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Abstract 

 

Affect and cognition have traditionally been considered mutually exclusive domains and 

their study has evolved into two separate research fields. In recent years, however, there is 

increasing evidence of affective modulations of cognitive processes and interest in the study 

of affective cognition has grown. This thesis presents analyses of data collected in four 

mixed-design experiments between 2009 and 2011, which were designed to investigate 

affective memory and its electrophysiological correlates, individual differences in said 

affective memory and electrophysiological correlates, the time-course of affective memory 

and attentional disengagement from affective stimuli respectively. The first aim of the 

research presented here was to further understanding of how affective content influences 

picture processing and memory. Event-related potentials (ERPs) provide a valuable tool for 

the investigation of modulations of cognitive processes, as their excellent temporal 

resolution allows for the dissociation between different processes contributing to 

behavioural outcomes.  

Several important results for the study of affective cognition are reported: The late positive 

potential (LPP) was shown to be modulated differentially by affective content when 

compared to a behavioural attentional disengagement task. While the behavioural measure 

of attention replicated findings from participants’ self-report of arousal, LPP enhancement 

did not. This novel finding demonstrates that the affective modulation of the LPP cannot be 

used as an electrophysiological marker of slowed attentional disengagement as is common 

in the literature. 

In the domain of recognition memory, affective modulation of performance was shown to be 

time-sensitive, with effects developing faster for negative than for positive picture content. 
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Affective pictures were associated with a less conservative response bias than neutral 

pictures but only negative pictures elicited better discrimination performance, driven by an 

increased in the rate of “remembered” as compared to merely familiar pictures. This was 

reflected in an increase of the ERP old/new effect for negative pictures in the 500 to 800ms 

time window, the purported correlate of recollection. The late right-frontal old/new effect 

between 800 and 1500 ms post stimulus onset was shown to be attenuated by affective 

content, supporting the interpretation of the late right-frontal effect as a correlate of 

relevance detection over a retrieval success interpretation. In combination, the findings add 

weight to the conclusion that affective content enhances memory through selective memory 

sparing for affective stimuli.    

Novel evidence for gender differences in affective cognition was found. Comparisons 

between female and male participants revealed that the affective modulation of the late 

right-frontal effect differs between the genders, underlining the importance of assessing and 

understanding gender differences as part of the study of affective cognition. Brain-derived 

neurotrophic factor (BDNF) gene val66met single nucleotide polymorphism (SNP), a small 

genetic change that affects the functioning of BDNF, a protein that plays an important role in 

neuron growth, differentiation and survival, is shown here to also affect the interaction of 

affect and cognition. BDNF val66met genotype modulated the early “familiarity” old/new 

effect selectively in response to positive pictures. The present study clearly demonstrates the 

value of the ERP technique in the investigation of individual differences in affective and 

cognitive processing and the need to take such individual differences into account as part of 

the endeavour to fully understand the mechanisms of affective processing, cognition and 

affective cognition. A better understanding of the role of gender and genetic differences in 

the affective modulation of affective processing and memory will have important practical 

implications in fields where affect and cognition interact.   
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Chapter 1: Memory and Affect 

 

This chapter introduces the separate research fields of affect and cognition, 

with a specific focus on the cognitive literature on recognition memory. 

Important findings on both the behavioural level and the structural and 

functional neural levels are discussed. An overview over the field of affective 

cognition, investigating the affective modulation of cognitive functions, is also 

given and relevant research summarised and assessed, culminating in a 

summary of the main research questions pertaining to the investigation of 

affective recognition memory in the present thesis.  

 

1.1 Memory 

Memory is a fundamental aspect of human cognition. The ability to remember 

the past allows us to understand the world around us in the context of not just 

the current situation but the whole spectrum of our previous experiences. 

While many other species show evidence of memory to some extent, from 

simple pain avoidance learning in fruit flies (Quinn, Harris, & Benzer, 1974) to 

gorillas being able to remember what food they received and who provided it 7 

minutes and 24 hours after the episode (Schwartz, Hoffman, & Evans, 2005), 

memory is also a prerequisite to many higher order phenomena that are 

uniquely human. Our everyday functioning draws on memory in countless 
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ways, from remembering how to ride a bike to remembering the way to the 

supermarket and which items to buy when we get there.  

 

1.1.1 Organisation of memory 

Although the real picture is almost certainly a lot more complex, for the 

purpose of studying memory it is helpful to distinguish different sub-types of 

memory. One often cited memory model is that proposed by Atkinson and 

Shiffrin (1968). It distinguishes between sensory memory, short-term memory 

and long-term memory (see Figure 1.1). Although the specifics of the proposed 

sub-systems have been much discussed and expanded on (see Raaijmakers, 

1993), the basic distinction between short-term, or working memory, and long-

term memory is still widely used.  

 

  

Figure 1.1 Atkinson and Shiffrin’s (1968) multistore model of memory 
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Short-term memory is, as the name suggests, characterised by short duration, 

lasting only as long as information is actively rehearsed, and a limited capacity 

of around 5 to 9 items (Miller, 1994). Baddeley and Hitch (1974) later proposed 

their more detailed model of working memory to replace Atkinson and 

Shiffrin's (1968) sensory and short-term stores.  

The work presented in this thesis, however, focuses on long-term memory. The 

term describes memory that is potentially infinite both in capacity and 

duration. Tulving (1987) subdivides long-term memory into episodic, semantic 

and procedural memory. In reviewing other classificatory schemes of the time, 

he notes that Weiskrantz (1968) broadly shares his classification, referring to 

event memory, knowledge systems and associative memory/priming 

respectively. Episodic or event memories and semantic memories or knowledge 

systems are explicit, that is they are subject to conscious retrieval. Procedural 

memory on the other hand is implicit, as is the case with Weiskrantz (1968) 

associative memory/priming. 

Cohen and Squire (1980), Kinsbourne (1986) and Schacter (1985) all distinguish 

between only two long-term memory systems: declarative, episodic or explicit 

memory in contrast with procedural, semantic or implicit memory. Tulving 

(1987) describes procedural memory as the learning of connections between 

stimuli and responses, which can happen slowly. Retrieved procedural 

memories are expressed through behaviour rather than verbally, a process that 

can happen without conscious effort or attention. Procedural memory stores 

information on how to do things. 
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Semantic memory is memory for knowledge or facts. It can be shared between 

people and is not connected to the episode during which it was acquired. 

Episodic memory, finally, is memory for personally experienced episodes that 

can be mentally relived as the memory is retrieved. Tulving (1987) 

differentiates between recall and recognition here, recall being the retrieval of 

memory without any perceptual support and recognition being the 

identification of a stimulus as previously encountered. Episodic recognition 

memory and its neural correlates, their modulation by affective content and 

individual differences in these measures are the focus of the present thesis. 

 

1.1.2 Episodic memory processes: Encoding, consolidation, storage, retrieval 

Episodic memory consists of a sequence of processes, all of which can be 

individually influenced by a range of factors to modulate the overall memory 

outcome. When a stimulus is first encountered, it must be encoded. During 

encoding, a mental representation of the stimulus in memory is created. An 

important factor in the successful encoding of stimuli is attention. When 

attention is divided, i.e. less attention is paid to the stimulus to be encoded, 

encoding is impaired (Craik, Govoni, Naveh-Benjamin, & Anderson, 1996). 

Once encoded, the resultant memory trace is consolidated or stabilised. 

Consolidation is variably seen as a sub-process of encoding or retention. It is 

achieved on the neural level by long-term potentiation, a process which 

strengthens the connections between synchronously firing neurons. After 
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initial, fast synaptic consolidation which results in a memory representation in 

the hippocampus, a second slower process called systems consolidation moves 

the memory to neocortical regions where it is more permanent and 

independent of the hippocampus (Dudai, 2004). Sleep has been repeatedly 

shown to be an important factor in memory consolidation, likely by affecting 

changes in neurotransmitter levels and neurohormones (Payne, 2011). Memory 

storage refers to the retention of a memory. Finally, the memory can be 

retrieved when relevant to the situation or task at hand. As mentioned above, 

retrieval can take the form of recognition, which the process of identifying a 

given stimulus as previously encountered or new, or recall, i.e. without being 

confronted with the original stimulus. Recall can be free, i.e. spontaneous, or 

cued by related information or stimuli.     

 

1.1.3 Theories of recognition memory 

Recognition memory, as discussed above, is the ability to identify previously 

encountered material as old and distinguish it from not previously encountered 

new material. This recognition can be based on familiarity, a sense of having 

encountered the stimulus at hand before, or recollection, the retrieval of details 

of that previous encounter and of the stimulus itself (Yonelinas, 2002). In 

everyday life, one might see a person in the street and get the feeling of 

knowing them from somewhere (familiarity) or remember that they are the 

cashier at the local supermarket (recollection). The relative contribution of 
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familiarity and recollection to recognition memory is often estimated using the 

Remember/Know paradigm (Tulving, 1985). If an item is classed as “old” in a 

recognition memory task, the participant is then asked to indicate whether they 

remember specific details of their encounter with the item at study or whether 

they merely feel they know that the item is old because it feels familiar. 

Theories of recognition memory can be divided into two categories, based on 

whether they postulate that familiarity and recollection are two distinct 

processes or two aspects of the same process.  

Single process theories see recollection and familiarity as two points on a 

continuum of memory strength which underlies all recognition memory 

retrieval. Most prominent among single process theories is the single process 

signal detection model (see Wixted, 2007). Signal detection theory posits 

memory strength or “familiarity” to be a single, quantitative, unidimensional 

variable. At retrieval, familiarity associated with each stimulus is compared to a 

set response criterion. If familiarity exceeds the response criterion, the stimulus 

is classed as “old”, if familiarity falls short of the response criterion, the 

stimulus is labelled “new”. Importantly, in this model, both old and new items 

are associated with some level of familiarity and the distributions of familiarity 

levels for new and old items overlap, meaning that there can never be absolute 

certainty in a memory decision. Familiarity and recollection are seen in this 

framework as purely representing weak memories and strong memories 

respectively (Squire, Wixted, & Clark, 2007). 
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Dual process theories, in contrast, posit that familiarity and recollection are two 

separable processes, supported by distinct neural networks, either of which can 

lead to recognition of an item. Yonelinas (1994) proposes that familiarity is 

indeed a signal-detection process but that recollection is a separate, thresholded 

process. Familiarity is continuous and an old decision is made on the basis of 

familiarity exceeding a certain level. Recollection results in one of two discrete 

states: either an item is recollected or it is not.  

Whether single or dual process theories best describe recognition memory is an 

ongoing and hotly contested debate in the memory literature (Medina, 2008). 

The research presented in this thesis, however, was not designed to decide 

between these theoretical accounts. While a dual process view of recognition 

memory is adopted throughout, based on a large body of evidence dissociating 

the two processes (Yonelinas, 2002), the results reported do not test this 

assumption and could equally be interpreted from a single process point of 

view. 

 

1.1.4 Neural correlates of recognition memory 

The modern study of the brain areas and systems underlying memory was 

inspired only 60 years ago by what is now the most famous case study in 

cognitive psychology, the case of patient H.M. (Scoville & Milner, 1957). Before 

then, memory had been thought to be integrated with other cognitive functions 

and to be widely distributed across the cortex (Squire, 2009). Patient H.M. 
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showed extensive memory impairment, including the complete inability to 

form new episodic memories, as a result of surgical removal of the bilateral 

hippocampus, amygdala and adjacent parahippocampal areas. H.M.’s 

intellectual and perceptual faculties were unaffected and he could retain 

information such as short series of digits as long as his attention was not 

diverted (Squire, 2009). The focussed memory impairments created by the 

bilateral Medial Temporal Lobe (MTL) resection in patient H.M. provided 

initial evidence of the importance of the MTL in episodic memory.   

Evidence from animal lesion and neuronal recording studies, human clinical 

studies and more recently functional brain imaging studies in humans have 

since confirmed the importance of the hippocampus in memory and identified 

a second crucial brain area, the perirhinal cortex. Brown and Aggleton (2001), 

reviewing the literature, proposed that the hippocampus and the perirhinal 

cortex support two dissociable aspects of memory. They conclude that a 

perirhinal system underlies familiarity based memory for single objects, while 

the hippocampal system underlies recollection based memory for more 

complex associational, spatial or multi-item information.  

A number of functional brain imaging studies have confirmed a dissociation in 

activity associated with familiarity and recollection. Yonelinas et al. (2005), for 

example, report increased activity associated with recollected words in the 

hippocampus, the anterior medial prefrontal cortex, the inferior lateral parietal 

cortex and posterior cingulate. Words that were recognised based on 

familiarity, in contrast, were associated with increased activation in different 
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brain regions, including the lateral prefrontal cortex, the superior lateral 

parietal cortex and the precuneus.  

Electrophysiological studies have also provided evidence of a dissociation of 

neural systems involved in familiarity and recollection by showing that the 

electrophysiological correlates of familiarity and recollection are distinct in 

timing and topography. For words, familiarity based recognition is associated 

with an earlier frontal old/new effect from around 300 milliseconds post-

stimulus onset, while recollection is associated with a later left-parietal 

old/new effect onsetting around 500 milliseconds post stimulus onset 

(Woodruff, Hayama, & Rugg, 2006). The electrophysiological Event-Related 

Potentials (ERP) technique employed here, along with the familiarity and 

recollection ERP effects, will be discussed in detail in Chapter 3. 

 

1.2 Emotion/affect 

1.2.1 Defining emotion: Emotion vs affect 

“Everyone knows what an emotion is, until asked to give a definition” wrote 

Fehr and Russell (1984, p. 464), pointing out the difficulty of defining a concept 

so fundamental to our human experience that it is generally assumed to be 

understood implicitly. And so, the term emotion is laden with diverse, 

culturally dependent “folk meaning” but rarely examined more systematically 

in everyday life. Definitions tend to be circular, relating to the terms “feeling” 



Chapter 1: Memory and Affect 
 

- 10 - 
 

and “affect”, or rely on examples of either specific emotions or causes or 

consequences of emotion.  

Due to its central role, emotion has been a subject in many disciplines from 

philosophy and the arts to, more recently, psychology and neuroscience. But 

despite being studied extensively, very little academic consensus on the 

definition of emotion has been reached. Kleinginna and Kleinginna (1981) 

reviewed 101 definitions of emotion from the literature of the time and 

classified them as belonging to one of ten categories (including for example 

traditional experimental categories, physical categories, and categories of 

definitions based on overlapping or distinguishing features compared to other 

concepts). In an attempt to unify these diverse definitions, they define emotion 

as “a complex set of interactions among subjective and objective factors, mediated by 

neural/hormonal systems, which can (a) give rise to affective experiences such as 

feelings of arousal, pleasure/displeasure; (b) generate cognitive processes such as 

emotionally relevant perceptual effect, appraisals, labelling processes; (c) activate 

widespread physiological adjustments to the arousing conditions; and (d) lead to 

behaviour that is often, but not always, expressive, goal-directed, and adaptive.” 

(Kleinginna & Kleinginna, 1981, p. 355).  

Partly, the apparent impossibility of arriving at one universally accepted and 

applicable definition arises from the fact that the term “emotion”, in scientific 

as in lay language, is used to describe many aspects and different levels of a 

multi-faceted concept.  
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The term “emotion”, especially in the emotional memory literature, is often 

used synonymous with “core affect”. Core affect theory underlies psychological 

construction models of emotion, which see emotion experience as a function of 

previous experience, language, executive functioning and affect. Affect varies 

on the dimensions of valence, from positive to negative, and arousal, from calm 

to excited (Russell, 2009; for a recent review of core affect theory in relation to 

other prevalent models of emotion see Gross, 2011). While specific emotions are 

transient and directed at something, core affect is an underlying 

neurophysiological state, which changes over time. An individual is always in a 

particular state of arousal with a particular valence, even though core affect is 

not necessarily accessed by consciousness. Core affect is a property of the 

individual but the dimensions of valence and arousal are also commonly used 

to describe properties of stimuli, which are assumed to cause an emotional 

response. However, Russell (2009) notes that such a causal relationship 

between perceptions of affective quality and core affect, although it is a widely 

employed premise, is an assumption that needs empirical testing.  

 

1.2.2 Eliciting and measuring affect 

To be able to study the interactions between affect and other variables, affect 

has to be elicited in an empirical setting, often a lab environment. Being 

ubiquitous in our everyday experience and functioning, affect can be 

influenced by perceptions of all five senses, by auditory, visual, tactile and even 
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olfactory and gustatory stimuli. However, owing partly to the fact that they are 

more easily realised in a lab environment, cognitive research typically uses 

visual and auditory stimuli to elicit affect. Tactile, olfactory and gustatory 

stimuli also tend to elicit more diverse individual affective reactions. The taste 

of caviar for example may produce great pleasure in one person while 

provoking disgust in another. These types of stimuli are also less accessible to 

language, which further complicates standardisation. Most people would find 

it difficult for example to verbalise exactly what is pleasant about a specific 

scent. Auditory and visual stimuli suffer from these problems to a lesser extend 

but are still extremely difficult to standardise. A researcher investigating the 

influence of legibility of a stimulus word on memory can manipulate this 

variable within clearly defined and objective physical parameters such as 

luminosity, font size, background colour etc. The affective content of a stimulus 

on the other hand, that is its potential to elicit affect of a certain valence and 

arousal value, cannot be defined in objective terms but by definition depends 

on a perceiver. Two physically very similar stimuli can have completely 

opposing affective contents. For example, consider the difference in affective 

impact between a picture of a smiling child holding a water pistol and a picture 

of the same smiling child holding a real firearm. Therefore the affective content 

of a stimulus can only ever be determined by people’s reported reaction to it. In 

view of this inherent subjectivity, the best option available to ensure 

standardisation of stimuli is the use of large samples of ratings of the valence 

and arousal, or in some cases the specific emotion, associated with stimuli. 
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There are a number of such standardised affective stimulus sets available to 

researchers, including collections of affective sounds such as International 

Affective Digitized Sounds (IADS; Bradley & Lang, 1999b), and words such as 

Affective Norms for English Words (ANEW; Bradley & Lang, 1999). The most 

widely used types of stimuli, especially in cognitive research, are pictures in 

general and pictures of faces more specifically. Face stimuli are typically 

classified in terms of a small set of basic emotions and include the Pictures of 

Facial Affect (POFA; Ekman & Friesen, 1979), Karolinska Directed Emotional 

Faces (KDEF; Lundqvist, Flykt, & Öhman, 1998), the Montreal Set of Facial 

Displays of Emotion (Beaupré, Cheung, & Hess, 2000) and the NimStim 

(Tottenham et al., 2009). Affective picture sets are generally classified in terms 

of the dimensions of core affect, i.e. the arousal and valence associated with 

stimuli. At the time of data collection for this thesis, the only large standardised 

set of affective pictures available was the International Affective Picture System 

(IAPS; Lang, Bradley, & Cuthbert, 1999), which is still the most widely used 

stimulus set of this type. It comprises of 1196 pictures varying in the two 

primary dimensions of valence and arousal as well as a third dimension of 

dominance. Ratings for each picture were obtained from approximately 100 

participants. The set includes a range of different picture contents, from simple 

objects to depictions of complex social scenes. 

While standardizing affect elicitation in experimental settings is certainly 

challenging, accurately measuring affect is probably even more complex as it 

aims to objectively record what are by definition wholly subjective experiences.  
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Measurements of experienced valence rely on either self-report or observation, 

for example of facial expression. While self-report can be confounded by 

aspects such as social desirability or ability to verbalise one’s state of affect, 

observation is further complicated by observer interpretation. Especially 

cognitive paradigms commonly favour one of the more direct self-report 

measures. The Semantic Differential Scale (Mehrabian & Russell, 1974), for 

example, uses ratings on 18 bipolar semantic differentials to arrive at scores for 

valence, arousal and dominance. The very popular Self Assessment Manikin 

(SAM; Bradley & Lang, 1994) is a non-verbal, picture-based self-report measure 

for these three dimensions, avoiding confounds rooted in language. There are a 

number of physiological methods seeking to avoid the inherent subjectivity of 

self-report and observation. These include electrodermal methods such as Skin 

Conductance Level (SCL) or Skin Conductance Response (SCR) and 

cardiovascular methods such as measures of heart rate or blood pressure. These 

methods rely on measuring Autonomic Nervous System (ANS) activation and 

are typically viewed as measures of arousal only. 

 

1.2.3 Valence and arousal – Two independent dimensions? 

As noted above, affect and affective stimuli are commonly characterised by 

variations in two dimensions: valence and arousal. Although additional 

dimensions have also been proposed, most conceptualisations of affect include 

valence and arousal (see for example Barrett & Russell, 1999; Fontaine, Scherer, 
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Roesch & Ellsworth, 2007; Lang, 1995; Reisenzein, 1994; Russell, Weiss, & 

Mendelsohn, 1989; Watson & Tellegen, 1985). Both of these dimensions are 

considered continuous and theoretically independent. The valence of a 

stimulus therefore allows no conclusions about its arousal level and vice versa. 

In practice, however, valence and arousal are related in a v-shaped or u-shaped 

fashion, with extreme negative and positive valences more likely to be 

associated with high arousal and neutral valence more likely to be associated 

with low arousal. Warriner, Kuperman and Brysbaert (2013), for example, 

report such a v-shaped relationship between valence and arousal for a large set 

of nearly 14000 affective English words. Lang (1995) reports the same 

relationship for IAPS pictures, calling it a boomerang relationship as he plots 

arousal along the x-axis. Bernat, Patrick, Benning and Tellegen (2006) also 

report a v-shaped relationship between IAPS picture valence and arousal, 

confirming arousal ratings with the physiological measures of startle blink 

magnitude, skin conductance and corrugator muscle reactions. A similar 

relationship between valence and arousal is found when mood is induced using 

Velten statements (Jennings, McGinnis, Lovejoy, & Stirling, 2000), a series of 

self-referential statements that are read aloud by participants to induce either 

positive or negative mood. Kuppens, Tuerlinckx, Russell and Barrett (2013) add 

the finding that there is significant variability between participants in the 

relationship between valence and arousal.  

 



Chapter 1: Memory and Affect 
 

- 16 - 
 

1.2.3 Neural correlates of affect 

Affect is a multi-faceted phenomenon, ranging from simple approach or 

avoidance reflexes to complex processing of affective meaning. These multiple 

levels of affective processing are implemented on multiple neural levels. 

Generally speaking, the complexity of affective processing increases along the 

neuraxis going from caudal to rostral in the central nervous system (Norris, 

Gollan, Berntson, & Cacioppo, 2010). Since the present thesis is concerned with 

affect at the level of processing of the affective content of stimuli under simple 

viewing conditions, specifically neural correlates indexing affect perception 

will be discussed here.  

The amygdala’s association with affective processing has been known for such 

a long time through findings from animal studies (e.g. Weiskrantz, 1956) that it 

is now considered common knowledge. Human lesion studies have confirmed 

impaired identification of facial emotions as a consequence of amygdala 

damage (Adolphs, Tranel, Damasio, & Damasio, 1994) or amygdalotomy 

(Young, 1995). 

While animal research and human lesion studies have their place in the 

investigation of the neural basis of behaviour, emotion is both highly 

subjective, making it difficult to assess the appropriateness of animal models, 

and likely to be impacted by the experience of trauma, limiting the 

generalisability of human lesion studies, where damage is seldom restricted to 

one brain area or system. Knowledge about the neural correlates of affective 
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perception has therefore been advanced most by functional imaging studies of 

healthy human participants.  Viewing emotional compared to neutral faces has 

been shown to be associated with increased activity, as measured by blood 

oxygenation level dependent (BOLD) response, in the amygdala, hippocampus, 

parahippocampal gyrus and cingulate gyrus (Gur et al., 2002). Although the 

amygdala has historically been most associated with fear processing, fMRI has 

also shown it to be reactive to positive facial affect (Pohl, Anders, Schulte-

Rüther, Mathiak, & Kircher, 2013), along with the insula.  

A number of fMRI studies have sought to dissociate the specific effects of 

stimulus valence and arousal on brain activation. Although there is some 

variation in the specific brain regions reported as being neural correlates of 

changes in valence and arousal respectively, all studies show regions that are 

sensitive to each of the dimensions but not the other. Studies converge on 

reporting insula and dorsolateral prefrontal cortex regions as correlates of 

valence, while the amygdala, parahippocampus and thalamus are reported to 

index stimulus arousal (Anders, Lotze, Erb, Grodd, & Birbaumer, 2004; 

Colibazzi et al., 2010; Lewis, Critchley, Rotshtein, & Dolan, 2006; Posner et al., 

2009). 

Affective stimulus content has also been shown to modulate the 

electrophysiological correlates of picture processing. Early ERP components 

between 100 and 200 milliseconds post stimulus onset have been shown to be 

modulated by affective stimulus content, but reported effects are variable. 

Arousing stimuli have been shown to elicit an early posterior negativity (EPN) 
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around 200 to 300 milliseconds post stimulus onset when compared to neutral 

stimuli (see Olofsson, Nordin, Sequeira, & Polich, 2008 for review). The most 

extensively reported ERP component that is modulated by affective content is 

the Late-Positive Potential (LPP), a positive going deflection maximal over 

central midline electrodes that is increased for affective stimuli. It is discussed 

in detail in Chapters 3 and 5. 

 

1.3 Affective memory 

Although cognition and affect were historically considered fundamentally 

distinct and their study developed in two independent fields, there has been 

increasing interest in the interplay of affect and cognition in recent years.  

Affective stimulus content has repeatedly been shown to have a powerful effect 

on attentional and perceptual processes. In visual search tasks, for example, 

participants are faster to detect schematic drawings of faces displaying negative 

than positive emotions. When faces are inverted, which reduces whole-face 

processing and therefore affect recognition, the effect disappears (Eastwood, 

Smilek, & Merikle, 2001). Affective content of spatial cues has also been shown 

to improve perception. If a stimulus is preceded by an affective spatial cue, then 

the contrast threshold above which an orientation perception task can be 

performed successfully on the stimulus is lowered (Phelps, Ling, & Carrasco, 

2006). Affective stimulus content also overrides the attentional blink, a 

temporary attentional blindness to target stimuli presented after preceding 
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detected targets. Negative words are significantly less likely to be missed when 

presented in the attentional blink window than neutral words (Anderson, 

2005). 

Affective stimulus content also modulates memory. Flashbulb memories are an 

extreme example of vivid and long-lasting memory for an autobiographical 

event based on its strong affective content (Brown & Kulik, 1977). Flashbulb 

memories can be created by both negative content, such as hearing news of the 

terrorist attacks on the World Trade Centre in 2001 (Hirst et al., 2009), and 

positive content, such as learning of the fall of the Berlin Wall in 1989 (Bohn & 

Berntsen, 2007). The focussing on affective aspects seen in flashbulb memories 

can also be demonstrated under conditions of overall much lower affective 

arousal variation. Affective pictures shown as part of an experiment under 

controlled conditions in a lab elicit much smaller affective arousal changes than 

affective life events. Nevertheless, a memory difference can be produced by 

affective picture content. Under passive viewing conditions, affective 

components of the foreground of picture stimuli are better remembered than 

their neutral background (Kensinger, Piguet, Krendl, & Corkin, 2005).  

However, affective content does not necessarily interfere with memory for 

context information. In fact, a number of studies have shown improved source 

memory for affective over neutral material. Participants were more accurate in 

remembering the colour of words at study for affective over neutral words 

(D'Argembeau & Van der Linden, 2004; Doerksen & Shimamura, 2001), as well 

as in remembering the spatial location in which words had been presented 
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(D'Argembeau & Van der Linden, 2004). D'Argembeau and Van der Linden 

(2005) also showed that participants performed significantly better in a 

temporal information task, where they had to indicate the test list in which each 

test picture had been presented at study, if the test picture was of negative 

affective content, compared to neutral and positive pictures. Recognition 

memory performance was enhanced for both negative and positive relative to 

neutral pictures. 

Affective stimuli are also typically associated with an increased contribution of 

recollection, relative to familiarity. Participants give a higher proportion of 

“remember” judgments in response to negative or positive words (Kensinger & 

Corkin, 2003; Mickley & Kensinger, 2008) and pictures (Mickley & Kensinger, 

2008), compared to neutral stimuli.  

Functional imaging studies have provided evidence for an interaction between 

amygdala and hippocampal activation in affective memory (Phelps, 2004). 

Positron Emission Tomography (PET) first showed that increased amygdala 

activity during the viewing of affective video clips is associated with later 

improved recall of the clips (Cahill et al., 1996; 2001). Interestingly, the 

lateralisation of amygdala activity correlating with improved recall differed 

between men and women. Chapters 2 and 7 will discuss gender differences in 

affective memory and its neural correlates in more detail. A review of 

functional imaging studies of the retrieval in affective memory concluded that 

affective memory retrieval is implemented in a system consisting of the 

amygdala, hippocampus and prefrontal cortex (Buchanan, 2007).  
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1.4 Research questions – affective memory 

The central focus of the present thesis is the affective modulation of recognition 

memory and its electrophysiological correlates. Chapter 6 below discusses 

relevant electrophysiological research and presents behavioural findings of 

affective memory and neural correlates of affective memory.  

The main research questions addressed in this context are: 

o Does processing of, and memory for, affective material differ by stimulus 

valence or arousal or a combination of both? 

o Is the late positive potential an electrophysiological correlate of attention 

capture by affective stimuli? 

o How do the effects of affective content on recognition memory change with 

increasing retention intervals? 

o Is enhanced affective memory associated with increased attention to 

affective stimuli? 
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Chapter 2:  

Individual Differences in Affect and Cognition 

 

Beyond the tired stereotypical view that “men are from Mars and women are 

from Venus”, research has produced evidence of gender differences in a 

number of affective and cognitive processes. Additionally, thanks to recent 

advances in genotyping techniques and growing interest in psychiatric genetics 

as well as the genetic basis for affect and cognition, small genetic variations 

with functional outcomes in affective processing or cognition have also been 

identified. While there is merit in averaging to uncover universal processes and 

mechanisms of brain function and behaviour, a full understanding of any 

affective or cognitive domain must also include an understanding of the 

individual difference factors that modulate it. The present chapter discusses 

current research on gender and genetic differences in affect and cognition, 

concentrating on the BDNF val66met polymorphism as a source of variation in 

behaviour and brain function and ending with a summary of the main research 

questions addressed by the present thesis. 
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2.1 Effects of gender 

2.1.1 Gender differences in affect 

The existence of gender differences is well established in clinical psychology 

and psychiatry. Men and women differ significantly in prevalence of a wide 

range of psychiatric disorders. Interestingly, the disorders that are more 

common in one gender than the other show a high degree of relatedness. While 

men are more likely to develop dependence issues, such as to drugs or alcohol, 

and antisocial personality disorders, women consistently show higher rates of 

depression and dysthymia, as well as anxiety disorders such as generalised 

anxiety disorder, panic disorder, social phobia and specific phobia (Kessler, 

1993b; Kessler & McGonagle, 1994). Attention deficit/hyperactivity disorder is 

more prevalent in boys than in girls by a factor of between three and 16 (Nøvik 

et al., 2006). Some studies find prevalence rates of clinical depression in women 

up to twice as high as those in men (Kessler, 1993a; Weissman, 1977). Maier et 

al. (1999) showed that the prevalence of depression was consistently higher in 

women than in men across 14 international samples including participants in 

Asia, Africa, Europe and America. While personality disorders are more 

common overall in men, women have higher rates of paranoid, borderline, 

avoidant, dependent, histrionic and obsessive compulsive personality disorder 

than men. Additionally to antisocial personality disorder, men are also more 

likely to exhibit narcissistic personality disorder (Trull, Jahng, Tomko, Wood, & 

Sher, 2010). The overall pattern that emerges is one of women being more 

vulnerable than men to mood disorders. Eaton et al. (2012) showed that women 



Chapter 2: Individual Differences in Affect and Cognition 
 

-  24 - 
 

are more vulnerable to disorders characterised by internalising, such as mood 

and anxiety disorders and men are more vulnerable to disorders characterised 

by externalising, such as substance abuse disorders and antisocial personality 

disorder. The authors argue that the observed gender differences in prevalence 

are due to gender differences in internalising-externalising liability. Using the 

National Epidemiologic Survey on Alcohol and Related Conditions (NESARC) 

with a sample size of over 43000 participants, they showed that women, 

independently of mental health status, score higher in internalising liability 

than men. 

The question that arises from these apparently systematic differences in 

pathology is whether there are underlying gender differences in affective 

processing in the healthy population, which may increase liability to certain 

types of disorders over others. Women have been shown to be more 

emotionally reactive and expressive than men (Balswick & Avertt, 1977; 

Bradley, Codispoti, Sabatinelli, & Lang, 2001; Kring & Gordon, 1998; Larsen & 

Diener, 1987) and better at identifying facial emotion (Thayer & Johnsen, 2000). 

Grossman and Wood (1993) argue that this increased emotional intensity seen 

in women is driven by gender role rather than biological difference. They asked 

participants to rate how frequently and how intensely they experienced and 

expressed a set of five emotions: love, joy, sadness, anger and fear. Participants 

were also asked to indicate what they felt was a typical man’s and a typical 

woman’s intensity of expression of these emotions. They found that women 

reported more frequent and more intense experience and expression of all 



Chapter 2: Individual Differences in Affect and Cognition 
 

-  25 - 
 

emotions except anger. The same pattern was found in participants’ ratings of 

the typical man and woman. The authors interpreted the finding that ratings of 

personal emotional experience correlated with the extent to which participants 

endorsed stereotypical gender roles in their ratings of the typical man and 

woman as evidence that individual differences in affect are driven by 

conformity to gender roles. The authors point out that participants’ self-reports, 

rather than the underlying affective experience, may be skewed by views on 

gender roles. A second explanation for the correlation that is not considered, is 

that participants likely derive their view of a typical member of their own 

gender, at least in part, from their own experience. The study therefore cannot 

conclusively decide whether “stereotypical” emotional experience arises purely 

on learned social norms or reflects an actual underlying gender difference in 

neural anatomy or functioning. It does, however, emphasise the need for more 

objective measures of affective response, especially when considering 

individual differences.  

Although they cannot distinguish between effects of nature and nurture, i.e. 

differences in underlying physiology and those that arise due to learning and 

experience, functional imaging techniques do avoid the confounds of social 

desirability and skewed self-perception that are likely to affect self-report 

measures. A number of functional Magnetic Resonance Imaging (fMRI) studies 

have shown gender differences in brain function during affective processing, 

both in the presence (Hofer et al., 2006; Hu & Xiao, 2009) and in the absence of 

behavioural gender differences (McClure, 2004; Wrase et al., 2003). When 
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asking participants to evaluate face stimuli for how threatening they are, 

(McClure, 2004) found no gender difference in either adolescent or adult 

participants’ threat ratings. Functional MRI, however, showed a gender 

difference in neural activation in response to affective face stimuli in adults 

only. Adult women showed activation in the orbitofrontal cortex and amygdala 

only when presented with angry faces, i.e. stimuli that convey threat. Adult 

men and adolescents of both genders did not show such clear discrimination of 

neural activity by affective face expression. Three fMRI studies have also 

assessed gender differences in brain activity during viewing of affective IAPS 

pictures. Greater signal change from the blank screen baseline in men than in 

women was shown in the extrastriate cortex during passive viewing of erotic 

but not of family IAPS pictures.  

Beyond sexual stimuli, Wrase et al. (2003) showed increased activation in 

response to positive pictures in men compared to women in the amygdala and 

frontal lobe, while women showed increased activity compared to men in the 

anterior and medial cingulate gyrus in response to negative pictures. 

Behavioural valence and arousal ratings did not differ between the genders, nor 

did skin conductance response or startle modulation. Hofer et al. (2006) did 

find a gender difference in participants’ affective reaction to negative and 

positive IAPS pictures as measured by the Positive and Negative Affect 

Schedule (PANAS; Watson & Tellegen, 1985) during a mood induction task. 

Participants were instructed to attempt feeling happy or sad with the help of 

the IAPS pictures presented. PANAS negative score was significantly more 
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increased compared to baseline during negative picture viewing in women 

than in men. Men showed more positive signal changes for positive pictures in 

the right posterior cingulate, left putamen and left cerebellum and more 

positive signal changes for negative pictures in the bilateral superior temporal 

gyri and cerebellar vermis. The differences found between men and women in 

fMRI studies using a range of affective tasks point to a difference in 

implantation of affective processes in the brain. As De Vries (2004) points out, 

such gender differences in brain function in the absence of behavioural 

differences are likely to represent compensatory processes in place to bridge 

underlying sex differences, such as in neural structure or hormone balance.  

It is of note that Soleman et al. (2014) provide evidence against the modulation 

of affective processing by often cited candidate hormones for gender 

differences: oestrogen, luteinising hormone (LH) and follicle-stimulating 

hormone (FSH). Based on a difference in brain activation associated with 

negative compared to neutral stimuli according to female participants’ cycle 

phase (early vs late follicular), oestrogen, which systematically varies over the 

course of the female menstrual cycle, has been hypothesised to modulate 

affective arousal and its neural correlates (Goldstein, 2005). However, assessing 

brain response to IAPS pictures in 21 female-to-male transsexual participants 

after an eight week course of suppression of gonadal hormone production and 

19 female controls, Soleman et al. (2014) found no association between 

oestrogen, LH or FSH levels and brain activity associated with affective content.   
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Although fMRI research is useful in uncovering the neural systems likely to 

mediate gender differences in affective processing, event-related potential 

studies, given their much better temporal resolution, provide an important tool 

for dissociating gender effects on different affective processes. At the time of 

data collection, gender differences in affective processing had not extensively 

been studied using ERPs. Gasbarri et al. (2007) assessed gender differences in 

P300 amplitudes between 300 and 500 milliseconds in response to negative, 

neutral and positive pictures at left and right frontal and parietal sites 

(electrodes F3, F4, P3, P4). They showed a lateralisation difference between 

women and men in response to negative pictures, with women showing larger 

P300 amplitude increases at right hemisphere electrodes and men showing 

larger P300 amplitude increases at left hemisphere electrodes (for a discussion 

of the difference in lateralisation of affective brain activity between the genders, 

see Chapter 7.1).  

 

2.1.2 Gender differences in recognition memory 

Gender differences have also been shown in a range of cognitive functions. 

Generally speaking, women have been found to have an advantage over men 

on verbal tests, while men outperform women on visuospatial  tasks (Collins & 

Kimura, 1997; Dabbs, Chang, Strong, & Milun, 1998; Weiss, Kemmler, 

Deisenhammer, Fleischhacker, & Delazer, 2003)). Guerrieri et al. (2016) showed 

a persisting advantage for men over women on a series of visuo-spatial tasks 
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under gonadal suppression, concluding that gender differences on these tasks 

are not dependent on current levels of oestrogen or testosterone. Hausmann, 

Schoofs, & Jordan (2009) measured performance on a series of visuospatial and 

verbal tasks under condition of gender stereotype activation and in a control 

group. They found the expected gender advantages. Male advantage for mental 

rotation was driven almost entirely by an effect in the stereotype activation 

group, which also exhibited 60% higher levels of testosterone than the control 

group. The authors conclude that testosterone mediates effects of stereotypes 

on gender differences in affective ability. However, given Guerrieri et al.'s 

(2016) recent findings of gender differences under gonadal suppression, it is 

likely that both testosterone levels and visuospatial  performance are increased 

by the activation of male stereotypes but are not functionally related. Although 

women have been found to outperform men on verbal tasks, a recent review of 

the literature found no general advantage for women in verbal ability and no 

consistent gender difference in language-related cortical anatomy (Wallentin, 

2009).  

There is also evidence of gender differences in memory performance. A study 

of a very large sample of medical school entry tests of 96,968 men and 90,142 

women found three main factors in the test batteries used: reasoning, 

perceptual speed and memory. While men showed an advantage for reasoning, 

women outperformed men on the memory factor (Stumpf & Jackson, 1994). 

One problem that is obvious for this particular study should be highlighted for 

the literature on gender differences in memory and other cognitive abilities at 
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large: The sample is not representative of the general population but has 

undergone selection on the very basis of cognitive ability. What is more, 

applicants for medical study are not only selected for high cognitive ability but 

male and female applicants are likely differentially affected by gender 

stereotypes and inequalities. It is conceivable, given the confidence required to 

pursue such a high status degree and profession and persistent gender biases in 

the perception of likely academic and professional success, that the female 

group was subjected to selection bias to a higher degree than the male group, 

i.e. the threshold for prospective applicants to deem their cognitive abilities 

sufficient to pursue a medical degree may be higher for women than for men. 

