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SUMMARY
An attempt was made to investigate the decision processes 

of subjects in a bivariate decision making task, similar to 

that facing a medical specialist who is required to classify a 

patient as belonging to one of a number of possible disease 

populations on the basis of the patient's scores of two predictor 

cues. It was felt that such tasks had been largely neglected in 

experimental psychology, where the tendency has been towards 

requiring subjects to learn relationships between continuous 

predictor variables and a continuous criterion, rather than 

between continuous predictor variables and a categorical 

criterion.
When the relationship between the predictor variables is 

the same in both the populations to be discriminated, the best 

decision function is based on a linear combination of the cues 

(Fisher’s Linear Discriminant Function). It was found that the 

decisions of those subjects who learned to use the cues in a 

way which was at all valid in such situations, could be well 

approximated by a model which weighted the two cues equally in 

a linear combination and based it’s decisions on the result.

When the relationship between the predictor variables 

differs from one population to the other, however, the best 

decision function becomes more complex, including terms in the 

squares and cross-products of the cues. It was felt that such 

situations are particularly relevant to medical decision making 

where clinicians have frequently claimed that the "pattern" of 

scores of a patient is important, not Just the individual scores 

on each cue. It was found that if differences in cue inter
correlation were large, then subjects seemed to inolude in their
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decision processes, some nonlinear term to take account of 

this fact. If, however, differences in cue intercorrelation 

were only moderate, or if the correlations involved were large 

hut negative, this seemed to go unnoticed by the subjects and 

did not lead to any reliance on nonlinear terms.

The results show that previous findings in "real life" 

tasks, that decision making processes could be adequately 

represented as linear combinations of cues, may be due more to 

the linear nature of the tasks than to any predisposition 

towards linear processes on the part of human decision makers, 

and that the statistical properties of "real life" tasks must be 

more thoroughly investigated before it is assumed that they 

require nonlinear decision processes.
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GENERAL INTRODUCTION

This research is concerned with the ability of human 

subjects to learn to combine information from more than one 

unreliable cue, in order to classify a person or object as 

belonging to one of a 'finite' number of populations. The 

experiments to be described were intended to represent what 

is traditionally regarded as being the situation facing a 

physician engaged in medical diagnosis. The medical 

specialist, when faced with the task of diagnosing the 

complaint of a patient, has a number of information sources 

open to him (e.g. records, test results). The information 

from these sources must be combined in some way so as to enable 

him to decide into what diagnostic category the patient should 

be placed.

It should be pointed out that much of medical decision 

making is not concerned with diagnosis of the above kind. The 

approach to many problems would appear to be far more empirical! 

a choice between a number of alternative actions e.g. 

administration of one drug rather than another, drug therapy 

rather than surgery; with future actions dependent on the 

outcome of previous ones. Such an approach is adopted since 

there will not, in general, be a one to one relationship between 

disease and treatment; one treatment being a possible cure of a 

number of complaints and one complaint being susceptible to a 

number of different treatments. In such a context then it can
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be seen that diagnosis, as described above, may only have a 

secondary role« The prime aim being to find a treatment which 

will bring relief to a suffering patient. The pure diagnosis 

task is in fact probably most familiar to workers in psychological 

medicine and it is in this field that most of the psychological 

investigation has been conducted.

What research has been carried out into the behaviour of 

subjects in tasks of the above kind, in an attempt to discover 

the way in which such decisions are reached, and the accuracy of 

the final diagnosis, has, by the very nature of the task, had to 

leave variables uncontrolled e.g. the experiences of the judges, 

the accuracy and degree of feedback (often due to the lack of an 

objective criterion), the representativeness of the samples presented 

etc. For this reason, in the experiments to be described, pre

existing decision processes were not investigated, rather, subjects 

were provided with situations in which they could learn the 

relationships between cues and criterion.

Previous research on the ability of subjects to learn the 

relationships between cues and criterion has differed from that 

reported here in a number of ways. The most fundamental difference 

being that in the present experiment there exist two populations 

which are to be discriminated whereas in previous studies the 

task facing the subject has been the subdivision or partitioning 

of one general population. It is felt that the difference in 

approach is probably a reflection of two different kinds of task 

occurring in real life. For example, if one is required to



distinguish between intelligent and unintelligent faces it would 

seem more reasonable to regard these as members of one overall 

population of faces rather than regard "intelligent" faces as one 

population and "unintelligent" faces as another. If, on the 

other hand, one was required to distinguish between the faces of 

mongols and the faces of normals, it would be far more reasonable 

to regard these as two distinct populations. The distinction 

being made is between those differences due to the action of a 

large number of factors, as in the determination of intelligence, 

and those due to some underlying fundamental cause (probably 

physiological or genetic) as in the determination of mongolism.

This distinction is not however always easy to make, as is evidenced 

by the conflict between the "type" and "trait" theories of 

personality (c.f. Bischof 19 6 4). The former regard such groups 

as schizophrenics, neurotics etc., as populations in their own 

right, whereas, the latter regard them simply as the extreme tails 

of the population of normal individuals.

It seems particularly appropriate to regard decision 

categories as distinct populations, when there is a reason to 

believe that the interrelations between particular variables 

differs from one category to another, clinicians, for instance, 

have often claimed that they consider the "pattern" of scores of 

patients, not just the individual score values, (c.f. Meehl 

(1954)i Hoffman, Slovic and Rorer (1968)). We might consider 

why clinical psychologists should go to the trouble of joining 

up the scores of an individual on the sub-tests of the M.M.P.I.
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or the 16 P.F. to form a personality profile, if they did not 

think that this extra cue (i.e. the pattern of the scores) was 

of some predictive use to them.

The configural and curvilinear utilization of cues is a 

topic which has been of great interest to researchers 

investigating decision making behaviour in real life tasks, 

but these researchers, have always been at the disadvantage of 

not knowing whether the tasks required non-linear utilization 

of cues, and if they did, what manner of non-linearity was 

required. One advantage of the present experiments is that the 

research can be designed so as to imply the validity of certain 

non-linear cues known to the experimenter, without making the 

tasks unnecessarily artificial.

In the following pages, three experiments are described 

which were designed to investigate the effects of various features 

of a two population discrimination task on a number of behavioural 

indices, but before these are described in detail, the papers 

forming the psychological background of the present research will 

be reviewed. First, the research dealing with behaviour in real 

life tasks will be discussed, its methods, aims and limitations; 

and then that research dealing with the ability of subjects to 

learn relationships between cues and criterion will be discussed. 

These pieces of research will be drawn upon in the individual 

introductions to the experiments, but are reviewed together at 

tiiis point in order to make their presentation more systematic. 

The notation followed throughout this introduction is that



provided by the statistical formulation of Brunswicks Lens 

Model, and a brief outline of this is given in Appendix A.
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LITKRATTJRE REVIEW

The psychological research into this area of decision 

making may be divided into two categories

1 That research dealing with "real life" situations, 

where the judges are assumed to possess already, 

decision processes which relate the predictor 

cues to the criterion.

2 That research dealing with the behaviour of 

subjects in situations where no such process 

can be assumed to exist, but where subjects 

are given an opportunity of developing suitable 

decision processes over the period of 

experimentation.

"Real Life" Tasks

In the real life situations, it is not always clear 

whether the experimenter regards the task as one in which a 

decision must be made between two or more populations, or 

one in which the decision categories are simply subdivisions 

of one population, though in most of the experiments one of 

the two alternatives is clearly a better representation of 

the situation. Such a distinction might not lead researchers 

in this area to alter their experimental design or methods of 

data analysis to any great degree, but it could have made 

clear some of the drawbacks of those experiments attempting 

to simulate such situations in learning tasks.

The earliest research efforts of psychologists in the 

field of clinical judgements yielded rather discouraging



results. For many tasks in psychological medicine the amount 

of training and experience of the judge was found not to relate 

to his judgemental accuracy (c.f. Goldberg 1959? Johnston and 

McNeal, 1967; Luft, 1950; Oskamp, 1962). Equally disheartening, 

there now exist a number of studies demonstrating that the amount 

of information available to the judge is not related to the 

accuracy of his resulting inferences, (c.f. Goldberg, 19 68).

As a consequence of these sorts of findings, the focus 

of research turned from such validity studies to investigations 

of the process of clinical inference, the aim of which is to 

"represent" (or "simulate" or "model") the hidden cognitive 

processes of the clinician as he makes his judgemental 

decisions. Hopefully, with a better understanding of the 

processes, clinical training procedures may be improved, and 

judgemental accuracy increased.

This research then, attempts to discover some manipulation 

or transformation which, when applied to the predictor cues, 

yields responses or predictions identical to those of the human 

judge. If such a transformation can be found, then it is 

implicitly assumed that similar processes take place within the 

clinician.

Hoffman (i960) has pointed out some of the possible 

pitfalls in such an approach. He distinguishes between 

"isomorphic" and "paramorphic" representations of human decision 

processes (borrowing the two terms from minerology)• An 

"isomorphic" representation of a process is a true model in eveiy
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sense. It predicts all the reactions of the process perfectly, 

under all conditions. As such, it is the unattainable end of 

all scientific investigation. However, if the model is able to 

predict the judges responses well (but not perfectly) it is said 

to be a "paramorphic" representation of the judgemental process. 

The model helps to account for or "explain" many, though not 

all, properties or characteristics of the process. The model 

is also useful in making predictions concerning the outcomes 

of certain other tests which may be employed. But, as with 

chemical analysis, the mathematical description of judgement is 

inevitably incomplete, for there are other properties of judgement 

still undescribed, and it is not known how completely or 

accurately the underlying process has been represented.

It is possible that two or more models may be capable of 

accounting for judgement variance with equal efficiency.

Consider for example, a given model which is highly accurate 

in predicting judgements from the information given. In this 

sense, we may be said to have "described" or "characterized" 

the judgement process, but one important qualification is 

necessary. Even in the hypothetical situation in which prediction 

is perfect, one cannot conclude that the mental process has been 

"discovered" even among sets of mathematical models which are 

ostensibly different, there may be some which are in fact 

equivalent with respect to explanatory power.

For example - let us assume that for a particular judge, 

his judgements can be predicted from and Xj with 95^



accuracy by the following equation.
A / p p
Ts -  4 V X1 + 2X1X2 + X2

The right hand term is simply the positive square root of the 

binomial(x,j + Xj)^ • Since X^ + X,, = + X^ + 2X^X^ +

it follows that

*s ' X1 + X2
will account for the judgements equally well. It is therefore, 

no more reasonable to conclude that the judge is in fact "using" 

one particular combination of the information than it is to 

conclude that he is "using" the other. Different criteria must 

be established before such a choice may be intelligently made.

The question arises, what sort of judgemental models should 

be tried? Since introspective accounts have been interpreted as 

implying curvilinear, configural and sequential judgement processes, 

(e.g. KcArthur 1954, Meehl 1954, I960; Parker 1958) one possible 

strategy is to begin with fairly complex representations, perhaps 

with an eye to seeing how they may be simplified. For example 

Kleinmuntz (1968) had a clinical psychologist "think aloud" into 

a tape recorder, as he made judgements about the adjustment of 

college students, on the basis of their K.N.P.I. profiles. 

Kleinmuntz then used these introspections to construct a computer 

program) simulating the clinician's thought processes. The 

resulting program was a complex sequential (e.g. hierarchical or 

tree) representation of the clinician's verbal reports. Such an 

approach has many points of interest, but parsimony is one of 

the aims of science, and the next approach to be discussed is



far more acceptable on this ground.

At the other end of the complexity scale, the investigators 

at two major research centres - The Oregon Research Institute and 

the Behavior Research Laboratory of the University of Colorado - 

have concentrated attention on a very simple model which could be 

modified to take in more complex terms, if this was shown to be 

necessary. They likened the judgemental process to a simple 

linear weighting of the cue dimensions

Such a model had been used by Meehl (1954) in a comparison 

of the accuracies of clinical and actuarial prediction and had 

been found to perform significantly better than the human judge.

Now, however, the model is being used not to predict some 

objective criterion, but to predict the judgements of the clinician.

In the light of the previously mentioned claims of clinicians 

that their cognitive processes are complex ones, involving the 

nonlinear utilization of cues, it would be Expected that the 

linear additive model would provide a poor representation of 

their judgements. Consequently, it might be anticipated that it 

would be necessary to introduce into the model, mathematical 

expressions to represent such processes.

The curvilinear utilization of a cue may be represented by 

including in the model a term in the square or higher power of 

that cue.
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other transformation of the cues which might be felt to represent 

the types of nonlinearity claimed.

It is hoped then, that the inclusion of such curvilinear 

and interactive terms will, if they have any validity, produce 

significantly better predictions of the judges responses, thus 

justifying the claims of clinicians that they do not combine 

information in a simple, linear way.

Before we go on to look at some of the tools used by 

researchers in their attempts to model the judgemental process 

in such efforts, we must first discuss a problem which arises 

from the use of the term "Linear Model".

To the statistician a "linear model" is a model which is 

linear in its parameters, (c.f. Mood and Graybill, 1963)

For example

/ V S  + P 2 X2  + ^ 3 X3
( 1 )

f t x i  + / v c?2 + / y ci x 2 ( 2 )

are both linear models as the parameters i/S^s ) are linearly 

related to Y.

is not a linear model however since Y is not a linear function 

ofyfi.

In the psychological literature however, the linear 

nonlinear distinction differentiates models which are linear or 

nonlinear-in the predictor variables. Model (l) above, 

therefore, is regarded as linear, but model (2) is regarded as 

nonlinear since it includes terms in cross products of variables,



and terms in powers higher than one.

The linear - nonlinear distinction made in the psychological

literature will be followed here. In cases where the statistical

distinction is referred to, this will be made explicit.

Models which are linear in their parameters, may be

evaluated using the technique of multiple regression. This

technique finds those parameters of the model in question which

best predict (to a least squares criterion) the dependent variable
2and gives a measure of the precision of prediction in R , the 

amount of variance in the dependent variable which can be 

explained by the model. Even with models which are nonlinear 

in their parameters, it is often possible to find transformations 

which permit the estimation of the parameters by multiple 

regression.

may be used as a guide to what terms should be

included in modelling a judgemental process. If the judge

is using cues in a curvilinear or configural manner then the

inclusion of cross products and power terms in the model should

increase R2 significantly over its value with purely linear
2

terms. A significant increase in R has therefore often been 

regarded as sufficient grounds for including an additional term 

in the model.

The analysis of variance is another technique, developed 

to test models linear in their parameters, which has been used 

in research of this kind. The predictor variables become the 

factors of the analysis of variance and particular values of
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these variables become the 1cvels« li' the levels are chosen 

according to prescribed rules, then tests of significance of 

curvilinearity may be carried out using the method of orthogonal 

polynomials. Configural use of cues will be shown by significant 

interaction terms.

One or the other of these two techniques has been used 

by the vast majority of researchers in this field. We now turn 

to the findings of these researchers in what was to become 

almost a frantic search for non-linearity.

It was found in study after study that the accuracy of the 

linear model in predicting judgements was almost always at 

approximately the same level as the reliability of the judgements 

themselves. The introduction of curvilinear and configural 

terms into the basic model rarely served to significantly increase 

goodness of fit. Hammond and Summers (1965) reviewed a series 

of studies in which the same general finding emerged from a 

number of different judgement tasks, and across a considerable 

range of judges. The simple linear model appeared to 

characterise quite adequately the judgemental processes involved, 

in spite of the reports of the judges that they were using 

cue8 in a highly configural manner.

It is possible of course, that the particular tasks 

studied, did not call for the use of cues in a configural or 

curvilinear way. It was necessary therefore, to find tasks 

where non-linear cue utilization was most likely to be 

required, since it is in such tasks that configural judgemental



processes were likely to be developed.

Hoffman, Slovio and Rorer (1968) felt that they had found 

such a task in the diagnosis of benign versus malignant gastric 

ulcers. They had been assured that there were seven major signs 

which could be seen on X-rays of gastric ulcer patients, and 

that the diagnosis was only possible through configural use of 

the seven cues.

A six factor experiment was set up, five of the cues taking 

only two levels, present or absent, the sixth variable (a 

combination of two of the original cues), took three levels.

Nine clinicians made diagnoses of the resulting 2 x 3 

possible combinations of the cues on a seven-point scale, 

ranging from "definitely benign" through "uncertain" to 

"definitely malignant". 3ach of the 92 resulting combinations 

was in fact judged twice by each clinician thus allowing an 

assessment of the reliability of their decisions.

The inferences of each judge were analysed by the analysis 

of variance model in order to ascertain the proportion of 

variance in his diagnoses associated with each of the six 

possible main effects (the use of cues in a linear fashion), 

the fifteen two-way interactions, twenty three-way interactions, 

fifteen four-way interactions, six five-way interactions, and one 

six-way interaction (the configural use of cues).

The major finding of this study was the small amount of 

variance due to even the largest interaction effect i.e. Y/o.

The largest main effect, in general accounted for 10 to 40



times as much of the total variance in subjects' judgements as 

the largest interaction. On average about 90^ of a judge's 

reliable variation in judgements could be accounted for by a 

linear combination of the individual symptoms, disregarding 

the interactions. However, many of the interaction terms were 

significant, showing that the judges used cues in a configural 

manner, they just did not appear to use them very much in this 

way. However disheartening these results may have been, 

indices of interjudge agreement were even more discouraging.

The median value was .38 and this was not due to the 

unreliability of the judgements, which were in general highly 

reliable. This level of agreement is not much better than that 

found among judges in tasks in clinical psychology.

Another task expected to yield high reliance upon 

configural use of cues was the decision whether or not to grant 

temporary liberty to a psychiatric patient (Rorer, Hoffman, 

Hickman and Slovic 1967). Six cues, of binary nature were used 

in this task (e.g. Does the patient have a drink problem? 

Yes/No), yielding 2^ or 64 possible cue combinations, which 

were presented twice to each judge. Six physicians, twelve 

nurses, three clinical psychologists, and three psychiatric 

social workers served as judges. Hach judge decided whether 

each one of the 128, presumably real patients should be granted 

the privilege of leaving the hospital for eight hours on a 

weekend. Again the data were subjected to the analysis of 

variance and the proportions of variance due to main (linear)



and interaction (configural) effects were computed.

The results were found to be of a very similar nature to 

those of the previous study. On average, less than 2)c, of the 

variance of the judgements was associated with the largest 

interaction terms. The percentages ranging from virtually 

zero for some subjects to Gfi for others.

Wiggins and Hoffman (1968) set out to investigate the way 

in which the clinical psychologist draws inferences concerning 

neuroticism versus psychoticism from M.M.P.I. profiles, and 

particularly the extent to which these processes were 

nonlinear in nature.

They used the data originally collected by Meehl and 

Dahlstrom (Meehl 1959)» from thirteen Ph.D. clinical 

psychologists and sixteen predoctoral trainees. These twenty 

nine judges were given seven samples of M.M.P.I. profiles and 

were required to sort the members of each sample on an eleven- 

point scale ranging from "neurotic" through "neutral" to 

"psychotic". Mach profile consisted of scores on eight 

clinical scales and on three validity scales. The judges were 

told no more about the samples than that they represented males 

who were under psychiatric care, and who had been diagnosed as 

psychotic or neurotic.

The judgements of the clinical psychologists were 

regressed onto three models of the judgemental process which 

are described overleaf•

17



1 The familiar Linear Model. 
A
Y8Ys “ ^1X1 + °2X2 + •••* +

2 The Quadratic Model 
112 11 o 11 11

0, x.  + T a X  * E  E ^ . x x
B i-i 1 1 iti 1 1 j-113 1 3

ifi

This model clearly contains both curvilinear and configural 

terms.

5 The Sign Model.

This model consisted of a linear combination of 70 clinical 

signs previously described by Goldberg (19&5) • ^ siS11 was

defined as "any scale score or combination of scores however 

simple or complex, which can be specified precisely (i.e. non- 

judgementally). An operational definition of a sign in this 

sense is any index which can be programmed for a computer."

(p.4.).
Although the variables in both the preceding models were 

signs in Goldberg's sense, the Sign model differs in important 

respects from these models by the rational nature of its signs. 

The two previous models are simply mathematical expressions of 

the first or second order, not rationally designed models of 

this particular situation. The signs used were compiled from 

the empirical clinical literature, from personal communication 

with M.M.P.I. experts, from clinical folklore etc. and the linal 

model was a combination of both simple and configural terms.

18



An iterative multiple regression program was used to 

evaluate the models, in which zero weights were given to any

terms which did not contribute significantly to the fit i.e.
2

did not significantly change R . This led to a large number 

of terms of the Quadratic and Sign models being discarded.

The multiple correlation coefficients were reported for 

each judge, for each of the three models. The interpretation 

of these however is made very difficult by the exclusion of 

any information about the number of terms finally included in 

each of the three models for a particular subject, though even 

if this information had been given, it is doubtful if the 

degrees of freedom could be used in any meaningful way 

considering the way ir. which cues to be included in final 

models were selected. This process capitalises on chance 

variations in the data, and is presumably more open to error 

in cases with an initially large pool of possible cues.

The estimates of the parameters of the models, obtained 

from the first three samples, were used to predict the 

judgements of the subjects on the four later samples, resulting 

correlation coefficients between the predicted and actual 

responses were averaged over the four samples and used as 

indicators of the adequacy of each model. With regard to this 

index, Wiggins and Hoffman found that:-

(a) the Linear model was equal t.o or superior to 

the Quadratic model for 23 of the judges 

(though the highest difference in Rg
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in favour of the quadratic model was only .03 ).

(b) the Linear model was equal to or superior to

the Sign model for 17 judges (the highest

difference in R in favour of the sign model 
8

being .04 ).

Their conclusion then that "The present research suggested

that many clinicians utilize cues configurally in diagnosing

M.M.P.I. profiles as psychotic or neurotic and from the

magnitude of the cross validated multiple correlations between

M.M.P.I. scales and judgements it was assumed that these judges

performed at a high level of consistency" (p* 76), can only be accepted

with the highest degree of caution. How likely is it that

differences in R of .04 and .03 would reach statistical 
8

significance? And how can a quadratic model, which includes 

all the terms of the linear model, be meaningfully regarded 

as being a less good representation than the linear model?

The methods of model evaluation and cue selection seem to require 

examination, before such conclusions may be drawn.

Despite the wealth of evidence showing that the 

judgements of human decision makers, in the above tasks may 

be quite adequately predicted by a quite simple linear 

combination of the cues, the leading researchers in this field 

refuse to accept the possibility that man might be nothing 

more than a "linear model", (c.f. Hoffman 1968; Anderson 1968,

1972). Anderson (1968) states:- "The model always fits the 

data quite well, but there are almost always small, significant



discrepancies. Inspection of the data has failed to reveal the 

origin of the discrepancies; they may reflect some fundamental 

error in the model, or may result from remaining shortcomings 

in experimental technique" (p. 736). We might add to this, 

remaining shortcomings in methods of data analysis.

It is felt that the ubiquity of the linear model is due 

more to the statistical properties of the model itself rather 

than any relationship it might have to underlying psychological 

processes. It is likely that the power of the linear model to 

predict observations generated by a large class of non linear 

processes will tend to obscure all but the gross types of non

linear judgemental processes.

Yntema and Torgerson (19 6 1) for example have shown that 

the analysis of variance is not necessarily a very good 

indicator of interactions. They constructed artificial data 

in which the dependent variable was related to the three 

independent variables in a purely interactive way;-

Yijk - i3 ♦ JK + i*
(where i, j and k were in integers from 1 to 7). Standard 

three way analysis of variance of the 7 x 7 x 7 =  343 

observations showed that the three main effects accounted 

for 94“/£ of the variance leaving only for the interactions.

Green (1968) also argues that in an important sense 

linearity is contributed by this sort of analysis rather 

than being an inherent property of the data.
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The above "data" can be described exactly by the function 

y = 10 - (x - 4). From one point of view this is purely a 

second degree system with no linear component. If the data 

points . are fitted using the standard method of orthogonal 

polynomials, all the variance will be described by the 

quadratic term, none by the linear. If, however, a curve is 

fitted to the x's a different pattern emerges: the linear 

component now accounts for 42/*. of the variance, the quadratic 

for 58c/o, the usual interpretation being that the data can be 

described by a weighted sum of a straight line and a parabola 

symmetric on the range of data points. It is obvious in the 

present case that 3uch a combination results in a curve that 

is a segment of another parabola. What is often overlooked 

is that this is always the case. Any curve that is a weighted 

sum of a straight line and a parabola is a segment of another 

parabola. Are the data partly linear and partly quadratic,



or completely quadratic? The answer is that they are both, 

these are two alternative descriptions of the same data. To 

take the process one step further, consider the o points.

Here 92% of the variance is attributable to a linear component, 

only 8% to a quadratic component!

More recently Dawes and Corrigan (1974) have set out some 

of the conditions under which the linear model can be expected 

to fit data well, although those data may have come from a non

linear source.

Slovic (1966) used the method of multiple regression in 

a slightly different way from that discussed above. He set 

out to examine the influence of one aspect of the pattern of 

cues, namely "cue consistency", upon the manner in which these 

cues are used by judges.

Subjects were required to judge the intelligence of a 

person on the basis of quantified information from nine cues. 

Previous research had shown that subjects rely primarily on 

just two of the cues,l) High School Grade (HSR) and II) 

English Effectiveness (EE). On average, the linear use of 

these two cues accounted for about 80% of the total linearly 

predictable variance and about 60% of the variation in a judges 

predictions. Though some judges relied on HSR more than EE 

and vice versa, the judgements of more than 85% of subjects 

were correlated significantly and positively with both of the 

cues. This led Slovic to define consistency in this situation 

as a function of the absolute percentile difference between HSR



Each subject judged 75 profiles, after which certain subsets 

of the judgements were selected for separate analysis. Fifteen 

profiles, all exhibiting a percentile difference berween HSR and 

EE that exceeded 40 were singled out as inconsistent profiles 

and another 1 5  profiles with percentile differences between 

10 and 20 inclusive were to represent a relatively consistent 

group. The two subsets were matched in terms of mean and standard 

deviation on all scales including HSR and EE, but the 

intercorrelation of HSR and EE in the consistent group was 

+ . 80, whereas the corresponding correlation in the inconsistent 

group was - . 50.

Two separate multiple regression analyses were performed

on the data from each judge; one for the set of consistent

profiles and one for the inconsistent set. A modification of
2

Hoffman's (i960) index of relative weight ( = 0 ^  / Rg )

was calculated to assess the extent to which the judge was using 

the i th cue over the sets of consistent and inconsistent 

profiles (the index actually used was RgW^ or 0 ^  ).

The linear consistency, Rg of the subjects was quite 

high for both sets of profiles, though slightly higher for the 

consistent ones. Just what this implies is not clear 

(c.f. Schenck and Naylor (1968)). The sum of the relative 

weights for the seven additional cues was found to be significantly 

greater for the inconsistent set of profiles, and this was 

interpreted as showing that these cues were relied upon more 

when HSR and EE were inconsistent than when they agreed.



Consistency had little effect upon the average relative weight 

given to the more important of the two critical cues, but the 

mean relative weight for the lesser of the two critical cues 

was lower for inconsistent profiles than for consistent ones,

Slovic concluded, that there is a tendency for subjects 

to rely on both HSR and EE when the cues agreed with one another, 

but when HSR and EE were contradictory, subjects tended to use 

only one of these cues, the lesser one being excluded from 

consideration, they also tended to rely more upon the other 

seven cues.

This study is interesting, since, by an unconventional 

use of the multiple regression technique, it appears to have 

shown quite definite configural use of cues. It is unfortunate 

that Slovic did not attempt to carry out a multiple regression 

analysis on Ihs vhole of a subject's responses at once, in order 

to discover whether there wac a significant increase in fit on 

the inclusion of a configural term in HSR and EE. Had a s ruch 

significant improvement been found this would have added more 

weight to the arguments suggesting that linear statistical 

techniques tend to obscure non linearity in judgemental processes

In all the studies so far reviewed, the subjects have been 

required to make their responses on a certainty scale and 

these responses were then treated as interval data in the 

subsequent analyses. In a number of tasks this introduction 

of a scale of certainty may be new to the judge, who in his 

day to day life might only make nominal classification e.g.
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neurotic - normal, benign - malignant. Rodwan and Hake (1964) 

report a piece of research which required subjects to make 

only nominal responses, in an attempt to compare the judgements 

of human subjects, with those made by another linear statistical 

technique, Fishers "Linear Discriminant Function" (LDF),

(Fisher 1936).

They felt that a subject's judgements of certain events 

or stimuli might be described adequately if it was assumed 

that the judgement was a result of the subject having combined 

the values of the stimulus on what were felt to be the relevant 

dimensions in a linear manner. Any decision about or classification 

of the stimuli would be made on the basis of this linear 

combination.

Linear discriminant function analysis assumes that the 

decision to be made is between two multivariate normal 

distributions with the same covariance matrix. It yields weights 

for the variables which will best discriminate between the two 

populations and requires as data, not a continuous dependent 

variable (like multiple regression) but a simple dichotomous 

variable - population I or population II. (See the Statistical 

Appendix).

An experiment was performed, following the design of 

Brunswick and Reiter (1938) in which subjects were required 

to classify a number of scher’tic faces as "intelligent or 

"not intelligent". The faces varied along four dimensions 

X1 length of nose; Xg length of chin; X^ distance between
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eyes; length of forehead, each of which had four possible

values. The same 81 faces were classified by a subject under 

a number of conditions varying in the a priori probability of 

an intelligent face. LDF was applied to the decisions of each 

subject singularly, and it was found that, for each subject 

one set of weights could adequately describe his behaviour 

in all conditions i.e. the subject could be represented as 

using the same linear combination of variables in all conditions, 

though the optimal cutoff value on this linear combination 

varied between conditions. Unfortunately, no test of 

goodness of fit is reported, nor does the significance of the 

derived weights appear to have been investigated. These weights 

are presumably even more subject to chance variations than those 

obtained through multiple regression, since the scale of the 

responses is so much weaker, it may well be that some dimensions 

received weights which did not differ significantly from 

zero.

Rodwan and Hake appear to have disregarded one assumption 

of the LDF, which is that the covariance matrices of the two 

populations are assumed to be equal (i.e. the populations have 

the same shape). This assumption would imply that the subjects' 

responses "intelligent" and "not intelligent" could be regarded 

as being samples from two multivariate populations of differing 

means but equal variances and covariances of the variables.

This is extemely unlikely, particularly when it is considered 

that the subject is expected to have carried out a linear



discriminant function analysis himself thus truncating the 

"intelligent" population to those observations falling above 

the cutoff and the "not intelligent" population to those falling 

below.

These considerations made the interpretation of Rodwan 

and Hakes findings very difficult. It would appear though that 

even if the judges do act as LDFs, then the application of the 

statistical method of linear discriminant function analysis 

using their responses as data, is not an appropriate test of 

the model.

Rodwan and Hake draw attention to the formal similarity 

to the LDF of the Theory of Signal Detectability (TSD), which 

was developed in the fields of audition and vision and later 

as a general model of psychophysics (Tanner and Swets 1954» 

Swets, Tanner and Birdsall 1961). Both models assume normal 

distributions of variables for the events to be distinguished. 

However, they claim that TSD does not enable the experimenter 

to determine the number of and the weights for, the attributes 

which the judge uses in making decisions.

It is interesting to note, in this connection, that a 

formulation by Green (19 64) of a model to describe subjects' 

performance in a multiple component signal detection task, 

bears a most striking resemblance to the LDF although it was 

developed out of TSD. The model, which appeared to adequately 

describe data collected in tasks requiring the detection of a 

two tone signal, could be represented as a linear combination 

of the strengths of the two components of the signal and a



cutoff somewhere along the resulting axis (the exact position of 

which depended on payoffs, prior probabilities etc.).

All the models of judgemental processes so far discussed, 

have been "linear models" in the statistical sense» ¿»lnhorn 

(19 7 0) examined the ability of two statistically non linear 

models to reproduce the rankings by judges of the suitability 

of applicants to graduate school. Each judge was given the 

percentile scores of each of 20 hypothetical applicants on three 

predictor variables, only two of which were considered in the 

analysis.

The first, "disjunctive" model was designed to give a high 

value to the applicants who had a high score on any one or more 

of the indicators and was formulated in the two cue case as:-

The Pĵ s being weightings of the two indicators (estimated 

by a log transformation of the equation) and the ' a* being an 

arbitrary parameter set to a value greater than the maximum 

that either Xj could obtain.

The second "conjunctive" model allotted high value only 

to those applicants who scored highly on all indicators and 

was formulated as:-

- (X ,f '(x/ 2

The again being weighting parameters estimated through

log transformations.
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Einhom reported that one of his subjects appeared to be 

using the disjunctive rule, and one the conjunctive rule, when 

these models were tested against the simple linear model. For 

the third subject however, the linear and conjunctive formulations 

gave very similar fits and no meaningful decision could be made 

between them. Einhorn did not give details of his method of 

analysis, but it must be assumed that since his subjects were 

asked only to rank order the applicants, that only rank order 

properties of the responses were used.

Goldberg (1971) reanalysed the data of Meehl and Dahlstrom 

(Keehl 1959) previously analysed by Wiggins and Hoffman (1968).

The task facing the 29 clinical psychologists being to rate 

M.M.P.I. profiles from a number of samples on a 11 - step forced 

normal distribution ranging from "certainly neurotic" to 

"certainly psychotic".

Goldberg tested the goodness of fit of Einhom's formulations 

of the conjunctive and disjunctive models for these data and 

compared them with the simple linear model and two other models.

(1) The logarithmic model

which were intended as "controls" for the conjunctive model, 

to check whether any possible incremental validity of the

Yg .^PilogXi
i-1

(2) The exponential model
A P A
Y - e 
8 i-1
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conjunctive over the linear model might simply stem from the 

logarithmic transformation of the cues alone (logarithmic) or 

of the judgements alone (exponential).

Since it was felt that the responses here could be regarded 

as interval data, the models were suitably transformed in order 

to yield (statistically) linear models and were then analysed by 

standard multiple regression techniques.

The linear model was found to provide a better representation 

of the diagnostic judgements of these psychologists than did 

either the conjunctive or disjunctive models, and of the five 

models utilized in the study only the logarithmic model provided 

the linear model with any real competition. It was also found 

that the constant "a" in the disjunctive model was not as 

arbitrary as Hinhorn had felt, and that the accuracy of the 

disjunctive model did vary as a function of the value of this 

parameter.

Despite these findings, it is felt that the disjunctive 

and conjunctive models should not be disregarded as possible 

representations of human judgemental processes, possessing as 

they do, more psychological ’’face'1 validity than the linear 

model. However, more investigation is required into the 

requirements of various statistical techniques with regard to 

strength of date (e.g. ordinal versus interval) and of the 

effects of various transformations on the validity of

techniques.



LflARHING TASKS
All of the studies, so far reviewed, have attempted to 

investigate judgemental processes which were assumed to exist 

before the commencement of experimentation^ i.e. it was assumed 

that the subjects knew the distinctions to be drawn (the response 

scale), and that they possessed some process, which allowed them 

to make this distinction on the basis of the cues provided. 

Wiggins and Hoffman (1968) assumed that their clinicians knew, 

not only what "neurotic and psychotic" implied, but also what 

"certainly neurotic", "neutral" and "certainly psychotic" 

meant. Slovic (1966) assumed that his subjects knew what the 

"intelligence" scale on which they were required to respond 

meant. Hoffman, Slovic and Rorer (1968) assumed their physicians 

knew what was meant by "definitely benign", "uncertain", 

"definitely malignant" etc.

These situations were designed to be representative 

of the "real life" situations facing decision makers, but to 

what extent do they fulfil this aim? Such response scales as 

the ones above are probably never used by the decision maker 

in his day to day work. It is not likely that psychologists 

ever make responses on a scale ranging from "certainly neurotic" 

to "certainly psychotic", or that they ever judge large numbers 

of profiles in a short time, or even that they are required to 

make a dichotomous response on the basis of M.M.P.I. profiles 

of known psychiatric patients. Similar criticisms apply to 

the diagnosis of malignant versus benign ulcers, though in this



case, the dichotomous classification is familiar to the physician, 

hut on the basis of X-ray plates, not data summarised from such 

plates. Finally, how often are college administrators required 

to judge intelligence from various indices of past performance, 

and how much opportunity would they have to validate their 

estimates?

The point being made is that these tasks may not in fact 

be as familiar to the judges, as was intended and that the 

sorts of strategies generated to deal with such situations may 

not be representative of those actually applied in real life.

