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ABSTRACT 

 

 

The last two decades have seen several large-scale epidemics of international impact, 

including human, animal and plant epidemics. Policy makers face health challenges that 

require epidemic predictions based on limited information. There is therefore a pressing 

need to construct models that allow us to frame all available information to predict an 

emerging outbreak and to control it in a timely manner. 

 

The aim of this thesis is to develop an early-warning modelling approach that can predict 

emerging disease outbreaks. Based on Bayesian techniques ideally suited to combine 

information from different sources into a single modelling and estimation framework, I 

developed a suite of approaches to epidemiological data that can deal with data from 

different sources and of varying quality. The SEIR model, particle filter algorithm and a 

number of influenza-related datasets were utilised to examine various models and 

methodologies to predict influenza outbreaks. The data included a combination of 

consultations and diagnosed influenza-like illness (ILI) cases for five influenza seasons. 

 

I showed that for the pandemic season, different proxies lead to similar behaviour of the 

effective reproduction number. For influenza datasets, there exists a strong relationship 

between consultations and diagnosed datasets, especially when considering time-

dependent models. Individual parameters for different influenza seasons provided similar 

values, thereby offering an opportunity to utilise such information in future outbreaks. 

Moreover, my findings showed that when the temperature drops below 14°C, this triggers 

the first substantial rise in the number of ILI cases, highlighting that temperature data is 

an important signal to trigger the start of the influenza epidemic. Further probing was 

carried out among Maltese citizens and estimates on the under-reporting rate of the 

seasonal influenza were established. Based on these findings, a new epidemiological 

model and framework were developed, providing accurate real-time forecasts with a clear 

early warning signal to the influenza outbreak. 

 

This research utilised a combination of novel data sources to predict influenza outbreaks. 

Such information is beneficial for health authorities to plan health strategies and control 

epidemics. 
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1.1 Introduction 

The aim of this study is to predict infectious disease outbreaks based on limited 

information. This thesis shall discuss early warning techniques that have the potential to 

provide signals to clinicians on the spread of diseases. This thesis will also focus on 

parameter estimation for various influenza datasets through the use of mathematical 

modelling. The study probes into the underlying factors related to influenza in order to 

improve the available information for the Maltese population. Ultimately, throughout this 

thesis, I aim to provide various techniques to predict the outbreak in real-time and as early 

as possible. The different methods are illustrated using real-life influenza outbreak data 

from Malta spanning five seasons from 2009 to 2015. This chapter serves as an 

introduction to the main themes of this thesis. I provide an overview of the history of 

epidemics both internationally and in Malta, followed by a literature review of 

epidemiological modelling, which is the paradigm I shall follow throughout this thesis. 

The last part of this chapter contains a brief overview of the chapters produced in this 

thesis. 

 

1.2 Background 

The history of epidemics goes back centuries and their associated human morbidity and 

mortality was a concern for a number of generations [1]. It is estimated that during the 

14th Century, 25 million Europeans died from the Bubonic plague, representing between 

30-60% of the whole population [2]. During the year 1520, about half of the population 

of Aztecs probably died due to smallpox and around 150 years later, 68,000 people died 

in London due to the plague epidemic [2]. Another 2.5 million are thought to have died 

from Typhus in Russia during World War 1 and during that same period, around 20 

million people are estimated to have died from the world epidemics of influenza [2].  

 

The value of scientific research in the field of epidemiology has long been recognised 

[3], in particular with the development of the ‘germ theory of disease’ [2]. This theory 

states that some diseases are caused by microorganisms (pathogens) and the diseases they 

cause are called infectious diseases [2]. Mathematical modelling also has a long history 

in the area of epidemiology [2]. Numerous developments in the area of mathematical 

epidemiology led to the availability of widespread information, improved understanding 

of the spread of disease, and advances in the area of medicine and computer programming 
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[3]. Subsequently, countries began to reap the benefits of understanding the spread of 

disease due to the setting up of surveillance systems across the globe [4]. Guidelines and 

incentivized vaccination programmes have been established across the years to prevent 

or control widespread transmission [5] and to increase vaccination rates in various 

populations [6]. 

 

Amidst such progress in the epidemiological field, there is still room for substantial 

improvement to better understand the dynamics of the spread of epidemics [2], owed to 

the continuous outbreaks of new influenza viruses affecting various populations [7]. 

Influenza epidemics bring with them serious health complications such as physical illness 

or death, or that pose a risk for people with weak immune systems [8, 9]. These 

implications result in an extensive burden on the health sector [10, 11] and welfare states 

[12]. This highlights the pivotal role and rising impact of mathematical modelling in 

epidemiology to map and predict the future state of populations [13] and most 

importantly, to quantify the uncertainty in these predictions [14]. In turn, this informs 

public health decision-making on the likelihood of an infectious disease outbreak, how 

the disease will spread and how it can be controlled [15].  

 

1.3 History of Malta’s Influenza Epidemics 

Malta is a small island at the centre of the Mediterranean Sea and lies in between Libya 

(Africa) and Sicily (Italy). Malta is considered one of the most densely populated 

countries around the world with a population of around 414,000 in 2013 [16] and a total 

area of 216km2. During the second quarter of 2015, the employment rate in Malta was 

estimated to be around 184,871 [17] with just under 5,400 unemployed individuals 

(≈3.9%) in 2016. This places Malta as the second best country in the European Union for 

achieving the lowest unemployment rate. 

 

The first reference to influenza, in epidemic terms in the Maltese islands, was in a petition 

that was sent to the Grandmaster in 1682 by the Gozitan Apothecary [9]. During that 

time, the Apothecary requested funds for drugs which were required during an epidemic 

in Gozo. During 1730, it was estimated that all the Maltese population was infected with 

‘catarrhal influenza’ and slight fever. Other major influenza outbreaks in Malta were 

recorded during 1733, 1746 and 1754 [9]. The term ‘influenza’ was then applied in the 
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Maltese context in 1803, in relation to a specific acute viral respiratory disease, during 

which time the infection caused an epidemic in Britain [18]. In 1836, almost all of the 

population in Malta at the time contracted the influenza [18]. Eleven years later, another 

outbreak hit the Island and most factions of the Maltese society were also affected. 

Approximately half a decade later (1890), compulsory notifications regarding influenza 

were introduced in Malta. During the same period, Asiatic Flu reached the Maltese 

islands and the case fatality rate was estimated to be 4% [18]. A revival of the same flu 

occurred in 1892 and 1894, recording slightly lower case fatality rates.  

 

The Spanish Flu, a leading cause of death for more than 20 million individuals worldwide 

during 1918-1919, reached Malta in June 1918 and subsided a year later. The Spanish 

Flu reached Malta in three phases; the first wave occurred during June-August with a 

case fatality rate of 5.1%, followed by the second wave (September-November) with a 

case fatality rate of 3.9% and a third wave during March 1919 [18]. 

 

Another influenza outbreak occurred in 1920, though this was not severe. A year later 

saw the start of an epidemic in Malta, which consisted of two waves with a case fatality 

rate of 1.8%. Other outbreaks were recorded in 1929, 1936/1937, 1940-1943, 1948 and 

1951/1952 [18]. Subsequently, the Asian Pandemic (H3N2) reached Malta in 1957 and 

had a case fatality rate of 0.13%. During 1968-1969, the Hong Kong Flu (H3N2) made 

its appearance in Malta, but with minimal number of reported deaths [18]. The subsequent 

Russian Flu (H1N) which occurred during 1977-1978 did not have any impact on the 

Maltese population. Following the last pandemic dating more than 30 years ago, a 

significant influenza pandemic (H1N1: Hemagglutinin Type 1 Neuraminidase Type 1, 

aka swine flu) reached Malta in 2009. This pandemic shall be discussed in detail in this 

dissertation. 

 

1.4 Mathematical modelling in epidemiology 

The applications of mathematical modelling in the area of infectious diseases appear to 

have emerged by Daniel Bernoulli during the 18th century to study the strength of 

mathematical methodologies against small pox in England [19]. It was only until the late 

19th century that other researchers studied mathematical epidemiology yet again, for 

example William Far who fitted a normal curve to a smoothed quarterly small pox data 



- 5 -  
 

[2]. Later on, other mathematical epidemiologists made their important mark in this area 

of research. During the early years of the 20th century, John Brownlee published a 

research paper about the theory of epidemics [2]. During the same period, William Hamer 

and Ronald Ross applied the post germ theory to two specific quantitative issues and were 

the first epidemiologists to formulate specific theories related to the transmission of 

infectious diseases [2]. The work of the latter researchers, together with the research 

studies of Hudson, Soper, Kermack and McKendrick provided a solid base about the 

theoretical framework of observed diseases. Hamer and Ross used the important ‘Mass 

Action Principle’ to describe the epidemic behaviour, while Kermack and McKendrick 

developed the classical SIR model [2]. This opened the field of mathematical 

epidemiological modelling to further investigation on infectious disease dynamics and 

epidemiological phenomena. 

 

Mathematical models exist to make more sense of the available data by enabling the 

estimation of disease parameters to understand the dynamics and control of infectious 

diseases [3]. Epidemiological mathematical models provide a framework for predicting 

epidemiological dynamics, though this field is still evolving due to the number of 

uncertainties found in various epidemiological data [14]. Various techniques exist to 

estimate the number of affected individuals at different time points for different model 

compartments. The above mentioned SIR model can be described by the following 

equations for a closed population: 

݀ܵ
ݐ݀

= −
ܫܵߚ
ܰ

 

ܫ݀
ݐ݀

=
ܫܵߚ
ܰ

−  ܫߛ

ܴ݀
ݐ݀

=  ܫߛ

This set of differential equations describe the number of Susceptible individuals S, i.e. 

individuals in the population who have not been infected but are at risk. The number of 

Infected individuals I refers to those individuals who are infectious and hence can 

transmit the disease; ߚ is the infection rate. R is the number of Removed individuals that 

are no longer at risk of acquiring the disease because they are either immune or deceased, 

while ߛ is the recovery rate once the individual is infected and N is the population size. 

S(t), I(t) and R(t) are functions of time t, and initial conditions are set appropriately. This 

is the simplest model which is designed for different stages (compartments) of the 
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disease. The model can be further enhanced by considering further compartments, such 

as the Exposed (E) individuals, and is known as the SEIR model.  

 

1.4.1 Deterministic and stochastic compartmental disease models 

Several studies have compared deterministic and stochastic models [20-23] in order to 

demonstrate the importance in their relationship. A deterministic model can be described 

by a set of ordinary differential equations in a single system (as shown above), while the 

stochastic model can be a Markov population process with continuous time and discrete 

space [21].  

 

A deterministic compartmental model assumes that the population is homogenous; hence 

all people are the same and only differ in their disease state. In comparison to stochastic 

models, deterministic epidemic models are mathematically less complex and usually lead 

to powerful qualitative results [20]. Due to this reason, for a long period of time research 

work related to deterministic models dominated this research field [24]. Additionally, a 

deterministic model only deals with proportions rather than a finite population size [20] 

but are a good approximation of related stochastic models. Extant studies focus on 

stochastic modelling to improve epidemic models [24] by predicting the expected 

extinction time of the disease, as opposed to deterministic models [21]. This is one of the 

main differences between the two models. Another difference is that stochastic models 

provide a coherent picture of the uncertainty and variability that is related to the real-life 

epidemics due to factors such as the randomness of person-to-person contact [23]. The 

stochastic model can capture individual behaviour as well as the probability of the 

occurrence of an event.  

 

During the past years, substantial progress was achieved in the applications of Bayesian 

inferential methods for epidemiological data through the use of stochastic compartmental 

models. In many cases, such models employ the Markov Chain Monte Carlo (MCMC) 

methods [25]. These methods are widely acknowledged nowadays, because they not only 

incorporate uncertainty in parameter values, but more importantly the population size of 

infected hosts is random. This includes the effect of a possible extinction and the re-

emergence of an infection, the prediction of an individual realization of an epidemic and 

the understanding of the suitable period of application of a control treatment. Results 
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obtained from these models can be used to inform policy makers to plan health strategies 

and to understand the effectiveness of proposed control measures. We aim to infer 

biological processes from epidemiological patterns to control the epidemic.   

 

1.4.2 The Bayesian Inference 

Bayesian inference or likelihood inference is of fundamental importance in the field of 

mathematical statistics [25]. Nowadays, this technique is utilized in a wide range of 

statistical fields and will be used substantially throughout this dissertation. Bayesian 

inference requires sampling models that produce the likelihood function together with a 

conditional distribution of the data, given the parameters of the model. The Bayesian 

approach takes into account a prior distribution on the parameters of the model.  

Following this, the likelihood function and the prior distribution are combined through 

the use of the Bayes’ theorem to compute the posterior distribution [26]. The posterior 

distribution is a conditional distribution of a set of unknown quantities, given that there 

is some observed data. This is the main distribution from which all Bayesian inference 

arises. The use of Bayesian techniques has grown rapidly in recent years [25]. Computers, 

together with powerful software, have contributed to the development of Bayesian 

techniques due to the power required to run such models. Such developments were well 

complemented with a class of iterative simulations methods known as the Markov chain 

Monte Carlo (MCMC) algorithms. 

 

1.4.2.1 The Markov Chain Monte Carlo models 

There is widespread activity and application of Markov Chain Monte Carlo (MCMC) 

models in various fields [27]. These models are not restricted to a limited number of 

applications and have thus been of substantial benefit in the finance and gaming 

industries. In the area of epidemiology such models are widely employed due to missing 

data. It is considered a standard approach to apply MCMC models when missing data 

occurs [28], thereby applying the right imputation techniques to ‘fill-in’ the missing gaps. 

MCMC models and the Bayesian framework offer an opportunity to address the arising 

challenge of missing data through the inclusion of extra parameters in the model [29]. In 

order to produce a likelihood function, estimation of missing data becomes a part of the 

model fitting mechanism [29].  
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The knowledge of epidemiological outbreaks has been improved through the use of these 

MCMC models as they provide further information to understand the mechanisms, 

diseases and main parameters of an outbreak [29]. In return, this information is extremely 

useful for control strategies, policy makers and health interventions. Parameter estimation 

by these MCMC models is of prime importance for epidemic predictions. Prior 

distributions in such mathematical models might influence considerably the accuracy of 

several Bayes factors and hence influence outbreak predictions [30]. MCMC models are 

mostly important in order to understand the transmission parameter estimates between 

different stages of an outbreak [31-33]. Therefore, acquiring accurate parameter values 

will improve the stochastic epidemiological compartmental models.  

 

The epidemiological models can be complex [14]. Several attempts have been carried out 

to simplify the MCMC algorithms, so that they can be straightforwardly applied by non-

experts [34]. This is being done at the detriment of assuming a lower number of 

parameters. 

 

In this dissertation, I use the MCMC technique to obtain parameter values in conjunction 

with other statistical techniques/models to provide real-time forecasts. Although we are 

interested to understand and estimate parameters of an outbreak, simultaneously we need 

to establish the right control epidemic strategies as early as possible [35]. Thus, it is of 

great importance to find the right balance between these two objectives by optimizing 

historical information and current real-time data.  

 

1.4.2.2 Particle filter algorithm 

Particle filter algorithms are widely used to improve the prediction processes and the 

parameter estimates. Substantial studies use such algorithms [26, 36-38] which are 

considered the gold-standard tools in mathematical modelling [39]. Such algorithms 

provide an opportunity to estimate recursively a system of state variables and to apply 

inferential techniques on the model parameters [40]. Such filtering methods include basic 

particle filter (PF) [41], maximum likelihood estimation via iterated filtering (MIF) [42], 

particle Markov chain Monte Carlo (pMCMC) [39] and several ensemble filter variants 

[43-45]. Such methods can be used together with epidemiological models and reported 

influenza datasets to estimate parameters of the epidemiological model. For example, we 
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can obtain various estimates of the transmission rates between different epidemiological 

stages. 

 

Particle filters are sequential Monte Carlo methods based on particles [41]. In order to 

apply a particle filter, there are various sequential simulation methods/algorithms [41, 

46]. These methods use state-space model together with Kalman filters, particularly on 

time dynamic models that are usually non-linear and non-Gaussian. Arulampalam et al. 

(2002) [41] presented various algorithms, all focusing on particle filtering but with 

several variants. These include sampling importance resampling (SIR) filter, auxiliary 

sampling importance resampling (ASIR) filter and regularized particle filter (RPF). All 

filters are derived from the sequential importance sampling (SIS) algorithm. Doucet et al. 

(2000) [46] described in detail the various stages within these algorithms, as well as an 

analytical description of the efficiency of these models and their limitations.  

 

During these last two decades, substantial research studies were carried out to analyze 

the implementation of such algorithms in epidemiological theory. Currently, these are the 

latest techniques to obtain reliable parameter estimates and accurate forecasting. Such 

algorithms have the flexibility to amend various steps in order to explore possibilities to 

improve the results. Extensive work is being carried out in this area to improve the 

understanding and application of such algorithms. In recent years, Ionides et al. [42] 

proposed new theoretical results in relation to the above particle filtering (PF) technique. 

Throughout the latter study, the researchers proposed a method on how to model state 

parameter estimates updated on multiple rounds of particle filtering, hence resulting in 

multiple iterations. On the other hand, the basic particle filter algorithm updates the state 

parameter values based on every single time point, producing one individual round of 

particle filtering.  

 

Other variations exist, such as the ensemble filter variants, which differ only in how the 

observed variables are being updated [40]. Such mechanisms include the ensemble 

Kalman filter (EnKF) [43], the ensemble adjustment Kalman filter (EAKF) [44] and the 

rank histogram filter (RHF) [45]. Several filtering techniques might produce more 

accurate forecasts for different datasets, based on the characteristics of the filtering 

method [40].  
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Throughout this dissertation, the particle filtering algorithm is used as a main tool in this 

dissertation, where weighting, resampling and kernel smoothing are applied. However it 

is not our aim to analyse different particle filtering techniques, but to use these Bayesian 

techniques together with different data sources to obtain accurate estimates of 

epidemiological parameters. 

 

1.4.2.3 Implementation to the S(E)IR models 

Markov Chain models are widely used in epidemiological models, such as SIR, SEIR and 

SIRS models. Such epidemiological models are applied on various forms of data and are 

also useful when limited data is available. Most popular research papers are those where 

the implementation of such models is carried out on Influenza-Like Illness (ILI) and 

virology datasets [47]. There are other studies where the SEIR model was fitted on 

observations where only the removed (R) compartment, such as deaths, were recorded 

[48].  

 

The above MCMC models, together with particle filtering algorithms, are the most 

important tools for the formulation of complex SEIR models [31]. Epidemiological 

models carry substantial uncertainty and hence through the use of Bayesian framework, 

one can estimate the unknown information and parameters of the epidemiological 

models. Such studies aim to account for control measures related to the spread of the 

infection period [35]. 

 

Researchers employed the SEIR model to analyze the immigration of infected individuals 

and the efficiency of the stochastic variation of the infection [49]. Others used the latter 

model to study the stability of the equilibrium points of the SEIR model [50-51] from a 

more theoretical perspective. Further theoretical analysis was carried out by Artalejo et 

al. (2015) [52], where efficient computation procedures and algorithms were studied to 

analyze the stochastic SEIR model. 

 

Additionally, the design of control strategies is of particular importance in such studies. 

The SEIR model is commonly used as a model design control strategy to protect 

susceptible individuals from getting infected [53] and as an important tool to determine 

the best vaccination policies through the spread of the disease [54]. Others used the SEIR 
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model to apply real-time forecasting [26, 55], as defined throughout subsequent sections. 

In a substantial number of research studies, the epidemiological models were used 

primarily to estimate the reproduction number [56] (see below), since this gives a clear 

indication about the severity of the epidemic. 

 

Throughout this dissertation, the SEIR model is used in different ways. Initially, it is 

employed to compare the parameter values between different data sources, more 

specifically the reproduction ratio. Then the SEIR model, together with other 

mathematical techniques, is used to predict the spread of the seasonal influenza outbreak, 

the severity of influenza, as well as the influenza peak.  

 

1.4.3 The basic reproduction number (R0) 

The most important parameter in epidemiological modelling is the basic reproduction 

number (ܴ଴), which value dictates whether or not a large epidemic outbreak can occur 

[25]. In simple terms, this value represents the number of secondary cases caused by an 

infectious individual in a completely susceptible population. When the reproduction 

number is greater than 1, the infectious disease will spread, resulting in a major epidemic. 

When this value is less than one, the disease will fail to spread. Therefore, when ܴ଴ is 

greater than 1, there is a positive probability that a large number of individuals contract 

the disease, while when ܴ଴ is smaller than 1, only a limited number of individuals will 

get infected. This value provides direction on whether the population is at risk from any 

emerging disease.  

 

Mathematical models attempt to predict this crucial number in order to communicate it 

as a good indicator to health authorities. A substantial part of this dissertation focuses on 

estimating ܴ଴ for influenza outbreaks in Malta. 

 

Linear programming methods can be used to obtain acceptable bounds for the mean of 

ܴ଴, given the time at which an active epidemic is observed [25]. In addition, it is 

interesting to analyse the dynamics of ܴ଴, thus understanding how pathogens spread and 

transmit within their host populations [26, 57-65]. Most mathematical models assume 

that either the contact rate between hosts is linearly related to host density (density-

dependent) or that the contact rate is independent of density, thereby considered as 
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frequency dependent [66].  Parameters, such as ܴ଴, may prove to be difficult to estimate; 

in some datasets they cannot be estimated consistently from the final data due to multi-

type1 epidemic model [67]. Additionally, in some complex epidemics based on spatial-

temporal evolution (different transmission models from one area to the other), Bayesian 

Markov Chain Monte Carlo methods are the best established algorithms to model the 

reproduction number [68]. Such reproduction ratio analysis helps to understand several 

characteristics of different epidemics and to use such information for future outbreaks 

[69]. Epidemiological studies and the reproduction ratio aim in understanding the 

evolution of infectious disease in real time [70], hence historic information might support 

such an objective.  

 

Different researchers calculate the reproduction number from different sources of data. 

Some of the common data sources are the laboratory confirmed influenza cases [69-72], 

Influenza-Like Illness (ILI) [73-75] and serological data [76-78]. In my research paper 

[79], several different data sources were analysed with the intention to understand the 

reproduction ratio of four different related datasets. The data included the number of GPs 

consultations, the number of ILIs, swabbed H1N1 cases and confirmed H1N1 positive 

cases. The remaining part of the thesis introduces other datasets. 

 

As discussed above, substantial research papers make reference to the basic reproduction 

ratio ܴ଴, where it represents the average number of cases generated from another 

infectious individual during the course of the outbreak. Hence, ܴ଴ does not vary over 

time. On the other hand, the effective reproduction ratio ܴ௧ varies over the time of the 

outbreak and for different seasons [80]. Thus, ܴ ௧ represents the number of new infectious 

individuals at a given time t in the epidemic. Understanding and capturing all available 

information helps to explore the uncertainty that the reproduction ratio carries. This non-

constant factor ܴ௧ may be influenced through several health control strategies [80-81] 

during the progression of the outbreak. 

 

 

 

 

                                                           
1 Different parameter values for the same parameters due to different data demographics 
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1.5 Influenza 

1.5.1 Defining the seasonal influenza 

Seasonal influenza is one of the major epidemics that occurs on a yearly basis [82]. It has 

major implications towards healthcare services as its outbreaks occur frequently and are 

generally characterized by high levels of activity in the hospital setting, thus carrying a 

yearly cost which varies according to the severity. Such implications continue to 

emphasize to health authorities and policy-makers the importance of a comprehensive 

influenza prevention strategy and accompanying interventions that need to be designed 

well in advance and that can be applied across the entire spectrum of healthcare settings. 

 

There are several different definitions related to seasonal influenza, but most converge to 

the same major symptoms. For instance, the UK National Health Service (NHS) states 

that the symptoms related to the influenza usually develop during the first three days upon 

becoming infected [83]. The NHS also highlights the major symptoms of seasonal 

influenza, which include a high temperature of 38°C or above, tiredness and weakness, 

headache, general aches/pains and a dry cough. All of the latter symptoms are similarly 

defined by the World Health Organization (WHO) [82]. However, WHO’s definition also 

includes sore throat and runny nose. A definition is provided by the Center for Disease 

Control and Prevention (CDC) which is similar to that defined by the WHO [84]. In 

addition, CDC states that it is more common for children to experience vomiting and 

diarrhoea. The same definition as the one used by the NHS has been applied by the Health 

Authorities in Malta. 

 

The terms ‘influenza’ and ‘cold’ are two different illnesses, although sometimes it is 

difficult to distinguish between the two [83]. Influenza symptoms tend to appear more 

quickly and usually include fever and aching muscles, making it more difficult to 

continue with the normal routine [83]. On the other hand, a cold is an illness which 

develops more gradually and mainly affects the nose and throat, thereby allowing an 

individual to continue with routine daily activities. Additionally, influenza might 

seriously affect several high risk people, especially young children (aged 2 years or 

younger), adults aged 65 year or older, pregnant women, people with several medical 

conditions including chronic diseases, and individuals with a weak immune system [82]. 
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It is unlikely that an individual will get infected more than once with the exactly same 

strain of influenza during the same season [85]. However, there are several occasions 

where an individual can contract an infection more than once during the same season. 

Mainly this happens when an individual does not develop full immunity for seasonal 

influenza (or is not fully recovered), or when a person is affected by different strains of 

the influenza virus [84]. The Malta Health Promotion Department (MHPD) claims that a 

person usually contracts the influenza only once in a season, due to the circulation of one 

of the viruses which is more dominant (Appendix A, Meeting with the MHPD). 

 

Seasonal influenza is widely described and tackled from different perspectives. Several 

research papers focus on the vaccine uptake, such as the intention to receive future 

influenza vaccine and uptake rates [86-87] or to investigate the knowledge, attitudes and 

practices of individuals regarding seasonal influenza vaccination [88-91]. Others focus 

on the economic aspects of the seasonal influenza, such as the estimation of the 

direct/indirect costs in relation to outpatient visits and hospitalisation [92], or the vaccine 

administration costs and vaccination costs [93].  

 

Most of the common topics found in the aforementioned research papers mainly focus on 

the medical determinants of seasonal influenza and its health implications. In this 

dissertation, seasonal influenza datasets are being investigated mainly from the 

mathematical perspective in order to predict the outbreak. Several aspects of the seasonal 

influenza which were explored throughout this research provide new insights to the 

dynamics of the seasonal influenza. 

 

1.5.2 The dynamics of influenza in relation to climate and temperature 

Several important factors affect spread of influenza, including school holidays, 

seasonality, immunity and vaccination. However, one of the most important factors is the 

climate, predominantly the temperature. Some researchers focus on the temperature as a 

basis to account for the seasonal variation related to mortality and hospitalisations [94]. 

Others focused on the dynamics of the transmission of influenza in relation to the 

influence of climate conditions [95]. These studies found significant associations in 

relation to the influenza transmission and the minimum temperature. Other research 

studies compared the number of diagnosed individuals for bronchitis in relation to several 
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important variables such as influenza outbreak and low air temperature [96]. The findings 

suggest that there exists a correlation between these variables.  

 

In a systematic review by Irwin et al. (2011), persistence of the influenza virus was 

studied for several different environmental conditions, including air temperature [97]. In 

this study, temperature, was categorized into three levels (2 to 12°C, 17 to 27°C, and > 

27°C) to evaluate influenza virus persistence. It was found that the persistence of 

influenza was found to be longer at lower temperatures [97]. 

 

Several research papers used the temperature variable to model seasonality in avian 

influenza H5N1 [98]. Low temperature values across countries were associated with high 

intensity outbreaks, but were not associated for countries when the temperature remains 

constant throughout the year [98]. Other climate factors could play a role in 

understanding the spread of influenza. For example, in Indonesia and Egypt, the peak of 

the outbreaks corresponds to a wet season, while in Vietnam the peak corresponds to a 

dry season [98]. In addition, one needs to utilize the climate factors according to the 

characteristics of different countries. Although minimum temperature as an indicator for 

influenza may be consistent over different regions, this would nonetheless differ on a 

global scale [99]. Lower temperatures might encourage more crowding among 

populations, hence increasing the chances of influenza transmission [98]. Similar 

characteristics within the population, as well as related-influenza characteristics help in 

predicting other outbreaks whereby similar influenza transmission features might lead to 

similarities between different epidemics [100]. Similarly, there are also extensive studies 

related to poultry outbreaks which found an association between low temperatures and 

such outbreaks [98, 101]. 

 

It is clear from the extant literature that the transmission of the influenza outbreak is 

dependent on climate conditions, especially temperature [102]. It is also clear that there 

is an association between low air temperature and the spread of influenza. In this thesis, 

I address this relationship for the Malta datasets. 
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1.5.3 The role of surveys in studies related to Influenza 

Cross-sectional surveys have a principal role in vast research fields such as marketing, 

media and political studies. These are considered important tools to explore the key 

determinants of the population under study. Surveys are also utilised in studies related to 

influenza [103-105], for example to predict the actual spread of an outbreak within a 

country.  

 

Surveys related to influenza can incorporate different methodologies. For example, cross-

sectional serological studies are used to explore the response to immunity before and after 

an influenza outbreak [103] or to estimate the proportion of symptomatic infected cases 

[104], or to estimate influenza infection rates [105]. Serological studies are very popular 

in epidemiology to understand various characteristics related to outbreaks and the main 

predictors related to an individual’s risks in acquiring the influenza [106]. For example, 

in a research study by Soh et al. (2012), cross-sectional serological surveys were carried 

out to estimate the actual infection rates of school-aged children [107]. Other surveys 

quantitatively assess the knowledge and attitudes towards influenza vaccination amongst 

different populations [88-90, 108].  

 

One of the known influenza surveys is the UK flu survey [109]. This online system of 

monitoring influenza is part of a European project with ten participating countries under 

the project name InfluenzaNet [109]. Participants are reminded to record and report their 

symptoms on a weekly basis. Such surveys aim to observe the spread of influenza through 

responses over the internet regarding participants’ influenza-like illness (ILI) symptoms.  

Although such surveys help to monitor the spread of influenza, such data tends to have 

considerable bias towards those individuals that have internet access, and so many 

individuals do not have the same opportunity to participate in this survey. These surveys 

tend to be biased towards those with a higher level of education and who are younger in 

age. Additionally, such surveys tend to be biased towards those individuals who work in 

an office environment as they have continuous access to the internet. Amidst such bias, 

the acquired data can still be strongly indicative of the spread of influenza. UK flu survey 

data [109] is used by the research team at the London School of Hygiene and Tropical 

Medicine and Public Health England to monitor flu trends in the UK [109]. Since the 

latter survey data is available online, several researchers make use of such information. 
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For example, such a dataset was used by Camacho et al. [110] to analyse the duration for 

cases of ILI and acute respiratory infections (ARI). Their research findings [110] were 

analysed against several demographics. Others used the UK flu survey data to measure 

ILI and its related risk factors [111], suggesting that vaccination is linked to the reduced 

risk of becoming ill with ILI [111].  

 

A similar model to the above UK flu survey is found in Portugal [112], where researchers 

use the online survey data to analyse the incidence rates of influenza for different 

locations within the country. Such work coincides with further development in the area 

of mathematical models and computational platforms. Similarly, in France [113], 

researchers analysed real-time data to study the spread of the influenza disease. In Spain, 

other researchers made use of their data to compare the incidence rates of countries that 

are participating in this project [114]. In addition, Spanish data is being used to 

understand the mechanisms of the spread of the influenza.  

 

Participation and response rates in epidemiological surveys are very important [115]. 

Therefore, the right methodologies are needed to ensure that the response rate is a 

satisfactory one with limited research bias [115]. Such studies can already contain certain 

elements of bias, since several responses are based on the respondents’ medical 

knowledge. For a good number of questions, respondents often base their judgement on 

self-medical diagnosis; this is considered an important element in epidemiological studies 

as it supports pandemic control strategies through self-management practices and the 

reduction of visits to healthcare facilities, thereby aiding to contain viral spread [116]. 

Self-reports have been compared to electronic medical records [117] in order to examine 

the accuracy of self-report vaccination status. Nonetheless, there is limited evidence 

about the accuracy of self-reports of influenza, particularly during pandemics [116], 

warranting further in-depth analysis, as found in this thesis. 

 

Tan et al. (2013) found that surveys provided useful information about key 

epidemiological parameters in relation to the influenza [104]. Of particular importance is 

the use of surveys to identify several missing gaps from different perspectives. Although 

not thoroughly studied, surveys can be used to obtain improved and more informative 

prior distributions [118]. However, limited research exists about nationwide cross-

sectional surveys to improve the understanding of the prior distributions as well as the 
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under-reporting rates (the percentage of influenza cases that are not reported by GPs or 

by any other health authority) of the influenza outbreaks. Most of the research papers 

related to this topic focus on serological surveys rather than nationwide cross-sectional 

surveys. Telephone surveys as used in this thesis, might offer a good solution to solve 

missing gaps about knowledge related to the influenza of individuals [119]. 

 

1.5.4 Influenza forecasting 

The ultimate aim of the above research studies is to acquire enough information to 

forecast an emerging outbreak. However, time is a crucial factor in such studies. Thus, 

our objective is to create the real-time forecast as early as possible throughout the 

outbreak, based on the fact that one extra day could cost extra lives [120]. 

 

In one of the latest systematic reviews on the forecasting of the influenza outbreak 

dynamics, Nsoesie et al. (2014) focused on research studies designed in forecasting 

influenza outbreaks at local, regional, national or global level [120]. The systematic 

review discusses several models, namely the time series models, non-parametric 

forecasting (used in meteorology), SIR and SEIR models (including particle filtering), 

agent-based models and meta-population models. Some of these models use historical 

data and other current factors related to the influenza outbreak. In this systematic review 

it was found that several papers discuss the forecasts retrospectively, but the major 

challenge is evaluating and assessing the performance of such methodologies in real-

time. 

 

Researchers used several techniques to analyse the accuracy of the predictions. Some 

researchers employ correlation analysis to analyse the predicted values against the 

observed values [121-123]. Other methods used were percentage errors [124], root mean 

squared error [123], proportion of correct predictions [125] and confidence intervals 

[126]. For these research papers, the correlation varied between 58% and 93.5%, when 

comparing between the observed and predicted values. 

 

Several studies focused on specific characteristics. For example, one particular study by 

Soebiyanto et. al (2010) used the temperature data as an input series, together with an 

ARIMA model to improve the accuracy of forecasted data [123]. Other research studies 
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attempted to estimate the percentage of infection rate within the population [127], 

whereby it was estimated that during the 2009 pandemic, between 57% and 63% 

individuals were infected. The latter study also focused in predicting the peak of the 

influenza. Other researchers focused their forecasting on web-based estimated of 

influenza activity [126, 128]. They found that the peak of the outbreak can be predicted 

6 or 7 weeks in advance. However, web-based estimates carry certain level of uncertainty 

due to errors in capturing influenza trends [120]. The peak of the influenza can be 

predicted using the distribution of previous influenza seasons; however, it is not always 

easy to predict the height that corresponds to the peak [120].  

 

In a research paper published by Shaman et al. (2013), the researchers stated that their 

research study was the first one to predict seasonal influenza which was carried out in 

real-time and which demonstrated accuracy of the forecasts [129]. Additionally, through 

some form of forecast, the researchers forecasted the seasonal influenza in a number of 

cities with an accuracy of 63%. Other estimates of accuracy in forecasting were 

established by Yang et al. (2015) who found that at 1 to 3 weeks lead time (how far in 

the future the peak is forecasted), the accuracy was 37%, and increased to 50% at 0 weeks 

lead time [38]. This paper used the SIR model together with the particle filter algorithm 

to predict future data points. Yang et al. (2014) compared filtering methods to forecast 

influenza epidemics retrospectively [40] and found that different filtering methods 

overestimated the outbreak’s size when the forecasting was carried out close to the 

observed peak. 

 

Through the use of different sources of information, historical data, models and methods, 

one can try to improve forecasting techniques [130]. Researchers attempt to use a 

combination of statistical, simulation and optimization techniques to forecast an epidemic 

curve [131] through the use of the previous parameter values of past epidemics. 

Combination of different methods can improve influenza forecasts and can prove to be 

the way forward in real-time forecasting, given the right assumptions together with good 

datasets [131]. If a proactive approach and model adequate strategies are to be adopted, 

the right practices are necessary to be implemented to forecast the influenza [47]. The 

right methodologies with direct comparisons of independent data, as well as sensitivity 

analysis, are of paramount importance to ensure that the proposed models are providing 

tangible results that can be used by mathematical experts and public health officials [47]. 
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In the above research papers, epidemiologists attempted to predict the epidemic trend, 

duration, peak timing, peak height, and the size of the outbreak. Throughout this 

dissertation, I in turn, attempt to predict all these factors through the use of a combination 

of some of the above models and other statistical techniques. In comparison to the current 

research, the model and methodology developed in this dissertation are novel, and aim to 

produce real-time forecasting. Additionally, I examined thoroughly the assumptions 

about the initial values of S(0), E(0), I(0) and R(0) in the epidemiological models in this 

thesis, as these values can be the key factors in forecasting the characteristics of current 

outbreaks [132]. The ultimate question remains as to how early we can predict the 

progress of an epidemic based on limited information [33], which is one of the main 

research questions of this dissertation. 

 

1.6    Thesis Overview    

The thesis takes the form of nine chapters. The first chapter provided an introduction to 

this research study by introducing the main objectives of this thesis. This is followed by 

a thorough narrative literature review of up-to-date findings of various studies. Chapter 

2 introduces the main methods used in this thesis. I will be explaining some basic and 

important information regarding the Malta context, and general information about 

Malta’s health care system. All data used throughout this thesis, together with models 

and statistical tests will be described in detail in chapter 2. 

 

Chapter 3 focuses on the H1N1 Influenza outbreak. I acquired a dataset on the Maltese 

population regarding the outbreak of H1N1 influenza during 2009 and 2010. All data 

collection was performed by the Maltese Health Authorities, led by the Malta Health 

Promotion Department (MHPD); my contribution is to provide statistical analysis and 

modelling. This research study describes four datasets (consultations, diagnosed, 

swabbed and positives), all of which will be used for epidemiological modelling. The 

novel part of this research is that the approach explicitly addresses multi-proxy signals 

and compares parameter estimates across different proxies. Additionally, several 

relationships between the different proxies is examined in detail, including their time-

dependence. Chapter 3 was published in Epidemics in December 2014 [79]. 
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The analysis in chapter 3 is extended in chapter 4 through the analysis of four seasonal 

influenza datasets. Several comparisons between different parameters for four different 

seasonal influenza datasets are carried out, including the effective reproduction ratio ܴ௧. 

The analysis in chapter 4 is complemented by a detailed analysis to understand the 

relationship between diagnosed cases and consultation cases. 

  

In chapter 4, I introduce and analyse a model that is able to combine multiple datasets 

together. The main aim is to incorporate different datasets together to refine the prediction 

of the outbreak and at the same time, predict multiple datasets in one single framework. 

I use this model to study the effectiveness of real-time forecasting, using a certain number 

of known time points (Chapter 5). I apply the above techniques to forecast the subsequent 

weeks of data. For the above analysis, I apply the SEIR model and Bayesian techniques 

for parameters estimation (particle filtering algorithm), which are implemented through 

the use of a statistical package ‘R’ [133]. The R particle filtering code is a modification 

of Professor Alex Cook's code and I used this code with the author's permission. 

  

Throughout chapter 6, several model parameters are analysed to better understand the 

sensitivity of the results to changes in priors. The initial number of susceptible and 

infected individuals are not known. In this chapter, I explore sensitivity of the results 

(including ܴ௧) to changes in the assumptions about S(0), E(0), I(0) and R(0). These are 

analysed in relation to the effective reproduction ratio. At the end of this chapter, a 

method is presented in relation to the sensitivity analysis. 

 

The objective of chapter 7 is to understand several underlying factors related to the 

influenza, including the under-reporting rate of the seasonal influenza in Malta. Two 

cross-sectional surveys were performed to address several important factors related to the 

Maltese population, and to compare the survey results with the GPs reported data. In 

addition, throughout this research we aim to understand the most important symptoms 

related to the seasonal influenza in Malta. I examine the level of occurrences for such 

symptoms, the hospitalisation rates due to the seasonal influenza, consultations to GPs 

and other important medical information related to the seasonal influenza. This research 

can be considered innovative in the local context as it is a first study of its kind in Malta. 

On an international level, limited research also exists in the adoption of nation-wide 
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cross-sectional surveys to study factors related to seasonal influenza and to estimate the 

under-reporting rates. 

 

Chapter 8 aims to combine all the above techniques in one new innovative prediction 

model to predict the outbreak at an early stage; hence, a new model and framework are 

developed. I analyse the temperature data in relation to the diagnosed data and the 

effective reproduction ratio, and compare the new model with the current up-to-date 

techniques used internationally. Finally, I use this method to predict the total number of 

infected individuals until the end of the season, the peak of the influenza season and the 

influenza spread throughout all weeks. 

 

Chapter 9 contains discussion in which the methodology and results from chapters 3 to 8 

are brought together. I also provide some directions for future research. 
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2.1 Introduction 

The main aim of this chapter is to define important materials and methods used in this 

dissertation. This chapter provides key information on Malta, its healthcare system and 

the role of several health departments in Malta. Subsequently, the chain of events 

surrounding an influenza infection is mapped. The methodology and datasets are defined 

with clear distinctions between different datasets. The SEIR model, the effective 

reproduction ratio, the particle filter algorithm, linear regression model and other 

statistical tests are all described in detail. This chapter is concluded with brief information 

of the software used throughout this thesis.  

 

2.2 A brief description of Malta 

Malta has generally a high humidity level, with an average of 74% during July’09 – 

June’10 period (Figure 2.1). The humidity level in Malta is relatively stationary; however 

the lowest levels are reached during the July-August period. This period is also associated 

with the highest average temperatures in Malta.  During this timeframe, temperature 

exceeds the 30 degrees Celsius on average during the whole day, though reaching 

temperatures of 40 degrees Celsius during mid-day. Malta’s average temperature is 19 

degrees Celsius, with lowest average temperatures reached during the December–

February period. Although there is no clear peak for the humidity level, the months 

March-April tend to show higher humidity levels in Malta. Figure 2.1 shows data for 

2009-2010 which are typical of the Maltese weather. 

 

The Maltese population enjoys 13 public holidays; during these days, most employees 

are off from work and all schools are closed. The school-holiday periods are represented 

in figure 2.1 through the shaded areas. Such data is important as it is believed that it is 

directly correlated with the spread of influenza (Maltese Department of Health 

Information and Research, 2015) (Appendix A). Malta registers high seasonal influenza 

spread following the Christmas period and as soon as schools commence. Maltese 

students enjoy a long holiday period during the Summer season, i.e. between the 

beginning of July and the third week of September. A mid-semester break follows, 

consisting of around 3 days in most schools during the beginning of November. 

Subsequently, between the end of the 3rd week of December and 1st week of January, 

there is the Christmas holiday break, followed by another semester break of 3 days during 
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the last week of February, and an Easter break of around 10 days during the first week of 

April. 

 
Figure 2.1 – The Maltese weather and holiday characteristics. The black line represents the humidity 
level for a whole year, the red line represents the Malta’s typical temperature in Celsius throughout a 
whole year, the blue lines are the public holidays in Malta and the shaded grey areas are the school 
holidays.  
 

2.3 Malta’s healthcare system 

Malta has a long-standing medical history of healthcare provision since 1372, when its 

first hospital began to function [134]. During World War I, the island earned worldwide 

reputation for the nursing care it offered to inpatients. In 2000, Malta ranked fifth in the 

World Health Organization’s ranking of the world’s health systems [135], superseding 

the United States (37th), Sweden (23rd), United Kingdom (18th) and Spain (7th). To date, 

the Maltese government provides comprehensive, publicly funded health care to all 

Maltese residents, similar to the British system [136]. It operates through public hospitals 

and health care centres, and is overseen by the Ministry for Health. Health care is funded 

through taxation and national insurance, covering a wide array of treatments, namely 

covering most medical services such as specialist treatment, hospitalisation, 
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prescriptions, pregnancy, childbirth and rehabilitation, amongst others. Individuals with 

lower income receive free pharmaceuticals following means-testing. Primary healthcare 

is provided through eight Health Centres: seven in Malta and one in Gozo, offering 

preventive, curative and rehabilitative services. Secondary and tertiary care is provided 

through public hospitals. The primary hospital in Malta is the Mater Dei Hospital which 

was inaugurated in 2007 as one of the largest medical buildings in Europe. It received a 

number of awards for medical excellence and research. For those who opt for private 

health care insurance or out-of-pocket payments, the island also offers a strong private 

health system [137]. Pharmacies across the island also offer services by General 

Practitioners, specialized doctors as well as allied health care professionals. Voluntary 

organisations, such as St. John Ambulance and Red Cross Malta, provide first aid/nursing 

services. Similarly, foreign residents are offered health care services through their private 

medical insurance [138]. The University of Malta has a medical school and a Faculty of 

Health Sciences which train students towards their undergraduate or postgraduate studies. 

 

2.3.1 The role of the research department 

The collection, analysis and delivery of health related information in Malta is led by the 

Directorate for Health Information and Research through the provision of high quality 

epidemiological indicators on the health of the Maltese population and local health 

services. The Directorate gathers, analyses and disseminates health information by 

conducting epidemiological studies and maintains disease registers. The Directorate is 

also responsible for the management of national health datasets 

on mortality, cancer, congenital anomalies, organ transplant, obstetrics, hospitals 

information system, accidents and injuries, as well as for a number of other databases 

on health service activity. This directorate is responsible for carrying out the Health 

Interview Surveys, such as the First National Health Interview Survey in 2002, and the 

European Health Interview Survey [139]. 

 

2.3.2 The role of the Malta Health Promotion department 

Health promotion is the process of enabling individuals to increase control over the 

determinants of health, thereby improving their general health [140]. Health promotion 

not only embraces actions directed at strengthening individuals’ skills and capabilities, 

but also increases actions directed towards changing social, environmental and economic 
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conditions. This, in turn, alleviates their impact on public health, enabling individuals to 

enjoy healthier lifestyles. The Health Promotion Unit was set up with the aim to support 

individuals in controlling their own health by investing in sustainable policies, actions 

and infrastructure to address the determinants of health. Apart from leading weight 

management classes, smoking cessation programs within Primary Health Centres, self-

management programs and aerobics classes, particular attention is given to infectious 

disease prevention. The Infectious Disease Prevention and Control Unit, under the 

auspices of the Health Promotion Department, is the only centre in Malta that deals with 

surveillance of infectious diseases. Data is collected from various sources, namely 

medical doctors, laboratories and through local surveillance systems to provide 

information on prevailing issues in infectious diseases. The unit is also responsible to 

manage outbreaks of infectious diseases and to provide related data to the local and 

international scientific community. 

 

2.3.3 Influenza vaccination in Malta 

Routine annual influenza vaccination is offered free of charge to all healthcare 

professionals, other staff working with patients, employees working within the police 

force, soldiers, civil protection personnel, staff at detention centres and open centres, 

veterinary personnel, abattoir personnel, cleansing department staff, correctional facility 

staff and inmates, persons residing in institutions, students attending special schools, 

persons aged 55 years and over, children from the age of 6 months to 59 months and 

persons of any age suffering from chronic diseases (lungs, heart, liver, kidney, diabetes 

mellitus, and any immunodeficiency conditions, including HIV and AIDS). All other 

individuals need to call at their GP to receive the seasonal influenza vaccine. Health care 

providers offer vaccination in October and November at the healthcare centres, councils, 

family doctors, homes, institutes and hospitals. Most local councils and a number of 

family doctors participate regularly in yearly vaccination campaigns to promote influenza 

vaccination and raise awareness in the community [141]. 

 

2.4 Key definitions 

2.4.1 Pathways through influenza illness 

An individual faced with a disease may choose to follow different pathways throughout 

the course of the illness (Figure 2.2). Primarily it is best to define the target population. 
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This includes all those individuals who are part of a country/area under study. During the 

influenza season, several individuals might decide to take the vaccine for influenza 

protection. Some vaccinated individuals might develop immunity but others might still 

develop the seasonal influenza later on during the year (maybe due to a lack of immunity 

or lack of response to the vaccine). Hence, after excluding immune individuals, the new 

sub-population becomes known as the group of susceptible individuals.  

 

Figure 2.2 presents the different pathways taken by different individuals following their 

infection, as not everyone reacts to the same illness in the same way. Some might be very 

wary about their illness while others may feel that they can deal with it on their own.  

 

An individual from the susceptible group and with symptoms related to an influenza-like 

illness may either consult a general practitioner (GP), the local clinic, the general hospital, 

or may decide not to consult anyone. If the latter option is selected, the individual might 

undertake a self-diagnosis with the risk of carrying out an incorrect diagnosis about the 

illness. If any of the first three options is selected, the doctors might correctly diagnose 

the patient for seasonal influenza or incorrectly not diagnose the patient for seasonal 

influenza. There is the possibility that the doctor concludes that there are not enough 

symptoms to diagnose the patient as positive to seasonal influenza. If one is diagnosed as 

positive to seasonal influenza, the patient may be admitted to hospital or sent home for 

the recovery period. This can either lead to a patient’s full recovery or the patient is 

deceased. Hence, an individual has several options to consider when feeling unwell. 

Furthermore, an individual most likely will acquire immunity if recovered from influenza 

or if vaccinated. Most epidemiological studies aim to predict the total number of 

positively diagnosed individuals, irrespective of their preferred pathway. 

 

In most cases in Malta, if a person is diagnosed with seasonal influenza by the GP, the 

diagnosis is not based on a blood test but on the GP’s professional judgement. Hence, 

one may conclude that the patient is tested positive to an influenza-like illness or is 

positive to seasonal influenza but without the confirmation of a virological test based 

upon a nasal swab. 
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Figure 2.2 – This figure maps the whole process of the Influenza and all the potential pathways that 
several groups of individuals may experience during the seasonal influenza period. Individuals are 
faced with several possibilities and options throughout the whole period. 
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2.5 Data used in the thesis 

This section presents several datasets related to the influenza in Malta. The first dataset 

concerns the H1N1 pandemic season (2009-2010). This includes the number of 

consultation cases resulting from the H1N1 pandemic season, data related to the number 

of people who were diagnosed positive to influenza-like illness, those who were swabbed 

during the H1N1 period and the number of individuals who tested positive to H1N1 

through laboratory tests.  Subsequently, data related to the seasonal influenza for four 

consecutive seasons (2011/2012, 2012/2013, 2013/2014 and 2014/2015) is presented. For 

each respective season, the data include three variables, the number of doctors reporting 

the cases, the number of consultations and the number of diagnosed individuals with 

influenza-like illness. Furthermore, a 2015/2016 seasonal influenza dataset will be only 

mentioned and used towards the end of this thesis. All data collection was performed by 

the Maltese Health Authorities and led by the Malta Health Promotion Department 

(MHPD). Additionally in this section, there is a description about the methodology and 

data obtained from a cross-sectional survey, and Malta’s temperature data.  

