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Abstract Cloud elasticity augments applications to dy-

namically adapt to changes in demand by acquiring

or releasing computational resources on the fly. In the

past, we developed a framework for cloud elasticity uti-

lizing multiple feedback controllers simultaneously. Each

controller determines the scaling action with different

intensity, whereby the selection of a suitable controller

is realized with a fuzzy inference system. In this paper,

we aim to identify the similarities between cloud elas-

ticity and action selection mechanism in animal’s brain.

We treat each controller in our previous framework as

an action and propose a novel bio-inspired, soft switch-

ing approach. This approach integrates a basal ganglia

computational model as an action selection mechanism.

Initial experimental results demonstrate that the basal

ganglia based approach has higher potential to improve
the overall system performance and stability.
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1 Introduction

The popularity of web applications such as social net-

working, wikis, news portals and e-commerce applica-

tions are posing new challenges to the management of

underlying computational resources [1]. Such applica-

tions are subject to unpredictable workload conditions

that vary from time to time. For example,

i The higher workload on e-commerce website during

festivals or promotional schemes than normal such

as Amazon Christmas sale [2], recent China’s singles

day’ sale [3] etc.

ii A 10-time increase that Facebook experienced in

their users within a span of three hours [4].

iii Web applications with diurnal pattern, where the

workload arrival rate at day time is higher than

night (e.g. Wikipedia trace [5]).

The performance of such applications is of utmost im-

portance, as poor performance can result in the viola-

tion of Service Level Objectives (SLO). SLO violation

has a direct consequence of losing customers and thus

some business, e.g. every 100 ms of latency costs Ama-

zon 1 percent in sales [6].

Cloud computing with attractive features of pay-as-

you-go pricing model and elasticity is a perfect match

to host web applications that hold dynamically varying

workloads. Cloud elasticity allows applications to dy-

namically adjust the underlying resources as closely as

possible to the application demands, in response to the

changes observed in the environment such as workload

fluctuations. This enables cloud customers to pay only

for the resources that are used [7]. The client has to pro-

vide an elastic policy that maintains the performance

of a system at a desired level, as well as minimize the

infrastructure running cost. However providing such an
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elastic policy that determines the right amount of cloud

resources to meet system performance goals is a chal-

lenging task [8,9].

Control theory therefore provides a systematic method-

ology to develop feedback controllers [10,11] to imple-

ment the elasticity. Such methods are resilient to dis-

turbances caused by workload and usually satisfy a con-

straint or guarantee to maintain the output of a system

to a desired value [12]. An elastic feedback controller

maintains the performance of systems close to a de-

sired reference point by adjusting a manipulated vari-

able, such as the number of running virtual machines

[13]. The majority of existing proposals for elastic feed-

back controllers are designed with the use of one model

that captures the system behaviour over an entire oper-

ating period. However, such approaches cannot perform

well for systems that hold unpredictable workload con-

ditions.

Considering the time-varying workload nature of cloud

web applications, we have previously proposed an intel-

ligent multi-controller based framework for cloud elas-

ticity problems [14]. This framework distributes the sys-

tem among three feedback controllers, where each con-

troller can be designed for a particular operating region.

The three controllers employed are named Lazy, Moder-

ate and Aggressive. A switching mechanism was devel-

oped to determine the suitable controller at runtime.

The results obtained using this method demonstrate

a higher potential in achieving system stated perfor-

mance. However, such methods are subject to bumpy

transitions that can lead systems to an unstable state

[15,16].

Determining the optimal actions is an action se-

lection problem and has been the focus of research in

many fields [17,18]. There are evidences available which

prove that the decision of ’what has to be done next’ in

animal’s brain is managed centrally using a switching

mechanism in a brain nuclei called Basal Ganglia (BG)

[19,20]. Using this phenomenon, we aim to identify the

opportunity to exploit a biologically inspired approach

of action selection for cloud elasticity. This enables us

to treat the three controllers in our previous approach

as actions thus enhancing our work to propose a bio-

inspired soft-switching approach. The selection of right

controllers in more biologically plausible method will

increase the possibility of smoother transitions that re-

sult in better system stability.