The fact that over the nine years for which data were analysed the female 

memory advantage decreased, coupled with the increasing female to male ratio 

in higher education over time, supports this hypothesis. Since most 

psychological research uses undergraduate samples, this potential confound of 

a differential selection bias for men and women should be kept in mind when 

considering gender effects on cognition. 

In studies of autobiographical memory, women have been shown to report 

more vivid memories with a stronger focus on their emotional and social 

context than men (Grysman & Hudson, 2013). Consistent with this stronger 

emphasis on the social significance of a memory, women have also been shown 

to have better memory for faces than men (Lewin & Herlitz, 2002; Lewin, 

Wolgers, & Herlitz, 2001; Rehnman & Herlitz, 2007), face memory arguably 

being an important prerequisite of successful social interaction. Women’s 
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superior face recognition memory is associated with increased scanning of faces 

at encoding (Heisz, Pottruff, & Shore, 2013). The gender difference diminishes 

with repeated exposure to the same stimuli, suggesting it is driven by women’s 

more efficient processing of the stimuli at encoding. Face recognition 

performance has been shown to be correlated with oestrogen levels in women 

but gender differences remain when oestrogen levels are matched between 

male and female participants (Yonker, Eriksson, Nilsson, & Herlitz, 2003).  

Herlitz, Airaksinen and Nordström (1999) found an overall memory advantage 

for women on a series of recall and recognition tests that were either verbal 

(words) or visuospatial (concrete and abstract pictures) in nature. Despite the 

expected gender differences in other cognitive tasks, with women 

outperforming men in verbal production and men outperforming women in 

mental rotation, women not only showed superior free recall of abstract words 

but also on free recall of concrete pictures, with a marginally significant higher 

level of performance in concrete picture recognition. Women have also been 

shown to have better memory for the location of to-be-remembered items 

within everyday scenes, another memory task with a strong visuospatial 

component (De Goede & Postma, 2008). However, in tasks that require more 

complex visuospatial processing at encoding, an advantage for men over 

women has been demonstrated (Lewin et al., 2001), suggesting a gender 

influence at the encoding stage of memory. Krueger and Salthouse (2010) 

assessed the effect of gender on the acquisition and retention of words using a 

paradigm in which a study-recall block for the same word list was repeated 
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four times, followed by a study-recall block using a distractor list and a final 

free recall phase for the original word list. By analysing gains, i.e. newly 

recalled words, and losses, i.e. previously recalled words that were not recalled, 

for each block, they showed that men had overall fewer gains than women and 

women therefore had an advantage in the acquisition, not the retention, of 

memory for words. As for face recognition, a female advantage in verbal 

episodic memory has been shown even in the absence of differences in 

oestrogen between male and female participants, showing that current 

circulating levels of oestrogen do not drive these gender differences (Yonker et 

al., 2003). 

Although greater hippocampal volumes have been reported for women when 

corrected for head size (Filipek, Richelme, Kennedy, & Caviness, 1994; Szabó, 

Lancaster, & Xiong, 2003), no gender difference in hippocampus volume can be 

demonstrated when head size is matched across genders (Perlaki et al., 2014), 

leading to the conclusion that effects observed using proportion head-size 

correction strategies are driven by effects of these correction strategies rather 

than real gender differences.  

Functional imaging has shown gender differences in recognition memory, even 

in the absence of behavioural differences, suggesting differences in the neural 

implementation of memory processes. Using fMRI, (Banks, Jones-Gotman, 

Ladowski, & Sziklas, 2012) showed increased left hippocampal activation 

during encoding and recognition of verbal information in women compared to 

men, while an abstract design learning task was associated with increased right 
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hippocampal activation in men compared to women. Ino, Nakai, Azuma, 

Kimura, & Fukuyama (2010) showed that in the absence of behavioural gender 

differences in face recognition, men show increased neural activity during 

encoding and retrieval in a number of locations including the hippocampus. 

They interpret the relatively lower activation seen in women as evidence for 

increased efficiency of the neural systems involved in face recognition.  

Taylor, Smith and Iron (1990) also compared word and abstract shape stimuli in 

a recurring stimulus task while recording EEG. Behaviourally, women and men 

did not differ significantly in either accuracy or reaction times. However, they 

showed an earlier onsetting P3 difference between hits and correct rejections in 

women than in men, as well as an interaction of location and task, with higher 

peak amplitudes anteriorly for shapes but posteriorly for verbal stimuli, in 

women but not in men. More recently, Guillem and Mograss (2005) reported 

gender differences in recognition memory for faces and its electrophysiological 

correlates. Female subjects had significantly higher hit rates and discrimination 

indices d’ then males. Consistent with Taylor et al.'s (1990) findings using shape 

stimuli, Guillem and Mograss (2005) also showed more pronounced old/new 

effects for faces in women than in men in anterior locations, in the 300 to 500 

millisecond N400 time-window. The authors attribute this difference in anterior 

old/new effect sizes to a gender difference in retrieval strategies. 

In sum, although the neural basis for gender differences in recognition memory 

is not yet well understood, there is clear evidence for such a difference both on 

a behavioural and neurofunctional level. 
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2.2 Effects of BDNF val66met genotype 

2.2.1 Introduction to Single Nucleotide Polymorphisms (SNPs) 

Brain anatomy and function, and therefore human behaviour, are influenced to 

a large extent by our genes, which carry “building instructions” for our bodies. 

This information is contained in 23 chromosome pairs, one member of each pair 

being inherited from each parent. Each chromosome is made up of tightly 

coiled strands of DNA (or deoxyribonucleic acid). Information is encoded in the 

sequence of the four chemical bases: adenine (A), guanine (G), cytosine (C) and 

thymine (T). Adenine pairs with thymine and cytosine with guanine to make 

the base pairs that are responsible for the iconic double helix structure of DNA. 

Bases are attached to sugars and phosphates to make up so-called nucleotides, 

three of which make a codon, which is a template for the production of specific 

amino acid, the building blocks of proteins. A gene is a series of codons that 

contains information for the production of a protein. 

A Single Nucleotide Polymorphism (SNP) is a very small genetic change of just 

one of the bases within a codon, which can affect the protein being encoded. 

Some such polymorphisms have been found to have consequences that are 

measurable at a neuroanatomical, neurofunctional or behavioural level. One of 

them is the val66met polymorphism of the brain-derived neurotrophic factor 

(BDNF) gene at codon 66 on chromosome 11. BDNF val66met is a change from 

the guanine nucleotide to adenine at codon 66, resulting in a change in amino 

acids from valine to methionine (Sheikh, Hayden, Kryski, Smith, & Singh, 
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2010). There are two copies of each chromosome. Alternative forms at the same 

position on a chromosome are referred to as “alleles”. A person can therefore 

either carry two Val-alleles (Val/Val homozygotes), two Met-alleles (Met/Met 

homozygotes) or one Val-allele and one Met-allele (Val/Met heterozygotes). 

Studies comparing all three genotypes typically find a dose-response 

relationship, i.e. stronger effects with increasing Met-allele load (see Mukherjee 

et al., 2011). Carrying one or two Met-alleles affects the intracellular 

distribution and packaging of pro-BDNF, a BDNF precursor that in turn affects 

post-synaptic activity-dependent secretion of mature BDNF (Egan, Kojima, 

Callicott, Goldberg, Kolachana, Bertolino, Zaitsev, Gold, Goldman, Dean, Lu, & 

Weinberger, 2003b). BDNF is a growth factor that has been shown to play a role 

in neuron growth, differentiation and survival (Acheson et al., 1995; Huang & 

Reichardt, 2001; Teixeira, Barbosa, Diniz, & Kummer, 2010).  

 

2.2.2 Effects of BDNF val66met on affect 

The neurotrophic hypothesis of depression implicates BDNF as a central factor 

in mood disorders (Duman & Li, 2012). Since the val66met SNP indirectly 

affects the activity-dependent secretion of BDNF (Egan, Kojima, Callicott, 

Goldberg, Kolachana, Bertolino, Zaitsev, Gold, Goldman, Dean, Lu, & 

Weinberger, 2003b), the polymorphism has been hypothesised to play a role in 

vulnerability to depression and other mood disorders. However, findings are 

inconsistent and two recent meta-analyses have found no association between 
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BDNF val66met genotype and anxiety or anxiety-related personality traits 

(Frustaci, Pozzi, Gianfagna, Manzoli, & Boccia, 2008) or between BDNF 

val66met genotype and bipolar disorder (Wang, Li, Gao, & Fang, 2014) or 

Major Depressive Disorder (MDD) overall, although the Met/Met genotype 

was significantly more common among male MDD patients than controls 

(Verhagen et al., 2008) and has been shown to moderate the relationship 

between life stress and depression (Hosang, Shiles, Tansey, McGuffin, & Uher, 

2014). 

Despite inconsistencies in the findings regarding a link between BDNF 

genotype and affective disorders, effects of the val66met SNP on behaviour and 

brain function can be demonstrated. Colzato, Van der Does, Kouwenhoven, 

Elzinga and Hommel (2011) showed that healthy Met-carriers reported 

significantly higher levels of anxiety during a cold pressure test and had 

significantly higher anticipatory cortisol responses. Met-carriers also reported 

higher average alcohol intake, which could indicate differences in response to 

different levels of everyday stress between val66met genotypes. 

There are several reports of a link between val66met genotype and affective 

processing. Goldman et al. (2010) reported greater amygdala and anterior 

hippocampus activations during affective face viewing in adolescent Met-

carriers than in Val/Val homozygotes. However, the effect was only present in 

anxious and depressed adolescents and not in their healthy peers. Mukherjee et 

al. (2011) did show an effect of BDNF val66met genotype on the neural 

activation during affective face processing, although not in the amygdala. 
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Participants viewed blocks of fearful or neutral faces and made a gender 

decision for each stimulus, while fMRI was recorded. After scanning was 

completed, participants were tested on facial emotion recognition with a task 

requiring the naming of the emotion displayed by a series of face stimuli (ten 

faces each with happy, fearful, surprised, sad, disgusted and angry 

expressions). When age and IQ were taken into account, Met-carriers 

performed significantly worse in the fear condition of the emotion 

identification task. Met-carriers also showed more activation in response to 

fearful relative to neutral faces than Val/Val homozygotes in areas including 

the anterior cingulate cortex and parts of the prefrontal cortex, parts of the 

brain stem and cerebellum and the left insula. Mukherjee et al. (2011) also 

found reduced connectivity from the anterior cingulate cortex to the left 

hippocampus.  

Using positive, negative and neutral IAPS pictures, Montag, Weber, Fliessbach, 

Elger and Reuter (2009) did show differences in amygdala activation during 

affective picture viewing between female Met-carriers and Val/Val 

homozygotes. A region of interest analysis including bilateral amygdala voxels 

showed stronger increases of activation for positive over neutral pictures for 

Met-carriers than for Val/Val homozygotes in the right but not the left 

amygdala. The same effect was significant between BDNF val66met genotypes 

for negative compared to neutral pictures but was less pronounced. This 

stronger amygdala reactivity to affective pictures in Met-carriers was 

replicated, along with stronger right anterior cingulate cortex reactivity to 
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affective pictures, by Outhred et al. (2012). Assessing a second polymorphism, 

5-HTTLPR, an SNP affecting serotonin transporter, which has been previously 

linked to emotion processing, Outhred et al. (2012) found an interaction 

between BDNF val66met and 5-HTTLPR such that participants with copies of 

both the 5-HTTLPR S-allele and the BDNF Met-allele showed the highest 

reactivity. This points to the importance of understanding the influence of any 

particular SNP on the brain and behaviour in the context of other, related SNPs. 

Nevertheless, mapping the functional implications of individual SNPs in 

isolation is an important first step in the understanding of genetic differences in 

affective processing and other domains.  

 

2.2.3 Effects of BDNF val66met on recognition memory 

The second main area of focus in research on the functional consequences of the 

BDNF val66met polymorphism is memory, since BDNF is known to affect 

hippocampal long-term potentiation (Poo, 2001), a synaptic process crucial in 

memory formation. The Met-allele of the polymorphism has repeatedly been 

shown to be associated with a reduction in hippocampal size but the evidence 

is not unequivocal. A meta-analysis of differences in hippocampal volume by 

BDNF val66met genotype found no significant reduction in volume in Met-

carriers, although the effect was close to significance (p=.058). Met-carriers did 

show significantly smaller hippocampal volumes in studies employing manual 

tracing of the area of interest (Harrisberger et al., 2014). A second meta-analysis 
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did find a significant reduction for Met-carriers in both hippocampal volume 

and activation in memory paradigms, as well as behavioural performance 

(Kambeitz et al., 2012). However, Dodds, Henson, Miller and Nathan (2013) 

point out that the effects of the BDNF val66met polymorphism on hippocampal 

activation may have been overestimated by the latter study, due to the method 

of voxel selection employed for the meta-analysis. Richter-Schmidinger et al. 

(2010) report no effect of BDNF val66met genotype on hippocampal volume in 

a relatively large sample of 135 healthy participants.  

Karnik, Wang, Barch, Morris and Csernansky (2010) also did not find an 

association between BDNF val66met genotype and hippocampal volume and 

no effect on four memory-related behavioural tests: the Category Fluency Task 

(Goodglass & Kaplan, 1983) and the Wechsler Memory Scale subscales Logical 

Memory, Digit Span Forwards and Digit Span Backwards (WMS; Wechsler, 

1997). Dempster et al. (2005), however, did show a significant reduction in Met-

carriers’ performance on the WMS delayed measure of logical memory. Lamb, 

Thompson, McKay, Waldie and Kirk (2015) also showed poorer performance of 

Met-allele carriers on the Faces subtest of the WMS, a face recognition task, but 

no effect of val66met genotype on the Family Pictures subtest, a task requiring 

recall of visual scenes.  

Goldberg et al. (2008) assessed differences in the influence of levels of 

processing and study-test delay by BDNF val66met genotype in a word 

recognition paradigm. They found that Met-carriers showed consistently lower 

memory performance than Val-homozygotes independently of encoding task 
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(shallow vs deep) and test delay (immediate, 30 minutes or 24 hours). Both Hits 

and Discrimination Index d’ were reduced in Met-carriers compared to Val/Val 

homozygotes, while Correct Rejections were unaffected. 

Met-carriers are also impaired relative to Val/Val homozygotes in working 

memory performance (Richter-Schmidinger et al., 2010) and show a stronger 

effect of age on the decline of item memory and prospective memory across the 

lifespan (Kennedy et al., 2015). 

As well as impairing memory performance, the Met-allele of the BDNF 

val66met polymorphism has also been shown to affect memory-related brain 

activity. Egan, Kojima, Callicott, Goldberg, Kolachana, Bertolino, Zaitsev, Gold, 

Goldman, Dean, Lu and Weinberger (2003a) reported lower scores in Met/Met 

than Val/Val homozygotes on a verbal episodic memory measure from the 

WMS. Normal disengagement of the hippocampus during an n-back working 

memory task was interrupted in Met-carriers, pointing to differences in 

hippocampal function by BDNF val66met genotype. 

Hariri, Goldberg and Mattay (2003) demonstrated attenuated hippocampal 

activation during recognition memory directly. Functional MRI was recorded 

during encoding and retrieval of novel complex scenes. Met-carriers showed 

significantly reduced recognition memory performance, expressed in higher 

numbers of both misses and false alarms. Additionally, Met-carriers showed 

decreased hippocampal activation during the encoding and retrieval of visual 

scenes. 
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Kauppi, Nilsson, Adolfsson and Lundquist (2013) also reported decreased 

MTL-activation in Met-carriers during a face-name associate memory task in a 

large sample of 194 participants. However, decreased MTL activation in Met-

carriers relative to Val/Val homozygotes was only demonstrated during 

encoding, not retrieval of face-name pairs. Behavioural differences confirmed a 

trend towards poorer performance in Met-carriers but did not reach 

significance. Within the sample of healthy older adults between 55 and 75 

years, age did not modulate the BDNF val66met effect. 

 

2.3 Research questions – Individual differences in affective cognition 

This chapter discussed gender differences in affective processing on one hand 

and in memory and its neural correlates on the other. Although the neural basis 

of gender differences in memory is not yet well understood, it is likely to be 

modulated by gender differences in affective processing. Exploring the nature 

of this hypothesised modulation as well as its electrophysiological correlates is 

a vital step in increasing understanding of individual differences in affective 

memory, which in turn has implications for the theoretical understanding of 

memory in general and applications in both clinical practice and optimising 

normal functioning. 

The BDNF val66met polymorphism has also been shown to modulate both 

affective and memory processes. It is therefore hypothesised that Met-carriers 

will also differ from Val/Val homozygotes in the modulation of memory 
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processes by affective content. While a difference in the neural correlates of 

recognition memory between BDNF val66met genotypes has been established, 

a modulation of its electrophysiological correlates has not been demonstrated 

to date. Establishing that the influence of the BDNF val66met polymorphism 

can be shown on an electrophysiological level would pave the way for ERP 

investigations of the role of BDNF val66met in recognition memory in general 

and in affective recognition memory in particular. A better understanding of 

these relationships, in the light of BDNF val66met’s involvement in psychiatric 

pathology, is likely to have consequences for clinical practice as well as 

contributing to the knowledge base on individual differences in memory.  

In sum, the specific research questions arising from this chapter, which will be 

addressed in Chapters 7 and 8 respectively, are: 

o Are there gender differences in affective modulation of cognitive processes 

and their electrophysiological correlates? 

o Is there evidence for a genetic influence on affective cognition and its 

electrophysiological correlates? 
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Chapter 3: The Event-Related Potential Technique 

 

3.1 Introduction  

Event-Related Potentials (ERPs) are electroencephalogram (EEG) epochs, which 

are time-locked to particular events and averaged over many trials. EEG is a 

continuous recording of fluctuations in electrical brain activity measured at the 

scalp and has been used in research and clinical settings since Hans Berger’s 

pioneering experiments in 1929 (Berger, 1929). In the 1960s, the wider 

availability of computers allowed for averaging of large numbers of EEG 

epochs, enabling the emergence of the ERP technique. Modern cognitive ERP 

research started in 1964, with the description of the first cognitive ERP 

component (the Contingent Negative Variation or CNV) by Grey Walter and 

colleagues (Walter, Cooper, Aldridge, McCallum, & Winter, 1964).  

As a technique for imaging cognitive brain activity, ERPs are popular for 

several reasons. One of them is the relative low set-up and running costs of an 

ERP lab, which are a fraction of those of other imaging techniques such as fMRI 

or PET. This, together with the non-evasive nature of the ERP technique, makes 

it an ideal tool for imaging brain activity for cognitive research. Its biggest 

advantage over other techniques, however, is its excellent temporal resolution, 

which is matched only by the related Event-Related Magnetic Field (ERMF) 

technique. With a temporal resolution in the region of 1ms, electromagnetic 
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measures (ERPs and ERMFs) lend themselves to exploring fast-paced cognitive 

processes that hemodynamic measures (fMRI and PET) with their temporal 

resolution in the range of several seconds have very limited access to.  

 

3.2 Neural origins of the EEG signal 

EEG records voltage differences across the scalp, over time. These voltage 

differences are generated by neural activity. Neurons produce voltage changes 

in two forms: action potentials and postsynaptic potentials. Action potentials 

are moving voltage spikes that travel from the cell body to the axon terminal, 

where they trigger the release of neurotransmitters. The neurotransmitters in 

turn bind to receptors in the postsynaptic membrane, causing a graded change 

in the postsynaptic potentials across the cell membrane. The arrangement of 

axons and the rapid firing rate and short-lived nature of action potentials 

means that action potential signals from adjacent cells almost always cancel 

each other out so that they cannot be recorded at the scalp (Luck, 2005).  

The signals picked up by EEG recorded at the scalp, in the vast majority of 

cases, originate in postsynaptic potentials only. These are graded potential 

changes in the postsynaptic membranes, which are much longer lived than 

action potentials. A postsynaptic potential creates a dipole between the 

dendrites and the cell body of the neuron and when many such dipoles in 

adjacent neurons are spatially and temporally aligned, they can summate to 

create an “equivalent current dipole” which will produce a measurable signal 
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at the scalp. This means that only signals from neuron populations with 

broadly parallel orientations can be recorded through EEG. Cortical pyramidal 

cells typically show this arrangement and are the main source of the EEG 

signal. But even when neurons are aligned relative to the cortical surface, 

cortical folding still leads to some regions not contributing to the EEG due to 

signal cancellation (Luck, 2005).  

Where signals can summate into equivalent current dipoles, these dipoles cause 

current to spread out throughout the conductive medium of the brain leading 

to measurable signals at the scalp. However, due to the different tissues 

composing the brain and their different relative conductivities, signals 

measurable at the scalp are blurred and distorted and do not necessarily reflect 

activity in cortical areas close to the recording site.  

Importantly, while it is possible to mathematically approximate the distribution 

of scalp voltages that would be produced by the activation of specific neural 

generators (the “forward problem”), the inverse is not possible. For any given 

scalp distribution there is an infinite number of possible combinations of neural 

generators (Helmholtz, 1853), making ERP source localisation difficult and 

imprecise, even when additional constraints are added into the algorithms used 

(see Luck, 2005).    
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3.3 EEG recording 

In the Psychological Imaging Laboratory at the University of Stirling, where 

data presented in this thesis were collected, EEG is recorded from 62 

silver/silver chloride electrodes arranged in an extended version of Jasper’s 

(1958) International 10/20 system (FP1, FPZ, FP2, AF3, AF4, F7, F5, F3, F1, FZ, 

F2, F4, F6, F8, FT7, FC5, FC3, FC1, FCZ, FC2, FC4, FC6, FT8, T7, C5, C3, C1, CZ, 

C2, C4, C6, T8, TP7, CP5, CP3, CP1, CPZ, CP2, CP4, CP6, TP8, P7, P5, P3, P1, 

PZ, P2, P4, P6, P8, PO7, PO5, PO3, POZ, PO4, PO6, PO8, CB1, O1, OZ, O2, CB2) 

using an elastic EEG cap (Quick-Cap, Neuromedical Supplies: 

www.neuro.com).  Figure 3.1 below schematically shows the arrangement of 

these electrodes across the scalp. The 10/20 system places electrodes on the 

intersections of a grid created by dividing the distance from the nasion, the 

scalp depression between the eyes, to the inion, the most prominent point of 

the occipital bone, and from one preauricular point to the other, into equal 

percentages. “F” (Frontal) locations are placed at 30% of the distance from the 

nasion to the inion, “C” (Central) locations at 50% and “P” (Parietal) locations 

at 70% of the distance. Midline sites lie equidistant from the two preauricular 

points and are designated “z”. Additional electrodes are distributed equally 

across the distance between the two preauricular points and labelled with 

increasing odd numbers going left from the midline and increasing even 

numbers going right. All electrode labels therefore indicate the precise location 

of the electrode on the scalp.  
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Figure 3.1 Layout of electrode recording sites across the scalp. 

 

Electrodes were referenced to an additional electrode located between Cz and 

CPz during recording and two additional reference electrodes were placed on 

the mastoids for later off-line re-referencing to recreate an averaged mastoid 

reference. An additional midline electrode located between AF3 and AF4 

served as the ground electrode. Eye movements were monitored through 

electrodes above and below the left eye (Vertical EOG) and on the outer 

canthus of each eye (Horizontal EOG). Electrodes were connected to the scalp 

by means of a conductive gel. The gel was administered into the space between 

each electrode and the scalp using a blunt syringe and good connections were 

ensured by moving hair and gently abrasing the top layer of the skin with the 

help of the wooden end of a cotton swap.  
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Impedances were maintained below 5kΩ to ensure a good signal-to-noise ratio. 

Signals were recorded and amplified using Neuroscan 4.4 Acquire software 

(Quick-Cap, Neuromedical Supplies: www.neuro.com) and a Synamps2 

amplifier with a gain of 2010. Data was digitised at 250 Hz. The Nyquist 

Theorem states that for analogue signals to be digitised without loss of 

information, the sampling rate must be at least twice the highest frequency 

component in the original signal. A sampling rate of 250 Hz is sufficient for 

creating a faithful digital representation of any signal of interest but this could 

be compromised by high frequency noise in the analogue signal which could 

lead to aliasing. Aliasing describes the creation of false low frequency signals in 

digitised data which can happen when analogue data is sampled at less than 

twice the rate of its highest frequency components. To prevent aliasing of such 

high frequency noise, for instance caused by muscle activity, a low-pass filter 

was set at 40 Hz. A high-pass filter was also set at 0.1 Hz to minimise low-

frequency noise such as can be created by impedance drift.   

 

3.4 Processing 

ERP processing generally comprises of two tasks: noise reduction and 

averaging. Although steps were taken to minimise noise in the recording, such 

as instructing the participant to sit still, demonstrating the effect of bodily and 

facial movements on the EEG signal, as well as controlling the testing room 

temperature to minimise sweating, some noise inevitably remains in the 
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recorded data. As a first step towards reducing noise in the EEG recording, 

data was visually inspected. This allows segments containing excessive noise, 

such as noise arising from participant movement, to be removed.  

Any problems with individual channels caused by a bad connection or faulty 

electrode were also identified this way. Where possible without losing an 

excessive number of trials, segments of EEG containing such electrode 

problems were removed. In case of long-lasting or permanent electrode 

problems, the channel affected was reconstituted using data from surrounding 

channels.  

Another significant source of noise in the EEG recording are eye blink 

movements. While it is possible to instruct participants to blink only at 

specified times during the experiment, such an instruction can be distracting 

from the experimental task and introduce additional noise through participants 

straining to avoid blinking. Compliance with the instruction can also be 

variable, reducing the number of blink-free trials. Therefore, in the experiments 

presented in this thesis, no instructions regarding blinking were given and 

ocular artefacts were removed during EEG processing instead. This is possible 

because eye blinks affect EEG in a systematic way. It is therefore possible to 

determine the contribution of the Electrooculogram (EOG) to the signal 

recorded at each electrode side using linear regression and remove this 

contribution from the EEG data. This ocular artefact reduction was completed 

using the procedure provided as part of the Neuroscan Edit software, 

concluding the steps taken to reduce noise in the EEG data. 
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To allow averaging, epochs were created for each trial by including data from 

100 ms before to 1900 milliseconds after stimulus onset. Epochs were baseline-

corrected to a pre-stimulus baseline lasting from -100 ms to stimulus onset, a 

period that is assumed to be free of trial specific activity. Epochs in which drift 

exceeded ±75µV were excluded. Data was then re-referenced to a linked 

mastoid reference and smoothed using a five point rolling average. Amplitudes 

in excess of ±100µV were assumed to be noise artefacts, since meaningful signal 

variations range well below this threshold, and epochs containing these were 

rejected. 

Epochs associated with the same stimulus type were averaged within each 

participant and task. Averaging trials in this way reduces the influence of 

random noise on the data and amplifies the effects associated with the stimulus 

and task of interest. To ensure a good signal-to-noise ratio, participants with 

fewer than 16 trials per condition were excluded from further processing. 

Individual participants’ averages were combined to produce grand averages 

for each combination of task and stimulus type.  

 

3.5 Analysis 

In the present thesis, ERPs were formed for responses in two types of 

paradigms, affective processing and affective recognition memory. To quantify 

ERP differences in affective processing, mean amplitudes of the grand average 

waveforms were calculated for each affective condition (negative, neutral, 
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positive) in a 400-1000 millisecond time window. For the affective recognition 

memory tasks, mean amplitudes were similarly calculated for all combinations 

of affective condition (negative, neutral, positive) with the two response 

outcomes of interest (hits and correct rejections) in three time windows: 300-500 

milliseconds, 500-800 milliseconds and 800-1500 milliseconds. Time windows 

were chosen based on a combination of a priori expectations of the timing of 

ERP effects of interest (discussed in Chapter 3.6 below) and visual inspection of 

the onset and offset of effects in the data. Kilner (2013) argues that selecting 

time windows and electrodes of interest by visual inspection alone introduces a 

bias towards false positives and that such an approach must therefore be 

avoided. To address this, all time windows chosen for the analyses presented 

here are those that are established in the literature and visual inspection was 

used only to confirm that effects fell within these time windows to assure that 

potential effects with temporal distributions not fitting the a priori time 

windows were not missed. Effect sizes are reported at the electrode locations 

typically reported in the literature, as well as, where appropriate, at locations 

where the effect was maximal. Other approaches are available, such as mass 

univariate analysis implemented in Matlab (Groppe, Urbach, & Kutas, 2011), 

which instead of relying on a priori selection of time windows use a large 

number of statistical tests across time, correcting for multiple comparisons, to 

identify significant effects. These approaches are useful where little or no a 

priori information about the location or timing of the effect of interest is 

available. Since the present research investigated affective modulations of a 



Chapter 3: The Event-Related Potential Technique 
 

- 52 - 
 

series of previously established affective processing and memory effect, the 

approach detailed above was chosen instead. 

Since ERP waveforms are the product of all neural processes engaged by a task 

that are measurable at the scalp, neural correlates of individual variables of 

interest can be isolated by comparing ERPs that differ in no other aspect than 

this variable, such as contrasting ERPs for hits with those for correct rejections 

which will share activity associated with all aspects of memory retrieval apart 

from those specific to retrieval success. These contrasts comprise the 

experimental factor(s) of an ANOVA that also includes topographical factors, 

allowing conclusions about the electrodes sites at which activity differs 

between experimental conditions. The topographies of the expected effects of 

interests differed between the affective processing and affective recognition 

memory paradigms, therefore the exact topographic factors included in the 

respective analyses varied slightly between them and are described 

individually below. In short, the LPP effect expected to arise from differences in 

affective processing between negative or positive and neutral images is 

typically maximal at midline electrodes, which is why midline sites were 

included in the analysis. Two of the recognition memory effects of interest, the 

left-parietal effect and the late right-frontal effect (see sections 3.6.3 and 3.6.4 

below for discussion) are typically lateralised to the left and right hemispheres 

respectively. To be able to demonstrate this lateralisation, the recognition 

memory analyses excluded midline sites in favour of an additional hemisphere 

factor. For both types of effects, electrodes included in the topographical 
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analysis were chosen to be representative of the whole scalp recording but also 

to allow for closer examination of any topographical effects by fitting a set of 

distinct topographical factors, namely in the case of memory effects location 

(front to back), site (superior to inferior) and hemisphere (left, right) and in the 

case of affective processing effects location (front to back) and site (left inferior 

to right inferior). Including all electrodes as individual factors would mask this 

information about where on the scalp effects are strongest and vastly increase 

the number of factors necessary. 

When comparing topographies of ERP distributions, any interpretation of 

differences is complicated by the fact that they can arise in two ways: through 

differences in the neural generators engaged by the two experimental 

conditions being compared or through the same generators being activated 

differentially. To be able to determine whether topographical differences 

between two conditions are qualitative, meaning they are caused by differences 

in the neural generators engaged, data has to be rescaled to remove purely 

quantitative topography differences (McCarthy & Wood, 1985). For 

topographic analyses reported in the present thesis, rescaling was carried out 

using the Max-Min method proposed by McCarthy and Wood (1985). 

Amplitude differences between conditions are removed by normalising data 

using the minimum and maximum mean amplitude within each condition. The 

minimum value for the condition is subtracted from each individual electrode 

value and the resulting differences are divided by the difference between the 

maximum and the minimum value (𝑥ோ= x-min/max-min). 
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Rescaled data was submitted to topographical analysis using ANOVAs that 

included experimental and topographical factors. Affective processing data was 

initially analysed using three ANOVAs, with the experimental factor of 

affective content (negative vs neutral, positive vs neutral and negative vs 

positive respectively) and the topographical factors of location (frontal, centro-

frontal, central, centro-parietal, parietal) and site (left inferior[5], left medial[3], 

left superior[1], midline [z], right superior [2], right medial [4], right inferior 

[6]). Affective processing data was available from two experiments using 

identical paradigms, so data from both experiments was included, adding a 

between-subjects factor of experiment (Experiment 1, Experiment 3). As 

between-subject comparisons in Chapters 6 and 7 are performed on data from 

Experiment 3, the electrodes with the largest effect sizes in this dataset were 

used to quantify the LPP. 

To establish the presence of the expected memory effects, affective recognition 

memory data was initially analysed separately for each affective condition and 

time window using a series of ANOVAs with the experimental factor of 

retrieval success (hits, correct rejections) and the topographical factors of 

location (frontal, centro-frontal, central, centro-parietal, parietal), hemisphere 

(left, right) and site (superior [1,2], medial [3,4], inferior [5,6]), separately for 

three time windows. The significance of the memory effects in their traditional 

locations was then tested by comparing mean amplitudes at three electrodes 

which were chosen a priori based on previous research: Electrode Fz in the 300 

to 500 millisecond time window for the early frontal old/new effect, electrode 
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P3 in the 500 to 800 millisecond time window for the left-parietal old/new 

effect and electrode F4 in the 800 to 1500 millisecond time window for the late 

right-frontal old/new effect (see Chapter 3.6 below for previous research on the 

timing and distribution of these effects). To assess affective modulation of the 

memory effects, difference scores were created for each affective category by 

subtracting unscaled amplitudes for correct rejections from those for hits at 

every electrode site. Difference scores for positive and negative affective 

pictures were then subjected to ANOVAs with an experimental factor of 

affective content (negative vs neutral/positive vs neutral) and the previously 

used topographical factors of location (frontal, centro-frontal, central, centro-

parietal, parietal), hemisphere (left, right) and site (superior [1,2], medial [3,4], 

inferior [5,6]) in all time windows. 

ANOVA assumes sphericity, meaning the equality of variances of the 

differences between all possible combinations of within-subject conditions. The 

violation of this assumption of sphericity leads to an increase in type 1 error, i.e. 

false positive findings, and must therefore be corrected. In ERP analyses, the 

sphericity assumption is typically violated as a consequence of the layout of 

electrodes on the scalp, since electrodes in closer proximity to each other share 

greater co-variance than those further apart. Mauchly’s test of sphericity 

(Mauchly, 1940) assesses such violations of the sphericity assumption and was 

employed for each ANOVA analysis reported in this thesis, with a significance 

criterion of p=.05. Where a significant result in Mauchly’s test indicated a 

violation of the assumption of sphericity, degrees of freedom and F values 
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corrected using the Greenhouse-Geisser correction (Greenhouse & Geisser, 

1959) are reported.  

 

3.6 Selected ERP effects 

The experiments presented here investigated modulations in four ERP effects 

specifically: The Late-Positive Potential (LPP) as a marker of affective 

processing, as well as the early mid-frontal, left-parietal and late right-frontal 

old-new memory effects. Other memory related ERP effects have been 

demonstrated, such as the subsequent memory effect, which is arises at study 

when comparing ERPs in response to subsequently remembered items to those 

in response to subsequently forgotten items (Sanquist, Rohrbaugh, Syndulko, & 

Lindsley, 1980), or the late posterior negativity, an electrophysiological 

correlate of source memory (Cycowicz, 2001). While affective modulations of 

study processes or item-source binding are of interest in gaining a full 

understanding of the interactions between affect and memory, they are beyond 

the scope of the present thesis. Instead, the focus of the experiments presented 

here is on the affective modulation of ERP correlates of successful recognition 

at test.  

The early mid-frontal, left-parietal and late right-frontal old-new effects are 

defined below in terms of their location, timing and polarity, as well as the 

conditions known to elicit each effect. This has been the traditional approach to 

defining ERP components, however, Luck (2005) argues that the parameters of 

location, timing and polarity are superficial and variable for various reasons 



Chapter 3: The Event-Related Potential Technique 
 

- 57 - 
 

within the ERP components elicited by the same conditions. Instead he 

proposed to define an ERP component as the neural activity that is associated 

with “a specific computational operation” and generated in “a given 

neuroanatomical module” (Luck, 2005, p. 59). He argues, therefore, that 

observed ERP effects can differ in location, timing and even polarity and still 

constitute the same ERP component, as long as they are a result of the same 

cognitive function and are generated in the same module. He further argues 

that while it is possible for two distinct cortical areas to perform the same 

cognitive function, this would likely be a rare occurrence and lead to such 

obvious differences in ERP patterns that the two components would be easily 

distinguishable. As such, while the ERP effects discussed here are described in 

terms of their location, timing, polarity and eliciting condition, slight variations 

from the any of the first three parameters would not be seen as evidence of a 

separate ERP component. 

  

3.6.1 The Late-Positive Potential (LPP) effect 

The LPP is a positive going deflection, maximal over centro-parietal electrodes, 

starting around 400 milliseconds after stimulus onset and lasting several 

hundred milliseconds (Pastor et al., 2008). While the term “LPP” is often used 

to describe the positive going shift in ERP signals at this time and location in 

general, it is more meaningful to discuss the LPP effect, that is the increase of 

(positive-going) LPP amplitudes in response to experimental as compared to 
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control conditions. The LPP effect is generally seen as a marker of emotional 

processing, although its precise eliciting conditions are still not fully 

understood.  

Because of its similarity in timing and topography to the P3a and P3b 

components that have long been studied using the oddball paradigm (Squires, 

Squires, & Hillyard, 1975) in the attention literature, it could be assumed that 

LPP effects arise from the intrinsic “oddball” properties of affective stimuli, 

which present with much lower frequencies than neutral stimuli in everyday 

life. But modified “affective oddball” paradigms, in which affective stimuli are 

low frequency targets presented among high frequency neutral stimuli, show 

that the underlying mechanisms are more complicated. For example, using this 

affective oddball task, Ito, Larsen, Smith and Caccioppo (1998b) showed 

increased LPPs for infrequent affective compared to frequent neutral pictures, 

as would be expected in an oddball paradigm. However, they also found a 

negativity bias, with increased LPP effects for negative compared to positive 

pictures, despite their matched arousal levels and frequencies of presentation. 

Using the same paradigm, Wood and Kisley (2006) replicated this negativity 

bias in younger adults but found no evidence for increased LPP effects in 

response to negative compared to positive pictures in older adults. 

Additionally, LPP effects for both affective categories were reduced in older 

participants, suggesting that the differential processing of affective stimuli, 

whatever its precise nature, declines with increasing age. Further evidence 

comes from Delplanque, Silvert, Hot, Rigoulot and Sequeira (2006), who 
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showed that when the ERPs in response to an affective oddball task are 

separated into P3a and P3b components, differential effects of stimulus valence 

and arousal are found. Delplanque et al. (2006) found a negativity bias in the 

P3a component, proposed to indicate an involuntary switch of attention from 

the primary task, with larger effects for negative than for positive pictures. For 

the P3b component, thought to reflect a refreshing of the mental model of the 

environment (Johnson, McCarthy, Muller, Brudner, & Johnson, 2015), negative 

and positive pictures elicited effects with differing topographies. This could 

point to differing neural generators of the effects, although unfortunately no 

analyses of re-scaled data were reported, meaning that these differences could 

arise from differences in relative generator strength.  

To reconcile evidence of affective modulation of the neural correlates of the 

oddball task discussed in the attention literature with evidence of affective 

modulation of the neural correlates of context-free passive picture viewing 

discussed in the affective literature, Schupp et al. (2000) devised a paradigm in 

which negative, neutral and positive pictures were presented in random order 

for passive viewing, followed by a valence rating task as is common in the 

affective literature, but in blocks of six pictures at a time with the fast 

presentation rate and brief exposure (here: 1.5s) typical of oddball paradigms. 

They showed increased LPPs for both negative and positive compared to 

neutral pictures in a 350 to 750 millisecond time window at frontal, central and 

parietal electrodes. LPP effects were more pronounced for more highly 

arousing stimuli. As this paradigm shares many of the parameters of the 
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oddball task but does not establish a local context in contrast with the affective 

content of stimuli, Schupp et al. (2000) concluded that the LPP is sensitive, at 

least in part, to the intrinsic affective properties of the pictures presented.  

Pastor et al. (2008) sought to add further evidence in support of the view that 

affective LPP modulations are not dependent on context, meaning that affective 

stimuli do not elicit larger LPPs merely by virtue of their relative rarity. They 

show that LPPs for both negative and positive pictures are unaffected by 

whether stimuli are presented in a blocked or mixed design. However, 

crucially, they also report larger LPPs in response to neutral pictures in blocked 

compared to mixed presentation. This suggests that the LPP effect (the 

difference between affective and neutral pictures) may be smaller in the 

blocked than in the mixed condition. Since no affective-neutral differences were 

reported, it is impossible to decide whether these results constitute evidence for 

or against the context independence of affective LPP effects proposed by 

Schupp et al. (2000). 