 

2.5.1 Influenza data 

2.5.1.1 Doctors’ consultations and diagnosed cases 

When a patient feels ill, the first stage of the patient pathway is typically a consultation 

with a doctor. This is then followed by a diagnosis of the influenza or of any other illness. 

The MHPD collects the number of consultations and diagnosed Influenza-Like Illness 

(ILI) cases on a yearly basis (Figure 2.3) during every season related to influenza 

(October – May period). Both the consultations and the diagnosed data are collected on 

a weekly basis (Monday to Sunday). During the H1N1 2009/2010 pandemic season 

(Chapter 3), eight general practitioners (GPs) were selected (from around 300 GPs) to 

report the number of consultations and diagnosed ILI cases. 

 

For the scope of chapter 4, four consecutive influenza seasons were analysed, spanning 

2011 and 2015. Usually the data collection begins at the end of October till around mid-

May. On average, the number of GPs submitting their weekly number of consultations 

and diagnosed cases varied between 6 and 7 GPs per week during the four seasons. All 

the seasonal influenza datasets include the number of GPs submitting their reports on a 

weekly basis. 
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Figure 2.3 – All the original data as collected by the Malta health promotion department (MHPD). 
The first two charts ((a) and (b)) represent the weekly consultations and diagnosed ILIs by a selected 
number of GPs. No data were collected between week 49 (2099) and week 1 (2010) for the 
consultation and diagnosed datasets. The last two charts ((c) and (d)) represent the daily swabbed 
and positive cases during the pandemic season. Note that for the last two charts, all the GPs in Malta 
were invited to participate. 
 

The consultation data include both influenza and non-influenza related data. Hence, the 

number of reported consultations include any consultation irrespective of the type of 

illness, medical condition, or any other request raised by the patient. Hence, the 
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another portion of patients who were tested for other symptoms that were unrelated to the 

influenza. A number of patients were examined for ILI; these were either diagnosed 

positive or negative. Those who were tested positive (i.e. acute illness with onset during 

the last 7 days, with measured temperatures of >38ºC together with others symptoms as 

defined in Chapter 1) by the GPs are represented through all the diagnosed datasets. Some 

missing data exists in the consultations and diagnosed data (Figure 2.3) due to non-

collected data during some periods. This missing data was imputed through the linear 

regression model which is later described in Chapter 3 [79].  

 

The above datasets (Figure 2.3) are the main influenza datasets that I will be exploring; 

however a similar dataset was acquired for the 2015/2016 seasonal influenza. This dataset 

will only be used in chapter 7 to compare the 2015/2016 dataset with the survey data, and 

in chapter 8 to test the methodology developed in that same chapter. 

 

2.5.1.2 ILI Swabbed and H1N1 Positive cases 

During the H1N1 season (2009/2010), all GPs in Malta who had seen and diagnosed 

individuals with ILI, were encouraged to contact the MHPD to have their patients 

swabbed (Figure 2.3). Only these individuals, as well as those who were considered part 

of the high risk group, were eligible to be swabbed. On average, there were 8.5 GPs 

reporting cases on a daily basis. These GPs might differ from one day to another, as all 

GPs in Malta were invited to follow this process. As defined in chapter 3 [79], the high 

risk group includes: elderly, pregnant women, children under the age of 5, patients with 

a chronic disease and health care workers. Hence, swabbing patients includes further 

investigations in a laboratory, rather than the standard tests (such as checking patients’ 

temperature) carried out by the physicians to examine patients for ILI. In total, 3204 

people were swabbed by the MPHD between 1st July 2009 and 20th June 2010. Of these, 

1100 tested positive to H1N1 (Figure 2.3). These were the only laboratory-confirmed 

H1N1 cases in Malta and include both hospitalised cases and cases in the community. 

However, one cannot assume that those who tested negative did not develop the H1N1 

virus during the season, since the influenza during this period consisted of the H1N1 type 

virus. There are several reasons for this, which are discussed in further detail in chapter 

3 [79]. 
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For both swabbed and positive datasets, there were two main waves reaching their peaks 

in July 2009 and December 2009. The second peak resulted in a lower number of swabbed 

and infected cases when compared to the first peak. Swabbed and positive datasets 

commenced with a peak value without any build-up to reach the peak value of the 

influenza during the first wave. Hence, one may hypothesize that there is some missing 

data for the period prior to 1st July 2009. Although research has been carried out in other 

countries (as described in further detail in Chapter 3), there is a gap in our understanding 

of the epidemiological factors related to the Maltese population. In addition, determining 

innovative techniques may help explain any gaps in knowledge or misconceptions about 

seasonal influenza. 

 

2.5.2 Malta’s cross-sectional survey datasets 

Two cross-sectional surveys were carried out as part of this thesis; however the data 

obtained from the first survey was the primary dataset that is presented and analysed in 

chapter 7. The first survey was carried out between week 35 (August 2015) and week 37 

(September 2015), and its primary aim was to explore the under-reporting rate (defined 

in Chapter 1) of the seasonal influenza as compared with the above GP datasets during 

the 2014/2015 seasonal influenza.  As defined above (Figure 2.2), this might be derived 

due to several reasons (self-diagnosis, not-enough symptoms to diagnose ILI, and 

incorrect diagnosis). In these surveys respondents were asked questions retrospectively 

for the previous year.   

 

In this study, a questionnaire was designed to explore several characteristics related to 

the seasonal influenza, influenza-like illness, symptoms related to influenza and other 

medical topics (Appendix B). The research instrument consisted of 32 items, including 

socio-demographic factors, and other questions related to whether participants had 

experienced the seasonal influenza and whether they had any particular symptoms. 

Furthermore, respondents were given a list of symptoms to evaluate whether they actually 

had experienced these symptoms during the past year. 

 

A similar second survey was carried out in April 2016. The data obtained in the second 

survey was used to compare and confirm some of the results obtained in the previous 

survey and hence, the results were not analysed to the same extent as in the previous 
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survey. This survey was carried out during the end stages of the 2015/2016 seasonal 

influenza. Hence, results were also compared (with the first survey) from the perspective 

that the second survey was carried out earlier (throughout the influenza season) when it 

might be easier for respondents to remember their ILI symptoms. It is important to 

emphasize that the second survey data can be considered as a secondary dataset in chapter 

7, and mainly serves as a tool to analyse and compare the 2014/2015 survey dataset and 

the main objectives of chapter 7. 

 

A pilot study was conducted with a small random sample of 20 individuals to ensure that 

all questions are understandable and to ascertain the practicalities of conducting the 

telephone survey. The results showed that the tool was feasible to conduct by telephone 

and that no changes were required. The individuals participating in the pilot study were 

not included in the larger study. 

 

To ensure a good response rate, the study was carried out through the use of telephone 

interviews. The interviews were conducted in Maltese; however if participants preferred 

to answer in English, this option was offered. Each survey comprised a sample of 406 

Maltese individuals from the eligible population of around 349,724 individuals [16]. In 

this study, the eligibility criteria to participate in this study was all Maltese residents of 

18 years and older, and people residing in Malta. The study was carried out through a 

95% confidence level and 4.86% confidence interval as shown below (Figure 2.4). The 

sample was stratified by age, district and gender. Telephone numbers were obtained from 

the two main telephone service providers in Malta (GO and Melita) and generated at 

random.  

 
Figure 2.4 – Sample Size (Creative Research Systems, 2012) [142] 
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2.5.3 Temperature data 

Malta’s temperature data was obtained from the Maltese Meteorological Office [143]. 

This office is part of the private company, Malta International Airport. The 

Meteorological office offers an extensive range of products related to Malta’s weather, 

including temperature data, humidity levels, wind speed and wind direction. These data 

can be provided at various locations around Malta. The Meteorological office collects 

this data every minute, and every day of the year [143]. For the scope of this thesis, the 

daily temperature data since 2009 was obtained. The data acquired was for Luqa, which 

is located centrally. Most on-line weather reports and weather forecasts also use this 

particular location. Since most of the above influenza datasets are in weekly format, 

weekly averages were calculated in order to compare the temperature data against the 

weekly diagnosed data and other variables. 

 

2.6 Models 

Throughout this section, we shall cover the most important mathematical modelling 

techniques, algorithms and statistical techniques used in this thesis. The SEIR model was 

the main modelling technique used. Parameters were estimated through the use of the 

particle filter algorithm. Throughout different parts of the thesis, the linear modelling 

technique and some other standard statistical tests were used to analyse different 

variables. 

 

2.6.1 The SEIR model 

The SEIR model [26] is the epidemiological model used throughout this thesis. The 

model includes four different compartments (Figure 2.5). The first stage of the SEIR 

model are Susceptible (S) individuals, i.e. those who can acquire the disease. Following 

this stage, individuals move to the Exposed (E) class (but cannot transmit the disease), 

followed by those who are Infected (I) and able to transmit the disease to other 

individuals. The last compartment is the Removed (R) individuals, which includes those 

individuals who become immune (recovered) or deceased due to the disease.  

 

 
 
Figure 2.5 – The four different compartments of the SEIR model. An individual moves from one 
stage to another with the possibility of not being fully recovered and hence moves to the initial stage. 
 

Susceptible Removed Infected Exposed 
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For the purpose of parameter estimation and prediction, we use the following set of 

equations [26, 79]: 

 

ܵ௧ = ܵ௧ିଵ −  ௧ܣ

௧ܧ                                                    = ௧ିଵܧ + ௧ܣ −  ௧                                             (1)ܤ

௧ܫ = ௧ିଵܫ + ௧ܤ −  ௧ܥ

ܴ௧ = ܴ௧ିଵ +  ௧ܥ

where ܵ ௧ is the number of susceptible individuals at time t (day or week), ܧ௧ is the number 

of exposed (but not infectious) individuals at time t (day or week), ܫ௧ is the number of 

infected (and infectious) individuals at time t (day or week) and ܴ௧ is the number of 

removed individuals at time t (day or week). The values ܣ௧, ܤ௧ and ܥ௧ are the numbers of 

newly infected individuals in the population (i.e. individuals from the susceptible 

compartment who are then moved to the exposed compartment), the number of infectious 

individuals (i.e. individuals from the exposed compartment who are moved to the 

infectious compartment) and the removed persons respectively (i.e. individuals from the 

infectious compartment who are moved to the removed compartment). These variables 

are assumed to have the binomial distribution and are defined by: 

 

݊݅ܤ~௧ܣ ቆܵ௧ିଵ, 1 − ݁
൜
ିሾఌାఉூ೟షభሿ

ே ൠ
ቇ 

݊݅ܤ~௧ܤ                                                ቀܧ௧ିଵ, 1 − ݁ቄషభ
ഀ

ቅቁ        (2) 

݊݅ܤ~௧ܥ ൬ܫ௧ିଵ, 1 − ݁ቄିଵ
ఛ ቅ൰ 

Here, ߝ is the importation rate per week or per day (according to the dataset). This 

includes Maltese individuals who become infected due to travelling abroad, but does not 

include new travellers entering Malta. The parameter ߚ is the infection rate of the Maltese 

population, ିߙଵ is the transition rate between exposed to infectious, and ߬ିଵ is the 

transition rate from infectious to the removed compartment. Hence, ߙ is the latent period 

in days or in weeks (according to the dataset) that an individual takes to move from the 

exposed compartment (E) to the infectious compartment (I), while ߬ is the infectious 

period (in days or weeks) that a person takes to shift from the infections compartment (I) 

to the removed compartment (R). N is the population size of Malta which is assumed to 

be equal to 414,000. 
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These four different compartments (ܵ௧, ௧ܧ , ,௧ܫ ܴ௧) are not observable. Hence, through the 

collected data we aim to estimate these four compartments based on the above parameter 

values (ߚ, ,ߝ ,ߙ ߬). What is observable, is the dataset ܦ௧. In fact, the above SEIR model is 

combined with an observation (reporting) model. The observations ܦ௧ are the actual 

number of cases (consultations, diagnosed, swabbed and positive) as reported by GPs. 

Through the observation model, we combine the number of infectious individuals (I), the 

background rate (߶) and the reporting rate (ߜ). ܦ௧  is assumed to be Poisson distributed 

with mean ௧ܰߜௗ(௧) ቄ߶ +
ூ೟

ଷ଴଴
ቅ where ௧ܰ is the total number of GPs submitting reports on 

day/week t. ߜௗ(௧) is the probability of infected individual seeking medical help, where 

 .is used ߜ is the day of the week for daily datasets, while for weekly data only one (ݐ)݀

The number of practicing GPs in Malta was estimated to be equal to around 300, as stated 

by the directorate for Health Information and Research during one of my one-to-one 

meetings. The SEIR model predicts the total number of infectious individuals from the 

whole population (414,000), while ܦ௧ predicts the total number of cases as reported by 

GPs. ܦ௧ can be directly compared with collected data. 

 

The ‘background’ consulting rate (߶) for the consultations data is the number of non-

influenza cases from the total number of consultations being reported by the doctors. For 

the diagnosed cases, ߶ is the number of non-ILI cases from the total number of ILIs being 

reported by GPs. For the swabbed/positive datasets, this is the number of non-H1N1 

ILI/positive cases. Hence, for the consultation datasets, ߶ is expected to be higher, as 

substantial number of consultations cases are not related to the influenza. On the other 

hand, the diagnosed datasets are a more direct measure of the number of infectious (I), 

resulting in a lower number of ‘background’ consulting rate. Hence, the SEIR model tries 

to establish the actual number of individuals for different compartments based on the fact 

that there is a certain level of ‘background’ consulting rate and the reporting rate.  

 

2.6.2 Rt for different datasets 

As mentioned in chapter 1, the reproduction ratio is one of the most important parameters 

in epidemiological modelling. This is defined as the number of new infected individuals 

from one currently infected person at a given time. The effective reproduction ratio ܴ௧ is 

calculated from the above SEIR model. In fact, once the parameters ߚ, ,ߝ  and ߬ are ߙ
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computed, the effective reproduction ratio (Rt) at any given time t is calculated through 

the following equation: 

 

1)ߚ − ݁ିቀ
ଵ
ఛቁ)ܵ௧

ܰ
 

 

For any dataset (consultation, diagnosed, swabbed and positive), the ܴ௧ value has the 

same meaning but is based on a different proxy. The S, E, I and R compartments are 

‘true’ numbers and are not subject to interpretation. It is ܦ௧ that varies. Hence, the 

effective reproduction ratio has a consistent meaning for the SEIR model related to the 

number of new influenza infections. Thus, for all different datasets the ܴ௧ value is the 

number of newly infected cases produced by a single currently infected individual. The 

main difference is the level of uncertainty that each dataset (ܦ௧) provides to the effective 

reproduction ratio. Hence, if the consultation dataset includes substantial amount of non-

influenza cases, then this dataset includes a considerable level of uncertainty about the 

actual number of infected individuals. In contrast, the diagnosed dataset is specifically 

related to individuals with an influenza-like illness. Thus, this is a more direct proxy to 

the number of infectious individuals’ compartment. The same applies for the swabbed 

and positive cases (both direct proxy of the infectious individuals). Therefore, the 

reliability of the estimated ܴ௧ value depends on the type of proxy being used.  

 

2.6.3 Particle filtering algorithm 

The particle filter algorithm (as defined in the previous chapter) is a sequential Monte 

Carlo algorithm [26]. It is a sampling method to approximate a distribution that makes 

use of its temporal structure [26]. The idea in this study is to represent the posterior 

density by a set of random particles with associated weights. The estimates are then 

computed based on these samples and weights. As defined in previous section, the SEIR 

model is based on a set of parameters ߠ = ,ߚ) ,ߝ ,ߙ ߬) and the unknown unobserved state 

௧ߑ = ሼܵ௧, ,௧ܧ ௧ܫ , ܴ௧ሽ. Hence one can estimate these parameters and values through the use 

of the above SEIR model using the particle filter algorithm.  
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2.6.3.1 Initial stage 

The algorithm starts at time t=0, and with a set of 10,000 generated particles (P) (or even 

more) from the prior distribution for the initial states Σ0 and parameters θ. 

 

2.6.3.2 Iteration of particles 

For each particle, p at each time step t+1, Σt+1 is drawn using Monte Carlo simulation 

from its conditional distribution, given ݔ௧
௣, where ݔ௧

௣ = ,௧ߑ)  with an associated weight (ߠ

௧ݓ
௣ [26]. At each time point, each prediction is calculated in light of what has already 

been discovered. Hence, the particles are being iterated by one time point at a time based 

on the new state space (ߑ௧).  

 

2.6.3.3 Weighting the particles 

The likelihood function is estimated conditioned on the pathway of the particle and the 

associated parameter values. Hence, we use the likelihood function to weight each 

individual particle. Therefore, we set ݔ௧ାଵ
௣ = ,௧ାଵߑ)  and the likelihood contribution (ߠ

௧ାଵܮ
௣ = ௧ାଵݔ|௧ାଵܦ)݂

௣ ) is calculated, conditioned on the path of the respective particle 

using the same parameter values and  ܦ௧, which is the number of reported cases on day t 

(for daily dataset) or week t (for weekly dataset). This likelihood is then used to find the 

weights by setting ݓ௧ାଵ
∗(௣) = ௧ݓ

(௣)ܮ௧ାଵ
(௣)  and then scaled to sum up to one: ݓ௧ାଵ

∗(௣) =
௪೟శభ

∗(೛)

∑ ௪೟శభ
∗(೜)ು

೜సభ
. 

 

2.6.3.4 Particle degeneracy and re-sampling 

One of the problems when using the algorithm of particle filtering is that some of the 

particles will be assigned low values of weights; hence their relevance for the distribution 

is almost negligible. This problem is overcome by performing re-sampling [46], hence 

letting ݔ௧ାଵ
∗(௣) = ௧ାଵݔ

∗(௤) where q is selected from the set of integers ሼ1,2, … , ܲሽ with 

probability proportional to ݓ௧ାଵ
∗(௤). Then for all p, ݓ௧ାଵ

௣ =
ଵ

௉
. Thus, whenever some of the 

particles fall below a certain threshold, the current set of particles are re-sampled. 

 

2.6.3.5 Kernel smoothing 

Particle diversity is retained by kernel smoothing [144]. As described in Ong et al. (2010) 

[26] and Trenkel et al. (2000) [14], let ݔ௧ାଵ
௣ = ௧ାଵߤ

௣ + ℎ(ݔ௧ାଵ
∗(௣) − ௧ାଵߤ

௣ ) + ܼ√1 − ℎଶ, and 

setting h=0.3, Z is generated from a multivariate Gaussian distribution with mean vector 
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0 and the variance derived from the variance-covariance matrix of ݔ௧ାଵ
∗(௣) over all p, and 

௧ାଵߤ
௣  is the vector of means ݔ௧ାଵ

∗(௣) over all p if the estimated value ݔ௧ାଵ
௣  falls within the 

correct support or ݔ௧ାଵ
௣ = ௧ାଵݔ

∗(௣) otherwise. Hence, kernel smoothing is used to improve 

the precision and robustness of the parameter estimates [145]. The main strength of this 

step is that it solves the problem of particle failures (by retaining a good particle mixture) 

without the side- effects of increasing the variance. 

 

2.6.3.6 Increment 

This algorithm is repeated and Σt+1 is observed again. This can be run in two different 

ways. For parameter estimation, we will run it up to the end of the observed data. For 

prediction, we will run it until the end of the prediction period. 

 

2.6.4 Linear Regression Model 

Linear regression modelling demonstrates the relationship between selected values of X 

and observed values of Y, from which the most probable value of Y can be predicted for 

any value of X. Hence, regression tries to find the line of best fit that predicts variable Y. 

A linear regression technique gives an understanding of the relationship between two 

variables. This technique establishes a linear regression equation: 

 

௜ܻ = ߢ  +  ∆ ௜ܺ +  ߱௜ 

 

where ௜ܻ is the dependent variable or response variable for observation i, ܺ௜ is the 

independent variable or predictor variable for observation i and ∆ is the regression 

coefficient. The latter is also the gradient/slope of the linear regression. This is one of the 

most important parameters of the linear regression model, as it defines the main 

relationship between the dependent and independent variable. In order to calculate the 

parameter ∆ we need to use the least square estimation method to estimate: 

 

∆෠=
ܵ௫௬

ܵ௫௫
 

where ܵ௫௬ = ,ܺ)ݒ݋ܥ ܻ) = ∑ ( ௜ܻ − തܻ)( ௜ܺ − തܺ)௡
௜ୀଵ , ܵ௫௫ = (ܺ)ݎܸܽ = ∑ ( ௜ܺ − തܺ)ଶ௡

௜ୀଵ , തܻ 

is the mean value of  ܻ, തܺ is the mean value of ܺ and n is the sample size. 
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The parameter ߢ is the y-intercept of the linear regression. This variable captures the other 

fixed factor that influences the dependent variable. This parameter can be estimated 

through the least square estimation method: 

ߢ̂ = തܻ − ∆෠ തܺ 

 

For both parameters ∆෠  and ̂ߢ, the sum of squares of residuals are minimized. We assume 

that the random error ߱ is independent and identically normal distributed with mean ‘0’ 

and variance ߪଶ, ߱~ܰ(0,   .(ଶߪ

 

The linear regression model produces the ܴଶ value, which is the degree of accuracy that 

the predictor variable X is predicting the response variable Y. The closer the values are to 

100%, the better is the accuracy in predicting variable Y.  

 

ܴଶ =
ܴܵܵ
ܵܵܶ

= 1 −
ܧܵܵ
ܵܵܶ

 

 

where ܴܵܵ = ∑ ( ෠ܻ௜ − തܻ)ଶ௡
௜ୀଵ , ܵܵܶ = ∑ ( ௜ܻ − തܻ)ଶ௡

௜ୀଵ , ܵ ܧܵ = ∑ ( ௜ܻ − ෠ܻ௜)ଶ௡
௜ୀଵ , where ௜ܻ are 

the original data values, ෠ܻ௜ are the modelled values, തܻ is the mean of the original data and 

n is the sample size. 

 

A t-test can also be applied on the slope of the linear regression model to examine whether 

a linear relationship exists between the X and Y variables. The hypothesis for such a test 

can be defined as: 

= ∆ :଴ܪ 0
≠ ∆ :ଵܪ < ∆ :ଵܪ ݎ݋ 0 > ∆ :ଵܪ ݎ݋ 0 0 

 

where ܪ଴ is not rejected if no relationship exists between the X and Y variables and ܪ଴ 

is rejected if a relationship exists between X and Y; hence a model does exist between 

these two variables. The t-statistic used in this case can be defined by the following 

equation: 

 

ݐ =
∆෠ − 0

(෠∆) ݁ݏ
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where the standard error can be defined by the following equation from the sample size 

n: 

 

൫∆෠൯ ݁ݏ = ඩ
∑ ( ௜ܻ − ෠ܻ௜)ଶ௡

௜ୀଵ
݊ − 2

∑ ( ௜ܺ − തܺ)ଶ௡
௜ୀଵ

 

 

2.6.5 Analysis for associations 

2.6.5.1 Correlations analysis 

Correlation analysis demonstrates the degree to which two quantitative and continuous 

variables are related. The Pearson correlation coefficient (r) is the measure of the level 

of accuracy between two variables X and Y. By drawing a scatter plot between the two 

latter variables, one can understand whether there is linearity between these two 

variables. If the scatter points between variables X and Y can be represented by a perfect 

line, then it means that the correlation value is 1 or -1, resulting in a perfect relationship 

between the two variables. The closer the Pearson correlation values are to 1 or -1, the 

higher the association between the two variables. If the values are close to 0, then it means 

that there is no association between the two variables. Positive correlation value 

represents a positive gradient; hence the higher the values of X, the higher the values of 

Y. A negative Pearson correlation value means that the higher the values of X, the lower 

are the values of Y. The Pearson correlation coefficient (r) is defined through the 

following equation: 

 

ݎ =
݊ ∑ ܺ௜ ௜ܻ − (∑ ܺ௜)(∑ ௜ܻ)௡

௜ୀଵ
௡
௜ୀଵ

௡
௜ୀଵ

ට݊(∑ ܺ௜
ଶ)௡

௜ୀଵ − (∑ ܺ௜
௡
௜ୀଵ )ଶට݊(∑ ௜ܻ

ଶ)௡
௜ୀଵ − (∑ ௜ܻ

௡
௜ୀଵ )ଶ

 

 

where n is the sample size. A t-test can also be applied to test whether the association 

between the X and Y variables is statistically significant. In order to test this association, 

we need to apply the following hypothesis: 

= ߩ :଴ܪ 0
≠ ߩ :ଵܪ ߩ :ଵܪ ݎ݋ 0 > ߩ :ଵܪ ݎ݋ 0 < 0 
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where ߩ is the population correlation coefficient (unknown). ܪ଴ is not rejected if no 

relationship exists between the X and Y variables and we reject ܪ଴ if a relationship exists 

between X and Y.  

 

The t-statistic test used in this case can be defined by the following equation: 

 

ݐ =
݊√ݎ − 2

√1 − ଶݎ
 

with n-2 degrees of freedom for the above t-statistic. 

 

2.6.5.2 Chi-Squared test 

Chi-Square (߯ଶ) test is another test of association between two variables. However, 

unlike the Pearson correlation coefficient, Chi-Square test only compares categorical 

variables. This test compares the observed data against the expected data through a cross-

tabulation. If there is a significant difference between the observed and expected data, 

then we reject the null hypothesis and hence we conclude that the responses within one 

variable are significantly different when compared to the second variable. In order to 

apply this test, the following chi-square distribution is used: 

 

߯ଶ = ෍
(ܱ௜ − ௜)ଶܧ

௜ܧ

௡

௜ୀଵ

 

 

with n-1 degrees of freedom, ܱ௜ are the observed values, ܧ௜ are the expected values and 

n is the number of categories. 

 

2.7 Software used 

This section shall cover the main software used for the analysis performed throughout 

this dissertation.  

 

2.7.1 R 

In order to carry out the particle filtering algorithm, the statistical software ‘R’ was used 

[133]. Furthermore, R was used to visualize the above datasets, to apply several statistical 
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tests (Correlation analysis and Chi-Square test), to apply the linear regression analysis 

and to visualize the final outputs from the analysis. Since the commencement of my PhD 

study, several versions of the software ‘R’ were used; however, the latest utilized version 

was 3.2.0.  

 

2.7.2 Microsoft Excel 

Throughout the whole process of analysis, Microsoft Excel was used mainly to store all 

the above data, to carry out some quick analysis and to obtain some initial visualizations 

of the defined datasets. Ultimately, most of the charts were produced through the software 

‘R’. Several versions of Microsoft Excel were used; however the latest version was 

Microsoft Office 2013. 

 

2.7.3 SPSS 

SPSS software [146] was mainly used for the analysis of the under-reporting surveys. 

Hence, descriptive statistics, frequency tables, Chi-Square tests and Correlation analyses 

were all carried out through SPSS v21. 
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Chapter 3 
 

Estimation of force of infection based 
on different epidemiological proxies: 

2009/2010 Influenza epidemic in 
Malta 
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3.1 Introduction 

The following is a research paper published in Epidemics 9 (2014) 52-61, and written by 

V. Marmara (main author), A. Cook and A. Kleczkowski. I was involved in the whole 

process of writing this research paper. I carried out all analysis and interpreted the results. 

The following content is exactly the same text as published in the journal. The reference 

numbers in this chapter are different than the reference numbers of the dissertation in 

general, as these are exactly the same as in the published paper. 

 

Abstract 

Information about infectious disease outbreaks is often gathered indirectly, from 

doctor’s reports and health board records. It also typically underestimates the 

actual number of cases, but the relationship between the observed proxies and the 

numbers that drive the diseases is complicated, nonlinear and potentially time- and 

state-dependent. We use a combination of data collection from the 2009-2010 H1N1 

outbreak in Malta, compartmental modelling and Bayesian inference to explore the 

effect of using various sources of information (consultations, doctor’s diagnose, 

swabbing and molecular testing) on estimation of the effective basic reproduction 

ratio, Rt. Different proxies and different sampling rates (daily and weekly) lead to 

similar behaviour of Rt as the epidemic unfolds, although individual parameters 

(force of infection, length of latent and infectious period) vary. We also demonstrate 

that the relationship between different proxies varies as epidemic progresses, with 

the first period characterised by high ratio of consultations and influenza diagnoses 

to actual confirmed cases of H1N1. This has important consequences for modelling 

that is based on reconstructing influenza cases from doctor’s reports. 

 

Keywords:  epidemiology, compartmental modelling, Bayesian inference, Markov chain 

methods. 

 

Introduction 

On the 1st of July 2009, the Health Authorities in Malta reported the first official case of 

the swine-origin influenza A (H1N1), but in the world, it was already during April 2009 

that the first official cases were confirmed in United States (California) and Mexico [1]. 

Shortly afterwards the influenza started to spread in the European countries [2]. During 
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the initial stages of the epidemic the overall spread was similar in Europe but in autumn 

2009 the second wave of infection primarily emerged in UK [2]. A lot of uncertainty 

about this influenza existed especially during the initial stages of the influenza, but the 

availability of datasets has now made this outbreak an excellent case for developing 

epidemiological models. 

 

The main role of epidemiological modelling is to estimate the reproduction ratio, Rt of an 

unfolding epidemic of the infectious disease and to provide recommendations for its 

treatment. However, even the best models cannot perform their required function if the 

quality of data used to parameterise them is inadequate. Unfortunately, we are unlikely 

to ever have a complete data set of disease cases; instead we typically struggle with 

incomplete data sets using various proxies to estimate the numbers we need. One of the 

biggest problems in epidemiological parameter estimation is associated with low 

reporting rates. In fact the World Health Organization (WHO) in 2010 said that the total 

deaths from H1N1 is unquestionably higher [3, 4] due to a substantial amount of 

unreported cases. In the USA the reported number of H1N1 cases was “substantially 

underestimated” when compared with the estimated number of Reed et al. [5]. This 

happens due to several reasons, but the obvious ones are due to the fact that not all people 

go to visit their doctor when they fall ill, not all cases are sent to laboratories to be 

investigated and due to the timing of the specimen taken [5]. 

 

Additionally, the reporting efficiency often varies over the period of the epidemic. Thus, 

people might be reluctant to go and seek the doctor’s attention early in the epidemic if 

they are not aware of the risks. Conversely, once the information about the unfolding 

outbreak is public, there is likely to be a rush to seek medical assistance. Thus, the 

relationship between what we observe (reported cases) and what is actually happening in 

the field is a non-trivial function of time, size of the epidemic and news coverage. As 

these relationships are complex, there are comparatively few studies that address the 

influence of choice of proxies and the time-and state-dependent reporting on the 

parameter estimation for epidemics and in particular on the estimation of the effective 

reproduction ratio, Rt [6-15]. In order to do so, for the case of the H1N1, several papers 

considered and compared different datasets coming from different states and countries 

[1, 2, 16-18]. 
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Parameter estimation for epidemiological models has so far been mostly based upon 

positive cases of H1N1 (laboratory-tested-positive) [2, 12, 19-21] although some 

analyzed swabbed cases (Influenza-Like-Illness) [22, 23] and others compared swabbed 

and positive cases [1, 17]. Many datasets were analysed with resolution varying from 

weekly reporting [23, 24] to daily datasets [2, 8]. 

 

It is therefore very important to look for systems that would allow us to study in detail 

the relationship between different types of epidemiological data. The outbreak of H1N1 

influenza in Malta gives us a unique opportunity to study such a relationship. The Malta 

Health Promotion Department (MHPD) was collecting various epidemiological data 

during the 2009/2010 outbreak. In this paper, we use a combination of these data and the 

Bayesian parameter estimation technique to explore how usage of different information 

about the epidemic influences our understanding of the disease progress. Our assumption 

is that health authorities would typically have access to only one of the data types that we 

include in our study and so would like to know how the estimation would be affected by 

which type of data is available. Our research will use data describing the number of 

people visiting their physician based on their symptoms (consultations), data about 

people that were diagnosed with any influenza (diagnosed), those that were swabbed for 

H1N1 (swabbed data) and those that were tested positive for H1N1 (positives data). The 

general idea is to give better understanding to the estimation of the force of infection 

based on different related sources of data. Furthermore, this analysis includes both daily 

and weekly data. 

 

Material and methods 

All data collection was performed by the Maltese Health Authorities and led by the Malta 

Health Promotion Department (MHPD).  The H1N1 data began to be collected when the 

first cases emerged in Malta in 2009, but the MHPD also collects data informing about 

the seasonal influenza. The total population in Malta as end of December 2009 was ca. 

414,000. This included the non-resident (tourists) population ranging from ca. 6,000 in 

December to as much as ca. 50,000 in August. Malta is a densely populated country with 

circa 1,311 inhabitants per square kilometer. 
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Doctors’ consultations and Diagnosed 

The first data set incorporates consultations to the Health Promotion Department between 

week 1 (1st January) in 2009 and week 21 (28th May) in 2011 (Figs. 1(a) and (b), based 

upon eight physicians selected by the MHPD to report on a weekly basis). Two types of 

information were collected, the number of patients who attended the practice with any 

medical problems (Consulted, see Fig. 1) and the number of those subsequently 

diagnosed with influenza (Diagnosed, Fig. 1(a)). The diagnosis was based on symptoms 

(a sudden onset of disease, cough, fever >38oC, muscular pain and/or headache; MHPD, 

private communication). Unfortunately, no data were collected between week 49 – 2009 

and week 53 – 2009. In our paper we concentrate on the period September 2009-June 

2010, during which 52,016 patients sought the physician’s help and 4,544 patients were 

diagnosed with influenza by the eight physicians. 

 

Swabbed and H1N1 Positive 

The physician’s diagnosis typically is not based upon any microbial analysis and 

therefore is to some extend arbitrary. In order to study the process of reporting in more 

detail, we include in our analysis the data for individuals who were selected for further 

testing, based upon their increased risk of complications due to influenza. In the 

community, general practitioners were able to contact MHPD to have their patients 

swabbed if they developed flu-like symptoms (temperature of 38oC or higher) and if they 

fell under one of the following high risk groups: elderly, pregnant women, children under 

5 years of age, those with chronic disease and health care workers.  These people were 

more at risk of developing complications and could be offered early treatment with 

antiviral drugs. On average there were 8.5 doctors sending reports each day. Moreover, 

all those admitted directly to hospital with influenza-like sickness and having a 

temperature of 38oC or higher were swabbed during this period. Although testing was 

done centrally, not all people that should have been tested, were actually swabbed. 

MHPD estimates that for every swabbed person, there were another three people in the 

risk group who were not swabbed (private communication). A total of 1,847 people tested 

in this way between the 21st of September 2009 (week 39) and 20th of June 2010 (week 

24), Fig. 2; of these, 622 tested positive to H1N1. Those who tested negative to H1N1 

had flu-like symptoms, possibly due to various reasons such as having other respiratory 

illness. In addition, incorrect swabbing may have resulted in missed cases; late swabbing 
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or inaccuracy of the swabbing system may also have resulted in an inaccurate virus pick-

up rate.  

 
Fig.1 The epidemiological data from Malta covering the period from January 2009 to May 2011. 
Consultations and Diagnosed were reported weekly by 8 sentinel doctors selected by MHPD. During the 
H1N1 epidemic, data were collected daily for Swabbed and Positive patients from risk groups; data 
collected centrally for those doctors who selected to report the case (on average 8.5 doctors per day).  
 

Most of the patients who were swabbed were followed-up, but doctors did not specifically 

record the date of recovery. Non-fatalities were considered to have recovered within 

seven days of their swab date, following the usual progression of influenza symptoms. 

During this period, there were five deaths due to the H1N1 in Malta. Epidemiological 

data included both residential people and tourists. In fact, one of the deaths recorded was 

that of a Spanish Tourist. 
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During January 2010 till the end of February 2010, the vaccine was available to everyone 

and so, March 2010 can be considered as the end of the epidemic.  In total, Malta’s Health 

Department dispensed 2700 courses of antiviral drugs through the government 

dispensary, but it is known that around 10% of the population had already bought a stock 

of antiviral drugs which had not yet expired, hence using their own medication.  

Following the end of February, there were no new positive cases. 

 
Fig. 2. Malta influenza data used in the analysis. The dotted lines denote Malta’s holidays; no apparent 
correlation with holidays was found in the data.  
 



- 52 -  
 

Data aggregation  

In order to compare data collected at different time steps (daily and weekly), we 

aggregated the daily data by summing the cases over the same intervals as covered by the 

weekly data. Thus, we analysed the data for swabbed and positive cases twice, once at 

the daily intervals (as collected) and once at the weekly intervals (corresponding to the 

consultations and diagnosed cases). 

 

Model 

A discrete time SEIR stochastic compartmental model [6, 25] was used to estimate the 

parameters. The model includes four compartments, Susceptible (S), Exposed (E) 

(infected but not infectious), Infectious (I) and Recovered (R). The SEIR model describes 

the flow of individuals between the compartments 

ܵ௧ = ܵ௧ିଵ −  ௧ܣ

௧ܧ = ௧ିଵܧ + ௧ܣ −  ௧         (1)ܤ

௧ܫ = ௧ିଵܫ + ௧ܤ −  ௧ܥ

ܴ௧ = ܴ௧ିଵ +  ௧ܥ

where ܣ௧, ܤ௧ and ܥ௧ are the numbers of newly infected people in the population, the 

number of infectious and recovered, respectively. These variables are assumed to 

binomially distributed and are defined by: 

݊݅ܤ~௧ܣ ቆܵ௧ିଵ, 1 − ݁
൜
ିሾఌାఉூ೟షభሿ

ே ൠ
ቇ 

݊݅ܤ~௧ܤ ቀܧ௧ିଵ, 1 − ݁ቄషభ
ഀ

ቅቁ        (2) 

݊݅ܤ~௧ܥ ൬ܫ௧ିଵ, 1 − ݁ቄିଵ
ఛ ቅ൰ 

where ିߙ ,ߚ ,ߝଵ and ߬ିଵ are the importation rate, infection rate of the local population, 

the rate of transition from exposed to infectious and the rate of transition from infectious 

to removed, respectively. Hence ߙ represents the latent period, and ߬ the infectious 

period. 

 

The population size is taken to be the total population of Malta, 414,000. The vector of 

parameters ࣂ = ,ߚ) ,ߝ ,ߙ ߬) and the current state ࢳ௧ = ሼܵ௧, ,௧ܧ ௧ܫ , ܴ௧ሽ are unknown. 

Observations, ܦ௧, are assumed to be Poisson distributed with mean ௧ܰߜௗ(௧) ቄ߶ +
ூ೟

ଷ଴଴
ቅ 

where ௧ܰ is the number of physicians submitting reports on day t and ߜௗ(௧) is the weight 
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associated with a given day of the week ݀(ݐ) corresponding to the current day t; Monday 

being equal to 1, Tuesday being equal to 2 and so on. Then, ߜ௜ is the proportion of 

individuals seeking medical help on the day of the week i. For weekly data, only one ߜ 

was used. ߶ represents the ‘background’ consulting rate (for consultations this term will 

represent all patients visiting a doctor for any non-flu illness; for other data this term 

corresponds to non-H1N1 ILIs). The number of physicians in Malta was estimated to be 

around 300 and so is used here to convert the actual total number of cases ܫ௧ to the number 

of observations by selected physicians.  

 

Once the parameters are computed, the effective reproduction ratio at any given time t is 

calculated according to: 

ఉቆଵି௘ష
భ
ഓቇௌ

ே
          (3) 

where ߚ is the infection rate, ߬ is the recovery rate, ܵ is the current number of susceptible 

individuals and ܰ the population size. 

 

Parameter estimation 

The particle filter algorithm [26,27] is a sequential Monte Carlo algorithm designed to 

represent the posterior density by a set of random particles with associated weights. 

Details of the approach are given in [6] and we only provide a short summary here. 

 

The algorithm starts at time t=0, and with a set P of initial states Σ0 and parameters θ 

generated from the prior distribution. For each particle, p, at each time step t+1, Σt+1 is 

drawn using Monte Carlo simulation from its conditional distribution given ݔ௧
௣, where 

௧ݔ
௣ = ,௧ߑ) ௧ݓ with an associated weight (ߴ

௣. Following this, we set ݔ௧ାଵ
௣ = ,௧ାଵߑ)  and (ߴ

calculate the likelihood contribution ܮ௧ାଵ
௣ = ௧ାଵݔ|௧ାଵܦ)݂

௣ ) conditioned on the path of the 

respective particle using the same parameter values and on ܦ௧ , which is the number of 

reported cases on day t. This likelihood is then used to find the weights by setting ݓ௧ାଵ
∗(௣) =

௧ݓ
(௣)ܮ௧ାଵ

(௣)  which are then scaled to sum to one: ݓ௧ାଵ
∗(௣) =

௪೟శభ
∗(೛)

∑ ௪೟శభ
∗(೜)ು

೜సభ
. 

 

Re-sampling [27]  is used to ‘recover’ particles that are assigned low weights by letting 

௧ାଵݔ
∗(௣) = ௧ାଵݔ

∗(௤) where q is selected from the set of integers ሼ1,2, … , ܲሽ with probability 
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proportional to ݓ௧ାଵ
∗(௤). Thus, whenever some of the particles fell below a certain threshold, 

the current set of particles were re-sampled. Particle diversity is retained by kernel 

smoothing [6, 28]. The complete algorithm is then repeated and the state values at time 

t+1 are calculated using parameters for time t. 

 

Priors 

The prior distributions were based on priors used in Ong. et al. [6] and were generally 

very broad. For the daily datasets, the infection rate, ߚ was assumed to follow a normal 

distribution with mean and standard deviation equal to 1. The prior distribution for the 

daily importation rate, ߝ, follows a normal distribution with mean 30 and standard 

deviation equal to 15; for the latent period, ߙ, the daily prior distribution was set to 

ܰା(1,1). For the infectious period, ߬, the prior for the daily data was set to ܰା(2,0.5). 

For the daily background rate, ϕ, the prior was set to ܰା(1,0.25). For the four weekly 

datasets, ߚ was assumed to follow a normal distribution with mean and standard deviation 

equal to 2; importation weekly rate, ߝ, a normal distribution with mean 80 and standard 

deviation 60. The prior distribution for the weekly latent period, ߙ, was set ܰା(1,1) for 

all weekly datasets. For the infectious period, the prior followed a normal distribution 

with mean of 1 and standard deviation of 1. The prior distribution for the background 

rate, ϕ, for the consultations was set to ܰା(750,300), while for all the other weekly 

datasets to ܰା(1,0.25). The consultations dataset includes a substantial number of non-

flu illness hence the high prior number for the background rate.  

 

The prior distributions for E(0) and I(0) were derived using the number of confirmed 

cases at the start of the epidemic, normally distributed, with mean and variance related to 

the observed values of I(0) using similar approach to Ong et al [6]. As the epidemic 

analyzed here follows from the first summer wave, we used rough estimate of cases 

between July ’09 and September ’09 as a guide for choosing R(0). For the consultation 

and diagnosed data, the R(0) value was assumed equal to 65,000, for swabbed equal to 

50,000 and for positive equal to 20,000. For the consultation we assumed the same R(0) 

as diagnosed, but then for the consultation data we assumed a much higher prior for the 

background rate. The prior distribution for the proportion of infected seeking medical 

help, δ, for all data sets except consultation was assumed to follow beta distribution, 

β(5,15), while for the consultation data β(15,5). The mean for the prior beta distribution 
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for consultation is 0.75 while for the other data sets is 0.25, reflecting large number of 

consultations cases. 

 

Simulation parameters 

The performance of the simulations depends on the size of the datasets. The memory and 

time constraints limit the number of particles that can realistically be used for large 

datasets. Hence, for daily swabbed data, a series of 10,000 particles is used while for a 

smaller daily positive data set, a series of 15,000 particles is used. For the weekly data 

50,000 particles were used. R statistical programming language [29] was used to run the 

particle filtering algorithm and the SEIR model. 

 

Results 

Three periods can be identified in the data that describe consultations and influenza 

diagnosed from January 2009 to May 2011, Fig. 1. The first (January 2009-June 2009) 

period is characterised by a very low level of influenza infections (Fig. 1b), whereas 

consultations for any illnesses (including influenza) are relatively stable at approximately 

500-700 per week. The last (October 2010-May 2011) of these periods illustrates typical 

seasonal influenza outbreaks, characterized by a winter peak in flu cases (Fig. 1b), which 

is also visible in consultations above the background level of other illnesses (Fig. 1a). In 

contrast, the 2009/2010 outbreak shows a massive increase in consultations (Fig. 1a) that 

can be almost entirely associated with the H1N1 influenza (more detailed analysis 

below). Three waves can be identified in the period July 2009-June 2010, with the first 

(summer) wave essentially finished by the time children returned to school in September 

2009 and the second (October-November) wave initiated shortly afterwards and the third 

(December-March) wave followed. Data recording is more complete for the second and 

the third waves and in particular we are able to capture the initial stages of this outbreak. 

Thus, in this paper we are concentrating our analysis on the period September 2009-June 

2010, Fig. 2.  

 

The data reflect the process of identification of H1N1 influenza among patients who 

sought help from the doctors. There is a broad agreement between the excess of 

consultations above the background and the number of diagnosed individuals, Figs. 2(a) 

and (b), and the relationship can be approximated by a linear function (R2=0.71), Fig. 3a 

(we discuss this relationship in more detail later in the paper). The background level of 
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consultations (for any illnesses which are not related to the influenza) can be estimated 

from the linear relationship at about 770 consultations per week, in good agreement with 

the rest of the data shown in Fig. 1a. The approximately linear relationship seen in Fig. 3 

can be used to reconstruct the missing portion of data for consultations and diagnosed for 

December 2009, see Fig. 4. Up to 64% of swabbed samples tested positively for H1N1 

(cf. Fig. 2c with Fig. 2d), although no more positive cases were identified after 21 

February 2010.  

 
Fig. 3. Relationship between the number of consultations and diagnosed (a) and the number of diagnosed 
and swabbed (b) over the period shown in Fig. 2. Lines of best least-squares fit are used to ‘reconstruct’ 
the missing data. Consultations = 772.32+4.49 (Diagnosed), R2=0.76 and Diagnosed=26.54+1.76 
(Swabbed), R2=0.71. The diagnosed was first ‘reconstructed’ from swabbed data and subsequently, the 
consultations from diagnosed.  
 

All four data sets follow a typical epidemic curve, with an initial slow build-up up to mid-

November 2009 followed by the main epidemic wave in December 2009 and a decline 
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to approximately constant level from March 2010 onwards, Figs. 2 and 3. This behaviour 

is broadly consistent with other data sets available in the literature [12, 18, 22, 30-33]. 

However, two main periods can be identified in the Malta data, Figs. 2 and 4. In the early 

phase (October-December 2009) the level of consultations and diagnosis was high but 

the number of individuals referred for further testing (swabbed) and the resulting number 

of confirmed cases of H1N1 remained relatively low. For instance, consultations peaked 

in October 2009 and again in December 2009, but swabbed and positives have only one 

peak in December, see Fig. 4. The data for swabbed and positive individuals aggregated 

at the weekly intervals unsurprisingly reveal more variation (Figs. 2c and 2d), some of 

which can be associated with the day of the week, see Fig. 5. 

 

Fig. 4. Comparison of weekly (Consultations, (a), and Diagnosed, (b)) and weekly-aggregated (Swabbed, 
(c), and Positive, (d)) data, solid line, with the results of model fit, dashed line (mean) and shaded area 
(95% high predictive density regions). The ‘reconstructed’ data for consultations and diagnosed cases is 
marked by dashed-dotted line. 
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The model successfully represents the main features of all datasets, both for the weekly 

datasets (with the swabbed and positives aggregated over the weekly periods), Fig. 4, and 

for the daily sampling rate, Fig. 5. Note that we used the background consulting rate ϕ to 

represent the consultations that are not associated with the influenza outbreak. In 

particular, both waves (October and December 2009, respectively) are captured by the 

model and so are their relative strengths, revealed particularly in the weekly data. In 

addition, some fine scale oscillations are captured by the model at the higher resolution, 

Fig. 5.  

 

 

Fig. 5. Comparison of daily (Swabbed and Positive) data, solid line, with the results of model fit, dashed 
line (mean) and shaded area (95% high predictive density regions).  

The estimates of individual parameters vary widely among different datasets and the 

sampling frequencies, Table 1, but the estimates of the effective reproduction ratios Rt 
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based on different epidemiological proxies are broadly consistent among the four datasets 

for the weekly sampling, Fig. 6. They are also consistent with other datasets available in 

the literature, for example see Ong. et al. [6]. The initial attack rate is high, with Rt values 

of order 3-6 and therefore well over the invasion threshold of Rt=1. The second wave in 

December has a lower rate of growth than the October one and is also initiated with a 

higher value of already infected individuals. It is therefore associated with relatively 

lower values of Rt. The epidemic peak is again reflected in the estimates of Rt for swabbed 

and positive data, with Rt consistently exceeding 1 until well into January 2010. 

Interestingly, the Rt estimates for consultations individuals drop below 1 already in 

November and stay below the threshold, Fig. 6.  

 

The posterior variability in the estimates of parameters is initially high (Fig. 7), but 

quickly settles on the final values. These long-term estimates are largely independent of 

the prior choice, except for ε and ϕ. 

 
Table 1: Parameter values estimated for different data sets. Numbers in brackets represent highest density 
95% symmetric credible intervals based on a normal approximation to posterior distributions. 
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Among the parameters for the weekly data, the infection rate, β, is decreasing as the proxy 

becomes more specific, except for the consultation data (diagnosed>swabbed>positive), 

Table 1. The estimate for the external infection pressure, ε, is characterised by huge 

variability (Fig. 7). In addition, the data resolution did not allow us to identify the 

imported cases to compare the estimate with the data. There is some uncertainty 

associated with the latent period (Table 1) suggesting that the data are not able to pinpoint 

its actual value. The infectious period based on weekly diagnosed, swabbed and positive 

data is on average about 3.5 days, slightly longer than Ong et al [6] estimates. The 

estimates for ߬ based on daily data are more consistent with Ong et al [6] (1-2 days). 

