
M I X E D O R D E R H Y P E R - N E T W O R K S F O R F U N C T I O N

A P P R O X I M AT I O N A N D O P T I M I S AT I O N

kevin swingler

Doctor of Philosophy

Computing Science and Mathematics

University of Stirling

May 2016

Kevin Swingler: Mixed Order Hyper-Networks for Function Approximation and Optimisation, Doctor

of Philosophy,©May 2016

A B S T R A C T

Many systems take inputs, which can be measured and sometimes controlled, and outputs,

which can also be measured and which depend on the inputs. Taking numerous measurements

from such systems produces data, which may be used to either model the system with the goal

of predicting the output associated with a given input (function approximation, or regression)

or of finding the input settings required to produce a desired output (optimisation, or search).

Approximating or optimising a function is central to the field of computational intelligence.

There are many existing methods for performing regression and optimisation based on

samples of data but they all have limitations. Multi layer perceptrons (MLPs) are universal

approximators, but they suffer from the black box problem, which means their structure and the

function they implement is opaque to the user. They also suffer from a propensity to become

trapped in local minima or large plateaux in the error function during learning. A regression

method with a structure that allows models to be compared, human knowledge to be extracted,

optimisation searches to be guided and model complexity to be controlled is desirable. This

thesis presents such as method.

This thesis presents a single framework for both regression and optimisation: the mixed

order hyper network (MOHN). A MOHN implements a function f : {−1, 1}n → R to arbitrary

precision. The structure of a MOHN makes the ways in which input variables interact to

determine the function output explicit, which allows human insights and complexity control

that are very difficult in neural networks with hidden units. The explicit structure representation

also allows efficient algorithms for searching for an input pattern that leads to a desired output.

A number of learning rules for estimating the weights based on a sample of data are presented

along with a heuristic method for choosing which connections to include in a model. Several

methods for searching a MOHN for inputs that lead to a desired output are compared.

Experiments compare a MOHN to an MLP on regression tasks. The MOHN is found to

achieve a comparable level of accuracy to an MLP but suffers less from local minima in the error

function and shows less variance across multiple training trials. It is also easier to interpret and

combine from an ensemble. The trade-off between the fit of a model to its training data and

that to an independent set of test data is shown to be easier to control in a MOHN than an MLP.

A MOHN is also compared to a number of existing optimisation methods including those

using estimation of distribution algorithms, genetic algorithms and simulated annealing. The

MOHN is able to find optimal solutions in far fewer function evaluations than these methods

on tasks selected from the literature.

iii

A C K N O W L E D G M E N T S

I’ve been supported in writing this work by my wife Maxine who put up with my late nights in

the office, especially during the final stages. My kids have little idea what Daddy does instead

of coming home to feed them fish fingers, but their smiling little faces kept me going all the

same. Thank you Sam and Jamie. My parents have been a great help, both now by looking after

the kids and throughout my life by encouraging me to always learn and explore.

My supervisors, Prof. Leslie Smith and Prof. Amir Hussain deserve particular thanks and I’d

further like to thank David Cairns, Sandy Brownlee, John McCall, Amos Storkey, Jerry Swan

and Bruce Graham for various advice, discussions and help. In fact, I doubt that there is a single

member of staff in the Computing Science department at Stirling who hasn’t made this work a

little bit better in one way or another.

iv

P U B L I C AT I O N S

This thesis has produced ten peer reviewed publications. There is also one further paper in

preparation, which compares MOHNs to EDAs.

1. [125] Kevin Swingler, Leslie S. Smith. On the capacity of Hopfield neural networks as

EDAs for solving combinatorial optimisation problems. In Proc. IJCCI (ECTA), pages

152-157. 2012: Selected as invited paper for special issue journal.

2. [132] Kevin Swingler, Leslie S. Smith. Mixed order associative networks for function

approximation, optimisation and sampling. In Proc. ESANN 2013, 21st European Symposium

on Artificial Neural Networks, Proceedings: Selected as invited paper for special issue journal.

3. [134] Kevin Swingler, Leslie S. Smith. Training and making calculations with mixed order

hyper-networks. Neurocomputing, (141) pages 65-75, 2014

4. [133] Kevin Swingler, Leslie S. Smith. An analysis of the local optima storage capacity of

Hopfield network based fitness function models. TCCI Special Issue. 2014

5. [126] Kevin Swingler. A Walsh analysis of multilayer perceptron function. In Proc. IJCCI

(NCTA), 2014: Shortlisted for best student paper

6. [129] Kevin Swingler. Opening the Black Box: Analysing MLP Functionality Using Walsh

Functions, Studies in Computational Intelligence, 2016

7. [128] Kevin Swingler. Local Optima Suppression Search in Mixed Order Hyper Networks,

Proc. UKCI, 2015

8. [127] Kevin Swingler. A Comparison of Learning Rules for Mixed Order Hyper Networks,

In Proc. IJCCI (NCTA), 2015: Winner of best student paper

9. [130] Kevin Swingler. Structure Discovery in Mixed Order Hyper Networks, Big Data

Analytics, 1. 2016

10. [131] Kevin Swingler. High Capacity Content Addressable Memory with Mixed Order

Hyper Networks, Studies in Computational Intelligence, in press

These papers are available to download from www.mixedorder.net, which is a site created by

the author as a resource for researchers interested in this field. Other outputs from the thesis are

also available at the site, including the slides from conference talks, Java code for implementing

a MOHN and its attendant methods and short descriptions of the methods and animations of

the algorithms in action.

v

C O N T E N T S

List of Figures xi

List of Tables xvi

i introduction 1

1 introduction 2

1.1 Setting the Scene . 2

1.2 Scope . 3

1.2.1 Notation . 3

1.3 Thesis . 4

1.4 Plan of the Thesis . 5

2 literature review 6

2.1 Existing Work . 6

2.1.1 Statistical Learning . 6

2.1.2 Variable Selection . 9

2.1.3 Regression Methods . 10

2.1.4 Multi Layer Perceptrons . 15

2.1.5 Training, Testing and Validation . 21

2.1.6 Deep Neural Networks . 21

2.1.7 Regression Trees . 22

2.1.8 Basis Functions . 23

2.2 Meta-Heuristic Optimisation . 24

2.2.1 Local Search . 25

2.2.2 Estimation of Distribution Algorithms . 29

2.2.3 Fitness Function Models . 30

2.3 Dynamic Systems . 31

2.3.1 Graphical Models . 31

2.4 Structure Discovery . 38

2.4.1 Linkage and Building Blocks . 38

2.4.2 Bayesian Belief Networks . 39

2.4.3 Multi Layer Perceptrons . 40

2.4.4 L1 Regularisation Methods . 41

2.4.5 Structure Discovery As Variable Selection 42

2.4.6 Hypernetwork and HyperGraph Structure Discovery 43

2.4.7 Structure Learning Summary . 44

vi

contents vii

2.5 Search in Graphical Models . 46

2.5.1 Hopfield Networks . 46

2.5.2 Steepest First Search . 46

2.5.3 Gibbs Sampling . 47

2.5.4 Crossover Methods . 47

2.6 Summary . 48

ii contribution 50

3 mixed order hyper networks 51

3.1 Introduction . 51

3.1.1 Definition and Notation . 51

3.2 Learning Rules . 53

3.2.1 Hebbian Learning . 54

3.2.2 Weighted Hebbian Learning . 54

3.2.3 Regression Rules . 57

3.2.4 Comparing Learning Rules . 60

3.3 Structure Discovery . 61

3.3.1 The MOHN Structure Discovery Algorithm (MSDA) 62

3.3.2 Representing the Probability Distribution Across Weights 63

3.3.3 Updating the Weight Picking Distributions 64

3.3.4 Distribution over Neurons . 66

3.3.5 Learning Rules for the Weights . 70

3.3.6 Regularisation and Weight Removal . 71

3.3.7 The Full Algorithm . 72

3.3.8 Structure Discovery for Content Addressable Memories 72

3.3.9 Monitoring the Learning Process . 74

3.3.10 Setting the Hyperparameters . 74

3.3.11 Analysis of the Algorithm . 76

3.4 Network Dynamics . 78

3.5 MOHNs and Local Search . 80

3.5.1 Random Restart Hill Climb . 82

3.5.2 Weight Satisfaction Search . 83

3.5.3 Iterated Local Search . 83

3.5.4 Local Optimum Suppression Search . 84

3.5.5 Simulated Annealing . 86

3.5.6 Choosing a Search Method . 89

3.6 Network Analysis . 89

3.6.1 Complexity and Regularisation . 89

contents viii

3.6.2 Visualising Networks . 92

3.6.3 Network Summary Visualisation . 93

3.7 Comparison with Existing Work . 94

3.7.1 Function Learning . 94

3.7.2 Structure Discovery and Feature Detection 94

3.7.3 Dynamic Systems . 97

3.7.4 Heuristic Search . 97

3.8 Summary . 98

4 experiments and analysis 100

4.1 Introduction . 100

4.1.1 Functions and Datasets . 100

4.2 Experimental Results . 104

4.2.1 Fully Connected MOHNs . 104

4.3 Sparse Networks and Sparse Samples . 107

4.3.1 Comparing with a Multilayer Perceptron 107

4.3.2 Experiments . 109

4.3.3 Experimental Setup . 109

4.3.4 Training Speed, Variance and Local Minima 111

4.3.5 Learning Random Pyramid Functions . 117

4.3.6 Varying the Number of Inputs . 117

4.3.7 Error Descent Rate . 119

4.3.8 Conclusion . 122

4.4 Structure Discovery Experiments . 122

4.4.1 Graph Colouring Function . 124

4.4.2 Comparing The Lasso and SGD Learning During Structure Discovery . 128

4.4.3 Learning Under Noisy Conditions . 130

4.5 Content Addressable Memories . 132

4.5.1 Hebbian Learning . 133

4.5.2 Improving Capacity with Structure Discovery 137

4.5.3 Discussion . 138

4.5.4 Weighted Hebbian Learning . 138

4.5.5 Linkage Order and Network Capacity . 140

4.6 Constraint Learning . 142

4.6.1 Energy Function Regression Learning . 144

4.6.2 Visualising Network Structure . 146

4.7 Network Search Experiments . 148

4.7.1 Hamming Based Functions . 148

4.7.2 K-Bit Trap Functions . 149

contents ix

4.8 Measuring Function Complexity . 150

4.8.1 Complexity and Training Example Requirements 151

4.8.2 Conclusion . 153

4.9 Consumer Profile Data . 154

4.10 Clothing Mail Order Case Study . 154

4.10.1 Model Training . 154

4.10.2 Results . 156

4.10.3 Further Pruning . 157

4.10.4 Gaining Knowledge from the Network 157

4.10.5 Comparing Ensemble Members . 159

4.10.6 Comparing a Multi Layer Perceptron . 161

4.11 Comparing MOHNs with EDAs . 166

4.11.1 General Experimental Methods . 166

4.12 Comparing MOHNs and BMDA . 167

4.12.1 Learning the Quadratic with the Lasso 168

4.12.2 Reducing Evaluations Further . 169

4.12.3 Using Structure Discovery to Reduce Evaluations Further 170

4.13 Comparing Structure Discovery with Markov Random Fields 172

4.13.1 Experiments comparing DEUM with a MOHN 174

4.13.2 Multi-Modal Functions . 174

4.13.3 Experimental Setup . 174

4.13.4 Clique Finding with The Lasso . 175

4.14 Ising Spin Glass Learning . 177

4.14.1 Learning Structure with The Lasso MOHN 177

4.14.2 Finding the Optimal Spin Configuration 178

4.14.3 Discovering Ising Structure . 179

4.14.4 Reducing the Sample Size Further . 181

4.14.5 A Larger Network . 184

4.14.6 Comparing MOHNs to MARLEDA . 185

4.14.7 Comparing MOHNs to sDEUM . 185

4.14.8 Learning Ising Models with an MLP . 188

4.15 Comparing MOHNs to Boltzmann Machine EDAs 189

4.15.1 Learning the K-Bit Trap with an MLP . 191

4.16 Conclusions . 196

4.16.1 Further Development . 196

iii summary and conclusions 197

5 conclusions and future directions 198

contents x

5.1 Future Directions . 198

5.1.1 Real Valued MOHN . 198

5.1.2 Heuristic Optimisation . 199

5.1.3 Other Possibilities . 200

5.2 Conclusions . 201

5.2.1 Main Contribution . 201

5.2.2 Other Results . 202

Bibliography 204

L I S T O F F I G U R E S

Figure 2.1 A multilayer perceptron with four input neurons, four hidden neurons

and one output neuron. Bias weights are not shown. 16

Figure 2.2 A four neuron HN with units Xi and weights Wi, j. 33

Figure 2.3 A restricted Boltzmann machine with four visible and four hidden units. 36

Figure 3.1 An example four neuron MOHN with sparse connections. The triangle

has a connection set I = {1, 2, 4} and the square has I = {1, 2, 3, 4}. The

circles labelled X1 to X4 indicate the inputs and there is no explicit output

node. 52

Figure 3.2 Probability of accepting a change by the size of that change at various

temperatures during simulated annealing using equation 3.40. T varies

from 20 (the flat line) to 1/20 (the step). 88

Figure 3.3 An example visualisation of the weights of a MOHN. 93

Figure 4.1 A 5× 5 Ising model with the toroidal interactions and a single example

interaction, J2,7 shown. All other interactions, Ji, j connect each Xi with X j

where a connection is shown. Note that Ji, j = J j,i and is only included as

a single edge. 103

Figure 4.2 Validation error trace of 50 attempts at learning a concatenated XOR

function with a MOHN (blue) and an MLP (red). The MLP learns more

slowly, with more variance and with fewer runs reaching the minimum

error. 114

Figure 4.3 The mean and one standard deviation of training time for an MLP and

four different MOHN learning rules as network size varies. All models

were trained on noisy data from functions with four randomly placed

local maximum. Each data point is calculated from 50 trials. 120

Figure 4.4 The mean and one standard deviation of test error for an MLP and four

different MOHN learning rules as network size varies. All models were

trained on noisy data from functions with four randomly placed local

maximum. Each data point is calculated from 50 trials. 121

Figure 4.5 Training and validation error during training of an MLP and a MOHN,

the latter using SGD with and without a parity weight initialisation. . . 123

xi

LIST OF FIGURES xii

Figure 4.6 The weights from a MOHN trained on samples from a graph colouring

problem fitness function. The enlarged examples show parts of the learned

implementation of the 1-of-4 encoding used to represent the colour of a

node. 125

Figure 4.7 Mean and two standard deviation range of the validation error over 100

trials learning the graph colouring problem fitness function with an MLP

(top, red line) and a MOHN using MDSA and SGD (lower, blue line). . . 127

Figure 4.8 An example solution of a small graph colouring problem created by

learning the function with a MOHN and then settling the MOHN to an

attractor. 128

Figure 4.9 Validation error during structure discovery using SGD and a t-test to

remove weights (top blue line) and the lasso to learn and remove weights

(lower red line). Both lines represent an average over 100 trials. 129

Figure 4.10 Median, inter quartile range and full range of the time in milliseconds

taken by SGD and the lasso to find the correct structure for the 5-bit trap

over 30 inputs. 130

Figure 4.11 A sample of outputs from the 4-bit trap function, plotted against the noisy

values used to test the MSDA. Noise is normally distributed with a mean

of zero and a standard deviation of 0.05. 131

Figure 4.12 Mean training time in milliseconds over 25 runs learning the 4-bit trap

function for network sizes from 4 to 19 traps and at four different levels

of noise. The red line with x markers shows the size of the search space

up to order 4 connections. 132

Figure 4.13 Experimental mean and range of capacity of a second order MOHN

(equivalent to a Hopfield network) (circles and error bars). The minimum

weak capacity, n
2 ln n (red line) and the minimum capacity, n

4 ln n (green

line), both according to [141]. 134

Figure 4.14 Experimental mean and range of capacity of a MOHN fully connected at

orders 1,2,3 (circles and error bars). The weak lower bound on capacity,
n2

12 ln n (red line) and the lower bound capacity, n2

20 ln n (green line), both

according to [141]. 135

Figure 4.15 Experimental mean and range of capacity of a MOHN fully connected at

orders 1,2,3,4 (circles and error bars). The weak lower bound on capacity,
n3

48 ln n (red line) and the lower bound capacity, n3

84 ln n (green line), both

according to [141]. 135

LIST OF FIGURES xiii

Figure 4.16 Experimental mean and range of capacity of a MOHN fully connected

at orders 1,2,3,4,5 (circles and error bars). The weak lower bound on

capacity, n4

240 ln n (red line) and the lower bound capacity, n4

432 ln n (green

line), both according to [141]. 136

Figure 4.17 Experimental mean and range of capacity of a MOHN fully connected

at order six alone (circles and error bars). The weak lower bound on

capacity, n5

1440 ln n (red line) and the lower bound capacity, n5

2640 ln n (green

line), both according to [141]. 136

Figure 4.18 The written digits from 0 to 9 as 25 bit patterns to be used to test the

dynamic structure discovery algorithm applied to a CAM. 137

Figure 4.19 The mean and inter-quartile range of the capacity of second order MOHN

networks of varying sizes trained with weighted Hebbian learning and

the theoretic capacity of similar HNNs trained with simple Hebbian

learning (single line). 140

Figure 4.20 Histograms showing the frequency of the highest linkage order across

10,000 trials, organised by Hopfield network capacity. Networks are

trained with the standard Hebbian rule. Networks with capacity greater

than 5 require a number of units greater than that for which it is practical

to run multiple Walsh decompositions. 141

Figure 4.21 Random start points and their associated attractors in a MOHN trained

using a fitness function that measures vertical symmetry. 143

Figure 4.22 Random start points and their associated attractors in a MOHN trained

using a fitness function that measures horizontal consistency. 143

Figure 4.23 As the number of learning iterations increases, the validation error

decreases as does the number of spurious attractors in the model. 144

Figure 4.24 The mean and standard deviation of the capacity of a fully connected

Hopfield Network trained with the Hebb rule and stochastic gradient

descent. 145

Figure 4.25 The weight structure of a MOHN after learning a 5-bit trap problem

using MSDA. The groupings of the weights show how the trap function

is made up of the sum of six independent functions concatenated across

the inputs. Each function acts on a non-overlapping subset of the inputs

and is fully connected within that set. 146

Figure 4.26 The structure of a MOHN during MSDA as a 5-bit trap problem is learned.

