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A B S T R A C T

Ticks are of global interest as the pathogens they spread can cause diseases

that are of importance to both human health and economies. In Scotland, the

most populous tick species is the sheep tick Ixodes ricinus, which is the vector of

pathogens causing diseases such as Lyme borreliosis and Louping-ill. Recently,

both the density and spread of I. ricinus ticks have grown across much of Europe,

including Scotland, increasing disease risk. Due to the nature of the tick lifecycle

they are particularly dependent on environmental factors, including temperature

and habitat type. Because of this, the recent increase in tick-borne disease risk is

believed to be linked to climate change. Many mathematical models have been

used to explore the interactions between ticks and factors within their environ-

ments; this thesis begins by presenting a thorough review of previous modelling

of tick and tick-borne pathogen dynamics, identifying current knowledge gaps.

The main body of this thesis introduces an original mathematical modelling

framework with the aim to further our understanding of the impact of climate

change on tick-borne disease risk. This modelling framework takes into account

how key environmental factors influence the I. ricinus lifecycle, and is used to

create predictions of how I. ricinus density and disease risk will change across

Scotland under future climate warming scenarios. These predictions are mapped

using Geographical Information System software to give a clear spatial repres-

entation of the model predictions. It was found that as temperatures increase, so

to do I. ricinus densities, as well as Louping-ill and Lyme borreliosis risk. These
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results give a strong indication of the disease risk implications of any changes

to the Scottish environment, and so have the potential to inform policy-making.

Additionally, the models identify areas of possible future research.
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1
I N T R O D U C T I O N

Mathematical models have long been used to help understand systems that occur

in the real world, in fields such as computer science and psychology, and for

topics such as economic forecasting and fluid dynamics. Modelling techniques

can allow existing empirical data to be used to create predictions for scenarios

which it is not possible to observe, such as cases where ethical regulations prevent

experimentation, or for predictions of the future. Modelling can also be a faster

alternative to empirical studies in urgent situations.

Mathematical biology is a field that has grown over recent years as improving

modelling techniques have allowed for a broader range of biological systems to

be investigated more realistically. This field often requires mathematicians and

biologists to collaborate in order to develop models that are based on both sound

mathematical principles and accurate biological information. However, there must

always be a compromise; no biological system is so simple that a mathematical

model can hope to represent every mechanism that influences it. Therefore, whilst

mathematical models can be informative, caution must always be taken with any

model predictions as they will always have inbuilt assumptions.
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A large field within mathematical biology is disease modelling, where mathem-

atical models are used to gain insights into the dynamics of infection. Through

such modelling it can be possible to identify mechanisms within the system

that are important for controlling infectious disease spread. Increasingly used

in conjunction with disease modelling, Geographical Information Systems (GIS)

are systems which record and display a wide range of geographical data in

map form. These can be extremely useful in disease modelling as they allow the

environmental factors that may influence the spread of an infection to be used to

predict which regions are likely to have the highest disease risk.

This thesis focuses on tick-borne diseases, which are of significant economic and

public health interest worldwide. As ticks feed on almost any terrestrial vertebrate

of a sufficient size, they can transmit a wide variety of pathogens, many of which

cause serious disease. Therefore, ticks are one of the most important vectors

of disease-causing pathogens in Europe (Gilbert, 2013). Ticks are particularly

dependent on their environments (James et al., 2013), and therefore it is important

to understand the effect climate change will have on the geographical range and

dynamics of ticks and the pathogens they spread. Whilst many studies have

mathematically modelled tick and tick-borne disease dynamics, few have used

environmental data to make predictions of the effect climate change will have.

Therefore, this thesis develops a modelling framework which combines a dynamic

mathematical model of ticks and the pathogens they spread with environmental

data and GIS mapping software in order to create predictive maps of future

tick-borne disease risk across Scotland. Such an approach is novel and will bring

new perspective to our understanding of how disease risk may be influenced by

climate change.
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Figure 1.1: Lifecycle schematic for the sheep tick Ixodes ricinus. Silhouettes indicate pos-
sible hosts, but not all.

This chapter presents an overview of the biological background used to inform

the modelling work undertaken within this thesis, as well as explaining the

significance of ticks and the pathogens they spread. Additionally, the aims of

the thesis are given to provide a guide to the motivation of this work. However,

specific biological details of the pathogens modelled in this thesis will be given at

the start of the relevant chapters.

1.1 biological background and significance

1.1.1 Tick lifecycle

Ticks are arachnids that are widely distributed across the world, particularly

in warm, humid climates. Across the northern hemisphere, the two families of
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ticks found are soft-bodied ticks (Argasidae) and hard-bodied ticks (Ixodidae),

with hundreds of species of each known (Randolph, 2004). The work within

this thesis will focus on the sheep tick (Ixodes ricinus L.), which is the species

most commonly found in Scotland and is the main vector for multiple significant

pathogens (explored in section 1.1.2).

The lifecycle of Ixodid ticks is split into three active stages, or instars: larva,

nymph and adult. At each stage a tick must find a suitable host to draw a blood

meal from. Generally, adult ticks require a large mammalian host such as sheep

or deer, whilst other stages will feed on any host, including small mammals

and birds (Gray, 1998; Gilbert, 2016a). After feeding, ticks will drop off the host

and bury themselves in the ground vegetation layers, where larvae and nymphs

moult into the next instar and adult ticks reproduce, with females laying a clutch

of thousands of eggs, before dying. Although ticks in cool climates such as

Scotland are thought to usually feed once per year, in warmer climates or warmer

years some ticks are able to moult into the next instar within the same year and

therefore feed twice in the same season (Randolph et al., 2002). An overview of

the tick lifecycle is shown in figure 1.1.

In order to find a blood meal ticks climb to the top of blades of grass or similar

plants and hold their front two legs out in anticipation of latching onto a potential

host. This behaviour is known as questing. Once a tick has found a suitable host

it will find an appropriate area of the animal to feed, favouring areas where

it is harder to be removed by the host (for example around the ears or neck),

where it will stay for approximately a week. Ixodid ticks are unable to walk far

horizontally; therefore the spatial movement and distribution of ticks is primarily

driven by the movement of their hosts.
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As ticks are cold-blooded they require sufficient warmth in order to provide

the energy for them to quest. Therefore, in cool climates such as Scotland the

time of year when ticks are most active is between spring and autumn.

An environment-dependent model of tick dynamics is developed in chapter 3

to predict the impact climate change has on tick density across Scotland.

1.1.2 Tick-borne diseases

Ticks are the primary vector of a wide range of pathogens that cause infectious

diseases throughout the world, with a heavy impact on human, livestock and

wildlife health. Within Britain ticks are known to spread pathogens which cause

zoonotic diseases such as Bartonellosis, Ehrlichiosis and Anaplasmosis, which

can all cause serious health problems for both humans and animals (BADA UK,

2016). However, this thesis will focus on two tick-borne diseases: Louping-ill and

Lyme borreliosis.

Louping-ill is a disease caused by a flavivirus which primarily affects sheep

(Ovis aries) and red grouse (Lagopus lagopus scoticus), and there have been cases

of serious illness in humans (Davidson et al., 1991). The name derives from the

old Scottish word ‘loup’, which describes the leaping motion of infected sheep;

more importantly, the disease can kill infected livestock, and is therefore of great

importance in rural communities. Whilst a treatment vaccine for sheep has been

developed, no such protection exists for grouse. As grouse are highly susceptible

to the disease, with 78% mortality observed in laboratory trials (Reid, 1975), the

modelling work on Louping-ill in this thesis will focus on the threat to grouse

caused by the disease. Louping-ill is caused by the pathogen Louping-ill virus

(LIV), which is transmitted to grouse from I. ricinus ticks. However, as grouse

generally do not feed adult ticks, a system which allows ticks and therefore LIV
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to persist will require mammalian hosts to be present, such as red deer (Cervus

elaphus) or mountain hares (Lepus timidus) (Hudson, 1992) that are essential hosts

for adult female I. ricinus ticks. There has been plenty of previous modelling of

LIV systems (reviewed in chapter 2), with good parameterisation. This makes

it an ideal system to use when developing a new modelling system, as done in

chapter 4.

Lyme borreliosis (commonly known as Lyme disease) is named after the town

Old Lyme in Connecticut, where there was a spate of cases in the 1970s (Gray,

1998). In the UK and throughout Europe it is the most common tick-borne disease

in humans. Within Scotland there has been an almost 10-fold increase in Lyme

borreliosis cases from 2000-2010 (Health Protection Scotland, 2016). Infection

with Lyme borreliosis can cause complications of the brain, skin and joints

(Tilly et al., 2008). Lyme disease is caused by the complex of spirochete bacteria

Borrelia burgdorferi sensu lato, which, like LIV, is most commonly transmitted by I.

ricinus ticks. B. burgdorferi s.l. tends to be most prevalent in wooded areas, as it is

maintained by small mammals and birds, which are competent transmission hosts

(Gray, 1998). Due to the increasing risk Lyme borreliosis poses to public health,

this is a very relevant policy issue at the moment. Therefore, Lyme borreliosis

is used as a case study in chapter 5, as predicting the impact of climate change

on disease risk is likely to be one of the most practical uses of the modelling

framework developed in this thesis.

1.1.3 The influence of climate change

Climate change is recognised as one of, if not the single, greatest threats to human

life in the world today. Global temperatures have risen consistently since the 1960s,

with 2015 the warmest full year recorded to date (NASA/GISS, 2016). This rise
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has been linked to large-scale changes, such as rising sea levels and habitat loss

for many species. Such rising temperatures have also led to an increase in extreme

weather events (Hansen et al., 2012), which further destabilise communities and

habitats. The Intergovernmental Panel on Climate Change predict that “the net

damage costs of climate change are likely to be significant and to increase over

time” (IPCC, 2007).

Like all free-living terrestrial arthropods, ticks are strongly affected by their

environment. Firstly, ticks need the appropriate vegetation to provide cover when

moulting (James et al., 2013). Secondly, like all arthropods, their activity is affected

by temperature, such that they require sufficient warmth to provide the energy to

quest for meals (Gilbert et al., 2014). Thirdly, the humidity of a tick’s environment

has to be high enough to prevent desiccation (James et al., 2013). Finally, ticks

require enough hosts present to provide blood meals for all three stages of the

tick lifecycle (Randolph, 2004). As tick survival and activity are influenced by

climate, it is likely that so too are the pathogens they carry. Therefore, in order to

predict future tick-borne disease risk, we have to understand how climate change

will affect ticks and tick-borne pathogen prevalence. In this thesis therefore a

novel combined modelling approach is developed whereby mathematical models

utilising coupled differential equations are combined with GIS mapping tools to

predict the impact of climate change on (a) tick population dynamics (chapter 3),

(b) LIV risk (chapter 4) and (c) B. burgdorferi s.l. risk (chapter 5).

1.2 aims and layout of the thesis

This thesis aims to predict the effect climate change has on tick-borne disease

risk across Scotland, specifically that of Louping-ill and Lyme borreliosis. To

achieve this, an entirely original modelling approach is developed, dependent
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on environmental factors, in order to study the predicted changes in disease

risk under a variety of climate warming scenarios. The model predictions are

coupled with GIS data for Scotland in order to create risk maps for each of

these future scenarios. The model is then extended into a modelling framework

to allow it to be adapted for further tick-borne pathogen systems. Combining

dynamic tick-borne disease modelling with GIS mapping is a novel approach

and one which can be very useful in giving a spatial representation for the model

predictions.

Chapter 2 of this thesis reviews previous mathematical modelling in the field

of tick and tick-borne pathogen dynamics. This is important to provide the

background for the modelling work undertaken in this thesis, as well as to

highlight the knowledge gaps that this thesis aims to fill. The majority of the

previous mathematical modelling of ticks and tick-borne pathogens is covered by

the paper Norman et al. (2015), of which the author of this thesis is a co-author.

The importance of Norman et al. (2015) in relation to this thesis is considered,

highlighting the studies which are particularly influential in the modelling work

undertaken. In addition, models not covered by Norman et al. (2015) which

influence this thesis are reviewed.

Chapter 3 presents an original model for the I. ricinus lifecycle. This model

is dependent on environmental factors (namely temperature, host density and

habitat), and the model is used to make predictions of tick densities across

Scotland under various climate warming scenarios. GIS mapping software is used

to give a visual representation of the model predictions. Creating this model is

important for providing the foundation upon which the later pathogen models

can be built.
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Chapter 4 expands the tick lifecycle model to include pathogen and trans-

mission host dynamics for LIV. This is used to make predictions of LIV risk

for a variety of climate warming scenarios. The influence of habitat and host

density on the model is also considered. The model created in this chapter is

important in demonstrating that the novel methods developed in the previous

chapter can be used to predict disease risk. GIS mapping software is used to

create predictive disease risk maps across Scotland in order to spatially visualise

the model predictions, in a novel combination of LIV modelling with GIS tools.

Chapter 5 investigates how the LIV model can be adapted into a modelling

framework for other tick-borne pathogen systems. To achieve this, the LIV model

is generalised to create basic models. These are then augmented by identifying

the appropriate modelling required in order to include further mechanisms which

can be added to the basic models. To demonstrate that the framework can be

applied to a new pathogen system, a model is created to represent B. burgdorferi

s.l. dynamics, which uses available parameter data to create predictions of how

climate warming will influence disease risk.

Chapter 6 discusses the predictions from the models in the thesis, how they

relate to the aims, and their global context. The limitations of the modelling

framework created are discussed, along with what future work can be undertook

to address these.

Appendix A presents the methodology behind the application of the models

within this thesis. Particularly, the focus is on how the models utilise GIS data,

and how climate warming predictions were applied across Scotland.

Appendix B provides the full code used to run the models within this thesis.
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2
P R E V I O U S M O D E L L I N G

Over the last couple of decades the number of studies modelling tick and tick-

borne pathogen systems has been steadily increasing. However, no comprehensive

review of such modelling work has been undertaken in recent years. Such an ana-

lysis is timely as it allows for the current state of tick-borne pathogen modelling

to be assessed. Therefore, this chapter presents a review of previous mathematical

models of tick and tick-borne pathogen systems. Reviewing these studies is im-

portant in understanding the techniques developed so far, as well as highlighting

knowledge gaps. Additionally, this chapter aims to highlight those studies which

have an influence over the modelling methods used within this thesis.

Much of this is covered in the paper by Norman et al. (2015), of which the

author of this thesis is a co-author. Therefore, that paper is presented in section

2.1, with section 2.2 highlighting the parts of it which are of particular relevance

to this thesis. Section 2.3 reviews models which are not covered by Norman et al.

(2015).
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2.1 past and future perspectives on mathematical models of tick-

borne pathogens (norman et al. 2015)

Norman, R.A., Worton, A.J., Gilbert, L. (2015). Past and future perspectives on mathem-

atical models of tick-borne pathogens. Parasitology pp 1-10.

2.1.1 Summary

Ticks are vectors of pathogens which are important both with respect to human

health and economically. They have a complex life cycle requiring several blood

meals throughout their life. These blood meals take place on different individual

hosts and potentially on different host species. Their life cycle is also dependent on

environmental conditions such as the temperature and habitat type. Mathematical

models have been used for more than 30 years to help us understand how tick

dynamics are dependent on these environmental factors and host availability.

In this paper, we review models of tick dynamics and summarise the main

results. This summary is split into two parts, one which looks at tick dynamics

and one which looks at tick-borne pathogens. In general, the models of tick

dynamics are used to determine when the peak in tick densities is likely to occur

in the year and how that changes with environmental conditions. The models of

tick-borne pathogens focus more on the conditions under which the pathogen

can persist and how host population densities might be manipulated to control

these pathogens. In the final section of the paper, we identify gaps in the current

knowledge and future modelling approaches. These include spatial models linked

to environmental information and Geographic Information System (GIS) maps,

and development of new modelling techniques which model tick densities per

host more explicitly.
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2.1.2 Introduction

Ticks are the most important vectors of zoonotic disease-causing pathogens in

Europe (Gilbert, 2013), transmitting the tick-borne encephalitis (TBE) complex of

viruses, Anaplasma phagocytophyllum, Babesia and Rickettsia species and Borrelia bur-

gdorferi sensu lato, the complex of bacteria that cause Lyme borreliosis, amongst

others (BADA UK, 2016). Ixodes ricinus L. ticks are particularly implicated in

pathogen transmission because they are almost ubiquitous across Europe and

are generalist feeders, which allows for pathogen transmission among different

host species. Ixodes ricinus are increasing in number and range in many parts of

Northern Europe (reviewed by Medlock et al. 2013).

In any given geographical region tick population dynamics are dependent on a

number of biotic and abiotic factors including the density of different host species,

and other factors that influence survival and activity such as temperature and

humidity and vegetation types, the latter of which provide habitats for different

hosts and create different microclimates (James et al., 2013).

Mathematical models have been used extensively to predict the dynamics of

tick populations under different conditions including climate change. However,

high tick densities do not necessarily mean high prevalence or risk of tick-borne

pathogens, since this is dependent not only ticks but also competent transmission

hosts. Therefore, models have also been used to predict the tick-borne pathogen

dynamics and the theoretical effectiveness of different tick-borne pathogen control

methods under different environmental or management scenarios. In this paper,

we will review the use of those models for different systems, summarise the key

results in different contexts and discuss possible future directions of mathematical

modelling of tick-borne pathogens.
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2.1.3 Mathematical models of tick population dynamics

Although there are a number of different tick species globally this review will

focus on I. ricinus and we will specify when we cite any papers which refer to

other species.

The I. ricinus life cycle develops from the egg, through two immature stages

(larvae and nymph) to the adult stage. Each immature stage requires a blood

meal from a suitable vertebrate host before developing to the next stage and the

adult female requires a blood meal before producing eggs. Adult females feed

primarily on large mammals such as deer, sheep or hares whilst the immature

stages can also feed on smaller vertebrates such as mice, voles and birds (e.g.

Gray 1998). The I. ricinus life cycle usually takes 3–4 years to complete (Randolph,

2004).

In winter ticks often enter behavioural diapause induced by cold and/or short

day length (Randolph et al. 2002; but see Gray 1987). Therefore, tick activity

is highly seasonal with ticks in Northern Europe being active mainly between

spring and autumn when temperatures are warm enough (Lindgren et al., 2000).

Activity is inhibited by cold temperatures but increases with temperature up to a

limit (12–20 °C depending on population e.g. Gilbert et al. 2014; Tomkins et al.

2014). Tick host-seeking (questing) activity can also be inhibited by low relative

humidity or high saturation deficits (this is a function of relative humidity and

temperature and gives an estimate of the drying power of the air; Perret et al.

2000). After feeding, ticks also become inactive due to physiological diapause

while they develop into the next stage (Randolph et al., 2002).

One of the first mathematical models developed to describe tick population

dynamics was published in 1981 (Gardiner et al., 1981). This study used empirical

data from experiments to predict how tick development times depend on temper-
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ature. They did not put this into a formal predictive modelling framework but

they did try to determine functional relationships between development time and

different measures of temperature (i.e. air and soil temperature). In particular,

they looked at how experimentally predicted development times estimated in the

laboratory translated to the field where temperature fluctuations are much less

predictable. They found that soil temperatures recorded at a depth of 50mm are

useful predictors for larval and nymphal development phases. In terms of egg

development time they found that air temperatures are useful for predicting the

development time of eggs laid in the spring but soil temperature is a better pre-

dictor for those laid in autumn. They suggested that this might be because during

diapause eggs may be conditioned to develop according to the temperature of

their environment rather than air temperature.

Mount and Haile (1989) developed a computer simulation model of the Amer-

ican dog tick Dermacentor variabilis (Say). This model simulated the effects of

environmental variables such as ambient temperature, habitat and host density on

American dog tick population dynamics. They validated the model by comparing

its predictions with empirical data from Virginia, Maryland and Massachusetts.

The authors concluded that the model produced acceptable values for equilibrium

population densities and seasonal activity patterns and went on to extend this

model to include Rocky Mountain spotted fever dynamics (Cooksey et al., 1990).

Over the last 40 years Sarah Randolph and collaborators have written a large

number of papers on tick biology and population dynamics. These are largely em-

pirical; however, there are also some which model tick population dynamics. The

first of these came in 1997 (Randolph and Rogers, 1997) where they presented a

simulation model of the African tick Rhipicephalus appendiculatus. This simulation

model incorporated temperature-dependent rates of egg production and develop-

14



ment, climate-driven density-independent mortality rates and density-dependent

regulation of both nymphs and adults. The model successfully described both the

seasonality and annual range of variation in numbers of each tick stage observed

at each of four test sites in Uganda, Burundi and South Africa.

In 2002, Randolph et al. (2002) used empirical data on tick counts, various

microclimatic factors and fat contents of ticks to create a population model

explaining seasonality of I. ricinus in the UK. This study showed large variation in

questing activity between years, but the date of questing (i.e. host-seeking activity)

in 1 year was used to predict the start of questing for the next stage the following

year, with reasonable accuracy. This was an important paper that also found

evidence of two cohorts of ticks within a life stage within a season. Those nymphs

with higher relative fat contents had emerged and become active more recently

than those with lower fat contents. The suggestion was that spring-questing

nymphs had overwintered, having fed as larvae the previous late summer or

autumn; meanwhile autumn-questing nymphs had fed as larvae in the spring of

the same calendar year.

More recently, Dobson et al. (2011) used a stage-classified Leslie matrix model

to break the tick life cycle into the key parts, with a particular focus on two types

of diapause: developmental and behavioural, with the latter being important in

determining how many times a year an individual tick might feed. This model

was then used by Dobson and Randolph (2011) to make long-term predictions

of the effects of host densities, climate and acaricide treatment of hosts on tick

populations.

In 2005, Ogden et al. (2005) developed a model of Ixodes scapularis Say (1821)

in which tick development rates were modelled as temperature-dependent time

delays. Time spent in egg and engorged tick states and questing activities were
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all temperature dependent. The parameters were estimated using data taken

from Ogden et al. (2004). The model was validated using data from Ontario and

Maryland and in both cases the observed seasonal activity patterns were predicted

by the model. The models were then used to predict theoretical geographical

limits for the establishment of I. scapularis in Canada. The model predicted that

the temperature conditions which are suitable for the tick are wider than the

existing distribution, implying that there is potential for spread.

An age-structured stochastic model was used to describe the dynamics of tick

populations by Hancock et al. (2011). They focused on the effect of temperature

on the development between each stage of the tick life cycle, i.e. from egg to

larva, larva to nymph, nymph to adult and adult laying eggs. This model also

introduced pathogen dynamics into the model. This allowed the model to predict

that, if a pathogen is introduced into the system, it is most likely to persist if it is

introduced at a time of year of peak tick questing.

A completely different approach was adopted by Schwarz et al. (2009) who

used statistical methods to identify the relationship between vegetation and tick

distribution. I. ricinus tick count data were correlated with plant communities,

and the resulting relationship was used to predict I. ricinus distribution across

the German nature reserve Siebengebirge, using GIS. A similar process was

undertaken by Braga (2012) to identify the associations between habitat, host

densities, temperature and other climatic factors on observed tick abundance at

sites across Scotland. The resulting output was used to predict tick abundance

over all of Scotland according to GIS-based environmental data, and visualised as

a series of raster maps showing predicted tick abundance. The key parameters in

this basic algorithm were then altered in accordance with environmental change
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projections (climate change and woodland expansion), to produce predictions of

future tick abundance over Scotland due to environmental change scenarios.

Jore et al. (2011) also used a statistical method to investigate I. ricinus tick

dynamics. A principle component analysis provided a model which explained

67% of the variation in past I. ricinus densities in Norway. The study suggests

that I. ricinus have expanded northwards since 1983.

Summary

For almost 35 years mathematical models of tick dynamics have been developed.

The models have largely focused on the impact of environmental factors on these

dynamics. Field observations show that tick life stages emerge at different points

in the season and peak at different times in different geographical regions. In

some areas, we can have bimodal tick dynamics within a year (e.g. Tagliapietra

et al. 2011) and in other areas there is only one peak. The models described above

have been able to replicate the observed tick dynamics for particular geographical

areas, tick species and environmental conditions. However, it is clear that in

order to be able to predict tick dynamics we would need to have key pieces of

information about the environment (and particularly the temperature) in which

they live.

Lorenz et al. (2014) explicitly looked at the extrapolation of landscape model

results based on one area or time to other spatial or temporal systems for Lyme

disease and I. scapularis and concluded that models based on measures of ve-

getation, habitat patch characteristics and herbaceous land-cover emerged as

effective predictors of observed disease and vector distribution. These would
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therefore be important characteristics of an area to measure in order to predict

these distributions.

2.1.4 Mathematical models of tick-borne pathogen dynamics

Modelling of tick-borne pathogens has focussed on a small number of pathogens

which are important for human or animal health and welfare. The three main

systems which have been modelled extensively are Louping ill virus (LIV),

western tick-borne encephalitis virus (TBEV) and B. burgdorferi sensu lato, the

causative agent of Lyme disease. This section will focus largely on LIV since this

pathogen has the largest body of modelling work and it is the area of expertise of

the authors. It also illustrates many of the biological features which need to be

incorporated into models and so is a good case study for models of other system.

In general, transmission of these pathogens can occur in three ways (although

also see Park et al. 2001 discussed below for LIV). The most common form of

transmission occurs when susceptible ticks feed on infected hosts who have

virus in their bloodstream (viraemic hosts) and pick up the virus. These ticks

then moult into their next developmental stage and when they take their next

blood meal then they can pass the pathogen onto a susceptible host, this will

be a different individual and can also be a different host species (Labuda and

Nuttall, 2004). The second method is vertical transmission; for some pathogens

infection is passed from adult ticks to eggs and onto larvae (Labuda and Nuttall,

2004). Finally, for some hosts and some pathogens there can be non-viraemic or

co-feeding transmission in which susceptible ticks feeding near to infectious ticks

can pick up infection without the host having a viraemic response (Jones et al.,

1987).
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2.1.4.1 Louping-ill virus

A large number of increasingly complex models have been used to help us

understand LIV, which is the western-most variant of Western TBEV. LIV is

transmitted by I. ricinus and causes disease in livestock, especially sheep Ovus aries,

as well as red grouse, Lagopus lagopus scoticus, a valuable game bird. A vaccine

has been developed for livestock but not for red grouse that are highly susceptible

to the disease, with 78% mortality rates in experimentally infected birds in the

laboratory (Reid, 1975). The hosts and transmission cycle of this complex virus

system has been recently reviewed (Gilbert, 2016b), but mathematical models can

be extremely useful in helping to identify gaps in our biological knowledge of

the system, identifying the relative importance of different host species hosts,

and predicting the effectiveness of potential control strategies.

The first mathematical model of LIV was presented by Hudson et al. (1995),

where a series of coupled ordinary differential equations describing LIV on red

grouse moorland was presented. This model explored the interactions between

ticks and red grouse and their role in the dynamics of LIV. The model predicted

that grouse alone cannot support a tick population since very few adult ticks feed

on grouse, therefore other hosts are required to complete the tick life cycle. Within

this model the alternative hosts were mountain hares Lepus timidus, although

similar later studies examined the role of red deer Cervus elaphus (Gilbert et al.,

2001; Norman et al., 2004) and sheep (Porter et al., 2011). Hudson et al. (1995)

also calculated a formula for the conditions for persistence of both ticks and

LIV. For tick persistence a sufficient number of hosts (or combination of host

types) which can feed all stages of ticks are required, while LIV persistence

also requires a competent LIV transmission host (red grouse in this model) to

make up a sufficient proportion of the total tick hosts. This means that, in order
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for the pathogen to persist one needs enough tick hosts to maintain the tick

population, with a sufficient number of these being pathogen-transmitting hosts.

This threshold formula comes from the basic reproductive rate or number, R0,

which is a concept used widely in epidemic models. When R0 > 1 then the

pathogen persists and when R0 < 1 the pathogen dies out.

Some more complex later LIV models have also predicted an eventual ‘dilution

effect’ where pathogen prevalence declines if there are too many non-pathogen-

transmitting tick hosts (hosts which do not transmit the pathogen such as deer)

compared with competent transmission hosts which causes potential pathogen-

transmitting bites to be ‘wasted’ and the effect of the pathogen to be diluted

(Norman et al., 1999; Gilbert et al., 2001).

Sheep are known to produce a LIV viraemia after infection, and are known

to be competent transmission hosts. However, the role of lambs is less well

understood; if ewes have been bitten by infected ticks, their young lambs acquire

immunity from the virus from drinking the colostrum from their mothers in the

first few days or weeks of life. However, as the lambs age this immunity wanes,

leaving them at risk of contracting LIV. Thus, lambs could potentially have a role

as a reservoir host. Therefore, another differential equation model was created

to understand the role that lambs may play as a reservoir of LIV. The model

predicted that, whilst in theory large numbers of lambs could act as a reservoir

for the virus, it is more likely that, in most situations, these numbers are probably

small (Laurenson et al., 2000).

Laurenson et al. (2003) examined the impact of near-eradication of mountain

hares on tick burdens and LIV seroprevalence in red grouse, using both empirical

data and differential equation models. The models compared the scenario where

mountain hares simply act as tick amplifying hosts to a scenario where hares were
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both tick hosts and non-viraemic transmission hosts. It was found that the model

which included non-viraemic transmission produced predictions that fitted the

data better than the simpler model did. Laboratory experiments had already

identified mountain hares as competent transmission hosts (through supporting

non-viraemic transmission between co-feeding ticks) in the laboratory (Nuttall

and Jones, 1991; Jones et al., 1997). In addition, models have shown that non-

viraemic transmission via co-feeding may allow the virus to persist more readily

than it would otherwise have done, and allow the virus to persist even in the

absence of viraemic hosts if the level of non-viraemic transmission is high enough

(Norman et al., 2004). However, the Laurenson et al. (2003) study was important

in demonstrating that mountain hares can be LIV reservoir hosts in the field.

There were large management repercussions to this research, as many grouse

moor managers over Scotland began large-scale culls of mountain hares, leading

to political issues (reviewed by Harrison et al. 2010; Gilbert 2016b). Models again

had political impact by providing evidence against culling mountain hares: while

the Laurenson et al. (2003) system included only red grouse and mountain hares,

most areas in Scotland managed for grouse hunting also have deer. Therefore,

Gilbert et al. (2001) modelled a three-host system, including deer as well as red

grouse and mountain hares. Importantly, this three-host model predicted that

LIV would always persist in the presence of even low densities of deer, even if

all mountain hares were culled. This was because red grouse are transmission

hosts for the virus while deer, although not competent transmission hosts, are

important hosts for all stages of tick, so together both virus and tick life cycles can

be maintained. This Gilbert et al. (2001) model has been crucial in the arguments

against large-scale mountain hare culls (Harrison et al., 2010; Gilbert, 2016b).
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Mathematical models have also been used in helping identify which pathogen

control methods could be theoretically most effective in LIV control. Porter et al.

(2011) developed models to predict the effectiveness of using acaricide-treated

sheep as a tool to control ticks and LIV in red grouse. The model predicted that

the presence of deer limits the effectiveness of such a strategy, but for certain

conditions the use of acaricide on sheep could theoretically be a viable method

for controlling ticks and LIV providing that high numbers of sheep are treated

and acaricide efficacy remains high, while deer densities must be very low (Porter

et al., 2011). Due to this predicted adverse impact of deer on the success of treating

sheep to control ticks and LIV, and because deer are known to maintain high tick

population densities in Scotland and move ticks between habitats (Ruiz-Fons and

Gilbert, 2010; Jones et al., 2011; Gilbert et al., 2012), models were then developed

to test the theoretical effectiveness of acaricide-treated deer on controlling ticks

and LIV (Porter et al., 2013a). The model predicted that treating deer could

control ticks and LIV if high acaricide efficacies were maintained and if a large

proportion of the deer population was treated. Furthermore, effectiveness was

improved if there were only low densities of deer. However, although the model

predicted that this control method is theoretically plausible, it is unlikely that

the conditions could be met in practical terms, in wild deer. Therefore, using

an age-structured differential equation model, including splitting the grouse

life cycle to represent the different behaviour between chicks and adults, Porter

et al. (2013b) investigated whether acaricide treatment of the grouse themselves

could help reduce ticks in the environment and LIV in the grouse population.

Again, this was theoretically possible, but in the presence of deer, high acaricide

efficacies were required and high proportions of the grouse population treated,

were needed for successful control. This is due to the deer amplifying the tick
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population. These types of models can therefore be of use in decision-making

by land managers for choosing disease control options, such as whether to try a

certain control method or not depending on the situation in a specific area, taking

into account any practical difficulties.