There does not seem to be much variation between days of the week for the weekly data, 

again consistent with Ong et al [6]. Finally, the background consultation rate is high for 

the consultations data reflecting the need for accounting for non-ILI patients, whereas for 

other datasets it is relatively low. Note that ϕ in Table 1 is calculated per doctor – with 8 

doctors on average reporting per week. 

 

Discussion 

Epidemiological models can only be used in practical applications if we successfully and 

reliably can parameterise them. This, in turn, depends on the quality of available data. 

Unfortunately, this situation is rare in human epidemiology of influenza and similar 

diseases as we always struggle with incomplete data coming from different sources and 

at different sampling intervals. Moreover, we only rarely can infer the number of actual 

cases – more often we have access to various proxies which in different ways represent 

the progress of the epidemic. In this paper we use a multi-proxy dataset from the 2009-

2010 H1N1 epidemic in Malta. The SEIR compartmental model is used to estimate the 

current value of the effective reproductive ratio, Rt. We show that the results from 

different proxies are basically consistent, although in some cases we observe Rt<1 from 

some proxies and Rt>1 for others. We also note a general linear relationship between 

different epidemic proxies. 
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Fig. 6. Estimation of the effective reproduction ratio at any given point of the epidemic for different data 
sets, including weekly (Consultations and Diagnosed) and weekly-aggregated (Swabbed and Positives) 
data, (a), and daily (Swabbed and Positives) data, (b). Horizontal line corresponds to Rt=1, an invasion 
threshold. 
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Fig. 7.  Posterior and Priors parameter distributions for the swabbed weekly data (for illustration). The box-
plot represents on right represents the prior distribution, whereas the graph shows the evolution of the 
posterior distribution over time (solid line represents the mean and the dotted lines show the marginal point-
wise 95% credible intervals). 

However, the datasets presented here allow us an even more detailed study of the 

relationship between different approximate datasets each describing the same epidemic. 

In particular, as the proxies become more specific, they introduce different biases and 

different processes underlying the reporting of data. The consultations reflect individual’s 

need for seeing a doctor regardless of whether the person has or has not got influenza. In 

among consultations for other illnesses there will be patients with influenza, but who do 

not satisfy the ‘official’ criteria for influenza, as well as ‘true’ cases. The doctor will then 

assign the diagnosed status, again with some level of arbitrariness. The problem with 

these data is that they are only collected at the weekly period and reported by a small 

number of doctors. There is therefore a large uncertainty associated with the data. Only 
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individuals at risk are swabbed but the recording is much stricter and if we can assume 

that the disease affects both individuals at risk and not at risk equally, then the record of 

swabbed can be a good representation of doctor’s diagnose of influenza. However, the 

swabbed person might not really have influenza or if he/she has one, it might not be 

H1N1. The positive result of testing confirms the H1N1 infection, but introduces further 

bias, as the test is not fully accurate. In this paper we have investigated the relationship 

between this different datasets and how the use of one proxy or another influences the 

parameter estimation. In particular, we found that broadly the different proxies are related 

to each other by an approximately linear relationship, Fig. 3 and Fig. 8.  

 

Fig. 8. Relationship between weekly and weekly-aggregated data for different periods in the epidemic 
timeline. Early period (weeks 39/2009 to 46/2009) is characterised by high overall levels and high 
variability of consultations and diagnosed cases as compared to swabbed and positive.  

 

However, there is an additional time-dependent factor that becomes apparent when these 

relationships are considered for different parts of the epidemic (we limit ourselves here 
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to weekly data, with aggregation of the daily data for swabbed and positive). We split the 

period from October 2009 and June 2010 into two periods; see Fig. 2 and Fig. 8. In the 

early period (weeks 39-46 in 2009), the slope relationship between the level of 

consultations/diagnosed and swabbed/positive cases is much higher than in the second 

period (weeks 47 in 2009 to 13 in 2010). Thus, while the number of swabbed and positive 

cases is much smaller in the first (autumn) wave of the epidemic than in the second 

(winter) wave, the number of consultations/diagnosed cases is comparable between the 

two waves, Figs. 2 and 4. Thus it appears that many people actually sought consultations 

in the first period and were diagnosed by doctors as having influenza. However, most of 

these cases seem to be rather mild and so doctors were not performing swabbing in this 

period, Figs. 2 and 4. The number of positive cases was even smaller than the number of 

swabbed cases, further corroborating the interpretation of the first period as dominated 

by panic among the public. 

 

In contrast, for the mid to late period (weeks 47-2009 to 24-2010), the number of 

consultations seems to largely follow the swabbed and positive cases (Fig. 8). As in the 

early period, it seems that the number of consultations rises again after April 2010, but 

this is not reflected in either diagnosed or swabbed cases (there are no positive cases after 

February 21 and so we do not show those data in Fig. 8). 

 

This lack of stationarity in the relationship between the information that can be gathered 

from doctor’s reports (consultations and diagnosed) and what the more detailed 

epidemiological analysis can reveal (swabbed and positives) is reflected in a small 

difference among the estimates of the effective reproduction ratios, Rt, Fig. 5. In 

particular, while the estimate based on diagnosed, swabbed and positive individuals 

remains above one in the winter period (November through January), the consultation  

data suggest that the influenza was not spreading during this time period (Rt close to, but 

below 1). 

 

Further work needs to be done to understand the process by which different approximate 

data are produced and influenced, for example, by news. This might lead to an improved 

way of translating different proxies (and in particular ILIs) into infected individuals for 

the purpose of fitting dynamic, SIR-like models. The relationship between the observed 

and actual cases is usually assumed to be linear and independent of the stage of the 
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epidemic. Our results show that the relationship might be linear, but it is certainly not 

constant. The feedback between the number of cases and the reporting efficiency needs 

to be studied in more detail and might lead to modified SIR models leading to improved 

ability to predict a future course of any outbreak in real time. Similarly, prediction can be 

improved if different proxies can be combined into one framework. This can be achieved 

in the Bayesian framework, but probably would need an explicit model of various stages 

of data collection. 
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4.1 Introduction 

In Chapter 3, I developed the techniques for analyzing the way in which limited 

information about influenza outbreak affects the modelling and ultimately the prediction 

of the number of cases through the SEIR model. This analysis so far has been limited to 

the pandemic data from the 2009-2010 season. The main objective of this chapter is to 

extend the analysis of chapter 3 to the seasonal influenza over four different seasons. This 

will provide further information about the relationship between the number of diagnosed 

cases and number of consultation cases across four different seasons. Four seasonal 

influenza datasets were acquired from the Malta Health Authorities, as defined in chapter 

2. Therefore, in addition to the analysis defined in chapter 3, the SEIR modelling 

techniques will be applied on the new acquired seasonal influenza datasets. Furthermore, 

we will try to establish the linear regression models (as defined in Chapter 2) between the 

consultations and diagnosed datasets for all the different influenza seasons (as in Chapter 

3). However, the main challenge in this chapter is that a lower number of cases exist, 

which makes the analysis more difficult. Thus, the main question in this chapter is to 

understand the extent to which we can use the linear relationship (obtained through the 

linear regression model) between the diagnosed and consultation datasets to predict one 

dataset from the other. Furthermore, we aim to understand the variability of the posterior 

parameters (obtained through the SEIR model) of the diagnosed and consultation datasets 

between different influenza seasons. Finally, we will analyze whether there is an 

opportunity to combine the linear regression model together with the SEIR model (Joint 

model). In order to do this, first we need to look at the basic characteristics of all acquired 

datasets, followed by an analysis of the linear associations between the consultations and 

diagnosed datasets. Then, the SEIR model (as defined in chapters 2 and 3) will be applied 

to obtain the posterior parameters values of all datasets. The analysis is concluded by a 

joint model of the above two modelling techniques.  

 

4.2 The influenza datasets 

Throughout this section, I will analyse the data mentioned in chapter 2 in more detail. As 

explained previously, this data includes the number of doctors reporting the cases, the 

number of consultations and the number of diagnosed Influenza-Like Illness (ILI) cases 

seen by the same doctors. For the scope of this chapter, four consecutive years of seasonal 

influenza together with the pandemic influenza period, as defined by Marmara et al. 
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(2014) [79] will be analyzed. In fact, the 2009/2010 pandemic influenza, and four 

consecutive seasonal influenza datasets (2011/2012, 2012/2013, 2013/2014, 2014/2015) 

are all the datasets which will be the focus of our discussion throughout this chapter. For 

the 2011-2012 seasonal influenza, data is available between week 43 (2011) and week 35 

(2012). For the next two seasons of influenza, data available is from week 40 of the 

starting year up to week 20 of the subsequent year, while for the latest seasonal influenza, 

data is available between week 41 (2014) and week 20 of the following year. The average 

number of GPs reporting the cases in 2011/2012 was 7.3, while for the other three 

consecutive years, the figures were 6.5, 5.9 and 5.7 respectively.  

 

Details of the Maltese population as well as the 2009/2010 pandemic influenza are 

already described in chapters 2 and 3. Since the number of doctors reporting cases on a 

weekly basis is known, all data points were converted to an estimate of the total number 

of consultations and the total number of individuals with diagnosed ILI in Malta. 

Moreover, this takes into account that the total number of active GPs in Malta, which is 

around 300 (as described in chapter 2). Hence, the number of reported cases were 

multiplied by 300 and divided by the number of reporting doctors to get an estimate 

number of the total number of people consulting doctors and the number of people 

diagnosed with an ILI by all GPs in Malta. For the sake of consistency in this chapter, 

the pandemic data (2009/2010) was also converted to the total number of estimated 

consultation and diagnosed cases (Figure 4.1). 
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Figure 4.1 – Consultations and diagnosed charts during pandemic season (2009/2010) in Malta. The 
first chart represents the number of estimated weekly consultations in Malta and the second chart 
represents the number of estimated diagnosed ILI cases based on the GPs data. 
 

Consultations data for the 2009/2010 period includes an estimated number of 1,950,600 

consultations with a corresponding 170,400 ILI individuals (Figure 4.1). However, this 

was during the H1N1-influenza period; thus people were more wary about symptoms, 

resulting in a high number of consultations. As explained in the previous two chapters, 

for the pandemic period defined in figure 4.1, two high peaks were recorded (October’09 

and December’09). These two peaks clearly show in the consultations and diagnosed 

datasets. Furthermore, unlike the diagnosed dataset, the consultations dataset recorded 

another lower peak during May 2010. However, this was recorded when the H1N1 virus 

was already considered inactive (Chapter 3). Following the H1N1 period, the number of 

consultations during the seasonal influenza period started to decrease rapidly. In relation 
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to this, it was estimated that during the 2011/2012 period, the number of consultations 

was equal to 1,640,991 consultations, followed by 1,182,374 during 2012/2013, 941,710 

and 834,546 during the subsequent two years of seasonal influenza. Similarly, the number 

of ILI diagnosed individuals decreased quickly after the pandemic period. During the 

2011/2012 period, 74,321 individuals were estimated to have been diagnosed of ILI, 

followed by 31,299 during 2012/2013, 15,450 and 31,514 ILI diagnosed individuals 

during the following two years.  

 

The below plots (Figure 4.2) clearly show that for the consultations, data is relatively 

more stationary when compared with the diagnosed data, while the latter show a clear 

peak throughout the seasonal influenza period of each respective year. The consultation 

datasets vary between 20,000 and 50,000 individuals per week with a lot of fluctuations. 

There are clearly 2 groups of data. The first group of data consists of the 2011/2012 and 

2012/2013 datasets, while the second group consists of the 2013/2014 and 2014/2015 

datasets. For the first group of consultation datasets, minor peaks were recorded (early 

March 2012 and late January 2013), while for the second group of data no specific peaks 

can be observed. Some of this difference can be attributed to a higher number of influenza 

cases (which will be explored below) in 2011/2012 and 2012/2013 when compared with 

2013/2014 and 2014/2015. The diagnosed cases vary between 0 and 7,000 cases. The 

peak is reached any time between February-April of each respective year. In general, the 

diagnosed datasets are rather stationary till around December. However, a sharp increase 

is registered during the beginning of January. A high number of diagnosed cases are 

recorded for around 3 months. By end of April, the number of diagnosed cases are at the 

same levels to the initial period (pre-January). The 2011/2012 dataset stands out, with a 

much higher number of diagnosed ILI cases. Hence, considering that the consultation 

datasets and the diagnosed cases have different characteristics, we aim to optimize the 

relationship between these two variables throughout this chapter.  

 

One of our hypotheses is that the total consultations are a linear function of the diagnosed 

seasonal influenza cases. We will be testing this hypothesis throughout this chapter by 

comparing this linear association during different time periods of the four seasonal 

influenza outbreaks. Throughout this chapter, we will use the term ‘ratio’ to represent the 
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proportion of the number of diagnosed cases from the number of consultation cases. 

Hence, ݀݅ܽ݃݊݀݁ݏ݋
ൗݏ݊݋݅ݐܽݐ݈ݑݏ݊݋ܿ  is a value between 0 and 1. 

 

 

Figure 4.2 – Consultations and diagnosed charts during pandemic season (2009/2010) in Malta. The 
first chart represents the number of estimated weekly consultations in Malta and the second chart 
represents the number of estimated diagnosed ILI cases based on the GPs data. 
 

4.3 Linear modelling of a relationship between diagnosed 

and consultations 

Obtaining further understanding about the relationship between diagnosed and 

consultations will aid in the understanding of several epidemiological factors for the 

subsequent years. For the scope of the linear regression model, the consultation datasets 
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variables. This format allows us to understand the ‘background’ consulting rate of the 

consultation datasets (non-influenza cases). 

 

Similarly to what has been carried out previously (in Chapter 3), figure 4.3 shows the 

correlations between the consultations and diagnosed datasets (cf. Figure 3a in Chapter 

3). For the 2013/2014 & 2014/2015 datasets, correlation gets weaker; in fact, the 

strongest correlation values are found in the oldest data (Table 4.1) which are being 

discussed in this chapter. Indeed, the highest Pearson-correlation value was found to be 

0.897 for the pandemic data. The 2011/2012 data also shows a strong correlation value 

(r = 0.838) but weaker linear regression relationship than the previous dataset. As the 

number of influenza cases (and hence diagnosed individuals) decrease (2012/2013, 

2013/2014), the correlation values drop. For the 2012/2013 datasets, the linear 

relationship is moderate (r = 0.685) and becomes weaker for the 2013/2014 influenza 

season (r = 0.308). A worse progression is noted for the 2014/2015 dataset (r = 0.235). 

These correlation values coincide with the R2 – values when fitting a linear regression 

model, such that the R2 – values decreased from one year to the other (0.806 (09/10), 

0.702 (11/12), 0.469 (12/13), 0.095 (13/14) and 0.055 (14/15)). 

 

The background level of consultations (non-influenza consultations) was estimated from 

the linear relationship for each individual dataset through the y-intercept. For all datasets, 

the background consultation rate varies between 24,000 cases up to 33,000 cases. The 

highest number of non-influenza consultations are found to be in the oldest three datasets 

due to a higher number of overall consultation cases. 

 

The below results (Table 4.1) provide another important value ∆, within the linear 

regression equation ݏ݊݋݅ݐܽݐ݈ݑݏ݊݋ܥ௧(ܿ௧)  = + ߢ  ∆ ∗  ௧(݀௧), as defined in݀݁ݏ݋݊݃ܽ݅ܦ

chapter 2. For different datasets, this value varies between 1.8 and 5, which shows that 

the rate of increase of diagnosed seasonal influenza individuals varies according to 

dataset. The lowest ∆ is for the latest dataset (2014/2015), where for every single 

diagnosed individual, on average the total consultations are increased by 1.8 cases. For 

the 2012/2013 dataset, for every single diagnosed individual, total consultations increase 

by around 5 cases (for detailed discussion, see below). 
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Figure 4.3 - Correlation plots between consultations and diagnosed where (a) is the 2011-2012 data, 
(b) 2012-2013 data, (c) 2013-2014 data and (d) 2014-2015 data. The straight lines in each plot 
corresponds to the regression line, which is the line of best fit between the two variables. All details 
for these plots are also found in table 4.1. Note the different horizontal and vertical scales in graphs 
due to different number of cases for individual seasons. 
 
Furthermore, table 4.2 provides the confidence intervals for all individual parameters 

 For the latest two datasets (2013/2014 and 2014/2015), the slope of the linear .(∆ and ߢ)

regression models provided wide confidence intervals (Table 4.2). In relation to this, 

these two predictors (diagnosed datasets) are not associated with significant changes in 

the response (consultations) variable (p-value > 0.05). Hence, ܪ଴ is not rejected since no 

relationship exists between the consultations and diagnosed variables (∆= 0). All the 

other parameters for the other three influenza seasons were all proved to be good 

predictors (diagnosed ILIs) when compared to the response variable (Consultations). 
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Data Pearson 
Correlation 

Value (r) 

Linear Regression 
Equation 

R2 Value Ratio (Diagnosed/ 
Consultations) 

Average 

2009/2010 0.897 ܿ௧  =  29210 + 4.762݀௧ 0.806 0.077 

2011/2012  0.838 ܿ௧  =  32857 +  2.186݀௧ 0.702 0.040 

2012/2013  0.685 ܿ௧  =  31103 +  4.983݀௧ 0.469 0.024 

2013/2014  0.308 ܿ௧  =  26774 + 3.765݀௧ 0.095 0.016 

2014/2015  0.235 ܿ௧  =  24332 + 1.774݀௧ 0.055 0.038 

All Data 0.849 ࢚ࢉ  =  ૛ૠૢૡૢ +  ૝. ૞૙ૡ0.040 0.721 ࢚ࢊ 

Table 4.1 – Pearson Correlation Values and R2 values for the relationship between 
consultations and diagnosed for five different years. The R2 value was obtained through a 
linear regression model where ct is the number of consultations at time t and dt is the number 
of diagnosed individuals at time t. The ‘Ratio’ is the proportion of diagnosed cases from the 
consultation cases (defined above). 
 

Data 
 

Non-influenza 
Consultations 95% C.I. Slope 95% C.I. 

2009/2010 29,210 (25,074 - 33,346) 4.762 (4.009 - 5.515) 

2011/2012 32,857 (31,738 - 33,976) 2.186 (1.761 - 2.611) 

2012/2013 31,103 (28,647 - 33,559) 4.983 (3.118 - 6.848) 

2013/2014 26,774 (24,141 - 29,407) 3.765* (-0.326 - 7.856) 

2014/2015 24,332 (21,819 - 26,845) 1.774* (-0.343 - 3.891) 

Table 4.2 – Error terms for the above parameter values for the linear regression models. (*) 
represents those parameter values which are not significantly different (p>0.05) (ࡴ૙ is not 
rejected when no relationship exists between the consultation and diagnosed ILI variables 
(∆= ૙)); hence these predictors are not associated with changes in response. For all the other 
parameter values, the p-value is less than 0.05; hence this shows that we can reject the null 
hypothesis. Thus, these predictors are a meaningful addition to the above linear regression 
models (relationship exists between diagnosed and consultations). Changes in the predictor 
values are related to changes in the response variable. 
 

All five datasets altogether provide a strong correlation (r=0.849) between consultations 

and diagnosed (Table 4.1). Furthermore, the regression model provides a satisfactory fit 

(R2=0.721). The baseline non-influenza consultations (27,989) is in good agreement with 

figure 4.4. These results clearly show that there is a general strong relationship between 

the consultations and diagnosed ILI datasets. This relationship is universal across 

different seasons. Moreover, there is a significant number of points which relate to a 

lower number of consultations (18,000 – 28,000) and very low values of diagnosed ILI 
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cases (in some cases, 0 ILIs). Hence, this further confirms that low number of 

consultations correspond to non-influenza periods. 

 
Figure 4.4 - Correlations of the 5 influenza periods combined. The straight line corresponds to the 
regression line, which is the line of best fit between the two variables. The accuracy of this model is 
72.1%, hence the dependent variable can be predicted with this accuracy. 
 

The regression models in table 4.1 provide a linear predictive technique between the 

consultation and diagnosed variables. In fact, these linear regression models were used 

to predict the consultation datasets (Figure 4.5). Hence the diagnosed dataset 

(independent variable) was used to predict the number of consultations at each individual 

time point. The linear regression models produced very accurate fits for the first two 

consultation datasets (2009/2010 and 2011/2012). However, by time the model fit started 

to get weaker. For the 2012/2013 dataset, the fit is rather reasonable, though for the latest 

two datasets (2013/2014 and 2014/2015) the linear regression models did not provide 

satisfactory predictions across the season. 
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Figure 4.5 – This figure represents the linear model regression fit (defined in table 1) for all the five 
consultation datasets. The black lines represents the actual consultations data (GPs data) and the red 
lines corresponds to the fit produced through the linear regression model (obtained from table 4.1). 
 

For the 2009/2010 consultations dataset, the linear regression model produced accurate 

peaks, except for the last and lowest peak (May’10). This can be attributed to the fact that 

for the diagnosed dataset, there were no further peaks from January 2010 onwards. To a 

certain extent, a smooth curve is produced for the 2011/2012 dataset with some minor 

oscillations. For the latter dataset, the major peak is predicted accurately with reasonable 

predictions for the other points. The 2012/2013 dataset produced a typical seasonal 

influenza wave, however missing the peak by few weeks. In fact, the peak of the produced 

prediction is around 3 weeks after the actual peak. For the remaining two consultation 
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datasets (2013/2014 and 2014/2015), the model fit is almost a straight line throughout the 

whole outbreak. Hence, no specific oscillations are detected when compared with the 

actual consultations data. This result coincides with the fact that for these last two 

datasets, the R2 values are very low and that the independent variable is not a significant 

predictor (as defined above). 

 

Throughout the next section, the SEIR model (as defined in chapter 2) was applied on all 

the four seasonal influenza datasets. Hence, through the use of the SEIR model, we aim 

to re-construct the above datasets. Following this, section 4.5 combines the linear 

regression model and the SEIR model into one joint model. Subsequently, results are 

analysed in light of the three different frameworks.  

 

4.4 The SEIR model 

Throughout this section, we used the particle filter algorithm and SEIR model to 

reproduce the seasonal influenza datasets (consultations and diagnosed). All the details 

of this model are provided in chapter 2. The prior distributions were mainly based on 

priors used in chapter 3 [79]. The prior distribution of the background rate (ϕ) for the 

consultations was set differently according to the year of the outbreak, due to a higher 

number of non-influenza illness. In fact, based on the linear relationship (as defined 

above) between the consultations and diagnosed, the baseline number of non-influenza 

cases (defined in chapter 2) was established for each individual year. For the 2011/2012 

dataset the prior for (ϕ) was set to ܰା(750,300), for the 2012/2013 dataset 

ܰା(665,300), for the 2013/2014 dataset ܰା(530,300) and for the 2014/2015 dataset 

ܰା(420,250). For all the other diagnosed datasets the prior was set to ܰ ା(1,0.25) (same 

as Chapter 3). The prior distributions for the state ߑ଴ = ሼܵ଴, ,଴ܧ ,଴ܫ ܴ଴ሽ values were based 

on the priors defined in chapter 3 [79].  For all datasets, a series of 20,000 particles were 

used. The full algorithm and the R-language script is presented in Appendix C. 

 

The particle filter algorithm [79] applied through the SEIR model and the observation 

model Dt provides a satisfactory fit for all the seasonal influenza datasets (Figure 4.6). In 

this case, the datasets are fitted individually with their own related parameters only. 

Hence, the relationship between the consultation and diagnosed datasets is not being used 

in any way. For the first two consultation datasets (2011/2012 and 2012/2013), the model 
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fits are very accurate, including good predictions of the oscillations. This same result also 

applies for the pandemic data (cf. Figure 4a in Chapter 3). For the latest two consultations 

datasets (2013/2014 and 2014/2015), the model fits are reasonable; however, some 

oscillations are not matched accurately between the actual data and predicted data. In 

fact, by late March 2014, the model predicted a peak, while actually this never happened. 

Similarly to the 2014/2015 dataset, the model predicted a peak in December 2014, though 

this never happened. For the diagnosed datasets, the features of the data are well 

represented, including all respective seasonal influenza peaks (same result applied to the 

pandemic data, cf. Figure 4b, Chapter 3).  

 

Parameter posterior estimates were obtained through the same particle filter algorithm 

and SEIR model (Tables 4.3-4.4) with posteriors varying widely between consultation 

and diagnosed datasets. Therefore, one cannot use consultation estimates to directly 

measure the actual spread of seasonal influenza. However, there exists other 

relationships, as mentioned above and below that can provide further insights between 

the two.  

 

The reporting rates, δ, (0.65-0.69) are relatively consistent for the consultations group 

when compared with all the different years. This latter result is similar to the diagnosed 

data (0.23-0.29), although not coherent with the 2009/2010 pandemic data (0.60). 

Parameter estimates for the diagnosed data are less spread when compared to the 

consultation datasets. In relation to this, the latent period, α, (0.01-0.06), the infectious 

period, τ, (0.33-0.47) and background rate per doctor, φ, (0.78-0.90) are all closely 

related. For the same parameter values for the consultations data, estimates vary broadly 

and hence one cannot draw any further results. The infectious period for the seasonal 

influenza data is estimated to be around 2.8 days (Table 4.4) which is slightly less when 

compared with the estimated values in chapter 2 (3.5 days). Moreover, table 4.4 shows 

that the higher the number of diagnosed ILI cases, the higher the infection rate. For 

example, the lowest number of diagnosed cases (15,450, as defined above) was registered 

in 2013/2014, and so was the infection rate (0.48) for 2013/2014 when compared with 

the other datasets. 
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Figure 4.6–Comparison of weekly consultations (1st column) and weekly diagnosed (2nd column) for 
all the four seasonal influenza datasets. Data include the actual data (solid line) and the results of the 
model fit, dashed line (mean) and shaded area (95% high predictive density region). The datasets 
were fitted individually, with their own related parameters only. Hence, the relationship between the 
consultations and diagnosed datasets is not being used in any way. 
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Table 4.3– Posterior parameter values estimated for different weekly consultation datasets. Numbers 
in brackets represent highest density 95% symmetric credible intervals based on a normal 
approximation to posterior distributions. 
 
 

Table 4.4– Posterior parameter values estimated for different weekly diagnosed datasets. Numbers 
in brackets represent highest density 95% symmetric credible intervals based on a normal 
approximation to posterior distributions. 
 
 

The Rt values (Figure 4.7) for the consultations have a similar trend between each other, 

although they vary from the diagnosed Rt values. All Rt plots start with a high value. This 

feature was also observed in chapter 3 (see Figure 6, Chapter 3), and will be analyzed in 

further detail in chapter 6. For the 2011/2012 dataset, the first Rt value appears later than 

the other first Rt values for other seasons, since the data started to be collected at a later 

time when compared to the other years (Figure 4.2). The initial high value is followed by 

a sharp drop for both types (consultations and diagnosed) of datasets.  

Definitions Parameter Consultations 
2011/2012 

(20,000 
Particles) 

Consultations 
2012/2013 

(20,000 
Particles) 

Consultations 
2013/2014 

(20,000 
Particles) 

Consultations 
2014/2015 

(20,000 
Particles) 

Infection Rate 
(week-1) 

β 0.55 
(0.22-0.89) 

0.84 
(0.37-1.31) 

0.47 
(0.45-0.50) 

2.92 
(2.71-3.13) 

Importation rate 
(week-1) 

ε 475.06 
(-871.43-
1821.55) 

43.02 
(-1.34-87.39) 

235.18 
(102.97-
367.40) 

22.85 
(17.05-28.66) 

Latent period 
(week) 

α 2.48 
(0.45-4.51) 

1.83 
(-0.35-4.01) 

0.40 
(0.29-0.50) 

0.53 
(0.51-0.55) 

Infectious Period 
(week) 

τ 2.95 
(0.27-5.62) 

1.56 
(93.21-164.55) 

8.53 
(7.14-9.91) 

0.08 
(0.07-0.10) 

Background rate 
(week-1) 

φ 138.53 
(49.68-227.39) 

128.88 
(93.21-164.55) 

21.83 
(19.74-23.93) 

86.06 
(80.48-91.64) 

Reporting rate δ 0.65 
(0.57-0.74) 

0.66 
(0.48-0.83) 

0.66 
(0.60-0.72) 

0.69 
(0.65-0.73) 

Definitions Parameter  Diagnosed 
2011/2012 

(20,000 
Particles) 

Diagnosed 
2012/2013 

(20,000 
Particles) 

Diagnosed 
2013/2014 

(20,000 
Particles) 

Diagnosed 
2014/2015 

(20,000 
Particles) 

Infection Rate 
(week-1) 

β 1.18 
(1.11–1.26) 

0.64 
(0.43-0.86) 

0.48 
(0.28-0.69) 

0.53 
(0.29-0.77) 

Importation rate 
(week-1) 

ε 35.16 
(18.36-51.96) 

299.02 
(-46.21-
644.25) 

107.38 
(-62.23-
277.00) 

102.76 
(-55.66-
261.19) 

Latent period 
(week) 

α 0.03 
(0.02-0.04) 

0.06 
(-0.04-0.16) 

0.04 
(-0.04-0.13) 

0.01 
(-0.01-0.03) 

Infectious Period 
(week) 

τ 0.33 
(0.29-0.38) 

0.39 
(0.12-0.65) 

0.42 
(0.07-0.77) 

0.47 
(0.16-0.77) 

Background rate 
(week-1) 

φ 0.90 
(0.79-1.01) 

0.83 
(0.45-1.21) 

0.78 
(0.37-1.20) 

0.83 
(0.41-1.25) 

Reporting rate δ 0.29 
(0.19-0.38) 

0.25 
(0.03-0.46) 

0.23 
(-0.07-0.61) 

0.25 
(0.05-0.90) 
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Figure 4.7–Estimation of the effective reproduction ratio at any given point of the epidemic for 
different datasets, including weekly consultations and diagnosed for all five datasets. The horizontal 
line corresponds to Rt=1, an invasion threshold. 

 

For the consultations data, following December, the Rt values almost always remain 

under the value of 1 for all influenza seasons. On the other hand, for the diagnosed data, 

in general, during November the Rt value is under 1, but then it rise above 1 between 

December to March. The Rt values reach almost the value of 2 for all individual diagnosed 

datasets and then declines during the following weeks. For different datasets, the peak Rt 

value is reached during different periods. This difference can be attributed due to different 

influenza peaks for different influenza seasons. Although the Rt values for different 

datasets has the same theoretical meaning, the Rt value has a different level of accuracy 
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for different proxies (as described in Chapter 2). Note that the Rt values for the pandemic 

season are notably different when compared with the seasonal influenza datasets. The 

characteristics of the pandemic dataset are different when compared with the seasonal 

influenza datasets (as defined above). 

 

4.5 Combining the SEIR and Linear regression model in one 

single framework (joint model) 

The scope of this section is to extend the analysis of the previous two sections and chapter 

3. Throughout this section, we aim to extend the model used in the previous analysis by 

incorporating different datasets together by attempting to refine and extend the prediction 

of the outbreak within a single framework. In fact, the ultimate aim is to use the 

relationship between the number of consultations and diagnosed ILIs to predict both 

outcomes during the same model run. In order to do this, I combined the SEIR model 

together with the linear regression model in one single joint model. The main question 

here is whether the joint model can improve the predictions when compared with the 

SEIR model and the linear regression model. 

 

In order to combine two datasets, the same SEIR model (as defined in the previous 

section) was used. All the same details (as defined previously) related to the prior 

information, the particle filter algorithm and the SEIR model were adopted. However, 

several amendments in the R-code were carried out in order to calculate the number of 

reported consultations and the number of diagnosed ILI individuals during the same 

model run. The code was amended in a way to have one variable modelled through the 

SEIR model and the other variable through the linear regression model during the same 

run. Hence, the parameters of the linear regression model were updated during the particle 

filtering process, allowing the parameters of the linear regression model to be updated 

during every single time point (Appendix D – highlighted in red). All the details related 

to these amendments are defined below. Furthermore, the model script was adjusted to 

produce two outputs, i.e. the diagnosed and consultation predictions during the same 

model run. 

 

In relation to the analysis carried out in the previous sections, it was established that for 

certain datasets there is a certain good level of linear relationship between the 
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consultation and diagnosed variables. For some datasets (2009/2010 and 2011/2012), this 

was also found to be a strong relationship. However, in this section our aim is to update 

the parameters of the linear regression model at each different time point, based on all 

the known information at the time point of analysis. The following time-dependent linear 

regression model was incorporated with the SEIR model: 

 

ܿ = ௧ߢ   + ∆௧݀௧ 
 
where ߢ௧  is the parameter which refers to the y-intercept of the linear regression model 

and is dependent on time t, and ∆௧ is equal to the slope of the linear regression model and 

is also dependent on time t. Detailed analysis about these two parameters were provided 

in chapter 2 and section 4.2. However, while these parameters were previously fixed 

during the whole process, in this case, the parameters are dependent on time. Hence, these 

will be updated at every single particle filtering iteration. For the above linear regression 

model, the parameters between the consultation and diagnosed variables will be updated 

at each different time point using all the previous known data points. Then, the number 

of consultations at ݐ௡ାଵwas estimated using the parameters obtained at ݐ௡. Hence, based 

on the actual data points at ݐ௡, the prediction of the number of ILI diagnosed individuals 

at time ݐ௡ାଵ is achieved using the SEIR model, while the number of consultations at time 

  .௡ݐ ௡ାଵ is obtained using the above linear regression model at timeݐ

 

The first time point, where the weekly consultations were possible to be predicted, was 

from time ݐଶ (hence, two known weekly data points). At time ݐଵ (one known weekly data 

point) there is not enough data to estimate the parameters of the linear relationship 

between the two sets of data. Hence, this is a limitation for the above method, although 

in epidemiological studies, decisions and strategies are not based on the first data point 

of the outbreak. 

 

Throughout the next paragraphs we will be looking at the main results related to the above 

model fit, including the time dependent parameter values of the linear relationship 

between the consultations and diagnosed, and the prediction plots. Furthermore, the 

pandemic 2009/2010 data and all the other seasonal influenza datasets will be used for 

the scope of this analysis.  
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Figure 4.8 –Parameter values for the linear regression between the weekly consultations (dependent 
variable) and the weekly diagnosed (independent variable) of the 2009/2010 pandemic outbreak. 
These parameters were updated at each individual time point during the course of the outbreak. The 
green dashed line is the general parameter ߢ for the above 2009/2010 linear regression model (Table 

4.1) and violet dashed line is the general parameter ∆ for the above 2009/2010 linear regression model 
(Table 4.1). 
 

Figure 4.8 shows the parameter values (ߢ௧ and ∆௧) as defined above for the 2009/2010 

pandemic data. For the first time point, there was insufficient data to calculate any 

parameter values, as defined above. Although the initial parameter values tend to be 

slightly inconsistent, after a period of time the parameters tend to stabilize. In fact, ߢ 

varies between 26,000 and 34,000, while ∆ varies between 4 and 5. The variations are 

consistent with the confidence interval found in table 4.2. In general, even when plotting 

the parameter values for the other datasets, the same trends apply (Appendix E). Hence 

from early stages the parameter values for the relationship between diagnosed and 

consultations tend to stabilize. Due to few data points, the R2 value starts with values 

which are close to 1 and then tends to vary between 0.6 and 0.9 (Figure 4.9).  

 

As mentioned above, the diagnosed datasets were modelled through the joint model, 

however using the SEIR technique (Figure 4.6 – Diagnosed datasets and Figure 4 – 

Chapter 3). Hence, the results of the model fit for the diagnosed datasets are the same as 
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described in the previous section and chapter 3, while, the consultations model fit was 

obtained from the time dependent linear regression model as defined above. Hence, the 

new predicted diagnosed dataset (through the SEIR model) was used to predict the 

consultations data (through the above time dependent linear regression model), thus 

producing two outputs by using two different methods in one single framework (joint 

model). 

 
Figure 4.9 – R2 values for the linear relationship between the weekly consultations and the weekly 
diagnosed datasets, of the 2009/2010 pandemic outbreak. The R2 value was updated at each 
individual time point during the course of the outbreak. 
 

Unlike the linear regression model (Section 4.3), the parameters of the linear regression 

model were allowed to be updated at each time point, based on the SEIR model fit of the 

diagnosed datasets. Hence, the parameters are time dependent. The joint model produced 

improved prediction charts for the consultations data, when compared with the constant 

(time independent) linear regression model technique (Figure 4.5). This improvement can 

be easily seen for the 2013/2014 and 2014/2015 datasets. For the constant linear 

regression model (Figure 4.5) the predictions are flat for the latter two datasets, while for 

the joint model the fit improved substantially. In fact, the time independent linear 

regression model fit produced a stationary line with few oscillations for the last two 

datasets (2013/2014 and 2014/2015). On the other hand, the joint model produced 

accurate predictions with corresponding oscillations to the actual dataset. Although the 

SEIR model fit for the consultations data (Figure 4.6) produced more accurate 
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predictions, for the joint model we are producing two outputs in one single framework, 

including two modelling techniques.  

 

 
Figure 4.10 – Comparison of weekly consultations (1st column) and weekly diagnosed (2nd column) 
for all the five outbreak datasets. Each plot includes the actual data (solid line) and the results of the 
model fit, dashed line (mean) and shaded area (95% high predictive density region). All charts were 
plotted from the joint model. However, the diagnosed datasets were fitted through the normal SEIR 
model parameters, while the consultations datasets were fitted through the time-dependent linear 
regression model, as defined above.  
 
Such technique (joint model) can possibly be useful when carrying out future (real-time) 

predictions, thereby using a more reliable dataset (diagnosed) to predict the number of 

future consultations cases (to be discussed in Chapter 5). For a limited number of 
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consultation predictions for each individual dataset, the joint model produced narrower 

(than expected) confidence intervals when compared with other predictions. This is 

attributed to a zero gradient of the time-dependent linear regression model. Since the 

consultations is being constructed from the diagnosed data, then this will end up with 

narrow confidence intervals for these particular points (with zero gradient). 

 

4.5 Discussion 

As seen in chapter 3, consultations are largely flat, possibly with some peak between 

January and May which can be associated with the influenza. The average consultation 

numbers are generally consistent, although 2011/2012 and 2012/2013 are higher than 

2013/2014 and 2014/2015 with a general excess of about 30,000 individuals per week.  

Compared with the pandemic data, the excess in the number of consultations during the 

2009/2010 season was higher, especially during the early stages of the influenza.  People 

were quite wary during that period as H1N1 was an international concern, hence more 

people were inquisitive about this outbreak. By time the excess stabilized to the same 

levels of other influenza datasets.  

 

In contrast to the pandemic data, the seasonal influenza datasets show a clear peak 

between February to April period. For the pandemic data, the first peak was reached 

during an unusual period of the year, July 2009, followed by October 2009 and December 

2009 peaks. Following the pandemic data, the 2011/2012 season registered the highest 

number of diagnosed cases and then the numbers successively decreased.  

 

Seasonal influenza undergoes a number of changes throughout the whole wave and 

hence, one needs to give the required attention to understand clearly the underlying 

results. The initial ‘early’ stage of the influenza represents the period where the number 

of diagnosed cases are flat and stationary. The ‘mid’ part of the influenza represents the 

period where the influenza starts to increase, reaches its peak and declines again. The 

‘late’ part of the influenza corresponds to the end stages of the influenza where it has the 

same characteristics of the ‘early’ stage of the influenza (flat and stationary).  

Unfortunately, as discussed in the literature review, under-reporting in epidemiological 

studies exists, and thus maximizing the understanding and the information available of 

the seasonal influenza is of utmost importance.  
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For most epidemiological and seasonal influenza models, the early part of the influenza 

incorporates a low number of infected cases followed by the peak of the influenza and 

then a decline where the spread of the influenza dies out.  This proves to be an important 

point when analyzing the relationship between consultations and diagnosed. In tables 4.5 

– 4.10, we show the relevance of different periods within the whole influenza season. 

Hence, all datasets were defined in three different periods, based on the above definitions 

(early, mid and late). For the purpose of analysing the 2009/2010 data, ‘early’ influenza 

means between weeks 39/2009 to 46/2009, ‘mid’ part of the influenza between weeks 

47/2009 to 13/2010 and ‘late’ influenza refers to the weeks 14/2010 to 25/2010. For all 

the other datasets, ‘early’ influenza refers to week 40 to week 50 (if week 40 is not 

available, the first available point is considered), ‘mid’ part of the influenza is between 

week 51 and week 13 of the following year, while ‘late’ influenza refers to week 14 up 

till any known weekly data point. The pandemic period was defined differently as the 

characteristics of this particular influenza vary from the other influenza seasons (as 

defined above). 

 

Relationship between consultations and diagnosed proves to be stronger during the mid-

part of the influenza period. In fact, the Pearson-correlation (r) and R2 values are much 

higher during the mid-part of the influenza when compared with the early and late stages 

of the influenza seasons (Tables 4.5 – 4.10). This result applies for all the five datasets. 

R2 values for three (2009/2010, 2011/2012 and 2012/2013) of the five datasets are higher 

than 0.5 during the mid-part of the influenza season, while only in one other period for 

one dataset is this value exceeded (2009/2010 – Early Period). In fact, the R2 value for 

the early stage of the pandemic season is 0.906. This is substantially higher when 

compared with all the early R2 values of the other seasonal influenza datasets (R2 – 0.318 

(2011/2012), R2 – 0.221 (2012/2013), R2 – 0.075 (2013/2014) and R2 – 0.0002 

(2014/2015)). The early high R2 value for the pandemic season can be attributed to the 

early peak (as defined above) of the diagnosed ILI cases. As discussed above, this is 

associated with a high number of consultation cases during the early period for the same 

season.  

 

For the mid-part of the latest two datasets (2013/2014 and 2014/2015), the R2 values are 

below 0.2, hence resulting in a weak linear association. Such a weak association is mainly 

attributed to flat and stationary number of consultations for these two datasets (further 
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information below). For the first three datasets (2009/2010, 2011/2012 and 2012/2013), 

the early influenza period carries a stronger relationship between consultations and 

diagnosed datasets when compared with the late influenza period. However, for the latest 

two datasets (2013/2014 and 2014/2015), the early influenza period has a weaker 

relationship when compared with the late influenza period.  

 

Early Influenza 
Data 

Pearson 
Correlation 

Value (r) 

Linear Regression 
Equation 

R2 Value  Ratio 
(Diagnosed/ 

Consultations) 
Average 

2009/2010 0.952 ܿ௧  =  28990 + 5.906݀௧ 0.906 0.094 

2011/2012  0.564 ܿ௧  =  30508 +  5.530݀௧ 0.318 0.027 

2012/2013  0.470 ܿ௧  =  35815 +  3.833݀௧ 0.221 0.016 

2013/2014  -0.274 ܿ௧  =  31379 − 12.800݀௧ 0.075 0.008 

2014/2015  0.013 ܿ௧  =  27300 + 0.214݀௧ 0.0002 0.022 

Table 4.5 – Pearson Correlation values (r) and R2 values for the relationship between 
consultations and diagnosed for five different years for the early period. The R2 value was 
obtained from a linear regression model. ct is the number of consultations at time t and dt is 
the number of diagnosed individuals at time t. The ‘Ratio’ is the proportion of diagnosed cases 
from the consultation cases (defined above). 
 
 
 

Early Influenza 
Data  

Non-influenza 
Consultations 95% C.I. Slope 95% C.I. 

2009/2010 28,990 (18,281 – 39,699) 5.906 (4.388 – 7.424) 

2011/2012 30,508 (23,517 – 37,499) 5.530 * (-0.956 – 12.016) 

2012/2013 35,815 (32,760 – 38,870) 3.833 * (-0.873 – 8.539) 

2013/2014 31,379 (24,463 – 38,295) 12.800 * (-42.102 – 16.502) 

2014/2015 27,300 (20,397 – 34,203) 0.214 * (-10.901 – 11.329) 

Table 4.6 – Error terms for the above parameter values for the linear regression models. (*) 
represents those parameter values which are not significantly different (p>0.05) (ࡴ૙ is not 
rejected when no relationship exists between the consultation and diagnosed ILI variables 
(∆= ૙)); hence these predictors are not associated with changes in response. For all the other 
parameter values, the p-value is less than 0.05; hence this shows that we can reject the null 
hypothesis. Thus, these predictors are a meaningful addition to the above linear regression 
models (relationship exists between diagnosed and consultations). Changes in the predictor 
values are related to changes in the response variable. 
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Mid Influenza 
Data 

Pearson 
Correlation 

Value(r) 

Linear Regression 
Equation 

R2 Value  Ratio 
(Diagnosed/ 

Consultations) 
Average 

2009/2010 0.969 ܿ௧  =  27200 + 4.407݀௧ 0.938 0.099 

2011/2012  0.795 ܿ௧  =  33120 +  2.089݀௧ 0.632 0.098 

2012/2013  0.715 ܿ௧  =  30518 +  4.818݀௧ 0.511 0.042 

2013/2014  0.437 ܿ௧  =  25428 + 5.295݀௧ 0.191 0.030 

2014/2015  0.365 ܿ௧  =  20546 + 3.798݀௧ 0.134 0.061 

Table 4.7 – Pearson Correlation values (r) and R2 values for the relationship between 
consultations and diagnosed for five different years for the mid period. The R2 value was 
obtained from a linear regression model. ct is the number of consultations at time t and dt is 
the number of diagnosed individuals at time t. The ‘Ratio’ is the proportion of diagnosed cases 
from the consultation cases (defined above). 
 
 

Mid Influenza 
Data  

Non-influenza 
Consultations 95% C.I. Slope 95% C.I. 

2009/2010 27,200 (23,797 – 30,603) 4.407 (3.869 – 4.945) 

2011/2012 33,120 (29,237 – 37,003) 2.089 (1.222 – 2.956) 

2012/2013 30,518 (25,729 – 35,307) 4.818 (2.258 – 7.378) 

2013/2014 25,428 (19,925 – 30,931) 5.295 * (-0.626 – 11.216) 

2014/2015 20,546 (11,903 – 29,189) 3.798 * (-1.461 – 9.057) 

Table 4.8 – Error terms for the above parameter values for the linear regression models. (*) 
represents those parameter values which are not significantly different (p>0.05) (ࡴ૙ is not 
rejected when no relationship exists between the consultation and diagnosed ILI variables 
(∆= ૙)); hence these predictors are not associated with changes in response. For all the other 
parameter values, the p-value is less than 0.05; hence this shows that we can reject the null 
hypothesis. Thus, these predictors are a meaningful addition to the above linear regression 
models (relationship exists between diagnosed and consultations). Changes in the predictor 
values are related to changes in the response variable. 
 

The 2013/2014 and 2014/2015 data registered lower values of consultations, indicating 

that such low values are more likely to provide a weak signal for the seasonal influenza 

cases. In the above tables, we show that a ratio (defined above) higher than 4% between 

diagnosed and consultations provided an R2 value higher than 0.5 together with a strong 

correlation (r>0.71) value, with the exception of one particular period (2014/2015 mid-

part of the influenza, R2=0.134 and r=0.365). 
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Late 
Influenza 
Data 

Pearson 
Correlation 

Value (r) 

Linear Regression 
Equation 

R2 Value  Ratio 
(Consultations/ 

Diagnosed) - 
Average 

2009/2010 0.538 ܿ௧  =  20783 + 13.980݀௧ 0.290 0.030 

2011/2012  0.255 ܿ௧  =  32438 +  3.130݀௧ 0.065 0.005 

2012/2013  0.346 ܿ௧  =  25359 +  16.520݀௧ 0.120 0.004 

2013/2014  -0.387 ܿ௧  =  26221 − 16.930݀௧ 0.150 0.004 

2014/2015  0.142 ܿ௧  =  22595 + 1.893݀௧ 0.020 0.017 

Table 4.9 – Pearson Correlation values (r) and R2 values for the relationship between 
consultations and diagnosed for five different years for the late period. The R2 value was 
obtained from a linear regression model. ct is the number of consultations at time t and dt is 
the number of diagnosed individuals at time t. The ‘Ratio’ is the proportion of diagnosed cases 
from the consultation cases (defined above). 
 
 

Late Influenza 
Data  

Non-influenza 
Consultations 95% C.I. Slope 95% C.I. 

2009/2010 20,783 (5,462 – 36,104) 13.980 * (0.417 – 27.543) 

2011/2012 32,438 (30,949 – 33,927) 3.130 * (-2.078 – 8.338) 

2012/2013 35,815 (30,628 – 41,002) 16.520 * (-22.680 – 55.720) 

2013/2014 31,379 (27,135 – 35,623) 16.930 * (-18.389 – 52.249) 

2014/2015 27,300 (23,527 – 31,073) 1.893 * (-9.698 – 13.484) 

Table 4.10 – Error terms for the above parameter values for the linear regression models. (*) 
represents those parameter values which are not significantly different (p>0.05) (ࡴ૙ is not 
rejected when no relationship exists between the consultation and diagnosed ILI variables 
(∆= ૙)); hence these predictors are not associated with changes in response. For all the other 
parameter values, the p-value is less than 0.05; hence this shows that we can reject the null 
hypothesis. Thus, these predictors are a meaningful addition to the above linear regression 
models (relationship exists between diagnosed and consultations). Changes in the predictor 
values are related to changes in the response variable. 
 

Otherwise, any other ratio less than 4% provided a weak R2 value (< 0.32). Furthermore, 

in almost all cases, such low ratio values provided weak/moderate correlation values with 

the exception of the 2012/2013 data which provided a Pearson correlation value of 0.685 

(Table 4.1). Elsewhere, all correlation values are less than 0.564, with a substantial 

number of correlation values showing very weak relationship. For ratios higher than 4% 

and strong correlation values between diagnosed and consultation datasets, this provided 

a baseline of non-influenza consultations between 27,000 and 33,120 cases. Otherwise, 

for other combinations of ratios and correlation values, baseline non-influenza 
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consultations do not follow any particular trend. In relation to this, we show that values 

range widely between 20,000 up to 36,000 non-influenza consultation cases. The lowest 

ratios between diagnosed and consultations is during late influenza period for all the 5 

different datasets. During the mid-part of the influenza period, the highest Pearson 

correlation values and R2 values were registered. This also coincides with a higher ratio 

between diagnosed and consultation datasets. In general, for early and late influenza 

periods, most of the latter values (r and R2) are lower when compared with the mid-part 

of the influenza season. The only exception is for the 2009/2010 data as discussed above.   

 

Figure 4.11–Relationship between weekly data for different periods (early, mid, late) in the influenza 
timeline for 5 different years: (a) represents the 2009/2010 influenza pandemic, (b) 2011/2012 
seasonal influenza, (c) 2012/2013 seasonal influenza, (d) 2013/2014 seasonal influenza and (e) 
2014/2015 seasonal influenza. The straight lines (black/early, red/mid and green/late) in each plot 
corresponds to the regression line, which is the line of best fit between the two variables. 
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The above results show clearly that a higher ratio between consultation and diagnosed 

datasets are more likely to provide better linear relationship (R2) between both datasets. 