We are particularly likely to get simple strategies developing 

in such situations as no feedback or knowledge of results is 

provided against which the validity of judgements can be 

estimated. The judges are being asked to make judgements, which 

are possibly novel to them, in situations which only bear some 

resemblance to those with which they are familiar, and are 

given no chance to test their responses. Is it surprising 

then that there is little evidence of a complex judgemental 

process in such situations?

The researchers in the next area to be reviewed made their 

tasks one degree more abstract than the ones described above, 

in order to overcome the above criticisms (but also it must be 

added, to make it possible to use some newly developed techniques 

which will probably never be usable in a "real life" 

situation).

The response and cue scales were not expected to have a
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relationship within the "mind" of the subject before the 

commencement of experimentation. The researchers attempted 

to teach the relationship to the subject by providing feedback 

or knowledge of results. The response scales were not, in 

general, scales of likelihood between two populations 

(e.g. neurotic - psychotic, benign - malignant) or even known 

traits (e.g. intelligence) but tended to be unspecified numerical 

or spatial scales representing some abstract variable Y, the 

value of which, the subject was to predict as accurately as 

possible.

A distinction may be made between those tasks in which 

the criterion is perfectly predictable from the predictor cues, 

and those in which the relationship is only probabilistic.

This distinction is only important in the one predictor cue 

case where no interchange of ideas has taken place between 

researchers in the two areas. In multiple cue research, 

however, some experiments deal with both perfect and imperfect 

relationships so the distinction loses its importance.

Research into the ability of subjects to predict the value 

of one cue from another to which it is perfectly linearly 

related has been carried out mainly by Scandinavians, and has 

been referred to as "learning linear functions" (Carroll 19^5) 

i.e. learning functions of the form.

Y - a + bX
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Subjects are usually presented with paired samples from 

the X and Y variables during training trials and then on test 

trials only the value of X is presented and the subjects are 

requested to predict Y. (c.f. Eisler and Spolander (1970), 

Bjorkman (19 65)). X and Y are, in effect, perfectly correlated 

(r = 1.00, or - 1.00 if "b" is negative).

Practically all the research carried out in this field has 

expressed the X and Y variables as distances marked off on 

lines, and this does of course place a number of restrictions 

on the generality of the conclusions drawn.

A number of researchers (Bjorkman, 1965* Brehmer 1971* 

Carroll 19 6 3, Eisler and Spolander 1970) have investigated the 

effect of the sign of the slope parameter "b" upon the accuracy 

of subjects' predictions. The most general finding which emerged 

was that linear functions with negative slope parameters, were 

consistently less well learnt than those with positive slope 

parameters. Eisler and Spolander (1970) felt that the X - Y 

differences, which were confounded with sign of slope, may have 

given rise to the poorer learning in the negative slope tasks, 

rather than any intrinsic difficulty of negative slope 

functions.

De Klerk, Oppe and Truijens (1972), using an anticipation 

paradigm in which subjects predicted Y from X on training trials, 

but were given immediate knowledge of the correct value of Y, 

were able to find no effect of the "a" parameter, supporting 

a previous finding of Eisler and Spolander (1970). The "b"
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parameter had a significant effect, with performance when b = .85 

significantly hetter than when b = 1 .2 5  (only positive values 

of b were investigated). They suggested that more research should 

be carried out, to investigate the extent to which the effect of 

"b" might be reduced by providing subjects with visual aids or 

by using other types of stimulus material, such as numbers instead 

of lines.

Unlike the research into the learning of linear functions, 

that into the learning of imperfect linear relationships and 

estimating such relationships, has practically always used 

numerical materials.

The whole area of man's ability to deal with correlated 

variables will be seen to be of relevance to the present research, 

and for this reason, interest will not be restricted solely to 

those experiments in which subjects are required to predict 

one cue Y from another X when the two are imperfectly related, 

i.e. Y c a ^ b X + t

where t is unpredictable error.

Smedslund (19 6 3) and Jenkins and Ward (1965) found that 

subjects performed rather poorly when asked to estimate the 

degree of relationship in a 2 x 2 contingency table. It appeared 

that they paid almost sole attention to confirming positive 

instances (+ + ), disregarding information from the disconfirming 

(- +) and (+ -) and the confirming negative (- -) cells.



Variable I

Variable II

Smedslund called for research into the performance of subjects 

in a situation using continuous variables and it is to the 

findings of those researchers who took up the plea that we now 

turn.

In an experiment in which subjects were required to give 

estimates of their certainty that a particular sample of 

sequentially presented X - Y pairs (two integers, one black, 

one green, between 1 and 10 inclusive) was drawn from a 

population with either a positive or negative correlation.

Beach and Scopp (1966) found that subjects "Clearly .....

did better as the magnitude of the sample correlation increased, 

although there was a tendency to call all low correlations 

negative and thus there was a slightly higher chance of being 

correct when a low negative correlation occurred." (p. 34).

In a somewhat similar experiment ¿¡rlick and Mills (1967) 

required subjects to observe sequences of the 20 ( X - Y ) 

pairs sampled from populations of varying correlations. X and 

Y took integer values 1 to 5 inclusive and were presented by 

pointers on two circular dials. Subjects then estimated the 

relatedness of the two variables and it was found that these 

estimates were closely related to the sum of the discrepancies



between X and Y over the sequence. Presumably this implies 

some process such as e M  and this is just the cue that 

Eisler and Spolander (1970) were to feel caused the difference 

between subjects' accuracy in learning linear functions of 

positive and negative slopes. Erlick and Mills (1967) reported 

a significantly greater error rate for negative correlations 

than for positive ones and that one group of subjects had a 

marked tendency to make positive responses (unlike those of 

Beach and Scopp (1966)).

Two papers dealt with the ability of subjects to predict 

one of the variables from the other. Gray, Barnes and 

Wilkinson (19 65) followed the usual linear function paradigm.

A number of X - Y pairs (both X and Y took integer values 

1 to 9) were presented numerically, physically (as lengths of 

lines) or both. On test trials only X was presented and subjects 

were required to predict Y. The samples of X - Y pairs were 

of varying degrees of correlation («96» .75» an4 *44) but all 

were positive. It was found that the subjects predictions 

appeared much more to match the environmental situation than 

to optimize the accuracy of prediction, i.e. the subjects' 

predictions Yg tended to be correlated with X to a similar 

degree as the actual Y ^ whereas an optimizing strategy, the 

one which linear regression analysis prescribes, would imply 

a perfect correlation between Yg and X. At low levels of 

correlations, subjects? responses tended to show more dependence 

on X than actually existed between X and Y, this finding was also

38



reported in the next paper to be reviewed.

Naylor and Clark (1968) followed an "anticipation" paradigm; 

on all trials the value of the X variable was displayed and the 

subject was required to predict Y, after which the correct value 

of Y was displayed. Both X and Y were presented as two digit 

integers and both variables were normally distributed with 

mean 50 and standard deviation 10. Groups of subjects were run 

for 200 trials under one of nine experimental conditions 

(representing correlations of .80, .60, .40, .20, .00, - .20,

- .40, - .60, - .80).

Performance of subjects in the positive correlation 

conditions was consistently superior to that of those in the 

negative correlation conditions (the measure of accuracy used 

was the correlation of subjects’predictions with the actual 

criterion values). The accuracy of prediction was also greater 

for higher degrees of correlation than for lesser degrees.

The correlations of subjects’ predictions with X were of 

similar magniture to the actual correlations between X and Y 

for the high positively correlated conditions, but at lower 

positive correlations subjects’ estimates were much more dependent 

on X than was Y. (indeed, in the .00 correlation condition 

the correlation between subjects’ predictions and X was still 

as high as .40). With negative correlation conditions, however, 

dependence of the subjects predictions on X was consistently 

less than between X and Y. Naylor and Clark proposed that 

this result was due to subjects approaching such prediction



tasks with a general set to regard all relationships as positive 

and that this attenuates their achievements with negatively 

correlated cues.

In all the research on correlations which has been reviewed, 

the constant "a" in the equation

Y = a + b X + e

has been set equal to zero. Not only this, but "b" has only 

taken the values + 1 and - 1. It is of course an open question 

what effect other values of these parameters may have, but 

from the findings in linear function research, we might expect 

"a" to have little or no effect, and the effect of varying 

values of "b" to be small when compared to the effect of sign 

"b”.

The lesser ability of subjects to deal with negatively 

related cues, pervades these areas of research. But it is 

felt, that this inability may be due more to the "scaling" 

of the two cues, than to anything inherently difficult in 

negative relationships. The point may be illustrated by the 

following sequences of pairs

( a)  ( 1 , 1 ) ,  ( 2 , 2 ) ,  ( 3 , 3 ) ,  (4,4)

(b) ( 1 , 4 ) ,  ( 2 ,3 ) ,  ( 3 , 2 ) ,  (4,1)

(c)  ( 1 , - 1 ) ,  ( 2 , - 2 ) ,  ( 3 , - 3 ) ,  (4 , -4 )

(d)  ( 1 , - 4 ) ,  ( 2 , - 3 ) ,  ( 3 , - 2 ) ,  (4 , -1 )

Subjects have been shown to find situations of the (b) type 

more difficult than those of the (a) type (the sign of "b" 

is positive in (a) but negative in (b). However, is there



any reason to believe that subjects will not behave a3 well in 

situations of type (c) as in (a) ((c) has a negative slope) 

or that they will behave better in situations of type (d) than 

of type (b), ((d) his positive slope, (b) negative).

Situations of the (b) and (d) kind are not easily expressed 

when the cues take the form of distances marked on lines, but 

there is no reason why numerical tasks should not be constructed 

in this way. It is felt that if such tasks were investigated, 

the conclusion about negative relationships would have to be 

reformed and replaced by one which restricted the difficulty 

of negative relationships to situations in which both cues are 

either positive or negative.

We now turn to look at tasks which require subjects to 

learn to predict the criterion Y from more than one predictor 

variable X. As stated earlier, there is no reason to discuss 

the cases in which Y is perfectly predictable from the X's, 

separately from those in which Y and the X's are only 

probabilistically related, as such a division does not occur 

in the literature as it does in the one cue case.

The earliest research of this character, by Smedslund 

(l955)i was strongly influenced by the description of Brunswick 

and Herma (1951) of the way in which subjects combine cues in 

perceptual learning. Two (or three) pointers, whose directions 

changed from trial to trial, were presented to the subjects.

The experimenter defined a variable Y by expressing the values 

of the pointers numerically, averaging them and adding a small

41



randomly determined component in order to make the relationship 

probabilistic.

i.e. Y - £ X, + £ x2 + £ X j  + t

The subject reported his estimates of Y on each trial by sliding 

a knob along an unmarked scale and feedback was provided by the 

experimenter moving the knob to the setting representing the 

predetermined value of Y. Smedslund was able to conclude that 

subjects can learn to utilize many probabilistic cues 

simultaneously in making such predictions.

Summers (19 6 2) felt that Smedslund's design was not completely 

satisfactory as a particular cue was always associated with 

the same validity so that the effect of validity could not be 

studied independently of the effects of saliency or other cue 

characteristics. He designed an experiment in which correlations 

were imposed between each of three simultaneously presented 

cues (the orientation, colour, and area shaded of isoceles 

triangles, each one taking one of eight discrete values) and 

a predicted variable, line length, whose magnitude varied with 

the magnitude of all three cues.

The correct line length was determined by the equation 

Y - 2.0X1 + 1.5X2 and l.OXj

where the X^s are the three cues. Different subjects were 

then under six conditions - in the first was colour, X2 was 

orientation, X^ was area shaded - in the second Xg became area 

shaded, X^ orientation and X., was colour - and so on until every 

cue had taken all three possible weightings (2, 1.5 and 1) in



combination with all possible weightings of the other cues.

Simmers expected that the order of the response weightings, 

(i.e. those weights obtained on regressing the subjects 

predictions Yp on to the X^s ) would come to conform to the 

order of the actual cue weightings, and that the magnitudes 

of the response weightings would approach those of the cue 

weightings. The results, in general supported these expectations, 

the subjects responded simultaneously and differentially to the 

multiple cues, and cue utilization was found to be roughly 

proportional to cue validity throughout the learning 

trials.

The effect of distribution of cue weightings on learning, 

was studied in more detail by Uhl (196j). He designed a task 

in which three interval scale cues (expressed as three rows 

of nine lights) were perfectly linearly related to a criterion 

scale (a fourth row of lights). The values taken by the three 

cue dimensions were determined by a table of random normal 

numbers, with standard deviation equal to 2, mean 5» and 

intercorrelations of the cues approximately zero.

Different subjects were run under seven experimental 

conditions which differed in the degree to which the criterion 

was related to each of the three cues, but in all conditions 

the criterion was perfectly predicted by some linear combination 

of the cues. The distribution of cue weights varied from, 

approximately equal weightings of all cues in one condition 

to an almost complete reliance on only one of the cues in

another



It was found, that subjects had most difficulty in predicting 

accurately from multiple stimuli, differing only moderately in 

cue weightings, they had less difficulty with cues of equal 

weighting, but performed most accurately with highly disparately 

weighted cues. This last finding is related to another conclusion 

of the study, that the smaller the number of relevant cues, the 

more accurate were subjects' predictions.

Uhl included an eighth condition where the correct response 

was not related to any of the cues. Here, he found that subjects 

responded to the stimuli in a relatively non-random way. For the 

last block of trials, the mean multiple correlation between 

the cues and the subjects' predictions (R ) was + .40. This 

is of very much the same order as was to be reported by Naylor 

and dark (1968) with one predictor cue, when Rg equalled 

zero.

The effect of varying degrees of predictability (of the 

criterion) was investigated by Dudycha and Naylor (1966).

Only two predictor cues were used, two normally distributed 

variables of mean 50 and standard deviation 10, whose 

intercorrelation was zero. Tile cue weightings of these two 

cues were varied over conditions yielding Rg s ranging from 

.998 - .457, representing combinations of cues with validities 

of (.80, .60) and (.40, .20) respectively.

They found that the more predictable was the criterion 

(i.e. the greater R ), the greater was the average achievement

■r. Kw 'f.
m  ,4  . -

(r ) find the f^reater was the linear dependence of the subjects' a



responses (Rg). Taking into consideration, the results of their 

previously mentioned single cue experiment, they were able to 

conclude that when the validity of one cue was large (e.g. .8) 

the addition of a second cue of validity less than .6 decreased 

performance. When the first cue had only a validity of .4 

however then an additional cue of validity greater than .2 

increased performance. A cue of validity .2 was always detrimental 

to performance, presumably because it drew attention from more 

relevant cues.

Having calculated G, the correlations between the best 

linear combinations of cues for the prediction of the criterion 

and the best linear combination for predicting the subjects’ 

responses, they comment, that the hi.'h values of G "which were 

consistently obtained regardless of the particular experimental 

conditions involved are in many respects truly remarkable. This 

indicates that humans tend to generate "correct" strategies, 

but then, in turn fail to use their own strategy with any great 

consistency .... One is left with the conclusion that humans 

may be used to generate inference strategies, but that once the 

strategy is obtained the human should be removed from the system 

and replaced by his strategy!" (p. 127). In the days of 

"boot strapping" (Dawes and Corrigan, 1974) this suggestion 

is no longer so surprising as it was in 19 66.

Azuma and Cronbach (1966) designed a task in which Y was 

perfectly predictable by a linear combination of two of four 

presented variables.



Y = S X1 + 4 X2
Cues X, and X, were irrelevant. The two relevant cues were the

3 4
horizontal positions of a circle and a cross on a card, the 

vertical positions being the two irrelevant dimensions (each 

cue took one of four possible values). Rather than actually 

predict Y, subjects were required to state which of four 

standard cards had a Y value most similar to that of the card 

on each trial. On training trials, immediate feedback was given, 

none however was given on test trials to discourage subjects 

from trying new rules during testing, thus giving a "purer" 

measure of performance.

Considerable individual differences in ability to solve 

this problem were found to exist amongst the subjects. Seven 

of the sixteen subjects eventually learned to perform almost 

perfectly, whereas the others learned to degrees varying from 

well to not at all. Azuma and Cronbach felt that if a subject 

did not learn a correct rule at an early stage in the experiment,

then he probably learnt a false one which he found hard to 

discard. Performance on training trials was significantly 

worse than that on test trials, justifying the distinction 

made between the two.

On asking subjects for verbalizations of their rules, the 

authors were surprised to find that no subject had in fact 

discovered the correct rule. What they had done, was to form 

simple rules for particular situations i.e. for particular cue 

combinations, and the rules were not formulated in any
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mathematical way. Such a finding brings home in full Hoffman's 

(i960) distinction between "isomorphic" and "paramorphic" 

representations, but the generation of such ad hoc rules is 

probably less likely in tasks of a less discrete nature.

Practically all the experiments investigating the ability

of subjects to learn the relationships between predictor cues

and a criterion Y have used predictor cues which were generated

so as to be independent (uncorrelated or orthogonal). In such

situations, the square of the multiple correlations coefficient
2

between the predictors and the predicted variable Y (i.e. Rg ) 

is equal to the sum of the squares of the individual correlations 

between each predictor and Y (if the cues receive equal weight). 

If, however the predictors are intercorrelated, this relationship 

breaks down and R " will not be equal to rej • With reference 

to the use of orthogonal predictors, Naylor and Schenck (19 6 8) 

felt that "While such "nicety" of experimental design has merit 

for examining certain experimental questions, it is nevertheless 

inconsistent for research based on Brunswick's model of 

probabilistic functionalism. One of the most important concepts 

of Brunswick's position is the notion of "representative design". 

That is, our experimental situations should involve sampling 

of those environments to which we might wish to generalise."

(p. 48 - 49). Since it is extremely unlikely that there is 

no redundancy in the cues in any real life situation, Naylor 

and Schenck set out to study the effect of systematically 

manipulating cue redundancy upon the behaviour of subjects in



order to discover if previous findings with orthogonal cues would 

hold up.

Two normally distributed predictor cues (means equal to 

50, standard deviations equal to 10) were presented as two-digit 

numbers related probabilistically (Rg took values .5» .7 und .9) 

to the criterion of Y, also a normally distributed variable 

(mean 50, standard deviation 10) expressed as a two-digit number. 

Three levels of predictor cue intercorrelation were investigated 

(r = .00, .40, and .80) at each level of task predictability,

R .e
Each subject received 200 trials in eight blocks under one

of the nine resulting oonditions, using the anticipation paradigm,

no distinction being made between training and test trials.

Subjects behaviour was considered in terms of the three indices

r , R and 0. a ’ s
It was found that performance, in terms of ra> increased

with both degree of task determinancy Rg and degree of predictor

intercorrelations. The linear dependence of subjects responses

R followed both these trends, but the matching index G increased 
s
significantly only with cue intercorrelations. They concluded 

that the most striking feature of the data was the substantial 

moderating influence of cue interoorrelation upon the various 

performance indices, and they felt that this result implied that 

multiple cue data based on orthogonal cues may indeed not 

generalize so readily to more representative learning situations 

in which certain degrees of cue redundancy exist. Cue redundancy
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appeared not only to have a direct influence upon performance but 

also appeared to interact with task predictability having less 

effect with tasks of lower predictability.

In a later paper, (Schenck and Naylor, 1968) it was suggested 

that the effect of cue intercorrelation on the linear consistency 

Rs index may have been more apparent than real. They found that 

if one assumes a linear model of some specified degree of fit 

for a subject, then any increment in cue intercorrelation will 

necessarily yield an increase in the goodness of fit of that model. 

In fact, this is an oversimplification of the situation on their 

part, and holds only if both cues between which the increment in 

correlation takes place are positively or negatively weighted.

If one cue receives a negative and the other a positive weight, 

then an increase in the correlation between them will actually 

lead to a reduction in Rg. However, the point is taken that 

intercorrelations between predictors may lead to difficulties 

in the interpretation of certain behavioural indices, which do 

not exist with orthogonal predictors, but this should surely be 

expected in the light of difficulties occurring in say, the 

analysis of variance with correlated variables due to different 

numbers of subjects in each cell.

In view of the large amounts of energy which have been 

expended in searching for evidence of non-linear cue utilization 

in "real life" judgemental situations, it comes as some surprise 

to discover the scarcity of research on non-linear cue utilization 

in learning tasks. As far as we know, only one such paper



exists, that of Hammond and Summers (19 65)« They felt that it was 

not very useful trying to discover non-linear inference processes 

in tasks which had not been shown to be non-linear in nature.

In view of Brunswick's (1956) admonition that tasks should be 

representative of a wide range of conditions, the performance 

of subjects in situations involving non-linear, as well as 

linear relations should be investigated before concluding that the 

process of inductive inference is primarily linear. In short, 

having discovered what apparently is a strong tendency for human 

subjects to utilize the data from linear relations in a highly 

linear manner, it remains to investigate whether subjects utilize 

the data from non-linear relations in a linear or non-linear 

manner.

An experiment was performed in which two predictor cues 

X1 and Xg were related to the criterion Y. X1 was linearly 

related to Y but Xg was related to Y as a sine function.

i.e. Y = X.| + sine Xg

Thus Y was completely determined by X̂  and Xg but a multiple 

regression of Y on and Xg would not yield » 1.00.

(The regression of Y on X1 and a new variable Z, defined by 

Z - sine Xg, would yield a multiple correlation Rg = 1.00).

Subjects were tested under one of three experimental 

conditions, which differed in the amount of prior information 

about the combination rule, which was given to the subjects!-

(1) Subjects were just instructed to predict 

Y from X. and X-
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(2) Subjects were told the "theoretical" structure 

(linear and non-linear) of the task.

(5) Subjects were told how the "theoretical" 

structure applied to the specific task.

The predictor cues were presented as scores on two ten 

point scales which were printed on cards. The criterion was 

printed on the back of the cards. One hundred trials were 

split into five blocks and each subject on each trial viewed the 

two predictor scores, made his prediction of Y then turned over 

the card and noted the true criterion value.

Achievement in this task (in terms of r&) was quite high 

but significant differences existed between the three levels 

of task information. The relative contributions of the linear 

and non-linear components of performance were about equal, 

except in the minimal information condition, where the main 

contribution came from the linear component.

The mean linearity Rg was less than optimal and quite low 

(Rg2 ranged from . 2 1 - .42 compared with the optimal value of 

.50). This finding is important because, although the results 

of previous studies indicate a high degree of linearity on the 

part of subjects in multiple cue probability learning tasks, 

these results indicate that the propensity for a highly linear, 

additive response system, is contingent upon the subject being 

presented with a highly linear task.

In all the experiments so far reviewed on the behaviour 

of subjects in single or multiple cue learning tasks, the 

samples of observations shown to the subjects, are best 

regarded as being drawn from one multivariate population which
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(2) Subjects were told the "theoretical" structure 

(linear and non-linear) of the task.

(3) Subjects were told how the "theoretical" 

structure applied to the specific task.

The predictor cues were presented as scores on two ten 

point scales which were printed on cards. The criterion was 

printed on the back of the cards. One hundred trials were 

split into five blocks and each subject on each trial viewed the 

two predictor scores, made his prediction of Y then turned over 

the card and noted the true criterion value.

Achievement in this task (in terms of r&) was quite high 

but significant differences existed between the three levels 

of task information. The relative contributions of the linear 

and non-linear components of performance were about equal, 

except in the minimal information condition, where the main 

contribution came from the linear component.

The mean linearity Rg was less than optimal and quite low 

(R02 ranged from . 2 1 - .42 compared with the optimal value of 

.50). This finding is important because, although the results 

of previous studies indicate a high degree of linearity on the 

part of subjects in multiple cue probability learning tasks, 

these results indicate that the propensity for a highly linear, 

additive response system, is contingent upon the subject being 

presented with a highly linear task.

In all the experiments so far reviewed on the behaviour 

of subjects in single or multiple cue learning tasks, the 

samples of observations shown to the subjects, are best 

regarded as being drawn from one multivariate population which



may or may not be normal. These tasks, clearly bear a closer 

relationship to such "real life" tasks as that of Slovic (1966) 

in which subjects were required to make judgements of intelligence 

on the basis of a certain set of cues, than they do, for instance, 

to the diagnosis of malignant versus benign ulcers (Hoffman,

Slovic and Rorer, 1968) or of neurotic versus psychotic psychiatri 

patients (Wiggins and Hoffman, 1966). The. latter two tasks are 

certainly better regarded as decisions between two populations 

rather than the partitioning of one population. A difference 

between these "real life" tasks also occurs in the type of 

feedback which could be given to the judge in a real life 

situation. Intelligence can be measured (though with some 

inaccuracy) on a scale which can be regarded as an interval 

scale - thus, data of an interval nature could be given as 

feedback if such a task ever occurred in real life. However 

with differential diagnosis, the feedback received would 

normally be of a much weaker, nominal Kind i.e. malignant or 

benign, neurotic or psychotic, and, not until a great deal more 

is known about the ecological side of Brunswick’s lens will 

interval data of the form X/- certainty of malignant ulcer,

T/i certainty of neurotic, be available. This later point is 

one of the main drawbacks of Hammond et al's (19^4) formulation 

of Brunswick's model. This formulation assumes not only an 

interval scale for the criterion Y but an interval scale which 

can be measured objectively. The model therefore is only 

of use with such (unlikely) tasks as the prediction of



intelligence from M.M.P.I. profiles and it is unlikely that 

it will ever be of use in such situations as the differential 

diagnosis of malignant versus benign ulcers, or neurotic versus 

normal personality profiles. It might be argued that much of the 

research into multiple cue learning tasks has taken the form 

which it has, not because of any desire for representative 

design, but more in an effort to collect data which will fit 

into models such as Hammond et al's, without any difficulty.

It is felt then that such research cannot always be justified 

on the grounds that it is an attempt to simulate but control 

real life decision making tasks, and it does not follow that 

strategies used by judges in such situations will be in any 

sense representative of "real life" decision making 

processes.

V/e now turn to the two papers which have attempted to 

simulate situations in which the basic task is to discriminate 

between two normally distributed pop lations. The feedback 

given is nominal i.e. population I or population II but, 

because of the known properties of the populations it is 

possible to compare the judges estimates of "certainty" or 

"probability" with those logically derived, using the parameters 

of the populations:- this last point is a real advantage over 

real life tasks and is a benefit gained by taking the decision 

making task into the laboratory, where a greater degree of 

control of samples, judges’experience etc. can be applied.



Lichtenstein and Feeney (19 6 8) constructed a task in which 

subjects were to learn to classify observations as belonging 

to one of two bivariate normal populations. Subjects were 

shown cards, representing maps of the positions of two cities 

A and B and also an asterisk marking the point at which a bomb, 

dropped from an enemy aircraft, had exploded. Subjects were 

required to identify the city at which the bomb had been aimed. 

They were told that, because of bombing errors the bomb rarely 

landed directly on the target city, but the errors were unbiased 

in that the bomb might just as likely miss it's target in any 

direction, and that it was more likely that the bomb would 

fall near it's target than fall far from it. One hundred and 

fifty samples were drawn from each of two bivariate normal 

distributions, one with mean at the position of city A and 

the other with mean at the position of city B. The dispersion 

matrices of the two distributions were identical, the two 

variables, X - horizontal position and Y - vertical position, 

had the same variance and were uncorrelated. The cities were 

1 . 2 5  standard deviations apart and both lay on the same vertical 

axis (i.e. the vertical position of the bomb blast (y) had no 

predictive validity).

The resulting 300 bomb positions were presented to the 

subjects in random order, and on all trials subjects were 

required to state at which city they thought the bomb was aimed. 

Immediate feedback (the correct city) was given for the first 

150 trials, and, for the last 250 trials, subjects were required



to assign percent certainties to the two targets i.e. divide 

100 points between them in such a way as to express the subject’s 

degree of confidence that each city in turn was the correct target. 

For the last 150 trials no feedback at all was given, and it was 

the data from these trials which were analysed.

The best decision function in this situation is that given 

by linear discriminant function analysis and reduces to drawing 

a line half way between the cities and at right angles to the 

line joining the city centres. This is the line of equal 

probability, where a bomb is as likely to have been aimed at 

city A as at city 3. Subjects seemed to appreciate this fact 

and soon learned to assign all bombs to the left of this line 

to city A and all those to the right to city B. What they were 

not so good at was the assignment of probabilities to the two 

alternatives.
For a bomb landing at a point with co-ordinates (x,y) the 

probability of this bomb being aimed at city A can be shown 

to be

1 + exp
1

- XA)(* ' ^
----

where <7 c is the variance of both distributions, x^ and 

are the x co-ordinates of the two cities and x^ is the 

x co-ordinate of a point half way between the two cities. The 

probability is independent of y and the farther away along the 

x axis the bomb falls from the two cities, the more extreme

the posterior probabilities become



When Lichtenstein and Feeney came to correlate the estimates 

of probabilities of their 11 subjects with those of the afore

mentioned normative model, they found that the estimates of 

only three of their subjects, were even moderately related 

to those of the model. From an investigation of the subjects' 

responses however, as well as comments made by subjects during 

and after the experiment, it was found that the subjects were 

being careful and consistent in their choice of probabilities, 

but they were not following the normative model. Many subjects 

gave probabilities close to *5 when the bomb fell to the extreme 

left or extreme right of the field and gave probabilities of 

.9 or above when the bomb fell very close to one city. Some 

subjects reported that they compared the distances of the 

bomb site from each of the cities and based their probability 

estimates on this comparison.
On the basis of this evidence, Lichtenstein and Feeney 

developed an alternative model with which to compare subjects' 

responses. The posterior probability of A, was assumed 

to be a function of the ratio of the two distances of the bomb 

site from the two cities, 

i.e. PA - da

DA + h

where DA is the distance of the site from city A and Dg the

distance from city B.



The loci of the points of constant likelihood for this 

model are circles (except when » .5 when they form the same 

straight line as prescribed by LDF analysis) with radius

where D is the distance between the two cities.

On comparing the predictions of this model with the estimate« 

of the subjects, the responses of all subjects were found to 

correlate at least moderately and some quite highly with the 

predictions. (The correlation of the predictions of this model 

with those of the normative model was only .17).

It may be noticed, in passing, how well this new model fits 

in with one of the three heuristic rules which Tversky (1974) 

says are utilized by humans in estimating probabilities of 

events - what Tversky calls "Representativeness". Humans base 

their estimates of probabilities on the degree to which the event 

in question is representative of the possible class of events 

from which it is assumed to have come, this often takes the 

form of a consideration of the proximity of the event to the

when >  .5

or
D

when PA < .5
1 - 2 PA

and with centre at x « x - M i  - p, ) 2

and y -  yA ( -  y B)



mean event of the assumed class. This is exactly the process 

being postulated here.

Lichtenstein and Feeney concluded that to rely too much on 

the comparison of subjects' behaviour with a normative model, 

may make subjects seem to be unreliable estimators of 

probabilities when, in fact, they may be using some model other 

than the one proposed, in a very reliable way. A more damning 

criticism of such an approach, however, is that it removes 

emphasis from the investigation of what subjects are doing and 

concentrates on what they are not.
This study raises a point which bears on the use of linear 

discriminant function analysis by fiodwan and Hake (19 6 4) discussed 

earlier. The subjects in the present task soon learned to 

assign any bomb site on the left of the line prescribed by this 

normative model to city A and any on the right to city B. An 

analysis along the lines of that employed by Rodwan and Hake, 

taking as data only the nominal responses A and B would indicate 

that the subjects' responses were exactly the same as if they 

had taken a linear combination of the cues (cue y receiving a 

zero weight) and formed a cut off at the point of equal 

probability or to put it in simpler terms, the subjects acted 

juBt like the linear discriminant function. The analysis of 

the probability estimates however make this process very 

unlikely, the subjects were certainly not coming to conclusions 

about likelihood by a simple weighing of the cues, but this 

only becomes clear when their responses are stronger than a 

nominal scale.
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We might ask ourselves why subjects made such poor (in the

normative sense) estimates of probabilities, when they were 

after all given immediate feedback on 1 5 0  trials which would 

tend to disconfirm their estimates. The most likely explanation 

is that the structure of the task was such that they had very 

strong preconceptions about the probability distribution and 

hence were not much affected by disconfirming feedback (which 

after all was only of a nominal scale kind). If the task had 

been framed in a less concrete, more abstract setting, more 

accurate estimates may have been generated.

On later re-analysis of this data, Vlek and Van der Heijden 

(19 6 9 ) found that the following modification of Lichtenstein 

and Feeney's model gave an even better fit to the subjects' 

estimates.

Where S L L R stands for subjective log likelihood ratio 

defined as

weights a and 0 did not generally differ significantly 

from one another and y tended to be near zero. and

therefore were in general equally important to the subjects. 

However, a and 0 were not in general equal to one as 

Lichtenstein and Feeney's model implied, showing that a subject's 

responses are better described when his own set of weights is

S L L R • a log D.g - 0 log Da  + y

a j3 and y were estimated by multiple regression. The

S L L R » log » log

taken into account than when a and 0  are set equal to



one (assuming that the log transformations do not affect the

meaning of Rg )•

Vlek and Van der Heijden (1970) reported an experiment in 

which the abilities of subjects to utilize information from two 

cues in making discriminations between two bivariate populations 

were investigated. The stimuli (based on those of Rodwan and 

Hake (1964))were schematic faces. However, the decision to be 

made was not between "intelligent" and "not intelligent" faces 

but between the members of two "families". The faces varied 

along two dimensions, the horizontal and vertical co

ordinates of the eyes, and the two families differed in mean 

position of the eye on both variables, though the dispersion 

matrices of both "families" were equal, the two cues being 

uncorrelated within both families.

An experimental block consisted of the presentation of 

100 faces (50 from each family) in random order. After each 

presentation subjects assigned the face to family A or family 

B and were told immediately of the correct decision. For the 

next 50 trials (2 5 faces from each family in random order) no 

feedback was given, and subjects, besides giving the 

categorical response were required to assign subjective 

probabilities (as a percent estimate) to the two populations.

In all, six such blocks were completed by each subject - 600 

training trials and J00 test trials.
All probability responses were converted into probability 

of family B and then these were regressed onto the two variables 

X1 and X?. If the subjects had been behaving optimally then
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the weights assigned to X^ and Xg would have been equal. The 

method of regression used first estimated the /3 weights to a 

least squares criterion but then iterated these weights to what 

was basically a rank order criterion. A comparison of the 

weights of X^ and Xg over experimental blocks showed little 

change for the average subject whose weightings of X^ and Xg 

were approximately equal. The fit of the model to the subjects' 

responses seems to have been very good indeed. A loss function 

S was reported which was said to be roughly equivalent to
2 5̂(1 - R ) 2 and was shown to decrease over the blocks, showing 

increasing similarity between subjects' responses and those 

resulting from a simple linear combination of cues. Values 

of S as low as .06 were reported,which imply Rg s of about .999» 

which is an extremely good fit.

We now turn to the first experiment of the present study, 

which is closely related to this last experiment of Vlek and 

Van der Heijden. It is in fact an attempt to discover to what 

extent their findings may be generalised to situations involving 

stimuli presented in a different modality and to tasks of 

varying degree of cue intercorrelation.
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EXPERIMENT I

DECISION S BETWEEN BIVARIATE NCRKAL POPULATIONS WITH 

UNEQUAL MEAN VECTORS BUT EQUAL COVARIANCE MATRICES
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INTRODUCTION TO EXPERIMENT I.

As previously indicated, research into decision making tasks 

where the connection between the predictor and predicted variables 

was assumed to be known to the subject before the commencement of 

experimentation, had a number of drawbacks:- The true relation

ship may not be known, the subjects are often required to make 

decisions of a kind with which they are unfamiliar, the 

experiences of the judges are left uncontrolled (peculiarities 

of sampling may have caused the generation of unusual or even 

generally invalid "rules" ) etc.

Attempts to overcome problems of this kind led researchers 

to create artificial tasks in the laboratory, but these tasks 

are not representative of a large class of decision making 

situations facing many professionals in their daily lives, and 

the generalization of conclusions drawn on the basis of data 

collected in such tasks to real life situations may not be 

justified. The main drawbacks of these tasks are that they do 

not in any way resemble differential diagnosis i.e. the decision 

between two or more populations, but require the subject to 

respond on an interval scale (i.e. to partition one general 

population), they are often framed in a completely abstract 

way (i.e. the prediction of one undefined variable from other 

variables also undefined), the feedback given to the subject 

in no way resembles that received in many real life situations.

It was felt that the experiments of Lichtenstein and 

Feeney (1968) and Vlek and Van der Heijden (1970) overcame many
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of the objections to the artificial tasks mentioned previously, 

and that further experimentation along the same lines would not 

be amiss. Decisions between multivariate normal populations 

face many professionals in their day to day work. The situation 

is important enough to justify a chapter on discriminant function 

analysis in almost all text books of multivariate statistics, 

but, with the exception of these two papers, the situation has 

been totally neglected in experimental psychology.