The number below each column indicates the number of iterations of

MSDA at which the snapshot was taken. Positive weights are green and

negative are red. 147

LIST OF FIGURES xiv

Figure 4.27 Weight counts at each order during MSDA for a 5-bit trap problem. Each

line represents a weight order and shows the number of weights of that

order the network contained at each iteration of MSDA. The far right

hand points show the correct configuration. 148

Figure 4.28 The training and test correlation between a model and the target data

as sample size grows when the model is under fit, plotted for models

of different complexity. k is the number of local maxima in the target

function, which is used as the complexity measure. 153

Figure 4.29 RMSE measures across 10 validation folds for training, validation and

test data sets and of the average MOHN on the test set. Note that the Y

axis does not start at zero, which makes the differences easier to see. . . 156

Figure 4.30 The seven attractor points of the customer profile optimisation search

plotted as predicted spend against the number of times the attractor was

found. 159

Figure 4.31 The weights of the intersection of all ten MOHNs in the clothing retailer

example. Green indicates positive weights, red negative and the brighter

the colour, the larger the size of the weight. 163

Figure 4.32 RMSE measures across 10 validation folds for training and test data for

the average output of an MLP ensemble and an average MOHN model.

Note that the Y axis does not start at zero, which makes the differences

easier to see. 164

Figure 4.33 MOHN predicted output plotted against actual output from the data in a

test set. 164

Figure 4.34 MLP predicted output plotted against actual output from the data in a

test set. 164

Figure 4.35 MLP predicted output plotted against MOHN predicted output from the

data in a test set, showing the close agreement between the two. 165

Figure 4.36 Train and test correlation for a fixed sample and a MOHN with incre-

mentally added weights in addition to those needed to represent the

function. OLS train and test correlation degrade at the same rate, SGD

overfits, keeping the train correlation near 1 as the test correlation drops. 170

Figure 4.37 Number of fitness function evaluations required to optimise the quadratic

fitness function given in [103]. The top line shows the figures for BMDA

taken from [103], and the other two are different approaches to training a

MOHN. 172

Figure 4.38 Comparing the accuracy and size of models with weights learned using

clique finding and MSDA. 175

LIST OF FIGURES xv

Figure 4.39 Comparing the accuracy and size of models with weights learned using

OLS and the lasso from fully connected cliques. 176

Figure 4.40 Training and Validation RMSE during MSDA learning of a 100 node Ising

model from 3000 training samples. 180

Figure 4.41 Weight counts at different orders during MSDA learning a 100 node Ising

model. 181

Figure 4.42 Training and Validation error during MSDA learning of a 100 node Ising

model with 2000 data points. The MSDA was limited to searching first

and second order weights only. 182

Figure 4.43 Weight count during MSDA learning a 100 node Ising model at order

two with 2000 data points. 182

Figure 4.44 The weights of a 100 node Ising model learned by a MOHN using

structure discovery. Each row represents a weight and its connections to

nodes, which are represented in columns. The resulting image has three

diagonal lines of connections. The left hand line shows nodes connected

to their immediate horizontal neighbour. The middle row shows the

vertical connections to a node below and the final, smaller line shows

that the top row of nodes is connected to the bottom row. 183

Figure 4.45 Detail of the weight chart and connections from a single node, X1 in a

nine node 2D Ising model. Compare this to the top rows of figure 4.44 to

see where the connection from top to bottom (D in this figure) is shown. 184

Figure 4.46 Training and validation error during MSDA learning of a 125 node 3D

Ising model with 5000 data points. 187

Figure 4.47 Weight count during MSDA learning of a 125 node 3D Ising model with

5000 data points. 187

Figure 4.48 Average number of fitness evaluations (log scale) required to find the

first optimal solution to a 3D Ising model by different algorithms. 187

L I S T O F TA B L E S

Table 3.1 Hyperparameters suitable for inclusion in a grid search for the MSDA

and some suggested values or ranges. n is the number of input variables

and m is the number of training examples. 76

Table 3.2 Comparing MSDA with sDEUM, greedy L1 and evolving hypernetworks. 99

Table 4.1 An indication of the speed at which time and memory requirements grow

for training fully connected MOHNs. 105

Table 4.2 The Walsh decomposition and non-zero weights of a fully connected

MOHN trained on a full sample from the function space. 106

Table 4.3 Mean and standard deviation of error and average number of epochs to

completion of 50 MLPs and 50 MOHNs trained on a 20 input version of

the concatenated XOR function. 114

Table 4.4 Average test error over 50 trials of an MLP learning a 20 input concatenated

XOR function from data sets of sizes from 500 to 2000. 115

Table 4.5 Average correlation between the correct function output and the model

output over 200 random structured functions for an MLP and two

differently structured MOHNs. 117

Table 4.6 The average number of restarts needed to find the global maximum

across 1000 trials of randomly generated functions. On average, functions

contained 148 local maxima. 149

Table 4.7 The average number of restarts made when searching for a single global

optimum in a MOHN trained on a 5-bit trap function. 150

Table 4.8 Correlations between different measures of MOHN complexity. 151

Table 4.9 Test and train error after removing weights of successively lower order

and the size of the resulting network. The final row is a standard first

order linear regression. The error differences look small, but make a

significant difference to prediction accuracy. 157

Table 4.10 Proportional distance between each pair in an ensemble of ten order five

limited MOHNs measured using equation 4.13 160

Table 4.11 Proportional distance between each pair in an ensemble of ten second

order limited MOHNs measured using equation 4.13 161

Table 4.12 Average iterations of simulated annealing and high order search on a

MOHN representation of an Ising model. 179

xvi

LIST OF TABLES xvii

Table 4.13 Comparing the number of fitness function evaluations used to learn Ising

models of 100 and 400 nodes using DEUM and MOHN structure discovery.185

Table 4.14 Unique fitness function evaluations and time required to find the global

optimum in different k-bit trap functions using a MOHN and the figures

presented in [108] and [109]. No data is available for the RBM-EDA

performance on the 5-bit trap problem over 25 bits. 191

Table 4.15 Comparing the mean, variance and maximum of the validation correlation

when training MLPs on the k-bit trap problem with mini batches of 20

compared to training with SGD (batch size of 1). 194

L I S T O F A L G O R I T H M S

1 General Steps Common to Selected Structure Learning Algorithms 45

2 Online MOHN Learning with Stochastic Gradient Descent 59

3 MOHN Structure Discovery Algorithm (MSDA). 63

4 Algorithm for picking a new set of weights to add to an existing MOHN 69

5 Weight update algorithm for SGD learning . 70

6 Weight Update Algorithm for Lasso learning . 70

7 Full MOHN Structure Discovery Algorithm. 72

8 Structure discovery algorithm for content addressable memory. 73

9 Settling a trained MOHN to an attractor point 79

10 Random Restart Hill Climb . 83

11 High Order Weight Satisfaction Search . 84

12 ILS with High Order Kicks . 85

13 ILS with Parity Preserving Kicks . 85

14 Local Optima Suppression Search. 86

15 Simulated Annealing on a MOHN . 88

16 Testing the capacity of a MOHN . 133

17 Testing the capacity of the MOHN Learning Rule 139

18 Settling a trained MOHN to an attractor point across nominal variables 158

19 Bron-Kerbosch Maximal Clique Finding Algorithm 173

xviii

L I S T O F S Y M B O L S A N D A B B R E V I AT I O N S

The following conventions are used throughout this thesis. Random variables or vectors of

random variables are denoted using upper case roman letters. Particular instantiations or

realisations of a variable are denoted by its lower case equivalent. Sets are denoted with bold

upper case roman letters and their members are represented with the same letter in lower case,

with an index subscript. Indices are always lower case letters. Parameters, both statistical and

control are denoted using Greek characters.

X = X1 . . .Xn The vector of inputs to a function

n The number of inputs to the function (the size of X)

i i is always used to index inputs (either input variables or their

corresponding neurons)

x = x1 . . . xn, xi ∈ {−1, 1} Realisations of X

Y The output from a function, e.g. Y = f (X)

y A realisation of the output required from a function

D = D1 . . .Dm The data used to build a function approximation is held in a

multiset, D of size m

x, (x, y) ∈ D Each element in D is a (vector, scalar) pair, (x, y) or, in the case

where the function to be learned is a content addressable memory,

an input vector, x.

〈a〉 Angled brackets denote an average (the mean, unless otherwise

stated) or expected value.

M = (X, W) Defines a MOHN with inputs X and a weight set W

W j = (ω j, I) Each weight in Wj is a pair consisting of a scalar valued weight,ω j

and a set of neuron indices, I j that define the connected neurons.

j j is always used to index weights in a MOHN.

f (X) A function that generates data from which a model of f (X) will

be built

f̂ (X) An approximation to f (X) made by a statistical model

Ŷ The estimate of the value Y made by f̂ (X)

xix

A B B R E V I AT I O N S

MOHN Mixed Order Hyper Network

MSDA MOHN Structure Discovery Algorithm

SGD Stochastic Gradient Descent

RMSE Root mean squared error

OLS Ordinary Least Squares

The lasso The least absolute shrinkage and selection operator

LOSS Local Optima Suppression Search

WSS Weight Satisfaction Search

SA Simulated Annealing

RRHC Random Restart Hill Climb

ILS Iterated Local Search

MLP Multi Layer Perceptron

HN Hopfield Network

MRF Markov Random Field

DEUM Distribution Estimation Using Markov random fields

GA Generic Algorithm

BOA Bayesian Optimisation Algorithm

hBOA Hierarchical Bayesian Optimisation Algorithm

BBN Bayesian Belief Network

xx

Part I

I N T R O D U C T I O N

1
I N T R O D U C T I O N

1.1 Setting the Scene

Many real world systems can be characterised as a function that maps a number of inputs onto

an associated output. The system might be a machine whose settings affect product quality,

or the way the demographics of a customer affect how much they spend, or how the changes

in a schedule affect its efficiency, or even the effectiveness of a strategy in a sports match. If

data that measures the inputs and outputs can be collected, then its analysis may reveal useful

insights about the system.

Statistical models of these functions help us to understand the system behind them, predict

outcomes for known inputs and discover patterns of inputs that lead to desired outcomes.

Sometimes a function that emulates the real world can be programmed, but it is often the case

that the only resource available is a sample of data describing input, output pairs. Alternatively,

a computer model of a function may be available but costly to evaluate. Two aspects of the field

of computational intelligence are concerned with learning and searching functions. Machine

learning (or statistical learning, or data mining) is concerned with the task of learning a function

from a sample of data. This process is known as regression or, more generally, predictive

analytics. Heuristic optimisation is concerned with finding input values that optimise a desired

quality in the output of a function (usually minimising or maximising it). This is often known

as prescriptive analytics.

Both regression and heuristic optimisation play an important role in many of the sciences,

commerce, engineering, finance, medicine and sport. A large body of research proposing

methods for carrying out these tasks has been generated and active research continues to

investigate methods to improve regression models and find desired outputs using fewer

evaluations of the function.

The main requirement of a model built from data is that it generalises well to data that it has

not seen before. That requires the model to extract sufficient signal from the data while ignoring

the noise. It is often the case that a model that performs very well on the data used to build it

will generalise worse than one that is purposefully limited in its ability to learn from the data it

has. A good model, then, is one which is powerful enough to capture the essence of the system

that generated the data, but not so powerful that it captures noise and the effects of sampling.

Each input variable has an effect on the output. Taking any input pattern and changing the

value of a single variable in it will cause a change in the output. If the size of the change in

2

1.2 scope 3

output is always the same when a given variable is changed by a fixed amount, the relationship

between that variable and the output is linear. If the size of the change in the output following

a fixed change in one variable depends on the values of other variables, then the relationship is

non-linear and we say that the variables involved interact.

Any model has more expressive power when it is able to take into account the interactions

among the inputs as they contribute to the value of the output. If the system that produced

the data involves interactions the model cannot capture, the model will be too simple. If the

model captures interactions that are artifacts of the sample or of noise, it will generalise poorly.

Similarly, a function in which few of the inputs interact to influence the output is generally

easier to optimise than one where many such interactions are present. This thesis presents a

method of performing regression that makes the interactions among input variables explicit. In

the limited scope of functions that map many binary input variables onto a single real valued

output, it presents a method that can represent any function to arbitrary precision, provides

a human readable representation of the input interactions that contribute to the output, and

provides some insight that can be used to find optimal input values.

1.2 Scope

The systems under consideration in this work are of n binary variables that map to a real

valued output, i.e. Y = f (X) where X ∈ {−1, 1}n and Y ∈ R. A single model, the mixed order

hyper network (MOHN) is proposed that may be used for regression (learning f), optimisation

(finding a value of X that maximises Y) or building a content addressable memory (such that

local maxima in f represent stored patterns).

1.2.1 Notation

The input vector is denoted by X and the scalar output is denoted by Y. The number of inputs in

X is n, each one being denoted Xi i = 1 . . . n. Models are built from a training data set of (input,

output) pairs. Let m be the size of that data set. The input data are represented as an m × n

matrix, X. Rows in X represent single training examples and are denoted x j j = 1 . . .m. The

set of output values associated with Y are denoted Y and their individual values are denoted

y j j = 1 . . .m. A single training example is (x j, y j). The predicted value of Y from a statistical

model is Ŷ and a model of f , built from samples (x, y) is denoted f̂ .

The assumption is made that the data are generated from a system in the real world with

an underlying function of its own. Let this function be called the target function, denoted f .

The general assumption is that the data are generated by a mixture of the source function and

1.3 thesis 4

additional unexplained noise so Y = f (X) + ε where ε has a mean of zero. The model is noise

free, so Ŷ = f̂ (X).

1.3 Thesis

This thesis presents mixed order hyper networks (MOHNs) as regression models in f :

{−1, 1}n → R. It also addresses the use of MOHNs as fitness function models in optimisation

tasks. For regression modelling, the primary concern is finding the correct level of bias. For

optimisation the focus is on the trade-off between the quality of the solution and the time (or

number of fitness evaluations) required to find it. MOHNs are shown to have the following

properties:

1. Basis Function: MOHNs form a basis f : {−1, 1}n → R, meaning that all functions in that

domain can be modelled by a MOHN. This means that any MOHN may have zero model

bias.

2. Sparsity: There are functions whose basis representation contains many zero valued

parameters, meaning that such functions may be learned by models with fewer parameters

than are required to define the full basis.

3. Linear Parameter Models: MOHNs are linear parameter models, having all the properties

associated with such models. It has the ability to learn a function from a number of noise

free data points equal in size to the number of parameters in the model, and there are

convex cost functions available for estimating the parameter values;

4. Interpretability: The structure and values of the parameters in a MOHN have a meaning

that is open to human interpretation. This allows networks to be visualised, compared

and (to some extent) produce human readable facts.

Heuristic algorithms for performing two important tasks with MOHNs are proposed:

1. Structure Discovery: An algorithm designed to discover the non-zero parameters in a

MOHN is presented. The algorithm attempts to balance the trade-offs among the number

of data points required, the scope of the parameter search and the speed of learning.

2. Model Search: Algorithms that attempt to make use of the structure of the MOHN to

guide local search are presented and tested.

The thesis also presents experimental evidence to suggest that

1. Non-Linear Regression: For a number of benchmark functions, a MOHN showed

advantages over a multi layer perceptron including finding a lower test error, requiring

1.4 plan of the thesis 5

fewer data points, using fewer training epochs and displaying less variance across a

number of training runs.