Furthermore, correlation values between consultations and diagnosed are stronger during 

the mid-part of the influenza period. Moreover, since for the last two years the 

consultations were lower than the other three years, this provided a weaker relationship 

between the two variables. Hence, this leads to an interesting result, where lower number 

of consultations weakens the potential to predict the number of consultation cases when 

applying the linear regression model. Furthermore, at low baseline level of non-influenza 

consultations, this provides a weak signal for the diagnosed ILI cases. After reaching a 

certain number of consultations, this is likely to give a stronger signal about the severity 

of the outbreak. 

 

Early and late periods of influenza are characterized by high variability between 

consultation and diagnosed datasets as compared with the mid-part of the seasonal 

influenza (Figure 4.11). This relates well with the fact that the ratio between diagnosed 

and consultations is higher during the mid-part of the influenza season. Hence, during the 

mid-part of the influenza season, there is a higher number of individuals who sought a 

consultation from their GP and a higher proportion that were diagnosed with seasonal 

influenza. As showed in the joint model section, there is an additional time-dependent 

factor when discussing such datasets. For the latest two datasets (2013/2014 and 

2014/2015), it is very clear that the relationship between the consultation and diagnosed 

variables for different periods is weak (Figure 4.11(d) and 4.11(e)). Figure 4.11(e) 

(2014/2015) shows that there are a substantial number of data points which are scattered 

around the three regression lines, hence the weak association. In contrast, for figure 

4.11(d) (2013/2014), the ‘early’ and ‘late’ stages provide contrary results to all the other 

linear associations. In fact, these two stages (early and late) show that the association 

between diagnosed and consultations results in a negative slope. As explained in chapter 

2, positive slopes signify that higher diagnosed cases imply higher consultations cases, 

while negative slopes show that higher diagnosed cases imply lower consultation cases 

(Figure 4.11). 

 

Furthermore, the confidence intervals for the slope of the linear regression equations are 

rather wide (Tables 4.6, 4.8 and 4.10). However, for the mid-part of the seasonal 



- 98 -  
 

influenza, confidence intervals are more likely to be narrower. In relation to this, for the 

first three datasets, diagnosed ILIs are a good predictor for the number of consultations 

(p-value < 0.05). Only for the 2009/2010 dataset, the early part of the diagnosed data 

provides a significant contribution to the above linear regression model in order to predict 

the consultation dataset (R2 =0.906). For the other predictors of the other models (early 

and late models), these are not proving to be beneficial to predict the number of 

consultations on a weekly basis.  

 

 
Figure 4.12 – Chart (a) represents three important stages for the 2009/2010 pandemic data. The black 
horizontal line represents the baseline of the non-influenza consultations (obtained from table 4.1), 
the difference between the black line and the green line represents the actual clinical diagnosed ILI 
cases and the difference between the green line and the blue line corresponds to the sub-clinical cases. 
Chart (b) represent the actual number of consultation cases.  
 

The dataset presented in figure 4.12 allows us to observe an important point about the 

‘sub-clinical’ cases. Figure 4.12 illustrate the split of each dataset into three categories. 

The baseline of non-influenza consultations was established through the linear regression 

model (Table 4.1). Furthermore, the split includes the number of weekly diagnosed cases 

(clinical cases) during the same season. Hence, the difference between the black line and 

the green line in figure 4.12 represents the actual diagnosed ‘clinical’ ILI cases. Then the 

remainder from the estimated consultations data (Figure 4.12(b)) carries a level of 

uncertainty, since the characteristics of the ‘sub-clinical’ part contains some ambiguity. 
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The difference between the green line and the blue line in figure 4.12 corresponds to these 

sub-clinical cases. Thus, the sub-clinical cases give further insight regarding those 

individuals who acquired influenza but did not have enough symptoms to be diagnosed 

as an ILI case, individuals who did not acquire influenza but were suspicious of having 

influenza, misdiagnosed individuals, cases that were not reported as ILI by the GPs to 

health authorities, or non-influenza related consultations (Figure 2.2, Chapter 2). 

 

 
Figure 4.13 – This chart gives the actual clinical diagnosed ILI cases (green line) and the ‘sub-clinical’ 
cases (blue line). Note that in figure 4.12 the values are cumulative but in this case they are not. 
 

The above figure (Figure 4.12) highlights the level of baseline non-influenza consultation 
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of the sub-clinical cases is related to the issue of under-reporting of the seasonal influenza 

cases. Although a major portion of under-reporting is due to people not consulting their 

GP due to their seasonal influenza (Chapter 2, Fig. 2.2), there exists a portion of under-

reporting due to the sub-clinical cases as defined above. In the following chapters, we 

will be exploring the issue of under-reporting in further detail.  

 

Parameters obtained through SEIR models help us to understand further the relationship 

between seasonal influenza datasets across different years. The average individual 

posterior SEIR parameter values (Tables 4.3-4.4) for the above datasets can be used as 

an approximation to estimate the prior parameter values for the succeeding seasonal 

influenza. However, consultation parameter estimates vary more widely when compared 

with the diagnosed datasets; hence, there is higher variability when predicting the state 

parameter values through the use of the consultation datasets. This corresponds well with 

the arguments raised in chapter 2, when defining the ‘Rt for different datasets’. 

Nevertheless, for the scope of the seasonal influenza, diagnosed parameters are the 

strongest signal to understand the actual spread of influenza. As discussed in chapter 2, 

the diagnosed datasets are a more direct proxy of the measure of influenza, when 

compared with the consultations datasets. This is due to the higher number of 

‘background’ consulting rate found in the consultation datasets. Moreover, infection 

posterior parameter rates (Table 4.4) for the diagnosed data show that, for a higher 

number of diagnosed cases the infection rate is more likely to be higher.  

 

The above SEIR model was incorporated with the linear regression model to extend the 

latter model into a time-dependent one. For the scope of the time-dependent linear 

regression model, the diagnosed data (independent variable) was incorporated into the 

consultations data (dependent variable). We showed that when the linear regression 

model is adjusted as a time-dependent model, the predictions of the linear regression 

technique improved substantially (when compared with the time-independent model). 

Hence, this shows that although for the latest seasonal influenza datasets (2013/2014 and 

2014/2015) the relationship between consultations and diagnosed datasets is very weak, 

when the relationship is analysed at each different time point, strong associations between 

the two variables can be established. Through the linear regression models (time-

independent), we concluded that for lower number of consultations, the potential to 
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establish a strong relationship between consultations and diagnosed ILIs is weak. 

However, this issue was resolved by assuming a time-dependent linear regression model. 

 

The above analysis produced very important results in understanding the relationship 

between the consultations and diagnosed ILI datasets. When all the datasets for different 

seasons were combined together, a strong linear relationship between consultations and 

diagnosed was recorded. This shows that the relationship between these two variables is 

collective for different seasons. Such findings suggest that for a new epidemic this result 

might also hold. This would be an interesting future research to compare such results for 

other influenza seasons and other different types of epidemics. 

 

During every meeting that I held with health authorities the key health officials stated 

that any early signal that the seasonal influenza datasets can provide, this would be very 

useful for planning health strategies (Appendix A). Hence, all the above information 

helps to enhance our understanding of the seasonal influenza and to gain further insight 

that supports health authorities to better plan their health policies based on early warning 

techniques. 

 

This chapter covered several signals related to the seasonal influenza that can aid to the 

further understanding of any other future outbreaks. The forthcoming chapters aim to use 

the above information to expand on this material, namely real-time forecasting, 

sensitivity analysis, under-reporting studies and further joint models. 
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Chapter 5 
 

Real-time forecasting: The SEIR 
model and the joint model 
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5.1 Introduction 

As discussed in chapter 1, one of the ultimate aims in epidemiological studies is to 

improve the prediction of the disease spread as early as possible in the epidemic. The 

main challenge is to develop a set of robust techniques that provide an early warning 

signal. As discussed in chapter 4, this proves difficult when limited information exists. 

Hence, our ultimate aim is to acquire as much information as possible to enhance our 

understanding of any outbreak under study. For example, we already showed in chapter 

4 that when applying a time-dependent linear regression model, this improved the model 

fit when compared to a general linear regression model. Throughout this chapter, I will 

be looking at the extent to which the SEIR and joint models (as defined previously) can 

be used to accurately predict future forecasts based on real-time data. Real-time 

forecasting aims to carry out a ‘stock-take’ of the collected data, and then through the use 

of the SEIR model this further predicts the number of consultations and diagnosed cases 

for the following weeks. Furthermore, we carry out real-time forecasting to understand 

whether the forecasts for the consultation datasets can be improved through the use of the 

joint model (SEIR model and time-dependent linear regression model). Therefore, we 

also examine whether the predictions of multiple datasets can be facilitated through this 

integrated framework.  

 

5.2 Method  

Throughout this chapter, we use the consultations and diagnosed datasets for the five 

influenza seasons (2009/2010, 2011/2012, 2012/2013, 2013/2014, 2014/2015). For every 

season, I will produce three outputs as follows: 

1. Real-time forecasting for the consultations dataset through the SEIR model; 

2. Real-time forecasting for the diagnosed dataset through the joint model but using 

the SEIR model; 

3. Real-time forecasting for the consultations dataset through the joint model but 

using the time-dependent linear regression model. 

 

Since I aim to explore the forecasting of consultation and diagnosed variables at different 

stages of the outbreak, six cases are considered for every dataset (as defined above). The 

following are the number of known data points that are considered in the application of 

real-time forecasts: 
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1. Case 1: 9 data points (chart (a)) 

2. Case 2: 12 data points (chart (b)) 

3. Case 3: 15 data points (chart (c)) 

4. Case 4: 18 data points (chart (d)) 

5. Case 5: 21 data points (chart (e)) 

6. Case 6: 24 data points (chart (f)) 

and predicting the next 20 data points for every single case (or fewer if these extended 

beyond the end of the season). Hence, actual data points are considered unknown for the 

forecasted 20 data points (or less). For the time-dependent linear regression model, only 

the parameters up till the ‘known’ data points are considered to forecast the consultations 

through the joint model. The 95% high predictive density regions are portrayed to 

understand the level of accuracy for each individual forecast. 

 

5.3 Results 

5.3.1 2009/2010 pandemic data 

As discussed in previous chapters, the pandemic data has different features when 

compared to the seasonal influenza datasets. The peaks of the pandemic data were 

reached during different periods (Oct 2009 and Dec 2009) when compared to the seasonal 

influenza datasets (Feb-April period). Figure 5.1a shows that when using 9 weeks of data 

to predict the next 20 weeks of data, the predictions have narrow confidence interval 

when compared with the next two cases (Figures 5.1b and 5.1c), but missing the 

prediction of the second wave. In fact, the forecasts clearly underestimated the actual 

data. Hence, up to the 9th week of data, the information is very limited to predict future 

weekly data points. Figure 5.1b shows that when using 12 known data points, the real-

time forecast (for the next 20 points) is fairly accurate, though missing the December 

2010 peak. For the remaining plots (hence using 15/18/21/24 weeks of data to predict the 

next 20 weeks (or fewer)), the real-time forecasts are also accurate. For figures 5.1b and 

5.1c, the 95% confidence intervals are rather wide; hence this shows the level of 

uncertainty during the first part of the outbreak. However, as time progresses, the 

predictions stabilize to lower confidence intervals (Figures 5.1d, 5.1e, 5.1f).  

 

Figures 5.2b and 5.2c for the 2009/2010 diagnosed dataset are better real-time forecasts 

when compared with the consultations 2009/2010 dataset (for the same cases). In fact, 
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when using 12 weeks of data (Figure 5.2b), another peak is being predicted, although 

with 2 weeks of time lag. In general, for the diagnosed data, the confidence intervals are 

narrower (compared with consultations), resulting in a lower uncertainty in the provided 

predictions. For the last four real-time forecast cases (Figures 5.2c – 5.2f), the 20 weeks 

of forecasted data points are very accurate, with a very smooth curve passing through 

most of the actual data points. 

 
Figure 5.1 – Prediction plots at different time points when the model was fitted for the consultations 
dataset (2009/2010) using the SEIR model as defined in Chapter 3, where chart (a) is using 9 data points 
(vertical line) and predicting the next 20, (b) is using 12 data points (vertical line) and predicting the 
next 20, (c) is using 15 data points (vertical line) and predicting the next 20, (d) is using 18 data points 
(vertical line) and predicting the next 20, (e) is using 21 data points (vertical line) and predicting the 
next data points up to the end of the influenza season, (f) is using 24 data points (vertical line) and 
predicting the next data points up to the end of the influenza season. Each plot includes the actual data 
(solid line) and the results of the model fit, dashed line (mean) and shaded area (95% high predictive 
density region).  
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The first dataset, which tested the joint model for the real-time forecast, is the 

‘Consultations per week’ data for the pandemic season 2009/2010. Hence, the diagnosed 

dataset was set as the independent variable, and through the time-dependent linear 

regression model (described in Chapter 4), the consultation data points were estimated.  

 

When the joint model was run through the methodology as defined in chapter 4, the 

forecasts for different consultation time points (Figure 5.3) are more accurate than in 

figure 5.1. When using 9 known data points (Figure 5.3a), the model produced an 

improved fit when compared with figure 5.1a (consultations 2009/2010, SEIR model). 

Furthermore, the joint model predicted the 2nd peak of the consultations data at week 12 

(Figure 5.3b), in contrast to figure 5.1b. The joint model fit also improved for Case 3 

(Figure 5.3c) when compared with figure 5.1c, producing better forecasted values.  

 

The confidence intervals of the consultations data for the joint model (Figure 5.3) are 

narrower when compared to the consultations data for the SEIR model (Figure 5.1). In 

addition, this shows that the joint model for the 2009/2010 dataset improved the certainty 

and accuracy in the consultation predictions. This can be attributed due to lower 

confidence intervals for the diagnosed data, since the consultation predictions (joint 

model) are dependent on the diagnosed data (linear regression model). Hence, in this 

case, a strong relationship between consultations and diagnosed data (as described in 

Chapter 4) improved the forecasts of the consultations dataset. 
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Figure 5.2 – Prediction plots at different time points when the model was fitted for the diagnosed 
dataset (2009/2010) using the SEIR model as defined in Chapter 3, where chart (a) is using 9 data points 
(vertical line) and predicting the next 20, (b) is using 12 data points (vertical line) and predicting the 
next 20, (c) is using 15 data points (vertical line) and predicting the next 20, (d) is using 18 data points 
(vertical line) and predicting the next 20, (e) is using 21 data points (vertical line) and predicting the 
next data points up to the end of the influenza season, (f) is using 24 data points (vertical line) and 
predicting the next data points up to the end of the influenza season. Each plot includes the actual data 
(solid line) and the results of the model fit, dashed line (mean) and shaded area (95% high predictive 
density region). 
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Figure 5.3 – Prediction consultation plots (2009/2010) at different time points when the model was 
fitted through the time-dependent linear regression model (joint model) between consultations 
(predicting variable) and diagnosed ILIs (independent variable) as defined in Chapter 4, where chart (a) 
is using 9 data points (vertical line) and predicting the next 20, (b) is using 12 data points (vertical line) 
and predicting the next 20, (c) is using 15 data points (vertical line) and predicting the next 20, (d) is 
using 18 data points (vertical line) and predicting the next 20, (e) is using 21 data points (vertical line) 
and predicting the next data points up to the end of the influenza season, (f) is using 24 data points 
(vertical line) and predicting the next data points up to the end of the influenza season. Each plot 
includes the actual data (solid line) and the results of the model fit, dashed line (mean) and shaded area 
(95% high predictive density region). 
 

5.3.2 2011/2012 seasonal influenza data 

Similarly to the above, the analysis was run for the 2011/2012 seasonal influenza datasets. 

Hence, the SEIR model was run on its own for the consultations dataset. The joint model 

(a) Consultations per week (2009/2010)

C
o

ns
ul

ta
tio

ns

Nov’09 Jan’10 Mar’10 May’10

0

20000

40000

60000

80000

100000

120000

(b) Consultations per week (2009/2010)

C
o

ns
ul

ta
tio

ns

Nov’09 Jan’10 Mar’10 May’10

0

20000

40000

60000

80000

100000

120000

(c)

C
o

ns
ul

ta
tio

ns

Nov’09 Jan’10 Mar’10 May’10

0

20000

40000

60000

80000

100000

120000

(d)

C
o

ns
ul

ta
tio

ns

Nov’09 Jan’10 Mar’10 May’10

0

20000

40000

60000

80000

100000

120000

(e)

C
on

su
lta

tio
ns

Nov’09 Jan’10 Mar’10 May’10

0

20000

40000

60000

80000

100000

120000

(f)

C
on

su
lta

tio
ns

Nov’09 Jan’10 Mar’10 May’10

0

20000

40000

60000

80000

100000

120000



- 109 -  
 

was subsequently run to forecast the diagnosed data through the SEIR model, and the 

consultations data through the time-dependent linear regression model.  

 

Similar to the outcome of figure 5.1a, the consultation (20 weeks) predictions are 

underestimated for figures 5.4a and 5.4b. As more data points were observed, the 

forecasts improved (Figures 5.4c, 5.4d and 5.4f). The results produced in figure 5.4e 

(assuming 21 known data points) again underestimate the number of actual consultation 

cases.  

 

For the first prediction plot of the diagnosed data (Case 1, as defined above), the model 

produced overestimation of the peak of the diagnosed data (Figure 5.5a). Although the 

forecasts improved when using 12 data points to predict the next 20 data points (Figure 

5.5b), the prediction is still not accurate. The peak is being predicted later during the 

outbreak with a wide confidence interval. Hence, this shows that, up to this point, the 

SEIR model is not predicting future data points accurately. For higher number of known 

data points (Figures 5.5c, 5.5d), the model is still predicting a larger outbreak, with a lot 

of uncertainty (wide confidence intervals). Only for the latest two cases (Case 5 and 6, 

the end stages of the influenza) do the predictions become notably better. 

  

The real-time forecast for the consultations data, using the joint model, overestimated the 

number of consultation cases, when assuming 9 known data points (Figure 5.6a). This 

result is attributed to the overestimation of the forecasted diagnosed cases (consultations 

dependent on diagnosed cases). From case 2 onwards, the forecasts improved. For figures 

5.6c and 5.6d, the joint model technique is forecasting higher consultations when 

compared with the SEIR model (Figure 5.4c and 5.4d), while figures 5.6e and 5.6f 

produced more accurate forecasts, with narrower confidence intervals when compared to 

figures 5.4e and 5.4f. For the 2011/2012 consultations dataset, the joint model also 

produced forecasts with a lower level of uncertainty and more reasonable forecasts 

(Figures 5.6e and 5.6f) when compared with the same cases of figure 5.4. Since the 

diagnosed forecasts (Figure 5.5) are providing a signal of a potential outbreak, the 

consultation forecasts also follow the same outcome, although with some overestimated 

predictions. 
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Figure 5.4 – Prediction plots at different time points when the model was fitted for the consultations 
dataset (2011/2012) using the SEIR model as defined in Chapter 2, where chart (a) is using 9 data points 
(vertical line) and predicting the next 20, (b) is using 12 data points (vertical line) and predicting the 
next 20, (c) is using 15 data points (vertical line) and predicting the next 20, (d) is using 18 data points 
(vertical line) and predicting the next 20, (e) is using 21 data points (vertical line) and predicting the 
next data points up to the end of the influenza season, (f) is using 24 data points (vertical line) and 
predicting the next data points up to the end of the influenza season. Each plot includes the actual data 
(solid line) and the results of the model fit, dashed line (mean) and shaded area (95% high predictive 
density region). 
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Figure 5.5 – Prediction plots at different time points when the model was fitted for the diagnosed 
dataset (2011/2012) using the SEIR model as defined in Chapter 4, where chart (a) is using 9 data points 
(vertical line) and predicting the next 20, (b) is using 12 data points (vertical line) and predicting the 
next 20, (c) is using 15 data points (vertical line) and predicting the next 20, (d) is using 18 data points 
(vertical line) and predicting the next 20, (e) is using 21 data points (vertical line) and predicting the 
next data points up to the end of the influenza season, (f) is using 24 data points (vertical line) and 
predicting the next data points up to the end of the influenza season. Each plot includes the actual data 
(solid line) and the results of the model fit, dashed line (mean) and shaded area (95% high predictive 
density region). 
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Figure 5.6 – Prediction consultation plots (2011/2012) at different time points when the model was 
fitted through the time-dependent linear regression model (joint model) between consultations 
(predicting variable) and Diagnosed ILIs (independent variable) as defined in Chapter 4, where chart (a) 
is using 9 data points (vertical line) and predicting the next 20, (b) is using 12 data points (vertical line) 
and predicting the next 20, (c) is using 15 data points (vertical line) and predicting the next 20, (d) is 
using 18 data points (vertical line) and predicting the next 20, (e) is using 21 data points (vertical line) 
and predicting the next data points up to the end of the influenza season, (f) is using 24 data points 
(vertical line) and predicting the next data points up to the end of the influenza season. Each plot 
includes the actual data (solid line) and the results of the model fit, dashed line (mean) and shaded area 
(95% high predictive density region). 
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improved when assuming more known data points (Figure 5.7), except when assuming 

15 known data points. For the latter case (Figure 5.7c), the number of consultations were 

overestimated. In general, the certainty in predictions also improved with time (resulting 

in narrower confidence intervals). For the diagnosed 2012/2013 dataset (using the joint 

model), the model produced weak predictions. The predictions (Case 1) were initially 

underestimated by a high degree (Figure 5.8a). For case 2, the model accurately predicted 

the next few data points, but overestimated the peak of the diagnosed cases substantially 

(Figure 5.8b). This overestimation proceeded for the next two cases (assuming 15 and 18 

data points respectively) with very wide confidence intervals (Figures 5.8c and 5.8d). 

After assuming the peak of the diagnosed cases as known (Figure 5.8e), the forecasts 

declined, though still carrying a certain level of overestimation and wide confidence 

intervals. The last case (assuming 24 known data points) accurately predicted the 

remaining data points (Figure 5.8e), though the influenza was then during its final stages. 

 

Unsatisfactory real-time forecasts for the diagnosed 2012/2013 dataset might imply bad 

forecasts for the consultations dataset through the joint model. This can be seen to a 

certain extent in figure 5.9. Initially, the consultation predictions commenced fairly 

accurate, but then deteriorated from case 2 (assuming 12 known data points), especially 

for figures 5.9b and 5.9d. Ultimately, for the last two cases (Figures 5.9e and 5.9f), the 

predictions improved once again. The accurate forecast of figure 5.9a (assuming 9 

observed data points) can be attributed to the fact that the diagnosed predictions (Figure 

5.8a) are flat and low, and the actual consultations data is also flat and stationary. Hence, 

these accurate forecasts were produced since the consultations data utilised the diagnosed 

data as the dependent variable. For the next three cases (Figures 5.9b, 5.9c and 5.9d), the 

forecasts deteriorated with a clear overestimation for substantial parts of the outbreak due 

to the overestimation of the diagnosed forecasts (Figure 5.8). Moreover, when assuming 

21 known data points and 24 known data points, the forecasts improved (similar to the 

diagnosed 2012/2013 dataset). For the 2012/2013 consultations dataset, the joint model 

(Figure 5.9) did not produce better forecasts when compared to the SEIR model (Figure 

5.7). The main reason for these results is due to the weak forecasts for the diagnosed 

dataset 2012/2013 (consultations dependent on diagnosed). 
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Figure 5.7 – Prediction plots at different time points when the model was fitted for the consultations 
dataset (2012/2013) using the SEIR model as defined in Chapter 4, where chart (a) is using 9 data points 
(vertical line) and predicting the next 20, (b) is using 12 data points (vertical line) and predicting the 
next 20, (c) is using 15 data points (vertical line) and predicting the next 20, (d) is using 18 data points 
(vertical line) and predicting the next 20, (e) is using 21 data points (vertical line) and predicting the 
next data points up to the end of the influenza season, (f) is using 24 data points (vertical line) and 
predicting the next data points up to the end of the influenza season. Each plot includes the actual data 
(solid line) and the results of the model fit, dashed line (mean) and shaded area (95% high predictive 
density region). 
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Figure 5.8 – Prediction plots at different time points when the model was fitted for the diagnosed 
dataset (2012/2013) using the SEIR model as defined in Chapter 4, where chart (a) is using 9 data points 
(vertical line) and predicting the next 20, (b) is using 12 data points (vertical line) and predicting the 
next 20, (c) is using 15 data points (vertical line) and predicting the next 20, (d) is using 18 data points 
(vertical line) and predicting the next 20, (e) is using 21 data points (vertical line) and predicting the 
next data points up to the end of the influenza season, (f) is using 24 data points (vertical line) and 
predicting the next data points up to the end of the influenza season. Each plot includes the actual data 
(solid line) and the results of the model fit, dashed line (mean) and shaded area (95% high predictive 
density region). 

(a) Diagnosed per week (2012/2013)

D
ia

gn
os

ed

Oct’12 Dec’12 Feb’13 Apr’13

0

1000

2000

3000

4000

5000

(b) Diagnosed per week (2012/2013)

D
ia

gn
os

ed

Oct’12 Dec’12 Feb’13 Apr’13

0

1000

2000

3000

4000

5000

(c)

D
ia

gn
os

ed

Oct’12 Dec’12 Feb’13 Apr’13

0

1000

2000

3000

4000

5000

(d)

D
ia

gn
os

ed

Oct’12 Dec’12 Feb’13 Apr’13

0

1000

2000

3000

4000

5000

(e)

D
ia

gn
os

ed

Oct’12 Dec’12 Feb’13 Apr’13

0

1000

2000

3000

4000

5000

(f )

D
ia

gn
os

ed

Oct’12 Dec’12 Feb’13 Apr’13

0

1000

2000

3000

4000

5000



- 116 -  
 

 
Figure 5.9 – Prediction consultation plots (2012/2013) at different time points when the model was 
fitted through the time-dependent linear regression model (joint model) between consultations 
(predicting variable) and Diagnosed ILIs (independent variable) as defined in Chapter 4, where chart (a) 
is using 9 data points (vertical line) and predicting the next 20, (b) is using 12 data points (vertical line) 
and predicting the next 20, (c) is using 15 data points (vertical line) and predicting the next 20, (d) is 
using 18 data points (vertical line) and predicting the next 20, (e) is using 21 data points (vertical line) 
and predicting the next data points up to the end of the influenza season, (f) is using 24 data points 
(vertical line) and predicting the next data points up to the end of the influenza season. Each plot 
includes the actual data (solid line) and the results of the model fit, dashed line (mean) and shaded area 
(95% high predictive density region). 
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forecasts are also underestimated, however with narrow confidence intervals. On the 

contrary, figure 5.10d shows an overestimation of the number of consultation cases, while 

figures 5.10e and 5.10f are rather accurate with a clear signal of the number of 

consultation cases for the coming weeks, together with narrow confidence intervals. 

 

 
Figure 5.10 – Prediction plots at different time points when the model was fitted for the consultations 
dataset (2013/2014) using the SEIR model as defined in Chapter 4, where chart (a) is using 9 data points 
(vertical line) and predicting the next 20, (b) is using 12 data points (vertical line) and predicting the 
next 20, (c) is using 15 data points (vertical line) and predicting the next 20, (d) is using 18 data points 
(vertical line) and predicting the next 20, (e) is using 21 data points (vertical line) and predicting the 
next data points up to the end of the influenza season, (f) is using 24 data points (vertical line) and 
predicting the next data points up to the end of the influenza season. Each plot includes the actual data 
(solid line) and the results of the model fit, dashed line (mean) and shaded area (95% high predictive 
density region). 
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The diagnosed 2013/2014 cases commence with a long period of a low number of 

diagnosed ILI cases. In general, the forecasts produced (Figure 5.11) are inaccurate and 

similar to the ones obtained in the previous influenza season (Figure 5.8, diagnosed 

2012/2013). These forecasts (Figure 5.11) have wide confidence intervals.  

 
Figure 5.11 – Prediction plots at different time points when the model was fitted for the diagnosed 
dataset (2013/2014) using the SEIR model as defined in Chapter 4, where chart (a) is using 9 data points 
(vertical line) and predicting the next 20, (b) is using 12 data points (vertical line) and predicting the 
next 20, (c) is using 15 data points (vertical line) and predicting the next 20, (d) is using 18 data points 
(vertical line) and predicting the next 20, (e) is using 21 data points (vertical line) and predicting the 
next data points up to the end of the influenza season, (f) is using 24 data points (vertical line) and 
predicting the next data points up to the end of the influenza season. Each plot includes the actual data 
(solid line) and the results of the model fit, dashed line (mean) and shaded area (95% high predictive 
density region). 
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Figure 5.12 – Prediction consultation plots (2013/2014) at different time points when the model was 
fitted through the time-dependent linear regression model (joint model) between consultations 
(predicting variable) and diagnosed ILIs (independent variable) as defined in Chapter 4, where chart (a) 
is using 9 data points (vertical line) and predicting the next 20, (b) is using 12 data points (vertical line) 
and predicting the next 20, (c) is using 15 data points (vertical line) and predicting the next 20, (d) is 
using 18 data points (vertical line) and predicting the next 20, (e) is using 21 data points (vertical line) 
and predicting the next data points up to the end of the influenza season, (f) is using 24 data points 
(vertical line) and predicting the next data points up to the end of the influenza season. Each plot 
includes the actual data (solid line) and the results of the model fit, dashed line (mean) and shaded area 
(95% high predictive density region). 
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between the diagnosed and consultation variables is inconsistent (Figure E.3, Appendix 
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This influenced the confidence intervals for figures 5.12b and 5.12c. The lower part of 

the confidence interval is negative, which is unrealistic. Hence, this may be considered 

as a limitation in this method. However, this shows the level of uncertainty in the 

predictions for these two cases. Figure 5.12c shows accurate predictions, but wide 

corresponding confidence interval. When considering more known consultation cases 

(Figures 5.12d – 5.12f), the forecasts improved with narrower confidence intervals when 

compared with the previous forecasts (Figures 5.12a – 5.12c).  

 

5.3.5 2014/2015 seasonal influenza data 

As discussed in chapter 4, the consultations dataset for the 2014/2015 is rather stationary 

with some short-term oscillations. The SEIR model picked up the signal of the stationary 

data, as the forecasts for all cases are fairly accurate, except for figure 5.13b (assuming 

12 known data points and predicting the next 20 weeks). For the latter figure, the 

consultations were slightly underestimated. The confidence intervals are narrow for most 

of the consultation forecasts, thereby showing high certainty in the predicted values. 

Thus, such a stationary dataset produces low uncertainty forecasts due to the low 

variability in the dataset. 

 

As shown in the previous three diagnosed influenza datasets, overestimation was also 

recorded for the 2014/2015 diagnosed dataset (Figure 5.14). The confidence intervals are 

very wide for all different cases. A decline of the seasonal influenza was never predicted, 

hence producing a lot of uncertainty in these predictions for this dataset. 

 

Figure 5.15 shows accurate forecasts for most of the consultations dataset (joint model). 

For the first three figures (Figure 5.15a, 5.15b and 5.15c), assuming 9, 12 and 15 known 

data points, the forecasts are close to the real data, and with narrow confidence intervals. 

Although for the diagnosed dataset the confidence intervals are wide (Figure 5.14), the 

confidence intervals are narrow for the consultations dataset (consultations dependent on 

diagnosed). This is attributed to a gradient close to 0 for the linear relationship between 

diagnosed and consultations at the points (9/12/15 data points) when the forecasts are 

carried out (Figure E.4, Appendix E). Hence, in such cases, the consultation predictions 

(Figure 5.15) are mainly based on the y-intercept (baseline of non-influenza cases). For 

figure 5.15d, the forecasts include some overestimation of the number of consultations 
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cases, while for the last two figures (Figures 5.15e and 5.15f), the forecasts improved 

with reasonable predictions. 

 

 
Figure 5.13 – Prediction plots at different time points when the model was fitted for the consultations 
dataset (2014/2015) using the SEIR model as defined in Chapter 4, where chart (a) is using 9 data points 
(vertical line) and predicting the next 20, (b) is using 12 data points (vertical line) and predicting the 
next 20, (c) is using 15 data points (vertical line) and predicting the next 20, (d) is using 18 data points 
(vertical line) and predicting the next 20, (e) is using 21 data points (vertical line) and predicting the 
next data points up to the end of the influenza season, (f) is using 24 data points (vertical line) and 
predicting the next data points up to the end of the influenza season. Each plot includes the actual data 
(solid line) and the results of the model fit, dashed line (mean) and shaded area (95% high predictive 
density region). 
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Figure 5.14 – Prediction plots at different time points when the model was fitted for the diagnosed 
dataset (2014/2015) using the SEIR model as defined in Chapter 4, where chart (a) is using 9 data points 
(vertical line) and predicting the next 20, (b) is using 12 data points (vertical line) and predicting the 
next 20, (c) is using 15 data points (vertical line) and predicting the next 20, (d) is using 18 data points 
(vertical line) and predicting the next 20, (e) is using 21 data points (vertical line) and predicting the 
next data points up to the end of the influenza season, (f) is using 24 data points (vertical line) and 
predicting the next data points up to the end of the influenza season. Each plot includes the actual data 
(solid line) and the results of the model fit, dashed line (mean) and shaded area (95% high predictive 
density region). 
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Figure 5.15 – Prediction consultation plots (2014/2015) at different time points when the model was 
fitted through the time-dependent linear regression model (joint model) between consultations 
(predicting variable) and Diagnosed ILIs (independent variable) as defined in Chapter 4, where chart (a) 
is using 9 data points (vertical line) and predicting the next 20, (b) is using 12 data points (vertical line) 
and predicting the next 20, (c) is using 15 data points (vertical line) and predicting the next 20, (d) is 
using 18 data points (vertical line) and predicting the next 20, (e) is using 21 data points (vertical line) 
and predicting the next data points up to the end of the influenza season, (f) is using 24 data points 
(vertical line) and predicting the next data points up to the end of the influenza season. Each plot 
includes the actual data (solid line) and the results of the model fit, dashed line (mean) and shaded area 
(95% high predictive density region). 
 

5.4 Discussion 

Real-time forecasting is challenging and is even more complex when data is limited. In 

our datasets, the number of reported consultation and diagnosed cases decreased over the 

years, thereby making the analysis even more difficult. In this chapter, we extended the 
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work of the previous chapters by producing real-time forecasting, thereby predicting the 

subsequent number of data points, based on a certain number of known weekly cases. In 

the previous chapters, we used all the data points to try to find the best SEIR model fit. 

This was done successfully, enabling us to understand the relationship between different 

datasets and to understand the parameter values of the influenza datasets. In this chapter 

we showed how different datasets and different models (SEIR model and joint model) 

perform when applying forward prediction. 

 

Unfortunately, the above real-time forecasts are not always reliable. In fact, some 

forecasts are quite misleading when compared to the actual data. These forecasts are 

similar with the research published by Ong et al. (2010) [26], which also utilized the 

SEIR model and the particle filtering algorithm. The findings in the latter study show an 

overestimation for the reported ILIs. Similar to some of our findings, the end period of 

the outbreak was then modelled accurately [26]. 

 

The findings show that for higher number of consultation and diagnosed cases, the real-

time forecasts are improved (2009/2010 datasets). Since the linear relationship between 

the consultations and diagnosed is strong for the pandemic data, this improved the (joint 

model) consultations real-time forecasts, as can be seen from the joint model predictions 

in figure 5.3. These results are similar with those obtained in chapter 4. It was established 

previously (in Chapter 4) that the higher the number of reported cases (by GPs), the better 

the relationship between consultation and diagnosed cases. When the relationship is 

strong between consultations and diagnosed, the level of certainty of the predictions is 

improved. In fact, the confidence intervals for the consultations data (through the joint 

model, Figure 5.3) are narrower when compared with the SEIR model fit of the 

consultations data (Figure 5.1).  

 

The results of chapter 5 can serve as a good basis to decide when the joint model is 

producing satisfactory result. As established in chapter 4, when there is a higher ratio 

between diagnosed and consultations ቀ݀݅ܽ݃݊݀݁ݏ݋
ൗݏ݊݋݅ݐܽݐ݈ݑݏ݊݋ܿ ቁ, this provides a 

stronger correlation value, hence predicting the dependent variable satisfactorily. For the 

last three datasets (2012/2013, 2013/2014 and 2014/2015), the general linear regression 

model provided a weak association (as described in Chapter 4, Table 4.1). However, since 
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the joint model is assuming a time-dependent linear regression model, the consultations 

dataset (2013/2014 and 2014/2015) still produced reasonable real-time forecasts.   

 

Through the joint model, the diagnosed data can provide various signals to the 

consultations data. For example, since the slopes of the linear regression model are 

positive in general (see Chapter 4 for further information), then if the diagnosed data is 

predicting an outbreak, the consultations can easily follow with an outbreak as well, 

thereby predicting a high demand on doctors and the health sector. On the contrary, a low 

number and stationary forecasts for the diagnosed dataset also imply low number and 

stationary forecasts for the consultation cases (Figure 5.9 and Figure 5.15). A limitation 

for the joint model is that overestimation of the real-time forecasts for the diagnosed 

datasets (independent variable) are more likely to imply weak forecasts for the 

consultations dataset (Figure 5.9), since consultations are dependent on the diagnosed 

forecasts. Furthermore, negative relationship (slope) between consultation and diagnosed 

variables are more likely to imply unreasonable confidence intervals as well. 

 

In chapter 4, we introduced an innovative extension (joint model) to the technique 

introduced in Ong et al. (2010) [26]. Following the findings in this chapter, this 

methodology does not always provide acceptable results. Hence, a further understanding 

is required as to whether it is possible to develop an improved and consistent framework 

that shall serve as a better tool for an early warning signal to predict the outbreak.  
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6.1 Introduction 

In chapters 3 and 4, I showed that the SEIR model can accurately describe the observed 

datasets. Our findings showed that posterior parameter distributions are consistent 

between the diagnosed datasets for different years, while some posterior parameter 

distributions were similar for different proxies of the pandemic data (Chapter 3). 

However, my model used non-informative prior distributions for parameters and initial 

state values of the SEIR model (as described in chapter 2): the initial number of 

susceptible individuals, S(0), the initial number of exposed individuals, E(0), the initial 

number of infected individuals, I(0) and the initial number of recovered individuals R(0). 

S(0), E0), I(0) and R(0) are not directly observable [26] and so it is important to consider 

how sensitive the results are, to changes in these values. So far, I assumed that the 

individual mean values of E(0) and I(0) are equal to the initial number of 

consultations/diagnosed cases at the start of the outbreak. This means that E(0) = I(0) 

since the same individuals who are infected but not infectious (E) eventually become 

infected but infectious (I). Moreover, the value of R(0) was assumed equal to 65,000 

(Chapter 3) as this resulted in a reasonable fit. The value of S(0) follows from the previous 

three values (Population size (N) - E(0) - I(0) - R(0)). Several studies assume R(0) equal 

to 0 [26, 56, 147], while other studies assume R(0) equal to the number of infectious 

individuals recorded at the start of the analysis [148].  

 

The effective reproduction ratio was one of the central points of the analysis in chapters 

3 and 4, since this is the main measure of the severity of the outbreak. In chapters 3 and 

4, we observed that the effective reproduction ratio started initially with a high value. 

This result has also been observed in Ong et al. (2010) [26]. However, such a high value 

appears to be unrealistic and so further investigation is needed. In this chapter, I will 

examine to what extent the initial prior mean values of S(0), E0), I(0) and R(0) influence 

the estimated value of Rt particularly for low t values. Throughout this chapter, reference 

to the ‘prior value’ implies the mean value of the prior distribution. 

 

6.2 Sensitivity Analysis for R(0) 

For seasonal influenza datasets, the prior value of R(0) is the total number of removed 

(immune) individuals at time = 0, at the start of the outbreak. If the individuals are part 

of the removed compartment, then automatically they are not part of the susceptible 
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compartment. As discussed in chapter 2, the SEIR model is assuming that after an 

individual acquires and recovers from seasonal influenza, the individual becomes 

immune. However, immunity from the influenza can be acquired through vaccination for 

the same influenza virus [149], also leading to a low number of susceptible individuals. 

Thus, amendments in the R(0) values directly influence the value of S(0). Therefore, 

throughout this section, although we will be changing directly the value of R(0), the 

sensitivity analysis is also applied on the S(0) value. 

 

For the scope of this analysis, for all influenza datasets which were defined in the previous 

chapters, the SEIR model in combination with the particle filter algorithm (as defined in 

chapter 2) is used. For parameters other than S(0), E(0), I(0) and R(0), the same prior 

values, as defined in chapter 3, are used. Similar to chapter 3 [79], throughout this section, 

the prior distributions of I(0) and E(0) are assumed equal to the number of confirmed 

cases (consultations or diagnosed) at the start of the influenza outbreak. The prior is 

assumed to be normally distributed, with mean and variance derived from the observed 

values of consultations and diagnosed (depending on the dataset being used). However, 

we vary the balance between R(0) and S(0) while keeping S(0) + E(0) + I(0) + R(0) = N 

constant. For every dataset, the model is applied six times, that is, for R(0)=0 

(S(0)=414,000-E(0)-I(0)), R(0)=50,000 (S(0)=414,000-50,000-E(0)-I(0)), R(0)=100,000 

(S(0)=414,000-100,000-E(0)-I(0)), R(0)=150,000 (S(0)=414,000-150,000-E(0)-I(0)), 

R(0)=200,000 (S(0)=414,000-200,000-E(0)-I(0)) and R(0)=250,000 (S(0)=414,000-

250,000-E(0)-I(0)). There was only one exception: for the 2009/2010 weekly diagnosed 

ILIs, we used R(0)=350,000 ((S(0)=414,000-350,000-E(0)-I(0)) instead of R(0)=200,000 

since a higher number of R(0) was required to examine a larger difference between the Rt 

values. In the above calculations for different priors, 414,000 (N) is the population size 

of Malta. 

 

As described in chapters 2, 3 and 4, different seasons of influenza varied in strength of 

their outbreak. In fact, for the pandemic season, a higher number of consultations and 

diagnosed cases were recorded, while for the diagnosed ILI datasets, the number of cases 

decreased across the years. It is important to note that for the 2009/2010, there was 

already a major epidemic before October 2009 such that during July 2009, the highest 

number of diagnosed cases were recorded by the GPs (Figure 1, Chapter 3). 
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The first two datasets that were taken into consideration were the consultations for the 

2009/2010 season and the diagnosed dataset for the same season. As defined above, the 

SEIR model was run for every dataset for different R(0) values, and the dataset for the 

effective reproduction ratio Rt was recorded for every single case. Figure 6.1 shows that 

the initial reproduction ratios Rt are highly dependent on the initial number of the 

removed individuals, but the dependence is largely diminished later in the epidemic. In 

fact, figure 6.1 shows that for the consultations data, the first three values of the effective 

reproduction ratio varies between 0.8 and 3.3 for different values of R(0), while for the 

diagnosed data, the initial three values vary between 0.8 and 6.9 (Figure 6.1). During the 

initial stages of the outbreak, data is very limited and hence, the model parameters are 

being estimated based on very limited information. Therefore, a lot of variation exists at 

this stage until the model starts to stabilize due to further knowledge of the performance 

of the outbreak. This is one of the main strengths of the particle filter algorithm, where 

the parameter estimates are further refined as the outbreak unfolds. For the consultations 

dataset, the 4th reproduction ratio number declines substantially to a value between 1.3 

and 1.9 for different values of R(0), while the diagnosed data declines considerably to 

values between 2.4 and 3.5 for different values of R(0). From the 4th point onwards, 

differences in the effective reproduction ratios for different values of R(0) are 

substantially small.  

 

One of the arising questions centres on what value of R(0) to choose for further parameter 

estimation and prediction. Such a question is challenging as one needs to consider this by 

placing the R(0) value in context. For example, one cannot assume that R(0)=400,0000, 

as this implies that S(0)<14,000 (414,000-400,000-E(0)-I(0)). It is very unlikely that less 

than 14,000 individuals will be susceptible to acquiring the influenza during the season, 

as one can see from all influenza datasets in this thesis. On the other hand, very low values 

of R(0) produce unreasonably high initial values of Rt, which are substantially higher 

when compared to any other value of the effective reproduction ratio throughout the 

outbreak. Very low R(0) values can be seen as a worst case scenario when forecasting 

data [26], while very high values imply that few people will get infected from the disease. 

Hence, one needs to establish the right balance between the results presented above. 
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Figure 6.1–Sensitivity analysis for R(0) in relation to the reproduction number for the consultations 
and diagnosed variables during 2009/2010. Charts on the right represent the Rt plot when 
R(0)=150000 without the first three Rt data points. From the 4th Rt point onwards, Rt values tend to 
stabilize for all different R(0) values. Furthermore, the final Rt plots include a shaded area 
representing the 95% confidence interval. 
 

In figure 6.1, one can clearly see that when R(0)=250,000 (for consultations data) and 

R(0)=350,000 (for diagnosed data), the Rt values lose some consistency (when compared 

with other R(0) values) for a number of points throughout the outbreak (diagnosed from 

January 2010 onwards, Figure 6.1). For few diagnosed data points (January 2010) when 

R(0)=250,000, the Rt values are slightly lower than the other Rt values for different R(0) 

values. Furthermore, assuming that 250,000 from a population of 414,000 are immune at 

the start of the outbreak is rather optimistic. Hence, based on the above observations and 

assumptions, R(0)=150,000 should be a fairly reasonable value for the 2009/2010 season 

(Figure 6.1). The charts on the right hand side of figure 6.1 portray the reproduction ratio 
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chart for R(0)=150,000 without the first three Rt values (as described above) but with the 

relevant 95% confidence intervals. 

 

For the 2011/2012 datasets (consultations and diagnosed), the SEIR models were run 

again for all the different R(0) values. Similarly as above, the initial Rt values appear 

inconsistent (Figure 6.2). In fact, for the consultations dataset, the first three initial values 

vary between 1 and 3.7. From the 4th point onwards, the effective reproduction ratio 

stabilize for different values of R(0). For R(0) =200,000 and R(0)=250,000, the effective 

reproduction charts vary when compared to the other charts. For the consultations dataset, 

most variation in the Rt values occur during the peak of the outbreak (March 2012), where 

for the highest two R(0) values, the reproduction number is smaller. Therefore, up to 

R(0)=150,000 the effective reproduction ratios are relatively consistent for different 

values of R(0).  

 

The initial three Rt values for the diagnosed dataset are also inconsistent, varying between 

1.3 and 7.8. In contrast to the previous cases, all Rt charts provide very consistent values 

from the 4th point onwards for all R(0) values. As defined above, assuming high values 

of R(0) would not be realistic; hence, in this case, our decision should be based on the 

consultations dataset (R(0)=150,000, Figure 6.2). The number of removed individuals for 

the same disease should be identical irrespective to the type of proxy being utilised. 

 

Similarly to the 2011/2012 consultations dataset, figure 6.3 shows that for the 

consultations 2012/2013 dataset, the first three initial Rt values vary between 1.1 and 3.9, 

while the Rt value for the 4th point varies between 1.1 and 1.5 for different R(0) values. 

From this point onwards, the effective reproduction ratio is more stable.  

 



- 132 -  
 

 
Figure 6.2– Sensitivity analysis for R(0) in relation to the reproduction number for the consultations 
and diagnosed variables during 2011/2012. Charts on the right represent the Rt plot when 
R(0)=150000 without the first three Rt data points for consultations and without the first two Rt data 
points for the diagnosed dataset. After these, the initial Rt values tend to stabilize for all different 
R(0) values. Furthermore, the final Rt plots include a shaded area representing the 95% confidence 
interval. 
 

For the diagnosed data, the initial values are more inconsistent when compared with the 

consultations data (Figure 6.3). In fact the 4th reproduction ratio still varies between 1.6 

and 3.6 for different R(0) values. However, for the 5th point, the Rt values stabilizes 

between 1.1 and 1.8. From this point onwards, the effective reproduction ratio is 

consistent for different R(0) values. For the consultations data, the effective reproduction 

ratio is lower for the highest two R(0) values (R(0)=200,000 and R(0)=250,000), during 

the peak of the influenza (February 2013). Hence, up to R(0)=150,000, the Rt values are 

consistent. Thus, for this influenza season we will be assuming that R(0)=150,000 (Figure 

6.3). 
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Figure 6.3– Sensitivity analysis for R(0) in relation to the reproduction number for the consultations 
and diagnosed variables during 2012/2013. Charts on the right represent the Rt plot when 
R(0)=150000 without the first three Rt data points for consultations and without the first four Rt data 
points for the diagnosed dataset. After these, initial Rt values tend to stabilize for all different R(0) 
values. Furthermore, the final Rt plots include a shaded area representing the 95% confidence 
interval. 
 
Figure 6.4 shows the sensitivity analysis for R(0) (and S(0)) for the 2013/2014 dataset. 

For the consultations dataset, the first two Rt time points for different R(0) values vary 

between 1.3 and 4.1, while from the 3rd point onwards the Rt values are consistent for 

different R(0) values until December 2013. During the January-February 2014 timeframe, 

there are some inconsistencies. For R(0)=150,000 and above, the inconsistencies (Rt) are 

more apparent. Furthermore, for R(0)=100,000 the effective reproduction ratio produced 

a rare peak for the consultations data. This is the only consultations data that produced 

an Rt>1 that coincides with the high Rt values of the diagnosed dataset (January-February 

2014) occurring during the peak of the influenza season. The effective reproduction ratio 
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chart (Figure 6.4) for R(0)=100,000 seems to be a reasonable option to choose due to this 

particular result. 

 

 
Figure 6.4– Sensitivity analysis for R(0) in relation to the reproduction number for the consultations 
and diagnosed variables during 2013/2014. Charts on the right represent the Rt plot when 
R(0)=100000 without the first two Rt data points for consultations and without the first four Rt data 
points for the diagnosed dataset. After these, initial Rt values tend to stabilize for all different R(0) 
values. Furthermore, the final Rt plots include a shaded area representing the 95% confidence 
interval. 
 