Lichtenstein and Feeney's experiment brought to light an 

interesting point about the strength of the data which is 

collected from subjects. Using just the nominal responses it 

would have been impossible to have distinguished the processes 

of the judges from that of linear discriminant function analysis. 

It would have appeared that subjects were behaving optimally - 

forming the likelihood ratio in an appropriate way, and applying 

an optimal cutoff at L (x) = 1. However, when the subjects' 

estimates of probabilities, which were assumed to be of interval 

scale strength, were analysed, it was discovered that the 

processes giving rise to the subjects' responses were totally 

dissimilar from those of the linear discriminant function. It 

is essential therefore, that such interval data should be 

collected in future experiments if it is hoped to discover the 

underlying processes of human judges.
VIek and Van der Heijden showed that, at least with cues 

presented spatially, which were orthogonal within the populations 

to be discriminated, subjects' responses (estimates of posterior
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probabilities) could be very well described by a model which 

linearly combined the scores on the two cues and based its 

predictions of probability and presumably its classifications 

on the value of this linear combination. However, it seems 

unlikely that subjects actually carried out the operation of 

weighting and adding the two cues in any real sense, it seems 

more likely that the orientation of the apparent linear 

combination was itself regarded as the single relevant cue.

In a particular case, for example, when it appears from the 

regression analysis that a subject is basing his responses on 

a linear combination of the cues which weights them equally, it 

seems far more reasonable to assume that the subject is basing 

his responses simply on the diagonal displacement of the eyes, 

than actually weighting the two cues "in his head" and basing 

his decision on the restating combination value. The problem 

is that the linear combination actually exists in a physical 

sense, it is the spatial displacement of the eye along some 

axis in the two dimensional space, it probably does not exist 

as the result of some manipulation by the subject of the two 

separate cue values. This task is not then so much an 

investigation of subjects' ability to combine information from 

two cues, as an investigation of their ability to discover the 

one most relevant cue.
This problem should be overcome by the use of numerically 

rather than spatially presented cues. Numerical cues also 

seem more representative of real life situations of the kind 

it is hoped to simulate and may allow the subject to be more
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precise in his predictions if he is utilizing some sort of more 

or less rigid rule. One practical advantage of numerical cues 

is their ease of presentation in an experimental context.

Without computer control fine gradations in displacement are 

rather difficult to obtain, whereas a number may be expressed 

to any degree of accuracy which is desired. In the present 

research, all cues values were given to an accuracy of ibur 

decimal places in order to stress to the subject the continuous 

nature of the cues and to dissuade subjects from considering 

such cues as primeness, oddness etc., which they had been found 

to try with integer cues.
It was decided then to carry out an experiment similar 

to that of VI ek and Van der Heijden but with numerically presented 

cues. Subjects would be required to learn to discriminate 

between the members of two bivariate normal populations on the 

basis of two probabilistic numerical cues and would also be 

required to give an interval scale response of their certainty 

in the correctness of each response. For the reasons outlined 

by Azuma and Cronback (19 6 6) it was decided to differentiate 

learning from test trials; no feedback being given on test trials 

so as to give a "purer" indication of performance.

Naylor and Schenck (1966) had shown that cue inter

correlation had a large moderating effect on a number of indices 

of performance in a multiple cue learning task and had stressed 

that if conclusions were to be at all generalizable then this 

factor must be Investigated. There are few if any, decision 

making tasks in real life where the predictor cues are orthogonal



and in view of Brunswick's plea for "representative design" it was 
decided that varying degrees of cue intercorrelation should be 
considered in the present experiment.

A two cue, two population decision making task was designed 

and presented to subjects in terms of a medical specialist 

classifying patients as having one of two diseases on the basis 

of two medical tests. Both cues were equally useful to the 

judge, the populations means being one standard deviation apart 

on each variable. Subjects were run for three sessions (each 

of 100 training and 50 test trials) under one of three conditions, 

differing in the degree of cue intercorrelation existing within 

the populations. All subjects in a condition received the same 

random sample of "patients" in the same random order, these being 

generated by computer before the experiment and punched on paper 

■fape. (The method of generation of the samples is indicated in 

appendix B. A more detailed discussion of the statistical 

properties of the tasks appears in appendix C).

SUBJECTS
The subjects were 27 members of a Part I psychology course,

18 males and nine females, with an average age of 18 years.

They were divided randomly into three groups, with the restraint that 

an equal proportion of males to females existed in each group 

i.e. six males and three females. They were not volunteers, 

except in as much as they chose to participate in this experiment 

rather than a number of possible alternative ones, in order to 

fulfil a course requirement. Each subject attended for three 

one-hour sessions, which took place as nearly as timetable



limitations would permit, on consecutive days.

APPARATUS

The apparatus consisted of a Wang 700 B programmable calculator 

interfaced to a teletype, and a closed circuit television camera 

and monitor. The subject sat in one cubicle with the television 

monitor and Wang calculator before him, the teletype and television 

camera occupied an adjacent cubicle. The stimuli for each session 

had been previously generated by computer (using the method 

described in Appendix A) and were punched on a paper tape, which 

was read by the tape reader of the teletype. The stimuli and the 

feedback (when this was given) were printed by the teletype and 

presented to the subjects via the closed circuit television 

system. The subject made all his responses on the keyboard of 

the Wang calculator and these were punched on another paper 

tape by the teletype, and were later analysed by computer.

PROCEDURE
Each one-hour session consisted of 100 training trials 

followed by 50 test trials
The Training Trials. A sample of 100 observations, 50 from 

each of the two bivariate normal populations, were presented in 

random order. On each trial the subject was presented with two 

real numbers (four decimal places) the first representing the 

patients' scores on test I and the second his score on test II.

The subjects decided which disease the patient had (l or 2) and, 

having made up his mind stopped an electronic clock in the Wang 

by pressing the "STEP" button on the keyboard. He then "PRIMED"



the machine, pressed button "1” or "2" (to represent his decision) 

and pressed the "GO" button. This last response caused the Wang 

to send an instruction to the teletype which caused the present 

stimulus pair to be removed and to be replaced by the correct 

response. The correct response was displayed for three seconds 

in which time the teletype punched the subject's response and 

his reaction time. When the three seconds were over the next 

stimulus pair was automatically displayed and the sequence was 

repeated, the stimuli being displayed for as long as it took the 

subject to respond.
The Test Trials. A sample of 50 observations, 25 from 

each of the two bivariate normal populations were presented in 

random order. On each trial, however, besides his dichotomous 

"1" or "2" response, the subject was required to indicate his 

degree of certainty about this response by entering on the Wang 

keyboard a number from 1 to 50 inclusive ("1" was to represent a 

guess i.e. complete uncertainty and "50" complete certainty).

This response was made immediately following the "1" or "2 

response and was followed by pressing the "GO" button. This 

last command caused the stimulus pair to be removed and the 

screen remained blank for three seconds whilst the subjects' 

responses and reaction time were punched on paper tape by the 

teletype. Following this, the next stimulus pair was 

displayed.
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EXPERIMENTAL INSTRUCTIONS

The subject was asked to sit before the Wang calculator and 

the television monitor on which was displayed the first stimulus 

pair. On the first session the following instructions were given 

to the subjects-
"This experiment is a simulation of a medical decision

making task. You are to put yourself in the place of a mediaal 

specialist whose interest is restricted to two diseases which (for 

the sake of simplicity) we call Disease 1 and Disease 2. Patients 

will be referred to you when it is known that they have either 

Disease 1 or Disease 2, your job is to decide which one of the 

diseases a particular patient has. (He cannot have both 

diseases)."
"To help you make your decision, the score of each patient 

on two medical tests will be given to you. The test results 

are shown on the television screen in front of you. This is 

patient number one." (At this point the experimenter pointed 

to the "1" on the television screen). "This is his score on the 

first test." (The experimenter pointed to the first score).

"This is his score on the second test." (The experimenter pointed 

to the second score).
"You need not worry about what the tests actually are, you 

could imagine them to be such tests as blood pressure, blood 

sugar concentration etc. Each of them, however, gives a  score 

on a continuous scale and is useful in some way in predicting 

the disease of a patient. The scores are given to so many



decimal points to stress the continuous nature of the tests."

"At present, of course, you have no idea which test scores 

are indicative of Disease 1 and which of Disease 2, but, for the 

first hundred trials of this experiment you will be told the 

correct disease of the patient as soon as you have made your 

diagnosis. Now, if you will guess the disease of the first 

patient here, you will see what happens." (The subject guessed 

Disease 1 or Disease 2 and the experimenter entered his response 

for him on the Wang keyboard. The correct Disease was shown on 

the monitor and after three seconds was replaced by the test 

scores of the second patient).

"When you have made up your mind which disease the patient 

has, press the "STEP" button. This stops a clock within the 

machine which is recording your decision time. Then "PRIME" 

the machine, press button "1" or "2" and then the "GO" 

button."

"Half the patients in each session have Disease 1 and the 

other half Disease 2. If you guess randomly, therefore, you 

will probably get about half of them right. However, you will 

not get all of them right, even if you are using the tests in an 

optimal way. This is because the tests are not perfect predictors 

of the diseases. I will try to make this clearer by giving you 

a similar example from outside medical decision making:-"

"Imagine that we take a person at random from the 

population and measure that person's height and weight. I give 

these two scores to you and ask you whether the person is Male



or Female. You might expect males to be taller and heavier in 

general, but if I give you a large number of people, about whom 

you had to decide, you would not expect to get them all right, as 

there are quite a large number of small men, heavy women, tall 

women etc. You cannot predict sex perfectly from knowledge of 

just height and weight, though such knowledge will increase the 

accuracy of your predictions quite appreciably over the chance 

level."
"In a very similar way to this, Diseases 1 and 2 cannot be 

perfectly predicted from the two scores. You will be doing 

very well if you correctly diagnose 90$  of the patients. I 

want you to perform as well as you can, try to find connections 

between the test scores and the diseases and use these to improve 

the accuracy of your diagnoses."
"Now before you start, I would just like to stress that 

both tests are useful in predicting both diseases, and that both 

diseases should be regarded as equally dangerous to the patient - 

you should not bias your responses in favour of either disease 

on that ground."
"Are there any questions?" (Questions were answered by 

the repetition of the appropriate part of the above instructions).

(The subject now made four or five responses in the 

presence of the experimenter to ensure that he had the "hang" 

of the equipment).
"Now there are 100 of these training trials, followed by 

50 trials which are slightly different. In order to finish the
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whole session in am hour, you should respond at a rate of about 

three patients a minute. I will leave you now to complete these 

first 100 trials, after which I will come back to tell you about 

the test trials."

After the subject has completed the training trials, the 

experimenter returned to the cubicle amd the following 

instructions were given.

"The next 50 trials will be slightly different. You probably 

found that certain patients were easier to diagnose correctly 

than were others. Well, I would like you to show me how 

confident you are about each of your diagnoses of the next 50 

patients who also either have Disease 1 or Disease 2. You will 

press button "1” or "2" as before, but, immediately following 

this I want you to press a number between 1 and 50 to show me 

how certain you are about your diagnosis. (Pressing "50" means 

you are absolutely certain, pressing "1" means you are just 

guessing, not at all certain, pressing "2 5" would mean you are 

'half certain" if you like). Then press the "GO" button as before. 

You will not be told the correct response, but atfter a while the 

scores of the next patient will appear. The reason why you are 

not given the correct disease is so that you will not learn 

anything new in these trials, I just want to know what you 

have learned during the first part of the session."

"Again the 50 patients are made up of equal numbers from 

both diseases, presented in random order."
"Any questions?" (Questions were dealt with as above).
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(The experimenter remained with the subject whilst he 

completed four or five trials, then left the cubicle).

On subsequent sessions the bare outline of the task was 

repeated to the subject, questions were answered as far as was 

possible. At the end of the third session, each subject was 

asked to write a few sentences on the manner in which he 

finally came to make his decisions and certainty estimates.



EXPERIMENT I

Results

Only the responses of the subjects on the 50 test trials of 

each session were subjected to analysis, since it was felt that 

performance on these trials would give a more pure measure of 

performance. An attempt had been made to measure subjects' 

decision times, but it was discovered at an early stage in the 

analysis that this measure was not significantly correlated 

with any of the variables under consideration. One possible 

explanation of this is that the equipment was not in fact 

capable of recording the time passing between the presentation 

of the stimulus pair and the subjects' "1" or "2" response, 

instead it recorded the time elapsing between presentation and 

the subject's pressing of the "STEP" button. The subjects had 

been instructed not to press this button until they had "made 

up their minds" about their response, but there is reason to 

believe that this instruction was not always obeyed and that 

the subjects tended to press "STEP" very soon after the 

presentation of the stimuli and then consider the implications 

of these stimuli for their diagnosis. For this reason no 

decision time data is reported here, the analysis being 

restricted to the categorical "1" - "2" response and the 

subjects' certainty responses.
The categorical "1" - "2" responses were analysed with 

respect to the decision of the normative model on each trial. 

Thus if a patient was drawn from Disease 1 but the normative
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model said that with these scores Disease 2 was more likely, if 

the subject placed this patient in Disease 2, his response was 

regarded as correct. This index when totalled over trials, 

besides being a purer measure of performance is unbiased by 

the cue intercorrelations in the disease populations, allowing 

subjects in all conditions to achieve a maximum score of 100$ 

if all their diagnoses agreed with those of the normative model. 

Whereas total number correct in terms of the disease population 

from which each patient was drawn has a different maximum value 

in each condition thus rendering meaningful comparisons 

impossible. This index, shown in Tables 1 (a, b and c) was 

subjected to analysis of variance (Table 1 d) which indicated 

a significant effect of sessions only, which proved to be due 

to significantly better performance in session III than in 

session I and II.
The certainty responses, which could range from 50 (completely 

certain) to 1 (completely uncertain) for Disease 1,and from 1 

(completely uncertain) to 50 (completely certain) for Disease 2 

were transformed to yield a scale ranging from 1 (completely 

certain for Disease 1) to 100 (completely certain for Disease 2). 

The resulting values were correlated with the certainty estimates 

of the normative model and the correlation coefficients (Tables 2 

(a,b and c)) provide a second index of performance. An analysis 

of variance on this measure showed an exactly similar pattern 

of significant results as the total number correct index



NTJM3BR OF CORRECT RESPONSES 
(l.e. Agreements with the Normative Model)

Table la Condition I (0.0f0.0)

Subject Session
I II Ill

i 25 n.s. 30 27 n.s.
2 36 38 38
5 40 40 41
4 43 47 48
5 35 36 42
6 39 37 45
7 36 36 58
8 26 n.s. 40 43
9 22 n.s. 26 n.s. 24 n.s.

Table lb Condition II (0.7*0.7)
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Subject
Session

I II Ill
10 54 28 n.s. 32
11 26 n.s. 25 n.s. 44
12 20 n.s. 15 n.s. 25 n.s.
13 45 43 46
14 26 n.s. 23 n.s. 25 n.s.
15 24 n.s. 25 n.s. 31
16 28 n.s. 26 n.s. 23 n.s.
17 33 47 47
18 23 n.s. 23 n.s. 25 n.s.
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NUMBER OF CORRECT RESPONSES 
(i.e. Agreements with the Normative Model)

Table lc Condition III (0.9.0.9)

Subject
Session

I II Ill
19 27 n.s. 29 n.s. 24 n.s.
20 28 n.s. 27 n.s. 42
21 29 n.s. 29 n.s. 47
22 26 n.s. 43 42 .
23 21 n.s. 40 24 n.s.
24 26 n.s. 24 n.s. 44
25 29 n.s. 25 n.s. 26 n.s.
26 23 n.s. 42 49
27 35 29 n.s. 33

n.s. - Not significantly different from chance level.
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Table Id

ANALYSIS OF VARIANCE ON NUMBER OF CORRECT RESPONSES

Source S.S. d.f. M.S. F P

Between Subjects 3753.06 26
CONDITIONS 535.58 2 267.79 1.998 N.S.
Subjects within Groups 3217.48 24 134.06

Within Subjects 2142.00 54
SESSIONS 542.32 2 271.16 8.760 <.01
CONDITIONS X 

SESSIONS 113-83 4 28.46 < 1
SESSIONS X Subjects 
within Groups 1485.85 48 30.96

SIGNIFICANCE CF DIFFERENCES BETWEEN 
INDIVIDUAL PAIRS OF SESSION MEANS

MEAN
SESSION

II III
MEAN 32 .33  36 .11

SESSION I 
SESSION II

29.81

32 .33

2 .4 4  6 .3 0  * 

3 .7 8  *

Critical value of d - 3.32 at .05 Level. 
* Significant at the .05 Level.
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CORRELATIONS OF SUBJECTS' CERTAINTIES
WITH THOSE OF THE NORMATIVE MODEL ( ra ) 

Table 2a Condition I (0.0,0.0)

Subject
Session

I II Ill

1 .13 4  n .s . .349 .202 n .s .

2 .344 .764 .819
3 .764 .721 .794

4 .931

K
\

COCD .882

5 • 592 .522 .852

6 .724 .473 .876

7 .616 .603 .657

8 .06 2  n .s . .686

CD
V

O

9 -  .037 n .s . .177 n .s . .085  n .s .

Table 2b Condition II (0.7,0.7)

Subject
Session

I II Ill

10 .375 .110  n .s . .288
11 -  .062 n .s . .156  n .s . .797

12 - .282 -  .371 -  .069 n . s .

13 .842 .967 .932

14 -  .047 n .s . -  ,076  n .s . -  .001 n.s.

’15 j.192 n .s . .052  n .s . .164 n . s .

16 .03 8  n .s . .156  n .s . •l62 n•3 •

17 .184 n .s . .868 .829

18 .0 57 n.s. - .222 n.s. .011 n.s.

SO..  k 7 -



CORRELATION OF SUBJECTS' CERTAINTIES 
WITH THOSE OF THE NORMATIVE MODEL (ra)

Table 2c Condition III (0.9t0.9)

Subject
Session

I II III
19 .127 n.s. .103 n.s. - .022 n.s.
20 .075 n.s. .112 n.s. .865
21 .222 n.s. *177 n.s. .831
22 .101 n.s. .863 .937
23 - .200 n.s. .596 - .01 5 n.s.
24 .0J8 n.s. - .054 n.s. .639
25 .1 0 9 n.s. .1 2 9 n.s. .173 n.s.
26 - .071 n.s. .647 .834
27 .689 .356 .545
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Table 2d
ANALYSIS OF VARIANCE ON ra 
(Fisher's Z Transformation )

Source S.S. d.f. M.S. F P

Between Subjects 1 6 .670 26

CONDITIONS 2 .4 5 0 2 1 .2 2 5 2 .0 68 N.S.
Subjects within Groups 1 4 .219 24 .592

Within Subjects 8 .3 0 2 52

SESSIONS 2 .3 2 2 2 1 .1 6 1 9 .5 6 6 < .01

CONDITIONS X 
SESSIONS .326 4 .081 < 1

SESSIONS X Subjects 
within Groups 5-583 46 .121

SIGNIFICANCE OF DIFFER .NCE5 BETWEEN SESSION MEANS 
(FISHER'S Z TRANSFORMATION)

MEAN
SESSION

II I I I

MEAN
SESSION I .436 

SESSION II .338

.33 8  .7 4 6  

-  .1 0 2  .3 1 6  *  
.4 0 8  *

Critical value of d ■ .157 at .05 Level.

* Significant at the .05 Level



A multiple regression was carried out using the certainty

values with the two cues X1 and X? as predictor variables. The

resulting multiple correlation coefficients (Rg for the subjects

and R for the normative model) are shown in Tables 3 (a, b and c) e
and an analysis of variance on this index (Table 3 <0 showed a

significant effect of sessions only, with Rg lower in session I

than in sessions II and III. The correlation of the cues X^ and

X2 individually with the certainty values are displayed in

Tables 4 (a (i), b (i) and c(i)) and Tables 5 (a (i), b (i),

c (i)) respectively and F ratios to test the significance of

the contribution of each term to the multiple correlation

coefficients R s are shown in the adjacent Tables 4 (a (ii),
8

b (ii), c (ii)) and Tables 5 (a (ii), b (ii) and c (ii)).
The correlations between the certainty values and a linear 

combination of the cues X^ and X^ which assigned equal weight 

to both (here called the Sum of X.) and X? though it could equally 

well be regarded as the mean of their values) were found and are 

presented in Tables 6 (a (i), b (i) and c (i)). the significance 

of the better fit of the linear combination of the cues with 

estimated weights over this one with weights set equal was tested 

and the values of the F ratios are shown in Tables 6 (a (ii), 

b (ii) and c (ii)). an analysis of variance on these correlation 

coefficients (Table 6 d) shows no significant effect of condition 

though the magnitude of the correlations is significantly 

greater in session III than in the other two sessions.
The Lens Model indices were computed and are shown, G in



Tables 7 (a (i), b (i) and c (i)), GReRs in Tables 7 (a (li), 
b (ii) and c (11)), C In Tables 7 (a (ill), b (iii) and c (ill)) 
and C - Re2)(1 - Rg?) in Tables 7 (a (iv), b (lv) and
c (iv)). Analyses of variance on the G (Table 7 d) and C 
(Table 7 e) indices of linear and non-linear matching showed a 
significant effect of session only for both indices. Both G 
and C were significantly greater in session III than in session 
I but were not significantly different from either of these values 
in session II.

84



M Ê fa êà k

R THE CORRELATION OF SUBJECTS' CERTAINTY ESTIMATES —  s ------------------------------------------------WITH A LINEAR COMBINATION OF CUES WITH WEIGHTS 
ESTIMATED TO A LEAST SQUARES CRITERION

Table 3a Condition I (0.0,0.0)

Session
Subject

I II III
1 .169 n.s. .321 n.s. .23 3 n.s.
2 .268 n.s. .822 .817
3 .762 .693 .788
4 .907 .832 .872
5 .631 .580 .839
6 .732 .679 .827
7 .605 .559 .650
8 .304 n.s. .651 .579
9

(Model)
.048 n.s.
(.9753-----

.587
(.9813____

.661
(.972)____

Table 3b Condition II (0.7,0.7)

Subject
Session

I II III
10 .343 n.s. .10 9 n.s. .255 n.s.
11 .193 n.n. .142 n.s. .784
12 .552 .348 .823
13 .787 .918 .896

14 .092 n.s. .101 n.s. .329 n.s.
15 .416 .644 .765
16 .084 n.s. • 554 *188 n.s.
17 «170 n•s• .837 .777

18 .098 n.s. .279 n.s. .114 n.s.
(Model) (.982) (.991)----- (.988) _
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R , THE CORRELATION OF SUBJECTS' CERTAINTY ESTIMATES—- s -------- -----------
WITH A LINEAR COMBINATION OP CUES WITH WEIGHTS

ESTIMATED TO A LEAST SQUARES CRITERION *

Table 3c Condition III (0.9,0.9)

Session
Subject

I II III

.395 .597 . 1 2 5  n.s,

20 .566 .907 .832

21 .227 n.s. .577 .800

22 .065 n.s. .843 .916

2? .257 n.s. .595 .322 n.s.

24 .065 n.s. .813 .629

25 ,l60 n.s. .732 .258 n.s.

26 .515 .626 .803

27
KModel)

.812
(■964)------

.367
(•922J_____

• 590
(>991)___
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Table 3d
ANALYSIS OF VARIANCE ON R. 

(FISHER'S Z TRANSFORMATION)

Source S.S. d.f. M.S. F p

Between Sub.iects 8.346 26
CONDITIONS .742 2 .371 1.172 N.S.

Subjects within Groups 7.604 24 .317

Within Sub.iects 6.987 54
SESSIONS 1.990 2 .995 10.223 <.01

CONDITIONS X 
SESSIONS .326 4 .082 < 1

SESSIONS X Subjects 
within Groups 4.671 48 .097

SIGNIFICANCE OF DIFFERENCES BETWEEN 
INDIVIDUAL PAIRS OF SESSION MEANS 

(FISHER'S Z TRANSFORMATION)

MEAN

SESSION
II H I  .

MEAN
SESSION I .458 
SESSION II .750

.750 .820 

.292 * .362 * 
.070

Critical value of d » .171 at the .05 Level.

* Significant at the .05 Level.



Table 3d
ANALYSIS OF VARIANCE ON R. 

(FISHER'S Z TRANSFORMATION)

Source S.S. d.f. M.S. F p

Between Sub.iects 8.346 26

CONDITIONS .742 2 .371 1 . 1 7 2 N.S.

Subjects within Groups 7.604 24 .317

Within Sub.iects 6.987 54
SESSIONS 1.990 2 .995 10 .2 2 3 <.01

CONDITIONS X 
SESSIONS .326 4 .082 <1

SESSIONS X Subjects 
within Groups 4.671 48 .097

SIGNIFICANCE OF DIFFERENCES BETWEEN 
INDIVIDUAL PAIRS OF SESSION MEANS 

(FISHER'S Z TRANSFORMATION)

MEAN

SESSION
II H I

MEAN
SESSION I "* .458 
SESSION II .750

.750 -820 

.292 * .362 * 
.070

Critical value of d « «171 a.t the .05 Level.

* Significant at the .05 Level.



Table 4a (i) Condition I (O.O.O.O)

THE CORRELATION OF SUBJECTS' CERTAINTIES
WITH THE CUE X1

Session
Subject

I II III

1 - .056 - .137 - .092

2 - .215 - .766 - .726

3 - .539 - .462 - .713

4 - .631 - .634 - .644

5 - .512 - .538 - .675

6 - .638 - .677 - .698

7 - .312 - .344 - .584

8 .164 - .395 - .433

9 .032 - .542 - .454
(Model') (- .635)_____ ( -  -660) (- .7523------

Table 4a (ii) Condition I (O.O.O.O)

F RATIOS TO TEST THS SIGNIFICANCE OF THE CONTRIBUTION 
OF THE X1 TERM TO THE FIT OF THE 

LiyRAB COMBINATION

Session
Subject

IIII 1 1

1 .13 n.s. .74 n.s. .1 5 n.s.
2 2 .2 5 n.s. 80.79 60.54
3 30.82 16.59 51.90
4 99.60 54.75 56.83
5 19.69 19.35 53-45
6 39.93 40.28 56 .20

7 6.62 6.82 22.79
8 1 • 51 n • s • 10.67 9.33
9

(Model)
.45 n.s.

(357.94)
22.08

(466.91)
23.17

(363.06L____
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Table 5a (i) Condition I (0.0,0.0)

THE CORPORATION OF SUBJECTS' CERTAINTIES

WITH THE CUE X„

Session
bubJ 6CX

I II III

1 - .161 - .298 - .227

2 - .165 - .346 - .490

3 - .553 - .545 - .448

4 - .668 - .576 - .687

5 - .382 - .252 - .606

6 - .376 .011 - .553

7 - .527 - .462 - .376

8 - .251 - .542 - .451

9 .056 .193 .399
(Model) (- .756) (- .766) (- -725)_____

Table 5a (ii) Condition I (0.0,0.0)

F RATIOS TO TEST THE SIGNIFICANCE OF THE 
CONTRIBUTION OF THE TERM

TO THE FIT OF THE LINEAR COMBINATION

Subject
Session

I II III

1 1 . 2 3  n.8. 4.42 2.28 n.s.

2 I .29 n.s. 12.91 19.96

3 32.58 24.21 13.93

4 112.17 44.05 68.13

5 10 .6 0 3*37 n •s• 39.90

6 13 .0 6 .26 n.s. 29.21

7 19.94 13.28 6.53

8 3.39 n.s. 2 1.8 8 10.47

9 .59 n.s. 3.72 n.s. 19.31
(Model) (516.94) (654.28) (318.871-----



Table 4b (i) Condition II (0.7.0.7)

THE CORRELATION OF SUBJECTS' CERTAINTIES

WITH THE CUE X1

Session
Subject

I II III
10 - .35 b - .10 3 - .251

11 .139 - .12 6 - .777

12 .430 .338 .398

15 - .742 - .838 - .852

14 .046 .071 - .114

15 - .038 .225 .128

16 - .063 .0 5 1 - .182

17 - . 10 5 - .801 - .724

18 - .033 .124 - .074
(Model) (- .913) (- .919) (- .912)

Table 4b (ii) Condition II (0.7|0.7)
F RATIOS TO TEST THE SIGNIFICANCE OF THE 

CONTRIBUTION OF THE X1 TERM
TO THE FIT OF THE LINEAR COMBINATION

Subject
Session

I II III

10 1 . 2 5  n.s. .45 n.s. 1 . 0 3  n.s.

1 1 1.79 n.s. .08 n.s. 25.87

12 19.65 1.62 n.s. 92.19

13 8 .2 6 27.48 35.52

14 .39 n.s. .00 n.s. 4.79

15 5.10 28.17 45-64

16 .3 2 n.s. 12 .8 6 .4 1 n.s.

17 ,08 n.s. 21.99 10.31

18 . 1 3  n.s. ,47 n.s. .62 n.s.

(Model) (106.92) (384.26)_____ (9*6.18)



Table 5b (i) Condition II (0.7.0.7)

THE CORRELATION OF SUBJECTS' CERTAINTIES

WITH THE CUE X„
s

Session
Subject

I II III
10 - .307 - .050 - .211

11 .025 - .136 - .654

12 .119 .302 - .209

13 - .743 - .866 - .808

14 - .014 .101 .150

15 - .288 - .251 - .429
16 - .014 - .342 - .165
17 - .166 - .749 - .719
18 - .085 .262 .006

(Model) (- -936)____ (- -924)____ Co ro

Table 5b (ii) Condition II (0.7.0.7)

F RATIOS TO TEST THE SIGNIFICANCE OF THE 
CONTRIBUTION OF THE Xg TERM 

TO THE FIT OF THE LINEAR COMBINATION

Subject
Session

I II III

10 .28 n.s. .62 n.s. ,92 n.s.

11 .88 n.s. .20 n.s. 1 .2 9  n.s.

12 8 .36 .56 n.s. 75.41

13 8.42 42.08 18.36

14 .50 n.s. .24 n.s. 5.00

15 9.73 29.17 64.58

16 . 1 5  n.s. 20.63 .11 n.s.

17 .87 n.s. 9.25 9.52

18 .40 n.s. 5 .18  n.s. .56 n.s.

(Model) (167.54) (410.89) (285.93)------
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Table 4c (i) Condition III (0.9,0.9)

WITH THE CUE X.

Session
Subject

I II III

19 - .059 .0 2 2 .040

20 .051 .053 - .821

2 1 - .2 0 1 - .074 - .771

22 - .065 - .851 - .869

25 .182 - .593 - .057

24 - .050 - .098 - .592

25 - .099 .001 - .204

26 .150 - .618 - .780

27
(Model)

- .766 
(- >965)___

- .367 
(- -9731____

- .578
(- .964)_____

Table 4c (ii) Condition III (0.9.0.9)

F RATIOS TO TEST THE SIGNIFICANCE OF THE 
CONTRIBUTION OF THE X1 TERM 

TO THE FIT OF THE LINEAR COMBINATION

Session
Subject

I II III

19 6.67 22.32 .74 n.s.

20 2 0 .6 1 191.48 7.85

2 1 .04 n.s. 17.07 2.24 n.s.

22 .0 1 n.s. 7.19 3.26 n.s.

23 .58 n.s. 2 .6 3 n.s. 5.09

24 . 1 5  n.s. 83.24 .26 n.s.

25 1 . 1 2  n.s. 4 5 .14 1 .9 2  n.s.

26 16.77 I .96 n.s. 3 .3 4 n.s.

27 37.25 I .48 n.s. 8.79

(Model) (33.68) (141.27) (10 7.0 2")
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Table 5c (i) Condition III (Q.9,0.9)

THE CORRELATION OF SUBJECTS' CERTAINTIES 

WITH THE CUE

Subject
Session

I II III
19 - . 19 0 - .224 - .0 15

20 - .147 - .32 2 - .800
21 - .2 2 5 - .302 - .790
22

rr\V
OO1 - .817 - .910
2? .233 - .564 .082
24 - .033 .241 - .626

25 - .049 - .299 - .134
26 - .029 - .606 - .787
27 - .6 25 - .328 - .475

(Model) (- .972) (- .966) (- .971)

Table 5c (ii) Condition III (0.9,0.9)

F RATIOS TO TEST THE SIGNIFICANCE OF THE 
CONTRIBUTION OF THE X? TERM 

TO THE FIT OF THE LINEAR COMBINATION

Subject
Session

I II III
19 8 .5 0 25.94 .68 n.s.

20 21.95 218.34 2.72

2 1 •5 5 n.s. 23.12 6.06

22 .0 0 n.s. 3 .3 3 n.s. 24.51

23 1 .6 6  n.s. .24 n.s. 5.27

24 .08 n.s. 89.98 3.48 n.s.

25 • 77 n •s• 54.16 .73 n.s.
26 15.39 .83 n.s. 4.71

27
(Model)

10.16
(55.62)

.02 n.s. 
(99.83)

.96 n.s. 
(144.29)



Table 6a (i) Condition I (O.O.O.O)

THE CORRELATION OP SUBJECTS' CERTAINTIES

WITH THE SUM OP X1 and X?

Subject
Session

I II III
1 - .16 0 - .3 0 1 - .203
2 - .259 - .757 - .805

3 - .757 - .692 - .770

4 - .902 - .830 - .869

5 - .607 - .538 - .839
6 - .678 - .448 - .824

7 - .600 - .554 - .636

8 ‘ - .098 - .644 - .577

9 .048 - .229 - .069
(Model) (- .974) (- .979) (- .972)

Table 6a (ii) Condition I (O.O.O.O)

F RATIOS TO TEST THE SIGNIFICANCE 
OF THE BETTER FIT OF THE LINEAR COMBINATION WITH 

ESTIMATED WEIGHTS OVER THAT OF THE SUM OF X1 AND

Subject
Session

I II h i

1 .6 3 n.s. •66 n •8• .65 n.s.

2 •24 n•s• 14 .9 2 2.85 n.s.
I
3 .84 n.s. .21 n.s. 3.41 n.s.

4 2.11 n.s. . 5 1 n.s. I.l6 n.s.

5 2 .3 1 n.s. 3.57 .00 n.s.

¡6 7.72 22.79 .76 n.s.

7 .45 n.s. .40 n.s. 1 .4 0  n.s.

8 4.28 •75 n*s• . 1 3  n.s.

9 0.00 n.s. 20.98 36.10
(Model) (1.29) (4 .63) ( • ^ ------

94



Table 6b (i) Condition II (0.7,0.7)

THE CORRELATION 0? SUBJECTS' CERTAINTIES

WITH THE SUM OF X1 AND X?
%

Session
Subject

I II III
10 - .339 - .082 - .249
11 .081 - .141 - .761
12 .275 .344 O vo

13 - .786 - .918 - .894
14 .014 .093 .006

15 - .185 - .022 - .156
16 1 o CD - .164 - .187

17 - .146 - .855 - .777
18 - .064 .210 - .057

(Model) (- .982) (- .992) (- .988)

Table 6b (ii) Condition II (0.7,0.7)

F RATIOS TO TEST THE SIGNIFICANCE 
OF THE BETTER FIT OF THE LINEAR COMBINATION WITH 

ESTIMATED WEIGHTS OVER THAT OF THE SUM OF X1 AND X2

Subject
Session

I 1 1 i n
10 .16 n.s. . 2 5  n.s. .14 n.s.
11 I.5I n.s. .01 n.s. 4.23
12 15.51 .16 n.s. 96.79

13 .08 n.s. .22 n.s. •64 n •8•

14 .39 n.s. .07 n.s. 5.68

15 7.86 33.20 65.68

16 .26 n.s. 18.99 .02 n.s.

17 • 37 n.8. 1 . 0 5  n.s. .00 n.s.

18 •26 n.s. 1•71 n # b • .55 n.s.
(Model) (.00) (.0 0) (1.17)



Table 6c (i) Condition III (0.9,0.9)

THE CORRELATION OF SUBJECTS' CERTAINTIES

WITH THE SUM OF X1 AND X2

Subject Session

I II III
19 - .13 0 - .106 .013
20 - .054 - .141 - .831
21 - .217 - .195 - .799
22 - .065 - .843 - .911
23 .212 - .591 .012
24 - .042 .077 - .624
25 - .074 - .155 - .174
26 .057 - .626 - .803
27 - .703 - .355 - .540

(Model) (- .984) (- -991)__ (- -991)____
Table 6c (ii) Condition III (0.9*0.9)

F RATIOS TO TEST THE SIGNIFICANCE 
OF THE BETTER FIT OF THE LINEAR COMBINATION WITH 

ESTIMATED WEIGHTS OVER THAT OF THE SUM OF X1 AND X?