It is generally assumed that LIV is transmitted through ticks biting their hosts,

and model parameterisation generally reflects this assumption. However, red

grouse chicks frequently eat invertebrates, including ticks (Park et al., 2001).

This is a potentially important route of transmission: it has been suggested that

73–98% of LIV infection in red grouse in their first year could stem from ingestion

(Gilbert et al., 2004). Introducing this infection route to LIV modelling has an

interesting effect: when using the standard method for calculating the basic

reproduction number for the persistence of LIV, then the algebraic results and

numerical simulations do not match. The standard method of analysis causes

virus persistence to be underestimated, as the ingestion of infected ticks causes

a feedback loop where the virus can persist with seemingly insufficient hosts

(Porter et al., 2011). This phenomenon requires further investigation, as it may

indicate interesting gaps in our knowledge of the biology of the LIV system as

well as an anomaly in the current modelling approach.

In the LIV models described above, there has been no explicit spatial component

to the models. However, Watts et al. (2009) investigated the interaction between

neighbouring areas by expanding the previously existing LIV models into a two-

patch system with host movement between patches. Comparison with empirical

data showed that whilst the one-patch model was a reasonable indicator for tick

numbers, it tended to underestimate the prevalence of the LIV. When considering

the two-patch model, the results depended largely on finding the appropriate

balance of deer movement between the two sites (Watts et al., 2009). Jones et al.
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(2011) developed a different type of differential equation model, which explicitly

tracked the number of ticks on each host, to predict how deer moving ticks from

forest onto moorland might affect ticks and LIV in red grouse on the moorland.

The assumption was that ticks are more abundant in forest than on moorland,

which is supported by empirical data (Ruiz-Fons and Gilbert, 2010). This model

predicted the highest levels of LIV in moorland to occur where it is bordering

forest regions, due to higher tick numbers there. Furthermore, this model was

important in examining for the first time the impact of landscape heterogeneity

on predicted pathogen levels: virus prevalence was predicted to be higher in

landscapes that have larger forest patches, and higher landscape fragmentation,

which increases the number of borders between the two habitats (Jones et al.,

2011).

Summary

The transmission, persistence and dynamics of LIV are complex with many

interacting factors to take into account. The focus of the modelling work described

above has been on trying to understand the roles that different hosts play in

maintaining these dynamics. Hosts can play three possible roles, they can either

simply act as tick amplifiers (e.g. deer) or they can both amplify ticks and transmit

virus (e.g. sheep for viraemic transmission or hares for non-viraemic transmission)

or finally they can transmit the disease but not support the ticks (e.g. grouse). The

ability to control the virus in any particular geographical area is highly dependent

on the host community structure. In addition there are practical issues involved

in trying to control the virus in this system which is made up of mostly wild
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hosts. There are both physical difficulties in delivering treatment and legislative

difficulties in which treatments are permitted.

2.1.4.2 Other tick-borne pathogens

Tick-borne encephalitis

TBE is a neurological disease which is of significant public health interest across

mainland Europe (Labuda et al., 1993). It is caused by the TBEV, which is primarily

transmitted by I. ricinus ticks, where rodents act as the competent host for the

virus.

There are two significant ways in which deer can influence TBEV dynamics.

Firstly, as deer are the main host which I. ricinus adults feed on, their presence, as

with LIV, has an amplification effect on tick abundance. Secondly, as deer do not

support TBEV transmission, very high deer densities can eventually lead to the

dilution effect lowering TBEV levels (again similar to model predictions of LIV).

In both 2003 and 2007, Rosa and co-authors extended the models of Norman

et al. (1999) to explicitly include the questing and feeding tick stages and the

aggregation of ticks on the hosts (Rosà et al., 2003; Rosà and Pugliese, 2007).

They investigated changes in host densities and different infection pathways to

determine when the dilution effect might occur. They found the new result that

the dilution effect might occur at high densities of disease competent hosts. The

authors state that better information on tick demography would be needed before

it would be possible to predict whether this effect would happen in the field.

However, there is some evidence that this is the case in the TBE system (Perkins,

2003).

In 2012, the same Italian group published a pair of papers taking both an

empirical and theoretical approach to understanding the effect of deer density on
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tick distributions on rodents and therefore on the risk of TBE in a region; Cagnacci

et al. (2012) empirically found a hump-shaped relationship between deer density

and ticks feeding on rodents, and a negative relationship between deer density

and TBE occurrence. Twinned with this, a model was developed by Bolzoni

et al. (2012) to explain these findings. They found hump-shaped relationships

between deer density and both the number of ticks feeding on rodents and

TBEV prevalence in ticks. For low deer densities this can be explained by the

tick amplification effect, for high deer densities the virus dilution mechanism

dominates the dynamics. The role of climate change on tick-borne pathogen

prevalence was scrutinised by Randolph (2008). In this study, TBEV was used

as a case example. A statistical model was used to show that climate change

is not enough to explain historical changes in TBE incidence within Europe.

An alternative model was presented, showing how the introduction of further

factors allowed for a better model fit of the data. Crucially, such a model included

socioeconomic factors such as unemployment, agricultural practices and income.

Zeman et al. (2010) used GIS analysis to similarly find that heterogeneity in TBE

trends cannot be fully explained by geographic and climatic factors. However, they

also found that the inclusion of socioeconomic conditions could not satisfactorily

explain the anomalies.

Summary

As with Louping ill the persistence and dynamics of TBE are dependent on host

densities and deer play a crucial role in this. Some of the papers described above,

particularly in the 2003 and 2007 papers, Rosà et al. (2003); Rosà and Pugliese

(2007) present general results which could apply to a number of different tick-
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borne pathogens and, in particular the results that dilution effects are very

dependent on tick demography and density-dependent constraints are true more

generally than just for TBE. In most of the models presented here TBE has been a

case study of a model which addresses more general questions.

Lyme disease

Borrelia burgdorferi s.l. is the suite of spirochete bacteria which causes Lyme

disease. This is a pathogen which has a wildlife reservoir but infects humans in

the northern hemisphere (Tilly et al., 2008). Porco (1999) used a time-independent

differential equation model to investigate how the prevalence of B. burgdorferi

s.l. in I. scapularis (Say) nymphs is affected by various model parameters. The

infectivity of white-footed mice Peromyscus leucopus (a key transmission host in

the Eastern USA) was predicted to be the parameter which increased B. burgdorferi

s. l. prevalence the most, whilst a tenfold increase in the density of deer (which

do not transmit the pathogen) significantly reduced B. burgdorferi s.l. prevalence,

suggesting that this is another system where the dilution effect can occur.

Zhang and Zhao (2013) presented a seasonal reaction–diffusion model of

Lyme disease, utilising it to study the dynamics of the system in bounded and

unbounded spaces. For bounded habitats a threshold for pathogen persistence

was predicted, whilst for unbounded habitats they were able to predict the speed

of pathogen spread.

In their 2007 paper, Ogden et al. (2007) considered the work of Wilson and

Spielman (1985) and hypothesised that the transmission cycles of B. burgdorferi s.l.

are very efficient in north-eastern North America because the seasonal activity

of nymphal and larval I. scapularis is asynchronous. They then developed a
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simulation model which integrated transmission patterns imposed by seasonal

asynchronous nymph and larvae with a model of infection in white footed mice.

They parameterised the model for B. burgdorferi s.l. and Anaplasma phagocytophilum

as examples. They found that duration of host infectivity, transmission efficiency

to ticks and co-feeding transmission are the major factors determining fitness of

pathogens in I. scapularis in North America.

The same group then wrote a series of papers looking I. scapularis in Canada

where is established in some places and emerging in others. In Wu et al. (2013)

they developed a temperature driven map of the basic reproductive number for

the ticks and found that while the geographical extent of suitable tick habitat is

expected to increase with climate warming the rate of invasion will also increase.

In a subsequent paper, Ogden et al. (2013) investigated the speed of B. burgdorferi

s.l. invasion after establishment of ticks. The model showed that the number of

immigrating ticks was a key determinant of pathogen invasion and so the authors

hypothesised that a 5-year gap would occur between tick and B. burgdorferi s.l.

invasion in Eastern Canada but a much shorter gap in Central Canada. This was

consistent with empirical evidence.

Summary

Borrelia burgdorferi s.l. is another pathogen for which the dilution effect appears

to occur. In this case rodents are the main reservoir host and B. burgdorferi s.l. is

emerging in a number of different areas as the tick hosts expand their range in

response to climate change or socioeconomic factors.
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2.1.4.3 More general models of tick-borne pathogen

More generally, Hartemink et al. (2008) determined ways of characterising the

basic reproductive number in a tick-borne pathogen system which has multiple

transmission routes using the next generation matrix (e.g. Diekmann et al. 2010).

They showed that the complexities of the tick transmission cycle can be overcome

by separating the host population into epidemiologically different types of in-

dividuals and constructing a matrix of reproduction numbers. They then used

field and experimental data to parameterise this next-generation matrix for B.

burgdorferi s.l. and TBEV.

Dunn et al. (2013) used a general model of tick-borne pathogens to study the

basic reproductive number and found that the transmission efficiency to the

ticks, the survival rate from feeding larvae to feeding nymphs and the fraction of

nymphs to find a competent host are the most important factors in determining

R0.

Another general tick-borne pathogen model was created by Zeman (1997),

where reported cases of disease were smoothed over to create risk maps for

Lyme disease and TBE in Central Bavaria. This study indicated that B. burgdorferi

s.l. is wider spread than TBEV, but that both pathogens share the same main

foci. Similarly, Hönig et al. (2011) assessed the suitability of various habitats for

supporting I. ricinus ticks, creating a model with which they were able to create a

tick-borne pathogen risk map for South Bohemia, which was compared to clinical

cases of TBE for validation. The model suggested that the areas mostly suitable

for tick-borne pathogens were along the river valleys. However, when human

activity is taken into account, the surroundings of large settlements are equally

likely to provide tick-borne pathogen cases.
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Another aspect of transmission which is considerably less well understood is

the pattern of aggregation of ticks on hosts. Ferreri et al. (2014) analysed a 9-year

time series of I. ricinus feeding on Apodemus flavicollis mice, the reservoir host

for TBE in Trentino, Northern Italy. The tail of the distribution of the number of

ticks per host was fitted to three theoretical distributions. The impact of these

distributions on pathogen transmission was investigated using a stochastic model.

Model simulations showed that there were different outcomes of disease spread

with different distribution laws amongst ticks and so it is important to have data

on these distributions which can vary seasonally.

The models discussed above are not an exhaustive list, but do describe models

which help us to understand many of the different complexities of tick-borne

pathogen systems, and showcase the diversity of models now being developed

for a wide range of end uses.

2.1.5 Knowledge gaps and future directions

As we have seen mathematical models have been used for more than 30 years

to help to predict tick dynamics and subsequently pathogen dynamics. The

models presented here have been used in two ways, firstly to predict when tick

densities are at their peak within a year and how that peak varies with environ-

mental factors. Secondly, they have been used to predict pathogen persistence

for different combinations of available host species with different transmission

competencies. In particular, they have looked at the interaction between tick

amplifying hosts and disease-transmitting hosts and how densities of these hosts

could be manipulated to control the disease.

One of the problems of these modelling studies is the difficulty in gathering

empirical data to validate the model results. This is largely because there is a

30



great deal of variability between sites in terms of habitat cover, microclimate and

host densities. This is not unique to the tick system; it is difficult for a number of

reasons to carry out experiments in natural systems. It is also difficult to measure

realistic tick densities (e.g. Dobson 2014).

However, most of the models described here have succeeded in doing some

type of validation and they provide useful qualitative results.

Future modelling approaches are likely to be focussed in two main areas.

One is to look at spatial patterns of tick and disease risk, and in particular to

link environmental information in GIS systems to models of tick and pathogen

dynamics in a mechanistic way. These models can then be used to predict the

impact of climate change on tick and disease risk across a given geographical

region. This type of modelling is currently being carried out by the authors for

both LIV and Lyme disease in Scotland. The advantage of this type of modelling

is that it is generalisable and could be applied to any country with the right type

of environmental data available in GIS form. It can also predict risks are going

to change over time rather than only looking at the end points as has been done

before (e.g. Braga 2012).

If we can identify which areas are going to have significant increases in disease

risk, then we can inform policy makers and target control efforts. For example, if

we could identify which areas are going to have higher and lower Lyme disease

risk then we could target efforts to educate the public on how to avoid being

bitten in those high risk areas.

The second direction in which we predict tick modelling will move is to further

develop a new modelling technique which was introduced in Jones et al. (2011).

In that paper, the authors developed a model which keeps track of the number

of hosts with a particular number of ticks on it. This allows us to consider the
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distribution of ticks amongst the hosts and the spatial element of the model

allowed hosts to be infected in one place and for ticks to drop off them in another

area. This allows us to model the movement of ticks which is not possible in the

more traditional models. This ability adds to the level of biological realism and

allows us to answer questions which it is not normally possible to answer. For

example, we would be able to model control more explicitly in terms of how

many ticks are lost from an individual host. This approach allows us to relax the

intrinsic assumption of most models that all host individuals, and indeed, all

tick individual behave in the same average way and to look at distributions of

behaviour which should bring further insights into these important systems.

Whilst it is interesting to speculate about future directions in the modelling of

tick-borne diseases, it is also likely that future modelling will be developed in

response to new insights, either in the current systems, or in emerging diseases

which become a problem in the light of climate change, for example. New models

or new methods of analysis will have to be developed in order to answer specific

questions for particular biological systems.

2.2 importance of norman et al . (2015) in relation to this thesis

Whilst early models of parasites, ticks and tick-borne diseases have been extremely

influential over subsequent models, it is the recent models that are of primary

interest here.

2.2.1 Tick lifecycle model (chapter 3)

The model of most interest in chapter 3 is that presented in Dobson et al. (2011)

and explored further by Dobson and Randolph (2011). Since the model presented
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by Dobson et al. (2011) takes a similar approach to the tick lifecycle model

presented in chapter 3 of splitting the tick lifecycle into different states within each

tick stage, it is therefore an ideal model to use for comparisons of assumptions and

parameterisation of tick dynamics. There are naturally key differences between

the modelling approach in Dobson et al. (2011) and those presented within

this thesis, most notably the fact that Dobson et al. (2011) use a Leslie matrix

modelling method rather than the coupled differential equations which will be

presented in this thesis. Therefore, any parameters taken from the Dobson et al.

(2011) model are carefully adjusted to reflect the change in modelling type.

Ideas drawn from models which include disease can still help the development

of disease-free tick lifecycle model, especially since the interaction between ticks

and hosts is often a major focus of disease-focused studies. Hudson et al. (1995),

Gilbert et al. (2001), Laurenson et al. (2003), Norman et al. (2004) and Porter (2011)

provide examples of how coupled differential equation models can be used to

model the interactions between ticks and their hosts and served as a foundation

for the modelling approach taken in this thesis. In particular, the method of

modelling tick hosts as having heterogeneous effects on the success of instars in

feeding influenced the creation of the weekly feeding limits discussed in chapter

3.

As the tick lifecycle model uses GIS mapping software to visualise the changes

occurring under different temperature scenarios, models which have a similar

output are of interest. Specifically, Schwarz et al. (2009) and Braga (2012) used GIS

mapping to display predictions of tick densities across Germany and Scotland

respectively. Like chapter 3, these studies looked at the interactions between ticks

and their environments. However, in contrast to the tick lifecycle model created

in chapter 3, the studies by Schwarz et al. (2009) and Braga (2012) use statistical
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methods to make their predictions. Therefore for the long-term predictions made

in this thesis, the statistical methods used by Schwarz et al. (2009) and Braga

(2012) are not considered.

On a more practical level, Watts et al. (2009) and later Porter (2011) used a

method of sensitivity analysis that is useful in quantifying the effect that each

parameter has on the associated model, showing both the parameters which have

an unduly large effect and a measure of the variability of model output which is

explained by each parameter. Therefore, in this thesis this method is used in the

analysis of the models in chapters 3, 4 and 5.

2.2.2 Louping-ill virus model (chapter 4)

The models which influence the tick lifecycle model presented in chapter 3 are

also influential in the Louping-ill virus (LIV) model (chapter 4), since this is built

upon the foundations of the tick lifecycle model. Additionally, models which

influenced the work in chapter 3 may influence the work in chapter 4 in new

ways.

When considering the routes of transmission between tick and host, the models

of Hudson et al. (1995) and Norman et al. (1999) were very influential in provid-

ing a structure to base the transmission dynamics of the LIV model in chapter

4 on. The study by Gilbert et al. (2001) used a system where red grouse are the

competent transmission host present, with red deer and mountain hares are solely

tick-carrying hosts, which is the system used in the LIV model. The aforemen-

tioned models created by Hudson et al. (1995), Norman et al. (1999) and Gilbert

et al. (2001), as well as those created by Porter (2011) all contain mechanisms akin

to those in the LIV model, and therefore are useful for parameterisation.
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Previous models have used GIS mapping software to display predictive maps of

disease risk, as the LIV model does. Models by Zeman (1997), Rizzoli et al. (2004)

and Hönig et al. (2011) use this method in studies of systems of B. burgdorferi

s.l. and TBEV. Whilst these were primarily statistical analyses which looked at

pathogens other than LIV in areas other than Scotland, they were useful for

providing examples of how disease risk can be displayed geographically.

Part of the focus in chapter 4 is on how the dilution effect (whereby the

increased presence of an incompetent transmission host reduces pathogen pre-

valence as infected tick bites are ‘wasted’) influences the LIV model output.

Therefore, previous models which have displayed the dilution effect are of in-

terest. The first model to study the dilution effect was that created by Norman

et al. (1999), whilst later Gilbert et al. (2001) predicted a dilution effect in a host

system similar to that in chapter 4. Additionally, the study by Bolzoni et al. (2012)

found evidence of a dilution effect of deer on TBEV. The natures of the dilution

effect in these models are used in comparison to that found in the LIV model in

chapter 4.

2.2.3 Modelling framework (chapter 5)

Since chapter 5 expands the LIV model into a modelling framework which can be

adapted for a variety of tick-borne disease systems and mechanisms, the models

within the review paper which are most relevant to this chapter are those which

utilise such mechanisms. For example, when considering the transmission rate,

the models used by Gilbert et al. (2001) and Zhang and Zhao (2013) provide

examples where the transmission rate from infected nymphs biting susceptible

hosts, and uninfected larvae biting infected hosts is set to 100%.
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An important mechanism considered within chapter 5 is that of non-viraemic

transmission through co-feeding ticks. The models created by Gilbert et al. (2001),

Laurenson et al. (2003) and Norman et al. (2004) include co-feeding as a route of

transmission, and as such are used when considering how such a mechanism can

be incorporated into the modelling framework.

There are a number of models in the thesis by Porter (2011) which include

mechanisms considered in chapter 5. There is a model created to investigate

the effect of including ingestion of infected ticks by grouse chicks as a route of

transmission in a LIV system. The structure of this model is used in this thesis

when considering how the modelling framework can be extended to include

ingestion. Additionally, Porter (2011) creates models to look at the effect of using

acaricide on various tick hosts, namely sheep, red deer and red grouse. These

models are influential in chapter 5 when demonstrating what has to be considered

when adding such management strategies into a model of a tick-borne pathogen

system.

2.3 further models which influence this thesis

The following papers are ones which are influential in the creation of the models

within this thesis, but are not outlined by Norman et al. (2015). This section

outlines the work done in these studies, and how they influenced this thesis.

Kiffner et al. 2011. This study began with a series of field observations on

rodents in south Germany, collecting tick counts and climatic data. These were

then combined with a stepwise forward model selection procedure in order to

find the best fit. Whilst there was found to be some unexplained variation in tick

burdens, the model was able to be used to address various hypotheses. The one

of these which is most relevant to this thesis is that evidence was found that the
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dilution effect does occur with increasing rodent densities. Therefore this model

is of use when the predictions of the LIV model in chapter 4 are considered, in

particular the diluting effect of tick-only hosts.

Hartfield et al. 2011. The model presented by Norman et al. (1999) is adapted for

B. burgdorferi s.l. dynamics. The aim of this is firstly to understand the conditions

of the dilution effect in a B. burgdorferi s.l. system, and secondly to predict how

quickly B. burgdorferi s.l. establishes itself following the introduction of deer to the

system. As this study partly focuses on the dilution effect, it is of relevance to the

exploration of this effect in chapter 4, whilst the parameterisation of the model

for B. burgdorferi s.l. dynamics is of relevance to the model created in chapter 5.

Li et al. 2016. The model presented in this paper is an agent-based model

designed to predict Lyme borreliosis risk across Scotland. The influence of tem-

perature and altitude were considered when making disease risk predictions. For

instance, the model predicts that whilst higher altitudes currently experience

lower disease risk, with higher temperatures this risk will increase for high alti-

tude areas. Given the nature of this study, it is clear that this study is particularly

relevant to the B. burgdorferi s.l. case study. This study is used as a comparison

for the methods used in chapter 5.

2.4 summary

This chapter aimed to provide a review of previous mathematical modelling

of tick and tick-borne pathogen systems. Through doing this, knowledge gaps

can be highlighted and addressed within this thesis. Additionally, the modelling

methods used can be an influence on those used in the modelling work carried

out later in this thesis.
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One of the main areas in future research on tick-borne pathogen systems

highlighted as one to be explored was the combination of mechanistic models

with environmental information to provide spatial representations of disease risk.

This will be addressed through the work in this thesis, firstly by developing a

new modelling system for tick dynamics (chapter 3), then by adapting this model

for the dynamics of LIV (chapter 4) and B. burgdorferi s.l. (chapter 5). Additionally,

the studies highlighted in this chapter provide a number of different methods

which will be considered when developing and analysing these models.
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3
C R E AT I N G A N O V E L E N V I R O N M E N T- D E P E N D E N T T I C K

L I F E C Y C L E M O D E L

3.1 introduction

The overall aim of this thesis is to develop a modelling framework which can

be used to predict the influence climate change will have on tick-borne disease

risk. Tick-borne disease risk depends on the density and activity of ticks, as well

as the pathogen. Therefore, the first step is to develop an original model for the

tick lifecycle, factoring in the environmental aspects which are likely to influence

tick density. This model can then be used to predict the changes in tick density

across Scotland for future climate warming scenarios. As Ixodes ricinus ticks are

the most prevalent species of tick across Scotland, this chapter will focus on their

dynamics.

Ticks are the most important vectors of zoonotic disease-causing pathogens in

Europe, transmitting the tick-borne encephalitis complex of viruses, Anaplasma

phagocytophyllum, Babesia and Rickettsia species and Borrelia burgdorferi sensu lato,

the complex of bacteria that cause Lyme borreliosis, amongst others (BADA UK,

2016). I. ricinus ticks are particularly implicated in pathogen transmission because

they are almost ubiquitous across Europe and are generalist feeders, which allows
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for pathogen transmission among different host species (Gilbert, 2016a). I. ricinus

are increasing in number and range in many parts of northern Europe (reviewed

by Medlock et al. 2013).

As discussed in chapter 1, the I. ricinus lifecycle develops from the egg, through

two immature stages (larvae and nymph) to the adult stage and usually takes

around three years to complete. Each immature stage requires a single blood

meal, taking a few days, from a suitable vertebrate host before developing to the

next stage and the adult female requires a blood meal before producing eggs.

Because Ixodid ticks spend the vast majority of their life away from the host in

vegetation or the ground, their activity and survival is highly influenced by the

surrounding local environment. The activity of I. ricinus, like most invertebrates,

is inhibited by low temperatures (Gilbert et al., 2014) and they tend not to seek

hosts (behaviour known as questing) at low humidities or high saturation deficits

in order to avoid desiccation (Randolph et al., 2002). Adult female I. ricinus feed

primarily on large mammals such as deer, sheep or hares whilst the immature

stages can also feed on smaller vertebrates such as mice, voles and birds (e.g.

Gray 1998). For forecasting future tick activity or abundance these factors must

be therefore taken into account.

In order to make spatially explicit large-scale associations between environ-

mental factors and disease risk parameters, Geographic Information Systems

(GIS) have been increasingly used, including modelling the dynamics of ticks

and tick-borne diseases (Daniel et al., 2004). Tick-borne disease systems which

have been investigated in this way include tick-borne encephalitis virus and B.

burgdorferi in Bavaria (Zeman 1997; Hönig et al. 2011) and Italy (Rizzoli et al.,

2004), as well as predictions of tick populations in Germany (Schwarz et al., 2009)

and Scotland (Braga, 2012). These studies primarily used large spatial data sets of
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vectors, pathogens or disease incidence coupled with spatial environmental data,

and used statistical methods to predict regions of high disease risk. However, to

the knowledge of the authors GIS has not been combined with dynamic model-

ling to predict tick abundance or disease risk. Here, a newly developed dynamic

model is presented, based on temperature- and host-dependent seasonal tick

dynamics, which is then combined with GIS-based spatial environmental inform-

ation to predict tick abundance over Scotland, and how abundance will change

under climate warming scenarios. Scotland is an ideal country for pioneering

this approach as the issue of ticks and tick-borne disease risk is of increasing

concern: it has been shown to have increasing tick abundance (Kirby et al., 2004)

and reported incidence of Lyme borreliosis has been increasing enormously this

century (Health Protection Scotland, 2016). Furthermore, there are data sets avail-

able of tick abundance at a large number of sites throughout Scotland, several

relevant studies on I. ricinus in the Scottish context (e.g. Gilbert 2010, 2013; Gilbert

et al. 2014) that can provide locally relevant parameter values, and available

national-scale GIS-based environmental information. In addition, Scotland has a

highly heterogeneous landscape, with widely varying climates, elevations and

habitats for its size, widely varying tick abundances over the country may be

predicted.

This chapter aims to develop a novel mechanistic model of the I. ricinus lifecycle

which can be used to predict the effect climate change has on tick density. This

model can then be used as a basic for models of tick-borne pathogen systems,

specifically Louping-ill virus (LIV; chapter 4) and B. burgdorferi s.l. (chapter 5).
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Parameter Value Explanation and justification
aT 628 Average successful birth rate for each adult tick per

year. Gray (1981) and Buczek et al. (2014).
bL 0.047

Natural mortality rate for each tick stage’s active state.
Dobson et al. (2011).bN 0.024

bA 0.009

bWL 0.00995 Natural mortality rate for larvae developing into
nymphs during winter. Dobson et al. (2011).

bWN 0.00333 Natural mortality rate for nymphs developing into
adults during winter. Dobson et al. (2011).

Lhost Varied
Weekly feeding limit for each tick stage and each host.
Varies for different habitat types (see table 3.2).Nhost Varied

Ahost Varied
T1 5 Temperature (°C) at which ticks begin to emerge from

overwintering. Perret et al. (2000).
T2 9 Temperature (°C) at which all ticks have emerged from

overwintering. Perret et al. (2000).

Table 3.1: The definitions, numerical values used and sources of model parameters. All
rates are per week unless otherwise stated.

3.2 model development

3.2.1 Model development

The model consists of a series of differential equations which run across the

calendar year, followed by a discrete time step to move onto the next year. This

discrete step is taken at the time when temperatures are at their coldest, and

therefore when tick activity would be at its lowest. To represent temperature

across the year, a simple sine function is used (T(t), where t is the week of the

year), starting and ending at the coldest point in the year, and peaking in the

middle at the warmest. This function is given by equation 3.1, where a is the

minimum temperature and b is the maximum. The remaining values ensure that
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Figure 3.1: An example of the temperature function T(t) across a calendar year. For this
demonstrative figure the annual minimum temperature (a) is set to 4 and the
annual maximum temperature (b) is set to 16.

the function is at its minimum at weeks 0 and 52, and reaches its peak at week

26. Figure 3.1 shows an example of this function across a calendar year.

T(t) =

(
b− a

2
× sin

(
t

2.6π
− 0.5π

))
+
a+ b

2
(3.1)

The tick lifecycle is broken up into three active life stages (larvae, nymph and

adult), with each stage split further into one group which has yet to feed that

year (termed here as “active” to represent ticks that are available to quest if the

conditions are appropriate) and one group that has already fed (which no longer

quest and termed here as “developing”) (figure 3.2). Whilst ticks feeding twice

(i.e. as a larva and then as a nymph or as a nymph and then as an adult) within

one season is documented (Randolph et al., 2002), these observations were made

south of Scotland in warmer climates where temperature-dependent development
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Figure 3.2: Schematic outline of model. Ticks successfully feeding is found through the
weekly feeding function S(x,K), whilst progression over winter to the next
stage is carried out at the end of each year, as is tick birth. Each class within
the model has its own weekly mortality rate, not shown on this schematic.

times are faster. Such behaviour has not been demonstrated in Scotland and,

furthermore, as the speed of interstadial development is temperature-dependent

(Randolph et al., 2002) it is likely that the colder summers in Scotland would

result in only a very small proportion of ticks being able to feed twice per season.

Therefore, in the model presented here, all ticks are assumed to feed once per

year.

The time unit used by the model is weekly, as this fits with the typical period

spent by ticks feeding on a blood host (Randolph, 2004).

3.2.1.1 Tick feeding

For ticks of any given stage to find a blood meal, Randolph (2004) identified four

key aspects of tick development between stages: entering the stage (i.e. devel-
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opment from the previous stage), questing for a meal, successfully feeding on a

host, and mortality. These have all been incorporated into the model presented

here.

Field studies have suggested that ticks begin questing when weekly temper-

atures reach 7°C (Perret et al., 2000). Therefore, a function is introduced to the

model to represent this behaviour. As tick questing activity becomes negligible

during winter in Scotland, a temperature boundary (T1) is set in the model, below

which all active ticks are assumed to not be questing as they are overwintering. A

second temperature boundary (T2) is set, above which all active ticks are available

to quest, having emerged from overwintering. Due to individual variation in

real life, it is likely that some ticks do quest below 7°C; this temperature will be

when enough ticks had emerged to be noticed in empirical studies. Therefore, for

the model it is assumed that there is variation in individual emergence around

a mean of 7°C, and so T1 is set to 5°C and T2 is set to 9°C. Between these two

temperature boundaries it is assumed there is a linear progression as ticks gradu-

ally become available to quest. The equation for the function which describes

the pattern of emergence from overwintering between these two temperatures is

given by equation 3.2.

F(t) =


0 T(t) 6 T1,

T(t)−T1
T2−T1

T1 < T(t) 6 T2,

1 T2 < T(t)

(3.2)

Note that ticks which have emerged from the winter are not necessarily questing

at every time point. They have a limited amount of energy and so need to quest
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Figure 3.3: Percentage of active ticks assumed to be questing, P(t), for temperatures
between 0 and 16°C. The function is based on empirical data from Gilbert
et al. (2014).

in appropriate conditions. Therefore, a questing function P(t) is introduced to

the model, which describes ticks within the active state questing for a host. This

questing function is based on data from experiments conducted by Gilbert et al.

(2014), who determined the proportion of potentially active, emerged ticks which

were questing at different temperatures. For ticks collected in Scotland, they

found that the vast majority of ticks began questing between 6°C and 12°C, with

almost 100% questing at 15°C. Equation 3.3 approximates the results from Gilbert

et al. (2014), and figure 3.3 shows this function for temperatures between 0 and

16°C.

P(t) =
1

1+ exp
[
3
4(8− T(t))

] (3.3)
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The probability of a tick finding a host is assumed to be directly proportional

to the density of each host species present at a particular site. It is also assumed

that the number of ticks which find a meal in a given time period increases with

the number of ticks which are questing up to a threshold limit which depends on

how many hosts are available. This also acts as the density dependence within

the model, rather than at birth. For comparison, Gilbert et al. (2001) apply density

dependence at birth, as higher tick densities would be expected to result in more

intensive grooming and greater competition for blood meals. However, both of

these elements will more directly affect the tick lifecycle at the feeding stage

rather than at birth.

Therefore, the upper limit for the number of ticks which can feed in a given

week has to be estimated. This weekly feeding limit is calculated by using

available data to estimate the number of ticks each host type can carry at each

time step, which is then multiplied by the density of each host species present

(table 3.2). The density-dependent relationship given by equation 3.4 is then used

to model the number of ticks which find a host in a given week, where x is the

number of ticks of a given stage which are questing, w and r are constants which

determine the shape of the curve and K is the weekly feeding limit discussed

above. When running the model, K is referred to as Lhost, Nhost or Ahost when it

is the weekly feeding limit for larvae, nymphs and adults respectively. Equation

3.4 is an adaptation of the solution of the logistic equation and satisfies the

assumptions discussed above.

S(x,K) =
wK

w+ (K−w)exp(rx)
−w (3.4)
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Figure 3.4: An example of the feeding function S(x,K), where x is the number of ticks
per km2 questing and K is the weekly feeding limit, which for the purposes
of this demonstrative graph is set to 1500 (dashed line).