The contributions of this paper are comprised of the

following:

i Formulation of cloud resource provisioning as an ac-

tion selection problem to demonstrate the applica-

bility of bio-inspired soft switching approach;

ii Integration of the BG based computation model de-

veloped in [21,22];

iii Fuzzy logic based salience generation model;

iv Evaluation of the proposed approach in compari-

son with some existing elastic approaches using real

workloads.

The rest of the paper is organized as follows. Section

2 and 3 provides an overview of related work and rel-

evant concepts respectively. Section 4 introduces our

previous approach, whereas Section 5 explains the pro-

posed enhancements to the existing framework. Section

6 describes the experimentation and evaluation work,

whereas Section 7 concludes the paper and briefly dis-

cusses the future work.

2 Related work

The existing literature on cloud elasticity is abundant.

However, to the best of our knowledge, there is no

such work that exploits a bio-inspired action selection

mechanism for cloud resource provisioning. Our moti-

vation of this work comes from the use of bio-inspired

approaches in complex systems for intelligent decision

making in fields like autonomous vehicle systems and

robotics [23,18,16,24–28].

Focusing on elasticity literature, the resource provi-

sioning proposal is versatile in nature as it highlights

the use of different techniques such as control theo-

retic feedback controllers, threshold-based rules, ma-

chine learning, etc [13,29]. The use of threshold based

rules is mostly common because of the commercially

available solutions such as Amazon [30] and Rightscale

[31]. Academic solutions are available as well, e.g. [32,

33]. The appealing feature of rule based techniques is

its simplistic nature. However, they require an in-depth

knowledge of the underlying system to properly set up

the rules [13]. Secondly, they are unable to cope with

sudden increase in workload [4].

Machine learning methods such as reinforcement learn-

ing are also used to implement elasticity [6,34,35]. How-

ever, such methods are often criticized for bad perfor-

mance due to long on-line training time and their inabil-

ity to cope with sudden burst [13]. Other approaches

include the use of elastic feedback controllers of various

nature (e.g. fixed [11,36,37] or adaptive [10,38]). Both

the fixed and adaptive approaches have their own mer-

its and drawbacks. For example, the fixed approaches

are criticized for unsuitable with dynamic and unpre-

dictable workload [39], while the adaptive controllers

have been blamed for unable to cope with sudden burst

in workload [13] and high computational cost because

of on-line estimation [39]. The multi-model approach
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in [39,40] is analogous to our approach, but with the

following two main differences: firstly, their selection of

suitable controller is only based on the prediction of

control error; secondly, it is not clear how the system

can be partitioned into sub models. The approaches

from [41–43] are different in the context, where each

of the approaches is applicable at the data centre level,

while our approach advocates fine grained resource con-

trol over the application level.

3 Action selection, basal ganglia and elastic

controller

Action selection is referred to the process of selecting

what to do next from a set of actions by an agent

based on some knowledge of internal state and some

provided sensory information of environmental context

to best achieve its desired goal [44]. Over the period, re-

searchers have learnt that in animal’s brain, the prob-

lem of action selection is handled through the use of

a central switching mechanism [19,20], which is imple-

mented by a group of subcortical nuclei collectively re-

ferred as Basal Ganglia (BG).

Based on the functional anatomy of BG, various

functional models of BG have been proposed [21,22,45,

46,17,47]. Focusing on the computational model [21,

22], competing actions are represented throughout the

nervous system. The brain subsystems send excitatory

signals that represent the behavioural expressions to

the BG. Each behavioural expression defines an action

in BG and its strength is determined by the salience

that represents the activity level of its neural repre-

sentation. These actions are mediated through the re-

lease of inhibitory signals. Thus in every iteration, the

functional model accepts a set of salience signals and

produces a set of selected and unselected signals. The

model can be run in one of three modes, i.e. Hard, Soft

or Gate mode. A maximum of one action can be selected

in Hard mode, whereas multiple actions can be selected

in Soft and Gate modes. However, in Soft mode, the se-

lected actions are returned as an output, whereas in the

case of Gate, the model returns the proportion of each

selected action. For a detailed functional anatomy of

BG refer to [48].