Subject
Session

I II III

19 7.75 25.16 .74 n.s.

¡20 2 1 .9 1 213.78 .33 n.s.

21 .22 n.s. 20.83 .25 n.s.

22 .00 n.s. .2 5  n.s. 2.67 n.s.

23 1.06 n.s. .3 6  n.s. 5.43

-¡24 i .11 n.s. 90.48 .49 n.s.

25 .98 n.e. 51.72 1 . 3 1  n.s.

26 16.62 .08 n.s. .02 n.s.

27
(Model)

22.94
(.29)_____

.4 8 n.s.
(1.65)______

4.06
(tM)------



Table 6d
ANALYSIS OF VARIANCE ON THE CORRBLATIONS 

OP SUBJECTS' CERTAINTIES WITH THE TERM (X1 + X2)

(FISHER'S Z TRANSFORMATION)

1------------------------
Source S.S. d.f. M.S. F P

Between Sub.iects 13.587 26
CONDITIONS 2.265 2 1.153 2.401 N.S.
Subjects within groups II.322 24 .472

Within Sub.iects 7.033 54
SESSIONS 1.910 2 .955 9.482 < .0 1
CONDITIONS X 
SESSIONS .288 4 .072 < 1

SESSIONS X Subjects 
within Groups 4.835 48 . 1 0 1

SIGNIFICANCE OF DIFFERENCES BETWEEN 
INDIVIDUAL PAIRS OF SESSION MEANS 

(FISHER'S Z TRANSFORMATION)

MEAN
SESSION

II III

MEAN
SESSION I - .290 
SESSION II - .448

- .448 - .665

- .158 - .375 *
- .217 *

Critical value of d * .175 at the .05 level.

*  Significant at the .05 Level.
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Subject
Session

I II III

1 .951 • 956 .882
2 .975 .895 .981
5 .997 1.000 .975
4 .998 .992 •998
5 .972 .902 .999
6 .940 .612 .994
7 .986 .997 .975
8 .287 .996 .999
9 - 1.000 .555 .081

Table 7a (ii) Condition I (0.0,0.0)

Subject
Session

I II III

1 .154 .501 .200

2 .254 .72 2 .779

5 .741 .680 .745
4 .882 .809 .846

5 .598 .515 .815

$ .671 .408 .799
7 ,.582 .547 .616
8 .085 .636 .562

9 - .046 .192 .052

ufflFfrr. ^wmém  *»■ m » ii  m **



THE LENS MODEL INDICES

Table 7a (iii) Condition I (0.0,0.0)

THE MATCHING INDEX C

Subject
Session

I II III

1 - .089 .261 .007
2 .414 .381 .295

3 .16J .292 .3 4 1

4 • 521 .688 . 3 1 3

5 - .031 .057 .287
6 • 352 .454 .584
7 .190 .347 .229

8 - .131 .336 .637
9 .043 - .095 .189

Table 7a (iv) Condition I (0.0,0.0)

(1 - R/)(1 - Rs )

Subject
Session

I II III

1 - .020 .048 .002

i? .089 .042 .040

3 .024 .041 .049

4 .049 .074 .036

5 - .005 .009 .037
6 .054 .065 .077

7 I.O34 .056 .041
8 - .028 .050 . 1 2 1

9 .0 10 - .015 .033

I
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THE LENS MODS! INDICES

Table 7b (i) Condition II (0.7.0.7) 

THE MATCHING INDEX G

Subject
Session

I II III

10 .986 .751 .974
1 1 - .414 .996 .966

12 - .493 - .988 - . 1 1 0

13 .999 .999 .997
14 - .147 - .920 - .042

15 .451 .029 .226
16 .451 .289

oCTNON

17 .861 .996 1 .0 0 0

18 .659 - .750 .506

Table 7b (ii) Condition II (0.7,0.7)

G x R x R e s

Subject
Session

I II III

10 .332 .081 .245

1 1 - .079

OH .747

12 - .267 - .341 - .089

13 .772 .910 .882

14 - .013 - .092 - .014

¡15 .184 .018 .171
16 .057 .159 .184

17 .144 .827 .768

18 .063 - .208 .035
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THE LENS MODEL INDICES

Table 7b (iii) Condition II (0.7,0.7)

THE MATCHING INDEX C

Subject
Session

I II III

10 .239 .231 .289

11 .088 .124 .520

12 - .093 - .250 .226

13 .598 .732 .719
14 - .179 .131 .089

15 .049 .347 - .070
16 .004 - .025 - .146

17 .214 .591 .626
18 - .035 - . 12 2 - .151

Table 7b (iv) Condition II (0.7,0.7)

(1 - Re2)(l - Rs2)

Subject
Session

I II III

10 .043 .029 .043

1 1 .017 .0 16 .050

12 - .015 - .030 .020

13 .071 .037 .050

14 - .034 .0 16 .013

}5 .009 .034 - .007

Ì6 .0 0 1 O O V-M - .022

17 .040 .04 1 .061

18 - .007 - .015 - .023

101
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THS LENS MODEL INDICES

Table 7b (iii) Condition II (0.7,0.7) *

THE MATCHING INDEX C

Subject
Session

I II III

10 .239 .231 .289
11 .088 .124 .520

12 1 b VO V_>J - .250 .226

13 • 598 .732 .719
14 - .179 .131 .089

15 .049 .347 - .070
16 .004 - .025 - .146

17 .214 • 591 .626
18 - .035 - .122 - .151

Table 7b (iv) Condition II (0.7,0.7)

C V  (1 -  Re2) ( i  -  Q



1

THE LENS MODS! INDICES 

Table 7c (i) Condition III (0.9,0.9)

THE MATCHING INDEX G

Subject
Session

I II III

19 .341 .154 - .085

20 .10 9 .133 .997
2 1 .960 .316 .999
22 .994 1.000 • 996
23 - .833 .995 - .056

24 .656 - .072 .994
25 .449 .190 .718
26 - .097 1.000 1.000

27 .858 .972 .908

Table 7c (ii) Condition III (0.9,0.9)

G x R x R e s

Subject
Session

I II III

19 .133 .091 - .011

20 .061 .120 .822

21 .214 .181 .793
22 .O64 • 8J6 .905

23 - .211 .588 - .018

24 .040 - .058 .620

25 .071 .138 .169

26 - .049 .621 .796

27 .686 .354 .531
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THE LENS MODEL INDICES

Table 7c (ili) Condition III (0.9.0.9)

THE HATCHING INDEX C

Subject
Session

I II III

19 - .027 .107 - .085

20 .097 - .14 6 .588

2 1 .046 - .039 .482
22 .2 10 .392 .618

25 .065 .077 .025

24 - .015 .050 .191

25 .158 - .096 .052
26 - .145 .259 .489
27 •055 .018 .115

Table 7c (iv) Condition III (0.9,0.9)

V 0  - R.2)0 - Rs?)

Subject
Session

I II III

19 - .004 .011 - .011

20 .014 - .008 .043

21 .008 - .004 O V>J OD

22 .038 .027 .033

23 .011 .008 .003

;24 - .003 .004 .020

25 j .028 - .009 .004

26 - .022 .026 .039

27 .004 .002 .012
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Table 7d

ANALYSIS OF VARIANCE ON THE MATCHING INDEX G

(FISHER'S Z TRANSFORMATION)

Source S.S. d.f. M.S. F P

Between Subjects 141.347 26
CONDITIONS 11.843 2 5.922 1.097 N.S.
Subjects within Groups 129.504 24 5.396 -

Within Subjects 91.0 00 54
SESSIONS 1 5 .O89 2 7-545 4.991 <-05
CONDITIONS X 

SESSIONS 3 .347 4 .837 < 1
SESSIONS X Subjects 
within Groups 72 .563 48 1.512

SIGNIFICANCE OF DIFFERENCES BETWEEN 
INDIVIDUAL PAIRS OF SESSION MEANS. 

(FISHER'S Z TRANSFORMATION)

MEAN
SESSION

II III

MEAN
SESSION I 1.029 
SESSION II 1.463

1.463 2.081 
.434 1.052 * 

.618

The critical value of d » .676 at .05 Level.

* Significant at the .05 Level



Table 7e

ANALYSIS CF VARIANCE ON THE MATCHING INDEX C 

(FISHER'S Z TRANSFORMATION)

Source S.S. d.f. M.S. F P

Between Subjects 3-999 26
CONDITIONS .272 2 .136 < 1
Subjects within Groups 3.727 24 .155

Within Subjects 2.419 54
SESSIONS .538 2 .269 7.353 < .0 1

CONDITIONS X 
SESSIONS .126 4

OJKSO < 1
SESSIONS X Subjects 
within Groups 1.755 48 .037

SIGNIFICANCE OF DIFFERENCES BETWEEN 
INDIVIDUAL PAIRS OF SESSION MEANS 

(FISHER'S Z TRANSFORMATION)

KEAN
SESSION

II III
MEAN
SESSION I .109 
SESSION II .211

.211 .309 

.102 .200 * 
.088

The critical value of d « .105 at the .05 level.

* Significant at the .05 level.
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Rank order equivalents of some of the foregoing indices were 

also computed. Tables 8 (a, b and c) show the rank order 

correlation of the subjects' certainties with those of the 

normative model. An analysis of variance (Table 8 d) on these 

coefficients showed exactly the same pattern of significant 

differences as the product moment index, with no significant 

effect of conditions but a higher correlation in session III 

than in either sessions I or II.

A rank order multiple regression of the subjects' certainties 

on the two cues X1 and was carried out, the resulting 

correlation coefficients being shown in Table 9 (a, b and c).

An analysis of variance on these coefficients showed no effect 

of conditions but the correlations were significantly lower in 

session I than in the other two sessions.

A rank order G, i.e. the rank order correlation between 

the prediction of the best linear combination of cues for 

^predicting the rank order of the subject's certainties and those 

of the best linear combination for predicting the rank order of 

the certainties of the normative model, was found and is shown 

in Tables 10 (a, b and c). The analysis of variance (Table 10 d) 

on this measure shows no effect of either conditions or sessions.
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RANK ORDER CORRELATIONS OF SUBJECTS' CERTAINTIES
WITH THOSE OF TEE NORMATIVE MODEL 

Table 8a Condition I (O.O.O.O)

Subject
Session

I II III

1 .188 .426 .139
2 .329 .751 .833
3 .777 .726 .875
4 .941 .885 .887

5 • 572 .555 .867
6 .8 19 .521 .931
7 .601 • 592 .654
8 .0 2 1 .658 .777
9 - .111 .194 .2 2 2

Table 8b Condition II (0.7,0.7)

Subject
Session

I II III

10 .346 . 1 1 0 .375

1 1 - .068 .197 .812

12 - .268 - .373 - .072

13 .852 .939 .947

14 - .014 - .000 - .0 25

15 .173 .017 .197

16 1 .028 .115 .157

17 .199 .857 .842

18 .055 - .158 .0 12



RANK OKDSR CORRELATIONS OF SUBJECTS' CERTAINTIES
WITH THOSE OF THE NORMATIVE MODEL 

Table 8c Condition III (Q.9,0.9)

Subject
Session

I II III

19 • 139 .136 - .031
20 .098 .158 .871
21 .229 .156 .870
22 .147

ONr—00 .962

25 - .161 .642 - .043
24 .077 .085 .874

25 .090 .149 .162
26 - .085 .691 .778

27 .722 .334 .534



ANALYSIS OF VARIANCE ON THE RANK ORDER
CORRELATIONS OF SUBJECTS' CERTAINTIES 
WITH THOSE OF THE NORMATIVE MODEL 

(FISHER'S Z TRANSFORMATION)

Source S.S. d.f. M.S. F P

Between Subjects 17.893 26
CONDITIONS 2.804 2 1.402 2.230 N.S.
Subjects within Groups 15.089 24 .629

Within Subjects 10.091 54
SESSIONS 3.099 2 1.549 11.188 <.01
CONDITIONS X 

SESSIONS .345 4 .086 <1
SESSIONS X Subjects 
within Groups 6.647 48 .138

SIGNIFICANCE OF DIFFERENCES BETWEEN INDIVIDPAL SESSION MEANS 
________ (FISHER’S Z TRANSFORMATION)_________

MEAN
SESSION

II H I
MEAN
SESSION I .330 
SESSION II .501

.5 0 1 .805 

. 1 7 1 .473 * 
.302 *

Critical value of 4 » .205 at .05 Level. 

* Significant at the .05 Level.



THE RANK ORDER CORRELATION BETWEEN SUBJECTS’ 
CERTAINTY ESTIMATES WITH A LINEAR COMBIRATION 

OF CUES WITH WEIGHTS ESTIMATED TC A RANK ORDER CRITERION'

Table 9» Condition I (0.0,0.0)

Subject
Session

I II III
1 .340 .44? .188

2 .340 .861 .874

5 .777 .734 .8 9 1

4 .956 .893 .891

5 .610 VJl VJ1 CD .87?
6 .827 .744 .944
7 .610 .605 .703
8 • 505 .671 ■'sT00r-

9
(Model)

.119
(1 .000)

.576 
(1 .0 0 0 )

.383
(1 .000)

Table 9b Condition II (0.7.0.7)

Subject
Session

I II III

10 .370 .270 .384

1 1 .306 .213 .890

12 .546 .407 .872

1 ? .854 .944 .953

14 .107 .034 .419

15 .858 .720 .813

16 .0 52 .505 .198

17 .2 1? .868 .853

18
(Model)

.093
(1 .000)

.322
(1 .000)

.144
(1 .000)
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THS RANK 0RD5K OOPRBLATION BETWEEN SUBJECTS1 
CERTAINTY ESTIMATES WITH A LINEAR COMBINATION 

OF CUES WITH WEIGHTS ESTIMATED TO A RANK ORDER CRITERION *

Table 9c Condition III (0.9.0.9)

Subject
Session

I II III

19 .460 .604 .10 3

20 .568 .909 .879
2 1 .305 .487 .874
22 .157 .879 .963
23 .383 .650 .739 '
24 . 1 1 6 .870 .876

25 .152 .769 .284
26 .524 .6 9 1 • 785
27 .826 .356 • 571

(Model) (1 .000) (1 .000) (1 .000)



ANALYSIS OF VARIANCE ON THE RANK ORDER R^ 

(FISHER'S Z TRANSFORMATION)

—-----------------------
Source S.S. d.f. M.S. F P

Between Sub.iects 11.908 26
CONDITIONS .613 2 .507 <1
Subjects within Groups 11.295 24 .471

Within Subjects 9.815 54
SESSIONS 2.876 2 1.458 10.434 <.01
SESSIONS X 
CONDITIONS .521 4 .080 < 1
SESSIONS X Subjects 
within Groups 6.616 48 .138

SIGNIFICANCE OF DIFFERENCES BETWEEN 
INDIVIDUAL PAIRS OF SESSION KEANS

(FISHER'S Z TRANSFORMATION)

MEAN
SESSION

II III
MEAN
SESSION I .548 
SESSION II .823

.823 1.°06 

.275 * *458 * 
.183

Critical value of d » .204 at .05 Level. 

* Significant at the .05 Level.
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RANK ORDER MATCHING INDEX G

Table 10a Condition I (0.0,0.0)

Subject
Session

I II III

1 • 398 •975 .916
2 .978 .809 .934
3 1.000 .998 .967
4 .999 .997 .993
5 • 975 .981 .992
6 .989 .776 •969
7 .946 • 996 •915
8 .305 .987 .980
9 - .997 .563 .953

Table 10b Condition II (O.7.0.7)

Subject
Session

I II III

10 .991 .725 .999
1 1 - .189 .996 .927
12 - .431 - .992 - .0 10

13 .995 .995 .995

14 .702 - .942 .050

15 1 .275 - .151 .251
16 ' .232 .070 .6 2 1

17 .553 .996 .990

18 .897 - .851 .286
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RANK ORDER MATCHING INDEX G

Table lOe Condition III (0.9.0.9) *

Subject
Session

I II III

19 .632 .286 - .854
20 - .030 .111 .987
21 .781 • 512 .999

22 .998 1.000 .997 .

25 - .708 .998 - .067

24 .854 - . 17 9 .995
25 .892 .085 .582.
26 - .030 1.000 •999
27 .885 .942 .955



Table 10d

ANALYSIS OF VARIANCE ON T E  RANK CPJER MATCHING INDEX S 

(FISHER'S Z TRANSFORMATION)

Source S.S. d.f. M.S. F P

Between Subjects 12 0 .8 5 3 26
CONDITIONS 13 .6 8 8 2 6.844 1.533 N.S.
Subjects within Croups 107.165 24 4.465

Within Subjects 97.924 54
SESSIONS 5.630 2 2.815 1.538 N.S.
CONDITIONS X 
SESSIONS 4.435 4 1.109 <1

SESSIONS X Subjects 
within Groups 87.856 48 1.830
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EXPERIMENT I
Conclusions

The most all pervading aspect of the data collected in this 
experiment is that a large proportion of subjects never learned 
to use the cues in a valid manner. Two subjects in Condition I 
(0.0,0.0), five in Condition II (0.7,0.7) and three in Condition III 
(0.9.0.9) gave certainty estimates whose correlation with those 
of the normative model did not exceed what might be expected by 
chance, sampling from a population with zero correlation, 
throughout the three sessions. An almost identical pattern 
occurs when the number of correct responses of each subject is 
compared with the number expected from a chance process which 
randomly allocates each "patient" to either of the disease 
populations with equal probability. The most likely explanation 
of this poor performance is a lack of motivation amongst the 
subjects who were not volunteers but were participating in the 
experiment in order to fulfil a course requirement. The remainder 
of the subjects appeared to be operating at a higher level than 
would be expected by chance and some obtained quite high 
correlations with the certainties of the normative model and 
made large numbers of correct "diagnoses".

In view of these large differences in performance between 
the subjects in each group it is hardly surprising that no 
significant effect of conditions was found on any of the accuracy 
indices (total number correct and the product moment and rank 
order correlations of the certainties of the subjects with those
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of the normative model). These indices did however, increase 
significantly over sessions with more accurate performance in 
session III than in the previous sessions, showing that some 
learning did take place in the course of the experiment, though 
as we have seen some subjects did not improve at all, nor reach 
a level of performance higher than that expected by chance.

The multiple correlation of the subjects' certainties with 
the two cues and also showed an increase over sessions but 
no effect of conditions. The certainties of a number of subjects 
in each condition (in general those who were not performing above 
a chance level) were not correlated significantly with the two 
cues, though those of other subjects were highly related to a 
linear combination of the cues. Most subjects with high multiple 
correlations with the two cues also had a high correlation between 
their certainties and a linear combination of the two cues which 
weighted them equally (i.e. the sum of X̂  and X̂ ). One or two 
subjects however, notably Subject 9 condition I (0.0, 0.0),
Subject 12 condition II (0.7,0.7) and Subject 20 condition III 
(0.9,0.9) have in some sessions high values of Rs but low values 
of correlations with (X1 + X̂ ) and with the certainties of the 
normative model. The difference in the multiple correlation and 
the correlation with (X̂  + X2) resulting in high and significant 
P ratios. This is easily explained if the beta weights (not 
presented) given to the two cues are examined. The certainty 
estimates of all these subjects had significant correlations 
with a linear combination which assigned a positive weight to



one cue and a negative weight to the other. These subjects seem 
to have subtracted one cue from the other (the weights were not 
in general significantly different from one another in absolute 
magnitude) and to have based their certainty estimates and 
decisions on the result. Although this process is linear, it 
has little or no validity thus explaining their poor performance.

The certainties of those subjects who were performing above 
chance level could generally be predicted almost as well by a 
linear combination of the two cues with equal weights as by a 
linear combination with weights estimated from the data. In 
practically all cases, if one of the cues contributed significantly 
to the fit of the linear combination (with estimated weights) then 
the other cue also contributed significantly. There is no 
evidence to show that subjects used only one cue, or that they 
used one cue more than the other in making their certainty 
estimates.

The indices of the Lens Model do not help us very much in 
our investigation of subjects' behaviour in such tasks as these.

meaningfully compared as the linear predictability of the task

Both the G and C matching indices show no significant differences 
between conditions though both increase over sessions. One 
drawback of the Lens Model analysis is that it assumes that the 
subjects' estimates are of exactly the same variable as the one 
predicted by the ecological model* In the current experiment

terms cannot be

R varies from condition to condition (and session to session.) e
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subjects' certainty responses were regarded as being exactly 
comparable to those of the normative model given by

Certainty of Disease 1 at (x̂ ,x̂ )

m  k A

Prob. of Disease 1 at (x^x^)
Prob. of Disease 1 at (x^Xj) + Prob. of Disease 2 at (x̂ .x̂ )

Subjects, however, were given no feedback as to the accuracy 
Of their certainty estimates and though it is probable that their 
estimates are monotonic with their subjective certainty (e.g. 
their estimates might represent simply a constant times their 
subjective probability of Disease 1, or a constant times the 
log likelihood ratio of their subjective probabilities etc.) 
there is no guarantee that they are estimating what we hope they 
are. It is possible that the interval properties required of the 
subjects' responses by the Lens Model may not exist, and thus 
that any apparent non-linearity in their decision processes may 
be a result of an inappropriate response scale.

An examination of Rg (the linear predictability of the 
system) shows that some of the tasks are apparently more 
linearly dependent than others. Yet we know that an equal 
weighting of the two cues can predict perfectly the log 
likelihood ratio, which is monotonic with certainty. Thus when 
a rank order multiple correlation procedure was applied to the 
certainties of the normative model, by changing the beta weights



found by least squares so as to minimise the difference in rank 
order of the predicted certainties of the normative model, and 
its actual certainties, weights could be found which made the 
rank order correlation perfect in all conditions i.e. all the 
tasks were equally well predicted by a linear combination of the 
cues, to a rank order criterion. It is only when the supposed 
interval qualities of the certainty data are used that Re drops 
below unity.

The rank order procedure was also applied to the certainties 
of the subjects, changing the weightings of the two cues X1 and 
Xj so as to minimise the differences in rank order of the 
predictions of this linear combination and the rank order of the 
subject's certainties. The resulting correlation coefficients, 
however, do not differ greatly from their product moment 
equivalents and on applying analysis of variance are found to 
have a very similar pattern of significance. Similar results were 
found with a rank order matching index G as were found with the 
product moment G, but when we come to look at the index of non
linear matching, C, the two approaches lead to quite different 
conclusions.

The value of C must be zero for all conditions in the 
present task, if we are working with the rank order version of 
the Lens Model. Since the rank order of the certainties of the 
normative model is perfectly predictable from a linear combination 
of the two cues, there is nothing left to be explained by non
linear cue utilization, i.e. nothing with which to correlate



that part of the subjects' responses which cannot be put down to 
using the cues linearly, C therefore must be zero.

These tasks then are not linear if our criterion of linearity 
is that

Ye-|®1X1 + & X2
However, if

Ye # /¥l + ̂ 2  
but Z » /91X1 +
and Y and Z have the same rank order i.e. are monotonic with one e
another, then the tasks may be regarded as being linear to a rank 
order criterion, since a linear combination of the two cues, 
though it cannot predict the values of Yg exactly can predict the 
rank order of the values without error.

The product moment version of the Lens Model is unable to 
distinguish between decision processes which are structurally non
linear (i.e. include non-linear terms) and those which appear non
linear because the response scale is not a linear function of the 
cues, but is just monotonic with such a function. Thus, though 
many of the C values of subjects in this experiment are quite 
large, this may be due to peculiarities of their response scale 
rather than non-linear decision processes.

In this task, if subjects had been asked to state their 
subjective log likelihood ratio (since the log likelihood ratio 
estimates of the normative model are perfectly predictable by a 
linear combination of the cues to a least squares criterion) 
then C would have been zero in all tasks even with the product



moment conception of the Lens Model. However, we may ask what 
"subjective log likelihood ratio" means to the average Part I 
psychology student - the answer is probably "absolutely nothing", 
so such an approach is not likely to bear fruit. Nor is the 
transformation of subjects' estimates on some other scale to 
"subjective log likelihood" ratio likely to be much use, since 
there is no guarantee that subjects are making estimates on 
the scale we think they are, nor that the transformed data have 
the necessary interval properties for the analysis.

It is felt then that this rank order approach may be of 
some use, particularly in comparing data from tasks which may be 
of different levels of predictability to a least squares criterion 
but which are equally predictable to a rank order one. In the 
present tasks, though, the rank order indices of linear 
predictability of subjects' responses and of linear matching 
do not differ markedly from their product moment counterparts 
(either in magnitude or in terms of significant effects of 
conditions or sessions), the rank order index of non-linear 
matching must clearly be zero in all conditions whereas it may 
be other than zero under the product moment conception.

In summary then, many of the subjects never learned to use 
the cues in an appropriate way, though some of these were 
using the cues consistently in an inappropriate way i.e. they 
appeared to have learnt an invalid rule and not to have been 
able to discard it, in a similar manner to some of the subjects 
of Azuma and Cronbach (1966). Of those subjects who did learn
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to use the cues appropriately there was strong reason to believe 
that both cues were weighted equally, the subjects probably basing 
their decisions and certainty responses on the sum or average of 
the two cues. Cue intercorrelation was not found to have a 
significant effect on either performance indices or on any of 
the indices of matching or linear dependence. This could either 
be due to the great error variance resulting from the poor 
performance of some subjects or it might be that cue inter
correlation has not such a strong moderating effect as was felt 
by Schenck and Naylor (1968).
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EXPERIMENT II

DECISIONS BETWEEN BIVARIATE NORMAL POPULATIONS WITH 

UNEQUAL MEAN VECTORS AND UNEQUAL COVARIANCE MATRICES



INTRODUCTION TO EXPERIMENT I I

We have seen how clinicians claim to use cues in complex 
non-linear ways, how they claim that it is the "pattern" or 
relationship between scores on different tests which they feel 
to be important, not just the scores on each test viewed singly 
and independently. Their claims seem to imply that they perceive 
differences in the inter-relations of the cues between the various 
diagnostic groups. We might feel it surprising then that only 
one paper has dealt with the behaviour of subjects in a learning 
task so designed as to create different relationships in the 
cues from one diagnostic alternative to another.

Schum (1966) states "One issue not investigated in previous 
studies but of considerable importance in an evaluation of human 
inferential skills concerns interdependencies among data upon 
which inferences are to be based. Part of the task of weighing 
evidence for inferential or diagnostic purposes includes appraisal 
of the joint impact of various items of evidence being considered. 
Frequently, knowledge of the form, extent, and probable cause of 
inter-relationships among two or more items of evidence makes the 
joint impact of the evidence different from the total impact 
from successive but independent consideration of each item. In 
some cases the dependence, or more appropriately non-independence, 
of two or more items of data is conditional upon the truth of some 
hypothesis (Ĥ ) being considered. In other words the factor or 
process mediating the non-independence is the truth of one of 
the hypotheses being entertained to explain the occurrence of the



data." (pp. 401 - 4 0 2).
He placed subjects in a simulated "threat diagnosis context, 

and required them to estimate, on the basis of a set of data 
("scenario") about a potential enemy's troop movements, the 
probability that an attack rather than a "peaceful" exercise was 
being mounted. During the experiment 240 scenarios were presented to 
each subject, each scenario consisting of six items of information 
(two of which had very little validity). The subject made his 
estimate of the probability of attack for each of the scenarios 
and was immediately informed of the correct hypothesis, the six 
variables listed in each scenario were of a categorical nature, 
taking one of only three or four possible values. For example, 
data class one (D^ was the number of "heavy tank units" in the 
vicinity, and took one of the values 1, 2, 3 or 4.

Three groups of subjects were used, one group under each of
three conditions. For groups 1 and 2 the data sources were
conditionally non-independent, though they differed in the exact
form of non-independence. For group 3» all data sources were
conditionally independent. For groups 1 and 2, when H& (attack)
was true, data classes D, and D. exhibited interdependence and5 4
when (no attack) was true data classes D̂  and D̂  exhibited 
interdependence. For group 3 all six data classes were independent 
regardless of which hypothesis was true. The figure below shows 
an extreme case (not investigated by Schum) where neither D̂  nor 
Dg used singly has any predictive validity but used together they 
increase accuracy quite substantially. ( It is hoped
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that this extreme example will clearly illustrate what is meant 
by conditional non-independence).

.10 .00 oo oO•

.00 ,10 .00 O o

.00 .00 oCM• oo

.00 .00 oo .60

.1 0  .10  .20  .60

.10

.60

1.00

1 2 3 4
.01 .01 CVJo• .06 .10
,01 ,01 ,02 ,06 .to
.02 .02 .04 .12 .20
.06 .06 .12 .?6 .60
.10 .10 .20 .6 0 1.00

In the above example, the knowledge that D1 takes the 

value 1 does not help us to distinguish between the two states 

of nature. Similarly, the knowledge that takes the value 1 

helps us not at all in making the decision. However the 

knowledge that D1 takes the value 1 and D2 takes the value 1 

makes ten times as likely as H^.

Subjects' estimates of probabilities were compared with 
the actual probabilities calculated through Bayes theorem, and 
Schum was able to conclude that the group 1 subjects with 
conditionally non-independent cues made estimates of the 
probabilities of "attack" and "no attack" which were very close 
to the actual values. The subjects of both groups 1 and 2 were 
found not to have been processing the non-independent data as 
if they were independent, implying that they had perceived and 
utilized the conditional non-independence of the cues.
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It is questionable if similar results would have been obtained 
if the subjects had not been required to keep written records and 
if their attention had not been drawn to the likely locus of any 
non-independence in the data sources. Hammond and Summers (19̂ 5) 
had found subjeots not to utilize a non-linear cue if they were 
not informed of its non-linearity, it is possible that similar 
results might hold for condit onal non-independence.

This last experiment dealt with conditional non-independence 
in categorical cues, what sort of conditional non-independence 
might occur between continuous cues in the sort of situation 
with which Experiment I dealt? One obvious way in which the 
two populations might differ in cue interdependence, is in the 
degree of correlation existing between the two predictor variables, 
(in Experiment I, though cue correlation differed from condition 
to condition, it was equal for both populations in any one 
condition).

The normative model in Experiment I was provided by Linear 
Discriminant Function analysis, but this procedure is based on 
the very assumption that the two populations to be discriminated 
are of equal covariance matrix i.e. the same cue intercorrelations 
exists in both. It is possible however to deduce the best 
decision function in this situation (for a detailed analysis 
see Appendix C), and this is found to be a linear (in the 
statistical sense), combination of not only the scores on the 
variables, but also of the squares and cross products of the 
scores. The log likelihood ratio is given by a function of the
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It is questionable if similar results would have been obtained 
if the subjects had not been required to keep written records and 
if their attention had not been drawn to the likely locus of any 
non-independence in the data sources. Hammond and Summers (19&5) 
had found subjeots not to utilize a non-linear cue if they were 
not informed of its non-linearity, it is possible that similar 
results might hold for condit onal non-independence.

This last experiment dealt with conditional non-independence 
in categorical cues, what sort of conditional non-independence 
might occur between continuous cues in the sort of situation 
with which Experiment I dealt? One obvious way in which the 
two populations might differ in cue interdependence, is in the 
degree of correlation existing between the two predictor variables, 
(in Experiment I, though cue correlation differed from condition 
to condition, it was equal for both populations in any one 
condition).

The normative model in Experiment I was provided by Linear 
Discriminant Function analysis, but this procedure is based on 
the very assumption that the two populations to be discriminated 
are of equal covariance matrix i.e. the same cue intercorrelations 
exists in both. It is possible however to deduce the best 
decision function in this situation (for a detailed analysis 
see AppendixC),and this is found to be a linear (in the 
statistical sense), combination of not only the scores on the 
variables, but also of the squares and cross products of the 
scores. The log likelihood ratio is given by a function of the



form:-
lnL(X) -ft, + P1X1 + p2X2 ♦ + p4X22 + (S^Xg

If more than two cues are involved, similar terms in their squares 
and cross product must he included, the function remaining 
throughout, what is termed a "Quadratic Function".

The above function may look familiar, we did in fact come 
across it when reviewing Wiggins and Hoffman's (1968) paper in 
which they used it to model the behaviour of subjects asked to 
estimate the probability of M.M.P.I. profiles being from psychotic 
rather than neurotic patients. Wiggins and Hoffman, however, felt 
it was "simply a mathematical expression involving all possible 
first and second order terms" and contrasted it with the sign 
model which "involves rationally chosen variables" (p. 72). It 
appears however, that the model is not quite so arbitrary as was 
felt, if decisions must be made between multivariate normal 
populations possibly differing in cue independence (and the 
diagnosis of psychotics vs. neurotic profiles could certainly 
come under this category) then this simple expression follows 
as logically as does the Linear Discriminant Function under 
slightly differing circumstances.

Brunswick's plea for representative experimental design 
again stimulates us to be interested in situations of the above 
kind. Researchers in "real life"decision making behaviour went 
to great pains to discover naturally occurring tasks which 
required the non-linear use of cues for accurate performance.
But, having found tasks, reportedly non-linear in nature, they
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did not investigate these tasks statistically to discover if such 
claims were warranted and, if so, what non-linear processes were 
valid in these situation. Rather, they frequently altered the 
situations to suit their research tools, and possibly as a 
result of this, were unable to find any indication of a great 
reliance on anything other than linear cues. If, however, non
linear tasks are constructed in the laboratory, all the parameters 
of the populations are known to the experimenter, he knows which 
cues are valid and which are not and he also has complete control 
of subjects' experiences.

In the literature on learning multiple cue relations, only 

Hammond and Summers (19 6 5) investigated behaviour in a non-linear 

task, including as it did a dependence between the predicted 

variable and the size of one of the predictors.

Hammond and Summers, however, had no particular reason for 
choosing a non-linear term of this kind, it was not felt to be 
particularly representative of some certain kind of real life 
task, it was however mathematically convenient having a zero 
correlation with the "raw" predictor variable. The experiment 
to be described, on the contrary, was designed to represent a 
class of decision making tasks, requiring non-linear cue 
utilization, which could easily occur in real life. The non
linearity of the situation is not something artificial which is 
added on to a linear component, but is an integral part of the 
task following logically from its underlying structure.

The experiment consisted of three different conditions



varying in the difference between the two populations to be 
distinguished in terms of cue intercorrelation. In all conditions, 
the mean value of population 2 was 9*5 on both variables, with 
standard deviation 2.0 and intercorrelation zero. The mean value 
of population 1 was 7.5 on both variables, with standard deviation 
2.0, but with zero intercorrelation in condition I, and inter
correlation of + .70 in condition II and + .90 in condition III.
(The tasks are discussed in greater detail in Appendix C.)

A pilot study has revealed that with high differences in 
correlation, subjects olaimed that they look at a transformation 
of the two cues which may be represented mathematically as 
ABS (X1 - X2) i.e. the magnitude of the difference between the 
two cues, disregarding the sign of the difference. This is a 
non-linear combination of X̂  and X̂  and it was intended to 
consider the conditions in terms of the correlations between 
this cue and the subjects' certainty estimates as well as the 
linear model examined in the last experiment.

The experiment was designed in order to discover whether 
subjects modify their decision strategies so as to take account 
of differences in cue intercorrelation between the two populations 
to be discriminated, or whether they persist in their use of a 
linear combination of the two cues as they appeared to do in 
Experiment I. A large number of conditions could not be run, 
but it was hoped that the three investigated here would give some 
indication of the level of difference in correlation which is 
necessary to cause subjects to discard the simple linear model.



It was known from the experiments on the ability of subjects to 
estimate one correlated variable from another that subjects can 
perceive quite accurately the high range of positive correlations, 
but since the prime aim of the task in this situation is not to 
predict one cue from the other, but to predict some other 
criterion from both, it is possible that even quite high 
correlations might be overlooked.

Subjects
Due to the relative lack of success, in using as subjects 

Part 1 psychology students who were compelled to participate 
in the first experiment, it was felt necessary to find subjects 
whose motivation could be relied upon. A sufficient degree of 
motivation was assured by the use of subjects who were known 
personally to the experimenter and who were paid for their 
participation (at the rate of 30p per hour). This however, 
severely reduced the pool of possible subjects and it was 
decided to use a within subjects design, each subject taking 
part for three hours under all three conditions. Six female 
students, who were either honours students or postgraduates in 
psychology acted as subjects. T'heir average age was approximately 
21 years. All possible six orders of presentation of the three 
conditions were used, one subject under each order.

Apparatus
The same apparatus as was employed in Experiment I was 

used in this study, though the paper tapes on which were punched 
the stimuli were obviously different.



