2004, Gons et al., 2005, Gitelson et al., 2008, 

Hunter et al., 2008a, Gilerson et al., 2010, Hunter et al., 2010, Campbell et al., 2011, 

Duan et al., 2012).  More recently, the accessory pigment phycocyanin (PC) has been 

successfully retrieved across a range of inland waters as a bio-marker for cyanobacteria 

(Dekker, 1993, Schalles & Yacobi, 2000, Vincent et al., 2004, Simis et al., 2005, Kutser 

et al., 2006, Randolph et al., 2008, Ruiz-Verdu et al., 2008, Hunter et al., 2008a, Hunter 

et al., 2008b, Hunter et al., 2010, Le et al., 2011, Duan et al., 2012, Li et al., 2012, Song 

et al., 2013, Riddick et al., in review).  The retrieval of phytoplankton pigments can 

map the distribution of potentially toxic algal blooms, highlighting the potential of 

remote sensing as a real-time monitoring tool.  

Lake observation by remote sensing can be conducted using a variety of 

different platforms, including satellite, airborne and in situ methods.  Sensors on 

satellite platforms have accurately retrieved Chl-a over larger inland waters using ocean 

colour sensors, including SeaWiFS [e.g. (Vos et al., 2003)], Moderate resolution 

Imaging Spectroradiometer (MODIS) [e.g. (Wu et al., 2009)] and Medium Resolution 
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Imaging Spectrometer (MERIS) [e.g.  (Giardino et al., 2005, Odermatt et al., 2008, 

Palmer et al., 2015c)].  However, the spatial resolution of ocean colour instruments is 

often too coarse (>300 m) and are often not appropriate or unable to capture the marked 

heterogeneity within inland waters.  This is particularly acute for inland waters, where 

the combination of cyanobacteria buoyancy regulation and local climatic and 

hydrological conditions can lead to patchy distribution and the accumulation of surface 

scums (Hunter et al., 2008a).  Alternatively, satellite instruments developed for 

terrestrial applications (e.g. Landsat) have been used to retrieve Chl-a concentrations in 

lakes [e.g. (Tyler et al., 2006, Duan et al., 2007, Tebbs et al., 2013)], however these 

sensors often have insufficient spectral and radiometric resolution for accurate retrieval 

of phytoplankton pigments.  With the exception of MERIS and MODIS, most satellite 

sensors also do not measure over a large spectral region between 555 and 670 nm, 

which does not cover the PC absorption peak at ~620 nm (Mouw et al., 2015).  Few 

instruments are available with a frequent revisit time in order to capture the ephemeral 

dynamics of phytoplankton populations in lakes.  Furthermore, even instruments with 

high signal-to-noise (SNR) ratios tend to saturate over highly turbid waters (Mouw et 

al., 2015).   

However, it is worth noting that there is an increasing availability of sensors 

with improved specifications for inland water remote sensing.  For instance, the very 

recently launched Sentinel satellites have improved spatial (MCI onboard Sentinel-2) 

and spectral resolutions (OLCI onboard Sentinel-3), and together are anticipated to 

provide a useful tool for monitoring phytoplankton in inland waters.  Other forthcoming 

missions, e.g. the Ocean Ecosystem Spectometer/Radiometer onboard the Pre-Aerosols 

Clouds and ocean Ecosystems mission (PACE), the HyperSpectral Imager (HSI) 

onboard the Environmental Mapping and Analysis Program (EnMAP) and the VSWIR 

Imaging Spectrometer onboard the Hyperspectral Infrared Imager (HyspIRI), will 

provide marked improvements in spectral resolution for satellite based instruments, 

offering new opportunities for data inversion and potentially more accurate retrievals of 

phytoplankton pigment concentrations.  Nonetheless, a gap remains between the 

capability and requirements of present satellite technology, and this has been widely 

acknowledged in recent literature as a major challenge to the remote sensing of inland 

waters (Mouw et al., 2015, Palmer et al., 2015b).   

The capability of airborne remote sensing for the detection and study of 

phytoplankton blooms was first demonstrated by Wrigley and Horne (1974).  Since 
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then, various studies have used airborne remote sensing to capture a high quality image 

over a short period of time for the detection and quantification of blooms.  Airborne 

platforms allow for high spatial resolution data acquisition with flights directed over the 

water body of interest to achieve a desired pixel size.  They additionally provide 

improved spectral and sometimes radiometric resolution over satellites or handheld 

sensors, particularly with modern hyperspectral instruments. The spectral range and 

band positions of airborne sensors can also normally be adjusted to suit the intended 

application (Matthews, 2011).  Satellite based sensors have relatively fixed overpass 

times, which may not be sufficient to record the daily variations in phytoplankton 

distribution (e.g. diel vertical migrations).  In contrast, airborne sensors can offer a 

flexible timescale for deployment to capture these dynamics.  A few recent studies have 

successfully used airborne remote sensing to detect and quantify phytoplankton blooms 

in inland waters (Randolph et al., 2008, Hunter et al., 2008a, Hunter et al., 2010, Kudela 

et al., 2015), however the availability of these sensors is still rather limited.  Airborne 

campaigns are also relatively expensive and therefore generally unsuitable for the 

collection of routine monitoring data.  Most recently, airborne remote sensing has 

provided the capability of distinguishing cyanobacteria species in Lake Pinto, which 

may be a significant step towards early warning of toxic bloom-forming species 

(Kudela et al., 2015).  Airborne studies like these can provide datasets with higher 

spatial resolution, which can be used to simulate the spectral and spatial capabilities of 

satellite sensors.  As hyperspectral satellite missions are planned for the near future (e.g. 

HyspIRI and EnMAP), airborne campaigns provide a timely tool for testing the utility 

of high spatial resolution datasets alongside lower resolution satellite datasets. 

In situ reflectance measurements can be used for testing of retrieval algorithms, 

however these are generally collected as point samples or transects.  Studies have used 

systems including the ASD Field Spectroradiometer (Simis et al., 2007), PR-650 

SpectraColorimeter (Gons et al., 2002) and TriOS-RAMSES radiometers (Ruddick et 

al., 2006).  in situ sensors have value for calibration and validation purposes, especially 

ship- or buoy-mounted systems, as well as for deriving empirical algorithms e.g. 

(Gitelson et al., 1993b).  However, point or transect measurements may not capture the 

patchiness of phytoplankton blooms in lakes.   

Thus, with the increasing number of sensors available on satellite, airborne and 

in situ platforms, there is firstly a need to quantify the errors on pigment retrievals at a 

range of spatial resolutions in order to thoroughly understand the uncertainty in 
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satellite-retrieved parameters from inland waters.  Secondly, there is a need to make 

synergistic use of instruments with differing capabilities, as the complementary 

spectral, spatial, radiometric and temporal resolutions could provide a more holistic 

approach for the monitoring of inland water quality. 

Increasingly, multiscale and multisensor remote sensing approaches have been 

used for lakes, whether for cross-comparison of sensor performance or to increase the 

temporal coverage of a site. One of the first multiplatform studies was conducted on 

Lakes IJssel and Marken by Vos et al. (2003), which emphasised the importance of 

synoptic datasets at high sampling frequency for reliable water quality monitoring.  

Two airborne sensors (CASI-2 and AISA Eagle) were used by Hunter et al. (2010) to 

provide two seasons of hyperspectral data over Loch Leven in order to test retrieval 

algorithms for cyanobacteria pigments.  Olmanson et al. (2011) evaluated Landsat, 

MERIS, MODIS and SeaWiFS satellite data for the ability to retrieve Secchi depth and 

Chl-a concentrations over Minnesota lakes.  MERIS and QuickBird satellite data 

together were also previously used on Lake Champlain to provide information on the 

abundance and distribution of potentially toxic cyanobacteria (Wheeler et al., 2012).  

More recently, Torbick and Corbiere (2015) conducted a comparative study of the 

Landsat 8 Operational Land Imager (OLI), Proba Compact High Resolution Imaging 

Spectrometer (CHRIS) and RapidEye data for the detection of cyanobacteria blooms in 

Lake Champlain.    However, of these studies, only Wheeler et al. (2012) investigated 

the ability of a satellite sensor to map the spatial heterogeneity of phytoplankton 

biomass.  Wheeler et al. (2012) concluded that MERIS (300 m) and Quickbird (2.4 m) 

were both able to sufficiently distinguish the spatial structure of a cyanobacteria bloom, 

although no metrics to prove this conclusion were provided other than the mapped Chl-

a and PC concentrations. 

The present study aims to provide a case study of remote sensing at varying 

spatial scales for the detection of phytoplankton blooms over a large and optically-

complex shallow lake, Lake Balaton, Hungary.  Specifically, this study examines the 

use of multiple sensors on multiple platforms (satellite, airborne and in situ) and their 

ability to accurately capture spatial patterns in phytoplankton biomass.  This is 

accomplished using a novel combination of two coincident satellite datasets [Landsat 5 

Thematic Mapper (Landsat 5 TM) and MERIS], airborne hyperspectral imagery 

[Airborne Imaging Spectroradiometer for Applications (AISA) Eagle] and in situ 

radiometry [Hyperspectral Surface Acquisition System (HyperSAS)].  The multisensor 
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approach has been previously used to extend satellite time series (e.g. MERIS, MODIS 

and SeaWiFS), and Tyler et al. (2016) have recently identified that new and 

forthcoming satellites have the potential to provide synergistic multi-scale operational 

observations.  Therefore this study is well placed to provide insight for future satellite 

observations of phytoplankton distribution in lakes.  This study compares the 

performance of the Normalised Difference Chlorophyll Index (NDCI) approach for 

Chl-a retrieval at a range of spatial resolutions, and conducts a cross-comparison of 

Chl-a retrieval performance using four coincident spectral datasets.  The in situ 

measured reflectances further allow for validation of the atmospheric corrections used 

for each remote sensing dataset.  Finally, the finer resolution datasets (AISA Eagle and 

Landsat 5 TM) are resampled to a coarser spatial resolution akin to MERIS (300 m) in 

order to quantify the errors over the degradation in spatial resolution.  This study has 

clear implications for the very recently launched Ocean and Land Colour Instrument 

(OLCI) onboard the Sentinel-3 satellite, which measures the same spectral bands and 

operates at the same spatial resolution as MERIS. 

6.2 Methods 

6.2.1 Study area – Lake Balaton 

As the largest shallow lake in Central Europe, Lake Balaton (46.8°N, 17.7°E) 

has great socio-economic importance to the Transdanubian region of Hungary. Lake 

Balaton has a surface area of 592 km2 and mean depth of just 3.2m, with a catchment 

dominated by the Zala River in the west. This riverine input provides approximately 

one third to half of the total external nutrient load to the lake (Szilagyi et al., 1990).  

The mineral-rich sediments (dolomite limestone) are frequently resuspended in the 

water column, giving Lake Balaton its unique milky blue appearance. 

The study site also includes the Kis-Balaton wetland area adjacent to the 

western shore of Lake Balaton, which is comprised of an upper and lower reservoir. 

The Kis-Balaton Water Protection System was engineered in the 1980s-1990s in order 

to promote retention of phosphorus and nitrogen for eutrophication management 

(Pomogyi, 1993).  Due to the range of hydro-morphology and function of the water 

bodies, there is significant variability in the water quality within Kis-Balaton (Horváth 

et al., 2013b).  Therefore it is useful to include Kis-Balaton in a multi-scale study to 
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observe the ability of different platforms to adequately characterise the heterogeneity 

within this system as well as the lake itself.  

Lake Balaton has frequent algal blooms with significant cyanobacteria 

populations.  In recent years, cyanobacteria may comprise over 90% of the total 

phytoplankton biomass in western basins of the lake during a late summer bloom.  Of 

these cyanobacteria blooms, nitrogen-fixing types often form the majority or even 

entirety of the bloom, including Cylindrospermopsis raciborskii, Aphanizomenon sp. 

and Anabaena sp.  The lake also generally maintains a longitudinal gradient in 

phytoplankton biomass, with the highest concentrations in the westerly basins and 

decreasing to the northeastern basin.  Additionally, the lake has a documented gradient 

in coloured dissolved organic matter (CDOM), with the highest concentrations in the 

west near the Zala River input (Balogh et al., 2003).  It is this gradient in 

biogeochemical parameters and thus inherent optical properties (IOPs), which provides 

an interesting study site for remote sensing applications (Riddick et al., 2015). 
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Figure 6.1 Map of Lake Balaton, indicating the 38 sampling stations. 
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6.2.2 Water sampling 

Field measurements were collected in Lake Balaton and Kis-Balaton from 17-26 

August 2010 at 38 stations (Figure 6.1).  The ground campaign by boat collected in situ 

radiometric measurements and surface water samples, concurrent to the collection of 

airborne radiometric data.  Surface water samples at each station were divided into 

aliquots for subsequent filtration or preservation.  

6.2.3 Chlorophyll-a pigment analysis 

Subsamples for pigment analysis were filtered immediately on the boat (20-

70ml, depending on location) using low vacuum pressure through GF/F (Whatman) 

filter papers.  Filters were then flash frozen in liquid nitrogen and stored at -80°C for 

analysis within 6 months.  Frozen GF/F filter papers were thawed in the dark prior to 

analysis.  Chlorophyll-a (Chl-a) was measured in triplicate via spectrophotometry 

(Shimadzu UV-1601) after a hot 90% methanol extraction following Iwamura et 

al.(1970). The hot methanol method was used here as it has been previously found to 

provide the most complete extraction of Chl-a for the phytoplankton types found in 

Lake Balaton (Présing pers. comm.). 