The elasticity controller takes a scaling decision based

on the current system performance, the available envi-

ronmental information such as workload disturbances

and internal state such as CPU utilization, memory

consumption, etc. Analysing the description of elastic

controllers and the general definition of action selec-

tion problem, we can argue that an elastic controller

is an autonomous agent and the problem of selecting

the suitable controller by our previous approach can be

mapped as an action selection problem. Therefore, we

aim to integrate the BG computational model as an ac-

tion selection mechanism. The problem can be defined

as how to select the right controller, which results in

an efficient readjustment of the underlying virtual ma-

chines as per the needs at that point of time.

4 Multi-controller based cloud resource

provisioning

In [14], we proposed a multi-controller based approach

to implement cloud elasticity. Considering the time-

varying workload nature of the cloud based web appli-

cations, this approach integrates multiple elastic feed-

back controllers simultaneously. Each controller can be

designed specifically for different operating region. Ex-

isting research on the use of multiple controllers still

lacks a standard approach that determines the parti-

tioning of a system among sub controllers [49]. There-

fore, this methodology uses the distribution of workload

intensity into various categories such as low, medium

and high by domain experts as a partitioning crite-

rion to design multiple models. A switching method-

ology is developed to decide the suitable controller at

runtime, based on current system behaviour. Figure 1

shows the architecture of this framework, whereas the

following subsections explain the various components of

the framework.

4.1 Control policy

The three controllers employed as can be seen in Fig-

ure 1 are named Lazy, Moderate and Aggressive. They

can be of any type. However, we have used the integral

control law for each one of them because of its simplis-

tic nature and the ability to remove the steady state

errors [11]. Moreover, it has been also used for some

similar problems [11,36]. The average CPU utilization

is used as a performance metric, whereas the number of

virtual machines is used as control input. This control

methodology adjusts the number of virtual machines to

keep the CPU utilization at a desired level. The integral

control law can be defined as follows:

ut+1 = ut + Ki ∗ (yref − yt) (1)

At each iteration, ut+1 represents the new number of

virtual machines, while ut denotes the current number

of virtual machines. Ki is the integral gain parameter,

which can be obtained off-line using a standard proce-

dure [15]. yref represents the desired CPU utilization,

and yt is the measured CPU utilization obtained from

system monitors.
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4.2 System monitoring

Every cloud provider facilitates their customers with an

Application Programming Interface (API) or monitor-

ing service to get access to various system level perfor-

mance metrics and log files, e.g. Cloudwatch by Ama-

zon. The elastic scaling decision is dependent on these

metrics as they represent the system behaviour at a par-

ticular time. Thus the system monitoring component of

an elastic controller can make use of system provided

API to obtain up-to-date measurement of various per-

formance metrics.

4.3 Switching mechanism

The switching mechanism selects a suitable controller at

each iteration based on the information obtained from

system monitoring component. This mechanism is ac-

tually a Fuzzy Inference System (FIS), which is con-

structed using the following three standard steps: (1)

specifying domain knowledge, (2) defining membership

functions, and (3) fuzzy rules. A brief description of

each step is provided below.

– Domain knowledge: The knowledge base of the sys-

tem consists of three parameters: Workload, Respon-

seTime and ControlError. The Workload and Re-

sponseTime are adapted from the work done in [4],

where they are constructed using the knowledge ob-

tained from domain experts (i.e. architects and ad-

ministrators). The ControlError represents the dif-

ference between the desired and measured CPU uti-

lization which is represented as:

et = yref − yt (2)

The ControlError has been divided into three lin-

guistic variables (i.e. Positive, Normal and Nega-

tive) which are obtained using the trial and error

Fuzzy variable Set member Range

Workload(arrival rate)
Low 0 — 48.9

Medium 30.7 — 67.94
High 56.41 — 100

Response time
Instantaneous 0 — 7.2

Medium 6.1 — 20
Low 18.2 — 100

Control error
Negative -5 — -100
Normal -10 — +10
Positive +5 — +100

Table 1: Ranges for fuzzy variables

method through experimentation. The Positive spec-

ifies that the measured CPU utilization is less than

the desired whereas the Negative represents that the

measured CPU utilization is higher than the desired

level. The Normal represents that either the error

is 0 or within a margin of uncertainty due to noise

or inaccuracy in the measurement. The full ranges

of all three parameters can be seen from Table 1.