Moran, Jendrusina and Moser (2013) report that the LPP shows good 

consistency within participants and is robust at comparatively low trial 

numbers. They found that LPP differences waves varied little once more than 

12 trials contributed to the average. While it seems clear that the LPP effect 

increases with the arousal associated with stimuli (e.g., see Cuthbert, Schupp, 

Bradley, Birbaumer, & Lang, 2000; Schupp et al., 2000), some studies find 

effects of valence when arousal is matched (e.g., see Ito, Larsen, Smith, & 



Chapter 3: The Event-Related Potential Technique 
 

- 61 - 
 

Cacioppo, 1998a; Wood & Kisley, 2006) while others do not (e.g., see Schupp et 

al., 2000; Hajcak & Olvet, 2008).  

Complicating the search for the exact eliciting conditions of the LPP effect is the 

fact that the definition of its exact parameters in the literature lacks consistency. 

While the labels “P3a/P3b” and “LPP” originating in different research 

traditions are often used interchangeably, different researchers also vary in the 

temporal and topographical definition of the “LPPs” they report. Hajcak and 

Olvet (2008) demonstrated that increased positivities in response to affective 

compared to neutral pictures can persist for 800 and 1000 milliseconds after 

stimulus offset for positive and negative pictures respectively. Despite this 

finding, most researchers refer to a time window usually starting around 400 

milliseconds after stimulus onset and typically lasting around 400 milliseconds 

when discussing LPPs (e.g. Bianchin & Angrilli, 2012: 400-800ms; Pastor et al., 

2008: 400-700ms; Schupp et al., 2000: 350-750ms). Others however use much 

later time windows to quantify the LPP effect (e.g. Dunning & Hajcak, 2009: 1-

2s, 2-3s, 4-5s and 5-6s), creating potential confusion about the nature of the 

electrophysiological effects being discussed.     

Although the association between the LPP effect and processes of attention is 

widely accepted (Hajcak, MacNamara, & Olvet, 2010), it is a proposed 

relationship that is difficult to test using LPP eliciting tasks in isolation, because 

the argument is often circular. Affective stimuli are assumed to be intrinsically 

more attention-grabbing than neutral stimuli, therefore their 

electrophysiological correlate – the LPP – is seen as a marker of attention. 
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Conversely, stimuli that elicit larger LPPs are concluded to preferentially 

engage attention. While there are obvious parallels between the 

electrophysiological correlates of attention and affective processing, it seems 

clear that additional behavioural tasks are needed to try to dissociate the two. 

As Brown, van Steenbergen, Band, de Rover and Nieuwenhuis (2012) point out, 

although the eliciting conditions for the LPP have been relatively extensively 

studied, its functional significance is poorly understood. They offer two 

possible functional interpretations of the LPP: The enhanced perception 

hypothesis, which posits that the LPP reflects more efficient processing of 

affective stimuli, and the global inhibition hypothesis, which posits that the 

LPP is a correlate of reduced sensitivity to other visual stimuli in the presence 

of an affective stimulus. Brown et al. (2012) varied LPP effect size by presenting 

participants with either neutral or negative IAPS pictures and measured 

perceptual sensitivity following presentation of these affective pictures with an 

orientation discrimination task using Gabor patches, sine wave gratings 

commonly used in perception research. The authors found no difference in 

perceptual sensitivity following larger compared to smaller LPP amplitudes. 

They did, however, show a reduction in visual excitability, as measured by the 

P1/N1 component elicited by a stimulus in trials were the stimulus elicited 

larger LPPs. Brown et al. (2012) argue that this presents preliminary evidence in 

favour of the global inhibition hypothesis. It has to be noted, however, that 

Brown et al. (2012) did not find a significant correlation between LPP and 

P1/N1 amplitudes. So while there is some evidence for a global inhibition 
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function over an enhanced perception function of the LPP, the evidence to date 

is far from conclusive and more research is needed to establish the exact 

functional significance of the LPP effect. 

 

3.6.2 The early mid-frontal effect 

The early mid-frontal effect (sometimes referred to as the FN400 effect) is a 

positive going old-new memory effect that is typically maximal between 300 

and 500 milliseconds post stimulus onset and over mid-frontal electrodes 

around electrode Fz. Dual-process theorists see it as a marker of familiarity, 

with familiar items being associated with more positive going mid-frontal 

waveforms in the 300-500 milliseconds time-window. Rugg and colleagues first 

suggested an association between familiarity and the early mid-frontal effect in 

a letter to Nature in 1998 (Rugg, Mark, Walla, & Schloerscheidt, 1998a). They 

pointed out, however, that the early mid-frontal effect is “less easily 

characterized” than other old-new effects discussed. This is inherent in the 

concept of familiarity, as successfully recognised old items may vary in 

whether they are recollected or not but will always be associated with some 

degree of familiarity in healthy participants. Since producing recollection 

without familiarity is therefore not practical, behavioural paradigms have 

sought instead to vary the degree of familiarity produced by old and new 

items. Hintzman, Curran and Oppy (1992) showed that frequency judgements 

of new items similar to studied old items were either zero (effectively a “new” 
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response) or increased with the number of repetitions of the similar old items 

during study. Since similar items are new items, no recognition can take place 

and frequency judgements must be based on familiarity.  

Using a similar paradigm, Curran (2000) showed that early (300-500 

milliseconds) superior anterior activity varied with familiarity. Participants 

studied a list of singular and plural words and then categorised a test list into 

“old”, “similar” (study words presented with changed plurality, i.e. words 

which were presented in the singular at study and in the plural at test or vice 

versa) or “new” words. Similar words were assumed to elicit familiarity but no 

recollection and were shown to be associated with more positive anterior 

superior activity similar to that for old words, compared to activity associated 

with new words. Furthermore, Curran and Cleary (2003)) showed the same 

pattern for line drawings of common objects, which were shown in reversed 

orientation in the “similar” condition.  

One important question regarding the early mid-frontal familiarity effect is 

whether it is sensitive to familiarity manipulations based on perceptual 

similarity or those based on conceptual similarity or both. By changing 

stimulus plurality and orientation respectively, the experiments described 

above created new items that were both perceptually and conceptually similar 

to studied items.  

To manipulate perceptual similarity only, Curran, Tanaka and Weiskopf (2002) 

created families of abstract shapes referred to as “blobs”.  Each blob was 
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computer-generated to be a distortion of one of 12 prototypes, thus creating 12 

blob families. Perceptual similarity was high within blob families but low 

between families. Curran et al.’s (2002) finding that the early mid-frontal effect 

was modulated by family membership, with new blobs from the same families 

as previously studied blobs being associated with more positive going 

waveforms than blobs from new families. In other words, the mid-frontal effect 

was stronger for purely perceptually similar items than for new items.  

Conversely, Nessler, Mecklinger and Penney (2001) used new word stimuli, 

referred to as “lures” that were purely conceptually similar to studied words by 

selecting both study items and lures from the same semantic categories, as well 

as new items from different categories. They found a positive-going old/new 

effect in frontal locations in the 300-500 milliseconds period that was present 

for both studied words and lures compared to new words, thus providing 

support for the idea that the early mid-frontal effect is modulated by familiarity 

based on conceptual similarity. Further evidence of this familiarity modulation 

comes from their finding that waveforms in the 300-500 milliseconds are more 

positive going in response to lures that are classed as “old” (assumed to reflect 

familiarity, albeit false familiarity) than in response to lures that are classed as 

“new”.  

Yonelinas (2002), in his review of investigations of recollection and familiarity, 

concluded that familiarity can be functionally dissociated from perceptual 

implicit memory but shows similarities to conceptual implicit memory. While 

Nessler et al.’s (2001) findings confirm that the early mid-frontal effect is 



Chapter 3: The Event-Related Potential Technique 
 

- 66 - 
 

sensitive to manipulations of conceptual implicit memory, Curran et al.’s (2002) 

blob study suggests that it is also sensitive to manipulations of perceptual 

implicit memory. 

While the experiments discussed above rely on manipulations assumed to 

modulate familiarity, another approach to studying the electrophysiological 

correlates of familiarity is to assess familiarity through participant self-report. 

The often employed Remember/Know paradigm (Tulving, 1985) asks 

participants to divide items judged as “old” into those that are “remembered”, 

i.e. those for which study context information is available, and those that are 

merely “familiar”, for which such information cannot be accessed. Items judged 

as “familiar” are typically associated with increased early frontal activity 

compared to new items (e.g., see Curran & Cleary, 2003; Curran, 2004; Duarte, 

Ranganath, Winward, Hayward, & Knight, 2004).  

It is, however, important to note that there are inherent difficulties associated 

with self-report measures, such as variability in task comprehension or 

compliance. For example, McCabe, Geraci, Boman, Sensenig and Rhodes (2011), 

showed that when asked to verbalise their thoughts during a word recognition 

task, these thoughts typically included recollections from the study phase 

where participants made “recalled” judgements (87%), used synonymously 

with the more common “remember” judgement. But thoughts about “know” 

judgements also included such recollections to a higher degree than expected 

(33%). Although this casts some doubt on the validity of “know” judgements 

specifically and the Remember/Know procedure in general, McCabe et al.’s 
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2011 validation procedure itself is of course based on subjective self-report and 

it is possible that participants failed to verbalise details they really recalled. 

Conversely, because “think aloud” explanations of why a “remember” or 

“know” judgement was made where given after the complete block of old/new 

decisions, additional detail may have been available to participants that they 

did not have access to at the point of the recognition and recall/know 

judgements.  

 

3.6.3 The left-parietal effect 

The left-parietal old-new memory effect is typically maximal between 500 and 

800 milliseconds and at left parietal electrode locations around electrode P3. 

The more positive going waveforms in response to old compared to new items 

in this location and time-window are thought to be a marker of item 

recollection (see Allan, Wilding, & Rugg, 1998 and Curran, Tepe, & Piatt, 2006 

for review). 

Evidence for the association between the left-parietal effect and recollection 

primarily comes from studies using one of three types of paradigms: 

Assessment of the degree of recollection through either subjective self-report, 

typically in form of the Remember/Know judgements described above, or 

source memory tasks and manipulation of the degree of recollection through 

manipulation of depth of encoding. 



Chapter 3: The Event-Related Potential Technique 
 

- 68 - 
 

Using the Remember/Know paradigm, Smith (1993) found more positive going 

waveforms associated with words that elicited “remember” judgements than 

both those for “know” judgements and new words in a 550-700 millisecond 

time window. The difference was largest at left-parietal locations. In a similar 

study, Curran (2004) also reports larger left posterior/superior positivity for 

“remembered” words compared to “known” words in a 400-800 millisecond 

time window.  

Similarly, Duzel, Yonelinas, Mangun, Heinze and Tulving (1997) showed a 

positivity associated with “remembered” compared to new words that was left-

lateralised over temporoparietal electrodes in a slightly longer time window 

from 600 to 1000 milliseconds. They found no significant waveform difference 

in this time window between words that were correctly judged to be 

remembered (hits) and words incorrectly judged to be remembered (false 

alarms), leading the authors to suggest that rather than being a marker of 

recollection, the left-parietal effect is in fact a marker of autonoetic activity, the 

act of mentally placing oneself in the past.  

Probably due to the difficulty in getting sufficient false alarm trial numbers for 

producing good quality ERPs, most electrophysiological studies aimed at 

dissociating the effects associated with familiarity and recollection compare 

activity during successful recognition (hits) with activity for correctly identified 

new items (correct rejections), making it impossible to decide between the 

recollection and autonoetic activity hypotheses. Electrophysiological studies of 

false or illusory memory typically do not distinguish between familiarity and 
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recollection, or do so by drawing inferences from ERP effects found. A 2007 

study by Geng et al. (2007) did show a left-parietal effect between 500 and 700 

milliseconds that was larger for successful recognition than false recognition 

(false alarms). The effects for false recognition did not differ from that for 

correct rejection. In contrast to Duzel et al.’s (2007) results, this pattern of 

activity suggests that the left-parietal effect does not merely reflect autonoetic 

activity but differentiates between successful recognition and memory illusion.  

Nessler et al. (2001) also reported a larger left-parietal effect for true compared 

to false recognition of words. Additionally, they showed that this 

differentiation could be shown for participants with low false alarm rates only, 

while participants with high false alarm rates had equivalent ERP effects 

associated with true and false recognition. Together, these results suggest that 

the left-parietal effect is sensitive to both differences in autonoetic activity and 

recollection and sensitivity to the latter component is associated with better 

differentiation between old and new items.   

Rugg, Schloerscheidt and Mark (1998b) compared the electrophysiological 

correlates of recollection of words when recollection was assessed by source 

judgements versus the Remember/Know task. Trials with correct source 

judgement or “remember” responses respectively were defined as recollected 

and contrasted with “new” responses. When comparing the scalp topographies 

of the two resulting old/new effects, which had been re-scaled to remove the 

influence of magnitude differences, the authors found no significant difference 

between them. They concluded that source judgement and Remember/Know 
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assessments of recollection do not differ neurally or functionally. In a 

conceptually similar study, Duarte et al. (2004) investigated the 

electrophysiological correlates of familiarity and recollection of pictures, using 

both the Remember/Know paradigm and a source judgement task, during 

which the encoding instruction for the remembered item had to be identified. 

Unfortunately, the authors only state that ERPs were equivalent when sorted 

according to Remember/Know responses and source judgements but do not 

report statistics on this relationship.   

A different approach was taken by Rugg, Cox, Doyle and Wells (1995), who 

used a combination of a source memory task and confidence judgements to 

identify successful recollection of words. A word was defined as recollected 

when it was correctly identified as “old” with high confidence and its study 

context was correctly identified with high confidence. They showed that low 

frequency words were more accurately recognised and the words’ study 

context was more likely to be accurately retrieved than high frequency words. 

The authors attribute this pattern to low frequency words eliciting higher 

relative levels of recollection than high frequency words. A left-parietal 

old/new effect between 400 and 800 milliseconds was only significant for low 

frequency words, leading the authors to conclude that the left-parietal effect is 

not only a marker of recollection but is also sensitive to the amount of 

recollected information available in a graded fashion. Wilding (2000) added 

further evidence to this hypothesis by including two source judgement tasks in 

a word recognition paradigm and showing that the size of the left-parietal 
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old/new effect co-varied with the number of correct source judgements, two 

correct judgements associated with larger magnitudes than one correct 

judgement and both of these associated with larger magnitudes than correct 

rejections.  

Murray, Howie and Donaldson (2015) expanded on this quality of recollection 

approach by using a continuous measurement of source judgement accuracy. 

Words were presented with location cues during study. Location cues were 

distributed randomly on a circle. During retrieval, participants were asked to 

mark the location of the previously presented location cue for each word. 

Source judgement precision was defined by the distance between the original 

location cue and the participants’ response on the circle. They showed larger 

left-parietal old/new effects between 500 and 800 milliseconds post stimulus 

onset for trials in which source judgement precision was high compared to 

trials in which it was low, while these effects were absent in trials in which 

source judgement precision was at chance level. They conclude that the left-

parietal effect indexes recollection, which is characterised as being both 

thresholded and graded. Recollection is shown to be thresholded behaviourally 

by the fact that the distance from target does not increase continuously from 0˚ 

(perfect precision) to 180˚ (lowest precision) but reaches a plateau after which 

any location is guessed with equal probability. The grading of both source 

judgement accuracy and the left-parietal effect above a certain threshold 

indicate that when recollection does occur, it is of variable quality. 
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Rather than measuring different levels of recollection at the point of 

recognition, a third type of experiment aims to actively manipulate recollection 

rates by varying levels of processing at encoding (see Chapter 1 for a discussion 

of this relationship). For example, Rugg et al. (1998a) varied the encoding task 

for words within participant by using two different encoding cues preceding 

study items, one indicating the instruction to judge whether the first and last 

letter in the word are in alphabetical order (shallow processing) and one 

indicating the instruction to verbally form a sentence containing the study 

word. They found a left-parietal old/new effect which varied with depth of 

processing.  

Since most research into the left-parietal effect has used word stimuli, the 

important question arises as to whether it is material specific. Curran and 

Cleary (2003) and Curran and Doyle (2011) both found a left-parietal old/new 

effect in response to pictures of line drawings. Ranganath and Paller (2000) 

compared correct responses in a specific picture memory test in which a size 

judgement had to be made (driven by recollection) with hits in a general 

old/new decision (assumed to include both familiarity-only and recollection 

trials) and found widespread increased positivity for correct specific responses 

in frontal, temporal and parietal sites between 600 and 800 milliseconds, an 

effect that was larger in the left hemisphere in parietal locations only. Similarly, 

Duarte et al. (2004) reported an old/new effect in response to pictures that was 

bilateral in parietal locations between 450 and 800 milliseconds.  
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Comparing old/new effects for words (names) and faces, MacKenzie and 

Donaldson (2009)  reported the typical 300-500 milliseconds mid-frontal and 

500-700 milliseconds left-parietal effects for words. Memory for faces, in 

contrast, was associated with an anterior old/new effect between 500 and 700 

milliseconds and a late right-frontal old/new effect between 700 and 900 

milliseconds, while there was no evidence of the early mid-frontal and left-

parietal effects commonly found using word stimuli. 

To compare the electrophysiological response to the three most commonly used 

stimulus materials directly, Galli and Otten (2011) employed a source judgment 

task that paired three types of visually presented stimuli – pictures of objects, 

words and faces – with auditorily presented locations. At test, an item was 

defined as recalled if it was recognised and its associated location was 

successfully identified. They found when different stimulus types were 

presented using a blocked design at study, scalp topography in a 500 to 700 

millisecond time window at test differed between stimulus types. Only words 

showed the typical left-parietal effect while old/new effects in response to 

pictures and faces had a much more widespread scalp distribution which 

included effects at left-parietal sites but also at more anterior sites compared to 

the word old/new effect. 

In sum, a large body of evidence consistently shows a left-parietal old/new 

effect for words, onsetting around 400-600 milliseconds and lasting between 

200 and 400 milliseconds that is associated with successful recollection of a 

study item and varies with the quality of this recollection. Some studies show 
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an equivalent left-parietally distributed effect in this time window associated 

with recollection of pictures of objects but overall the distribution of 

recollection-related activity for picture stimuli appears to be less left-lateralised 

and more wide-spread and anterior than that for words.   

 

3.6.4 The late right-frontal effect 

The late right-frontal effect is a positive going old-new effect maximal at right-

frontal locations around electrode F4. It typically onsets around 500-800 

milliseconds post stimulus onset and lasts several hundred milliseconds. It was 

first described by Wilding and Rugg (1996), who found a right-frontal 

positivity for recollected compared to new words onsetting at 400 milliseconds 

and lasting for the remainder of the recording period 1434ms post stimulus 

onset. They suggested that this late right-frontal effect reflects post-retrieval 

processes involved in the retrieval of contextual information. To investigate the 

functional role of the late right-frontal effect, Wilding and Rugg (1997) used a 

task in which words are presented auditorily in either a male or female voice at 

study and then presented visually at test and defined as targets and non-targets 

by the gender of presentation voice at study. While both targets and non-

targets, being recognised as old words, were associated with left-parietal 

old/new effects, only targets were associated with a late right-frontal effect. 

The authors conclude that the late right-frontal effect is an electrophysiological 
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marker of non-obligatory processes following retrieval success which can be 

influenced by retrieval strategy. 

Curran, Schacter, Johnson and Spinks (2001) showed increased positive right-

frontal activity between 1000 and 1500 milliseconds in response to target and 

lure words compared to new items in good performers only, while the effect 

was absent in poor performers. This is consistent with the view that the late 

right-frontal effect reflects post-retrieval processes, as the engagement of such 

processes should lead to better task performance. Both good and poor 

performers showed left-parietal old/new effects between 400 and 800 

milliseconds, adding support to the notion that the two effects are dissociable. 

Apparently contrary to Curran et al.'s (2001) finding that the late right-frontal 

effect is absent in poor performers, Wolk et al. (2009) show that it is more 

pronounced in poorer performing older participants. Wolk et al. (2009) also 

found that it was generally increased in older participants compared to 

younger participants, while both the early mid-frontal and left-parietal 

old/new effects were decreased. One possible explanation for the apparent 

inconsistency between these findings and Curran et al.'s (2001) results for poor 

performers lies in Wolk et al.'s (2009) conclusion that older participants 

preferentially engage post-retrieval processes in an attempt to compensate for 

steadily declining memory performance. Younger participants on the other 

hand, like those in Curran et al.'s (2001) study, may not have developed these 

compensation skills to the same degree.    
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Although the exact nature of the processes underlying the late right-frontal 

effect has proved difficult to discern, the studies above converge on an 

interpretation of the late right-frontal effect as a marker of post-retrieval 

component of recollection. Donaldson and Rugg (1999) also showed a late 

onsetting right-frontal positivity in associative recall from around 1400 

milliseconds. But a more recent paper by Hayama, Johnson and Rugg (2008) 

suggests that rather than being specific to successful memory retrieval, the late 

right-frontal effect is a neural correlate of generic monitoring processes. 

Evidence for this conclusion comes from their finding of a right-frontal 

positivity in response to correct responses in both a source judgement task but 

also a semantic decision task only. In a second experiment, participants made 

semantic judgements on either old or new items at test and exhibited right-

frontal effects in response to whichever category of items required these 

judgements. While these findings suggest a memory-independent role of the 

late right-frontal effect, it is important to note that in contrast to previous 

studies that have typically used visually or auditorily presented word stimuli, 

Hayama et al.'s (2008) study used pictures of nameable objects. It is therefore 

possible that the findings are stimulus dependent, analogous to the material-

specific differences found in left-parietal old/new effects.  
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Chapter 4: General Methods 

 

4.1 Participants 

Participants were recruited through the University of Stirling’s online sign-up 

system (psychweb.stir.ac.uk). Participants in all experiments were given the 

opportunity to self-exclude if they did not meet all of the following criteria: 

Right-handedness, being a native English speaker, aged between 18 and 25 

years, having normal (or corrected to normal) sight, having no current 

diagnosis or history of any psychiatric or neurological disorders and no current 

or history of illegal drugs use. Ethical approval for all experiments was 

obtained from the University of Stirling Department of Psychology’s Ethics 

Committee. Participants received a reimbursement of £5 per hour and 

undergraduate students of psychology at the University of Stirling were given 

the option of receiving a combination of monetary reimbursement and up to 

two course credits per session.  

 

4.2 Stimuli 

The focus of the present research is on processing of visual information, more 

specifically pictures of everyday scenes. The large trial numbers, and 

consequently large stimulus sets, needed to obtain good quality ERP data, 

along with the time restraints inherent in a PhD project, necessitated the use of 
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an existing stimulus set. At the time of designing these experiments, the only 

sufficiently large, openly available such set was the International Affective 

Picture System (IAPS; Lang, Bradley, & Cuthbert, 2008). The IAPS is a set of 

affective pictures associated with standard ratings for valence and arousal on a 

9-point scale, with lower valence scores identifying more negative items and, 

intuitively, lower arousal scores indicating less arousing items. It should be 

noted that since the conclusion of data collection, two more large affective 

picture sets have become available: The Geneva Affective Picture Database 

(GAPED) published in 2011 (Dan-Glauser & Scherer, 2011) and the Nencki 

Affective Picture System (NAPS) in 2014 (Marchewka, Zurawski, Jednorog, & 

Grabowska, 2014). The GAPED comprises of 730 pictures and includes positive 

pictures of animal and human babies and nature scenes, neutral pictures, 

mainly of inanimate objects and negative pictures of one of four content 

categories: spiders, snakes, violations of moral norms and violations of legal 

norms. This narrow selection of picture contents poses a problem for studies 

comparing different affective categories, because pictures are not matched for 

physical attributes across affective categories and content types vary 

systematically. Interpreting any behavioural or neural differences in the 

processing of the different categories as effects of differences in affective 

content would be difficult, given the presence of likely confounds such as 

humans appearing in affective but not neutral pictures or differences in 

complexity of the scenes depicted between affective categories. The NAPS, 

which is a set of 1356 pictures addresses some of these confounds by providing 
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not only standard ratings for valence, arousal and approach-avoidance for each 

picture but also additional information about the picture content, which falls 

into one of the five categories of people, faces, animals, objects or landscapes, 

and its physical attributes such as luminance, contrast and entropy. This allows 

for greater control of possible confounds of perceptual and conceptual 

processing across affective categories. However, since picture contents are not 

matched exactly across affective categories, a relatively large variation in 

physical and conceptual features remains.  

As indicated above, at the time of stimulus selection, the IAPS was chosen as 

the best available stimulus resource of affective pictures. IAPS pictures were 

selected by their standard ratings to fit into one of three categories: High 

arousing negative, low arousing neutral or high arousing positive pictures. To 

avoid confounds of complexity with the emotionality of stimuli, “simple” 

pictures (such as a single object in front of a homogenous background) and 

abstract shapes were not included. Close-ups of faces were also excluded from 

the stimulus set as they could not be balanced across all three emotion 

categories. To avoid the confound of sexuality on any gender differences, 

pictures with sexual content, e.g. male or female nudes, were also excluded. 

The complete stimulus set was then split into two sub-sets matched for valence 

and arousal within each emotion category, with equal numbers of stimuli in 

each category. 

In Experiment 1, 222 IAPS pictures were used, 74 per affective category. The 

mean standard ratings for the three emotion categories were are shown in 
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Table 4.1. High arousing negative and high arousing positive pictures were 

matched for arousal, which was higher than mean arousal for neutral pictures.  

 

Affective Category IAPS valence IAPS arousal 

High arousing negative 3.20 (0.86) 5.24 (0.82) 

Low arousing neutral 5.06 (0.26) 3.19 (0.44) 

High arousing positive 6.84 (0.62) 5.24 (0.80) 

Table 4.1: IAPS standard ratings [Mean (SD)] for Stimulus Set A, used in 
Experiment 1.  

 

 

In Experiments 2 and 3, 288 IAPS pictures were used, 96 per emotion category. 

Table 4.2 shows standard valence and arousal ratings for this set. High 

arousing negative and high arousing positive pictures were again matched for 

arousal and arousal was higher for positive and negative than for neutral 

pictures.  

 

Affective Category IAPS valence IAPS arousal 

High arousing negative 2.57 (0.44) 5.78 (0.55) 

Low arousing neutral 5.03 (0.28) 3.26 (0.52) 

High arousing positive 7.16 (0.42) 5.83 (0.59) 

Table 4.2: IAPS standard ratings [Mean (SD)] for the Stimulus Set B used in 
Experiments 2 and 3.  
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Despite these standard ratings being used to categorise stimuli, it is important 

to note that they were obtained over the course of 13 years and from US 

participants. To assess whether the UK participants in these experiments 

agreed with the standard ratings provided by Lang et al. (2008), participants’ 

own arousal and valence ratings were collected for all stimuli. These 

participant ratings will be presented in the following chapters, where data from 

experiments using IAPS pictures is discussed. The relationship between IAPS 

standard ratings and participant ratings in the present study is discussed in 

detail in Chapter 5.1 below. 

In all experimental tasks, picture stimuli were presented on a black background 

on a screen, at a size of 9cm by 11.25cm, resulting in approximate visual angles 

of 5.1˚ by 6.4˚ when viewed from a 100cm distance as instructed.   

 

4.3 Experimental tasks 

Experimental tasks were presented on a 15” computer monitor, positioned on a 

desk about one meter in front of the participant, in a darkened room. E-prime 

1.1 software (Psychology Software Tools Inc: www.pstnet.com) was used to 

present tasks and record responses obtained through a Psychology Software 

Tools serial response box. 
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4.3.1 Affective processing task 

Participants completed an affective processing task which also doubled as the 

study phase for the subsequent surprise affective recognition memory test. At 

the beginning of the task, participants were instructed to view each picture 

presented on the screen and, when prompted, to rate them for their arousal 

(described as “how exciting or agitating” they found the picture) and valence 

(“how positive or negative”). They were shown an example of the modified 

Self-Assessment Manikins (Bradley & Lang, 1994; see Figure 4.1 below) for 

arousal and for valence ratings and given the opportunity to ask any questions.  

 

a)  

b)  

Figure 4.1 Modified version of the Self-Assessment Manikin for a) arousal and b) 
valence  
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Participants were asked to fixate their eyes on the fixation cross while it was on 

the screen and then look directly at each picture when it was shown and try not 

to move their eyes. They were asked to sit as relaxed as possible and try to 

avoid movements. 

Each trial started with a fixation cross presented in white at the centre of a black 

screen. In Experiments 1 and 2, the fixation cross was presented for 500ms. In 

Experiment 3, this was extended to 1000ms to minimise the chance of an 

overlap of any signal onset effects in response to the presentation of the fixation 

cross with stimulus specific effects in the EEG. After the fixation cross, an 

affective picture was presented for 2000ms, followed by the modified SAM for 

arousal which remained on the screen until a response was made. This was 

followed by the modified SAM for valence, also presented until a response was 

recorded. Experiments 2 and 3, containing more stimuli, included an 

opportunity to take a self-terminated break every 50 trials, lasting a maximum 

of two minutes. 

 

4.3.2 Affective recognition memory test 

Participants completed a surprise memory test of the pictures presented during 

the affective processing task. In Experiment 1, there was a 20 minute study-test 

interval. In Experiment 3, for reasons discussed in detail in Chapter 6.1, the 

study-test interval was increased to one week. Participants were instructed that 

they would be seeing a series of pictures, some of which they saw during the 
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earlier affective processing task and some which would be new to them. They 

were asked to indicate for each picture whether it was new or old and if they 

responded old, whether they remembered the picture or just knew it was old. 

The latter was further explained by the following instructions:  

“Choose REMEMBER if you have a memory of seeing the image on the 

screen or remember something you thought of when you saw it.  

Choose KNOW if you have a feeling that you did see the image before 

because it looks familiar but you do not have a clear memory of the event.” 

Participants were then verbally asked if they had understood the instructions 

and to provide an example of when they would say they “remembered” and 

when they would say they “knew”. If necessary, the distinction was further 

explained verbally. 

At test, each trial again started with the presentation of a fixation cross for 

500ms (Experiments 1 and 2) or 1000ms (Experiment 3) respectively, followed 

by either an old or a new picture for 2000ms. After this, participants were 

prompted to press either the “1” or “5” key on the serial response box to 

indicate whether the picture was new or old. A reminder of which button was 

associated with which response (e.g. “Old=1 or New=5?”) was presented. The 

pairings of buttons with responses was counterbalanced between participants. 

The prompt remained on the screen until a response was made. In cases where 

an “old” response was made, a remember-or-know prompt appeared, again 

using buttons 1 and 5 counterbalanced between participants and again being 
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terminated by the participant’s response. Experiment 3 again included the 

option of a self-terminated break of a maximum of 2 minutes, every 50 trials. 

 

4.3.3 Attentional disengagement task 

For the attentional disengagement task, participants were instructed that they 

would be seeing affective pictures and asked to rate them for their arousal 

value. Participants were also told that one of two probes (“x” or “+”) would 

appear at some point during each trial, either above or below the picture, and 

asked to react as quickly as possible to the probe by pressing 1 for “x” or 5 for 

“+” on the serial response box. They were reminded to look at the picture while 

it was on the screen, as they would be asked to rate it later on. 

Each trial started with a fixation cross presented for 500ms, followed by an 

affective picture. After a randomly varying interval of either 500ms or 750ms, 

one of the two probes appeared either above or below the picture and both the 

picture and probe remained until a response was made. Then the modified 

SAM for arousal ratings was presented until the participant responded. There 

were 144 trials in total, split equally between both probe timings and probe 

types, as well as the three affective categories.  
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4.4 Procedure 

4.4.1 General procedure 

All ERP participants were tested in the Psychological Imaging Laboratory (PIL) 

at the University of Stirling in the 2009 to 2011 time period. Experiment 2 was a 

computer based behavioural study and was completed by three to four 

participants at a time in an adjacent behavioural testing room. Upon arrival, 

ERP participants were given the standard PIL ERP information sheet and the 

opportunity to ask any questions and written consent to EEG recording was 

obtained. Because of its potentially upsetting nature, all participants received 

detailed information about the stimulus material, consisting initially of a 

written description of the stimuli and procedure, and then, with verbal consent, 

of six example stimuli covering the whole range of valence and arousal 

categories used in the study. After this, participants were given the opportunity 

to ask any questions and then gave informed written consent. In Experiment 3, 

information about the genotyping procedure was given separately, in written 

form, and separate written consent for this procedure was obtained. 

ERP participants were fitted with appropriately sized EEG caps and electrodes 

were filled with conductive gel. Participants were then seated in front of a 

screen in the experimental room, where impedances were reduced to below 

5kΩ by moving hair and gently abrasing the skin with the wooden end of a cotton 

swap. Participants were asked to express any discomfort felt and short breaks were 

taken where appropriate. The complete fitting procedure took between 30 minutes and 
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one hour. Before starting the experimental tasks, participants were shown their EEG 

on the screen in front of them and instructed to carry out a series of movements 

(blinking, foot tapping and jaw clenching) to demonstrate the effect of movements on 

EEG data quality and emphasise the importance of sitting still and relaxed.  

Each experiment started with a practice block to familiarise participants with 

the task and allow for any questions to be answered before data recording 

commenced. Upon completion of the experiment, participants were fully 

debriefed about the purpose of the experiment and given the opportunity to 

ask any questions relating to it. EEG participants had EEG caps removed and 

were given the opportunity to wash and dry their hair before leaving. All 

participants received either financial compensation at £5 per hour, or a 

combination of this rate and up to two course credits. Note that Experiments 1 

to 3 include a number of neuropsychological measures beyond those discussed 

in this thesis. The results and implications of these additional measures exceed 

the scope of this thesis and will be reported elsewhere. 

 

4.4.2 Experiment 1: Affective memory 

Participants completed a computerised version of the Profile of Mood States 

(McNair, Lorr, & Droppleman, 1971)), before completing the Affective 

Processing Task described above. This served as the implicit study phase for a 

later surprise memory test and consisted of 111 trials, with 37 IAPS pictures per 

affective category. Participants were then given a 20 minute break, during 
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which they were offered a drink of water but instructed to keep movements to 

a minimum to maintain good electrode connections. After 20 minutes, 

participants completed computerised versions of the NEO Five Factor 

Inventory (NEO-FFI; Costa & McRae, 1985), the National Adult Reading Test 

(NART; Nelson & Willison, 1991) and the Schizotypal Personality 

Questionnaire (SPQ; Raine, 1991), followed by a surprise Affective Recognition 

Test, as described above. Finally, participants completed computerised versions 

of the Beck Depression Inventory (BDI; Beck, 1961) and Beck Anxiety Inventory 

(BAI; Beck & Steer, 1990). 

 

4.4.3 Experiment 2: Time-course of affective memory 

Experiment 2 consisted of three separate experimental sessions but no EEG was 

recorded. After consent was obtained at the start of the first session, 

participants completed a computerised version of the Profile of Mood States, 

followed by the Affective Processing Task consisting of 144 trials, i.e. 48 

pictures per affective category. After a 5 minute break, participants then 

completed the first of three Affective Recognition Tests, consisting of 96 trials 

each, which concluded the first experimental session.  

Participants returned for a second session at the same time one day later and a 

third session at the same time one week after the first. These follow up sessions 

started with the completion of the Profile of Mood States, followed by the 

Affective Processing Task as above, with each session using a different subset 
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of old and new stimuli so stimuli did not repeat across the memory tests. 

Additionally, participants completed a surprise five minute pen-and-paper 

recall test after one of the three experimental sessions. Timing of the recall test 

was pseudo randomised to ensure equal numbers of participants in each timing 

group and a fourth group of participants did not complete the recall test to 

serve as a control. 

 

4.4.4 Experiment 3: Individual differences in affective memory 

After EEG preparation, participants completed computerised trait and state 

versions of the State-Trait Anxiety Inventory (Spielberger, Gorsuch, Lushene, & 

Vagg, 1983) and the Profile of Mood States. The Affective Processing Task 

described above again served as an implicit study phase, comprising here of 

144 trials. Self-terminated breaks of a maximum of two minutes were offered 

every 50 trials to prevent fatigue. The experimental session concluded after 

participant completed computerised versions of the NEO Five Factor 

Inventory, the Beck Depression Inventory and the Schizotypal Personality 

Questionnaire. 

Participants returned for a second experimental session exactly one week after 

the first and were prepared for EEG recording as before. They completed the 

computerised state version of the State-Trait Anxiety Inventory and a 

computerised Profile of Mood States. A surprise Affective Recognition Test 

followed, consisting of 288 trials and again self-terminated breaks of no more 
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than two minutes were offered after every 50 trials. This concluded the 

experiment. 

  

4.4.5 Experiment 4: Affective modulation of attention 

To maximally utilise resources, Experiment 4 was run immediately following 

the Affective Recognition Test in Experiment 3. Participants were given a 5 

minute break and offered a drink. Impedances were checked during this time 

and lowered where necessary by applying and moving into place conductive 

gel to ensure best possible data quality. Participants then received instructions 

for the Attentional Disengagement Task on the screen and were given the 

opportunity to ask any questions before starting the task. On completion of the 

task, the EEG cap was removed and participants were debriefed, paid and 

given the opportunity to wash their hair, as described above. 

 

4.5 Behavioural measures 

4.5.1 Hit rate 

The hit rate is the probability that old items are correctly labelled as "old" and is 

the most direct measure of recognition memory performance. It is calculated by 

merely dividing the number of items correctly identified as old by the total 

number of old items. However, it is not a clean measure of recognition success 

as both trials in which an old item is correctly identified and trials in which the 



Chapter 4: General Methods 
 

- 91 - 
 

participant correctly guesses that an item is old contribute to the overall hit 

rate. This means that a participant with only moderate recognition success but a 

bias towards guessing "old" for uncertain items can have a higher hit rate than a 

participant with higher recognition success but a bias towards guessing "new" 

for uncertain items. Clearer conclusions about recognition memory 

performance can be drawn from the discrimination index measure described 

below. 

 

4.5.2 Discrimination index Pr 

The discrimination index Pr is a measure of the probability that an item will be 

correctly classified as old or new (Snodgrass & Corwin, 1988). It assumes a two-

high threshold model of recognition memory in which items have to pass one 

of two signal strength thresholds in order to be correctly classified, one for an 

“old” response and another for a “new” response (see detailed discussion in 

Chapter 1.1.3). An item that does not pass either threshold creates an uncertain 

state and leads to a guess response which can produce either a hit, a false 

alarm, a miss or a correct rejection. Items which pass the “old” threshold and 

are correctly remembered as old and items from an uncertain state that are 

correctly guessed to be old both contribute to the overall Hit rate (H). Since 

they are pure guesses not relying on any memory signal, correct “old” guesses 

are assumed to be made with equal probability as incorrect “old” guesses, or 

false alarms. The False Alarm rate (FA) can therefore be used to estimate the 
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rate of correct “old” guesses. In other words, the hit rate is made up of Pr, the 

probability of correctly identifying an old item, and the false alarm rate. Pr can 

therefore be estimated by subtracting the false alarm rate from the hit rate 

(Pr=H-FA). Pr estimates recognition memory performance independently of 

response bias. 

 

4.5.3 Response bias Br 

Response bias is defined as the probability to class an item as old in the absence 

of memory signal that passes either the “old” or the “new” threshold, i.e. in an 

uncertain state. “Liberal” response bias describes the tendency to class an item 

as “old” when in a state of uncertainty, “conservative” response bias describes 

the tendency to class the same item as “new”. A liberal response bias increases 

the false alarm rate because items that fail to pass the “new” threshold (with a 

probability of 1-Pr) are more likely to be classed as “old” (along with items that 

fail to pass the “old” threshold, but then result in a correct “old” guess). The 

false alarm rate is therefore composed of the product of 1-Pr and Br. Solved for 

Br, it follows that response bias can be calculated by dividing FA by 1-Pr. 

Neutral response bias would be indicated by a value of 0.5, while higher values 

indicate a more liberal bias and values below 0.5 indicate a more conservative 

bias. 
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4.5.4 Remember rate 

To estimate the proportion of “old” responses that relied on recollection of the 

stimulus, as opposed to “old” responses relying on familiarity with the 

stimulus presented at test, the remember-know procedure detailed above (see 

4.3.2) was employed. Remember rates are given as the number of “remember” 

responses divided by the total number of correct “old” responses for each 

stimulus category. Where dual process theory is explicitly investigated, 

typically both an estimate of recollection R and an estimate of familiarity F are 

reported. The recollection estimate R is calculated as it is here and the 

familiarity estimate F calculated by subtracting the familiarity associated with 

new items Fn from the familiarity associated with correctly identified old items 

Fo. Fn is estimated by the proportion of false alarms, while Fo is estimated by 

the proportion of hits minus R, divided by 1 – R (Martin et al., 2011). However, 

since the dissociation of familiarity and recollection is not the focus of the 

present thesis, only remember rates are given where they contribute to the 

understanding of the data presented. 