There are no available data which can be used to parameterise this function

further, therefore it is arbitrarily estimated that in order for 95% of questing ticks

to find a meal, 8K ticks per km2 need to be questing. To achieve this, w is set as

50, whilst r is given by equation 3.5. An example of this function is shown in

figure 3.4.

r =
ln
[

w
19(K−w)

]
8K

(3.5)

Mortality rates for questing ticks are given as 0.0068, 0.0034 and 0.00136 per day

for larvae, nymphs and adults respectively by Dobson et al. (2011). The questing

tick class used by Dobson et al. (2011) corresponds to the active tick class used

within the model presented in this chapter. However, as the model developed
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by Dobson et al. (2011) uses a daily time unit, these parameters were modified

to reflect the weekly time unit used within the models within this chapter. The

weekly mortality rates were found using the formula in equation 3.6, with values

of 0.047, 0.024 and 0.009 per week for larvae, nymphs and adults respectively.

mortalityweek = 1− (1− mortalityday)
7 (3.6)

All ticks which have not fed by the end of the year are assumed to have died.

Additionally, all adults are removed from the model at the end of each year,

assumed to have reached the end of their lifespan.

Worked example of tick feeding mechanism

This section will demonstrate a worked example of the feeding mechanism in

the model in order to make clear the processes involved in running the model.

The numbers used within this example are purely for demonstrative purposes,

and are not necessarily used when making model predictions. This example will

focus on nymph feeding dynamics at a single point in time, but the principle is

identical for larvae and adults.

The minimum (a) and maximum (b) temperatures for the example are 2°C

and 10°C respectively, and it takes place during week 18 (t). The active nymph

density (NA(t)) is 10000 per km2. Present in the area are two hosts, labelled Host

A and Host B. Each individual of species Host A can feed up to 5 nymphs in a

given week whilst each individual of species Host B can feed up to 20 nymphs in
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a given week. The densities of Hosts A and B are 110 per km2 and 16 per km2

respectively.

To begin with, a, b and t are substituted into the T(t) function in equation 3.1

to calculate a temperature value for that week of 8.3659°C. Using this temperature

in the F(t) function set out by equation 3.2 gives a value of 0.8415. This means

that at this temperature 84.15% of ticks have emerged from overwintering. Using

the temperature in the P(t) function set out by equation 3.3 gives a value of

0.5682. This means that at this temperature 56.82% of emerged ticks quest for

a blood meal in the model. Multiplying both of these percentages by the active

nymph density gives the density of nymphs questing for a meal as 2390.54.

The weekly feeding limit for nymphs (Nhost) is given by calculating the total

number of available blood meals in a given week. To find this, the nymph capacity

of Host A is multiplied by its density to give 550. The same is done for Host B,

giving 320. These are then summed to get a value for Nhost of 870. Therefore

2390.54 and 870 are the arguments of the S(x,K) function set out by equation 3.4,

giving a value of 610.285. This is the nymphs per km2 which have successfully fed

and move into the developing nymph class (ND(t)) at that time. The remaining

nymphs either stay in the active nymph class, or are removed through the weekly

mortality rate.

3.2.1.2 Tick interstadial development

As ticks which have successfully fed are assumed not to feed a second time that

year, all fed ticks stay in the developing class until the end of the year, at which

point they progress to the active class of the next instar. As the model’s developing

class is equivalent to the behavioural diapause category in the paper presented

by Dobson et al. (2011), the relevant mortality rates are used, scaled to reflect
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weekly mortality using equation 3.6. Therefore, the mortality rates of 0.001428

and 0.000476 per day used by Dobson et al. (2011) are changed to mortality rates

0.00995 and 0.00333 per week for larvae and nymphs respectively.

3.2.1.3 Tick birth

As larvae will have hatched by the start of the tick activity season in early spring,

all births within the model occur at the start of each year before ticks are active.

In a study of ticks collected in Ireland, Gray (1981) investigated the fecundity of

I. ricinus ticks. From the results of this study, an estimate of 1400 eggs laid per

female is taken. This is multiplied by the 89.6% hatching success found by Buczek

et al. (2014) to get 1254 successful births, which is then halved to represent a 1:1

adult sex ratio (as used by Dobson et al. 2011) to get a total number of larvae

born per adult as 628.

3.2.1.4 Host densities and tick burdens on hosts

In order to provide a value for the number of blood meals available to questing

ticks in a given week (Lhost, Nhost or Ahost depending on the instar), the density

of each tick host is required, along with an estimation of the capacity of each

species to host each instar of tick, referred to as the tick burden. Ideally, an

estimation of the maximum number of ticks a host can feed would be used.

However, this information is difficult to find for all hosts, therefore, the average

is used. Whilst this will be below the maximum, potentially by a large amount,

it should still keep the influence each individual host has on the tick lifecycle

relative.
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Parameter PB RG MH ReD RoD SM
Tick burdens on each host species.

Larva 3.11 15 63.7 15.18 10.78 1.61

Nymph 0.25 4 37.4 70.41 23.9 0.04

Adult 0 0 11.4 81.25 29.82 0

Density of each host species in each habitat (per km2).
Blanket bog 0 0 8 1 0 0

Heather moorland 0 0, 50, 100 8 0, 5, 15 0 0

Montane 0 20 16 0.1 0 0

Mixed woodland 70 0 0 0 4 8500

Conifer plantation 35 0 0 0 2 4250

Table 3.2: The values used in the model for ticks feeding per individual host each week
on each host species and densities (per km2) of each host species in each habitat
category included within the model. The acronyms at the head of each column
refer to an individual host group: PB = passerine bird; RG = red grouse; MH =
mountain hare; ReD = red deer; RoD = roe deer; SM = small mammals.

The density of each host type is found for the different habitats within the

model: blanket bog, heather moorland, montane, mixed woodland and conifer

plantation. Urban areas and prime agricultural land were not considered in the

model, as these areas are considered to have extremely low tick densities (Gilbert

unpublished data) and, probably as a consequence, there is no information

associating tick abundance to environmental factors in these areas. The uplands

of Scotland are highly managed landscapes, so host densities are a direct result

of the management objectives of the land holding unit (Wightman and Tingay,

2015). Of particular importance to the model is the fact that some areas of heather

moorland are managed specifically to maximise densities of red grouse, since they

are valuable gamebirds. Red grouse managers maintain very low deer densities in

order to keep tick numbers low (Wightman and Tingay, 2015). Conversely, other

areas of heather moorland aim to maintain high deer densities for commercial

red deer hunting, and these areas therefore tend to have few red grouse. Other
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upland areas of Scotland are less specialised and maintain a mix of game at

intermediate densities. Therefore, heather moorland areas in the model were

categorised into three host community groups:

• High grouse densities, no deer

• Low grouse densities, low deer densities

• No grouse, high deer densities

The full details of how the heather areas in the model were split into these

categories are presented in appendix A.

Red grouse (Lagopus lagopus scoticus)

Gilbert (unpublished) found that the average tick counts on red grouse are

approximately 15 larvae and 4 nymphs per grouse, with no adult ticks found.

These data were collected in peak tick questing months.

For heather moorland habitats, high and low red grouse density estimates are

required for the three classifications of heather habitat. A typical high density of

grouse on moorland is estimated to be 100 per km2 (Hudson, 1992), with the low

density taken to be 50 per km2. Red grouse are not generally present on montane

habitats; however rock ptarmigan (Lagopus muta), a member of the grouse family,

are (Gilbert, 2016a). In the absence of official population data on the density of

ptarmigan in montane areas an estimate of 20 per km2 is used, as ptarmigan

density is estimated to be lower than typical grouse densities. Members of the

grouse family are generally not found on any of the other habitats within the

model; therefore their density for blanket bog, mixed woodland and conifer

plantation is set to 0.
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Red deer (Cervus elpahus)

Gilbert (unpublished) found that during April-October, the time at which most

ticks would be expected to feed, the average count of adult ticks upon red deer at

any one time was 81.25. Using the ratios of larvae and nymphs to adults found

on red deer by Mysterud et al. (2014), the larval and nymphal burdens of red

deer were estimated to be 15.18 and 70.41 respectively.

The Deer Management Group data, which was used to separate the heather

habitats, was studied in order to derive estimates for a low and a high deer

density on heather. From this, a low deer density of 5 per km2, and a high deer

density of 15 per km2 were used. An index of red deer abundance by habitat

type (Pérez-Barbería et al., 2013) was used to estimate red deer density within the

model for the remaining habitats. From this, densities of 1 per km2 for blanket

bog, and 0.1 per km2 for montane were estimated.

Mountain hares (Lepus timidus)

Tick counts on mountain hares allowed the tick burdens of mountain hares to

be estimated as 63.7 for larvae, 37.4 for nymphs and 11.4 for adults (Laurenson

unpublished).

Mountain hare density for blanket bog and heather moorland was estimated to

be 8 per km2 (Gilbert unpublished), whilst for montane habitats it was estimated

to be 16 per km2, due to the increased abundance of mountain hares at higher

altitudes (estimated from Gilbert 2010).
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Roe deer (Capreolus capreolus)

Kiffner et al. (2010) estimated the burdens of each tick instar on roe deer in central

Europe from a long-term study of counts on shot roe deer, finding averages of

10.78, 23.90 and 29.82 for larvae, nymphs and adults respectively.

Roe deer densities were interpreted from the results found by Burbaite and

Csányi (2009), who suggested a UK-wide density of 3 per km2. Since this is a

broad nation-wide estimate, a density of 4 per km2 is used for mixed woodland

(their preferred habitat), and 2 per km2 for conifer plantation. Roe deer are

assumed in the model not to be present in other habitats, as they generally do

not favour these in real life.

Small mammals

For simplicity, the numerous small mammals which can act as tick hosts, espe-

cially in woodland habitats, are merged into one host group. This is reasonable

as the species within the group are present in the same habitat types (mixed

woodland and conifer plantation) and carry similar numbers of ticks (primarily

carrying larvae, and never carrying adults). Gilbert et al. (2000) identified field

voles (Microtus agrestis), common shrews (Sorex araneus), wood mice (Apodemus

sylvaticus) and bank voles (Myodes glareolus) as potentially important hosts for

ticks. By counting caught specimens, the mean tick burdens of each species was

also found, which are shown in table 3.3.

The densities of small mammals were required to find the overall tick burden

parameters for the small mammal group. Using a variety of sources for mixed
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Species Average density
(per km2)

Total tick burden
(per host)

Bank vole 1200 1.4
Common shrew 400 0.4
Field vole 400 1.2
Wood mouse 6500 1.8
Overall 8500 1.64

Table 3.3: The densities of the four small mammal species identified as important to tick
persistence, and their tick burden per individual. The tick burdens are larvae
and nymphs combined, as adults do not feed on the species listed. The overall
tick burden is weighted by the density of each species, and split according to
the 98:2 ratio of larvae to nymphs found by Gilbert et al. (2000).

woodland density, bank voles were approximated at 1200 per km2 (Amori et al.,

2008), field voles at 400 per km2 (Sherratt, 2008), common shrews at 400 per km2

and wood mice at 6500 per km2 (Harris et al., 1995), therefore the total density

for the small mammal group is 8500 per km2. The density for conifer plantation

is taken as half of the mixed woodland density, at 4250 per km2. By finding the

average tick burden for the small mammal group, weighted by density, a value of

1.64 is found. Using the larva-to-nymph ratio of 98:2 found in Gilbert et al. (2000),

larval and nymphal burdens of 1.61 and 0.03 were obtained.

Passerine birds

As with small mammals, passerine birds are merged into one host group and

parameterised as a whole. Again, as with small mammals, the birds within

this host group have similar densities across the habitats within the model,

and carry similar numbers of ticks. James et al. (2011) indexed the importance

of various passerine bird species in supporting tick life and B. burgdorferi in

Scotland. For both measures the most important five species were song thrushes
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Species Average density
(per km2)

Larval burden
(per host)

Nymphal burden
(per host)

Blackbird 10.5 11.11 0.37

Chaffinch 40 0.86 0.04

Dunnock 11.5 2.56 0.69

Greenfinch 4 0.37 0.05

Song thrush 4 9.00 1.00

Overall 70 3.11 0.25

Table 3.4: The densities of the five passerine bird species identified as important to tick
persistence, and their larval and nymphal burdens (adults were not found on
the species listed). The overall tick burdens are weighted by the density of each
species.

(Turdus philomelos), blackbirds (Turdus merula), dunnocks (Prunella modularis),

greenfinches (Chloris chloris) and chaffinches (Fringilla coelebs). From James et al.

(2011), it is assumed in the model is assumed that all other passerine birds have

an insignificant effect on the models presented within this thesis. The study also

gives the observed mean larval and nymphal burdens of these species, shown

in table 3.4. Adult ticks were not found on passerine birds in Scotland by James

et al. (2011), and so the adult burden for the passerine bird group is set to 0.

In order to have parameters for the passerine bird group as a whole, the tick

burdens need to be weighted by the density of each bird species. Bird densities

were found by taking the average densities from the Bird Breeding Survey (British

Trust for Ornithology, 2016c), and are listed in table 3.4. The sum of these densities,

70 per km2, is taken as the density of passerine birds in mixed woodland, with

the density in conifer plantation taken as half of the mixed woodland density, at

35 per km2. Passerine birds are assumed in the model not to be important tick

hosts in non-wooded (open) habitats because both passerines and ticks tend to

be less abundant in other habitats.
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3.2.2 Model equations

dLA
dt

= −S [F(t)× P(t)× LA(t),Lhost] − bLLA(t)

dLD
dt

= S [F(t)× P(t)× LA(t),Lhost] − bWLLD(t)

dNA
dt

= −S [F(t)× P(t)×NA(t),Nhost] − bNNA(t)

dND
dt

= S [F(t)× P(t)×NA(t),Nhost] − bWNND(t)

dAA
dt

= −S [F(t)× P(t)×AA(t),Ahost] − bAAA(t)

dAD
dt

= S [F(t)× P(t)×AA(t),Ahost] (3.7)

Initial conditions at the start of each year:

LA(0) = aTAD(52); LD(0) = 0; NA(0) = LD(52); ND(0) = 0; AA(0) = ND(52);

AD(0) = 0.

Where:

T(t) =

(
b− a

2
× sin

(
t

2.6π
− 0.5π

))
+
a+ b

2

F(t) =


0 T(t) 6 T1,

T(t)−T1
T2−T1

T1 < T(t) 6 T2,

1 T2 < T(t)

P(t) =
1

1+ exp
[
3
4(8− T(t))

]
S(x,K) =

wK

w+ (K−w)exp

(
ln
[

w
19(K−w)

]
8K x

) −w

(3.8)
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3.2.3 Creating model predictions

Using ArcGIS 10 (Environmental Systems Research Institute, 2014), all spatial

environmental data used over Scotland were split into a 3km × 3km grid, with

each cell containing the data for the maximum and minimum annual temperature,

as well as the habitat type.

The cells were categorised by temperature and habitat types into groups, chosen

so that each group covered approximately 100 cells. The full details of these 34

groups can be seen in appendix A.

For each of these groups a simulation was run on Mathematica Version 9

(Wolfram Research Inc., 2013) using appropriate host densities for that habitat (see

table 3.2). Using these values of temperature, host densities and habitat categories,

simulations were run for 70 years, while minimum and maximum temperatures

were increased linearly over this time period in order to represent UK Climate

Projections data (Jenkins et al., 2009). As the average annual temperature in

Scotland is estimated to increase by 1-4°C by the 2080s, depending on emissions

scenario, the models were run under three climate change scenarios: low, medium

and high climate warming scenarios, with temperature rises of 1°C, 2.5°C and

4°C respectively. For comparison, simulations were also run with no change in

temperature to represent the current climate. The full explanation for the choice

in climate warming scenarios is provided in appendix A. It was assumed that

each cell’s habitat doesn’t change over the time period, nor does host density.

This is, of course, unlikely to occur in real life; this simplifying assumption is

made in order for the effect of climate warming to be seen with full clarity, rather

than being potentially blurred with the effects of habitat and host density change.

59



3.3 model predictions and discussion

The model predicted an increase in tick abundance with climate warming (figure

3.5). Most areas which were predicted to not currently maintain ticks (white areas

in figure 3.5 (a)), such as high altitude sites were predicted to be able to sustain

ticks in 70 years’ time under the medium and high climate warming scenarios.

All but two of the habitat groups used (which are listed fully in appendix A)

were predicted to have nymph densities of at least 1000 per km2. The number of

expected medium and high tick density sites was also predicted to increase with

climate warming.

To quantify this more precisely, the mean nymph density across all cells and

for the different habitat types run in the model can be considered (figure 3.6).

Under all climate change scenarios the model predicted a marked increase in

the mean nymph density overall by the 2080s, with a predicted tick density

increase of 26.1% for the low temperature rise scenario and a predicted tick

density increase of 98.7% for the high temperature rise scenario compared to

current temperatures. Comparison of the predicted mean nymph density between

the five types of habitat shows that semi-natural mixed woodland is predicted to

contain considerably higher densities of ticks than the other habitat categories,

with 2.4 times the number of nymphs than in the habitat with the second-highest

predicted tick densities (conifer plantation).

For current temperatures, heather moorland areas were predicted to support

considerably fewer nymphs than both mixed woodland and conifer plantation,

but for the higher climate warming scenarios, this gap was predicted to be

reduced (figure 3.6). This is likely to be because heather moorland tends to

occur at higher elevations (and therefore cooler climates) than forested areas.

This suggests that it is the cool climate which is currently limiting growth in
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c) d) 

Figure 3.5: Maps of predicted tick densities after 70 years under the following climate
warming scenarios: (a) no change in temperature (b) a final temperature
increase of 1°C, (c) a final temperature increase of 2.5°C and (d) a final
temperature increase of 4°C.
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Figure 3.6: Predicted mean nymph density for each habitat modelled, plus the overall
mean, under each climate change scenario (high, medium and low emissions,
and no warming representing the current climate).

tick densities on many moorlands, and climate warming will allow future tick

population growth in these areas, whereas in woodland areas temperature is less

of a limiting factor for tick activity.

Montane areas were predicted to contain the lowest densities of ticks of all the

habitat categories for current temperatures. This is to be expected as the climate

is generally too cold for much tick activity at higher altitudes (see Gilbert 2010

for empirical data showing a dramatic climate-driven decrease in tick abundance

with increasing altitude in Scotland). However, under climate warming scenarios,

the model predicts that many montane areas will experience an increase in tick

density, such that some montane areas are predicted to have higher tick densities

than blanket bog habitats. This again suggests that montane tick densities are

currently constrained by temperature whilst, in contrast, tick density in blanket

bog habitats is constrained by other factors unrelated to climate, such as host

densities. Indeed, that blanket bog contains low tick densities partly because
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it lacks suitable hosts, especially deer, is supported by empirical data (Gilbert,

2013).

The dynamic GIS model developed in this chapter is the first step in integrating

spatial and environmental information with models of population dynamics to

allow predictions about how climate and land use changes might affect disease

risk. Whilst this model makes a number of simplifying assumptions, as all

models need to, it has allowed areas which are likely to see an increase in

tick densities to be identified. Additionally, it has provided predictions that

increases in temperature are likely to allow ticks to persist in some areas which

cannot currently sustain them. It also allows the interactions between hosts and

temperature to be teased apart and which areas have tick densities that are

currently limited by temperature and which are currently limited by hosts to be

identified. It is predicted by the model that, as temperatures rise, the warmest

heather moorland areas and montane regions will increase their tick populations

to a greater extent than will forested areas. This is because the model suggests

that tick population growth on moorland and montane areas is limited by climate,

whereas tick populations in lower elevation forested areas are limited more

by other factors such as host abundance. The distinction between temperature-

or host-limited tick population growth is an important one highlighted by the

model and is crucial for making predictions of future tick and tick-borne disease

prevalence under scenarios of different types of environmental change.

The model was run here for Scotland but is easily applicable to other areas and

could be run on any map with data on minimum and maximum temperatures,

habitat type and host communities. However, adjustments should also be made

to the questing function (P(t)) to allow for the observed effect that a lower

proportion of ticks from warmer climates are active at cooler temperatures than
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are ticks from cooler climates (Gilbert et al., 2014). It may also be necessary to

introduce a mechanism which allows ticks to feed twice within the same year for

warmer climates where interstadial development times are faster (discussed in

chapter 6).

The model presented here combined a dynamic tick population model with

GIS information to visualise predicted tick densities at a national scale. However,

tick densities may or may not relate to tick-borne disease risk, depending on

the pathogen in question, the relative densities of competent and incompetent

transmission hosts, as well as tick density. Therefore, the next two chapters will

introduce mechanisms that describe the transmission of pathogens between vector

and host, which will allow predictions to be made for disease risk across Scotland.

3.4 sensitivity analysis

To gauge the sensitivity of the tick lifecycle model to its parameters, the two

methods outlined in Watts et al. (2009) were used (described below). For each

method, the output chosen was the final density of each tick instar after running

the model over a 70 year time period.

3.4.1 Method 1

For this method, the model was run with each parameter varied in turn by ±10%

in order to see whether they had a disproportionate effect on the model output.

Those which had an effect of at least 1% are shown on table 3.5.

The only parameter/instar interaction which has a change of above 10% is

that between larvae and Lhost, the feeding limit for that stage. This, combined

with the fact that only one other parameter has a noticeable effect on larvae
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Decrease
of 10%

Larva Nymph Adult Increase
of 10%

Larva Nymph Adult

T1 1.0 2.0 T1 -2.2 -3.2
T2 2.0 3.3 T2 -2.0 -3.3
bL bL

bN 4.1 2.4 bN -3.9 -2.5
bA 1.3 bA -1.3
bWL 2.4 1.8 1.1 bWL -2.3 -1.8 -1.1
bWN 1.0 bWN -1.0
aT aT

w w

Lhost -10.4 -8.1 -5.4 Lhost 10.4 7.4 4.1
Nhost -2.9 -1.7 Nhost 2.1 1.2
Ahost -5.5 Ahost 3.5

Table 3.5: The predicted percentage change in larva, nymph and adult density of altering
the tick lifecycle model parameters by ±10%. Changes below 1% are not shown.

density, suggests that of the three instars, larvae are the most influenced by the

potential meals available to them. Indeed, it appears that larva densities are

largely unaffected by factors such as temperature or the number of eggs laid.

Even for nymphs and adults, Lhost continues to be one of the parameters with

the most impact on density. This suggests that unlike larvae, these two stages

are strongly influenced by the number of ticks reaching them from the previous

stage. However, the effect is less pronounced, with temperature and mortality

rates also having noticeable, if lower, effects.

With only one parameter/instar interaction having a disproportionate effect,

and with the instar involved being separate to the one used in the model’s pre-

dictions, it shows that the model output is relatively stable, providing reasonable

faith in the predictions made. Indeed, the three parameters with the strongest

effects, the weekly feeding limits for each stage (Lhost, Nhost and Ahost), are
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Parameter Larva Nymph Adult
T1 -0.16 -0.28

T2 -0.21 -0.41

bL

bN -0.42 -0.31

bA -0.16

bWL -0.18 -0.15

bWN -0.14

aT

w

Lhost 0.97 0.80 0.56

Nhost 0.23 0.14

Ahost 0.54

Table 3.6: The Pearson’s correlation coefficient of tick lifecycle model parameters with
the densities of larvae, nymphs and adults from 1000 simulations where each
parameter was randomly selected from within ±1% of the original value. Only
correlations with an absolute value larger than 0.1 are shown.

composites of multiple values estimated from extensive research, so the fact that

the model output relies so heavily on them is not a major issue.

3.4.2 Method 2

For this method, the model was run 1000 times, with the parameter values

randomly selected from a range of ±1% within the values listed in table 3.1. These

parameters were then correlated with the final levels of the three tick instars.

Those correlations with an absolute value larger than 0.1 are presented in table

3.6.

The correlation between larva density and Lhost is extremely high, at 0.97. For

nymph density, Lhost still have a high correlation, at 0.80, whilst the correlation
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with nymph mortality is -0.42. For the density of adult ticks, Lhost is still the

parameter with the highest correlation, at 0.56, followed by Ahost at 0.54.

3.4.3 Sensitivity analysis summary

Both methods of sensitivity analysis highlight the importance of the weekly

feeding limit parameters on model output. In particular, the limit for larvae (Lhost)

was particularly influential, as it changed larval density by a disproportionate

amount under Method 1, and under Method 2 explained 94.1% of variation in

larval density, 64.0% of variation in nymphal density and 31.4% of variation in

adult density. This parameter is composed of multiple values combined; therefore

the scope for an erroneous value to skew the model output is reduced. Overall,

the model appears relatively robust to changes in parameter values.

3.5 summary

This chapter aimed to introduce an original model for the I. ricinus lifecycle,

dependent on environmental factors, which can be then used to predict the

influence of climate change on tick density across Scotland.

The model was developed by focusing on the key mechanism of ticks feeding

on blood hosts, and limiting the number which can feed in any given week based

on the number of available hosts and therefore meals. By running the model for

low, medium and high climate warming scenarios, the impact of temperature

could be seen. Additionally, by splitting Scotland up into cells based on habitat

type, the differences in habitat influence on predicted tick density could be

determined.
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For current temperatures, the highest tick densities were predicted to occur in

mixed woodland habitats, followed by conifer plantation. The lowest tick density

was predicted to occur in montane habitats. For all habitat types, tick density

increased with higher climate warming, with an overall increase of between 26.1-

98.7% in nymph density depending on the climate warming scenario. However,

this increase was not equal across all habitat types. For areas such as mixed

woodland, conifer plantation and blanket bog the rise in tick density was relatively

slow, whilst for areas such as montane and heather moorland the rise in tick

density was relatively fast. This suggests that whilst temperature will have an

amplifying effect on tick density, this amplification will vary depending on

further factors, such as host density. As temperature and habitat type have clear

influences on the model output, this suggests that the model created is successful

in meeting the aim of the chapter. The model created in this chapter will be a

crucial building block for predicting the role of climate change on tick-borne

disease risk first for Louping-ill (chapter 4) then for Lyme disease (chapter 5).
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4
I N T R O D U C I N G PAT H O G E N D Y N A M I C S T O T H E T I C K

L I F E C Y C L E M O D E L

4.1 introduction

Red grouse (Lagopus lagopus scoticus), a gamebird, and sheep (Ovis aries) are

livestock which are both of economic importance in Scotland. Grouse shooting

was estimated to contribute £23.3 million to the GDP of Scotland in 2010 (Game

and Wildlife Conservation Trust Scotland, 2010) whilst sheep were estimated to

account for 6% of income from Scottish farming in 2014 (The Scottish Government,

2015). However, both red grouse and sheep can be infected with Louping-ill virus

(LIV), a flavivirus spread by the sheep tick (Ixodes ricinus) which causes illness

and death in both grouse and sheep. 78% of red grouse infected with LIV died in

experimental conditions (Reid, 1975) whilst sheep mortality varies with farming

practices (Hudson, 1992).

As explored in chapter 3, I. ricinus density and range are likely to increase with

climate warming. As the climate across Scotland is projected to rise by several

degrees before the end of this century (Jenkins et al., 2009), there are likely to be

implications of climate warming on LIV risk. Therefore, the aim of this chapter is

to predict the extent and patterns of climate warming on LIV risk, which can be
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used to help inform policy on LIV risk mitigation strategies for grouse and sheep

managers. To achieve this, the temperature-driven tick lifecycle model developed

in chapter 3 was adapted to reflect LIV dynamics in typical moorland habitats, in

order to create predictive maps for LIV risk across Scotland for various climate

warming scenarios. The aim of this model is to predict potential LIV prevalence

across Scotland and how this might change in response to climate change. The

predictions made by the model are visualised spatially through the use of GIS

mapping, to give an indication of which areas of Scotland are most suited for

hosting LIV.

4.2 model development

The host system used is akin to that used in Gilbert et al. (2001), where red

grouse are the competent transmission hosts, and red deer (Cervus elaphus) and

mountain hares (Lepus timidus) are solely tick-carrying hosts. In practice it is

possible to remove sheep from the system through vaccination (Laurenson et al.,

2007), and therefore sheep are not included in this model. However, they could

be added as viraemic hosts to this model where necessary or, in contrast, the use

of acaricide-treated sheep to reduce tick abundance in the environment could

also be added to the model if needed (Porter et al., 2011). As this model is

introducing LIV dynamics to the tick lifecycle model, only the most direct form

of pathogen transmission is considered, namely from ticks biting grouse where

either tick or grouse is infected. It is recognised that other forms of transmission

may be important, such as non-viraemic transmission between ticks co-feeding

on hares (Jones et al., 1997) and infection through grouse ingesting infected ticks

(Gilbert et al., 2004), and the implementation of such infection and transmission

mechanisms are discussed in chapter 5.

70



Parameter Value Definition and justification
T1 8 (larvae); 5

(nymphs and
adults)

Temperature at which ticks begin to emerge
from overwintering. Randolph (2008).

T2 12 (larvae); 9

(nymphs and
adults)

Temperature at which all ticks have emerged
from overwintering. Randolph (2008).

aG 0.7175 Birth rate of grouse, for the weeks 19-22 within
the model. Hudson (1992).

sG
0.522
c Density-dependent constraint on grouse.

Chosen such that the grouse population
would run to carrying capacity (c) in a disease-
free system.

bG 0.008 Mortality rate of grouse. Hudson (1992).
p 0.2 Aggregation parameter for nymphs on grouse.

Chosen to allow the pathogen to persist.
α 0.8 Infected-induced mortality rate of grouse.

Reid (1975).
σ 0.2 Recovery rate of grouse. Reid (1975).
gL 15 Larval burden of grouse (Gilbert unpub-

lished).
gN 4 Nymphal burden of grouse (Gilbert unpub-

lished).

Table 4.1: Table of parameters for the LIV model. All unmentioned parameters remain as
in chapter 3.

The Louping-ill model is based on the tick lifecycle model presented in chapter

3. Therefore, within the model, each of the three tick instars (larvae, nymphs and

adults) are split into two classes: active, describing those which are yet to feed in

the current year, and developing, describing those which have fed and are either

moulting into the next instar (larvae and nymphs) or are laying eggs (adults). As

before in order to apply this model spatially, Scotland was split into 3km2 cells,

which were grouped by habitat type and temperature, the full details of which

are presented in appendix A and are listed in table 4.2.
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In order to expand the tick lifecycle model presented in chapter 3, it is necessary

to consider the extra features and equations that need to be added to the model

to allow for the existence of LIV in the system. As only larvae and nymphs

feed on grouse, and transovarial transmission of LIV has been shown to be at

best negligible in I. ricinus (Hudson, 1992), transmission can only occur to ticks

when larvae or nymphs feed on infected grouse and from ticks to grouse when

infected nymphs feed on them. Therefore, the developing larva class is split into

susceptible (LDS(t)) and infected (LDI(t)) states.

Active nymphs are also split into susceptible (NAS(t)) and infected (NAI(t))

states. However, because the model assumes that grouse cannot feed adult ticks

(see chapter 3), and because there is no transovarial LIV transmission to larval

ticks, the model assumes that the infection status of ticks is irrelevant after they

have fed at the nymphal stage. Therefore, the developing nymph state and both

adult states (active and developing) are unchanged from the tick lifecycle model

(chapter 3).

In the tick lifecycle model all hosts were assumed to be at constant density.

In this model transmission host (grouse) dynamics and infection status need

to be included. For equations representing the LIV infection status of grouse,

susceptible (GS(t)), infected (GI(t)) and recovered (GR(t)) states are used. Age-

specific equations for grouse have been shown to have an effect on LIV dynamics

by Porter et al. (2013b) with models used to predict the effect of treating grouse

with acaricide. However, treating grouse with acaricide is not a routine practice

for tick control and has been used only in scientific experiments. Therefore, this

model uses non-age-structured SIR equations similar to those used in Gilbert

et al. (2001). A schematic of the equations within this model can be seen in figure

4.1.
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Figure 4.1: Schematic of the equations used within the LIV model, with routes of pro-
gression. Solid lines indicate routes of progression within the tick or grouse
lifecycle, dashed lines represent adults giving birth, and dotted lines indicate
routes of pathogen transmission between ticks and grouse.

In line with such models as those presented by Hudson et al. (1995), Norman

et al. (1999) and Gilbert et al. (2001), and in the absence of evidence contrary, it is

assumed that all tick-grouse interactions, where one of the two is infected with

LIV, result in the pathogen being transmitted to the other.