– Membership functions: This converts crisp input into

corresponding fuzzy value. Introducing membership

functions is the first step of fuzzification process [50],

which defines the degree of crisp input against its

linguistic variables in the range [0,1]. The FIS in

our case contains three inputs and one output fuzzy

variables and therefore, four membership functions

in total. Figure 2 illustrates these membership func-

tions.

– Fuzzy rules: The fuzzy rules describe the relation-

ship between the inputs and outputs of the FIS.

Workload (arrival rate), Response time and Control

error are the inputs, whereas the output is Con-

troller. Every elasticity decision consists of two in-

gredients, i.e. the scaling actions and magnitude.

The magnitude depends on the selected controller,

whereas the scaling actions can be determined by

the value of Control error. There are three possi-

Fig. 1: Resource provisioning framework using multi-controller with fuzzy switching
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ble actions, i.e. no scaling, scale up, and scale down.

A positive Control error means scale down, nega-

tive means scale up, and normal means no scaling.

Therefore, we have only rules where ControlError is

either Positive or Negative. The following is one of

the switching rules. In this case a scale down oper-

ation is performed using Lazy controller.

IF

Possible values: high, middle or low︷ ︸︸ ︷
arrivalRate IS high AND

Possible values: instantaneous, medium or low︷ ︸︸ ︷
responseT ime IS instantaneous

AND error IS positive︸ ︷︷ ︸
Possible values: Positive, Negative or Normal

THEN controller IS lazy︸ ︷︷ ︸
Possible values: Aggressive, Moderate or Lazy

Similarly, the following rule specifies a scale up op-

eration using an Aggressive controller:

IF arrivalRate IS high AND responseT ime IS slow

AND error IS negative THEN controller IS aggressive

At each iteration, the overall process works as fol-

lows.

i The FIS obtains input values from the System

Monitoring component.

ii The input values are then fuzzified through the

defined membership functions.

iii The FIS then evaluates the rules and identifies

the output, i.e. Controller.

iv The Switch component then only activates the

output of selected controller.

v The elastic application then adds/removes vir-

tual machines to/from the existing cluster based

on the decision of the selected controller.

5 Basal ganglia inspired cloud resource

provisioning

The experimentation results obtained from our previ-

ous framework demonstrate that it has higher potential

to improve system performance in comparison with a

typical single feedback controller approach of elasticity.

However, the framework is based on the hard switching

mechanism, where the control methodology selects the

best controller at each iteration. Such a control method-

ology is subject to an undesirable phenomenon called

bumpy transition occurred when the switching among

various operating regions. This phenomenon causes os-

cillation [15,16] that leads the system to an unstable

state, where cloud resources can be acquired/released

in a periodic way. The oscillation of resources may have

deteriorating effects on system performance and run-

ning cost. It is therefore desirable to improve the frame-

work with the possibility of smoother transition to avoid

any oscillatory behaviour. Soft switching is an alterna-

tive approach used to avoid such undesired behaviour.

In contrast to hard switching, the soft switching ap-

proach has the advantages of (1) avoiding the singu-

larity and sensitivity problems, (2) improvement of ro-

bustness and stability aspects and (3) elimination of

chattering issues [51].

Considering the advantages of soft switching ap-

proach, this research proposed a novel bio-inspired soft

switching approach for cloud resource provisioning prob-

lem. The new approach integrates a BG based compu-

tational model [21,22] into our previous approach de-

scribed in Section 4. The novelty of this work is at the

system level as it combines various established meth-

ods including feedback controllers, fuzzy logic and BG

(a) Workload (arrival rate) (b) Response time

(c) Control error (d) Controller

Fig. 2: Membership functions
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based action selection mechanism in a novel way in or-

der to exhibit their integrated effectiveness in a new

problem domain. Whereas, the key aim of the BG in-

tegration is to demonstrate the effectiveness of the bio-

inspired action selection mechanism to the underlying

cloud resource provisioning problem. The BG based

computational model has the advantages of both bi-

ological plausibility and computational efficiency [23].