2. Fitness Function Models: MOHNs are capable of modelling benchmark fitness functions

and finding the input values that produce the global maximum output of those functions

in fewer evaluations of the fitness function than a number of published state-of-the-art

methods.

These claims are listed again in section 5.2.1 with references to parts of the thesis that prove

or demonstrate them.

1.4 Plan of the Thesis

The rest of this thesis is organised as follows. Chapter 2 reviews the literature on function

modelling, optimisation and graphical models. Chapter 3 introduces mixed order hyper

networks and describes methods for building, training and searching them. Chapter 4 describes

a set experiments designed to test and demonstrate the use of a MOHN. Section 4.9 provides a

case study based on data from a mail order clothing company and section 4.11 compares the

use of a MOHN to a number of other heuristic optimisation methods on problems from the

recent literature. Finally, chapter 5 summarises the work and proposes some further research

directions.

2
L I T E R AT U R E R E V I E W

2.1 Existing Work

A large body of research has addressed the three questions of regression, heuristic optimisation

and content addressable memories. This section describes those that are considered most

relevant to the methods proposed in this thesis and also summarises some of the key concepts

on which they are based.

2.1.1 Statistical Learning

Statistical learning is the process of using data to fit the parameters of a statistical model so that

it displays a desired behaviour. Generally the desired behaviour is to reflect some statistical

properties of the data and is defined in terms of minimising a cost function with respect to those

data. In general, the class and structure of the model is chosen and fixed before the parameters

are fitted but in some cases, parameters are added or removed dynamically during the process

of learning.

2.1.1.1 Cost Function Minimisation

Statistical models are generally built with reference to a cost function and the job of a learning

algorithm is to find a set of parameters for the model that minimise that cost. Common cost

functions measure the error of a model or its likelihood and some cost functions have penalty

terms to control complexity. In some cases, the cost function may be minimised analytically by

setting the derivative to zero and solving the resulting set of equations across the training data.

In other cases, this is not possible and an iterative approach is required, either descending the

gradient of the cost function locally or by other heuristics. In such cases, the partial derivative

of the cost function, C with respect to a given parameter, ω, ∂C
∂ω is calculated to guide parameter

changes.

A common cost function is the mean squared error (MSE), which is the average of the squared

distance between model output and measured output in the data. The average is taken across a

data set, so the same model may have different MSE values for different data sets (training data

6

2.1 existing work 7

and test data, for example). Given a data set with m inputs, x j and associated outputs, y j for

j = 1 . . .m, MSE is calculated as

MSE =
m∑

j=1

(y j − f̂ (x j))
2 (2.1)

2.1.1.2 The Bias, Variance Trade-Off

If the job of a predictive model were to simply minimise a cost function that measured the

distance between the model and each data point in the training set, this could be achieved

by simply using the data as a look-up table. A model has the advantage of being smaller and

faster than such a lookup, but the main advantage of a model is that has the ability to generalise,

producing outputs for input values that were not in the training data.

The training data is a sample from all the possible data (the population) that could be

measured and modelled and any statistical properties that are estimated from it will have some

degree of sampling error. Noise and sampling variation in the data mean that different models

built on different samples have the potential to differ from each other. As sample size grows,

this variation is reduced, but the curse of dimensionality means that the required sample size

grows exponentially with the number of inputs. In high dimensions, training data becomes

sparse and the effect of variation in training samples increases.

A model that learns the training data too specifically is likely to generalise worse than a

simpler model that learns a more parsimonious representation of the data. This is known as

over fitting. Conversely, a model that is too simple may perform poorly on both training and

test data. This is known as under fitting. These concepts contribute to a trade-off between two

qualities of a model known as bias and variance.

Bias and variance both measure the expected value of different contributions to model error

over many different samples of the population. Assume that there is an unknown target function

underlying the data, Y = f (X) and that there is natural variance around the expected value

of Y given any X so that the data satisfies Y = f (X) + ε where ε ∼ N(0, σ) accounts for that

variation. Any given ŷ = f̂ (x) is an estimate of the mean of the output given an input of x.

Across the sampling distribution of a particular model, the expected value of Ŷ will differ from

the true value of Y by an amount known as the bias. Bias is defined as

E[f̂ (x) − f (x)] (2.2)

Bias can be further decomposed into model bias and estimation bias. Model bias is error that

is due to the model form and estimation bias is error that is due to the parameter values. A

model can have low estimation bias (its parameters are correctly estimated) but high model

bias (the model is a poor choice for the data). Models with zero estimation bias, such as the

2.1 existing work 8

results of using ordinary least squares are said to be unbiased. Section 2.1.3 will discuss biased

and unbiased linear approximators.

The sampling distribution of models over which the bias is the expected value of the error

has an associated variance,

E[f̂ (x) − E[f̂ (x)]]2 (2.3)

which measures the variation in output values from models built across all the different possible

samples. The mean squared error (MSE) can be decomposed into a sum of ε, squared bias

and variance. There is a trade-off between how bias and variance contribute to MSE. Bias

can be reduced by fitting a more complex model, but at the expense of increased variance or,

alternatively, variance can be reduced by simplifying or regularising a model at the expense of

an increase in bias.

2.1.1.3 Regularisation

The bias, variance trade-off is managed by controlling the complexity of the model learned

from the data, a process known as regularisation. Regularisation introduces bias to a statistical

model in an attempt to reduce over fitting. Estimation bias can be introduced by ensuring that

the squared error cost function is not completely minimised and model bias can be introduced

by reducing the expressive power of the model, usually be removing parameters.

A statistical model is characterised by a set of parameters and an algorithm for using those

parameters to map an input vector to an output. The algorithm requires the parameters to have

a given structure. For example, linear regression requires a single parameter per input variable,

multi-layer perceptrons expect parameters describing weights connecting one or more layers of

hidden units, and a regression tree algorithm expects a set of branching decisions based on the

input variables. These methods are described in more detail below, but for now, we note that

different models have different restrictions, and so different model bias.

Some types of model have a fixed number of parameters (linear regression on a fixed number

of inputs is an example) but others, such as neural networks, allow a variable number of

parameters to be used. In general, adding more parameters produces a more complex model

and should be expected to reduce bias (up to a point) but increase variance. Restricting the

parameters’ magnitudes can reduce variance, but introduces estimation bias. The L1 norm

measures the sum of the absolute values of the parameters, for example and is used as a

regularisation term in the lasso (least absolute shrinkage and selection operator) [136]. The L2

norm measures the Euclidean length of the parameter vector and is used for regularisation in

ridge regression [61].

Other methods may also be used to achieve some form of regularisation. For example,

methods that iterate over a data set many times to reduce error can keep track of both train and

2.1 existing work 9

validation error and stop when the validation error starts to rise consistently. This is known as

early stopping. Alternatively, the addition of noise or other alterations to the training data can

reduce the risk of over fitting.

The discussion above highlights the notions of model complexity and target function

complexity. Part of the task of balancing the bias/variance trade-off involves finding a degree of

complexity for a model that matches that of the target function. That process is made explicit

by this work.

2.1.2 Variable Selection

In addition to choosing a model with the right bias and a correctly regularised set of parameter

values, it is also necessary to make choices about the input variables to include in a model.

Reasons to reduce the number of variables used include the desire for a simpler, parsimonious

model and the requirement for a data set that is larger than the number of parameters in a

model.

Approaches to feature selection can be separated into two classes. Embedded methods build a

model using all of the variables and use its resulting structure to inform the process of choosing

those to remove. Where model structure is difficult to interpret, feature selection may be done

in an independent pre-modelling step. This approach may be incorporated into an iterative

search in which feature selection and model building are alternated in an attempt to find the

right variables for a given modelling technique. These are known as wrapper methods, [78].

There are a number of greedy methods for adding (and sometimes removing) variables

one at a time in an attempt to reduce the minimised cost function of the resulting model.

Stepwise regression [60] adds variables one at a time based on their correlation with the

output and removes any that are rendered insignificant in an F-test as a result of recently

added variables. Hall [48] proposed a similar correlation based feature selection method, which

includes variables that are correlated with the output but removes variables that are correlated

with those already selected for inclusion in the model.

The max-dependency, max-relevance, and min-redundancy (mRMR) approach [105] to

feature selection uses a measure of mutual information between the input variables and the

output class alongside measures of mutual information between different input variables to

attempt to maximise the dependency of the output on the input while minimising the shared

information (i.e. redundancy) between inputs.

This thesis concentrates on frequentist approaches but there are Bayesian approaches to

feature selection that should also be mentioned. The Bayesian approach treats each parameter

in the model as a random variable subject to a prior. The training data is used to infer the

posterior distribution over each variable. For feature selection, the choice of prior is made in an

attempt to reflect the assumption that many of the parameters have a value of zero. Selecting

2.1 existing work 10

a Gaussian prior over parameter values is equivalent to performing L2 regularisation and a

Laplace prior is equivalent to the L1 regularisation method the lasso. See 2.1.3.3 for more details

on these regularisation methods. A popular prior for Bayesian variable selection, which is

similar to an L0 regularisation (which is a count of the number of non-zero parameters) is the

so-called spike and slab prior [68]. The spike and slab prior is defined as having very low,

uniform probability at all values except zero (the slab) and a high probability at (or around)

zero (the spike) [97]. The prior probability distribution over all possible models is then given as

the product of the spike probability over the excluded parameters times the product of the slab

probability over those that are included. Having defined a prior, the posterior, which is the

probability of the model given the data is calculated using the standard Bayesian approach of

multiplying the prior by the probability of the data, given the model (the likelihood).

Another Bayesian approach of note is automatic relevance determination (ARD), sometimes

called sparse Bayesian learning [92] [100]. The ARD approach attempts to minimise a cost

function that includes a regularisation term that can vary across the model parameters.

This can be achieved using a Gaussian prior with zero mean and a precision term (the

reciprocal of the variance) for each model parameter. Learning involves discovering the

precision hyperparameters associated with each model parameter. High precision indicates

high confidence that the parameter value is at or close to zero and might be excluded.

Greedy methods all suffer when variables are uninformative in isolation but have predictive

power in combination. Take the XOR function as a simple example: neither input is correlated

with the output in isolation but together they define the function space perfectly. To solve this

problem, a method is needed that can consider variable subsets atomically. Genetic algorithms

(GAs) have some ability to solve this problem and have been used to search for optimal feature

sets by a number of authors. For example, Bala et al. [7] use a hybrid GA and wrapper approach

to feature selection. Cantú-Paz [23] compared GAs with three other evolutionary computing

methods, namely Estimation of Distribution algorithms (EDAs), Compact GAs, and Bayesian

Optimisation Algorithms (BOAs) in terms of their ability to perform feature selection.

Ideally, then, feature selection should be seen as integral to the data modelling process

and part of model bias control, a question not just of which variables to include, but which

interactions to model. A representation that makes those interactions explicit and an algorithm

for efficiently exploring which to include is desirable for those reasons.

2.1.3 Regression Methods

The regression methods described here are not restricted to binary valued input variables, but

can be used in that space.

2.1 existing work 11

2.1.3.1 Multiple Linear Regression

Multiple linear regression assumes a linear relationship between a vector, X and a scalar, Y.

It assumes that each variable, Xi in X has an influence on Y that is independent of any other

variable in X. The linear model predicts the expected value of Y at each point in X.

representation A linear combination of X is used to predict the expected value of Y

Ŷ = β0 +
n∑

i=1

Xiβi (2.4)

where the β parameters define the independent contribution of each variable in X. For simplicity

of notation, let X0 = 1 and use vector notation so

Ŷ = X.β (2.5)

The vector X can be the values of the input variables themselves or a new set of feature

variables derived from the inputs. For example, if the input variables to be modelled are

V1 . . .Vp, then a coefficient could be calculated for every product ViV j to allow the model to

take pairwise interactions into account. In theory, every interaction among variable subsets of

all sizes up to n could be modelled but there are 2n such interactions, so in practice the way

that variables are combined to create the input features needs to be managed. Small feature sets

are desirable for reasons of parsimony, efficiency and due to limitations imposed by small data

sets. How variables are combined to form features is a key topic of this thesis.

learning algorithm There are a number of learning algorithms for multiple linear

regression models. The most common is ordinary least squares (OLS), which is defined by its

cost function

C =
1
2

m∑
j=1

(y j − f̂ (x j))
2 (2.6)

Let X be the m× (n+ 1) matrix of training data inputs and Y be the m-vector of target outputs,

then from equation 2.5,

C =
1
2
(Y−Xβ)T(Y−Xβ) (2.7)

and C is minimised where the derivative, ∂C
∂βi

= 0 ∀i. Solving this gives a least squares estimate

for β of

β = (XTX)−1XTY (2.8)

2.1 existing work 12

bias and complexity Least squares is an unbiased estimator for the linear coefficients

[52], that is to say that there is no estimation bias. Computing the OLS coefficients using singular

value decomposition has a complexity of O(mn2) assuming that m > n.

2.1.3.2 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) [152] is an iterative approach to regression learning, which

descends the error function in small steps in response to one training sample at a time, rather

than building a matrix like OLS. Each step is guided by the derivative of the error function, a

learning rate that restricts the size of the step and an optional regularisation term. Regularisation

terms are considered in section 2.1.3.3 and this section considers the simpler case with no

regularisation.

At each step, a single observation (x, y) is taken from the data and a predicted output, f̂ (x) is

calculated using the current set of parameter values, β. The change an individual parameter, βi,

is calculated from the derivative of the cost function, C(f̂ (x), y):

βi ← βi − ηt
d

dβi
C(f̂ (x), y) (2.9)

where 0 < ηt < 1 is a learning rate that can either be fixed to a constant value or reduced over

time. When the cost function is the least squares, C(f̂ (x), y) = 1
2 (f̂ (x) − y)2, the weight update

becomes

βi ← βi − ηt(f̂ (x) − y)xi (2.10)

SGD is discussed in more detail in the context of training neural networks in section 2.1.4.

bias and complexity SGD with the least squares cost function asymptotically approaches

the same result as OLS, but can be regularised by early stopping. It is also possible to add

a regularisation term to the cost function, which is discussed next. SGD has a complexity of

O(mnp) where p is number of passes through the data. As m grows, p may be made smaller.

SGD has the advantage when data sets are large that a small number of passes through the

data are required and, in extremely large data sets, it may be possible to stop early before all of

the data has been processed once (assuming the ordering of the data is not important). This can

make SGD more efficient than OLS for large data sets in terms of time and memory [13].

2.1 existing work 13

2.1.3.3 Shrinkage Methods

Bias can be introduced into linear models using shrinkage methods, which impose a penalty

on the size of the weights. This penalty is expressed as part of the cost function. For example,

ridge regression [83] minimises

C =
m∑

k=1

(yk − f̂ (xk, β))2 + λ
n∑

i=1

β2
i (2.11)

where λ ≥ 0 controls the amount of shrinkage. The ridge regression solution can be found at

β = (XTX + λI)−1XTY (2.12)

where I is the n× n identity matrix.

Another popular regularised learning rule is the lasso (least absolute shrinkage and selection

operator [136]), which aims to minimise the cost function

1
2

m∑
j=1

(y j − f̂ (X j, β))2 + λ
n∑

i=1

|βi| (2.13)

where λ controls the degree of regularisation. When λ = 0, the lasso solution becomes the OLS

solution. With λ > 0 the regularisation causes the sum of the absolute weight values to shrink

such that weights with the least contribution to error reduction can take a value of zero.

The lasso weights cannot be found analytically as equation 2.13 cannot be differentiated, but

a method called least angle regression (LARS) [41] can be used to efficiently calculate the lasso

coefficients across the range of λ values. LARS takes a similar approach to forward stepwise

regression, but adds variables in a way that is not as "all or nothing“. As each new variable is

added, the model is moved towards the least squares fit of the selected variables and the model

residual. At the point where an unused variable is as correlated with the residual as the current

model, that new variable is added and the process continues.

The lasso implementation used throughout this thesis is Lasso4j [44], which is a Java library

based on a cyclical coordinate descent approach [43]. This approach computes solutions along

a path of values for λ, which is very efficient as it is able to make use of warm restarts. Once a

coefficient reaches zero, it need no longer be considered further down the path, making greater

speed ups possible.

bias and variance Ordinary least squares regression is an unbiased estimator, but the

lasso and ridge regression introduce estimation bias. The degree of bias can be controlled by

the λ parameter in equations 2.11 and 2.13, which restricts the size of the coefficients and, in

the case of the lasso, has the effect of causing some coefficients to go to zero. Model bias can be

2.1 existing work 14

controlled by the choice of which variables are combined to form the features, X that form the

inputs to the model. First order multiple linear regression ignores possible interactions among

variables, treating them as independent.

strengths and limitations First order MLR is simple to apply but has limited repres-

entational power. It assumes an independent linear relationship between each input and the

output so the effect of interactions between input variables on the output are ignored.

feature selection For OLS, stepwise regression can be used for feature selection, as

can any pre-modelling method. The lasso has the benefit of forcing some coefficients to zero,

providing a built in feature selection mechanism. Parameters in a model trained with OLS can

be tested for significance by calculating a Z-score

z =
β̂ j

σ̂
√v j

(2.14)

where σ̂ is the variance

σ̂ =
1

m− n− 1

m∑
j=1

(y j − ŷ j)
2 (2.15)

and v j is the jth diagonal element of (XTX)−1. z j follows a t distribution with m− n− 1 degrees

of freedom, which allows the null hypothesis that β j = 0 to be tested.