Similarly to the previous cases, for the diagnosed 2013/2014 dataset, the first initial Rt 

values are inconsistent (Figure 6.4) such that up to point 4 the initial Rt values vary 

substantially for different R(0) values. In general, the Rt charts (Figure 6.4, diagnosed 

dataset) for different R(0) from the 5th point onwards are fairly consistent, except for 

November 2013 (R(0)=150,000 and R(0)=200,000). 
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The latest seasonal influenza datasets (2014/2015) is similar to the other datasets. In fact, 

for the consultations dataset, only the first two Rt values are inconsistent for different R(0) 

values, while for the diagnosed dataset the first five data points are inconsistent (Figure 

6.5). In general, the diagnosed datasets include more inconsistent initial Rt values when 

compared to the consultations datasets. However, the 95% confidence intervals for the 

consultations data are wider when compared to the diagnosed data. This shows that once 

the effective reproduction ratio through the diagnosed ILI datasets are stabilized, the Rt 

values incorporate more certainty than the Rt values through the consultation datasets. 

This can be attributed to the fact that the diagnosed dataset is a clearer signal of the 

strength of the influenza when compared to the consultations dataset. The latter dataset 

includes a substantial amount of background rate and sub-clinical cases, as discussed in 

chapter 4. Hence, this increases the uncertainty in the consultations dataset. Figure 6.5 

does not show a clear direction on which best value of R(0) to use. Hence, based on 

previous seasonal influenza outbreaks, it is reasonable to choose R(0)=150,000 as the 

best prior mean value for the removed compartment of the SEIR model. 

 
In general, for most consultation datasets, only the initial values exceed the value of one, 

while for the diagnosed data, there is more variation of the effective reproduction number 

throughout the outbreak (Figure 6.5).  
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Figure 6.5– Sensitivity analysis for R(0) in relation to the reproduction number for the consultations 
and diagnosed variables during 2014/2015. Charts on the right represent the Rt plot when 
R(0)=150000 without the first two Rt data points for consultations and without the first five Rt data 
points for the diagnosed dataset. After these, initial Rt values tend to stabilize for all different R(0) 
values. Furthermore, the final Rt plots include a shaded area representing the 95% confidence 
interval. 
 

6.3 Sensitivity Analysis for I(0) and E(0) 

Throughout this section, we aim to understand the sensitivity of the results to the mean 

prior values of I(0) and E(0) for the consultation and diagnosed datasets. As mentioned 

above, so far I(0) and E(0) were assumed equal to the number of observed cases at the 

start of the epidemic for both consultation and diagnosed datasets. As discussed in the 

previous section, a change in the values of I(0) and E(0) influence the value of S(0). In 

fact, the higher the values of I(0) and E(0), the lower is the value of S(0) (=Population 

size (N) - E(0) - I(0) - R(0)). Based on the previous section, the R(0) will be assumed 
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equal to the final selected value for each dataset (Figure 6.1-6.5). Furthermore, we shall 

assume the initial value of E(0) equal to the new selected value of I(0). In order to test 

for the sensitivity of I(0) and E(0), several different values of I(0) and E(0) will now be 

considered. Note that throughout this section, any reference to the value of I(0) also refers 

to the value of E(0). Hence, in order to simplify the interpretation of the analysis in this 

section I will focus on the value of I(0). As defined in the previous section, the same 

SEIR model and particle filter algorithm are used throughout the following analysis. 

 

The number of consultations on a weekly basis is substantially higher than the number of 

diagnosed individuals (as it includes non-influenza and sub-clinical cases); hence the 

prior values of I(0) and E(0) for the consultation datasets will be tested for higher values. 

The initial number of weekly diagnosed ILI cases vary between 100 and 1500, as showed 

in the previous chapters. The initial number of consultations vary between 29000 and 

42000, except for the pandemic 2009/2010 season, where these thresholds are exceeded 

substantially for the initial values (week 41 ≈ 79,000 cases, Figure 4.1). However, the 

consultations data include a substantial amount of background cases (as discussed in 

Chapter 4). In fact, even when modelling the consultations data, we assume a much higher 

number of background cases (compared with the diagnosed dataset). However, it is 

important to note that the mean prior for the reporting rate for the consultations is 

assumed to be 0.75, while for the diagnosed data it is being assumed equal to 0.25. Hence, 

this reflects the larger number of consultation cases (including the non-influenza cases) 

when compared to the diagnosed dataset. 

 

For all the five different diagnosed datasets, the model is applied for I(0)=0 

(S(0)=414,000-E(0)-R(0)), I(0)=1,000 (S(0)=414,000-1,000-E(0)-R(0)), I(0)=5,000 

(S(0)=414,000-5000-E(0)-R(0)), I(0)=8,000 (S(0)=414,000-8,000-E(0)-R(0)), 

I(0)=10,000 (S(0)=414,000-10,000-E(0)-R(0)) and I(0)=15,000 (S(0)=414,000-15,000-

E(0)-R(0)). For the consultation datasets, the model was applied for I(0)=0 

(S(0)=414,000,000-E(0)-R(0)), I(0)=5,000 (S(0)=414,000-5,000-E(0)-R(0)), I(0)=10,000 

(S(0)=414,000-10,000-E(0)- R(0)), I(0)=15,000 (S(0)=414,000-15,000-E(0)-R(0)), 

I(0)=35,000 (S(0)=414,000-35,000-E(0)-R(0)) and I(0)=50,000 (S(0)=414,000-50,000-

E(0)-R(0)). However, sensitivity analysis for the 2009/2010 weekly consultations is 

applied for I(0)=0, 15000, 25000, 35000, 50000 and 60000, since the consultations for 

the pandemic season are substantially higher than the number of consultations for the 
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seasonal influenza datasets. Hence, I(0) was required to be higher in order to observe 

differences between the Rt values for different I(0) values. As mentioned above E(0) = 

I(0) for all cases. 

 

As observed in the previous section, a lot of variation exists in figure 6.6 for the initial 

values of Rt. In fact, for the consultations data, the first three Rt values vary between 1.5 

and 4.1, while for the diagnosed data the initial three Rt values vary between 3 and 10.3. 

Similarly as before, the initial Rt values for the diagnosed dataset vary more than the Rt 

values for the consultations data. For the consultation dataset (Figure 6.6), there is no 

clear trend associated in relation to the change in I(0) value. In fact, for the highest value 

of I(0) (60,000), the Rt plot lies somewhere in between the other plots. Furthermore, for 

different values of I(0), the Rt plots are rather consistent with some minor variations 

during January 2010 (for I(0)=0 and 60,000). Hence, since limited differences exist for 

different I(0) values, then we can assume the mean prior value of I(0) to be equal to the 

actual number of reported consultations (42,038) at the start of the outbreak (as assumed 

in chapters 3 and 4). One can interpret this value as the most informative prior of I(0) as 

it is based on actual observed data.  

 

The initial Rt values for the diagnosed dataset (Figure 6.6) shows that for the highest I(0) 

value (15,000), the Rt values are substantially higher when compared to the other I(0) 

values. For the lowest five I(0) values, the first Rt values are rather close (between 3 and 

3.6). This shows that the Rt values are not dependent on I(0) for such lower values. 

Furthermore, for I(0) values of 10,000 or lower, the Rt plots for the diagnosed data (Figure 

6.6) are rather consistent. Thus, the initial observed diagnosed ILI value (2,700) is within 

the level of consistency for different I(0) values between 0 and 10,000 (Figure 6.6). 

Hence, since the actual number of diagnosed individuals at time = 1 is the most reliable 

available information, then we can assume this value to be the most reasonable mean 

prior value for I(0) (Figure 6.6). 
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Figure 6.6–Sensitivity analysis for I(0) and E(0) in relation to the reproduction number of the 
consultations and diagnosed 2009/2010 datasets. Charts on the right represent the Rt plot when I(0) 
and E(0) are equal to the number of confirmed cases at the start of the outbreak, without the first 
three Rt points. From the 4th Rt point onwards, Rt values tend to stabilize for all different I(0) and 
E(0) values. Furthermore, the final Rt plots include a shaded area representing the 95% confidence 
interval. 
 

For the 2011/2012 consultations data, little variation exists in the initial Rt values (Figure 

6.7) for different I(0) values. Different Rt charts are consistent; however, for lower values 

of I(0), some Rt values are greater than 1 (February-March 2012), while for the two 

highest I(0), Rt values are less than 1 for most of the outbreak. These highlight further the 

uncertainty of the Rt values for the consultations data. However, since the Rt values for 

I(0) up to 15,000 are greater than 1 during the peak of the influenza, hence it is more 

reasonable to assume such a mean prior I(0) value for this particular dataset. 
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Nevertheless, the Rt values for the consultations data (when I(0)=15,000) include 

substantially a wider confidence interval when compared to the diagnosed data. 

 

 
Figure 6.7–Sensitivity analysis for I(0) and E(0) in relation to the reproduction number for the 
consultations and diagnosed 2011/2012 datasets. Charts on the right represent the Rt plot when I(0) 
and E(0) are equal to 15,000 for the consultations dataset, without the first three Rt points, while I(0) 
and E(0)  are equal to the number of confirmed cases at the start of the outbreak for the diagnosed 
dataset, without the first two Rt points. After these initial points, Rt values tend to stabilize for all 
different I(0) and E(0) values. Furthermore, the final Rt plots include a shaded area representing the 
95% confidence interval. 
 

For the 2011/2012 diagnosed dataset, the highest value of I(0) produced different Rt 

values when compared with the other I(0) values (Figure 6.7). In general, for lower values 

of I(0), the Rt plots are consistent. Hence, we can assume that the number of observed 
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diagnosed cases at the start of the outbreak is the most reliable mean prior for I(0) (Figure 

6.7). Similarly to the above results, the initial Rt values vary substantially for the first two 

data points. 

 

 
Figure 6.8– Sensitivity analysis for I(0) and E(0) in relation to the reproduction number for the 
consultations and diagnosed 2012/2013 datasets. Charts on the right represent the Rt plot when I(0) 
and E(0) are equal to 10,000 for the consultations dataset, without the first three Rt points, while I(0) 
and E(0) are equal to the number of confirmed cases at the start of the outbreak for the diagnosed 
dataset, without the first four Rt points. After these initial points, Rt values tend to stabilize for all 
different I(0) and E(0) values. Furthermore, the final Rt plots include a shaded area representing the 
95% confidence interval. 
 
Figure 6.8 shows that there is a substantial difference in the Rt plots during the peak of 

the influenza for different I(0) values for both datasets. In particular, for the consultations 

data where I(0)=10,000, the Rt portrays a clear major outbreak during the peak of the 
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season. Hence, this prior mean value is a reasonable choice for this consultations dataset. 

Nevertheless, high variation exits during the peak of the influenza, as one can see in the 

95% confidence interval for the final Rt plot for the consultations data (Figure 6.8). 

Furthermore, the initial Rt values stabilize after the 3rd point when compared with 

different values of I(0).  

 

For the diagnosed cases the higher the I(0) value, the higher the initial Rt values (Figure 

6.8). Figure 6.8 shows that there is some substantial variation in the Rt plots for different 

I(0) values. When I(0)=15,000 the Rt plot seems to be entirely different when compared 

to the other plots (also seen in previous results). For the next two lower I(0) values 

(10,000 and 8,000), the effective reproduction ratio shows a less powerful outbreak when 

compared to the two lowest I(0) values (0 and 1,000). In such a case where there is 

substantial variation in the Rt between different I(0) values, it reasonable to assume I(0) 

equal to the number of confirmed cases (≈1,000) at the start of the outbreak (Figure 6.8). 

 

Figure 6.9 which presents the consultations dataset, shows some inconsistencies for the 

first two initial Rt values. From the third point onwards the Rt plots are similar for different 

I(0) values, except during January-February 2014 period. On the contrary, for the 

diagnosed dataset substantial variation exists in the first three Rt values (varying between 

1.2 – 7.4). For the highest I(0) values (15,000 and 10,000), the Rt plots are rather 

inconsistent when compared to other Rt plots for different I(0) values, while for the three 

lowest I(0) values, the Rt plots are more consistent. Hence, due to the above reasons it is 

more realistic to assume I(0) equal to the number of observed cases at the start of the 

outbreak. 

 

In contrast to the diagnosed data, in general the consultations data for higher values of 

I(0) does not influence the initial value of Rt. This fact can clearly be seen in figure 6.10, 

where the initial values are rather close. After ignoring the first two Rt values, the Rt drops 

below the value of one, indicating that the initial Rt values are rather unrealistic when 

compared with the other Rt values. Most inconsistencies between the Rt plots appear for 

the highest I(0) values (50,000 and 35,000), while for lower values, the Rt plots are 

consistent. For I(0) equal to the number of confirmed cases (33,000) at the start of the 

outbreak (Figure 6.10 ), the final Rt plot results in the same shape for the first four lower 

I(0) values. 
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Figure 6.9– Sensitivity analysis for I(0) and E(0) in relation to the reproduction number for the 
consultations and diagnosed 2013/2014 datasets. Charts on the right represent the Rt plot when I(0) 
and E(0) are equal to the number of confirmed cases at the start of the outbreak, without the first 
two Rt points for the consultations data and without the first four Rt points of the diagnosed data. 
After these initial points, Rt values tend to stabilize for all different I(0) and E(0) values. Furthermore, 
the final Rt plots include a shaded area representing the 95% confidence interval. 
 

Similarly to the previous diagnosed dataset, 2014/2015 dataset produced substantial 

inconsistencies in the initial Rt values (Figure 6.10). Figure 6.10 shows that for higher 

I(0) values, the initial Rt values are also higher, where for I(0) = 15,000, the initial Rt 

value exceeds the value of 7. Moreover, the general Rt plot for I(0) = 15,000  is 

inconsistent when compared with all the other Rt plots for the diagnosed 2014/2015 

dataset. The latter results were observed for all the diagnosed datasets throughout this 

section. The results in figure 6.10 suggest that the most reasonable value of I(0) is equal 
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to the initial number of confirmed cases (450) at the start of the outbreak. The Rt plots are 

consistent for the lower values of I(0). 

 

 
Figure 6.10– Sensitivity analysis for I(0) and E(0) in relation to the reproduction number for the 
consultations and diagnosed 2014/2015 datasets. Charts on the right represent the Rt plot when I(0) 
and E(0) are equal to the number of confirmed cases at the start of the outbreak, without the first 
two Rt points for the consultations data and without the first five Rt points of the diagnosed data. 
After these initial points, Rt values tend to stabilize for all different I(0) and E(0) values. Furthermore, 
the final Rt plots include a shaded area representing the 95% confidence interval. 
 

The charts on the right hand side (Figures 6.6 - 6.10) include the 95% confidence interval 

for all chosen final Rt plots. Similar to the previous section, the final diagnosed plots have 

smaller variance in the confidence interval when compared to the consultations data.  

 

Rts for the Weekly Consultations | 2014/2015

R
ep

ro
du

ct
io

n 
ra

te

I(0)=0
 I(0)=5000
 I(0)=10000
 I(0)=15000
 I(0)=35000
 I(0)=50000

Oct’14 Dec’14 Feb’15 Apr’15

0

1

2

3

4

Rts for the Weekly Consultations | 2014/2015

R
ep

ro
du

ct
io

n 
ra

te

I(0)=33000

Nov’14 Jan’15 Mar’15 May’15

0

1

2

Rts for the Weekly Diagnosed | 2014/2015

R
ep

ro
du

ct
io

n 
ra

te

I(0)=0
 I(0)=1000
 I(0)=5000
 I(0)=8000
 I(0)=10000
 I(0)=15000

Oct’14 Dec’14 Feb’15 Apr’15

0

1

2

3

4

5

6

7

8

Rts for the Weekly Diagnosed | 2014/2015

R
ep

ro
du

ct
io

n 
ra

te

I(0)=450

Dec’14 Feb’15 Apr’15

0

1

2

3



- 145 -  
 

6.4 Discussion 

Throughout this chapter, we showed that the more the values of R(0) are increased, the 

lower the resultant initial Rt values (for both consultations and diagnosed), while in 

general for the diagnosed data, the higher the values of I(0) (and E(0)), the higher the 

initial Rt values. For the consultations data, the higher value of I(0) does not influence the 

initial Rt values. In most of the above cases, between two to four initial Rt values were 

enough to remove most of the inconsistencies and unrealistic initial Rt values from all the 

different reproduction ratio charts for different R(0)s and I(0)s. Only for the 2014/2015 

diagnosed ILI data we required a removal of the first five data points to obtain consistent 

values amongst the different Rt plots. 

 

Stability was also assessed on the choice of the best value of the initial S(0), E(0), I(0) 

and R(0). In fact, for the above seasonal influenza datasets we were able to draw some 

conclusions about these priors. For R(0), in general the most reasonable initial value is 

150,000 (based on Malta’s population size), since this is the maximum initial value of 

R(0) where the Rt values across the whole outbreak period still tend to remain stable. For 

higher initial values of R(0), the Rt values tend to be less consistent at different time points 

throughout the outbreak. There was only one exception for the 2013/2014 consultations 

dataset; for R(0) equal to 100,000, the effective reproduction ratio provided some values 

greater than 1 during the peak of the outbreak. Hence, this was seen as more realistic for 

this dataset due to an accurate representation of the peak of the influenza outbreak. 

 

For the prior mean value of I(0) for the diagnosed dataset, we showed that the most 

reasonable choice is the number of observed diagnosed ILI cases at the start of the 

outbreak. The Rt values are more consistent for lower values of I(0), for which it is 

consistent with the initial number of reported cases. In fact, for I(0)=15,000 (highest value 

considered for the diagnosed dataset), the plot of the effective reproduction ratio is 

inconsistent when compared to other I(0) values. For the consultation datasets, Rt plots 

are more consistent for different values of I(0) when compared to the diagnosed datasets.  

However, for two consultation datasets (2011/2012 and 2012/2013), lower values of I(0) 

provided some Rts>1, thus providing a signal which is associated with the peak of the 

influenza. Furthermore, these two datasets (2011/2012 and 2012/2013) are associated 
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with the highest number of consultation cases when compared between the four seasonal 

influenza datasets.  

 

The 95% confidence interval of the final selected Rt plots provide further insight on the 

effective reproduction ratio. For the consultations data, the 95% confidence interval is 

substantially wider when compared to the diagnosed data. This further shows (as 

discussed in previous chapters) that the effective reproduction ratio of the diagnosed 

dataset is a clearer signal of the influenza outbreak. The consultation datasets include 

more uncertainties which merit further investigation in future research. 

 

As published in several research papers [26, 65, 70, 150], the initial values of Rt are 

substantially high, similar to the initial Rt values in chapter 3 [79]. In these research 

papers, the reproduction ratio stabilizes to a value significantly lower than the initial value 

(as seen in this chapter). Other research papers only consider the median value and the 

95% confidence interval for the effective reproduction ratio [80]. In fact, in a systematic 

review of the literature regarding the estimates of the reproduction number of seasonal, 

pandemic, and zoonotic influenza [80], I found that the median reproduction values were 

usually presented. Hence, the outliers were automatically ignored.  

 

In a systematic review published by Biggerstaff et al. (2014) [80], the authors found that 

in 57 research papers related to the 2009 pandemic season, the median of the effective 

reproduction ratio was 1.46, while in another 20 research studies, the median effective 

reproduction ratio for 47 seasonal epidemics was 1.28. These values are further related 

to the effective reproduction ratio of the diagnosed datasets found in this thesis, as for the 

consultation datasets most of the Rt values are below one. Although other researchers 

analysed the initial phases of the seasonal influenza, they focused on the mean 

reproduction value for the initial period [151-152]. Hence, substantial research work 

ignores the initial value of the reproduction ratio and focuses more on the characteristics 

of epidemic. Essentially, the initial points of the reproduction values, as stated above, are 

not the true picture of the ‘real’ epidemic outbreak. This chapter provided a more holistic 

understanding of all the Rt values throughout the epidemic by examining the time series 

of the effective reproduction ratio for different initial mean prior values. 
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The above analyses suggests the importance of adopting a methodology when choosing 

the initial values of R(0), I(0), E(0) and S(0), especially since this has a direct impact on 

the most important epidemiological parameter, that is the reproduction number. The 

above method of analysis for the mean prior values of R(0), I(0), E(0) and S(0) were 

carried out when all the available data for each individual influenza season was observed. 

Hence, in future estimation of these values for an unfolding epidemic, one can either use 

the prior mean values of previous seasons for the Bayesian modelling or apply the model 

on the current available data. Hence, my research work is suggesting the following 

method when applying the sensitivity analysis for S(0), E(0), I(0) and R(0) as follows: 

 

1. Apply the particle filter algorithm together with the SEIR model to fit the outbreak 

data for different values of R(0). The prior mean values of R(0) need to be selected 

in a realistic approach, for example, by selecting them according to the population 

size of the country under consideration. In my study I chose the zero cases for the 

low limit of R(0), and R(0) close to the population size as the upper limit. For 

different (and increasing) values of R(0), one needs to monitor the Rt values and 

check whether they deviate substantially from the Rt values for different R(0) 

values. 

 

2. Plot all the respective Rt datasets for each individual model fit (for different R(0) 

values) and remove the inconsistent Rt point/s sequentially from the left. These 

initial values are rather unrealistic and in general do not provide an accurate signal 

of the outbreak if the data corresponds to the initial cases of the influenza 

outbreak. These points represent inconsistencies due to the choice of the 

(unknown) R(0). 

 

3. Analyse all Rt plots for different R(0) values and determine to which R(0) value 

the Rt plot remains consistent. Hence, either: 

a. select the R(0) value which corresponds to an Rt  plot that has a peak 

related to the influenza season. If no peaks are observed, 

b. The value of R(0) from which the Rt plot starts to deviate substantially 

from the previous Rt plots yields the ‘best’ estimate. Low values of R(0) 

can overestimate the outbreak. 
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4. As regards to the mean value of I(0), follow the same procedure as defined for 

R(0). For the consultations datasets, select the I(0) value which corresponds to an 

Rt plot that has a peak related to the influenza season. If no peaks are observed in 

the Rt plot (for the consultations data), then assume I(0) equal to the number of 

observed consultation cases at the start of the outbreak, provided that the selected 

Rt plot is consistent with other Rt plots (for different I(0) values). In general, for 

the diagnosed ILI dataset, the most realistic value of I(0) represents the number 

of observed cases at the start of the outbreak. However, the same method as above 

(for the sensitivity of R(0)) needs to be applied to observe any inconsistencies in 

the effective reproduction ratios.  

 
5. Assume E(0) equal to I(0). The number of exposed individuals and the number of 

infectious individuals can be assumed as equal. An infected person will eventually 

become infectious under normal circumstances. 

 
6. The value of S(0) follows from the values of E(0), I(0) and R(0). S(0) is equal to 

the population size under study without E(0), I(0) and R(0) (N - E(0) - I(0) - R(0)). 

 

The above method is a proposal based on the above datasets which warrants further 

testing for other populations. However, the above application of the sensitivity analysis 

on such prior mean values is a logical way to ensure that initial prior values are being 

discussed appropriately. However, if additional information is available on the outbreak 

that is directly related to S(0), E(0), I(0) and R(0), then these need to be tested and 

considered accordingly. For example improved information on the above priors can be 

found in serological studies and cross-sectional surveys related to any outbreak. As 

discussed in the literature review, several countries make use of such surveys to monitor 

the influenza disease progression [109, 112]. Other researchers use survey data to model 

the influenza through this information [118]. Throughout the next chapter, I will be 

examining the level of information that can be acquired from cross-sectional surveys. 
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Probing into seasonal influenza: 

Exploring underlying factors 
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7.1 Introduction 

In chapter 4, we showed that a substantial part of the consultations data is related to sub-

clinical cases. This group of individuals carry a certain level of uncertainty since their 

illness is not clearly defined. In fact, according to the GPs data, this group might vary 

between 200 and 14,000 cases per week for the seasonal influenza datasets, and between 

1,000 and 47,000 cases per week for the pandemic dataset. Furthermore, other individuals 

might opt for self-diagnosis, resulting in further uncertainty regarding the true number of 

infected individuals due to the seasonal influenza. It is believed that a significant 

proportion of the population do not visit their GP to be examined [79, 153-155] for their 

symptoms. These uncertainties all form part of the under-reporting rate in 

epidemiological studies, thus implying that there is limited information of the outbreak. 

Hence, in this chapter we aim to gain further underlying information about the influenza 

outbreak, rather than relying only on the ‘standard’ GP reporting data. The following 

cross-sectional survey aims to expand the analysis about the ‘missing data’ problem by 

acquiring further information on the true number of influenza cases within the Maltese 

population.  

 

Furthermore, throughout this research I will be probing in detail on several important 

factors related to the seasonal influenza. In fact, information related to the symptoms of 

the seasonal influenza, the number of GP consultations throughout the year, 

hospitalisations due to the influenza, and medical information will all be examined 

throughout this chapter. Ultimately, such information aims to improve our knowledge of 

the influenza outbreak, to set better health strategies and to plan the appropriate 

interventions according to the needs of the population. 

 

Throughout the following sections I shall analyse the survey related to the 2014/2015 

influenza season. Subsequently, the results of a new survey (2015/2016) will be 

compared with the primary data (2014/2015 survey) of this chapter. For the first survey 

(Survey 1: 2014/2015) questions are related to the period August 2014 till July 2015 

(Appendix B). For the second survey (Survey 2: 2015/2015) some general questions 

(such as GP consultations visit and regular medication) are related to the period May 

2015 till April 2016 and influenza related questions are associated to time period August 
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2015 till April 2016. Note that further information about the methodology of this survey 

is found in chapter 2. 

 

7.2 Ethical considerations 

In order to carry out a cross-sectional survey in Malta about the above objectives, an 

application was submitted to obtain ethics approval (Appendix F) from the Psychology 

Ethics Committee, University of Stirling. My application was under the project title 

name: “Understanding the under-reporting of the Seasonal Influenza”. The study was 

approved by the same committee on the 28th of August 2015.  

 

Following an explanation of the main purpose of this research to the participants, 

individuals were invited to participate in the study through a telephone survey. 

Participants were given the option to opt out from this research study at any time during 

the 5-minute telephone survey. Furthermore, respondents were also assured that all the 

collected information would be processed anonymously and confidentially. Further 

information on the telephone interview introduction can be found in appendix F. 

 

During this research survey, I administered the entire process thoroughly to ensure that 

the survey is in accordance with the above ethics application. For most questions, 

individuals were requested to answer to the questions retrospectively. 

 

7.3 Representativeness of the sample 

In order to ensure representativeness of the population, the sample (n=406) was stratified 

based on the demographics, gender, district and age. In fact, these demographics are fairly 

homogenous when compared with the study’s population (Tables 7.1 – 7.3).  

 

Malta’s population is evenly distributed between females and males and this is reflected 

in table 7.1. From the Maltese population, 18.40% are 66 years of age or older, followed 

by those between 26 and 35 years of age (18.30%), those between 46 and 55 (17.80%), 

and individuals between 56 and 65 years of age (17.80%) (Table 7.2). Malta has six 

different districts (as defined by National Statistics Office, NSO) [16], which are defined 

in table 7.3. The most populated district is the Northern Harbour district (29.48%), 

followed by the Southern Harbour district (18.89%). For all the three demographical 
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variables, differences between the actual data and the sample data do not exceed the 

actual confidence interval of this study (±4.86%), which makes it representative based on 

the most important population’s demographics. 

 

Gender Population Sample Difference 

Female 50.50% 50.99% 0.49% 
Male 49.50% 49.01% -0.49% 

Table 7.1 – Comparison of the population’s gender against the sampled collected data. Percentages 
are very close, hence the sample is representative according to gender. Population data was retrieved 
from NSO’s Demographic Review 2013 [16].  
 
 

Age Population Sample Difference 

18-25 12.45% 13.05% 0.60% 
26-35 18.30% 14.29% -4.01% 

36-45 15.19% 15.52% 0.33% 
46-55 17.80% 17.49% -0.31% 
56-65 17.80% 22.41% 4.61% 

66+ 18.40% 17.24% -1.16% 
Table 7.2 – Comparison of the population’s age, against the sampled collected data. Percentages are 
very close, hence the sample is representative according to age. Population data was retrieved from 
NSO’s Demographic Review 2013 [16]. 
 

Districts 

National 
Statistics Office 

(Actual 
Population) 

Sample Difference 

Southern Harbour  18.89% 21.18% -2.29% 

Northern Harbour 29.48% 27.09% 2.39% 

Southern Eastern 15.31% 19.70% -4.40% 

Western 13.80% 11.58% 2.22% 

Northern 15.11% 16.01% -0.90% 

Gozo & Comino 7.41% 4.43% 2.98% 

Table 7.3 – Comparison of the population’s regions, against the sample collected. Percentages are 
very close, hence the sample is representative according to region as well. Population data was 
retrieved from NSO’s Demographic Review 2013 [16]. 
 
 

7.4 Sample characteristics 

All tables related to this section are found in Appendix G. Among participants that took 

part in this study (n=406), 70.4% are married. Furthermore, the majority (46.5%) of 

respondents are employees, followed by pensioners (21.8%), housewives (21.5%) and 
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students (7.5%). For the question regarding the educational level, 54.6% of the 

participants reached secondary level as their highest level of education, while 18.7% only 

reached  a primary level of education, 13.5% reached diploma level and 13.2% reached 

tertiary level (Degree). 

 

Our data show that on average there are 2.9 individuals inhabiting every Maltese 

household. The majority of the houses (33.3%) have 3 individuals living in one house, 

followed by those with 2 individuals (24.7%) and those with 4 individuals (24.7%). From 

the total sample, 11.1% of all participants live on their own, while 6.1% of all participants 

live in a household of 5 individuals or more. The top preferred means of transport in 

Malta is the individual’s private car such that 64.2% of all the participants use their car 

as their main means of transport. This is followed by 21.5% of individuals who use public 

transport.  

 

7.5 Results 

7.5.1 Participants’ general medical information 

On average the participants visit their general practitioner (GP) 2.7 times in one year. The 

majority visit their GP twice a year (26.4%), followed by once a year (18.5%) and three 

times a year (16.3%). Following this, the number of visits per individual decreases 

(Figure 7.1). 

 

In general, 41.2% of the participants take regular medication due to medical conditions 

such as asthma, diabetes, heart disorders or other. Predominantly for the older age group 

(66+, 89.9%), the proportion is significantly higher when compared to the younger 

generation (χ2 (5) = 121.11, p-value < 0.01). For those between the age of 18 and 25 

years, 17.0% take regular medication, and for those between 26 and 35 years, 8.6% take 

regular medication. Furthermore, results exceed the 50% threshold for the age group 56-

65 (53.8%). 

 
According to the same survey, one of every four Maltese citizens (25.9%) smoke on a 

regular basis. Males smoke significantly more than females (35.7% vs. 16.3%) (χ2 (1) = 

19.52, p-value < 0.01). Furthermore, on average Maltese smokers smoke 16.2 cigarettes 

per day. The majority (42.2%) smoke 20 cigarettes per day. 
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Figure 7.1 – The number of times individuals visit their GP. The most common number of visits per 
year is three visits. 
 

7.5.2 The seasonal influenza vaccine 

On a yearly basis, the Maltese Government offers the seasonal influenza vaccine free of 

charge to some groups of individuals as explained in chapter 2. However, others need to 

consult their private doctor to receive their influenza vaccination at a cost. 

 

According to the survey results, during the 2014-2015 season, 43% reported that they had 

received the flu vaccine, while 55.3% had not taken the vaccine and 1.7% do not 

remember. Of those who received the vaccine flu, the only age group that exceeded the 

50% uptake is the 66+ age group (73.9%). In relation to this, after applying a Chi-Squared 

test, it was found that there is a significant association between the different age groups 

when compared with the vaccine uptake (χ2 (10) = 49.86, p-value < 0.01). This result is 

due to the above Government’s inclusion criteria for the free vaccine. Furthermore, the 

latter result is similar to England’s vaccine flu uptake rate for those aged 66+ [156]. Those 

between 18 and 25 years of age are the least age group who were compliant to take the 

flu vaccine (22.6%), while for those between 26 and 65 years the compliance to 

vaccination varied between 36% and 46% for the 2014/2015 influenza season. The 

European Council’s recommendation is to reach the 75% among the higher risk groups 

of people [91].  
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The main reasons for those individuals that who did not take the vaccine flu were: ‘not 

interested’ (41.1% of individuals), followed by those who were afraid (24.1%) and 10.7% 

who said that they ‘feel sick after taking the vaccine’. 

 

7.5.3 Influenza-Like Illness (ILI) 

In this research study, respondents were asked whether they had several symptoms from 

a whole list of ILI symptoms such as fever, cough, sore throat, headaches and others 

symptoms. Symptoms were mentioned to respondents one by one, and hence the 

respondents had to reply to every individual symptom. Respondents were asked to reply 

to this question retrospectively for the past year (August 2014 – July 2015).  

 
The most common symptoms amongst the participants were ‘runny or blocked nose’ 

(61.6%), followed by a headache (60.6%), whilst the least common symptoms were 

vomiting (6.9%) and chest pain (11.6%). Figure 7.2 shows all the latter results in 

descending order. Furthermore, these symptoms were placed in three different groups; 

the most frequent (the left upper oval), the less frequent (the right lower oval) and the 

middle of the previous two groups (the middle oval). The middle group was mentioned 

by 323 individuals (79.6%) of the whole sample (n=406). The top two common 

symptoms were mentioned by 74.6% and the least common symptoms were mentioned 

by 48.3% of the survey respondents. According to my cross-sectional survey in Malta, 

15.4% of the Maltese population did not have any of the above symptoms during the 

indicated one-year period. I interpret this number as individuals who can be considered 

as definite non-influenza individuals, however the 84.6% does not necessarily mean that 

they definitely had the seasonal influenza.  

 

These results are in accordance to the findings of the ‘UK Flu survey’ 

(https://flusurvey.org.uk/en/results/) [109] which reports the most common symptoms as 

runny nose, cough, sneezing, headache, sore throat and feeling tired.  However, the UK 

survey data is biased towards those individuals that have and use the internet and thus 

towards those with a higher level of education [109]. 
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Figure 7.2 – This figure represents individual results for 16 different symptoms. The above results 
are sorted in descending order to elicit the most common symptoms amongst the participants from 
August 2014 till July 2015. Respondents were asked to reply for every symptom. 
 

The most common month for the above symptoms was January 2015 (18.8%), followed 

by February 2015 (15.9%) and March 2015 (14.5%). The least popular months were 

August 2014 (0.3%), September 2014 (0.3%) and July 2015 (2.8%). These results are 

expected since the latter three months are the least common months for acquiring the 

influenza. Further details are given in the discussion section, where the above data will 

be compared with the ILI diagnosed cases as reported by the GPs for the 2014-2015 

season (Chapter 4).  

 

Months Frequency Result 

Aug-14 2 0.3% 
Sep-14 2 0.3% 
Oct-14 38 5.8% 
Nov-14 41 6.3% 
Dec-14 70 10.7% 
Jan-15 123 18.8% 
Feb-15 104 15.9% 
Mar-15 95 14.5% 
Apr-15 70 10.7% 
May-15 48 7.3% 
Jun-15 43 6.6% 
Jul-15 18 2.8% 
Total 654 100.0% 

Table 7.4 – This table represents the months that participants indicated as having any of the above 
symptoms. The top month for these symptoms was January 2015 (18.8%) and the least popular 
months were August 2014 (0.3%) and September 2014 (0.3%). Respondents were able to indicate 
more than one month for the occurrence of the symptoms. 
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On average, these symptoms persisted on the participants for 9.4 days. The most common 

duration for the above symptoms was 7 days (14.0%), followed by 3 days (13.1%), 4 

days (11.6%), 2 days (9.4%) and 14 days (7.6%). 

 

For the patients with the above symptoms, 56.5% claimed that they were restricted to 

stay at home, while 43.5% were not restricted to stay at home to recover from their ILI 

symptoms (Figure 7.3). 

 
Figure 7.3 – Respondents were asked whether they were restricted to stay at home due to the above 
mentioned symptoms. 56.5% claimed ‘Yes’, while ’43.5%’ claimed ‘No’. 
 

7.5.4 Seasonal influenza 2014-2015 

The previous section analysed symptoms related to the seasonal influenza (without 

mentioning the term ‘seasonal influenza’ to respondents). In this section we shall analyse 

items for which respondents were asked questions directly related to the term ‘seasonal 

influenza’. As discussed in chapter 1, there exists a standard definition of seasonal 

influenza, however respondents were asked whether they had seasonal influenza during 

the past year, without actually giving them the standard definition. Hence, results are 

based either on their own judgement and understanding of seasonal influenza, and/or 

based on their GP’s advice. Results from this survey showed that 29.8% of the individuals 

claimed that they had seasonal influenza. This contrasts significantly when compared 

with the 84.6% of individuals who claimed they had any of the above ILI symptoms. 

Furthermore, 67.0% claimed that they did not acquire seasonal influenza and 3.2% were 

unsure. The most common month (Table 7.5) for the seasonal influenza according to the 

respondents was January 2015 (28.4%), followed by February 2015 (23.0%) and 

56.5%

43.5%

Were you restricted to staying at home?

Yes No
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December 2014 (16.4%). The top two months are likewise the most common months for 

the ILI symptoms. 

 

Respondents were able to mention more than one month for having the seasonal 

influenza. In fact out of those who claimed they had seasonal influenza (29.8%), the latter 

individuals indicated of having the influenza an average of 1.5 times during the year. 

There are several reasons for having seasonal influenza more than once. Primarily, people 

with a lower immune system might suffer from seasonal influenza more than once [84]. 

Secondly, during the seasonal influenza, individuals might suffer from influenza A 

(which is the common seasonal influenza) and influenza B2. Furthermore, since a 

significant proportion of respondents replied to the questionnaire based on their self-

diagnosis, their ILI symptoms might have been adjudicated as another seasonal influenza. 

In reality, this might be incorrect or their understanding of influenza was in fact a 

common cold. Moreover, according to the Malta Health Promotion Department (MHPD), 

although there is a possibility that a person acquires other strains of the influenza virus, 

usually a person acquires the influenza once in a season, due to one of the viruses in 

circulation being most dominant (Appendix A). 

 

Similarly, in reply to the question focusing on the duration of the above symptoms, 

individuals claimed that on average, the duration of the seasonal influenza was 9.9 days. 

The majority (42.5%) claimed that the seasonal influenza persisted for 7 days, followed 

by 14 days (18.6%) and 4 days (8.8%). This is similar to that stated by the World Health 

Organization (WHO) [82], which states that most people recover from the main seasonal 

influenza symptoms within one week. Furthermore, according to the Proprietary 

Association of Great Britain (PAGB) [158], complete recovery for seasonal influenza 

might take up to 10 days. 

 
Respondents who claimed they had seasonal influenza during the past year were asked to 

identify any symptoms related to their seasonal influenza. Most of the respondents 

identified more than one symptom. On average, every respondent mentioned 5.4 

symptoms. In total, the 121 respondents who claimed they had the seasonal influenza 

mentioned 658 symptoms (non-unique symptoms). Table 7.6 provides the percentages 

                                                           
2 “Type B flu may cause a less severe reaction than type A flu virus, but occasionally, type B flu can still be extremely 
harmful. Influenza type B viruses are not classified by subtype and do not cause pandemics.” [159] 
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based on the total number of symptoms mentioned (658). The most common symptom 

(Table 7.6) according to participants was cough (15.5%), followed by sore throat 

(14.1%), fever (12.2%), headache (10.6%), runny or blocked nose (10.6%) and sneezing 

(8.8%). The least popular mentioned symptoms were watery eyes (0.6%), vomiting 

(1.5%) and nausea (1.5%).  

 

Months Frequency Result 

Aug-14 0 0.0% 
Sep-14 0 0.0% 
Oct-14 15 8.2% 
Nov-14 11 6.0% 
Dec-14 30 16.4% 
Jan-15 52 28.4% 
Feb-15 42 23.0% 
Mar-15 26 14.2% 
Apr-15 4 2.2% 
May-15 2 1.1% 
Jun-15 1 0.5% 
Jul-15 0 0.0% 
Total 183 100.0% 

Table 7.5 – The months indicated by participants for having the seasonal influenza. The top month 
for these symptoms was January 2015 (28.4%) and the lease popular month was June 2015 (0.5%). 
Respondents were able to indicate more than one month. 
 
More specifically respondents were asked whether they had temperature. Out of the 

seasonal influenza individuals (including those who opted for the ‘don’t know’ option), 

64.2% claimed that they had temperature, 22.4% did not and 13.4% do not know. 

Furthermore, 68.7% visited a doctor due to their seasonal influenza, 18.7% did not and 

12.7% they do not remember. Additional analysis showed that four out of every five 

seasonal influenza individuals took medicine to cure their influenza symptoms, while 

13.4% did not remember. On the other hand, one in every five individuals were 

hospitalised due to the seasonal influenza. The hospitalised individuals spent an average 

of 6 nights at hospital. However, the majority (37.0%) spent 1 night, followed by those 

who spent 14 nights (22.2%) and 7 nights (11.1%).  

 

The absolute majority of respondents (54.5%, Figure 7.4) claimed that at least one 

member from their household had acquired the seasonal influenza (excluding the 

respondent). However, when also taking into account the 29.8% from the total sample 

who claimed they had the seasonal influenza, 61.1% of all Maltese households had at 
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least one person with seasonal influenza. Furthermore, from those participants who had 

influenza cases amongst their household members, on average, 1.5 household members 

had the influenza (excluding themselves). On the other hand, on average there were 1.8 

household members in Malta who had acquired the seasonal influenza, after taking into 

account the respondent’s reply regarding their seasonal influenza. 

 

Symptoms Frequency Result 

Cough 102 15.5% 

Sore throat 93 14.1% 

Fever 80 12.2% 

Headache 70 10.6% 

Runny or blocked nose 70 10.6% 

Sneezing 58 8.8% 

Muscle/joint pain 35 5.3% 

Feeling tired or exhausted 31 4.7% 

Stomach ache 22 3.3% 

Diarrhoea 20 3.0% 

Loss of appetite 18 2.7% 

Shortness of breath 18 2.7% 

Chest pain 17 2.6% 

Nausea 10 1.5% 

Vomiting 10 1.5% 

Watery eyes 4 0.6% 

Total 658 100.0% 

Table 7.6 – All the mentioned symptoms for seasonal influenza by Maltese participants. On average 
respondents mentioned 5.4 symptoms. In total, the respondents mentioned 658 symptoms, from 121 
respondents who claimed they had seasonal influenza during the previous year. Hence, the 
percentages were calculated from the total number of mentioned symptoms by all respondents (n = 
658). Unlike figure 7.2, respondents were not requested to reply for every symptom. 
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Figure 7.4 – The proportion of the number of respondents who claimed they had seasonal influenza 
patients within their household.  

 

7.5.5 Seasonal influenza 2015-2016 

Another survey was carried out for the 2015-2016 seasonal influenza period. The survey 

methodology was identical to that carried out in the previous survey, including accurate 

representativeness based on gender, age and district. However, this was carried out during 

the end stages of the seasonal influenza (April 2016), while the first survey was carried 

out three months after the seasonal influenza had ended (end of August 2015 and 

beginning of September 2015). Hence, the main scope of the 2016 survey was to test 

whether the information obtained from the 2015 survey had improved, when carrying out 

the survey at an earlier timeframe when compared to the first survey. Furthermore, I shall 

be comparing the results between both surveys to understand the consistencies and 

inconsistencies between different years. 

 

7.5.5.1 Results of the 2015-2016 survey 

On average, the participants visited their doctor 2.7 times during the past year. This is in 

full agreement with the first survey (2.7 times).  According to the 2015/2016 survey, 

amongst the Maltese population, 38.2% take regular medication (41.2%, Survey 1) and 

21.2% from the total sample smoke cigarettes (25.9%, Survey 1). On average, smokers 

smoke 13.7 cigarettes per day (16.2, Survey 1). 

 

Respondents were given a list of symptoms for which they were asked to reply to every 

single one of them. The most common symptoms are presented in table 7.7. These include 

54.5%

45.5%

Did any of your household members have the influenza?

Yes No
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runny or blocked nose (58.4%), headache (55.9%), sneezing (54.7%), sore throat 

(50.5%), cough (48.8%), muscle/joint pain (34.5%), feeling tired or exhausted (30.8%), 

watery eyes (26.1%), fever (25.4%), diarrhoea (16.0%), shortness of breath (15.5%), 

chest pain (12.1%), stomach ache (12.1%), loss of appetite (11.6%), nausea (9.1%) and 

vomiting (3.9%). These percentages are comparable to those in figure 7.2 for survey 1. 

The only differences are for sneezing (8.9% less, Survey 1), feeling tired or exhausted 

(10.3% more, Survey 1) and loss of appetite (10.8% more, Survey 1). These last two 

symptoms can be easily associated with the summer period, given that the first survey 

was carried out during some of the warmest days in Malta during the year. According to 

the 2015/2016 survey, 20% of the survey respondents did not have any of the above 

symptoms (15%, Survey 1). From those respondents who had at least one symptom, 

54.9% were restricted to stay at home to recover (57%, Survey 1). On average, these 

symptoms persisted for 5.9 days (9.4 days, Survey 1). 

 

Individual Symptoms Frequency Result 

Runny or blocked nose 237 58.4% 
Headache 227 55.9% 
Sneezing 222 54.7% 
Sore throat 205 50.5% 
Cough 198 48.8% 
Muscle/joint pain 140 34.5% 
Feeling tired or exhausted 125 30.8% 
Watery eyes 106 26.1% 
Fever 103 25.4% 
Diarrhoea 65 16.0% 
Shortness of breath 63 15.5% 
Chest pain 49 12.1% 
Stomach ache 49 12.1% 
Loss of appetite 47 11.6% 
Nausea 37 9.1% 

Vomiting 16 3.9% 
Table 7.7 – Individual results for 16 different symptoms. The above results are sorted in descending 
order to elicit the most common symptoms amongst the participants for the 2015/2016 influenza 
season. Respondents were asked to reply for every symptom. 
 

Respondents were then asked whether they had acquired seasonal influenza during the 

2015/2016 influenza season. According to the survey data, 37.2% of the respondents 

(29.8%, Survey 1) claimed of having the seasonal influenza during the 2015-2016 period 

(until April 2016 which was the month of data collection). Furthermore, respondents 
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claimed of having the seasonal influenza 1.28 times during the same season (1.5 times, 

Survey 1). Respondents claimed that on average the duration of the seasonal influenza 

was 9.5 days (9.9 days, Survey 1). Most respondents claimed they had more than one 

symptom related to their seasonal influenza (Table 7.8). In total, respondents mentioned 

1080 symptoms (non-unique symptoms) (Table 7.8). Hence, the percentages were 

calculated from this total (1080) in contrast to the individual symptoms analysed in table 

7.7. From all symptoms mentioned by the respondents (Table 7.8), the most common 

symptoms are: sneezing (13.2%) followed by cough (13.2%), sore throat (13.1%), runny 

or blocked nose (12.8%), muscle/joint pain (6.4%), headache (9.4%) and fever (7.8%). 

 

Furthermore, 55.0% of the respondents claimed that they had temperature (64.2%, Survey 

1), 72.9% visited their GP due to their seasonal influenza (68.7%, Survey 1), 97.4% took 

medicine to cure from their influenza (80%, Survey 1) and 4.0% were hospitalized due 

their seasonal influenza (20.0%, Survey 1). The months associated with the above 

symptoms and the seasonal influenza will be analysed and compared throughout the 

discussion section. 

What were the symptoms? Survey 1 Survey 2 Difference 

Sneezing  8.8% 13.2% 4.4% 

Cough 15.5% 13.1% -2.4% 

Sore throat 14.1% 13.1% -1.1% 

Runny or blocked nose  10.6% 12.8% 2.1% 

Muscle/joint pain 5.3% 11.7% 6.3% 

Headache 10.6% 9.4% -1.3% 

Fever 12.2% 7.8% -4.4% 

Feeling tired or exhausted 4.7% 4.3% -0.5% 

Watery eyes 0.6% 4.2% 3.6% 

Diarrhoea 3.0% 2.7% -0.4% 

Chest pain 2.6% 2.4% -0.2% 

Shortness of breath 2.7% 1.9% -0.8% 

Loss of appetite 2.7% 1.8% -1.0% 

Nausea 1.5% 1.1% -0.4% 

Stomach ache 3.3% 0.5% -2.9% 

Vomiting 1.5% 0.2% -1.3% 

Total 100.0% 100.0% 0.0% 
Table 7.8 – A comparison (Survey 1 vs. Survey 2) between the symptoms related to the seasonal 
influenza as mentioned by the survey respondents. Responses between both surveys are similar 
within the ±4.87% margin of error, with the exception of the ‘Muscle/joint pain’ symptom. Since 
respondents were allowed to mention more than one symptom, in total the above symptoms were 
mentioned 1080 times, hence the percentages were calculated from this total. Unlike table 7.7, 
respondents were not requested to reply for every symptom. 
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From all respondents, only 24.9% claimed that have had one or more of their household 

members with the seasonal influenza (54.5%, Survey 1). However, after taking into 

account the respondents’ replies for the seasonal influenza question, 43.8% of all Maltese 

households had at least one person who had suffered from the influenza (61.1%, Survey 

1). On average, according to the survey data, 1.7 household members in Malta had the 

seasonal influenza (1.8 members, Survey 1). 

 

7.6 Discussion 

7.6.1 Validating the GPs data 

Data presented in the results section provide important information for the scope of this 

dissertation. However, one can analyse such results from different perspectives, such as 

analysing the characteristics of those who were diagnosed with the seasonal influenza or 

constructing several scientific models to predict key variables. Factors such as age, 

gender, education status and district provide improved information to health promotion 

authorities to better plan their health promotion campaigns. However, it is beyond the 

scope of this dissertation to analyse such information, as we are more interested in the 

actual prediction of the seasonal influenza outbreak. 

 

Data presented in this survey shed more light on different characteristics of the seasonal 

influenza. We showed different characteristics related to the health of individuals, 

symptoms related to the seasonal influenza, perceptions related to the seasonal influenza, 

the months in which respondents claimed of having several ILI symptoms and also the 

months when they acquired the seasonal influenza. The latter two variables can be 

directly compared with the GPs data (Chapter 4). Hence, throughout the next paragraphs 

we will be comparing: 

1. The monthly occurrences of ILI symptoms (number of ILI symptomatic cases 

per month) as stated by the survey respondents against the monthly diagnosed 

ILI cases from the GPs reported data (as defined in Chapter 4). The survey 

question related to this analysis was, ‘When did your symptoms appear for the 

above during the past year?’ (Appendix B). ‘Above’ in this question 

corresponds to the list of symptoms as defined in figure 7.2. 

2. The monthly occurrences of seasonal influenza as stated by the survey 

respondents against the monthly diagnosed ILI data from the GPs reported 
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data (as defined in Chapter 4). The survey question related to this analysis 

was, ‘If ‘Yes’, when did you have the seasonal influenza?’ (Appendix B). The 

‘Yes’ reply corresponds to the respondents who claimed that they had 

experienced the seasonal influenza during a one year period. 