Our inspiration of exploiting BG based approach

comes from the research work carried out in the field

of autonomous vehicle control (AVC) such as motion

control of autonomous vehicle [23] and cognitive cruise

control system [18]. In both approaches, the authors

followed a modular approach by designing a set of con-

trollers, where each controller can be optimized for a

particular operating region or performance objective to

achieve the overall control objective by switching the

suitable set of controllers at right time. Both of the

approaches utilized the computational model of action

selection proposed in [21,22].

Figure 3 presents the extended architecture of our

previous work [14] presented in Figure 1. The exten-

sions, as can be seen from figure, include (1) a modified

version of the Fuzzy Logic component, (2) an integra-

tion of the new Basal Ganglia component and (3) a

derivation of the final output. Each of these extensions

is further explained in the following sections.

5.1 Fuzzy logic

The integration of BG based computational model as

an action selection mechanism requires salience signals

as inputs. Thus, the first challenging issue that has to be

dealt with is the generation of salience signals by mak-

ing use of system internal state, various performance

metrics and/or available sensory information [23].

In our previous work described in Section 4, we de-

veloped a FIS, which used as a switching mechanism.

In this work, we extend the existing FIS to generate

the salience signals required to provide as inputs to the

BG based component. Thus, the switching mechanism

of the previous work in its extended form becomes a

fuzzy logic based salience generation model. The inputs

to this model remain the same, i.e. Workload, Response-

Time and ControlError, whereas the output is changed

from one output (Controller) to three outputs. The out-

puts are salience strengths for each controller and can

be read as LazySalience, ModerateSalience and Aggres-

siveSalience. The following extension has been intro-

duced to this part of the work:

– Membership function: As the inputs to model do not

change, the corresponding membership functions re-

main the same as well. However, the output is changed.

Therefore, the Controller membership function is

replaced with three new functions, (i.e. one for each

newly introduced output), which are the same and

of basic triangular type as can be seen in Figure 5.

All the membership functions used in our approach

are either triangular or trapezoid because they have

the advantage of being simple and efficient in com-

parison with others [52].

– Fuzzy rules/salience generation: The fuzzy rules are

responsible to generate the salience signals that de-

termine the strength of each controller. The fuzzy

rules are now changed as previously every rule se-

lects only one output, whereas now each rule has to

determine the salience strength value for each con-

Fig. 3: Resource provisioning framework using BG based approach
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(a) LazySalience with +ve control error (b) LazySalience with -ve control error

(c) ModerateSalience with +ve control error (d) ModerateSalience with -ve control error

(e) AggressiveSalience with +ve control error (f) AggressiveSalience with -ve control error

Fig. 4: Action Surface

troller. Thus the new rules look like the following,

IF arrivalRate IS high AND responseT ime IS instantaneous

AND error IS positive THEN (lazySalience IS strong),

(moderateSalience IS average), (aggressiveSalience IS weak)

Fig. 5: Lazy/Moderate/Aggressive Salience

The possible value for each salience is weak, aver-

age and strong. There are 12 rules in total in the

above format. The action surface of fuzzy salience

generation model can be seen from Figure 4.

5.2 Basal ganglia

The BG component integrates the BG based computa-

tional model [21,22] of action selection described briefly

in Section 3. The BG component accepts three salience

signals (i.e. LazySalience, ModerateSalience and Aggres-

siveSalience) as the inputs, which are obtained from the

output of Fuzzy logic component as can be seen from

Figure 3. These signals are then provided to the BG

based component to produce gating signals that deter-

mine the proportion of each action.
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5.3 Derivation of the final output

The final output, i.e. ut+1 is derived using the gating

signals and the corresponding output of each controller

as follows:

ut+1 =
(u

L

t+1
∗ g

L
) + (u

M

t+1
∗ g

M
) + (u

A

t+1
∗ g

A
)

g
(3)

The ut+1 represent the new final number of vir-

tual machines, where u
L

t+1
, u

M

t+1
and u

A

t+1
represents the

output (new number of virtual machines) according to

the individual controllers, i.e. Lazy, Moderate and Ag-

gressive respectively. The denominator g represents the

number of gating signals, whose value is higher than

zero as it is not always the case that more than one

controller/action has to be selected at all time. This

approach provides the calculation of the final output in

a more naturally bio-inspired way, where it could pro-

vide the possibility to perform a smoother transition

between various switching decisions.