2.1.3.4 Generalised Linear Models

Multiple linear regression assumes a normal distribution of errors across the output values

associated with a given input and a linear relationship between the inputs and the output

value. Both of these restrictions are relaxed in a generalised linear model (GLM), which allows

the output errors to take any distribution from the exponential family. For example, logistic

regression is a method for mapping input vectors onto class data (a Bernoulli distribution in

the two class case).

representation GLMs take the form of a linear function and a non-linear link function

that maps the linear output to the expected value of the desired distribution. The mean of the

output distribution depends on X through the link function g:

Y = g−1(f (X)) (2.16)

where f (X) is a linear combination and g−1 is the inverse of g.

2.1 existing work 15

In the class of link functions including those where the output distribution is Bernoulli,

Binomial, categorical or multinomial, the output of the regression model is interpreted as a

probability, P(Y) and the link function is

X.β = ln
(

P(Y|X)

1− P(Y|X)

)
(2.17)

so

P(Y|X)

1− P(Y|X)
= eX.β (2.18)

so

P(Y|X) =
eX.β

1 + eX.β =
1

1 + e−X.β (2.19)

which is the logistic function, and which will be returned to in the context of neural networks

and Markov Random fields in sections 4.3.1, 2.3.1.3 and 2.3.1.6.

learning algorithm The most common learning algorithm for GLMs is iteratively

reweighted least squares [63]. Regularisation can be imposed, for example using ridge regression

[83].

2.1.4 Multi Layer Perceptrons

Feed forward neural networks do not assume that input variables have independent effects

on the outputs. They can model the way interactions between input variables influence the

output. This is achieved by chaining functions in a feed forward process through what are

known as hidden layers. The hidden layers encode features of the data as non-linear functions

of weighted sums of either the input variables or existing features from lower down the chain.

A common feedforward neural network is the multilayer perceptron (MLP) [53].

representation Figure 2.1 shows the structure of an MLP with one hidden layer. Each

node represents a function. Those at the bottom are the input nodes, which take a single input

value and output that same value, unaltered. The other nodes receive a weighted sum of the

outputs from connected nodes below, pass them through a function known as the activation

function, and output a single value, which is passed as one of the inputs to every connected

node in the layer above. At the output layer, this forms the output of the function. All layers,

including the output can contain more than one node, allowing mappings from and to many

variables to be learned. All neurons except those on the input also receive a constant input,

known as the bias, on a weighted connection.

2.1 existing work 16

Output Neuron

Hidden Neurons

Input Neurons

Figure 2.1: A multilayer perceptron with four input neurons, four hidden neurons and one output neuron.

Bias weights are not shown.

Each neuron receives an activation, ai, which is the sum of the products of the output from

neurons below and the weights with which they are connected:

ai =
∑
l∈L

wl,iOl (2.20)

where L is the set of nodes in the layer below the one containing node i, Ol = actl(al) is the

output from node l and wl,i is the weight of the connection from node l to node i. L consists of

neurons that are either inputs (in the case of the first hidden layer) or neurons in the previous

layer plus a single bias neuron with an output set permanently to one.

The activation function associated with neuron i, acti(ai) may be linear, where acti(ai) = ai

or non-linear depending on which layer it occupies and other design considerations that are

touched on below. Common non-linear functions include the following:

The logistic function, whose choice is inspired by the output from logistic regression, described

in section 2.1.3.4, where the output of node i is

acti(ai) =
1

1 + e−ai
(2.21)

The tanh, which has a very similar shape to the logistic but is symetrical around zero (which

the logistic is not), where the output of node i is

acti(ai) = tanh(ai) (2.22)

The rectified linear function is linear for ai > 0 but returns zero when ai < 0 and is calculated

by

acti(ai) = max(0, ai) (2.23)

2.1 existing work 17

Neurons with a rectified linear activation function are called rectified linear units (ReLU). They

do not suffer from the vanishing gradients of the sigmoid and tanh functions and are simpler

(and so faster) to compute. When used in a hidden layer, ReLUs create a sparse representation

as units with activation below zero have an output of zero and a gradient of zero, so their

weights are not changed during learning. There is also a leaky ReLU, acti(ai) = max(ε, ai)

where ε is small and positive (say 0.01), which can be used when a zero gradient needs to be

avoided for negative activations.

In principle, each node could have a different activation function, but in practice, the inputs

have a linear function, the hidden units all have the same non-linear function and the outputs

have either a linear or non-linear activation function. The output of an MLP when the input

is x, is defined as the output of the activation function on its output neurons. In the case of a

single output, as discussed in this thesis, that is

ŷ = actl(al) (2.24)

where al is the activation of the single neuron at the output layer and actl() is the activation

function associated with that neuron.

learning algorithm Most commonly, an MLP has a fixed structure of weights, the

values of which are learned by a gradient descent of a cost function. A common cost function

for performing regression is the quadratic.

C =
1

2m

m∑
j=1

(y j − ŷ j)
2 (2.25)

where ŷ j is the MLP output calculated using equations 2.24 and 2.20 in response to the input

x j. In order to minimise C, the partial derivative of the cost function with respect to each

weight, dC/dwl,i needs to be calculated. This can be done one training example at a time. For a

single training data point, the derivative of the cost function with respect to the output from

the network is dC/dŷ = (y − ŷ). The derivative of the error with respect to the activation, a

of the output unit is dC/da, and depends on the choice of activation function. Each weight

contributes wl,iOl to a so the derivative dC/dwl,i = (y− ŷ)dC/da(wl,iOl). Each weight is changed

by ηdC/dwl,i where 0 < η < 1 is a learning rate that ensures individual weight changes are

small. Errors are passed back through the network using the chain rule to allow earlier weights

to be updated in a process known as back propagation of error [111].

network and training design There are a number of design decisions that need to

be made when building and training an MLP. Some concern the network itself and some

concern the gradient descent learning algorithm. The decisions to be made are often framed as

2.1 existing work 18

a set of hyperparameters, which form a space that needs to be searched. Different choices of

hyperparemeter values can lead to different functions being learned by the MLP and different

levels of error. Commonly considered hyperparameters include the following, which are largely

taken from a paper describing deep neural architectures [13]. Those listed here apply equally to

MLPs.

number of hidden layers and units MLPs can support many hidden layers but in

reality only generally contain a small number. In principle a single layer containing a finite

number of sigmoidal units and a linear output unit is sufficient to allow an MLP to approximate

any continuous function on compact subsets of Rn [34]. However, the theory says nothing about

the learnability of the weights and it has been found that adding several smaller hidden layers

can be more efficient than training one large one [27]. The number of hidden units included in

a network controls model bias. Too few neurons may make the network unable to represent

the desired function and too many may lead to over fitting. Adding neurons can also increase

training time as the number of weights to be updated increases.

activation function Some of the choices for activation functions are listed above. Hidden

units should be non-linear. When performing regression, a linear output is used because the

squared error cost function of equation 2.6 combined with a linear output corresponds to a

Gaussian output model. For classification, a sigmoid activation function should be chosen at

the output layer.

learning rate Gradient descent learning involves making small adjustments to model

parameters (weights in the case of the MLP) to make steps down the error gradient. Making

those steps too large causes the error rate to rise and making them too small causes the error to

drop very slowly. The size of the changes in the weights is controlled by a learning rate. A good

rule is that the learning rate should be the largest possible that does not cause the error to rise

[13]. Variable learning rates are often used, with the learning rate diminishing according to a

chosen schedule or in response to a flattening of the error rate.

early stopping An easy method to avoid over fitting with an iterative learning process

such as SGD is to terminate the training process before the training error has flattened. The

error on a separate validation data set, which is not used to learn the model parameters, can be

monitored so that early stopping can take place when the validation error begins to rise. Early

stopping can obscure the over fitting effects of other hyperparameter choices, and so is best

left out of an initial hyper-parameter search, and then used to attempt to improve a chosen

configuration.

2.1 existing work 19

momentum In addition to a learning rate, weight updates are often smoothed using a

moving average of previous updates. The proportions of the current gradient and of the

previous average gradient (known as the momentum rate) that contribute to a weight change

produce another hyperparameter that can be explored.

training batch size Basic stochastic gradient descent makes one weight update per

training example, approximating the change across all of the data by making small steps one at

a time. Another alternative is to calculate the average gradient across all of the training data in

a batch and make a single update to each weight based on a full pass through the data. The

batch method makes the steps smoother but can be very slow as each weight update requires a

complete pass through the training set. A compromise, known as mini batch training, updates

the weights using the average error over small batches of training data. This smooths the error

descent without slowing the process down to the same extent as a full batch approach.

weight initialisation The weights of a MLP cannot be all set to zero before training

begins. Their values must be randomised to avoid different neurons sharing the same weight

values. Weights are often picked from a uniform distribution bounded by some range, the size

of the range being one hyperparameter to explore. A recommended range is between −r and r

where r = c
√

6/(f anin + f anout) and c is 1 for tanh functions and 4 for sigmoid functions [13].

The f anin and f anout values are the number of weights in and out of the unit associated with

the weights being set.

data preprocessing There are many options for pre-processing data in preparation for

training an MLP. The only ones considered here involve shifting and scaling. For networks

with sigmoid or tanh activation functions on their outputs, the output values must be scaled to

the appropriate range (which is [0, 1] for the logistic and [−1, 1] for the tanh). It is also beneficial

to standardise the input variables to a mean of zero and standard deviation of 1.

regularisation Early stopping is mentioned above as one method for avoiding over

fitting. Other regularisation methods applied to neural networks include the addition of noise

to training data [14], penalties on weight size such as L1 and L2 regularisation and network

structure methods such as dropout. Dropout [121] involves randomly ignoring a proportion of

the neurons (and connected weights) in a network during training but using all of the neurons

when testing. More specifically, during training each neuron is ignored with a certain probability,

p, which attempts to turn a single network into the average of many sparse networks. When

training is complete, weights are adjusted by a factor of p so that the output at test time is the

same as the expected output during training.

2.1 existing work 20

optimising the hyperparameters Finding the right set of hyperparameters can have a

large impact on the quality of an MLP. A simple method for searching for a good hyperparameter

set is to perform a grid search. This involves defining a set of possible discrete values for each

parameter and trying every combination. Each combination of hyperparameters is used to train

at least one model and the error on a validation set is used to select the best combination.

strengths and limitations Multi layer perceptrons have the capacity to act as uni-

versal approximators. In reality, the correct architecture (the number of hidden units and the

connectivity pattern among them) to represent a given function needs to be discovered and a

learning algorithm must find the correct parameter settings. The cost function may contain

local minima in which gradient descent methods may become trapped, making the testing of a

chosen architecture more difficult.

This strength is accompanied by an increased risk (compared to simpler methods) of over

fitting. Particular care is needed when training a neural network to achieve the correct trade-

off between bias and variance. This task can be challenging due to two other well known

weaknesses of MLPs.

The so called black box problem refers to the fact that the weights of an MLP offer very little

in terms of human interpretability. It is not easy to extract information about the structure or

complexity of the function a network has implemented. A lot of work has been dedicated to

extracting rules or insights from multilayer perceptrons [4], [5], [67], [113]. Swingler [129] used

a Walsh decomposition to investigate the structure of MLPs and showed that the complexity of

the function being implemented by an MLP varied widely as it learned, demonstrating that

simple measures such as the number of hidden units are, at best, a crude indication of function

complexity.

Another well known problem with MLPs is the fact that the cost function contains local

minima or plateaux from which a gradient descent algorithm cannot escape. Training a number

of MLPs from different random starting weights can (if the error function dictates it) result

in a number of different solutions. The black box problem described above compounds this

problem as it is difficult to compare one MLP with another in terms of the structure of the

function it implements. Swingler [129] presents evidence that the back propagation learning

algorithm becomes trapped in local optima when its weights do not support the structural

complexity required to model a function. The weights play two roles, firstly to encode the

features represented by the hidden layer and secondly to map those features to the correct

output values. Swingler suggests that networks in local optima encode the wrong features,

meaning no correct mapping may be learned. This is demonstrated by showing MLPs trained

on the XOR function (which is known to contain local minima) fail to encode the second order

relationship among two inputs and the output required to model XOR. Once a network has

2.1 existing work 21

settled on a first order only feature representation, it cannot escape to the correct second order

structure.

2.1.5 Training, Testing and Validation

Section 2.1.1.2 described how achieving good generalisation and avoiding over fitting are at the

heart of statistical learning. An important question to be able to answer about a statistical model

is “How well will it generalise to unseen data?”. To answer the question, a subset of available

data is kept aside for testing. This data must play no role in the selection of the model, the

choice of training hyperparameters, or the model parameter setting. A single test set provides a

single estimate of test error. A better estimate can be obtained by repeatedly training different

models on different subsets of the data. A common method for balancing the bias-variance

trade-off when training an MLP is to use cross-validation in which the data is partitioned into a

number (usually ten, which is the figure used in the rest of this description) of non-overlapping

test sets, each comprised of a different 10% of the data. Ten models are then trained, each on

the 90% that remains for each test partition. The mean and variance of the error across these

models gives a better indication of the likely error on new, unseen data.

When choosing a model and setting the training algorithm’s hyperparameters, further

division into training and validation data is required. For each combination of hyperparameters,

a model needs to be trained and validated. The validation error is used to compare one

hyperparameter set with another, but cannot be used as the estimate of model generalisation

ability as it played a role in the model building. Cross validation can be used at this stage too

(though this can become computationally expensive as part of a grid search) to achieve a good

estimate of the differences among hyperparameter sets. Using cross validation at both levels in

this way is called nested cross validation.

2.1.6 Deep Neural Networks

As discussed in section 2.1.4, it can be beneficial to use several hidden layers in a neural network

rather than a single large one. This has led to the study of deep networks [84] with many hidden

layers. Deep networks have been used with great success in fields such as image and sound

recognition where domain knowledge has helped to shape the way in which the layers are

organised. A common approach to image recognition is to use convolutional layers, which consist

of hidden units connected to a small region of the previous layer (known as a receptive field).

The input, for example, is split into many overlapping receptive fields, the nodes of each are

connected to a single node in the next layer. Each hidden node shares the same weight values

as all the others, so the layer represents a moving feature detector. Several such layers will be

connected to the layer that precedes them, implementing a bank of different filters. Convolution

2.1 existing work 22

layers are often followed by pooling layers that summarise (for example calculating maximum)

across a region in the feature map (i.e. node outputs) of the previous layer.

Deep networks also contain one or more layers that look the same as those from an MLP, fully

connected to the nodes above and below. As with MLPs, training in deep networks descends

an error gradient.

strengths and limitations The exact behaviour of the filters is learned from data, but

there is more room for human design in deep networks than there is in MLPs. This fact also

allows deep networks to escape some of the black box limitation as methods for understanding

and visualising the function of such networks have been proposed [151]. Deep networks have

been very successful recently in fields of computer vision [79] and speech recognition [36].

These tasks are quite removed from the regression tasks described here, though there is no

reason why a deep network couldn’t be used as a regression model. Features such as convolving

on limited receptive fields are obviously specifically designed to solve signal classification type

problems where they can be used to overcome location invariance. Deep neural networks also

require care to avoid over fitting during learning. Bengio [13] offers a practical guide to training

deep neural networks, which addresses the risk of over fitting.

2.1.7 Regression Trees

All of the methods discussed so far have had the global property that a parameter interacts with

a variable in exactly the same way regardless of the value of all other variables. Interactions are

handled with the introduction of feature detectors such as hidden units, or (in the case of linear

regression) ignored. In contrast, regression trees [19] partition the data so that the values of

regression parameters are different from one partition to the next. The local property of the

regression model for each partition means that interactions among inputs have an effect on the

output defined by the partition into which they fall.

representation Partitions of varying sizes are defined in a hierarchy, forming a tree

consisting of branch nodes, which identify a variable and possess a branch for each value it

can take, and leaf nodes, which contain a regression model mapping the variables in the path

leading to that node to the output.

learning algorithm Regression trees are often built using greedy algorithms that pick a

single variable on which to partition the data at each branch.

2.1 existing work 23

strengths and limitations Regression trees are easy to interpret for a human reader.

The upper most nodes tell you which variables are most important and the regression models

at the leaf nodes can be simpler than a global model as fewer variables may be needed.