Furthermore, the above two comparisons will be examined for both surveys. Hence, 

throughout this section, we also aim to compare the results of the first survey with the 

results of the second survey. For both comparisons, I will use the diagnosed data (GP 

data) which corresponds to the same year of the survey. 

 

There is a good agreement between the monthly occurrences of the Influenza-like Illness 

(ILI) symptomatic cases (as stated by the survey respondents) (Figure 7.5) and the 

2014/2015 diagnosed ILI cases (GPs reported data). This agreement can be explained by 

a strong linear correlation (r = 0.90) (Table 7.9). Such a strong correlation between the 

two variables was also found to be significant (p-value = 0.002, Table 7.9). This result 

validates the data collected by the GPs as a reliable source of information to model the 

seasonal influenza. Although the survey data was collected retrospectively, the 

respondents still remembered the actual months when they had the above symptoms. 

Nevertheless, the last three months of the survey data registered a higher number of cases 

when compared with the observed diagnosed ILI data (Figure 7.5).  

 

Similarly as above, figure 7.6 compares the monthly occurrences of the seasonal 

influenza cases as stated by the survey respondents, against the 2014/2015 GPs diagnosed 

seasonal influenza cases. In the latter case only respondents who claimed of having 

seasonal influenza are analysed. While for the previous analysis all the respondents who 

claimed they had at least one ILI related symptom were analysed. The time dependence 

graphs are very close and the linear correlation between both variables can be 

summarized through a Pearson-correlation coefficient of 0.88 (Table 7.9). Such a strong 

correlation between the two variables was found to be significant (p-value = 0.004, Table 

7.9).  

 

It is interesting to note that figure 7.6 shows a lower number of seasonal influenza 

occurrences (survey data) when compared with the diagnosed ILI cases (GP data) for the 

late part of the influenza season. On the contrary, the occurrence of the symptoms (survey 

1 data) overestimates the late part of the influenza season (Figure 7.5), when compared 
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with the diagnosed ILI cases (GP data). Furthermore, the peak number of cases for figure 

7.5 for the survey data is 123, while the peak number of cases of figure 7.6 for the survey 

data is 52. Hence, for this peak value only 42% of the total symptomatic occurrences are 

seasonal influenza cases, according to the survey respondents.   

 

Figure 7.5 – Comparison of the monthly occurrences of the Influenza-like Illness (ILI) symptomatic 
cases (blue line) as stated by the survey respondents against the 2014/2015 GP diagnosed ILI cases 
(orange line) (Chapter 4). The y-axis represent the number of cases for both variables.  
 

When comparing the monthly occurrences of the symptomatic cases as stated by the 

survey respondents (Figure 7.5) against the monthly occurrences of the seasonal 

influenza cases (Figure 7.6) as stated again by the survey respondents, this gives a 

Pearson-correlation value of 0.85, which is a strong correlation between the two survey 

variables. Hence, this means that the occurrence of the months for the above symptoms 

that were mentioned individually throughout the survey, are linearly associated with the 

same months that respondents claimed to have the seasonal influenza. Such a strong 

relationship was found to be significant (p-value = 0.008, Table 7.9). However, only 

around 30% of participants claimed they had the seasonal influenza, while around 84.6% 

claimed that they had any of the above ILI symptoms. Hence, based on these results, it is 

likely that respondents have a different perception of the definition of the seasonal 

influenza. Furthermore, it is important to keep in mind that a substantial proportion of the 

population opts for self-diagnosis to examine their ILI symptoms. Hence, illness 
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perceptions and health beliefs are rather subjective, although these are important 

predictors for health utilization [161-163].  

 
Figure 7.6 – Comparison of the monthly occurrences of the seasonal influenza cases as stated by the 
survey respondents (blue line) against the 2014/2015 GP diagnosed ILI cases (orange line) (Chapter 
4). The y-axis represent the number of cases for both variables.  

 
Table 7.9 – Correlation analysis for the three variables related to the months of the influenza 
symptoms. ‘GPs_Influenza’ is the diagnosed seasonal influenza individuals collected by the GPs, 
while ‘Survey_Symptoms’ variable is the monthly occurrences of the Influenza-like Illness (ILI) 
symptomatic cases as stated by the survey respondents and ‘Survey_Influenza’ variable is the 
monthly occurrences of the seasonal influenza cases as stated by the survey respondents. 
 

Similar results were obtained for the 2015/2016 survey (Figure 7.7). Hence, for the 

second time, the months being mentioned by the survey respondents are similar to the 

months that were recorded by the GPs for their reported diagnosed ILI cases. Both 

surveys recorded accurate results, even though they were carried out during different 
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timeframes (one survey carried out a few months after the end of the 2014/2015 seasonal 

influenza, and the second survey carried out during the end stages of the seasonal 

influenza). Similarly as above (2014/2015 survey), the number of symptomatic cases 

(2015/2016 survey) is higher for the late period of the seasonal influenza when compared 

with the diagnosed ILI cases (GP data). In contrast, the number of seasonal influenza 

occurrences (2015/2016 survey) is lower than the diagnosed ILI cases (GP data) for the 

late period of the seasonal influenza (Figure 7.7). 

 

In order to further test the reliability of my cross-sectional survey, I shall analyse 

information related to the consultations data. According to the data obtained in the first 

survey, respondents visited their doctor around 2.7 times during the year for any type of 

consultation. Hence, based on the survey data, during August 2014 – July 2015, Maltese 

residents visited their doctor around 1.1 million times (after generalizing it to the whole 

Maltese population). GP consultations data only included the period of October 2014 to 

mid-May 2015 (total of around 835,000 cases, Chapter 4), while the survey is considering 

data for one whole year. However, the months where the data was not collected by the 

GPs (mid-May 2015 until the end of September 2015) are not synonymous with the 

seasonal influenza [84]. In fact it is not expected to have cases of seasonal influenza 

during the summer period [84]. Hence, one might consider the baseline number of non-

influenza consultations (as described in Chapter 4) as the best estimate for those months 

where data was not collected by GPs. After extrapolating this data to the remaining 

months, this makes the number of consultations in Malta around 1 million over a period 

of one year, based on the GPs data. This latter estimate is not far from the estimated 

number of consultations that was obtained from the survey (1.1 million).  

 

Data related to the general medical conditions of the individuals provided similar results 

between both surveys. In fact, variables related to the number of doctors’ consultations, 

regular medication and number of smokers all provided consistent results between both 

surveys. Most common symptoms are also consistent. However, while in the first survey 

around 30% claimed of having the seasonal influenza, in the second survey around 37% 

claimed of having the seasonal influenza. In the second survey, every individual claimed 

of having experienced the seasonal influenza for an average of 1.28 times during the same 

season, while in the first survey an average of 1.5 times were recorded per individual. 

Furthermore, according to the second survey data, a lower number of Maltese households 
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registered seasonal influenza cases. Hence, these results provide further understanding 

that the seasonal influenza has different infection rates year-on-year. We already showed 

(in Chapter 4) that the number of infected individuals vary on a yearly basis and this may 

be attributed to the climate conditions [97]. 

 

 
Figure 7.7 – Comparison of the monthly occurrences of the ILI symptomatic cases (upper chart) or 
seasonal influenza cases (lower chart) as stated by the survey respondents (blue line) against the GPs 
diagnosed ILI cases (orange line). The y-axis represent the number of cases for both variables. 
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The climate during 2015/2016 period in Malta varied substantially. Hence, this might 

have an influence on the seasonal influenza. Winter of 2015-2016 was registered as the 

driest winter on record in Malta [160]. During this period, rain was scarce and air 

temperatures were higher than usual. The temperature registered in February (23.6°C) 

was the highest recorded temperature in Malta for the past 93 years. When compared to 

the 2014-2015 season, the 2015/2016 winter was almost four times drier [160]. These 

phenomena were also experienced in Europe and United States. As discussed in the 

literature review, climate conditions may have a direct influence on the spread of seasonal 

influenza. Further analysis in relation to temperature data will be discussed throughout 

the next chapter. 

 

7.6.2 Under-reporting 

One of the main scopes of this study is to understand the under-reporting (GP cases vs. 

non-GP cases) factor. Throughout this section, I shall analyse the under-reporting rate of 

the seasonal influenza from different standpoints. In fact, I will consider five different 

measures in order to determine the reporting rate of the GPs data: 

1. Diagnosed ILI cases from GP reporting (Chapters 2 and 4) 

2. Respondents that had ILI symptoms based on survey data 

3. Respondents that acquired seasonal influenza based on survey data 

4. Individuals’ temperature based on survey data 

5. Seasonal influenza cases in households based on survey data 

Furthermore, the reporting rate will be analysed based on the assumption that an 

individual might not acquire immunity after being diagnosed with seasonal influenza, and 

based on the assumption that individual acquire immunity after being diagnosed with 

seasonal influenza. Based on these two assumptions I will consider four different 

possibilities (cases) of reporting rate: 

Case 1: Diagnosed ILI cases (GP data) against number of symptomatic cases (Survey 

data); 

Case 2: Diagnosed ILI cases (GP data) against seasonal influenza cases (Survey data); 

Case 3: Diagnosed ILI cases (GP data) against individuals’ temperature (Survey data); 

Case 4: Diagnosed ILI cases (GP data) against seasonal influenza cases in households 

(Survey data). 
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7.6.2.1 Case 1: Diagnosed ILI cases (GP data) against number of 

symptomatic cases (Survey data) 

Since the survey was carried out amongst the population of 18 years of age and over, the 

above results were also assumed to be representative amongst those aged 17 years and 

younger. This was based on findings by Yang et al. (2015) [157], where for several 

influenza viruses, age groups revealed similar influenza patterns. Thus, it is possible to 

extrapolate the results amongst the whole population of Malta. By extrapolating my 

survey results, this means that the findings are assumed to be representative of the whole 

population; hence, for different results, the number of individuals can be calculated from 

the total Maltese population. 

 

According to the GPs data (given in Chapter 4), in Malta there were around 32,000 

seasonal influenza cases between October 2014 and Mid-May 2015. However, this does 

not mean that only these individuals had acquired the seasonal influenza.  

 
According to the survey, after extrapolating the result over the whole population of Malta 

(425,384 [164]), around 360,000 individuals (84.6%) residing in Malta had a symptom 

directly or indirectly related to the seasonal influenza (ILI cases). From the above results, 

in total, the respondents reported that they had experienced any of these symptoms for 

672 times (occurrences) during a one year period. Hence, one respondent might have had 

the influenza-related symptoms for more than one occurrence. In fact, on average the 

individuals claimed that they had experience these symptoms 1.9 times in different 

occurrences during the year. After taking this into consideration, the number of times 

Maltese citizens had experienced the above symptoms (as per survey 1) is estimated to 

be around 700,000 symptomatic occurrences. Hence, if we had to consider all these 

symptomatic cases (occurrences) as seasonal influenza cases, this would give a reporting 

rate of only 4.6% (32,000/700,000). However, this is a very crude estimation and in this 

case, a lot of assumptions are being taken into account. Primarily, we assume that all ILI 

individuals eventually acquired the seasonal influenza. Secondly, these individuals who 

had acquired seasonal influenza will not develop immunity from the same influenza virus 

(which is unlikely as defined in Chapter 1). 

 

Based on the same variable (ILI symptomatic cases), we can work out a different 

percentage (survey data) by assuming unique ILI (symptoms only) individuals. Hence, in 
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this case we assume that these ILI symptomatic cases had resulted in seasonal influenza 

cases, and immunity from seasonal influenza was acquired. Thus, in total, there were 

around 360,000 individuals that who had at least one ILI symptom (survey 1 data). Based 

on the same logic, this implies a reporting rate of 8.9% (32,000/360,000).  

 

The same analysis was carried out for the 2015/2016 survey. After comparing the latter 

reporting rates (non-unique ILI symptom individuals and unique ILI symptom 

individuals) with the 2015/2016 survey data by using the same methodology, this would 

result in the reporting rates equal to 5.1% (29,000/570,000) and 8.5% (29,000/340,000) 

respectively. Both percentages are similar to the 2014/2015 survey. 

 

7.6.2.2 Case 2: Diagnosed ILI cases (GP data) against seasonal 

influenza cases (Survey data) 

The data presented here allow us to analyse the number of seasonal influenza cases from 

different perspectives. In fact, according to the survey, it is being estimated and 

generalised for all the Maltese population, that around 130,000 people residing in Malta 

had the seasonal influenza (ignoring those who had responded with the ‘don’t know’ 

option). This was based on the survey question which enquired whether respondents had 

the seasonal influenza (29.8%), and then scaled up to the whole population of Malta. 

However, all respondents mentioned that they had experienced seasonal influenza 183 

times (Table 7.5). Hence, according to the survey results, one respondent might have had 

seasonal influenza more than once (≈1.5 times) (immunity is not being assumed). After 

taking this into account, the number of cases of seasonal influenza during the 2014/2015 

season, is around 195,000 (through the use of Survey 1 data). By considering the total 

number of diagnosed ILI cases by GPs (≈32,000), the latter estimate (195,000) would 

give a reporting rate of 16.4% (32,000/195,000). This is a more conservative estimate 

when compared with the above under-reporting estimate. Primarily, we are assuming that 

only those individuals who claimed to have had the seasonal influenza actually had the 

same influenza. Furthermore, we are assuming that one individual might have acquired 

the seasonal influenza more than once (≈1.5 times).  
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If we had to assume immunity (more realistic, see Chapter 1 for details) from seasonal 

influenza (hence unique seasonal influenza individuals – 29.8%), this would imply a 

reporting rate of 24.6% (32,000/130,000).  

 

By comparing the latter reporting rates (non-unique and unique seasonal influenza 

individuals) with the 2015/2016 survey data through the use of the same methodology, 

this would result in reporting rates equal to 14.5% (29,000/200,000) and 18.1% 

(29,000/160,000). 

 

For case 2, there is a possibility that we are ignoring some of the individuals who claimed 

of having some of the above ILI symptoms, and also had the seasonal influenza (although 

replied negatively to seasonal influenza). Mainly, this is due to the fact that the above ILI 

symptoms are related to the seasonal influenza. Furthermore, we are also assuming that 

all individuals who claimed of having the seasonal influenza, actually had the same 

influenza.  

 

7.6.2.3 Case 3: Diagnosed ILI cases (GP data) against individuals’ 

temperature (Survey data) 

One of the most significant symptoms of seasonal influenza is fever [159]. From all 

respondents, 28.6% (Table 7.2) claimed to have experienced fever during the year. If we 

had to consider this percentage as the number of seasonal influenza individuals, and 

consider that individuals had the seasonal influenza 1.5 times (according to survey 

results), we would have at total of 180,000 seasonal influenza cases during 2014/2015 

(generalized through the survey), based on the total Maltese population. This result 

provides a reporting rate of 17.8% (32,000/180,000). Assuming immunity once again (i.e. 

acquiring the seasonal influenza only once), this provides a reporting rate of 26.7% 

(32,000/120,000). These results are similar to the previous two results of case 2 (16.4% 

and 24.6%).  

 

The same calculations were carried out for the 2015/2016 survey through the use of the 

same methodology as above. This translates to a reporting rate of 20.7% 

(29,000/140,000) for non-unique cases and 26.6% (29,000/110,000) for unique cases. 
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7.6.2.4 Case 4: Diagnosed ILI cases (GP data) against seasonal 

influenza cases in households (Survey data) 

From the above 2014/2015 survey results, 61.1% of all households in Malta had at least 

one household member with seasonal influenza. Furthermore, on average 1.8 members 

(according to survey 1) within the Maltese households had the seasonal influenza. 

According to the Maltese National Statistics Office (NSO), the total number of 

households in Malta is around 140,000 [164]. By using the latter data and taking into 

account that an individual had the seasonal influenza 1.5 times (Survey 1) during the 

same season (immunity is not assumed), we can estimate that there were around 230,000 

seasonal influenza cases during the 2014/2015 season. Therefore, based on the GPs data, 

this result indicates that the reporting rate for the seasonal influenza is 13.9% 

(32,000/230,000). Similarly as above, when assuming immunity from seasonal influenza 

the reporting rate increases to 20.6% (32,000/155,000). When applying the same 

methodology but for the 2015/2016 dataset, this provides reporting rates of 21.5% 

(29,000/135,000) (no immunity assumed) and 27.6% (29,000/105,000) (immunity 

assumed). 

 

7.6.3 Practical use 

The above information is of interest to key people within the health authorities. After 

several meetings which I held with health authorities in Malta, it emerged that the above 

information is of high importance for their strategies, health promotion campaigns and 

planning (Appendix A). Information related to the size of outbreaks and characteristics 

related to the influenza are of interest to the Malta Health Promotion Department as it 

helps them to plan the level and strength of their campaigns. The estimate related to the 

occurrence of the peak of the influenza is one of the major priorities for the Department 

of Health Information and Research in Malta. Such information helps the department to 

submit refined information to different key health officials in decision-making positions. 

Health Ministry officials are mostly interested in the spread of influenza, specifically in 

predicting the demand on the local health care system. The implications of the seasonal 

influenza includes a huge cost on the health sector [165]. In fact, during the above 

meetings it emerged that, due to the seasonal influenza, a substantial amount of doctors 

are required and a higher number of hospital beds are occupied during this period 
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(Appendix A). By predicting the demand on the health sector, officials will be able to 

plan adequate bed management in hospitals. 

 

By predicting the size of the outbreak, health promotion campaigns can be adjusted 

according to the size of the disease, and so will contribute to the control of the number of 

infected individuals, resulting in a lower demand on doctors and hospitals [40, 155]. In 

turn, this will reduce the number of illnesses, the mortality rates and lower the costs on 

the entire health sector. 

 

The above results serve as a good basis to acquire further informative priors for the 

parameter estimation and predictive epidemiological modelling. Nevertheless, for future 

predictions of diseases, the above data may potentially provide improved prior values 

when compared to non-informative prior values (used in Chapters 3 and 4). Furthermore, 

this information will aid in designing a package of different sources of information in 

support to the prediction of current and future influenza outbreaks.   

 

Further work is warranted to understand to what extent these surveys can contribute if 

they had to be conducted during an actual outbreak. This could lead to refined prior 

parameters during the course of the disease, providing even further refinements beyond 

this analysis. Throughout the next chapter we will use some of the above information to 

further improve our knowledge of outbreaks. It is clear that when another survey was 

carried out during the 2015/2016 influenza season, although a high number of results 

were similar, actual percentages of the seasonal influenza varied. As discussed in the 

literature review, one of the key variables that impacts on the influenza is the temperature. 

This might be clearly one of the main differences between some of the results obtained 

from the 2014/2015 and 2015/2016 datasets. Throughout the next chapter, we will be 

exploring this important variable (temperature) to understand the extent of use of the 

temperature data, together with the survey data as part of a package of information to 

predict the outbreaks. 

 

7.7 Conclusion  

There are limited studies that focus on a similar scope to this chapter, i.e. to estimate the 

under-reporting rate of the seasonal influenza. In fact, as defined in the literature review, 
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most of the research studies focus on surveys related to vaccine uptake and issues related 

to the seasonal influenza vaccine. Furthermore, there are few research papers that carried 

out cross-sectional nationwide surveys with similar research objectives. 

 

Scientific surveys can provide detailed information to understand the real notion of 

seasonal influenza, and to offer an opportunity to improve the prior information for future 

epidemiological modelling. However, we need to treat such results with caution. To a 

certain extent, we are comparing self-diagnosis of individuals against the GPs influenza 

diagnosis. Hence, the baseline for both numbers is not necessarily the same. The self-

diagnosis provides an estimate of the actual influenza cases based on personal perception. 

Nevertheless, there are several indicators throughout the survey that have shown that 

these results are a true representation of the actual population. The monthly data between 

the survey and GPs data (Figures 7.5-7.7) match fairly well, thus providing an extra level 

of confidence that the respondents are accurately remembering their medical history for 

the past year.  

 

Based on the realistic estimates and lower number of assumptions, we have shown in the 

2014/2015 survey that the reporting rate might vary between 13.9% and 17.8% when 

immunity from seasonal influenza is not assumed. When assuming immunity from 

seasonal influenza, the reporting rate varies between 20.6% and 26.7%. For the 

2015/2016 survey, when immunity is not assumed, the reporting rate varies between 

14.5% and 21.5%. For the latter survey (2015/2016), the percentages vary between 18.1% 

and 27.6% when immunity is assumed. The other estimated reporting rate of 4.6% (Case 

1, 2014/2015 survey) was based on the assumption that any of the above mentioned 

symptoms resulted in acquiring seasonal influenza. This is rather a crude assumption, as 

some of the symptoms are related to a common cold (Case 1). In fact, only 56.5% of 

those respondents who had these symptoms felt the need to stay at home to recover. 

Estimated reporting rates between the two surveys are rather similar. Due to previous 

discussions in this chapter and in chapter 1, it is more likely that an individual experiences 

the seasonal influenza only once during the same season (thus acquiring immunity). 

Hence, the above reporting rates suggest that the reporting rate in Malta might vary 

between 18% and 28%, producing an average of 23%. Therefore, this implies an under-

reporting rate of 77%. This is in accordance with the mean posterior reporting rate 
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parameter (29% - 23%) ߜ in chapter 4 (Table 4.4) for the diagnosed seasonal influenza 

datasets. 

 

Through the survey data, we were able to estimate the number of unique individuals in 

Malta who had acquired seasonal influenza during 2014/2015 season, which is between 

120,000 and 150,000. This means that between 28% and 36% of the Maltese citizens had 

seasonal influenza during the 2014/2015 period, while for the 2015/2016 season, this 

varied between 100,000 (24.5%) and 160,000 (37.2%) individuals. According to the 

Centers for Disease Control and Prevention (CDC), the seasonal influenza in the United 

States affects between 5% and 20% of the total population [165]. In Finland, it was 

estimated that 6% were infected during the first wave of the pandemic 2009/2010 season 

and 3% during the second wave [166]. None of these estimates were based on cross-

sectional surveys, but rather based on on-line data [165] and national surveillance data 

[166]. However, one cannot really directly compare Malta’s incidence rate with other 

countries, as Malta is an island and one of the most densely populated countries in the 

world. Given the contact between people is more likely to occur in Malta, the higher the 

frequency of face-to-face contact between individuals, the higher the incidence rate of 

the influenza [167]. 
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Chapter 8 

 

Forecasting seasonal influenza 

outbreaks: The new influenza model 
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8.1 Introduction 

In chapter 5, I used the SEIR model and the joint model (SEIR and linear regression 

model) to carry out real-time forecasts. However, our main obstacle was to obtain early 

and consistent accurate forecasts that can provide real-time predictions [2]. This was due 

to various limiting factors such as limited information. In relation to this, when a 

substantial number of consultations and diagnosed cases were recorded in Malta, the 

relationship between consultations and diagnosed datasets was rated as strong (Chapter 

4). Furthermore, it was established (Chapters 3 and 4) that posterior parameter estimates 

were a reliable source of information to employ in future influenza outbreaks. In fact, it 

was found that diagnosed posterior parameter values are consistent when compared 

across different influenza seasons (Chapter 4). Through a national cross-sectional survey 

(Chapter 7), we also showed that a significant portion of the population do not visit their 

GP to be examined for their ILI symptoms. Furthermore, we established that respondents 

might misinterpret the real meaning of seasonal influenza (Chapter 7), or that GPs might 

misdiagnose individuals with influenza (Chapter 4). All of these results shall converge in 

this chapter. Here, we ask the research questions whether we can find a better framework 

(than that in chapter 5) to predict future outbreaks and how early this can be done. At the 

end of this chapter, we will use the 2015/2016 seasonal influenza dataset as a model 

example to apply real-time forecasting through the use of the new influenza model that I 

will develop in this chapter. 

 

The 2009/2010 pandemic season was not included as part of this analysis since the 

pandemic data has different characteristics when compared to the seasonal influenza 

datasets (as described in previous chapters). Furthermore, throughout this chapter I will 

focus on the diagnosed seasonal influenza cases rather than including the consultations 

data. The diagnosed dataset is a more direct proxy of the influenza outbreak, as it only 

includes individuals that were diagnosed with an ILI. Ultimately, by accurately predicting 

the number of diagnosed cases, we can predict the consultation cases as in chapters 4 and 

5 (this will be explored in Chapter 9). 

 

The weekly posterior parameter estimates obtained from the previous seasonal influenza 

datasets will be used for the scope of this analysis. These parameter estimates modelled 
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accurately the diagnosed datasets for 2011-2015 seasons (Figure 4.6) and hence can serve 

as a basis for analysing future outbreaks. 

 

More specifically, in the following sections, the estimates of the effective reproduction 

ratio (Rt) (Chapter 6) will be used to understand the relationship between the diagnosed 

ILI data and the temperature data. We conjecture that temperature and particularly 

temperature changes can be used to predict the onset of the outbreak in a given season. 

 

8.2 Results 

8.2.1 Malta’s temperature data 

The temperature distribution in Malta during the seasonal influenza period tends to be 

rather consistent (Figure 8.1) across different years. During week 40, over four different 

seasons, the temperature varied between 20°C and 24°C. Subsequently, between weeks 

6 and 9, the temperature in general reached the lowest levels. At this point, the 

temperature varied between 9°C and 14°C. By the end of the influenza season (week 20), 

the temperature was within the range of 18°C and 20°C. On average, the lowest mean 

temperature for the whole season was registered for the 2011/2012 season, with an 

average of 15.1°C (Std. Dev. 3.4°C). This was followed by 2014/2015 season (15.7°C, 

Std. Dev. 3.8°C), 2013/2014 season (15.9°C, Std. Dev. 3.4°C) and 2012/2013 season 

(16.2°C, Std. Dev. 3.6°C). The range of the average temperatures for the four different 

seasons is only 1.1°C. 

 

The 2011/2012 diagnosed ILI cases are negatively correlated with the temperature data 

for the same period (Table 8.1), such that the Pearson correlation value between both 

datasets is -0.71 (p-value < 0.001). This shows that lower temperature values tend to 

provide higher values of diagnosed ILI cases. These results are echoed in the two 

subsequent datasets (2012/2013 and 2013/2014), however with lower correlation values. 

For the 2012/2013 season, the correlation value (Table 8.1) between both data sets is           

-0.60 (p-value < 0.001), while the 2013/2014 season registered a moderate negative 

correlation value of -0.59 (p-value < 0.001). For the 2014/2015 season, the correlation 

value reached once again a value equal to -0.71 (p-value < 0.001). The final Pearson 

correlation value is the same as that obtained for the 2011/2012 season. 
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Figure 8.1 – Malta’s temperature data during the four influenza seasons. The horizontal axis 
represents the week number, while the y-axis represent the average weekly temperatures in Malta. 
In general, over the years, temperature data have the same characteristics during the influenza 
season. 
 

 

Influenza Season Pearson Correlation 
Value 

P-value 

2011/2012 -0.71 < 0.001 

2012/2013 -0.60 < 0.001 

2013/2014 -0.59 < 0.001 

2014/2015 -0.71 < 0.001 

Table 8.1 – The Pearson correlation values when comparing the diagnosed ILI cases with the 
temperature data for the four individual seasons. The p-value is the test of associations between the 
two variables (as described in Chapter 2).  
 
Figure 8.2 shows that during the 2011/2012 season, as temperature decreases below 14°C, 

the diagnosed ILI cases rise substantially and remain consistently high for around 3 

months. During this period, the temperature remained lower than 14°C. Soon after the 

temperatures exceed the 14°C threshold, the number of diagnosed cases dropped to the 

same levels as before the temperature decreased below 14°C (Dec’11). Furthermore, the 

first drop in temperature below the 14°C was preceded with a 15.3°C and followed by 

11.8°C. By comparing the difference in these two temperatures, this can be considered 

as a significant sharp drop in temperature (change of 3.5°C week-on-week). On average, 

the difference in week-on-week temperatures for the whole 2011/2012 influenza season 
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is 1.2°C. Thus, 3.5°C is almost three times as much higher than the average week-on-

week difference. Furthermore, this is the largest drop in temperature throughout the 

whole influenza season. 

 
Figure 8.2 – This figure represents the 2011/2012 diagnosed ILI data (blue line) and the temperature 
data for the same period (red line). The diagnosed ILI cases are plotted on the left y-axis and the 
temperature data is on the right y-axis. The horizontal dashed line represents the threshold 
temperature of 14°C. 

 
Figure 8.3 – This figure represents the 2012/2013 diagnosed ILI data (blue line) and the temperature 
data for the same period (red line). The diagnosed ILI cases are plotted on the left y-axis and the 
temperature data is on the right y-axis. The horizontal dashed line represents the threshold 
temperature of 14°C. 
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Figure 8.3 provides a parallel picture for the 2012/2013 season. In general, the first 

temperature below 14°C triggers a substantial increase in the number of diagnosed ILI 

cases. The temperature remains below this threshold (14°C) for around 3 months (with 

the exception of weeks 51 and 52 where the temperature exceeds the 14°C threshold by 

≈0.1°C). When the temperature exceeds the 14°C, the seasonal influenza is at the 

declining stages (to the same levels as before the first drop below the 14°C threshold). 

Another comparable result to the previous influenza season is that before the first decline 

below the 14°C threshold, the previous temperature was 16.6°C, followed by 13.4°C. 

Hence, there is a difference of 3.2°C, which can be considered as a significant and largest 

sharp drop when compared to the average temperature difference on a week-on-week 

basis (1.3°C) for the same season. 

 
Figure 8.4 – This figure represents the 2013/2014 diagnosed ILI data (blue line) and the temperature 
data for the same period (red line). The diagnosed ILI cases are plotted on the left y-axis and the 
temperature data is on the right y-axis. The horizontal dashed line represents the threshold 
temperature of 14°C. 
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significantly higher temperature (17.2°C). This is another substantial (and largest) 

difference of 3.6°C, while the week-on-week average temperature difference for the 

whole season is 0.9°C.  

 
Figure 8.5 – This figure represents the 2014/2015 diagnosed ILI data (blue line) and the temperature 
data for the same period (red line). The diagnosed ILI cases are plotted on the left y-axis and the 
temperature data is on the right y-axis. The horizontal dashed line represents the threshold 
temperature of 14°C. 
 

A similar pattern can be seen for the 2014/2015 season. As soon as the temperature 

dropped below 14°C, the diagnosed ILI cases increased significantly and remained high 

for 13 weeks. This coincides precisely with the first temperature which had exceeded the 

14°C threshold following these 13 weeks. In fact, after these 13 weeks, the diagnosed 

cases declined sharply, and reached the same level of diagnosed cases before the 

temperature dropped below the 14°C threshold. The first drop below 14°C was registered 

with a temperature of 13.9°C, though preceded by a temperature of 17°C. Hence, the 

week-on-week temperature difference is 3.1°C. The latter difference can be considered 

as another sharp and largest drop, considering that the average week-on-week 

temperature difference for the 2014/2015 influenza season was 1.6°C. 

 

We will use the 2015/2016 temperature data for out-of sample testing in this chapter; 

hence in this section we are not showing a similar analysis to the above (Figures 8.1-8.5). 

Figure 8.6 combines all the above relationships together through a scatter plot for all the 

above four seasonal influenza datasets. This figure shows that lower temperatures tend to 
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provide a higher number of diagnosed cases, while higher temperatures imply an 

exceptional low number of diagnosed cases.  

 
Figure 8.6 – Scatter plot for all the four seasonal influenza datasets. The y-axis represents the number 
of diagnosed cases while the x-axis represents the temperature data. This shows that lower 
temperatures imply a higher number of diagnosed ILI cases. 
 

8.2.2 Malta’s temperature data in relation to Rt 

In chapter 4, we obtained four effective reproduction ratio datasets (Figure 4.7) for the 

four seasonal influenza periods. These were analysed collectively and in relation to the 

diagnosed ILI datasets. Furthermore, in chapter 6, the initial Rt values were analysed in 

detail and it was decided that some of these initial values are unreliable and would need 

to be excluded. Therefore, the improved Rt values (Figures 6.6-6.10) will be used for the 

scope of this analysis.  

 

Figures 8.7-8.10 show that when the temperature is below the 14°C threshold, this 

coincides with Rt values greater than one. Moreover, the Rt values vary during this 
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particular period (temperature < 14°C). In contrast, when the Rt values decline below the 

value of 1, the temperature increases steadily while the Rt value remains almost constant 

for the late part of the season. 

 

 
  
 

                  
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    

Figure 8.7 – The upper charts represent the temperature data as defined above, together with a 
horizontal line which represents the threshold of 14°C. The chart below compares the reproduction 
ratio (blue line) obtained from chapters 4 and 6, and the estimated reproduction ratio chart (black 
line) obtained through the temperature data. The first vertical dashed line represents one data point 
before the temperature declines below the 14°C, while the second vertical dashed line represents one 
data point after the temperature exceeds the 14°C threshold. The initial Rt values were eliminated 
from the Rt chart as defined in chapter 6.  
 
The figures (Figures 8.7-8.10) indicate that, in general, a sharp drop in temperature 

triggers the reproduction ratio to exceed the value of 1 and hence corresponds to a sharp 

increase in the number of diagnosed cases (as described above). Almost in all cases 

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

Nov' 11 Dec' 11 Jan' 12 Feb' 12 Mar' 12 Apr' 12 May' 12 Jun' 12 Jul' 12

Av
er

ag
e 

Te
m

pe
ra

tu
re

2011/2012 Influenza Season

Average Temperature Threshold Temperature

0

0.5

1

1.5

2

2.5

Nov' 11 Dec' 11 Jan' 12 Feb' 12 Mar' 12 Apr' 12 May' 12 Jun' 12 Jul' 12

Rt

Actual Rts Predicted Rts



- 187 -  
 

(Figures 8.7-8.10), when Rt is below one and then proceeded by another Rt value greater 

than one, the outbreak registers the first highest significant increase in the diagnosed 

cases. Furthermore, based on the latter results, when the temperature is greater than 14°C, 

the influenza is either not severe (Rt<1) or is at the termination phase (Rt<1). Hence, the 

initial Rt values which are greater than one, are rather unrealistic. As discussed in chapter 

6, one has to treat the initial Rt values and parameter values cautiously anyway. 

 

 
  
 

                  
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    

Figure 8.8 – The upper charts represent the temperature data as defined above, together with a 
horizontal line which represents the threshold of 14°C. The chart below compares the reproduction 
ratio (blue line) obtained from chapters 4 and 6, and the estimated reproduction ratio chart (black 
line) obtained through the temperature data. The first vertical dashed line represents one data point 
before the temperature declines below the 14°C, while the second vertical dashed line represents one 
data point after the temperature exceeds the 14°C threshold. The initial Rt values were eliminated 
from the Rt chart as defined in chapter 6. 
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Figure 8.7 compares Rt with temperature for the 2011/2012 season. For the period when 

the actual Rt values are greater than one (except the initial Rt values), these Rt values 

correspond to a temperature less than 14°C. Based on this threshold (14°C), we can 

propose a model for the reproduction ratio values. The newly constructed Rt chart (Figure 

8.7, black solid line) accurately predicts when the actual Rt values are greater than one or 

less than one. Hence, the temperature data can be used as a strong basis to predict the 

reproduction ratio. 

 

Figure 8.8 provides the predicted Rt values based on the temperature data for the 

2012/2013 season. For weeks 51 and 52, the 14°C threshold was exceeded by 0.1°C (as 

described above), hence that is why the predicted Rt plot registered a dip during the initial 

part. Subsequently, during the peak of the influenza, the temperature data provide a good 

indication of the values of the effective reproduction ratio. 

 

During 2013/2014 season, the temperature during the influenza season was consistently 

close to the 14°C threshold (Figure 8.9). Due to this, the predicted Rt plot registered some 

fluctuations and inconsistencies. However, the first sharp drop below the 14°C still 

produced a positive signal that the reproduction ratio will start to increase shortly, also 

resulting in an increase in the number of diagnosed cases.  

 

The 2014/2015 season dataset is not an exception when compared to the previous 

seasonal influenza datasets (Figure 8.10). Some of the Rt initial values were accurately 

predicted, especially when predicting the Rt values which are greater than one. 

Subsequently, during an advanced period of the seasonal influenza period, the actual Rt 

values are slightly below the value of one, while the temperature is still below the 14°C 

threshold. The number of seasonal influenza cases was still high during the same period. 
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Figure 8.9 – The upper charts represent the temperature data as defined above, together with a 
horizontal line which represents the threshold of 14°C. The chart below compares the reproduction 
ratio (blue line) obtained from chapters 4 and 6, and the estimated reproduction ratio chart (black 
line) obtained through the temperature data. The first vertical dashed line represents one data point 
before the temperature declines below the 14°C, while the second vertical dashed line represents one 
data point after the temperature exceeds the 14°C threshold. The initial Rt values were eliminated 
from the Rt chart as defined in chapter 6. 
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Figure 8.10 – The upper charts represent the temperature data as defined above, together with a 
horizontal line which represents the threshold of 14°C. The chart below compares the reproduction 
ratio (blue line) obtained from chapters 4 and 6, and the estimated reproduction ratio chart (black 
line) obtained through the temperature data. The first vertical dashed line represents one data point 
before the temperature declines below the 14°C, while the second vertical dashed line represents one 
data point after the temperature exceeds the 14°C threshold. The initial Rt values were eliminated 
from the Rt chart as defined in chapter 6. 
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R t
s 

Temperature 
 

 
Figure 8.11 – Scatter plot between the reproduction ratios (y-axis) obtained through the analysis 
carried out in chapters 4 and 6 and the temperature data (x-axis). The vertical dashed line represents 
the temperature of 14°C. The horizontal lines are rough estimates for a reproduction ratio (1.8) when 
the temperature is less than 14°C, and the reproduction ratio (0.5) when the temperature is greater 
than 14°C.  
 

Figure 8.11 shows that there is a weak (r = -0.4) negative correlation between the Rt 

values and the temperature data. However, during some periods of the influenza season, 

this relationship becomes stronger as shown in figures 8.7-8.10. The vertical dashed line 

in figure 8.11 represents the temperature of 14°C. The horizontal lines are a rough 

estimate of the reproduction ratio (1.8) when the temperature is less than 14°C, and the 

reproduction ratio (0.5) when the temperature is greater than 14°C. The main scope of 

the two latter reproduction values is to provide further meaning to the scatter points. 

These two latter ratios tend to be the most reasonable values to represent the reproduction 

ratio when it is greater than 1 (Rt = 1.8) and when it is less than 1 (Rt = 0.5), see figures 

8.7-8.10.  

 



- 192 -  
 

8.2.3 The posterior parameter values 

In chapter 4, we showed that the posterior parameter distributions accurately described 

the observed datasets (Figure 4.6). As discussed in chapter 4, posterior parameter values 

for different diagnosed datasets can be used for future outbreaks. Figure 8.12 represents 

all the time-dependent posterior parameters (ߚ, ,ߝ ,ߙ ߬, ∅,  for the diagnosed ILI datasets (ߜ

for all the four influenza seasons. For these parameters, I used the new R(0) values which 

were established in chapter 6. 

 
  
 

    
  

  
  

        
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    

Figure 8.12 – Weekly posterior parameters for the diagnosed ILI datasets. The x-axis represents the 
week number. The blue lines corresponds to the 2011/2012 posterior parameters, the orange line 
corresponds to the 2012/2013 parameters, the grey line corresponds to the 2013/2014 parameters 
while the yellow line corresponds to the parameters for the latest dataset (2014/2015). 
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Figure 8.13 – The average parameter values for all the four seasonal influenza datasets. The first 
data point was assumed equal to the first drop in temperature below the 14°C threshold. Therefore, 
at ࢚ᇱ=1 for all the average posterior distributions, this is equal to the average of all the first posterior 
parameter values when the temperature is less than 14°C for the first time. The blue lines 
corresponds to the 2011/2012 posterior parameters, the orange line corresponds to the 2012/2013 
parameters, the grey line corresponds to the 2013/2014 parameters while the yellow line corresponds 
to the parameters for the latest dataset (2014/2015). 
 
The time series of the parameters in figure 8.13 are now shifted by an interval that is 

dependent on the season, so that ݐᇱ=1 always corresponds to the first drop below 14°C.  

For every parameter value (ߚ, ,ߝ ,ߙ ߬, ∅,  the posteriors for all the influenza seasons ,(ߜ

were averaged to obtain one typical shape for every parameter of the SEIR model (Figure 

8.13) and for the observation model Dt (as described in Chapter 2). All the previous 

posterior values before this particular data point (first drop below 14°C) are ignored. 
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The forthcoming methodology will forecast the outbreak based on the 14°C threshold. 

As explained above, the first temperature below the 14°C threshold, triggers the ‘real’ 

start (the first substantial increase in the number of diagnosed cases) of the epidemic. All 

the weekly diagnosed ILI cases prior to this starting point are low and stationary. 

However, when the temperature drops below the 14°C, the influenza starts to rise. 

Therefore, at ݐᇱ=1 for all parameters we choose the average of all the first parameter 

values (for all four diagnosed datasets), corresponding in each seasons to the time point 

when the temperature is less than 14°C for the first time.  

 

8.2.4 The 2011-2015 seasonal influenza datasets 

Throughout this section I will be using the average time-dependent posterior parameters 

together with the SEIR model to predict the number of infected individuals by the end of 

the season. In this analysis the SEIR model will be used without the particle filter 

algorithm. In order to carry out this computation, a script in R was prepared for this 

analysis (Appendix H). 

 

Since throughout this analysis we are assuming the ‘real’ start of the seasonal influenza 

when the temperature drops below 14°C, then the initial values for S(0), I(0), E(0) and 

R(0) are estimated from the number of diagnosed ILI individuals at this particular point. 

The number of infected individuals (I(0)) is assumed equal to the number of diagnosed 

ILI cases when the temperature drops below the 14°C threshold (Case 1), the number of 

exposed individuals is assumed to be equal to I(0), the number of recovered individuals 

(R(0)) is equal to 150,000 except for the 2013/2014 dataset (as defined in chapter 6), and 

the number of susceptible individuals (S(0)) is the population size without all the previous 

initial values. However, a second case for analysis was also considered. In fact, for the 

initial value of I(0), the average number of reported diagnosed ILI cases (by GPs) during 

the first two weeks, when the temperature was less than 14°C for the first time, was 

calculated (Case 2), thus resulting in a new value for I(0). All the other initial values 

(S(0), E(0), R(0)) follow as defined above. 

 

The number of diagnosed individuals (Case 1 and Case 2) at I(0) are given in table 8.2. 

These initial values are related to the total number of seasonal influenza cases for the 

whole season. In fact, a higher initial number of influenza cases corresponds to a higher 
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number of diagnosed cases for the entire season (Table 8.2). For the 2011/2012 season, 

the high initial value (2,100) coincides with the highest number of diagnosed ILI cases 

(73,202) when compared to the other three seasons. On the contrary, for the 2013/2014 

season, the low number of diagnosed ILI weekly cases (at I(0)) corresponds to the lowest 

number of total diagnosed cases for the entire season. 

 

Forecasts were considered for the same time periods that were taken into consideration 

in chapter 4. Although for the 2011/2012 season data was collected till August 2012, only 

data till July 2012 was considered for the analysis, as almost no diagnosed ILI cases were 

recorded. For the other datasets, data until the middle of May was considered. 

 

  

Number of diagnosed ILI 
cases when the 

temperature < 14°C, for 
the 1st time (Case 1) 

Average of the first two 
weekly data points 

(diagnosed ILIs) when 
temperature < 14°C, for 

the 1st time (Case 2) 

Total number of 
diagnosed influenza 

cases being taken into 
consideration (as 
reported by GPs) 

2011/2012 2,100 2,220 73,202 
2012/2013 550 850 31,299 
2013/2014 200 220 15,450 
2014/2015 650 775 31,514 

Table 8.2 – Column 2 represents the number of weekly diagnosed influenza cases as soon as the 
temperature drops below 14°C for each influenza season. Column 3 represents the average of the 
first two weekly data points as soon as the temperature drops below 14°C. The fourth column 
represents the total number of diagnosed ILI cases (as reported by GPs) for the entire influenza 
season. 
 

Based on the above average ‘shifted’ parameters (as in Figure 8.13), the SEIR model 

(without the particle filter algorithm) was run for each individual season. For case 1, the 

average parameter values (Figure 8.13) from ݐᇱ=1 onwards were used to run the SEIR 

model. For case 2, the average of the first two weekly data points (diagnosed ILIs) when 

temperature drops below 14°C was considered. Hence, for case 2 we used the average 

parameter values (Figure 8.13) from ݐᇱ=2 onwards. The values of S(0), I(0), E(0) and 

R(0) were chosen differently for each individual season, as defined above. The SEIR 

model produced the weekly predicted values for different compartments. However, the 

number of infectious cases over time (It) were then incorporated in the observed model 

Dt (as described in Chapter 2) to be able to compare the GPs reported data against the 

new predicted data. When applying the model Dt the ‘shifted’ parameters ∅ and ߜ 

(Figures 8.13) were used (see section 2.6.1 for further detail about the model Dt). 



- 196 -  
 

Subsequently, the total number of predicted diagnosed ILI cases for the entire season was 

calculated for the four individual influenza seasons. 

 

The model predicts rather accurately the total number of diagnosed ILI individuals as at 

the end of each individual season. In fact, when considering case 1, for the 2011/2012 

dataset, the model predicted the total number of diagnosed ILI individuals with a 

precision of 84% (Table 8.3) when compared with the total number of actual diagnosed 

cases. However, when considering a more informative initial I(0) value (Case 2), the 

prediction improved by nine percentage points (93%). For the 2012/2013 season, when 

considering case 1, the precision of the prediction reached 83%, while when considering 

case 2, the prediction almost matched the actual number of diagnosed ILIs accurately 

(Table 8.3). Similarly when applying case 2 for the 2014/2015 dataset, the prediction 

improved (99%), when compared with case 1 for the same diagnosed ILIs dataset (92%). 

The 2013/2014 dataset registered similar results between case 1 (105%) and case 2 

(104%).  

 

Both for case 1 and case 2, all the previous observed diagnosed ILI cases until when the 

above threshold is reached (14°C) were considered known. From then onwards, the 

forecasts were calculated. In general, using the 10th and/or 11th data points were enough 

to accurately predict the total number of diagnosed ILI cases by the end of the season.  

 

  

Case 1 
Forecast 

% of 
actual 
cases 

Case 2 
Forecast 

% of 
actual 
cases 

Total diagnosed 
influenza cases during 

the whole outbreak (GPs 
data) 

2011/2012 61,642 84% 67,615 93% 73,020 
2012/2013 26,102 83% 31,321 100% 31,299 
2013/2014 16,225 105% 15,998 104% 15,450 
2014/2015 29,125 92% 31,203 99% 31,564 

Table 8.3 – The total number of forecasted influenza cases by the end of the influenza season for both 
cases defined in table 8.2. Columns 3 and 5 represent the precision of both cases when compared to 
the total number of diagnosed influenza cases as reported by the GPs (column 6). 
 

8.2.5 Real-time forecasting of the seasonal influenza 

Although the total number of cases can be predicted well by the SEIR model, the actual 

shape of the epidemic cannot (Appendix I). In this section I go round this problem by 

finding a ‘typical’ shape of an epidemic and then scaling it by the estimated total number 
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from the SEIR model (Table 8.3). Hence, in general, by mid-December the real-time 

forecasting was applied. For all cases, mid-December is still an early time point for the 

whole influenza season. Hence, predictions are being calculated for the subsequent five 

months.  

 

The weekly ratio of the number of influenza cases were obtained from the total number 

of diagnosed cases (GPs) of each individual season (Figure 8.14). Hence, the ratio of time 

point 1 was calculated by the total number of reported ILI cases at t=1, over the total 

number of reported diagnosed ILI cases by the end of the season, and similarly for all the 

other time points and for each influenza season. The average ratios for each individual 

time point were then calculated, resulting in a ‘typical shape’ of the diagnosed ILI cases 

in Malta over time (Figure 8.14). In general, this ‘typical shape’ represents all seasons 

quite well. 

 
Figure 8.14 – Weekly ratios of the number of influenza cases relative to the total number of influenza 
cases for each respective year. The black solid line represents the average ratios at each individual 
time point for all the four influenza seasons. 
 

Having established that the ‘typical shape’ represents each scaled diagnosed dataset (i.e. 

Diagnosed divided by a total), I conjecture that another good model representation of the 

data can be obtained by multiplying the ‘typical shape’ by the total number of diagnosed 

ILIs predicted by the model (Table 8.3). Since case 2 predictions are more accurate (Table 

8.3), these model forecasts were used for the following analysis. Hence, for every 

influenza season, the total number of predicted diagnosed cases over-time were obtained. 
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Figure 8.15 – Comparison of weekly diagnosed datasets for all the four influenza seasons. Data 
includes the actual data (blue line) and the results of the model fit for the diagnosed ILIs (orange 
line). The vertical dashed line is the time point when the model was applied. 
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Figure 8.15 provides all forecasts of the influenza seasons based on the typical shape of 

the number of diagnosed individuals in Malta (Figure 8.14). For all four seasonal 

influenza datasets, figure 8.14 together with the results of table 8.3 produced accurate 

forecasts (Figure 8.15).  

 

8.2.6 The 2015/2016 Seasonal Influenza 

As explained above, the temperature data offers a strong signal of the initial start of the 

seasonal influenza and the end stages of the same influenza. Thus, I will be using the 

temperature data to assist in forecasting the number of seasonal infected cases by the end 

of the 2015/2016 season.  

 

The 2015/2016 influenza dataset was used to test the above methodological framework. 

The initial I(0) was assumed to be equal to 550, based on the average two consecutive 

numbers of weekly diagnosed cases, when the temperature drops below the 14°C 

threshold for the first time. This happened at the 11th data point (week 50) of the 

2015/2016 influenza season (similar to other influenza seasons). All the other future 

diagnosed cases were assumed unknown, while previous parameter values of other 

diagnosed datasets were used. The first temperature below the 14°C threshold was 

13.7°C. The latter was preceded by 14.1°C and followed by 11.7°C. The average week-

on-week difference up till the latter point (which is the last known data point being 

considered in this example) was 1.3°C. Although the first difference (14.1°C-13.7°C) is 

rather small, the second drop in temperature (13.7°C-11.7°C) can be considered 

substantially higher than the average week-on-week difference (1.2°C) for the entire 

season. 