6.2.4 Phytoplankton biomass, total suspended matter and coloured dissolved 

organic matter 

One aliquot of surface water at each station was collected for enumeration of 

phytoplankton.  500-1500 ml of water was also filtered for analysis of total suspended 

matter (TSM) by gravimetric determination.  Water samples for measurement of 

coloured dissolved organic matter (CDOM) were filtered into clean glassware through 

0.2 μm nucleopore membrane filters (Whatman) and the absorbance was measured 

within 24 hours of collection.  For further detail on these analyses for this specific 

campaign on Lake Balaton, see Chapter 3 and Riddick et al. (2015).   

6.2.5 HyperSAS radiometry 

A Hyperspectral Surface Acquisition System (HyperSAS) collected irradiance 

and radiance measurements at a height of 3.5 m from a pole fixed to the bow of the 

boat.  The HyperSAS data were collected at 30 stations in Lake Balaton only (Stations 

1-30).  During data collection, the boat was positioned on station to point radiance 

sensors at a relative azimuth angle of 135° from the sun.  Three radiometers measured 

downwelling irradiance [Es(λ)], surface radiance of the water [Lt(λ)] and sky radiance 
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[Lsky(λ)], where the latter two parameters are used to calculate the water-leaving 

radiance [Lw(λ)] after correction for air-sea interface reflection (Mueller et al., 2000): 

Lw(λ) = Lt(λ)- ρsky Lsky(λ)   (6.1) 

where ρsky
 , the air-sea interface reflection coefficient, is estimated for sunny conditions 

as a function of wind speed in m/s, W: 

ρsky = 0.0256 + 0.00039*W+0.000034*W2 (6.2) 

The HyperSAS raw data were processed using Satlantic ProSoft software (v.7.7.10).  

After processing, all spectra underwent quality control for any outliers due to variable 

cloudiness or sun glint due to sea state.  Remote sensing reflectance [Rrs(λ)] was then 

calculated as: 

Rrs(λ) = Lw(λ)/ Es(λ)     (6.3) 

For consistency with the satellite datasets, Rrs(λ) was converted to water-leaving 

reflectance as follows: 

𝜌𝑤(𝜆) = 𝑅𝑟𝑠(𝜆) ∗ 𝜋     (6.4) 

 

6.2.6 Remote sensing datasets 

There was an airborne remote sensing campaign conducted concurrent with the 

collection of in situ water samples and radiometry, with flights on 21, 22, 23 and 26 

August 2010.  Additionally, two satellite overpasses occurred on 22 August 2010, 

providing additional data from MERIS and Landsat 5 TM instruments.  This unique 

collection of four coincident surface reflectance datasets collected between 19 and 26 

August is summarised in Table 6.1. 
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Table 6.1 Date (XX August 2010) and acquisition time (GMT) of in situ and remote 

sensing datasets collected at each station.  Same-day match-ups are shown in bold, and 

same-day matchups across all datasets are additionally highlighted in gray (n=7). 

Station in situ a AISA Eagle Landsat 5 TM MERIS b 

Date Time Date Time Date Time Date Time 

1 19 07:03 21 11:00 22 9:29 22 9:01 

2 19 08:07 21 12:12 22 9:29 22 9:01 

3 19 10:59 22 08:04 22 9:29 22 9:01 

4 19 12:04 22 10:30 22 9:29 22 9:01 

5 19 13:40 23 10:29 22 9:29 22 9:01 

6 20 07:10 21 11:37 22 9:29 22 9:01 

7 20 08:24 21 11:00 22 9:29 22 9:01 

8 20 09:10 21 11:49 22 9:29 22 9:01 

9 20 09:55 21 12:12 22 9:29 22 9:01 

10 20 10:45 21 11:13 22 9:29 - - 

11 21 10:43 21 11:00 22 9:29 22 9:01 

12 21 11:45 21 12:12 22 9:29 22 9:01 

13 21 12:37 21 12:45 22 9:29 22 9:01 

14 21 13:32 21 11:13 22 9:29 - - 

15 21 14:18 21 13:21 22 9:29 22 9:01 

16 22 08:37 22 09:09 22 9:29 22 9:01 

17 22 09:38 22 09:09 22 9:29 22 9:01 

18 22 10:10 22 09:09 22 9:29 22 9:01 

19 22 10:55 22 10:50 22 9:29 22 9:01 

20 22 11:35 22 11:17 22 9:29 22 9:01 

21 22 12:15 22 10:39 22 9:29 22 9:01 

22 22 13:03 22 10:50 22 9:29 22 9:01 

23 23  07:43 23 08:42 22 9:29 22 9:01 

24 23  08:21 23 08:42 22 9:29 - - 

25 23  09:00 23 08:58 22 9:29 22 9:01 

26 23  09:39 23 09:33 22 9:29 22 9:01 

27 23  10:19 23 10:48 22 9:29 22 9:01 

28 23  11:00 23 09:33 22 9:29 22 9:01 

29 23  11:41 23 09:51 22 9:29 22 9:01 

30 24 06:39 23 10:55 22 9:29 22 9:01 

31  26 a 07:32 26 08:05 22 9:29 22 9:01 

32  26 a 08:16 26 08:15 22 9:29 22 9:01 

33  26 a 09:05 26 09:37 22 9:29 22 9:01 

34 26 a 09:43 26 09:58 22 9:29 22 9:01 

35  26 a 10:27 26 10:05 22 9:29 22 9:01 
 

a in situ data includes water sampling and HyperSAS radiometric measurements.  Note 

that HyperSAS data were not collected on 26 August. 
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b MERIS data were acquired for all of Lake Balaton, however stations 10, 14 and 24 

were excluded from the dataset due to a high coefficient of variation in Rrs(709) (>20%) 

for a 3x3 pixel window at these stations. 

6.2.6.1 MERIS dataset: acquisition and correction 

MERIS full resolution full swath (FRS) 300 m Level-1b data for 22 August 

2010 over Lake Balaton were obtained from the European Space Agency’s MERCI 

repository (https://earth.esa.int/web/guest/data-access/online-archives).  The standard 

geolocation of the data was improved using the AMORGOS (Accurate MERIS Ortho-

Rectified Geo-location Operational Software) v.4.0 processor.  Atmospheric correction 

was performed using the Self-Contained Atmospheric Parameters Estimation for 

MERIS data (SCAPE-M) automatic atmospheric correction processor developed by 

Guanter et al. (2010), following the SCAPE-M_B2 implementation as in Domínguez et 

al. (2011).  SCAPE-M and SCAPE-M_B2 have been shown to compute accurate water-

leaving reflectances for lakes, particularly for highly turbid waters (Yang et al., 2011a, 

Yang et al., 2011b, Agha et al., 2012, Jaelani et al., 2013, Medina-Cobo et al., 2014, 

Riddick et al., in review).  Following atmospheric correction with SCAPE-M_B2, 

water-leaving reflectance [ρw(λ)] was extracted from the MERIS image using BEAM 

VISAT v.4.11 software (Brockmann Consult, v.4.11). 

MERIS data were screened for those 3x3 pixel windows where Rrs(709) was 

<20% CV (i.e. standard deviation was within 20% of the mean Rrs(709) for the 9 

pixels).  This method for spatial homogeneity was previously employed in Goyens et al. 

(2013) and Jamet et al. (2011).  The NDCI was then applied to the extracted water-

leaving reflectances, and mapped products were produced using the Graph Processing 

Framework in BEAM.   

6.2.6.2 Landsat 5 TM dataset: acquisition and correction 

A 30-m resolution Landsat 5 Thematic Mapper (TM) Surface Reflectance 

Climate Data Record (CDR) product was acquired over Lake Balaton for 22 August 

2010, using the U.S. Geological Survey (USGS) Earth Explorer tool 

(http://earthexplorer.usgs.gov/, courtesy of the USGS Earth Resources Observation and 

Science Center).  The Surface Reflectance CDR product is radiometrically, 

geometrically and atmospherically corrected.  The atmospheric correction of Level-1 

Landsat TM data were conducted using the Moderate Resolution Imaging 

Spectroradiometer (MODIS) 6S atmospheric correction routine with the Landsat 

https://earth.esa.int/web/guest/data-access/online-archives
http://earthexplorer.usgs.gov/
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Ecosystem Disturbance Adaptive Processing System (LEDAPS) (Masek et al., 2006).  

Although this atmospheric correction method was developed for use over land surfaces, 

it has been used successfully in other studies over inland waters for retrieval of 

biogeochemical parameters (Yeo et al., 2014, Chang et al., 2014a, Chang et al., 2014b).  

Atmospheric corrections designed for terrestrial applications are more likely to be 

effective over bright water bodies like Lake Balaton, and other land atmospheric 

corrections have been similarly adapted to lakes, e.g. SCAPE-M (Guanter et al., 2010).  

Atmospheric correction with the 6S radiative transfer code has also been validated with 

Landsat TM data for retrieval of water quality parameters (Torbick et al., 2013, Dona et 

al., 2015).  

Landsat 5 TM data were screened for those 3x3 pixel windows where Rrs at 

band 3 and 4 was <20% CV (i.e. standard deviation was within 20% of the mean Rrs for 

the 9 pixels).  However, it was noted there were no instances of a CV>20% for Rrs at 

either band.  The NDCI was then applied to the extracted surface reflectances, or water-

leaving reflectances, and mapped products were produced using the Graph Processing 

Framework in BEAM.   

6.2.6.3 AISA Eagle hyperspectral airborne dataset: acquisition and correction 

The AISA Eagle (Specim) is a 12-bit pushbroom hyperspectral radiometer, 

which measures over the visible and near infrared spectrum (400-970 nm).  The 

instrument collected radiances at 253 wavelengths, with a spectral resolution of 2.44 

nm.  Flight altitude was such that the pixel size acquired was 5 meters.  Under the 

operation of the UK’s Natural Environmental Research Council Airborne Research and 

Survey Facility (NERC ARSF Project Code EU 10/03), flights were conducted within 

two hours of solar noon on cloud-free days on August 17, 21, 22, 23 and 26 of 2010. 

Level 1b processed imagery was provided by NERC ARSF, with radiometric 

calibration algorithms applied.  All flight lines were geometrically corrected and 

atmospheric correction was applied by ARSF-DAN (Airborne Research and Survey 

Facility - Data Analysis Node) at Plymouth Marine Laboratory (Plymouth, UK) using 

the airborne Atmospheric and Topographic Correction model (ATCOR-4; ReSe 

Applications Schläpfer, http://www.rese.ch/products/atcor/atcor4/).  ATCOR-4 perform 

atmospheric and topographic correction using look-up tables calculated with Modtran® 

5 radiative transfer code.   Initial comparisons between the ATCOR-4 atmospherically 

corrected products and the in situ radiometry showed that ATCOR-4 provided more 

http://www.rese.ch/products/atcor/atcor4/
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accurate water-leaving reflectances than other processors such as FLAASH, and 

therefore it has been applied here (Plymouth Marine Laboratory, unpublished data). 

Following atmospheric correction, the NDCI was applied to the extracted water-

leaving reflectances, and mapped products were produced using the Graph Processing 

Framework in BEAM.   

6.2.7 Validation of atmospheric correction routines 

The atmospheric correction routine for MERIS (SCAPE-M_B2) was validated 

in Chapter 5 [Riddick et al. (in review)].  For the Landsat 5 TM and AISA Eagle 

datasets, the respective atmospheric corrections were validated with in situ Rrs(λ) data 

from the HyperSAS.  The HyperSAS data were resampled to Landsat 5 TM spectral 

resolution using the spectral response functions, assuming a Gaussian distribution 

around each band centre using the full width half maximum of each Landsat 5 TM 

band.  Simulated Landsat 5 TM data were produced using R (v. 3.2.1).  Rrs(λ) at the 

nearest HyperSAS wavelength was used for comparison of HyperSAS reflectance with 

atmospherically corrected AISA Eagle reflectance. Atmospherically corrected products 

from each dataset were validated using same-day matchups only (n=7 for Landsat 5 

TM, n=19 for AISA Eagle).  As Lake Balaton exhibited large variations in total 

suspended matter over the sampling period, ±1 day matchups with in situ data were 

deemed to provide the most accurate assessment of any errors due to the atmospheric 

correction.   

The accuracy of the atmospheric correction water-leaving reflectance products 

was assessed using the determination coefficient (R2), root mean square error in log 

space (RMSElog), bias in log space (Biaslog) and mean absolute percentage error 

(MAPE). 

6.2.8 The Normalized Difference Chlorophyll Index (NDCI) 

The Normalized Difference Chlorophyll Index (NDCI) was proposed by Mishra 

and Mishra (2012) to estimate Chl-a concentration in turbid productive waters.  NDCI 

was designed to use water-leaving reflectance at the MERIS bands centered at 665 nm 

and 708 nm.  However, its general form is also easily adapted to Landsat 5 TM data, 

using bands 3 (630-690 nm) and 4 (760-900 nm).  Thus, the NDCI was chosen for this 

multisensor study not because it is expected to be the best performing Chl-a retrieval 

algorithm for Lake Balaton, but because it was readily adapted to sensors of differing 

spectral resolution with bands in the red and near infrared.  The NDCI uses the 
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reflectance peak at ~708 nm which is maximally sensitive to variations in Chl-a, as well 

as the spectral absorption peak of Chl-a at ~665-675 nm, via the following equation: 

[𝐶ℎ𝑙 − 𝑎]𝛼
[𝜌𝑤(708)−𝜌𝑤(665)]

[𝜌𝑤(708)+𝜌𝑤(665)]
   (6.5) 

The NDCI was implemented in this study as in the above equation for MERIS data.  