2.1.8 Basis Functions

If every function in a given space can be uniquely constructed as a linear combination of a set

of orthogonal functions, that set of functions is known as a basis and each of its members is

a basis function. One such basis in the space of f : {−1, 1}n → R is the Walsh basis [142], [12],

which is of particular relevance to this work because it explicitly encodes the way interaction

among inputs affect the output of a function.

representation The Walsh basis for a function of n variables consists of 2n Walsh functions

and each one relates to a subset of input variables. Each Walsh function, ψ j maps a vector

X ∈ {−1, 1}n to a value in {−1, 1}. Associated with each ψ j is a coefficient, ω j ∈ R. Any function,

f : {−1, 1}n → R can be rewritten uniquely as a weighted sum of Walsh functions where the

coefficients, ω j are the weights using the inner product

f (X) =
2n
−1∑

j=0

ω jψ j(X) (2.26)

where

ψ j(X) = ⊕(X∧ jbin) (2.27)

where ⊕(X) is a parity count function that returns 1 if the number of values set to 1 in X is even

and -1 otherwise and jbin is the binary vector representation of the index j. The X∧ jbin uses a

binary vector representation of j to select the subset of variables in X operated on by ψ j(X).

learning algorithm The Walsh coefficients, ω j are calculated by summing the product

f (X)ψ j(X) over all possible instantiations of X.

ω j =
1
2n

∑
X∈{1,−1}n

f (X)ψ j(X) (2.28)

strengths and limitations Any function in f : {−1, 1}n → R can be represented by a

Walsh decomposition, so there is no limit on the complexity of functions that can encoded in

this way. The decomposition also has the desirable feature of explicitly revealing information

about the complexity of the encoded function. Each ω j is responsible for one subset of input

2.2 meta-heuristic optimisation 24

variables and defines how their interaction (in terms of parity) affects the function output. Any

subset of variables that do not interact will have a coefficient of zero so both the number of

non-zero parameters and the size of the subsets they represent are made clear.

The disadvantage of any basis method including Walsh is that an exhaustive sample of the

(input,output) space is required to calculate the coefficients. Similarly, with 2n coefficients to

calculate, only models with a small number of inputs (around 20 or fewer) may be considered

before the computational resources required grow prohibitive. Additionally, the decomposition

assumes that the values of f (X) are noise free and known.

By considering only the Walsh coefficients that relate to the subsets of input variables of

size one, it can be seen that equation 2.26 takes the same form as the linear regression sum in

equation 2.4. If the underlying function is linear and the samples noise free, then the regression

coefficients are equal to those in the Walsh sum.

2.2 Meta-Heuristic Optimisation

Regression is concerned with learning a function that maps inputs to an output. A related

challenge is to find values across the inputs that lead to a desired output. In the field of

heuristic optimisation, problems are generally formulated as a fitness function, f (X) that can be

evaluated for any instantiation of X. The goal is to discover a particular instantiation of X, let’s

call it x∗, that causes the output of the function to meet (or be as close as possible to meeting) a

stated goal. The goal might be to cause f (X) to output a particular value, or to treat f (X) as a

score to be maximised or a cost to be minimised. Heuristics are adopted when optimising f (X)

cannot be solved analytically. When the function to be optimised is a system in the real world (a

machine, a schedule, a product design, a timetable, etc.) the function may be costly to evaluate

and so a computer simulation of the system is used instead. In some cases this simulation is

programmed from known rules that govern the system’s behaviour and in other cases it can be

learned from data reflecting input,output pairs observed from the system.

Depending on how these simulation models are represented, a distinction is made between

black box models, in which nothing about the representation of the rules or the function can be

used to guide the search and grey box methods, where there are clues in the model that can

guide the search. Parametrised models such as multilayer perceptrons and linear models like

those proposed in this thesis are grey box models because they provide information such as

linkage among inputs and derivatives at all points in the search space.

Optimisation can be framed as a problem of multiple constraint satisfaction. Some constraints

are defined in a ‘strong’ way, meaning they must be satisfied. Integer linear programming

[116], for example, defines a problem in terms of an expression to be maximised subject to a

set of linear constraints. Alternatively, constraints may be defined in a ‘weak’ sense, usually

2.2 meta-heuristic optimisation 25

with an associated strength, which incur a cost when violated. In the weak case, optimisation

is equivalent to minimising the cost of violated constraints. Some grey box models, such as

those proposed in this thesis, make the role and the strength of the constraints explicit in their

representational structure.

A parametrised model of the fitness function can be useful when the real world system can

be sampled but the rules governing its behaviour are unknown. This can be true simply for

practical reasons as it is easier to automate the search process in software if the function to be

evaluated can be run in code, rather than tested in the real world. It can also be desirable in

cases where the function to be optimised can be modelled in fewer samples than it takes to

optimise it without a model. Additionally, even if a black box model is available in software, a

grey box equivalent may be able to guide the search more efficiently.

The mechanism for choosing a new solution based on those previously tried is known as a

heuristic, hence the title heuristic optimisation. Heuristics are generally applied to a particular

search problem, for example the Christofides heuristic [31] for the travelling salesman problem.

When the nature of the function being searched is unknown, a heuristic that can work despite

such ignorance is required. Such algorithms are known as meta-heuristics.

2.2.1 Local Search

Local search (LS) [91] methods form a broad and well studied set of heuristics for searching

fitness functions. Local search begins with a single candidate solution and makes progressive

improvements by applying a series of local modifications. Each candidate solution has a

neighbourhood of states that can be reached in a single local modification step. When no

member of the current candidate solution’s neighbourhood offers an improvement, the algorithm

is said to have reached a local optimum (which may also be a global optimum). Consider the

two main components of any local search:

1. Neighbourhood: The scope of the local modifications defines the neighbourhood of each

candidate solution. Smaller neighbourhoods take fewer evaluations to search but may

lead more readily to local optima. Larger neighbourhoods lead to fewer local optima at

the cost of requiring more evaluations to be searched exhaustively.

2. Acceptance Criteria: The local optimum escape and avoidance mechanism defines what

steps the algorithm takes to move away from local optima and avoid returning to them.

2.2 meta-heuristic optimisation 26

The neighbourhoods in a binary search problem can be defined in terms of Hamming distance.

Let Nk(x) be the set of neighbouring points to x with a Hamming distance of exactly k. There

are (n
k) − 1 points in Nk(x) and the total number of neighbours at all distances from 1 to k is

k∑
j=1

(
n
j

)
− 1 (2.29)

Local search can proceed by taking the first improving step it finds in the current neighbour-

hood (first improvement) or by assessing every available neighbour and moving to the one

that provides the largest improvement (best improvement). If no improving step is possible, it

must make a local optimum escaping step.

2.2.1.1 Random Restart Hill Climb

The simplest form of LS involves a local modification neighbourhood containing all the points

at a Hamming distance of one from the current point and a mechanism for escaping local

optima that involves starting again from a new random point. This is known as random restart

hill climb (RRHC) [91]. When searching fitness functions in which acceptable solutions can be

reached from only a small number of starting points, RRHC will start in one of those points with

very low probability and therefore will most often climb to an unacceptable local minimum.

The region from which a hill climb will reach an acceptable local optimum can be enlarged by

increasing the Hamming distance that defines a neighbourhood, but at the cost of increasing

the number of local steps that are considered at each move.

2.2.1.2 Iterated Local Search

Random restarts can be very inefficient as they may lead to the same local optima being reached

repeatedly. Additionally, increasing the Hamming distance covered by neighbourhoods can

introduce inefficiencies as the size of the search space grows quickly, as described by equation

2.29.

Both of these problems are addressed by iterated local search (ILS) [90], which performs

a local search to a local optimum and then makes a larger step in an attempt to escape the

local optima but not discard the gains made by the hill climbing steps made so far. The larger

step (known as the perturbation) can be made by searching for an improvement in a larger

neighbourhood.

By only widening the scope of the search neighbourhood when the current scope is trapped

at a local optimum, ILS avoids random restarts and keeps the size of the neighbourhood small

during most search steps.

2.2 meta-heuristic optimisation 27

2.2.1.3 Variable Neighbourhood Search

A further extension to ILS involves allowing the size of the neighbourhood to grow and shrink

dynamically during the search. Variable neighbourhood search (VNS) [98] defines a set of

neighbourhoods of increasing size. Local search is performed at the current scope and when

that reaches a local optimum, the scope is widened until an improving step is found, at which

point the scope returns to the smallest neighbourhood and the process continues. Larger

neighbourhoods are only explored when smaller ones are exhausted.

For binary search problems, one approach is to define each neighbourhood by Hamming

distance, starting at 1 and increasing the Hamming distance until an improving move is found.

2.2.1.4 Tabu Search

One risk associated with performing local search, which ever method is chosen for escaping

local optima, is that the same routes will be taken repeatedly, leading back to the same local

optima again. The methods described above aim to escape local optima effectively, but Tabu

search [46] additionally aims to avoid returning to them. This is done by maintaining lists

of previously visited solutions that are to be avoided, lists of promising areas to be explored

further and rules that force diversification into unsearched areas. The list of solutions to avoid

effectively re-defines the search neighbourhood of each point to exclude those in the list.

2.2.1.5 Simulated Annealing

Another way to allow an algorithm to escape local optima is to take unimproving steps with a

certain probability. Simulated annealing (SA) [112] is an algorithm for avoiding local minima

in this way. Rather than improving with every step, SA takes a step with a probability that

is proportional to the change that would result. A temperature term controls the mapping

between the size of the improvement a step would yield (which might be negative) and the

probability of the step being accepted. In many implementations, the probability of accepting

an improving step is always 1 and only steps that lower the score are taken with a lower

probability. The probability of any particular step being accepted depends on the change it

makes to the score, the current temperature and the order in which neighbours are considered.

The temperature starts high and gradually decreases according to a cooling schedule. High

temperatures lead to higher probabilities of moves that make no improvement being accepted,

compared to lower temperatures. At temperature zero, the process becomes a hill climb.

The neighbourhood considered by SA is generally larger than that considered by other local

search algorithms as it has to allow larger jumps in the input space. Li and Ma [88] considered

three approaches to defining the neighbourhood for binary problems during SA. The first is an

enumeration over all the variables, the second allowed the entire search space to be considered

by picking a new candidate point uniformly at random and the third is the same as the second

2.2 meta-heuristic optimisation 28

with a local search from the newly chosen point. The third method was found to be most

effective on the test problems described by Li and Ma. In this approach, when a new step is

accepted, the algorithm performs a local search until no improvement can be made, and then

considers new points chosen across the whole search space with uniformly random probability.

New steps are accepted with a probability determined by the current annealing schedule and

the change in score that moving to the new point would produce. This approach is a hybrid of

ILS in which the perturbation neighbourhood is determined stochastically by the temperature

and change in output score.

Another method for choosing the neighbourhood in a simulated annealing search over binary

variables involves selecting variables that persistently take the same value (0 or 1) and fixing

them in future samples [25].

Simulated annealing is a Markov chain Monte Carlo method inspired by the Metropolis-

Hastings method [28] for sampling from an arbitrary distribution. Metropolis-Hastings is

designed to take any function, f (X) and produce a Markov sequence of samples that are drawn

from a distribution, p(X) that is proportional to f (X). When attempting to maximise f (X),

the ability to draw new samples with a probability that is proportional to the output of that

function is what motivates the simulated annealing approach. In simulated annealing, the

temperature parameter changes the shape of the distribution from which samples are drawn,

starting with a distribution that is closer to uniform and moving towards a distribution that is

proportional to f (X).

The samples produced by simulated annealing are not independent and the algorithm can

become trapped around one mode in a multi modal distribution. The stationary distribution of

the Markov chain equals the target probability distribution in the long run, but correlations

from one sample to the next mean that bias is introduced in the short run. Additionally, a

number of steps (known as the burn in period) are required before the stationary distribution

settles to the target distribution. The first samples are discarded (the number varies, but can be

over 1000). These facts become important when using simulated annealing to solve problems

where the fitness function is costly to evaluate or where the measure of success for an algorithm

involves counting the number of fitness function evaluations made.

To avoid the problems associated with correlated samples, methods such as importance

sampling, which can generate independent samples, have been proposed [99]. In high dimen-

sional multivariate distributions, choosing each new point across all the dimensions can be

difficult so Gibbs sampling may be used instead. This involves choosing a new value for one

variable at a time, with each sample being the result of a single change. This is particularly

suitable when each variable is conditioned on a small number of other variables and the

distribution being sampled is represented in a way that makes that conditional neighbourhood

explicit. The next section considers the same motivation, that of generating samples with a

2.2 meta-heuristic optimisation 29

probability that is proportional to their fitness, from a different perspective where models of

the fitness function are built and sampled.

2.2.2 Estimation of Distribution Algorithms

Simulated annealing attempts to generate samples from a distribution, p(X) where p(X) is

proportional to the function being searched, f (X) based on a chain of evaluations of f (X).

Rather than discarding each evaluation after it has been used, it may be more efficient to use

the samples from f (X) to build a probability distribution model and then sample from that. In

cases where evaluating f (X) is expensive and modelling the distribution can be done in fewer

samples than the number required to perform simulated annealing, this approach can offer an

efficiency gain. Estimation of Distribution Algorithms (EDAs) take this approach.

Rather than model the fitness function exactly, EDAs generally take an iterative approach

and attempt to model a distribution of promising candidate solutions only. In general, an EDA

proceeds as follows. A set of samples of X, f (X) are taken and the fitter solutions among them

are selected. A model is built that represents the distribution of values among the selected

solutions and the process repeats, with the new set of samples being drawn from the latest

model.

The difficulty in this approach is the need to choose the correct model for the distribution.

This is a question of choosing the correct model bias and there are generally trade-offs among

the complexity of the model, the number of samples required to fit its parameters, and the

number of modes (local optima) the distribution can represent. Many EDAs employ graphical

models to represent the joint distribution and so must represent interactions among inputs

explicitly.

The extended cGA (ECGA) [51] models higher order interactions by searching for a marginal

probability model (MPM) which models the joint distribution of several non-overlapping

variable partitions. The partition set is chosen using a greedy algorithm, which begins with

a model in which all partitions are of size 1 and then performs a steepest descent search by

merging the single pair of partitions which decreases minimum description length the most at

each step. An algorithm called mutual information maximising input clustering (MIMIC) [16]

represents model structure as a chain of conditional probabilities. In [9] the model is represented

as a dependence tree, as it is in the COMIT algorithm [8], which is an extension of MIMIC

that uses a tree structure with the addition of a hill climbing phase to optimise the individual

solutions it creates.

The problem with such algorithms is that they impose a constraint on the structure that may

not be suitable to the function being modelled. In other words, they all (somewhat arbitrarily)

introduce model bias. One notable exception to this is DEUM [117], which builds a distribution

in the form of a Markov Random Field (MRF). DEUM is attractive because it allows model

2.2 meta-heuristic optimisation 30

bias to be learned from the data. The MRF can be sampled using Gibbs sampling to generate

candidate solutions with a probability that is proportional to their fitness scores. Methods for

discovering structure in Markov random fields are discussed in section 2.4.

Similarly, hierarchical Bayesian optimisation (hBOA) [104] builds a Bayesian network and

uses it to generate new candidates in an evolutionary search. The hierarchical aspect is that hBOA

replaces the conditional probability table that is usually used in each node of a Bayesian belief

network with a local decision graph, reducing the complexity at the node and consequently,

the size of the data set required to build the network.

The key ingredient of EDAs is the use of selection to restrict the space over which the

distribution is accurately modelled. Depending on the nature of the function being searched,

there are advantages and disadvantages of making use of selection. An potential advantage is

that the models may be simpler than they would need to be to model the entire input space of

the function accurately. This may reduce the number of fitness evaluations needed to build a

model. A potential disadvantage is that many of the fitness function evaluations are discarded

as only the fittest solutions are chosen for modelling. This, coupled with the need to iterate

the algorithm over several generations can increase the number of fitness evaluations needed.

The other side of this trade-off would involve discarding the use of selection and using every

single fitness evaluation made. This could also remove the need to iterate over more than one

generation. It would, however, require a more accurate model of the fitness function. These

approaches lead us to the use of fitness function models.

2.2.3 Fitness Function Models

Fitness function models (FFMs), (sometimes called emulators or surrogate fitness functions),

aim to reproduce the fitness function in a form that has benefits over its existing form. It may be

that the model is faster to evaluate or easier to differentiate or reveals insights into the structure

of the real function. FFMs are also very useful when a fitness function may not be programmed

and the only available guide to its behaviour is a data set of (input, output) samples. Some

methods involve building a model from a single sample of data and others involve iterations

that alternate between sampling the fitness function model and the real fitness function.

A number of different machine learning methods have been applied to fitness function

modelling, including multilayer perceptrons [64] and Kriging [144]. Jin provides a good review

of neural networks as FFMs [70] and describes a framework for using approximations to

fitness functions [147]. Gaussian processes have become popular methods for modelling fitness

functions [110], but they are designed for use on continuous variables rather than the binary

inputs under consideration in this work.