Procedure
This was the same as in Experiment I, but after the subject 

had completed the three sessions of each condition, she was told 
that the next session would be different and that the rules she 
had so far developed may not be valid in the next session. At 
the end of the third session of each condition, the subject was 
asked to write a few sentences on the way in which the 
categorical decision and certainty estimates were made.
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EXPERIMENT II
RESULTS

Again only the data collected in the 50 test trials of each 
session were analysed, with most of the analyses based on the 
certainty estimates again transformed to yield a scale ranging 
from 1 (complete certainty of Disease 1) to 100 (complete 
certainty of Disease 2).

The number of correct responses (i.e. the number of 
categorical responses which agreed with those of the normative 
model) was found for each subject in each session and are 
presented in Tables 11 (a, b and c). No significant differences 
occurred between conditions but performance in session II was 
significantly better than in the other two sessions (Table 11 d). 
The correlation of the subjects' certainties withthose of the 
normative model, displayed in Tables 12 (a, b and c), were 
found not to be affected significantly by either conditions 
or sessions (Table 12 d).
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NUMBER OF CORRECT RESPONSES 
(i.e, Agreements with the Normative Model)

Table

Table

Table

11a Condition I (0.0,0.0)

Subject '
Session

I II III

1 49 48 48
2 40 47 40
3 43 46 46
4 45 46 41
5 42 43 42
6 44 41 41

Condition II (0.7,0.0)

Subject- Session

I II III

1 43 37 39
2 42 42 43
3 46 46 42
4 34 45 _ 36
5 43 47 45
6 40 44 35

Condition III (0.9,0.0)

Session
Subject

I II III

1 45 46 42
2 44 49 40
3 44 45 42
4 45 48 40
5 44 49 44
6 40 40 45



Table 11b

ANALYSIS OF VARIANCE ON THE NUMBER OF CORRECT RESPONSES

Source S.S. d.f. M.S. P P

Subjects 86.53 5
Sessions 102.37 2 51.19 7.213 .05
Conditions 71.81 2 35.91 2.370 N.S.
Sessions x Conditions 5.52 4 .8 8 1

Sessions x Subjects 70.96 10 7 .1 0

Conditions x Subjects 151.52 10 15.15
Sessions x Conditions x Subjects 157.15 20 7 .8 6

TOTAL 643.86 53

SIGNIFICANCE OF DIFFERENCES BETWEEN 
INDIVIDUAL PAIRS OF SESSION MEANS

MEAN

SESSION

II III
MEAN 45.06 41.72
SESSION
I
II

42.94
45.06

2.12* -1.22*-3.34

Critical value of d = .198 at the .05 level. 
* Significant at the .05 level.



CORRELATIONS OF STJBJECTS' CERTAINTIES
WITH THOSE OF THE NORMATIVE MODEL (ra) 

Table 12a Condition I (0.0,0.0)

Subject • Session
I II III

1 .898 .923 .842
2 .841 .937 .860
3 .911 .942 .935
4 .88? .884 .855
5 .855 .914 .864
6 .811 .927 .9 2 2

Table 12b Condition II (0.7.0.0)

Subject
Session

I II III

1 .748 .706 .756
2 .818 .838 .768
3 .922 .901 .915
4 .574 .816 .757
5 .902 .923 .904
6 .862 .879 .687

Table 12c Condition III (0.9,0.0)

Subject Session
I II III

1 .869 .816 .795
2 .825 .909 .804
3 .779 .811 .888
4 .930 .896 .852
5 .815 KN0000 .915
6 .708 .674 .827
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Table I2d

ANALYSIS OP VARIANCE ON THS CORRELATIONS OF SUBJECTS' 
CHRTAINTISS WITH THOSE OF THE NORMATIVE MODEL 

(Fisher's Z Transformation)

Source S.S. d.f. M.S. F P

Subjects .750 5
Sessions .2 4 0 2 .120

Conditions .550 2 .275 3.012 N.S.
Sessions x Conditions .147 4 .037 3.230 N.S.
Sessions x Subjects .398 10 .040 <1
Conditions x Subjects .851 10 .085
Sessions x Conditions x Subjects 1.148 20 .057

TOTAL 4.084 53



Table 12d

ANALYSIS OF VARIANCE ON THE CORRELATIONS OF SUBJECTS' 
C3RTAINTL3S WITH THOSE OF THE NORMATIVE MODEL 

(Fisher's Z Transformation)

Source S.S. d.f. M.S. F P

Subjects .750 5
Sessions .24 0 2 .12 0

Conditions .550 2 .275 3.012 N.S.
Sessions x Conditions .147 4 .037 3.230 N.S.
Sessions x Subjects OD —X O O O A

Conditions x Subjects .651 10 .085
Sessions x Conditions x Subjects 1.148 20 .057
TOTAL 4.084 53
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Multiple regression analyses were carried out upon the 
subjects' certainties using the two cues X1 and X2 as predictor 
variables. The resulting amitipie correlation coefficients 
(Rg'o) are shown in Tables 13 (a, b and c). An analysis of 
variance on these measures (Table 13 d) showed that subjects' 
certainties were less well predicted by such a linear 
combination in Condition I I I  ( 0 . 9 , 0 . 0 )  than in the other two 
conditions. There was also a significant effect of sessions, 
the coefficients being significantly lower in session I I I  than 
session I I .

The correlation of subjects' certainties with the sum of 
the two cues i.e. with (X̂  + X̂ ) are shown in Tables 
14 (a, b and c). An analysis of variance on these coefficients 
(Table 14 d) showed a significantly lower correlation in 
Condition I I I  ( 0 . 9 . 0 . 0 )  than in the other conditions as well 
as a lower correlation in session I I I  than in the two previous 
sessions. When the possible covariance effects of the term 
ABS (X.| - Xg) were removed from these correlation coefficients, 
an analysis of variance on the resulting partial correlations 
(Table 14 e) showed no effect of sessions though these partial 
correlations were also lower in Condition I I I  ( 0 . 9 , 0 . 0 )  than in 
the other conditions. F  ratios to test the significance of the 
better fit of the linear combination of the two cues X1 and X2 
with estimated weights over that of the term (X̂  + X?) were 
calculated and are shown in Tables 13 (a, b and c).

The Lens Model indices for a linear combination of the two
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cues (with estimated weights) were computed for each subject.
G is shown in Tables 16 (a (i), b (i) and c (i))f G R ^  in 
Tables 16 (a (ii), b (ii) and c (ii))f C in Tables 16 (a (iii), 
b (iii) and c (iii)) and cV(1 - Rg2)(l - Rg2) in Tables 16 
(a (iv), b (iv) and e (iv)). Analyses of variance were 
carried out on both the G and C indices. Though G was not 
significantly affected by either condition or session (Table I6d), 
C was found to be significantly higher in Condition III (0.9,0.0) 
than in the other two conditions, and was significantly lower in 
session I than in sessions II and III (Table 16e).



PREDICTABILITY OF SUBJECT'S CERTAINTIES FROI4 A LINEAR 
COMBINATION OP THE TWO CUES WITH ESTIMATED WEISHTS (Rg)

Table 1?a Condition I (0.0,0.0)

Subject
Session

I II III
1 .847 .840 .739
2 .845 .918 .862
? VO o CD .917 .917
4 .855 .862 .805
5 .844 .868 .836

6 .813 .919 .933
(Model) (.985) (.965) (.968)

Table 13b Condition II (0.7»0.0)

Subject Session
I II III

1 .824 .850 .699
2 r<-\

CON• .905 .926
3 .880 CD VO O .881
4 .668 .847 .848
5 .893 .860 .839
6 .894 .916 .905

(Model) (.868) (.862) (.772)

Table 13c Condition III (0.9,0.0)

Subject
Session

I II III
1 .743 .820 .756
2 .781 .8 5 2

00KNGO•

3 OON00 .892 .728
4 .754 .755 .674
5 00**!■00• .778 .646

6 .959 .929- .495
(Model) (.709) (.711) (.570)
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Table 13d

ANALYSIS OP VARIANCE ON THE Res OP A LINEAR

COMBINATION OF THE CUES 
(Fisher*8 Z Transformation)

Source S.S. d.f. M.S. F P

Subjects 1.161 5 .232
Sessions .536 2 .1 6 8 7.229 <.01
Conditions .470 2 .235 13.143 <.01
Sessions x Conditions .365 4 .091 1 .6 92 N.S.
Sessions x Subjects .233 10 .025
Conditions x Subjects .179 10 .018
Sessions x Conditions x Subjects 1.078 20 .054
TOTAL 3.822 53

SIGNIFICANCE OF DIFFERENCES BETWEEN 
INDIVIDUAL PAIRS OF CONDITION MEANS 

(Fi8her*s Z Transformation)

MEAN
MEAN

CONDITION
II (0.7,0.0) III (0.9,0.0) 
1.323 1.132

CONDITION
I (O.O.O.O) 1.535 
11(0.7.0.0) 1.323

-.012 -.203* *-.191
Critical value of d « .099 at the .05 level.

SIGNIFICANCE OF DIFFERENCES BETWEEN 
INDIVIDUAL PAIRS OF SESSION MEANS 

(Fisher's Z Transformation)

MEAN
MEAN

SESSION
II HI 
1.354 1.162

SESSION
I 1.275
II 1.354

.079 -.113*-.194
Critical value of d » .160 at the .05 level.
* Significant at the .05 level



THE CORRELATIONS OP SUBJECTS' CERTAINTIES WITH THE TERM (X1 + X2)

Table 14a Condition I (0.0,0.0)

Subject Session
I II III

1 -.847 -.838 -.738
2 -.837 -.912 - .8 5 1

3 -.905 -.910 -.914
4 1 00 VJl f\0 -.861 -.797
5 -.834 -.867 -.824
6 -.811 -.918 -.933

(Model) (-.985) (-.964) (-.968)

Table 14b Condition II (O.7,0.0)

Subject Session
I II III

1 -.815 -.760 -.581
2 -.867 - .8 6 5 - .9 2 1

3 -.879 -.883 - .8 6 5

4 -.662 -.839 - .8 4 6

5 -.892 -.648 -.834
6 -.892 -.913 -.904̂

(Model) (-.868) (-.855) (-.750)

Table 14c Condition III (0.9,0.0)

S u b je c t
S e s s io n

I I I I I I

1 -.699 -.817 -.756
2 -.781 -.847 - .8 3 6

3 - .8 8 9 -.889 -.701
4 -.752 -.733 - .6 4 6

5 -.847 -.763 - .6 3 6

6 -.959 -.917 - . 4 8 8

(M o d e l) (-.709) (-.687) (-.556)



Table 14d

ANALYSIS OF VARIANCE ON THE CORRELATIONS CF SPBJBCTS' 
CERTAINTIES WITH THE TERM (X1 + X?)

(Fisher's Z Transformation)
Source S.S. d.f. M.S. F P

Subjects 1.260 5
Sessions .295 2 .146 5.704 <.05
Conditions .431 2 .21 5 11 .249 <.01
Sessions x Conditions .575 4 .094 1.564 N.S.
Sessions x Subjects • 259 10 .026
Conditions x Subjects .191 10 .019
Sessions x Conditions x Subjects 1.199 20 .060
TOTAL 4.010 53

SIGNIFICANCE CF DIFFERENCES BETWEEN INDIVIDUAL
PAIRS OF CONDITION MEANS (Fisher's 2 Transformation)

MEAN
MEAN

CONDITION
II (0.7 ,0.0) i n  (0.9,0.0) 
1.262 1.107

CONDITION
I (0.0,0.0) 1.318
II (0.7,0.0) 1.262

-.054 -.211* 
#

-.155
Critical value of d » .105 at the .05 level.

SIGNIFICANCE OF DIFFERENCES BETWEEN INDIVIDUAL
PAIRS OF SESSION MEANS (Fisher's Z Transformation)

MEAN
MEAN

SESSION
II III 
1.306 1.129

SESSION
I 1.252
II 1.306

.05 4 -.123* *
- .1 7 7

Critical value of d * .119 at the .05 level. * Significant at the .05 level.



Table 14e

ANALYSIS OF VARIANCE ON THE CORRELATIONS OF SUBJ3CTS' CERTAINTIES 
WITH THE TERM (X1 + WHEN THE EFFECT OF THE TERM ABS(X1 - X?)

IS PARTIALLSD OUT (Fisher's Z Transformation)
Source S.S. d.f. M.S. F P

Subjects 1.319 5
Sessions .130 2 .065 2.451 N.S.
Conditions .298 2 .149 6 .3 2 4 <.05
Sessions x Conditions .302 4 .076 1.292 N.S.
Sessions x Subjects .265 10 .027
Conditions x Subjects .23 6 10 .024

Sessions x Conditions x Subjects 1.168 20 .058
TOTAL 3.718 53

SISNIFICANCE 0? DIFFERENCES BETWEEN 
INDIVIDUAL PAIRS OF CONDITION MEANS 

(Fisher's Z Transformation)

MEAN
MEAN

CONDITION
II (0.7,0.0) III (0.9,0.0) 
1.330 1.191

CONDITION
I (0.0,0.0) 1.362 
1 1(0 .7 ,0.0) 1 .3 3 0

- .0 3 2 -.171* *-.139
Critical value of d = ,114 at the ,05 level. * Significant at the .05 level.



F RATIOS TO TEST THE SIGNIFICANCE OP THE BETTER FIT OF THE LINEAR COMBINATION
OF THE CUES WITH ESTIMATED WEIGHTS OVER THAT OF THE TERM (X1 + X?) 

Table 15a Condition I (0.0,0.0)

Subject
Session

I II III

1 .14 .46 .08
2 2.41 3.12 3.34
3 1.65 4.01 1.45
4 .32 .28 1.82
5 2.66 .26 3.03
6 .41 .39 .27

(Model) (.62) (1.19) (.00)

Table 15b Condition II (O.7,0.0)

Subject
Session

I II III

1 2.25 24.25* 13.90*
2 15.92* 17.54* 2.99
3 .29 2.72

*
5.59

4 .71 2.19 .63
5 .08 3.72 1.19
6 .88 1.50 .71

(Model) (.10) (2.39) (3.93)

Table 15c Condition III (0.9,0.0)

Subject
Session

I II III
*

1 6.58 .89 .03
2 .00 1.48 .42

3 .52 .94 3.79
4 .56 3.60 3.18

5 .23 2.76 1.00
6 .00 7.94* .38

(Model) (.07) (3.25) (1 .1 1 )

* Significant at the .05 level.
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THE LENS MODEL INDICES FOR A

LINEAR COMBINATION OF THE TWO CUES

Table 16a (i) Condition I (O.O.O.O)

THE MATCHING INDEX G

Subject Session

I II III

1 1.000 .994 1.000
2 .966 .988 .988
3 .998 .996 .997
4 .997 .996 .989
5 .985 1,000 .985
6 .999 1.000 .999

Table 16a (ii) Condition I (O.0,0.0)

Subject _______________ Session____________________

I II III

1 .834 .806 .714
2 .821 .876

CVi
CD

3 .893 .882 .884
4

CDK
\

CD .829 .770

5 .819 .837 .797
6 .800 .887 .902



THE LENS MODEL INDICES FOR A-
LINEAR COMBINATION OP THE TWO CUES

Table 16a (ill) Condition I (O.O.O.O)

THE MATCHING INDEX C

Subject
Session

I II III

1 .694 .820 .751
2 .219 .594 .279
3 .258 .574 .506
4 .502 .419 .562
5 .394 .589 .486
6 . 10 5 .393 .212

Table 16a (iv) Condition I (O.O.O.O)

(1 -Oo - O

Subject Session

I II III

1 .064 .117 .128
2 .020 .062 .036
3 .019 .060 .051
4 .045 .056 .084
5 .037 .077 .067
6 .010 .041____ .019



f
THE LEWS MODEL INDICES FOR A 

LINEAR COMBINATION OF THE TWO CUES

Table 16b (i) Condition II (0.7»0.0)

THE MATCHING INDEX G

Subject Session

I II III

1 .985 .828 .940
2 .967 • 987 .942
3 1.000 1.000 .999
4 .987 1.000 .986
5 1.000 .999 .991
6 .996 .978 KN00ON•

Table'16b (ii) Condition II (0.7.0.0)

Subject Session

I II III

1 .704 .607 .507
2 .757 .769 .673
3 .764 .767 .679
4 .572 .731 .646

5 .775 .741 .641

6 .773 ______JI2____ .687_______
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I
THE LENS MODEL INDICES FOR A 

LINEAR COMBINATION OF THE W O  CUES

Table 16b (iii) Condition II (0.7.0.0) 

THE MATCHING INDEX C

Subject
Session

I II III

1 .157 .370 .552
2 .285 .317 .396
3 .669 .579 .786
4 .006 .318 .330
5 .568 .705 .760

___ é____ .400 ______-525 -.001

Table 16b (iv) Condition II (0.7.0.0)

o  - * * ) «  - O

Subject Session -

I II Ill

1 .044 .099 • fNJ NJ
1

2 .061 .069 .095
3 .158 .134 .095
4 .002 .086 .111
5 .127 .182 .263
6 ONGOO• .107 -.000
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I
THE LENS MODEL INDICES FOR A 

LIKSAR COMBINATION OF THE TWO CUES

Table 16o (i) Condition III (0.9,0.0) 

THE MATCHING INDEX G

Subject
Session

I II III

1 .955 .986 .971
2 .999 .988 .987
3 1.000 .982 .999
4 1.000 1.000 .998
5 1.000 .998 .999
6 .999 .910 .998

Table 16c (ii) Condition III (0.9.0.0)

GR Re s

Subject Session
? II h i

1 .503 .576 .4 19
2 .553 .599 .471

3 .6J1 .623 .4 14

4 .534 .537 '04 a> V>4

5 .601 .552 .368

6 .680 ON O r\3 .281
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I

THE LENS MOSEL INDICES FOR A

LINEAR COMBINATION OF THE TWO CUES

Table 16c (ill) Condition III (0.9,0.0)

THE MATCHING INDEX C

Subject Session

I II III

1 .776 .597 .699
2 .612 .841 .741
? .459 .591

T—•**-CO

4 .854 .778 .772
5 .567 .749 .873
6 .140 .280 .763

Table 16c (iv) Condition III (0.9,0.0)

c V(1 - Re2)d - R.2)

Subject Session

I II III

1 .366 .240 .376
2 .269 .310 .332
3 .147 .188 .474
4 .395 .358 .469
5 .212 .331 .547
6 .028 .073 .545
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Table l6d

ANALYSIS OF VARIANCE ON THE MATCHING INDEX G FOR THE 
LINEAE COMBINATION OP X., AND X? (Fisher's Z Transformation)

Source S.S. d,.f. M.S. P P

Subjects 9.168 5
Sessions 1.532 2 .766 1.897 N.S.
Conditions 1.658 2 .829 <1
Sessions x Conditions 2.504 4 .576 1.732 N.S.
Sessions x Subjects 4.059 10 .404
Conditions x Subjects 12.?84 10 1.228
Sessions x Conditions x Subjects 6.6S2 20 .333
TOTAL 37.637 53



Ta^le 16e

ANALYSIS OF VARIANCE ON THE MATCHING INDEX C FOR THE LINEAR 
COMBINATION OF X1 AND X? (Fisher's Z Transformation)

Source S.S. d.f. M.S. F P

Subjects 1.142 5
Sessions .487 2 .243 7.677 <.01
Conditions 1.489 2 • 745 4.531 <•05
Sessions x Conditions OCVi 4 .060 1.181 N.S.
Sessions x Subjects .317 10 .052
Conditions x Subjects 1 .644 10 .164
Sessions x Conditions x Subjects 1.017 20 .051

TOTAL 6.336 53

SIGNIFICANCE OF DIFFERENCES BETWEEN 
INDIVIDUAL PAIRS OF CONDITION MEANS

(Fisher's Z Transformation)

MEAN
MEAN

CONDITION
II (0.7 ,0.0) III (0.9,0.0) 
.497 .867

CONDITION
I (0.0 ,0.0) .536 

11(0.7,0.0) .497
-.039 .331* 

.370*

Critical value of d » ,J01 at the .05 level.

SIGNIFICANCE OF DIFFERENCES BETWEEN 
INDIVIDUAL PAIRS OF SESSION MEANS

(Fisher'e Z Transformation)
SESSION

MEAN II Ill
MEAN .672 .725
SESSION

I „ *
.169

*
.222

II .053

Critical
#

value of d « . 1 3 2  at the .05 level.
Significant at the ,05 level.
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In view of the claims of subjects in a pilot study (which 

resembled the tasks forming Conditions II and III) that they 

considered not only the magnitude of the two cues (they generally 

reported that they summed or averaged them) but also the magnitude 

of the difference between them regardless of the sign of the 

difference i.e. ABS (X1 - X2)f it was decided to regress the 

certainties of the present subjects against both these 

transformations.

i.e. Yb - ^ ( X 1 + X2) +/32(ABS(X1 - X2))
The coefficients of multiple correlation resulting from this 

analysis are displayed in Tables 17 (a, b and e). Neither 

conditions nor sessions were found to have a significant effect 

on this index (Table 17 d).

The correlations between the subjects' certainties and the 

ABS (X1 - Xg) term alone are shown in Tables 18 (a, b and o).

An analysis of variance on these coefficients (Table 18 d) 

showed no effect of sessions but a significantly lesser degree 

of correlation in Condition I (0.0,0.0) than in Conditions II 

(0.7,0.0) and III (0.9,0.0), Condition II (0.7.0.0) also having 

a significantly lower correlation than Condition III (0.9,0.0). 

When the possible covariance effects of the (X̂  + X2) term were 

removed, analysis of variance on the resulting partial 

correlations no longer showed a significant difference between 

Conditions II (0.7,0.0) and III (0.9.0.0) but showed a 

significantly higher correlation in session III than in earlier 

sessions. (Table 18 e).



F ratios to test the significant of the individual terms,

ABS (X.| - Xg) and (X1 + X^), to the fit of the above model were 

computed and are presented in Tables 19 (a, b and c) for (X̂  + Xg) 

and Tables 20 (a, b and c) for ABS (X1 - Xg).
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PREDICTABILITY OF THE SUBJECTS' CERTAINTIES FROM A LINEAR COMBINATION 
OF THE TERMS (X1 + X?) AND ABS(X1 - X?) WITH ESTIMATED WEIGHTS

Table 17a Condition I (0,0,0.0)

Subject
Session

I II III

1 .849

COK\CO .771
2 .891 .942 .892

? .905 .912 .920

4 .874 .865 .845

5 .852 .868 .825
6 .811 .918 .955

(Model) (.986) (.964) (.971)

Table 17b Condition II (0.7.0.0)

Subject
Session

I II III

1 .815 .762 .740

2 .868 .867 .922

5 .917 .908 .947

4 .676 .856 .861

5 .922 .891 .912

6 .908 .925 .904
(Model) (.969) (.957) (.965)

Table 17c Condition III (0.9,0.0)

Subject
Session

I II III

1 .815 .864 .841

2 .846 .921 .907

5 .911 .9 18 .897

4 .886 ,866 .856

5 .889 .855 .841

6 .959 .917 .775
(Model) (.942) (.922) (.910)



Table 17d

ANALYSIS OF VARIANCE ON THE PREDICTABILITY OF SUBJECTS' CERTAINTIES 
FROM A LINEAR COBINATION OF THE TERMS (X1 + X?) AND ABS(X1 - X?)

(Fisher's Z Transformation)

Source S.S. d.f. M.S. F P

Subjects 1.1785 5
Sessions .0341 2 .0170 <1
Conditions .0022 2 .0 0 1 1 <1

Sessions x Conditions .1647 4 .0412 1.131 N.S.
Sessions x Subjects . 18 24 10 .0182
Conditions x Subjects .3009 10 .0301

Sessions x Conditions x Subjects .7278 20 .0364

TOTAL 2.5906 53
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THE CORRELATION OF SUBJECTS’ CERTAINTIES WITH THE TERM A B S ^ - X j )

Table 18a Condition I (O.0,0.0)

Subject
Session

I II III

1 - .0 6 5 n.s. - .0 4 3 n.s. - .0 9 1 n.s.
2 GOO . 198 n.s. .411
5 .035 n.s. - . 1 0 1 n.s. .057 n.s.

4 -.193 n.s. - . 1 2 0  n.s. - . 1 3 9  n.s.

5 . 17 6 n.s. ,002 n.s. . 1 1 3  n.s.
6 - .0 0 2 n.s. -.015 n.s. . 15 8 n.s.

(Model) (-.044) (-.020) (.089)

Table 18b Condition II (0.7,0.0)

Subject
Session

I II III

1 - . 1 5 0  n.s. -.004 n.s. -.471
2 - . 1 7 1  n.s. - . 1 3 5  n.s. - .060 n.s.

3 -.394 -.279 -.403

4 - .2 4 0 n.s. - .2 3 3 n.s. -.180 n.s.

5 -.365 -338

COCOK"\1

6 - .3 0 2 - .2 0 1 n.s. - .0 3 5 n.s.

(Model) (-.560) (-493) (-.621)

Table 18c Condition III (0.9,0.0)



THE CORRELATION OP SUBJECTS' CERTAINTIES WITH THE TERM A B S (X  - X g )

Table 18a. Condition I (0.0,0.0)

Session

I II III

1 -.065 n.s. - .0 4 3 n.s. - .0 9 1 n.s.
2 .308 .198 n.s. .411
3 .035 n.s. -.101 n.s. .057 n.s.

4 -.193 n.s. -.120 n.s. - . 1 3 9  n.s.

5 .176 n.s. .002 n.s. .113 n.s.
6 -.002 n.s. - . 0 1 5  n.s. . 1 5 8  n.s.

(Model) (-.044) (-.020) (.089)

b Condition II (0.7.0.0)

Subject
Session

I II III

1 - . 1 5 0  n.s. “•004 n.s. -.471
2 -.171 n.s. -.135 n.s. - ,0 6 0 n.s.

3 -.394 -.279 -.403

4 - .2 4 0 n.s. - . 2 3 3  n.s. -.180 n.s.

5 -.365 -338 -.388

6 -.302 -.201 n.s. - .0 3 5  n.s.

(Model) (-.560) (-.493) (-.621)

Table 18c Condition III (0.9.0.0)

Subject
Session

I II III

1 -.571 - . 4 2 0 - .4 7 2

2 -.498 -.507 - .4 6 7

3 -.403 -.3 8 0 - .6 5 4

4 - 6 3 3 -.583

GOVO

5

O■*3-1 - .5 1 3 -.6 3 4

6 -.222  n . e .  - . 1 6 6  n .s . - . 6 6 5

(Model) ( - 7 6 9 ) (- .7 2 6 ) (- .7 9 1 )
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Table 18d

ANALYSIS OF VARIANCE ON THE CORRELATION OF SUBJECTS’ CERTAINTIES 
WITH THE TERM ABS(X1 - X?) (Fisher's Z Transformation)

Source S.S. d.f. M.S. F P

Subjects .5875 5
Sessions .0350 2 .0175 1.455 N.S.
Conditions 3 .2 10 5 2 1.6053 46.375 <.01
Sessions x Conditions .1771 4 .0443 2.559 N.S.
Sessions x Subjects .1203 10 .0120
Conditions x Subjects .3461 10 .0346

Sessions x Conditions x Subjects .3460 20 .0173
TOTAL 4.6225 55

SIGNIFICANCE OF DIFFERENCES BETWEEN 
INDIVIDUAL PAIRS OF CONDITION MEANS

(Fisher's Z Transformation)

CONDITION
MEAN II (0.7,0.0) i n  (0.9,0.0)

MEAN .251 .557
CONDITION

I (0.0,0.0) -.040 .291* .598*
11(0.7,0.0) .251 .506*

Critical value of d » ,1J8 at the.05 level, 
*

Significant at the ,05 level.
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Table 18e

ANALYSIS OF VARIANCE ON THE CORRELATIONS OF SUBJECTS' CERTAINTIES 
WITH THE TEEN ABS(X1 - X?) WHEN TKci EFFECT OF THE TEEM (X1 + X?)

IS PARTIALLBD OUT (Fisher's Z Transformation)

Source S.S. d.f. M.S. F P

Subjects 1.442 5
Sessions .632 2 .316 12.705 <.01
Conditions 4 .O69 2 2.035 1 1 . 5 9 5 <.01
Sessions x Conditions .050 4 .0 12 <1

Sessions x Subjects .249 10 .025

Conditions x Subjects 1 .7 8 5 10 .179
Sessions x Conditions x Subjects .7 2 1 20 .036

TOTAL 8.948 53

SIGNIFICANCE OF DIFFERENCES BETWEEN 
INDIVIDUAL PAIRS OF CONDITION MEANS 

(Fisher's Z Transformation)

MEAN
MEAN

CONDITION
II (0.7 ,0.0) III (0.9,0 .0) 
.364 .645

CONDITION
I (0 .0 ,0.0) - .0 2 5  

ii (0 .7 ,0 .0) .364
.389* .670* 

.281

Critical value of d » .314 at the .05 level.

SIGNIFICANCE OF DIFFERENCES BETWEEN 
INDIVIDUAL PAIRS OF SESSION MEANS 

(Fisher's Z Transformation)

MEAN
MEAN

SESSION
II H I  
.252 .481

SESSION
I .251
II .252

.001 .230* 
.229*

Critical value of d * .117 at the .05 level. 
Significant at the .05 level.



P RATIOS TO TEST THE SIGNIFICANCE OP THE CONTRIBUTION OF THE (X1 + X?) TERM 
TO THE PIT OP A LINEAR COMBINATION OP THE TERMS (X1 + X?) AND ABS(X1 - X?)

Table 19a Condition I (0.0,0,0)

Subject
Session

I II III

1 120.93 1 1 0 . 7 3 67.97
2 159.05 355.92 143.75

3 213.16 2 3 0 . 10 256.92

4 144.62 13 7 .0 0 114.37

5 119.39 14?.94 97.98
6 90.58 252.82 305.83

(Model) (1628.25) (624.81) (763.21)

Table 19b Condition II (0.7>0.0)

Subject
Session

I II III

1 89.74 6 5 . 16 33.76

2 137.78 139.23 265.38

3 203.21 199.98 332.26

4 34.60 119.55 129.27

5 223.39 154.53 1 9 1 . 1 0

6 195.03 256.48 209.07

(Model) (479.94) (371.80) (348.86)

Table 19c Condition III (0.9>0.0)



P RATIOS TO TEST THE SIGNIFICANCE OP THE CONTRIBUTION OP THE ABS(X1 - X ? )

TERM TO THE PIT OP A LINEAR COMBINATION OF THE TERMS (X1 + X?) AND ABS(X1-X? 

Table 20a Condition I (Q.0,0.0)

Subject Session

I II III

1 .74 n.s. .00 n.s. 5.74
2 21.J1 23.26 16 .3 1

3 .28 n.s. 1.12 n.s. 3.30 n.s.
4 7.59 1 , 3 2  n.s. 13.08

5 5.16 .26 n.s. . 1 5  n.s.
6 .00 n.s. . 1 7  n.s. .00 n.s.

(Model) (3.64) (.26) (5.22)

Table 20b Condition II (0.7,0.0)

Subject Session
I II III

1 .09 n.s. .32 n.s. 21.79
2 .26 n.s. .89 n.s. .52 n.s.

3 2 0 .16 11.99 66.89

4 1 .6 8 n.s. 5.05 4.73
5 16.53 17.04 30.27
6 7.28 5.56 .05 n.s.

(Model) (142.93) (102.06) (234.91)

Table 20c Condition III (0.9|0.0)

Subject Session
I II III

1 24.50 14.60 21.77
2 17.29 41.10 32.86

3 11.02 15.67 75.60

4 40.46 40.13 55.43
5 16.22 25.02 48.45
6 .00 n ,s. ,00 n.s. 42.59

(Model) (160.00) (118.99) (140.90)



The Lens Model indices were computed for this new model 
and are displayed in Tables 21 (a (i), b (i) and c (i)) for 
5, Tables 21 (a (il), b (ii) and c (ii)) for Tables 21
(a (iii), b (iii) and c (iii)) for C and Tables 21 (a (iv), 
b (iv) and e (iv)) for C^(1 - Re2)(l - analysis
of variance on the G index showed significantly better matching 
in Condition I (O.O.O.O) than in the other two conditions, but 
no effect of sessions (Table 21d). The C index was not affected 
significantly by conditions but was significantly lower in 
session I than in sessions II and III (Table 21e).
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THE LENS MODEL INDICES FOR A LINEAR.COMBINATION
OP THE TWO TERMS (X1 + Xg) AND ABS(X1 - X?)

Table 21a (l) Condition I (0.0,0.0) 

THE MATCHING INDEX G

Subject Session
I II III

1 1.000 1.000 .978
2 .922 .973 .926

3 .997 .996 1.000

4 .984 .993 .967
5 .968 1.000 .999
6 .999 1.000 .997

Table 21a (ii) Condition I (0.0,0.0)

GR Re a

Subject Session

I II III

1 .837 .808 .73?
2 .810 .884 .802
5 .889 .876 .893
4

0000 .828 .794
5 .814 .836 .800
6 .799 .886 .903



THE LBNS NOBEL INDICES FOR A LINEAR COMBINATION
OP THE TWO TERMS (X1 + X?) AND ABS(X1 - Xg)

Table ?1a (ill) Condition I (O.O.O.O)

THE MATCHING INDEX C

Subject Session
I II III

1 .690 .796 .722
2 .4 16 .599 .533

3 '^
4 O CD .607 .451

4 .433 .421 .477

5 .475 .590 .474
6 .116 .398 .218

Table 21a (ir) Condition I (0.0,0.0)

(1 -  Re2 ) ( l  -  Rs 2 )

Subject
Session

I II h i

1 .061 .115 . 1 1 0

2 .052 .053 .058

3 .022 .066 .043

4 .035 .056 .061

5 .042 .078 .064
6 .011 0 -ti ro .019



THE LENS MODEL INDICES FOR A LINEAR COMBINATION 
OP THE TWO TERMS (X1 + X?) AND ABS(X1 - X?)

Table 21b (i) Condition II (0.7,0.0)

THE MATCHING INDEX G

Subject Session

I II III

1 .909 .860 1.000
2 .914 .927

IfVOCO•

? .985 .974 .966

4 .968 .965 .882

5 .978 .988 .966

6 .962 .949 .789

Table 21b (ii) Condition II (0.7|0.0)

GR Re s

Subject
Session

I ii III

1 .718 .627 .712
2 .768 .769 .715

5 .876 .846 .881

4 .654 .790 .732

5 .874 .842 • 00 V
O

6

V
O0D .837 ,686



THS LENS MODEL INDICES FOR A LINEAR COMBINATION
OF THE TWO TERMS (X ., +  X g )  AND A BS(X ., -  X j )

Table 21b (iii) Condition II (0.7,0.0)

THE MATCHING INDEX C

Subject Session

I II III
1 .2 16 .417 .251
2 .403 .475 .514
3 .466 .454 .398
4 -.328 .172 .180

5 .294 .6 15 .503
6 .153 .372 .002

Table 21b (iv) Condition II (0.7,0.0)

c  V -  Re g ) ( 1 ~ h 8 2 )

Session
Subject

I II III

1 .031 .079 .046

2 .050 .069 .054
3 .046 .055 .035
4 - .060 .026 .025
5 .028 .081 .056

6 .0 16 .042 .000
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THE LENS MODEL INDICES FOR A LINEAR COMBINATION
OF THE TWO TEHMS (X., + X?) AND ABS(X1 - X?)

" 4

Table 21c (i) Condition III (0.9.0.0) 

THE MATCHING INDEX G

Subject Session

I II III

1 .984 .921 .896
2 .947 .948 .870

3 .879 .887 .972
4 .987 .986 v>0 OD o

5 .917 .965 .980
6 .750 .749 1.000

Table 21e (li) Condition III (0.9.0.0)

GR Re a

Subject
Session

I II III

1 .755 .734 .685
2 .754 .805 .718

3 .754 .751 .793

4 .824 .788 .763

5 .767 .761 .749
6 .678 .633 .705



THE LENS MODEL INDICES FOR A LINEAR COMBINATION 
OP THE TWO TERNS (X1 - X?) AND ABS(X1 - X?)