Water-leaving reflectance at Bands 3 and 4 were substituted this equation for Landsat 5 

TM data, and ρw(709.52) and ρw(664.26) were employed for AISA Eagle data. 

 NDCI was subsequently fitted against measured Chl-a using an exponential 

equation of the form [Chl-a] = Aeb*NDCI, as this was found to be a better fit than linear 

or polynomial regressions.  The resulting exponential fit was then applied to obtain 

retrieved Chl-a concentrations.  For ease of comparison, a reduced dataset of the 

matchups common to all sensors (n=27) was used for assessment of algorithm 

performance across the different sensors.  This excluded stations 10, 14, 24, 31-35 and 

the three Kis-Balaton stations.   

6.2.9 Method for resampling resolution of Landsat 5 TM and AISA Eagle 

datasets 

Table 8.1 provides a summary of the three sensor capabilities.  The Landsat 5 

TM and AISA Eagle datasets were each resampled to approximately match MERIS 

resolution (300 m), while the AISA Eagle data were also degraded to Landsat 5 TM 

resolution (30 m).  For all mapped products, water-leaving reflectances were first 

spatially resampled to the lower resolution (MERIS resolution, ~300 m) using BEAM 

VISAT software (Brockmann Consult, v.5.0).  The NDCI was then applied to the 

resampled water-leaving reflectances, and mapped products were produced using the 

Graph Processing Framework in BEAM.   

Retrieved Chl-a values from the NDCI were acquired by first extracting water-

leaving reflectances at the desired pixel window size in BEAM.  To ensure the station 

was located at the center of the pixel window, the nearest odd number of pixels were 

used for the dimensions.  For example, a window size of 11 x 11 (330 m) and 61 x 61 

(305 m) was applied for Landsat 5 TM and AISA Eagle data, respectively, for 

comparison with MERIS data.  The NDCI was applied to the mean ρw(λ) value of the 

pixel window, and errors from the resampled dataset were quantified (RMSElog, Biaslog 

and MAPE).  Within pixel variability was also established with calculation of standard 

deviation and the coefficient of variation. 
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Table 6.2 Details of sensors investigated in this study. 

Sensor No. of Bands Spectral 

range (nm) 

Spatial 

resolution 

(m) 

Radiometric 

Resolution 

(bits) 

AISA Eagle 253 400-970  5 12 

Landsat 5 TM 6a 450-2350 30 8  

MERIS  15 390-1040 300 16 
a Landsat 5 TM images consist of 7 bands, however Band 6 is a thermal band sampled 

at 120 m resolution. 

 

6.3 Results 

6.3.1 Summary of biogeochemical parameters and biomass 

A summary of the biogeochemical constituents in Lake Balaton during the 

August 2010 campaign is shown in Table 6.3.  Chapter 3, Chapter 4 and Riddick et al. 

(2015) provide further detail on the optical properties alongside the biogeochemistry 

and phytoplankton biomass of Lake Balaton during August 2010.  During the August 

2010 field campaign Chl-a concentrations ranged from 5.45-253 mg m-3, with a 

decreasing gradient from Kis-Balaton (west) to Siofók (east).  CDOM absorption 

ranged from 0.093-2.93 m-1 and also followed a decreasing gradient from west to east, 

with the highest lake concentrations reported near the mouth of the Zala River.  Total 

suspended matter concentrations varied from 4.40-50.6 mg L-1, with particularly high 

TSM concentrations observed on the windiest sampling date (26 August 2010) due to 

resuspension of bottom sediments [see Chapter 3 (Riddick et al., 2015)]. 
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Table 6.3 Summary of biogeochemical parameters in August 2010 in Lake Balaton and 

Kis-Balaton, including Chlorophyll-a (Chl-a), Total phytoplankton biomass, Total 

Suspended Matter (TSM), Particulate Inorganic Matter (PIM), Particulate Organic 

Matter (POM) and absorption of Coloured Dissolved Organic Matter at 440 nm 

[aCDOM(440)]. 

  Chl-a 

(mg m-3) 

Biomass 

(mg m-3) 

TSM  

(mg L-1) 

PIM   

(mg L-1) 

POM 

(mg L-1) 

aCDOM

(440) 

(m-1) 

Lake 

(n=35) 

Mean 15.08 3348 13.47 9.69 3.78 0.39 

StDev 8.90 1832 7.01 6.98 1.43 0.30 

Min 5.45 859 4.40 2.75 1.65 0.093 

Max 39.09 8794 32.65 29.68 7.86 1.35 

Kis-

Balato

n (n=3) 

Mean 166.51 70839 40.98 13.44 27.53 2.82 

StDev 83.15 53637 13.28 11.54 8.63 0.12 

Min 87.68 20662 25.83 2.03 21.40 2.69 

Max 253.40 127370 50.60 25.10 37.40 2.93 

All 

Data 

(n=38) 

Mean 27.04 8676 15.64 9.98 5.66 0.58 

StDev 46.46 22333 10.54 7.28 6.93 0.72 

Min 5.45 859 4.40 2.03 1.65 0.093 

Max 253.40 127370 50.60 29.68 37.40 2.93 

 

 

6.3.2 Validation of atmospheric corrections 

6.3.2.1 SCAPE-M_B2 atmospheric correction for MERIS 

The SCAPE-M_B2 atmospheric correction for MERIS data were fully validated 

in Chapter 5 and Riddick et al. (in review).  Scatterplots of same-day matchups of 

MERIS data and HyperSAS in situ reflectance spectra showed good agreement (n=7, 

RMSElog<0.205, Biaslog<0.197, MAPE<58.7%; see Figure 5.3, Figure 5.4 and Figure 

5.5). 

6.3.2.2 MODIS/6S atmospheric correction for Landsat 5 TM CDR product 

The MODIS/6S atmospheric correction for the Landsat 5 TM CDR product has 

been mainly validated over land (Masek et al., 2006).  However, the 6S radiative 

transfer model has been used for atmospheric correction of MERIS data over Lake 

Omodeo, Italy (Bresciani et al., 2012), Lake Idro, Italy (Bresciani et al., 2011) and the 

small hypereutrophic Lake Zeekoevlei, South Africa  (Matthews et al., 2010), and also 

Landsat data over Bung Boraphet, Thailand (Sriwongsitanon et al., 2011) and Lake 

Taihu, China (Gong et al., 2008).  To our knowledge the Landsat 5 TM CDR product 
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has not been validated over inland waters, therefore this is presented below in Figure 

6.2 and Figure 6.3 for Landsat 5 TM bands 1, 2 and 3 (blue, green and red 

wavelengths).  Bands 4, 5 and 7 were unable to be validated, as the in situ hyperspectral 

radiometers have a calibrated spectral range of 350-800 nm which does not cover these 

Landsat 5 TM bands.  For bands 1-3, the coefficient of determination was high 

(R2>0.789, p<0.01) and errors were low (RMSElog<0.0721, Biaslog<0.0630, MAPE< 

16.0%; Figure 6.2).  The highest errors were in the blue wavelengths (Band 1), while 

the lowest errors were reported in the red portion of the spectrum (Band 3).  For stations 

with same-day matchups, bands 1, 2 and 3 typically fell within the range of the in situ 

HyperSAS Rrs(λ) (Figure 6.3).   
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Figure 6.2 Validation of Landsat 5 TM atmospheric correction with in situ Rrs at 

Landsat bands (a) 1 (450-520 nm), (b) 2 (520-600 nm) and (c) 3 (630-690 nm).  In situ 

Rrs was resampled to the respective Landsat 5 TM bands, using the Landsat 5 TM band 

center and full width half maximum, assuming a Gaussian distribution.  Same-day 

matchups are presented for validation (red points), with equations and errors 

corresponding to these points only (n=7). 
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Figure 6.3 Validation of atmospheric correction of Landsat 5 TM with in situ Rrs(λ) for 

same day matchups (n=7).  in situ Rrs(λ) is shown as two dashed grey lines, indicating 

the minimum and maximum Rrs(λ) measured by HyperSAS radiometry. MERIS 

SCAPE-M_B2 Rrs(λ) data also shown for comparison.  Error bars indicate standard 

deviation.   
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6.3.2.3 ATCOR-4 atmospheric correction for AISA Eagle product 

Preliminary testing of the ATCOR-4 atmospheric correction method for AISA 

Eagle data has shown performance comparable or better than other atmospheric models 

(e.g. FLAASH) (Plymouth Marine Laboratory, unpublished data).  In this study, the 

AISA Eagle data atmospherically corrected with ATCOR-4 is validated with in situ 

Rrs(λ) spectra for same-day matchups only (Figure 6.4; Figure 6.5).  Four wavelengths 

were chosen to represent the CDOM and chlorophyll-a absorption peak (442 nm), 

phycocyanin-containing cyanobacteria absorption peak (620 nm), chlorophyll-a 

absorption peak (665 nm) and the chlorophyll-a absorption minima in the near infrared 

(708 nm).   At all four wavelengths assessed, scatterplots of AISA Eagle and in situ 

Rrs(λ) showed good agreement, with high determination coefficients (R2>0.894, 

p<0.001) and low errors (RMSElog <0.120, Biaslog<0.0966, MAPE<28.3%; Figure 6.4).  

The poorest agreement was observed for 442.5 nm, with atmospherically corrected 

AISA Eagle data typically over-estimating in situ reflectance, while the lowest errors 

were reported at 620 nm.  Other atmospheric correction validation studies have also 

reported poor agreement in the blue due to greater Rayleigh and aerosol scattering, e.g. 

(Goyens et al., 2013).  However, for the purposes of this study, it is important to note 

that there was good agreement in the red (665 nm) and NIR (708 nm), the wavelengths 

used for the NDCI (Figure 6.4c and d).  At stations with same-day matchups, the AISA 

Eagle spectra typically fell within the range of in situ Rrs(λ) measured by the HyperSAS 

(Figure 6.5).  Where poorer agreement was observed, there was typically a larger time 

difference between acquisition of the airborne and in situ datasets (e.g. stations 22, 28, 

29; see Table 6.1). 
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Figure 6.4 Validation of ATCOR4 atmospheric correction of AISA Eagle data with in 

situ Rrs at (a) 442, (b) 620, (c) 665 and (d)708 nm.  The in situ wavelength which was 

closest to the center of the respective AISA Eagle band was used for validation.  Only 

same-day matchups are presented for validation (red points), with equations and errors 

corresponding to these points only (n=19). 



 

218 

 

 

Figure 6.5 Validation of ATCOR4 atmospheric correction of AISA Eagle data with in 

situ Rrs(λ) for same day matchups (n=19).  in situ Rrs(λ) is shown as two dashed grey 

lines, indicating the minimum and maximum Rrs(λ) measured by HyperSAS radiometry.  

MERIS SCAPE-M_B2 Rrs(λ) data also shown, with error bars indicating standard 

deviation.  Note different y-axis ranges. 
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6.3.3 Algorithm performance 

6.3.3.1 Chl-a retrieval with NDCI 

Chl-a was retrieved using the NDCI for MERIS, Landsat 5 TM, AISA Eagle 

and HyperSAS datasets (Figure 6.6; Figure 6.7).  Using 3x3 pixel windows, all datasets 

showed good agreement with in situ Chl-a concentrations (R2>0.268, p<0.01, 

RMSElog<0.198, Biaslog<0.0171, MAPE<42.8%).  Retrieved concentrations from the 

airborne AISA Eagle data demonstrated the best agreement, with the lowest errors 

overall.  Chl-a retrievals from AISA Eagle, HyperSAS and MERIS data had low 

RMSElog (<0.09), Biaslog (<0.007) and MAPE (<16%), although markedly higher errors 

were reported for retrievals from Landsat 5 TM (RMSElog = 0.198, Biaslog = 0.0171, 

MAPE = 42.8%).  As was also noted in other investigations using MERIS data, e.g. 

[Chapter 5; Riddick et al. (in review)], a lower limit of ~10 mg m-3 was reported for 

retrieved Chl-a concentrations (Figure 6.6a).  All sensors indicated higher relative 

errors at Chl-a <10 mg m-3 (e.g. for MERIS, APE for Chl-a<10 mg m-3 ranged from 

1.62-77.7%).  This is possibly because at low concentrations it is radiometrically 

challenging to resolve changes in Rrs(λ) due to constraints of the sensor signal to noise 

ratio.  



 

220 

 

 

Figure 6.6 Scatterplots of retrieved Chl-a against measured Chl-a using the NDCI with 

(a) MERIS (b) Landsat 5 TM, (c) AISA Eagle and (d) HyperSAS datasets.  Pixel 

window of 3x3 applied for each dataset.  Statistics are for common dataset, shown in 

red, with any additional matchups shown as open circles.  Determination coefficients 

(R2) represent linear regressions of common dataset.  Dashed line represents 1:1 

relationship. 
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Figure 6.7 Maps of Chl-a retrievals using the NDCI applied to the (a) MERIS (b) 

Landsat 5 TM and (c) AISA Eagle datasets.  Pixel window of 3x3 applied for each 

dataset, i.e. maps shown at (a) 900 m, (b) 90 m and (c) 15 m resolutions. 
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6.3.4 Degradation of AISA Eagle and Landsat 5 TM datasets 

6.3.4.1 Chl-a retrieval with NDCI 

The Landsat 5 TM (30 m) and hyperspectral AISA Eagle (5 m) datasets were 

degraded to match the resolution of MERIS and the forthcoming OLCI (300 m) (Table 

6.4).  The minimum errors (standard deviation and coefficient of variation) increased 

slightly from 15 to 35 m resolution for the AISA Eagle dataset. However, the errors 

increased markedly when AISA Eagle data were degraded to 305 m resolution, with a 

coefficient of variation of up to 544% and standard deviation of up to 104 mg m-3.  In 

contrast, Landsat 5 TM data showed little change in errors between the 90 and 330 m 

resolution datasets, with a slight increase in the standard deviation (1.24-11.1 mg m-3), 

but a lower maximum coefficient of variation (35.9%).  