FFMs can be used in a variety of different ways. A sufficiently good model of the data can be

searched without reference to the original function. A simpler model can be used as a filter

2.3 dynamic systems 31

to rule out really low scoring candidates as a way of reducing evaluations by the real fitness

function or to suggest regions that might profitably be explored. The models themselves must

be searched, and so a search heuristic is still needed—the model is not a heuristic in its own

right. Consequently, it is highly desirable for the representation used for a FFM to transparently

reflect something of the structure of the function being searched. For example, it may be useful

if parameters in the model represent identifiable aspects of the function’s behaviour. The model

can then provide guidance to the heuristic algorithm that is unavailable from a black box model.

A key feature of the methods proposed in this thesis is their ability to provide such guidance.

The right kind of FFM can be considered as a method for turning black box problems into so

called grey box problems, where the structure of the model representation guides the search

process.

2.2.3.1 Heuristic Evaluation

The quality of the performance of an optimisation heuristic should be measured over several

attempts at solving a problem and may be measured in terms of the average number of fitness

function evaluations or time taken to find a solution or a measure of solution quality such as its

best score over all the runs or the number of times the global optimum was found.

2.3 Dynamic Systems

The preceding sections have described feed forward systems where the inputs affect only the

outputs. It is also possible to treat all variables equally as inputs and outputs, using only the

vector X such that any Xi ∈ X has a value that is dependent on zero or more of the other

variables. The behaviour of these dynamic systems as values are updated is more complex than

that of a feed forward system. Such systems are closely related to feed forward systems in the

sense that the connections among the variables can be viewed as constraints that determine

what values those variables should take, given the values of their neighbours. The extent

to which any given input state, x is consistent with those constraints is often referred to as

the state’s energy and finding the state with the minimum energy (i.e. the greatest degree of

agreement among values and their constraints) is an example of heuristic optimisation.

2.3.1 Graphical Models

A graphical model of a function represents the structure of the function as a graph and a set

of parameters. The graph, G = (N, E) consists of nodes, N and edges, E. The nodes represent

variables and the edges represent dependencies between those variables. The parameters can

be directly associated with the edges so that each edge has a corresponding parameter, or the

2.3 dynamic systems 32

parameters can be associated with other features of the graph such as the neighbours of each

node.

2.3.1.1 Hopfield Networks

A Hopfield network (HN) [66] is a type of neural network with input variables represented

by nodes in the network but no output variables. Its graphical representation is formed such

that the set of nodes, N represent the set of input variables in X and the edge set E contains

weighted connections between pairs of nodes. The weighted connection between Xi and X j is

denoted Wi, j. Weights are symmetrical so Wi, j = W j,i ∀i, j and there are no self connections so

Wi,i = 0 ∀i. Each node has an associated value, known as its output and the values across all of

the nodes, x represents the network’s current state. The output of a node is calculated from

the outputs of the other nodes by first summing the product of the incoming weights and the

output of the nodes they connect. This calculates the node’s activation, which is then passed

through a threshold function so that xi ∈ {−1, 1}. The activation is

ai =
n−1∑
j=0

w jiX j (2.30)

where ai is a temporary activation value, following which the unit’s value is capped by a

threshold, θ, such that:

Xi =

1 if ai > θ

−1 otherwise
(2.31)

The dynamics of the network are the result of repeatedly applying equations 2.30 and 2.31

for a selected node in the network. Nodes are selected uniform randomly without replacement

so each node is updated once in a single pass, at the conclusion of which, the pool of available

neurons becomes the full set once more.

Each network state has an associated energy function, given in equation 2.32. The weights

between nodes can be viewed as constraints where the sign of the weight dictates whether the

constraint is that the connected nodes should be equal (positive weight) or different (negative)

and the magnitude of the weight measures the strength of the constraint. In this light, the energy

of a given network state reflects the degree to which the weighted constraints are satisfied. The

global minimum of the energy function is produced when the network is in the state that best

satisfies the constraints defined by the weights. Local minima in the energy function are states

from which applying equations 2.30 and 2.31 cannot cause a change in any neuron’s value.

U(X) = −
∑
i, j

Wi jXiX j (2.32)

2.3 dynamic systems 33

X0 X1

X2 X3

W0,1

W0,2

W0,3

W1,2

W1,3

W2,3

Figure 2.2: A four neuron HN with units Xi and weights Wi, j.

Hopfield networks have most commonly been used as content addressable, or error correcting

memories. A pattern, x across the inputs is learned by updating the weights using the Hebbian

rule as follows

Wi j ←Wi j + xix j ∀i , j (2.33)

The symmetrical weight connections and zero self-connections mean that the energy function

of equation 2.32 is a Lyapunov function, meaning that the dynamic of equations 2.30 and 2.31

always lead to a stable state, known as an attractor. The purpose of the Hebbian learning rule

of equation 2.33 is to create attractor states at desired input points, known as memories. An

attractor state is a local minimum in the energy function. A Hopfield network has only pairwise

connections (higher order networks are considered next) so has a model bias that limits the set

of functions that can be modelled. This restricts the number of turning points the modelled

function can represent, which limits the number of memories the network can store. This limit

is often referred to as the network’s capacity.

The addition of a memory state using equation 2.33 has the effect of adding a local minimum

to the energy function at X = x [95]. The set of energy functions that a Hopfield network can

represent is limited, so there is a limit on the number of local minima it can store, known as its

capacity. For uniform randomly generated patterns learned with the Hebbian rule, McEliece

[95] stated that the capacity of a fully connected n unit HN trained with the Hebbian update

rule is n/(4 ln n) and that capacity improves to n/(2 ln n) if a small amount of degradation in

the stored patterns is tolerated.

2.3.1.2 Higher Order Hopfield Networks

Neurons in a standard HN are connected in pairs, but it is also possible to connect groups of 3

or more neurons with a single weight. Adding higher order weights to the network reduces

model bias and expands the set of functions that can be modelled. Kubota [81] states that the

capacity of fully connected order m associative memories is O(nm/ ln n). Venkatesh and Baldi

[140] report that regardless of the learning algorithm, the capacity of a high order network is of

2.3 dynamic systems 34

the order of 1 bit per weight. For the outer product learning rule, this is of the order nm/ ln n, as

stated by Kubota [81]. Venkatesh and Baldi also give lower bounds on the capacity of high order

Hopfield networks [141] with weights set using the outer product rule with a zero diagonal as

Cn ≈
nd

d!2(2d + 1) ln n
(2.34)

and the weak lower capacity, Cw
n (allowing a small number of erroneous recalls) is

Cw
n ≈

nd

(2d + 1)! ln n
(2.35)

These capacity calculations are based on memories sampled from a series of symmetric Bernoulli

trials.

Shen et al. [118] showed that high order HNs converge to equilibrium points in the same

way that second order HNs do. Samad and Harper [114] used high order HNs to solve the

graph partitioning problem, in work that combines high order networks and their application

to optimisation. As with the other work reviewed here, this work used a hand coded network,

which was designed specifically for the task at hand.

2.3.1.3 Boltzmann Machines

Replacing the threshold neurons in a HN with stochastic neurons and introducing hidden units

produces a network known as a Boltzmann machine [1]. The hidden units are fully connected

to each other and also fully connected to the input units, so their structural role is identical to

that of the units in a HN. The role they play during learning and running, however, is different.

Neuron updates are stochastic, based on the conditional probability of the target neuron taking

a value of 1 given the current values across the rest of the neurons.

Let P(Xi = 1|X\i) denote the conditional probability of neuron Xi taking the value of 1, given

the current values across the rest of the nodes, X\i. This is defined as

P(Xi = 1|X\i) =
P(Xi = 1, X\i)

P(Xi = 1, X\i) + P(Xi = 0, X\i)
(2.36)

which can be written as

P(Xi = 1|X\i) =
e
∑

j,i wi jX j

1 + e
∑

j,i wi jX j
(2.37)

and simplifies to

1

1 + e
∑

j,i wi jX j
=

1
1 + e−U

(2.38)

2.3 dynamic systems 35

which is the logistic function used in logistic regression and multi layer perceptrons. Boltzmann

machines do not settle into a single attractor state like HNs, but settle instead into a distribution

of states, moving from one to the next by changing neuron states by equation 2.38. This is

derived from the Boltzmann distribution that gives the network its name and defines the

probability of each possible state the network might take as a function of its energy:

P(X) =
1
Z

e−U(X) (2.39)

where Z is the sum over all possible patterns:

Z =
∑

X

e−U(X) (2.40)

and the energy, U(X) is calculated in the same way as for the Hopfield network

U(X) = −
∑
i, j

Wi jXiX j (2.41)

2.3.1.4 Strengths and Weaknesses

The hidden units extend the power of the Boltzmann machine, allowing it to model a far greater

range of energy functions but, like the hidden units in an MLP, they obscure the true structure

of the function. The Boltzmann machine learning algorithm involves finding the set of weights

that cause the equilibrium distribution of the network to represent as closely as possible the

true distribution of the data. To learn a sufficient number of samples and generated patterns,

the algorithm has to run the network to equilibrium. This is a time consuming process and has

stifled the application of Boltzmann machines to real problems. One solution to this problem is

the restricted Boltzmann machine, which is described next.

2.3.1.5 Restricted Boltzmann Machines

In restricted Boltzmann machines (RBMs) the visible neurons are separate from the hidden

units, forming a bipartite graph. Figure 2.3 shows a RBM with four visible neurons and four

hidden. The visible neurons are vi, the hidden are h j, the connections between the two layers

form the weights wi j. Units also have incoming bias weights, those on the visible neurons are ai

and those on the hidden are bi.

The energy of the network is calculated as

U(v, h) = −
∑

i

aivi −
∑

j

b jh j −
∑

i

∑
j

h jwi jv j (2.42)

2.3 dynamic systems 36

Visible (Input) Units

Hidden Units

Figure 2.3: A restricted Boltzmann machine with four visible and four hidden units.

As with the Boltzmann machine, the probability of a pattern over the visible neurons is

calculated by marginalising over the hidden units:

P(v) =
∑

h

1
Z

e−U(v,h) (2.43)

The weights are symmetrical and there are no connections between pairs of visible units

or pairs of hidden ones. These facts allow the probability of a visible pattern to be calculated

conditional on the hidden units alone, and the probability of a pattern across the hidden units

to be calculated conditional on the value of the visible units:

P(v|h) =
∏

i

P(vi|h) (2.44)

P(h|v) =
∏

j

P(h j|v) (2.45)

where in each case the individual neuron probabilities are calculated using the sigmoid

activation function:

P(vi = 1|h) =
1

1 + e−ai
(2.46)

where

ai = bi +
∑

j

wi jh j (2.47)

A RBM can be trained using the contrastive divergence algorithm (CD) [57], which uses a

maximum likelihood approach that attempts to maximise the product of the probabilities over

the visible units. Hinton provides a useful guide to training RBMs [58]. Hinton has also shown

how RBMs can be layered to produce deep belief networks using the same learning rule [59].

Though powerful, these networks use hidden units that obscure the relationships between

variables in a manner similar to that of the MLP.

2.3 dynamic systems 37

2.3.1.6 Markov Random Fields

Hopfield networks can be sparsely connected but the canonical model has weights connecting

every neuron pair. Weights are attached to the connections so the shape of the energy function

that can be modelled is limited (which is why such networks have a limited capacity as content

addressable memories). Boltzmann machines attempt to solve this limitation by introducing

hidden units. An alternative graph modelling approach is to let the edges of the graph dictate

dependence between variables but move the function parameters away from the edges. A

Markov random field (MRF) is used to model the joint probability distribution of a set of n

variables, X based on dependencies between pairs of variables. A MRF is defined by the graph,

G that describes its connections and a parameter set, θ that defines its energy function. The

description provided here applies to MRFs where each Xi ∈ {−1, 1}, but the theory extends to

larger discrete sets of values and continuous variables.

The graph, G = (X, E) representing a MRF consists of a vector of variables, X and a set of

edges, E joining pairs of variables. The subset of variables that are all connected to Xi are known

as the neighbours of Xi, denoted Ni. Note that Xi < Ni. The Markov property of a MRF means

that any variable is independent of any other variable that is not in its neighbourhood. Any

subset of X in which every variable is connected to every other is called a clique. Larger cliques

must contain smaller sub cliques, and any clique that is not a sub clique is called a maximal

clique.

Let C ∈ G iterate over the maximal cliques in graph G. For each clique, C there is an associated

clique potential function VC(X) which operates on the members of X that belong in clique C.

The energy U(x) associated with a network state, x is the sum of the clique potentials

U(x) =
∑
C∈G

VC(x) (2.48)

According to the Hammersley-Clifford theorem [50], a MRF can be represented as a Gibbs

distribution, which takes the form

P(X) =
1
Z

e−
1
T U(X) (2.49)

where Z is the sum of equation 2.49 over all possible instantiations of X and T is a temperature

control that determines the steepness of the function.

When building a MRF from data it is necessary to infer the correct structure for the graph,

the structure of the clique potential functions within it, and the parameters for those functions.

The question of structure discovery is considered next.

2.4 structure discovery 38

2.4 Structure Discovery

The previous sections described how a linear regression model is simple to train but can lack

the required complexity to model many real world relationships. Multi layer perceptrons

were presented as a solution to this problem, but with the disadvantages associated with the

fact that the MLP’s search for and representation of those complex relationships are opaque.

Walsh functions were described as a method for explicitly representing arbitrary complex

relationships but with the disadvantages of requiring a full and noise free sample of the data

and exponentially many parameters.

By choosing a function representation that makes the relationships among variables explicit,

the advantage of human interpretability is gained at the expense of needing to discover the

correct structure. Finding the right structure is generally an NP problem. This section reviews a

number of approaches to discovering function structure explicitly. Much of the recent work

on structure discovery has been carried out in the field of meta-heuristic search, described in

section 2.2.

2.4.1 Linkage and Building Blocks

It has long been understood that the effectiveness of evolutionary optimisation meta-heuristics

is dependent to a large degree on their ability to preserve important building blocks from

one generation to the next. A building block [47], [62] is a subset of variables that interact to

improve the fitness of a solution. Each variable may seem to have little to contribute on its own,

but may be crucial in producing a solution with high fitness when combined with others in its

block. This effect is known as epistasis [37]. Genetic algorithms can easily break good building

blocks apart during recombination, which has led to a number of attempts at controlling the

crossover and ordering of variables in a GA [72].

Let us consider two approaches to coping with Epistasis: linkage identification methods

(sometimes called perturbation methods) and EDAs. Linkage identification methods, [73], [54]

look for relationships by comparing the effect on fitness of flipping each variable from a chosen

pair in isolation to the effect of flipping both together (sometimes known as probing). In theory,

the approach could be extended to higher order linkages, but the number of fitness function

evaluations required would soon become impractical. The other problem with such approaches

is that the effect of flipping the pair of variables might itself be dependent on the values of

other connected variables, so the test is not conclusive. Streeter [123] presents an algorithm that

makes use of a binary search to discover linkages and proves that it is capable of discovering

the linkage structure of any additively separable function of n inputs in O(2kn ln(n)) fitness

function evaluations, where k is the size of the separate sub functions.

2.4 structure discovery 39

Coffin and Smith [32] point out that most EDA searches are greedy and start from a search

for pairwise interactions that can fail to find higher order interactions that are not signalled

by similar ones at lower orders. Consider the Walsh basis discussed in section 2.1.8. Of the 2n

basis functions, only (n
2) are pairwise, leaving the majority undiscoverable by many current

algorithms in the absence of signposts from the second order coefficients. They suggest that

researchers ‘bite the bullet’ and search for higher order linkages or employ a hybrid method

involving both an EDA and linkage detection such as D5 [138].

DEUM [117] follows a similar greedy path from second order to higher order weights, but

does so in a single step. It forms a graph that connects pairs of dependent variables, up to a

maximum number of neighbours per variable. Then it finds all of the maximal cliques in the

resulting graph and a choice is made as to which of those cliques and their subcliques to include

in the model. If all of the subcliques are included, the number of parameters in the model grows

exponentially with the size of each maximal clique. Two pitfalls for the algorithm are that it

relies on pairwise interactions as the starting point for finding those of higher order and that

the number of candidate cliques may not be significantly reduced if the cliques are large.

Further work [94] proposed Sparsified DEUM (sDEUM) which used L1 regularisation to

remove weights from the maximal cliques. This approach requires a data set at least equal in

size to the number of weights produced by the full connection of the maximal cliques.

2.4.2 Bayesian Belief Networks

Bayesian belief networks (BBNs) model joint probability distributions as a network of condi-

tional probabilities. Their representation is a graph where nodes correspond to variables and

edges indicate the presence of a conditional relationship between two variables. Conditional

probability is not symmetrical (P(X|Y) , P(Y|X)) so the graphs are directed and no variable can

be conditional on its own value, even as the result of a cycle, so Bayesian networks are directed

acyclic graphs. Bayesian networks are of interest in this context because their connectivity

structure must be discovered from data.

Discovering the correct structure for a general discrete Bayesian network from data is NP-hard

[30] and has received a lot of research attention. There are exact solutions based on dynamic

programming [101], for example, but they have complexity of O(n2n) and are impractical

where n is in the mid tens or more. Approximate methods mostly rely on imposing limits or

constraints on the structure’s complexity to reduce the search space. Early methods such as

the K2 algorithm [33] were based on a predefined ordering of the variables and a limit on the

number of parents any node could take (essentially a limit on order complexity) and so reduced

the search to polynomial time at the expense of the bias introduced by these two restrictions.