Table 21c (ill) Condition III (0.9.0.0) 

THE MATCHING INDEX C

Subject
Session

I II III

1 .585 .419 .485
2 .380 .688 .491

5 .178 .387 .520

4 .679 .559 .412

5 .298 .607 .737
6 .315 .269 .464

Table 21c (iv) Condition III (0.9.0.0)

C V (1 -  Re2) Q  -  Ha2 )

Subject
Session -

I II III

i .114 .082

ONO

2 O ON CD .103 .086

3 .025 .059 .095
4 . 106 .108 .089

5 .046 . 12 2 . 16 6

6 .030 .042 . 1 2 2
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Table 21d

ANALYSIS OF VARIANCE ON THE MATCHING INDEX G FOR THE LINEAR 
COMBINATION OP (X., + X?) AND ABS(X1 - X?) (Fisher’s Z Transformation)

Source S.S. d.f. M.S. F P

Subjects
Sessions
Conditions
Sessions x Conditions 
Sessions x Subjects 
Conditions x Subjects 
Sessions x Conditions x Subjects 
TOTAL

5.603 5
.276 2 .138 <1 

14.944 2 7.472 1 1 .2 1 0 «=.01 

2.127 4 .532 <1 
3.331 10 .333 
6.665 10 .667 

14 .933 20 .747 
47.879 53

SIGNIFICANCE OF DIFFERENCES BETWEEN 
INDIVIDUAL PAIRS OF CONDITION MEANS 

(Fisher's Z Transformation)

MEAN
MEAN

CONDITION
II (0.7,0.0) III (0.9.0.0) 
1.947 1*922

CONDITION
I (0 .0 ,0.0) 3.050

II (0.7,0.0) 1.947

-1 .103* - 1 .120* 
-O.O25

Critical value of d * .606 at the .05 level. 
* Significant at the .05 level.



Table 21e

A m  LYSIS OF VARIANCE ON THE MATCHING INDEX C FOR THE LINEAR 
COMBINATION OP (X., + X?) AND ABS(X1 - Xg) (Fisher's Z Transformation)

Source S.S. d.f. M.S. F P

Subjects .795 5
Sessions .524 2 .162 14.448 <.01

Conditions .556 2 .268 5.161 N.S.

Sessions x Conditions .062 4 .015 <1
Sessions x Subjects .112 10 .011
Conditions x Subjects .848 10 .085

Sessions x Conditions x Subjects .6 12 20 .031

TOTAL 3.289 53

SIGNIFICANCE OF DIFFERENCES BETWEEN 
INDIVIDUAL PAIRS OF SESSION MEANS 

(Fisher's Z Transformation')

MEAN
MEAN

SESSION
II H I  
.559 *487

SESSION
I .371
II .559

.188* .1 16 * 
- .0 7 2

Critical value of d « .079 the *05 level. 
Significant at the .0 5  level.
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EXPERIMENT II

Conclusions and Discussion
The level of performance of subjects in this experiment was 

generally higher than that of subjects in experiment I. All 
subjects performed at a level unlikely to be obtained if they 
were responding randomly and did so in all sessions of all 
conditions. The ease of interpretation of results however, is 
reduced by the fact that all subjects performed under all 
conditions, whereas in the previous experiment, subjects 
performed under one of the conditions only. Nonetheless, it 
is unlikely that a medical clinician, for example, is required 
to make only one decision of the type described in his day to 
day work, but probably makes such decisions within a number of 
different sets of disease populations.

No significant effect of conditions was found on either 
of the indices of accuracy i.e. total number correct and 
correlation of subjects' certainties with those of the normative 
model. In view of the more predictable nature of task forming 
Condition III (0.9.0.0) we might have expected a greater accuracy 
in this condition since the feedback given to the subjects on 
the training trials was so much more reliable. However, on 
examining the various indices open to us, it becomes clear that 
this accuracy iB not due to the same processes in all conditions.

In all conditions the certainties of all subjects were 
significantly correlated with a linear combination of the two 
cues, whether the weight for each cue was estimated by multiple
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regression or whether the weights were set equal to each 
other i.e. (the correlation with ^ 1 * 1 + ̂ 2*2 or

+ X̂ )). In general the fit of the linear combination 
with estimated weights was not significantly better than that 
of the linear combination with weights set equal, confirming 
our belief, and the verbal reports of the subjects, that they 
tended to consider the sum or mean of the two cues when making 
their decisions. However, the degree of correlation of these 
linear combinations with the certainties of the subjects was 
significantly less in Condition III (0.9,0.0) than in the 
other conditions. Since G, the correlation between the best 
linear representation of the subject and the best linear 
representation of the task, did not differ from condition to 
condition and since Rg, the linear predictability of the task 
is lower in Condition III (0.9,0.0) than in the other conditions 
we would expect GReRs, that part of subjects' accuracy which 
could be attributed to their correct use of the cues in a 
linear manner, to be lower in Condition III (0.9,0.0) than in 
the other two conditions. (The argument about Rg also applies 
to Condition II (0.7,0.0) ). Yet there are no differences 
between conditions in terms of accuracy, and we are led to 
suspect that subjects in Condition III (0.9,0.0)(and 
possibly in Condition II (0.7,0.0) ) were gaining accuracy 
by using the cues in a manner which was non linear. The fact that
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the index of non-linear matching, C, is greater in Condition III 
(0.9,0.0) than in the other conditions, serves to strengthen this 
suspicion as does the apparently greater magnitude of the 
cV(1 “ Rê )0 - Rs2) index for Condition III (0.9 , 0 . 0 ) ,  (though 
this last index is effected by R and is not strictly comparable 
over conditions).

On examining the correlation of subjects' certainties with 
the term ABS (X1 - Xg) only one subject's certainties have 
significant correlations with this term in Condition I 
(O.O,0 . 0 ) ,  four subjects in Condition II ( 0 . 7 » 0 . 0 )  (though only 
two with consistency), and all six subjects in Condition III 
( 0 . 9 ,O.O). The analysis of variance shows these correlations 
to be higher in Condition III ( 0 . 9 » 0 . 0 )  than in Condition II 
(0.7,0.0) while in turn they are higher in the latter condition 
than in Condition I (0.0,0.0). In an attempt to discover to 
what extent these differences might be due to a covariance effect 
of the term (X1 + Xg), the possible effects of this term were 
removed, the analysis of variance on the resulting partial 
correlations showed the correlation in Condition III ( 0 . 9 , 0 . 0 )  

still to be greater than in the other two conditions, which were 
now found not to differ significantly from one another. Thus 
it is possible that any apparently greater reliance upon the 
terms ABS (X1 - Xg) in Condition II (0.7.0.0) than in Condition I 
(O.O,O.O) may simply be a covariance effect of (X̂ + Xg), but 
such an effect cannot explain the greater reliance upon this 
term in Condition III ( 0 . 9 . 0 . 0 ) .  Subjects in this condition 
seem to have appreciated the diagnostic value of this term,



and to have used it to help them assign their certainty estimates.
(A parallel procedure was applied to the correlations of subjects' 
certainties with the term (X1 + X̂ ) to see if any of the significant 
differences found with these coefficients could be explained by 
a covariance effect of the term ABS (X1 - X2). The pattern of 
significant differences was not altered by such a process).

The multiple correlation coefficients resulting from a 
multiple regression of the subjects' certainties against both the 
(X1 + X2) and ABS (X1 - X^) terms were not found to differ 
significantly over conditions. Thus the inclusion of the ABS 
(X1 - X2) term has made up for the lack of predictive power of 
the (X1 + X2) for the certainties of subjects in Condition III 
(0.9,0.0).

P ratios to test the significance of the contribution of 
the (X1 + Xg) term to the fit of the above linear combination 
of (X1 + X2) and ABS (X1 - X2) were significant for all subjects 
in all sessions of all conditions. Thus, though subjects in 
Condition III (0.9.0.0) were using the cues non-linearly, they 
were also using them in a linear manner. The ABS (X1 - Xj) term 
contributed significantly for all subjects in Condition III 
(0.9,0.0), (though for subject 6 only in the third session), for 
most subjects in Condition II (0.7,0.0) and for one or two 
subjects in Condition I (0.0,0.0). Particularly in Condition I 
(0.0,0.0) it can be seen that though this term is often not 
significantly correlated with the certainties, when taken by 
itself, the correlations of the certainties with the (X1 + X2)
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term is so large that even these very small .amounts of extra 
explicable variance (i.e. that variance explained by the

ABS (X1 - X2) term which is not explained by (X1 + X2)) are 

shown by the P ratio to be significant. Thus though the term 

is regarded as contributing significantly to the fit of the 

above model, it is in some cases capable of explaining only 

2“fo or Jji of the variance in the subjects' certainties, it just 

happens that this 2^ or 3% is not explicable by the (X^ + X2) 

term.
The interpretation of the Lens Model indices is even more 

difficult in this experiment than the previous one. Whether 

the underlying model being tested is the linear combination of 

X1 and X2 or the linear combination of the terms (X1 + Xg) 

and ABS (X1 - X2), the tasks forming the three conditions are 

not of equal predictability. Unlike the task in experiment I, 

the present tasks are not even equally predictable to a rank 

order criterion. The rank order indices were computed but are 

not presented since they did not differ in any marked way from 

their product moment equivalents.
Some of the indices of the model with a linear combination 

of X1 and X2 give an indication of those subjects within a 

condition whose accuracy may be regarded as being due almost 

totally to the utilization of the cues in a linear manner and 

those for whom some non-linear process must be postulated to 

explain the accuracy of their predictions. For example, in 

Condition II (0.7.0.0) and III (0.9.0.0), the index CK1-Re)(l-R8)



shows a markedly higher value when the corresponding 

correlation between the ABS (X^ - X2) term and subjects' 

certainties is significant than when it is not so. However 

the task is so highly linearly predictable in Condition 1 

(0.0,0.0) that this similarity is no longer obvious, all values 

of the index being very small. (This task is of course completely 

linear to a rank order criterion).

The indices of the model with the linear combination of 

(Xĵ  + X2) and ABS (Xx - Xg) do not add a great deal to our 

knowledge of the processes involved. The high values of GRgRs in 

all conditions may be taken as an indication that the accuracy 

of all subjects in all conditions is reasonably well explained, 

if we assume that they are using these terms appropriately and 

very little is added by the use of terms other than these.

However, much of this information may be obtained from simple 

multiple regression and the lack of any error theory for the Lens 

Model indices makes their interpretation difficult when the tasks 

are of unequal predictability and the response scales are possibly 

unreliable.
It would appear then, that the decision processes of subjects 

in Condition I (0.0,0.0), where the cue intercorrelations are the 

same in both disease populations, can be reasonably well described 

by a model which linearly combines the two cues (apparently giving 

equal weight to both) and bases its certainty estimates on the 

resulting value.
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In Condition III (0.9.0.0) where, in one disease population 

the cues are highly correlated but in the other are independent, 

it is necessary to postulate some non-linear utilization of the 

cues as well as this linear utilization in order to gain a 

reasonable representation of subjects' decision processes. In 

this condition all subjects claimed to consider the differences 

between the two cues (regardless of sign) as well as the magnitude 

of the cues when making their decisions, and it was found that a 

linear combination of the two terms ABS (X̂  - Xg) and (X̂  + Xg) 

could make quite accurate predictions of the subjects' certainties 

and that this accuracy suffered if either term was removed.

In Condition II (0.7.0.0) where the two cues are moderately 

correlated in one disease population but independent in the other, 

the situation is not so clear. On average, there is no more sign 

of the utilization of the ABS (X1 - Xg) term in this condition 

than in Condition I (O.O.O.O) when the possible covariance effects 

of the term (X1 + Yg) were removed. However, this partial 

correlation process removes all the variance that could possibly 

be due to (X1 + Xg) not just that variance which is due to this 

term and, since the analysis of variance on the unaltered 

correlation coefficients does show these coefficients to be 

greater in Condition II (0.7,0.0) than in Condition I (O.O.O.O), 

we are left with a dilemma. Turning to the subjects’ verbal 

reports, we find that only Subject 4 reported considering the 

similarity of the two cues in Condition II (0.7,0.0). Yet 

neither the correlation of her certainties with the ABS (X̂  - Xg)

‘ \
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term nor the resulting P ratios are particularly high. The P 

ratios are significant for a number of subjects in this condition, 

but not for all of them. It seems then that some subjects may have 

been incorporating this ABS (X^ - X2) term into their decision 

processes, whereas others appear to have relied solely on the 

linear combination of X1 and X2< The overall effect however, 

is not significantly different from behaviour in Condition I 

(0.0,0.0) when possible covariance effects are removed.

It appears then, that human subjects are able to modify 

their behaviour to take into account the differing relationships 

which can exist between cues from one diagnostic population to 

another, and that in these sorts of tasks, at least, this non

linear use of cues can be fairly well represented by the inclusion 

of the term ABS (X1 - X2) in a linear combination with the sum 

or average of X1 and X2< In order for all subjects to use such 

a cue however, the difference in correlation must be quite 

large, e.g. + 0.9 and + 0.0, with populations less different 

in correlation, not all subjects use this cue.
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EXPERIMENT III

FURTHER INVESTIGATION OF DECISIONS BETWEEN BIVARIATE NORMAL 

POPULATIONS WITH UNE8.UAL MEAN VECTORS AND UNEQUAL COVARIANCE

MATRICES



INTRODUCTION TO EXPERIMENT III

In the second experiment it vas demonstrated that when 

subjects are required to make discriminations between the members 

of two bivariate normal distributions differing not only in mean 

vector but also in dispersion matrix, they tend to pay more 

attention to the pattern or configvrsiion of scales than if the 

dispersion matrices are equal. In the condition with the largest 

difference in cue intercorrelation between the populations, the 

non-linear transformation ABS (X1 - X2) was highly correlated 

with the certainty estimates of all subjects, and accounted for 

sufficient of the variance not explicable by a simple linear 

combination to justify its inclusion in a multiple regression 

equation.
The subjects performed well in all conditions9 their 

certainty estimates being highly correlated with those generated 

by the normative model (with its square and cross product terms). 

Under different circumstances this may have led to the conclusion 

that the subjects were actually behaving in the manner prescribed 

by the model, but, from the evidence of verbal reports and of 

the regression analysis it appears that subjects were actually 

achieving this high level of performance by incorporating the 

ABS (X1 - X2) term into their decision processes. The 
consideration of the ABS (X1 - Xg) transformation by the subjects, 

is very much an "ad hoc" process, being valid as it is, in only 

a limited class of situations of this type. This is in marked 

contrast to the normative model which fits perfectly all
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situations of this kind, changing only the values of the weights 

of the various terms to suit the parameters of the populations.

If this inclusion of the ABS (X1 - X2) term is as "ad hoc" 

a process as is felt then it should be possible to design a 

situation where other non-linear terms than this will be 

utilized by human subjects. The present experiment was designed 

to attempt to discover to what extent the inclusion of non

linear terms of this kind is modified by certain parameters of 

the task, which have an all but trivial effect on the normative 

model.
The utilization of the ABS (X1 - Xg) term by the subjects 

implies some sort of realization on their part, that the cue 

intercorrelation differs from one population to another, that 

the magnitude of the two cues are more similar in one population 

than in the other. Put another way, they realised that if the 

two cues had similar magnitude then this increases the 

probability of this patient having Disease 1. In fact in 

Conditions II and III of experiment II, if X1 had a value x 

then the most likely value of X2 was x if the patient had Disease 1, 

but in Disease 2 the expected value of the cue X2 was independent 

of the value of the cue X1. So for Disease 1 the best estimate 

of X1 is given by.-

Conversely the best estimate of X2 i.e. X2 is given by
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What would he the effect of making the relationships say 

« Xj + C

and X^ “ X̂  - C ?
This question is obviously related to the effect of the 

parameter "a" in the learning of linear functions of the 

kind.
Y - a + b X

The relationship between X1 and Xg is however only probabilistic,

and the effect of the parameter in probabilistic situations has

not been investigated. However, in the learning of linear

functions the parameter "a" was found to have no significant

effect so we might expect a similar finding if the relationship

between Y and X was prone to error. Our task, though, does not

require the subject to predict X1 from X2 or vice versa and it

is possible that the relationship existing between them may go

unnoticed and hence unused by the subjects if it is of the form 
AXi * X2 + c

where c has a value other than zero.
A transformation of the scores of all patients (both 

Disease 1 and Disease 2) on one of the predictor variables, 

by the addition of a constant would create such a relationship 

between X1 and X2 in Disease 1 without altering the relationship 

in Disease 2 (,i.e independence). It would also invalidate the 

use of the ABS (X1 - X?) transformation while in no way 
altering the efficiency of the normative model, which accommodates 

this change with a simple alteration of parameter values. It
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remains to be seen whether subjects will now find some other non

linear transformation of the cues or whether the information 

contained in cue intercorrelations will go unnoticed and 

unused.
The research into both the learning of linear functions 

and learning correlations has shown that performance is 

consistently worse in tasks with negative rather than positive 

relationships between the variable i.e. functions of the form 

Y - a + b X

where b is a negative number. Supposing we made the relationship 

between and X^ of the form

(The c parameter being set so as to keep the actual values of 

both X1 and in a similar range to their range before 

transformation).
There is even stronger reason here to believe that the 

relationship between X1 and Xg will go unnoticed, since it is 

so difficult to perceive and use accurately when it is the main 

aim of the task. It would seem likely then that subjects put 

in a situation of this kind might miss the relationship 

altogether and fall back on a simple linear combination of 

cues.
Such a relationship may be introduced by the transformation 

of one variable such that what was previously the highest score 

takes the value of the lowest and vice versa and all scores in 
between are accordingly transformed. Again, this transformation 

has no effect on the efficiency of the normative model, the



changes being accomodated by changes in the value of certain 
weighting terms.

With these thoughts in mind, three tasks were generated. 

Condition I (Untransformed)
The first task was simply that forming the third condition 
in Experiment II, i.e. Disease 1 had mean score 7.5 on 
both variables, standard deviations of 2.0 and cue inter
correlation of +.9. Disease 2-had mean score 9.5 on both 
variables, standard deviation 2.0 and zero cue inter
correlation. The samples were drawn from populations 
with these parameters in the manner outlined in Appendix B, 
and besides forming the stimuli in this condition they were 
also suitably transformed to form the stimuli of the next 
two conditions to be described. In this way the conditions 
were made exactly equal in terms of difficulty (or 
discriminability) from a statistical point of view, and 
were not open to differences through sampling.

Condition II (X2 + 2)
The scores of all patients, in the original sample, on 

variable X2 were transformed by adding a constant 
C « 2.0. This in no way affected the standard deviations 

and intercorrelations of the cues within each population. 

The population means, however, were increased by 2.0 on 

the X2 variable, making them 9*5 for Disease 1 and 11.5 
for Disease 2. Mean scores on Xĵ  were not affected.

186



Condition III (X2 Reversed)
The scores of all subjects, in the original sample, on 

variable X2 were transformed by rotating them about 8.5 

(thus 7.5 became 9*5» 5*0 became 12.0 etc.) The range of 

scores remained unchanged, the standard deviations for 

each population remaining 2.0. The correlation in Disease 1 

became -.9, though the correlation in Disease 2 remained 0.0. 

The mean scores on variable Xg were reversed, Disease 1 having 

now a mean of 9»5, Disease 2 one of 7*5*

(All these conditions are graphically displayed in Appendix C.)



SUBJECTS

Again, it was felt that subjects whose motivation could 

be assured, should be used. Twelve male students.average age 

approximately 25 years, all known to the experimenter and all 

honours or postgraduate students in psychology acted as 

subjects. They each participated for three one-hour sessions 

in each of the three conditions, all orders of presentation of 

the conditions occurring an equal number of times. They were 

paid at a rate of 30p an hour for their participation. 

APPARATUS

Again, the same equipment as was used in the previous two 

experiments.

PROCEDURE

The same procedure was followed here as in the second 

experiment, the subjects being asked to give a few sentences 

about their decision processes after the third session of 

each condition.

I
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EXPERIMENT III

Rpsuits
Again only the data from the 50 test trials of each session 

were analysed, the certainties of the subjects being transformed 

to yield a scale ranging from 1 to 100* The total number of 

correct responses (i.e. agreements with the normative model) 

are shown in Tables 22 (a, b and c) and an analysis of variance 

showed a significant interaction effect of conditions and 

sessions on this index (Table 22 d). Which seems to be due to 

performance improving over sessions in Condition I 

(UntranBformed) and Condition II (Xg + 2), but, if anything, 

deteriorating over sessions in Condition III (X£ Reversed),

The other measure of accuracy, the correlations of the subjects' 

certainties with those of the normative model, are shown in 

Tables 23 (a, b, c), only sessions were found to affect this 

measure significantly, with a lower correlation in the first 

session than in sessions II and III.
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NUMBER OF CORRECT RESPONSES (i.e. AGREMENTS WITH THE NORMATIVE MODEL)

Table 22a Condition I (Untransformed)

Session
UUuJëCX

I rr III

l 39 38 37
2 k z k k itO
3 27 n.s. 33 k 3
it 39 k k k 6

5 2i* n.s. 3 6 3 k
6 2 k  n.s. 28 n.s. 28 n.s.
7 39 4 1 k l
8 itl itO k 5

9 i*2 itl k 3
10 it2 k 2 kk

11 itl k 5 k k

12 k 2 k 7 k l

Table 22b Condition II (X?+2)

Subject Session
I IX III

1 itO 33 3 6
2 it2 itl 39
3 k3 38 it it
k 31 37 it3
5 it it itl it It
6 26 n. s . 24 n.s. 31
7 26 n.s. 37 1*9
8 itl Itl k3

9 2it n.s. 35 31
10 ¿to 39 kz

11 itl kz kz

12 38 36 kl



NIIMEER OF CORRECT RESPONSES'(i.e. AGREEMENTS WITH THF NORMATIVE MODEL).

Table 22c Condition III (X? Reversed)

Session
Subject

I II III
1 39 36 34
2 40 37 36
3 42 34 37
4 38 41 34
5 39 37 32
6 33 37 41
7 38 41 38
8 33 37 26 n.s.
9 33 26 n.s. 19 n.s.
10 39 37 38
ll 40 36 37
12 43 37 37



Table 22d

ANALYSIS OF VARIANCE ON THE NUMBER OF CORRECT RESPONSES

Source S.S. a.f. M.S. F P

Subjects 1096.65 1 1

Sessions 23. ¿6 2 11.76 1

Conditions 190.13 2 95.06 1.64 N.S.

Sessions x Conditions 265.26 4 66.31 7 .0 7 .01

Sessions x Subjects 261.43 22 11.88

Conditions x Subjects 1274.09 22 57.91
Sessions x Conditions x Subjects 4 12 .5 2 44 9.58

TOTAL 2523.52 107

SIGNIFICANCE PF DIFFERENCES BETWEEN INDIVIDUAL 
PATRS OF (CONDITION x SESSION) MEANS

ICONDITION
SESSION

M BA*

(ïïntrans)

I I I

(X2 Rev)

I
II
III

I
II
III

I
II

36.83 
39.92 
4 1 .5 0

36.83 
37.00 

39.58

58.08 

36.33

I (Untrans) II (X9 + 2) III (Reversed) 
T TT IIIII

49.92
III

41.50
1

56.84
JLÌ-

47.00 39.58 48.08 46.43 34.08._

3.09* 4.67* 0.00 0.17
*

2.75 1.25 -O.5O
*

-1.75*
1.58 -3.O9* -2.9?* - 0 . 4 4 -1.84 -3.59 -5.84**

-4.67 -4.50* -I.92 -3.42 -5.17 -7 .42

0.17 2.65* 1.25 -O.5O
*

-2 .75
*

2.^8 1.08 -0.67 -2.92

-I .50 -3.25 -5.50*

-1.75 -4.00*
-2 .25

Critical value of d - 2.53 ab the *05 level. 
Significant at the .05 level.
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Table 22d

ANALYSIS OF VARIANCE ON THE NUMBER OF CORRECT RESPONSES

Source S.S. d.f. K.S. F P

Subjects 1096.63 11

Sessions 23.46 2 11.76 1

Conditions 190.13 2 95.06 1.64 N.S.

Sessions x Conditions 265.26 4 66.3 1 7.07 .0 1

Sessions x Subjects 261.43 22 11.88

Conditions x Subjects 1274.09 22 57.91

Sessions x Conditions x Subjects 412,52 44 9.38

TOTAL 2523.52 107

STÎÏ1ÎTFTCANCE OF DIFFERENCES BETWEEN INDIVIDUAL

CONDITION I (Untrans)
QlüftSTnN II H I

K34N ^9.92 41.50

* , *
I 36.83 3.09 4.67

I II 39.92 1.58
(Untrans) III 41 .50

I 36.83
II II 37.00

(X2 + 2) III 39.58

III I 38.08
(X? Rev) II 36.33

II III

0.00 0.17 2.75
-5.09* -2.92* -0.54 
-4.67* ""-a.50* - 1 .9 2

0.17 2 .65*
*

2.58

II III

1.25 -O.50 -1 . 7 5  

-1.84 -3.59* -5.84* 
-3 .42* -5 .17* -7.42

-0.50 -2 .75

-0.67 -2.92*
-3 .25* -5.50'

-1.75 -4.001
-2.25

Critical value of d * 2,53 the level. 
* Significant at the .05 level.
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«JW

CORRELATIONS OF THE SUBJECTS’ CERTAINTIES WITH THOSE OF THE NORMATIVE
MODEL (ra)

Table 23a Condition I (Dhtransformed)

Subject Session

I II III

1 .662 .674 .773
2 .709 .857 .822

3 .l69n.s. .438 .662

4 ■•746 .842 .920

5 -.067n.s. .430 .435
6 -.037h,s,. -.OlOnjs; •197n.s.

7 .735 .800

K\K"\00

8 .800 .834 .849

9 .814 .690 ,686

10 .870 .828 .789
11 .783 .852 .883

12 .794 .$12 .905

Table 23b Condition II (X?+2)

Session
Subject

x II III

1 .750 .604 .698

2 .829 .919 .883

5 .647 .669 .709

4 .697 .744 .875

5 .794 .775 .757

6 .072 n.s. .026 n.s. .133 n.s.

7 .050 n.s. .652 .650

8 .784 .819 .881

9 . 19 2 n.s. .417 .367

10 .779 .685 .762

11. .835 .823 .785

12 .735 .728 .800



' CORRELATIONS OF THE SUBJECTS’ CERTAINTIES WITH THOSE OF THE NORMATIVE
MODEL (r )_____ ’ a

Table 23c Condition III (X^Reversed)

Subject Session

I II III

1 .567 .627 .703
2 ,648 .644 .703

? .642 • 548 .687

4 .714 .795 .495

5 .684 .625 .480

6 .560 .567 .799

7 .641 .725 .653
8 .604 .625 • 247 n • s•

9 .307 .218 n.s. -.148 n.s.

10 .665 .779 .815
11 .662 .598 .764
12 .719 .649 .760



Table 23d

ANALYSIS OF VARIANCE OK THE CORRELATIONS OF SUBJECTS' CERTAINTIES 
WITH THOSE OF THE NORMATIVE MODEL (Fisher's Z Transformation)

Source S.S. d.f. M.S. F P

Subjects 6.929 11
Sessions .334 2 .167 5.781 < . 0 1

Conditions .669 2 .334 1.394 N.S.
Sessions x Conditions .209 4 .052 1.577 N.S.
Sessions x Subjects .636 22 .029
Conditions x Subjects 5.278 22 .240
Sessions x Conditions x Subjects 1.457 44 .053
TOTAL 15.452 107

SIGNIFICANCE OF DIFFERENCES BETWEEN 
INDIVIDUAL PAIRS OF SESSION MEANS 

(Fisher's Z Transformation)

MEAN
MEAN

SESSION
II III 
.854 .904

SESSION
I .769
II .854

.O85* .235* 
.050

Critical value of d = .083 at the .05 level.
*

Significant at the ,05 level.
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The multiple correlation between subjects' certainties 

and the two cues X^ and X? are shown in Tables 24 (a, b and c).

These correlations were significantly higher in Condition III 

(Xg Reversed) than in the other two conditions (Table 24d),

The Lens Model indices for the linear combination of 

X^ and Xj were computed and are shown

G in Tables 25 (a (i), b (i) and c (i)),

GRgRg in Tables 25 (a (ii), b (ii) and c (ii)),

C in Tables 25 (a (iii), b (iii) and c (iii)) and 

C (1 - R ^)(1 - R8 )̂ in Tables 25 (a (iv), b (iv) and c(iv)). 

Neither sessions nor conditions significantly affected G 

(Table 25d) but both had significant effects on C, the index 

being lower in Condition III (Xg Reversed) than in the other 

conditions and being higher in session III than in previous 

sessions (Table 25e).



I
1

THE PREDICTABILITY SUBJECTS ’ CïHTAINTIES BY A LINEAR COMBINATION
OF THE TWO CUES WITH ESTIMATED WEIGHTS (R^.

Table 24a Condition I (Untransformed)

Session
Subject

I II III

1 .847 .888 .878
2 .627 .571 .464

3 .382 .700 .705
4 .856 .872 .799
5 ..385 .762 ,686
6 ,149n.s. .452 ,299n.s.

7 .688 .595 .609
8 .745 .587 .579
9 .482 ,252n.s. .370
10 .747 .699 .702

11 .531 .759 .685

12 .577 .642 .629

Model (.722) (.744) (.767)

n ' ■ o
Table 24b Condition II (X,+2)

| Session
Subject I II III

1 .927 .883 .833
2 .665 .766 .758

3 .594 .687 .711
4 .712 .811 .520

5 .787 .827 .721
6 ,130n,s. ,043n.s. ,188n.s.

7 .322n.s. .674 .659
8 .622 .676 .704

9 ,142n.s. ,1 3 1n.s. ,259n.s.

10 .787 .507 .840

11 .651 .832 .546

12 .846 .828 .818

Model (.722) (.744) (.767)
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THE PREDICTABILITY OF SUPJECTS ’ CEHTAINTIES BY A ITTTEAR COMBINATION
OF THE TWO CTTES WITH ESTIMATED DHTOHTS (Re) 

Table ?4c Condition III (X^Revorsed)

Subject
Session

I II III

1 .654 .814 .892

2 .954 .948 .951
3 .737 .840 .742

4 .349 .790 .643

5 .837 .891 .725
6 .654 .826 .867

7 .645 .641 .744
8 .655 .785 .428

9 .402 .186n.s. .195n.s.

10 .393 vO 0 0 .935
11 .7-18 . 7 19 .396

12 .915 .927 .965
Model (.7?2) (.744) (.767)
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Table 24d

ANALYSIS OP VARIANCE ON THE R s FOR A LINEAR COMBINATION OF THE _____________________________ 8_________________________________
TWO COES (Fisher's Z Transformation)

Source S.S. d.f. M.S. F P

Subjects 8.695 11
Sessions .136 2 .068 1.485 N.S.
Conditions 2.675 2 1.338 6.276 .01
Sessions x Conditions .034 4 .008 <1
Sessions x Subjects 1 . 0 1 1 22 .046

Conditions x Subjects 4.690 22 . 2 1 3

Sessions x Conditions x Subjects 1.685 44 .038
TOTAL 18.926 107

SIGNIFICANCE OF DIFFERENCES BETWEEN 
INDIVIDUAL PAIRS OF CONDITION MEANS 

(Fisher's 2 Transformation)

MEAN
MEAN

CONDITION
II (X? + 2) III (X? Reversed) 
.818 1 . 1 2 9

CONDITION
I (Untransformed) .776
II (X2 + 2) .818

.032 .353* 
■*

. 3 1 1

Critical value of d = .226 at the .05 level. 
*

Significant at the .05 level.



THE LENS MODEL INDICES FOR A LINEAR COMBINATION O? THE TVO CUBS 
Table 25a(i) Condition I (Untransformed)
THE MATCHING INDEX G

Subject Session

I II III

1 .991 1 . 0 0 0 .987
2 .897 .9 2 5 .985
3 .150 .892 1 . 0 0 0

4 .995 .999 .992
5 .005 .8 19 .602

6 .956 .089 .319
7 .967 .988 .989
8 .990 1 . 0 0 0 .994
9 .995 1 . 0 0 0  _ .998
10 .994 .981 .995
11 .988 1 . 0 0 0 .998
12 1 . 0 0 0 1.000 .995

25a(ii) Condition I (Untransformed)
GR R e s

, Session
s J U D J c C  1»

I II III

1 .606 ,660 .665

2 .405 .393 .350

3 .041 .464 .540

4 .614 .648 .608
5 .001 .464 .317
6 .103 .030 .073

\ 7 .480 .437 .463
8 .535 .437 .442

9 .346 .188 • OO CD V-W

10 .536 .509 .536
11 .379 .564 .519
12 .416 .477 .480

i
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Tw? I,are iron indices FQ!i ■ linear comftnation of the t o  cues
Table 25b(i) Condition II (X,,+2)

TH^ EATCHIN INDEX C

Subject
Session

I II III

1 1.000 .988 .972
2 .994 .997 1.000

3 1.000 .988 1.000

4 .976 .993 .996

5 .994 .997 .942

6 -.371 .277 .208

7 -.376 .974 .985
8 .930 .998 .993
9 .680 _ .862 .4 1 3

10 .980 .950 .988
11 .995 •993 .9 17

12 .985 .963 .984

Table ?5b(ii) Condition II (X?+2)

GR RC 8

Subject
Session

I II III

1 .669 .648 .622

2 .477 .568 .582

3 .429 .505 .545
4 .501 .599 .397

5 .565 . 6 1 3 .521
6 -.029 .009 .030

7 -.087

COcc• .498
8 .4 17 .5 0 1 .537

9 .070 .084 .082

10 .557 .582 .637
11 .467 .374 .384

12 .602 .593 .618





THE LENS MODEL INDICES FOR A LINEAR 'COMBINATION OF THE TWO CTOS

Table 25c(i) Condition III (X,, Reversed) 
THE MATCHING INDEX G

Subject
Session

I II III

1 .862 .997 .979
2 • 983 • 994 .949
3 1.000 .989 .993
4 1.000 .994 .892

5 .995 .996 •999
6 1.000 .992 .999
7 .925 .998 1.000
8 .994 .934 .936

9 .91-5 .993 -.580
10 .991 .998 .982
11 .997 .996, .995
12 .996 .997 .992

Table 25 c(ii) Condition II (X? Reversed)

GR R e s

Subject
Session

I II III

1 .407 .604 .670

2 .676 . .700 .693

3 .532 .618 ,566

4 .612 .584 .440

5 .6 10 .660 .556
6 .472 .609 .665

7 .431 .480 .571
8 .469 .545 .308

9 .266 .137 -.087

10 .658 .668 .705
1 1 .538 .532 .684

12 .657 .68? .735



' THE IENS MODE! INDICES FOR A LINEAR C~OM5TNATTON OF TTC TVQ CURS

Table 25c(iii) Condition III (X? Reversed)

THE MATCHING INDEX C

Subject -
Session

I II III

1 .305 .059 .114
2 -.137 -.261 -.004
3- .235 -.193 .283
4 .277 .514 .111

5 .219 -.113 -.172
6 .169 -.111 OOj

7 .398 .487 . 1 9 1

8 ,258 .193 - . 1 0 2

9 .065 - .123 - .098

10 .085 .382 .485
11 .270 .141 .282
12 .220 -.150 .148

Table 25c(iv) Condition III (X^ Reversed )

CV ( 1-Reg) (1-RS?)

Subject
Session

I II III

¡1 .160 .023 .033
.2 -.029 - .0 56 -.001

'3 .110 -.070 .122

4 .101 .211 .055

5 .08? -.034 -.076

6 .088 -.042 .134

7 ,210 .250 .082

8 .135 .080 -.059

9 .041 .081 -.062

10 .027 .111 .110
1 1 .124 .065 .080
12 .062 -.038____ .025_______
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Table 25d

ANALYSIS OF VARIANCE ON THE MATCHING INDEX G FOR A LINEAR 
COMBINATION OP THE TWO CUES (Fisher's Z Transformation)

Source S «S* i.f. M.S. F P

Subjects 25 .201 1 1

Sessions 2 .4 1 1 2 1 .206 1.003 N.S.

Conditions 5.384 2 1.692 <1

Sessions x Conditions 3.739 4 .935 1.134 N.S.

Sessions x Subjects 26.452 22 1.202

Conditions x Subjects 73.587 22 3.345
Sessions x Conditions x Subjects 56.281 44 .825

TOTAL 149.055 107



Table 25e

ANALYSIS OF VARIANCE ON THE MATCHING INDEX C FOR A LINEAR 
COMBINATION OF THE TWO CUES (Fisher's Z Transformation)

Source S.S. a.f. M.S. F P

Subjects 4.447 1 1

Sessions .293 2 . 146 5.884 .05

Conditions 4.524 2 2.262 9.991 .01

Sessions x Conditions ,52 5 4 .081 2.301 N.S.