 

Table 6.4 Table of errors (Coefficient of Variation, %; Standard Deviation) within the 

resampled pixel windows for Chl-a retrieved by NDCI from AISA Eagle and Landsat 5 

TM data.  Sample size is for a common dataset (n=27). 

Sensor Pixel 

Window 

Size (n) 

Spatial 

Resolution 

(m) 

To 

Compare 

With 

Min SD  

(mg m-3) 

Max SD 

(mg m-3) 

Min 

CV 

(%) 

Max 

CV 

(%) 

AISA 

Eagle 

3x3  

(n=9) 

15 - 0.224 2.38 1.87 17.5 

7x7 

(n=49) 

35 Landsat 5 

TM 

0.390 2.02 3.21 15.2 

61x61 

(n=3721) 

305 MERIS 0.505 104 4.24 544 

Landsat 

5 TM 

3x3  

(n=9) 

90 - 0.854 10.5 9.22 48.2 

11x11 

(n=121) 

330 MERIS 1.24 11.1 12.1 35.9 

 

 

Chl-a was retrieved using the NDCI with relatively low errors for all datasets at 

all resolutions (RMSElog = 0.06-0.21, Biaslog = -0.019-0.019, MAPE = 10-43%; Table 

6.5).  For the AISA Eagle dataset, lower errors and a higher determination coefficient 

were observed for the 15 m resolution as compared to a single pixel extraction (5 m), 

while the largest pixel window (61x61; 305 m) was associated with the highest errors.  

The errors for AISA Eagle Chl-a retrievals at 5, 15 and 35 m resolutions were 

comparable with those reported for the in situ HyperSAS data.  The Landsat 5 TM 



 

223 

 

dataset showed fairly consistent agreement with in situ Chl-a concentrations at all three 

resolutions, although MAPE and Biaslog were slightly higher for 3x3 (90 m) and 11x11 

(330 m) pixel windows.  The errors for Landsat 5 TM retrievals were the highest of the 

four datasets compared in this study, with RMSElog ranging from 0.194-0.210 and 

MAPE = 40.8-42.8%.  For MERIS, marginally better agreement was observed for Chl-a 

retrievals from a single pixel (300 m) as compared with a 3x3 pixel window (900 m).  
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Table 6.5 Comparison of errors for Chl-a retrievals from AISA Eagle, Landsat 5 TM and MERIS data using the NDCI.  Sample size is for the 

common dataset (n=27). 

Sensor Pixel 

Window 

Size (n) 

Spatial 

Resolution 

(m) 

For 

comparison 

with 

Range of 

Retrieved 

Chl-a  

(mg m-3) 

Median 

Retrieved 

Chl-a 

(mg m-3) 

R2 (p-value) RMSElog Biaslog MAPE 

(%) 

AISA 

Eagle 

1x1 5 - 5.23 – 32.5 11.1 0.941 (<0.001) 0.0601 -0.0161 11.5 

3x3  

(n=9) 

15 - 6.03 – 32.8 11.2 0.952 (<0.001) 0.0594 -0.0185 10.4 

7x7  

(n=49) 

35 Landsat 5 

TM 

5.93 – 32.4 11.0 0.953 (<0.001) 0.0588 -0.0191 10.8 

61x61 

(n=3721) 

305 MERIS 6.18 – 32.6 11.0 0.910 (<0.001) 0.0692 -0.00417 12.6 

Landsat 5 

TM 

1x1 30 - 6.45 – 35.4 13.6 0.255 (<0.01) 0.210 -0.00784 40.8 

3x3  

(n=9) 

90 - 7.67 - 42.7 14.4 0.268 (<0.01) 0.198 0.0171 42.8 

11x11 

(n=121) 

330 MERIS 8.68 - 47.0 13.3 0.268 (<0.01) 0.194 0.0185 41.8 

MERIS 1x1  

(n=1) 

300 - 8.07 - 31.3 10.3 0.919 (<0.001) 0.0825 0.00388 14.6 

3x3  

(n=9) 

900 - 8.55 - 30.7 10.3 0.908 (<0.001) 0.0884 0.00436 15.4 

HyperSAS 

(in situ) 

N/A 

(n=1) 

N/A - 6.28 - 34.6 10.7 0.952 (<0.001) 0.0615 0.00623 11.8 
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Histograms showed that the range and distribution of retrieved Chl-a values 

from all sensors were remarkably similar, with less than 10% difference between the 

median values for each sensor at the varying spatial resolutions (Figure 6.8; Table 6.5).  

However, fewer low Chl-a values (<10 mg m-3) were retrieved from Landsat data as 

compared to the AISA Eagle and MERIS datasets (Figure 6.8).  Furthermore, the range 

of retrieved Chl-a concentrations notably increased with increasing resolution for the 

Landsat 5 TM dataset, with minimum concentrations increasing from 6.45 to 8.68 mg 

m-3 and the maximum from 35.4 to 47.0 mg m-3 (Table 6.5; Figure 6.8).  However, a 

similar trend was absent for Chl-a retrievals from AISA Eagle and MERIS data, with 

histograms indicating relatively similar distributions over all spatial resolutions.  Maps 

of Chl-a retrievals from the NDCI show this increase particularly on the shorelines of 

the westernmost basin (Keszthely) and the eastern edge of the easternmost basin 

(Siofók) (Figure 6.9).   
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Figure 6.8 Histograms of Chl-a concentrations (mg m-3) retrieved using the NDCI from 

(a) AISA Eagle, (b) Landsat 5 TM and (c) MERIS at variable spatial resolutions, as 

indicated.   
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Figure 6.9 Maps of Chl-a retrievals using the NDCI applied to the Landsat 5 TM data 

at (a) 30 m (1 pixel), (b) 90 m (3 x 3 pixel window) and (c) 330 m (11 x 11 pixel 

window) resolutions.  

 

Chl-a retrievals from AISA Eagle data showed no marked change in the Chl-a 

concentration range from 5 to 305 m resolutions (Table 6.5; Figure 6.10).  However, 

images with resolution higher than 5 m demonstrated a lack of ability to capture the 

heterogeneity in Chl-a concentrations (Figure 6.11).  For example, this is particularly 
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evident on the eastern edge of the Tihany peninsula (top left in Figure 6.11), where the 

pattern in Chl-a distribution lost clarity along with the degradation in spatial resolution. 

It was additionally noted that Chl-a concentrations appear higher in the linear features 

to the south of the Tihany peninsula (Figure 6.11).  These lines are presumed to be boat 

wakes, therefore higher Chl-a concentrations may be a result of ships causing mixing of 

the water column and/or resuspending subsurface phytoplankton. 
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Figure 6.10 Maps of Chl-a retrievals using the NDCI applied to the AISA Eagle data at (a) 5 m (1 pixel), (b) 15 m (3 x 3 pixel window), (c) 35 

m (7 x 7 pixel window) and (d) 305 m (61 x 61 pixel window) resolutions. 
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Figure 6.11 Maps of Chl-a retrievals using the NDCI applied to the AISA Eagle data 

for the Tihany peninsula at a) 5 m (1 pixel), (b) 15 m (3 x 3 pixel window), (c) 35 m (7 

x 7 pixel window) and (d) 305 m (61 x 61 pixel window) resolutions. 

 

Chl-a retrieved from each satellite dataset was compared at the native spatial 

resolution alongside the AISA Eagle data of equivalent resolution acquired on the same 

day over the Keszthely basin.  Landsat 5 TM predicted lower Chl-a values in the 

Keszthely basin than that retrieved from AISA Eagle data (Figure 6.12 a,b).  Chl-a 

retrieved from MERIS data showed less inter-pixel variability than the equivalent 

resolution AISA Eagle data, indicating some loss in capturing the heterogeneity of 

phytoplankton distribution with MERIS data (Figure 6.12 c,d). 
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Figure 6.12 Maps of Chl-a retrievals using the NDCI applied to (a) Landsat 5 TM data 

at the native 30 m resolution, (b) AISA Eagle data at 35 m resolution, (c) MERIS data 

at the native 300 m resolution and (d) AISA Eagle data at 305 m resolution for the 

Keszthely basin (Stations 16, 17 18).  Data shown were acquired from 09:01-09:29 

GMT on 22 August 2010. 

It is worth noting the presence of high Chl-a values around the edge of the lake 

in the Chl-a retrieval maps (e.g. Figure 6.12c).  This is possibly a result of the masking 

technique used (land/water mask processor in Beam), as well as the presence of 

emergent vegetation (e.g. macrophytes such as Phragmites australis).  Future 

presentation of retrieval maps requires more efficient marking of land and emerging 

vegetation, particularly for MERIS and OLCI data which have coarser spatial 

resolution. 

6.4 Discussion 

6.4.1 Atmospheric corrections 

Two atmospheric corrections were validated for their respective datasets in this 

study.  ATCOR4 performed well for the AISA Eagle data, although poorer agreement 
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was observed in the blue wavelengths (412 nm).  This trend has also been reported in 

validation studies of other atmospheric corrections over coastal waters due to greater 

Rayleigh and aerosol scattering at these wavelengths, e.g. Goyens et al. (2013).  

However, the NDCI was used in this study, which does not employ the blue 

wavelengths, so any impact on Chl-a retrievals due to atmospheric correction with 

ATCOR4 is likely to be minimal.  The MODIS/6S atmospheric correction performed 

well for correction of Landsat 5 TM data, although Landsat 5 TM Rrs was over-

estimated in the blue and NIR wavelength ranges.  This could contribute to some of the 

error observed in NDCI retrievals, as band 4 (NIR) is used for this index.   

6.4.2 Chlorophyll-a retrieval with NDCI 

Chl-a was retrieved with relatively low errors for all datasets at all resolutions, 

indicating the usefulness of the NDCI for Chl-a retrieval over a range of multi- and 

hyperspectral datasets (Table 6.4; Table 6.5).  As expected, Chl-a retrievals with NDCI 

showed the strongest agreement with in situ concentrations for the highest resolution 

datasets (HyperSAS and AISA Eagle).  However, MERIS retrieved Chl-a more 

accurately than Landsat 5 TM, and this is likely a factor of the wavelengths available 

for the computation of NDCI.  NDCI was calculated using bands 7 (665 ± 10 nm) and 9 

(708.75 ± 10 nm) for MERIS data, while for Landsat 5 TM data bands 3 (630-690 nm) 

and 4 (760-900 nm) were substituted into the NDCI equation.  The poorer agreement 

for Landsat 5 TM Chl-a retrievals may be due to the broader wavelength range or could 

also be a result of differences in radiometric resolution (MERIS is 16-bit while Landsat 

5 TM is 8-bit).    

6.4.3 Resampling of Landsat 5 TM and AISA Eagle datasets 

While there was no apparent increase in errors when resampling the AISA Eagle 

data to 15 m or 35 m resolution, there was a marked increase in errors when the 

resolution was degraded to 300 m.  However, there was no significant increase in errors 

when the Landsat 5 TM dataset was resampled to 90 m or 330 m resolution. This 

disparity may be a result of the greater errors caused by the large bandwidth for Landsat 

5 TM bands, which overshadows the differences due to changes in spatial resolution.   

Analysis of true colour images also provides visual detection of any degradation 

in data quality with decreased resolution.  With the true colour AISA Eagle images, no 

apparent loss of detail is observed between 5 and 35 m, while the heterogeneity is 

clearly indistinguishable at 305 m (Figure 6.13).  Similarly, no marked difference is 
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noticeable in true colour Landsat 5 TM images from 30 to 90 m resolution, however the 

loss of detail is apparent at 330 m (Figure 6.14).   

 

Figure 6.13 True colour AISA Eagle images of the Tihany peninsula (Station 35) at (a) 

5 m, (b) 15 m, (c) 35 m and (d) 305 m. 
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Figure 6.14 True colour Landsat 5 TM images of the Tihany peninsula (Station 35) at (a) 30 m, (b) 90 m, (c) 330 m. 
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For the Landsat 5 TM dataset, the range of retrieved Chl-a concentrations 

increased by over 30% in response to the degradation of spatial resolution, although this 

trend was not reported for retrievals from AISA Eagle and MERIS data (Table 6.5; 

Figure 6.8).  Chl-a maps highlight the increased concentrations particularly on the 

shorelines (Figure 6.9).  This could be due to the greater concentrations of suspended 

matter along the shore and the influence of bottom and/or submerged vegetation.  

Concentrations of TSM are particularly variable in Lake Balaton given the high 

propensity for wind-induced resuspension, with concentrations ranging from ~5-50 mg 

L-1 over the sampling period.  With the increase in pixel window size, subtle spatial 

variations in suspended matter would not be detected and therefore lower reflectance 

would be recorded at Band 4 (760-900 nm). Given Equation 6.7 for the calculation of 

NDCI, this would then be misinterpreted as a greater concentration of Chl-a for such 

pixels.  Additionally, Landsat 5 TM collects data over a broad wavelength range for 

each band, therefore this instrument may be less able to distinguish between Chl-a and 

TSM. 

MERIS data also demonstrated a lack of ability to capture the heterogeneity of 

Chl-a concentrations across the Keszthely basin (Figure 6.12 c,d).  Chl-a retrieved from 

AISA Eagle data (305 m resolution) showed greater inter-pixel variability than Chl-a 

retrieved from MERIS data, suggesting that sensors with higher spatial resolution can 

provide better detail on phytoplankton distribution than those with lower resolution.  