 

4.6 Genotyping 

Each participant provided a 2ml saliva sample for genotyping. This was 

collected using Oragene DNA (OG-500) vials (DNA Genotek Inc: 

www.dnagenotek.com) and stored at room temperature until sent to the 

Welcome Trust Clinical Research Facility in Edinburgh for processing. There, 
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Oragene Purifier OG-L2P-5 was used for DNA extraction and Picogreen dye for 

quantification. An applied Biosystems 7900HT Fast Real-Time PCR system 

(Applied Biosystems: www.appliebiosystems.com) was used for SNP 

genotyping using the Taqman SNP assay rs6265 (BDNF). Samples were also 

assessed using the following Taqman SNP assays, analyses of which will be 

reported elsewhere: rs17070145 (kidney and brain expressed protein gene; 

KIBRA), rs7412 (Apolipoprotein E gene; APOE), rs429358 (APOE), rs4680 

(Catechol-O-methyltransferase gene; COMT), rs263249 (Adenylyl cyclase type 8 

gene; ADCY8), rs8074995 (Protein kinase C alpha gene; PRKCA), rs3730386 

(cAMP-dependent protein kinase catalytic subunit gamma gene; PRKACG) and 

rs6994992 (Neuregulin 1 gene, NRG1).  
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Chapter 5:  

Electrophysiological Correlates of Affective 
Cognition I - Affective Processing 

 

This chapter describes the overall affective modulation of task performance in 

stimulus processing and attention. Affective content of pictures is shown to 

influence participants’ ratings of picture valence and arousal, the late-positive 

potential (LPP) and attentional disengagement from the stimulus. Relationships 

between these measures are discussed, particularly in the light of the LPP often 

being described as an electrophysiological correlate of attention or an indicator 

of differences in arousal. Later chapters investigate how the affective cognition 

effects presented here are influenced by individual difference factors of gender 

(Chapter 7) and genotype (Chapter 8). 

 

5.1 Affective ratings of stimulus material 

5.1.1 Introduction 

All experiments reported in this thesis rely on the basic assumption that the 

groups of stimuli used differ in affective content, eliciting distinct affective 

responses which will affect cognitive processing of these stimuli. Stimulus sets 

for all experiments were chosen by their IAPS standard ratings to include equal 

numbers of stimuli in each of three categories: low arousing neutral, high 
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arousing positive and high arousing negative. IAPS standard ratings for 

arousal were matched between the positive and negative stimulus sets to allow 

conclusions separating the effects of valence and arousal. The fundamental 

assumption that the participants’ in these experiments experience of the chosen 

IAPS stimuli would correspond to IAPS standard ratings was checked, 

separately for each experiment, by asking all participants to rate all picture 

stimuli presented for their associated valence and arousal levels. Specifically, it 

was hypothesised that in terms of valence, pictures included in the “negative” 

subset of stimuli should be rated by participants as more negative than those 

included in the “neutral” subset, which should in turn be rated as more 

negative than the pictures in the “positive” stimulus subset. Secondly, since the 

negative and positive stimulus subsets were selected to be matched for arousal 

by their IAPS standard ratings, it was hypothesised that participants would rate 

negative and positive stimuli as equally arousing and as significantly more 

arousing than neutral stimuli. 

 

5.1.2 Methods 

The study phase of three affective memory experiments (Experiments 1, 2 and 

3) comprised of the Affective Processing Task described in detail in chapter 4. A 

set of 222 IAPS pictures (set A) was rated for arousal and valence by 24 

participants (mean age 21.0 years, 12 female) in Experiment 1. A second set of 

stimuli (set B), comprising of 288 IAPS pictures was rated in the same way by 
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46 participants (mean age 20.3 years, 23 female) in Experiment 2 and by 65 

participants (mean age 20.1 years, 32 female) in Experiment 3. 

 

5.1.3 Results  

Participants’ valence ratings converged with the IAPS standard ratings 

according to which stimuli had been selected, meaning stimuli in the positive 

category were rated as more positive than those in the neutral category, which 

were in turn rated as more positive than stimuli in the negative set. In all three 

experiments, valence ratings for stimuli in the “positive” set were significantly 

lower (indicating a more “positive” response) than those for neutral stimuli 

[Experiment 1: t(23) = 10.3, p<.001; Experiment 2: t(45) = 9.50, p<.001; 

Experiment 3: t(63) = 20.6, p<.001]. Ratings for “negative” stimuli were 

significantly higher, i.e. more “negative” [Experiment 1: t(23) = 13.3, p<.001; 

Experiment 2: t(45)=18.0, p<.001; Experiment 3: t(63)=25.1, p<.001]. Valence 

categorisation based on IAPS standard ratings was therefore successful. 
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Figure 5.1 Mean IAPS standard arousal ratings (rescaled to the 5-point scale used in the 
present experiments) and participants’ own arousal ratings. Mean IAPS standard ratings for 
arousal are matched between negative and positive pictures in both stimulus sets A and B. 
Despite this, arousal ratings from all experiments reported here are consistently lower for 
positive than for negative pictures. Error bars show standard errors. 

 

Participants’ reported arousal levels in response to the three picture categories, 

however, consistently showed a pattern differing from that in the original 

standard ratings according to which stimuli had been selected (see Figure 5.1). 

According to IAPS standard ratings, the selected negative and positive pictures 

were equally highly arousing, while neutral pictures were significantly lower in 

arousal. By contrast, arousal ratings obtained from the present participant 

groups were consistently higher for negative pictures than for positive pictures. 

This difference in arousal ratings between negative and positive pictures was 

significant in all three experiments [Experiment 1: t(23) = 6.94, p<.001; 

Experiment 2: t(45) = 5.58, p<.001; Experiment 3: t(63) = 6.33, p<.001], while 

neutral pictures, as expected, attracted significantly lower arousal ratings than 
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both negative [Experiment 1: t(23) = 16.9, p<.001; Experiment 2: t(45) = 13.4, 

p<.001; Experiment 3: t(63) = 18.9, p<.001] and positive pictures [Experiment 1: 

t(23) = 8.85, p<.001; Experiment 2: t(45) = 7.48, p<.001; Experiment 3: t(63) = 

11.9, p<.001].  

 

5.1.4 Discussion 

The results presented here are a novel demonstration of a consistent, replicable 

difference in perception of the pictures between the original IAPS 

standardisation sample and an experimental sample population, in this case of 

Scottish university students sampled for the present study in the late 2000s and 

early 2010s. This divergence could be explained by one of two underlying 

differences: Either it arises as an artefact of differing experimental procedures 

or it shows a genuine underlying difference in the affective response elicited by 

the pictures in the two samples.  

Although the present study and the IAPS standardisation studies both used the 

same instrument, the SAM, to obtain ratings, there were differences in 

presentation time which may have affected the results. Lang et al.’s (2008) 

participants viewed each picture for 6000ms, before rating it for valence, 

arousal and a third dimension of “dominance”, in this order. In the experiments 

reported here, pictures were presented for 2000ms only and the arousal rating 

was obtained first. It is conceivable that their preceding categorisation of 

pictures in the positive category as positive, and therefore emotional, may have 



Chapter 5: Electrophysiological Correlates of Affective Cognition I 
 

- 100 - 
 

influenced standardisation participants’ subsequent arousal judgements, 

artificially inflating their interpretation of the level of arousal they felt in 

response to the picture. Given the biological significance of threat cues, a 

component in many of the highly arousing negative IAPS pictures in form of 

depictions of violence or injury, it is also conceivable that such stimuli evoke 

faster acting affective processes compared to positive stimuli and that these 

produce a negative affect reaction that is immediate but abates quickly with 

further processing. Shorter presentation times instantly followed by an arousal 

judgement may then tap into the early maximum levels of arousal, while longer 

presentation times and an intervening valence judgement may leave time for 

arousal to subside. Further behavioural research could clarify whether there is 

merit to either of these hypotheses.  

Alternatively, the difference in rating patterns observed could have arisen not 

from procedural differences but from actual differences in the affect elicited by 

the stimuli in the two sample groups. The IAPS standard ratings on which 

stimulus selection was based were collected over a period of 13 years, between 

1995 and 2008, from a number of participant samples. Very little is published 

about the characteristics of these participants but the fact that the IAPS was 

developed at the University of Florida along with the verbatim instructions 

published in the technical manual (Lang et al., 2008), which include a request to 

not discuss the experiment “until after the end of the semester”, strongly 

suggests that they were U.S. university students. Participants in the present 

study mostly drawn from the undergraduate student population of the 
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University of Stirling in Scotland, between 2008 and 2011. This separation in 

time and space between the two sample groups may be associated with a 

cultural difference that may account for a real difference in levels of arousal 

elicited by stimuli in the positive category between the underlying populations. 

Some stimuli are intrinsically culture specific. For instance, depictions of 

American sporting success (for example picture 8540: “Athletes”), which are 

unlikely to produce the same levels of arousal in Scottish participants as they 

do in U.S. participants. But there may also be cultural differences in the 

perception and expression of positive arousal. Of course, these are just 

hypotheses on the origin of the observed difference and only further research 

could clarify the causes. If the IAPS stimulus set is to continue to be used in 

studies of affective processing internationally, an important first step in such 

future research would be to conduct up-to-date inter-cultural standardisation 

experiments in order to confirm or exclude cultural differences in the 

perception of IAPS pictures. If such differences are found, sub-sampling from 

the original IAPS set may allow for the creation of a new, smaller stimulus set 

which is free of cultural biases. Similarly, comparisons of different age groups 

and socio-economic backgrounds are necessary to confirm whether IAPS 

standard ratings are accurate across these factors. 

 But regardless of its source, it is important to note that there is a consistent 

difference between the normative arousal ratings of the IAPS and the arousal 

ratings collected in these experiments. This has important practical implications 

for any research relying on the IAPS stimulus set, as it emphasises the 
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importance of collecting sample specific valence and arousal ratings wherever 

possible and certainly where conclusions about the influence of these 

dimensions on other variables are to be drawn. 

 

5.2 Affective modulation of the Late-Positive Potential (LPP) 

5.2.1 Introduction 

As discussed in chapter 3, the ERP effect most commonly investigated in 

studies of affective processing in recent years is the affective modulation of the 

Late-Positive Potential (LPP). More and more research is beginning to 

illuminate the features of the LPP and its relation to affective cognition in 

detail. This is one factor that makes the LPP ideal as an electrophysiological 

marker of affective processing in investigations of individual differences in 

affective cognition (Chapters 7 and 8). Another vital factor is the LPP’s 

reliability and robustness, even in the face of low trial numbers (Moran, 

Jendrusina, & Moser, 2013). 

Despite its popularity, there are aspects of the LPP that are little researched or 

understood. Firstly, its topographic properties are often neglected or left 

altogether unexamined and secondly, there is conflicting evidence regarding 

the role of stimulus valence in the elicitation of the LPP. 

As Woodman (2010) notes, an ERP component is defined by four features: its 

polarity, timing, eliciting conditions and scalp distribution. The LPP is usually 
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described as a positive going modulation, starting at around 400ms post 

stimulus onset and lasting several hundred milliseconds, elicited by affective 

stimulus content and widespread, maximal at centro-parietal midline 

electrodes. This centro-parietal distribution, however, is often assumed without 

being explicitly examined or confirmed (e.g., see Brown, van Steenbergen, 

Band, de Rover, & Nieuwenhuis, 2012; Moran et al., 2013; Palomba, Angrilli, & 

Mini, 1997; Pastor et al., 2008). Studies that only report a small number of 

“traditional” LPP electrodes, most commonly on the midline, cannot confirm 

the assumed topography. Crucially, while scalp distribution cannot reveal the 

neural origins of an ERP component, it can provide evidence of neural 

generators differing between effects where they do. As such, it is important to 

report scalp distributions of ERP effects elicited by a variety of conditions or by 

stimuli or conditions that are assumed to be equivalent to previously shown 

manipulations. In the LPP literature, this is often overlooked.  

An ongoing area of contradiction in the literature is the respective influence of 

valence and arousal associated with picture stimuli on the LPP. Many studies 

find equivalent effects of positive and negative pictures (e.g., see Keil et al., 

2002; Sabatinelli, Lang, Keil, & Bradley, 2006; Schupp et al., 2000), suggesting 

that affective arousal is the relevant dimension in affective LPP modulation. 

Others, however, find a negativity bias, a larger modulation of the LPP for 

negative than for positive pictures of matched arousal (Ito, Larsen, Smith, & 

Caccioppo, 1998; Wood & Kisley, 2006), while Cuthbert, Schupp, Bradley, 

Birbaumer and Lang (2000)  found largest LPPs in response to positive over 
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negative pictures. As the comparison of IAPS standard ratings and participants’ 

own ratings above shows (see Chapter 5.1), these contradicting results could be 

a consequence of underlying differences in actual perceived arousal associated 

with negative and positive stimuli, as often these are not reported. Wood and 

Kisley's (2006) results point to a second possibility. While they find a negativity 

bias for younger adults, they report no evidence of differences between the 

effects of negative and positive pictures in older adults, pointing to individual 

differences as a possible cause for differences in LPP enhancement patterns. 

Chapters 7 and 8 will discuss individual differences in the LPP as a correlate of 

affective processing in detail.  

Here, LPP effects across all participants are reported to establish that the 

commonly reported affective enhancement could be replicated as well as to 

clarify the influence of picture valence and arousal on the LPP.  

 

5.2.2 Methods 

EEG was recorded while participants completed the affective processing task in 

Experiments 1 and 3. The task involved looking at individual IAPS pictures on 

a screen for 2000ms in anticipation of rating the pictures for arousal and 

valence. The affective processing task is described in full detail in Chapter 4. As 

noted above (see 5.1.2), 24 participants (mean age 21.0 years, 12 female) 

completed the task in Experiment 1 and 65 participants (mean age 20.1 years, 32 

female) in Experiment 3. Average ERPs in response to affective processing were 



Chapter 5: Electrophysiological Correlates of Affective Cognition I 
 

- 105 - 
 

formed separately from an average number of 29.8 negative, 30.2 positive and 

29.7 neutral trials per participant in Experiment 1 and from an average number 

of 33.3 negative, 34.6 positive and 34.3 neutral trials per participant in 

Experiment 3. 

For topographic analysis, data from both Experiment 1 and Experiment 3 was 

subjected to a series of ANOVAs with within-subject factors of affective content 

(negative, neutral, positive), location (frontal, centro-frontal, central, centro-

parietal, parietal) and site (left inferior[5], left medial[3], left superior[1], 

midline [z], right superior [2], right medial [4], right inferior [6]) and the 

between-subjects factor of experiment (1, 3). Figure 5.2 indicates the electrode 

sites included in this analysis. To assess whether any quantitative 

topographical differences observed also represent qualitative differences, i.e. 

whether there is evidence of involvement of different neural generators, data 

was rescaled using McCarty and Wood’s (1985) Min-Max method (see Chapter 

4 for discussion) and the above analysis repeated. The LPP effect is quantified 

by the mean amplitude difference at electrode Cz.  

 

Figure 5.2 Electrodes included in the topographical analysis of the LPP effect. 
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5.2.3 Results 

5.2.3.1 Positive affect modulation of the LPP 

Visual inspection of waveforms (see Figures 5.3 and 5.4) confirmed an effect 

during the often reported 400ms to 1000ms LPP time window. Positive pictures 

elicited more positive going waveforms in this time window over superior 

centro-parietal electrode sites in both Experiments 1 and 3, although the 

difference was more pronounced in Experiment 3. 

Mean amplitudes for the 400 to 1000ms time window were subjected to 

ANOVA with two levels of affective content, positive and neutral, which was 

designed to explore the LPP effect in response to positive pictures. There was a 

significant affective content by location by site interaction [F(3.21, 280)=4.40, 

p=.004], due to the positive-going amplitude difference between the positive 

and neutral condition being more left-sided in parietal locations only. The fact 

that this interaction was also significant in rescaled data [F(3.3, 287)=4.86, 

p=.002] suggests the topographical difference between the two scalp 

distributions is caused by differences in neural generators, rather than merely 

being an artefact of magnitude differences. 

The only significant effect of experiment was an interaction with affective 

content [F(1, 87)=14.9, p<.001], reflecting a difference in LPP magnitude in 

response to positive pictures across experiments. The absence of significant 

interactions involving experiment and either location or site suggests that there 

are no topographical differences between the LPP effects elicited by positive 
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pictures in the two experiments. Figures 5.3 and 5.4 show grand average 

waveforms for positive and neutral pictures at representative electrode sites 

across the scalp, from Experiments 1 and 3 respectively. Mean amplitudes were 

significantly more positive in response to positive than in response to neutral 

pictures at electrode Cz in both Experiment 1 [t(23)=3.70, p=.001] and 

Experiment 3 [t(64)=9.73, p<.001].  

 

 

Figure 5.3 Grand average ERP waveforms for the processing of positive compared to neutral 
pictures in Experiment 1. 
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Figure 5.4 Grand average ERP waveforms for the processing of positive compared to neutral 
pictures in Experiment 3. 

 

5.2.3.2 Negative affect modulation of the LPP 

The same 400-1000ms LPP time window was chosen for the negative affect 

condition, confirmed by visual inspection of waveforms. ANOVA with levels of 

affective content being negative and neutral again revealed a significant 

affective content by location by site interaction [F(3.54, 308)=3.38, p=.013], 

caused by a stronger left lateralisation of the LPP effect in posterior locations. 

This interaction was also significant in the analysis of rescaled data [F(3.63, 

315)=3.95, p=.005] pointing to a qualitative difference in topographies. 
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The experiment factor was not significant in any interaction involving affective 

content, showing that there was no significant topographical or amplitude 

difference in LPP effects in response to negative pictures between experiments. 

Figures 5.5 and 5.6 show grand average waveforms for negative and neutral 

pictures at representative electrode sites across the scalp, from Experiments 1 

and 3 respectively. Mean amplitudes were significantly more positive in 

response to negative than in response to neutral pictures at electrode Cz in both 

Experiment 1 [t(23)=3.62, p=.001] and Experiment 3 [t(64)=5.54, p<.001]. 

 

 

Figure 5.5 Grand average ERP waveforms for the processing of negative compared to neutral 
pictures in Experiment 1. 
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Figure 5.6 Grand average ERP waveforms for the processing of negative compared to neutral 
pictures in Experiment 3. 

 

5.2.3.3 Comparison of positive and negative affect modulations of the LPP  

To investigate LPP effect modulations by valence, mean amplitude differences 

between the affective conditions (negative, positive) and the neutral condition 

were calculated for both experiments and subjected to ANOVA with factors 

affective content (negative, positive), location, site and experiment, as above. 

Affective content interacted with site and experiment [F(1.96, 171)=3.91, 

p=.023], stemming from greater differences between the negative and positive 

LPP effects at midline electrodes in combination with a reversal of the polarity 

of the effect difference (Experiment 1: negative LPP effect > positive LPP effect; 

Experiment 2: positive LPP effect > negative LPP effect). The same interaction 
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was present in rescaled data [F(1.96, 171)=3.99, p=.021] suggesting a qualitative 

difference. T-tests comparing LPP effect sizes at electrode Cz showed a larger 

LPP effect for negative than for positive pictures in Experiment 1 which 

narrowly missed significance [t(23)=1.92, p=.067] and a significantly larger LPP 

effect for positive than for negative pictures in Experiment 2 [t(64)=4.20, 

p<.001]. 

 

 

Figure 5.7 Scalp maps of amplitude difference from neutral condition in the 400-1000ms time 
window. LPP effects in response to negative pictures are more left parietal, while LPP effects in 
response to positive pictures show the more central distribution typically reported for LPPs. 
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5.2.4 Discussion 

 Increased LPPs could be demonstrated in both experiments for both negative 

and positive compared to neutral pictures. While the effects were significant, 

and strong, at the commonly reported centro-parietal midline electrode sites, 

the distribution of the effects were slightly left sided for both affective 

conditions.  

The comparison between the modulation of the LPP by negative and positive 

affective pictures respectively proved interesting in light of conflicting results 

in previously published findings. Both experiments reported here employed 

the same paradigm and procedure, differing only in the size of the stimulus sets 

used. More importantly, participants from both experiments reported the same 

pattern of arousal in response to the three affective picture categories, with 

arousal levels in response to negative pictures significantly higher than to 

positive pictures and neutral pictures reported to be the least arousing (see 

Figure 5.1 above). Despite the stimulus sets eliciting the same pattern of 

arousal, LPP modulation was stronger for negative pictures in Experiment 1 

but positive pictures in Experiment 3. Taken on its own, results from 

Experiment 1 would have suggested that arousal not valence is the crucial 

factor in the affective modulation of the LPP. However, the different pattern 

found in Experiment 3 shows that the relationship between perceived stimulus 

arousal and valence and the affective LPP modulation is more complex. In 

Experiment 3, positive stimuli, which were rated as only moderately arousing 

and were associated with only moderate effects in Experiment 1, produced the 



Chapter 5: Electrophysiological Correlates of Affective Cognition I 
 

- 113 - 
 

strongest LPP enhancement. This directly contradicts findings that LPP 

enhancement is positively associated with arousal. An enhancement of the LPP 

effect for positive pictures caused by stimulus set size looks implausible, 

especially since participants’ ratings remained constant. In the absence of any 

other differences between the experiments, the mostly likely cause of the 

difference must then lie in the differences between participants groups. As 

gender ratios were held constant between experiments, the differences in LPP 

enhancement patterns observed here are not a function of gender differences in 

affective processing. It is conceivable however, that other individual differences 

influence affective processing and that such differences underlie the fact that a 

negativity bias in LPP enhancement was shown in Experiment 1 while a 

positivity bias was shown in Experiment 3. Chapter 8 discusses the possibility 

of genetic differences in affective processing. 

The differences between the two experiments reported here in the respective 

size of LPP modulation by positive and negative picture content, has important 

implications for the design and reporting of future studies of affective 

modulations of the LPP. They highlight the importance of replication of 

patterns of affective modulation across a number of samples if any universally 

applicable conclusions are to be drawn, as well as the need for future research 

into the factors influencing the existence of positivity versus negativity biases. 

Establishing whether consistent, at least over the short- to medium-term, biases 

can be shown reliably for individual participants would enable future studies 
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to compare negativity bias to positivity bias groups and explore potential 

individual differences governing such biases.  

In a clinical setting, if such consistent biases can be demonstrated using the LPP 

as an electrophysiological marker of affective processing, LPP paradigms could 

become an important objective assessment tool in the treatment of conditions 

linked to negativity bias such as anxiety or depression, which would avoid the 

subjective factors associated with self-report.  

 

5.3 Affective modulation of attentional disengagement 

5.3.1 Introduction 

The LPP is often described as a measure of sustained attention, the argument 

being that it is the attention capturing properties of emotional stimuli that 

modulate LPP mean amplitudes (Schupp, Flaisch, Stockburger, & Junghoefer, 

2006).  

The evolutionary argument for an attention capturing effect of affective stimuli 

is obvious. Negative stimuli, such as the roar of a wild animal or an image of a 

person showing aggression, commonly indicate a potentially dangerous 

situation, often a threat to safety or health. Attending these stimuli 

preferentially therefore carries a survival advantage, as it enables quicker 

assessment of the situation and fight or flight reactions where appropriate. 

Positive stimuli, on the other hand, are often associated with potential increases 
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in health, wellbeing and safety. Their preferential processing enables quicker 

reactions which leads to an advantage in the competition for resources.  

Most behavioural evidence for preferential attention to affective stimuli comes 

from affective versions of two classic attention paradigms: The emotional 

pictures dot-probe task (MacLeod, Mathews, & Tata, 1986) and the emotional 

Stroop task (Gotlib & McCann, 1984). The emotional pictures dot-probe task 

works on the premise that when two pictures are presented simultaneously and 

followed a probe in one of the picture locations, probe detection will be quicker 

when the probe is presented in the location of the preferentially attended 

picture. Proponents of the emotional Stroop task propose that when words 

presented in different colours have affective content, colour naming will be 

slowed compared to words of neutral content, as attention to the affective 

content interferes with the primary colour naming task. 

Generally, these paradigms are employed to show attentional biases in clinical 

populations, such as participants who are clinically anxious or depressed. 

Williams, Mathews and MacLeod (1996) reviewed the use of the emotional 

Stroop task is research of attentional bias in psychopathology and reported a 

wide range of demonstrations of the effect in clinical and sub-clinical samples 

including patients with clinical anxiety, clinical depression, post-traumatic 

stress disorder, obsessive-compulsive disorder and high trait anxiety. Notably, 

only four of the 53 studies reviewed also found emotional Stroop effects in 

control groups. So if, as the evolutionary line of reasoning suggests, there are 

affective biases in the general population, the emotional Stroop seems to lack 
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power to show these. Additionally, Larsen, Mercer and Balota (2006) question 

the emotional Stroop’s construct validity by showing that in 32 reviewed 

emotional Stroop studies, affective words were significantly longer, less 

frequently used and had smaller orthographic neighbourhoods. They argue 

that slower colour naming can be explained by slower word recognition 

resulting from these distinct lexical features. McKenna and Sharma (2004) 

distinguish between fast and slow components of the emotional Stroop, fast 

effects acting automatically at the single trial level and slow effects spanning 

several trials. By comparing the typically used blocked presentation format 

with mixed presentation, they showed that fast effects play a negligible role 

and conclude that the emotional Stroop effect reflects slowing of attentional 

disengagement from affective stimuli.      

To assess attentional disengagement from affective and neutral pictures, a 

novel task was designed in which participants had to detect probes presented 

above or below a picture that remained on the screen.  

The pattern of LPP effects found in the same participants who completed this 

attentional disengagement task did not match the pattern of the self-reported 

arousal in response to the stimuli (arousal ratings: negative > positive > neutral; 

LPP mean amplitudes: positive > negative > neutral). Therefore, the pattern of 

attentional disengagement results can give further insights into the nature of 

the LPP.  



Chapter 5: Electrophysiological Correlates of Affective Cognition I 
 

- 117 - 
 

It was hypothesised that affective pictures would preferentially capture 

attention over neutral pictures, and thus reaction times to probes presented 

with affective pictures would be longer than to probes presented with neutral 

pictures. If attentional disengagement is slowed by affective arousal, then 

attentional disengagement should be slower from negative than from positive 

pictures, since participants rated negative pictures as more arousing than 

positive pictures (see Chapter 5.1). This would suggest that the increase in the 

LPP is driven by processes other than merely attention to affective stimuli. If, 

on the other hand, the LPP is an electrophysiological correlate of attention, then 

attentional disengagement should be slowest from positive pictures, followed 

by negative and then neutral pictures. It would follow that attention is captured 

by affective stimulus features beyond arousal. 

 

5.3.2 Methods 

64 participants completed the attentional disengagement task described in 

detail in Chapter 4. Nine participants whose overall mean accuracy was less 

than 0.7 on this task were excluded from the analysis, leaving 55 datasets (mean 

age 20.1 years, 27 participants female). 

Only reaction times associated with correct responses were included. A lower 

cut-off for reaction times was not set, as the fastest response recorded, 338ms 

after stimulus onset, was within the limits of what can be presumed to be a 

genuine response to the stimulus. Reaction times above 3 standard deviations 
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above the sample mean (2188ms) were considered outliers and removed from 

the dataset. 

 

5.3.3 Results 

As figure 5.7 illustrates, reaction times were longest in response to negative 

pictures, followed by reaction times in response to positive pictures. Shortest 

mean reaction times were recorded in trials where participants had to 

disengage from neutral pictures. A repeated-measures ANOVA showed a 

significant main effect of affective picture content on mean reaction times 

[F(2,108)=5.03, p=.008]. Follow-up t-tests revealed this to be driven by a 

significant difference between reaction times to probes presented with negative 

compared to neutral pictures [t(54)=3.13, p=.003]. Reaction times were longest 

for probes presented with negative pictures and shortest for probes presented 

with neutral pictures. The differences in reaction times between the positive 

compared to the neutral condition [t(54)=1.60, p=.115] and between the 

negative and the positive condition [t(54)=1.60, p=.116] failed to reach 

significance.  
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Figure 5.7 Reaction times were longest in the negative condition (M=1084ms, SD=205ms), 
followed by reaction times in the positive condition (M=1069, SD=191ms). Participants 

reacted fastest to probes presented with neutral pictures (M=1052ms, SD=183ms).  

 

5.3.4 Discussion 

Reaction times were significantly longer for probes presented with negative 

pictures than for those presented with neutral pictures. Although, in line with 

predictions, reaction times to probes presented with positive pictures lay 

between those in the negative and neutral conditions, no other difference 

reached significance. This is likely due to a lack of power in light of high intra 

and inter participant variance, a hypothesis supported by relatively low p-

values for these differences (negative-positive: p=.116 and positive-neutral: p= 

.115). It is plausible that future research could show significant differences 

between all three affective categories, given sufficient trial and participant 

numbers. The pattern of results is consistent with participants’ arousal ratings 

in response to the affective pictures, which were significantly higher for 
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negative than for positive and for positive than for neutral affective content (see 

Chapter 5.1). Despite the negative-positive and positive-neutral RT differences’ 

failure to reach significance in the attentional disengagement data, the pattern 

of results supports the view that increased arousal slows attentional 

disengagement. This is in line with Vogt, De Houwer, Koster, Van Damme and 

Crombez's (2008) findings from an affective spatial cuing task, where targets 

presented in one of two locations were preceded by either valid (same location) 

or invalid (opposite location) cues, selected from one of four categories: highly 

arousing positive, highly arousing negative, low arousing positive or low 

arousing negative IAPS pictures. They found no effects of valence but an 

increase in the cue validity effect (shorter RTs in valid cue trials) for highly 

arousing compared to low arousing pictures. The present data presents a novel 

demonstration of the slowing of attentional disengagement with increasing 

affective arousal using a simultaneous target paradigm. Future studies 

employing larger trial and participant numbers for increased power, as well as 

a wider range of arousal levels associated with affective stimuli, are necessary 

to establish whether the relationship between affective arousal and slowing of 

attentional disengagement is linear and whether there are differences in this 

relationship driven by stimulus valence.  

A better understanding of the factors affecting attentional disengagement has 

important practical applications in a number of areas requiring both the 

focussing attention and flexible switching between different focuses of 

attention, especially where affective factors are likely to come into play, such as 
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in road safety, police and security work or professional sports. Research could 

then establish whether participants can be trained to improve their attention 

switching times in affectively arousing situations using attentional 

disengagement paradigms similar to the one employed here. 

 

5.4 General Discussion 

This Chapter sought to establish the influence of affective stimulus content on 

subjective picture ratings, the LPP and performance in an attentional 

disengagement task, as well as the interplay between these measures. 

Conflicting with IAPS standard ratings, according to which negative and 

positive stimuli were matched for arousal, participants rated negative stimuli as 

significantly more arousing than positive stimuli in all three experiments that 

included the rating task. Performance on the attentional disengagement task 

was consistent with the view that attention is sustained longer for more 

arousing stimuli, as reaction times were longest in response to negative, 

followed by positive and then neutral items. Both of these results are not 

consistent with an attention view of the LPP. The LPP increase for negative 

pictures, which were rated as most arousing and produced the only significant 

slowing of attentional disengagement, was significant but was surpassed by the 

increase for positive pictures, rated as less arousing than negative pictures and 

producing less and non-significant slowing of attentional disengagement. 

Therefore, differences in attention alone cannot account for differences in LPPs 
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in response to pictures of different affective content. The LPP is commonly used 

as an index for sustained attention towards affective stimuli (e.g., see Hajcak & 

Olvet, 2008; Weinberg & Hajcak, 2011) but the results presented here suggest 

that this cannot be the full story. Dunning and Hajcak (2009) and Hajcak, 

MacNamara, Foti, Ferri, and Keil (2013) showed that the LPP was reduced 

when attention was directed to a non-arousing region of negative pictures, 

lending support to the hypothesis that attention to affective content is a 

necessary prerequisite of the affective LPP increase. But findings presented here 

show that attention on its own is not sufficient for explaining this increase. It 

has been shown that additionally to bottom-up processes which are driven by 

stimulus properties likes arousal, top-down processes like reappraisal of 

stimulus content (Hajcak & Nieuwenhuis, 2006), neutral rather than negative 

description prior to stimulus presentation (Foti & Hajcak, 2008) and voluntary 

suppression (Moser, Hajcak, Bukay, & Simons, 2006). These processes could 

account for varying results showing negativity biases like the one observed in 

Experiment 1 in some circumstances and positivity biases like the one observed 

in Experiment 3 in others. However, like bottom-up processes resulting from 

differences in stimulus arousal, these top-down processes are also understood 

to modulate the LPP via changes in attention to stimuli, as part of Desimone 

and Duncan's (1995) biased competition model of visual attention. 

The findings presented here point strongly to an eliciting condition for 

increases in the LPP over and above stimulus arousal and sustained attention. 

However, while stimulus arousal was assessed immediately following each 
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stimulus presentation during LPP data collection, attentional disengagement 

was assessed in a separate experiment, one week later. Since arousal, LPP and 

attention data was collected from the same participant sample and arousal and 

attentional disengagement pattern are consistent with each other, it is unlikely 

that top-down processes differed between experiment sessions. Nevertheless, 

this could be clarified by future research incorporating both the picture 

processing (LPP) and attentional disengagement tasks in close temporal 

proximity. Given a replication of the mismatch between attentional 

disengagement and LPP results, more research will be needed to establish the 

conditions under which affective LPP increases can and cannot be explained by 

differences in attention. Specifically, studies with larger trial numbers are 

needed to establish, whether the LPP increase is linked to an increase in 

affective arousal within one or both valence categories and whether slowed 

attentional disengagement is associated with LPP increases in some 

circumstances or merely a spurious co-occurrence driven by different 

underlying factors.  

The present findings do clearly demonstrate, however, that the LPP cannot be 

used as a universal electrophysiological index of sustained attention and that 

studies presenting it as such need to provide corroborating evidence in the 

form of behavioural or other functional neuroimaging indexes of attention.  
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Chapter 6:  
Electrophysiological Correlates of Affective 
Cognition II - Affective Memory 

 

6.1 Time-course of affective memory effects 

6.1.1 Introduction 

Experiment 1, comprising of the affective processing task followed after a 20 

minute delay by an affective memory task (both are described in detail in 

chapter 4), failed to find any affective modulation of recognition memory 

evident in either behaviour or electrophysiological data. Given an ample 

sample size of 24 participants and 111 “old” stimuli (37 high-arousing negative, 

37 high-arousing positive and 37 low-arousing neutral), it is unlikely that the 

absence of significant effects can be explained solely by lack of power. It could, 

however, be a result of the way in which affective content modulates memory, 

if indeed it does. As discussed in Chapter 1, there are three distinct stages 

during which memory may be affected: Encoding, consolidation, retention and 

retrieval. If the affective content of a stimulus simply enhanced retrieval of that 

stimulus, such an effect should be seen after any length of study-test interval. If, 

on the other hand, the affective content of the stimulus affects stimulus 

consolidation or retention, through differences at the encoding stage, then 

effects on memory performance may only become apparent with increasing 

study-test intervals. 
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A classic study by Kleinsmith and Kaplan (1963) showed that in a paired 

associates learning task, recall was improved for high-arousal word pairs only 

after an interval of one week, while recall was actually worse for high-arousal 

pairs than for neutral pairs when tested immediately after study, with a study-

test interval of only 2 minutes. Walker and Tarte (1963) replicated their result. 

More recently, Pierce and Kensinger (2011) found no effect of affective word 

content on immediate associative recognition performance, but enhanced 

accuracy for negative intact word pairs with a study-test interval of one week. 

Sharot and Phelps (2004) also reported that recognition of peripherally 

presented neutral words declined over time. Recognition of arousing words 

was the same after one week delay as it was when tested immediately after 

study.  

Sharot and Yonelinas (2008) demonstrated similar effects of study-test delay on 

memory for negative affective pictures. They found no significant differences in 

item recognition between affective and neutral items after a five minute delay 

and no significant effects on remember/know ratios or source judgement. After 

24 hours, recognition for affective pictures was significantly better and the 

proportion of “remembered” items was significantly higher for affective items 

than for neutral items. While Sharot and Yonelinas (2008) reported that the 

affective memory enhancement effect is not present for negative pictures when 

memory is tested immediately after encoding, Chainay, Michael, Vert-pré, 

Landré and Plasson (2012) showed that affective memory enhancement can be 

demonstrated for positive, but not negative or neutral, pictures, if encoding was 
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incidental rather than intentional. Unfortunately, this study did not include a 

longer study-test interval to allow conclusions about the relative development 

of affective memory enhancement for negative and positive pictures over time. 

To further illuminate the development of affective memory effects for pictures 

over time and the impact of picture valence on this development, a paradigm 

including three study-test delays was designed. It was hypothesised that 

enhancement of memory performance for negative pictures would not be 

present at immediate recognition test but develop over time. It was further 

hypothesised that memory enhancement for positive over neutral pictures 

should increase over time. As encoding was incidental in this experiment, an 

immediate effect was expected for positive pictures, based on Chainay et al.'s 

(2012) earlier results. 

 

6.1.2 Methods 

56 participants completed the affective processing task described in chapter 4 

on a set of 288 IAPS pictures. Eight participants did not complete one or more 

of the subsequent test phases, leaving complete data sets from 48 participants 

(mean age 20.3 years, 24 female) for analysis. All of these participants 

completed affective recognition tests on different subsets of stimuli after 5 

minutes, 1 day and 1 week delay. Discrimination index Pr (Pr=hit rate-false 

alarm rate) and response bias Br (Br=false alarm rate/[1-Pr]) were calculated 

and subjected to repeated-measures ANOVA with factors of affective content 
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(positive vs neutral and negative vs neutral respectively) and test delay 

(immediate, 1 day, 1 week).   

 

6.1.3 Results 

As discussed in Chapter 5.1 and shown in Figure 6.1, despite the negative and 

positive affective picture sets being matched for arousal according to their IAPS 

standard ratings, participants in this study rated negative images as 

significantly more arousing than positive pictures [t(45) = 5.58, p<.001]. In line 

with the classification by standard ratings, participants also rated positive 

pictures as significantly more arousing than neutral pictures [t(45) = 7.48, 

p<.001]. Valence ratings for negative pictures were significantly higher than 

those for neutral pictures [t(45)=18.0, p<.001] and valence ratings for positive 

pictures were significantly lower than those for neutral pictures [t(45) = 9.50, 

p<.001], confirming the classification by IAPS standard ratings.  

 

Figure 6.1 Arousal ratings for negative pictures were significantly higher than those for 
positive pictures and arousal ratings for positive pictures were significantly higher than those 
for neutral pictures. 
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As Table 6.1 indicates, hit rates decreased over time in all affective categories, 

while false alarm rates increased, leading to decreasing discrimination accuracy 

over time. Response bias became more conservative over time for positive and 

neutral pictures but was most liberal at one day study-test delay for negative 

pictures. At the “immediate” recognition test after five minutes delay, 

discrimination was highest for neutral, followed by negative and then positive 

pictures. After one day delay, discrimination was highest for negative, followed 

by neutral and then positive pictures, while after one week, discrimination was 

still highest for negative pictures but higher for positive than for neutral 

pictures. Response bias was consistently more liberal for affective than for 

neutral pictures and more liberal for negative than for positive pictures, across 

all three study-test delays. 

 

 Study-test delay 

5 mins 1 day 1 week 

Pi
ct

ur
e 

va
le

nc
e 

N
eg

at
iv

e 

Hit rate 0.949 (0.007) Hit rate 0.876 (0.022) Hit rate 0.737 (0.026) 
FA rate 0.073 (0.012) FA rate 0.125 (0.027) FA rate 0.126 (0.022) 
Pr 0.876 (0.014) Pr 0.751 (0.042) Pr 0.611 (0.028) 
Br 0.435 (0.059) Br 0.472 (0.053) Br 0.327 (0.046) 

N
eu

tr
al

 

Hit rate 0.936 (0.011) Hit rate 0.801 (0.027) Hit rate 0.570 (0.028) 
FA rate 0.048 (0.011) FA rate 0.089 (0.026) FA rate 0.091 (0.020) 
Pr 0.888 (0.015) Pr 0.712 (0.044) Pr 0.479 (0.031) 
Br 0.275 (0.056) Br 0.219 (0.044) Br 0.176 (0.031) 

Po
si

tiv
e 

Hit rate 0.919 (0.015) Hit rate 0.783 (0.026) Hit rate 0.637 (0.027) 
FA rate 0.089 (0.014) FA rate 0.141 (0.026) FA rate 0.138 (0.022) 
Pr 0.831 (0.021) Pr 0.642 (0.040) Pr 0.499 (0.030) 
Br 0.414 (0.055) Br 0.362 (0.050) Br 0.271 (0.035) 

Table 6.1 Means and standard errors (in brackets) for hit rate, false alarm (FA) rate, 
discrimination index Pr and response bias Br by picture valence and study-test delay. 
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6.1.3.1 Time-course of positive affective memory 

6.1.3.1.1 Discrimination index Pr 

There was a significant interaction in Pr between affective stimulus content and 

test delay [F(2,94)=4.73, p=.011]. As above, this was due to a sharper decline of 

Pr in response to neutral pictures over time, when compared to positive 

pictures. However, Pr for neutral pictures was significantly higher than for 

positive pictures at immediate test [t(47)=3.52, p=.001] and after 1 day 

[t(47)=2.91, p=.006], with no significant difference after 1 week (see Figure 6.2). 