In order to simplify the equations used, two ratios were introduced:
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• φ: the proportion of blood meals available for larvae in a given week (Lhost)

that come from infected grouse. Calculated by equation 4.1, where gL is the

larval burden of grouse, as estimated by table 4.1.

φ =
GI(t)× gL
Lhost

(4.1)

• θ: the proportion of active nymphs which are infected. Calculated by equa-

tion 4.2, such that NAS(t) +NAI(t) 6= 0.

θ =
NAI(t)

NAS(t) +NAI(t)
(4.2)

4.2.1 Tick dynamics

As grouse are only infective for a week (Reid, 1975), the only way in which

larvae can receive the pathogen from grouse is if that grouse has been infected

by a feeding nymph within the same week. Therefore, the timing of larval and

nymphal feeding is crucial in modelling the pathogen transmission. Whilst the

tick lifecycle model used the same threshold for tick emergence of 7°C for all

instars, as suggested by Perret et al. (2000), Randolph (2004) observed that whilst

nymph and adult ticks indeed emerge at the 7°C threshold previously used,

larvae are estimated to emerge at the later threshold of 10°C. As the study by

Randolph (2004) was undertaken in the UK, whilst that by Perret et al. (2000)

was undertook in Switzerland, the former was deemed to be more relevant for

modelling tick behaviour in Scotland. Therefore, for the LIV model the model

assumes initial emergence from over-winter diapause at 7°C for nymphs and

10°C for larvae. Therefore, rather than using the same emergence-temperature

function for all stages, two are needed; one for larvae (FL(t)) and one for nymphs
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and adults ( FNA(t)). They both take the same format as the emergence function

used in the tick lifecycle model, reprinted in equation 4.3.

F(t) =


0 T(t) 6 T1,

T(t)−T1
T2−T1

T1 < T(t) 6 T2,

1 T2 < T(t)

(4.3)

As explained in chapter 3 T1 and T2 are taken as 2°C below and above the

estimated threshold, since it is unlikely that all ticks of a given instar will appear

at exactly the same temperature. Therefore, for FL(t) T1 and T2 are taken as 8°C

and 12°C respectively, whilst for FNA(t) 5°C and 9°C are used.

It is relatively straightforward to calculate how many larvae which move into

the developmental state pick up the pathogen. From the tick lifecycle model

(chapter 3) the total number of active larvae finding a blood meal in a given week

is given by equation 4.4.

S [FL(t)× P(t)× LA(t),Lhost] (4.4)

Therefore, the number of larvae feeding on an infected grouse, and thus

picking up the pathogen at each time point, is calculated by multiplying the

above equation by the proportion of blood meals from infected hosts (φ). It

follows that the number of larvae that feed without picking up the pathogen is

calculated by multiplying the above equation by the proportion of blood meals

from uninfected hosts (1−φ). At the end of the year the developing larvae in
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the susceptible (LDS(t)) and infected (LDI(t)) states move into the active nymph

susceptible (NAS(t)) and infected (NAI(t)) states respectively.

As with the tick lifecycle model presented in chapter 3, the mechanism for

ticks moving from the active to the developing stage is centred on the weekly

feeding limit function. This function (S(x,K)) gives the number of ticks which

successfully feed and move to the next stage, and requires an estimation of the

weekly feeding limit for each instar, calculated by estimating the total hosts in

the area and the number of ticks each host can carry (full details are included in

chapter 3). As the active nymph state is now split into two groups (susceptible

and infected), the weekly feeding limit function cannot simply be applied to each

group separately, as this would clearly allow for twice the number of nymphs to

move into the developing stage in a given week than should be allowed. The limit

also cannot simply be halved and applied to each group separately. To see why,

consider the scenario where there are only susceptible nymphs, which should

clearly behave in the same manner as all nymphs do in the tick lifecycle model.

However, in this LIV model, if it is assumed that the limit was halved for infected

and susceptible nymphs then only half the amount of nymphs would be able to

feed in a given week. Therefore, the combined total of active nymphs has to be

fed into the weekly feeding limit function. Thus, the total number moving into

the developing nymph state is given by equation 4.5.

S [FNA(t)× P(t)× (NAS(t) +NAI(t)),Nhost] (4.5)

As there is no evidence that carrying the pathogen affects the ability of a

nymph to find a meal, the total number of infected nymphs finding a meal can
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be calculated as equation 4.5 multiplied by the proportion of infected nymphs (θ)

and the total susceptible nymphs finding a meal as equation 4.5 multiplied by

the proportion of susceptible nymphs (1− θ).

The equations for adult ticks remain unchanged from the tick lifecycle model.

4.2.2 Grouse dynamics

The grouse lifecycle mechanisms included within the model are birth, infection,

recovery, natural mortality and infection-induced mortality.

Lab experiments conducted by Reid (1975) found that 29 of 37 (78.3%) of grouse

died when infected with LIV, with the infective period lasting approximately one

week. Since the model presented within this chapter has a time unit of one week,

which coincides with the infectivity period for grouse, this means that by the

next time step all grouse will have either died or recovered. Slightly rounding

these percentages produces disease-induced mortality and recovery rates of 0.8

and 0.2 respectively. It is assumed that any grouse which died through natural

causes during the experiments in Reid (1975) were counted as those claimed by

the disease, therefore there is no natural mortality rate applied to grouse within

the infected class.

The model created by Porter et al. (2011) use a natural grouse death rate of

0.087 per month, which suggests the natural grouse lifespan is approximately 11.5

months. However, Hudson (1992) states that the grouse lifespan is “less than three

years”, which for this model is taken to be around 130 weeks (approximately two

and a half years). Inverting this gives a weekly mortality rate of 0.008.

Grouse clutch sizes and hatching successes were reported by Hudson (1992),

and were averaged for this model to get an annual birth-per-hen value of 5.74.

Hudson (1992) demonstrates that the grouse sex ratio appears to be equal; there-
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fore here this value is halved to get a value of 2.87 for the number of grouse chicks

born per grouse annually. The breeding season for grouse is between April-June

(RSPB, a), which is taken to be across the whole of May, which corresponds to

weeks 19-22 within the model. Therefore, the annual grouse birth rate in this

model is divided by four to get a weekly birth value of 0.7175. The simple function

shown in equation 4.6 is multiplied by grouse birth (aG).

AG(t) =


0 t 6 19,

1 19 < t 6 22,

0 22 < t

(4.6)

A density-dependence parameter (sG) is used, given by equation 4.7, where c is

the carrying capacity of grouse for the habitat, and the constant 0.522 is chosen to

ensure that grouse numbers run to carrying capacity in a pathogen-free system.

sG =
0.522
c

(4.7)

Parasites are generally distributed amongst hosts with a negative binomial

distribution, where many hosts will have none or few ticks, but a few will have

many (Anderson and May, 1978; Woolhouse et al., 1997). The distribution of

ticks on red grouse is no different (Elston et al., 2001). The negative binomial

distribution gives the probability of how many failed trials are expected before

reaching k successes, where p is the probability of a trial being a success and r
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being the number of failed trials. The probability density function for the negative

binomial distribution is shown in equation 4.8 (Wolfram Mathworld, 2016).

Pk,p(r) =

 r+ k− 1

k− 1

pk(1− p)r (4.8)

Due to the assumed 100% transmission rate it is irrelevant how many infected

nymphs a susceptible host has feeding on it as long as it is above zero because, for

example, 1 infected nymph or 20 infected nymphs will both result in one infected

grouse. Therefore, calculating the proportion of hosts that would be bitten by

zero infected ticks in a given week also gives the proportion of hosts which avoid

picking up the pathogen that week and by logical extension the proportion which

do become infected.

When applying the negative binomial distribution to tick distribution on hosts

r represents the number of ticks each host carries, p is a parameter determining

the shape of the distribution and k represents the average nymphs per host.

The proportion of hosts that feed zero infected ticks in a week is required, and

setting r = 0 simplifies equation 4.8 to pk. The average nymphs per host (k)

can be calculated using the formula presented in equation 4.9, where gN is the

maximum number of nymphs allowed to feed on grouse at any one time within

the model.

k =

gN
Nhost

× θ× S [FNA(t)× P(t)× (NAS(t) +NAI(t)),Nhost]

GS(t) +GI(t) +GR(t)
(4.9)
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Figure 4.2: The proportion of grouse which carry no ticks compared to the average ticks
per grouse. The dots represent different counts made from 1987-2000 (Gilbert
unpublished), whilst the lines represent predictions made from the negative
binomial distribution, where p is 0.2 (dashed) and 0.6 (dotted).

There is no obvious parallel showing how p relates to the distribution of

nymphs biting grouse, so instead values were compared with empirical data

collected at various locations and times (Gilbert unpublished data). For each

study site within the empirical data, the average number of ticks per grouse and

proportion of grouse not carrying any ticks were taken. These empirical values

were then compared to the predictions the model made for various values of p.

Treating p as 0.6 brought the distribution the closest to the data using the least

squares method (figure 4.2). However, running the model using p as 0.6 caused

the model to predict that LIV could not establish in any environment. Therefore,

in order to understand the role of p in pathogen persistence, R0 curves were

estimated for various values of p through repeated simulations of the model.

These can be seen in figure 4.3. The markers on figure 4.3 indicate grouse and
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Figure 4.3: Predicted effect of grouse and deer density (per km2) on LIV persistence.
Each line represents the basic reproduction number (R0 = 1) of the pathogen
(found through simulations) such that LIV survives above the line and dies
out below. Each line represents the model outputs for various values of p,
the parameter describing the negative binomial distribution of ticks among
grouse. The markers represent the deer-grouse densities used heather habitats
within the model.

deer density combinations which are selected as realistic scenarios, as explained

in chapter 3. Therefore, p would need to be as low as 0.2 for LIV to persist in all

heather moorland habitats. The aim of this model is not to provide estimations

for the exact level of LIV persistence in Scotland, but rather to predict potential

risk of LIV over Scotland depending on habitat and host distributions, and to

predict any directional changes in LIV due to climate warming. Therefore 0.2 is

used in order to allow the clearest comparison between habitats in the output.

Susceptible grouse are multiplied by pk to give the density (per km2) of grouse

moving into the infected class each week.

A table of the parameters used within this model is presented in table 4.1.
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4.2.3 Model equations

dLA
dt

= −S [FL(t)× P(t)× LA(t),Lhost] − bLLA(t)

dLDS
dt

= (1−φ)× S [FL(t)× P(t)× LA(t),Lhost] − bWLLDS(t)

dLDI
dt

= φ× S [FL(t)× P(t)× LA(t),Lhost] − bWLLDI(t)

dNAS
dt

= −(1− θ)× S [FNA(t)× P(t)× (NAS(t) +NAI(t)),Nhost]

−bNNAS(t)

dNAI
dt

= −θ× S [FNA(t)× P(t)× (NAS(t) +NAI(t)),Nhost] − bNNAI(t)

dND
dt

= S [FNA(t)× P(t)× (NAS(t) +NAI(t)),Nhost] − bWNND(t)

dAA
dt

= −S [FNA(t)× P(t)×AA(t),Ahost] − bAAA(t)

dAD
dt

= S [FNA(t)× P(t)×AA(t),Ahost]

dGS
dt

= −
(
1− pk

)
GS(t) − bGGS(t)

+ [aG ×AG(t) − sG ×AG(t) (GS(t) +GI(t) +GR(t))]

(GS(t) +GI(t) +GR(t))

dGI
dt

=
(
1− pk

)
GS(t) − (α+ σ)GI(t)

dGR
dt

= σGI(t) − bGGR(t) (4.10)

Initial conditions at the start of each year:

LA(0) = aTAD(52); LDS(0) = 0; LDI(0) = 0; NAS(0) = LDS(52); NAI(0) =

LDI(52);ND(0) = 0; AA(0) = ND(52); AD(0) = 0; GS(0) = GS(52); GI(0) = GI(52);

GR(0) = GR(52).
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Where:

T(t) =

(
b− a

2
× sin

(
t

2.6π
− 0.5π

))
+
a+ b

2

F(t) =


0 T(t) 6 T1,

T(t)−T1
T2−T1

T1 < T(t) 6 T2,

1 T2 < T(t)

P(t) =
1

1+ exp
[
3
4(8− T(t))

]
S(x,K) =

wK

w+ (K−w)exp

(
ln
[

w
19(K−w)

]
8K x

) −w

AG(t) =


0 t 6 19,

1 19 < t 6 22,

0 22 < t

(4.11)

4.2.4 Creating model predictions

The same habitat categories are used as in chapter 3, however, only those with

grouse present need to be considered; these comprise the 10 heather moorland

habitats with grouse plus the 3 montane habitats (shown in table 4.2). As in

chapter 3, it is assumed that there is no change in broad habitat type due to

climate warming by the 2080s.

The Scottish climate is projected to warm by 1-4°C by the 2080s depending on

whether a low, medium or high emissions scenario was projected (Jenkins et al.,

2009). Therefore, the model was run for each habitat group for the following

climate warming scenarios, as in chapter 3:
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Code Habitat type Minimum
temp (°C)

Maximum
temp (°C)

HA1 Heather moorland (high grouse, no deer) 0.75 11.41

HA2 Heather moorland (high grouse, no deer) 1.53 12.28

HA3 Heather moorland (high grouse, no deer) 2.36 12.80

HA4 Heather moorland (high grouse, no deer) 3.48 13.19

HA5 Heather moorland (high grouse, no deer) 4.45 13.70

HB1 Heather moorland (low grouse, low deer) 0.28 11.00

HB2 Heather moorland (low grouse, low deer) 1.34 11.91

HB3 Heather moorland (low grouse, low deer) 1.97 12.48

HB4 Heather moorland (low grouse, low deer) 2.62 13.10

HB5 Heather moorland (low grouse, low deer) 3.93 13.78

M1 Montane -1.03 8.91

M2 Montane 0.22 9.86

M3 Montane 1.85 10.96

Table 4.2: List of the 13 habitat groups in the LIV model. The code for each group refers
to its habitat type and where it ranks on temperature, and is used for ease of
reference. The full details of the creation of the groups is given in appendix A

• Current temperatures, for comparison

• Current temperatures + 1°C, as a low climate warming scenario

• Current temperatures + 2.5°C, as a medium climate warming scenario

• Current temperatures + 4°C, as a high climate warming scenario

Unlike the tick lifecycle model, which started at current temperatures and rose

to the target temperature over 70 years, each trial of the LIV model began at the

target temperature, and ran for 100 years on Mathematica Version 9 (Wolfram

Research Inc., 2013). This is because there are potentially habitats where LIV

would not persist in current temperatures due to reduced tick activity, but with

climate warming these areas might become warm enough for tick activity and

therefore for the pathogen to persist, if there are enough transmission hosts. There
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is not currently a mechanism in the model for ticks to move into an area if it

becomes suitable, taking this approach and initialising the model with ticks and

pathogen in all areas provides a solution to this. The model was run for 100 years

to allow the system to head towards a stable state. The model starts with 10% of

nymphs carrying the infection, and all grouse susceptible.

The behaviour of the model was investigated under the conditions where

temperatures increase beyond the 4°C used as the highest climate warming

scenario. To achieve this, the coldest group for each habitat category (HA1, HB1

and M1; see table 4.2) were run for temperatures starting at their current level, and

increasing in 1°C increments, until finally being run for a temperature increase

of 10°C. This allows the behaviour of the model in relation to temperature to be

clearly understood.

Additionally, in order to test whether the model exhibits a “dilution effect”

(whereby the increased presence of deer can reduce LIV in the system, as infected

ticks waste their bites on incompetent transmission hosts), such as that found by

Norman et al. (1999) in a similar LIV system, the model was run for a variety of

grouse and deer density combinations. The model was run for grouse densities

starting at 10 per km2, and increasing in 10 per km2 increments until reaching

100 per km2, and deer densities starting at 0 per km2, and increasing in 1 per km2

increments until reaching 10 per km2. For this, the warmest heather group was

used (HA5) under current climates.

4.3 model predictions and discussion

4.3.1 Louping-ill virus prevalence

As the pathogen-induced mortality rate of grouse infected with LIV is high (up to

80%, Reid 1975), any attempt to measure the prevalence of the pathogen by using
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a) b) 

c) d) 

0% 100% N/A 

Figure 4.4: The predicted grouse survival across Scotland for the four temperature scen-
arios: (a) current temperatures, (b) low increase, (c) medium increase and (d)
high increase. Grey cells indicate areas where the model is not run because red
grouse do not exist due to inappropriate habitat. Maps created with ArcGIS
10 (Environmental Systems Research Institute, 2014).
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the proportions of either infected ticks or infected grouse may be distorted by

these grouse deaths. Consider a scenario where the pathogen persists; the grouse

population will be rapidly reduced, with resistant grouse becoming dominant

in the grouse population. This is a reduction in the total number of hosts who

can transmit the pathogen, which will in turn sharply reduce the number of

ticks which contract the pathogen from grouse. All of which will contribute to

a low value of pathogen prevalence, therefore making it difficult to distinguish

between areas where LIV persistence could sharply reduce the density of grouse

and areas where LIV persistence has no major effect on grouse density. Instead,

here, the suitability of an area for LIV to persist is measured by the percentage

of the grouse population (carrying capacity) that survives the simulation after

the model is run for 100 years. The model is set up so that the grouse population

would stay at their carrying capacity without LIV present; and thus LIV is the

only factor in the model preventing them reaching carrying capacity, so it can

be assumed that there is an inverse relationship between the final number of

surviving grouse and pathogen prevalence. Therefore, where low grouse survival

occurs, it may be said that there is a higher LIV risk, and vice versa.

Figure 4.4 shows the predicted grouse survival across Scotland for the four

climate warming scenarios (current climate, and climate projections under the

low, medium and high emission scenarios). A clear trend that can be seen from

these maps is that the pathogen appears to be most prevalent in coastal areas

and least prevalent in the centre of the country. As temperatures increase this

difference is exaggerated further, with parts of the north-west coast in particular

predicted to have the highest LIV risk.

By breaking down the results by habitat group, the causes of these trends

can be further understood. Figure 4.5 shows the grouse survival for the thirteen
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Figure 4.5: The predicted grouse survival for each temperature-habitat scenario. Survival
is calculated as the density of grouse at the end of a 100-year simulation with
LIV present, as a proportion of the grouse density in a disease-free state. The
labels on the y-axis refer to the habitat groups used. The labels on the y-axis
refer to the habitat groups used, listed in table 4.2

habitat groups, under each climate warming scenario. Firstly, LIV does not persist

in montane habitats under any of the scenarios. This should not be surprising;

these areas showed a lower average tick density (figure 4.6) due partly to the

colder climate at high altitudes, and have the lowest grouse carrying capacity of

the habitat types (Gilbert, 2010) where the model was run. However, the cold

climate at high altitudes is not the only reason why montane habitats remain

areas of low LIV risk; montane areas under the high climate warming scenario

have a higher tick density than, for example, heather areas under the low climate

warming scenario. As grouse density within the model is taken as 20 per km2

in montane habitats, and 50 per km2 in the low-grouse heather habitats, the low
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Climate warming scenario Now Low Medium High
No risk 15.81% 15.81% 15.81% 15.81%
Low risk 36.38% 36.38% 28.98% 6.26%
Medium risk 37.08% 28.98% 16.05% 30.12%
High risk 10.74% 18.84% 39.17% 47.81%
Average grouse survival 78.88% 75.13% 69.09% 63.62%

Table 4.3: The percentage of cells where the model was run which fall into the four
risk groups: no risk (where grouse survival is 100%), low risk (where grouse
survival is between 80-100%), medium risk (where grouse survival is between
60-80%) and high risk (where grouse survival is below 60%). The average
grouse survival across all cells is also shown.

density of grouse appears to be the dominant factor in explaining why LIV does

not persist at high altitudes.

Grouse survival can be banded into four risk groups: no risk (where grouse

survival is at 100%), low risk (where grouse survival is between 80-100%), medium

risk (where grouse survival is between 60-80%) and high risk (where grouse

survival is below 60%). Table 4.3 shows the proportion of cells where the model

was run which fall into each risk group, as well as the average survival across

the whole of Scotland for each climate warming scenario. In table 4.3, the 15.81%

which always remain in the no risk group are the montane cells, meaning that

all the heather moorland cells are in the low, medium and high risk groups. The

proportion of cells in the high risk group increases by a factor of 1.8 from the

current climate to the low climate warming scenario (from 10.74% of all cells

where the model was run to 18.84%). This increase is even more dramatic for the

medium and high climate warming scenarios, increasing by factors of 3.6 (up to

39.17%) and 4.5 (up to 47.81%) respectively. As only 84.19% of cells run in the

model are heather moorland, it can be said that 57% of heather moorland habitats

containing grouse are predicted to be of high risk under a temperature rise of 4°C.
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Figure 4.6: The predicted nymph density averaged across each habitat type for each
climate warming scenario. The habitat group codes are explained in table 4.2

The average grouse survival across all cells (table 4.3) is predicted to decrease

from 78.88% under current climates to 75.13% under the low climate warming

scenario, 69.09% under the medium climate warming scenario and 63.62% under

the high climate warming scenario. Measured in comparison to current climates,

grouse survival is predicted to decrease by 4.76% for the low climate warming

scenario, 12.41% for the medium climate warming scenario and 19.35% for the

high climate warming scenario.

For all heather groups there is a clear decrease in grouse survival with climate

warming. In order to fully explore this relationship the model was run for

temperature increases from 0-10°C, starting at the coldest temperature for each

habitat type (HA1, HB1 and M1, as per the groups listed in table 4.2) (figure

4.7). From this it is clear that montane habitats are predicted to continue having

low risk of LIV under any temperature scenario. However, this is dependent on

current host densities being maintained; in reality higher temperatures may see

some hosts occupying higher-altitude areas in higher densities, which will change
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Figure 4.7: The number of susceptible (S), infected (I) and recovered (R) grouse (y-axis)
for various temperature increases (x-axis), after the model was run for 100

years at each temperature, in order to demonstrate how the relationship
between temperature and grouse survival for each habitat type. The y-axis
height is the carrying capacity of the system. The habitats used are the coldest
groups for (a) heather moorland with grouse and hares present (HA1) and (b)
heather moorland with grouse, hares and deer present (HB1). For montane
habitats the grouse population is made up of 100% susceptible grouse at all
temperatures; i.e. the pathogen died out in each simulation.

the dynamics of the system. For the two heather types (HA, with high grouse

density and no deer; HB, with low grouse and low deer density) it appears that
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both reach an approximate equilibrium of grouse survival following an increase

of 8°C. For all climate warming scenarios it appears that the presence of deer

is predicted to result in a higher grouse survival rate than with deer absent.

Furthermore it appears that heather areas with deer present are less affected by

rising temperatures; the deer-free heather category (HA) is predicted to see a

reduction in grouse survival from 74% for current temperatures to 36% with a rise

of 10°C, whereas the heather category with deer present (HB) is predicted to see

a change from 88% to 64% in grouse survival. Other than host densities, the only

factor which distinguishes the HA groups from the HB groups is temperature.

The average temperature of the HA groups ranges from 6.08 (HA1) to 9.08 (HA5),

whilst the average temperature of the HB groups ranges from 5.64 (HB1) to 8.86

(HB5). So whilst the HA groups are generally warmer than the HB groups, this

difference is slight and can’t bias the results enough to explain the disparity in

grouse survival between the two groups.

4.3.2 Dilution effect

As figure 4.3 showed, there appears to be a linear relationship between the

density of deer present and the basic reproduction rate of the pathogen within

the model. Since the heather areas with no deer present appear to have lower

grouse survival, then it appears that higher deer density is correlated with lower

LIV risk to grouse. To demonstrate this more fully, figure 4.8 (a) shows the

prediction when the model is run for various deer/grouse densities under a

consistent climate warming scenario. From this, it is clear to see that for any

grouse carrying capacity the model predicts a positive relationship between the

density of deer and the survival rate of grouse; therefore suggesting that deer
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may have a diluting effect on LIV prevalence in ticks and thereby protect grouse

with their presence.

The potential for an incompetent transmission host to have a diluting effect

was first predicted by the model created by Norman et al. (1999), who modelled

a tick and LIV system with grouse and mountain hares present, where mountain

hares were assumed to be incompetent transmission hosts for LIV. This model

predicted that for lower hare densities, increasing the hare densities was predicted

to increased the pathogen persistence, before reaching a point where additional

hares were predicted to reduce LIV persistence as infected tick bites were ‘wasted’

on incompetent hosts, as transmission through co-feeding was not included

within the model. The dilution effect caused by increasing incompetent transmis-

sion host densities thereby reducing LIV persistence was again later predicted

by Gilbert et al. (2001) in a three-host-tick-LIV model with grouse, mountain

hares and deer, with deer acting as the incompetent transmission host (in this

study mountain hares were modelled as competent hosts due to non-viraemic

transmission between co-feeding ticks, as demonstrated in the lab by Jones et al.

1997).

The dilution effect has also been predicted by models of tick-borne encephalitis

systems, such as in that created by Kiffner et al. (2011). The TBEV model created

by Bolzoni et al. (2012) suggested that the dilution effect may operate even whilst

the competent hosts, in this case rodents, are feeding increasing numbers of ticks,

and that the rising proportion of incompetent meals, in this case from deer, drives

the dilution effect. Hartfield et al. (2011) created a model of B. burgdorferi s.l.

dynamics, which predicted that whilst the dilution effect is possible, it is unlikely

to be strong.
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However, in the aforementioned cases, the dilution effect is not predicted

to begin immediately; rather, it takes effect only after an initial period where

the presence of incompetent transmission hosts has aided pathogen persistence

by increasing tick numbers. In the results presented here, the dilution effect is

predicted to be immediate and almost linear. There are a few potential reasons

why the dilution effect is predicted to be so powerful within the model presented

here. The first of these is that the model may be parameterised such that it is too

easy for ticks to survive; they potentially do not need deer present to survive (due

to the presence of hares, which feed all stages of ticks) and so the effect of deer on

diluting pathogen transmission outweighs the amplifying effect deer have on tick

density. The prediction that ticks survive in all habitat-climate warming scenarios

except the single coldest (M1 under current temperatures) could help explain this

model prediction. In order to test whether harsher survival conditions for ticks

results in the model predicting a less pronounced dilution effect, the simulations

shown in figure 4.8 (a) were repeated, using a similar tick-LIV-grouse-deer system

but with mountain hares absent. Such a system would see deer as the sole host of

adult ticks, and therefore as a critical host to the system. However, as figure 4.8

(b) shows, other than the trivial case where grouse survival stays at 100% with no

deer presence (since ticks die out with no host for adults), the predictions follow

the same pattern as figure 4.8 (a). The only noticeable difference is the predicted

lower rate of grouse survival compared to the equivalent grouse-deer system

with hares present, suggesting that hares may also play a diluting role within

the model. The predicted dilution effect of hares, however, may be mitigated by

including transmission by co-feeding, discussed below.

The way in which deer are parameterised should also be scrutinised. Deer are

estimated within the model to host an average of 15.8 larval ticks, 70.41 nymphs

94



and 81.25 adults at any one time, based on empirical data for peak tick questing

months (Gilbert unpublished data). However, studies vary greatly in estimating

the tick burdens found on deer. For instance, an empirical study by Mysterud

et al. (2014) found averages of 7.76 larvae, 35.94 nymphs and 41.55 adults per red

deer in Norway. Therefore, it is possible that by reducing the number of immature

(larval and nymphal) stages hosted by deer within the model, the diluting effect

of deer would be reduced, and therefore deer would have a detrimental effect

on grouse by primarily feeding adult ticks and seeing a reduced number of

‘wasted’ bites by infected nymphs. The way the model is parameterised, the

capacity of deer for hosting immature tick stages is 106% that of their capacity

for hosting mature (adult) ticks. In order to see whether the dilution effect within

the model is weakened when deer host fewer immature ticks, this percentage

is reduced from 100% to 0% (figure 4.8, c). It can be seen that when deer host

only 10% immature ticks compared to adults, increasing the deer density harms

grouse survival initially, before the dilution effect outweighs the negative effect

of additional deer. However, in this case, both the initial decrease and the later

increase in grouse survival are of a very small magnitude. Unsurprisingly, when

deer host no immature ticks, all increases in deer is predicted to reduce grouse

survival. This demonstrates that by altering the ratio of immature to adult ticks

on deer, it is possible to parameterise this model such that deer will initially

harm grouse before the dilution effect begins to take hold, which is the behaviour

shown by the models by Norman et al. (1999) and Gilbert et al. (2001). However,

the negative effect of deer density on grouse survival is very weak, even when

the model is parameterised to encourage it. Even if the model was parameterised

so that deer hosted no immature ticks, the grouse survival decreased by less than

1% with the addition of 10 deer per km2. The effect of reducing the capacity of
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deer to host immature ticks is an interesting one. Whilst there is little evidence

for the model to be parameterised in such a way that the dilution effect has a

similar impact to that in other studies, the conflicting nature of the literature (as

documented by Mysterud 2016) highlights a crucial gap in the current empirical

knowledge.

Including transmission routes other than from ticks feeding on grouse may

potentially change the diluting effect deer have on LIV within the model. For

example, it has been documented that ticks feeding alongside each other on a

host such as hares could transmit the pathogen to other ticks through saliva

(Jones et al., 1997). Indeed, Norman et al. (2004) modelled this mechanism to

predict that it could dramatically improve the ability of LIV to persist, with LIV

even surviving in scenarios with no viraemic transmission host. Furthermore,

by considering a general model Rosà et al. (2003) predicted that non-viraemic

transmission reduces the role of the dilution effect. Another route of transmission

not considered by this model is the ingestion of ticks by grouse chicks in the first

three weeks of their lives, which Gilbert et al. (2004) estimate could be responsible

for 73-98% of all infections of first-year grouse. Porter et al. (2011) investigated

this route of transmission and found that ingestion generally led to an increase in

virus persistence. A discussion of how these mechanisms might be incorporated

is presented in chapter 5.

4.4 sensitivity analysis

As in chapter 3, the two sensitivity analysis methods used by Watts et al. (2009)

are undertaken here to see which parameters have the largest effect on the model.

For both methods, the output measured is the grouse survival after running

the model for 100 years, to stay consistent with the measurement used when
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a) Grouse 

Deer 10 20 30 40 50 60 70 80 90 100 

0 100 88 78 72 68 64 61 59 57 56 

1 100 91 83 76 72 68 65 63 61 59 

2 100 94 86 80 75 72 69 66 64 62 

3 100 97 89 83 79 75 72 69 67 65 

4 100 100 91 86 81 78 75 72 70 68 

5 100 100 93 88 84 80 77 75 73 71 

6 100 100 95 90 86 82 79 77 75 73 

7 100 100 96 91 87 84 81 79 77 75 

8 100 100 99 92 89 85 83 80 78 77 

9 100 100 100 94 90 87 84 82 80 78 

10 100 100 100 95 91 88 85 83 81 79 

b) Grouse 

Deer 10 20 30 40 50 60 70 80 90 100 

0 100 100 100 100 100 100 100 100 100 100 

1 81 62 53 48 45 43 42 41 40 40 

2 90 75 67 61 56 53 50 48 46 45 

3 95 81 74 69 65 61 58 55 53 52 

4 100 85 78 74 70 67 64 62 59 57 

5 100 89 82 77 74 71 69 66 64 62 

6 100 91 84 80 76 74 72 70 68 66 

7 100 94 87 82 79 76 74 72 70 69 

8 100 97 89 84 80 78 76 74 72 71 

9 100 100 91 86 82 79 77 76 74 73 

10 100 100 92 88 84 81 79 77 75 74 

(c) Deer larvae + nymph capacity as a proportion of adult capacity 

Deer 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 

0 55.68 55.68 55.68 55.68 55.68 55.68 55.68 55.68 55.68 55.68 55.68 

1 58.55 58.22 57.89 57.56 57.22 56.89 56.56 56.22 55.88 55.55 55.21 

2 61.64 61.01 60.37 59.72 59.08 58.42 57.76 57.10 56.43 55.76 55.09 

3 64.63 63.73 62.82 61.90 60.95 60.00 59.02 58.04 57.05 56.05 55.05 

4 67.42 66.32 65.18 64.01 62.80 61.56 60.29 59.00 57.69 56.36 55.02 

5 69.97 68.72 67.41 66.02 64.58 63.09 61.54 59.96 58.33 56.68 55.01 

6 72.24 70.91 69.47 67.93 66.30 64.57 62.77 60.91 58.98 57.01 55.01 

7 74.23 72.87 71.36 69.71 67.93 66.01 63.98 61.85 59.62 57.34 55.01 

8 75.96 74.60 73.07 71.36 69.46 67.39 65.15 62.77 60.26 57.67 55.00 

9 77.45 76.11 74.60 72.86 70.90 68.70 66.28 63.68 60.90 58.00 55.00 

10 78.74 77.44 75.96 74.23 72.23 69.95 67.38 64.57 61.53 58.33 55.01 

Figure 4.8: The grouse survival percentages predicted for various deer and grouse dens-
ities (per km2), to show the role red deer play in diluting the effect of LIV
within the model. The model is run for the warmest heather habitat under
current temperatures. (a) uses the original model, (b) has hares absent, whilst
(c) alters the capacity of immature ticks to feed on deer.
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creating the model’s prediction maps. In order to investigate the roles played by

all hosts, the warmest habitat group with both grouse and deer present (HB5)

was chosen with no temperature increase, which was used for both methods.