6 Experimentation and evaluation

6.1 Experimental set-up

We have extended CloudSim [53], a well-known simula-

tor for cloud computing to implement a prototype of the

proposed framework. JFuzzylogic [54] is also utilized to

implement the fuzzy logic component. We have used

two real workload traces to evaluate the performance of

the proposed framework in comparison with the exist-

ing approaches. Figure 6a represents the http requests

made to 1998 world cup between (03/07/1998 08:01 to

04/07/1998 07:59). This data is obtained from [55]. Fig-

ure 6b represents the http requests made to NASA web-

site between (06/08/1995 00:01 to 07/08/1995 23:59)

and is obtained from [56].

In CloudSim, we set-up a data centre in which the

physical machines host virtual machines. The proposed

framework manages a pool of virtual machines on be-

half of web application. The CloudSim receives every

http request of a workload as a job with a pre-defined

length in a specific unit that determines the service time

of that job. For this experimentation, we randomly as-

sign service time to each job between (10 to 500 mil-

lisecond) based on the notion that some http requests

are more time consuming than others such as mixed

read/write operations. The arrival time of each job is

obtained from real time arrival of the http request in

workload.

The various gain parameters of the controllers are

obtained off-line using an experimental trial and error

method. These are obtained by generating various syn-

thetic random workloads based on a specific workload

category, such as for Lazy gain where, the workloads

with low arrival rate are utilized. Different experiments

are then performed using these random synthetic work-

loads with various gain values. The gain with best re-

sults, i.e. with the low number of SLO violation and

small running time are selected from each category for

the final experimentation. The gain parameters used for

the final experimentation can be seen from Table 2.

Controller Gain
Lazy -0.06

Moderate -0.7
Aggressive -1.1

Table 2: Integral gains used for experiments

6.2 Evaluation criteria

The evaluation of the proposed methodology is car-

ried out in comparison with the related cloud resource

provisioning techniques. This includes the conventional

single model based feedback controllers, our previously

proposed multi-controller based approach and Rightscale

[31]. Rightscale is a well-known commercial elasticity

mechanism developed using the threshold-based rules

technique. Note that, we have not compared our se-

lection of BG based computational model [21,22] as

an action selection mechanism with other related ap-

proaches. This is because our aim is not to compare

the performance of various action selection mechanisms

but to demonstrate the effectiveness of a bio-inspired

method in comparison with other state of the art cloud

resource provisioning techniques. The evaluation crite-

ria are comprised of the following:

– SLO Violation: SLO stands for Service Level Ob-

jectives, which is a measurable unit of Service Level

Agreement (SLA). SLA defines an agreement be-

tween the provider and consumer of a service. An

SLO violation in our case is referred to the phe-

nomenon, where a job request cannot complete its

execution with in a desired response time (1 sec-

ond for experimentation). The SLO violations can

be treated as performance objective, where it is ex-

pected that each job must complete its execution

within 1 second. This can be achieved, if the system

maintains an average CPU utilization of 55%. The

relation between 55% average CPU utilization and

1 second response time is obtained through off-line

standard system identification experiments.
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Fig. 6: Workloads used for experimentation
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Fig. 7: Aggregated results of the experiments

– Cost: The total running time of all virtual machines

is recorded throughout the experiment. It includes

the time when any virtual machine starts to the time

it finishes execution either as a result of scale down

operation or when the experiment finishes. The to-

tal time is calculated in minutes and partial hours

are not considered as full hours. Moreover, an im-

mediate start/stop of the virtual machine is consid-

ered to avoid any complexity in the implementation

as well as to have a precise comparison of virtual

machine running time because the experiments run

for short time. The total running time of all virtual

machines is then converted to hours for final calcu-

lation of hours. A rate of 0.013$ per hour is applied



10 Amjad Ullah et al.

to calculate the final cost based on the ”t2.micro”

machine pricing model of Amazon [57].