However, MERIS still produced a similar range of Chl-a values, therefore it remains a 

useful monitoring tool for the purpose of identifying the abundance of phytoplankton 

biomass present.  This was confirmed by the histograms of retrieved Chl-a values, 

which demonstrate a remarkable consistency in the range and distribution of Chl-a 

retrieved by all sensors (Figure 6.8; Table 6.5).  This suggests that for this study site, 

high spatial resolution data (e.g. AISA Eagle) may not really be necessary in order to 

accurately capture the range of Chl-a values, although it does remain useful for 

detecting variability in the finer spatial patterns of phytoplankton distribution (see 

Figure 6.11 and Figure 6.13). 

6.5 Conclusions 

This study assessed the ability of NDCI to retrieve Chl-a concentrations in four 

coincident spectral datasets over Lake Balaton, including in situ HyperSAS radiometry, 

hyperspectral airborne AISA Eagle data, and multi-spectral satellite data from Landsat 
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5 TM and MERIS.  The atmospheric corrections investigated here, including ATCOR4, 

SCAPE-M_B2 and MODIS/6S, proved successful in creating accurate water-leaving 

reflectance spectra compared to the in situ data for the respective remote sensing 

dataset.  All four remote sensing datasets were able to accurately retrieve Chl-a 

concentrations, confirming the NDCI is a useful approach for estimation of Chl-a from 

satellites, airborne and in situ reflectance data.  In resampling the AISA Eagle and 

Landsat 5 TM data, greater errors were associated with retrieved Chl-a concentrations 

at ≥300 m as compared to the higher resolution datasets (5-30 m).  Additionally, there 

was a marked loss in the ability to detect the subtle heterogeneity of Chl-a distribution 

with spatial resolutions above 5 m.  This was particularly noted in the region near of the 

Tihany peninsula, where phytoplankton spatial dynamics are more complex.  However, 

this study demonstrated there was minimal (<10%) difference in median retrieved Chl-a 

values at the different resolutions, therefore it may be concluded that there is little gain 

in using high spatial resolution data for the purpose of Chl-a retrieval, except the ability 

to resolve the finer spatial structures of phytoplankton distribution in dynamic large 

lakes.  

This ultimately has implications for monitoring phytoplankton spatial 

distribution in large lakes with presently available satellite instruments, such as the 

recently launched OLCI onboard Sentinel-3 that has a spatial resolution akin to MERIS 

(300 m).  For instance, the results of this study suggest that Sentinel-3/MERIS spatial 

resolution is adequate for retrieving the range and distribution of Chl-a values (i.e. 

phytoplankton abundance), however finer resolution datasets (e.g. Landsat-8 or MSI 

onboard Sentinel-2) could be used synergistically in order to better characterise the 

complex spatial patterns of phytoplankton in large lakes.  The results of this study 

emphasise the utility of a coordinated approach to remote sensing of large inland water 

bodies, such as Lake Balaton, whereby the combination of variable spatial, spectral and 

temporal resolution datasets can both effectively quantify phytoplankton abundance and 

capture the subtleties of phytoplankton spatial dynamics. 
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7 Discussion, conclusions and future research 

 

7.1 Contributions of this research 

The research within this thesis has examined the use of in situ optics, 

radiometry, airborne and satellite platforms for the remote sensing of phytoplankton 

biomass.  The observations were used, where possible concomitantly, to better 

understand the factors influencing the retrieval of phytoplankton pigments Chl-a and 

PC as indicators of total phytoplankton and cyanobacteria biomass, respectively.  The 

results in this thesis have demonstrated the value of coincident in situ bio-geo-optical 

data, validated current phytoplankton pigment retrieval algorithms and shown how the 

use of multiple platforms and sensors can accurately map phytoplankton biomass and 

spatial distribution in inland waters.  Lake Balaton was chosen as a complex case study 

in which to investigate the remote sensing of phytoplankton, as it is a large shallow 

water body with a gradient in biogeochemical properties.  The specific research aims 

(as stated in Chapters 1 and 2) are outlined below, with a summary of how these were 

addressed by the research in this thesis: 

 

Aim 1:  To increase the present understanding of within-lake variations in bio-geo-

optical properties and investigate the relationships between (S)IOPs and 

biogeochemical parameters in context of those reported in ocean,  coastal 

and inland waters. 

 

The research detailed in this thesis firstly demonstrated the fundamental 

importance of characterising the bio-geo-optical properties of inland waters, providing 

the first characterisation of the underwater light climate in Lake Balaton.  This research 

has shown that the (S)IOPs of an optically complex lake can indeed vary significantly 

across a single water body, particularly as a function of distance from riverine inputs of 

particulate and dissolved organic matter (Chapter 3).  Furthermore, the study of optical 

properties in Lake Balaton highlighted the distinct relationships between the (S)IOPs 

and biogeochemical parameters in inland waters, as compared to those reported in 

coastal and ocean waters.  In particular, this research found that particulate inorganic 

matter is a main driver of the variability in optical properties in this lake (Chapters 3 

and 4).  Variations in the bio-geo-optical properties are of great significance, as they 
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were shown in this thesis to have a major impact on the accuracy of phytoplankton 

pigment concentrations retrieved from semi-analytical and analytical algorithms, 

through the over-estimation of phytoplankton absorption and under-estimation of Chl-a 

specific absorption coefficients (Chapter 5). 

 

Aim 2: To investigate the use of satellite remote sensing for retrieval of 

phytoplankton and cyanobacterial pigments in highly turbid waters by 

validation of existing algorithms.  

 

Secondly, the research in this thesis presented the first remote sensing 

assessment of cyanobacteria biomass in Lake Balaton, using the satellite-based 

instrument MERIS to retrieve PC concentrations (Chapter 5).  This work provided a 

valuable validation study of the Gons05 algorithm for Chl-a retrieval and the Simis05, 

Mishra13 and Li15 PC retrieval algorithms.  Using prior knowledge of the (S)IOPs 

(Chapters 3 and 4), the research in this thesis elucidated the errors in a semi-analytical 

algorithm (Gons05), further emphasizing the importance of correctly characterizing the 

Chl-a specific absorption coefficient for accurate pigment retrievals. 

 

Aim 3: Conduct a multi-scale comparison of coincident remote sensing datasets 

over a range of spectral and spatial resolutions for the retrieval of 

phytoplankton biomass in order to understand algorithm transferability 

between sensors with different capabilities and how this influences the 

efficacy of the retrieved products. 

 

Finally, the research in this thesis is the first study to combine four coincident 

datasets for a comparative study of remote sensing of phytoplankton biomass in an 

optically complex shallow lake (Chapter 6).  The Normalised Difference Chlorophyll 

Index was successfully implemented for the retrieval of Chl-a using four sensors on 

different platforms (in situ, airborne and satellite).  This study demonstrated there was 

minimal difference in median retrieved Chl-a values at the different spatial resolutions, 

therefore there may be little gain in using high spatial resolution data for the purpose of 

Chl-a retrieval, except the ability to resolve the finer spatial structures of phytoplankton 

distribution in dynamic large lakes.  These results underlined the value of using a 
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“constellation” of sensors at multiple scales for a complete characterisation of the 

spatial patterns in phytoplankton biomass. 

 

7.2 Summary of conclusions 

The research presented in this thesis has drawn the following fundamental 

conclusions, as outlined below for each chapter: 

 

Chapter 3 – Spatial variability of absorption coefficients over a biogeochemical 

gradient in a large and optically complex shallow lake 

- A novel comparison of in situ (AC-S and AC-9) and laboratory methods was 

presented for the measurement of particulate absorption, demonstrating that 

there was good agreement between laboratory and in situ a(λ). 

- Ternary plots identified the relative contribution of phytoplankton, NAP and 

CDOM to the absorption budget, and these indicated greater variations in the 

contributions to non-water absorption than reported for ocean waters.  The 

contribution of NAP to non-water absorption in Lake Balaton was higher than 

that for ocean waters, and the high contribution of NAP and CDOM at 620 and 

675 nm (PC and Chl-a absorption peaks, respectively) must be considered in 

bio-optical models for pigment retrieval. NAP and CDOM absorption extends 

into the red portion of the spectrum, which may cause errors in pigment retrieval 

if the absorption contributions are not accurately decomposed at these 

wavelengths. 

- The gradient in CDOM, phytoplankton and mineral particles across Lake 

Balaton was associated with gradients in IOPs, including particulate [ap(λ)] and 

phytoplankton absorption [aph(λ)]. 

- Lower mean SCDOM values near the inflow of the Zala River indicate the pool of 

DOC is likely to be dominated by allochthonous material (i.e. terrestrial-

influenced). 

- Phytoplankton absorption at 620 nm was confirmed to be associated with 

cyanobacteria biomass, providing evidence for future application of this 

wavelength in phycocyanin retrieval algorithms. 
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- There was greater aph(440) per unit Chl-a than found in ocean waters, and this 

may be due to the presence of larger celled phytoplankton (microplankton) in 

Lake Balaton. 

- A large amount of scatter in the relationship between aph(440) and Chl-a was 

likely associated with a more diverse phytoplankton community, as this 

relationship is more dependent upon species composition and photophysiology 

than that at 665 nm. 

- The Chl-a specific absorption coefficient [a*ph(λ)] ranged from 0.017-0.023 m2 

mg-1 at 440 nm and 0.0088 – 0.011 m2 mg-1 at 675 nm, and there was no clear 

indication of the ‘pigment package effect’ at either absorption maximum (i.e. 

decreasing a*ph(λ) over increasing Chl-a) as observed in ocean waters. 

- The UV peak in phytoplankton absorption in the eastern basins corresponded 

with decreased CDOM absorption, indicating that cyanobacteria in these basins 

may compensate for this decrease in CDOM by producing photo-protective 

pigments, such as MAAs.  

- The data showed systematic trends in SIOPs across the basins, with significant 

differences in a*ph(350) and SCDOM as a function of distance from the Zala River 

inflow.  This is likely to be linked to the variable production of photo-protective 

pigments. 

- The proportion of aNAP(λ) was significantly correlated with PIM, demonstrating 

the large contribution from inorganic matter to non-algal particulate absorption. 

- The differing nature of organic particles which make up the NAP pool in Lake 

Balaton contributed to the observed variations in SNAP, particularly for low 

levels of TSM (<10 mg L-1) and aNAP(440) (<0.1 m-1). 

- Substantial wind-driven resuspension of sediment was observed on one 

sampling day, with this process one of the key drivers behind the observed 

variability in the (S)IOPs in Lake Balaton. 

  

Chapter 4 – Scattering and backscattering of suspended matter in an optically complex, 

shallow lake 

- Particulate scattering [bp(λ)] was found to account for a very high percentage of 

the total attenuated light due to particles (maximum of 85-99%), which is 

consistent with a mineral-dominated water body. 
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- In contrast with the strong relationship between the particulate attenuation 

coefficient [cp(660)] and Chl-a found in ocean waters, cp(660) was strongly 

correlated to TSM and particularly PIM in Lake Balaton.  As most of the 

variability in lake TSM concentrations was explained by PIM, this again 

emphasises the strong contribution of the mineral particles to particulate 

attenuation. 

- There was a decline in particulate scattering [bp(531.3)] and particulate 

attenuation [cp(660)] coefficients alongside diminishing concentrations of Chl-a, 

TSM, POM and phytoplankton and cyanobacteria biomass, although only 

minimal differences in bbp(532) were measured across the basins. 

- A stronger relationship between particulate scattering and backscattering 

properties was found with PIM, as opposed to POM.  This was a result of the 

high percentage of minerogenic particles (>50% PIM) across the lake, which 

have a higher relative refractive index and therefore are more efficient 

backscatterers than organic particles (e.g. phytoplankton). 

- The range of b*bp(532) was similar to that recorded in other inland waters (mean 

= 0.0146 ± 0.00199 m2 g-1, CV=14%), suggesting  mass-specific backscattering 

is driven by the consistently high PIM:TSM ratio across the lake. 

- The significant relationship between the particulate backscattering ratio (b̃bp) 

and POM, Chl-a and phytoplankton and cyanobacteria biomass is likely due to 

the significant variations in organic matter across the basins.  Thus, scattering 

efficiency is driven by changes in the organic particles in Lake Balaton and 

possibly changes in cell size and composition.  For example, small cells are 

more efficient scatterers than larger cells, and diatoms are more efficient at 

scattering light than cyanobacteria. 

- The significant relationship between b̃bp and the Junge coefficient (ξ) indicates 

the strong contribution of particle size on scattering efficiency in Lake Balaton. 

- The bulk particle refractive index (n̅p) values in Lake Balaton were higher than 

other studies on oceans and eutrophic lakes, ranging from 1.15-1.23, and this is 

likely due to the greater proportion of “hard” inorganic suspended matter (e.g. 

dolomite) than found in other water bodies.   

- The highest n̅p values were recorded during a period with significant wind-

driven resuspension of sediments, indicating that sediment resuspension causes 
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an increase in the mean refractive index of the particle assemblage as a result of 

the higher proportion of suspended minerogenic particles. 

- These findings have implications to the accuracy of bio-optical and semi-

analytical retrieval algorithms that estimate backscattering coefficients in turbid 

mineral-dominated waters. 

 

Chapter 5 – Evaluation of algorithms for retrieval of cyanobacterial pigments in highly 

turbid, optically complex waters using MERIS data 

- The SCAPE-M_B2 atmospheric correction was validated with coincident in situ 

water-leaving reflectance data over Lake Balaton. 