 

Hence, the estimated time-dependent average parameters (ߚ, ,ߝ ,ߙ ߬, ∅,  as defined) (ߜ

above, Figure 8.13) were incorporated in the SEIR model and the observation model Dt 

to predict the number of diagnosed ILI cases by the end of the season. I(0) was assumed 

equal to 550, E(0) equal to 550, R(0) equal to 150,000 and S(0) equal to 273,900. 
 

  Forecast % of actual 
cases 

Total diagnosed influenza cases 
during the whole outbreak (GPs data) 

2015/2016 26,784 92% 29,090 
Table 8.4 – The total number of forecasted influenza cases by the end of the 2015/2016 influenza 
season. Column 3 represents the precision of the total number of forecasted influenza cases (Column 
2) when compared to the total number of diagnosed influenza cases as reported by the GPs (Column 
4). 
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The above model predicted 92% of diagnosed ILI individuals when compared with the 

actual total number of diagnosed ILI cases (Table 8.4) until the end of the season. In fact, 

the forecast of the total number of diagnosed cases is 26,784, while the total diagnosed 

cases during the whole outbreak (GPs data) is equal to 29,090. Furthermore, the wave of 

the outbreak can be predicted accurately by taking into account the above typical shape 

(Figure 8.14), based on the previous seasonal influenza datasets. Indeed, by the 13th of 

December 2015, we obtained rather accurate predictions (Figure 8.16) for the remaining 

weekly data points (till mid-May). 

 

As discussed above, the new methodology obtained an improved model fit when 

compared to the prediction charts obtained in chapter 5. The estimated wave (Figure 8.15) 

is a reasonable representation of the 2015/2016 diagnosed ILI dataset. 

 

 
Figure 8.16 – Comparison of the weekly diagnosed cases for the 2015/2016 influenza season. Data 
includes the actual data (blue line) and the results of the model fit for the diagnosed ILIs (orange 
line). The vertical dashed line is the time point when the model was applied. 
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the entire season can be estimated to be between 99,000 and 130,000 influenza cases. In 

these calculations, we are assuming that once a person is infected, the patient acquires 

immunity from seasonal influenza during the same season. 

 

8.3 Discussion 

The above results provided a new methodology on how to combine different data sources 

into one integrated model to predict the seasonal influenza wave. Information from 

previous chapters was used to improve the modelling framework. The new defined 

methodology provides an improved way of how to predict the seasonal influenza 

outbreak, when compared to the SEIR model or the joint model (Chapters 5 and 6). 

Furthermore, the SEIR posterior parameters obtained from the previous datasets were 

also incorporated in the final model. The temperature variable was shown to be an 

important factor related to the seasonal influenza. For all datasets, there is a moderate 

negative correlation between the temperature and the number of diagnosed individuals. 

Hence, the lower the temperature, the higher the number of diagnosed seasonal influenza 

individuals. Furthermore, there is an important observed threshold of 14°C. For 

temperatures below this observed threshold, this corresponds to the first substantial 

increase in the number of diagnosed cases. In general, as soon as the temperature drops 

below the 14°C threshold, the number of diagnosed ILI cases is on the same levels as to 

when the temperature exceeds this threshold at the end of the influenza season. Thus, the 

first temperature drop in Malta below the 14°C threshold triggers an increase in the 

number of diagnosed cases, and hence triggers a rise in the reproduction ratio. In general, 

the number of seasonal influenza cases remains high for a period of 13 weeks. This 

corresponds to the number of weekly temperatures below the 14°C threshold for the 

above seasonal influenza datasets. Following these 13 weeks, the temperature exceeds 

the 14°C threshold again, and the diagnosed ILI cases stabilize to the same level before 

the temperature drops below the 14°C threshold. Therefore the latter result can predict an 

adequate estimate of the reproduction ratio. 

 

When considering the average of the first two data points when the temperature drops 

below 14°C, the prediction improved due to more informative initial values. It is very 

clear that this average value, at this particular point, provides a strong signal of the 

severity of the influenza for the entire season. In fact, a low initial diagnosed ILI number 



- 202 -  
 

implies a mild influenza season, while a higher initial value results in an intense influenza 

season.  

 

We also note that a sudden drop (≈3°C drop) in temperature is associated with the 

initiation of the epidemic. In contrast, the average change in temperature on a week-to-

week basis was found to be rather low ((≈1.3°C). However when the temperature drops 

below the 14°C, in most cases this was preceded by a higher temperature of 

approximately 3°C. This drop in temperature represents the largest drop in temperature 

throughout the entire influenza season. 

 

In general, the predicted number of diagnosed ILI cases (through the use of the new model 

and methodology) was 90-110% accurate when compared to the total number of actual 

diagnosed ILI cases. Such accuracy was obtained during the early stages of the influenza 

season (≈ week 50), and 5 months in advance before the end of the influenza season. 

Furthermore, based on the previous distribution of diagnosed cases, we were able to 

produce a typical curve which is representative of all the four diagnosed datasets. It is 

known that for countries and regions where the temperature varies throughout the year, 

the influenza outbreaks follow this pattern, where the activity reaches its peak during 

mid-winter [100].  

 

When correlation analysis was applied to compare the actual diagnosed ILIs and the 

forecasted data, correlation values were all strong. For the 2011/2012 dataset, the Pearson 

correlation value obtained was 0.933 (p-value < 0.001), for the 2012/2013 dataset a 

correlation value of 0.910 (p-value < 0.001) was obtained, and for the subsequent two 

datasets the Pearson correlation values were 0.855 and 0.854 (p-value < 0.001 

respectively). For the latest dataset (2015/2016) where the above methodology was 

tested, the Pearson correlation value is 0.916. These values show that the above model 

and methodology can be considered strong and reliable. Furthermore, this places the 

utilised methodology at the top most accurate forecasts when compared to the extant 

research papers that focused on influenza forecasting [120]. 
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8.3.1 The New Model 

Based on the above results, I propose a new model and methodology to predict the 

seasonal influenza outbreak, which is presented in figure 8.17 below. As already defined 

in detail, this new model requires the following procedure to obtain the influenza real-

time forecasts: 

 

1. By using the influenza datasets for the previous years, run the SEIR model with 

particle filter algorithm to obtain the posterior parameter values for each 

diagnosed dataset. For this step, all the historical influenza data points can be 

considered as known; hence the SEIR model needs to fit the known datasets 

accurately (as shown in Chapter 4, Figure 4.6). 

 

2. For each individual posterior parameter estimate (ߚ, ,ߝ ,ߙ ߬, ∅,  this needs to be ,(ߜ

averaged across all different influenza outbreaks in order to obtain one time series 

for each posterior parameter. For the above fixed average parameter estimates, 

the parameter values are to be averaged from the first data point which 

corresponds to a temperature lower than 14°C. Therefore, ݐᇱ=1 for the above 

parameters corresponds to the temperature when it is less than 14°C for the first 

time. All the previous posterior values before this particular data point are 

ignored.  

 

3. Consider the ‘real’ start of the influenza season as the first data point when the 

temperature drops below the 14°C threshold. This particular threshold is based on 

Malta’s datasets and characteristics. Therefore, this needs to be investigated and 

tested further for other countries. 

 

4. In order to estimate the initial value of the infected individuals (I(0)), calculate 

the average of the two weekly data points (total diagnosed reported cases) at a 

time when the temperature falls below the 14°C for the first time. 

 
5. In order to estimate R(0), either make use of the methodology defined in chapter 

6 (Sensitivity Analysis), or utilise the previous initial values of other influenza 

datasets, or use previous influenza survey results. 
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6. Based on steps 4 and 5, estimate E(0) and S(0). E(0) can be assumed equal to I(0), 

while S(0) is equal to the population size (N) without E(0), I(0) and R(0) (N - E(0) 

- I(0) - R(0)). 

 

7. Run the SEIR model without the particle filtering algorithm to predict the total 

number of infected individuals until the end of the influenza season. Then, apply 

the observation model Dt to predict the total number of diagnosed ILI individuals. 

 

8. Through the use of the ‘typical shape’ of the diagnosed ILI datasets (based on 

historical data), predict the spread of the remaining time points of the outbreak. 

Hence, the peak of the diagnosed cases can be forecasted, together with an 

estimate of the total number of weekly diagnosed ILI cases. 

 
9. Utilise the under-reporting factor rate of the previous year’s survey (or other 

current survey), and estimate the range of the total number of infected individuals 

in that respective country.  

 

In order to improve the average posterior parameter datasets (for SEIR implementation), 

the new posterior parameter values for any new seasonal influenza datasets need to be 

incorporated. Ideally, posterior parameter values are updated on a yearly basis. It is 

important to keep monitoring all the other related variables on a yearly basis to ensure 

that any irregularities are captured. Preferably, the seasonal influenza survey needs to be 

carried out on a yearly basis. This helps to improve the general information of the 

seasonal influenza, the priors as well as the under-reporting rates. 

 

As discussed in chapter 3, an analysis of different proxies, related to the same outbreak, 

can improve the understanding of the epidemic. In this chapter, we used all the 

information available in this thesis to create a model that serves as a good early modelling 

technique with the predictions being calculated when the influenza epidemic is still at a 

low starting point (≈ week 50). The above new methodology is an improvement on the 

methods of real-time forecasting defined in chapter 5.  
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Figure 8.17 - The Prediction Model, incorporating different data sources, historical results, posterior parameters and survey data to obtain an estimate of the number 
of individuals with seasonal influenza by the end of the season. Furthermore, based on the ‘typical shape’ of the influenza, the spread of the influenza can also be 
predicted. This is an early warning modelling technique.

Apply the SEIR 
particle filtering 
model for the 
previous years to 
calculate the 
weekly average 
parameter 
estimates. 

Acquire the 
GPs diagnosed 
influenza data 

for the 
previous years. 

Use the ‘typical shape’ of the seasonal 
influenza datasets, based on historical 
data, and predict the spread of the 
seasonal influenza for the whole 
outbreak.  

Predict the peak of the influenza, 
together with an estimate of the total 
number of weekly ILI cases. 

Utilise the ‘under-reporting-factor-
rate’ of the previous (or current) 
year’s cross-sectional survey and 
estimate a range of the total 
number of infected individuals in 
the country, thereby predicting 
the influenza outbreak when it is 
still at the early stages. 

Predict the start of the 
influenza season based on 
the first temperature lower 
than 14°C (for Malta). In 
order to estimate I(0), 
calculate the average of the  
two weekly diagnosed ILI 
data points which coincides 
with a temperature below 
the 14°C threshold. Subsequently estimate S(0), E(0) and R(0).  

Use the parameters defined in step 2 and 
run the SEIR model without the particle 
filtering algorithm to predict the total 
number of infected individuals as at the end 
of the season. Then, use the observation 
model Dt to predict the total number of 
diagnosed ILI individuals. 
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9.1 Conclusions 

The importance of mathematical modelling for the transmission of infectious diseases is 

becoming more popular across the globe as these serve as an important tool notably to 

policy makers who desire to control epidemics [170]. After several meetings that I held 

with health officials in Malta (Appendix A), the need for a reliable mathematical model 

emerged as a prime objective to help key stakeholders in developing health strategies 

during the seasonal influenza period. In this thesis, I presented several methods and 

models aimed at understanding the underlying factors related to the influenza outbreaks. 

All analysis focused on a principle objective, that is, to predict infectious disease 

outbreaks based on limited information. At the end of the analysis (Chapter 8), I 

developed a general framework that incorporates different sources of information to serve 

as an early warning modelling technique for influenza outbreaks. 

 

In chapter 3, I have shown that for four datasets (consultations, diagnosed, swabbed and 

positive), collected during the 2009/2010 pandemic period, these have several common 

features. I have shown that the effective reproduction ratio from different proxies are 

consistent, although there are some cases where we observe Rt<1 from some proxies and 

Rt>1 for others. Even when different sampling rates were considered (daily and weekly), 

the Rt led to similar results, especially later in the epidemic. However, individual 

parameter values (infection rate, importation rate and latent period) vary between 

different proxies. Furthermore, I have shown that there is a general linear relationship 

between different epidemic proxies and this relationship varies as the epidemic 

progresses. 

 

In chapter 4, I analysed in detail the relationship between the consultations and diagnosed 

datasets. When all datasets for different seasons were combined together, a strong linear 

relationship between consultation and diagnosed variables was observed. This shows that 

the relationship between the consultation and diagnosed variables is shared for different 

influenza seasons. Such a finding suggests that, for a new epidemic, this outcome might 

also hold. This would be an interesting future research to test such a finding for future 

influenza outbreaks and for other forms of diseases. 
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Throughout chapter 4, I showed that the consultations dataset can be divided in various 

groups, thereby establishing a certain level of baseline non-influenza consultations. 

Furthermore, a portion of the consultations data is related to the diagnosed ILI cases, 

another portion is related to the false-diagnosed ILI cases, while another portion is related 

to sub-clinical cases. It was shown that the sub-clinical cases are a substantial part of the 

consultations data. In fact, these vary between 200 and 14,000 weekly cases for the 

seasonal influenza datasets, while between 1,000 and 47,000 weekly cases for the 

pandemic dataset. These cases form part of the uncertainty that exists in epidemiological 

studies. In fact, such sub-clinical cases might include those individuals who were 

misdiagnosed (but were actually real influenza cases) (Figure 9.1), those who did not 

have sufficient influenza symptoms for a diagnosis of ILI (but eventually might have 

acquired influenza i.e. real influenza case) (Figure 9.1), those who were not reported as 

a diagnosed ILI by the GPs (but were actually real influenza cases) (Figure 9.1), those 

who were suspicious of having influenza but never developed the illness, or those 

considered as non-influenza related cases. Hence, some of the sub-clinical cases might 

be real influenza cases (Figure 9.1). 

 
Figure 9.1 – Different pathways related to the real influenza cases. This can be divided in two main 
groups: individuals consulting the doctors and individuals not consulting their GP. Those consulting 
their doctor can be divided into four groups: GPs performing correct diagnosis, GPs performing a 
wrong diagnosis, patients who do not have enough influenza symptoms but actually have the 
influenza, and GPs not reporting influenza cases to the health authorities. 
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The datasets presented in this study allow us to analyse these results in further detail. In 

fact, when the datasets registered lower values of consultations (2013/2014 and 

2014/2015), they provided a weak correlation between the diagnosed and the consultation 

cases. In relation to this, we showed that a ratio, higher than 4% between diagnosed and 

consultations, provided an R2 value higher than 0.5, and moderate/strong correlation 

values. Otherwise, other ratios less than 4% provided a weak R2 value (< 0.32). 

Furthermore, in almost all cases, such low ratio values provided weak correlation values 

between consultations and diagnosed variables. However, there is an additional time-

dependent factor which was discussed in detail throughout this thesis. In fact, we showed 

that the relationship between consultations and diagnosed variables is stronger during the 

mid-part of the influenza season. This can be attributed to a higher number of 

consultations and diagnosed ILI cases. 

 

The time-dependent factor was analysed in further detail when the SEIR model was 

extended to a joint model. The latter model allowed the consultations data to be modelled 

through the linear relationship between the diagnosed and consultation datasets. In 

contrast to the general linear regression model, the joint model allowed the parameters of 

the linear regression model to be updated at every time point. Although for some datasets 

the general linear regression model provided a good fit for the consultations dataset 

(dependent variable), the time-dependent linear regression model improved the 

consultation predictions. Such improvement was shown to be better when weak 

association existed between the consultations and diagnosed datasets (2013/2014 and 

2014/2015 datasets). 

 

The Bayesian framework was applied to all influenza datasets, except for the latest 

dataset (2015/2016). We showed that the SEIR model accurately fit all four seasonal 

influenza datasets, hence allowing us to examine the posterior parameter values in further 

detail. Through the Bayesian framework, we showed that the posterior infection rate is 

associated with the total number of diagnosed cases throughout the season, where the 

higher the number of cases throughout the season, the higher the infection rate parameter. 

Furthermore, some posterior parameter estimates for the diagnosed datasets are consistent 

across datasets. The latent period, background rate and the reporting rate are broadly 

consistent across the four seasonal influenza datasets. In contrast, the consultation 

posterior parameter values vary widely across different years. Furthermore, the 
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consultation posteriors are not consistent with the diagnosed posteriors. These results 

conclude that posterior parameters for different proxies need to be treated separately for 

each different seasonal influenza proxy. However, since the diagnosed ILI cases are a 

more direct signal of the seasonal influenza (when compared to the consultations dataset), 

such parameters can be used as a source of information for future influenza outbreaks.  

 

The most important epidemiological parameter is the effective reproduction ratio, Rt. We 

showed that the Rt values are consistent for different diagnosed ILI datasets. In chapter 

4, we showed that although consistency exists in the Rt values for different consultation 

datasets, these are under the value of 1 during the peak of the influenza. This is in contrast 

to the diagnosed datasets; hence, the Rt values through the consultation datasets are not 

providing a signal of an epidemic. For the diagnosed datasets, the Rt values provide a 

good quality signal when the seasonal influenza actually reaches its first peak value. For 

example, for the diagnosed 2013/2014 data, the Rt values (Figure 9.2) reached their peak 

during the month of February, which corresponds to the first data point that represents 

the peak of the diagnosed ILI cases. Subsequently, the seasonal influenza persisted for a 

couple of weeks following this first data point, while the Rt values start decreasing soon 

after the peak of the reproduction ratio. This fact can be observed for all the other three 

datasets. Furthermore, the real signal is when the Rt approaches or exceeds the value of 2 

(ignoring the initial values of Rt), since this corresponds to the first sharpest growth in the 

number of diagnosed ILI cases. Subsequently, when the influenza reaches the peak, the 

Rt value declines soon after to a value close or under 1.  

 

As mentioned above, the relationship between consultations and diagnosed datasets was 

further studied through a joint model. In chapter 5, we showed, that this model improved 

some real-time forecasts of the consultations dataset, particularly for the higher number 

of consultation and diagnosed cases (2009/2010 dataset). Although the joint-model 

technique provided further insight into some improved real-time forecasts, we conclude 

that the real-time forecasts are not always consistent. In general, the real-time forecasting 

provides some accurate future predictions; however an earlier signal is desired to try to 

mitigate the impact of the seasonal influenza on the entire population.  
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Figure 9.2 – Relationship between the diagnosed ILI cases and the reproduction ratio for the four 
seasonal influenza datasets. The x-axis represents the week number, while the left y-axis represents 
the number of diagnosed cases and the right y-axis represents the reproduction number. The blue 
line corresponds to the GPs diagnosed ILI datasets and the orange line is the effective reproduction 
ratio obtained from the SEIR models. For this figure, the diagnosed ILI datasets are being taken into 
consideration as these correspond to a direct and more reliable proxy of the influenza season. Note 
that the initial 2 to 5 reproduction ratio values (depending on the dataset) were ignored, as described 
in chapter 6. 
 

As shown in chapters 3 and 4, the reproduction ratio commences with a high peak value, 

which in reality is probably unrealistic. In chapter 6, I showed that the initial Rt values 

are sensitive to the choice of the initial values of the infected (I), susceptible (S), exposed 

(E) and removed (R) individuals. By increasing the values of R(0), the initial Rt values 

decreased (for both consultations and diagnosed), while for the diagnosed data, the higher 

the values of I(0) (and E(0)), the higher the initial Rt values. On the contrary, for the 

consultations data, a higher value of I(0) (and E(0)) does not influence the initial Rt 

values. In most cases, the exclusion of the initial two to four points was enough to 

eliminate most of the Rt inconsistencies as the effective reproduction ratio becomes 

stable. For high values of R(0), I(0) and E(0), some inconsistencies amongst different Rt 

plots are more likely to be observed. I also provided a summary of the method to avoid 

these high initial values of Rt.  

 

The uncertainty in such studies is not limited to the sub-clinical cases, but there are a 

substantial number of individuals with seasonal influenza symptoms who do not consult 
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their doctor. Therefore, a high level of missing data exists, and hence this requires special 

attention in order to understand any underlying factors that might provide further insight 

to disease outbreaks. To some extent, such missing data can be revealed through the use 

of surveys. In chapter 7, two scientific cross-sectional surveys carried out amongst the 

Maltese population, provided further information to understand core factors related to the 

seasonal influenza in Malta as well as the most common influenza symptoms amongst 

the Maltese citizens. Furthermore, respondents provided information on the duration of 

the influenza, hospitalisation due to the influenza, GP consultations and other medical 

factors. 

 

According to the representative sample of the Maltese population, 30% of the total 

respondents claimed that they had the seasonal influenza during 2014/2015, while around 

85% claimed they had at least one symptom related to the seasonal influenza during the 

same season. These two percentages are substantially different; hence it is very likely that 

respondents have different perceptions of the definition of the seasonal influenza. From 

the survey results, it is clear that a substantial proportion of the Maltese population did 

not visit their GP due to the seasonal influenza, and opted to self-examine their ILI 

symptoms which resulted in a ‘self-diagnosis’. Based on several assumptions and the 

survey results (2015 survey), it was shown that the reporting rate might vary between 

13.9% and 17.8% when immunity from seasonal influenza is not assumed, while the 

reporting rate varies between 20.6% and 26.7% when assuming immunity of individuals 

from seasonal influenza. Furthermore, we estimated that for the 2014/2015 influenza 

season in Malta, between 120,000 and 150,000 had the seasonal influenza. Thus, this 

concludes that between 28% and 36% of the Maltese citizens had seasonal influenza 

during the 2014/2015 period.  

 

I also compared the diagnosed data collected by GPs and the survey results. The monthly 

occurrences of the seasonal influenza cases, as stated by the survey respondents, were 

compared against the monthly diagnosed ILI cases (GP data). The distribution of the 

months for both datasets was shown to be similar, with peaks occurring at the same time 

points. The same result was obtained when the monthly occurrences of the symptoms 

related to the seasonal influenza, as stated by the survey respondents, was compared with 

the GPs diagnosed monthly ILI cases. In general, the results for different questions 

between the two surveys (which were carried out during different periods) are in 
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agreement and there is no effect on the time at which surveys are conducted. Hence, such 

results were considered to be consistent for the two consecutive cross-sectional surveys. 

 

The above information can be used to understand specific features of the seasonal 

influenza; however, the potential of such information can be maximized if a holistic 

framework is considered. In chapter 8, I defined an innovative methodology of how to 

incorporate most of the above information into one single framework. Furthermore, in 

chapter 8, it was shown that the temperature data is an important factor for understanding 

further the seasonal influenza in Malta. In relation to this, a moderate negative correlation 

between the diagnosed ILI datasets and the temperature data was established. The 

findings show that the lower the temperature, the higher the diagnosed ILI cases. 

Furthermore, when the temperature drops below the 14°C threshold, this triggers the first 

substantial increase in the number of diagnosed ILI cases (the ‘start’ of the seasonal 

influenza epidemic). In general, the first drop in temperature below the 14°C threshold 

coincides with a sudden and largest drop (≈3°C drop) in temperature throughout the entire 

influenza season. In the results presented in chapter 8, the number of diagnosed ILI cases 

remained consistently high for a period of 13 weeks. This is similar to the number of 

weekly temperatures (13 weeks) below the 14°C threshold during the seasonal influenza 

period. Furthermore it was established that, when the temperature drops below 14°C, the 

number of diagnosed ILI cases at that point predicts the strength of the influenza for the 

entire season. In fact, it was shown that the higher the number of diagnosed cases (when 

the temperature drops below 14°C for the first time), the higher the number of the total 

diagnosed ILI cases for the entire season. 

 

The Rt values were compared to the temperature data to understand how the effective 

reproduction ratio is dependent on the temperature data. During the period when the 

temperature is lower than 14°C, the Rt values in general are greater than 1.  

 

Through the new developed framework, an accurate estimate of the number of diagnosed 

ILI individuals was established for each individual season. In fact, the total number of 

forecasted diagnosed individuals varied by ±8% when compared with the total reported 

diagnosed individuals (GP data). This framework was tested for the 2015/2016 (since no 

posterior parameters related to this dataset were used), and the total number of diagnosed 

cases till the end of the influenza season was predicted with a precision of 92% when 
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compared with the actual data. Such an estimate was obtained during the early stages of 

the influenza season (11th week of the epidemic), and 5 months before the end of the 

influenza season. A typical shape of the diagnosed ILI cases for 2015/2016 season was 

established (through the use of previous seasonal influenza datasets). Therefore, the new 

developed model (Chapter 8) provided improved real-time forecasts when compared to 

the real-time forecasts of chapter 5. We showed that the new framework is able to forecast 

the spread of influenza in Malta, its peak and the number of diagnosed cases at a very 

early stage in the outbreak. 

 

Throughout chapter 8, the temperature data and various other results of the previous 

chapters were incorporated to optimize all available information. In fact, the posterior 

parameter values of the previous chapters were incorporated in the new developed model. 

In relation to this, sensitivity analysis (chapter 6) was used to refine the prior parameters 

and to improve the SEIR reproduction ratio. The SEIR model (without the particle filter 

algorithm) together with the observation model Dt was then used to predict the number 

of diagnosed cases. Subsequently, the survey results were used to estimate the number of 

individuals that had acquired the seasonal influenza in Malta.  

 

9.2 Implications for practice 

Through the above conclusions, one can present several questions about future influenza 

outbreaks. Since we considered the 2015/2016 influenza season as the test example (in 

Chapter 8) where we tested the new developed model, we can now provide answers to 

the following questions based on the survey results (Chapter 7) and the new model 

(Chapter 8). Additionally, the use of the linear regression model throughout the next 

paragraphs shall be of value to answer the forthcoming questions. This information could 

be useful to policy-makers and hospital management. 

 

1. How many people will be diagnosed at each time point? 

 

I used the model described in chapter 8 to provide the number of forecasted weekly data 

for the 2015/2016 influenza season (Figure 9.3). Data points before week 51 were taken 

as known; hence forecasts were calculated from this point onwards. The peak is 

forecasted to be reached during week 6 (January 2016) with approximately 2,014 
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diagnosed ILI individuals by the GPs. In week 13 (end March 2016), it can be assumed 

that the seasonal influenza is no longer a national concern for this season, as the number 

of diagnosed cases are at a sharp decline. I therefore estimate that, by the end of the 

influenza season, around 27,000 individuals would have been diagnosed with ILI by the 

Maltese GPs. 

 

  
Figure 9.3 – The number of weekly forecasted diagnosed ILI cases during the 2015/2016 season. The 
vertical dashed line is the last known data point that was taken into consideration for model 
application. The dotted grey line represents the actual reported diagnosed cases. 
 
 

2. How many people will visit a doctor per week? 

 

Figure 9.4 shows the number of consultations per week. Based on the data up to week 50, 

I used the same method as in chapter 4 to establish κ and ∆ for the 2015/2016 dataset. 

Then, by using the forecasted diagnosed ILI cases, the number of weekly consultations 

can be calculated following week 50. Similar to the above, before week 51, the data points 

were taken as known. The highest number of consultation cases is being estimated to be 

reached during week 6, with a total number of 34,395 consultation cases. I therefore 

estimate that the average number of weekly consultations will be around 24,000 

consultations per week. These consultations include non-influenza related cases, 

influenza-related cases and other cases which can be considered as sub-clinical. Hence, 
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the sub-clinical cases might include the misdiagnosed ILI cases, individuals with 

insufficient influenza symptoms to be diagnosed with ILI, GPs not reporting the case as 

an ILI to health authorities, and non-influenza related cases. 

 

 
Figure 9.4 – The number of weekly forecasted consultations cases during the 2015/2016 season. The 
vertical dashed line is the last known data point that was taken into consideration for model 
application. The dotted grey line represents the actual reported consultation cases. 
 

3. How many people will form part of the sub-clinical cases per week? 

 

Figure 9.5 shows the number of weekly sub-clinical cases. All data points were estimated 

through the general linear regression model. Similar to the occurrences in the previous 

questions, the peak of the number of sub-clinical cases (n = 14,382) is forecasted to be 

reached at week 6. 
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Figure 9.5 – The number of weekly forecasted sub-clinical cases during the 2015/2016 season. Note 
that unlike figures 9.3 and 9.4, no data is available for comparison. 
 
 

4. How many people are likely to acquire the seasonal influenza in Malta per week? 

 

Based on the 2014/2015 survey results and the GPs diagnosed data, the reporting rate for 

the seasonal influenza was between 20.6% and 26.7% (assuming that a person acquires 

immunity from seasonal influenza after diagnosis and recovers from seasonal influenza). 

Hence, by taking an average of these two percentages, this gives a reporting rate of 

23.7%. Thus, based on this estimate and the forecasted diagnosed cases, the following 

weekly seasonal influenza cases in Malta can be predicted (Figure 9.6). In total, around 

110,000 Maltese individuals are being estimated to acquire the seasonal influenza during 

the 2014/2015 season, contributing to around 26% of the Maltese population. 

Furthermore, on average, it is being estimated that there shall be around 3,300 of seasonal 

influenza cases per week. The peak is predicted to be reached in week 6, and is expected 

to register around 8,500 seasonal influenza cases during the latter week. 

 

3928

1714

2857

3857

2857

4999

3571
3571

3214
2500

4999
5627

6121

7795

9656

8022

10234

12337

14382

14041

11233
11672

12185

8398

8596

3905

2257
1505

1005
346 243

546 611

3170

2000

4000

6000

8000

10000

12000

14000

16000

40 41 42 43 44 45 46 47 48 49 50 51 52 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

N
on

-c
lin

ic
al

 c
as

es

Week Number

2015/2016 sub-clincial cases



- 218 - 
 

 
Figure 9.6 – The number of weekly forecasted seasonal influenza cases during the 2015/2016 season. 
Note that unlike figures 9.3 and 9.4, no data is available for comparison. 
 

5. How many people are likely to visit the hospital per week? 

 

One of the main concerns in the health sector is the demand on the national hospital. 

According to the 2014/2015 survey, 20% of the seasonal influenza patients visited the 

hospital due to their influenza. Hence, based on these results and the above estimates of 

the number of seasonal influenza individuals, it is being predicted that the number of 

individuals that will visit the hospital due to the seasonal influenza is around 22,500 

during the entire season, with an average of 660 individuals per week.  

 

6. How many people are likely to experience the seasonal influenza symptom 

diarrhoea? 

 

According to the 2014/2015 survey, 18% of the individuals experienced diarrhoea during 

the influenza season. This is one of the symptoms that can be attributed to the seasonal 

influenza. In fact, respondents associated this symptom only during the months related to 

the influenza season. Based on the Maltese population, I therefore estimate that around 

77,000 individuals will experience diarrhoea during the 2015/2016 influenza season.  
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7. How many people are likely to have the seasonal influenza symptom chest pain? 

 

According to the 2014/2015 survey, 2.58% citizens reported chest pain during the 

influenza season. Hence, based on this estimate, we can say that around 11,000 

individuals will experience chest pain during the 2015/2016 influenza season. 

 

We can estimate similar figures for other symptoms. Although the above results are 

ballpark figures, one can use these as indicative dynamics for future outbreaks.  

 

9.3 Future work 

The above results and conclusions unfold a number of opportunities for future research. 

Although this thesis covered several important factors regarding epidemiological 

modelling, further work is warranted to understand the extent to which such results can 

be utilised to forecast other different types of outbreaks in other populations. 

Furthermore, additional epidemiological work needs to be carried out to incorporate the 

above results into one holistic Bayesian framework.  

 

The below recommendations can be considered as limitations to this study and 

suggestions for future work. 

 

1. The 'joint model' developed in chapter 4 was designed through a time-dependent 

linear regression model. Parameters were updated using a standard technique by 

updating up to a given time point. For future work, these parameters can be 

incorporated into the Bayesian framework, by updating these parameters through 

the use of the particle filter algorithm. 

 

2. The SEIR model can be improved by incorporating other parameters, for instance 

by capturing the loss of immunity rate and the rate of GPs influenza misdiagnosis. 

 

3. The priors of the SEIR model require further exploration. Initial parameter values 

have substantial impact on the predictions of outbreaks. The survey results can be 

used to construct improved informative priors to the SEIR model. 
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4. Future work can be carried out on the use of other particle filtering techniques to 

examine whether the posterior parameters can be improved. 

 

5. Running a series of cross-sectional surveys during various stages of the seasonal 

influenza outbreak might aid to further understand people’s perceptions of 

influenza, and probe deeper into whether the survey results are time-dependent. 

 

6. Further research is required to analyse the seasonal influenza datasets against 

other variables. Such datasets could include serological data and hospitalisations 

data due to influenza.  

 

7. All of the aforementioned suggested work requires further exploration in the 

context of diverse populations, countries and cultural backgrounds, other 

temporal scales and diverse epidemics.  

 

8. Throughout this study, the relationship between the consultation and diagnosed 

cases was found collectively for different seasons. This relationship suggests that, 

for a new epidemic, this finding might also hold. Future research could compare 

such datasets for other influenza seasons and other different types of epidemics. 

 

9. Survey findings can be tested further using other observed datasets to examine 

their validity in the context of epidemiological studies. 

 
10. Further testing of the new model defined in chapter 8 is warranted in order to test 

its application in other countries. 

 

9.4 Final conclusions 

This thesis has presented, for the first time, a combination of novel data sources to predict 

influenza outbreaks. The findings were generated through the rigorous application of 

epidemiological modelling. My study quantifies the national impact of the influenza and 

underlines the power of national analysis bolstered by mathematical modelling, and the 

impact of several factors in predicting the outbreak. My findings also clarify other direct 

or indirect aspects related to the dynamics of seasonal influenza. Through the application 
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of nationwide cross-sectional surveys, the under-reporting rate of the seasonal influenza 

was innovatively established and other underlying factors related to the seasonal 

influenza were explored. Moreover, I showed that the temperature data triggers the real 

start of the influenza epidemic. Based on the thesis findings, a novel epidemiological 

model and framework were established, providing accurate real-time forecasts with a 

clear early warning signal to the influenza outbreak. Thus, although initially we were 

presented with limited information to predict the outbreak, throughout the thesis we 

established fundamental factors to accurately predict the epidemic. The above 

information additionally extends and adds to the existing understanding of the seasonal 

influenza epidemic internationally, and is extensively innovative in the Maltese context. 

It is hoped that the findings presented in this thesis will be useful to policy-makers and 

health authorities to plan better public health strategies and interventions in order to 

control epidemics. 
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Appendix A 
 

Minutes of Meetings held in Malta 
with Health Officials 
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Meeting with the CEO of Primary Health Care – Dr. Renzo 
Degabriele 

Members Present: Dr. Renzo Degabriele ‘RD’ (CEO), Vincent 
Marmarà ‘VM’ (PhD Student) 

Date: 7th October 2015 

Time: 10am 

Office: Primary Health Care Directorate (PHCD) 

During the meeting, VM gave an overview of his published research paper and the current 
analysis being carried out about Malta regarding the seasonal influenza. After going 
through the salient findings of the research, a number of points were raised, mainly that: 
 
1. PHCD are interested in having an early warning technique about the level of 
aggressiveness of any disease, hence the earlier the information is available, the better it 
will be for  key stakeholders in the planning of strategies, which will include all the 
required logistics. 
 
2. RD is very interested in this research as it helps him to plan strategically. 
 
3. Such information can help RD to plan with regards to human resources, interventions, 
annual leave and sick leave of the employees and other administrative matters. 
 
4. Such information helps the department when planning new services within the 
directorate; hence, by knowing the level of extent of seasonal influenza, the key 
stakeholders can plan more appropriately. 
 
5. Such information helps when developing several health promotion campaigns. Hence, 
they can adjust the scale of national campaigns accordingly. 
 
6. If a high number of infected individuals are predicted, then they can issue nation-wide 
warnings, initiate earlier campaigns, increase the level of hygienic initiatives in schools 
and in other public spaces. 
 
7. Furthermore, health officials will be able to strategically and adequately plan the 
number of medical staff required during this period. 
 
8. We then discussed briefly the required amount of medicines when such outbreaks 
occur. Hence, I questioned: how and who will decide on the number of medicines 
required in such cases? However, the appropriate person to answer such a question is the 
Head of Health Information and Research. VM will be setting a meeting with this 
department (Dr. Neville Calleja, Head) next week and will try to obtain further 
information about this interesting issue. 
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Meeting with the Head of Health Information and Research – 
Dr. Neville Calleja 

Members Present: Dr. Neville Calleja ‘NC’ (Head), Vincent 
Marmarà ‘VM’ (PhD Student) 

Date: 14th October 2015 

Time: 10am 

Office: Department of Health Information and Research 
(DHIR) 

The following are the salient points of this meeting: 
 
1. NC: ‘During the 2014/2015 Seasonal Influenza, Malta was close to having a mini-
epidemic since the rates were higher than usual.’ 
 
2. NC: January is the point of major influenza increase as children start school again and 
hence the spread of the viruses increases. 
 
3. NC’s suggestion: To look at the temperatures during the seasonal influenza period. He 
said, "Usually, a sharp drop in temperatures triggers the acceleration of influenza." 
Hence, VM will try to acquire the temperature dataset. 
 
4. For the department, predicting the spread of influenza and creating an early model 
warning technique is very useful. This is the kind of information that is mostly needed. 
 
5. VM went through the analysis that we are currently performing regarding the 
understanding of the relationship between Consultations and Diagnosed individuals. For 
the department, any early signal that the consultations/diagnosed ILIs can provide is very 
helpful and useful for strategic planning. 
 
6. DHIR is concerned about the under-reporting rate by GPs and in his opinion, this needs 
to be divided into 3 groups, mainly: a) people not reporting their influenza, b) GPs not 
reporting their cases and c) GPs not diagnosing correctly. 
 
7. NC: It is interesting to look at the relationship between different years of Seasonal 
Influenza. 
 
8. Medicines are ordered in January, basing the number of required medicines on the 
consumption during the previous November - December vaccination campaign. They are 
usually delivered with the vaccine in October of the same year. 
 
9. Regarding the symptoms of the influenza, (with reference to the Under-reporting 
survey) and due to the fact that around 85% of the Maltese population indicated that they 
had any of the mentioned symptoms, NC said that those are symptoms related to a 
possible Seasonal Influenza case. 
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10. Suggestion: NC said that it would be interesting to look at the Influenza-related 
admissions at Malta's state hospital. NC directed VM to another department i.e. to set a 
meeting with the Consultant of Public Health Medicine to try to obtain the admissions 
data. 
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Meeting with the Health Promotion Department - Infectious 
Disease Prevention and Control Unit, Health Promotion and 
Disease Prevention Directorate – Dr. Tanya Mellilo & Dr. 
Jackie Mellilo 

Members Present: Dr. Tanya Mellilo ‘TM’ (Officer), Dr. 
Jackie Mellilo ‘JM’ (Officer), Vincent Marmarà ‘VM’ (PhD 
Student) 

Date: 26th October 2015 

Time: 9am 

Office: Malta Health Promotion Department (MHPD) 

The following are the salient points of this meeting: 
 
1. MHPD are very interested to obtain an actual estimate of the number of people who 
acquire Seasonal Influenza per year, ideally also by age (We can obtain this estimate 
from the Survey). The public health professionals will highly appreciate such data in 
order to plan and improve their strategy. 
 
2. Prior to the 'Seasonal influenza' data collection (end of September), it is believed that 
there are only limited numbers of Seasonal Influenza cases. 
 
3. As a Health Promotion department, public health officials focus mainly on the impact 
of the Seasonal Influenza, especially due to its high financial impact on the health sector. 
 
4. The costs of the Seasonal Influenza are very high due to the high demands on doctors, 
hospitals, staff, vaccines and marketing, especially amongst elderly people. 
 
5. The impact of influenza is very important for the Health Promotion department. Hence, 
they are interested to receive more insight about the Seasonal Influenza in Malta. 
 
6. Better information and early warning techniques will help them to design an improved 
policy and to adjust the local needs according to the demands. 
 
7. Their main issue on H1N1 is that there was a peak during the summer period (this goes 
against the norm to have the influenza peak during the summer period). 
 
8. MHPD suggested a comparison of the seasonal influenza data with the temperatures 
in Malta. MHPD’s hypothesis is that the lowest temperature may lead to an influenza 
outbreak (ACTION: Currently VM is trying to obtain more temperature data). 
 
9. A very interesting discussion on the published research paper took place as well and 
further points were highlighted on the current analysis. Currently, the health promotion 
department is discussing internally when to administer the vaccine to the general 
population in Malta. The immunity to the vaccine remains effective for 6 months. After 
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discussing the PhD’s datasets together, the department decided to administer the seasonal 
influenza vaccine during the end of November instead of early November. Basically, the 
influenza's peak is occurring during February-April, hence it is more useful to maximize 
the strength of the vaccine by postponing the administration of the vaccine by 3 weeks, 
rather than administering it during early November (low influenza month). 
 
10. During the meeting, TM said that seasonal influenza occurs due to the circulating 
influenza sub-types that are circulating at the time. Usually the A and B influenza type 
virus are two components that determine the characteristics of the vaccine. Hence, an 
individual will not acquire the influenza (Type A and B) if the vaccine is administered. 
If a person did not accept to receive the vaccine, one can acquire the influenza caused by 
the A virus and if unlucky, could also acquire the influenza caused by the B type in the 
same season. Usually, a person acquires the influenza once in a season due to one of the 
circulating viruses that is the most dominant. TM insisted that a person becomes immune 
to the seasonal influenza virus once exposed to it, but could still acquire it from another 
seasonal virus which is in circulation. TM concluded by saying: “that is why the vaccine 
is made up of 3 circulating viruses - the ones they think will be circulating during the 
winter season”.  
 
11. Further actions: the department will approve and forward the seasonal influenza 
2015/2016 data to VM on a monthly basis to conduct further research work. 
 
12. They are trying to obtain the data of the public local clinic consultations during the 
seasonal influenza period. As soon as they capture this data, they will try to approve and 
forward this data to VM. 
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Meeting with the Minister responsible for the Health Sector in 
Malta – Hon. Mr. Chris Fearne. 

Members Present: Hon. Mr. Chris Fearne (CF), Vincent 
Marmarà ‘VM’ (PhD Student) 

Date: 19th November 2015 

Time: 1pm 

Office: Health Ministry, Malta 

This is an update after the meeting with the Minister responsible for the health sector in 
Malta: 
 
1. CF is very interested in this research but is mainly interested in a predictive model that 
predicts the number of admissions at the General hospital. Such numbers can help to 
predict the healthcare demands in Malta. 
 
2. He believes that temperature data has an important role in the epidemic. 
 
3. From a political perspective, Hon. Chris Fearne is responsible to ensure that there are 
adequate beds available in the hospital. Hence, any work related to this area is of great 
interest to him. 
 
4. Hon. Chris Fearne will forward VM’s research paper to a health advisor within the 
hospital and will facilitate a meeting for VM with the health advisor in order to carry out 
further discussions on the topic. 
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Meeting with the Minister’s Consultant responsible for the 
Health Sector in Malta – Mr. Mike Farrugia 

Members Present: Mr. Mike Farrugia (Consultant) (MF), 
Vincent Marmarà ‘VM’ (PhD Student) 

Date: 4th December 2015 

Time: 10:30am 

Office: Mater Dei General Hospital 

 

The following are the major points of interest for the Consultant: 
 
1. MF: “How to keep out patients from coming to hospital due to Seasonal Influenza?” 
 
2. MF: “To what extent can we help people not to acquire influenza?” 
 
3. MF is very interested in predicting the demand on the hospital beds 
 
4. MF: “Temperature data: is this a major predictor?” 
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Appendix B 
 

The research instrument 
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Under reporting Seasonal Flu Survey (English Version) 
 
Gender _____  Locality _______________  Age _____   Married 
_______   
Status: Employee □   Student □   Housewife □    Unemployed □   Pensioner □ 
What is your job?______________________________ Level of Education reached __________ 
Number of individuals at your household (including you): ________ What is their age? _______ 

1. What is your main means of transport?  
Walking ___ Bike ___ Motorbike ___ Car ___ Public transport ___ Other ___ 

2. Did you receive a flu vaccine this winter/autumn season? (2014-2015)  
Yes ___ No ___ I don’t know ___ 

3. If ‘No’, why? 
_____________________________________________________________ 

4. How many times did you visit your GP (doctor) during this past year? _______________ 
5. Do you take regular medication for any medical conditions such as asthma, diabetes, 

heart disorders, kidney disorder or other?  Yes ___ No ___ I don’t know ___ 
6. Do you smoke?  Yes ___ No ___       
7. If ‘Yes’, how many cigarettes per day? ________ 
8. Have you had any of the following symptoms during the past year? 

Fever ___ runny or blocked nose ___ Sneezing ___ Sore throat ___ Cough ___  
Shortness of breath ___ Headache ___ Muscle/joint pain ___ Chest pain ____ 
Feeling tired or exhausted ___ Loss of appetite ___ Watery eyes ___ Nausea ___ 
Vomiting ___ Diarrhoea ___ Stomach ache ___ Other symptoms ___ Nothing ___ 

9. When did your symptoms appear for the above during the past year? ___________ 
10. Were you restricted to staying at home? Yes ___ No ___ I don’t know ___ 
11. Approximately, in days, how long was the duration for the above symptoms? _________ 
12. Since ‘August 2014’ did you have the seasonal influenza? Yes ___ No ___ I don’t know 

___ 
13. If ‘Yes’, when did you have the seasonal influenza? __________________ 
14. Approximately, in days, how long was the duration of influence? ___________________ 
15. What were the symptoms? 

_________________________________________________ 
16. Did you have high temperature? Yes ___ No ___ I don’t know ___ 
17. Because of your seasonal influenza fever, did you visit a doctor?  

Yes ___ No ___ I don’t know ___ 
18. Did you take any medication due to this influenza?  Yes ___ No ___ I don’t know ___ 
19. Were you hospitalized due to your influenza? Yes ___ No ___ 
20. If ‘Yes’ for how many nights? __________ 
21. Did any of your household members had the seasonal influenza?  

Yes ___ No ___ I don’t know ___ 
22. If ‘Yes’, how many members?  ________   
23. And what is their age? _______________ 
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Under reporting Seasonal Influenza Survey (Maltese 
Version) 

 
Sess _____  Lokalita _______________  Eta _____  Mizzewweg _______   
Stat: Haddiem □   Student □   Mara tad-dar □  Bla xoghol □   Pensjonant □ 
X’inhu l-job tieghek?__________________________ Livell ta’ Edukazzjoni li wasalt: __________ 
Inkluz inti, kemm toqghodu nies id-dar? ________  X’inhi l-eta taghhom? 
______________ 

1. X’inhu l-mezz principali tat-trasport tieghek?  
Nimxi ___ Rota ___ Mutur ___ Karrozza ___ Tal-linja ___ Ohrajn ___ 

2. Hadtu l-vacin tal-influenza f’din l-ahhar sena minn Awissu tal-2014? Iva __ Le __ Ma nafx 
_ 

3. Jekk ‘Le’ ghalxiex? 
_________________________________________________________ 

4. Kemm il-darba zort it-tabib tal-familja f’din l-ahhar sena? _______________ 
5. Tiehu medikazzjoni regolari minhabba diversi mard u kunduzzjonijiet kronici bhal 

asthma, diabetes, mard tal-qalb, problem fil-kliewi u ohrajn?  Iva ___ Le ___ Ma nafx __ 
6. Inti tpejjep?  Iva ___ Le ___  
7. Jekk ‘Iva’, kemm tpejjep sigaretti kulljum? ________ 
8. Kellek xi sintomi min dawn li gejjien f’din l-ahhar sena, minn Awissu tal-2014? 

Deni ___ imnieher ibblukat ___ Hafna ghatis ___ Ugiegh fil-grizmejn ___ Sola ___  
Qtuh ta’ nifs ___ Ugieh ta’ ras ___ Ugiegh fil-joints jew muskoli ___ Ugiegh f’sidrek ____ 
Ghajja kbira u bla sahha ___ Nuqqas t’aptit ___ Ghajnejk jdemmghu ___ Dardir u 
tqallieh ___ Remettar ___ Diarrhoea ___ Ugiegh fl-istonku ___ Sintomi ohra ___ Xejn 
__ 

9. F’liema xhur kellek dawn is-sintomi f’din l-ahhar sena, minn Lulju tal-2014? 
_________________________________ (xi xhur partikolari) 

10. Minhabba dawn is-sintomi kellek toqghod id-dar? Iva ___ Le ___ Ma nafx ___ 
11. Bejn wiehed u iehor, fi granet, kemm damu dawn is-sintomi? ______________ 
12. Minn ‘Awissu tal-2014’ sal-lum kellek influwenza (seasonal influenza)?  Iva __ Le__ Ma 

nafx__ 
13. Jekk ‘Iva’, f’liema xhur kellek l-influwenza? __________________ (xi xhur partikolari) 
14. Jekk ‘Iva’, bejn wiehed u iehor, fi granet, kemm damet l-influwenza? ________________ 
15. Jekk ‘Iva’, x’kienu is-sintomi tal-influwenza? 