 

 

Figure 6.2 Discrimination index Pr was significantly higher for neutral than for positive 
pictures at one minute and one day study-test delay but decreased to the same level as Pr for 
positive pictures after one week. Error bars show standard errors. 
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6.1.3.1.2 Response bias Br 

There was no significant interaction between affective stimulus content and test 

delay on response bias. Instead, there was a significant main effect of affective 

stimulus content [F(1,47)=23.4, p<.001], with Br being higher for positive than 

for neutral pictures, indicating a less conservative bias (see Figure 6.3). The 

main effect of test delay was also significant [F(1.57,73.60=4.26, p=.026], 

reflecting an increasingly conservative response bias over time. 

 

 

Figure 6.3 Response bias Br is more liberal for positive than for neutral pictures at all test times 
and becomes increasingly conservative for both positive and neutral pictures over time. Error 
bars show standard errors. 
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6.1.3.2 Time-course of negative affective memory 

6.1.3.2.1 Discrimination index Pr 

Pr showed an analogous interaction between affective stimulus content and test 

delay [F(1.71,80.2)=10.7, p<.001], however the difference in Pr between negative 

and neutral pictures failed to reach significance until 1 week delay [t(47)=4.71, 

p<.001], see Figure 6.4.  

 

 

Figure 6.4 Discrimination index Pr differed significantly by affective picture content only after 
one week delay, with Pr being higher for negative than for positive pictures. Error bars show 
standard errors. 
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stimulus content [F(1,47)=37.8, p<.001] and test delay [F(1.88,88.1)=3.61, 

p=.034]. This reflects a more conservative response bias for neutral than for 

negative pictures and an overall decline in Br over time as Figure 6.5 illustrates. 

 

 

Figure 6.5 Response bias was more liberal for negative than for neutral pictures but became 
more conservative for both picture categories over time. Error bars show standard errors. 

 

6.1.3.3 Valence effects on development of affective memory over time 

Three within-subject ANOVAs with factors of picture valence (negative, 

positive) and test delay (5 minutes, 1 day, 1 week) were performed on the 

differences for affective from neutral pictures in Pr and Br respectively to assess 

whether observed differences in the development of these measures over time 

between the two affective valences were statistically significant. 
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6.1.3.3.1 Discrimination index Pr 

 

Figure 6.6 Pr difference from neutral increases over time for both negative and positive 
pictures. The apparent increase in the difference between negative and positive difference scores 
over time failed to reach significance. Error bars show standard errors. 

 

Figure 6.6 shows a valence effect on the difference in discrimination index Pr 

for affective minus neutral pictures, with negative pictures producing the 

bigger Pr difference from neutral and the valence effect seemingly increasing 

over time. The content valence by test delay term failed to reach significance 

however, and only significant main effects of content valence [F(1, 47)=26.29, 

p<.001] and test delay [F(2, 94)=13.91, p<.001] were found. 
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6.1.3.3.2 Response bias Br 

 

Figure 6.7 There was no significant interaction between valence and test delay on Response 
Bias Br difference from neutral. Error bars show standard errors. 

 

Response bias differences from neutral appeared to be somewhat larger for 

negative than for positive pictures, a difference that was most pronounced after 

one day test delay (see Figure 6.7). ANOVA did not return a significant content 

valence by test delay interaction and there was also no significant main effect of 

test delay. Despite the visually observed difference between the Br difference 

scores for negative and positive pictures, the main effect of content valence 

narrowly missed significance [t(1)=3.85, p=.056].  
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6.1.4 Discussion 

Memory enhancement was expected to be immediate and to increase over time 

for positive pictures, while memory enhancement for negative pictures was 

expected to only be demonstrable after longer delays. 

Response bias was significantly more liberal for affective as compared to 

neutral pictures but became more conservative over time for all picture 

categories. The analysis of difference scores from the neutral baseline revealed 

no difference between Br for negative and positive pictures. As a consequence 

of consistently increasing conservativism in response bias across all three 

stimulus categories, performance on discrimination index Pr was actually 

poorer for positive than for neutral pictures after five minutes and one day 

delay and showed no difference between positive and neutral pictures after one 

week. For negative pictures, Pr did not differ from neutral pictures until one 

week post study, at which point it became significantly higher. Analysis of the 

differences from neutral revealed main effects of content valence and test delay, 

showing that the difference in Pr between negative and neutral pictures was 

consistently higher than the Pr difference between positive and neutral and that 

these difference scores increased with time for both valences. 

The pattern seen for positive pictures is in contrast with Chainay et al.'s (2012) 

results in that these authors showed immediate enhancement of recognition 

memory for positive pictures over negative and neutral pictures, while here, 

recognition performance as measured by discrimination index Pr was actually 
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significantly worse for positive than for neutral pictures at five minute and one 

week delay. In Chainay et al.'s (2012) paradigm, the last study phase was 

immediately followed by a recognition memory test, while the minimum 

study-test interval employed here was five minutes. It is possible that affective 

enhancement of recognition memory by positive stimulus valence follows a U-

shape, with very short lived immediate memory benefits for positive over 

neutral stimuli which give way to effects on consolidation that produce slower 

developing, more long-term benefits.  

A recently published study by Wang (2014) employed a similar paradigm to the 

one reported here, with study-test delays of five minutes, one day and one 

week respectively. Two noteworthy differences between the present paradigm 

and Wang (2014) are his use of the non-parametric measure A’ (see Snodgrass, 

Levy-Berger, & Haydon, 1985) to quantify recognition memory performance 

and the fact that he compares study-test intervals between rather than within 

participants. Consistent with present data, he showed a significant affective 

content by test delay interaction. Unfortunately, Wang (2014) did not 

statistically compare either hit rates or A' between affective content categories 

at each study-test delay. The reported means, however, not only contradict an 

immediate memory enhancement for positive pictures but are generally lower 

for affective than for neutral pictures for both measures, hit rate and A’, and at 

all three study-test intervals. Compared across all study-test intervals, Wang 

(2014) showed recognition accuracy for positive pictures to be significantly 

lower than for negative and neutral pictures, while negative and neutral 
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pictures did not differ significantly. A probable explanation for this lack of 

evidence for affective enhancement of recognition memory is the ceiling effect 

likely to be caused by the very high hit rates (all ≥ 0.85) and very low false 

alarm rates (all ≤ 0.90) reported throughout. The fact that recognition accuracy 

does not significantly decline over time for positive pictures, while it does for 

both neutral and negative pictures lends some support to the idea of “sparing” 

of affective memory over time, for negative valence at least.  

This “sparing” can more clearly be seen in the difference data presented above, 

where differences from the neutral condition in Pr increase over time for both 

negative and positive pictures. Pr is spared over time for affective pictures 

when compared to neutral pictures. The difference from neutral is larger for 

negative than for positive pictures but increases in parallel over time. 

The lack of affective memory enhancement at five minutes after encoding in the 

present data, along with the development of affective memory enhancement 

over time, is strong evidence that while encoding effects may exist, they cannot 

sufficiently explain memory advantages for affective material. Instead, the time 

dependence of affective memory effects is evidence for mechanisms that work 

on memory consolidation or retention. 

Two types of accounts have been proposed to explain how affective content 

influences memory consolidation: modulatory emotional consolidation 

accounts (McGaugh, 2004; Sharot, Verfaellie, & Yonelinas, 2007) and, most 

recently, an emotional binding account (Yonelinas & Ritchey, 2015). Both types 
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of model place crucial importance on the role of the amygdala in affective 

memory but they differ in the mechanisms being proposed. As the name 

suggests, modulatory emotional consolidation accounts see the amygdala’s 

significance in affective memory consolidation in a modulatory function only. 

Arousing stimuli lead to amygdala activation, more specifically activation of 

the basolateral complex of the amygdala (BLA). The BLA, through its many 

projections to other brain areas, modulates the consolidation of different types 

of memories in these other regions (McGaugh, 2004). Although their 

consolidation is modulated by the amygdala, episodic memories are stored in 

the MLT and the amygdala plays no ongoing role in the binding of a memory 

to its affective content. The fact that memory advantages for affective stimuli 

develop over time is accounted for by the idea that amygdala modulation of the 

memory trace happens after initial encoding and takes some time to be 

completed.  In contrast, Yonelinas and Ritchey’s (2015) emotional binding 

account proposes that the amygdala’s role in affective memory consists of 

binding the memory and its affective content and storing the resulting item-

emotion binding, while non-affective item-context bindings are stored in the 

hippocampus. The amygdala’s role in affective memory is therefore ongoing. 

The development of a memory advantage for affective stimuli over time is 

explained by the higher rate of neurogenesis and cell death in the 

hippocampus, relative to the amygdala. Yonelinas and Ritchey (2015) argue 

that the higher rate of neurogenesis can lead to interference, while increased 

cell death will speed forgetting. Together, these processes would lead to 



Chapter 6: Electrophysiological Correlates of Affective Cognition II 
 

- 139 - 
 

memories stored in the hippocampus being more vulnerable to forgetting than 

memories stored in the amygdala, with its relatively lower rates of cell 

turnover. 

Yonelinas and Ritchey (2015) cite findings that affective content improves 

recollection but not familiarity of an item (Anderson, Yamaguchi, Grabski, & 

Lacka, 2006; Atienza & Cantero, 2008; Dewhurst & Parry, 2000; Dolcos, LaBar, 

& Cabeza, 2005; McCullough & Yonelinas, 2013; Pierce & Kensinger, 2011; 

Ritchey, Dolcos, & Cabeza, 2008; Sharot et al., 2007; Sharot & Yonelinas, 2008;  

Yonelinas, Parks, Koen, & Jorgenson, 2011) as further support for recollectable 

item-emotion bindings being stored relatively more robust to decay in the 

amygdala, while familiarity for any item is supported by the perirhinal cortex 

and therefore does not show effects of affect.  

The emotion-binding account of affective memory would predict a steady 

decline in memory performance over time for all types of stimuli which is 

steeper for neutral compared to affective items. Modulatory accounts on the 

other hand would predict an increase in the rate of decline of memory 

performance for affective pictures after consolidation is completed. Benefits of 

affective content that act on consolidation would initially offset some or all of 

the performance decline for affective items, leading to a slower decrease 

compared to neutral items or even an increase in memory performance while 

consolidation takes place. After completed consolidation, memory performance 

for both affective and non-affective stimuli should decline in parallel, at the 

same rate. The experiment presented here did not include a sufficient number 
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of study-test intervals to decide between these two alternatives but future 

research including a greater number of trials and recognition test delays could 

provide valuable further insight.   

 

6.2 Affective memory and its electrophysiological correlates 

6.2.1 Introduction 

As Chapter 2 discusses in more detail, affective enhancement of memory is well 

documented in the literature (see LaBar & Cabeza, 2006 for review). Several 

studies have also investigated its electrophysiological correlates using word, 

face and general picture stimuli. An early study by Maratos, Allan and Rugg 

(2000) reports much higher false alarm rates in response to negative compared 

to neutral words and correspondingly, a lower average discrimination index Pr 

for negative than neutral words. There was no affective modulation of an early 

frontal old/new effect between 300 and 500 milliseconds, thought to index 

familiarity. A left-parietal old/new effect between 500 and 800 milliseconds 

was less pronounced for negative than for neutral words. A later right-frontal 

old/new effect between 800 and 1000 milliseconds, while present for neutral 

words, could not be shown for negative words at all. The difference in left-

parietal old/new effects was caused by higher amplitudes in response to 

negative new items than in response to neutral new items. The authors 

interpreted this as evidence for retrieval of false episodic memories for negative 

words, which had to be assessed before negative words could be classified as 
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“new”, thus also explaining the longer reaction times reported for negative 

compared to neutral correct rejections. Reaction times for hits on the other hand 

were faster for negative than for neutral words, along with a more liberal 

response bias Br for negative than for neutral words.  

Windmann and Kutas' (2001) findings are in contrast with Maratos et al.'s 

(2000) results in that no affective modulation of old/new effects could be 

shown when comparing ERPs for hits and correct rejections. Instead, 

Windmann and Kutas (2001) report an affective modulation of the difference 

between waveforms in response to hits and false alarms, with neutral words 

showing an old/new effect in frontal sites between 300 and 500 milliseconds 

post stimulus onset which is absent from the negative word condition. The 

absence of this early frontal effect was again attributable to more positive-going 

waveforms for negative compared to neutral new items. This 

electrophysiological finding responds to the behavioural finding of a more 

liberal response bias for negative than for neutral words, providing further 

support for the affective modulation of response bias.  

In contrast to the two studies discussed above, Inaba, Nomura, & Ohira (2005) 

did find evidence of an affective modulation of both an early frontal old/new 

effect between 150 and 300 milliseconds and a left-parietal old/new effect 

between 400 and 700 milliseconds. Contrary to previous findings, 

discriminability (measured by d’) was significantly different between all three 

affective categories (negative, neutral and positive), being highest for negative 

words and lowest for neutral words. The size of the left-parietal old/new effect 
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mapped onto this pattern, with negative words eliciting significantly larger 

old/new differences than both other word categories and positive words 

eliciting   significantly larger old/new differences than neutral words. The early 

frontal old/new effect was increased for both positive and negative words but 

did not differ between these categories, suggesting an all-or-nothing effect of 

affective content on the electrophysiological correlate of familiarity. 

As they only compared negative and neutral stimuli, one question the studies 

of Maratos et al. (2000) and Windmann and Kutas (2001) cannot answer, is 

whether the reported affective modulations arise as a result of differences in the 

affective arousal elicited by the two stimulus categories or whether they are 

specific to stimuli of negative valence. While Inaba et al. (2005) do compare 

both negative and positive affective stimuli to neutral baseline stimuli, 

unfortunately no arousal values are reported and therefore, again, the relative 

effects of arousal and valence cannot be discerned. To investigate the individual 

influence of these two affective dimensions on affective processing, Gianotti et 

al. (2008) created two stimulus sets, one of words and another of pictures taken 

from the IAPS (Lang, Bradley, & Cuthbert, 2008), with four groups of stimuli 

each: high arousing negative, high arousing positive, low arousing negative 

and low arousing positive. Consequently, data from a passive viewing task 

could be split by either valence or arousal for analysis, while controlling the 

second dimension. ERP microstate analysis revealed evidence for effects of 

valence from 118 milliseconds post stimulus onset for words and from 142 

milliseconds post stimulus onset for pictures. Effects of arousal emerged later, 
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at 260 milliseconds and 302 milliseconds respectively for words and pictures. 

This finding supports the hypothesis that the processing of valence and arousal 

information is implemented separately on a neural level and further suggests 

that valence information is available for integration with other functions, such 

as recognition memory, before arousal information is available. However, 

electrophysiological correlates of the effects of both dimensions can be 

demonstrated by the typical onset of the early frontal old/new effect around 

300 milliseconds, for both words and pictures. 

Besides words, most research into the effects of affective content on recognition 

memory has used picture stimuli. Studies using face stimuli differing in 

emotional expression have been reported and while Johansson, Mecklinger and 

Treese (2004) found no affective modulation of the electrophysiological 

correlates of memory, Graham and Cabeza (2001) reported differences in the 

lateralisation of a late frontal old/new effect between happy and neutral faces. 

But due to the specialised nature of faces as stimuli in recognition memory 

research (see MacKenzie & Donaldson, 2009) and the use of IAPS stimuli in the 

research presented in Chapters 5 through 8, discussion of affective modulations 

of face memory and its electrophysiological correlates is beyond the scope of 

the present thesis. 

Van Strien, Strekalova and Gootjes (2009) compared the effects of affective 

content of negative, neutral and positive IAPS pictures on the 

electrophysiological correlates of recognition memory in a continuous memory 

task in female participants. Stimuli were presented a total of two times in the 
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same continuous random presentation block and participants indicated after 

each stimulus whether it was presented for the first or second time. Van Strien 

et al. (2009)  showed an early fronto-central old/new effect from 200 to 400 

milliseconds post stimulus onset and a right-centroparietal old/new effect from 

400 to 600 milliseconds. They argue that the right lateralisation of the 

centroparietal effect may be a consequence of using picture stimuli rather than 

the word stimuli normally associated with left-parietal old/new effects. A late 

(750-1000ms) frontal old/new effect was also shown. Picture valence 

modulated only the early fronto-central effect which was more frontally 

distributed for negative than for positive pictures. Picture arousal modulated 

only the late frontal old/new effect, with mean amplitudes being higher for old 

than for new low arousing pictures but this pattern being reversed for high 

arousing pictures. The author’s conclusions that valence modulates fast 

recognition processes while arousal modulates slower processes of sustained 

encoding of new pictures is consistent with Gianotti et al.'s (2008) finding that 

valence information is accessible earlier than arousal information.  

Van Strien (2008), using the same continuous memory paradigm, showed that 

affective content modulated the parietal and late frontal old/new effects only in 

younger participants, while older participants showed an affective modulation 

of the early frontal old/new effect. This suggests an affective enhancement of 

recollection and post-retrieval processes in younger adults that gives way to 

affective enhancement of familiarity with age.  
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The nature of the continuous memory task, in which each stimulus has to be 

simultaneously classified as “old” or “new” and encoded for potential future 

recognition, makes it impossible to fully dissociate memory effects from further 

encoding attempts. Using a study-test paradigm more commonly employed in 

studies of recognition memory, however, Weymar, Löw, Melzig and Hamm 

(2009) showed a pattern of affective modulation consistent with that found by 

Van Strien (2008). Participants completed a passive viewing task on negative, 

neutral and positive pictures and after an interval of one week returned to 

make old/new decisions for each picture followed by confidence ratings for 

“old” responses. Hit rates were highest for negative, followed by positive and 

then neutral pictures. Response bias was also highest for negative, followed by 

positive and then neutral pictures but despite this, Pr followed the same 

pattern. They found that a frontal and parietal old/new effect were unaffected 

by affective content between 300 and 500 milliseconds post stimulus onset. 

They also report a widespread centro-parietal old/new effect between 500 and 

800 milliseconds which varied with response confidence, suggesting that it is a 

marker of recollection driven memory retrieval. This centro-parietal effect was 

larger for both negative and positive pictures than it was for neutral pictures, 

suggesting greater engagement of recollection by the affective pictures.  

In sum, the existent literature on the affective modulation of recognition 

memory is far from cohesive. For word stimuli, one study found no affective 

modulation of the ERP difference between Hits and Correct Rejections 

(Windmann & Kutas, 2001), a second found a decrease in left-parietal and late 
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right-frontal old/new effects for negative stimuli (Maratos et al., 2000) and a 

third found an increase in the early mid-frontal old/new effect for affective 

words generally, while the left-parietal old/new effect increase was more 

pronounced for negative than for positive words. For pictures, two experiments 

using a continuous memory task consistently found a positive affective 

modulation of the left-parietal old/new effect (Van Strien, 2008) but evidence 

for similar modulations of the early frontal and late right-frontal old/new 

effects was only found by one of the studies but not the other respectively. A 

recognition memory study using a one week study-test interval reported an 

increased left-parietal old/new effect for affective over neutral stimuli, while an 

earlier fronto-parietal old/new effect was unchanged by affective content. It is 

unclear whether the reported effects are driven by arousal or valence associated 

with affective stimuli but the evidence points to the conclusion that the answer 

to this question will be complicated and depend on the specific correlate of 

recognition memory in question. 

There has also been relatively little interest in the question of whether the 

memory effects seen for affective stimuli are qualitatively different from those 

for neutral stimuli. This has important theoretical implications. Chapter 6 above 

introduced two competing explanations for the slow-developing nature of the 

behavioural affective memory effect. Modulatory emotional consolidation 

accounts (McGaugh, 2004; Sharot et al., 2007) posit that while the amygdala is 

involved in the preferential consolidation of affective over neutral stimuli, both 

types of stimuli are stored in the same location in the medial temporal lobe. By 
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contrast, Yonelina and Ritchey’s (2015) emotional binding account proposes 

that, for affective stimuli, emotion-stimulus bindings are stored in the 

amygdala. Thus, modulatory emotional consolidation predicts quantitative but 

not qualitative ERP effect differences at the point of retrieval, while emotional 

binding predicts a qualitative topographical difference also. 

As later chapters will investigate the effects of gender and genotype on the 

affective modulation of recognition memory and its electrophysiological 

correlates, this chapter seeks to establish the initial affective modulation. 

Additionally, it will be investigated whether any differences in the 

electrophysiological correlates of recognition memory of affective and non-

affective pictures present quantitative variations only, suggesting the 

differential activation of the same underlying neural systems, or whether these 

differences are of qualitative nature, pointing to the involvement of different 

neural generators.  

 

6.2.2 Methods 

56 participants (mean age 20.0 years, 28 female) completed an affective 

processing task (described in detail in Chapter 4.3.1) and followed by an 

affective recognition memory test (see Chapter 4.3.2) after one week delay. 

During the memory test, participants made old/new decisions for 288 IAPS 

pictures (Lang et al., 2008): 96 low arousing neutral, 96 high arousing negative 

and 96 moderately arousing positive pictures. Chapter 5.1 discussed the 
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difference in arousal levels associated with the two affective categories. Half of 

the pictures in each category were old, i.e. had been presented at study one 

week prior. Where participants gave an “old” response, they were required to 

make a remember/know judgement. 

For behavioural data, discrimination index Pr and response bias Br were 

calculated (see Chapter 4.5 for details) and analysed using ANOVA with the 

factor affective content (negative, neutral, positive) along with remember rate. 

Paired comparisons were used to follow up any significant interactions. 

ERP averages were formed separately for hits and correct rejections in each of 

the three affective categories (negative, neutral, positive). The following mean 

number of trials contributed to ERP averages: an average of 27.2 and 32.6 trials 

to negative hit and correct rejection averages respectively, an average of 23.9 

and 33.8 trials to neutral hit and correct rejection averages respectively and an 

average of 23.7 and 32.0 to positive hit and correct rejection averages 

respectively. 

To establish whether the expected memory effects were present, data from 

neutral trials was analysed first, then memory effects for positive and negative 

pictures were investigated separately. Data in each affective content categories 

was subjected to ANOVA with within-subject factors of retrieval success (hits, 

correct rejections), location (frontal, centro-frontal, central, centro-parietal, 

parietal), hemisphere (left, right) and site (superior [1,2], medial [3,4], inferior 

[5,6]), separately for three time windows. The time windows were set as 300 to 
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500ms to assess the presence of an early mid-frontal old/new effect, 500 to 

800ms to assess the presence of a left-parietal old/new effect and 800 to 1500ms 

to assess the presence of a late right-frontal old/new effect (see Chapter 3 for a 

discussion of these effects).   

To assess differences between the memory effects in affective and neutral 

conditions, difference scores were created by subtracting mean amplitudes in 

response to correctly identified new pictures (correct rejections) from 

amplitudes in response to correctly identified old pictures (hits) at every 

electrode site. Amplitudes greater than zero in the difference wave indicate a 

positive going memory effect, amplitudes below zero show a negative going 

memory effect. Difference scores for negative and positive pictures were 

compared to those for neutral pictures to assess the effect of affective picture 

content on memory effects. Negative and positive memory effects were also 

compared. To this end, difference scores were subjected to separate ANOVAs 

with the factors affective content (negative, positive, neutral), location (frontal, 

centro-frontal, central, centro-parietal, parietal), hemisphere (left, right) and site 

(superior [1,2], medial [3,4], inferior [5,6]) in all time windows. The electrode 

sites included in this analysis are indicated in Figure 6.8 below. Where 

significant interactions between affective content and any of the topographical 

factors were found, the analysis was repeated on rescaled data to assess 

whether these interactions reflect qualitative or merely quantitative differences 

in old/new effect topographies.  
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Figure 6.8 Electrode sites included in the topographical analysis of affective memory effects. 

 

6.2.3 Behavioural results 

6.2.3.1 Affective modulation of discrimination index Pr and response bias Br 

 Picture Valence 
Negative Neutral Positive 

Hit rate 0.723 (0.019) 0.640 (0.019) 0.622 (0.020) 
FA rate 0.098 (0.011) 0.074 (0.009) 0.119 (0.014) 
Pr 0.623 (0.018) 0.565 (0.016) 0.501 (0.016) 
Br 0.278 (0.027) 0.188 (0.022) 0.251 (0.026) 
Remember rate 0.581 (0.025) 0.477 (0.027) 0.492 (0.026) 

Table 6.2 Means and standard errors (in brackets) for hit rate, false alarm (FA) rate, 
discrimination index Pr, response bias Br and remember rate by picture valence. 
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As Figure 6.9 illustrates, discrimination index Pr was largest for negative items, 

followed by neutral items and then positive items (see also Table 6.2). ANOVA 

with the factor affective content (negative, neutral, positive) showed a 

significant main effect of the same on Pr [F(1.68, 106.4)=39.3, p<.001].  

 

 

Figure 6.9 Discrimination index Pr was significantly higher for negative than for both neutral 
and positive pictures and significantly lower for positive than for both negative and neutral 
pictures. Error bars show standard errors. 

 

 

Planned comparisons of Pr in the three affective content conditions showed that 

negative Pr was significantly higher than both neutral [t(55)=3.91, p<.001] and 

positive Pr [t(55)=7.84, p<.001] and positive Pr was also significantly lower than 

neutral Pr [t(55)=-6.17, p<.001]. 
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Figure 6.10 Response bias Br was higher (more liberal) for affective than for neutral pictures. 
Br for both negative and positive pictures differed significantly from Br for neutral pictures but 
not from each other. Error bars show standard errors. 

 

Figure 6.10 shows response bias Br in the three affective content conditions. 

Here, both sets of highly arousing pictures, negative and positive, were 

associated with higher Br values than neutral pictures, indicating a more liberal 

response bias (see also Table 6.2). One-factor ANOVA confirmed a main effect 

of affective picture content on Br [F(2, 110)=11.1, p<.001] and planned 

comparisons showed significant Br differences between negative and neutral 

[t(55)=4.08, p<.001] and between positive and neutral [t(55)=3.27, p<.001] but 

not between negative and neutral items [t(55)=1.52, p=.135]. 
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6.2.3.2 Affective modulation of remember rates 

 

Figure 6.11 The proportion of correctly identified old negative items rated as “remembered” 
was significantly higher than the proportions of “remembered” items in correctly identified 
neutral or positive items. Error bars show standard errors. 

 

Figure 6.11 shows the proportions of correctly identified old items that were 

labelled as “remembered”. As the graph shows, the rate of “remembered” 

items was highest in the negative condition and slightly higher in the positive 

than in the neutral condition (see Table 6.2 for means and standard errors). 

One-factor ANOVA confirmed a main effect of affective picture content on the 

remember rate [F(2, 110)=15.38, p<.001]. Planned comparisons showed that this 

was driven by a significantly higher proportion of “remember” responses in the 

negative condition than in the positive [t(55)5.08, p<.001] and in the neutral 

condition [t(55)=4.70, p<.001], while the neutral and positive conditions did not 

significantly differ [t(55)=0.75, p=.455].  
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6.2.4 Electrophysiological results 

Figures 6.12 to 6.16 below show comparisons of mean amplitudes in response 

to all hits compared to correct rejections in the three affective picture categories 

across three time windows of interest: The 300-500ms time window typically 

associated with an early frontal positivity, the 500-800ms time window usually 

reported for the left-parietal old/new effect and the 800-1500ms time window 

often employed to characterise the late right frontal effect. To make 

distributions of activity comparable between time windows and affective 

categories, Figure 6.12 shows scalp maps of mean amplitudes for hits minus 

those for correct rejections. Average waveforms for hits in contrast with correct 

rejections are shown below, separately for neutral (Figure 6.13), positive (Figure 

6.14) and negative pictures (Figure 6.15).  

 

Figure 6.12 Scalp distributions showing mean amplitudes for hits minus mean amplitudes for 
correct rejections in the 300-500ms (early mid-frontal old/new effect), 500-800ms (left-parietal 
old/new effect) and 800-1500ms (late right-frontal old/new effect) time windows. 
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Figure 6.13 Average waveforms for hits versus correct rejections for neutral pictures. 

 

 

Figure 6.14 Average waveforms for hits versus correct rejections for positive pictures. 
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Figure 6.15 Average waveforms for hits versus correct rejections for negative pictures. 

 

 

6.2.4.1 Affective modulation of the old/new effect between 300 and 500ms 

6.2.4.1.1 Neutral pictures 

Visual inspection of the data from neutral trials showed a mid-frontal old/new 

effect in the classic 300 to 500ms time window. ANOVA with within-subject 

factors of retrieval success (hits, correct rejections), location (frontal, centro-

frontal, central, centro-parietal, parietal), hemisphere (left, right) and site 

(superior [1,2], medial [3,4], inferior [5,6]) confirmed a retrieval success by site 

interaction [F(1.09, 59.7)=4.21, p=.041], reflecting the fact that the effect was 

larger over superior sites, and a retrieval success by location interaction 
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[F(1.15,63.4)=4.96, p=.025], reflecting the frontal distribution of the effect. There 

were no significant interactions with hemisphere. The frontal and superior 

distribution of the effect is consistent with that commonly reported for the early 

mid-frontal positivity and the effect was significant at the representative 

electrode Fz [t(55)=3.75, p<.001]. 

 

6.2.4.1.2 Positive pictures 

Data from positive picture trials was analysed in the same way. As Figure 6.14 

shows, average waveforms in response to hits were somewhat more positive 

going than those in response to correct rejections in the 300 to 500ms time 

window in left and midline fronto-central locations. An ANOVA with within-

subject factors of retrieval success (hits, correct rejections), location (frontal, 

centro-frontal, central, centro-parietal, parietal), hemisphere (left, right) and site 

(superior [1,2], medial [3,4], inferior [5,6]) showed only a retrieval success by 

hemisphere by site interaction [F(1.13, 62.20=3.92, p=.047], caused by a superior 

distribution in the right hemisphere only. Although on visual inspection the 

memory effect looks frontal, no interaction that includes retrieval success and 

location reached significance. The memory effect for positive pictures was 

significant at electrode Fz [t(55)=2.03, p=.048]. 
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6.2.4.1.3 Negative Pictures 

Negative hits elicited more positive going waveforms than negative correct 

rejections in the 300 to 500ms time window across frontal to parietal electrodes 

(see Figure 6.15) and the difference appeared stronger at more frontal and more 

superior electrode sites (see Figure 6.12). Memory effects for negative pictures 

were assessed in the same way as above, revealing a significant interaction of 

retrieval success with site only [F(1.12, 61.60=9.64, p=.002). This reflects a 

superior distribution. Despite a frontal appearance of the effect, such a 

distribution could not be confirmed statistically. The memory effect for 

negative pictures was significant at electrode Fz [t(55)=3.70, p<.001]. 

 

6.2.4.1.4 Positive vs neutral comparison 

Difference scores (hits – correct rejections) for positive and neutral pictures 

were calculated. ANOVA with the factors affective content (positive, neutral), 

location (frontal, centro-frontal, central, centro-parietal, parietal), hemisphere 

(left, right) and site (superior [1,2], medial [3,4], inferior [5,6]) of these difference 

scores showed no significant main effect of affective content and no significant 

interactions of affective content with location, hemisphere or site or any 

combination of these, meaning the differences between memory effects in the 

neutral and positive conditions observed above failed to reach statistical 

significance. The size of the early frontal old/new effect did not differ 

significantly between positive and neutral pictures. 
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6.2.4.1.5 Negative vs neutral comparison 

Difference scores for negative pictures were also compared to those for neutral 

pictures using the same ANOVA structure. There was a significant interaction 

between affective content, location, hemisphere and site [F(4.11,226)=2.42, 

p=.047] reflecting a positive going difference in memory effects mainly over 

right-hemisphere electrodes that increases from frontal to parietal locations and 

is maximal at right-inferior frontal and midline and right-superior parietal 

electrode locations. This interaction was also significant in the rescaled data 

[F(4.27,2350)=2.61, p=.033], adding evidence that it reflects a qualitative 

difference between topographies for negative compared to neutral old/new 

effects in the 300 to 500 millisecond time window. Old/new effect sizes did not 

significantly differ between negative and neutral pictures at electrode Fz in the 

300 to 500 millisecond time window.  

 

6.2.4.1.6 Negative vs positive comparison 

A final ANOVA comparing the difference scores from negative and positive 

trials failed to produce a significant main effect of affective content or any 

interaction of affective content with any other factor. As well as showing no 

topographical difference, the size of the early frontal old/new effect did also 

not differ significantly between negative and positive pictures. 
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6.2.4.2 Affective modulation of the old/new effect between 500 and 800ms 

6.2.4.2.1 Neutral pictures 

In the 500 to 800ms time window, hits elicited more positive going waveforms 

than correct rejections for neutral pictures at midline sites and the effect 

appeared stronger in frontal than in parietal locations as well as at superior 

than at inferior sites (see Figures 6.16 and 6.17). ANOVA with within-subject 

factors of retrieval success (hits, correct rejections), location (frontal, centro-

frontal, central, centro-parietal, parietal), hemisphere (left, right) and site 

(superior [1,2], medial [3,4], inferior [5,6]) of the data from neutral trials in the 

500 to 800ms interval failed to show a significant interaction of retrieval success 

with hemisphere and could therefore not confirm a left-parietal contribution of 

the memory effect found. Instead, there was a retrieval success by site 

interaction [F(1.06,58.4)=7.55, p=.007], reflecting a larger effect over superior 

sites. Retrieval success also interacted with location [F(1.23,67.6)=5.98, p=.012], 

with the effect being largest in frontal locations. Mean amplitude associated 

with hits did not differ significantly from mean amplitude associated with 

correct rejections at electrode P3, the site commonly reported to demonstrate a 

left-parietal old/new effect, in this time window. At electrode Fz, where the 

effect was maximal, mean amplitude for hits was significantly larger than mean 

amplitude for correct rejections [t(55)=3.94, p<.001]. 
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6.2.4.2.2 Positive pictures 

Hits in response to positive pictures elicited more positive going waveforms 

than correct rejections in central midline as well as medial to midline parietal 

electrode sites (see Figure 6.14). As Figure 6.12 shows, the effect appeared 

strongest at the central electrode Cz and showed a slight left-sided skew in 

parietal locations. Data from positive trials in the 500 to 800ms time window 

was subjected to the same analysis as above and only the interaction of retrieval 

success with site reached significance [F(1.06, 58.2)=8.84, p=.004]. Despite a left-

parietal appearance of the effect on the scalp map (Figure 6.12), hemisphere and 

location failed to significantly interact with retrieval success. The old/new 

effect was maximal centrally, at electrode Cz, where it reached significance 

[t(55)=3.00, p=.004]. In contrast with neutral trials however, the memory effect 

was also significant at electrode P3, the commonly cited maximum of the left-

parietal old/new effect [t(55)=2.95, p=.005]. 

 

6.2.4.2.3 Negative pictures 

For negative pictures, waveforms in response to hits were markedly more 

positive going than those in response to correct rejections across the scalp, with 

the effect appearing strongest at central midline electrodes but present from 

frontal to parietal and from left inferior to right inferior electrode sites. The 

analysis above was repeated for mean amplitudes between 500 and 800ms in 

negative trials. Again, retrieval success interacted significantly only with site 
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[F(1.06, 58.2)=34.5, p<.001], reflecting the stronger memory effect at superior 

sites. A left-parietal distribution could not be demonstrated and the old/new 

effect was again maximal centrally, at electrode Cz, as for positive pictures, 

where it was significant [t(55)=5.85, p<.001]. The effect was still significant at 

electrode P3 [t(55)=5.61, p<.001).  

 

6.2.4.2.4 Positive vs neutral comparison 

When subjected to ANOVA with the factors affective content (positive, 

neutral), location (frontal, centro-frontal, central, centro-parietal, parietal), 

hemisphere (left, right) and site (superior [1,2], medial [3,4], inferior [5,6]), 

difference scores showed no significant main effect of or interaction with 

affective content in the 500 to 800ms time window. Taking into account the 

effect’s midline maxima in all three affective conditions, old/new effect sizes 

were quantified as the average of the old/new difference at three midline 

electrodes: Fz, FCz and Cz. The size of the old/new effect at this midline cluster 

did not differ significantly between positive and neutral pictures. 

 

6.2.4.2.5 Negative vs neutral comparison 

ANOVA comparing difference scores from negative to those from neutral trials 

and including the same topographical factors as above revealed a significant 

affective content by site interaction [F(1.10, 60.2)=5.62, p=.018]. This reflects 
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larger differences between memory effects at superior sites, with memory 

effects being larger in response to negative pictures. However, the interaction 

did not survive rescaling and therefore reflects a quantitative rather than 

qualitative difference in topographies. Negative pictures evoked significantly 

larger old/new effects than neutral pictures at electrode P3 [t(55)=2.99, p=.004]. 

The size of the old/new effect at the midline cluster (Fz, FCz, Cz) was 

significantly increased for negative compared to neutral pictures [t(55)=2.33, 

p=.024]. 

 

6.2.4.2.6 Negative vs positive comparison 

When comparing memory effects in the negative and positive picture 

conditions using the same ANOVA design, the affective content by site 

interaction failed to reach significance [F(1.06, 58.4)=2.77, p=.099] but there was 

a significant main effect of affective content [F(1.00,55.0)=6.78, p=.012] pointing 

to larger memory effects in response to negative than to positive pictures across 

all electrode sites. Comparison of old/new effect sizes in the unscaled data at 

electrode P3 confirmed that negative pictures evoked significantly larger 

old/new effects than positive pictures in the 500 to 800 millisecond time 

window [t(55)=2.99, p=.004]. The old/new effect at the midline cluster (Fz, FCz, 

Cz) was also significantly more pronounced for negative than for positive 

pictures [t(55)=2.44, p=.018]. 
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6.2.4.3 Affective modulation of the old/new effect between 800 and 1500ms 

6.2.4.3.1 Neutral pictures 

Neutral pictures elicited more positive going waveforms in the 800 to 1500ms 

time window across much of the scalp, as Figures 6.16 and 6.17 show. The effect 

appeared stronger in the right hemisphere in frontal and central locations, 

while a slight left-sided skew was observed in parietal electrodes. For mean 

amplitudes between 800 and 1500ms, ANOVA with within-subject factors of 

retrieval success (hits, correct rejections), location (frontal, centro-frontal, 

central, centro-parietal, parietal), hemisphere (left, right) and site (superior 

[1,2], medial [3,4], inferior [5,6]) produced a significant retrieval success by 

location by hemisphere by site interaction [F(3.50,192.3)=3.79, p=.008]. This 

reflects a memory effect that is maximal at frontal medial sites in the right 

hemisphere and weaker and more evenly spread across locations and sites in 

the left hemisphere. The effect is maximal at electrode F4 where mean 

amplitudes associated with hits differed significantly from those associated 

with correct rejections [t(55)=5.33, p<.001]. 

 

6.2.4.3.2 Positive pictures 

Visual inspection reveals only a very weak memory effect for positive pictures 

in the 800-1500ms time window, with mean amplitudes for correct rejections 

being larger than those for hits in posterior locations in the right hemisphere 
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and central locations in the left hemisphere. Despite a more superior 

appearance of this effect, ANOVA showed only a significant retrieval success 

by location by hemisphere interaction [F(1.67, 91.8)=6.21, p=.005]. Hits showed 

the largest positive going difference from correct rejections at electrode F4, 

which is considered representative for the right-frontal old/new effect, but the 

effect was far from significant [t(55)=0.53, p=.601].   

 

6.2.4.3.3 Negative pictures 

Visual inspection of the scalp topography for negative hits compared to 

negative correct rejection (Figure 6.12) suggests a distribution broadly 

equivalent to that seen in response to neutral pictures. And indeed, ANOVA 

with within-subject factors of retrieval success (hits, correct rejections), location 

(frontal, centro-frontal, central, centro-parietal, parietal), hemisphere (left, right) 

and site (superior [1,2], medial [3,4], inferior [5,6]) returned a significant 

retrieval success by location by hemisphere by site interaction [F(3.59, 

197.4)=4.78, p=.002]. The positive-going memory effect is seen largely in the 

right hemisphere, where it shows a more superior distribution in parietal 

locations and a more inferior distribution in frontal locations. Although the 

effect is maximal at electrode F4, it narrowly fails to reach significance 

[t(55)=1.74, p=.087]. 