- Simis05 provided more accurate PC retrievals than more complex bio-optical 

inversion models (Mishra13 and Li15), which is likely related to the higher 

concentration of PIM in Lake Balaton than in the calibration datasets used to 

develop the Mishra13 and Li15 algorithms. 

- The Gons05 and Simis05 algorithms retrieved pigment concentrations from 

MERIS data in Lake Balaton with high accuracy (±1 day: RMSElog<0.39, 

Biaslog<0.33, MAPE<151%). 

- Estimated Chl-a and PC concentrations from Gons05 and Simis05 could also be 

partially-validated with total phytoplankton and cyanobacteria biomass, 

respectively (±1 day: R2>0.462, p<0.0001).  The latter is likely due to the fact 

that cyanobacteria biomass is related to PC concentrations in Lake Balaton. 

- The ability to retrieve Chl-a with Gons05 deteriorated only slightly over the ±1 

to 7 day temporal window for validation matchups, while a more marked 

decline in accuracy was noted for PC retrievals with Simis05.  This is possibly 

because the ephemeral spatial dynamics of cyanobacteria (e.g. vertical migration 

and subsurface maxima) may not be captured by satellite remote sensing if the 

in situ sample is temporally distant from the time of image capture.   

- Same-day purpose-collected in situ data (August 2010 campaign) unsurprisingly 

showed the best agreement with MERIS retrieved Chl-a and PC concentrations, 

highlighting the importance of collecting dedicated in situ data for validation. 

- Mean measured a*ph(665) in Lake Balaton was actually lower than the value 

used in the Gons05 algorithm to retrieve Chl-a; however, use of the measured 

a*ph(665) overestimated Chl-a by a factor of ~2 and was a poorer representation 

of in situ concentrations.  This suggests that algorithms need to be tuned 
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regionally or to different water optical types, including model coefficients for 

estimation of aph(665) and a*ph(665) for accurate conversion to Chl-a. 

- The Gons05 algorithm also over-estimated aph(665) compared to the measured 

values from the August 2010 sampling campaign; however, because the 

standard algorithm uses a higher a*ph(665), the errors effectively cancelled out 

and resulted in good agreement between MERIS-retrieved and in situ Chl-a. 

- In situ measurements of the bb(λ) coefficient showed little variation in bb(λ) 

between 532 and 650 nm, although bb(λ) was up to ~30% higher in the blue 

wavelengths (470 nm).  This suggests the assumption of spectrally neutral 

backscattering for the Gons05 algorithm may be valid in Lake Balaton, however 

multi- or hyperspectral backscattering measurements would provide improved 

assessment of this assumption.   

- No relationship was found between MERIS retrieved bb(778.75) and in situ 

bb(650), suggesting the estimation of bb(778.75) by the Gons05 and Simis05 

algorithms is a potential source of error to pigment retrievals.  However, 

substitution of the measured bb(650) does not appreciably alter the accuracy of 

Chl-a retrievals from Gons05. 

- Poor accuracy and high scatter was noted for retrieval of low Chl-a 

concentrations (<10 mg m-3) using Gons05.  Similar results have been 

confirmed with other Chl-a retrieval algorithms (e.g. NDCI and FLH). 

- The Simis05 and Gons05 algorithms may be better considered as part of an 

ensemble approach, as a single algorithm is unlikely to work in all conditions, 

even within a single lake system. 

- This study proves the effectiveness of collecting IOP measurements alongside 

pigment and satellite data in order to better analyse and possibly tune the 

performance of semi-analytical and analytical inversion algorithms. 

 

Chapter 6 – Multi-scale remote sensing observations of water quality in a large, turbid 

shallow lake 

- The ATCOR4 and MODIS/6S atmospheric corrections were validated with 

coincident in situ water-leaving reflectance data over Lake Balaton for AISA 

Eagle and Landsat 5 TM data, respectively.   

- Chl-a was retrieved with low errors using the Normalised Difference 

Chlorophyll Index (NDCI) for all multi- and hyperspectral datasets, indicating 
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the utility of the NDCI approach for multiple datasets for monitoring 

phytoplankton biomass in optically complex lakes.  The best agreement with in 

situ concentrations were for the hyperspectral datasets (HyperSAS and AISA 

Eagle). 

- MERIS retrieved Chl-a more accurately than Landsat 5 TM, however this is 

likely due to the fact that Landsat 5 TM has broader spectral bands and is 

therefore less able to resolve the Chl-a absorption feature.  Landsat 5 TM also 

has poorer radiometric resolution than MERIS (8-bit vs. 16-bit) and is thus less 

capable of distinguishing differences in incoming reflectance. 

- There was a marked increase in errors when AISA Eagle data was degraded 

from 35 to 300 m resolution, while no significant increase in errors was shown 

for degradation of the Landsat 5 TM data from 30 to 330 m resolution.  This 

may be due to the large bandwidths for Landsat 5 TM, which outweighs 

differences due to changes in spatial resolution. 

- The range of retrieved Chl-a concentrations (for match-up with in situ stations) 

increased by over 30% with the degradation of spatial resolution for the Landsat 

5 TM dataset (Table 6.5).  This may be due to a misinterpretation of shoreline 

pixels or pixels with high TSM as greater concentrations of Chl-a.  This 

exemplifies the loss of ability to detect the subtle heterogeneity in Chl-a 

distribution at coarser spatial resolution. 

- All four water-leaving reflectance datasets retrieved Chl-a concentrations with 

high accuracy.  Therefore, it may be that high spatial resolution allows for 

detection of fine structures and heterogeneity in a system, but is not as important 

as spectral and temporal resolution with regard to more general water quality 

monitoring purposes in large lakes. 

7.3 The future of remote sensing for monitoring freshwater 

phytoplankton 

The operational use of remote sensing for inland waters is becoming a reality, as 

an increasing number of studies collect bio-geo-optical and remote sensing data over a 

range of complex water bodies.  Recently launched satellite sensors will continue to 

progress the ability to monitor lakes, particularly the Multispectral Imager (MSI) on 

board Sentinel-2 and the Ocean and Land Colour Instrument (OLCI) on board Sentinel-

3.  A list of recently launched and forthcoming instruments relevant to inland water 
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remote sensing is provided in Table 7.1 [adapted from Tyler et al. (2016)].  The 

research in this thesis has shown the utility of previous sensors with similar spatial and 

spectral resolution (e.g. Landsat 5 TM and MERIS) for the retrieval of both bulk 

phytoplankton (Chl-a) and cyanobacteria biomass (PC) from an optically complex lake.  

Although no longer active, the long-term archives of Landsat and MERIS have proved 

valuable towards validating and improving in-water algorithms for retrieval of lake 

water quality parameters, and this work will no doubt continue as more datasets become 

available for contemporary satellite-based instruments. 
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Table 7.1 List of relevant recently launched or forthcoming satellite-based instruments for the remote sensing of inland waters [adapted from 

Tyler et al. (2016)].  Italicised entries indicate satellite instruments that are not yet launched. 

Sensor Satellite Spectral Resolution (nm) Spatial 

Resolution 

(m) 

Temporal 

Resolution 

(days) 

Radiometric 

Resolution Spectral 

range 

Number of 

bands 

ETM Landsat 7 450-2350 8 10 16 8-bit 

Aster Terra 520-1165 14 15 16 8-bit 

OLI Landsat 8 435-2294 9 15 16 12-bit 

CHRIS Proba-1 415-1050  19 18 7 12-bit 

Hyperion EO-1 400-2500 220 30 16 12-bit 

HICO International 

Space Station 

300-1000 87 100 3 14-bit 

VIIRS NPP and JPSS 402-11,800 22 370 1 12-bit 

AVHRR 3 NOAA-18 580-1250 6 1100 1 12-bit 

MCI Sentinel-2 425-1405 13 10, 20 and 60 5 12-bit 

OLCI Sentinel-3 400-1020 21 300 ~2 16-bit 

HSI EnMAP 420-1000 89 (VNIR) 30 4 14-bit 

Ocean 

Ecosystem 

Spectrometer/ 

Radiometer 

PACE 350-800, 

865,940-

2250 

5 nm 

resolution 

(350-800) 

1000 2 ? 

VSWIR 

Imaging 

Spectrometer 

HyspIRI 380-2500 212 (VSWIR) 60 19 14-bit 

Not yet 

selected 

GEO-CAPE Possibly hyperspectral 375 Geostationary 

(95°-100°W) 

? 
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However, there remain significant challenges to the development of accurate 

remote sensing products from inland waters, and future research should focus on these 

elements.  Firstly, there continues to be a need for further characterisation of the bio-

geo-optical properties, with respect to seasonal and spatial differences between and 

within water bodies.  The full range of (S)IOP values must be considered in bio-optical 

models for the inversion of phytoplankton pigments in order to avoid significant 

uncertainties in retrieved values.  The research in this thesis highlighted that the 

(S)IOPs can vary significantly within a large lake, as well as quantified the differences 

in (S)IOPs in lakes as compared to marine waters (Chapters 3 and 4). This research 

further identified the impact (S)IOP estimates have in a semi-analytical model for 

pigment retrieval, emphasizing the importance of correctly parameterising these 

coefficients in order to obtain accurate phytoplankton pigment products (Chapter 5).  

However, Lake Balaton is a case study for a water body in which optical properties are 

primarily driven by resuspended inorganic particulates, therefore it is pertinent to 

continue to characterise the spatio-temporal differences in (S)IOPs across and within 

other optically complex inland waters.  This research contributes towards the 

progression of analytical algorithms that use estimates of absorption and scattering 

coefficients for pigment retrieval in optically complex waters, although it has recently 

been acknowledged that a comprehensive understanding of the sources and magnitude 

of the variability in (S)IOPs for inland waters is still required (Mouw et al., 2015, 

Palmer et al., 2015b, Tyler et al., 2016).  Ultimately, improved knowledge of the 

variability in the bio-geo-optical properties of inland waters can both: 1) reduce the 

associated errors for pigment retrieval using semi-analytical and analytical algorithms 

and 2) assist with the algorithm selection process, in order to facilitate the most 

appropriate choice for a water body with a specified range of optical properties. 

Secondly, there needs to be a more unified and systematic approach for the 

remote sensing of inland waters.  There has been a large increase in the number of 

algorithms developed for lakes and coastal waters since the designation of this research 

area as a priority by the International Ocean Colour Coordinating Group (IOCCG, 

2000).  However, many algorithms are site-specific or have yet to be tested 

independently on other inland water types or with other satellite datasets.  In fact, the 

research presented in this thesis has implications for algorithm application in large 

shallow lakes with biogeochemical gradients (e.g. Lake Balaton), and calls into 

question whether a sole algorithm for constituent extraction is even suitable across a 



 

248 

 

single lake.  For example, large lakes with variable biogeochemistry may require basin-

specific remote sensing algorithms for accurate parameter retrieval (Campbell et al., 

2011).  It has been recently recommended that a “menu” style approach may prove 

useful, where the most appropriate algorithm(s) can be selected for retrieval in certain 

lake types with specific ranges of (S)IOPs and biogeochemical parameters (Mouw et 

al., 2015).  In this case, a more coordinated algorithm comparison effort is required to 

clearly identify the strengths and limitations of each model.  Alongside coincident 

collection of bio-geo-optical properties, such work would help establish the 

applicability and quantify uncertainties of each algorithm within each optical water type 

or class.  The research in this thesis confirmed the effectiveness of collecting IOP 

measurements alongside pigment and satellite data in order to analyse the performance 

of analytical algorithms (Chapter 5).  However, there remain abundant opportunities for 

similar work to enable more informed decisions on the parameterisation of models (e.g. 

via optical classification) in order to improve the accuracy of pigment retrieval and 

achieve model transferability among inland waters. There is a need for future work to 

determine the ability for current algorithms to accurately retrieve water quality 

parameters using both the past satellite data archive (e.g. Landsat and MERIS) and 

present and recently launched instruments (e.g. MSI and OLCI) in a range of inland 

waters, given the technological constraints of contemporary satellite instruments (i.e. 

spatial, spectral, radiometric and temporal resolutions). 

 Lastly, this research highlights the value of cross-comparisons of remote sensing 

instruments, algorithms and correction procedures.  It has been widely recognised that 

there is a need for further validation of atmospheric and adjacency corrections over 

inland waters, as these can form a major source of uncertainty in the retrieval of water 

quality parameters, as also demonstrated by Palmer et al. (2015b).  This thesis validates 

novel atmospheric corrections for MERIS (Chapter 5), Landsat 5 TM and AISA Eagle 

(Chapter 6) data.  However, many atmospheric corrections have been developed for use 

over land or oceans and have yet to be proven useful over inland waters.  Additionally, 

the comparative research in this thesis highlights that phytoplankton pigment retrieval 

algorithms may be instrument-specific and do not retrieve pigment concentrations as 

accurately when applied to other instruments (e.g. NDCI and Landsat 5 TM; Chapter 6).  

Further studies investigating multi-scale observations may also help to address the 

needs of future satellite missions.  For example, in this thesis it was observed that all 

four water-leaving reflectance datasets (MERIS, Landsat 5 TM, AISA Eagle and in situ 
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radiometry) could retrieve Chl-a concentrations with high accuracy.  It may be that high 

spatial resolution data allow for detection of fine structures and heterogeneity in a 

system, but are not vital with regard to more general water quality monitoring purposes 

(i.e. monitoring lake median Chl-a concentration).  Therefore, perhaps more emphasis 

should be placed on appropriate spectral resolutions to capture the phytoplankton 

pigment absorption features (e.g. 620 nm for PC) and high temporal resolution datasets 

to capture the ephemeral nature of cyanobacteria blooms in inland waters.  Such studies 

are needed to help resolve the optimal capabilities for future coastal and inland satellite 

missions and prioritise future investments. 