The way in which K2 limits the complexity of a network is crude–a simple limit on parent

numbers and an ordering of variables. An alternative method is to use minimum description

2.4 structure discovery 40

length (MDL). An MDL approach that still requires the variables to be ordered has been

proposed in the K3 algorithm that replaced the K2 measure with one based on MDL [18]. Branch

and bound methods have been used to attempt to reduce the search space in conjunction with

MDL, [124] and with linear programming [69].

More recently, de Campos and Ji [38] propose a branch and bound method and use structural

constraints to reduce the search space. They also point out that a good search method should

produce what they call an anytime solution, which means that the algorithm iteratively improves

the quality of the solution and may be stopped at any time, rather than needing to run to

completion before a solution is available.

Researchers have addressed the DAG discovery problem with a range of machine learning

and optimisation methods such as a GA to search the space of orderings before applying the

K2 algorithm, [82], greedy search which adds, removes or reverses connections at each step,

[55], evolutionary programming and MDL, [148] and the HEP algorithm [149], which used

statistical independence tests and evolutionary computation.

2.4.3 Multi Layer Perceptrons

The standard structure of an MLP contains an input layer, one or more hidden layers and an

output layer. Each layer is fully connected to the neurons in the layer above. Approaches to

dynamically changing the structure of an MLP during training involve adding or removing

weights or neurons and their associated set of weights. Bartlett [10], for example proposed an

algorithm that added hidden units each time the training error flattened, and removed units

based on an information theoretic measure. He also pointed out that the network weights were

often optimised to the structure, and adding new ones didn’t allow the network to escape the

local optimum it was in. LeCun et al. [85] proposed the Optimal Brain Damage algorithm,

which removes weights with low saliency, which is defined based on the second derivative of

the cost function. Some algorithms continue to train all of the weights after each iteration of

adding or removing weights. Others, such as DMP3 [3] freeze existing weights and only train

the newly added ones. Some algorithms add neurons in a restricted structure, for example in the

Upstart algorithm [42], the network becomes a tree structure as new neurons are added below

existing parent neurons. Although not strictly a structure discovery approach, dropout [121]

is a method that drops random neurons during training and then approximates the average

output of all the resulting smaller networks at test time. There have also been evolutionary

approaches to MLP structure discovery, for example Garcia [45] introduced a new crossover

operator to allow a GA to discover MLP structure, solving the permutation problem (being that

network structure tells you little about network function). See [150] for a review of evolutionary

approaches to neural network learning.

2.4 structure discovery 41

2.4.4 L1 Regularisation Methods

Observing that L1 regularisation methods such as the lasso combine feature selection and

parameter fitting has led researchers to investigate their use for structure discovery in graphical

models. Schmidt, for example, [115] builds dense models and then uses L1 regularisation to

induce sparsity. Most of the work proposed in that work limits the dense model to pairwise

connections but hierarchical restrictions are also proposed to allow higher order interactions to

be considered. In a hierarchical model, if a coefficient βa is zero, then the coefficient for all higher

order interactions, βb for a ⊆ b are also zero. Non-hierarchical models have the disadvantage

of not being invariant under reparameterisation. It is possible in a non hierarchical model in

which βa = 0 and βb , 0, a ⊆ b for an addition or removal of some parameters to cause βa , 0.

The disadvantage of a hierarchical approach is that it can only discover the subset of models

that are hierarchical in nature.

Most approaches consider only pairwise interactions, one exception being Dahinden et

al., [35] who consider higher order interactions, but only on small numbers of variables.

Considering a large model, which is then pruned has the disadvantage of requiring a training

data set that is large enough to fit the dense model even when the sparse model could be fitted

with a much smaller sample, if only its structure were known.

The lasso regularisation has also been used to discover the zero valued coefficients in

the covariance matrix (and, consequently, a sparse dependency graph) by considering the

neighbourhood of each variable in turn, adding both nodes and connections as the size of the

data set grows to allow them [96]. The ability to match the number of parameters in a model to

a level supported by the data is an important consideration in structure discovery.

L1 regularisation was also used to discover structure in Markov networks by Su-In Lee at

al. [87] who employed a greedy method of adding weights and relied on L1 regularisation

forcing some weights to zero when choosing weights to remove. The approach maintained

two sets of features: one active, with parameter values set by gradient descent and the other

inactive with parameter values fixed at zero. Two greedy feature introduction methods were

considered, both of which choose a single feature to add from the complete inactive set. The

grafting procedure [106] chooses the parameter with the steepest gradient with respect to the

cost function and the gain-based method [39] calculates the gain in log-likelihood of adding

each parameter. In each case, once the feature has been selected, the parameters across the new

active set are relearned and the process is continued. Su-In Lee at al. point out that considering

the effect of every inactive weight in large networks is prohibitively expensive and suggest that

a smaller inactive set should be pre-selected, with the remaining weights ignored entirely.

The grafting procedure for feature selection [106], which has been used for Markov network

structure discovery [87] combines regularisation with greedy feature introduction. A regularised

cost function is defined and gradient descent is used to find the global minimum for an active

2.4 structure discovery 42

feature set. New features are added one at a time, selected by the partial derivative of the cost

function with respect to each candidate feature.

The loss function associated with the weight set W over the training data set of size m is the

mean of squared errors

L(W) =
1

2m

m∑
j=1

(f (x j) − f̂ (x j))
2 (2.50)

and the cost function is the loss plus a scaled sum of the absolute size of the weights

C(W) = L(W) + λ
∑
ω∈W

|ω| (2.51)

The derivative of the loss function with respect to weight ωi is

∂L
∂ωi

=
1
m

m∑
j=1

∂ f̂ (x j)

∂ωi

∂L
∂ f̂ (x j)

+ λsign(ωi) (2.52)

and the derivative of the cost function with respect to weight ωi is

∂C
∂ωi

=
∂L
∂ωi

+ λsign(ωi) (2.53)

Every candidate weight will have a value of zero and its impact on the derivative is defined

as

sign(ωi) =

−1 if ∂L

∂ωi
> λ

1 if ∂L
∂ωi

< −λ

(2.54)

The grafting approach requires a single pass through the training data for each inactive

feature under consideration. Calculating the derivative of the cost function with respect to

every candidate weight and effectively discarding all but one of them can be very inefficient.

2.4.5 Structure Discovery As Variable Selection

Section 2.1.2 describes a number of variable selection methods. By treating the full set of possible

connections in a network as potential variables, it may be possible to apply such methods

to structure discovery. As discussed above with reference to the grafting approach, greedy

methods suffer from the need to consider every potential variable in isolation before the next

one is added. This is not possible for large networks as there are too many potential edges to

2.4 structure discovery 43

even consider each of them in isolation. Never the less, variable selection inspired approaches

to structure discovery have been proposed.

As noted in section 2.1.2, this thesis does not take a Bayesian approach, but some Bayesian

structure discovery methods are worth noting for comparison. The spike and slab approach

has been applied to structure discovery in Markov random fields, for example. Chen and

Welling [26] have recently proposed a Bayesian approach to MRF learning with a spike and

slab prior. They motivate the choice of spike and slab over a Laplace or Gaussian as these

latter priors do not induce sparse structure. They also show that the L1 models need strong

regularisation, which causes unwanted global shrinkage on all the parameters and consequent

under-fitting. The spike and slab method is able to learn sparse connectivity models without

leading to under fitting on the parameters that are included. The Bayesian approach expresses

uncertainty about the inclusion of edges through the posterior distribution, to which a threshold

is applied to make the final binary decision of whether or not to include a weight in a model.

The experiments reported in [26] only address pairwise connections, which reduces the search

space to a manageable size but does not address the challenge of discovering higher order

connections.

2.4.6 Hypernetwork and HyperGraph Structure Discovery

This section addresses the some of the work by Zhang et al. using hypernetworks and

hypergraphs for classification and pattern generation. Kim and Zhang [75] describe a method

for pattern classification that uses a hypernetwork representation to implement a function that

classifies patterns in {0, 1}n. Given n input variables, {X1, . . . , Xn}, a graph G = (N, V) is defined

with n nodes in N and a population of hyperedges in V, which forms a multiset (an edge can

appear more than once). Each hyperedge in V is created from a single entry in the training

data. It is made up of a subset of input variables, each with an associated value in {0, 1} (known

as feature sets) and an associated class label, Y. For example, {X3 = 0, X4 = 1, X7 = 1, Y = 1}

represents one member of the multiset connecting nodes 3,4, and 7, with values instantiated

with 0,1, and 1 respectively and the fact that this example led to class 1 in the training example

used to build it.

The structure of the hypernetwork is discovered using an evolutionary algorithm whereby

each edge has an associated fitness value and those edges with low fitness are replaced with

new hyperedges. The two aspects of particular interest from this algorithm are the methods

for choosing which candidate hyperedges to add and how to allocate fitness values to those

hyperedges (and consequently which hyperedges to remove). New hyperedges are chosen in a

two stage process. First, the order of the edge (i.e. how many nodes it connects) is chosen and

then the nodes to be connected are added.

2.4 structure discovery 44

The order of a new hyperedge is chosen by sampling from a discrete probability distribution

over the available orders (1 to n). This distribution is initially set to be discrete uniform and is

then updated to reflect the distribution of orders found to be useful in the classifier. Once the

order, c of a new candidate hyperedge has been chosen, a subset of c input indexes are selected

from a uniformly random distribution. A single sample data point is then used to instantiate

the feature set of the hyperedge and its associated class label.

Hyperedges are selected for removal by first calculating a fitness value for each based on

the number of correct classifications it makes across the training data. Hyperedges with high

fitness are preferred to those with low fitness and hyperedges of low order are preferred to

those of higher order. In this way, the number of parameters and their order can be controlled.

More recently, the same authors [120] built a hypergraph to classify clinical outcomes in

cancer cases. The graph structure is discovered using a Bayesian evolutionary approach that

maintains a large population of hyperedges. A prior over the hyperedges is chosen based on

mutual information between each variable and the class label and also contains pressure to

keep the model compact. Edges are sampled based on training data instances, with the number

of nodes being connected and the variables they connect being sampled from the evolving

distribution. A likelihood measure based empirically on whether the values on the nodes

correctly classify the label on the class node they are connected to is used to remove weights.

Hypernetworks have also been used to generate music [74], predict stock market price

movements [11], classify protein interactions [17], and even to learning concepts from cartoons

[86].

2.4.7 Structure Learning Summary

Two main themes emerge from studying existing approaches to dynamically learning the

structure of statistical models such as hypernetworks, MRFs, BBNs, and MLPs. One is the

need to restrict the search space, either by restricting the complexity of the model or with

branch and bound techniques. The other is that evolutionary methods have been popular as

structure discovery methods. Most aim to minimise a cost function explicitly (BIC or MDL for

example), but some prune parameters based on the statistics of those parameters, something

they also have in common with some feature selection algorithms. In fact, structure discovery

can be viewed as a form of feature selection in which the full feature set is made up of every

possible interaction and many of the possible features can never be evaluated. L1 methods have

been proposed that combine parameter fitting and structure pruning in a single method. The

evolutionary approach to hypergraph classifier building is interesting as it explicitly maintains

a distribution over hyperedge orders to guide the search.

Although we may draw inspiration from MLP or BBN structure discovery methods, the

most useful methods are those designed to build hypernetworks, for example evolving

2.4 structure discovery 45

hypernetworks and MRF discovery methods such as the clique finding algorithm employed by

DEUM and L1 methods such as grafting.

These methods share some common features, from which it is possible to sketch a high level

description of a single algorithmic approach, shared by them all. Algorithm 1 outlines the steps.

Algorithm 1 General Steps Common to Selected Structure Learning Algorithms

Let M be the set of hyperedges in the current model

Let H be the full set of possible hyperedges

Let C be the set of candidate hyperedges under consideration

C←⊂ H . Choose a subset of hyperedges over which to search

repeat

S←⊂ C . Select one or more hyperedge from the candidate set

M←M∪ S . Add the new hyperedges(s) to the model

Learn the parameter values of M

Remove a subset of M

Revise the scope of C

until Stopping criteria met

We can now compare each of the selected methods to the general algorithm above. Consider

sDEUM first. In the initial step, all pairwise dependencies are modelled, so C contains all

second order edges and no others and M = C. An initial edge removal step is performed,

based on mutual information. A single hyperedge addition step involves revising C so that it

contains all the hyperedges that fully connect the nodes in each maximal clique in the resulting

graph and again M = C. Parameter values are estimated using lasso, which also dictates the

hyperedges to be removed. The algorithm does not iterate, so it terminates at this point.

The method based on grafting, [87] lets C = H in its basic form but the authors point out that

in reality a subset of hyperedges (i.e. C) must be selected. The work does not provide a method

for making the selection, however. Each additional weight set, S is a single hyperedge selected

greedily using the partial derivative of the cost function with respect to each weight in C. The

L1 regularised cost function is used to learn the parameter values and select those for removal.

The evolving hypernetwork approach [75] limits C in two ways. A probability distribution

over hyperedge orders provides a bias towards some orders over others and the features

connected to each new hyperedge are determined by randomly sampling from the training

data. Patterns that do not appear in the training data cannot appear in the hyperedge multiset.

Hyperedges are removed based on their contribution to making correct classifications and low

order hyperedges are preferred over those of higher orders. The distribution that defines the

probability of a hyperedge belonging to candidate set C starts uniform and is updated to reflect

the orders from which high fitness hyperedges are found. The framework outlined in algorithm

1 is used in the next chapter as the basis for a new structure discovery algorithm.

2.5 search in graphical models 46

2.5 Search in Graphical Models

Some graphical models such as a Hopfield network or a Markov random field represent a

function in a way that allows the parameters of the model to be viewed as weighted constraints.

Two neurons joined with a positive weight in a Hopfield network will combine to contribute a

positive influence on the energy value when their signs agree and a negative influence when

their signs differ, for example. Weights can be considered constraints of varying importance and

energy minimisation is the process of finding a set of values across the neurons that maximises

the difference between the sum of the weights of constraints that are satisfied and the sum of

those that are not. This section describes some methods for searching a graphical model for

points that minimise an error function (or perform some other type of optimisation).

2.5.1 Hopfield Networks

Hopfield networks have been used to solve tasks such as the travelling salesman problem [65],

[145] but weights are set by an analysis of the problem rather than by learning. One notable

work [24] studied three artificial optimisation problems using high order HNs and presented

an analysis of their approach. Their networks were coded by hand, rather than learned from

data. They point out that there is no general analytical methodology for choosing the values of

the weights in the network and that local minima in the energy function present a problem for

an algorithm that searches such a model.

The traditional method for moving a Hopfield network to a minimum in its energy function

is to pick nodes at random and set their value according to the weights and values of connected

nodes, as described in section 2.3.1.1. Each node’s value is either changed (if the connections

demand it) or left the same. To ensure that every node is visited, the random order can be

subjected to a restriction that no node can be re-visited until all others have been processed.

This approach is referred to as next descent search (the first energy reducing step to be found is

taken) with simple Tabu (recently flipped nodes cannot be flipped back until all other nodes

have been considered).

2.5.2 Steepest First Search

An alternative to next first descent is steepest descent search where the node whose change

leads to the greatest change in energy is chosen. This can be made very efficient in a graphical

model as the change made to energy by any node is fixed with respect to its weights and only

changes in sign when the values of nodes to which it is connected change. By keeping track

of the effect of a flip on each node, Whitley et al. [143] proposed a method in which the best

2.5 search in graphical models 47

next step can be selected in constant time. Although this work is not presented as a method

of searching a graphical model (it uses a Walsh decomposition to keep track of connections),

the problem being solved is the same. The approach is extended by Chicano et. al [29] to keep

track of scores associated with flipping more than one bit at a time, allowing an efficient way of

identifying moves (combinations of a small number of concurrent bit flips) that will reduce the

cost function (which is analogous to the energy function of a network).

2.5.2.1 Local Minima

Regardless of the descent route taken, the search will lead to a stable point from which no

further improvement can be made. These points are known as local minima. One way to escape

from local minima is to pick a new random starting point. The repetition of this approach,

mixed with settling to an attractor from each new point is an approach known as random

restart hill climb.

2.5.3 Gibbs Sampling

DEUM [117] searches for points (i.e. network states) with a high probabilty of being good

solutions using Gibbs sampling, though this is presented as part of an evolutionary search.

A similar MRF based approach, MARLEDA [2] uses Markov chain Monte Carlo sampling to

generate good points. These methods can take time to produce samples as a ‘burn in’ period is

required to allow the distribution of states visited by the sampling process to match that of the

underlying distribution.