4.4.1 Method 1

Firstly, in order to predict whether any parameters had a disproportionate effect

on predicted grouse survival, the model was run with each parameter altered by

±10% in turn. Table 4.4 shows the predicted percentage change in grouse survival

for each run of the model.

As would be expected, the parameters directly relating to grouse population

dynamics – grouse birth (aG), grouse death (bG) and the density dependence

parameter of grouse (sG) – cause the largest change in predicted grouse survival

when altered. Of those, only grouse birth has a disproportionately large effect; a

change of over 12% predicted from a change of 10% in either direction.

4.4.2 Method 2

To get a finer understanding of which parameters drive predicted grouse survival,

the model was run 1000 times, with each parameter randomly varied by ±1%.

The correlation between the parameter values used and the grouse survival is

then measured to see how strong the relationship is. The predictions from this

are shown on table 4.5.

As with Method 1, the grouse dynamic parameters are the ones which have

the strongest effect on predicted grouse survival. Similarly, the parameters de-

termining how many ticks can feed on a grouse in a given week (gL and gN) have
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Parameter Definition Decrease
of 10%

Increase
of 10%

a Minimum annual temperature

b Maximum annual temperature +1.3% -1.7%

TL1 Threshold at which larvae begin to emerge

TL2 Threshold at which all larvae have emerged

TNA1 Threshold at which nymphs and adults be-
gin to emerge

TNA2 Threshold at which all nymphs and adults
have emerged

bL Mortality rate for active larvae

bN Mortality rate for active nymphs

bA Mortality rate for active adults

bWL Mortality rate for developing larvae -1.0% +1.0%

bWN Mortality rate for developing nymphs

aT Larvae born per adult

w Parameter affecting the shape of the weekly
feeding limit function

bG Mortality rate for grouse +4.4% -4.1%

aG Birth rate for grouse -12.2% +12.3%

σ Recovery rate for infected grouse -1.7% +1.5%

α Infection-induced mortality for grouse

sG Density-dependent constraint on grouse
birth

+8.7% -7.3%

Initial rate of infection for nymphs

Deer density -1.2% +1.1%

Hare density -1.1% +1.0%

gL Larval capacity of grouse +2.6% -2.5%

gN Nymphal capacity of grouse +2.1% -1.8%

p Aggregation parameter for nymphs on
grouse

-1.5% +1.5%

Table 4.4: Sensitivity analysis using Method 1, where the predicated percentage change
in grouse survival from changing each parameter within the Louping-ill model
by ±10% is found. In each case the model was run for the warmest heather
habitat which contained grouse, hare and deer (HB5) with no temperature
increase. Only the values which show a change of over ±1% are shown. Any
changes above ±10% are highlighted in bold.
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a higher predicted effect than those which solely deal with tick dynamics. None

of the tick-specific parameters have a correlation larger than ±0.1.

As the values shown on table 4.5 are the Pearson’s correlation coefficient (r)

between the parameter values and grouse survival, the proportion of variation in

grouse survival explained by the parameters (R2) would be far lower, with only

grouse death, grouse birth and the density dependence of grouse explaining over

10% of variation in model output, at 10%, 63% and 29% respectively.

4.4.3 Sensitivity analysis summary

It is clear from the two methods undertaken that the predictions from this model

are primarily driven by the grouse dynamic parameters, in particular those

relating to grouse birth (aG and sG) and death (bG). These are based on empirical

values (Hudson, 1992) and therefore should not be the cause of any unrealistic

model outputs.

The parameter for the negative binomial aggregation of nymph bites on grouse

(p) had been purposefully selected as lower than empirical evidence suggested

in order to allow LIV to persist and to provide meaningful predictions, and is

therefore the parameter based on the least sure footing. With this in mind, it is

reassuring that this parameter does not have a disproportionate effect on the

model predictions, only altering grouse survival by 1.5% for every 10% change in

p (table 4.4).

Overall, the sensitivity analysis suggests that the model parameterisation is

robust, such that even if some parameter values have been estimated inaccurately,

it should not change the model output by very much.
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Parameter Definition Pearson’s
correlation
coefficient

a Minimum annual temperature -0.021

b Maximum annual temperature -0.101

TL1 Threshold at which larvae begin to emerge 0.057

TL2 Threshold at which all larvae have emerged 0.062

TNA1 Threshold at which nymphs and adults begin to emerge 0.016

TNA2 Threshold at which all nymphs and adults have emerged 0.063

bL Mortality rate for active larvae -0.001

bN Mortality rate for active nymphs 0.029

bA Mortality rate for active adults -0.007

bWL Mortality rate for developing larvae 0.059

bWN Mortality rate for developing nymphs 0.031

aT Larvae born per adult -0.011

w Parameter affecting the shape of the weekly feeding limit
function

-0.030

bG Mortality rate for grouse -0.324

aG Birth rate for grouse 0.792

σ Recovery rate for infected grouse 0.096

α Infection-induced mortality for grouse 0.022

sG Density-dependent constraint on grouse birth -0.541

Initial rate of infection for nymphs 0.030

Deer density 0.062

Hare density 0.039

gL Larval capacity of grouse -0.196

gN Nymphal capacity of grouse -0.158

p Aggregation parameter for nymphs on grouse 0.135

Table 4.5: Sensitivity analysis using Method 2, where the parameters within the LIV
model are correlated with the predicted grouse survival rate, following 1000

model simulations where parameters were randomly altered by ±1% each time.
Correlations with an absolute value larger than 0.1 are highlighted in bold.

4.5 summary

The model presented here demonstrates a novel approach for predicting the effect

of climate change on tick-borne diseases over time and space. By adapting the
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temperature-dependent tick lifecycle model presented in chapter 3, the changes

in LIV risk to grouse under a variety of climate warming scenarios could be

investigated.

For current temperatures, LIV is predicted to persist only on heather moorland,

as montane habitats do not have sufficiently high temperatures. By using GIS

software to map the model predictions across Scotland, the spatial distribution of

areas which are suited to LIV could be predicted. Specifically, it appeared that

coastal areas on the west of Scotland are the most suited to maintaining LIV due

to warmer temperatures.

For all heather areas, grouse survival decreased with each rise in temperature,

whilst for montane areas no climate warming scenario was enough for LIV to

persist, due to inhibited tick densities. For the highest climate warming scenario

studied, over half of heather moorland habitats containing grouse were predicted

to fall into the high risk category (where grouse survival is below 60%). The

overall grouse survival, measured against current climates, decreased by between

4.76% and 19.35% depending on the climate warming scenario. The reduction

in grouse survival for higher climate warming scenarios was more dramatic in

heather areas where deer were absent rather than present. This model prediction

was not expected and highlights an important empirical gap in our knowledge

concerning how the proportion of larvae feeding on deer rather than transmission

hosts may be critical in determining whether deer have a dilution effect or an

increasing effect on LIV.

By having a detailed model where temperature, host density and habitat all

influence LIV dynamics, it is possible to predict the changes in LIV risk for future

climate warming scenarios. Such predictions could be useful in informing policy

on tick and tick-borne disease mitigation strategies, such as which areas, habitats
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or host community scenarios may be increasingly at risk and therefore targeted

for control methods.
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5
A D A P T I N G T H E N O V E L M O D E L L I N G A P P R O A C H T O

O T H E R T I C K - B O R N E PAT H O G E N S Y S T E M S

5.1 introduction

In chapter 4 a novel modelling approach was developed for predicting the

influence climate change has on a tick-borne pathogen system, specifically that

of Louping-ill virus (LIV). The model was used to predict the changes expected

in disease risk under a variety of climate warming scenarios, and was useful

in highlighting how different environmental factors can interact to drive tick-

borne pathogen risk. This LIV model was an original approach, combining

an environmentally-dependent mathematical model with GIS-based mapping.

Therefore, it is important to demonstrate that this approach can be used for other

systems, and that is the aim of this chapter.

There are a number of tick-borne infections which are of economic and public

health interest across Britain. LIV, covered in chapter 4, kills sheep (Ovis aries) and

red grouse (Lagopus lagopus scoticus) and is of particular importance in Scotland

and northern England, where both sheep farming and red grouse hunting play

a large role in the rural economy (Hudson, 1992). Closely related to LIV is the

western variant of tick-borne encephalitis (TBE) virus, a pathogen of western
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Europe which infects humans and can cause a variety of symptoms, ranging from

muscle pain to paralysis and even death. Whilst TBE is not currently seen as a

health risk within the UK, it is commonly found across much of Europe, and is

therefore a risk for travellers (NHS Choices, 2015). Further tick-borne diseases

such as Bartonellosis, Ehrlichiosis and Anaplasmosis can all cause serious health

issues in humans, and have been recorded in many areas of Europe including the

UK (BADA UK, 2016).

The most common tick-borne disease in humans in the northern hemisphere,

including north America, Europe and the UK, is Lyme borreliosis, which is

caused by the complex of spirochete bacteria Borrelia burgdorferi sensu lato. UK

government figures show that recorded incidents of Lyme borreliosis has more

than quadrupled in England since enhanced surveillance was introduced in 1996

(Public Health England, 2013) and increased almost 10-fold between 2000 and

2010 in Scotland (Health Protection Scotland, 2016). Infection with B. burgdorferi

s.l. can cause various brain, skin and joint issues in humans. There are multiple

strains, each with their own clinical symptoms and transmission host associations.

Two particular strains of note are Borrelia garinii, which is transmitted by birds and

is commonly associated with neuroborreliosis, a disorder of the nervous system,

and Borrelia afzelii, which is transmitted by small mammals and is associated

with acrodermatitis chronica atrophicans, a degenerative skin condition. Like

LIV, the B. burgdorferi s.l. complex is transmitted by Ixodes ricinus ticks in Britain,

where reservoir hosts such as small mammals and passerine birds maintain the

pathogen, especially in woodland habitats (Gray, 1998).

The aim of this chapter is to extend the LIV model into a modelling framework

which can be adapted for other tick-borne pathogen systems. Due to the import-

ance of Lyme borreliosis, the modelling framework will be used to develop an
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environment-dependent model of the two most prevalent strains of B. burgdorferi

s.l.: B. garinii (bird-transmitted) and B. afzelii (rodent-transmitted). These are also

useful systems for adapting the LIV model because they contrast greatly with

the LIV system, being most prevalent in different habitats (woodland rather than

heather moorland) and transmitted by different hosts (birds and rodents rather

than red grouse). Therefore the aim of this chapter is to demonstrate how the

novel modelling approach, originally built to represent LIV dynamics, can be

adapted for different and ecologically contrasting pathogen systems.

To begin with, the LIV model is generalised in order to provide the basic

models upon which the framework is built. From there, additional mechanisms

are identified which can be added to the basic models if the a pathogen system re-

quires them. The mechanisms concern alternative routes of pathogen transmission

between tick and host, as well as tick- and disease-reduction treatment methods

for tick hosts and systems with multiple transmission hosts. This framework is

then adapted for B. burgdorferi s.l. (B. afzelii and B. garinii) dynamics. Using this

model, predictions are made for the changes in disease risk for various climate

warming scenarios. Using GIS mapping, these predictions are used to create

predictive maps for the densities of infected ticks, as well as the prevalence of the

pathogen across Scotland. As B. burgdorferi s.l. is more complex than LIV, there is

less empirical information available to inform the model. Therefore, the model

predictions will be primarily for demonstrative purposes. However, sensitivity

analysis of the model will be used to highlight areas where empirical evidence is

required in order for more robust predictions to be made.
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Parameter Definition and notes
aT Annual birth rate of ticks.
bL Mortality rate for active larvae.
bN Mortality rate for active nymphs.
bA Mortality rate for active adults.
bWL Mortality rate for developing larvae.
bWN Mortality rate for developing nymphs.
p Aggregation parameter for nymphs feeding on hosts.
q Aggregation parameter for adults feeding on hosts. Only in the

LNA model.
aH Birth rate for hosts.
sH Density-dependence parameter for host birth.
bH Mortality rate for hosts.
α Infected-induced mortality for hosts.
σ Recovery rate for infected hosts.
δ Waning immunity rate for recovered hosts.
hL Maximum larval capacity for the competent transmission host.
hN Maximum nymphal capacity for the competent transmission

host.
hA Maximum adult capacity for the competent transmission host.

Only in the LNA model.
a Minimum local annual temperature.
b Maximum local annual temperature.
T1 Temperature at which ticks begin to emerge from overwintering.
T2 Temperature at which all ticks have emerged from overwintering.

Table 5.1: The parameters used for the LN and LNA models and their definitions. All
rates are per week unless otherwise stated.

5.2 extending the liv model into a broader modelling framework

5.2.1 Defining the basic models

The first step in creating a modelling framework is to take the LIV model created

in chapter 4 and generalise it to create basic models, which will be the basis

for the framework. To begin with, adapting the LIV model from chapter 4
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for a similar system where one competent transmission host (and multiple

incompetent transmission hosts) is considered. To begin with, it is assumed that

the transmission host only feeds larvae and nymphs (as red grouse do within the

LIV model), and therefore the only way for the pathogen to be passed from tick

to host is from an infected nymph biting a susceptible host, whilst the only way

for the pathogen to be passed from host to tick is for a susceptible larva to bite an

infected host. This system is hereafter referred to as the LN system to reflect the

tick instars (larvae and nymphs) which are involved in pathogen transmission.

Waning host immunity is introduced to the system, denoted by δ, as this is

assumed not to occur among recovered grouse, but may occur with other tick-

borne infections and hosts. This mechanism aside, the transmission routes will

remain the same as those within the LIV model, and therefore the mechanisms of

the model will remain the same, with the only changes occurring in the parameter

values used. The equations that make up the LN model are shown in section

5.2.2.1, whilst the definitions of each parameter are listed in table 5.1. The host

equations in the system are denoted by H, rather than the G used in Chapter 4,

as it reflects an unspecified host. Similarly, the parameters describing the larval

and nymphal capacity of the host are given by hL and hN respectively.

When considering systems such as a LIV system with unvaccinated sheep,

where the competent transmission host is regularly bitten by all three stages of

tick life (hereafter referred to as the LNA system), any new equations which

may need to be introduced should be considered. As with the previous models,

it is assumed that transovarial transmission is not a factor (for a discussion on

how this could be incorporated see section 5.2.4.1). Therefore, once adults have

fed and are in the developing stage, their infection status does not need to be

considered in the model. Thus, the only changes to the equations are splitting

108



the two previous stages, developing nymphs and active adults, into susceptible

and infected classes.

The modelling approach assumes that the number of ticks of a given instar

finding a meal is independent of the number of ticks of another instar finding a

meal, which is a reasonable assumption, since ticks of different instars tend to

find blood meals on different places on a hosts’ body (e.g. Kiffner et al. 2010).

Therefore, the addition of adults feeding on the competent transmission host has

no effect on the equations used for larvae and active nymphs. However, as the

infection status of developing nymphs now needs to be tracked, the proportion

of feeding susceptible nymphs which feed on an infected host now need to be

calculated. To this end, the ratio φ introduced in chapter 4, which represented the

proportion of available blood meals for larvae which come from infected hosts, is

used. This ratio is now split into two, listed in equations 5.1 and 5.2, where φL is

identical to the φ previously used, whilst φN is identical except the parameters

are altered for nymphs. Similarly, the ratio θ, which represents the proportion

of active nymphs which are infected, is split into θN and θA, which represent

nymphs and adults respectively (shown in equations 5.3 and 5.4), whilst k, the

average number of nymphs on the transmission host, is split into kN and kA to

represent the nymphs and adults separately (shown in equations 5.5 and 5.6).
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φL =
HI(t)× hL
Lhost

(5.1)

φN =
HI(t)× hN
Nhost

(5.2)

θN =
NAI(t)

NAS(t) +NAI(t)
(5.3)

θA =
AAI(t)

AAS(t) +AAI(t)
(5.4)

kN =

hN
Nhost

× θ× S [FNA(t)× P(t)× (NAS(t) +NAI(t)),Nhost]

HS(t) +HI(t) +HR(t)
(5.5)

kA =

hA
Ahost

× θ× S [FNA(t)× P(t)× (AAS(t) +AAI(t)),Ahost]

HS(t) +HI(t) +HR(t)
(5.6)

When considering the number of uninfected nymphs receiving the pathogen

by biting an infected host, the total number of susceptible nymphs finding a meal

is given by equation 5.7, which is the same as with the LN model, and explained

within chapter 4.

(1− θN)× S [FNA(t)× P(t)× (NAS(t) +NAI(t)),Nhost] (5.7)

Equation 5.7 is then multiplied by φN to represent the proportion of these

susceptible nymphs which feed on an infected host.

The number of adults finding a meal in a given week is given by the same

equation as equation 5.7, but with parameters representing adult rather than

nymph behaviour, shown by equation 5.8.

(1− θA)× S [FNA(t)× P(t)× (AAS(t) +AAI(t)),Ahost] (5.8)
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Of the dynamics within the model for hosts, the only one which is altered by

the addition of adults feeding upon them is the risk of picking up the infection

from a tick bite. In the previous model this was represented by equation 5.9.

(
1− pkN

)
HS(t) (5.9)

The rationale behind this is explained in chapter 4. This can be represented by

equation 5.10, where prob(N̄) is the probability of a host not being bitten by an

infected nymph.

[1− prob(N̄)]× total susceptible hosts (5.10)

As explained above, it is assumed that the number of adult ticks biting a host

is independent of the number of nymphs biting the same host. This is not an

unreasonable assumption since adult and nymph ticks generally have mutually

exclusive preferences for which part of an animal they prefer to feed, for example

on roe deer (Capreolus capreolus) larvae are found on the head and ears, nymphs

prefer the neck, while adults prefer inguinal areas (groin and armpit) (Kiffner

et al., 2010). Therefore, by using prob(Ā) as the probability that a host isn’t bitten

by an infected adult, the number of hosts picking up the pathogen in a system

where they can be fed upon by all stages of tick will be represented by equation

5.11.

[1− (prob(N̄)× prob(Ā))]× total susceptible hosts (5.11)
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The logic behind the likelihood that a host is not bitten by an infected adult

(prob(Ā)) is no different to that for nymphs, except with potentially different

parameter values. Therefore this is given by equation 5.12, where q is the aggreg-

ation parameter for adults.

prob(Ā) = qkA (5.12)

The full set of equations for the LNA model is listed in section 5.2.2.2, with

parameters listed in table 5.2.

5.2.2 Basic model equations

For both the LN model and the LNA model, the following functions apply:

T(t) =

(
b− a

2
× sin

(
t

2.6π
− 0.5π

))
+
a+ b

2

F(t) =


0 T(t) 6 T1,

T(t)−T1
T2−T1

T1 < T(t) 6 T2,

1 T2 < T(t)

P(t) =
1

1+ exp
[
3
4(8− T(t))

]
S(x,K) =

wK

w+ (K−w)exp

(
ln
[

w
19(K−w)

]
8K x

) −w

(5.13)
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5.2.2.1 LN model

dLA
dt

= −S [FL(t)× P(t)× LA(t),Lhost] − bLLA(t)

dLDS
dt

= (1−φ)× S [FL(t)× P(t)× LA(t),Lhost] − bWLLDS(t)

dLDI
dt

= φ× S [FL(t)× P(t)× LA(t),Lhost] − bWLLDI(t)

dNAS
dt

= −(1− θ)× S [FNA(t)× P(t)× (NAS(t) +NAI(t)),Nhost]

−bNNAS(t)

dNAI
dt

= −θ× S [FNA(t)× P(t)× (NAS(t) +NAI(t)),Nhost] − bNNAI(t)

dND
dt

= S [FNA(t)× P(t)× (NAS(t) +NAI(t)),Nhost] − bWNND(t)

dAA
dt

= −S [FNA(t)× P(t)×AA(t),Ahost] − bAAA(t)

dAD
dt

= S [FNA(t)× P(t)×AA(t),Ahost]

dHS
dt

= −
(
1− pk

)
HS(t) − bHHS(t)

+ [aH − sG (HS(t) +HI(t) +HR(t))]

(HS(t) +HI(t) +HR(t)) + δHR(t)

dHI
dt

=
(
1− pk

)
HS(t) − (bH +α+ σ)HI(t)

dHR
dt

= σHI(t) − (bH + δ)HR(t) (5.14)

Initial conditions at the start of each year:

LA(0) = aTAD(52); LDS(0) = 0; LDI(0) = 0; NAS(0) = LDS(52); NAI(0) =

LDI(52);ND(0) = 0;AA(0) = ND(52);AD(0) = 0;HS(0) = HS(52);HI(0) = HI(52);

HR(0) = HR(52).
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5.2.2.2 LNA model

dLA
dt

= −S [FL(t)× P(t)× LA(t),Lhost] − bLLA(t)

dLDS
dt

= (1−φL)× S [FL(t)× P(t)× LA(t),Lhost] − bWLLDS(t)

dLDI
dt

= φL × S [FL(t)× P(t)× LA(t),Lhost] − bWLLDI(t)

dNAS
dt

= −(1− θN)× S [FNA(t)× P(t)× (NAS(t) +NAI(t)),Nhost]

−bNNAS(t)

dNAI
dt

= −θN × S [FNA(t)× P(t)× (NAS(t) +NAI(t)),Nhost] − bNNAI(t)

dNDS
dt

= (1− θN)× (1−φN)× S [FNA(t)× P(t)× (NAS(t) +NAI(t)),Nhost]

−bWNNDS(t)

dNDI
dt

= (θN + (1− θN)×φN)× S [FNA(t)× P(t)× (NAS(t) +NAI(t)),Nhost]

−bWNNDI(t)

dAAS
dt

= −(1− θA)× S [FNA(t)× P(t)× (AAS(t) +AAI(t)),Ahost] − bAAAS(t)

dAAI
dt

= −θA × S [FNA(t)× P(t)× (AAS(t) +AAI(t)),Ahost] − bAAAI(t)

dAD
dt

= S [FNA(t)× P(t)× (AAS(t) +AAI(t)),Ahost]

dHS
dt

= −
(
1−

[
pkN × qkA

])
HS(t) − bHHS(t)

+ [aH − sG (HS(t) +HI(t) +HR(t))] (HS(t) +HI(t) +HR(t)) + δHR(t)

dHI
dt

=
(
1−

[
pkN × qkA

])
HS(t) − (bH +α+ σ)HI(t)

dHR
dt

= σHI(t) − (bH + δ)HR(t) (5.15)
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Initial conditions at the start of each year:

LA(0) = aTAD(52); LDS(0) = 0; LDI(0) = 0; NAS(0) = LDS(52); NAI(0) =

LDI(52); NDS(0) = 0; NDI(0) = 0; AAS(0) = NDS(52); AAI(0) = NDI(52); AD(0) =

0; HS(0) = HS(52); HI(0) = HI(52); HR(0) = HR(52).

5.2.3 Expanding the models to represent systems with multiple viraemic transmission

host types

The modelling approach created so far is capable of dealing with systems with

multiple tick hosts, however; so far only systems with one competent transmission

host type have been considered. However, there are plenty of systems with

multiple competent transmission hosts. For instance, whilst grouse were the

only competent transmission hosts of LIV in the model presented in chapter 4,

sheep are another potential competent transmission host of LIV, whilst hares

can act as non-viraemic transmission hosts as ticks can transmit LIV through

co-feeding. Therefore systems with multiple competent transmission hosts are

highly plausible. This section concerns the modelling of systems with more than

one viraemic transmission host, for non-viraemic transmission, see section 5.2.4.3.

5.2.3.1 Modelling systems with two competent transmission hosts of the same pathogen

The first system considered is one where both transmission hosts can carry the

same strain of the pathogen; i.e. a tick which picks up the infection from one

host would be able to transmit it to the second host. The addition of a second

competent transmission host does not require a huge change from the LN or

LNA models; rather, there would just need to be introduced three new classes

to represent the additional host’s susceptible, infected and recovered classes.
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LDS LDI 

NAS NAI 

NDS NDI 

AAS AAI 

AD 

H1S 

H1I 

H1R 

H2S 

H2I 

H2R 

Figure 5.1: Schematic diagram displaying the progression routes for the model with
two transmission hosts for the same pathogen. L, N and A refer to the three
tick instars (larva, nymph and adult), H1 and H2 represent the two separate
transmission host types, and S, I and R represent different infection statuses
(susceptible, infected and recovered). Solid lines represent a progression to
the next class, whilst dashed lines represent infected hosts transmitting the
pathogen to ticks, and dotted lines represent infected ticks transmitting to
hosts.

A schematic diagram demonstrating this system and the transmission routes

involved is presented in figure 5.1.

When considering the interactions which result in the pathogen being trans-

mitted, care will be needed to ensure that infected ticks are not counted twice

when calculating how many of the two host groups pick up the pathogen.

5.2.3.2 Modelling systems with two competent transmission hosts of separate strains

The system becomes more complex when modelling a system where there are

two competent transmission hosts, each of which can carry a different strain
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of a pathogen. An example of this is modelled as a case study in section 5.3,

where the two transmission host types are small mammals and passerine birds,

each of which carry different strains of B. burgdorferi s.l. (B. afzelii and B. garinii

respectively).

Firstly, a system where the two hosts only feed larval and nymphal ticks is

considered. As ticks will not be able to transmit the pathogen when feeding

as adults, their infection status after feeding as nymphs is not considered (as

explained in chapter 4). This means that ticks only have one opportunity to

become infected within the model, when feeding as larvae (whilst uninfected

nymphs could feed on an infected host, the model does not consider their

infection status at this stage). Similarly, ticks will only have one opportunity to

infect a host, when feeding as infected nymphs. Therefore, this means that no

tick can carry both strains of the pathogen at the same time within the model.

The simplest way to model such a system is to model each strain separately,

using the LN model. As the groups of ticks with each strain are mutually exclusive,

the total number of infected ticks can be found by simply adding the total ticks

infected with each strain. This logic applies to systems with more than two

transmission hosts as well, as long as each host only feeds larval and nymphal

ticks.

However, when one or both transmission hosts can feed all three tick stages,

the modelling required becomes more complex, as ticks will have two chances to

pick up (at the larval and nymphal stage) and pass on (at the nymphal and adult

stages) the pathogen. This means that ticks carrying both strains of the pathogen

are a possibility, and therefore both strains have to be contained within the same

model. To model this system, all infected tick classes will require splitting into

infection classes for each strain. The logic which dictates that larvae can only pick
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LA LDS 

LDI 

LDJ 

NAS 

NAI 

NAJ 

NDI 

NDIJ 

NDS 

NDJ 

AAI 

AAIJ 

AAS 

AAJ 

AD 

Figure 5.2: Schematic diagram displaying the progression routes for the model with
two transmission hosts for two separate strains of the same pathogen. For
tick dynamics only, where the subscript I denotes those which have one
strain of the pathogen, and those with the subscript J have the other. Hosts
are influenced in the same way as in figure 5.1, except that H1 can only be
infected by I or IJ ticks, and H2 can only be infected by J or IJ ticks. Dashed
lines represent tick progression routes which are influenced by H1, and dotted
lines represent routes influenced by H2.

up one strain, as they only feed once, remains the same within the two strain

model. Therefore the only tick states which will require the addition of a double-

infected class will be developing nymphs and questing adults. A schematic of

this system is presented in figure 5.2. As before, the main consideration required

in expanding the model in such a way is avoiding over- or under-counting the

influence of transmission routes.

This model can be used for systems where both transmission hosts only feed

larval and nymphal ticks. This would be necessary if alternate transmission routes

such as transovarial transmission (see section 5.2.4.1), non-viraemic transmission

(see section 5.2.4.3) or ingestion of infected ticks (see section 5.2.4.4) are included,

as the infection status of adult ticks will then become relevant.
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5.2.4 Incorporating alternate routes of transmission

There are multiple mechanisms for pathogen transmission which have not yet

been included in the modelling systems presented in this thesis. The inclusions

of these are highly likely to change the behaviour of the model, and in particular

could reduce the dilution effect caused by increasing deer densities predicted by

the LIV model presented in chapter 4.

5.2.4.1 Adapting the model for systems with transovarial transmission

The mechanism which would be more straightforward to implement would be

transovarial transmission, whereby the pathogen is passed from the adult female

ticks to her larval tick offspring via eggs. Incorporating transovarial transmission

into the model would be appropriate for tick-borne pathogen systems such

TBE virus (Danielova and Holubova, 1991) and Babesiosis (Howell et al., 2007)

where a small proportion of unfed larvae are infected because their mothers

were infected and past on the pathogen via the eggs. In order to implement

transovarial transmission within the model, the developing adult and questing

larvae stages would have to be split into susceptible and infected classes. As

density dependence is not considered for tick births, and assuming infection

does not impair the breeding capabilities of ticks, the number of infected larvae

at the start of a new year would simply be given by the tick birth parameter

(aT ) multiplied by the number of infected developing adults and the transovarial

transmission rate (represented by ζ), the latter of which would be the estimated

proportion of larvae born from an infected adult which inherit the pathogen. The

previous calculation, but with (1− ζ) replacing ζ, gives the number of uninfected
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larvae born from infected adults, which is added to the births from uninfected

adults to give the total number of uninfected larvae at the start of a new year.

5.2.4.2 Adapting the model for reduced transmission rates

A common assumption made across the models within this thesis is that all bites

by a tick on a competent transmission host, where one is infected and the other

susceptible, always results in transmission of the pathogen. In the absence of any

empirical information on this infection coefficient, 100% is assumed for simplicity

and is consistent with most other modelling of LIV and B. burgdorferi s.l. systems,

such as Gilbert et al. (2001), Porter (2011) and Zhang and Zhao (2013). However,

it is not difficult to adjust the model to take into account transmission rates

below 100%. Let the host-to-tick transmission rate be represented by β and let

the tick-to-host transmission rate be represented by λ. Firstly, when considering

host-to-tick transmission, the number of uninfected ticks feeding on an infected

host is simply multiplied by β to give the total number of ticks picking up

the pathogen from feeding. Secondly, tick-to-host transmission was previously

modelled by considering the negative binomial distribution of infected ticks on

uninfected hosts. This can be updated to incorporate a lower transmission rate

by multiplying the number of infected ticks within this calculation by λ. This

essentially changes the calculation from estimating the distribution of infected

ticks feeding on susceptible hosts to estimating the distribution of infected tick

bites which would successfully transmit the pathogen on susceptible hosts. When

β and λ are set to 1, these mechanisms behave equivalently to those in the

previous models before these parameters were introduced.
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5.2.4.3 Adapting the model for non-viraemic transmission between co-feeding ticks

Transmission of the pathogen between ticks co-feeding on the same host through

saliva can be an important route of transmission (Jones et al., 1997), and has

been observed in pathogen systems such as TBE virus in rodents (Labuda et al.,

1993), LIV in mountain hares (Jones et al., 1997) and Thogoto virus in guinea

pigs (Jones et al., 1990). A model created specifically to explore the dynamics of

LIV transmission between ticks co-feeding on mountain hares was created by

Norman et al. (2004), whereby a new parameter was introduced to the model

used in Norman et al. (1999) for co-feeding, dependent on the presence of hares,

susceptible ticks and infected ticks. Similar studies were also conducted by

Gilbert et al. (2001) and Laurenson et al. (2003). In order to implement a co-

feeding transmission mechanism to the modelling framework presented within

this thesis, a similar mechanism can be adopted; the model already provides a

way of calculating the numbers of uninfected and infected ticks feeding on a

given host species, this would then need to be coupled to a parameter reflecting

the co-feeding transmission rate for ticks.