Although there remain challenges to the accurate remote sensing of inland 

waters, these shortcomings are already being addressed within the research community.  

New earth observation missions are in place to continue to provide data for use over 

inland waters, such as the European Space Agency’s Copernicus programme.  In fact, 

the Sentinel-3A satellite was very recently launched on 6 February 2016.  This satellite 

is the first of two that will carry the Ocean and Land Color Instrument (OLCI), which 

continues the 300 m resolution global coverage for inland waters that began with the 

MERIS instrument on-board Envisat (active from 2002-2013).  Future missions are 

planned for the launch of hyperspectral and/or high spatial resolution satellite 

instruments (e.g. EnMap, PACE, HyspIRI, GEO-CAPE), which will improve the 

capacity to detect and map the dynamic distribution of phytoplankton in lakes.  

Furthermore, many planned and recently launched satellite sensors have bands in the 

near infrared, specifically aimed at improving atmospheric correction over inland water 

bodies (Tyler et al., 2016).  Advancements are also occurring in the testing and 

development of atmospheric correction of satellite data over turbid waters, e.g. (Jaelani 

et al. 2015).  Additionally, there are ongoing validation efforts of current Chl-a retrieval 

algorithms (Dalu et al., 2015, Lyu et al., 2015, Feng et al., 2015, Palmer et al., 2015c, 

Lesht et al., 2016, Ali & Ortiz, 2016) and an increasing number of studies testing and 

developing PC algorithms over inland waters (Duan et al., 2012, Lyu et al., 2013, Sun 

et al., 2013, Qi et al., 2014, Torbick & Corbiere, 2015, Kudela et al., 2015, Sun et al., 

2015, Li et al., 2015).  Coordinated efforts are also emerging to further data availability 

and establish a strategy for implementing global water quality monitoring.  For 

example, LIMNADES (Lake Bio-optical Measurements and Matchup Data for Remote 

Sensing; www.globolakes.ac.uk/limnades) is a recently launched online database of 

(S)IOP and biogeochemical data which aims to increase access to matchup data for 

http://www.globolakes.ac.uk/limnades
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algorithm development and validation over lakes.  Thus, advancements in spaceborne 

technology, improved atmospheric corrections, continued validation of phytoplankton 

pigment retrieval algorithms and a coordinated effort to collect bio-geo-optical 

information will assist the inland water remote sensing community towards the goal of 

operational monitoring.  Despite the challenges that remain, the future of inland water 

remote sensing is positive and the potential for operational monitoring is real.   
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8 Appendix – Supplementary Methods 

 

8.1 August 2010 field campaign on Lake Balaton 

8.1.1 Details of the campaign 

The August 2010 field campaign on Lake Balaton forms the fundamental dataset 

applied in this thesis for investigation of bio-geo-optical properties and remote sensing 

of inland waters [funded by the National Environmental Research Council (NERC) 

Airborne Research and Survey Facility (ARSF) with in situ optics provided by an 

equipment grant from NERC Field Spectroscopy Facility (FSF) (Loan ref EU10-03)].  

The work presented in this thesis is built on the campaign in August 2010 aimed at 

collecting a coincident dataset of multi-spectral satellite, hyperspectral airborne, and in 

situ radiometric, bio-optical and biogeochemical data for the purposes of testing and 

developing remote sensing retrieval algorithms on Lake Balaton.   

Coincident with this project, the European Facility for Airborne Research 

(EUFAR) funded collection of laser scanning (LiDAR) altimetry point-cloud data over 

the lake and shoreline.  These LiDAR and airborne hyperspectral data (AISA) have 

been recently used for the mapping of aquatic vegetation (Zlinszky et al., 2012), 

monitoring wetland vegetation health and species type (Stratoulias et al., 2015a) and 

assessment of simulated Sentinel-2 data for lakeshore habitat mapping (Stratoulias et 

al., 2015b).   

8.1.2 Instrument specifications 

The sensors applied in this PhD thesis include the satellite-based instruments 

MERIS and Landsat 5 TM (Thematic Mapper) (Table 8.1).  Although no longer 

operational, these instruments have a strong heritage in inland water remote sensing and 

provide continuity with current and forthcoming instruments.  The MERIS data archive 

remains immensely useful for algorithm development and validation studies, 

particularly because the Ocean and Land Colour Instrument (OLCI) on the European 

Space Agency’s recently launched Sentinel-3 satellite will continue the global coverage 

at 300 m resolution and has a strong MERIS heritage.  Fundamental to the study of 

freshwater cyanobacteria blooms, MERIS also had a spectral band centered at 620 nm 

near the PC absorption maximum, and OLCI will additionally have this band.   
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The Landsat series of satellite-based instruments were first launched in 1972 

and are still in operation today, thus providing a longstanding chronicle of data.  A 

Landsat 5 TM overpass corresponded to the August 2010 survey of Lake Balaton, 

although the Ocean and Land Instrument (OLI) onboard Landsat 8 is the most recently 

launched of the Landsat series (2013).  In addition to the large archive, the higher 

spatial resolution (30 m pixel size) is a benefit to using Landsat data.  However, as 

Landsat instruments were developed for terrestrial applications, these advantages are 

offset by the lower spectral resolution.  Regardless, Landsat has been used to 

successfully retrieve water clarity (McCullough et al., 2013), total suspended matter 

(Torbick et al., 2013, Wu et al., 2015), Chl-a (Tebbs et al., 2013), phytoplankton group 

indicators (Torbick et al., 2013) and estimates of CDOM (Kutser, 2012, Brezonik et al., 

2015). 

Additionally, this thesis includes an airborne survey conducted with the 

Airborne Imaging Spectrometer for Applications (AISA) Eagle sensor, as this was the 

available hyperspectral sensor onboard the NERC ARSF aircraft at the time of the 

survey (August 2010; Table 8.1).  However, it is noted that NERC ARSF have now 

replaced AISA Eagle with the AisaFENIX.  The AISA Eagle is a hyperspectral 12-bit 

pushbroom sensor, with a spectral range of 400-970 nm and maximum spectral 

resolution of 2.9 nm.  The use of this sensor enables acquisition of high spatial 

resolution, hyperspectral data, which is invaluable to testing and developing retrieval 

algorithms for inland waters.  These data may better capture the heterogeneity in 

shallow waters, which satellite instruments may not adequately characterise.  

Lastly, in situ radiometry was performed using the HyperSAS, a system 

comprised of three hyperspectral radiometers. The radiometers measure downwelling 

irradiance [Es(λ)], surface radiance of the water [Lt(λ)] and sky radiance [Lsky(λ)], from 

which water-leaving radiance [Lw(λ)] and remote sensing reflectance [Rrs(λ)] can be 

calculated.  These in situ reflectance data were primarily measured in order to validate 

the atmospheric correction algorithms for satellite and airborne instruments. 
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Table 8.1 Details of sensors investigated in this study. 

Sensor Sensor Type No. of 

Bands 

Spectral 

range (nm) 

Spatial 

resolution 

(m) 

Revisit time 

(days) 

AISA Eagle Airborne 253 400-970  5 N/A 

Landsat 5 

TM 

Satellite 6a 450-2350 30 16 

MERIS  Satellite 15 390-1040 300 3 

HyperSAS in situ 

radiometry 

137 350-800 N/A N/A 

a Landsat 5 TM images consist of 7 bands, however Band 6 is a thermal band sampled 

at 120 m resolution. 

 

The in situ optics used in this thesis included a WET Labs AC-S, AC-9 and 

ECO-BB3 (Table 8.2).  The AC-9 and AC-S are spectrophotometers which measure 

spectral absorption and attenuation at 9 and 84 wavelengths, respectively.  These in situ 

measurements are used to supplement the laboratory measurements of absorption, and a 

comparison of in situ and laboratory methods is provided in Chapter 3.  Combined with 

laboratory measurements of particulate and CDOM absorption, the total non-water 

attenuation can also be attributed to the relative contributions from bp(λ), aCDOM(λ) and 

ap(λ) (see Chapter 4).  

Measurement of optical backscattering was conducted with a WET Labs ECO-

BB3 (Table 8.2).  These in situ data provided the basis for the results in Chapter 4.  The 

ECO-BB3 measures backscattering at the key wavelength of 532 nm, at which the 

literature typically reports the particulate backscattering and scattering coefficients and 

backscattering ratio.  However, it is noted that the latest instrument from WET Labs, 

the ECO-BB9, measures at 9 wavelengths to allow for measurement of backscattering 

over a wider spectral range. 

 

Table 8.2 Details of in situ optical sensors investigated in this study. 

Sensor Type No. of bands Spectral 

range (nm) 

AC-S Absorption and 

Attenuation 

Spectrometer 

84 400-730 

AC-9 Absorption and 

Attenuation 

Spectrometer 

9 412-715 

ECO-BB3 Backscattering 3 470, 532, 650 
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8.2 Algorithms examined in Chapters 5 and 6 

8.2.1 Gons05 (Chlorophyll-a) 

Using a commonly acknowledged relationship between inherent optical 

properties and reflectance (Gordon et al., 1975), backscattering is assumed to be 

spectrally neutral and is derived from a single wavelength in the near infra-red (NIR) 

(Gons, 1999), as detailed in Gons et al. (2005): 

𝑏𝑏(779) =
1.61×𝑅𝑟𝑠(779)

0.082−0.6×𝑅𝑟𝑠(779)
     (8.1) 

Total absorption at a particular wavelength can then be calculated from a reflectance 

ratio [Rrs(λ1)/ Rrs(λ2)], bb and absorption at λ2 [a(λ2)]: 

𝑎(λ1) =
𝑅𝑟𝑠(λ2)

𝑅𝑟𝑠(λ1)
× [𝑎(λ2) + 𝑏𝑏] − 𝑏𝑏     (8.2) 

where the reflectance ratio of λ1=665 nm and  λ2=709 nm is effective for retrieval of 

Chl-a (Mittenzwey et al., 1992, Dekker, 1993, Gons et al., 2002).  A correction factor, 

γ, was introduced by Simis et al. (2005) to relate the Rrs ratio to measured pigment 

absorption, thus obtaining the Gons05 algorithm for Chl-a absorption, modified from 

Gons et al. (2002, 2005): 

𝑎𝐶ℎ𝑙𝑎(665) = [(
𝑅𝑟𝑠(709)

𝑅𝑟𝑠(665)
× (𝑎𝑤(709) + 𝑏𝑏) − 𝑏𝑏 − 𝑎𝑤(665))] × 𝛾−1  (8.3) 

where 𝑎𝑤(709)=0.727 m-1 , 𝑎𝑤(665) = 0.401 m-1 and γ=0.68.   

Finally, the concentration of Chl-a can then be calculated by dividing the 

solutions to equation (8.3) by the specific absorption coefficient, a*Chla(665): 

[𝐶ℎ𝑙 − 𝑎] =
𝑎𝐶ℎ𝑙𝑎(665)

𝑎∗𝐶ℎ𝑙𝑎(665)
     (8.4) 

where a*Chla(665) is 0.0139 m2mg-1 for uncorrected Chl-a (Gons et al., 2005). 

 

8.2.2 Simis05 (Phycocyanin) 

The semi-empirical, nested band-ratio algorithm developed by Simis et al. 

(2005, 2007) evolved from the Chl-a retrieval algorithm initially presented by Gons 

(1999) with updated coefficients in Gons et al. (2002, 2005).  As in the Gons05 

algorithm, the backscattering coefficient is estimated in the NIR (Equation 8.1).  

However, for PC retrieval, λ1=620 nm and λ2=709 nm is applied for the reflectance ratio 

in Equation 8.2 (Simis et al., 2005).  
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It is assumed that PC and Chl-a comprise absorption at 620 nm, as apparent 

from reflectance spectra of cyanobacteria-dominated waters.  Thus, in order to estimate 

PC absorption alone at this wavelength, summative pigment absorption at 620 nm is 

calculated first. A factor δ is introduced for the correction of a(620), and the summed 

absorption of PC and Chl-a at 620 nm is estimated as: 

𝑎𝐶ℎ𝑙𝑎(620) + 𝑎𝑝𝑐(620) = [
𝑅𝑟𝑠(709)

𝑅𝑟𝑠(620)
× (𝑎𝑤(709) + 𝑏𝑏) − 𝑏𝑏 − 𝑎𝑤(620)] × 𝛿−1 (8.5) 

where 𝑎𝑤(620)=0.281 m-1  and δ= 0.84.  

Absorption by PC can then be derived by subtracting the absorption by Chl-a at 

620 nm, using a conversion factor 𝜀, which relates in vivo absorption by Chl-a at 665 

nm to its absorption at 620 nm: 

𝑎𝑝𝑐(620) = [
𝑅𝑟𝑠(709)

𝑅𝑟𝑠(620)
× (𝑎𝑤(709) + 𝑏𝑏) − 𝑏𝑏 − 𝑎𝑤(620)] × 𝛿−1 − (𝜀 × 𝑎𝐶ℎ𝑙𝑎(665))

           (8.6) 

where 𝜀 = 0.24. 

Finally, the concentration of pigment can then be calculated by dividing the 

solution to equation (8.6) by the specific absorption coefficient, a*pc(620): 

[𝑃𝐶] =
𝑎𝑝𝑐(620)

𝑎∗𝑝𝑐(620)
     (8.7) 

where a*pc (620) is 0.007 m2mg-1, respectively (Simis et al., 2007). 