____________________________________ 
16. Jekk ‘Iva’, kellek deni matul dan iz-zmien tal-influwenza? Iva ___ Le ___ Ma nafx ___ 
17. Jekk ‘Iva’, minhabba l-influwenza zort it-tabib? Iva ___ Le ___ Ma nafx ___ 
18. Jekk ‘Iva’, hadt xi medicina minhabba l-influwenza? Iva ___ Le ___ Ma nafx ___ 
19. Jekk ‘Iva’, kellek tidhol l-isptar minhabba l-influwenza? Iva ___ Le ___ Ma nafx ___ 
20. Jekk ‘Iva’ ghal kemm iljieli? __________ 
21. Uhud mill-membri li qeghdin fid-dar mieghek kellhom din l-influwenza? IVA __ Le __ Ma 

nafx_ 
22. Jekk ‘IVA’, kemm membri?  _____   
23. Jekk ‘IVA’, kemm ghandhom zmien dawn il-membri? _____________________ 
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Appendix C 
 

The SEIR model together with the 
Particle Filter Algorithm code 
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The following code is a modification of Professor Alex Cook's code and I used this code 

with the author's permission. 

 
i=Hist$t 
 
#Print mean of parameters 
x=Hist$beta[i,];print(paste("beta : mean =",mean(x),"sd =",sd(x))) 
x=Hist$epsilon[i,];print(paste("epsilon : mean =",mean(x),"sd =",sd(x))) 
x=Hist$lambda[i,];print(paste("lambda : mean =",mean(x),"sd =",sd(x))) 
x=Hist$gamma[i,];print(paste("gamma : mean =",mean(x),"sd =",sd(x))) 
x=Hist$falseflu[i,];print(paste("phi : mean =",mean(x),"sd =",sd(x))) 
 
x=Hist$delta1[i,];print(paste("delta1 : mean =",mean(x),"sd =",sd(x))) 
 
#Print 95% CI for number of removed individuals 
x=Hist$R[i,]/414000;print(paste("R(inf):mean =",mean(x),"sd =",sd(x),"CI 
=",quantile(x,0.025),",",quantile(x,0.975))) 
x=rep(0,20000) 
#Print 95% CI for consultation rates 
for(k in 24:24) 
{ 
  d=Hist$delta1 
  x=x+.17*Hist$I[k,]*d 
} 
print(paste(k,mean(x),quantile(x,0.025),quantile(x,0.975))) 
 
#Print mean and variance of number of infections 
pr0=function(Hist,n=1000) 
{ 
  i=round(Hist$t/1) 
  b=Hist$beta[i,] 
  g=Hist$gamma[i,] 
  prec=1-exp(-1/g) 
  INFS=c() 
  for(j in 1:length(b)) 
    { 
      dinf=1+rgeom(n,prec) 
      rinf=b*dinf 
      infs=rpois(n,rinf) 
      INFS[j]=mean(infs) 
    } 
    print(paste("Mean",round(mean(INFS),3),"Standard deviation",round(sd(INFS),3))) 
} 
pr0(Hist,n=1000) 
prt=function(i,Hist,n=1000) 
{ 
  b=Hist$beta[i,] 
  g=Hist$gamma[i,] 
  S=Hist$S[i,] 
  prec=1-exp(-1/g) 
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  INFS=c() 
  for(j in 1:length(b)) 
    { 
      dinf=1+rgeom(n,prec) 
      rinf=b*dinf 
      infs=rpois(n,rinf) 
      INFS[j]=mean(infs) 
    } 
  INFS=INFS*S/Hist$N#to get Rt distn 
  INFS 
} 
 
#Initialize matrices to store statistics 
ma=list() 
ma$beta=matrix(0,MAXDAYSTOREAD,3) 
ma$epsilon=matrix(0,MAXDAYSTOREAD,3) 
ma$lambda=matrix(0,MAXDAYSTOREAD,3) 
ma$gamma=matrix(0,MAXDAYSTOREAD,3) 
ma$falseflu=matrix(0,MAXDAYSTOREAD,3) 
ma$delta1=matrix(0,MAXDAYSTOREAD,3) 
ma$Rt=matrix(0,MAXDAYSTOREAD,3) 
 
#Store and print 95% CI for parameters 
for(i in 1:MAXDAYSTOREAD) 
{ 
  x=Hist$beta[i,];ma$beta[i,2]=mean(x);ma$beta[i,c(1,3)]=quantile(x,c(0.025,0.975)) 
  x=Hist$epsilon[i,];ma$epsilon[i,2]=mean(x);ma$epsilon[i,c(1,3)]=quantile(x,c(0.025,0.975)) 
  x=Hist$lambda[i,];ma$lambda[i,2]=mean(x);ma$lambda[i,c(1,3)]=quantile(x,c(0.025,0.975)) 
  x=Hist$gamma[i,];ma$gamma[i,2]=mean(x);ma$gamma[i,c(1,3)]=quantile(x,c(0.025,0.975)) 
  x=Hist$falseflu[i,];ma$falseflu[i,2]=mean(x);ma$falseflu[i,c(1,3)]=quantile(x,c(0.025,0.975)) 
  x=Hist$delta1[i,];ma$delta1[i,2]=mean(x);ma$delta1[i,c(1,3)]=quantile(x,c(0.025,0.975))   
} 
 
for(i in 1:MAXDAYSTOREAD) 
{ 
  print(paste(i,"of",MAXDAYSTOREAD)) 
  x=prt(i,Hist,n=1000);ma$Rt[i,2]=mean(x);ma$Rt[i,c(1,3)]=quantile(x,c(0.025,0.975)) 
} 
 
#Plot the number of ILIs reported daily per private doctor 
x=1:MAXDAYSTOREAD 
todaysreports=dataset$ILI_priv[x] 
plot(x,todaysreports,type='l',col=8) 
 
plotmats=function(y,ylm,yla,prio="",RT=FALSE) 
{ 
  x=1:MAXDAYSTOREAD 
  xlm=range(x) 
  
plot(x,todaysreports*0.75*ylm[2]/max(todaysreports),type='l',col=grey(0.85),ylab=yla,ylim=yl
m,xlim=xlm,yaxt='n',xaxt='n',xlab='') 
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  if(ylm[2]==12)axis(2,at=c(0,5,10),las=1) 
  if(ylm[2]==10)axis(2,at=c(0,2,4,6,8,10),las=1) 
  if(ylm[2]==1)axis(2,at=c(0,0.2,0.4,0.6,0.8,1),las=1) 
  if(ylm[2]==500)axis(2,at=c(0,100,200,300,400,500),las=1) 
   
  mxt=MAXDAYSTOREAD 
  mo_lab=c("Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec") 
  for(m in 
7:9){mos=dataset$date.m[1:mxt];q=mos==m;if(sum(q)>0){xlo=mean((1:mxt)[q==TRUE]);axis(1
,at=xlo,labels=mo_lab[m],line=-0.5,tick=FALSE)}} 
 
  if(RT)lines(xlm,c(1,1),col=2) 
  ltys=c(2,1,2) 
  for(k in 1:3)lines(x,y[,k],lty=ltys[k]) 
  text(xlm[2],ylm[2],prio,adj=c(1,1.5)) 
} 
 
plotmats(ma$Rt,c(0,10),"Rt",prio="(a)",RT=TRUE) 
 
 
 
 
Nbounds=20 
probs=seq(0.025,0.975,length.out=(Nbounds)) 
 
 
##ILIs per GP 
CI=matrix(0,predictuntil,Nbounds) 
sa = sample(1:Hist$n_particles,20000,replace=TRUE) 
Ancestors=sa 
errorsample=0 
for(t in predictuntil:1) 
{ 
  ns=Hist$I[t,Ancestors] 
  p1 = Hist$delta1[t,] 
 
  p2 = 1 #propn going to private 
  p3 = 1/300 #propn cases from private practice making it into data 
  ps = p1*p2*p3 
  xs = ns*ps#rbinom(length(ns),ns,ps) 
 
    h=0.9;xbar=mean(xs);sigma=var(xs);x_new=rnorm(length(xs),0,sqrt(sigma))*sqrt(1-h*h) 
    x_new=x_new+xbar+h*(xs-xbar);x_new=pmax(x_new,rep(0,length(x_new))) 
    x_new=x_new+Hist$falseflu[t,Ancestors]*p1 
    if(t>DAYSTOREAD & t<=(DAYSTOREAD+52)) 
    { 
      target=(dataset$ILI_priv/dataset$ndr_priv)[t] 
      diffs=abs(x_new-target) 
      errorsample=errorsample+mean(diffs) 
      #print(mean(diffs)) 
    } 
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  CI[t,]=quantile(x_new,probs,na.rm=TRUE) 
  if(t<predictuntil)Ancestors=Hist$parent[t,Ancestors] 
} 
write.table(round(CI,4),paste("C:/Users/Vincent/Desktop/Vincent - PhD/H1N1 - Cook 
Code","/output/v1_",DAYSTOREAD,".txt",sep=""),col.names=FALSE,row.names=FALSE) 
write.table(errorsample,paste("C:/Users/Vincent/Desktop/Vincent - PhD/H1N1 - Cook 
Code","/output/error_",DAYSTOREAD,".txt",sep=""),col.names=FALSE,row.names=FALSE) 
 
 
##Total ILIs if every day were Monday 
CI=matrix(0,predictuntil,Nbounds) 
sa = sample(1:Hist$n_particles,20000,replace=TRUE) 
Ancestors=sa 
for(t in predictuntil:1) 
{ 
  ns=Hist$I[t,Ancestors] 
  ps = Hist$delta1[t,] 
  xs = rbinom(length(ns),ns,ps) 
  #xs[is.na(xs)]=0 
  
h=0.9;xbar=mean(xs,na.rm=TRUE);sigma=var(xs,na.rm=TRUE);x_new=rnorm(length(xs),0,sqrt(
sigma))*sqrt(1-h*h) 
    x_new=x_new+xbar+h*(xs-xbar) 
    x_new=pmax(x_new,rep(0,length(x_new))) 
  CI[t,]=quantile(x_new,probs) 
  if(t<predictuntil)Ancestors=Hist$parent[t,Ancestors] 
} 
write.table(round(CI,2),paste("C:/Users/Vincent/Desktop/Vincent - PhD/H1N1 - Cook 
Code","/output/v2_",DAYSTOREAD,".txt",sep=""),col.names=FALSE,row.names=FALSE) 
 
 
##Cumulative total 
CASES=matrix(0,predictuntil,n_particles) 
CI=matrix(0,predictuntil,Nbounds) 
sa = sample(1:Hist$n_particles,20000,replace=TRUE) 
Ancestors=sa 
for(t in predictuntil:1) 
{ 
  ns=Hist$I[t,Ancestors]+Hist$R[t,Ancestors] 
  ns=Hist$I[t,]+Hist$R[t,] 
  #ns[is.na(ns)]=0 
  h=0.9;xbar=mean(ns);sigma=var(ns);x_new=rnorm(length(ns),0,sqrt(sigma))*sqrt(1-h*h) 
    x_new=x_new+xbar+h*(ns-xbar) 
    x_new=pmax(x_new,rep(0,length(x_new))) 
  CI[t,]=quantile(x_new,probs) 
  #CI[t,]=quantile(ns,probs,na.rm=TRUE) 
  CASES[t,]=ns 
  if(t<predictuntil)Ancestors=Hist$parent[t,Ancestors] 
} 
 
for(t in predictuntil:1) 
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{ 
  ns=CASES[t,] 
  h=0.9;xbar=mean(ns);sigma=var(ns);x_new=rnorm(length(ns),0,sqrt(sigma))*sqrt(1-h*h) 
    x_new=x_new+xbar+h*(ns-xbar) 
    x_new=pmax(x_new,rep(0,length(x_new))) 
  CI[t,]=quantile(x_new,probs) 
} 
write.table(round(CI,2),paste("C:/Users/Vincent/Desktop/Vincent - PhD/H1N1 - Cook 
Code","/output/v3_",DAYSTOREAD,".txt",sep=""),col.names=FALSE,row.names=FALSE) 
 
 
errors=c() 
source(paste("C:/Users/Vincent/Desktop/Vincent - PhD/H1N1 - Cook 
Code/read_data.r",sep="")) 
 
#Read and store errors, posterior absolute deviation between predicted and observed 
averages over one week period following the time forecast is made 
for(DAYSTOREAD in 1:(MAXDAYSTOREAD-1)) 
{ 
  er=read.table(paste("C:/Users/Vincent/Desktop/Vincent - PhD/H1N1 - Cook 
Code/output/error_",DAYSTOREAD,".txt",sep=""),header=FALSE) 
  errors[DAYSTOREAD]=as.numeric(er) 
} 
 
 
today=DAYSTOREAD 
predictuntil=today+PREDICTIONSPAN 
print(paste("  ...Time",today),quote=FALSE) 
 
t_length=predictuntil 
Hist$t=today 
Hist=onestepahead(Hist) 
Hist=loglikelihooder(Hist,dataset) 
Hist=Reweighting(Hist) 
Hist=Resampling(Hist) 
Hist=KernelSmoothing(Hist) 
for(i in today:(predictuntil-1)) 
{ 
  Hist=onestepahead(Hist) 
  Hist$t=Hist$t+1 
  print(paste("    ...predicting",Hist$t),quote=FALSE) 
} 
 
Initialization=function(n_particles=10,t_length=52,dataset) 
{ 
  #Create a list containing state and parameter matrices, loglikelihood and weights 
  Hist = list() 
  Hist$t = 1 
  Hist$n_particles=n_particles 
  Hist$N=dataset$popn_size 
  Hist$S=matrix(0,t_length,n_particles)  
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  Hist$E=matrix(0,t_length,n_particles) 
  Hist$I=matrix(0,t_length,n_particles) 
  Hist$R=matrix(0,t_length,n_particles) 
  Hist$D=matrix(0,t_length,n_particles) 
  Hist$loglikelihood=matrix(0,t_length,n_particles) 
  
  #Tracking index assigned to each particle 
  Hist$parent=matrix(0,t_length,n_particles) 
  Hist$urparent=matrix(0,t_length,n_particles) 
 
  Hist$weight=matrix(0,t_length,n_particles) 
 
  for(i in 1:n_particles) Hist$weight[1,i]=1 
  Hist$weight[1,]=Hist$weight[1,]/sum(Hist$weight[1,]) 
  
  Hist$beta = matrix(0,t_length,n_particles)       #probability of infection 
  Hist$epsilon = matrix(0,t_length,n_particles)    #importation rate 
  Hist$lambda = matrix(0,t_length,n_particles)     #infectious rate 
  Hist$gamma = matrix(0,t_length,n_particles)      #recovery rate 
  Hist$falseflu = matrix(0,t_length,n_particles)   #background rate of ppl having same 
symptoms but not H1N1 
   
  Hist$delta1 = matrix(0,t_length,n_particles)  #Week 
   
  #Assign values to initial parameters   
  Hist=populate.priors(Hist,1,1) 
   
  Hist 
} 
 
library(MASS) 
 
KernelSmoothing=function(H) 
{ 
  h=0.7 
  t=H$t 
  H2=H 
 
  #Construct transition matrix, find column mean and covariance matrix 
  transmat=cbind(log(H$beta[t,]), 
                 logit(H$delta1[t,]), 
                 log(H$epsilon[t,]), 
                 log(H$gamma[t,]), 
                 log(H$lambda[t,]), 
                 log(H$falseflu[t,]), 
                 logit((1+H$E[t,])/(2+dataset$popn_size)), 
                 logit((1+H$I[t,])/(2+dataset$popn_size)), 
                 logit((1+H$R[t,])/(2+dataset$popn_size))) 
  mn=colMeans(transmat) 
  si=cov(transmat) 
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  #Implement kernel smoothing on state and parameter values 
  eit=mvrnorm(dim(transmat)[1],0*mn,si) 
  x_new=eit*sqrt(1-h*h) 
  transmat2=transmat 
  for(k in 1:dim(transmat)[2])transmat2[,k]=x_new[,k]+mn[k]+h*(transmat[,k]-mn[k]) 
 
  #Reassign smoothed parameters back into parameter matrices 
  k=1;H2$beta[t,]=exp(transmat2[,k]) 
  k=2;H2$delta1[t,]=inv.logit(transmat2[,k]) 
  k=3;H2$epsilon[t,]=exp(transmat2[,k]) 
  k=4;H2$gamma[t,]=exp(transmat2[,k]) 
  k=5;H2$lambda[t,]=exp(transmat2[,k]) 
  k=6;H2$falseflu[t,]=exp(transmat2[,k]) 
  k=7;H2$E[t,]=round((2+dataset$popn_size)*inv.logit(transmat2[,k]))-1 
  k=8;H2$I[t,]=round((2+dataset$popn_size)*inv.logit(transmat2[,k]))-1 
  k=9;H2$R[t,]=round((2+dataset$popn_size)*inv.logit(transmat2[,k]))-1 
  H2$S[t,]=dataset$popn_size-H2$E[t,]-H2$I[t,]-H2$R[t,] 
 
  #If number of susceptibles are <0 or >total population,states assume un-smoothed values 
  for(i in 1:length(H$beta[t,])) 
  { 
    REJECT=0 
    if(H2$S[t,i]<0)REJECT=1 
    if(H2$S[t,i]>dataset$popn_size)REJECT=1 
    if(REJECT==1) 
    { 
      H2$S[t,i]=H$S[t,i] 
      H2$E[t,i]=H$E[t,i] 
      H2$I[t,i]=H$I[t,i] 
      H2$R[t,i]=H$R[t,i] 
      H2$beta[t,i]=H$beta[t,i] 
      H2$delta1[t,i]=H$delta1[t,i] 
      H2$epsilon[t,i]=H$epsilon[t,i] 
      H2$gamma[t,i]=H$gamma[t,i] 
      H2$lambda[t,i]=H$lambda[t,i] 
      H2$falseflu[t,i]=H$falseflu[t,i] 
    } 
  } 
  H2 
} 
 
loglikelihooder=function(H,dataset) 
{ 
  t=H$t 
  H$loglikelihood[t,]=0 
  if(dataset$ndr_priv[t]>0) 
  {  
    #Use corresponding consultation rate for each day of the week 
    p1 = H$delta1[t,] 
     
    p2 = 1    #propn going to private doctors 
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    p3 = 1/300  #propn cases from private practice making it into data 
    pall = p1*p2*p3 
 
    #Poisson approximation 
    meanrate = (H$I[t,]*pall+ H$falseflu[t,]*p1)*dataset$ndr_priv[t] 
    H$loglikelihood[t,]=H$loglikelihood[t,]+dpois(dataset$ILI_priv[t],meanrate,log=TRUE) 
  } 
  H$loglikelihood[t,]=as.numeric(sub(-Inf,-20000,H$loglikelihood[t,]))  #just in case, but 
shouldn't need 
  H$loglikelihood[t,]=as.numeric(sub(NaN,-20000,H$loglikelihood[t,]))   #just in case, but 
shouldn't need 
  H$loglikelihood[t,]=pmax(H$loglikelihood[t,],-20000) 
  if(mean(H$loglikelihood[t,])==-20000)print("WARNING! All particles have too few cases for 
data") 
  H 
} 
 
rootdir="C:/Users/Vincent/Desktop/Vincent - PhD/H1N1 - Cook Code/output/predictions" 
rootdir="C:/Users/Vincent/Desktop/Vincent - PhD/H1N1 - Cook 
Code/output/realtime_estimation/resubmission" 
 
#Particle filter source codes 
source(paste("C:/Users/Vincent/Desktop/Vincent - PhD/H1N1 - Cook 
Code/InitializationFunction.r",sep="")) 
source(paste("C:/Users/Vincent/Desktop/Vincent - PhD/H1N1 - Cook 
Code/KernelSmoothingFunction.r",sep="")) 
source(paste("C:/Users/Vincent/Desktop/Vincent - PhD/H1N1 - Cook 
Code/OneStepAheadFunction.r",sep="")) 
source(paste("C:/Users/Vincent/Desktop/Vincent - PhD/H1N1 - Cook 
Code/Resampling.r",sep="")) 
source(paste("C:/Users/Vincent/Desktop/Vincent - PhD/H1N1 - Cook 
Code/loglikelihooder.r",sep="")) 
source(paste("C:/Users/Vincent/Desktop/Vincent - PhD/H1N1 - Cook 
Code/ReweightingFunction.r",sep="")) 
source(paste("C:/Users/Vincent/Desktop/Vincent - PhD/H1N1 - Cook 
Code/populatepriors.r",sep="")) 
 
seed=666 
set.seed(seed) 
library(boot) 
 
#Number of data points to be input into model and number of days in future to be predicted 
MAXDAYSTOREAD=33 
PREDICTIONSPAN=2 
 
source(paste("C:/Users/Vincent/Desktop/Vincent - PhD/H1N1 - Cook 
Code/read_data.r",sep="")) 
n_particles=20000 
Hist=Initialization(n_particles=n_particles,t_length=PREDICTIONSPAN+MAXDAYSTOREAD,data
set) 
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#Get data, execute particle filtering routine, save output 
for(DAYSTOREAD in 1:MAXDAYSTOREAD) 
{ 
  print(paste("Day",DAYSTOREAD,"of",MAXDAYSTOREAD,": lambda = 
",mean(Hist$lambda[DAYSTOREAD,])),quote=FALSE) 
 
  source(paste("C:/Users/Vincent/Desktop/Vincent - PhD/H1N1 - Cook 
Code/filtering.r",sep="")) 
  source(paste("C:/Users/Vincent/Desktop/Vincent - PhD/H1N1 - Cook Code/dump.r",sep="")) 
} 
 
for(i in 1:10){if(dev.cur()!=1)dev.off()} 
 
#Calculate and store prediction errors and posterior 
MAXDAYSTOREAD=33 
source(paste("C:/Users/Vincent/Desktop/Vincent - PhD/H1N1 - Cook Code/error.r",sep="")) 
source(paste("C:/Users/Vincent/Desktop/Vincent - PhD/H1N1 - Cook 
Code/calculate_posteriors.r",sep="")) 
 
onestepahead=function(H) 
{ 
  #takes one particle with history H, currently at time H$t, simulates 
  #forward one step and evaluates the likelihood for the data at time t+1 
   
  #Assign all state and parameter values at time t+1 to be the same as that at time t 
  t=H$t 
  n_particles = H$n_particles 
  H$weight[t+1,]=H$weight[t,] 
  H$loglikelihood[t+1,]=H$loglikelihood[t,] 
  H$beta[t+1,]=H$beta[t,] 
  H$epsilon[t+1,]=H$epsilon[t,] 
  H$gamma[t+1,]=H$gamma[t,] 
  H$tau[t+1,]=H$tau[t,] 
  H$falseflu[t+1,]=H$falseflu[t,] 
  H$lambda[t+1,]=H$lambda[t,] 
   
  H$delta1[t+1,]=H$delta1[t,] 
   
  H$parent[t+1,] = H$parent[t,] 
  H$urparent[t+1,] = H$urparent[t,] 
   
  H$S[t+1,] = H$S[t,] 
  H$E[t+1,] = H$E[t,] 
  H$I[t+1,] = H$I[t,] 
  H$R[t+1,] = H$R[t,] 
 
  #Use the parameters in time t to calculate state values in time t+1, under SEIR model 
  prob.recover=1-exp(-1/H$gamma[t,]) 
  recoveries=rbinom(n_particles,H$I[t,],prob.recover) 
  H$R[t+1,] = H$R[t+1,] + recoveries 
  H$I[t+1,] = H$I[t+1,] - recoveries 



- 265 - 
 

   
  prob.infectious=1-exp(-1/H$lambda[t,]) 
  infectiousnesses=rbinom(n_particles,H$E[t,],prob.infectious) 
  H$I[t+1,] = H$I[t+1,] + infectiousnesses 
  H$E[t+1,] = H$E[t+1,] - infectiousnesses 
   
  prob.infection=1-exp(-(H$epsilon[t,]+H$I[t,]*H$beta[t,])/H$N) 
  infections=rbinom(n_particles,H$S[t,],prob.infection) 
  H$E[t+1,] = H$E[t+1,] + infections 
  H$S[t+1,] = H$S[t+1,] - infections 
   
  H 
}  
 
populate.priors=function(Hist,starttime,currenttime) 
{ 
#Generate initial parameter values from Normal distribution 
  Hist$D[starttime,]=rep(dataset$ILI_priv[starttime],n_particles) 
  Hist$beta[starttime,]=abs(rnorm(n_particles,2.0,2.0)) 
  Hist$epsilon[starttime,]=abs(rnorm(n_particles,80.0,60.0)) 
  Hist$lambda[starttime,]=abs(rnorm(n_particles,1.0,1.0)) 
  Hist$gamma[starttime,]=abs(rnorm(n_particles,1.0,1.0)) 
  Hist$falseflu[starttime,]=abs(rnorm(n_particles,1.0,0.25)) 
  ##Hist$q1[starttime,]=lm1$coefficient[1] 
  ##Hist$q2[starttime,]=lm1$coefficient[2] 
 
  #Generate parameters from Beta distribution       
  tempa=15 
  tempb=5 
  Hist$delta1[starttime,] = rbeta(n_particles,tempa, tempb) 
         
  Hist$parent[starttime,]=1:n_particles 
  Hist$urparent[starttime,]=1:n_particles 
   
  #Generate initial state values from Normal distribution 
  minI=dataset$ILI_priv[1] 
  Hist$E[starttime,]=round(abs(rnorm(n_particles,minI*37.5,minI*20))) 
  Hist$I[starttime,]=round(abs(rnorm(n_particles,minI*37.5,minI*20))) 
  Hist$R[starttime,]=rep(250000,n_particles) 
 
  Hist$S[starttime,]=Hist$N-Hist$E[starttime,]-Hist$I[starttime,]-Hist$R[starttime,] 
   
  #If not starting from first day, assign state values to be equal to previous state in the same 
particle 
  if(starttime>1) 
  { 
    for(i in 1:n_particles) 
    { 
      ancestor=i 
      counter=currenttime 
      for(counter in currenttime:(starttime+1)){ancestor=Hist$parent[counter,ancestor]} 
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        Hist$E[starttime,i]=Hist$E[starttime,ancestor] 
        Hist$I[starttime,i]=Hist$I[starttime,ancestor] 
        Hist$R[starttime,i]=Hist$R[starttime,ancestor] 
        Hist$ 
S[starttime,i]=Hist$N-Hist$E[starttime,i]-Hist$I[starttime,i]-Hist$R[starttime,i] 
    }  
  } 
   
  Hist 
} 
 
maxdays=52 
options(warn=-1) 
 
#Create "dataset" to store data, read the number of ILIs in private clinics and polyclinics 
respectively 
dataset=list() 
v=read.table(paste("C:/Users/Vincent/Desktop/Vincent - PhD/H1N1 - Cook 
Code/ILIs.txt",sep=""),sep=',') 
dataset$ndr_priv=v[[1]] 
dataset$ILI_priv=v[[2]] 
dataset$other_priv=v[[3]] 
dataset$ndr_poly=v[[4]] 
dataset$ILI_poly=v[[5]] 
dataset$other_poly=v[[6]] 
dataset$day=1:maxdays;rm(v) 
 
#Read population size 
v=read.table(paste("C:/Users/Vincent/Desktop/Vincent - PhD/H1N1 - Cook 
Code/population_size.txt",sep="")) 
dataset$popn_size=v[[1]];rm(v) 
 
#Read first day and store index for the day of week for first day in "dow" 
v=read.table(paste("C:/Users/Vincent/Desktop/Vincent - PhD/H1N1 - Cook 
Code/firstday.txt",sep="")) 
dataset$date.day=v[[1]] 
if(v[[1]]=="1" | v[[1]]=="1")dataset$dow=1 
if(v[[1]]=="2" | v[[1]]=="2")dataset$dow=1 
if(v[[1]]=="3" | v[[1]]=="3")dataset$dow=1 
if(v[[1]]=="4" | v[[1]]=="4")dataset$dow=1 
if(v[[1]]=="5" | v[[1]]=="5")dataset$dow=1 
if(v[[1]]=="6" | v[[1]]=="6")dataset$dow=1 
if(v[[1]]=="7" | v[[1]]=="7")dataset$dow=1 
if(v[[1]]=="8" | v[[1]]=="8")dataset$dow=1 
if(v[[1]]=="9" | v[[1]]=="9")dataset$dow=1 
if(v[[1]]=="10" | v[[1]]=="10")dataset$dow=1 
if(v[[1]]=="11" | v[[1]]=="11")dataset$dow=1 
if(v[[1]]=="12" | v[[1]]=="12")dataset$dow=1 
if(v[[1]]=="13" | v[[1]]=="13")dataset$dow=1 
if(v[[1]]=="14" | v[[1]]=="14")dataset$dow=1 
if(v[[1]]=="15" | v[[1]]=="15")dataset$dow=1 
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if(v[[1]]=="16" | v[[1]]=="16")dataset$dow=1 
if(v[[1]]=="17" | v[[1]]=="17")dataset$dow=1 
if(v[[1]]=="18" | v[[1]]=="18")dataset$dow=1 
if(v[[1]]=="19" | v[[1]]=="19")dataset$dow=1 
if(v[[1]]=="20" | v[[1]]=="20")dataset$dow=1 
if(v[[1]]=="21" | v[[1]]=="21")dataset$dow=1 
if(v[[1]]=="22" | v[[1]]=="22")dataset$dow=1 
if(v[[1]]=="23" | v[[1]]=="23")dataset$dow=1 
if(v[[1]]=="24" | v[[1]]=="24")dataset$dow=1 
if(v[[1]]=="25" | v[[1]]=="25")dataset$dow=1 
if(v[[1]]=="26" | v[[1]]=="26")dataset$dow=1 
if(v[[1]]=="27" | v[[1]]=="27")dataset$dow=1 
if(v[[1]]=="28" | v[[1]]=="28")dataset$dow=1 
if(v[[1]]=="29" | v[[1]]=="29")dataset$dow=1 
if(v[[1]]=="30" | v[[1]]=="30")dataset$dow=1 
if(v[[1]]=="31" | v[[1]]=="31")dataset$dow=1 
if(v[[1]]=="32" | v[[1]]=="32")dataset$dow=1 
if(v[[1]]=="33" | v[[1]]=="33")dataset$dow=1 
if(v[[1]]=="34" | v[[1]]=="34")dataset$dow=1 
if(v[[1]]=="35" | v[[1]]=="35")dataset$dow=1 
if(v[[1]]=="36" | v[[1]]=="36")dataset$dow=1 
if(v[[1]]=="37" | v[[1]]=="37")dataset$dow=1 
if(v[[1]]=="38" | v[[1]]=="38")dataset$dow=1 
if(v[[1]]=="39" | v[[1]]=="39")dataset$dow=1 
if(v[[1]]=="40" | v[[1]]=="40")dataset$dow=1 
if(v[[1]]=="41" | v[[1]]=="41")dataset$dow=1 
if(v[[1]]=="42" | v[[1]]=="42")dataset$dow=1 
if(v[[1]]=="43" | v[[1]]=="43")dataset$dow=1 
if(v[[1]]=="44" | v[[1]]=="44")dataset$dow=1 
if(v[[1]]=="45" | v[[1]]=="45")dataset$dow=1 
if(v[[1]]=="46" | v[[1]]=="46")dataset$dow=1 
if(v[[1]]=="47" | v[[1]]=="47")dataset$dow=1 
if(v[[1]]=="48" | v[[1]]=="48")dataset$dow=1 
if(v[[1]]=="49" | v[[1]]=="49")dataset$dow=1 
if(v[[1]]=="50" | v[[1]]=="50")dataset$dow=1 
if(v[[1]]=="51" | v[[1]]=="51")dataset$dow=1 
if(v[[1]]=="52" | v[[1]]=="52")dataset$dow=1 
 
Resampling=function(H) 
{  
  #Resample the particles according to weights and then assign uniform weights to the new 
sample 
  H2=H 
  t=H$t 
   
  if(sd(Hist$weight[t,])/mean(Hist$weight[t,])>1) 
  { 
    resample=sample(1:H$n_particles,H$n_particles,replace=TRUE,prob=H$weight[t,]) 
   
    H2$S[t,]=H$S[t,resample] 
    H2$E[t,]=H$E[t,resample] 
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    H2$I[t,]=H$I[t,resample] 
    H2$R[t,]=H$R[t,resample] 
    H2$D[t,]=H$D[t,resample] 
    H2$beta[t,]=H$beta[t,resample] 
    H2$epsilon[t,]=H$epsilon[t,resample] 
    H2$gamma[t,]=H$gamma[t,resample] 
    H2$lambda[t,]=H$lambda[t,resample] 
    H2$falseflu[t,]=H$falseflu[t,resample] 
    H2$loglikelihood[t,]=H$loglikelihood[t,resample] 
    H2$parent[t,]=resample 
    H2$urparent[t,]=H$urparent[t,resample] 
     
    H2$delta1[t,]=H$delta1[t,resample] 
 
    H2$weight[t,]=1/H$n_particles 
  } 
  H2 
} 
 
Reweighting=function(H) 
{ 
  #Calculation of weights based on loglikelihoods 
  t=H$t 
  weightMax = max(H$loglikelihood[t,]) 
  H$weight[t,] = exp(H$loglikelihood[t,]-weightMax) 
  cp = 0; cp = sum(H$weight[t,]) 
  H$weight[t,] = H$weight[t,] / cp 
  H 
} 
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Appendix D 
 

Joint model 

 

 

 

 

 

 

 

 

 
 



- 270 - 
 

##ILIs per 8 GPs 
CI=matrix(0,predictuntil,Nbounds) 
CI1=matrix(0,predictuntil,Nbounds) 
sa = sample(1:Hist$n_particles,20000,replace=TRUE) 
Ancestors=sa 
errorsample=0 
for(t in predictuntil:1) 
{ 
  ns=Hist$I[t,Ancestors] 
  #ns1=772+4.49*Hist$I[t,Ancestors] 
  p1 = Hist$delta1[t,] 
 
  p2 = 1 #propn going to private 
  p3 = 1/300 #propn cases from private practice making it into data 
  ps = p1*p2*p3 
  xs = ns*ps#rbinom(length(ns),ns,ps) 
  #xs1 = ns1*ps#rbinom(length(ns1),ns1,ps) 
  
    h=0.9;xbar=mean(xs);sigma=var(xs);x_new=rnorm(length(xs),0,sqrt(sigma))*sqrt(1-h*h) 
    x_new=x_new+xbar+h*(xs-xbar);x_new=pmax(x_new,rep(0,length(x_new))) 
    x_new=x_new+Hist$falseflu[t,Ancestors]*p1 
 
# Creating the model based on the number of actual ILIs being reported by GPs 
    x_new=x_new *dataset$ndr_priv[1:t]  
    lm1=lm(dataset$other_priv[1:t]~dataset$ILI_priv[1:t]) 
    parA=lm1$coefficient[1] 
    parB=lm1$coefficient[2] 
    x_new1=parA+parB*x_new   
    if(t>DAYSTOREAD & t<=(DAYSTOREAD+52)) 
    { 
      target=(dataset$ILI_priv/dataset$ndr_priv)[t] 
      target1=(dataset$other_priv/dataset$ndr_priv)[t] 
      diffs=abs(x_new-target) 
      diffs1=abs(x_new1-target1) 
      errorsample=errorsample+mean(diffs) 
      errorsample1=errorsample+mean(diffs1) 
      #print(mean(diffs)) 
    } 
  CI[t,]=quantile(x_new,probs,na.rm=TRUE) 
  CI1[t,]=quantile(x_new1,probs,na.rm=TRUE) 
  if(t<predictuntil)Ancestors=Hist$parent[t,Ancestors] 
} 
write.table(round(CI,4),paste("C:/Users/Vincent/Desktop/Vincent - PhD/H1N1 - Cook 
Code","/output/v1_",DAYSTOREAD,".txt",sep=""),col.names=FALSE,row.names=FALSE) 
write.table(round(CI1,4),paste("C:/Users/Vincent/Desktop/Vincent - PhD/H1N1 - Cook 
Code","/output/v11_",DAYSTOREAD,".txt",sep=""),col.names=FALSE,row.names=FALSE) 
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Appendix E 
 

The parameters of the Linear 
Regression model  

(Chapter 4 – Joint model) 
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Figure E.1 –Parameter values for the linear regression between the weekly consultations (dependent 
variable) and the weekly diagnosed (independent variable) of the 2011/2012 outbreak. These 
parameters were updated at each individual time point during the course of the outbreak. The green 

dashed line is the general parameter ߢ for the above 2011/2012 linear regression model (Table 4.1) 

and the violet dashed line is the general parameter ∆ for the above 2011/2012 linear regression model 
(Table 4.1). 

 
Figure E.2 –Parameter values for the linear regression between the weekly consultations (dependent 
variable) and the weekly diagnosed (independent variable) of the 2012/2013 outbreak. These 
parameters were updated at each individual time point during the course of the outbreak. The green 
dashed line is the general parameter ߢ for the above 2012/2013 linear regression model (Table 4.1) 

and the violet dashed line is the general parameter ∆ for the above 2012/2013 linear regression model 
(Table 4.1). 
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Figure E.3 –Parameter values for the linear regression between the weekly consultations (dependent 
variable) and the weekly diagnosed (independent variable) of the 2013/2014 outbreak. These 
parameters were updated at each individual time point during the course of the outbreak. The green 
dashed line is the general parameter ߢ for the above 2013/2014 linear regression model (Table 4.1) 

and the violet dashed line is the general parameter ∆ for the above 2013/2014 linear regression model 
(Table 4.1). 

 
Figure E.4 –Parameter values for the linear regression between the weekly consultations (dependent 
variable) and the weekly diagnosed (independent variable) of the 2014/2015 pandemic outbreak. 
These parameters were updated at each individual time point during the course of the outbreak. The 
green dashed line is the general parameter ߢ for the above 2014/2015 linear regression model (Table 

4.1) and the violet dashed line is the general parameter ∆ for the above 2014/2015 linear regression 
model (Table 4.1). 
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Appendix F 
 

Ethics form for the cross-sectional 
survey 
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PSYCHOLOGY DIVISION ETHICAL APPROVAL FORM 
 
Check one box:       STAFF project            UNDERGRADUATE project          POSTGRADUATE project       
 
Title of project Understanding the under-reporting of the Seasonal Influenza 
 
Name of Researcher(s): Vincent Marmara    
 
Email Address: vam@cs.stir.ac.uk 
 
Name of Supervisor(s) (for student research) Prof Adam Kleczkowski 
 
Date: 28th July 2015 
 

 
Postgraduate and Staff Projects 
Please indicate your source of funding (Division, Research Council, Govt, Charity, etc) 
Self-funded 

 
  Yes No N/A 

1 Will you tell participants that their participation is voluntary? 
    

2 Will you tell participants that they may withdraw at any time and for any reason? 
   

3 Will you obtain written consent for participation? 
   

4 Will you tell participants that their data will be treated with full confidentiality and 
that, if published, it will not be identifiable as theirs?    

5 If an experiment, will you describe the main experimental procedures to participants 
in advance, so that they are informed about what to expect?    

6 With questionnaires, will you give participants the option of omitting any questions 
they do not want to answer?    

7 If the research is observational, will you ask participants for their consent to being 
observed?    

8 Will you debrief participants at the end of their participation (i.e. give them a brief 
explanation of the study)?     

If you have ticked No to any of Q1-8, you should normally tick box B overleaf; if not, please give an explanation on a 
separate sheet..  [Note: N/A = not applicable] 
 

If you have ticked Yes to any of Q9 - 13 you should normally tick box B overleaf; if not, please give an explanation 
on a separate sheet. 
 

  Yes No N/A 

9 Will your project involve deliberately misleading participants in any way?    

10 Is there any realistic risk of you or any participants experiencing either physical or 
psychological discomfort, distress or harm?  

   

11 Will you be administering drugs or other substances to your participants, or taking 
fluid or other samples from them? 

   

12 Does your project involve work with animals?     

13 Do participants fall into any of the 
following special groups? If they do 
please refer to BPS guidelines, and 
tick box B overleaf. 
 
Note that you may also need to 
obtain satisfactory CRB clearance (or 
equivalent for overseas students) 

Schoolchildren (under 18yrs)    

People with learning or communication 
difficulties 

   

Patients    

People in custody    

People engaged in illegal activities (e.g. drug 
taking) 
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DECLARATION 
I am familiar with the BPS Guidelines for ethical practices in psychological research.  I understand that there is an 
obligation on the lead researcher to bring to the attention of the Ethics Committee any issues with ethical 
implications not clearly covered by the checklist. 
 
Please tick to confirm:   
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PLEASE TICK EITHER BOX A OR BOX B BELOW AND PROVIDE THE DETAILS REQUIRED IN SUPPORT OF YOUR 
APPLICATION.   

Please tick 
A.  I consider that this project has no specific ethical implications to be brought before the 
Division Ethics Committee   

Give a brief description of participants and procedure (methods, tests used etc) in around 200 words.  

Checklist for a Part A submission:- Please 
tick 

 Project title  

 Number of participants and how they will be recruited  

 Start and end dates  

 Brief description of methods and measurements  

o Where participants will be tested  

o How materials will be administered  

o Any novel questions or questionnaires are included with submission  

o Length of time for each participant  

 Information/ consent form attached  

o Participant allowed to withdraw at any time  

o All individual data will be confidential  

 Debriefing form attached  

 
 

B. I consider that this project may have ethical implications that should be brought before the 
Division committee, and/or it will be carried out with children or other vulnerable populations  

Please provide details on a separate sheet. 

Checklist for a Part B submission:- Please 
tick 

 Project title  

 Purpose of project and its academic rationale  

 Number of participants (age, gender, exclusion/inclusion criteria) and how they will be 
recruited 

 

 Start and end dates  

 Brief description of methods and measurements  

o Where participants will be tested  

o How materials will be administered  

o Any novel questions or questionnaires are included with submission  

o Length of time for each participant  

 Information/ consent form attached (this is not required as data collection is conducted 
by telephone interview, further details in ‘Project Summary’) 

 

o Participant allowed to withdraw at any time  

o All individual data will be confidential  

 Debriefing form attached  

 A clear but concise statement of ethical considerations raised by the project and how 
you intend to deal with them. 
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This form should be submitted by email to the Psychology Ethics Committee for 
consideration (psychethicssubs@stir.ac.uk).  Please include the name of the applicant in the 
‘Subject’ line of the email. Students should send the form to their supervisor who, after 
checking it, will forward it to the Psychology Ethics Committee.  
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Project Summary (Part B) 
Understanding the under-reporting of the Seasonal 

Influenza  
Vincent Marmara, PhD Student, University of Stirling 

 

The main objective of this study is to understand the under-reporting of the Seasonal 

Influenza in Malta. During the Seasonal Influenza period, a number of people visit their 

GP to be tested for Seasonal Influenza. However, it is believed that a significant portion 

of the population still did not visit their GP to be examined (Marmara et. al., 2014; WHO, 

2010; Ishak et al., 2011). Hence, further research is required to understand this important 

factor to be able to set better health strategies and to plan the appropriate interventions. 

Why is this important to study and what are the benefits of the study for the whole 

population? 

The last two decades have seen several large-scale epidemics of international importance, 

including human, animal, and plant epidemics (Fisher et. al., 2012). Notable among these 

are avian and swine influenza, SARS, foot-and-mouth disease, Dutch elm disease, citrus 

canker, sudden oak death, and rhizoctonia.  There is therefore a pressing need to construct 

models that allow us to use all available information to predict an emerging outbreak and 

to control it as quickly and as efficiently as possible (Marmara et. al., 2014).  Epidemic 

data sets are typically short and have unobserved compartments (Chong et. al., 2014). For 

example, when individuals are infected but do not show symptoms, it is usually 

impossible to estimate their number and locations. Even for patients that do exhibit 

symptoms, very often only a limited proportion of cases are noted by the authorities. 

Some locations or groups of individuals are also notoriously difficult to assess. However, 

in many cases we can gather auxiliary information from different sources, for example 

by conducting horizontal serological studies giving us a snapshot of information at a 

single time point but with much broader and detailed information than longitudinal 

studies carried over time (Laurie et. al., 2013). This research intends to improve the 

‘missing data’ problem by acquiring further information about the actual extent of the 

number of influenza cases within the Maltese population. Hence, such results aim to 

improve the understanding of the spread of the seasonal influenza amongst the population 
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and thus will serve as a good basis to authorities to take the necessary steps to control the 

spread of influenza. Furthermore, this telephone survey will aim to improve the 

knowledge of symptoms and seasonal influenza amongst participants. 

Methodology 

In this study, a questionnaire was designed to include a number of influenza-related 

questions. In fact, the questionnaire includes several questions regarding whether 

participants had experienced the seasonal influenza and whether they had any particular 

symptoms. Furthermore, respondents are given a list of symptoms to evaluate whether 

they actually had experienced these symptoms during the past year, thus assessing to what 

extent citizens know the definition of seasonal influenza. These questions are then tested 

against several demographics and general information regarding the individual’s 

characteristics. Before commencing the actual data collection the questionnaire will be 

tested on a small sample of 20 individuals to ensure that all questions are understandable 

and all replies are in-line with the above objective. Hence if required the questionnaire 

will be amended accordingly.  

To ensure a good response rate, the study will be carried out through the use of telephone 

surveys. The interview will be conducted in Maltese, however if participants prefer to 

answer in English, this option will be available as well. The study will comprise a sample 

of 400 Maltese individuals from a population of around 349,724 individuals (National 

Statistics Office, Malta, 2015). Hence, the study will be carried out through a 95% 

confidence level and 4.9% confidence interval as shown below.  

 
Figure 1 – Sample Size (Creative Research Systems, 2012) 
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The criteria for selection will include quota sampling by age, district and gender. 

Telephone numbers will be selected from the telephone directory using systematic 

sampling to ensure a representative sample of the Maltese population. As for the inclusion 

criteria for this study, only individuals of 18 years and older will be asked to reply to the 

questionnaire. Following an explanation of the main purpose of this research, individuals 

will be invited to participate in the study. They will be given the option to opt out from 

this research study at any time during the 5-minute telephone survey. Furthermore, they 

will be informed that their information will be kept confidential.  

The following statement will be used at the starting point of each interview: 

“Currently, I am carrying out a research about the seasonal influenza amongst Maltese 

Citizens as part of my PhD Study. Would you like to participate in this interview? This 

will only take 5 minutes of your time. All the information you provide will be treated in 

strict confidence and your identity will not be revealed at any point.” 

If the individual agrees to participate, the following statement will be: 

“Thank you for deciding to participate in this study. Feel free to refuse to answer any 

questions or to terminate this interview at any point.” 

It is being planned that the data will be collected during August and September 2015 and 

analysis will be concluded by July 2016. During the whole research pathway, the 

researcher will ensure that all processes are being administered in line with this ethics 

application. 

 

Hypothesis and main questions: 

The main hypothesis of this research is: 

“The actual number of influenza cases amongst Maltese citizens is significantly 

higher when compared to the total number of influenza cases reported by GPs.” 

Since we are already in possession of seasonal influenza data from a sample of Maltese 

GPs, we will be able to compare the latter data with the new collected data. Moreover, 

this hypothesis will be compared with several variables as one can see from the attached 

questionnaire. In fact, the researcher will compare the above hypothesis with 

demographical variables, several questions related to the influenza symptoms and other 
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related influenza questions. Furthermore, data will be analyzed in a way to better 

understand several seasonality factors and hence this will serve as a good aid for influenza 

prediction modelling and to understand further the extent of the spread of seasonal 

influenza. 

Analysis 

Following data collection (August – September 2015), data analysis will be commenced 

followed by scientific models to elicit the most important factors through means testing, 

factor analysis and other scientific statistical techniques. Data analysis will be conducted 

in aggregated format only. It is estimated that this analysis will be concluded by July 

2016. Throughout this research study, mainly R software will be used. 

Costs 

Throughout this survey, only costs for telephone calls will be incurred by the researcher 

as data collection will be conducted by the latter. It will only take approximately 5 

minutes of the individual’s time and hence this is the only envisaged burden for 

participants. 

Local requirements and ethical considerations 

In Malta, in order to conduct such a research study, it is not required to get an approval 

from a board since telephone numbers that are being used are public and taken randomly 

from the telephone directory. Moreover, individuals are free to opt out from this 

telephone interview or to refuse to answer any questions as explained above and in the 

‘debrief’. Additionally, no risks are envisaged throughout the study. 

Furthermore, data will be analyzed in aggregated format and hence this research study 

will not be looking at data collected on a case by case basis. 
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Survey 2014/2015 results 
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Table G.1 – Respondents’ marital status 
 

 
Table G.2 – Respondents’ occupational status 
 
 

 
Table G.3 – Respondents’ level of education 
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Table G.4 – Respondents’ number of individuals in their household 
 

 
Table G.5 – Respondents’ main means of transport 
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Table G.6 – Respondents’ flu vaccine uptake compared with their respective age group. 
 

 
Table G.7 – Chi-Square test of association between flu vaccine uptakes compared with their respective 
age group. 
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Table G.8 – Respondents’ reasons for not taking the flu vaccine. 
 
 

 
Table G.9 – The number of times respondents visit their GP throughout the whole year. 
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Table G.10 – Respondents’ frequency of regular medication compared with their respective age 
group. 
 

 
Table G.11 – Chi-Square test of association between the frequencies of regular medication compared 
with their respective age group. 
 
 



- 290 - 
 

 
Table G.12 – Cross tabulation between the frequencies of smokers compared with gender. 
 

 
Table G.13 – Chi-Square test of association between the frequencies of smokers compared with gender. 
 

 
Table G.14 – The number of cigarettes respondents consume per day. 
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Table G.15 – The number of days for the influenza-like-illness symptoms to persist according to survey 
respondents. 
 
 

 
Table G.16 – The number of days for the seasonal influenza to persist according to survey respondents. 
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Nights at hospital due to the seasonal influenza:

 
Table G.17 – The number of days of hospitalisation due to seasonal influenza. 
 
 

 
Table G.18 – Household members that had acquired the seasonal influenza. 
 
 

 
Table G.19 – The number of members within the respondents’ household that had acquired the 
seasonal influenza. 
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Appendix H 
 

The SEIR model 
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# Applying the SEIR Model in R without applying the particle filter algorithm: 
  
 tn=29 
   SS <- numeric(tn) 
   II <- numeric(tn)  
   EE <- numeric(tn)  
   RR <- numeric(tn)  
   AA <- numeric(tn) 
   DD <- numeric(tn) 
 
   SS[1]  <- 259560 
   II[1]  <-  2220 
   EE[1]  <-  2220 
   RR[1]  <-  150000 
 
   N = 414000 
 
# previous posterior time-dependent average parameter values#  
# considering the parameters from (t=2) when temperature drops#  
v1=matrix((scan("SeasonalParValues.txt")),byrow=T,ncol=4) 
# applying the observed model Dt# 
v2=matrix((scan("SeasonalParValuesObs.txt")),byrow=T,ncol=2) 
 
 
   for (t in 2:tn) 
{   
AA = (1-exp((-v1[t,1]-v1[t,4]*II[t-1])/N)) 
BB = (1-exp(-1/v1[t,2])) 
CC = (1-exp(-1/v1[t,3])) 
 
    A = rbinom(1, SS[t-1], AA) 
    B = rbinom(1, EE[t-1], BB) 
    C = rbinom(1, II[t-1], CC) 
 
     SS[t]    <- SS[t-1] - A 
     EE[t]    <- EE[t-1] + A - B 
     II[t]      <- II[t-1] + B - C 
     RR[t]    <- RR[t-1] + C 
     DD[t]    <- v2[t,2]*(v2[t,1]*300+II[t]) 
   } 
 
par(mfrow=c(3,2),mar=c(2,5,1,4)) 
plot(SS) 
plot(EE) 
plot(II) 
plot(RR) 
plot(DD) 
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Appendix I 
 

Forecast of the spread of the seasonal 
influenza based on the SEIR model 
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Figure I.1 - 2011/2012 diagnosed ILI forecasts through the SEIR model 

 

 

 
Figure I.2 - 2012/2013 diagnosed ILI forecasts through the SEIR model 
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Figure I.3 - 2013/2014 diagnosed ILI forecasts through the SEIR model 

 

 

 

 
Figure I.4 - 2014/2015 diagnosed ILI forecasts through the SEIR model 
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Figure I.5 - 2015/2016 diagnosed ILI forecasts through the SEIR model 
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Appendix J 
 

My research paper as reported by the 
‘Times of Malta’ 

 

 

 

 

 

 

 



- 300 - 
 

 