To establish whether the absence of evidence for a late right-frontal effect for 

negative pictures was driven by the significantly higher proportion of 
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remember responses than in the neutral condition, separate mean amplitude 

differences from correct rejections were calculated for remembered and known 

pictures at electrode F4 in the 800 to 1500 millisecond time window. ANOVA 

with the factors of affective content (negative, neutral) and remember/know 

response returned no significant interaction with or main effect of 

remember/know response. Therefore old/new effect size did not vary 

significantly between old decisions based on recollection and those based on 

familiarity. A significant main effect of affective content [F(1,55)=4.64, p=.036] 

reflected the larger old/new effect sizes for neutral pictures as expected.  

 

6.2.4.3.4 Positive vs neutral comparison 

The absence in the positive data of the right-frontal memory effect seen in the 

neutral data drove an effect of affective content in the difference waves (hits – 

correct rejections) that is maximal in frontal and fronto-central locations in the 

right hemisphere. ANOVA of the difference scores confirms this with a 

significant affective content by location by hemisphere interaction [F(1.65, 

90.8)=4.41, p=.021]. In the analysis of the rescaled data, this interaction failed to 

reach significance, suggesting a quantitative difference in topographies only. As 

expected, the amplitude difference between hits and correct rejections at 

electrode F4 in the 800 to 1500 millisecond time window was significantly 

smaller for positive than for neutral pictures [t(55)=3.23, p=.002]. 
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6.2.4.3.5 Negative vs neutral comparison 

Memory effects for negative pictures were larger than those for neutral pictures 

at superior parietal electrodes but smaller at inferior frontal electrodes in the 

left hemisphere and inferior frontal and inferior central electrodes in the right 

hemisphere. When analysed using ANOVA however, none of the interactions 

with affective content reached significance and there was only a significant 

main effect of affective content to report [F(1.00, 55.0)=6.35, p=.015]. As 

expected, the amplitude difference between hits and correct rejections at 

electrode F4 in the 800 to 1500 millisecond time window was significantly 

smaller for negative than for neutral pictures [t(55)=3.22, p=.002]. 

 

6.2.4.3.6 Negative vs positive comparison 

When comparing memory effects in response to negative and positive pictures 

using ANOVA with the factors affective content (negative, positive), location 

(frontal, centro-frontal, central, centro-parietal, parietal), hemisphere (left, right) 

and site (superior [1,2], medial [3,4], inferior [5,6]), neither the main effect of 

affective content nor any interaction with affective content reached significance.  

 

6.2.5 Discussion 

Behaviourally, an affective modulation of all performance measures could be 

shown. Remember rates were significantly increased for negative compared to 
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neutral pictures only, while no difference between positive and neutral pictures 

was found, indicating that a larger degree of recollection of negative pictures 

helped old negative pictures be identified more frequently than positive or 

neutral old pictures. Discrimination index Pr was also highest for negative 

pictures, with differences from both other categories being significant. In 

contrast to expectation and most previous research, discrimination accuracy 

was lower for positive than for neutral pictures. This difference was driven by 

higher numbers of false alarms in response to positive than in response to 

neutral items, reflected in a significantly more liberal response bias. Response 

bias for negative pictures was also significantly more liberal compared to 

neutral pictures and did not differ significantly from positive pictures. 

The overall picture emerging from these behavioural patterns is that 

participants were more likely to class affective pictures as “old”, making misses 

less likely than in the neutral condition. This more liberal response bias, 

coupled with higher rates of recollection than for other picture categories leads 

to the improved memory performance for negative pictures. Positive pictures 

are also associated with a more liberal response bias compared to neutral 

pictures but did not benefit from higher involvement of recollection in the 

memory decision.  

The analysis presented here focused on three electrophysiological correlates of 

recognition memory – the early frontal “familiarity” effect, the left-parietal 

“recollection” effect and the late right-frontal “post-processing” effect – and 

their affective modulation. Old/new effects in the 300 to 500 millisecond time 



Chapter 6: Electrophysiological Correlates of Affective Cognition II 
 

- 169 - 
 

window were shown for all three picture types (neutral, negative and positive). 

For neutral pictures the effect showed a superior and frontal distribution but 

for both affective categories the effect, while still being larger at superior than 

inferior sites, was more widespread and despite the visual appearance of a 

frontal maximum, the location factor did not reach significance. For positive 

pictures, the absence of an old/new difference in right inferior electrodes also 

drove a significant hemisphere factor. When comparing the topographies of 

old/new effects across affective categories statistically, only the difference 

between negative and neutral pictures reached significance. The fact that the 

topographic difference remained significant when data was rescaled to remove 

effects of amplitude differences across conditions points to a qualitative 

difference in topographies of the old/new effects likely to reflect differences in 

the underlying neural generators. At electrode Fz, which was used to quantify 

the early frontal old/new effect, no combination of affective categories 

produced significant differences. Taken together, these results suggest an equal 

activation of early familiarity effects across all three affective categories, 

although additional processes that aid memory performance may be at play for 

negative items. The more posterior and widespread distribution of the old/new 

effect for negative pictures compared to neutral ones may indicate an early 

onset of the wide-spread effect seen in the 500 to 800 time window adding to 

the frontal “familiarity” effect. It is noteworthy that the distribution of old/new 

effects for positive pictures, apart from its left-sided skew, seems to fall 

somewhere between the frontal distribution seen in neutral pictures and the 



Chapter 6: Electrophysiological Correlates of Affective Cognition II 
 

- 170 - 
 

wider distribution across all locations seen in negative pictures. This 

impression is supported by the fact that the distribution difference between 

both positive and neutral and positive and negative pictures failed to reach 

statistical significance. 

The biggest, and only significant, difference in distributions of the old/new 

effects among the three affective categories is seen between negative and 

neutral pictures, while the distribution of positive pictures lies somewhere in 

between, not differing significantly from either other affective category. At this 

point, it is of interest to note that although negative and positive pictures were 

chosen by their IAPS standard ratings to be matched for arousal, this 

manipulation failed and participants actually reported significantly higher 

levels of arousal for negative than for positive pictures, with neutral pictures 

attracting significantly lower arousal levels than both other categories (see 

Chapter 5.1). The differences in distribution of the old/new effects by affective 

category in the 300 to 500 millisecond time window maps onto these arousal 

differences, with only the differences between the two categories furthest apart 

in arousal ratings, negative and neutral, reaching significance. The qualitative 

topographical difference between old/new effects for negative and neutral 

items in the 300 to 500 millisecond time window is novel evidence in support of 

Yonelinas and Ritchey’s (2015) emotional binding account of affective 

recognition memory, which posits that emotion-item bindings are stored 

separately from neutral items. Modulatory emotional consolidation accounts 

cannot account for a difference in old/new effect distributions, as affective 
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memories are retrieved from the same brain regions as neutral memories and 

any effects of affective content on retrieval attempts would act on all affective 

items equally and thus not be reflected in old/new effects. In the 500 to 800 

millisecond time window, the topographical difference in old/new effect 

distributions between negative and neutral pictures failed to survive rescaling, 

so there is no evidence of a qualitative difference here. However, it is important 

to note that the failure to reject the null hypothesis in this case does not 

constitute evidence of absence of a difference, especially in light of Haig, 

Gordon and Hook's (1997) and Ruchkin, Johnson and Friedman's (1999) 

observation that McCarthy and Wood's (1985) method of rescaling is prone to 

type II errors.   

Between 500 and 800 milliseconds, old/new effects in recognition memory 

studies typically show a left-parietal distribution which is thought to index 

recollection processes. In the present data, no such left-parietal distribution 

could be shown for old/new effects in any of the affective categories. Instead, 

neutral pictures produced an old/new effect that was more pronounced at 

more frontal and more superior sites, which seems to be a continuation of the 

old/new effect found for these stimuli in the earlier 300 to 500 millisecond time 

window. For neutral pictures, the effect was not significant at electrode P3, the 

location typically used to quantify the left-parietal effect, so there was no 

evidence for a left-parietal “recollection” effect. Positive and negative pictures 

both produced old/new memory effects that were widespread and did not 

vary in strength from anterior to posterior locations but were largest along the 
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midline. The left-parietal appearance of the old/new effect for positive words 

was not associated with a significant hemisphere effect. However, in contrast to 

neutral pictures, both positive and negative pictures produced significant 

old/new differences at electrode P3. This allows for two possibilities: Either a 

traditional left-parietal effect is present for these two picture categories but is 

obscured by an additional, affect-specific old/new effect or the difference at P3 

is produced solely by the widespread superior effects observed. To account for 

the midline maxima of the old/new effects in all affective categories, a midline 

cluster of electrodes Fz, FCz and Cz was chosen to quantify the old/new effects 

observed. The size of the old/new difference in this cluster was significantly 

increased for negative compared to both neutral and positive pictures. When 

comparing the old/new effects for positive and neutral pictures, no significant 

differences in distribution or size could be shown. Negative pictures also 

elicited a significantly higher proportion of “remember” judgements than either 

neutral or positive pictures, suggesting a larger degree of recollection for 

negative stimuli. This suggests the conclusion that despite a lack of evidence for 

a left-parietal distribution, the widespread midline old/new effect between 500 

and 800 milliseconds post stimulus onset shown here is an electrophysiological 

marker of recollection for picture stimuli. This constitutes novel evidence for a 

distinct distribution of recollection effect in response to picture scene stimuli, at 

least in an affective context, analogous to the stimulus type specific distribution 

of the recollection effect for face stimuli shown by MacKenzie and Donaldson 

(2007) and MacKenzie and Donaldson (2009).  
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Since the completion of data collection for the present experiment, two studies 

have reported ERP old/new effects for affective and neutral picture stimuli, in 

similar time windows to the present study, with a one week study-test delay. 

Schaefer, Pottage and Rickart (2011) compared electrophysiological correlates 

of memory for negative and neutral pictures. They found a frontal old/new 

effect between 300 and 500 milliseconds, which was significant only for 

negative “remembered” pictures. A wide-spread old/new effect between 500 

and 700 milliseconds after stimulus onset was also driven by a significant 

old/new difference for negative “remembered” items. The distributions of the 

300 – 500 millisecond and 500 – 700 millisecond remember/new effects 

reported by Schaefer et al. (2011)  are broadly consistent with the distributions 

of the old/new effects presented in this chapter, although their early old/new 

effect shows an anterior distribution which is absent from the present data.  

Weymar, Löw and Hamm (2010) compared recognition memory for negative, 

positive and neutral pictures after one week and one year delay. In contrast to 

Schaefer et al. (2011), they report a parietal old/new effect for negative pictures 

in the early 300 - 500 millisecond time window. A parietal old/new effect 

between 500 and 800 milliseconds is also reported and its modulation by 

affective picture content appear consistent with the present data, although no 

topographical analysis is reported. Weymar et al. (2010) found largest old/new 

effects in this time window in response to negative items, followed by positive 

and then neutral items at one week delay. After one year, negative items still 
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elicited significantly larger old/new effects, but the difference between neutral 

and positive items was no longer significant. 

The present study additionally showed an affective modulation in the late 800 

to 1500 millisecond time window. The pattern of effects that emerges here 

differs from that common to the two earlier time windows. Neutral pictures 

showed a positive going right-frontal old/new effect, thought to reflect post-

retrieval processing, which was significant at electrode F4. The old/new effect 

for negative pictures, while not differing qualitatively in topography from the 

effect for neutral pictures, failed to reach statistical significance at electrode F4, 

where it was maximal. The right-frontal positivity for hits compared to correct 

rejections was largely absent from the data for positive pictures and the 

old/new effect was instead characterised by negativity spreading from left-

central to right-parietal and occipital sites. The topography of the old/new 

effect for positive pictures was not significantly different from that for negative 

pictures. The absence of the late right-frontal old/new effect from the affective 

picture conditions, contrasting with its presence in the neutral picture 

condition, contributes to the understanding of its functional significance. It 

supports Hayama, Johnson and Rugg's (2008) view that the right-frontal effect 

is not contingent on successful memory retrieval, as previously thought, but 

reflects more general monitoring or decisional processes.  

Based on comparisons of ERP and fMRI studies of its eliciting conditions, the 

right-frontal old/new effect is thought to reflect activation of the right 

dorsolateral prefrontal cortex (Rugg, Otten, & Henson, 2002). Using event-
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related fMRI, Henson, Rugg and Shallice (1999) showed that right lateral and 

medial prefrontal cortex activity is sensitive to the relative contributions of 

familiarity and recollection to old/new decisions. Activity in this area was 

increased for hits receiving “know” judgements, compared to both “remember” 

judgements and new items. The authors conclude that this increased activity 

reflects the evaluation of the retrieval decision relative to the present task, 

which means that it increases where the old/new decision is made with less 

certainty, such as in the case of old decisions based on familiarity only. In the 

present experiment, negative pictures, which failed to elicit a significant late 

right-frontal old/new effect, were also associated with a higher proportion of 

“remember” responses than neutral pictures, for which a significant late right-

frontal old/new effect was shown. However, a comparison of the old/new 

effects for “remembered” and “known” items showed no significant 

differences. The larger involvement of recollection in recognition of negative 

pictures can therefore not account for the absence of evidence for a late right-

frontal old/new effect. Additionally, the effect could also not be demonstrated 

for positive pictures, which attracted a comparable proportion of “remember” 

judgements to neutral pictures. In the absence of other differences between the 

three stimulus types, the modulation of the late right-frontal effect is likely 

driven by consequences of the difference in affective picture content.   

The difference that emerges between both affective categories and neutral 

pictures in the behavioural data is in response bias. Participants show 

significantly more liberal response biases when making old/new decisions for 



Chapter 6: Electrophysiological Correlates of Affective Cognition II 
 

- 176 - 
 

negative and positive compared to neutral pictures. Windmann and Kutas 

(2001) and Windmann (2002) have previously shown effects of response bias on 

the subjective old/new effect (comparing “old” with “new” responses 

irrespective of accuracy, rather than hits with correct rejections) in frontal 

regions at earlier latencies. Windmann and Kutas (2001) showed that a more 

liberal response bias for negative compared to neutral words mapped onto a 

larger prefrontal subjective old/new effect for negative words in two earlier 

time windows (300-500ms and 500-700ms). Windmann (2002) split their sample 

into a high bias and a low bias group and confirmed a larger subjective 

old/new effect in the high bias group at prefrontal sites between 300 and 500 

milliseconds. They conclude that the frontal areas underlying these prefrontal 

subjective old/new effects are involved in lowering the response criterion, thus 

creating a more liberal response bias. With regards to affective stimuli, 

Windmann and Kutas (2001) suggest that the more liberal response bias for 

affective stimuli serves an adaptive function, ensuring that stimuli that are 

potentially significant for survival are not missed.  

The present results replicate Maratos et al.'s (2000) finding that a post-retrieval 

right-frontal old/new effect between 1100 and 1400 milliseconds post stimulus 

onset is also modulated by affective content, being significant for neutral words 

but absent for negative words. The same pattern is presented here in pictures 

and shown to apply to both negative and positive valence equally. Maratos et 

al. (2000) interpret the late right-frontal old/new effect as a marker of 

monitoring of the relevance of retrieved information to the task being 
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completed. The present study adds the finding that the late right-frontal 

old/new effect also co-varies with response bias for pictures. That is, both old 

and new affective pictures are more likely to evoke “old” responses and 

activate dorsolateral prefrontal cortex areas to similar degrees post-retrieval, 

while neutral pictures show differential dorsolateral prefrontal cortex 

activation for correctly identified old and new pictures. In consequence, the size 

of the right frontal effect differentiates between correctly identified old and new 

pictures of neutral content but not between correctly identified old and new 

pictures of affective content. Functionally, the affective modulation of both 

response bias and the size of the late right-frontal effect can be interpreted in 

light of the prefrontal involvement in the selection of memories that are 

currently relevant (Schnider, Treyer, & Buck, 2000). The preferential processing 

of affective stimuli carries a potential survival advantage, making affective 

stimuli inherently relevant. This leads to a more liberal response bias, ensuring 

relevant stimuli are less likely to be missed. It also leads to increased prefrontal 

cortex activation indexing task relevance, irrespective of retrieval status, which 

is reflected in a lack of difference in late right-frontal effect sizes. Neutral 

stimuli by contrast are only task relevant if they have been successfully 

retrieved, leading to increased late right-frontal amplitudes for old compared to 

new items. 

In sum, the present study demonstrates three distinct old/new effects for 

picture recognition that are modulated differentially by affective picture 

content. An early effect between 300 and 500 milliseconds showed a 
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significantly more superior distribution for negative than for neutral pictures 

but there was no significant affective modulation of old/new effect size at 

electrode Fz. The qualitative topographical difference between old/new effects 

for negative and neutral pictures adds weight to Yonelinas and Ritchey's (2015) 

emotional binding account of affective recognition memory. In the 500 to 800 

millisecond time window, the topographical difference between old/new 

effects for negative and neutral pictures failed to reach significance in rescaled 

data but effect sizes at the midline cluster were significantly larger for negative 

than either neutral or positive pictures, corresponding to a significantly higher 

remember rate in the negative condition. The widespread midline distribution 

of these old/new differences is in contrast with the clear left-parietal 

distribution seen in old/new effects for words associated with recollection but 

maps onto differences in remember rates in the way expected of an ERP 

correlate of recollection. Mackenzie and Donaldson (2007; 2009) have 

previously demonstrated ERP correlates of recollection with an anterior 

distribution in the case of faces, concluding that the left-parietal distribution of 

recollection driven old/new effects seen in response to word stimuli does not 

generalise to all stimulus types and paradigms. The widespread midline 

distribution of the effect reported here, suggests that differential distributions 

may arise from picture stimuli more generally and not just face stimuli 

specifically. 

A late right-frontal old/new effect could be demonstrated for neutral pictures 

only. There was no significant influence of remember rates on the size of the 
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late right-frontal effect, suggesting affective content itself engages the eliciting 

processes to different degrees. This is interpreted as a reflection of inherit 

relevance assigned to affective over neutral stimuli, which leads to both a more 

liberal response bias and a decline in the late right-frontal effect. 

Future replications of the work presented here, with special emphasis on 

topographical analysis of the results, are necessary to add further weight to the 

idea that the left-parietal distribution of the recollection effect between 500 and 

800ms does not generalise from word to picture scene stimuli. Such replications 

would establish a gold standard for the distribution of recollection effects 

elicited by picture scene stimuli in this time window and contribute to the 

wider understanding of the relationship between stimulus type and recollection 

effect distribution. 
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Chapter 7: Gender Differences in Affective Cognition 

 

Of all of the widely held stereotypes of gender differences, a presumed 

difference in “emotionality” is the most fundamental. Women are seen as more 

emotionally responsive, while men are assumed to be more stoical (NESBITT, 

2000). Variably, these supposed respective attributes are considered assets or 

shortcomings of one gender or the other. Often they are part of prejudices that 

continue to support gender inequality, as women are seen as more emotional 

and in apparent consequence as less rational. But is there a scientific foundation 

for believing that men and women differ in their affective processing? Do such 

gender differences, if they exist, have a neural basis? And do such differences in 

affective processing between the genders lead to differential affective 

modulation of cognitive function?  

The present chapter explores gender differences in the affective cognition tasks 

presented in Chapters 5 and 6. There was no evidence of a gender effect on 

attentional disengagement suggesting that affective content captures attention 

in men and women equally. There was also no evidence of a gender effect on 

the time-course of affective memory. Gender effects on affective picture 

processing and affective memory are discussed below.  
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7.1 Gender differences in affective processing of pictures and the Late-Positive 

Potential (LPP) 

7.1.1 Introduction 

The most commonly repeated stereotype, when it comes to differences between 

the sexes, is that “women are more emotional than men”. This statement of 

course, like most folk wisdom, is very loosely defined. Broadly, it suggests that 

men show less emotion than women in response to various situations. This, if it 

was the case, could have two underlying causes: Either women are more 

emotionally reactive, that is they experience increased levels of affective arousal 

compared to men, or women are simply more emotionally expressive, that is 

the affective arousal they do feel is more easily identified by others. To test 

gender differences in both emotional expressivity and emotional reactivity. 

Kring and Gordon (1998) showed female and male participants short film clips 

of happy, sad and fear content. Emotional expressivity was assessed by a panel 

of trained coders who recorded frequency, intensity and duration of 

participants’ negative and positive expressions during film watching. They 

found that women were more expressive than men across all film categories. 

However, the use of this qualitative assessment of emotional expressivity for 

the purpose of investigating its modulation by gender has one crucial 

weakness: Coders cannot be blind to each participant’s gender. Any gender 

differences in expressivity observed could therefore have arisen or been 

exacerbated as a self-fulfilling prophecy based on a social bias for preferentially 

interpreting women’s expressions as indicative of emotion. However, gender 



Chapter 7: Gender Differences in Affective Cognition 
 

- 182 - 
 

differences in emotional expressivity have also been shown by analysing 

changes in participants’ Electromyograms (EMG) during picture viewing 

(Bradley, Codispoti, Sabatinelli, & Lang, 2001). For aversive stimuli, women 

showed significantly larger changes in EMG, indicating changes in facial 

expression from neutral, than men did. This increased expressivity was 

accompanied by women rating aversive pictures are significantly more 

arousing and negative than men. By contrast,(Kring and Gordon (1998) did not 

find a gender difference in self-reported emotion experience. In a second 

experiment, Kring and Gordon (1998) showed that expressivity varied with 

perceived expressivity of participants’ close family and strength of gender role, 

showing that the observed gender difference arises, at least in part, from social 

learning. Because of these social influences on emotional expressivity, it is 

reasonable to assume that self-report measures of emotional reactivity can also 

be socially coloured, by factors such as self-image and social desirability.  

Studying brain reactivity to emotional material as a marker of emotional 

reactivity circumvents such social factors but of course interpretation of neural 

activity patterns in terms of emotional experience in turn relies on self-report 

measures. Whittle, Yücel and Allen (2011) reviewed fMRI studies of gender 

differences in the neural correlates of emotion perception. They report an 

emerging pattern across studies, of greater activation in males than females in 

frontal and parietal regions and greater activation in females than males in 

limbic subcortical and temporal regions. However, a quantitative meta-analysis 

by Stevens and Hamann (2012) shows that gender differences in neural 
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correlates of emotional processing vary by valence. In the case of the left 

amygdala for example, activation was greater for women than for men for 

negative stimuli but greater for men than for women for positive stimuli. 

Negative stimuli also produced greater activation for women than for men in 

the left thalamus, hypothalamus, mammillary bodies, left caudate and medial 

prefrontal cortex, while positive stimuli were associated with greater activation 

for men than for women in the bilateral inferior frontal gyrus and right 

fusiform gyrus. Although not directly addressed by Stevens and Hamann 

(2012), their results also point to a differential lateralisation of emotion-related 

neural activation by gender. Specifically, a meta-analysis of the relationship 

between valence, gender and lateralisation of neural activation in response to 

emotion by Wager, Phan, Liberzon and Taylor (2003) found that lateralisation 

of emotion-related activity was more pronounced in males. 

Although source localisation in ERP studies is complex and often ambiguous 

and spatial resolution is not one of the strengths of the ERP method, a 

difference in lateralisation of the neural generators of electrophysiological 

correlates of affective processing should nevertheless be reflected in 

topographical differences between ERP distributions.  Based on this, Gasbarri et 

al. (2007) compared P300 amplitudes between 300 and 500 milliseconds in 

response to negative, neutral and positive pictures at left and right frontal and 

parietal sites (electrodes F3, F4, P3, P4) between men and women. There was no 

gender difference in participants’ valence ratings of the pictures, which 

confirmed their categorisation. They found a gender difference in the 
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lateralisation of P300 amplitudes for negative pictures, which were larger for 

women than men in the left hemisphere but larger for men than for women in 

the right hemisphere. At a surprise memory test after one week, recall was 

significantly better for negative than for positive or neutral pictures, as well as 

significantly better for positive than neutral pictures across genders, with no 

significant gender effects. 

The following analyses assess gender differences in participants’ valence and 

arousal ratings of negative, neutral and positive pictures as a self-report 

measure of affective reactivity, as well as the size and topographies of the LPP 

effects elicited by negative and positive compared to neutral pictures as an 

electrophysiological correlate of affective processing. Women were expected to 

be more extreme in their self-reports of affective experience during picture 

viewing and show increased LPP effects for affective stimuli compared to men. 

LPP effects were expected to differ in topography between the genders. 

 

7.1.2 Methods 

Behavioural and ERP data from the affective processing task (see Chapter 4.3.1) 

for the 65 participants in Experiment 3 were split by gender. The task involved 

looking at individual IAPS pictures on a screen for 2000ms in anticipation of 

rating the pictures for arousal and valence. The affective processing task is 

described in full detail in Chapter 4. The 288 IAPS pictures (Lang, Bradley, & 

Cuthbert, 2008) used as stimuli had been selected by their IAPS standard 
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ratings to fit three affective categories: high arousing negative, high arousing 

positive and low arousing neutral. Importantly for the present analysis, sexual 

content was an exclusion criterion for stimuli, in order to eliminate confounds 

of sexual orientation and differences in perceived attractiveness of pictures 

containing male or female nudity between the genders. 

Participants’ ratings for arousal (on the modified SAM scale: 1=minimal arousal 

and 5=maximal arousal) and valence (on the modified SAM scale: 1=most 

positive and 5=most negative) were separately subjected to ANOVA with the 

within-subjects factor of affective content (negative, neutral, positive) and the 

between-subjects factor of gender (male, female). Any significant interactions of 

affective content with gender were further investigated using t-tests. 

Mean amplitudes in response to the affective processing task (see Chapter 4.3.1) 

in the 400-1000ms time were subjected to ANOVA with factors of affective 

content (negative, positive), location (frontal, fronto-central, central, centro-

parietal, parietal), site (left inferior[5], left medial[3], left superior[1], midline 

[z], right superior [2], right medial [4], right inferior [6]) and the between-

subjects factor of gender. To test whether interactions with topographical 

factors represented differences in neural generators between conditions, the 

analysis was repeated on rescaled data.  

Mean LPP effect sizes (mean amplitude for affective minus mean amplitude for 

neutral pictures) at electrode Cz were subjected to ANOVA with factors of 

affective content (negative, positive) and gender (female, male). A significant 
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interaction was then followed up by t-test comparisons within genders. The 

significance of the LPP effect at Cz was assessed separately for men and women 

and negative and neutral pictures by comparing mean amplitudes in response 

to affective with those in response to neutral pictures using t-tests. 

 

7.1.3 Behavioural results 

 

Figure 7.1 a.) Arousal ratings from female and male participants did not significantly differ 
within affective categories (1=minimal arousal; 5=maximal arousal). b.) Valence ratings from 
female participants were higher for negative pictures and lower for positive pictures relative to 
ratings from male participants (1=most positive; 5=most negative). Valence ratings for neutral 
pictures did not differ significantly by gender. Error bars show standard errors. 

 

As Figure 7.1a illustrates, females rated pictures in all three affective categories 

as slightly more arousing overall than males did. Both genders rated negative 

pictures as most arousing on average, followed by positive and then neutral 

pictures. ANOVA of arousal ratings with factors affective content (negative, 
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neutral, positive) and gender (female, male) showed a significant main effect of 

affective content [F(2,124)=165.1, p<.011]  but no significant interaction with 

gender and no main effect of gender on arousal ratings. 

Both genders conformed to IAPS standard ratings by rating negative pictures as 

more negative than either of the two remaining picture set and positive pictures 

as more positive than either negative or neutral pictures. However, Figure 7.1b 

shows that female participants were more extreme in their valence ratings 

compared to male participants, rating negative pictures as more negative and 

positive pictures as more positive than males. Confirming this, ANOVA of 

valence ratings with factors affective content (negative, neutral, positive) and 

gender (female, male) returned a significant affective content by gender 

interaction [F(1.70,105)=12.69, p<.001]. Planned comparisons showed the 

difference in valence ratings to be significant for negative [t(62)=3.33, p=.001] 

and positive pictures [t(62)=-2.94, p=.005], while there was no significant 

gender difference in valence ratings for neutral pictures. 

 

7.1.4 ERP results: Gender effects on the Late-Positive Potential (LPP) 

As the scalp maps of the difference between mean amplitudes for the two 

affective picture conditions and mean amplitudes for neutral pictures in the 

400-1000ms time window (Figure 7.2) show, there are differences in affective 

modulation of the LPP effect between the genders. Women show a stronger 

modulation of the LPP by positive than by negative picture content, whereas 
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this difference between affective categories is much less pronounced in men. 

The affective modulation of the LPP by negative picture content in the 400-

1000ms time window is strongest in left medial sites for both men and women 

and decreases steadily going left and right. The affective modulation of the LPP 

by positive picture content is maximal at left superior electrodes in women, 

whereas it is centrally maximal in men. 

 

 

Figure 7.2 Late-positive potential differences from neutral were more pronounced for positive 
than for negative pictures in women and appear equivalently strong but more left-sided for 
negative than for positive pictures in men. 
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ANOVA with factors of affective content (negative, positive), location (frontal, 

fronto-central, central, centro-parietal, parietal), site (left inferior[5], left 

medial[3], left superior[1], midline [z], right superior [2], right medial [4], right 

inferior [6]) and the between-subjects factor of gender on the difference in mean 

amplitudes between affective and neutral conditions in the 400-1000ms time 

window confirmed a significant affective content by site by gender interaction 

[F(1.97,124)=5.12, p=.008]. The interaction survived rescaling [F(1.98,124)=4.93, 

p=.009], indicating a difference in neural generators. The way in which negative 

picture content modulated the LPP differently from positive picture content 

differed between the genders. The interaction with site reflected the fact that 

negative LPP effects were maximal in left-medial electrodes for both genders 

but positive LPP effects differed in lateralisation. In women, the LPP for 

positive pictures was stronger over the left hemisphere, being maximal at left 

superior electrodes. In men, the LPP effect for positive pictures was strongest at 

the midline and showed no evidence of lateralisation. The LPP effect for 

negative pictures, by contrast, was more strongly left-lateralised in men than in 

women. 

At electrode Cz, a mixed factors ANOVA of affective content and gender on 

LPP effect size returned a significant affective content by gender interaction 

[F(1,63)=4.12, p=.047]. As Figure 7.3 illustrates, the LPP effect was significantly 

larger for positive than for negative pictures in women [t(31)=4.18, p<.001] but 

not in men. The LPP effect was significant at electrode Cz for both affective 

picture categories in women [negative-neutral: t(31)=3.06, p=.005; positive-
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neutral: t(31)=6.14, p<.001] and men [negative-neutral: t(32)=4.78, p<.001; 

positive-neutral: t(31)=8.80, p<.001]. 

 

 

Figure 7.3 Mean LPP effect size (mean amplitudes for affective – mean amplitudes for neutral 
pictures) was significantly larger for positive than for negative pictures in women but not in 
men. Error bars indicate standard errors. 

 

7.1.5 Discussion 

It was hypothesised that women’s self-reports of affective experience during 

picture viewing will be more extreme than men’s. Women did report 

significantly higher arousal in response to pictures but this was consistent 

across all three affect categories, meaning the relative increase in arousal ratings 

for negative and positive compared to neutral pictures was consistent between 

the genders. In their valence ratings, women did give significantly more 

extreme values for affective compared to non-affective pictures than men. 
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While there was no gender difference in the valence ratings of neutral pictures, 

women rated positive pictures as significantly more positive than men did and 

negative pictures as significantly more negative. This increased behavioural 

affective reactivity is consistent with some (Bradley et al., 2001; Lang, 

Greenwald, Bradley, & Hamm, 1993) but not all (Kring & Gordon, 1998) 

previous findings. 

A possible explanation for this discrepancy lies in Kring & Gordon's (1998) 

observation that expressivity varies with strength of gender role. It is possible 

that it is not biological sex but rather psychological gender that determines 

differences in emotional processing. Since the two dimensions are closely 

linked, comparisons between the sexes can still reveal differences that are 

produced by gender differences. But since gender is continuous rather than 

dichotomous, some samples with relatively low gender variability will likely 

not show these differences when split by sex. Bourne and Maxwell (2010) show 

the importance of assessing gender by reporting different influences of 

masculinity on the lateralisation of the neural correlates of facial emotion 

processing between the sexes. While neural activation was more lateralised 

with increasing masculinity scores in men, interestingly, it was less lateralised 

with increasing masculinity in women. Since the terms “sex” and “gender” are 

often used interchangeably in common usage and the variable, for practical 

reasons, is usually assessed through self-report, the boundaries between the 

terms are likely to be blurred. Unless the variable to be recorded is specifically 

defined and explained as part of the study procedure, it is likely to be 
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interpreted as biological sex by some participants and psychological gender by 

others. Of course the overlap between the two, when assessed dichotomously, 

is overwhelming. More likely to be important for practical purposes is a 

measure of degree of masculinity/femininity such as the Bem Sex Role 

Inventory (Bem, 1977) used by Bourne and Maxwell (2010). The present study, 

like most research in this field, is limited by not having assessed degree of 

masculinity/femininity. “Gender” was assessed through self-report and 

although it can therefore not be defined with absolute certainty, the variable is 

more likely to reflect psychological gender rather than biological sex.  

In terms of their electrophysiological responses to affective pictures, women 

and men were hypothesised to differ in both LPP effect size and topography. 

There was evidence for topographical differences between LPP effects in men 

and women. While distributions of LPP effects for both negative and positive 

pictures showed left-sided maxima in women, men’s LPP effects were more 

strongly left-lateralised for negative pictures but maximal at the midline with 

no hemisphere difference for positive pictures. This extends Gasbarri et al.'s 

(2007) findings of hemispheric differences in an earlier time window.  

Since the completion of data collection, three studies have reported gender 

differences in the affective modulation of the LPP. Two of them investigated 

gender effects on topography. Groen, Wijers, Tucha and Althaus (2013) found 

an increase in LPPs in response to affective pictures including humans 

compared to affective pictures of landscapes which was stronger in the left 

hemisphere. They did not report any effects of gender on LPP topographies. 
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Bianchin and Angrilli (2012) reported LPP effects for positive and negative 

pictures that look to be maximal at the midline. They showed a gender by 

affective picture content interaction at electrode F7, at the periphery of the LPP 

effect. Here, men showed increased mean amplitudes in response to negative 

compared to neutral pictures, while women showed increased mean 

amplitudes for negative compared to positive pictures. They did not report 

comparisons of LPP effects, i.e. differences between mean amplitudes in 

response to affective and neutral pictures. A third study by Syrjänen and Wiens 

(2013) does not include topographical analysis. Consequently, the present study 

is the first to demonstrate an interaction between gender and LPP effect 

topographies. 

As well as a topographic difference, there was also an interaction between 

gender and affective content on LPP effect size (mean amplitude difference 

from the neutral condition) at electrode Cz. While women showed significantly 

larger LPP effects for positive than for negative stimuli, this difference was not 

significant for men. Interestingly, this gender difference was reversed in 

Syrjänen and Wiens' (2013) data. Here, males showed larger LPP effects for 

positive than for negative pictures, while no differences could be shown for 

females. This different pattern likely arises from differences in stimulus 

selection. While the present study explicitly excluded pictures with sexual 

content, Syrjänen and Wiens' (2013) stimulus set included a large proportion of 

erotic stimuli. As Bradley, Codispoti, Sabatinelli and Lang (2001) show, men are 

more reactive to erotic stimuli than women are, making it likely that the 
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increased LPP effects for positive pictures reported by Syrjänen and Wiens 

(2013) rely on this sub-type of stimuli. Bianchin and Angrilli (2012) did not 

compare LPP effect amplitude between differences between negative and 

positive pictures across the genders. Groen et al. (2013) reported an interaction 

between affective content and gender on mean amplitudes at electrode P3, 

which seems to arise from an increase in LPP effect for negative compared to 

positive pictures in women but not in men, although they only report a 

significant difference in LPP amplitudes for negative pictures between the 

genders. This pattern is consistent with previous findings that women are more 

emotionally reactive to negative stimuli than men (Bradley et al., 2001) but did 

not arise in the present data. Groen et al.'s (2013) female participants scored 

significantly higher than male participants on a number of empathy measures, 

including one assessing personal distress. This is likely to mediate the observed 

negativity bias in female participants. 

In sum, the present study expands previous electrophysiological evidence of 

gender differences in the processing of negative and positive affective pictures 

by showing a qualitative topographic difference between LPP effect 

distributions suggesting that men and women differ in the neural generators 

involved in the processing of negative and positive affective pictures 

respectively. The present ERP data suggest a positivity bias in women that is 

absent in men. However, comparison with other studies shows that positivity 

and negativity biases are not directly caused by differences in gender but arise 

from interactions of gender with other variables such as for example erotic 
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picture content or empathy.  Future studies should address the interactions 

between these factors by employing larger stimulus sets varying not only in 

affective arousal and valence but also more specific picture content, such as 

pictures eliciting erotic arousal or empathy, coupled with self-report 

assessments of the success of these manipulations. 

 

7.2 Gender differences in affective memory and its electrophysiological 

correlates 

7.2.1 Introduction 

One important reason for the investigation of gender effects in affective 

processing is the well-established gender difference in the incidence of mood 

disorders such as anxiety and major depression. Women are between 70% and 

100% more likely to develop clinical depression than men (Kessler, 1993; 

Weissman, 1977) and the higher incidence of clinical depression in women is 

consistent across a wide range of international populations (Maier et al., 1999; 

Weissman, 1996). As Maier et al. (1999) show, this difference is partially socially 

mediated. When variables of social role such as marital status, number of 

children and occupational status are matched between genders, the gender 

difference in depression is reduced by about half. Other consequences of social 

gender roles, such as a difference in willingness to present for diagnosis and 

therapy, are also likely to contribute. Gender differences in affective processing, 

especially when they are associated with structural or functional neural 
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differences, are also likely to contribute to the gender difference in the 

incidence of mood disorders and thus their better understanding may 

contribute to both improved theoretical models of mood disorders and their 

treatment. Differences in the online processing of affective information as it is 

encountered (discussed in Chapter 7.1 above) will contribute to differences in 

people’s emotional experience of the world. For example, a negativity bias in 

processing will lead to the subjective experience of living in a more negative 

world. This effect is likely to be amplified by potential differences in affective 

memory.  

As part of their assessment of gender differences in overall emotional intensity, 

Fujita, Diener and Sandvik (1991) reported increased recall of both negative and 

positive life events in women compared to men. In conjunction with the 

additional emotional intensity measures of self-report, peer report and daily 

report, the authors present this as evidence of increased affect of both valences 

in women compared to men. Seidlitz and Diener (1998) also showed that 

women recalled significantly more positive and negative life events compared 

to men in a free recall task, despite not differing in mood at the time of recall. 

However, when asked to recall their activities during specific time periods in 

the preceding week, a task designed to increase the recall of neutral relative to 

affective life events, women also showed a general autobiographical recall 

advantage. They did not differ from men in their recall of positive and negative 

historical events or aspects of American life, raising the possibility that 

women’s improved recall for affective autobiographical information arises from 
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an overall advantage in autobiographical recall. To assess whether an increased 

focus on emotional information at encoding facilitates greater recall, Bloise and 

Johnson (2007) presented participants with a script containing both emotional 

and neutral information and varied instructions to focus on either the 

protagonists’ interpersonal issues or concrete plans. They found that women 

performed better for emotional items on a surprise recognition test, irrespective 

of focus, and performed better than men for neutral items in the neutral focus 

condition. An emotional sensitivity measure mediated the gender difference. 

Unfortunately, neither Seidlitz and Diener (1998) nor Bloise and Johnson (2007) 

directly assess gender effects on the affective modulation of memory 

performance, i.e. effects on the difference between memory performance for 

affective and neutral information. Interestingly, Dewhurst, Anderson and Knott 

(2012) also showed increased rates of false memory for emotional words in 

females relative to males. 

If there is a gender difference in the affective modulation of memory, then the 

nature of this difference can be further illuminated using functional imaging. 

Using positron emission tomography (PET), Cahill (2004) showed that memory 

performance was differentially predicted by amygdala activation in response to 

negative and neutral films in men and women. While left amygdala activation 

during encoding was associated with subsequent memory performance in 

women, right amygdala activation was associated with memory performance in 

men. Canli, Desmond, Zhao and Gabrieli (2002) replicated this finding of 

gender-specific lateralisation of encoding activity in the amygdala using picture 
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stimuli and fMRI. In a recognition memory test three weeks after encoding, 

men and women did not differ in their recognition of low to moderately 

arousing pictures but showed significantly better recognition of highly 

arousing negative pictures. There was no gender difference in false alarms. 