5.2.4.4 Adapting the model to incorporate host infection from the ingestion of ticks

An additional transmission mechanism that could be included is the ingestion

of infected ticks by newly-borne grouse chicks, which has been estimated to

potentially account for 73-98% of LIV infections in first-year grouse (Gilbert et al.,

2004). Porter (2011) developed a model with separate equations to represent

feeding chicks. A similar structure can be incorporated into the model presented

in chapter 4, where a new class is created to represent grouse chicks, which can be

defined as grouse young enough to feed on invertebrates, which is approximately
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3 weeks (Porter, 2011). A parameter can then be implemented to represent grouse

chicks moving to the infected grouse state through ingesting infected ticks, whilst

providing an estimation of ticks which are killed from being ingested. Such a

system would also require a parameter to represent the proportion of grouse

chicks maturing beyond a diet including invertebrates. As adult ticks are eaten

by grouse chicks, their infection status is relevant for pathogen transmission. This

means that the infection status of adult ticks has to be recorded within the model;

therefore the LNA model would have to be used, rather than the LN model.

Porter (2011) found that including an ingestion mechanism of infection led to

varying outcomes depending on parameter values; the model in Porter (2011)

predicted that the ingestion route of infection could lead to increased pathogen

persistence, or alternatively the increased tick mortality could reduce pathogen

persistence. Therefore it is not certain what effect ingestion would have on the

model presented in chapter 4. The ingestion model in Porter (2011) did predict

that introducing ingestion resulted in the dilution effect (whereby very high

deer densities cause a decline in LIV prevalence) being less apparent (i.e. very

high deer densities no longer caused a decline in LIV prevalence). This effect of

ingestion on the dilution effect of deer seems likely to be predicted within the

modelling framework presented within this chapter also, since it would provide

a secondary opportunity for infected ticks to transmit the pathogen to grouse,

therefore reducing the likelihood of infected tick bites being ‘wasted’ on deer.

5.2.5 Incorporating treatment of tick hosts

The treatments that can be applied to tick hosts can be placed into two categories.

The first are vaccines, which prevent a host from carrying the pathogen. The

second are acaricides, which are poisonous to ticks and are used to reduce the tick
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population. Both have been used to reduce tick-borne pathogen prevalence, and

this section considers how they each would be represented within the modelling

framework.

Mathematical models have been used to predict the impact of treatments on

reducing disease risk (Porter, 2011), and the modelling framework presented in

this chapter could be used in the same way by using the tools explained in this

section.

5.2.5.1 Treatment of hosts with vaccines

Vaccinating hosts against pathogens is a commonly used method used to help

control disease of livestock, companion animals and humans. For example, in

areas with endemic LIV sheep are often vaccinated against LIV to increase

survival in case of infection. In order to model vaccination the only change

required would be a parameter introduced to represent hosts moving from the

susceptible class to the recovered (which acts the same as an immune class).

If the application of vaccination varies throughout the year, this parameter can

be replaced with a function, such as the piecewise function for grouse births used

within chapter 4.

5.2.5.2 Treatment of hosts with acaricide

There are two ways in which acaricide can be used in a tick-borne pathogen

system: either treating the competent transmission host or treating an incompetent

transmission host. To take the example of LIV in the UK, these two approaches

can be represented by the method of treating sheep (a competent transmission

host) with acaricide (Laurenson et al., 2007) or by treating red deer (Cervus elaphus;
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an incompetent transmission host), a method which is not legal within the UK,

but has been modelled theoretically by Porter et al. (2013a).

For treating both competent and incompetent transmission hosts, the method

of calculating the effect of acaricide treatment will fundamentally remain the

same. In each case, the total ticks of a given stage feeding are multiplied by

equation 5.16. Note that equation 5.16 is specific for larvae, for other stages the

equation is updated for the relevant parameters.

treated host density× host larval capacity
Lhost

(5.16)

This is a similar method to that which was used to calculate the proportion of

blood meals available to larvae that come from infected hosts (φ) in chapter 4.

This calculation gives the number of ticks which will feed on a treated host in a

given week, which can then be multiplied by the effectiveness of the acaricide (if

below 100%) to provide the total ticks which will be killed by the treatment.

The only difference which will distinguish competent and incompetent trans-

mission hosts is that in order to be effectively modelled, a fourth class for the

competent transmission host will need to be required to represent those which

have been treated, along with a parameter or function to represent the treatment

being applied. For incompetent transmission hosts, the treated and non-treated

host densities can be taken as constant.

A variety of direct and indirect treatment methods within a LIV system have

been modelled including treating competent transmission hosts in red grouse

(Porter et al., 2013b) and sheep (Porter et al., 2011), as well as incompetent

transmission hosts red deer (Porter et al., 2013a). The outcome of these were

124



highly dependent on the densities of non-treated hosts, which is likely to be

reflected if implemented in the model presented in chapter 4, given that the

output of the LIV model was highly influenced by host densities.

5.2.6 Summary

The tools outlined above cover a wide variety of behaviour within tick-borne

pathogen systems. By taking one of the two basic models outlined, it should

be possible to develop an environmentally-dependent model for a tick-borne

pathogen system by appending the appropriate mechanisms. If there are elements

of the basic models which are not present within the pathogen system being

modelled, then it should be possible to set their values to 0 in order to remove

them from the system. The next stage for this framework is to use the case study

of B. burgdorferi s.l. in Scotland in order to demonstrate how the framework can

be applied.

5.3 borrelia burgdorferi s.l . case study

To demonstrate how the modelling framework can be applied to a new tick-borne

pathogen system, a case study of Lyme borreliosis, the causative agent of which

is the B. burgdorferi s.l. complex, in Scotland is used.

5.3.1 Model development

There are multiple strains of B. burgdorferi s.l., which each have their own trans-

mission hosts. The model created will focus on the dynamics of B. afzelii and B.

garinii as these are the two strains most commonly found in Europe, including

the UK, and have the broadest geographic range (e.g. Margos et al. 2011) and,
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Parameter Small mammal
value

Passerine bird
value

Red grouse
value

aH 0.4615 [A] 0.1538 [A] 0.7175 [B]
sH

0.4423
c [C] 0.1474

c [C] 0.522
c [C]

bH 0.0192 [A] 0.0064 [A] 0.008 [B]
α 0 [D] 0 [D] 0 [D]
σ 0.01 [E] 0.01 [E] 0.01 [E]
Larva capacity 1.61 [A] 3.11 [A] 15

Nymph capacity 0.03 [A] 0.25 [A] 4

Adult capacity 0 [A] 0 [A] 0

Woodland density 11400 [A] 365 [A] 0

Plantation density 4250 [A] 35 [A] 0

Heather density 155 [A] 0 [A] 0, 50, 100

Montane density 0 [A] 0 [A] 20

Table 5.2: B. burgdorferi s.l. parameter table. The parameters used to adapt the LN model
to B. Burgdorferi s.l. dynamics. All unexplained parameters remain the same as
those used in chapter 4. Sources: [A] Weighted average values taken from all
species within this host group. The methodologies behind these calculations
are explained in the text; [B] Hudson (1992); [C] Chosen such that the host
density runs to its carrying capacity; [D] Gray (1998); [E] Wright and Nielsen
(1990).

for the purposes of this modelling exercise focusing on Scotland, are also the

most prevalent strains in Scotland: James et al. (2013, 2014) found that in Scotland

48% of infected nymphs carried B. afzelii and 36% carried B. garinii, and Millins

et al. similarly found 46% of infected nymphs carried B. afzelii and 29% carried B.

garinii in Scotland. Furthermore, these two strains make an interesting contrast

for modelling because they have different host systems: B. afzelii is maintained by

small mammals such as wood mice and bank voles, which act as the competent

transmission hosts (Hanincová et al., 2003a), whilst B. garinii is transmitted by

birds (Hanincová et al., 2003b; James et al., 2011). Within this model it is assumed

that these are the only two strains of B. burgdorferi s.l. and that the total B. bur-
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gdorferi s.l. risk is the sum of these two strains. This is obviously a simplifying

assumption and is made for ease of reference for the model predictions; empirical

data show that 75-84% of nymphs infected with B. burgdorferi s.l. carried either B.

afzelii or B. garinii (James et al., 2013, 2014; Millins et al.).

In both cases the hosts – small mammals and birds – are assumed to be not

adversely affected by carrying the pathogen (Gray, 1998). Both sets of hosts are

solely fed on by larval and nymphal ticks, with very few exceptions. As the

system features two hosts which only feed larval and nymphal ticks, then each

strain can be modelled separately using the LN model (as explained in section

5.2.3.2). Therefore, the infection status of ticks after the nymphal feeding stage –

that is, developing nymphs, active adults and developing adults – are not tracked,

as these are not involved in any transmission routes. In terms of human health

concern, adult ticks are large enough to be usually detected and removed before

the pathogen is passed on; therefore the main focus of these models is on the

density of active nymphs. As it is easier to record tick densities at the end of a

given year in the model, the measured tick density output used in these models

is the density of developing larvae at the end of the year, which is equivalent in

the model to the density of active nymphs at the start of the following year.

At this stage in the tick lifecycle, ticks will have only fed once, at the larval

stage. It follows that as the hosts of B. afzelii and B. garinii are mutually exclusive,

larvae are assumed in the model to carry at most only one strain of B. burgdorferi

s.l. This means the total density of infected larvae is the sum of the densities

of larvae infected with B. afzelii and those infected with B. garinii, and larvae

carrying both strains do not need to be considered. As explained below (sections

5.3.1.2 and 5.3.1.3) squirrels are hosts of both strains. However their density

relative to both small mammals and birds is far lower, so squirrels potentially
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carrying both strains will be rare. Therefore infected larvae with both strains

simultaneously are not considered. This means that for any model prediction of

the density of infected ticks (which is a proxy for risk level), the model can be

run twice, once parameterised for each strain, with the infected larvae summed

to give the overall Lyme borreliosis risk. Such an approach also means that the

strains can be analysed separately, with the predictions allowing the influence of

hosts to be considered.

Whilst none of the competent transmission hosts within the system are ad-

versely affected by carrying the pathogen (i.e. they do not get the clinical disease),

for ease of use the terminology of the model is kept the same. Therefore, hosts

carrying the pathogen in their bloodstream are still referred to as infected, and

those which no longer pass on the pathogen to ticks are referred to as recovered.

Recovery is still used to describe the transition between these two states for the

host.

The densities of the incompetent transmission hosts are kept the same as in

chapter 3. Therefore, within the model red deer have densities of 0.1 per km2 in

montane habitats, and 0, 5 and 15 per km2 in heather moorland (as explained

in chapter 3), mountain hares have densities of 8 per km2 in heather moorland

and 16 per km2 in montane habitats, and roe deer have densities of 4 per km2 in

mixed woodland and 2 per km2 in conifer plantation.

5.3.1.1 Tick parameterisation

The parameters governing tick behaviour are kept the same as in the LIV model

presented in chapter 4, meaning that of the mechanisms in the LN model, waning

immunity is absent. For most mechanisms, this is a fair assumption, since the

presence of B. burgdorferi s.l. in the system should have no effect on ticks them-
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Species Woodland
density (km2)

Non-woodland
density (km2)

Larval
burden
(per
host)

Nymphal
burden
per host)

Bank vole 5000 5 1.76 0.36

Common shrew 5000 100 0.39 0.08

Field vole 500 Negligible 1.37 0.28

Wood mouse 700 50 1.18 0.24

Grey squirrel 200 Negligible 13.20 7.75

Overall 11400 155 1.31 0.36

Table 5.3: The densities of the five species identified as important to B. afzelii persistence,
and their larval and nymphal burdens (adults were not found on the species
listed). The overall tick burdens are weighted by the woodland density of each
species. Sources are given in section 5.3.1.2.

selves. The only parameter unlikely to be identical for a new pathogen system

is the “aggregation parameter” (p) of nymphs upon a host (the nature of the

negative binomial distribution of tick burdens among hosts), since this parameter

could potentially differ between host species. Whilst research has shown that ticks

appear to have a negative binomial distribution when feeding on rodents (James,

2010) and passerine birds (James et al., 2011), there isn’t enough information to

parameterise p, therefore this value is kept at 0.2. The reasoning behind selecting

0.2 as the value for p in the LIV model was that this low value allowed the

pathogen to survive more freely, making it easier to compare different areas on

their suitability for sustaining the infection. This reasoning still applies to the B.

burgdorferi s.l. model.

5.3.1.2 B. afzelii and small mammal dynamics

The model assumes all small mammals have the same transmission competence

and the same tick burdens, so that all small mammal species are merged together
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into one host group in the model, termed “small mammal”. The small mammals

known to transmit B. afzelii comprise the bank vole (Myodes glareolus), common

shrew (Sorex araneus), wood mouse (Apodemus sylvaticus) (Hanincová et al., 2003a)

and grey squirrels (Sciurus carolinensis) (Millins et al., 2015). There is no inform-

ation on the transmission competence of field voles (Microtus agrestis), but for

the purposes of this model, here it is assumed that they can transmit B. afzelii.

Small mammal densities were revised from those estimated in chapter 3. This

revision also included finding values for small mammals in heather habitats,

which previously had been treated as too low to be significant (after Gilbert

et al. 2000), in order to understand the role they play in the prevalence of B.

afzelii in heather moorland. The Joint Nature Conservation Committee review of

British mammals (Harris et al., 1995) was used to find estimates of woodland and

non-woodland densities of the aforementioned small mammals, which can be

seen in table 5.3. The non-woodland densities are used as the estimates of small

mammal density on heather moorland.

Pisanu et al. (2014) gave tick counts on road-killed squirrels across France to

provide values for the average larval and nymphal burdens for squirrels, with no

adult ticks found. Meanwhile, tick counts for the remaining small mammal species

were taken from Gilbert et al. (2000), using the 98:2 split observed between larvae

and nymphs. These tick counts were then averaged, weighted by the woodland

densities of each species, to provide the larval and nymphal burden for the small

mammal group as a whole (table 5.3).

A variety of sources were used to find the birth rate of the small mammal

group. Bank voles were estimated to have 3-6 litters of 3-6 young per year, wood

mice 4 litters of 4-7 young, grey squirrels 2 litters of 2-6 young (Nottinghamshire

Wildlife Trust, 2016), common shrews were estimated to have 3-4 litters of 6
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young (The Wildlife Trusts, 2016b), whilst field voles were estimated to have

5-6 litters of 4-5 young (The Mammal Society, 2016). From this information, an

overall estimate of 4 litters of 6 young per year was taken, giving the total annual

birth per individual as 24, and a weekly birth rate of 0.4615. As the different

species had their litters at varying times across the year, birth was assumed to be

constant throughout the year.

The lifespan of grey squirrels is estimated to be between 2-5 years; however, for

the other species within the small mammal group, the lifespan is usually around

1 year (The Mammal Society, 2016). Since grey squirrels are the least abundant

of the five species (making up under 2% of the total small mammal density),

a lifespan of 1 year is taken for the small mammal group as a whole, which is

inverted to give a weekly mortality rate of 0.0192.

Since the small mammal group is an amalgamation of several species, each

with their own population cycles, the population is modelled to remain constant

across the year, rather than the seasonal method used for grouse within the model

presented in chapter 4. As small mammals are assumed to be not adversely

affected by carrying the pathogen (Gray, 1998), the seasonality will likely not

have as critical a role it had with grouse. This means infection-induced mortality is

not included in the B. afzelii model for small mammals. Similarly, the mechanism

for waning immunity is not included within the model, in the absence of evidence

suggesting recovered small mammals eventually become susceptible.

In order to derive a value for the recovery rate of small mammals, the infectivity

period is required. However, there is an overall dearth of research in this area

for the species covered by the small mammal group. Therefore, experiments by

Wright and Nielsen (1990) on white-footed mice (Peromyscus leucopus) in the USA

are used to estimate a weekly recovery rate of 0.01.
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Species Woodland
density (km2)

Non-woodland
density (km2)

Larval
burden
(per host)

Nymphal
burden
(per host)

Blackbird 50 Negligible 11.62 1.83

Chaffinch 75 Negligible 7.50 0.50

Dunnock 20 Negligible 2.15 1.44

Greenfinch 10 Negligible 1.01 0.07

Song thrush 10 Negligible 0.32 0.14

Grey squirrel 200 Negligible 13.20 7.75

Overall 11400 155 1.31 0.36

Table 5.4: The densities of the six species identified as important to B. garinii persistence,
and their larval and nymphal burdens (adults were not found on the species
listed). The overall tick burdens are weighted by the woodland density of each
species. Sources are given in section 5.3.1.3.

5.3.1.3 B. garinii and Bird dynamics

As with small mammals, the passerine bird host group is a combination of

multiple species. This group is treated as one species, with identical values

for parameters such as tick burdens, birth and mortality. In mixed woodland

and coniferous plantation habitats, the bird species considered in the model

are blackbirds (Turdus merula), chaffinches (Fringilla coelebs), dunnocks (Prunella

modularis), greenfinches (Chloris chloris) and song thrushes (Turdus philomelos),

identified as the key tick hosts by James et al. (2011) and can each carry B. garinii.

Additionally, grey squirrels can also carry B. garinii (Millins et al., 2015); therefore

despite not being a bird, grey squirrels are included in the passerine bird group.

As with small mammals, the densities of these species were re-evaluated from

those used in previous models within this thesis. The results of the Bird Breeding

Survey (British Trust for Ornithology, 2016c) were used to find estimates of the

density of each bird species within the passerine bird group. The maximum

values for Scotland were used; since it is in woodland where passerine birds are
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at their most dense. These are shown on table 5.4. These densities were used to

weight the tick counts found by James et al. (2011) to derive larval and nymphal

burdens for the passerine bird group (table 5.4).

The same method as with small mammals is used to find the birth rate for the

passerine bird group. Blackbirds were estimated to have 2-3 broods of 3-5 young,

song thrushes 2-3 broods of 3-5 young (RSPB, b), chaffinches 1 brood of 4-5 young

(British Trust for Ornithology, 2016a), dunnocks 2-3 broods of 4-5 young (British

Trust for Ornithology, 2016b) and greenfinches 2-3 broods of 3-8 young (British

Garden Birds, 2015). From this, an estimate of two clutches a year of four young

is used, giving an annual total birth per individual of 8 and a weekly birth rate

of 0.1538.

The lifespan of blackbirds, chaffinches and song thrushes is taken as 3 years,

whilst for dunnocks and greenfinches it is taken as 2 years (The Wildlife Trusts,

2016a). Factoring in the longer lifespan of grey squirrels, the lifespan used for the

passerine bird group is 3 years, which is inverted to give a weekly mortality rate

of 0.0064.

For heather moorland and montane habitats, the aforementioned passerine

birds are assumed in the model to occur at insufficient densities to have a signi-

ficant impact on B. garinii prevalence. However, pheasants can act as a competent

transmission host for B. burgdorferi s.l. (Kurtenbach et al., 1998a,b). Unfortunately,

there is not sufficient information on pheasant dynamics to include them within

the model. Therefore, red grouse are used as the competent transmission host of

B. garinii for heather moorland and montane habitats; as they are closely related

game birds so seem likely to also be transmission hosts. The parameters and

mechanics not related to infection remain the same as those used in chapter 4,

including the use of a seasonal birth function.
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The model assumes that neither passerine birds nor grouse suffer any increased

mortality when infected (Gray, 1998), therefore infection-induced mortality is

not included within the model. In the absence of any alternative evidence, the

weekly recovery rate for both is set to 0.01, as is used with small mammals, whilst

waning immunity is also absent from the model.

5.3.2 Creating model predictions

The models were run under the same conditions as the LIV model presented in

chapter 4. Therefore, each model was run for 100 years on Mathematica Version 9

(Wolfram Research Inc., 2013) for each of the following climate warming scenarios,

as per emissions scenarios predicted by UKCIP (Jenkins et al., 2009):

• Current temperatures (Now)

• Current temperatures + 1°C (Low)

• Current temperatures + 2.5°C (Medium)

• Current temperatures + 4°C (High)

For each simulation of the model, an initial infection rate among nymphs of

0.1 was used. The number and proportion of infected larvae at the end of the

simulations is used as a measure of the pathogen spread, which is equivalent

to the number and proportion of infected nymphs at the start of the following

year. Nymphs are the instar most likely to infect humans (as unfed larvae will

not have picked up the infection yet, and adults are easier for humans to find

and remove), and therefore are the best proxy for disease risk within the model.

Where small mammals were used as the competent transmission host, this reflects

the prevalence of B. afzelii, and when birds (passerine or grouse) are used, B.
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garinii is reflected. The overall abundance of B. burgdorferi s.l. is taken to be the

sum of these. The density of infected ticks is the ubiquitously used indicator

of tick-borne disease risk; therefore, as it is more useful for the outputs to be

relevant to public health risk, the primary output from the model is the density

of infected larvae (per km2) at the end of running the model for 100 years, rather

than the prevalence of the infection among larvae.

To get an overall impression of model predictions, the density of infected larvae

(for B. afzelii, B. garinii and the two combined, which is taken as the density of

larvae infected with B. burgdorferi s.l.) are mapped across Scotland for each of

the four climate warming scenarios. The prevalence of B. afzelii, B. garinii and B.

burgdorferi s.l. are also mapped across Scotland. Mapping was conducted using

ArcGIS 10 (Environmental Systems Research Institute, 2014), the full details of

which can be found in appendix A. In order to understand the influence of habitat

types on model output, the density and prevalence of infected larvae in each

habitat is found and plotted.

5.3.3 Model predictions and discussion

By considering the maps shown in figure 5.3, which demonstrate the total density

of infected developing larvae at the end of the year, it is clear that with each

climate warming scenario, the model predicts a small but perceptible rise in

the number of developing larvae carrying B. burgdorferi s.l. (i.e. B. garinii plus B.

afzelii). In particular, the central belt of Scotland sees a number of areas where

climate warming is associated with a noticeable increase in the predicted density

of infected developing larvae. By comparing the strain-specific maps (figure 5.3

middle and bottom rows), it can be seen that climate warming is predicted to

cause virtually no change in the density of developing larvae infected with B.
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0 1 80000 N/A Water 

Figure 5.3: Maps displaying the predicted density (per km2) of larvae carrying B. burg-
dorferi s.l. (top) or its two strains B. afzelii (middle) or B. garinii (bottom). Dark
grey cells indicate where the model was not run due to unsuitable habitats
such as urban or arable land, and white cells indicate where the pathogen is
predicted to die out. The maps display the predictions when the model is run
for (from left to right) current temperatures, a 1°C increase, a 2.5°C increase
and a 4°C increase.

garinii, suggesting that the model predictions that temperature-driven change in

Lyme borreliosis risk is led by small mammal-mediated B. afzelii prevalence. This
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Figure 5.4: Maps displaying the predicted pathogen prevalence (proportion of infected
developing larvae) for B. burgdorferi s.l. (top) or its two main strains B. afzelii
(middle) or B. garinii (bottom). Dark grey cells indicate where the model
wasn’t run due to unsuitable habitats, and white cells indicate where the
pathogen is predicted to die out.

may be due to the small mammal density being far higher than that of passerine

birds (11400 per km2 versus 365 per km2 in mixed woodland, the densest habitat

for both host groups), providing greater scope for an increase in disease risk with

climate warming.
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When examining the changes in the proportion of infected larvae (figure 5.4),

it can be seen that B. burgdorferi s.l. prevalence in developing larvae will decrease

with climate warming. This implies that whilst the density of infected larvae will

increase, this will be outweighed by the increase in the density of uninfected

larvae. In other words, with higher temperatures, the chances of an individual

tick bite being from an infected tick will decrease, however the overall chance of

being bitten by an infected tick will increase because there are more infected ticks.

Therefore, the overall disease risk increases, as the density of infected larvae is

taken as the primary measure of disease risk. This time, the strain-specific maps

show that both B. afzelii and B. garinii both show a similar decrease in prevalence

with rising temperatures (figure 5.4 middle and bottom).

These predictions can be broken down into habitats types in order to see

which habitats are predicted to be most affected by rising temperatures (figure

5.5). It can be seen that for all habitat types, the predicted overall trend is for

the density of infected developing larvae to go up as temperatures increase,

despite B. burgdorferi s.l. prevalence among larvae to decrease. By considering the

density of infected larvae within each habitat, it is clear that there is a significant

difference in magnitude between the upland open habitats (heather and montane)

habitats and the wooded habitats (plantation and woodland) habitats. Whilst the

prevalence of B. burgdorferi s.l. in developing larvae is of a similar scale (between

3-6% for upland open habitats and between 10-14% for wooded habitats), the risk

to public health is far greater in wooded habitats, where the density of infected

developing larvae is more than a factor of 10 higher than in upland open habitats.

As the density of infected developing larvae (equivalent to the density of

infected nymphs at the start of the following year) is used as the primary indicator

of disease risk within the model, table 5.5 shows how this predicted disease risk
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Figure 5.5: The predicted effect of habitat type and climate warming scenario on density
of infected larvae (per km2) (a) and pathogen infection prevalence in larvae
(b) for B. afzelii plus B. garinii combined, which is taken as a proxy for B.
burgdorferi s.l. overall. Heather A areas are those with high grouse and no deer,
Heather B areas are those with low grouse and low deer, whilst Heather C
areas are those with no grouse and high deer. Plantation refers to cells which
are classified as conifer plantation, whilst Woodland refers to cells which are
classified as mixed woodland.

increases under each climate warming scenario for each habitat type, as well as

the overall change. It can be seen that for the high climate warming scenario,

disease risk is predicted to increase by over 50% for most habitat types. With the

exception of a very small decrease in disease risk for heather moorland areas
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Climate warming scenario Low Medium High
Heather A -2% 13% 58%
Heather B -1% 2% 23%
Montane 52% 59% 64%
Woodland 11% 27% 57%
Plantation 10% 27% 50%
Overall 9% 26% 52%

Table 5.5: The change in predicted disease risk (measured as the density of infected
developing larvae) for each habitat type under the climate warming scenarios,
measured against the predicted disease risk for current climates. Heather A
refers to heather moorland areas with high grouse and no deer and Heather
B refers to heather moorland areas with low grouse and low deer. Heather C
areas, which had no grouse and high deer, always displayed no disease risk.

under the low climate warming scenario, disease risk increases with climate

warming.

These model predictions highlight the difference between prevalence and

density of infected ticks. While prevalence should increase with the relative

densities of transmission hosts, disease risk (the density of infected ticks) is a

function of both prevalence and tick density. Therefore, conditions that promote

tick survival and activity, such as increased temperature (Tomkins et al., 2014;

Gilbert et al., 2014) and increased deer density (e.g. Gilbert et al. 2012) may

increase disease risk even though these factors do not directly increase pathogen

transmission. Outputs such as the model predictions provided here allow for

both key parameters to be predicted (i.e. prevalence and risk).

A previous recent publication (Li et al., 2016) had similar aims to that of the

case study in this chapter, namely to use an environmentally-dependent model to

predict Lyme borreliosis risk across Scotland. Both studies looked at the density

of infected nymphs as the main disease risk indicator across a variety of climate

warming scenarios.
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Li et al. (2016) took a very different modelling approach, using an agent-based

model, in comparison to the coupled differential equations used within this

chapter. However, there are similarities in how each model’s predictions were

influenced by environmental factors. Both models have questing dependent on

temperature, and feeding success on host density. However, the model created by

Li et al. (2016) also treats interstadial development as dependent on temperature,

something which is not included explicitly within the models used in this thesis.

However, the emergence function within the models in this thesis is temperature-

dependent, and as this affects when ticks become available to quest in a new

stage, this can be seen as a proxy for interstadial development. The model created

by Li et al. (2016) includes seasonal variation in host densities, whilst in the

model in this chapter these are kept constant. Seasonal variation can be seen

as a more realistic assumption, although as highlighted earlier, care must be

taken as different species have different breeding patterns. The study by Li

et al. (2016) considers shorter-term predictions than those made in this thesis,

and looks at the patterns of disease risk across the year. Therefore, including

seasonal variation of hosts is more appropriate for this study than for the model

presented in this chapter. The influence of hosts is very similar between the

two modelling approaches; both model hosts as being able to feed the different

tick instars in different rates (for example, adult ticks are more likely to feed

on deer than larval ticks are), and the densities of hosts varies in the separate

habitat types. Whilst migration of hosts and ticks is not explicitly considered

in this thesis, this is included in the model by Li et al. (2016). Overall, the two

models have similar approaches to modelling B. burgdorferi s.l. across Scotland.

The significant mechanistic differences between the models are primarily a result

of the slightly different aims of the two studies, specifically that the study by
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Li et al. (2016) made shorter-term predictions of disease risk, compared to the

longer-term predictions made in this chapter.

When considering the model predictions, Li et al. (2016) focused on the impact

of elevation on disease risk, finding that higher altitudes reduced the disease

risk. Whilst altitude is not explicitly measured in the model output in this

chapter, the montane habitats by definition are at a high altitude, and display

a negligible disease risk under any climate warming scenario. Additionally, Li

et al. (2016) found that for each of their climate warming scenarios disease

risk increases, a prediction shared in this chapter. When considering the spatial

distribution of the predictions made by Li et al. (2016), no clear pattern (other

than the aforementioned effect of altitude) can be observed; the four sites where

the highest disease risk is predicted are at extremely different latitudinal and

longitudinal locations in Scotland: Oban (midway up the western coast), Dumfries

(close to the southern coast), Inverness (in the highlands, close to the northern

coast) and Perth (central, close to the eastern coast). The only trend that be seen

from these locations is that they are all reasonably close to the coastline. However,

locations such as Thurso (on the northern coast), Golspie (on the eastern coast)

and Thainstone (close to the eastern coast) are three of the four sites predicted to

have the lowest disease risk. Therefore, as the predictions made in this thesis do

not focus on individual locations, it is difficult to directly compare the results to

those of Li et al. (2016).

5.3.4 Sensitivity analysis

In order to test the sensitivity of the B. burgdorferi s.l. model to its parameters, the

two methods presented in Watts et al. (2009), described below, are used.
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In both cases, the model is run for the warmest woodland habitat group (W3,

full explanation in appendix A) under the medium climate warming scenario

(2.5°C). The output measured for both methods is the density of infected larvae

after the model has been run for 100 years.

5.3.4.1 Method 1

In order to test which parameters had a disproportionate influence on the model

predictions, each parameter within the model was altered by ±10% in turn, with

the change in model output recorded (table 5.6).

The parameters with the most influence on model predictions are those affect-

ing the density of infected hosts available for larvae to feed on. This includes

parameters for the local minimum temperature (a) and the temperature threshold

for larvae to begin questing (TL1), both of which limit when larvae can begin

questing for blood meals. Also important are the basic host dynamic paramet-

ers, such as birth (aH) and natural mortality (bH), which influence the number

of available meals for larvae. Parameters pertaining to the infectivity of hosts,

such as the recovery from infection (σ) and the parameter for the nature of tick

aggregation on hosts (p) have a large effect, since they determine how many

hosts become infected and for how long they can pass on the pathogen to larvae.

Most important, however, is the number of nymphs hosts can feed (hN), which

decreases the number of infected larvae by 23.4% with just a 10% decrease in

hN. This parameter determines how effectively infected nymphs can pass the

pathogen onto hosts and appears to be the most influential in the density of

infected larvae.

Of the parameters listed above, the majority change the model output by a

disproportionate amount (i.e. by more than the 10% that the parameters were
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Parameter Decrease of 10% Increase of 10%
a -5.2% +6.8%
b -2.6% +2.0%
TL1 +10.9% -8.7%
TL2 +1.0% -1.0%
TNA1

TNA2

bL

bN

bA

bWL +2.6% -2.5%
bWN

aT

w +1.7% -1.8%
bH +9.8% -11.1%
aH -11.3% +11.3%
σ +10.8% -10.1%
sH +12.1% -9.9%
Initial infection of nymphs
p +12.5% -12.8%
hL -10.2% +10.1%
hL -23.4% +19.1%

Table 5.6: The change in predicted infected larvae density when each parameter within
the model is altered by ±10%. Only changes larger than ±1% are shown, and
those with an absolute value greater than ±10% are highlighted in bold. The
parameter definitions are given in table 5.1.

changed by), highlighting how sensitive the model is to parameters related to

pathogen transmission.

5.3.4.2 Method 2

For an alternative view of the effect each parameter has on model output, the

model was run 1000 times with each parameter randomly varied by up to ±1%.
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Parameter Correlation
a 0.180
b 0.062

TL1 -0.264
TL2 -0.020

TNA1 -0.059

TNA2 -0.046

bL -0.004

bN -0.037

bA -0.045

bWL -0.085

bWN 0.014

aT -0.011

w -0.049

bH -0.294
aH 0.293
σ -0.284
sH -0.303
Initial infection of nymphs 0.032

p -0.345
hL 0.293
hL 0.605

Table 5.7: Pearson’s correlation coefficient between the parameters in the model and the
total number of infected larvae, after the model was run 1000 times, with each
parameter altered by ±1%. Correlations with an absolute value larger than 0.1
are highlighted in bold. The parameter definitions are given in table 5.1.