Sessions x Subjects .829 22 .038

Conditions x Subjects 4.981 22 .226

Sessions x Conditions x Subjects 1 . 5 5 5  44 .035

TOTAL 16 .954 107

SIGNIFICANCE OF DIFFERENCES BETWEEN 
INDIVIDUAL PAIRS OF CONDITION MEANS 

(Fisher's 7. Transformation)

MEAN

MEAN

CONDITION
II (X? + 2) H I  (Xg Reversed)
.518 .149

CONDITION
I (Untransformed) .627
II (X? + 2) .516

-.109 ->478 
„ * 

-.369

Critical value of d * .253 the *®5 level

STflNTPICANCE OF DIFFERENCES BETWEEN 
INDIVIDUAL PAIRS OF SESSION MEANS 

(Fisher’s Z Transformation)

MEAN
MEAN

SESSION
II H I
.594 «505

SESSION
I .595
II .594

-.001 *11°* #
.111

Critical value of d * .095 at the level. 
* Significant at the .05 level



The multiple correlation coefficients and the Lens Model 

indices were also computed for the linear combination of 

(Xi + X2) and ABS(X1 - X2) for Condition I (Untransformed) 

and for the equivalent terms (X^ + Xg - 2) and ABS(X^ - (Xg - 2)) 

for Condition II (X2 + 2) and (X^ - X2) and ABS((X^ + X2) - 17) 

for Condition III (X2 Reversed). The multiple correlation 

coefficients (Tables 26 (a, b and c)) were found to be affected 

only by sessions, being significantly lower in session I than in 

sessions II and III (Table 26d). The matching index G (Tables 27 

(a (i), b (i) and c (i)))was significantly lower in Condition III 

(X2 Reversed) than in Condition I (Untransformed) but was 

unaffected by sessions (Table 27d). The index of "non model" 

matching, C (Tables 27 (a (iii), b (iii) and c (iii)))was 

affected by neither sessions nor conditions (Table 27e).

GReRs, (Tables 27 (a (ii), b (ii) and o (ii))), and 

C J ( 1  - R 2)(l - R 2) (Tables 27 (a (iv), b (iv) and c (iv))), 

were not subjected to analyses of variance as they are simply 

made up of terms already tested and no such analyses would be 

independent of these previous analyses.



THE PREDICTABILITY OF SUBJECTS’ C5HT4INTIES BY A LINEAR COMBINATION
0? THE TERMS ( X ^ X j  AJTD ABSfX^X.) OR THEIR EQUIVALENTS. 

Table 2éa Condition I (Untransforraed)

Session
Subject

I II III
1 .847 .884 .890

2 .638 .863 .935
3 .337 .604 .737
4 .845 .884 .889

5 ,063n.s. .684 .5 2 1

6 .135n.s. ,093n.s. ,285n.s.

7 .715 .761 .793
8 .781 .812 .776

9 .740 .691 .719
10 .814 .754 .789
11 .743 .790 .849

12 .715 .811 .862

Model (.876) (.900) (.947)

Table 26b Condition II (X^+2)

Session
Subject I II III

1 .914 .896 .833
2 .782 .867 .863

3 .656 .732 .758

4 .735 .819 .834

5 .801 .832 .746

6 ,070n.s. .080n.s. ,093n.s.

7 ,211n.s. .712 .699
8 .743 .742 .818

9 ,143n«B. .484 .422
10 .811 .730 .821

11 .744 .813 .759
12 .804 .779 .852

Model (.876) (.900) (.947)



THE PREDICTABILITY OF SUBJECTS’ CERTAINTIES BY A IINBAR COMBINATION
OF THE TERMS (X̂ +X„) ANT) ABS(X.[-X.') OR THEIR EQUIVALENTS.

Table 26c Condition III (X^ Reversed)

Subject
Session

I II III

1 .516 .8 15 .892

2 • 953 .905 .942

3 .739 .857 .744

4 .841 .8 14 .618

5 .820 • 895 .705
6 .651 .829 .876

7 .606 .708 .7*0
8 .647 .764 .380

9 .366 .199 .14 6

10 .893 .896 .940
11 .741 .726 ,895
12 .914 .927 .965

Model (.876) (.900) (.947)
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Table 26d

ANALYSTS OF VARIANCE ON THE. CORRELATIONS OF SUBJECTS' CERTAINTIES 
WITH THE LINEAR COMBINATION OF THE TERMS (X1 + X?) AND ABS(X1 - X?)

OR THEIR EQUIVALENTS (Fisher's Z Transformation)

Source S.S. d.f. M.S. F P

Subjects
Sessions
Conditions
Sessions x Conditions 
Sessions x Subjects 
Conditions x Subjects 
Sessions x Conditions x Subjects 
TOTAL

9.580 11
.675 ? *538 9.057 <.01 
.770 2 .385 1.522 N.S. 
.094 4 .024 <1 
.820 22 .037 

5 .566 22 .253  

1 .7 9 6 44 .041 

19.095 107

SIGNIFICANCE OF DIFFERENCES BETWEEN 
INDIVIDUAL PAIRS OF SESSION MEANS 

(Fisher's % Transformation)

MEAN
MEAN

SESSION
II H I  

1.045 1.067
SESSION

I .889
II 1.045

.156* .178*
.022

Critical value of d - .086 at the .05 level. 
Significant at the .05 level.



the LKNS MOPSL INDICES FOR \ l ! M B  COMBINATION OF THE TWO TERNS 
(X1+X?) AND ABS(X1-X?) OR THEIR EQUIVALENTS.

TaMe 27a (i) Condition I (ühtransformed) *

Session
Subject I II III

1 .811 .796 .884
2 1.000 .940 .905
3 .583 .950 .952
4 .909 .931 .982

5 .978 .717 .920

6 .868 .403 .926

7 .991 .994 .994
8 .979 .987 .997

9 .970 .8 3 1 .921
10 .991 .994 .995
11 .988 .952 1.000

12 .999 .999* .989

Table 27a(ii) Condition I (üntransformed)
GR R e s

Session
Subject I TI ITI

1 .602 .634 .745
2 .559 . .730 .801

3 .172 .516 .664

4 .673 .741 .826

5 .054 .441 .454

6 .103 .034 .250

7 .621 .681 .746

8 .670 .72 2 .732

9 .629 .517 .626

10 .707 .674 .743
11 .643 .677 .803

12 .626 .729 .807
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'THE LENS MODEL INDICES FOR A LINEAR COMBINATION OF THE TWO TERMS 
(X1+X2) AND ABS(X1-X2) OR THEIR EQUIVALENTS.

Table 27a(iii) Condition I (Untransformed) '
THE MATCHING INDEX C

Session
Subject

I 1 1 i n

1 .236 . 19 8 . 19 0

2 .406 .577 .188

3 -.007 .225 - .0 1 0

4 .436 .495 .641

5 -.253 - .0 3 7 -.067

6 -.294 - . 1 0 0 -.172

7 .341 .418 .441
8 .431 .443 .578

9 -.570 .549 .264

10 .59? .539 .231
11 .434 .659, .469

12 .499 .720 .601

e 27a(iv) Condition I (Untransformed)

(1-Re2)(l-R82)

Session
Subject

I II III

1 .060 .040 .028

2 .151 .127 .021

3 -.003 -.078 ».002

4 .112 .101 .095

5 -.122 -.012 -.019

6 -.140

KNc•1 -.053

■7 .115 .118 .087

8 .130 .113 .118

9 .185 .173 .059

10 .163 .154 .046

11 .140 .176 .080

12 .168 .184 .099
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THE LENS yOI)SL INDICES FOR A 'LINEAR COMBINATION OF THE T'.'O TERN’S
(X1+X?) AND ABS(X1-X?) OR THEIR EQUIVALENTS.

Table 27b(iii) Condition II (X?+2)
THE MATCHING INDEX C

Subject
Session

I II III

1 .490 . 16 9 .258
2 .484 .652 .439
5- . 2 2 1 . 106 .058

4 .288 .352 .652

5 .433 .471 .426

6 .276 -.047 .237
7 . 0 1 1 .054 .086
8 .431 .542 .600

9 .134 .226 .279
10 .4 1 3 .365 .222
11 .582 .598 .454
12 .512 .301' .276

Table 27b(iv) Condition II (X^+2)

CV  Q-b, 2)(i- b*)

Subject
Session

I II III

1 .096 .033 .046

’ 2 .145 .142 .071
3 .080 .031 .0 12

4 .094 .088 .116
5 .125 .114 .091
6 .133 - .0 2 1 .076
7 • O O VJ1 .017 .020

8 .139 .158 . 1 1 1

9 .064 .086 .082
10 .117 .093 .041
1 1 .187 .178 .095
12 .147 .082 .047



' THE I ENS M0NE1) INNICES FOR A LINEAR COMBINATION OF THE TWO TERMS

(X +X?) ANN ABS(X1-X?) OR THEIR EQUIVALENTS.

Table 27c(i) Condition III (X? Reversed) «

THE MATCHING INBEX G
I Session

Subject
I II III

1 .896 .782 .775
2 .815 .773 .787
3 .885 .688 .850

4 .872 .963 .83 1

5 .887 .757 .805
6 .760 .774 .902

7 .979 .986 .890
8 .912 .790 .927

9 .540 .560 -.587
10 .820 .904 .855
11 .906 .894 .841

12 .824 .794 .823

Table 27c(ii) Condition III (X? Reversed)

GR Re s

r Session 1

Subject
I II III

1 *1 .405 .573 .654

;2 .679 .661 .702
1 '3 .573 .530 .598 1

4 .642 .705 .486

5 .658 .610 .537
6 .433 .577 .747

1 : 7 .520 .628 .624 '■ 8 .519 .543 .333

9 .174 .100 -.081

10 .642 .729 .760
11 .588 .584 .713
12 .660 .662 .751
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, THF LZ1TS yîCDET INDICES FO;? A LINEAR COMBINATION OF THE TEC TERMS
(X1+X?) AND AES(Xr X2) OH THEIR EQUIVALENTS.

Table 27c(iii) Condition III (X^ Reversed) 
THE MATCHING INDEX C

Session
Subject I II III

1 .392 . 2 1 2 .333
2 - . 2 1 2 -.125 - .0 9 1

3 . 2 1 2 .077 .414
4 .274 .352 .034
5 .168 .081 - .2 5 2

6 .346 1 b VJ
J

VO .332
7 .318 . 5 1 4 .134
8 .23 1 .291 -.284

9 .297 .275 -.210
10 . 10 6 .259 .495
1 1 .228 .046 .360
12 .302 -,t)80 .101

Table 27c(iv) Condition III (X^ Reversed) 

C ^  (1-R 2)(1-Rs?)

Subject
Session

I II III

*1 .162 .054 .049
2 -.051 -.017 - .0 1 0

3 .069 .017 .089

4 .071 .089 .009

5 .046 .016 -.088
6 .126 -.010 .052

7 .122 .097 .029
8 .085 .082 -.085

9 .133 .188 -.067

10 .023 .050 .055
1 1 .074 .014 .052
12 .059 -.013 .009
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Table 27d

ANALYSIS OF VARIANCE ON THE MATCHING INDEX Q FOR THE LINEAR 
COMBINATION OP THE TERMS (X1 + X?) AND ABS(X1 - X?) OR THEIR

EQUIVALENTS (Fisher's Z Transformation)

Source S.S. d.f. M.S. F P

Subjects V-M O 00 O _k

Sessions .175 ? .087 <1
Conditions 15.571 2 7.785 6.767 < . 0 1

Sessions x Conditions 2.517 4 .579 1.249 N.S.
Sessions x Subjects 12 .50 9 22 .560

Conditions x Subjects 2 5 .5 10 22 1 . 1 5 0

Sessions x Conditions x Subjects 20.401 44 .464

TOTAL 10 6 .9 15 107

SIGNIFICANCE OF DIFFERENCES BETWEEN INDIVIDUAI 
PAIRS OF CONDITION MEANS (Fisher's Z Transformation)

MEAN
MEAN

CONDITION
II (X + 2) III (X2 Reversed) 
1.665 1 . 2 5 1

CONDITION
I (Untransformed) 2.161
II (X + 2) 1.665

-.498 -.950*
-.452

Critical value of d » .524 at the .0? level, 
*

Significant at the .05 level.



Table 27d

ANALYSIS OF VARIANCE ON THE MATCHING INDEX 0- FOR THE LINEAR 
COMBINATION OP THE TERMS (X1 + X?) AND ABS(X1 - X?) OR THEIR

EQUIVALENTS (Fisher's Z Transformation)

Source S.S. d.f, M.S. F P

Subjects 30.8J0 11
Sessions .175 2 .087 <1
Conditions 15.571 2 7.785 6.767 <.01
Sessions x Conditions 2.317 4 .579 1.249 N.S.
Sessions x Subjects 12.309 22 .560
Conditions x Subjects 2 5 .3 10 22 1 . 1 5 0

Sessions x Conditions x Subjects 20.401 44 .464
TOTAL 106.913 107

SIGNIFICANCE OF DIFFERENCES BETWEEN INDIVIDUAL 
PAIRS OF CONDITION MEANS (Fisher's Z Transformation)

MEAN
MEAN

CONDITION
II (x? + 2) III (X2 Reversed) 

1 .6 6 3 1.231
CONDITION

I (Untransformed) 2.161
II (X2 + 2) 1.663

- ■ " —----

-.408 -.950* 
-.432

Critical value of d = .524 at the .05 level,
-fr

Significant at the .05 level.



Table 27e

ANALYSIS OP VARIANCE ON THE MATCHING INDEX C FOR THE LINEAR 
COMBINATION OF TEE TERMS (X,, + X?) AND ABS(X1 - X J  OK THEIR

3QDIVALENTS (Pisher's Z Transformation)

Source S.S. d.f. M.S. F P

Subjects 1.72? 11

Sessions .048 2 .024 1.159 N.S.

Conditions .912 2 .456 3.351 N.S.

Sessions x Conditions .181 4 .045 1.428 N.S.

Sessions x Subjects .456 22 .021

Conditions x Subjects 2.993 22 .136

Sessions x Conditions x Subjects 1.393 44 .032

TOTAL 7.706 107
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The correlations of the (X1 + X2) term, or its equivalent, 

with the certainties of the subjects are shown in Tables 28 

(a (i), b (i) and c (i) ). The corresponding F ratios to test 

the significance of the correlations of these terms to the fit 

of the linear combination of (X^ + X2) and ABS (X̂  - X2) are 

shown in Tables 28 (a (ii), b (ii) and c (il) ). An analysis 

of variance on the correlation coefficients showed them to be 

significantly higher in condition III (X2 Reversed) than in the 

other two conditions (Table 28 d). This was not affected by the 

removal of any covariance effect of the ABS (X̂  - X2) term 

(or its equivalents) (Table 28 e).
Similarly, the correlations of subjects' certainties with 

the ABS (X1 - X2) term or its equivalents are shown in Tables 29 

(a ( i ) ,  b ( i )  and c ( i )  ), and the corresponding F ratios to test 

the contribution of this term to the above model are shown in 

Tables 29 (a ( i l ) ,  b (i i )  and c ( l i )  ). The analysis of 

variance on these coefficients showed them to be significantly 

smaller in condition III (X£ Reversed) than in the other two 

conditions. They were also significantly smaller in session I 

than in session II and III. The removal of possible covariance 

effects of the (X1 + X£) term did not affect the pattern of 

significant differences between conditions, but the coefficients 

were now found to be significantly larger in session III than 

in sessions I and II.
Finally Tables 30 (a, b and c) show the F ratios computed to 

test the significance of the tetter fit of the linear combination
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THS CORRELATION 0 ?  SUBJECTS’  CERTAINTIES WITH TOE TEHM ( X ^ X g )  OH 

I T ’ S EQUIVALENT.

Table 28a(i) Condition I (Untransformed)

Session
Subject I II III

1 -.847 -.884 -.878

2 -.515 -.495 -.434

3 -,001n,8. -.578 -.695 •
4 -.830 -.859 -.798

5 -,058n.s. -.616 -.506

6 -.135".». ,019n.s. -.145

7 -.632 -.572 -.511

8- -.715 -.582 -.511

9 -.481 -,250n.s. -.358
10 -.122 -.662 -.673
11 -.531 -.755 -.685
12 -.868 - .6 3 8 - .6 04

Model (-.714) (-.737) (-.755)

P RA1uns TO TEST THE SIGNIFICANCE 0? THE COMBINATION OP THE (X
TERM (OR TT’S E'WViLENT') TO THE PIT OP THE LINEAR COMBINATION

THE TERMS (X^X ) AND ABS (X.yà--- ------  1-X .) OH THEIR EQUIVALENTS.

Table 28a(ii) Condition I (Untransformed)

Session
Subject I II III

1 109.58 150.85 141.72

2 11.49 7.75 9.96

3 •52n.s. 16 .66 35.69

4 91.21 112.78 92.09

5 ,11n.s. ■ 39*39 12.69

6 ,74n.s. .12n.s. ,21n.s.

7 . 24.45 13.72 18.80

8 41.93 15.71 18.30

9 8.94 .OOn.s. 2 .27n.s.

10 46.62 25.66 33.34
11 13.09 47.86 42.20

12 1 6 . a6 23.36 27.72

Model (57.18) (6 1,88) (135.05)
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THE CORRELATION OF SUBJECTS’CERTAINTIES WITH THE TERM (X,,+X?) OR
IT'S EQUIVALENT.

Table 28b(i) Condition II (X?+2)

Subjects _ Session

I II III

1 -.914 -.882 - .8 3 2

2 - .6 6 5 -.749 -.745
? -.590 -.687 -.696

4 - . 7 1 0 -.811 -.510

5 -.762 -.026 -.711
6 ,058n.s. -.006ms. -,005n.s.

7 ,076n.s. -.631 -.659
8 -.559 - .6 6 3 -.703

9 -,080n.s. -.120n.s. -,062n.s.
10 -.766 -.507 -.793
1 1 -.650 -.812 -.-152

12 - .8 0 3 -.762 -.818
Model (-.7 1 4 ) (-757) (-.755)

F RATIOS TO TEST THE SIGNIFICANCE OF THE CONTRIBUTION OF THE
i v . T l  C m  TT»S EÜTTTVALENT) TO THE PIT OP THE LINEAR

COMBINATION OF THE TERMS (X„+X„) ANT) ABS(X.-•X.) OR THEIR 2
EQUIVALENTS.

Table 20b(ii) Condition II (X?+2)

Session
Subjects I II III

1 216.07 182.8i 93.67
2 51.89 55.16 61.71

5 18.89 30.44 3 6 . 15

4 59.55 72.88 11.75

5 56.14 81.88 39.44

6 .09n.s. ,02n.s ,03n.s.

7 ,84n.s. 20.85 28.64

8 13.82 25.79 41.98

9 ,09n.s. ,2 1n.s . .25n.s.

10 65.55 7.97 68.83
1 1 27.79 80.29 6.77
12 .76.50 50.52 85.85

Model (57.18) (61.88) (135.05)
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THE CORRELATION OF SUBJECTS ’ CERTAINTIES WITH THE TERM (X1 +X? ) OR 
IT'S EQUIVALENT

Table 28c(i) Condition IIl(X? Reversed)

Session
Subject

I II III

4 -509 - .8 1 3 -.892
2 -.953 -.948 -.942

3 -.732 -.840 -.741
4 -.837 -.767 -.617

5 -.812 -.890 -.705
6 - .6 48 -.826 - .8 58

7 -.555 -.639 -.729
8 -.633 -.763 -.367
9

Orr\1 -,186n,s. -.1 40n.s.

10 -.893 -.883 -.935
1 1 -.729 -.718 -.893
12 -.9M - .926 - .964

Model (-.714) (-.737) (-.75?)

F RATtOS TO TEST THE STUNTFICANCE OF THE CONTRIBUTION OH 'THE (X1 +X? 
TEHK (or IT’S EQUIVALENT ) TO THE FIT OF THE LINEAR COMBINATION OF 
THE TERMS (X^X.) MTU ABSfX^X.  ̂ OR THEIR EQUIVALENTS■

Table 28c(ii) ConditionITI (X^ Reversed)
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Table 28d

ANALYSIS RF VARIANCE ON THE CORRELATIONS OF SUBJECTS1 CERTAINTIES 
WITH THE TERM (X1 + X?) OR ITS EQUIVALENT

(Fisher's Z Transformation)

Source S.S. d.f. M.S. F P

Subjects 9.880 1 1

Sessions .260 2 .150 2.198 N.S.
Conditions 3 .245 2 1.623 5.978 < . 0 1

Sessions x Conditions .017 4 .004 <1
Sessions x Subjects 1.293 22 .059
Conditions x Subjects 5.972 22 .271
Sessions x Conditions x Subjects 2 . 16 9 44 .049
TOTAL 22.836 107

SI5NIFICANCE OF DIFFERENCES BETWEEN 
INDIVIDUAL PAIRS OF CONDITION MEANS 

(Fisher's Z Transformation)

MEAN
MEAN

CONDITION
II (X? + 2) III (X? Reversed)
.755 1.086

CONDITION
I (Untransformed) .690

II (X? + 2) .755
.065 .396* 

*
.351

Critical value of d = .255 at the .05 level. 
*
Significant at the .05 level.
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THE C O R H iS U T IO r  OE STPJHCTS' CFRTATNTIES WITH THF TEHM APS^ - X j  
OP. IT'S EQUIVALENT.

Table 29a(i) Condition! (Untransformed)

Subject
Session

I II III

1 -. 245"•s• -. 288n.s. -.403
2 -.511

CDN“\CO1 - .9 2 1

3 -.323n.s. -.373 -.442

4 1 'X) 00 - .5 0 6 - .6 1 4

5 -,041n.s. -.I43n.s. -,274n.s.

6 -.053n.s. -.078n.s. -.278n.s.

7 -.506 - .6 76 -.693
8 -.512 -.739 - .668

9 -.679 - .6 9 1 -.703
10 -.574 -.576 - ,5 9 6

11 -.653 -.492 - .6 8 5

12 -.583 - .698 -.768

Model (-.697) (-.749) (-.773)

F RATIOS TO TEST THE SIGNIFICANCE OF THE CONTRIBUTION OF THE 
ABS (X.|-X ) TERM (OR IT’S EQUIVALENT) TO THE FIT OF THE LINEAR 
COMBINATION OF THE TERMS (X^X,.) .AND A3S(X^-X0) OR THEIR EQUIVALENTS.

Table ?9a(ll) Condition I (Untransformed)

Session
Subject I IT III

1 .OOn.s . ,27n.s. 4.70

2 11.18 91.71 257.62

3 6.03 2.26n.s. 6.08

4 4.15 9.35 34.24

5 .03n.s , 1.07n.s. 1,03n.s.

6 .Oln.s . .39n.b . 3.09n.s.

7 10.72 28.28 37.37
8 11.93 44.33 31.60

9 3?.78 37.31 37.81

10 19.85 14.18 2 1 . 1 4

1 1 28.31 6.88 42.31
12 18.14 34.47 68.77

Model (52.3?) (66.00) (147.69)
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THE C0RH5IATT0X OF SUBJECTS’ CERTAINTIES WITH THE TERM ABS (X.J-XJ 
OH IT’S EHTTVA1EM1.

Table ?9b(i) Condition IT (X?+2)

Subject
Session

I II III

1 -.273n.s. -.177n.s, -.287
2 -.590 -.678 - .6 4 1

3 -.448 -.486 -.497
4 -.391 -.399 -.786

5 - .4 6 1 -.393

OK
j-1

6 -.05/ln.s. -,077n.s. -,090n.s.

7 -, I66n.s. -.537 -.421
8 -.649 -.551 -.612

9 -,137n.s. -.480 -.417
10 -.423 -.674 r.445
11 -.538 -.282 -.717
12 -.265n.s. -.428 -.474

Model (-.697) (-.749) (-.773)

F RATIOS TO TEST THE SIGNIFICANCE 0? THE CONTRIBUTION OF THE 
ABS(X^-Xp) TERM (OR IT’S EQUIVALENT) TO THE FIT OF THE LINEAR 
COMBINATION OF THF TVRMS (X^+X^) ANT) APSfX^X^) OH THEIR E3TTTVALENTS.

Table 29b(ii) Condition II (X_+2)

Subject
Session

I II TII

1 .OOn.s. ' 5.57 ,20n.s.

2 20.50 55.84 35.16

3 6.76 6.55 9.94

4 3.66n.s. 1,81n.s. 68.32

5 7.96 1.54n.s. 5.41
6 ,07n.s. .30n.s.

7 1 .9 1.n.8. 10.45 4.97

8 27.52 11.59 24.94

9 ,67n.s. 15.48 9.98

10 5.54 27.80 6.69

11 13.78 ,02n.s. 41.13
12 .11n.s. 3,14n.s. 9.64

Model (57.32) (66.00) (147.49)
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THF CQRREI.ATTOF OF SUBJECTS’ CERTAINTIES WITH T’-’E TERM A? S ( X ^ X g )  

OR IT*S FQUTVAL5NT.
Table 29c(i) Condition III (X? Reversed)

Session
Subject

I II III

1 -.229n.s. -.247n.s. -,239n.s.
2 -.279 277n.s. -,270n.s.
J -.311 -,144n.s. -.289
4 -»333 -.531 -,221n.s.

5 -.349 -,239n.s. -,222n.s.

6 -,136n.s. -,242n.s. -.426

7 -.396 -.513 -.343
8 -.314 -,2 4 1n.s. -,205n.s.

9 -,030n.s. -,001n.s. -,002n.s.

10 -,273n.s. -.461 -.374
11 -.343 -.359 -.335
12 -.285 -.299 -.332

Model (-.697) (-.749) (-.773)

F RATIOS TO TEST THS SIGNIFICANCE OF THS CONTRIBUTION OF THF ( X ^ T J  
T^RM (OR IT’S EQUIVALENT) r*10 THF FIT OF THF LINEAR COMPILATION OF THE 
TERMS ( X ^ X j  AMD ABS ^ - X - )  OR THSIR EQUIVALENTS.

Table 29c(ii) Condition III (X? Reversed )

Subject T Session
I II III

1 ,40n.s. .36n,s. .25n.s.

2 .OOn.s. 2.48n.s. ,l6n.s.

3 1.OOn.s. 5.22 .50n.s.

4 1.27n.s. 1 0 .19n.s. .ORn.s.

5 1.85n.s. 1,94n.s. .OOn.s.

6 .28n.s. ,57n.s. 6.11

7 4.38 8.72 1 .72n.s.

8 1,43n.s. .I6n.s. ,54n.s.

9 1,01n.s. ,25n.s. ,09n.s.

10 .OOn.s. 5.39 3.71n.s.

11 1.85n.s. 1.11n.s. 1,10n.s.

12 ,05n.s. .55«.s* 1 .17n.s.

Model (52.32) (66.00) (147.69)
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Table 29d

ANALYSIS OF VARIANCE ON THE CORRELATIONS OF SUBJECTS' CERTAINTIES
VITH THE TERM ABS (X1 - X?) OR IT'S EQUIVALENT 

(Fisher's Z Transformation)

Source S.S. d.f. M.S. F P

Subjects 2.492 11
Sessions .371 2 .185 8.434 <.01
Conditions 1.821 2 .910 9.008c.01

Sessions x Conditions .217 4 .054 2.761 N.S.
Sessions x Subjects .484 22 .022
Conditions x Subjects 2.224 22 .101
Sessions x Conditions x Subjects .863 44 .020
TOTAL 8.672 107

SIGNIFICANCE OF DIFFERENCES BETWEEN 
INDIVIDUAL PAIRS OF CONDITION MEANS 

(Fisher's Z Transformation)

MEAN
MEAN

CONDITION
II (X? + 2) III (Reversed) 
.477 .293

CONDITION
I (Untransformed) .609

II (X? + 2) .477
-.132 -.316* 

*
-.184

Critical value of d « .155 a* the .05 level.

SIGNIFICANCE OF DIFFERENCES BETWEEN 
INDIVIDUAL PATHS ry SESSION MEANS 

(Fisher's Z Transformation)

MEAN
MEAN

SESSION
II H I  
.469 *5?6

SESSION
I .384
II .469

.085* .142*
.057

Critical value of d » .073 at the .05 level. 
Significant at the .05 level,



Table 29e

ANALYSIS OF VARIANCE ON THE CORRELATIONS OF SUBJECTS' CERTAI' TIES 
WITH THE TERM AB3(X1 - X j  OR IT'S EQUIVALENT WHEN THE EFFECT OF 
THE TERM (X1 + X,1 OR IT'S EQUIVALENT IS PARTIALLED OUT 

(Fisher's Z Transformation)

Source S.S. d.f. M.S. F P

Subjects
Sessions
Conditions
Sessions x Conditions 
Sessions x Subjects 
Conditions x Subjects 
Sessions x Conditions x Subjects 
TOTAL

3.154 11
.624 2 .512 7.517<.01 

5.675 2 1.857 1 5 .754c.01 
.24 1 4 .060 1 .9 5 5 N.S. 
.915 22 .042

2.568 22 . 1 1 7  

1 . 5 5 7 44 .051 
12 .5 5 0 102

SIGNIFICANCE OF DIFFERENCES BETWEEN 
INDIVIDUAL PAIRS OF CONDITION MEANS 

(Fisher's Z Transformation)

MEAN
MEAN

CONDITION
II (X? + 2) III (X2 Reversed)
.565 .077

CONDITION
I (Untransformed) ,525
II (X2 + 2 ) .565

-.158 -.446* 
-.288*

Critical value of d « .256 at the .05 level.

SIGNIFICANCE OF DIFFERENCES BETWEEN 
INDIVIDUAL LAIRS OF SESSION KEANS 

(Fisher's Z Transformation)

MEAN
MEAN

SESSION
II H I  
.272 .429

SESSION
I .265
II .272

#
.009 . 166

*
.157

Critical value of’d » .141 at the .05 level. 
Significant at the .05 level.



Table 29e

ANALYSIS OF VARIANCE ON THE CORRELATIONS OP SUBJECTS' CEP.TAI' TIES 
WITH THE TERM AB5(X1 - X j  OB IT’S EQUIVALENT WHEN THE EFFECT OF 
THE TERM (X1 + X„) OR IT'S EQUIVALENT IS PARTIALLED OUT 

(Fisher's Z Transformation)

Source S.S. d.f. M.S. F P

Subjects 3 . 1 5 4  1 1

Sessions .624 2 .312 7.517 <.01
Conditions 3.673 2 1.837 15.734 <.01
Sessions x Conditions .241 4 .060 1.953 N.S.
Sessions x Subjects . 9 1 3 22 .042
Conditions x Subjects 2.568 22 . 1 1 7

Sessions x Conditions x Subjects 1.357 44 .031
TOTAL 12 .5 3 0 102

SIGNIFICANCE CF DIFFERENCES BETWEEN 
INDIVIDUAL PAIRS OF CONDITION MEANS 

(Fisher's Z Transformation)

MEAN
MEAN

CONDITION
II (X,, + 2) III (X2 Reversed)
.365 .077

CONDITION
I (Untransformed) .523
II (X2 + 2 ) .365

-.159 -.446* *
-.288

Critical value of d » .236 at the .05 level.

SIGNIFICANCE OF DIFFERENCES BETWEEN 
INDIVIDUAL FAIRS OF SESSION KEANS 

(Fisher's 2 Transformation)

MEAN
MEAN

SESSION
II H I  
.272 .429

SESSION
I .263
II .272

.009 .166* 
*

.157

Critical value of d - .141 at the .05 level. 
Significant at the .05 level.
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Table 28e

ANALYSIS OF VARIANC5 ON THE CORRELATIONS OF SUBJECTS1 CEF.TAINIE3 
WITH THE TERM (X1 + X2) OR IT'S EQUIVALENT WHEN THE EFFECT OF THE 

TERM ABS(X1 - X?) OR IT'S EQUIVALENT IS PARTIALLED OUT 
(Fisher's Z Transformation)

Source S.S. d.f. M.S. F P

Subjects 10.461 11
Sessions .200 2 .100 1.505 N.S.
Conditions 5.686 2 1.843 6.947 <.01

Sessions x Conditions .036 4 .009 < 1

Sessions x Subjects 1 .464 22 .067

Conditions x Subjects 5.637 22 .265

Sessions x Conditions x Subjects 2.343 44 .053
TOTAL 23.027 107

SIGNIFICANCE OF DIFFERENCES BETWEEN 
INDIVIDUAI PAIRS OF CONDITION MEANS 

(Fisher's Z Transformation)

MEAN
MEAN

CONDITION
II (X? + 2) III (X? Reversed) 
.690 1.044

CONDITION
I (Untransformed) .622
II (X, + 2) .690

.068 .422* 
.354

Critical value of d = .356 at the .05 level. 
* Significant at the .05 level.



F RATIOS TO TEST TH5 SIGNIFICANCE OF THK FETTER FTT OF THK 1TN5AR 
COMBINATION OF X1 AND X„ WITH ESTIMATED WEIGHTS OVER THAT OF (X^Xg)

OR IT’S EQUIVALENT
Table 30a Condition I (Untransformed)

Subject Session
I II III

1 .OOn.s. 1 .8 6 . 1 1

2 9.86 5,59 1.59

5 8.04 14.32 1 ,19n.s.

4 7.62 4.52 ,23n.s.

5 7.98 14 .00 19.05
6 .19n.s. 12.07 3.54n.s.

7 6.60 2.02n.s. 2.89n.s.

8 4,66 ,43n.s. . 1 4n. a.

9 ,05n.s. ,06n.s. ,46n.s.

10 3.95n.s. 4.63 3.63n.s.

1 1 .OOn.s. ,65n.s. ,02n.s.

12 ,76n.s. .46n.s. 2.34n.s.

Model (1 .1 0 ) (1 .00) (2.2 1 )

Table 30b Condition II (X„+2)

Subject
Session

I II III

1 7.95 ,1 1 n.s. •31n.s.

2 ..06n.s. 2.79 2 .19n.s.

5 ,37n.s. .04n.s. 1 ,98n.s.

4 ,24n.s. ,02n.s. 1 .23n.s.

5 4.91 ,32n.s. 1 ,?9n,s.

6 ,65n.s. ,08n.s. 1 ,72n.s.

7 5.15 4.85 .OOn.s.

8 7.37 1 .5 1n.s. .20n.s.

9 •66n•s• • 3 00 3.19n.s.

10 .19«.8« • O 3 3 12.46

1 1 ,06n.s. 5.03 6.25

12 11.79 15 .8 0 .OOn.s.

Model (1 .1 0 ) (1 .00) (2.00)

2 3 2

* '** ■: *



F RATIOS TO TEST THF SIGNIFICANCE OF THE BETTER FIT OF THE LINEAR
COMBINATION OF X1AND X? WITH THE ESTIMATED WEIGHTS OVER THAT 0? 
(X.,+X?) OR IT’S EQUIVALENT.

Table 30c Condition III (X^ Reversed)

Subject
Session

I II III

1 13 .8 8 .27n.s. .08n.s.

2 .69n.s. .09n.s. 8.47
? ,74n.s. .OSn.s. .25n.s.

4 3.46n.s. 4.48 2.63n.s.

5 6.46 ,24n.s. 2.79n.s.
6 •52n.s. .OOn.s. 2.94n.s.

7 8.75 . 1 3n.s. 2.40n.s.

8 2 .32n.s. 4.13 2.82n.s.

9 2.59n.s. .OOn.s. ,90n.s.

10 .OOn.s. 7.53 .OOn.s.

11 3.02n.s. ,08n.s. 1.36n.s.

12 ,69n.s. ,62n.s. 2.26n.s.

Model (1.10) (1.00) (2.00)



Conclusions and Discussions

As in experiment I, we find that some subjects did not learn 

to use the cues in a valid manner throughout the three sessions 

of some conditions. Subject six and nine are worthy of note. 

Subject six performed markedly above chance level only in 

Condition III (X2 Reversed) and subject six only in Condition I 

(Untransformed). It seems that this poor performance was 

probably a result of a number of factors, lack of motivation, 

a possible misunderstanding of the task (though this was tested 

by questioning, and these subjects appeared to show no lower 

degree of comprehension than others), and possibly a difficulty 

in discarding the rules generated in one condition on moving to 

a condition where these rules were no longer appropriate.