Cahill (2004) replicated Canli et al.'s (2002) results and extended them by the 

demonstration of a gender-by-hemisphere interaction in amygdala activation 

during affective memory encoding, which further substantiates the findings in 

light of the possibility of asymmetry in function being artificially amplified by 

thresholding differences. The gender difference in lateralisation of amygdala 

activation during affective memory encoding is therefore well documented. 

Investigating gender differences in affective autobiographical memory using 

fMRI, Piefke, Weiss, Markowitsch and Fink (2005) also showed a gender effect 

on activation during affective memory retrieval. Despite a lack of evidence for 

behavioural differences in memory performance or reported emotional 

intensity between men and women, there was an interaction of gender with 

memory content in right insula activation, which the authors interpret as 

reflecting a difference in cognitive strategies for the retrieval of 

autobiographical memories.   

Using ERP, Galli, Wolpe and Otten (2011) have also shown that men and 

women differ in the extent to which anticipatory brain activity before stimulus 

onset at study predicts later affective memory performance. They showed an 

influence of right-lateralised anticipatory activity on the encoding of negative 

pictures in women but not men. At the time of data collection, no direct ERP 
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evidence of a gender difference in the affective modulation of recognition 

memory was available, either in the form of differences in subsequent memory 

effects or old/new memory effects. The present study explores the influence of 

gender on the affective modulation of recognition memory and its 

electrophysiological correlates. On the basis of previous findings of overall 

higher recall of both true and false affective memories in women, it is 

hypothesised that women will show a stronger increase in hit rates and false 

alarm rates for affective relative to neutral pictures, meaning they will have a 

more liberal response bias than men for affective material. Given their recall 

advantage for affective material, it is further hypothesised that women will 

have a larger increase in remember rates for affective relative to neutral 

pictures than men. It is expected that the affective modulation of old/new 

effects in the 500 to 800 millisecond time window, thought to reflect 

recollection, will be more pronounced in women than in men. Finally, if 

response bias increases for affective pictures are larger in women than in men, 

it is hypothesised that they show a stronger reduction of the late right frontal 

old/new effect.   

 

7.2.2 Methods 

Data from 28 women and 28 men on the affective recognition memory test (see 

Chapter 6.2) were split by gender. For behavioural analysis, discrimination 

index Pr, response bias Br and remember rate (calculated by dividing the 
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number of “remember” responses by the total number of hits for each 

participant) were subjected to separate ANOVAs with factors of affective 

content (negative, positive, neutral) and gender (female, male). For ERP 

analysis, mean amplitude differences for hits minus correct rejections in the 

three time windows examined in Chapter 6.2 (300-500ms, 500-800ms and 800-

1500ms) were separately subjected to ANOVA with the factors affective content 

(negative, neutral, positive), location (frontal, centro-frontal, central, centro-

parietal, parietal), hemisphere (left, right), site (superior [1,2], medial [3,4], 

inferior [5,6]) and gender (female, male). To assess whether any interactions 

with topographical factors reflected qualitative or merely quantitative 

differences, the same analysis was repeated on rescaled data. ANOVAs with 

factors of affective content (negative, neutral, positive) and retrieval success 

(hit, correct rejection) were performed separately for each gender and time 

window. Old/new effects were analysed separately for each affective category 

for each gender and compared between genders.  

 

7.2.3 Behavioural results 

Table 7.1 shows that both men and women achieved highest hit rates and Pr 

scores for negative, followed by neutral and then positive pictures, while false 

alarm rates where lowest for neutral pictures, followed by negative and then 

positive pictures for both genders. Response bias was most liberal for negative 

pictures and most conservative for neutral pictures for both groups. The 
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genders did diverge in their patterns of remember rates. While both genders 

showed highest proportions of remembered items in hits for negative pictures, 

women showed higher remember rates for neutral than for positive pictures, 

while men showed a higher proportion of remembered pictures in the positive 

compared to the neutral condition. 

 

  Picture valence 

  Negative Neutral Positive 

Fe
m

al
es

 

Hit rate 0.682 (0.028) 0.603 (0.028) 0.569 (0.029) 
FA rate 0.080 (0.011) 0.054 (0.005) 0.088 (0.013) 
Pr 0.600 (0.026) 0.549 (0.027) 0.480 (0.024) 
Br 0.228 (0.036) 0.142 (0.019) 0.189 (0.030) 
Remember rate 0.551 (0.042) 0.483 (0.045) 0.473 (0.041) 

M
al

es
 

Hit rate 0.765 (0.023) 0.678 (0.023) 0.674 (0.024) 
FA rate 0.115 (0.017) 0.094 (0.017) 0.150 (0.023) 
Pr 0.646 (0.024) 0.581 (0.019) 0.522 (0.021) 
Br 0.328 (0.039) 0.235 (0.038) 0.313 (0.040) 
Remember rate 0.611 (0.028) 0.471 (0.031) 0.511 (0.032) 

Table 7.1 Means and standard errors (in brackets) for hit rate, false alarm (FA) rate, 
discrimination index Pr, response bias Br and remember rate by picture valence for 
males and females. 

 

ANOVAs with factors of affective content (negative, positive, neutral) and 

gender (female, male) on Pr and Br revealed no significant affective content by 

gender interactions. Men had a significantly more liberal response bias Br 

[F(1,51)=5.90, p=.019] than women but did not differ significantly from women 

in discrimination index Pr. There were no gender differences in the ratio of 

correctly identified old pictures reported to be “remembered”.  
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Since there was no significant influence of gender on affective modulation, all 

main effects of affective content were significant [discrimination index: 

F(1.69,86.1)=38.4, p<.001; response bias: F(2,108)=11.0, p<.001; remember rate 

F(2,108)=15.6, p<.001] and affective content modulated all behavioural 

measures equally for males and females. Remember rates were significantly 

higher for negative pictures than for neutral or positive pictures in both 

genders.  Discrimination index Pr was greatest for negative followed by neutral 

and then positive pictures for both genders and all participants showed more 

liberal response biases to negative and positive pictures than to neutral pictures 

(see Chapter 6.2.3 for detailed analysis). 

 

7.2.4 ERP results 

7.2.4.1 Gender differences in the affective modulation of the old/new effect 
between 300 and 500 milliseconds 

 

Figure 7.4 Distributions of memory effects in the 300-500ms time window differed between 
men and women. 



Chapter 7: Gender Differences in Affective Cognition 
 

- 203 - 
 

Visual inspection of the scalp maps of memory effects in the 300-500ms time 

window (see Figure 7.4) suggest an overall stronger memory effect in males 

than in females, with the effect being especially weak for positive pictures in 

females. ANOVA with the factors affective content (negative, neutral, positive), 

location (frontal, centro-frontal, central, centro-parietal, parietal), hemisphere 

(left, right), site (superior [1,2], medial [3,4], inferior [5,6]) and gender (female, 

male) on mean amplitude differences (hits minus correct rejections) in the 300-

500ms time window revealed only a marginally significant affective content by 

location by site by gender interaction [F(4.44,235)=2.17, p=.066], which reached 

a similar level of marginal significance when data was rescaled 

[F(4.48,237)=2.05, p=.080]. Despite a left-sided appearance of memory effects in 

response to neutral and positive pictures, the hemisphere factor did not 

produce significant effects. Separate ANOVAs with factors of affective content 

(negative, neutral, positive), location (frontal, centro-frontal, central, centro-

parietal, parietal) and site (superior [1,2], medial [3,4], inferior [5,6]) for men 

and women did not show a significant affective content by location by site 

interaction in women [p=.233] or men [p=.248] and no significant interactions 

involving affective content and either of the topographical factors. 

In ANOVAs with factors of affective content (negative, neutral, positive) and 

retrieval success (hit, correct rejection) on mean amplitudes at electrode Fz, the 

affective content by retrieval success interaction failed to reach significance in 

both women [p=.644] and men [p=.837]. The gender difference in old/new 
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effects at electrode Fz was not significant for any affective content [negative: 

p=.741; neutral: p=.697; positive: p=.499]. 

 

7.2.4.2 Gender differences in the affective modulation of the old/new effect 

between 500 and 800 milliseconds 

 

Figure 7.5 Memory effects in the 500-800ms time window in response to negative, neutral and 
positive pictures for men and women. 

 

Figure 7.5 shows the distributions of mean amplitude differences between hits 

and correct rejections in the 500-800ms time window. Visual inspection of the 

scalp maps (Figure 7.5) suggests a central memory effect for negative pictures, a 

frontal memory effect for neutral pictures and a somewhat left-parietal effect 

for positive pictures only, with no strong differences between the genders. 
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However, ANOVA with the factors affective content (negative, neutral, 

positive), location (frontal, centro-frontal, central, centro-parietal, parietal), 

hemisphere (left, right), site (superior [1,2], medial [3,4], inferior [5,6]) and 

gender (female, male) on mean amplitude differences (hits minus correct 

rejections) in the 500-800ms time window returned a significant affective 

content by location by site by gender interaction [F(4.17,246)=2.60, p=.035], 

which is also significant in rescaled data [F(4.19,222)=2.77, p=.026], driven by a 

more parietal old/new effect for negative pictures in women than in men. 

Follow-up ANOVAs with factors of affective content (negative, neutral, 

positive), location (frontal, centro-frontal, central, centro-parietal, parietal) and 

site (superior [1,2], medial [3,4], inferior [5,6]) returned no significant affective 

content by location by site interaction for either men [p=.145] or women 

[p=.273] and no significant interactions of affective content with either of the 

topographical factors. 

Separate ANOVAs with factors of affective content (negative, neutral, positive) 

and retrieval success (hit, correct rejection) on mean amplitudes at the midline 

cluster (Fz, FCz, Cz) revealed a marginally significant affective content by 

retrieval success interaction in men [F(2,52)=3.09, p=.054] but not in women 

[p=.240]. The old/new effect was significant at the midline cluster for negative 

[t(27)=3.32, p=.003] and neutral pictures [t(27)=2.55, p=.017] but not for positive 

pictures [p=.103] in women. In men, the effect was significant for negative 

[t(26)=5.40, p<.001] and neutral pictures [t(26)=2.34, p=.027] and approached 

significance for positive pictures [t(26)=2.01, p=.055]. However, the gender 
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difference in old/new effects at the midline cluster was not significant for any 

affective content [negative: p=.652; neutral: p=.967; positive: p=.851]. 

 

7.2.4.3 Gender differences in the affective modulation of the old/new effect 

between 800 and 1500 milliseconds  

On visual inspection of the memory effects in the 800-1500ms time window (see 

Figure 7.6), a late right-frontal effect seems to be present in all affective content 

categories in men but only for neutral pictures in women.  

 

 

Figure 7.6 The right-frontal memory effect in the 800-1500ms can be demonstrated for negative 
and neutral pictures in men. Women showed evidence of a positive going right-frontal effect 
only in response to neutral pictures. 
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ANOVA with factors affective content (negative, neutral, positive), location 

(frontal, centro-frontal, central, centro-parietal, parietal), hemisphere (left, 

right), site (superior [1,2], medial [3,4], inferior [5,6]) and gender (female, male) 

on mean amplitude differences (hits minus correct rejections) in the 800-1500ms 

time window returned a significant affective content by location by hemisphere 

by site by gender interaction [F(4.98,129)=4.41, p=.001], which survived 

rescaling [F(5.87,311)=4.31, p<.001]. Separate repeat ANOVAs in men and 

women revealed a significant affective content by location by hemisphere by 

site interaction in men [F(4.98,1290=4.41, p=.001] and a significant affective 

content by location by site interaction in women [F(3.45,93,2)=5.66, p=.026]. 

Separate ANOVAs with factors of affective content (negative, neutral, positive) 

and retrieval success (hit, correct rejection) on mean amplitudes at electrode F4 

showed a significant affective content by retrieval success interaction in women 

[F(1.52,41.0)=5.26, p=.015] but not in men [p=.177]. The old/new effect was 

significant for neutral pictures at electrode F4 in women [t(27)=4.14, p<.001] but 

not for negative [p=.795] or positive pictures [p=.693]. Men also showed a 

significant old/new effect for neutral pictures [t(26)=3.32, p=.003] but 

additionally showed a significant old/new difference for negative pictures 

[t(26)=3.01, p=.006], while the effect did not reach significance for positive 

pictures [p=.129]. However, the gender difference in old/new effects at 

electrode F4 was not significant for any affective content [negative: p=.178; 

neutral: p=.281; positive: p=.301]. 
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7.2.5 Discussion 

A number of predictions were made about the expected gender differences in 

the affective modulation of recognition memory and its electrophysiological 

correlates. Behaviourally, affective content was expected to increase response 

bias and remember rate more in women than in men. This hypothesis could not 

be confirmed as there was no significant interaction of affective content and 

gender on any of the behavioural measures. Instead, there was a main effect of 

gender, with men showing a higher, i.e. more liberal, response bias overall. 

Old/new discrimination did not differ between the genders and neither did the 

relative contribution of familiarity and recollection as assessed by the 

remember/know procedure. In this data, there is therefore no evidence of a 

behavioural difference in affective recognition memory between the genders. 

Since the electrophysiological hypotheses of increased affective modulation of 

old/new effects in women were based on hypothesised behavioural differences 

which could not be shown, it is unsurprising that the electrophysiological data 

also showed unexpected patterns. In the early 300 to 500 millisecond time 

window, thought to index familiarity, there was no gender differences in the 

affective modulation of old/new effect sizes at electrode Fz. In fact, affective 

modulation of old/new effects can be demonstrated for neither women nor 

men. A marginal interaction hints at a difference between the genders in the 

affective modulation of old/new effect topographies, but again, no such 

modulation can be shown for either gender individually. 
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In the 500 to 800 millisecond time window, a putative correlate of recollection, 

there is a significant gender difference in the affective modulation of old/new 

effect topographies, with negative pictures eliciting a more parietal distribution 

in women than men. The size of the old/new effect between 500 and 800 

milliseconds was not significantly modulated by affective content in women, 

but men showed a marginally significant affective modulation driven by larger 

effect sizes for negative than for neutral or positive pictures. In order to 

interpret the difference in topographies in the old-new effect found between 

men and women, a better understanding of the factors that drive old-new effect 

topographies in this time window is needed, as discussed in Chapter 6 above.  

The overall picture that emerges is complex. Both men and women showed an 

affective modulation of behavioural measures of memory that did not differ by 

gender. Despite this statistically significant behavioural effect, there were no 

significant differences in old/new effect sizes at electrode Fz in the early 300 to 

500 millisecond time window. Since the early frontal old/new effect is a 

proposed correlate of familiarity, this is consistent with the view that affective 

content modulates recognition memory by specifically increasing recollection. 

The 500 to 800 millisecond “recollection” effect again showed no significant 

modulation in women but a significant affective modulation, driven by larger 

effect sizes for negative than neutral or positive pictures, in men. The absence 

of any affective modulation of these memory effects in women is puzzling in 

light of a significant behavioural effect. It may be a result of a lower signal-to-
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noise ratio due to fewer trials being included in the averages for females 

because of their lower hit rates (see Table 7.1).  

Since the completion of data collection, another study of gender differences in 

the affective modulation of ERP old/new effects has been published. Glaser, 

Mendrek, Germain, Lakis and Lavoie (2012) did find a significant modulation 

of the old/new effect between 300 and 500 milliseconds in women, in form of a 

topographical difference between effects for negative and positive pictures. 

They found no such modulation for men but do not report any potential main 

effects of affective content which would indicate differences in old/new effect 

sizes. They found no gender difference in the affective modulation of the 

old/new effect between 500 and 1000 milliseconds. Behaviourally, they show a 

reduction in discrimination index for highly arousing (negative and positive) 

pictures in females only. The gender difference here likely arises from the 

inclusion of images of erotic content in the highly arousing positive group, 

since men have better memory for sexual content than women (McCall, Rellini, 

Seal, & Meston, 2007). The memory enhancement by erotic content in the 

positive condition is likely to have counteracted any lowering of the 

discrimination index for positive pictures in men only. The lower 

discrimination index for positive than for neutral pictures in women replicates 

the present findings, adding evidence to the conclusion that under certain 

circumstances, positive affective content does not carry a memory advantage.  

In the 800 to 1500 millisecond time window, men and women differed 

significantly in the affective modulation of the distribution of old/new effects. 
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While affective content modulated old/new effect topography in the factors 

location, site and hemisphere, it did not influence the hemisphere factor in 

women. While there were topographical differences between old/new affects 

for pictures of different affective contents in both men and women, only 

women showed a significant affective modulation of old/new effects sizes at 

electrode F4, chosen as representative of the late right-frontal effect. In women, 

the late right-frontal effect was present only for neutral but not for negative or 

positive pictures. Chapter 6.2 suggests that the late right-frontal effect is an 

index of relevance to the present task and that affective stimuli are seen as 

inherently relevant, irrespective of whether they are targets in the task at hand, 

which suppresses the late right-frontal effect. This suppression was 

demonstrated for women but not men. In men, it is of interest to note that only 

negative and neutral but not positive pictures elicited significant late right-

frontal effects. This suggests a valence specific differential processing of 

negative stimuli in men compared to women. 

Taken together, results from the 500 to 800 and 800 to 1500 millisecond time 

windows suggest a negativity bias in the neural correlates of affective 

recognition memory in men that could not be demonstrated in women. This 

can be interpreted in light of a recent study of sex differences in effective 

connectivity during affective picture processing. Lungu, Potvin, Tikàsz and 

Mendrek (2015) found higher connectivity between amygdala and dorso-

medial prefrontal cortex (dmPFC) in men than in women. Although this 

interaction only reached marginal significance (p=.006), an additional 
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significant positive correlation between connectivity (right amygdala to 

dmPFC) and testosterone level in the high arousal negative condition added 

further weight to the conclusion that men respond to negative stimuli with 

increased functional amygdala to dmPFC connectivity compared to women. 

Based on the dmPFC’s involvement in social cognition and action selection, the 

authors conclude that men’s processing of negative stimuli is more evaluative 

than women’s, with an emphasis on selecting appropriate reactions. A 

modulation in functional connectivity between (right) amygdala and dmPFC 

for negative but not positive pictures in men would be consistent with the 

present finding of a significant late right-frontal effect for negative but not 

positive pictures in men. This could be interpreted as reflecting an increased 

need for evaluation and action selection for negative stimuli if they occur 

repeatedly. The differences in distributions of old-new effects shown in the 

present study add weight to the possibility of neurofunctional differences in the 

processing of affective stimuli between men and women. Affective memory 

studies using blocked designs at test would allow for a combination of ERP and 

fMRI measures to further explore such neurofunctional gender differences in 

affective processing. 

It is important to note that despite differences found in the electrophysiological 

correlates of affective recognition memory between men and women, no 

differential effect of affective picture content on the behavioural measures 

collected could be shown between men and women. This mismatch could have 

several causes. As discussed above, overall gender differences in performance 
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could have led to differences in power to detect affective modulations between 

the genders. Given the relatively large trial numbers (48 old pictures per 

affective category) and sample size (n=28 per gender), this explanation, while 

possible, is unlikely. Secondly, gender differences in brain function may be too 

subtle to produce behavioural effects. A third explanation for the mismatch 

between gender modulation of electrophysiological correlates of memory and 

behaviour is that the modulations observed compensate for other differences 

between men and women, such as sex differences in brain structure, hormone 

level or related affective cognitive processes (see De Vries, 2004 for a similar 

argument), meaning that male and female brains differ in the way in which 

they achieve the same outcomes. Combining ERP and fMRI measures as 

suggested above could clarify the reason for the mismatch between the lack of 

gender difference in behavioural measures of affective memory and the 

differences in its electrophysiological correlates reported here.  

If differences in the neurofunctional implementation of affective memory 

between women and men can be confirmed, this would have implications for 

the practical application of knowledge about the affective enhancement of 

memory. In a clinical context, such findings could lead to the development of 

gender specific behavioural interventions or medication protocols for 

conditions involving skewed affective memory. In education, a better 

understanding of how memory is enhanced by affective content differentially 

for males and females could lead to more person-centric teaching tools and 

strategies. 
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Chapter 8: Genetic Differences in Affective Cognition  

 

8.1 Introduction 

As discussed in Chapter 2, SNPs have increasingly been shown to have 

measurable effects at the behavioural and neurological level and are therefore 

of great interest in furthering understanding of individual differences in 

behaviour and brain function. One such SNP, the val66met polymorphism of 

the BDNF gene has been shown to have effects on cognitive processes, most 

notably memory, and affective processes. To date there has been very limited 

research on whether it also modulates affective memory and no investigation of 

how it affects the electrophysiological correlates of affective memory. 

The BDNF gene is located on chromosome 11p in humans and encodes the 

BDNF protein, the most widely distributed neurotrophin in the brain which 

plays an important role in neuron survival and synaptic plasticity (Teixeira, 

Barbosa, Diniz, & Kummer, 2010). The val66met polymorphism of the BDNF 

gene is a change from guanine to adenine on the 196th nucleotide base which 

leads to a change in amino acids from valine to methionine at codon 66 (Sheikh, 

Hayden, Kryski, Smith, & Singh, 2010). This substitution affects the intracellular 

distribution and packaging of pro-BDNF, a BDNF precursor that in turn affects 

post-synaptic activity-dependent secretion of mature BDNF (Egan et al., 2003). 

Carrying at least one Met-allele has been shown to be associated with a 

reduction in volume of several brain regions relative to Val/Val homozygotes 
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in healthy participants, most notably the hippocampus (Bueller et al., 2006), 

parahippocampus and right amygdala (Montag, Weber, Fliessbach, Elger, & 

Reuter, 2009). Additionally, healthy Met-allele carriers but not Val/Val 

homozygotes show a negative correlation between age and amygdala volume 

(Sublette et al., 2008) and bilateral dorsolateral prefrontal cortex volume 

(Nemoto et al., 2006).  

On a functional level, the Met-allele of the SNP has been shown to be associated 

with increased anticipatory cortisol stress response during a cold pressor test 

(Colzato, Van der Does, Kouwenhoven, Elzinga, & Hommel, 2011), as well as 

with higher rates of anxiety disorders (Tocchetto et al., 2011). However, the 

association between BDNF val66met allele and anxiety is not universally found. 

Lang et al. (2005), for example, showed that healthy Met-carriers had 

significantly lower, not higher, levels of trait anxiety.  

As different levels of incidence of mood disorders are likely mediated by 

underlying differences in affective processing, Montag, Reuter, Newport, Elger 

and Weber (2008) assessed differences between BDNF val66met genotypes in 

affective response directly. They presented female participants with negative, 

neutral and positive IAPS pictures (Lang, Bradley, & Cuthbert, 2008) for six 

seconds during an auditory startle paradigm while fMRI was recorded. Startle 

probes elicited only auditory cortex activation. A region of interest including 

the bilateral amygdala revealed a stronger increase in activation in response to 

affective compared to neutral pictures for Met-carriers than for Val/Val 

homozygotes in the right amygdala. So while the Met-allele been shown to be 
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associated with reduced right amygdala size, right amygdala sensitivity to 

affective content seems to be increased in Met-carriers. Given evidence for a 

right-lateralisation of amygdala sensitivity to affective stimuli in men but not in 

women (see Chapter 7), BDNF val66met genotype is to be expected to have a 

stronger effect in men than women. Contrary to the hypothesis that the Met-

allele would be associated with an increased negativity bias which favours 

negative mood, the effect was more pronounced for positive than for negative 

pictures. The authors note that this was the case despite a failure to match 

arousal ratings between positive and negative pictures, with positive pictures 

being associated with lower arousal. Using face stimuli that showed fearful, 

angry, happy and neutral expressions, Goldman et al. (2010) also found 

increases in activity of areas including the bilateral amygdala and bilateral 

anterior hippocampus that were stronger in Met-carriers than in Val/Val 

homozygotes. However, this relationship was only present in anxious and 

depressed participants and could not be shown in healthy controls. In 

summary, there is mounting evidence that the val66met polymorphism 

modulates both affective processing and risk for the development of mood 

disorders but the underlying mechanisms are likely complex and thus far not 

well understood. 

A second area of influence of the val66met polymorphism is in cognitive 

functioning. Carrying one or two Met-alleles has been shown to be associated 

with significantly slowed processing speed, as well as significantly poorer 

performance on  delayed recall and general intelligence tests in elderly 
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participants (Miyajima et al., 2008). Gajewski, Hengstler, Golka, Falkenstein 

and Beste (2011) recorded EEG while elderly participants completed a task-

switching paradigm that included three changing tasks (a numerical decision, a 

parity decision and a font size decision). The task to be completed in each trial 

was either indicated by a cue or to be switched according to a memorised 

sequence. Behaviourally, Val/Val homozygotes showed longer overall reaction 

times than Met-carriers, a finding in direct contrast with Miyajima et al.'s (2008) 

results. BDNF genotype did not interact with either task cue type (on screen cue 

vs memory) or switch vs non-switch trial on reaction times. In the cued task 

condition, no effect of genotype was found. In the memory condition, Val/Val 

homozygotes showed significantly more increased error rates in switch trials 

than Met-carriers, suggesting a deficit that is mediated by memory 

performance. Importantly, Gajewski et al. (2011) showed that two ERP effects, 

the N2, which they interpret as an electrophysiological correlate of response 

control and selection, and the size of the P3, were correspondingly modulated 

by BDNF genotype. By contrast, in a large sample of 428 healthy participants, 

Schofield, Williams, Paul and Gatt (2009) found no difference in P3 effect size 

between Val/Val homozygotes, Val/Met heterozygotes and Met/Met 

homozygotes in an oddball paradigm. They did, however, report a significantly 

later latency of the P300 effect in Met/Met compared to Val/Val homozygotes 

at left and medial frontal and fronto-central as well as at right frontal sites. P300 

was also delayed in Met/Met homozygotes compared to Val/Met 

heterozygotes at left and right frontal and fronto-central sites. 
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BDNF val66met has also been shown to modulate episodic memory. Egan et al. 

(2003) showed that healthy Met/Met homozygotes scored significantly lower 

on the revised version of the Wechsler Memory Scale, which tests verbal 

episodic memory, than Val/Val homozygotes or Val/Met heterozygotes. 

Hariri, Goldberg and Mattay (2003) also showed Val66Met differences in 

episodic memory for pictures using novel complex scenes. Val/Val 

homozygotes showed a significantly higher percentage of correct “old” and 

“new” responses than Met-carriers, consistent with Egan et al.'s (2003) findings. 

FMRI revealed decreased hippocampal activation during both encoding and 

retrieval in Met-carriers compared to Val/Val homozygotes. 

Given the BDNF val66met polymorphism’s association with modulations of 

both affective processes and memory, it is an interesting candidate SNP for the 

investigation of genetic differences in affective memory and its 

electrophysiological correlates. In an fMRI investigation of memory for neutral 

and mildly happy faces, van Wingen et al. (2010) showed an effect of BDNF 

val66met genotype on activity associated with both encoding (subsequently 

remembered vs subsequently forgotten) and retrieval effects (hits vs misses) in 

men but not in women. During encoding, male Met-carriers showed a larger 

increase in amygdala activation in subsequently remembered compared to 

subsequently forgotten faces than Val/Val homozygotes. During retrieval, male 

Met-carriers also showed a larger increase in left inferior frontal gyrus and 

posterior cingulate cortex activation in response to hits compared to missed 

than Val/Val homozygotes. There were no behavioural differences in memory 
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performance between BDNF genotypes or genders. Differences between 

memory for neutral and happy face stimuli and respective associated brain 

activation were not assessed. 

Evidence for an effect of the BDNF val66met polymorphism on affective 

memory comes from a fine-mapping study of the genomic region that includes 

the BDNF gene and its neighbour BDNFOS. Cathomas, Vogler, Euler-Sigmund 

and Papassotiropoulos (2010) found the highest association of any of the 55 

SNPs in the region between val66met and affective but not neutral word recall. 

In sum, the Met-allele of the val66met polymorphism is associated with smaller 

right amygdala and hippocampus volumes and decreased memory 

performance but, in the absence of behavioural differences, with increased 

affect and memory related activation. BDNF val66met’s effect on the right 

amygdala specifically makes it more likely to elicit differences in affective 

processing in men than women, as male affective processing is right-lateralised. 

Previous research is consistent with this prediction. An association between 

val66met and affective word recall has been demonstrated. A val66met 

modulation of affective processing and affective memory in the present data 

was hypothesised and expected to be more pronounced in men. ERP memory 

effects are hypothesised to be increased more by affective content for Met-

carriers than for Val/Val homozygotes and this pattern should be observable 

even in the absence of behavioural differences.  
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8.2 Methods 

Data from 55 participants with complete data sets from both the affective 

processing and affective recognition memory tasks as well as successful 

genotyping of the BDNF val66met SNP was available (for detailed genotyping 

methods see Chapter 4.6). The expected genotype frequencies for the BDNF 

val66met polymorphism in Caucasian populations are 63.7% for Val/Val 

homozygotes, 33.6% for Val/Met heterozygotes and 2.7% for Met/Met 

homozygotes (dbSNP ss11699008, www.ncbi.nlm.nih.gov/projects/SNP). As 

predicted by this expected distribution, there was only one Met/Met 

homozygote in the current sample. Val/Val homozygotes were therefore 

compared to all Met-carriers (Val/Met and Met/Met) in the analyses below. 

There were 36 Val/Val homozygotes and 19 Met-carriers in the current sample 

and the distribution was in Hardy-Weinberg equilibrium (χ²=.073, p=.787), 

meaning allele frequencies in the sample were consistent with those expected in 

the wider population. Given the gender effects reported in Chapter 7, it was 

hypothesised that any genetic effects may differ between males and females 

and that combined analysis of data from both genders may miss effects that are 

present in only one gender or differ in direction between the genders. Despite 

the relatively small sample size, gender was therefore included as a factor in the 

analyses. 

Behavioural data was analysed using ANOVA with factors of affective content 

(negative, neutral, positive), gender (female, male) and BDNF genotype 

(Val/Val, met-carrier). Any significant interaction involving both affective 
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content and BDNF genotype were followed up with paired-samples t-tests 

between affective content categories within each BDNF genotype group. For 

late-positive potential analysis, mean amplitudes between 400 and 1000 

milliseconds post stimulus onset from the affective processing task was 

subjected to ANOVA with factors of affective content (negative, neutral, 

positive), location (frontal, centro-frontal, central, centro-parietal, parietal), site 

(left inferior[5], left medial[3], left superior[1], midline [z], right superior [2], 

right medial [4], right inferior [6]), gender (male, female) and BDNF group 

(Val/Val, met-carrier).  

For analysis of the electrophysiological recognition memory data, mean 

amplitude differences for hits minus correct rejections from the affective 

recognition memory task was subjected to ANOVA with the factors affective 

content (negative, neutral, positive), location (frontal, centro-frontal, central, 

centro-parietal, parietal), hemisphere (left, right), site (superior [1,2], medial 

[3,4], inferior [5,6]), gender (female, male) and BDNF genotype (Val/Val, Met-

carrier) separately for three time windows: 300 to 500 milliseconds (thought to 

capture familiarity effects), 500 to 800 milliseconds (thought to capture 

recollection effects) and 800 to 1500 milliseconds (thought to capture post-

retrieval evaluation and action selection). To verify whether significant 

topographical effects reflected qualitative differences between distributions, 

any results involving significant interactions with topographical factors were 

replicated in re-scaled data. Mean amplitudes at representative electrodes were 

then subjected to ANOVA with factors of affective content (negative, neutral, 
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positive) and retrieval success (hit, correct rejection) for each BDNF genotype 

group. T-tests compared old/new effect sizes for each affective category across 

BDNF genotypes. 

 

8.3 Results 

8.3.1 Anxiety and depression across BDNF genotypes 

The self-exclusion criteria for this study included ongoing or history of clinical 

psychological issues, therefore only sub-clinical levels anxiety and depression 

are to be expected in this sample. Met-carriers did not differ significantly from 

Val/Val homozygotes in either BDI scores [p=.341], trait-STAI scores [p=.462] 

or state-STAI scores at study [p=.295] or test [p=641]. 

 

8.3.2 Affective processing 

8.3.2.1 Stimulus ratings 

Both BDNF groups converged with IAPS standard valence ratings, rating 

negative pictures as more negative and positive pictures are more positive than 

the two remaining affective picture sets respectively. Both Val/Val 

homozygotes and Met-carriers rated negative pictures as most arousing, 

followed by positive pictures and then neutral pictures. However, Met-carriers 

were more extreme in their arousal ratings of negative pictures than Val/Val 
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homozygotes, a pattern that was not observed in arousal ratings for positive 

pictures. 

Valence and arousal ratings were subjected to ANOVA with factors of affective 

content (negative, neutral, positive), gender (female, male) and BDNF genotype 

(Val/Val, Met-carrier). There was no significant main effect of BDNF genotype 

or interaction of BDNF genotype and affective content on valence ratings. For 

arousal ratings, there was a significant affective content by BDNF group 

interaction [F(2,102)=4.48, p=.014].  

 

Figure 8.1 Differences in SAM arousal ratings (1=low arousal to 5=high arousal) from 
neutral for negative and positive pictures split by BDNF group. Error bars indicate 
standard errors. 

 

 

Follow up independent samples t-tests on the difference in arousal ratings for 

negative and positive pictures from neutral pictures revealed a significantly 

larger arousal difference from neutral for negative pictures in Met-carriers than 
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in Val/Val homozygotes [t(53)=2.94, p=.005]. The increase relative to neutral for 

positive ratings did not differ significantly between BDNF groups.  

 

8.3.2.2 Late-Positive Potential (LPP) 

An affective content (negative, neutral, positive) by location (frontal, centro-

frontal, central, centro-parietal, parietal) by site (left inferior[5], left medial[3], 

left superior[1], midline [z], right superior [2], right medial [4], right inferior [6]) 

by gender (male, female) by BDNF group (Val/Val, Met-carrier) ANOVA on 

mean amplitudes in the 400 to 1000 millisecond time window did not show a 

significant main effect of BDNF group or any interaction involving affective 

content and BDNF group.  

 

8.3.3 Affective recognition memory  

8.3.3.1 Discrimination index, response bias, remember rate 

Table 8.1 below shows that both Val/Val homozygotes and Met-carriers 

achieved highest Pr scores for negative, followed by neutral and then positive 

pictures. For Val/Val homozygotes, this was driven highest hit rates for 

negative, followed by neutral and then positive pictures, combined with a 

lowest mean false alarm rate for neutral, followed by negative and then 

positive pictures. The same Pr pattern arose in Met-carriers as a function of 

highest hit rates for negative, followed by positive and neutral pictures and a 
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lower false alarm rate for neutral pictures than for negative and positive 

pictures. Response bias for both groups was most liberal for negative pictures, 

followed by positive and then negative pictures. Remember rates were higher 

for negative than for positive and higher for positive than for neutral pictures 

in Val/Val homozygotes. Remember rates in Met-carriers, while following the 

same pattern, barely differed between positive and neutral pictures.  

 

 
 

Picture valence 
  Negative Neutral Positive 

V
al

/V
al

 

Hit rate 0.729 (0.025) 0.637 (0.026) 0.608 (0.023) 
FA rate 0.085 (0.010) 0.076 (0.011) 0.116 (0.016) 
Pr 0.642 (0.024) 0.559 (0.022) 0.491 (0.021) 
Br 0.265 (0.033) 0.201 (0.029) 0.234 (0.029) 
Remember rate 0.567 (0.031) 0.464 (0.035) 0.488 (0.027) 

M
et

 c
ar

ri
er

s Hit rate 0.714 (0.028) 0.644 (0.026) 0.648 (0.039) 
FA rate 0.125 (0.024) 0.072 (0.017) 0.127 (0.028) 
Pr 0.586 (0.023) 0.572 (0.023) 0.519 (0.027) 
Br 0.312 (0.051) 0.171 (0.036) 0.287 (0.055) 
Remember rate 0.606 (0.047) 0.507 (0.045) 0.508 (0.058) 

Table 8.1 Means and standard errors (in brackets) for hit rate, false alarm (FA) rate, 
discrimination index Pr, response bias Br and remember rate by picture valence and 
BDNF genotype group. 

 

ANOVA with factors of affective content (negative, neutral, positive), gender 

(female, male) and BDNF genotype (Val/Val, Met-carrier) was performed on 

discrimination index, response bias and remember rate. There was no 

significant between-subjects main effect of BDNF genotype or interaction of 

BDNF genotype and gender on any of the behavioural recognition memory 
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measures. There was no significant interaction involving both affective content 

and BDNF genotype on remember rates.  

There was a significant affective content by BDNF genotype interaction on 

discrimination index Pr [F(1.78,90.5)=4.78, p=.013]. Figure 8.2 shows that while 

discrimination index Pr is higher for negative than for neutral pictures in 

Val/Val homozygotes, this difference is absent in Met-carriers.  

 

 

Figure 8.2 Discrimination index Pr was highest for negative pictures and lowest for 
positive pictures in Val/Val homozygotes. In Met-carriers, Pr did not differ between 
negative and neutral pictures but is significantly reduced for positive pictures.  

 

Follow-up paired comparisons for each BDNF genotype confirmed significant 

differences between all affective categories in Val/Val homozygotes [negative 

vs neutral: t(35)=4.67, p<.001; positive vs neutral: t(35)=5.40, p<.001; negative vs 

positive: t(35)=7.90, p<.001]. Met-carriers, despite comparatively large standard 
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errors for all affective categories, showed significant differences in 

discrimination index between positive and neutral pictures [t(18)=2.77, p=.013] 

and between positive and negative pictures [t(18)=2.78, p=.012] but showed no 

significant difference in discrimination index between negative and neutral 

pictures.  

 

8.3.3.2 Electrophysiological correlates of affective recognition memory 

Figure 8.3 shows the differences in distributions of old/new effects between 

Val/Val homozygotes and Met-carriers in the 300 to 500ms time window. 

Visual inspection suggests stronger old/new effects for negative and neutral 

pictures in Val/Val homozygotes, which were frontally distributed and 

stronger towards the midline, while the old/new effect appears to be absent 

from the positive condition. Met-carriers, by contrast, showed the strongest and 

most widely distributed old/new effect in the positive condition, where it was 

apparent from frontal to parietal locations and from midline to inferior sites, 

with somewhat more pronounced weakening from the midline towards inferior 

sites in the right compared to the left hemisphere. For negative pictures, Met-

carriers showed a somewhat weaker frontally distributed old/new effect 

comparable to those seen for negative and neutral pictures in Val/Val 

homozygotes, while the old/new effect in response to neutral pictures showed 

left-frontal distribution. Visual inspection of the waveforms and scalp maps of 
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the old/new effects in the 500 to 800ms and the 800 to 1500ms time windows 

did not suggest any apparent differences between the two BDNF groups.   

Mean amplitude differences between hits and correct rejections in three time 

windows (300 to 500 milliseconds, 500 to 800 milliseconds and 800 to 1500 

milliseconds) were subjected to ANOVA with the factors affective content 

(negative, neutral, positive), location (frontal, centro-frontal, central, centro-

parietal, parietal), hemisphere (left, right), site (superior [1,2], medial [3,4], 

inferior [5,6]), gender (female, male) and BDNF genotype (Val/Val, Met-

carrier). There were no significant interactions involving affective content and 

BDNF genotype in the two later time windows (500 to 800 milliseconds and 800 

to 1500 milliseconds). In the 300 to 500 millisecond time window, a significant 

affective content by site by BDNF genotype interaction emerged 

[F(2.09,107)=3.44, p=.034]. The interaction survived rescaling [F(2.04,115)=3.71, 

p=.027] indicating the presence of a qualitative difference in topographies 

between old/new effects for different combinations of affective content and 

BDNF genotype. Figure 8.3 shows the distribution of old/new effects. The 

interaction of BDNF genotype and affective content on old/new effect sizes 

was strongest at superior sites.   

ANOVA with factors of affective content (negative, neutral, positive) and 

retrieval success (hit, correct rejection) on mean amplitudes at electrode Fz did 

not produce a significant affective content by retrieval success interaction in 

either Val/Val homozygotes [p=.163] or Met-carriers [p=.227]. Paired-sample t-

tests comparing mean amplitudes for hits and correct rejections at electrode Fz 
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for each affective content category (negative, neutral, positive) were performed 

separately for each BDNF genotype group. In Val/Val homozygotes, the 

old/new effect was significant at electrode Fz for negative [t(35)=2.66, p=.012]  

and neutral [t(35)=3.17, p=.003], but not for positive pictures [p=.644]. In Met-

carriers, the old/new effect was significant at electrode Fz for negative 

[t(18)=2.50, p=.023] and positive pictures [t(18)=4.11, p=.001] but narrowly 

failed to reach significance for neutral pictures [p=.086]. Within the genotype 

groups, positive pictures elicited the smallest, and only non-significant, 

old/new effects in Val/Val homozygotes but the largest old/new effects in 

Met-carriers (see Figure 8.4).  