The correlation between the parameter values used and the number of infected

larvae was then used to test which parameters explained the most variation in

the model output. These correlations are shown in table 5.7.

It is unsurprising that the same parameters highlighted by Method 1 had the

highest correlation with infected larva density. Once again, the nymphal burden

of hosts (hN) is the parameter with the largest correlation with infected larva
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density, at 0.605, followed by the tick aggregation parameter (p) with a negative

correlation of 0.303. These are also the only two parameters which explain over

10% of the variance within the output, as hN has an R2 value of 0.366, whilst p

has an R2 value of 0.119.

5.3.4.3 Sensitivity analysis summary

It is clear that the model created for B. burgdorferi s.l. dynamics is most sensitive

to parameters which dictate the number of available infected blood meals for

larvae.

It should be noted that the values of some of these parameters, such as the

recovery rate (σ) and the temperature at which larvae emerge (TL1) are based

on few empirical data, whilst parameters such as the nymphal capacity of hosts

(hN), host birth (aH) and host mortality (bH) are the result of multiple species

having their demographies grouped together into a weighted average. Therefore

the predictions from this B. burgdorferi s.l. model are likely to be not as robust

as those from the LIV model (chapter 4). In order to develop a B. burgdorferi s.l.

model with which more confidence can be placed, more work needs to be done

to produce more concrete parameter values. Specifically, the sensitivity analysis

indicates that the parameters which are based on little empirical evidence, yet

are important in influencing the model output, are recovery from infection (σ)

and the nature of the aggregation of ticks on hosts (p). The latter of these can be

estimated from counts of ticks on hosts, specifically taking note of the number

of hosts with no ticks present. The recovery rate is likely to require specific

laboratory experiments (such as those conduced on white-footed mice by Wright

and Nielsen (1990) in order to find an estimate for the value.
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5.4 summary

The aim of this chapter was to extend the LIV model from chapter 4 into a

modelling framework, which can be adapted for other tick-borne pathogen

systems. By introducing new mechanisms to a generalised version of the LIV

model, such a framework was created. This framework was then used to create a

model reflecting the dynamics of B. burgdorferi s.l., the agent of Lyme borreliosis.

Adaptations to the LIV model were described to help provide the tools neces-

sary to create models of other tick-borne pathogen systems as well as modifying

the LIV model to incorporate further infection routes, additional hosts and control

methods beyond those investigated thus far in this thesis. Specifically, this chapter

described how the modelling framework could accommodate more than one

transmission host type, alternative routes of transmission and the treatment of

tick hosts.

As section 5.3 showed, re-parameterising the model to model B. burgdorferi

s.l. dynamics is achievable. This exercise highlighted the need for more accurate

and detailed empirical information on the length of time that transmission hosts

can pass on the pathogen to ticks and the nature of the distribution of ticks on

hosts for more accurate parameterisation and more robust model predictions.

Whilst the uncertain nature of many of the parameter values used means that

the quantitative accuracy of the predictions presented are uncertain, adapting

the LIV model to B. burgdorferi s.l. is still informative for predicting general

trends and invaluable in identifying gaps in empirical knowledge that are now

needed for future model accuracy. For example, the model predicts that whilst

the B. burgdorferi s.l. prevalence in ticks may decline with climate warming, a

temperature-driven increase of tick populations means that the density of infected

ticks (the key proxy for disease risk) is predicted to increase. Overall, the model
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predicted that the Lyme borreliosis risk across Scotland would increase by over

50% under the highest climate warming scenario.

The creation of a B. burgdorferi s.l. model showed that it was possible to adapt

the modelling framework to reflect the dynamics of a new tick-borne pathogen

system, and the predictions matched those of a completely different modelling

approach of the same Lyme borreliosis system in Scotland (Li et al., 2016). This

model adaptation, while not validated with empirical data due to the temporal

nature of climate change, is of use to policy on Lyme borreliosis awareness cam-

paigns and mitigation strategies, and highlights gaps in our empirical knowledge

to guide further research.

148



6
D I S C U S S I O N

The aim of this thesis was to predict the impact climate change will have on tick-

borne disease risk across Scotland, specifically Louping-ill and Lyme borreliosis.

To this end, a novel modelling framework, which factored in a dependency on

environmental factors, was developed. This framework utilised GIS tools and

climate warming predictions to enable predictions of how disease risk will change

across both space and time. This chapter summarises the modelling work done

within this thesis, highlights the main findings, and discusses how they relate

to the thesis aims and the global context. An analysis of the limitations of the

modelling framework is provided, along with a discussion of the potential next

steps to address these. The future research required to fill the gaps in knowledge

highlighted by this thesis is also discussed.

6.1 developing the modelling framework

Previous modelling of tick and tick-borne pathogen systems were reviewed

(chapter 2), identifying our current knowledge gaps in this area. It was found

that one of the main areas where future modelling should focus was on the

spatial patterns of disease risk, and the combination of environmental data with
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mechanistic modelling. The modelling work in this thesis aimed to provide new

insight by addressing these gaps.

6.1.1 Creating a novel environment-dependent tick lifecycle model

The first step in the development of the framework was to introduce an original

model for the lifecycle of the sheep tick (Ixodes ricinus), incorporating the key

environmental factors of temperature, host density and habitat. The model in-

troduced in chapter 3 particularly focused on the mechanism for ticks finding a

blood meal, which was broken down into three parts: emerging from overwinter-

ing, questing for a meal, and successfully finding a host. The proportion of ticks

to have emerged was represented by a linear function between two temperature

thresholds, which were based on empirical observations. Laboratory experiments

by Gilbert et al. (2014) were used in order to find a function representing the pro-

portion of emerged ticks questing for a given temperature. These two functions

were used to find proportion of ticks questing for a meal in a given week, which

was fed into a sigmoid function to calculate proportion of ticks successfully

feeding. The maximum value of this feeding function was dependent on the

number of available blood meals for ticks in that habitat. Therefore, the model

was dependent on the environmental factors of temperature, hosts and habitat,

as emergence and questing behaviour were temperature-dependent, whilst the

number of available blood meals for ticks depended on the host density, which in

turn was determined by the habitat.

Running the model for current climates predicted that the highest tick densities

are to be expected in mixed woodland, followed by conifer plantation, with fewer

ticks in open habitats such as heather moorland and grassland habitats. Running

the model for low, medium and high climate warming scenarios predicted that in
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all studied habitat types, tick densities would increase as temperatures rise. The

overall increase in nymph densities compared to current climates was between

26.1-98.7% depending on the climate warming scenario. However, this increase

in tick density was not equal across all habitats; for example, whilst mixed

woodland areas saw a predicted increase of 47% for the high climate warming

scenario compared to current climates, the same comparison for montane regions

saw a predicted increase of 572%. Meanwhile, for blanket bog the increase was

128%, meaning that whilst blanket bog areas were predicted to have higher

tick densities than montane areas under the current climate, for future climate

warming scenarios they would be overtaken. This suggests that it is not just

temperature which drives tick density changes within the model, but also host

density and habitat have an effect on how large this change will be. Therefore,

this demonstrates that the model output is influenced by environmental factors,

and can be used as the foundation of the modelling framework.

6.1.2 Introducing pathogen dynamics to the tick lifecycle model

Following the creation of the tick lifecycle model, the next step was to introduce

host and pathogen dynamics. The aim of this was to demonstrate that the model

could be used to predict the effect climate change would have on disease risk.

The pathogen system looked at in chapter 4 was that of Louping-ill virus (LIV), as

this is the tick-borne pathogen which has the largest body of previous modelling

work and empirical studies provide relatively robust parameter values. The focus

of the chapter was to model a LIV system with one competent transmission host,

red grouse (Lagopus lagopus scoticus), with red deer (Cervus elaphus) and mountain

hares (Lepus timidus) acting solely as tick hosts. The tick lifecycle model was

extended by introducing equations to represent the infectivity status of hosts and

151



ticks. The most important aspect introduced within this chapter was the use of

the negative binomial distribution of tick burdens on hosts to calculate how many

grouse are predicted to be bitten by infected ticks in a given week. .

The primary output of the model was the grouse survival, measured as a

percentage of the carrying capacity for that area. For all climate warming scen-

arios, LIV was only predicted to persist on heather moorland. For these areas,

LIV risk was predicted to increase as the climate warms. The proportion of cells

where the model was run which were predicted to have high LIV risk (defined as

those where the predicted grouse survival was reduced to under 60%) increased

from 10.74% under current climates to 47.81% under the high climate warming

scenario; this comprised of more than half of the heather moorland across Scot-

land containing grouse. Grouse survival was predicted to decrease from current

climates by between 4.76-19.35% depending on the climate warming scenario.

The main impact of such changes in grouse survival would be felt by grouse

moor managers, who may experience a loss in income. Grouse moor managers

may choose to take proactive measures to mitigate such losses, in which case the

impact of increased LIV risk may be passed to the wider environment, where

many moor management strategies can have a negative effect (Wightman and

Tingay, 2015).

There was a clear distinction between heather moorland areas with red deer

present, and those without, with areas lacking deer predicted to have lower grouse

survival. This indicates that within the model a dilution effect of deer on LIV is

predicted, whereby the presence of red deer results in infected ticks wasting their

bites on hosts that do not transmit the virus, and therefore reducing infection

of grouse with the pathogen. This chapter also demonstrated that the presence

or strength of the dilution effect depended on the proportions of larval and
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nymphal burdens on deer compared to transmission hosts. This is an indication

that parameterisation of tick stages on different host types play an important role

in the model predictions and highlights an important gap in our knowledge for

further empirical research. Three recent studies of Lyme borreliosis risk discuss

how the relative proportions of immature ticks feeding on different host types

may determine whether or not there is a dilution effect (Mysterud, 2016; Gilbert,

2016a; Millins et al.). Combined with the influences that temperature and habitat

had on the model predictions, this demonstrates that the aim of creating a model

which allows environmental factors to be used to predict LIV risk has been met.

This model demonstrated the novel combination of a mechanistic LIV model

with GIS tools, allowing for detailed empirical data to be used, and for the model

predictions to be displayed spatially. Whilst previous studies had used such

an approach for other tick-borne pathogen systems, none had been done for

LIV. Even compared to other studies using GIS tools with tick-borne pathogen

modelling, this thesis used an original method to represent the different natures

of the various habitat types across Scotland (see appendix A).

6.1.3 Adapting the novel modelling approach to other tick-borne pathogen systems

In order to broaden the models created thus far into a modelling framework

which can be applied to many tick-borne pathogen systems, the LIV model was

generalised in chapter 5. This general model was adapted to reflect the dynamics

of Borrelia burgdorferi sensu lato, the agent of Lyme borreliosis. The aim of this

was to demonstrate that the LIV model could be used to model a different real-

life tick-borne pathogen system, as well as to provide predictions of the impact

climate change will have on Lyme borreliosis risk. The LIV model was generalised

to create basic models which were the foundation of the framework. Following
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this, techniques for modelling further tick-borne pathogen mechanisms were

identified, which could be appended to the basic models if the pathogen system

being modelled required. Specifically, within the chapter it was described how

the modelling framework could be used to represent systems with more than one

transmission host type, as well as including alternate routes of transmission and

the treatment of tick hosts with either vaccines or acaricide.

Available empirical information was used to create a model that predicted the

risk of B. burgdorferi s.l. across Scotland under current climate and with climate

warming scenarios. Specifically, the model focused on two strains of the pathogen;

Borrelia afzelii, where small mammals are the primary transmission host, and

Borrelia garinii, where birds are the primary transmission host. The model was run

for the same climate warming scenarios as previous models, this time focusing

on two key model outputs: the total density of infected ticks and the prevalence

of the pathogen in ticks. It was predicted that prevalence would decrease with

climate warming, whilst the density of infected ticks increases. As the density

of infected ticks is the more important factor when it comes to public health, it

was concluded that climate warming will increase the risk of Lyme borreliosis for

humans. Using the density of infected developing larvae as the primary indicator

of disease risk, the model predicted that the disease risk would increase across

Scotland by 52% with the highest climate warming scenario. This demonstrated

that it was possible to adapt the modelling framework for a new tick-borne

pathogen system, allowing the influence of climate change to be predicted.

The combination of a mechanistic model for B. burgdorferi s.l. dynamics with

GIS mapping for Scotland was also done by Li et al. (2016). However, there are

numerous differences between the methods used in chapter 5 and by Li et al.

(2016). In particular, the type of mathematical models used, and the application
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of GIS data to the model are distinct. Both studies predicted similar increases in

Lyme borreliosis risk with climate warming.

6.2 limitations and future work

6.2.1 Assumptions made when creating the models

There are multiple assumptions made in the creation of the models presented

which, whilst required for simplicity, will diminish the models’ ability to reflect

real life. This section will focus on two in particular: the assumption that ticks

feed only once per year and the assumption that habitat type and host densities

stay constant through each climate warming scenario.

6.2.1.1 Feeding once per year

The models within this thesis have assumed that ticks develop into the next stage

each year, and each stage feeds only once, i.e. each tick feeds once per year. Whilst

ticks feeding twice within a given year has been documented (e.g. Randolph et al.

2002), these observations were made south of Scotland, where such behaviour

has not been demonstrated. As interstadial development is considered to be

temperature-dependent (Randolph et al., 2002), it is likely that ticks based in

Scotland are less likely to feed twice within the same year, if at all. However, under

climate warming it is unclear how ticks based in Scotland will respond in terms of

speed of interstadial development. Specifically it is unclear whether they begin to

act like ticks from warmer climates (i.e. that all ticks are fundamentally the same

and act differently due to climatic factors) or whether they maintain the same

interstadial development times (i.e. that in identical situations ticks from different

climates will act differently). Gilbert et al. (2014) found that ticks from Scotland,
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Wales, England and France began questing at different temperatures in laboratory

conditions, indicating that local adaptation had occurred to these populations at

some point in time, although the mechanism and speed of this adaptation is not

known. If the mechanism is genetic evolution rather than phenotypic plasticity, it

is likely that ticks in Scotland will not immediately change their behaviour with

climate warming. However, when ticks are exposed to new temperatures for far

longer periods of time (such as the 70 years used to make model predictions)

some changes in behaviour could potentially be observed depending on the

mechanism of change. Given enough time, it is highly likely that with climate

warming Scottish ticks will tend to feed more than once in a given year, as they

now do in the south of England (Randolph et al., 2002).

In order to adapt the model in order to accommodate this change in interstadial

development time, the emergence function outlined in chapter 3 would need

to be replaced by a temperature-dependent function which allowed ticks in a

developing class to move into the active class for the next instar. Inspiration

could be drawn from the method used by Dobson and Randolph (2011) for this

mechanism. However, this study uses a day-degree summation to predict when

ticks would move into the next stage. This would be difficult to implement into

the modelling framework presented in this thesis in its current form, and would

likely necessitate a switch to a different type of modelling, such as the Leslie

matrix method used by Dobson and Randolph (2011).

6.2.1.2 Habitat type and host density change

In order to make clear the effect of temperature on the model predictions, habitat

type and host density were assumed not to change under the climate warming

scenarios used within this thesis. In reality, climate warming is likely to change
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both habitat cover and host densities across Scotland. For example, vegetation

such as heather may be able to spread to colder areas, such as parts of the high-

altitude montane regions, and with it the tick hosts assumed to be present in

heather, such as red grouse and red deer. Therefore it is likely that the predictions

made in this thesis regarding the density of ticks and the disease risk in high-

altitude areas are in fact underestimating the effect climate warming will have.

If habitat types and host densities are to change with warmer climates then

the relationships of these factors in relation to temperature would need to be

modelled. For instance, roe deer are known to migrate to lower altitudes in winter,

suggesting that their behaviour is driven by temperature (Mysterud, 1999), and

such behaviour has been included in modelling tick-borne disease by Li et al.

(2016). To be included in the modelling framework presented in this thesis, it

would be likely that host movement between cells would also need to be included.

This may also necessitate the inclusion of ticks being transported between cells

by hosts. This would enable a more detailed analysis of how disease risk may

spread spatially across Scotland. However, introducing numerous mechanisms

into the modelling framework to represent changes in habitats and hosts may

risk making the model too complicated to be of a functional use. If done carefully

though, this would allow further impacts of climate change on tick-borne disease

risk to be analysed.

6.2.2 Parameterisation of the models

As with all mathematical models of specific systems, the models presented are

dependent on the values used for the parameters. Whilst many of these are based

on thorough empirical studies, there are some with which far less faith can be

placed, indeed in real life there is a lot of variability between sites and it is difficult
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to determine the reason for those differences. Conducting sensitivity analysis

on the models created gives an idea of the parameters which are of importance.

A crucial set of parameter values which are based on little empirical data are

the temperatures at which ticks emerge from overwintering. For example, it is

recorded that nymphs emerge in spring from winter diapause when the average

weekly maximum temperature reaches 7°C (Randolph, 2004), however due to

natural variation among individuals it is unlikely that all nymphs emerge at

exactly 7°C; therefore some estimation is needed for the temperature at which

nymphs begin to emerge and the temperature at which all nymphs have emerged.

Within the model these are taken to be 2°C either side of the 7°C suggested,

however this is an arbitrary range. The other parameters which were important,

yet based on little empirical evidence, were those relating to the infection status

of hosts within the B. burgdorferi s.l. model, specifically the “recovery rate” of

hosts, the rate at which hosts move from the infectious class (where they can

pass the pathogen onto ticks) to the recovered class (where they no longer could).

Estimations for this parameter did not exist for the hosts within the B. burgdorferi

s.l. model; therefore this rate was based on experiments on white-footed mice

(Peromyscus leucopus) in the USA (Wright and Nielsen, 1990).

For many of these less reliable parameter estimates, work could be done in

order to find values which are more reliable. For the emergence of ticks from

overwintering, a long-term study may be required, whereby a known number of

ticks are placed within a patch of vegetation at the start of winter, and blanket

drags are regularly carried out to determine how many questing ticks are present

as the weather warms in the spring. As not all emerged ticks may necessary

quest, the results of Gilbert et al. (2014) would have to be used to extrapolate the

number of questing ticks into an estimate of emerged ticks. In order to find an
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estimate of the recovery rate of B. burgdorferi s.l. reservoir hosts, the laboratory

experiments conducted by Wright and Nielsen (1990) could be replicated with

the tick hosts used within the B. burgdorferi s.l. model.

6.2.3 Deterministic versus stochastic modelling

The deterministic nature of the modelling undertook has its strengths, such as

providing a clear demonstration of how factors affect the model output; however

it also can fail to represent highly variable aspects within a model. For instance,

the negative binomial distribution of ticks on hosts is used within the modelling

framework to get an estimate of the proportion of hosts to be bitten by an infected

host. However, this is the expected value which is used for every calculation. In

reality, this proportion would just be the long-term average of this calculation,

with the distribution of ticks on hosts varying each time. Therefore, creating a

stochastic version of the modelling framework is a viable future option.

Whilst the parameters used within this thesis could be used as the average

for the parameters within a stochastic model, estimations would be required

for the variation in some cases. For example, within this thesis the density of

mountain hares in heather woodland is taken as 8 per km2. This is a parameter

which will vary wildly across the country, but in order to represent this, the

variation and distribution shape would be required. Therefore, the danger of

creating a stochastic model is that these estimations make the model less robust,

as more of it is reliant on weak data. Nonetheless, creating a stochastic version

of the modelling framework is a valid future direction, and one which would be

interesting for comparison with the current framework.
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Climate warming scenario Low Medium High
Tick density (chapter 3) 26.10% 65.25% 98.64%
LIV risk (chapter 4) 4.76% 12.41% 19.35%
B. burgdorferi s.l. risk (chapter 5) 9.43% 25.76% 51.59%

Table 6.1: Summary of the primary predictions made in each chapter. Each percentage
is the increase from the predictions for current climates. The indicator of
tick density was nymph density, the indicator of LIV risk was the decrease
in grouse density compared to the carrying capacity, and the indicator of B.
burgdorferi s.l. risk was the density of infected developing larvae. The climate
warming scenarios were increases from current temperatures of 1°C (low),
2.5°C (medium) and 4°C (high), as explained in appendix A.

6.2.4 Adapting the models for other vectors

The models created were designed specifically for I. ricinus ticks, although they

would be suitable for any Ixodidae tick, as they only feed once per stage (Randolph,

2008), with parameter adjustment where necessary. However, for Argasidae ticks,

who feed multiple times per stage, the modelling within this thesis would not

be appropriate. Similarly, adjusting the models for vectors other than ticks, such

as mosquitoes, would be extremely difficult to adapt the modelling framework

for, due to the differences in lifecycles. Many of these differences means that

core assumptions made in chapter 3 would not apply. As the model presented in

chapter 3 is the foundation of the modelling framework, it would be impractical

to try and adapt the existing framework for a new vector.

Whilst the general method for using an environmentally-dependent model to

create predictive maps (as laid out in appendix A) could easily be applied to

other vector systems, the model itself would have to be recreated from scratch.
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6.3 summary

Through the creation of a novel modelling approach, which focused on the

environmental factors that influence tick behaviour, a modelling framework has

been created to predict the influence climate change has on tick population

dynamics, LIV risk, and other tick-borne disease risk. This framework allows the

dynamics of many tick-borne pathogen systems to be modelled, however in this

thesis two pathogens were focused on in particular: B. burgdorferi s.l. and LIV.

Models created specifically to look at these two pathogens were used to predict

the changes in disease risk under a variety of climate warming scenarios. It was

predicted that in both cases disease risk will increase with climate warming.

However, other factors also influenced the model output, namely the habitat type

and host density. The main predictions made in each chapter are summarised in

table 6.1.

Analysis of the model predictions allow for further insights. The LIV model

created allowed greater understanding on how the mechanisms within the model

influence the dilution effect. The most significant of these was the effect of the

relative burden of immature tick stages on different host types. All the models

created identified areas where future empirical data collection would improve

the model predictions. The most pressing of these came from the B. burgdorferi s.l.

model, which highlighted the need for improved data on the infectious behaviour

of transmission hosts.

By considering previous mathematical modelling of tick and tick-borne patho-

gen dynamics, knowledge gaps were identified. This highlights the importance

of the work within this thesis, as it addresses some of these gaps, furthering our

understanding of tick-borne diseases. The combination of mechanistic modelling

with GIS tools, and the focus on the impact of climate change, makes this a timely
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contribution. The model predictions within this thesis give an indication of the

effect of any changes to the Scottish environment (either natural or planned),

and this means they have the potential to inform policy-making. The adaptable

modelling framework presented in this thesis can be extended to further tick-

borne pathogen systems. This may be particularly useful in cases where a new

tick-borne pathogen has spread to a new region; the tools provided within this

thesis would allow for a new mathematical model to be created quickly, allowing

areas of potential risk to be predicted.

As the modelling approach taken in this thesis is a novel one, it was always

likely that simplifying assumptions would have to be made, and that it would

open up new avenues to be researched. However, by focusing on the influence

environmental factors have on tick behaviour the aims of the thesis have been

met, by providing an indication of how climate change will affect tick-borne

disease risk across Scotland.
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A
M E T H O D O L O G Y

This appendix details the methods used to set up the model predictions within

the thesis. The first section concerns the transition of data to and from ArcGIS 10

(Environmental Systems Research Institute, 2014). This comprises the extraction

of data from the database available at the James Hutton Institute in Aberdeen

(section A.1.1), and the importing of model predictions into ArcGIS for the use of

creating maps (section A.1.2). The aim of this is to provide a guide for replication.

The second section give the full details and justifications for the creation of the

conditions under which the models were run, specifically the creation of the

habitat groups used (section A.2.1) and the rationale behind the choice of climate

warming scenarios used (section A.2.2). The final section of this chapter gives the

method of how the models were run (section A.3).

a.1 managing gis data

a.1.1 Obtaining data from a GIS database

In order to apply the models to Scotland, a 3km2 fishnet grid (a net of rectangular

cells) was applied to the country using ArcGIS. This cell size was chosen as the

highest resolution which was still computationally manageable to manipulate,
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based on the running speed of Microsoft Excel 2007 (Microsoft Corporation, 2007)

with the cells uploaded. From the centre of each cell the following previously

available data were appended: habitat type, deer density, maximum annual

temperature, minimum annual temperature and average annual temperature.

This data was then saved as a comma-separated value (CSV) file and opened

in Microsoft Excel for easy use. The data was in the format where each row

represents a cell, and each column represents a data type.

The habitat type data available for each cell was based on the UK Land Cover

Map 2000 (Fuller et al., 2002), the deer density was taken from Deer Management

Group counts up to 2006 (unpublished), whilst the annual temperatures were

from Met Office long-term average data from 1971-2000 (Met Office, 2016).

a.1.2 Creating predictive maps

In order to display the spatial predictions from each model, Mathematica Version 9

(Wolfram Research Inc., 2013) was used to run the model for each relevant habitat

group (explained further in section A.3). The output from these simulations

was then added to the extracted GIS data in Microsoft Excel as a new column

depending on their habitat group (see section A.2.1) and saved as a CSV file. The

CSV file was then joined to the 3km2 fishnet and saved as a separate layer, which

was then coloured appropriately before being exported as an image file.

a.2 creating the conditions for model simulations

a.2.1 Habitat group creation

Of the 12 habitat types listed within the GIS data, the following were identified

as having the potential to support ticks: blanket bog, heather moorland, montane,
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mixed woodland and conifer plantation. As grouse and deer are rarely kept

together (Wightman and Tingay, 2015), heather moorland habitats were further

split into three grouse-deer categories to more accurately reflect real-life moorland

management:

• Heather A: high grouse, no deer

• Heather B: low grouse, low deer

• Heather C: no grouse, high deer

To separate the heather cells by host density, the Deer Management Group counts

were used, as nationwide grouse density data was not available. By considering

the distribution of deer densities (figure A.1), the heather cells were split according

to their deer densities; those with under 5 per km2 formed the Heather A group,

those with under 10 per km2 formed the Heather B group, whilst the rest formed

the Heather C group.

The annual maximum, minimum and average temperature values for each

cell were then considered. Within each habitat group the cells were ranked by

their annual average temperature, and split into five groups (or three groups for

montane and woodland areas, as these had far fewer cells) of approximately equal

size (figure A.2). This method was chosen as it would allow for as much detail

as possible within created maps. Had the cells been split into, for example, 2°C

bands, the non-uniformly distributed nature of temperature across cells would

have seen potentially hundreds of cells banded into a few groups, with only a

few outwith. This would have led to predictive maps with huge areas of identical

colouring, making it far harder to spot changes. Each of the habitat-temperature

groups were assigned minimum and maximum temperature values based on

the average of the cells within the group, which generally displayed similar
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Figure A.1: Histogram showing the distribution of the deer densities within the GIS data.
Values are taken from Deer Management Group counts from up to 2006.
Light grey indicates the cells which were placed within the Heather A group
(high grouse, no deer), medium grey indicates the cells which were placed
within the Heather B group (low grouse, low deer), and dark grey indicates
the cells which were placed within the Heather C group (no grouse, high
deer).

temperature characteristics. These are the values used within the models, and are

listed in table A.1.

a.2.2 Climate warming scenario creation

In order to predict the changes in tick and tick-borne disease that would be caused

by climate warming, the UK Climate Impacts Programme (UKCIP) estimations

were used (Jenkins et al. 2009). These suggested the average annual temperature

in Scotland is expected to increase by between 1°C and 4°C by the 2080s. To

represent this range, three temperature scenarios were used to run the model

under: low (1°C rise over 70 years), medium (2.5°C rise over 70 years) and high

temperature increase (4°C rise over 70 years). For comparison, simulations with

no change in temperature to represent the current climate were also run.
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Figure A.2: Histograms displaying the average temperature of cells within each habitat
category. The average temperatures are taken from Met Office long-term data
from 1971-2000. The shading of each histogram represents the groups each
habitat category were split into. The full list of groups is shown in table A.1.
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The UKCIP estimations dealt with average annual temperatures. As the models

within this thesis use minimum and maximum annual temperatures, how these

will individually change over time has to be considered. For example, an average

temperature increase of 1°C could have resulted from the maximum temperat-

ure increasing by 3°C and the minimum temperature decreasing by 1°C, or it

could result from both increasing by 1°C. Therefore, historical temperature data

recorded by NASA (NASA, 2012) was considered for the three Scottish sites with

the most data: Aberdeen (1951-2011), Edinburgh (1953-1997) and Eskdalemuir

(1933-2011) (figure A.3). By comparing the average temperatures for each quarter,

it can be seen that the rate of increase is constant. Therefore, it can be assumed

that the maximum and minimum annual temperature will increase at the same

rate during the 70-year period covered by the UKCIP estimations.
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a.3 running the model

The model is solved using the 
Runge-Kutta method 

After 52 weeks, the model 
takes a discrete time step to 

move into a new year 

This is repeated for the 
required number of years. 

The final output value can 
be recorded 

This is repeated for each 
relevant habitat group 

The model is 
parameterised 

according to the first 
habitat group 

Figure A.4: Flowchart demonstrating the method used to apply the model across Scot-
land.

In order to map the predictions of the models within this thesis (given by equation

3.7 in chapter 3, equation 4.10 in chapter 4 and equation 5.14 in chapter 5) across

Scotland, the models were run on Mathematica Version 9 (Wolfram Research Inc.,

2013) for each habitat group separately.