The significant interaction effect of conditions and 

sessions on the total number of correct classifications by the 

subjects seems to be due to an improvement in accuracy over 

sessions taking place in Condition I (Untransformed) and II 

(X2 + 2) but no such improvement taking place in Condition III 

(X? Reversed) where, if anything accuracy deteriorated over 

sessions. By the third session, these processes resulted in a 

significantly worse performance in Condition III (X2 Reversed) 

than in the other two conditions. These trends were also shown 

in the other accuracy index, the correlations of subjects' 

certainties with those of the normative model, though here they 

did not reach significance. It would appear then, that subjects 

did find the condition in which a negative correlation existed



between cues in one disease population more difficult that ones 

in which a positive correlation existed. In view of the 

research showing that human subjects find negative relationships 

more difficult to deal with, we might expect that this lower 

accuracy may be due to a lack of utilization of the fact that 

the two populations to be discriminated have different levels 

of cue intercorrelation.

In all three conditions the certainties of all but one or 

two subjects are significantly correlated with a linear combination 

of X.j and X2 with estimated weights, or weights set equal in 

magnitude. By the third session in each condition the fit of 

the model with estimated weights is only significantly better 

than that of the model with "a priori" weights for about the 

same number of subjects. The subjects, in Condition I 

(Untransformed) and II (X2 + 2) had again claimed that they 

based their decisions on the sum or mean of the two cues but 

in Condition III (X£ Reversed) reported basing their decisions 

on (X1 - X2) which has in this condition the same validity as 

(X^ + X2) in the other conditions. The above findings confirm 

these verbal reports.

The certainties of subjects in Condition III (X2 Reversed) 

were generally better predicted by a linear combination of the 

two cues (with either estimated or "a priori" weights) than 

their certainties in the other conditions. Since the degree 

of matching, G, was not found to differ over conditions and the 

linear dependencies Re of all conditions were equal, we might
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between cues in one disease population more difficult that ones 

in which a positive correlation existed. In view of the 

research showing that human subjects find negative relationships 

more difficult to deal with, we might expect that this lower 

accuracy may be due to a lack of utilization of the fact that 

the two populations to be discriminated have different levels 

of cue intercorrelation.

In all three conditions the certainties of all but one or 

two subjects are significantly correlated with a linear combination 

of X1 and Xg with estimated weights, or weights set equal in 

magnitude. By the third session in each condition the fit of 

the model with estimated weights is only significantly better 

than that of the model with "a priori" weights for about the 

same number of subjects. The subjects, in Condition I 

(Untransformed) and II (X2 + 2) had again claimed that they 

based their decisions on the sum or mean of the two cues but 

in Condition III (X2 Reversed) reported basing their decisions 

on (X1 - X2) which has in this condition the enme validity as 

(X1 + Xj) in the other conditions. The above findings confirm 

these verbal reports.

The certainties of subjects in Condition III (X2 Reversed) 

were generally better predicted by a linear combination of the 

two cues (with either estimated or "a priori" weights) than 

their certainties in the other conditions. Since the degree 

of matching, Q, was not found to differ over conditions and the 

linear dependencies Rg of all conditions were equal, we might



expect that part of subjects' accuracy which could be put down to 

their use of cues in an appropriate linear manner i.e. GR R to 

be higher in Condition III (X2 Reversed) than the other conditions. 

In fact, performance is worse in Condition III (X„ Reversed), 

(though not significantly so in terms of the correlation of 

subjects' certainties with those of the normative model), than 

in the other two conditions. We are led to suspect then, that 

subjects in Conditions I (Untransformed) and II (X2 + 2) are 

using the cues in a non-linear way and thereby improving their 

performance. Indeed C, the index of non-linear matching is 

significantly lower in Condition III (Reversed) than in the 

other two conditions.

Many subjects in Condition I (Untransformed) reported that 

they considered the absolute difference between the cues i.e.

ABS (X1 - Xj) when making their decisions. Similarly in 

Condition II (X2 + 2) many reported considering the nearness 

of X2 - X1 to 2, i.e. ABS (X1 - (X2 - 2) ). No subject 

reported using such non-linear cues in Condition III (X2 Reversed) 

but, since ABS (X1 - Xg) and ABS (X1 - (X? - 2) ) are of equal 

predictive power, it was decided that the term ABS 

( (X1 + X2) - 17) i.e. the nearness of the sum of the cues of 

17, would be considered in this condition as it is equivalent 

to the above two terms in its predictive power. On considering 

the correlation of subjects' certainties with these non-linear 

terms it is apparent that these are small and insignificant 

in Condition III (X2 Reversed). They are in fact significantly



smaller in this condition, whether or not the possible covariance 

effects of the linear terms (X^ + X^), (X1 + Xg - 2) and (X1 - Xg) 

are removed.

When the appropriate linear and non-linear terms were 

linearly combined in an attempt to predict the certainties of 

subjects in each condition, it was found that the resulting 

multiple correlations did not differ over conditions. Thus the 

more predictable nature of subjects’ certainties in Condition III 

(Xj Reversed) by an "a priori" linear combination of X^ and Xj 

is compensated for by the inclusion of these non-linear terms. 

Though the linear terms contribute significantly to the fit of 

these models for all but one or two subjects in each condition, 

the non-linear terms though contributing to the fit of the model 

for most subjects in Conditions I (Untransformed) and II (X^ + 2) 

do not do so with consistency for any of the subjects in 

Condition III (X£ Reversed). The Lens Model index G showing 

the matching of subjects' utilization of these linear and non

linear terms with that of the normative model, show such matching 

to be significantly less in Condition III (X£ Reversed) than in 

the other conditions, presumably as a result of the lack of 

utilization of the non-linear term in this condition. The 

index of non model matching C did not vary significantly over 

conditions.

Rank order equivalents of the foregoing indices were not 

computed for the data collected in this experiment. Since the 

tasks forming the three conditions were essentially identical,

twrMSkx
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for example, in Rg and the extent to which non-linear terms were 

valid, it is not likely that the possible non-linearity in the 

certainty values would have a differential effect on the Lens 

Model indices for each condition. It seems unlikely then that 

such an analysis could tell us much more about the processes 

involved than the indices already discussed, using least squares

regression theory



DISCUSSION AMD CONCLUSIONS

The optimal statistical approach to situations requiring the 

discrimination of the members of two or more multivariate normal 

populations was formulated by Fisher (1950 an<i waE used throughout 

the present study as a normative model against which the behaviour 

of human subjects was compared. In cases where the covariance 

matrices are equal i.e. the shapes of the multivariate normal 

population to be distinguished are identical, the optimal 

procedure is to linearly combine the scores on the cues (with 

suitably derived weights) and assign those observations (patients), 

for which the value of this combination is greater than some 

rationally derived constant, to one population and all other 

observations to the other population (in the two population 

case).

The behaviour of many subjects in conditions of this sort 

seemed to be very well predicted by a model which weighted the 

two cues equally in a linear combination and based its responses 

on the value of the result. The verbal reports of many subjects 

of the way their decisions were made, were exactly parallel to 

the linear discriminant function:- they added the two cues together 

and compared the result with a constant, if it was greater than 

that constant they assigned the patient to one disease population 

otherwise he was assigned to the other.

The degree of cue intercorrelation (equal for both 

populations making up any one condition, but varying over 

conditions) did not appear to have much effect on either the



accuracy of subjects' responses or on the degree to which their 

certainty in their responses could be predicted by a linear 

combination of the cues. Such an effect had been found by 

Naylor and Schenck (i960) in a task with a continuous criterion 

and one explanation of this effect which was put forward was 

that in tasks with high intercorrelations between the predictor 

cues it is possible to disregard one or more cue as much of 

the information contained in it is also included in other cues.

In the present experiments, however, there was no evidence of 

subjects relying only on one of the two cues and if one of the 

cues was significantly related to their responses then the other 

one generally was also. The large intersubject differences in 

learning which were evident in the experiments of the present 

study may, however, be obscuring many effects which would show 

clearly with less inter subject variance.

Many subjects did not learn to use the predictor cues in 

a valid way throughout the length of the experiment possibly 

due to a low level of motivation since they were not in general 

volunteers, but students taking part in order to fulfil a course 

requirement. Some of these subjects, though they were not using 

the cues in a valid way, were quite consistent in the way the 

decisions were made.

It is possible that this consistent but invalid behaviour 

was due to some kind of "superstitious" learning (Skinner, 1948); 

that the feedback provided, reinforced some "hypothesis", which 

a subject was considering, for a sufficiently large number of
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trials for the subject to accept it as valid. A similar effect 

has been reported previously by Azuma and Cronbach (19 6 6) in a 

one population task and it would seem that such behaviour is 

particularly likely to result from tasks in which even the 

optimal decision policy does not result in perfect accuracy 

thus diminishing the power of feedback.

We see then that in these tasks as in that of Vlek and 

Van der Heijden (1970) who used spatially presented cues, the 

responses of subjects who learn to use the cues in a way which 

is at all valid can be reasonably well predicted by a linear 

combination of the two cues in a manner very similar to the 

statistical technique Linear Discriminant Function analysis.

When the populations whose members are to be distinguished 

do not have equal covariance matrices i.e. patterns or relations 

exist in the scores of the members of one population which do 

not exist in the scores of the members of the other, a linear 

combination of the cues no longer provides the optimal decision 

policy. The normative mode'’, in such situations includes 

curvilinear terms in the squares of the cues, configural terms 

in their cross products as well as the cues themselves, all 

suitably weighted in a linear combination, and bases its 

decision on the value of the result. Such differences in 

covariance matrices seem particularly likely to occur in medical 

diagnosis situations, in view of the often made claim that the 

"pattern" of the scores of a patient on a series of tests is 

important in assigning him to one diagnostic category rather



than another. It can be seen, then, that tasks which require 

judges to discriminate the members of one population where the 

predictor cues are highly intercorrelated from the members of 

another population where no such intercorrelations exist, are 

intrinsically non-linear. Unlike previous experiments on the 

learning of non-linear cue utilization (c.f. Hammond and Summers 

19 68) experiments based on the situation outlined above, would 

not be adding non-linearly to a basically linear task. Their 

non-linearity would follow quite logically from the different 

parameter values of the populations to be discriminated.

A great deal of effort was put into finding "real life” 

situations which were intrinsically non-linear in an attempt 

to discover to what extent humans process information in such 

situations in a non-linear manner. Results from such studies 

have, in general been disappointing, very little evidence of a 

strong dependence on non-linear processes was found. However, 

these tasks were only "felt" to be non-linear, no statistical 

investigation of the tasks took place and the possibility 

remains that assumption of non-linearity may not have been 

justified, in which case it would be hardly surprising that the 

judges did not seem to be processing the information in a non

linear way. We see now, however, that it is possible to generate 

tasks in the laboratory, which do not differ too greatly from 

real life tasks, yet which are known not only to be non-linear, 

but non-linear in a way which can be specified exactly.

It was found that human subjects did appear to learn to 

use cues in a non-linear manner in discriminating between the
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members of a population in which the cues were highly positively 

correlated and the members of a population in which the cues were 

independent. Rather than replace the linear combination of the 

two cues however, this non-linearity seemed to take the form of 

the inclusion of a non-linear transformation of the cues into 

the decision processes of the subjects and supplemented rather 

than replaced the utilization of the cues in a linear manner. 

Subjects reported that they consider the absolute difference 

between the two cues, and a multiple regression of the subjects' 

responses on this term and a term representing the sum (or average) 

of the two cues yielded high values of the multiple correlation 

coefficient which were, in general, reduced significantly by the 

removal of either term.

When the cues in one population were less highly positively 

correlated, (though still correlated to a degree which could have 

been perceived by subjects if this had been their major task 

(c.f. Beach and Scopp, 1966, Erlick and Mills, 1967)),and the cues 

in the other population were independent, it appeared that some 

of the subjects did not perceive the non-linear nature of the 

task and did not use the cues in a non-linear manner. The 

inclusion of the absolute difference term in a multiple regression 

with the subjects' responses as predicted variables, did not, for 

these subjects significantly increase the value of the multiple 

correlation coefficient above its value with only the linear term, 

the sum (or average) of the two cues. Some subjects did, however, 

appear to be weighting the non-linear term significantly but on 

average there was no evidence of greater dependence on this
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cue in this condition, than in a condition with equal covariance 

matrices, at least when possible covariance effects of the linear 

term had been removed. Also, since some of the subjects had 

previously had experience of the condition with a high 

correlation between the cues in one population, it could be that 

this led them to look for possible differences in the pattern of 

scores of the member of the two populations, which otherwise 

would have gone unnoticed.

The weight given to the absolute difference between the two 

cues in this study would seem to imply that the subjects had 

perceived that the two scores of a member of one population 

tended to be of a similar magniture whereas no similarity was 

apparent in the magnitude of the two scores of members of the 

other population. Unlike the cross product and square terms of 

the normative model this absolute difference term is only valid 

in a limited number of the sorts of situations we are considering. 

Particularly, the cues must have similar distributions in terms 

of mean and standard deviations. By transforming the cues in 

various (rather trivial at a statistical level) ways, it is 

possible to invalidate this particular non-linear term, and to 

discover to what extent the use of the cues in a non-linear way 

is dependent upon for example the particular ranges of the cues 

involved.

The addition of a constant to the scores of the members of 

both populations on one of the cues caused no apparent change 

in the accuracy of subjects' judgements, nor did they appear to
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be relying more upon a simple linear combination of the two cues 

than in a condition with untransformed cues. Many subjects 

reported considering the extent to which one cue minus the other 

came close to some constant value, and on the inclusion of a 

term expressed as ABS ( (X^ - Xg) - Constant), equal in predictive 

power (with regard to the normative model) as was the absolute 

difference term in the condition with untransformed cues, in a 

regression analysis with the mean or sum of the cues, these 

terms predicted the responses of subjects as well as the 

equivalent terms in the condition with untransformed cues. It 

would appear then that subjects are still able to perceive and use 

differences in the pattern of scores when the cues do not have 

exactly the same distribution » a result which is directly parallel 

to the lack of effect of the additive constant in research into 

learning linear functions, (c.f. Eisler and Spolander (1970);

De Klerk, Oppe and Truijens, 1972).

The situation was found to be somewhat different when one 

cue was transformed so that what were previously high scores on 

this cue were now made low and vice versa. Though the range of 

scores on each cue remained constant, what had been a positive 

correlation between the cues in one population now became 

negative though the cues retained their previous range. The 

accuracy of performance in this situation was significantly lower 

than in the untransformed condition in later sessions, but the 

dependence of subjects upon a linear combination of the two 

cues was significantly higher. No evidence could be found of non-
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linear cue utilization which is not altogether surprising in view 

of the problems subjects have with negatively related cues in other 

situations (c.f., Brehmer, 1971; Eisler and Spolander, 1970;

Erlick and Mills, 1967; Naylor and Clark, 1968). It would 

appear, then, that subjects did not perceive that the correlation 

between the scores of members of the two populations differed, 

or, if they did perceive it, they were unable to make use of it.

The approach of human judges to the type of task discussed 

above would appear to differ quite fundamentally from that of 

the statistical model. The statistical model can accommodate 

all the above tasks by suitable changes in the value of the 

individual parameter (these values are logically derived from the 

statistical properties of the populations involved). The approach 

of a human subject however, would appear to be far more "ad hoc". 

He would appear to formulate one "rule" for one situation and 

another "rule" for another situation. His decision as to what 

terms should be considered is highly situation dependent and the 

"rule" he develops for one task may be completely invalid in 

another task which does not differ from it in any great degree.

We have seen how this situation dependent approach leads subjects 

to use the absolute difference between the cues, a non-linear 

term, in one condition but to base their responses only on a 

linear combination of the cues in a condition which differs 

from the first only at a trivial level, from a statistical point 

of view. The statistical model however, performs equally well 

in both these tasks, and does so, not by the inclusion of some
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terms and the exclusion of others, but simply by altering its 

parameter values.

It is unlikely that judges in a "real-life" situation are 

ever going to have conditions so condusive to the learning of 

valid decision processes as were provided to the subjects in the 

present study. Yet, even in these ideal situations, the non

linear nature of tasks with negatively correlated cues or cues 

with only moderate degrees of correlation, was often not noticed 

by the subjects. Indeed even in tasks which were linear the 

performance of some subjects was no better than if they were 

responding randomly. Most diagnostic decisions in "real life" 

are not made on the basis of only two cues as in the present 

tasks nor are there usually only two possible diagnoses. These 

increases in number of variables and number of decision categories 

increase the possible location of differences in the relations 

between cues disproportionately. In fact when a judge has, say, 

sixteen cues to consider in determining which of possibly ten 

or twenty or more diseases a patient has, he would probably do 

as much as possible to simplify his decision processes rather 

than make them more complex by the inclusion of non-linear terms. 

The subjects in the present experiment all used simple linear 

and non-linear transformations of the cues, at no time did anyone 

report taking squares or roots or any other such complex term 

in making his decisions. It would be interesting to study 

learning tasks with more cues and decision categories than the 

present ones, but it is doubtful whether practical difficulties,



particularly the length of time it would take to learn to make 

predictions in an accurate way, would be outweighed by the 

benefits derived from such studies.

In summary then, it is hoped that this study has gone some 

way to fill what was a glaring gap in the psychological research 

into human decision making i.e. the ability of subjects to learn 

to use probabilistic cues in identifying the members of more 

than one multivariate normal population. It has been shown 

that in some situations of this sort, subjects clearly combine 

the information from cues in a non-linear way (without the non

linearity of the situations being pointed out to the subject as 

in the study of Hammond and Summers (19 65) strengthening our 

conviction that such non-linear processes could be developed 

in real life given suitable conditions. However, in order for 

such situations to be identified, a great deal more work must be 

carried out on the ecological side of Brunswick's Lens Model.
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APPENDIX A

THE HTOSCH, HAMMOND AND HPRSCH (1974)

AND HAKKOND, HURSCH AND TODD (1964) 

Statistical Formulation of Brunswick's Lens Model.

Achievement ( ra )

Brunswick used the analogy of a convex lens to describe 

situations of the kind in which inferences about an uncertain, 

probabilistic environment must be made on the basis of 

probabilistic data. Eecause both ecological and organismic 

systems involve a criterion (distal variable and response, 

respectively) and because several variables (cues) are correlated 

in various amounts with both distal variable and response, 

multiple correlation methods may be applied to the analysis of 

the interactions of the two systems.

When the process of clinical inference is examined in
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terms of the Lens Model, the application of multiple regression 

analysis is straight forward. Each half of the Lens can be 

described in terms of multiple correlation coefficient (Rg for 

the environment, and Rg for the subject). Rp describes the 

relationship between the cues and the variable to be estimated 

and Rg the relation between the cues and the subjects' responses. 

Thus, the degree of linear determinancy in each system can be 

calculated, and comparison can be made between the environmental 

and organismic systems.

The specific relation between each cue and the variable 

to be estimated (ecological validities) as well as the relation 

between the cues and the subjects' responses (utilization 

coefficients) may be measured in terms of correlation coefficients. 

The sum of the products of the differences between the respective 

beta weights can also be calculated. This calculation provides 

an index of the extent to which the subjects use each cue 

relative to the validity of the cue.

A partial correlation between the subjects' judgements 

and the variable to be estimated (with the linear variance of 

each system eliminated) may be calculated.

The relation between overall achievement (correlation 

between the subjects' estimates and the variable estimated) and 

the statistical components described above is set forth in the 

following equationi-
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vhere rg » correlation between subjects' judgements 

and the variable estimated.

Rg “ the multiple correlation between the cues 

and the variable estimated.

Rg = the multiple correlations between the cues 

and the subject's judgements.

Id = the sum of the products (rg  ̂- ~ psj)

where rg  ̂- the correlation between cue i and 

the variable estimated, rg  ̂ = the correlation 

between cue i and the subject's judgements,

» the beta weight for the correlation 

between cue i and the variable estimated and 

|3g| = the beta weight between cue i and the

subject's judgements.

C - the correlation between the variance

unaccounted for by the multiple correlation 

in the ecology and the variance unaccounted 

for by the multiple correlation in the 

subject's response system.

Tucker (19 6 4) showed that this relationship could be equally 

well expressed as

V i J e V  C V  (1 - Re?)(1 - O  
where G is the correlation between the predictions of the

criterion using the weights and the predictions of the

subject's judgements using the weights

G, then, may be regarded as an index of the extent to which
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the subject uses the cues linearly and in an appropriate manner. 

Similarly, C may be regarded as an index of the extent to which 

the subject uses the cues in an appropriate non-linear way.

The above developments of the Lens Model' were made on the 

assumption that the model in which we are interested is the 

simple linear one.

i-e. Y ■ + + • • • • + +

G therefore represents the correlation between the linear 

models which best fit the environmental criterion and the 

subject's responses i.e. between

Ye * A»1X1 + Pe2X2 + *••• + p a f o  

and Ys “ As 1X1 + ^ s 2 X2 + + ^sNXN

C represents the correlation between the remaining, non-linearly 

predictable, variance in the environmental and judgemental system.

Theoretically, there is no reason why this method of analysis 

should not be applied to psychologically non-linear models (though 

these must be statistically linear).

e.g. Y - p i X1 + PpX2 + .... +-€

G then represents the correlation between those models of 

the above form which best predict the environmental criterion 

and the subject's responses, i.e. between

Ye " Pe1X1 + Pe2X2? + + P e ^ S

and Ys ’  & 1 X1 + Ps2X22 + •••* + P b V * V

C is now the correlation between the remaining variance, not 

predictable from the model, in the environmental and judgemental 

systems.
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which wereThe terms GR R and C J (1 - R 2)(1 - R 2) es  ̂' e s '

formerly regarded as indices of the degree to which the 
subjects’ accuracy was due to appropriate use of the cues in a 
linear and non-linear manner respectively, may now be regarded 
as indices of the degree to which the subject's accuracy is due 
to appropriate use of the cues in a manner prescribed by the 
model and appropriate use of cues in manners not so prescribed.

263



APPENDIX B
THE GENERATION OF SAMPLES FROM BIVARIATE NORMAL 

POPULATIONS WITH KNOW PARAMETERS.
The following method was used to generate random samples from 

a bivariate normal populate defined by the parameters.

from a random number generating procedure. Each was fed into an 
inverse normal procedure giving two random z scores, i.e. A and 
B were treated as the area under the normal curve below same z 
score, the inverse normal procedure computed the appropriate z 
scores X and Z.

X and Z are therefore random samples from the standardized normal 
distribution (N(0,l) ).

A new variable Y was formed by the following operation:

Since the mean of the sum of two independent normal variables 
is equal to the sum of their means,

Two random numbers A and B (between zero and 1) were obtained

2
and since pX is distributed as N (0, P )

2
is distributed as N (0, 1 - p )
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then the variable Y has mean zero.
Since the variance of the sum of two independent normal variables,
is equal to the sum of their variances Y is distributed variance

2 2P + 1 - p - 1.

Since the sum of two normal variables is itself a normally 
distributed variate Y is distributed as N (0,l).
The correlation between the variables X and Y is equal to the 
square root of the proportion of the variance in Y which can be 
explained by X i.e. y [ 7 = P

X and Y may be transformed so as to correspond to any 
bivariate normal population. At present, they form a random 
observation from the population

To convert them in order to make them samples from the population
r m, 1 ’ a.2 a. P

where Y is from variable 1 and X from variable 2, the following 
transformations may be applied.

Y' = a,Y +  M,

X' = ^ X + g ,

For n - variate populations where n is greater than two, this 
method is not easily generalized and it is suggested that a method 
such as that of Wherry, Naylor, Wherry and Fallis (19 6 5) be used.



APPENDIX C
STATISTICAL APPENDIX

The "normal distribution" is the name applied to the familiar 
bell-shaped curve which so frequently results when a large number 
of events play a part in determining the score of an item on some 
continuous variable. It is a function of such distributions that 
they can be uniquely described by only two parameters, the mean 
M and variance a 1 . The probability density function is 

given by
1 .+£=«.)• 

f ( x ) =—----------- e T a
■^2 T O

It is possible to generalize this concept of normal 
distribution to more than one variable. The resulting 
multivariate normal distribution being characterized in terms of 
a vector of mean values ju and a covariance matrix Z . The 
former of these is simply a vector of the mean values of the 
population on each of the variables. Z is analagous to the 
variance a 2 in the univariate case, its entries in the diagonals 
being the variances of the population on each variable, the off- 
diagonal entries being the covariances between each pair of 

variables.
M,
M.

.¿n_

V,* O', <*1 />„ CTi°h /° in '
cr, a

_CTl ^ /°m
2

°n J
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Letting =  a^ for simplicity, if points of equal density 

(i.e. points (x^, x^) such that F (x^, x^) equals a constant) 

are plotted, it can be seen that:-

(1) If p. o  these points form circles concentric 

about the mean.

(2) If p > o the points form ellipses, whose major 

axis has positive slope.

(3) If p<o the points form ellipses, whose major 

axis has negative slope.

2) P >0 3 ) P < o

268
¿fa



The probability density function of the multivariate normal 

distribution is

(¿it)0^ e

Where X is a vector of an individual's scores on the /\ 

variables.

We shall be particularly concerned with the bivariate normal 

distribution, characterized by

>* - «»vd l

Here we have the familiar parameters p and cr of both 

the variables as in the univariate case. We have however, an 

additional parameter p which represents the correlation between 

the two variables in the population.

The probability density function of the bivariate normal 

distribution is

FM 2 tt axa1 J t- p 1

L. /  (x-rA)1 _  Iffxi-M 'bi-fr) (ti-J*)1) 
■P1 {  a S  <7, cr2 c r 1 /

u j|\« r«  X  =
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DISCRIMINANT ANALYSIS.

Situations frequently arise in which it is necessary to 

classify items, people etc., as belonging to one of two or more 

multivariate normal populations on the basis of measurements 

carried out on those items or people. R.A. Fisher (1936) 

developed a method which allowed optimal classification of objects 

into multivariate normal populations. The technique was later 

named Discriminant Function Analysis.

For ease of explanation, the two population case with equal 

probabilities will be illustrated. Generalisation to more than 

two populations or unequal prior probabilities is not difficult.

Assume that we have measures on n variables for an 

individual, X = , and we wish to classify this individual
L*Jas belonging to one of two n - variate normal populations whose 

parameters U and 2 are known or can be estimated. The 

covariance matrices of the two populations are assumed to be 

equal, so the populations may be viewed as two n - dimensional 

ellipsoids of the same shape and orientation, occupying different 

positions in an n - dimensional space.

The bivariate situation is illustrated overleaf.

(It should be noted that throughout this appendix the two 

populations are labelled A and B rather than 1 and 2 as in the 

experiments. This is to facilitate indexing.)
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Clearly at a point X =
X ,
Xi in the space, both populations

have a certain density - ?k (x) and Fg (x). The optimum strategy 

is, clearly, to assign an individual at X to that population 

whose density is greater at that point.

i.e. If FA (X) >  Fb (X) assign to population A.

If F, (X) <  F- (X) assign to population B.

This may be phrased in terms of the likelihood ratio.

L (X)_FA (X)

f^

If L (x )  >  1 assign to population A.

If L (X) c  1 assign to population B.

Clearly if L (x) = 1 both populations are equally

likely.

LlxN Fa (*)
Fb (x)

[u<t):II1*J e
[(2n)i |SliJ"'e -k[(X-n)1£ - ,(X-Vg,l]

taking logs
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w  L M  •  -* [U-VaVe >-/>A) - ( * - * ) ' l " ( X - * ) ]

Ln L (X] »  X, 2 ' l( ^ ^ 6)-U>4A4^ ) ,E''iMA+ >J6)

The first term on the right of this last equation is the 

discriminant function, and is a linear function of the components 

of the observation vector X. The function may be evaluated for 

any X and if the resulting values are greater than zero 

(i.e. Li\.L()0>O and therefore L(>0>' then population A

is the more likely population at that point.

In the bivariate situation the above expression takes the 

form:-

This is clearly a linear combination o'1 the scores of the 

individual on the two variables.

For a given value of L (X) (or Ln L(x)) it can be shown 

that those points in the space with this value of L(x) lie on a 

straight line which cut the line joining the two population

terms.
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The line for L (x) = 1, i.e. the line of points which are 

equally likely to be from populations A or B, in fact bisects 

the line joining the population means.

Thus,any problem involving the classification of items or 

people as belonging to one of two or more populations differing 

only in mean vectors may be reduced to the comparison of a 

weighted combination of scores on the n - variables with some 

constant, usually LnL(X) - 0 but sometimes other values (for 

instance when payoffs or prior probabilities are unequal).

UNEQUAL COVARIANCE MATRICES.

We might question the likelihood of the assumption of 

equality of the covariance matrices. In some instances there is 

little reason to suppose that the relationship between the n - 

variables will be the same in both populations. The claims of 

physicians, for instance, that the pattern of scores is often 

important in making differential diagnoses, would lead us to 

suspect that the relationship between scores in one of the 

disease populations differs from that in another. The assumption 

of equality may be tested by taking samples from the populations 

and carrying out a test of homogeneity (c.f. Anderson, 1958)«

272



What can be done if this test of homogeneity yields a 

significant result, indicating that it is unlikely that the 

samples are from populations with equal covariance matrices? 

A linear combination of variable scores is no longer valid, 

what sort of function may be used in its stead? The above 

derivation may be applied again, but without the assumption 

that £ a =

(c-f- Eisenbeis and Avery, 1972):-

If the value of this expression is greater than the critical 

value of LnL(X) (zero in the unbiased case) then an individual 

at point X is assigned to population A.

This rule may be expressed in terms of a quadratic

function:-

Assign to population A if

= t  u z e . z ; ‘i

X '  ( V Z - ; ) X - 2 ( ^ z ; - ^ £ e ) X ^ A s:'A Ma *

<  l ^ | 2 6 .e ; ' | - 2 U L ( x )

or when LnL(X) * 0

<
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Clearly this is a far more complex function than was 

obtained when and were assumed equal. In the

bivariate case with

< C"
‘•'S

*  81 °Si %  ft ■

%  «A» fA <r6tcre>ifB crg\

the function becomes

C 'f V )  ®Ai / ’ » U '- f g )

Mb ft MAi

CAi O 'fY) <TA\ <rAi 0 -^a! <rV (l-P 1»)

Mb Pa mai Mil

o-b (» -'*) trAi «"Ax 0'PiO o-bO-Ft)

Pa *  ) * ,
TAi “"A lt1- Pja ) 0-6. r ii ( i- F b) )

r 1A*Ai nbfK MAi%

A . c - f » rA ? 0 ' F a )

% FT) -  U  M )

Pi M S
f i —  \J

M »> lh  t w i l i t  Mbi

This function is of the general kind knoim as quadratic 

forms, including as it does, not only linear but also quadratic 

and cross product terms of the variables, ("he function remains 

of the quadratic fox« type regardless of the number of variables 

concerned). Unlike the function derived earlier under the 

assumption of equal covariance matrices, for which plots of

J
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the points with likelihood ratio equal to some constant yielded 

a straight line, plots of points of equal likelihood ratio for 

this quadratic form take a number of possible shapes. Just 

what shape these plots will take depends upon the parameter 

value associated with each term (c.f. Noble, 19&9) which in 

turn depend on the parameters of the populations in question, 

but tneoretically they may be hyperbolas, ellipses or parallel 

straight lines. In all tasks investigated in the present research, 

in which the two populations were of unequal dispersion, the 

resulting curves of constant likelihood ratio were hyperbolas.

One property of the equal covariance matrix situation 

is that the decisions made by the linear combinations are 

unbiased i.e. if the cut off is at L(x) - 1 then the same 

proportion of population A is displaced as is displaced from 

population B. When unequal covariance matrices are considered, 

the quadratic function with cut off at L(x) - 1 introduces 

systematic biases in favour of one or other of the populations.

The degree of misclassification may be evaluated by the 

integrals.

over the area classified

as B

and over the area classified

as A.
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Obviously the degree of correct classification of each population

is one minus each of these integrals.
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EXPERIMENT I

In this experiment the covariance matrices of the two 

populations between which discriminations were made were equal 

in each condition.

Condition I.

7.5 4.0 0.0

“a m

7.5
Â s

0.0 4.0

9.5 4.0 0.0

UB
s

9.5
*

0.0 4.0

The best decision function, with cut off at L(x) - 1, correctly 

classified 76.0^ of the members of population A and 76.0/t of the

members of population B#



Condition II.

'7.5' 4.0 2.8

WA = 2a ”
J. 5. .2.8 4.0.

‘9.5" 4 .0 2.8"

* 2 b "
.9-5. 2 .8 4.0

The best decision function, with cut off at L(X) - 1, correctly 

classifies 10.6$ of the members of population A and 10.6$ of the 

members of population B.
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Condition III.
"7 . V I

7 . 5
■‘'A

'4.0

5.6

5.6'

4.0_

5.6*

4 .0 .

L(X) = 1

i.e. i°A * 0.9

i.e. «g = 0.9

The best decision function, with cut off at L(x) = 1 correctly 

classified 69.6̂ fc of the members of population A, and 69.6> of

the members of population B.

The best decision function in all three situations is a 

linear combination which weights both x1 and x2 equally the 

exact values of these weights vary as a function of the 

correlations.

Condition I.

8.50 - .50x1 - .50x? - LnL(X)

the line of equal probability is x1 - 17.0 - x2-

Condition II.

5.00 - .29x1 - .29x2 ” LnL(x)
the line of equal probability is x1 - 17.0 - *2.
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Condition III.
4 .47  -  , 26x 1 -  . 26xg » LnL(x)

the line of equal probability is x1 - 17.0 - x2*

The difference in the weightings given to x1 and x? implies 
that with lower correlations between x1 and x2 L n L (x )  is more 
greatly changed as a result of a change in x̂  or x2 than at 
higher correlations.
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EXPERIMENT II

In this experiment the difference in correlation between 

x1 and x? which existed between population A and population B 

was varied over the conditions.

Condition I. 7.5' '4.0 0.0'

“
-7.5.

? A -
_0.0 4.0.

'9.5' ‘4.0 0.0'

W B *
.9.5

Ib -
_0.0 4.0.

The best decision function (which is linear), with cut off 

at L(X) - 1, (L L(X) - 0), correctly classifies 76.0% of the 

members of population A, and 76.0% of the members of

population B.

Condition II. '7.5' '4.0 2.8'

.7.5. .2.8 4.0.

'9.5' '4.0 0.0*

W B *
.9.5.

^3
.0.0 4.Q.

0.7

0.0

p.t.o.
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The best decision function (which is non-linear) with cut 
off at L(x) = 1 correctly classifies

79.6% of the members of population A 

and 73.0$ of the members of population B.

Condition III

7.5 4.0 3.6

*̂ A "
7.5

M > N

5.6 4.0

9.5 4.0 0.0

’
9.5

*B "
0.0 4.0

0ff at L(X) - 1, correctly classifies
282

p • t • o •



79«5^ of the members of population A 

and 8I .656 of the members of population B.

The best decision functions for the three conditions are:- 

Condition I.

8.50 -  • 50* 1 -  «50x2 * LnL(x)

Condition H.

14 .6 5  -  . 12* ^  -  . 12x22 + .3 4 x ^ 2  -  l . 27x 1 -  1 .2 7 x 2  -  LnL(x)

Condition I I I .

15 .9 9  - ,53x.,2 - .53x 22 + 1.18x^2 - 1.39X, - 1.39x 2 - M-(X)

It can be seen that the square and cross product terms 

receive weights of increasing magnitude as the difference in 

cue correlation between the two populations increases. The 

functions of the curves of constant likelihood ratio may be 

found by rearranging the above equations, but since these functions 

are quadratic, the relationship between x1 and x2 can only be 

expressed using the algorithm for solution of a quadratic 

equation. For simplicity's sake, they are not included.



EXPERIMENT III

In this experiment all conditions have what are, except at 

a trivial level, the same statistical properties. Condition II 

and III are simply transformations of Condition I either by 

addition of a constant to one of the cues or by the multiplication 

of a cue by a constant and subsequent addition of a constant.

These transformations do not affect the difficulty of the task 

in terms of the proportions of the members of populations A 

and B who are correctly placed by the best decision function 

(which is in all cases non-linear).

Condition I. '7.5 

1.7.5.

"4.0

3.6

3.6'

4,0
i.e, ■ 0.9

i.e. iOg » 0.0

The best decision function, (which is non linear) with cut 

off at L(X) - 1 correctly classifies 

79.3$ of population A,

and 81.6# of population B. p.t.o.
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Condition II ’7.5" ’4.0 3.6"
«

.9.5.
*A

' .3.6 4.0.

"9.5" "4.0 o.o"

U3 *
11.5.

= '
.0.0 4.0.

The best decision function , (which is non-linear) with cut 

off at L(X) = 1 correctly classifies

79.3$ of the members of population A, 

and 81.6?f> of the members of population B.

Condition III ’7.5" 4.0 1 On
__

_1
WA ’

.9.5.
h  -

-3.6 4.0.

’9.5" ’ 4.0 o.o"

.7.5. . 0.0 4.0.