8.2.3 Mishra13 (Phycocyanin) 

The Mishra13 inversion algorithm was applied for PC retrieval as in Mishra et 

al. (2013), which is an extension of the quasi-analytical (QAA) for Chl-a retrieval 

developed by Lee et al. (2002).  However, the wavelengths used were adapted to 

coincide with MERIS band centers.  The steps for retrieval of PC concentration using 

the Mishra13 algorithm as applied in this thesis are summarised below. 

Above surface remote sensing reflectance (Rrs) is first converted to subsurface 

remote sensing reflectance (rrs) using the following equation: 

𝑟𝑟𝑠 = 𝑅𝑟𝑠/(0.52 + 1.7𝑅𝑟𝑠)     (8.8) 

rrs is a function of u, which is defined as the ratio of the backscattering 

coefficient (bb) to the sum of total absorption (a) and backscattering coefficients:  

𝑢(𝜆) =
𝑏𝑏(𝜆)

𝑎(𝜆)+𝑏𝑏(𝜆)
     (8.9) 

u is then empirically derived from rrs as in Gordon et al. (1988): 
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𝑢(𝜆) =
−𝑔0+√(𝑔0)2+4𝑔1𝑟𝑟𝑠(𝜆)

2𝑔1
     (8.10) 

where g0=0.089 and g1=0.125. 

 Total absorption coefficients can then be estimated at a reference wavelength 

(λ0) as a function of the absorption coefficient of water [aw(709)]: 

𝑎(𝜆0) = 𝑎𝑤(709) + 10−0.8125−2.3404𝜒+1.24𝜒
2
  (8.11) 

where λ0=708 nm, as parameterised for turbid and productive waters in Mishra et al. 

(2014), aw(709)=0.7204 and  

𝜒 = 𝑙𝑜𝑔10 (
0.01∗𝑟𝑟𝑠(442.5)+𝑟𝑟𝑠(620)

𝑟𝑟𝑠(708.75)+0.005∗
𝑟𝑟𝑠(620)

𝑟𝑟𝑠(442.5)
∗𝑟𝑟𝑠(620)

)   (8.12) 

Next, the particulate backscattering coefficient at the reference wavelength 

[bbp(λ0)] is retrieved as follows: 

𝑏𝑏𝑝(𝜆0) =
𝑢(𝜆0)𝑎(𝜆0)

1−𝑢(𝜆0)
− 𝑏𝑏𝑤(𝜆0)    (8.13) 

The particulate backscattering coefficients at other wavelengths [bbp(λ)] are then 

estimated from bbp(λ0): 

𝑏𝑏𝑝(𝜆) = 𝑏𝑏𝑝(𝜆0) (
𝜆0

𝜆
)
𝜂

    (8.14) 

where the spectral power, η, is empirically estimated as: 

𝜂 = 2.0 {1 − 1.2𝑒𝑥𝑝 [−0.9
𝑟𝑟𝑠(442.5)

𝑟𝑟𝑠(560)
]}   (8.15) 

 The total absorption coefficient [a(λ)] can thus be calculated as: 

𝑎(𝜆) =
(1−𝑢(𝜆))(𝑏𝑏𝑤(𝜆)+𝑏𝑏𝑝(𝜆))

𝑢(𝜆)
    (8.16) 

 The total absorption coefficient is then further decomposed into the combined 

absorption by coloured dissolved organic matter (CDOM) and detrital matter [aCDM(λ)] 

and phytoplankton absorption [aph(λ)]: 

𝑎𝐶𝐷𝑀(443) =
[𝑎(412.5)−𝜁𝑎(442.5)]−[𝑎𝑤(411)−𝜁𝑎𝑤(411)]

𝜉−𝜁
  (8.17) 

where 

𝜁 =
𝑎𝑝ℎ(411)

𝑎𝑝ℎ(443)
= 0.74 +

0.2

0.8+𝑟𝑟𝑠(442.5)/𝑟𝑟𝑠(560)
  ,  (8.18) 

𝜉 =
𝑎𝐶𝐷𝑀(411)

𝑎𝐶𝐷𝑀(443)
= 𝑒𝑆(443−411)    (8.19) 

and aw(411)=0.0068. 

aCDM(λ) can then be calculated using the exponential function: 

𝑎𝐶𝐷𝑀(𝜆) = 𝑎𝐶𝐷𝑀(443)𝑒
−𝑆(𝜆−443)   (8.20) 
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where the slope S  is 0.02.  aph(λ) is subsequently calculated by subtraction of aw(λ) and 

aCDM(λ) from total absorption: 

𝑎𝑝ℎ(𝜆) = 𝑎(𝜆) − 𝑎𝑤(𝜆) − 𝑎𝐶𝐷𝑀(𝜆)   (8.21) 

 

 It is assumed that aph(λ) is approximately equal to absorption by chlorophyll-a 

and phycocyanin [aph(λ)≈achl(λ)+apc(λ)] at λ=665 and 620 nm, and apc(620) is retrieved 

as: 

𝑎𝑝𝑐(620) =
𝜓1𝑎𝑝ℎ(620)−𝑎𝑝ℎ(665)

𝜓1−𝜓2
   (8.22) 

where ψ1=achl(665)/achl(620) and ψ2=apc(665)/apc(620). 

Finally, PC concentrations are calculated by dividing apc(620) by the specific 

absorption coefficient of PC, a*pc(620): 

𝑃𝐶(𝑚𝑔𝑚−3) =
𝑎𝑝𝑐(620)

𝑎∗𝑝𝑐(620)
    (8.23) 

For the application of Mishra13 in this thesis (Chapter 5), PC concentration was 

calculated using two different values of a*pc(620) from Simis et al. (2005) and Mishra 

et al. (2013) (0.007 and 0.0048 m2 mg-1, respectively).   

 

8.2.4 Li15 (Chlorophyll-a) 

The Li15 algorithm is an extension of the IIMIW model presented in Li et al. 

(2013) for the retrieval of Chl-a.  The steps for the application of the Li15 algorithm 

used in this thesis are as in Table 3 of Li et al. (2015), with wavelengths adapted to 

correspond with MERIS band centers, and are summarised below. 

Above surface remote sensing reflectance (Rrs) is first converted to subsurface 

remote sensing reflectance (rrs) using the following equation, as in Li et al. (2015): 

𝑟𝑟𝑠 = 𝑅𝑟𝑠/0.54     (8.24) 

The backscattering coefficient at MERIS band 12 [bb(778.75)] is then estimated 

as a function of rrs(778) and absorption by pure water [aw(778)]: 

𝑏𝑏(778.75) =
𝑟𝑟𝑠(778.75)𝑎𝑤(778)

0.082−𝑟𝑟𝑠(778.75)
   (8.25) 

The spectral power, η, is empirically estimated as: 

𝜂 = 2.0 {1 − 1.2𝑒𝑥𝑝 [−0.9
𝑟𝑟𝑠(442.5)

𝑟𝑟𝑠(560)
]}   (8.26) 

The particulate backscattering coefficient at 560 nm [bbp(560)] can then be retrieved as 

follows: 



 

258 

 

𝑏𝑏𝑝(560) = [𝑏𝑏𝑝(778.75) − 𝑏𝑏𝑤(778.75)]/(0.7198)
𝜂  (8.27) 

and the backscattering coefficients at other wavelengths [bb(λ)] are then estimated from 

bbp(560): 

𝑏𝑏(𝜆) = 𝑏𝑏𝑝(560) (
560

𝜆
)
𝜂

+ 𝑏𝑏𝑤(𝜆)   (8.28) 

Subsequently, total minus water absorption [at-w(λ)], or absorption of particulate 

(p) and dissolved (g) matter [apg(λ)], can be calculated as:  

𝑎𝑡−𝑤(𝜆) =
𝑟𝑟𝑠(708.75)𝑏𝑏(𝜆)[𝑎𝑤(708.75)+𝑏𝑏(708.75)]

𝑟𝑟𝑠(𝜆)𝑏𝑏(708.75)
− 𝑏𝑏(𝜆) − 𝑎𝑤(𝜆)  (8.29) 

At this point in the algorithm steps, Chl-a concentration can be estimated using 

three different approaches, as outlined in Li et al. (2013).  Total absorption is further 

partitioned into aCDM(λ) and aph(λ) by first calculating the in vivo phytoplankton 

absorption without the contribution from PC [aph-pc(λ)]: 

𝑎𝑝ℎ−𝑝𝑐(𝜆) = 1.1872𝐶1(𝜆)𝑎𝑡−𝑤(665) + 𝐶2(𝜆)   (8.30) 

where C1 and C2 are the wavelength dependent regression coefficients outlined in 

Table B1 of Appendix B in Li et al. (2015). 

 The combined absorption of CDOM, NAP and PC [aCDM+pc(λ)] is then 

calculated by subtraction: 

𝑎𝐶𝐷𝑀+𝑝𝑐(𝜆) = 𝑎𝑡−𝑤(𝜆) − 𝑎𝑝ℎ−𝑝𝑐(𝜆)   (8.31) 

 Absorption by CDM [aCDM(λ)] can then be calculated using the spectral slope of 

CDM (SCDM): 

𝑎𝐶𝐷𝑀(𝜆) = 𝑎𝐶𝐷𝑀(412.5)exp[−𝑆𝐶𝐷𝑀 × (𝜆 − 412.5)]  (8.32) 

where it is assumed aCDM(412.5)=aCDM+pc(412.5) and SCDM is set to 0.020 nm-1, the 

mean measured value of SCDOM for Lake Balaton in 2010.  aCDM(708.75) is set to 0, with 

aCDM(λ) values adjusted accordingly. 

  The phytoplankton absorption coefficients [aph(λ)] can then be calculated by 

subtraction: 

𝑎𝑝ℎ(𝜆) = 𝑎𝑡−𝑤(𝜆) − 𝑎𝐶𝐷𝑀(𝜆)   (8.33) 

The phycocyanin absorption coefficient [apc(620)] is then calculated as the difference 

between phytoplankton absorption and non-PC phytoplankton absorption at 620 nm: 

𝑎𝑝𝑐(620) = 𝑎𝑝ℎ(620) − 𝑎𝑝ℎ−𝑝𝑐(620)   (8.34) 

 Finally, PC concentration is calculated by division of apc(620) by the PC 

specific absorption coefficient [a*pc(620)]: 

𝑃𝐶(𝑚𝑔𝑚−3) = 𝑎𝑝𝑐(620)/𝑎 ∗𝑝𝑐 (620)  (8.35) 
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where a*pc(620) is set to either 0.0046 m2mg-1 as in Li et al. (2015) or 0.007 m2mg-1 as 

in Simis et al. (2005). 

8.2.5 Normalized Difference Chlorophyll Index, NDCI (Chlorophyll-a) 

The Normalized Difference Chlorophyll Index (NDCI) was proposed by Mishra 

and Mishra (2012) to estimate Chl-a concentration in turbid productive waters.  NDCI 

was designed to use water-leaving reflectance at the MERIS bands centered at 665 nm 

and 708 nm.  However, it is also easily employed for Landsat 5 TM data, using bands 3 

(630-690 nm) and 4 (760-900 nm), which is why it was chosen for use in this 

comparative study.  Thus, the NDCI uses the reflectance peak at ~708 nm which is 

maximally sensitive to variations in Chl-a, as well as the spectral absorption peak of 

Chl-a at ~665-675 nm, via the following equation: 

[𝐶ℎ𝑙 − 𝑎]𝛼
[𝜌𝑤(708)−𝜌𝑤(665)]

[𝜌𝑤(708)+𝜌𝑤(665)]
    (8.36) 

NDCI was subsequently fit against measured Chl-a using an exponential equation as 

this was found to be a better fit than linear or polynomial regressions:  

[Chl-a] = Aeb*NDCI    (8.37) 

The resulting exponential fit was then applied to obtain retrieved Chl-a concentrations.   
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8.3 Definitions of error metrics 

 

Where �̂�𝑖 is the measured concentration and 𝐶𝑖  is the estimated concentration, the 

following error metrics are defined as: 

Root Mean Square Error (RMSE): 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(�̂�𝑖 − 𝐶𝑖)2
𝑁

𝑖=1

 

 

Log Root Mean Square Error 

(RMSElog): 

 𝑅𝑀𝑆𝐸𝑙𝑜𝑔 = √
1

𝑁
∑(𝑙𝑜𝑔�̂�𝑖 − 𝑙𝑜𝑔𝐶𝑖)2
𝑁

𝑖=1

 

 

Mean Average Percent Error (MAPE): 

 𝑀𝐴𝑃𝐸(%) =
1

𝑁
∑|

�̂�𝑖 − 𝐶𝑖

�̂�𝑖
| × 100

𝑁

𝑖=1

 

 

Bias: 

𝐵𝑖𝑎𝑠 =
1

𝑁
∑(�̂�𝑖 − 𝐶𝑖)

𝑁

𝑖=1

 

 

Log of Bias (Biaslog): 

 𝐵𝑖𝑎𝑠𝑙𝑜𝑔 =
1

𝑁
∑(𝑙𝑜𝑔�̂�𝑖 − 𝑙𝑜𝑔𝐶𝑖)

𝑁

𝑖=1

 

 

 

Mean (μ): 

 𝜇 =
1

𝑁
∑𝐶𝑖

𝑁

𝑖=1

 

 

Standard Deviation (σ): 

 
𝜎 = √

1

𝑁
∑(𝐶𝑖 − 𝜇)2
𝑁

𝑖=1

 

 

Coefficient of Variation (CV): 

 
𝐶𝑉(%) = (

𝜎

𝜇
) × 100 
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