To begin with, the parameters specific to each habitat (minimum temperature,

maximum temperature and host densities) are entered into the model. The

continuous time ODE model is run for t = 0 to t = 52 using the NDSolve function

on Mathematica, which uses the Runge-Kutta method (where t denotes time,

measured in weeks). A discrete time step is then taken, to denote the end of

the year, where the densities in the ODE model at t = 52 are used to provide
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new initial conditions for the following year. This process is then repeated for

the required number of years, after which the final densities are taken. This is

repeated for each relevant habitat group. A flowchart of this process is shown in

figure A.4.
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Code Habitat type Minimum
temp (°C)

Maximum
temp (°C)

B1 Blanket bog -0.21 10.68

B2 Blanket bog 1.39 11.88

B3 Blanket bog 2.60 12.53

B4 Blanket bog 3.00 13.03

B5 Blanket bog 4.77 13.80

HA1 Heather moorland (high grouse, no deer) 0.75 11.41

HA2 Heather moorland (high grouse, no deer) 1.53 12.28

HA3 Heather moorland (high grouse, no deer) 2.36 12.80

HA4 Heather moorland (high grouse, no deer) 3.48 13.19

HA5 Heather moorland (high grouse, no deer) 4.45 13.70

HB1 Heather moorland (low grouse, low deer) 0.28 11.00

HB2 Heather moorland (low grouse, low deer) 1.34 11.91

HB3 Heather moorland (low grouse, low deer) 1.97 12.48

HB4 Heather moorland (low grouse, low deer) 2.62 13.10

HB5 Heather moorland (low grouse, low deer) 3.93 13.78

HC1 Heather moorland (no grouse, high deer) -0.40 10.55

HC2 Heather moorland (no grouse, high deer) 0.61 11.52

HC3 Heather moorland (no grouse, high deer) 1.37 12.18

HC4 Heather moorland (no grouse, high deer) 1.91 12.69

HC5 Heather moorland (no grouse, high deer) 3.44 13.40

M1 Montane -1.03 8.91

M2 Montane 0.22 9.86

M3 Montane 1.85 10.96

W1 Mixed woodland 2.60 13.67

W2 Mixed woodland 3.91 14.52

W3 Mixed woodland 4.64 15.09

P1 Conifer plantation 1.54 12.39

P2 Conifer plantation 2.41 12.99

P3 Conifer plantation 3.01 13.48

P4 Conifer plantation 3.64 13.96

P5 Conifer plantation 4.30 14.55

Table A.1: List of the 34 habitat groups used within each model. The code for each group
refers to its habitat type and where it ranks on temperature, and is used for
ease of reference.
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Figure A.3: The average temperature for each quarter (December-February, March-May,
June-August and September-November) recorded by NASA for three sites:
(a) Aberdeen (1951-2011), (b) Edinburgh (1953-1997) and (c) Eskdalemuir
(1933-1992, 2000-2011). The dotted lines represent the linear regression line
for each quarter.
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B
M O D E L C O D E S

This appendix presents the code used to run the models presented within this

thesis, in order to facilitate replication. The names of parameters within the code

may be slightly different to those within the text of this thesis. The models were

run on Mathematica Version 9 (Wolfram Research Inc., 2013).

b.1 tick lifecycle model (chapter 3)

Clear["Global‘*"]; ThingL1 = {}; ThingL2 = {}; ThingN1 = {}; ThingN2 \

= {}; ThingA1 = {}; ThingA2 = {};

groups = ({

{Cat, B1, B2, B3, B4, B5, B6, B7, B8, HA1, HA2, HA3, HA4, HA5,

HB1, HB2, HB3, HB4, HB5, HC1, HC2, HC3, HC4, HC5, M1, M2, M3, G1,

G2, G3, G4, G5, G6, G7, G8, G9, G10, W1, W2, W3, P1, P2, P3, P4,

P5},

{RowNo, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,

18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,

34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45},

{a, -0.80, 0.49, 1.44, 2.26, 2.83, 3.27, 3.86, 4.62, 0.75, 1.53,

2.36, 3.48, 4.45, 0.28, 1.34, 1.97, 2.62, 3.93, -0.40, 0.61,
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1.37, 1.91, 3.44, -1.03, 0.22, 1.85, 1.58, 2.47, 2.85, 3.17,

3.40, 3.63, 3.94, 4.25, 4.56, 5.01, 2.60, 3.91, 4.64, 1.54, 2.41,

3.01, 3.64, 4.30},

{b, 10.10, 11.25, 12.08, 12.70, 13.15, 13.53, 14.00, 14.60, 11.41,

12.28, 12.80, 13.19, 13.70, 11.00, 11.91, 12.48, 13.10, 13.78,

10.55, 11.52, 12.18, 12.69, 13.40, 8.91, 9.86, 10.96, 11.71,

12.57, 12.95, 13.22, 13.44, 13.67, 13.96, 14.26, 14.54, 14.93,

13.67, 14.52, 15.09, 12.39, 12.99, 13.48, 13.96, 14.55},

{RedD, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 5, 5, 5, 5, 5, 15,

15, 15, 15, 15, 0.1, 0.1, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4,

4, 4, 2, 2, 2, 2, 2},

{Gr, 0, 0, 0, 0, 0, 0, 0, 0, 100, 100, 100, 100, 100, 50, 50, 50,

50, 50, 0, 0, 0, 0, 0, 20, 20, 20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0},

{Ha, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,

10, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{SM, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8500, 8500, 8500,

4250, 4250, 4250, 4250, 4250},

{Brd, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 70, 70, 70, 35,

35, 35, 35, 35},

{RoeD, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 2, 2,

2, 2, 2}

});

habitat = 17;
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a = Part[groups, 3, habitat]; b =

Part[groups, 4,

habitat]; T1 = 5; T2 = 9; bL = 0.047; bN = 0.024; bA = 0.009; bowL \

= 0.25; bowN = 0.25; egg = 627.5;

Fzero = 50;

L0 = 1000000; N0 = 100000; A0 = 10000;

Ymax = 70;

increase = 4;

hosts = ({

{RedDeer, Part[groups, 5, habitat], 15.18, 70.41, 81.25},

{Grouse, Part[groups, 6, habitat], 15, 4, 0},

{Hare, Part[groups, 7, habitat], 63.7, 37.4, 11.4},

{SmallMammal, Part[groups, 8, habitat], 1.61, 0.03, 0},

{Bird, Part[groups, 9, habitat], 3.11, 0.25, 0},

{RoeDeer, Part[groups, 10, habitat], 10.78, 23.9, 29.82}

});

hvalues = Transpose[hosts].hosts;

Do[

T[t_] = ((b - a)/2*Sin[t/(2.6 \[Pi]) - 0.5 \[Pi]]) + (b + a)/2;

F[t_] := \[Piecewise] {

{0, T[t] \[LessSlantEqual] T1},

{((T[t] - T1)/(T2 - T1)), T1 < T[t] < T2},

{1, T[t] \[GreaterSlantEqual] T2}

};

P[t_] = 1/(1 + Exp[0.75 (8 - T[t])]);

S[x_, K_] := (K*Fzero)/(

Fzero + (K - Fzero)*Exp[Log[Fzero/(19*(K - Fzero))]/(8*K)*x]) -
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Fzero;

soln = NDSolve[{

LQ’[t] == -S[F[t]*P[t]*LQ[t], Part[hvalues, 2, 3]] - bL*LQ[t],

LM’[t] == S[F[t]*P[t]*LQ[t], Part[hvalues, 2, 3]],

NQ’[t] == -S[F[t]*P[t]*NQ[t], Part[hvalues, 2, 4]] - bN*NQ[t],

NM’[t] == S[F[t]*P[t]*NQ[t], Part[hvalues, 2, 4]],

AQ’[t] == -S[F[t]*P[t]*AQ[t], Part[hvalues, 2, 5]] - bA*AQ[t],

AM’[t] == S[F[t]*P[t]*AQ[t], Part[hvalues, 2, 5]],

LQ[(Y - 1)*52] == L0,

LM[(Y - 1)*52] == 0,

NQ[(Y - 1)*52] == N0,

NM[(Y - 1)*52] == 0,

AQ[(Y - 1)*52] == A0,

AM[(Y - 1)*52] == 0},

{LQ, LM, NQ, NM, AQ, AM},

{t, (Y - 1)*52, Y*52}];

Do[AppendTo[ThingL1, {k, LQ[k] /. soln[[1]]}], {k, (Y - 1)*52 + 1,

Y*52}];

Do[AppendTo[ThingL2, {k, LM[k] /. soln[[1]]}], {k, (Y - 1)*52 + 1,

Y*52}];

Do[AppendTo[ThingN1, {k, NQ[k] /. soln[[1]]}], {k, (Y - 1)*52 + 1,

Y*52}];

Do[AppendTo[ThingN2, {k, NM[k] /. soln[[1]]}], {k, (Y - 1)*52 + 1,

Y*52}];

Do[AppendTo[ThingA1, {k, AQ[k] /. soln[[1]]}], {k, (Y - 1)*52 + 1,

Y*52}];

Do[AppendTo[ThingA2, {k, AM[k] /. soln[[1]]}], {k, (Y - 1)*52 + 1,

176



Y*52}];

LMend = LM[Y*52] /. soln;

LQend = LQ[Y*52] /. soln;

NQend = NQ[Y*52] /. soln;

NMend = NM[Y*52] /. soln;

AQend = AQ[Y*52] /. soln;

AMend = AM[Y*52] /. soln;

L0 = egg*AMend[[1]];

N0 = bowL*LMend[[1]];

A0 = bowN*NMend[[1]];

a = a + increase/70;

b = b + increase/70;

LQ =.; LM =.; NQ =.; NM =.; AQ =.; AM =.;

, {Y, 1, Ymax}] ;

Print[LM[52*Ymax] /. soln [[1]]];

Print[NM[52*Ymax] /. soln [[1]]];

Print[AM[52*Ymax] /. soln [[1]]];

ListPlot[{ThingL1, ThingL2}, Joined -> True, PlotRange -> All]

ListPlot[{ThingN1, ThingN2}, Joined -> True, PlotRange -> All]

ListPlot[{ThingA1, ThingA2}, Joined -> True, PlotRange -> All]
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b.2 louping-ill virus model (chapter 4)

Clear["Global‘*"]; ThingL1 = {}; ThingL2 = {}; ThingN1 = {}; ThingN2 \

= {}; ThingA1 = {}; ThingA2 = {}; ThingL3 = {}; ThingN3 = {}; ThingG1 \

= {}; ThingG2 = {}; ThingG3 = {}; AnotherThing = {};

groups = ({

{Cat, B1, B2, B3, B4, B5, B6, B7, B8, HA1, HA2, HA3, HA4, HA5,

HB1, HB2, HB3, HB4, HB5, HC1, HC2, HC3, HC4, HC5, M1, M2, M3, G1,

G2, G3, G4, G5, G6, G7, G8, G9, G10, W1, W2, W3, P1, P2, P3, P4,

P5},

{RowNo, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,

18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,

34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45},

{a, -0.80, 0.49, 1.44, 2.26, 2.83, 3.27, 3.86, 4.62, 0.75, 1.53,

2.36, 3.48, 4.45, 0.28, 1.34, 1.97, 2.62, 3.93, -0.40, 0.61,

1.37, 1.91, 3.44, -1.03, 0.22, 1.85, 1.58, 2.47, 2.85, 3.17,

3.40, 3.63, 3.94, 4.25, 4.56, 5.01, 2.60, 3.91, 4.64, 1.54, 2.41,

3.01, 3.64, 4.30},

{b, 10.10, 11.25, 12.08, 12.70, 13.15, 13.53, 14.00, 14.60, 11.41,

12.28, 12.80, 13.19, 13.70, 11.00, 11.91, 12.48, 13.10, 13.78,

10.55, 11.52, 12.18, 12.69, 13.40, 8.91, 9.86, 10.96, 11.71,

12.57, 12.95, 13.22, 13.44, 13.67, 13.96, 14.26, 14.54, 14.93,

13.67, 14.52, 15.09, 12.39, 12.99, 13.48, 13.96, 14.55},

{RedD, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 5, 5, 5, 5, 5, 15,

15, 15, 15, 15, 0.1, 0.1, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4,

4, 4, 2, 2, 2, 2, 2},

{Gr, 0, 0, 0, 0, 0, 0, 0, 0, 100, 100, 100, 100, 100, 50, 50, 50,

50, 50, 0, 0, 0, 0, 0, 20, 20, 20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
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0, 0, 0, 0, 0, 0, 0, 0},

{Ha, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,

10, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{SM, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8500, 8500, 8500,

4250, 4250, 4250, 4250, 4250},

{Brd, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 70, 70, 70, 35,

35, 35, 35, 35},

{RoeD, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 2, 2,

2, 2, 2}

});

habitat = 10;

increase = 4;

a = Part[groups, 3, habitat] + increase; b =

Part[groups, 4, habitat] +

increase; TL1 = 8; TL2 = 12; TNA1 = 5; TNA2 = 9; bL = 0.047; bN = \

0.024; bA = 0.009; bowL = 0.00995; bowN = 0.00333; egg = 627.5; \

\[Epsilon] = 0.0000001;

Fzero = 50;

bG = 0.008; aG = 0.7175; \[Sigma] = 0.2; \[Alpha] = 0.8; sG =

0.00522*100/Part[groups, 6, habitat]; InitialInf = 0.1;

L0 = 100000; NS0 = 10000*(1 - InitialInf); NI0 =

10000*InitialInf; A0 = 1000; GS0 =

Part[groups, 6, habitat]; GI0 = 0; GR0 = 0;
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Ymax = 100;

hosts = ({

{RedDeer, Part[groups, 5, habitat], 15.8, 70.41, 81.25},

{Hare, Part[groups, 7, habitat], 63.7, 37.4, 11.4},

{SmallMammal, Part[groups, 8, habitat], 1.61, 0.03, 0},

{Bird, Part[groups, 9, habitat], 3.11, 0.25, 0},

{RoeDeer, Part[groups, 10, habitat], 10.78, 23.9, 29.82}

});

hvalues = Transpose[hosts].hosts;

GL = 15;

GN = 4;

Do[

T[t_] = ((b - a)/2*Sin[t/(2.6 \[Pi]) - 0.5 \[Pi]]) + (b + a)/2;

FL[t_] := \[Piecewise] {

{0, T[t] \[LessSlantEqual] TL1},

{((T[t] - TL1)/(TL2 - TL1)), TL1 < T[t] < TL2},

{1, T[t] \[GreaterSlantEqual] TL2}

};

FNA[t_] := \[Piecewise] {

{0, T[t] \[LessSlantEqual] TNA1},

{((T[t] - TNA1)/(TNA2 - TNA1)), TNA1 < T[t] < TNA2},

{1, T[t] \[GreaterSlantEqual] TNA2}

};

P[t_] = 1/(1 + Exp[0.75 (8 - T[t])]);

S[x_, K_] := (K*Fzero)/(
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Fzero + (K - Fzero)*Exp[Log[Fzero/(19*(K - Fzero))]/(8*K)*x]) -

Fzero;

GB[t_] := \[Piecewise] {

{0, Mod[t, 52] \[LessSlantEqual] 19},

{1, 19 < Mod[t, 52] \[LessSlantEqual] 22},

{0, Mod[t, 52] \[GreaterSlantEqual] 23}

};

soln = NDSolve[{

LQ’[t] == -S[FL[t]*P[t]*LQ[t],

Part[hvalues, 2, 3] + GL*(GS[t] + GI[t] + GR[t])] - bL*LQ[t],

LMS’[

t] == (1 - ( GI[t]*GL)/(

Part[hvalues, 2, 3] + GL (GS[t] + GI[t] + GR[t])))*

S[FL[t]*P[t]*LQ[t],

Part[hvalues, 2, 3] + GL*(GS[t] + GI[t] + GR[t])] -

bowL*LMS[t],

LMI’[

t] == ( GI[t]*GL)/(

Part[hvalues, 2, 3] + GL (GS[t] + GI[t] + GR[t]))*

S[FL[t]*P[t]*LQ[t],

Part[hvalues, 2, 3] + GL*(GS[t] + GI[t] + GR[t])] -

bowL*LMI[t],

NQS’[

t] == -(NQS[t]/(NQS[t] + NQI[t] + \[Epsilon]))*

S[FNA[t]*P[t]*(NQS[t] + NQI[t]),

Part[hvalues, 2, 4] + GN*(GS[t] + GI[t] + GR[t])] - bN*NQS[t],

NQI’[

t] == -(NQI[t]/(NQS[t] + NQI[t] + \[Epsilon]))*
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S[FNA[t]*P[t]*(NQS[t] + NQI[t]),

Part[hvalues, 2, 4] + GN*(GS[t] + GI[t] + GR[t])] - bN*NQI[t],

NM’[t] ==

S[FNA[t]*P[t]*(NQS[t] + NQI[t]),

Part[hvalues, 2, 4] + GN*(GS[t] + GI[t] + GR[t])] - bowN*NM[t],

AQ’[t] == -S[FNA[t]*P[t]*AQ[t], Part[hvalues, 2, 5]] - bA*AQ[t],

AM’[t] == S[FNA[t]*P[t]*AQ[t], Part[hvalues, 2, 5]],

GS’[t] == -(1 -

0.2^((((GS[t]*GN)/(

Part[hvalues, 2, 4] +

GN*(GS[t] + GI[t] + GR[t]) + \[Epsilon])) (NQI[t]/(

NQS[t] + NQI[t] + \[Epsilon]))*

S[FNA[t]*P[t]*(NQS[t] + NQI[t]),

Part[hvalues, 2, 4] +

GN*(GS[t] + GI[t] + GR[t])])/(GS[t] + \[Epsilon])))*

GS[t] - bG*

GS[t] + (aG*GB[t] - sG*GB[t]*(GS[t] + GI[t] + GR[t]))*(GS[t] +

GI[t] + GR[t]),

GI’[t] == (1 -

0.2^((((GS[t]*GN)/(

Part[hvalues, 2, 4] +

GN*(GS[t] + GI[t] + GR[t]) + \[Epsilon])) (NQI[t]/(

NQS[t] + NQI[t] + \[Epsilon]))*

S[FNA[t]*P[t]*(NQS[t] + NQI[t]),

Part[hvalues, 2, 4] +

GN*(GS[t] + GI[t] + GR[t])])/(GS[t] + \[Epsilon])))*

GS[t] - \[Sigma]*GI[t] - \[Alpha]*GI[t],
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GR’[t] == \[Sigma]*GI[t] - bG*GR[t],

LQ[(Y - 1)*52] == L0,

LMS[(Y - 1)*52] == 0,

LMI[(Y - 1)*52] == 0,

NQS[(Y - 1)*52] == NS0,

NQI[(Y - 1)*52] == NI0,

NM[(Y - 1)*52] == 0,

AQ[(Y - 1)*52] == A0,

AM[(Y - 1)*52] == 0,

GS[(Y - 1)*52] == GS0,

GI[(Y - 1)*52] == GI0,

GR[(Y - 1)*52] == GR0},

{LQ, LMS, LMI, NQS, NQI, NM, AQ, AM, GS, GI, GR},

{t, (Y - 1)*52, Y*52}];

Do[AppendTo[ThingL1, {k, LQ[k] /. soln[[1]]}], {k, (Y - 1)*52 + 1,

Y*52}];

Do[AppendTo[ThingL2, {k, LMS[k] /. soln[[1]]}], {k, (Y - 1)*52 + 1,

Y*52}];

Do[AppendTo[ThingL3, {k, LMI[k] /. soln[[1]]}], {k, (Y - 1)*52 + 1,

Y*52}];

Do[AppendTo[ThingN1, {k, NQS[k] /. soln[[1]]}], {k, (Y - 1)*52 + 1,

Y*52}];

Do[AppendTo[ThingN3, {k, NQI[k] /. soln[[1]]}], {k, (Y - 1)*52 + 1,

Y*52}];

Do[AppendTo[ThingN2, {k, NM[k] /. soln[[1]]}], {k, (Y - 1)*52 + 1,

Y*52}];
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Do[AppendTo[ThingA1, {k, AQ[k] /. soln[[1]]}], {k, (Y - 1)*52 + 1,

Y*52}];

Do[AppendTo[ThingA2, {k, AM[k] /. soln[[1]]}], {k, (Y - 1)*52 + 1,

Y*52}];

Do[AppendTo[ThingG1, {k, GS[k] /. soln[[1]]}], {k, (Y - 1)*52 + 1,

Y*52}];

Do[AppendTo[ThingG2, {k, GI[k] /. soln[[1]]}], {k, (Y - 1)*52 + 1,

Y*52}];

Do[AppendTo[ThingG3, {k, GR[k] /. soln[[1]]}], {k, (Y - 1)*52 + 1,

Y*52}];

Do[AppendTo[

AnotherThing, {k, NM[k] /. soln[[1]], GS[k] /. soln[[1]],

GI[k] /. soln[[1]], GR[k] /. soln[[1]], LMS[k] /. soln[[1]],

LMI[k] /. soln[[1]]}], {k, (Y - 1)*52 + 1, Y*52}];

LQend = LQ[Y*52] /. soln;

LMSend = LMS[Y*52] /. soln;

LMIend = LMI[Y*52] /. soln;

NQSend = NQS[Y*52] /. soln;

NQIend = NQI[Y*52] /. soln;

NMend = NM[Y*52] /. soln;

AQend = AQ[Y*52] /. soln;

AMend = AM[Y*52] /. soln;

GSend = GS[Y*52] /. soln;

GIend = GI[Y*52] /. soln;

GRend = GR[Y*52] /. soln;

L0 = egg*AMend[[1]];
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NS0 = LMSend[[1]];

NI0 = LMIend[[1]];

A0 = NMend[[1]];

GS0 = GSend[[1]];

GI0 = GIend[[1]];

GR0 = GRend[[1]];

LQ =.; LMS =.; LMI =.; NQS =.; NQI =.; NM =.; AQ =.; AM =.; GS =.;

GI =.; GR =.;

, {Y, 1, Ymax}] ;

Print[LMS[52*Ymax] /. soln [[1]], ", ", LMI[52*Ymax] /. soln [[1]]];

Print[NM[52*Ymax] /. soln [[1]]];

Print[AM[52*Ymax] /. soln [[1]]];

Print[GS[52*Ymax] /. soln [[1]], ", ", GI[52*Ymax] /. soln [[1]],

", ", GR[52*Ymax] /. soln [[1]]];

ListPlot[{ThingL1, ThingL2, ThingL3}, Joined -> True, PlotRange -> All]

ListPlot[{ThingN1, ThingN2, ThingN3}, Joined -> True, PlotRange -> All]

ListPlot[{ThingA1, ThingA2}, Joined -> True, PlotRange -> All]

ListPlot[{ThingG1, ThingG2, ThingG3}, Joined -> True,

PlotRange -> All]

b.3 borrelia burgdorferi s.l . model (chapter 5)

Clear["Global‘*"]; ThingL1 = {}; ThingL2 = {}; ThingN1 = {}; ThingN2 \

= {}; ThingA1 = {}; ThingA2 = {}; ThingL3 = {}; ThingN3 = {}; ThingH1 \

= {}; ThingH2 = {}; ThingH3 = {}; AnotherThing = {};
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groups = ({

{Cat, B1, B2, B3, B4, B5, B6, B7, B8, HA1, HA2, HA3, HA4, HA5,

HB1, HB2, HB3, HB4, HB5, HC1, HC2, HC3, HC4, HC5, M1, M2, M3, G1,

G2, G3, G4, G5, G6, G7, G8, G9, G10, W1, W2, W3, P1, P2, P3, P4,

P5},

{RowNo, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,

18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,

34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45},

{a, -0.80, 0.49, 1.44, 2.26, 2.83, 3.27, 3.86, 4.62, 0.75, 1.53,

2.36, 3.48, 4.45, 0.28, 1.34, 1.97, 2.62, 3.93, -0.40, 0.61,

1.37, 1.91, 3.44, -1.03, 0.22, 1.85, 1.58, 2.47, 2.85, 3.17,

3.40, 3.63, 3.94, 4.25, 4.56, 5.01, 2.60, 3.91, 4.64, 1.54, 2.41,

3.01, 3.64, 4.30},

{b, 10.10, 11.25, 12.08, 12.70, 13.15, 13.53, 14.00, 14.60, 11.41,

12.28, 12.80, 13.19, 13.70, 11.00, 11.91, 12.48, 13.10, 13.78,

10.55, 11.52, 12.18, 12.69, 13.40, 8.91, 9.86, 10.96, 11.71,

12.57, 12.95, 13.22, 13.44, 13.67, 13.96, 14.26, 14.54, 14.93,

13.67, 14.52, 15.09, 12.39, 12.99, 13.48, 13.96, 14.55},

{RedD, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 5, 5, 5, 5, 5, 15,

15, 15, 15, 15, 0.1, 0.1, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4,

4, 4, 2, 2, 2, 2, 2},

{Gr, 0, 0, 0, 0, 0, 0, 0, 0, 100, 100, 100, 100, 100, 50, 50, 50,

50, 50, 0, 0, 0, 0, 0, 20, 20, 20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0},

{Ha, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,

10, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{SM, 0, 0, 0, 0, 0, 0, 0, 0, 155, 155, 155, 155, 155, 155, 155,
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155, 155, 155, 155, 155, 155, 155, 155, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 11400, 11400, 11400, 4250, 4250, 4250, 4250, 4250},

{Brd, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 365, 365, 365,

35, 35, 35, 35, 35},

{RoeD, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 2, 2,

2, 2, 2}

});

habitat = 40;

increase = 2.5;

host = 2;

a = Part[groups, 3, habitat] + increase; b =

Part[groups, 4, habitat] +

increase; TL1 = 8; TL2 = 12; TNA1 = 5; TNA2 = 9; bL = 0.047; bN = \

0.024; bA = 0.009; bowL = 0.00995; bowN = 0.00333; egg = 627.5; \

\[Epsilon] = 0.0000001;

Fzero = 50;

bH = If[host == 1, 0.0192, 0.0064]; aH =

If[host == 1, 0.4615, 0.1538]; \[Sigma] = 0.01675; sH =

If[host == 1, 0.004423, 0.001474]*100/(

HS0 = If[host == 1, Part[groups, 8, habitat],

Part[groups, 9, habitat]]);

InitialInf = 0.1;

L0 = 100000; NS0 = 10000*(1 - InitialInf); NI0 =

10000*InitialInf; A0 = 1000; HS0 =

If[host == 1, Part[groups, 8, habitat],

187



Part[groups, 9, habitat]]; HI0 = 0; HR0 = 0;

Ymax = 100;

hosts = ({

{RedDeer, Part[groups, 5, habitat], 15.18, 70.41, 81.25},

{Grouse, Part[groups, 6, habitat], 15, 4, 0},

{Hare, Part[groups, 7, habitat], 63.7, 37.4, 11.4},

{SmallMammal, If[host == 1, 0, Part[groups, 8, habitat]] , 1.61,

0.03, 0},

{Bird, If[host == 2, 0, Part[groups, 9, habitat]], 3.11, 0.25, 0},

{RoeDeer, Part[groups, 10, habitat], 10.78, 23.9, 29.82}

});

hvalues = Transpose[hosts].hosts;

HL = If[host == 1, 1.61, 3.11];

HN = If[host == 1, 0.03, 0.25];

Do[

T[t_] = ((b - a)/2*Sin[t/(2.6 \[Pi]) - 0.5 \[Pi]]) + (b + a)/2;

FL[t_] := \[Piecewise] {

{0, T[t] \[LessSlantEqual] TL1},

{((T[t] - TL1)/(TL2 - TL1)), TL1 < T[t] < TL2},

{1, T[t] \[GreaterSlantEqual] TL2}

};

FNA[t_] := \[Piecewise] {

{0, T[t] \[LessSlantEqual] TNA1},

{((T[t] - TNA1)/(TNA2 - TNA1)), TNA1 < T[t] < TNA2},

{1, T[t] \[GreaterSlantEqual] TNA2}

};
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P[t_] = 1/(1 + Exp[0.75 (8 - T[t])]);

S[x_, K_] := (K*Fzero)/(

Fzero + (K - Fzero)*Exp[Log[Fzero/(19*(K - Fzero))]/(8*K)*x]) -

Fzero;

HB[t_] := \[Piecewise] {

{0, Mod[t, 52] \[LessSlantEqual] 19},

{1, 19 < Mod[t, 52] \[LessSlantEqual] 22},

{0, Mod[t, 52] \[GreaterSlantEqual] 23}

};

soln = NDSolve[{

LQ’[t] == -S[FL[t]*P[t]*LQ[t],

Part[hvalues, 2, 3] + HL*(HS[t] + HI[t] + HR[t])] - bL*LQ[t],

LMS’[

t] == (1 - ( HI[t]*HL)/(

Part[hvalues, 2, 3] + HL (HS[t] + HI[t] + HR[t])))*

S[FL[t]*P[t]*LQ[t],

Part[hvalues, 2, 3] + HL*(HS[t] + HI[t] + HR[t])] -

bowL*LMS[t],

LMI’[

t] == ( HI[t]*HL)/(

Part[hvalues, 2, 3] + HL (HS[t] + HI[t] + HR[t]))*

S[FL[t]*P[t]*LQ[t],

Part[hvalues, 2, 3] + HL*(HS[t] + HI[t] + HR[t])] -

bowL*LMI[t],

NQS’[

t] == -(NQS[t]/(NQS[t] + NQI[t] + \[Epsilon]))*

S[FNA[t]*P[t]*(NQS[t] + NQI[t]),

Part[hvalues, 2, 4] + HN*(HS[t] + HI[t] + HR[t])] - bN*NQS[t],
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NQI’[

t] == -(NQI[t]/(NQS[t] + NQI[t] + \[Epsilon]))*

S[FNA[t]*P[t]*(NQS[t] + NQI[t]),

Part[hvalues, 2, 4] + HN*(HS[t] + HI[t] + HR[t])] - bN*NQI[t],

NM’[t] ==

S[FNA[t]*P[t]*(NQS[t] + NQI[t]),

Part[hvalues, 2, 4] + HN*(HS[t] + HI[t] + HR[t])] - bowN*NM[t],

AQ’[t] == -S[FNA[t]*P[t]*AQ[t], Part[hvalues, 2, 5]] - bA*AQ[t],

AM’[t] == S[FNA[t]*P[t]*AQ[t], Part[hvalues, 2, 5]],

HS’[t] == -(1 -

0.2^((((HS[t]*HN)/(Part[hvalues, 2, 4] +

HN*(HS[t] + HI[t] + HR[t]) + \[Epsilon])) (NQI[

t]/(NQS[t] + NQI[t] + \[Epsilon]))*

S[FNA[t]*P[t]*(NQS[t] + NQI[t]),

Part[hvalues, 2, 4] +

HN*(HS[t] + HI[t] + HR[t])])/(HS[t] + \[Epsilon])))*

HS[t] - bH*

HS[t] + (aH - sH*(HS[t] + HI[t] + HR[t]))*(HS[t] + HI[t] +

HR[t]),

HI’[t] == (1 -

0.2^((((HS[t]*HN)/(Part[hvalues, 2, 4] +

HN*(HS[t] + HI[t] + HR[t]) + \[Epsilon])) (NQI[t]/(

NQS[t] + NQI[t] + \[Epsilon]))*

S[FNA[t]*P[t]*(NQS[t] + NQI[t]),

Part[hvalues, 2, 4] +

HN*(HS[t] + HI[t] + HR[t])])/(HS[t] + \[Epsilon])))*

HS[t] - bH*HI[t] - \[Sigma]*HI[t],
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HR’[t] == \[Sigma]*HI[t] - bH*HR[t],

LQ[(Y - 1)*52] == L0,

LMS[(Y - 1)*52] == 0,

LMI[(Y - 1)*52] == 0,

NQS[(Y - 1)*52] == NS0,

NQI[(Y - 1)*52] == NI0,

NM[(Y - 1)*52] == 0,

AQ[(Y - 1)*52] == A0,

AM[(Y - 1)*52] == 0,

HS[(Y - 1)*52] == HS0,

HI[(Y - 1)*52] == HI0,

HR[(Y - 1)*52] == HR0},

{LQ, LMS, LMI, NQS, NQI, NM, AQ, AM, HS, HI, HR},

{t, (Y - 1)*52, Y*52}];

Do[AppendTo[ThingL1, {k, LQ[k] /. soln[[1]]}], {k, (Y - 1)*52 + 1,

Y*52}];

Do[AppendTo[ThingL2, {k, LMS[k] /. soln[[1]]}], {k, (Y - 1)*52 + 1,

Y*52}];

Do[AppendTo[ThingL3, {k, LMI[k] /. soln[[1]]}], {k, (Y - 1)*52 + 1,

Y*52}];

Do[AppendTo[ThingN1, {k, NQS[k] /. soln[[1]]}], {k, (Y - 1)*52 + 1,

Y*52}];

Do[AppendTo[ThingN3, {k, NQI[k] /. soln[[1]]}], {k, (Y - 1)*52 + 1,

Y*52}];

Do[AppendTo[ThingN2, {k, NM[k] /. soln[[1]]}], {k, (Y - 1)*52 + 1,

Y*52}];
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Do[AppendTo[ThingA1, {k, AQ[k] /. soln[[1]]}], {k, (Y - 1)*52 + 1,

Y*52}];

Do[AppendTo[ThingA2, {k, AM[k] /. soln[[1]]}], {k, (Y - 1)*52 + 1,

Y*52}];

Do[AppendTo[ThingH1, {k, HS[k] /. soln[[1]]}], {k, (Y - 1)*52 + 1,

Y*52}];

Do[AppendTo[ThingH2, {k, HI[k] /. soln[[1]]}], {k, (Y - 1)*52 + 1,

Y*52}];

Do[AppendTo[ThingH3, {k, HR[k] /. soln[[1]]}], {k, (Y - 1)*52 + 1,

Y*52}];

Do[AppendTo[

AnotherThing, {k, NM[k] /. soln[[1]], HS[k] /. soln[[1]],

HI[k] /. soln[[1]], HR[k] /. soln[[1]], LMS[k] /. soln[[1]],

LMI[k] /. soln[[1]]}], {k, (Y - 1)*52 + 1, Y*52}];

LQend = LQ[Y*52] /. soln;

LMSend = LMS[Y*52] /. soln;

LMIend = LMI[Y*52] /. soln;

NQSend = NQS[Y*52] /. soln;

NQIend = NQI[Y*52] /. soln;

NMend = NM[Y*52] /. soln;

AQend = AQ[Y*52] /. soln;

AMend = AM[Y*52] /. soln;

HSend = HS[Y*52] /. soln;

HIend = HI[Y*52] /. soln;

HRend = HR[Y*52] /. soln;

L0 = egg*AMend[[1]];
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NS0 = LMSend[[1]];

NI0 = LMIend[[1]];

A0 = NMend[[1]];

HS0 = HSend[[1]];

HI0 = HIend[[1]];

HR0 = HRend[[1]];

LQ =.; LMS =.; LMI =.; NQS =.; NQI =.; NM =.; AQ =.; AM =.; HS =.;

HI =.; HR =.;

, {Y, 1, Ymax}] ;

Print[LMS[52*Ymax] /. soln [[1]], ", ", LMI[52*Ymax] /. soln [[1]]];

Print[NM[52*Ymax] /. soln [[1]]];

Print[AM[52*Ymax] /. soln [[1]]];

Print[HS[52*Ymax] /. soln [[1]], ", ", HI[52*Ymax] /. soln [[1]],

", ", HR[52*Ymax] /. soln [[1]]];

ListPlot[{ThingL1, ThingL2, ThingL3}, Joined -> True, PlotRange -> All]

ListPlot[{ThingN1, ThingN2, ThingN3}, Joined -> True, PlotRange -> All]

ListPlot[{ThingA1, ThingA2}, Joined -> True, PlotRange -> All]

ListPlot[{ThingH1, ThingH2, ThingH3}, Joined -> True,

PlotRange -> All]
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