Apart from the above mentioned criteria, we also com-

pare the results of the average CPU utilization over the

entire period of experiment for our previous work and

the BG based approach. In this regard, we record the

measured CPU utilization for the entire experiment,

where each measurement represents the average CPU

utilization of all virtual machines in the last minute.

These results shed light on the stability perspective of

the system with respect to the BG usage.

6.3 Results

Figure 7 presents the aggregated results for both the

experiments i.e. using the NASA and Worldcup work-

load traces. The Lazy, Moderate and Aggressive rep-

resent the typical single controller approaches, where

each controller is designed to perform better in their

respective regions when the workload is low, medium

and high, respectively. The RS represents Rightscale,

MC represents our previous approach described in Sec-

tion 4, and BG represents the proposed work in this

paper.

Considering the NASA workload example, it can be

seen from Figure 7b that overall, all approaches per-

formed well in terms of performance except Aggressive

approach. If we compare the percentile results of the

SLO violation, the MC approach has the same number

of the violation as that of RS (i.e. 0.21%), where the

BG has comparatively less number of the SLO viola-

tion than all other approaches (i.e. 0.05%). In terms of

the cost, there is not much difference in all approaches

except RS. This means that RS has achieved better

performance in this case but at a higher cost.

In case of the Worldcup workload example, it can

be seen from Figure 7d that only MC and BG approach

performed well in terms of achieving the better perfor-

mance with less number of SLO violations (i.e. 0.56%

and 0.29% respectively). Moreover, they have achieved

the better performance at less cost than all the other

approaches.

The key objective of any elasticity mechanism is to

improve the performance of the underlying system by

reducing the number of SLO violation to zero at a low-

est cost possible. In both of the experiments, our pro-

posed approaches (i.e. MC and BG) performed better

in performance as well as in cost. However, other ap-

proaches like RS also showed a good result in terms of

performance in the first case, but at a higher cost. More-

over, the NASA workload is comparatively less dynamic

than Worldcup in terms of jumps in varying workload

regions. Comparing the results of MC and BG, we can

observe that the BG shows a higher potential to achieve

better performance with a bit higher but almost negli-

gible cost than MC.

The above results demonstrate that adapting the

BG based action selection mechanism improves the over-

all results. However, another key aspect of adapting the

BG based approach is its ability of selecting the actions

in a natural, bio-inspired way, where it can improve the

possibility of a smoother transition between different

decisions. In current experimentation, we do not pro-

vide a comprehensive quantitative measurements about

how the BG based approach improves the stability per-

spective of the underlying application. However, the re-

sults in Figure 8 and 9 demonstrate some differences

between MC and BG approaches with respect to the

average CPU utilization recorded over the entire period

of the NASA workload experiment that characterize the

stability of system.

Note that the key objective of the control methodol-

ogy is to maintain the CPU utilization close to the de-

sired/reference point, i.e. 55% but under this range. The

CPU utilization above the reference point means that

the performance of the system degrades. Figure 8 ag-

gregates the count of the minutes for both approaches,

when the CPU utilization is below and above the ref-

erence point. As can be seen from Figure 8, aggregates

the count of the minutes for both approaches, when the

CPU utilization is below and above the reference point.

As can be seen from Figure 8, during the total period of

2830 minutes, the BG approach maintains much longer

time (i.e. 1892 minutes to be exact) for the CPU utiliza-

tion to stay below 55% in comparison with MC (which

is 1354 minutes). This demonstrates that overall the BG

approach maintained the CPU utilization closer under

the reference point.