 

  

Figure 8.3 The difference in distributions of old/new effects between Val/Val 
homozygotes and Met-carriers was modulated by affective picture content.  
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Between-subject comparisons revealed that old/new effect sizes at electrode Fz 

did not differ significantly between Val/Val homozygotes and Met-carriers for 

negative or neutral pictures. For positive pictures, Met-carriers showed 

significantly larger old/new effects at electrode Fz than Val/Val homozygotes 

[t(53.91=2.09, p=.041]. 

 

 

Figure 8.4 Mean amplitude differences between hits and correct rejections at electrode 
Fz were significant for negative and neutral pictures in Val/Val homozygotes but for 
negative and positive pictures in Met-carriers. 
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8.4 Discussion 

It was hypothesised that the val66met modulation of affective processing and 

affective memory would be more pronounced in men than in women. 

Specifically, ERP memory effects were hypothesised to be increased more by 

affective content for Met-carriers than for Val/Val homozygotes, even in the 

absence of behavioural differences. Contrary to the first hypothesis, gender did 

not significantly interact with val66met genotype on any of the 

electrophysiological effects observed or on any behavioural measure. All 

participants showed differences in the affective modulation of discrimination 

index Pr by val66met genotype. There was no genotype influence on the 

difference between Pr for neutral and positive pictures, with Pr being higher for 

neutral than for positive pictures across genotypes. Pr for negative pictures was 

higher than for neutral pictures in Val/Val homozygotes only, while this 

difference was not significant for Met-carriers. Note that Figure 8.2 indicates 

much higher variability in Pr for all affective categories in Met-carriers than in 

Val/Val homozygotes. This is likely to be in part a reflection of the smaller 

sample size of 19 Met-carriers compared to 36 Val/Val homozygotes but may 

also indicate a genuine larger variability of memory performance in Met-

carriers. Overall, val66met genotype affected Pr across genders for negative 

relative to neutral pictures. This is consistent with the observation that reported 

arousal increase for negative relative to neutral pictures is higher in Met-

carriers than in Val/Val homozygotes, while reported arousal increase for 

positive relative to neutral pictures did not differ. The affective modulation of 
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Pr by positive affective content was also unaffected by BDNF val66met 

genotype. Genotype differences in electrophysiological correlates of memory on 

the other hand were observed for the affective modulation by positive content 

only. There was no evidence of a genotype modulation of the old/new effects 

between 500 and 800 milliseconds (thought to reflect recollection) or between 

800 and 1500 milliseconds (thought to reflect post-retrieval evaluation). The 

early frontal old/new effect between 300 and 500 milliseconds was significant 

at electrode Fz for negative pictures across genotypes. The old/new effect for 

neutral pictures was significant in this time window in Val/Val homozygotes 

but not in Met-carriers, while the old/new effect for positive pictures was 

significant for Met-carriers but not Val/Val homozygotes. The stronger increase 

of old/new effects for positive pictures in Met-carriers than in Val/Val 

homozygotes is consistent with the hypothesis of a stronger affective 

modulation in Met-carriers. However, the selective lack of evidence for an 

old/new effect for positive pictures in Val/Val homozygotes, in light of a 

presence of the effect for neutral and negative pictures, is a novel finding and 

warrants further investigation. 

One problem for the present study was the difference in sample sizes between 

Met-carriers and Val/Val homozygotes. For practical reasons, genetic 

information was not available before EEG recording for this study. Future 

studies could improve on this limitation by genotyping a bigger sample and 

then testing equal numbers of randomly selected participants for each 

genotype. This would of course raise ethical challenges pertaining to the 
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keeping and safekeeping of information linking participant details to their 

genetic information and the destruction of such linked information after the 

study concludes. However, despite equal sample sizes being preferable, the 

current study mitigated many of the limitations arising from unequal sample 

sizes by comparing effects for two affective categories relative to neutral within 

BDNF groups. While the absence of effects for all comparisons in the smaller 

sample would indeed make interpretation difficult, opposing patterns of 

selective absence of effects for one highly arousing affective category but not 

the other suggests a real difference between the groups. The overall sample size 

of the present study is another limitation, because it limits statistical power to 

reveal effects. Especially the size of the BDNF Met-carrier group of just 19 

participants makes it likely that patterns of affective modulation of old/new 

effects could have been missed. Again, pre-selecting participants according to 

genotype could have avoided the problem of small group sizes, allowing the 

recording of ERP data of twice the number of participants in the Met-carrier 

group with unchanged cost or time expenditure.   

There has been increasing evidence of an association of the Met-allele of the 

BDNF val66met polymorphism with changes in affective processing and 

vulnerability to mood disorders on the one hand and with a reduction in 

memory function and its brain correlates on the other. None of these 

associations have been universally found but in the cognitive field, a recent 

meta-analysis gave further weight to the notion that BDNF val66met affects 

memory. Modest but significant effects on BDNF val66met genotype were 
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found on memory performance, hippocampal volume and hippocampal 

activation during memory tasks in large combined samples of 5922, 2985 and 

362 participants respectively (Kambeitz et al., 2012). However, Dodds, Henson, 

Miller and Nathan (2013) note that even these moderate effect sizes may be 

overestimated when it comes to fMRI evidence, due to the influence of voxel 

selection bias. They suggest that the problem can be avoided by selecting voxels 

of interest and identifying effects in independent samples. The present study 

presents a novel finding of a BDNF val66met influence on the affective 

modulation of an established electrophysiological correlate of recognition 

memory that differs by stimulus valence. As discussed in Chapter 1, affective 

memory likely plays an important part in the development and maintenance of 

mood disorders such as anxiety and depression. Understanding genetic 

influences on affective memory processes is therefore vital in better 

understanding individual differences in susceptibility to mood disorders. The 

study of ERP phenotypes in this area promises to complement and extend 

knowledge gained through fMRI studies by providing a tool for discerning 

different components of recognition memory. The present study found no 

evidence of a difference between genotype groups in the affective modulation 

of proposed electrophysiological correlates of recollection or post-retrieval 

processes but a differential modulation of the proposed neural correlate of 

familiarity by positive effect between BDNF val66met genotypes. Interestingly 

the affective modulation of memory by positive content differed between 

genotypes in ERP data, while all genetic effects obtained in behavioural data 
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acted on the modulation by negative affective content. This suggests a 

compensatory function of the neural difference between genotypes, such that 

larger old/new differences are necessary for positive stimuli in Met-carriers to 

achieve comparable behavioural output to Val/Val homozygotes.  

If future research corroborates underlying anatomical or physiological 

differences between Met-carriers and Val/Val homozygotes necessitating 

compensatory neurofunctional strategies to match behaviour in healthy 

participants, this would have important implications for the treatment of 

conditions involving maladaptive affective memory. BDNF genotype could 

then be used as one factor informing the development of patient-specific 

treatment approaches, increasing the likelihood of treatment success. 

 

 

 



Chapter 9: General Discussion 
 

- 236 - 
 

Chapter 9: General Discussion 

 

9.1 Summary of results and their theoretical implications 

The research presented in this thesis aimed to answer a number of questions 

regarding the circumstances under which affective content modulates affective 

processing and memory and their electrophysiological correlates: 

o Does processing of and memory for affective material differ by stimulus 

valence or arousal or a combination of both? 

o Is the LPP an electrophysiological correlate of attention capture by affective 

stimuli? 

o How do the effects of affective content on recognition memory change with 

increasing retention intervals? 

o Is enhanced affective memory associated with increased attention to 

affective stimuli? 

o Are there gender differences in affective modulation of cognitive processes 

and their electrophysiological correlates? 

o Is there evidence for a genetic influence on affective cognition and its 

electrophysiological correlates? 

The present chapter will summarise the findings pertaining to these research 

aims, discuss them in relation to the wider literature and identify theoretical 

implications and open questions for future research. 
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9.1.1 Does processing of and memory for affective material differ by stimulus 

valence or arousal or a combination of both? 

Affective stimulus content has been shown to modulate a range of cognitive 

processes but often the question whether these effects are driven by stimulus 

valence or arousal is not addressed. In order to allow for conclusions about 

whether the different cognitive processes investigated are affected by all 

affective stimuli equally, irrespective of valence, or whether there are negativity 

or positivity biases in processing, the stimuli used in the experiments presented 

here were carefully selected based on both their valence and arousal IAPS 

standard values. In valence, stimuli from the three affective categories negative, 

neutral and positive did not overlap. Table 9.1 shows the mean IAPS standard 

valence ratings for negative, neutral and positive stimulus sets used in these 

experiments. Crucially, present participants’ own ratings for each picture set 

were also collected within each experiment. For valence ratings, pairwise 

comparisons of participants’ ratings confirmed a significant difference between 

the stimulus groups in the direction expected. 

 

 
Negative Neutral Positive 

Set A 3.20 (0.10) 5.06 (0.03) 6.84 (0.07) 

Set B 2.57 (0.04) 5.03 (0.03) 7.16 (0.04) 

Table 9.1 IAPS standard ratings for valence [Mean (SE)] for negative, neutral and 
positive pictures in the two stimulus sets used in the present experiments 
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For arousal, the negative and positive stimuli were carefully matched and 

significantly higher in arousal than the neutral category (see Figure 9.1a). Here, 

participant ratings consistently showed a differing pattern (see Figure 9.1b). 

Present participants’ mean arousal ratings for positive pictures were 

consistently significantly lower than those for negative pictures. This finding 

constitutes a novel demonstration of a systematic difference between 

participant samples’ rating of the IAPS and their reported standard ratings with 

important implications for future research using the IAPS. It shows that 

standard ratings can no longer be assumed to approximate an individual 

sample’s perception of IAPS pictures and it is crucial to collect participant 

ratings to confirm any stimulus categorisations on which conclusions are to be 

drawn. Moreover, the present finding demonstrates the need for a new, up-to-

date IAPS standardisation, if the stimulus set is to continue being one of the 

most widely used sets in the literature. Studies using IAPS that are already 

published should be reviewed with a focus on whether they draw conclusions 

grounded in IAPS standard ratings, as such conclusions may be invalid in the 

absence of corroborating participants’ ratings. 
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 a.)    b.) 

 

Figure 9.1 a.) IAPS standard arousal ratings [Mean (SE)] for the two stimulus sets 
used, rescaled to the 5-point SAM scale used in the present experiments and b.) 
participants’ own arousal ratings [Mean (SE)]. 1 = minimally arousing, 5 = maximally 
arousing. Despite matched IAPS standard arousal ratings, positive pictures were rated 
as significantly less arousing than negative pictures. 

 

In the case of the present study, the failed matching of arousal ratings lead to 

limitations in the ability to interpret differences in modulations of cognitive 

processes by negative versus positive picture content in some circumstances. 

Had the manipulation succeeded, a larger modulation by one affective content 

over the other would have shown a clear valence effect, while an equal 

modulation by both affective content types would have supported the view 

that arousal is the crucial stimulus feature. As negative pictures elicited 

stronger arousal than positive pictures in the present participant samples, a 

larger modulation by negative than by positive content is ambiguous and could 

have arisen from either the valence or the arousal difference between the 
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stimulus categories. A modulation that is larger for positive than for negative 

pictures can still unambiguously be interpreted as evidence of a valence effect. 

Equal modulations for both negative and positive picture content could suggest 

an all-or-nothing effect of affective content that is present for both valences but 

not modulated in strength by arousal. However, while less likely, it cannot be 

excluded that equal effect modulations for negative and positive pictures could 

have been caused by the interplay of a valence effect that favours positive 

pictures and a coexisting arousal effect. 

In the case of the LPP, the answer to the question whether valence or arousal 

effects are the source of its affective modulation is complex. The LPP effect, the 

increase of the LPP in response to affective stimulus content, was consistently 

significant in all data presented here. However, Experiment 1 found a larger 

LPP effect for negative than for positive pictures, although the difference 

narrowly failed to reach significance. Experiment 3 found a significantly larger 

LPP effect for positive than for negative pictures. Although this difference in 

patterns is puzzling at first inspection, it provides strong evidence against a 

general valence effect on the LPP. Clearly the extend of the modulation of the 

LPP depends on factors beyond whether affective stimuli are positive or 

negative. It has previously been reported that the LPP increases with increasing 

arousal (e.g., see Schupp et al., 2000). However, the results from Experiment 3, 

where medium arousing positive pictures elicited significantly larger LPPs than 

highly arousing negative pictures (see Figure 9.1b) instead suggest an inverted 

U-shaped relationship. Modulation of the LPP increases from low to medium 
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arousal levels but when arousal gets too high, the modulation of the LPP 

becomes smaller again. This interpretation can also nicely account for the 

marginally larger LPP modulation by negative over positive pictures in 

Experiment 1, as reported arousal rates here were lower overall. A 

topographical difference between LPP effects for positive and negative pictures 

was also found, suggesting the involvement of different neural generators. 

More support for this conclusion comes from a recent combined fMRI and ERP 

study, which mapped variations in LPP amplitude to differences in the BOLD 

signal and found that different networks of brain areas correlate with LPP 

amplitude for positive and negative pictures (Liu, Huang, McGinnis-Deweese, 

Keil, & Ding, 2012). LPP amplitude for negative pictures was selectively 

correlated with BOLD activity in ventrolateral prefrontal cortex, insula and 

posterior cingulate cortex, while BOLD activity in occipitotemporal junction, 

medial prefrontal cortex, amygdala and precuneus selectively correlated with 

LPP amplitudes in response to positive pictures. Interestingly, bilateral 

amygdala activation was correlated with LPP amplitudes in response to 

positive pictures but showed an all-or-nothing response for negative pictures. If 

different neural networks and mechanisms are involved in the processing of 

negative and positive affective information, then it is possible that arousal 

modulates affective processing, such as that reflected in the LPP effect, 

differentially for the two valences. It is possible, for example, that there is a 

linear relationship between arousal and LPP amplitudes for positive pictures 

but an inverse U-shaped relationship between arousal and LPP amplitudes for 
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negative pictures. To test these hypotheses, future studies would need to 

employ much larger stimulus sets in order to be able to split each valence 

category into a number of arousal levels. Given a larger variety in arousal levels 

elicited, single trial analysis could prove useful in revealing the relationship 

between arousal, valence and LPP amplitudes. 

Response bias Br was equally increased for both negative and positive picture 

content, indicating a modulatory effect of affective arousal irrespective of 

valence. The difference between the increase in Br for negative and positive 

pictures was not significant, suggesting an all-or-nothing effect of arousal. This 

more liberal response bias for affective compared to neutral pictures, combined 

with a selectively increased hit rates for negative pictures, resulted in a 

significantly increased discrimination index Pr for negative compared to 

neutral pictures. For positive pictures, the more liberal response bias for 

affective compared to neutral pictures resulted in a significant decrease in Pr 

compared to the neutral category. Consequently, the Pr modulation seems 

driven by a combination of a valence specific effect on hit rates and an all-or-

nothing arousal effect on response bias.  

The comparison of all three affective picture categories gives some confidence 

that a lack of difference between two categories, in light of a significant 

difference between two other categories, is not simply due to a lack of power. 

However, since arousal could not be matched, the possibility that underlying 

differences in arousal mediate differences in effect sizes that influence power 

cannot be discounted. To avoid this confound, future research requires the 
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inclusion of categories with distinct arousal levels that are matched closely 

between valences (i.e. low arousing neutral, medium arousing negative, 

medium arousing positive, high arousing negative, high arousing positive). 

Careful standardisation of stimuli for the specific study population before final 

stimulus selection would avoid confounds of population differences between 

the IAPS standardisation sample and study participants. While the commonly 

used IAPS stimulus set is fairly large, the selection of sufficiently large stimulus 

sets including several distinct groups of arousal levels can be difficult, 

especially when excluding stimuli containing potential confounds such as 

close-ups of human faces or sexual content. Ideally, future studies should 

instead create and use a new stimulus set composed of pictures specifically 

produced to vary in valence while controlling as many other aspects of the 

stimulus as possible (i.e. luminosity, complexity, presence of humans etc.). The 

IAPS set contains several stimulus pairs that vary in valence through the 

changing of one small detail, such as a gun being pointed at a person being 

replaced by a hairdryer. A new stimulus set comprised solely of stimulus triads 

varying small details to produce a negative, neutral and positive version of 

each stimulus would greatly reduce variation due to factors other than 

differences in affective content.       

Overall, the results from affective processing, attentional disengagement and 

recognition memory tasks presented here show that affective valence does 

matter and cognitive processes are not just modulated by differences in 

affective arousal alone. Given the diversity of emotions even within affective 
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valences, negative encompassing emotions as distinct as fear, anger and 

sadness and positive encompassing emotions from joy to sexual arousal, a 

much more controlled approach may be necessary to fully understand what 

aspects of emotion affect cognition and by which processes. The key to this is 

the development of large stimulus sets that control as many confounds as 

possible, from basic perceptual differences like luminosity or complexity to 

social factors like the presence of people, and provide detailed categorisation 

information for any remaining potential confounds, such as for example the 

specific emotion elicited.  

 

9.1.2 Is the LPP an electrophysiological correlate of attention capture by 

affective stimuli? 

The LPP is widely accepted and used as a correlate of sustained attention to 

affective stimuli (e.g., see Hajcak & Olvet, 2008; Hajcak, MacNamara, Foti, Ferri, 

& Keil, 2013; Schupp, Flaisch, Stockburger, & Junghoefer, 2006; Weinberg & 

Hajcak, 2011). This interpretation is based on its similarities in time of onset and 

distribution to the P3 component, which has repeatedly been shown to be 

sensitive to differences in attention (e.g., see Patel & Azzam, 2005), and the 

assumption that affective stimuli differ from neutral stimuli in their intrinsic 

ability to capture attention, based on their increased survival value. 

To test whether affective picture stimuli lead to increased LPP mean 

amplitudes by eliciting increased sustained attention, the present study 
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included not only an affective processing task during which LPPs were 

recorded but additionally an attentional disengagement task. Sustained 

attention to picture stimuli was measured by the time it took participants to 

disengage from the stimulus and respond to a probe presented beyond the 

edge of the picture. Participants also reported the level of arousal each picture 

elicited. If the LPP is a correlate of sustained attention which is increased in 

response to more arousing affective stimuli, then higher levels of arousal 

should coincide with longer reaction times in the attentional disengagement 

task and larger mean amplitudes in the LPP. Figure 9.2 below shows reported 

arousal levels for Experiment 3, during which both attentional disengagement 

and LPP data was collected. Consistent with the hypothesis that a picture’s 

ability to hold attention varies with its arousal value, negative pictures elicited 

higher arousal responses than both other picture categories and were also 

associated with the longest reaction times for attentional disengagement. While 

positive pictures also elicited significantly higher arousal ratings than neutral 

pictures, the difference in response times for these two categories failed to reach 

significance, although the direction of the mean difference follows that seen in 

arousal ratings. If the Late-Positive Potential is a neural correlate of sustained 

attention then largest LPP mean amplitudes should occur in response to 

negative pictures, which were shown to hold attention significantly longer than 

either other picture category. Since the lack of statistical evidence of a difference 

in reaction times between neutral and positive pictures may reflect either a true 

underlying lack of difference of attention capturing ability or may be a result of 
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lack of power due to large variance in reaction times, one of two possibilities is 

to be expected: Either LPPs for positive pictures should not differ from those 

for neutral pictures (i.e. there is no LPP effect for positive affect) or mean LPP 

amplitude should be increased compared to neutral pictures but be 

significantly smaller than for negative pictures.  

These hypotheses could not be supported. Instead, the increase in mean 

amplitude in response to affective compared to neutral pictures in the 400 to 

1000 millisecond Late-Positive Potential time window was larger for positive 

than for negative pictures. This is a novel demonstration of evidence against the 

assumption that the Late-Positive Potential is an electrophysiological correlate 

of sustained attention in an affective context.   

 

Figure 9.2 a.) Arousal ratings on the modified SAM arousal measure 
(1=minimally arousing, 5=maximally arousing) and b.) attentional 
disengagement mean reaction times in milliseconds. Arousal was significantly 
larger for negative pictures than positive and neutral pictures and significantly 
larger for positive than neutral pictures. Reaction times were significantly 
longer for negative compared to positive and neutral pictures but the difference 
between positive and neutral pictures failed to reach significance. 
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Figure 9.3 The Late-Positive Potential for positive, negative and neutral pictures at 
electrode Cz. Positive pictures elicited more positive-going LPPs than negative pictures 
and LPPs in response to both negative and positive pictures were more positive-going 
than LPPs in response to neutral pictures. 

 

While at least negative pictures could be shown to be intrinsically more 

attention capturing and this is associated with higher arousal levels for 

negative than either positive or neutral pictures, mean LPP was significantly 

more increased for positive pictures, which held attention for a significantly 

shorter time than negative pictures. So the LPP is clearly modulated by 

affective content but these results provide evidence against the idea that the 

LPP merely tracks differences in sustained attention to affective compared to 

neutral pictures. This has implications both for further investigations into the 

nature of the LPP and for its use in affective research. Differences in LPP effects 

are commonly interpreted as differences in sustained attention to stimuli, an 

association that clearly cannot be assumed without supporting evidence in the 

form of other measures of attention. Moreover, even where sustained attention, 



Chapter 9: General Discussion 
 

- 248 - 
 

as assessed by an independent behavioural or functional imaging measure, and 

LPP effects correlate, a causal relationship cannot be concluded based on the 

present findings that the two, under certain circumstances, can be dissociated. 

While sustained attention and the LPP effect may share common antecedents, 

the LPP is clearly more than a direct electrophysiological correlate of sustained 

attention.  

The fact that the assumption that the LPP is an ERP marker of sustained 

attention has been disproven here is not only of theoretical significance and 

therefore has consequences for research practice, it also informs, and crucially 

limits, practical applications of the LPP as an objective alternative to self-report 

in fields such as clinical psychology, marketing or teaching, at least in the 

context of sustained attention. While a more complete understanding of the 

relationship between stimulus valence and arousal and the LPP effect will 

likely eventually allow reverse mapping, so that conclusions about a 

participant’s appraisal of a stimulus can be drawn from the size of their LPP 

effect compared to a neutral baseline, the LPP cannot be used to assess 

attention. Proposed applications of the LPP as an objective tool in assessing 

relative sustained attention to different stimulus categories, as is of use in 

clinical diagnosis and monitoring of therapeutic progress or in the assessment 

and comparison of different strategies in marketing or teaching, are therefore 

not possible. While differences in LPP effects likely capture information about 

processes partly driven by or associated with attention, the link is clearly not a 

direct one. Nevertheless, should future research confirm a consistent link 
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between stimulus arousal and the size of the LPP effect, a link which will likely 

differ between stimulus valences, then the LPP effect can provide a tool for 

assessing stimulus appraisals objectively. This is of great value especially in 

settings where self-reported stimulus appraisals may be skewed by social 

desirability or difficulty in accessing or verbalising said appraisals. While the 

novel demonstration of a mismatch between sustained attention and the LPP 

effect reported here limits its practical and research applications, it 

simultaneously increases the value of the LPP effect as an objective assessment 

tool by contributing to a more precise functional interpretation.  

 

9.1.3 How do the effects of affective content on recognition memory change 

with increasing retention intervals? 

Chapter 6.1 discusses the development of the affective modulation of 

recognition memory over time. Discrimination index Pr showed a sparing effect 

for affective compared to neutral pictures over time. Both positive and negative 

pictures were associated with a slower decline in Pr than neutral pictures. 

Interestingly, discrimination index Pr for positive pictures was lower than Pr 

for neutral pictures after 5 minutes and after one day delay but was 

insignificantly higher after one week, due to differences in response bias. 

Response bias became increasingly conservative over time for all picture 

categories but was more liberal for negative and positive than for neutral 

pictures at any test delay. 
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Together, these results represent evidence that rather than being a consequence 

of preferential encoding, affective memory effects arise as a result of slower 

forgetting of affective stimuli. The pattern of slower decline of affective 

recognition memory is consistent with two theoretical accounts. Modulatory 

emotional consolidation accounts (McGaugh, 2004; Sharot, Verfaellie, & 

Yonelinas, 2007) which propose that increased amygdala activation in response 

to affective stimuli modulates the consolidation of affective episodic memories 

in the medial temporal lobe, where they are retained. The amygdala’s role ends 

with the completion of consolidation. This account predicts an initially slower 

rate of decline in recognition memory for affective compared to neutral stimuli 

while encoding is in progress, followed by an equal rate of decline in memory 

for affective and neutral material. The emotional binding account (Yonelinas & 

Ritchey, 2015), by contrast, proposes that the amygdala is involved in the 

storage of emotion-memory bindings that are formed when encoding affective 

stimuli. In the amygdala, emotion-memory bindings are more robust to 

forgetting because the rate of cell turnover is lower in the amygdala than in 

other memory-related brain areas. Figure 9.4 illustrates the respective 

predictions for the development of affective memory over time made by 

modulatory emotional binding accounts and emotional binding. 
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Figure 9.4 Development of affective recognition memory over time predicted by modulatory 
emotional consolidation and emotional binding accounts. Yonelinas and Ritchey’s (2015) 
emotional binding account of affective recognition memory predicts a steady rate of 
decline of memory for affective stimuli that is less steep than the rate of neutral memory 
decline. Modulatory emotional consolidation accounts predict an initially slower 
decline for affective compared to neutral stimuli followed by equal rates of decline once 
consolidation is completed. 

 

The number of different study-test intervals used in the present experiment is 

not sufficient to confidently decide between the two models. To test the 

predictions of modulatory emotional consolidation against those of emotional 

binding, a paradigm with a finer temporal resolution would be needed. A 

consistent increase of affective enhancement of memory performance over time 

would provide evidence in favour of emotional binding, while a change in the 

rate of increase of enhancement would support modulatory emotional 

consolidation accounts.  

The present experiment does provide clear evidence for differences in the 

development of affective memory enhancement between positive and negative 

stimuli. For discrimination index Pr, the interaction between affective category 

(negative vs positive) and study-test delay on affective enhancement missed 
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significance but enhancement increased at the same rate for both affective 

categories and negative pictures were associated with higher enhancement. 

Given that negative pictures were rated as significantly more arousing than 

positive pictures, this finding is consistent with an arousal driven sparing of 

affective recognition memory. However, a valence-specific effect cannot be 

excluded based on the present data and future research including positive and 

negative stimulus groups with matched levels of arousal would be needed to 

decide whether valence plays a role in affective recognition memory 

enhancement. A future study to overcome these limitations would require a 

large affective picture set which would allow for the selection of a large set of 

stimuli based on arousal ratings from a sample of participants drawn from the 

same study population as the actual study sample. After selection, stimulus 

categorisation should be confirmed through ratings collected from another 

independent participant sample. If stimulus appraisal is consistent within the 

study population, a third group of participants should then complete a study 

phase like the one employed by the present research, followed by a higher 

number of recognition tests of sub-sets of stimuli at consistent intervals, such as 

seven recognition tests one day apart, depending on the number of matched 

stimuli available. Results of this experiment would allow for the increasing or 

decreasing of the temporal resolution of recognition tests as appropriate in 

order to decide between the patterns of memory sparing predicted by 

emotional binding and modulatory emotional consolidation accounts 

respectively. 
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9.1.4 Is enhanced affective memory associated with increased attention to 

affective stimuli? 

As noted above, affective stimuli are commonly assumed to be attended to 

preferentially and previous research supports this assumption (e.g., see Gotlib 

& McCann, 1984; MacLeod, Mathews, & Tata, 1986). This is often cited as the 

reason for memory enhancements for affective stimuli, as increased attention 

leads to deeper processing and hence better memory. This view of affective 

enhancement of recognition memory posits a role of affective content during 

encoding only. 

The present study assessed the ease of attentional disengagement from the 

same stimuli that were also used to assess affective modulation of memory. 

Comparing negative to neutral pictures, positive going effects were found in 

attentional disengagement, discrimination index, remember rate and old/new 

effects between 500-800 milliseconds. All these measures were consistently 

increased for negative compared to neutral pictures, suggesting an association 

between increased attention to affective material and increased recognition 

memory as assessed by behavioural and electrophysiological measures. 

However, the picture that emerges when considering the difference between 

positive and neutral stimuli is a more complicated one. Positive pictures 

elicited higher mean reaction times in the attentional disengagement task than 

neutral pictures, but the difference did not reach significance. However, 

recognition memory performance as measured by discrimination index Pr was 

significantly lower for positive than for neutral pictures, an effect in the 
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opposite direction of the non-significant trend seen in attentional 

disengagement. The proportion of remembered items, however, followed the 

pattern seen in attention scores, with negative pictures being recollected 

significantly more than neutral pictures and no significant difference between 

positive and neutral pictures, although the direction of mean difference 

matches for attention scores and remember rates. The ability of affective stimuli 

to preferentially capture attention is therefore associated with an increased role 

of recollection in recognition memory but not with memory performance, as 

measured by discrimination index, itself. Consistent with the negativity bias 

seen in attention capture and recollection, there is also a negativity bias in the 

old/new effects in the 500 to 800 millisecond time window, the proposed 

neural correlate of recollection. Taken together, the results of the present study 

show that increased attention to affective stimuli is not causally linked to 

recognition memory performance but rather to a modulation of memory 

quality, i.e. a higher rate of recollection. Conversely, this leads to the conclusion 

that increased memory performance for affective stimuli is driven by factors 

other than increased attention and future research must address the question of 

the nature of these factors. 

The relationship between affective stimulus content, attention and the relative 

contribution of recollection to memory but not overall memory performance 

which was demonstrated here, has implications for the use of affect as a means 

to improve memory, such as in teaching. While increasing the affective salience 
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of material may not aide overall memory performance, it could be a useful tool 

for increasing recollection. 

 

9.1.5 Are there gender differences in affective modulation of cognitive 

processes and their electrophysiological correlates? 

Despite big advances towards equality of the genders over the last century, the 

stereotype of the emotional woman, compared to the logical, cerebral man, is 

still pervasive in today’s society. Consistently with this stereotype, women are 

indeed significantly more vulnerable to mood disorder (Kessler, 1993; Maier et 

al., 1999; Weissman, 1977; Weissman, 1996) and emotion research shows that 

women are more emotionally reactive and expressive than men (Bradley, 

Codispoti, Sabatinelli, & Lang, 2001; Kring & Gordon, 1998). It is important to 

note, however, that both mood disorder rates and behavioural measures of 

emotional reactivity and expressiveness are likely to be modulated by learned, 

social factors. A social requirement for being “strong” will likely prevent more 

men than women from accessing mental health services and thus lead to an 

underestimation of the prevalence of mood disorders in the male population. 

The same social norm will likely lead to lower reported emotional reactivity 

where self-report measures are used. Socialisation will likely play a part in 

women’s increased emotional expressivity. But do men and women differ in 

the way their brains process affective information and the way they utilise it in 

cognitive processing? Chapter 7 discusses this question with regard to the 
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measures of affective processing, attentional disengagement and picture 

recognition memory employed by the current study. Women reported overall 

higher arousal levels in response to all picture categories and were more 

extreme than men in their valence ratings, rating negative pictures as more 

negative and positive pictures as more positive than men. This may reflect a 

real underlying gender difference in affective experience or may be the result of 

a social norm for men to attenuate their self-reported affective reactivity. There 

was no gender difference in the slowed attentional disengagement for affective 

stimuli and therefore no evidence that either gender shows more increased 

attention to affective over neutral stimuli than the other. The LPP, which is 

modulated by affective stimulus content, showed topographical differences 

between men and women, indicating the contribution of different neural 

generators. Size differences in the LPP effect were also found, with women 

showing significantly larger LPP effects for positive than for negative pictures 

and no significant difference between the positive and negative condition in 

men. This result is a reversal of Syrjänen and Wiens’ (2013) recent finding of 

larger LPP effects for positive over negative findings in males but not females. 

The apparent contradiction likely arises from their inclusion of pictures of 

sexual content in the positive stimulus set, which are known to be processed 

differentially by men and women (Bradley, Codispoti, Sabatinelli & Lang, 

2001). For non-sexual pictures, women show a positivity bias in LPP effects that 

is absent in men. 
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One of the important questions relating to gender differences in affect is 

whether any such difference affects cognitive processes and if so, in what 

manner. In terms of behavioural performance, no evidence of a gender 

difference was found in the present study. Women and men did not differ 

significantly in recognition memory in terms of their discrimination indices or 

the relative contribution of recollection to recognition. There was evidence of a 

strategic difference however, with men showing overall significantly increased, 

i.e. a more liberal response bias than women. The gender difference on these 

measures was unaffected by affective picture content, however, showing a 

general difference in recognition memory response strategy rather than a 

gender difference in affective recognition memory. 

 In the absence of gender differences in the affective modulation of behavioural 

recognition memory performance, any electrophysiological differences found 

point to compensatory differences that ensure similar levels of functioning 

despite underlying physiological or anatomical differences between the sexes 

(De Vries, 2004). Such electrophysiological gender differences could indeed be 

shown for the ERP correlates of recognition memory. In females, despite 

increased behavioural memory performance for affective over neutral pictures, 

no affective modulation of the old/new effects in the 300 to 500 or the 500 to 

800 millisecond time windows could be shown. Males did not show an affective 

modulation of the early frontal old/new effect either but showed increased 

old/new effects in the 500 to 800 millisecond time window compared to neutral 

or positive pictures. The pattern found for men is consistent with a larger 
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contribution of recollection to the recognition of affective compared to neutral 

stimuli, which was also found in remember/know judgements. However, 

given the lack of a gender difference in remember/know judgement patterns, 

the absence of these affective modulations in women is puzzling. In the 800 to 

1500 millisecond time window, there was evidence of a late right-frontal effect 

for neutral pictures only in women and for both neutral and negative but not 

positive pictures in men. Men but not women showed a negativity bias in 

old/new effects in the recollection time window, while the electrophysiological 

correlates of post-retrieval processes were modulated by positive affect 

selectively in men, compared to the affective modulation for both negative and 

positive pictures in women. In other words, there is no clear negativity or 

positivity bias in either gender as is often postulated but rather differential 

effects of affective content of different valence on the ERP correlates of different 

memory processes.    

The gender differences in electrophysiological response demonstrated here 

emphasise the crucial importance of accounting for gender in gaining a full 

understanding of the neurofunctional implementation of cognitive and 

affective processes. While many brain imaging studies routinely ensure a 50-50 

gender split in participant samples, results are likely to be skewed by 

subsequent averaging. Certainly in the case of the neural correlates of affective 

memory investigated here, averaging across the genders produces results that 

are representative of neither gender. To gain useful insights into the neural 

correlates of affective cognition, gender should always be considered as a 
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factor. Only where a gender difference has been explicitly ruled out should 

whole sample averages be reported. This important conclusion leads to a great 

number of possible future directions in research. One very interesting question, 

for example, would be whether gender differences in the neural 

implementation of affective memory generalise to memory for non-affective 

material. Repeating now classic demonstrations of the electrophysiological 

correlates of familiarity and recollection with a between subjects gender factor 

for example could establish whether these are universal across genders or 

whether the correlates typically reported represent an average of two 

temporally or topographically different correlates from the two genders.  

 

9.1.6 Is there evidence for a genetic influence on affective cognition and its 

electrophysiological correlates? 

In recent years, there has been increasing evidence that small genetic 

differences such as SNPs play a role in individual differences in vulnerability to 

psychiatric disease. These differences are likely based on underlying differences 

in brain function and behaviour according to genotype. As Chapter 2.2 

discusses, a number of SNPs have been shown to modulate affective processes 

and memory performance and their neural correlates in healthy populations. 

One such genetic difference in particular, the val66met polymorphism in the 

BDNF gene, has been shown to be closely linked to both differences in affective 

processing and cognition. Since these two domains are modulated by BDNF 
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genotype individually, it was hypothesised that affective cognition, meaning 

the modulation of cognitive processes by affective content, would also differ by 

BDNF genotype.    

The present experiments showed no significant differences between Val/Val 

homozygotes and Met-carriers in depression or trait or state anxiety. Met-

carriers gave significantly more increased arousal ratings in response to 

negative compared to neutral pictures than Val/Val homozygotes but showed 

no difference in attentional disengagement or LPP effect amplitudes. 

Discrimination index Pr was increased for negative over neutral pictures in 

Val/Val homozygotes but not Met-carriers. The only BDNF val66met 

modulation of the electrophysiological correlates of recognition memory 

occurred in the 300 to 500 millisecond familiarity time window. Here, the early 

mid-frontal familiarity effect was selectively absent for positive pictures in 

Val/Val homozygotes, while it was stronger and more parietally distributed 

than the effects for negative and neutral pictures in Met-carriers (see Figure 

9.5). 
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Figure 9.5 The early mid-frontal old/new effect was selectively absent for positive 
pictures in Val/Val homozygotes. 

 

In sum, the only effects of genotype on behavioural measures acted on the 

difference between negative and neutral pictures: Met-carriers gave higher 

arousal ratings only for negative pictures than Val/Val homozygotes and 

showed no difference in discrimination index for negative and neutral pictures, 

while Val/Val homozygotes performed significantly better for negative than 

neutral pictures. Both genotype groups had higher discrimination index scores 

for neutral than for positive pictures. The difference in old/new effects for 

positive pictures in the 300 to 500 millisecond window did therefore not 

produce a difference in recognition memory.  

The higher levels of arousal Met-carriers reported in response to negative 

pictures add to previous findings that Met-carriers suffer from anxiety 

disorders more frequently than Val/Val homozygotes. Participants in the 
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current study all had anxiety levels well below the threshold for clinical 

diagnosis and yet a higher reactivity to negative pictures was shown for Met-

carriers. This higher reactivity is likely to contribute to a higher vulnerability to 

anxiety disorders, as it means that, given matched environments, Met-carriers 

with experience more stress than Val/Val homozygotes. Interestingly, Met-

carriers’ higher reactivity to negative stimuli was not coupled with a more 

pronounced increase in memory performance for negative compared to neutral 

pictures. Instead, no benefit of negative over neutral pictures could be shown in 

memory performance in this group, while Val/Val homozygotes showed such 

a benefit, as expected. Given the amygdala’s well documented involvement in 

affective memory modulation, this finding is consistent with the reported 

smaller amygdala volume (Montag, Weber, Fliessbach, Elger, & Reuter, 2009) 

and higher age-related amygdala decline (Sublette et al., 2008) in Met-carriers. 

Future research comparing different age groups of Met-carriers and Val/Val 

homozygotes is needed to confirm whether affective reactivity and affective 

memory changes across the lifespan differ by BDNF genotype. 

The demonstration of a difference in the electrophysiological correlates of 

recognition memory according to a genotype difference in a single SNP is 

remarkable. In demonstrates the value of the ERP method in the study of 

individual differences in genotype and their consequences for brain function 

and behaviour. Ultimately, this approach will advance the field of cognitive 

neuroscience by allowing a move away from noisy averages and towards more 

precise, personalised models which will uncover relationships between neural 
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function and behaviour normally masked by the averaging of sub-groups of 

participants whose responses may differ systematically.  

 

9.2 Conclusion 

The overall aim of the present research project and thesis was twofold: To 

increase understanding of affective modulation of cognitive processes and their 

electrophysiological correlates on the one hand and to explore the role of 

gender and genetic differences in this affective modulation on the other. It was 

shown that both sustained attention, as measured by the time required for 

attentional disengagement, and the LPP are modulated by affective content. But 

different patterns of effect strength for negative and positive pictures show 

clearly that the LPP is not, as widely assumed, an electrophysiological correlate 

of sustained attention. Affective picture content was shown to modulate 

recollection but not familiarity. Instead of the left-parietal electrophysiological 

correlate of recollection typically reported for words, the present study showed 

a fronto-central recollection effect for pictures. Consistent differences between 

reported IAPS standard ratings and the valence and arousal ratings obtained 

from participants in the present experiments highlight the need for participant 

self-report as part of any experiment using IAPS stimuli, as well as the more 

general need for a new, more controlled affective picture stimulus set. 

Also reported here are two novel demonstrations of individual differences in 

affective modulation of recognition memory. The affective modulation of the 



Chapter 9: General Discussion 
 

- 264 - 
 

late right-frontal ERP effect differs by gender but is not associated with a 

behavioural gender difference. Comparisons of BDNF Val/Val homozygotes 

with Met-carriers found behavioural memory differences for negative pictures 

but a genotype difference in the modulation of the familiarity effect for positive 

pictures. Despite being limited by practical constraints on sample sizes, the 

present study demonstrates the utility of event-related potentials in exploring 

individual differences in affective and cognitive processing, as well as the need 

for a better understanding of individual differences in affect and cognition. 
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