We further divide the measured CPU utilization for

each approach into 24 hours, which is presented in Fig-

ure 9. This helps to visually demonstrate the difference

Above 55 % Below 55 %
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500

1000

1500

BG MC BG MC

Approach

M
in
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Fig. 8: Aggregated result of the CPU Utilization high-

lighting the minutes an approach stays below/above the

reference point (55%)
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between the approaches with respect to the measured

CPU utilization against the reference point. The 1st

and 3rd rows belong to the MC approach, whereas the

2nd and 4th rows belong to the BG approach. The ref-

erence CPU utilization is represented with a dark solid

horizontal line in all graphs. The following points are

observed with respect to the differences between two

approaches.

– The overall average CPU utilization for the BG based

approach is recorded as 52.58%, whereas for the MC

approach it is 56%. They can be seen in red colour

dashed lines in their respective graphs. Moreover,

the BG reduces the likelihood of leading the sys-

tem into an overloaded status as some of such oc-

currences can be found in the case of MC approach,

e.g. the sessions 08th to 12th hour, 20th to 24th hour,

etc.

– The CPU utilization in the BG case never reaches to

70% in the entire period of the experiment except at

the start, which is the same for both cases, Whereas

in the case of MC, it has been crossed a number of

times.

– The CPU utilization in the BG case almost remains

lower than 65% except only four times. In the case

of MC, there are quite a few times, where it remains

more than 65% for some time such as the peaks in
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Fig. 9: Average CPU Utilization of NASA experiment with 12 hours period in each graph. 1st and 3rd rows belong

to MC, while the 2nd and 4th rows belong to BG.
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the 08th to 12th hour, 24th to 28th hour and 28th to

32th hour.

– Overall, the CPU utilization in the case of MC has

more abrupt transitions and peaks in comparison to

the BG approach, which can cause the oscillatory

behaviour.

In light of the above discussion, we can argue that

the BG approach has the potential to reduce the like-

lihood of SLO violation by maintaining a desired CPU

utilization, thus resulting in a better system perfor-

mance. Moreover, compared with the MC approach, it

shows smoother transitions between switching decision,

which can reduce and/or avoid unwanted system oscil-

latory behaviour and will improve stability. Note that

the work reported here is part of the preliminary study,

and thus we have not carried out a further theoretical

stability analysis. However, an intuitive explanation is

that the mixture of all controllers is done (in Equa-

tion (3)) in a bio-inspired way augmented by the BG

process, which facilitates a natural selection of actions

that results in less ’bumping’ at the switching time [58].

Moreover, the computational model of [21,22] in partic-

ular is proved to successfully avoid the oscillation and

keep the energy efficiency in various action selection

problems [17]. In future, We aim, to use the enhanced

version of the BG model developed in [17], for which

the formal stability proof can be established using the

contraction theory of dynamical systems.

7 Conclusion and future work

We address the problem of cloud resource provision-

ing as an action selection problem. We propose a bio-

logically inspired soft switching approach to implement

horizontal cloud elasticity. The proposed approach inte-

grates a functional model of Basal Ganglia (BG), which

augments the methodology to select the right set of

controllers in a natural biologically plausible way, thus

reducing the likelihood of oscillation and increasing the

stability of underlying system. Moreover, a fuzzy in-

ference system is introduced to generate the salience

signals required to provide as inputs to BG model. We

evaluate the proposed methodology by comparing with

existing elasticity methods using CloudSim and two

real workloads. The initial experimental results demon-

strate that biological inspired method performs better

in both evaluation aspects (i.e. performance and cost)

than other approaches. Moreover, it also reduces the

oscillation peaks in the measured CPU utilization ob-

served in our previously proposed approach, thus hav-

ing the potential to increase the stability of underlying

system.

The work is still in its early stage, where we show

the suitability of the biologically inspired method of ac-

tion selection in the context of cloud computing. Our

future work will address the key challenging issues re-

lated to the developed framework, which include the

following: (1) A detailed theoretical convergence and

stability analysis to formally evaluate the proposed ap-

proach against other state of the art approaches, (2)

Enhancement of fuzzy part using genetic algorithm to

obtain optimal settings of fuzzy variable ranges, mem-

bership functions and fuzzy rules, (3) On-line learning

capabilities of switching rules, and (4) The possibility

to enhance the capability of the framework by incorpo-

rating the vertical elasticity will be explored.
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