2.5.4 Crossover Methods

Whitley et al. [137] made use of a graph representation of a function, known as a variable

interaction graph (VIG) to implement a genetic algorithm crossover method (called partition

crossover). Two parents that are both local optima in the function can be recombined to produce

a new candidate that is also a local optimum in a restricted hyperplane. This type of crossover

is known as respectful as any bit shared by both parents is transmitted to the child. The job

of a crossover operator is to decide which parent should transmit a value for each of the bits

where they disagree. If there are v points of disagreement, there are 2v possible offspring that

can be produced. Partition crossover takes the VIG of the full function and removes the nodes

and associated edges of variables with the same value in both parents to reveal a recombination

graph. If this graph may be partitioned, then the subgraphs can be optimised in isolation as the

contribution to energy of one is independent of the value of the other. This greatly reduces the

search space and allows a new local optimum to be generated from the two parents.

2.6 summary 48

Partition crossover relies on the VIG being known and amenable to partitioning, but when

these conditions hold, it improves the performance of a GA with simpler 2-point or uniform

crossover. The approach is presented as a crossover operator, not a graph energy minimisation

method, but its purpose is the same.

The next chapter presents methods for inferring the right network for a search problem from

samples of the fitness function and proposes a number of methods for searching the resulting

network.

2.6 Summary

Systems of many binary variables can be feed forward, where the inputs, X map to an output Y

or dynamic where the current values of X determine (perhaps stochastically) the values of X

at the next discrete step. The second case is related to the first by an energy measure that is a

function of network state.

The simplest feed forward function of many variables to a single output is the multiple linear

model, which predicts the expected value of the distribution of the output variable, given the

current input. Other distributions may be represented with the same model using a link function,

leading to the generalised linear model. Using a logit link function and adding functions of

hidden variables produces a multi layer perceptron, which is a universal approximator for feed

forward functions.

Dynamic models of the type described here can be used either with deterministic dynamics,

in which case they move from any state to either a fixed state or a cycle, or with stochastic

dynamics where node states change according to a probability function. A network that follows

a Boltzmann distribution has a probability of being in state x that is exponential in the negative

of the energy of that state. Minima in the energy function (and, consequently, maxima of the

Boltzmann distribution function) are described as attractors or memories in the model.

To model interactions between groups of more than two variables, networks may either

make use of hidden units, such as those in a Boltzmann machine, or higher order connections

such as those in a Markov random field. Discovering the correct structure of linkage among the

input variables of a model is of prime importance and still an active field of research.

Both feed forward and dynamic models have been used to aid heuristic search for global

(or sufficiently good local) optima in fitness functions. Such models may be used as surrogate

fitness functions to speed the evaluation of candidate solutions, as representations of the

constraints in the fitness function as an aid to satisfying those constraints by searching the

model, or as an estimation of the distribution of good solutions from which new candidates for

an evolutionary search are generated.

2.6 summary 49

A good approach to building models from data and using them to predict or search for

outputs should have a number of qualities. The representation should be powerful enough to

capture any function required but the degree of complexity and the model bias that results

in a lowering of that complexity should be readily controllable. Algorithms should exist for

learning the parameter values of an existing structure and for discovering a good structure

based on a sample of training data. Ideally, versions of the learning algorithm should also exist

for directly setting attractors in the energy function without the need for learning the shape of

the function away from those points. Further it can be useful to have versions of the learning

algorithm that are both online and offline. It is also desirable that there are learning algorithms

that can introduce model bias when the coefficients of a fixed model are learned.

Further desirable features of such a method are that the resulting model is human readable,

which adds to comprehension and sense checking of the model but also allows comparison

across an ensemble of models and the detection of local minima in the cost function. Human

readability also allows prior knowledge to be injected by design. A good modelling approach

should also be able to select input variables as part of its learning process and work even when

variables make little contribution in isolation, their effect only being shown in their interactions.

If the model is to be used as part of a search method, there should be heuristics for finding

and escaping local optima in the model and ideally those heuristics should be able to take

advantage of the structure of the function represented by the model. The next section describes

an approach to modelling that has all of the features described above.

Part II

C O N T R I B U T I O N

3
M I X E D O R D E R H Y P E R N E T W O R K S

3.1 Introduction

This chapter introduces the mixed order hyper network (MOHN) and describes the technical

details of building and using one. The chapter begins by defining the structure of a MOHN

representation of a function as a hypernetwork with weighted hyperedges called weights.

Calculations for mapping an input to an output are presented along with learning rules

for estimating the parameters on the weights. A dynamic is then defined that allows the

hypernetwork to move to local minima in an energy function. This dynamic is used to

implement a content addressable memory in a MOHN. An algorithm for that attempts to

discover the correct weights to include in a MOHN is then proposed and described.

The use of a MOHN as a fitness function model for heuristic optimisation is then discussed

and several local search algorithms are presented, each of which makes use of the structure of

the MOHN to some extent.

3.1.1 Definition and Notation

The notation used throughout this thesis is summarised in the preface. This section defines the

data and functions under consideration and the structure of a mixed order hyper network.

3.1.1.1 Data and Functions

This work considers the use of a MOHN to represent a function f : {−1, 1}n → R based on data

that reflects that function. The data may be generated in one of two ways. It may be collected

using measurements of a real world process, in which case it is likely to be noisy. Alternatively

the data may be generated from an existing function, in which case it is likely to be noise free.

Samples may be input patterns alone or (input, output) pairs. Reasons for training a MOHN on

data from an existing implementation of the target function include the testing of algorithms

(most of the data in this work is generated artificially for this purpose) and the benefits of being

able to search, analyse and visualise a MOHN, which the original function may lack. This

section will continue to use the notation for input and output variables described in section

1.2.1.

51

3.1 introduction 52

3.1.1.2 MOHN Structure

A MOHN is a hypergraph, M = (X, W) where X is a vector of n nodes, which we shall call

neurons, X = X1 . . .Xn and W is a set of weighted hyper-edges, each connecting zero or more

of the neurons in X. Each weight1 in W consists of a value, ω ∈ R and a set of indices of

the connected neurons, I. A weight and its parts are indexed so W j = (ω j, I j). The neurons

connected to W j may be iterated over using Xi : i ∈ I j. The size of the set of connected neurons

on a weight, |I| is known as the weight’s order. The hypergraph is not directed, so each subset

of nodes in a fully connected MOHN has a unique hyperedge and a single associated weight

value.

The neurons map directly onto the input variables in the data, which is why both are denoted

by the vector X. The function implemented by a MOHN is denoted f̂ (X), given in equation

3.1 and the sharing of notation between variables and neurons allows that relationship to be

written explicitly.

A lower case x is used to denote a particular instantiation of values across X, either the

network’s current state or an example training pattern. Let Wn represent the weights of a

fully connected network. Wn contains 2n weights. There is a single zero-order weight, which

connects no neurons, but has a value all the same. There are n first order weights which are the

equivalent of bias inputs in a standard neural network and n(n− 1)/2 second order weights,

the equivalent of those in a Hopfield network. In general, there are (n
k) weights of order k in a

fully connected network of size n. Most networks will have a sparse pattern of connectivity, so

W ⊂Wn and |W| << 2n. Figure 3.1 shows a partially connected MOHN where n = 4 with the

weight index sets shown.

X1 X2

X3 X4

I = {1, 3} I = {2, 4}

I = {1} I = {2}

I = {3} I = {4}

I = {∅}

Figure 3.1: An example four neuron MOHN with sparse connections. The triangle has a connection set

I = {1, 2, 4} and the square has I = {1, 2, 3, 4}. The circles labelled X1 to X4 indicate the inputs

and there is no explicit output node.

1 Strictly, weights are actually hyperweights, but the simpler term is used throughout this work.

3.2 learning rules 53

3.1.1.3 MOHN Function

As stated in claim 3 from page 4, the MOHN function is a linear parameter model of the form

f̂ (X) =
∑

j

ω j

∏
i∈I j

Xi (3.1)

Equation 3.1 is linear in the parameters, ω j and can also be interpreted as a multivariate

power series expansion without the Xm
i terms or as a basis over f : {−1, 1}n (though in practice

many of the parameters will be zero valued).

3.1.1.4 Energy Function

A MOHN has an associated energy function, U(X), which is defined in terms of the weights

and the values on the neurons

U(X) = −
∑

j

ω j

∏
i∈I j

Xi = − f̂ (X) (3.2)

The energy function of equation 3.2 is simply the negation of the MOHN function of equation

3.1. A weight defines a type of weak constraint among the neurons it connects. The constraint

defines the desired sign for the product of values across the neurons connected by the weight.

If the weight value is positive, then the product of values across the neurons it connects should

be positive to satisfy the constraint defined by the weight. The magnitude of the weight defines

its relative importance among all weights in the MOHN.

It is possible for weights in the same MOHN to define incompatible constraints such that no

pattern of values across the inputs satisfies them all. This is why the constraints are known as

soft. The function that a MOHN represents has its output globally maximised when its energy

is globally minimised. This is at the point where the values across the neurons maximise the

sum of the magnitudes of the weights whose constraints they satisfy.

Most of the remainder of this work deals with networks that are designed to learn a function

from data, in which case equation 3.1 is used rather than its negation. Consequently, the task of

maximising the function is discussed, rather than that of minimising the energy.

3.2 Learning Rules

This section presents the different methods for estimating the weight values of a MOHN from

data. It assumes the structure of the MOHN, that is which weights are included, to be fixed. A

method for discovering the correct structure from data is presented in section 3.3. The data

used to train a MOHN may be either a noisy sample based on measurements from a real world

3.2 learning rules 54

process or samples from a noiseless function. The former case is the usual machine learning or

data mining scenario where a model is built from data. Learning a surrogate model of a fitness

function for optimisation tasks is an example of the latter case. Either way, the data will consist

of samples of the input patterns, x and (where available) an associated output value, y.

3.2.1 Hebbian Learning

The first learning rule we present is the only auto-associative rule, a high order extension to the

Hebbian rule. In this case, each training example is an input vector, X and no function output is

specified. Given that the inputs are set to a single pattern, X = x, that pattern is learned (added

to the memory) by updating the weights using

ω j ← ω j +
1
m

∏
i∈I j

Xi (3.3)

This is the outer product learning rule described by Venkatesht and Baldi [141]. With a zero

diagonal in the weight matrix it allows the MOHN to be used as a content addressable memory

(CAM). For a network that is fully connected at order two only, using equation 3.3 is the same

as loading patterns into a standard Hopfield network. When the MOHN contains higher order

weights, the capacity of the network is increased [141]. Patterns are recalled as they are in a

Hopfield network, by setting the neuron values to a noisy or degraded pattern and allowing

the network to settle using algorithm 9 on page 79. Up to the point where the capacity of the

network is exceeded, a CAM trained in this way stores the training patterns as stable states but,

with very high probability, also contains other spurious attractors.

3.2.2 Weighted Hebbian Learning

Kinser [76] describes a high order outer product rule in the context of mapping an input vector,

X to a scalar output, Y. This rule multiplies each product in equation 3.3 by the output value,

y associated with the input being learned. Kinser states that such a network has advantages

over two layer first order networks but suffer from a limited ability to learn random high order

problems. However, a high order version of the weighted outer product rule is capable of

learning any arbitrary function in f : {−1, 1}n → R. In fact, a fully connected MOHN forms a

basis for functions in that space. To form the basis, the weight values are calculated from an

exhaustive set of X, Y pairs using the Hebbian learning rule for each input, X, weighted by its

associated output, Y.

ω j =
1
2n

∑
X∈{−1,1}

f (X)
∏
i∈I j

Xi (3.4)

3.2 learning rules 55

The weighted Hebbian weight calculation is very similar to the Walsh decomposition

calculation given in equation 2.28 and reproduced below.

ω j =
1
2n

∑
X∈{1,−1}n

f (X)ψ j(X) (3.5)

where ψ j(X) = ⊕(X∧ jbin) is a parity count of values set to 1 over the bits in X that are acted on

by parameter ω j. The equivalences to a fully connected MOHN are clear. Each ω j corresponds

to a single weight, W j = (w j, I j) where weight value w j corresponds to the Walsh coefficient ω j

and the index set, I j contains the indices of inputs that share a position in the input vector with

the presence of a 1 in the same position in the binary representation of j.

The difference is that the output of ψ j(X) is the parity of the number of 1s in the chosen

subvector of X and the equivalent in a MOHN is the product of the values across that same

subvector, which amounts to the parity of the number of values set to -1. When the number

of variables in the subvector is even, the parity of the number of 1s equals the parity of the

number of -1s, so the MOHN and the Walsh functions are the same. When the subvector has

an odd number of variables, the parities are different, so the Walsh function and the MOHN

product differ in sign.

The weights of a fully connected MOHN trained using the weighted Hebbian learning rule

of equation 3.4 on a single example of every possible (input, output) pair will produce a set of

weights that are equal to the coefficients of a Walsh decomposition subject to

ω j = φ(O(j))ω j ∀ j (3.6)

where φ(O(j)) is the parity of the order of ω j such that:

φ(O(j)) =

1 if the order of ω j is even

−1 otherwise

(3.7)

As the odd parity coefficients and the output of the functions both differ in sign from the

MOHN to the Walsh domain, they are cancelled in the linear combination (equations 2.26 and

3.2) that calculates the function output, making their function identical.

This forms the proof of claim 1 on page 4, that by equivalence to the Walsh basis, a fully

connected MOHN forms a basis for the functions in f : {−1, 1}n → R.

Further more, as Xi ∈ {−1, 1}, the mean value X̄i in an exhaustive and unique sampling of X

will be zero as there will be an equal number of +1 and -1 values for Xi in the sample. Take the

standard least squares estimator for the slope parameter, ω1 in simple linear regression:

ω1 =

∑m
j=1(X j − X̄)(Y j − Ȳ)∑m

j=1(X j − X̄)2 (3.8)

3.2 learning rules 56

and let X̄ = 0 to obtain

ω1 =

∑m
j=1 X j(Y j − Ȳ)

n
=

∑m
j=1 X jY j −

∑m
j=1 XiȲ

n
=

∑m
j=1 X jY j

n
(3.9)

By the same process, the estimate for ω0, the intercept, is

ω0 = Ȳ −ω1X̄ = Ȳ (3.10)

The weighted Hebbian parameter estimate is equal to the least squares estimate of a parameter

in isolation when the distribution of input values is uniform across {−1, 1} for each variable.

The Hebbian learning rule is interesting for three reasons. It forms the basis of the proof

that a MOHN can represent any function in f : {−1, 1}n → R and it is used in heuristic search

methods discussed in section 3.5.4. In addition, Swingler [133] has shown that a Hopfield

network trained with the weighted Hebbian rule can learn the maximal turning points in a

function from (X, Y) samples and has the same capacity as the same network trained using the

Hebbian rule. The difference between the Hebbian and the weighted Hebbian approaches is

that the Hebbian rule trains the network on known patterns (the attractors, or local maxima)

and the weighted Hebbian rule discovers the location of the attractors from (X, Y) pairs, which

do not need to include the local maximal patterns themselves.

3.2.2.1 Parity Count Learning

The weighted Hebbian learning rule estimates each parameter value independently and without

accounting for any imbalance between the number of times the product across the connected

inputs is positive or negative. Calculating the parameters independently introduces bias that

can only be removed by considering all of the parameters together. However, gaining an initial

biased estimate of the parameter values may be useful as a first step when estimating the

parameters using a gradient descent approach (see section 3.2.3.3), so improving that estimate

is of interest.

The consequence of any imbalance across the parity of the input patterns is that X̄ in equation

3.8 is not zero and the estimate made by the weighted Hebbian rule is biased towards the

values of Y associated with the most frequently occurring value of each Xi. This bias can be

removed, while maintaining the practice of estimating the weight values independently, by

applying equation 3.8 to each weight.

The same ratio in equation 3.8 is produced by replacing the denominator of equation 3.8 by

the difference between the two possible input values, i.e. 1− (−1) = 2 and the numerator by

the difference between the mean of Y when X = 1 and X = −1.

The sum in the weighted Hebbian rule of equation 3.4 adds values of Y that are associated

with a positive product across a weight’s inputs and subtracts values of Y that are associated

3.2 learning rules 57

with a negative input product. All values are divided by n regardless of how often they appear.

By splitting the sample into two groups, those with positive products across their inputs and

those with negative, the two groups can be re-weighted. This is done by calculating the average

value of Y in each group and allowing each resulting average to contribute equally to the

estimate of the weight value by summing them and dividing by two.

Formally, I j defines a subvector of X. Let X+
j be the set of subvectors of each x ∈ X defined by

I j that contain values whose product is positive and X−j be the set of subvectors that contain

values whose product is negative. Now let 〈y+〉 be the average value of y associated with the

members of X+
j and 〈y−〉 be the average value of y associated with the members of X−j :

〈y+〉 =
1
|X+

j |

∑
x∈X+

j

f (x) (3.11)

Similarly, 〈y−〉 is calculated as a sum over x ∈ X−j . The weight value calculation for all weights

except ω0 is

ω j =
1
2

(
〈y+〉 − 〈y−〉

)
(3.12)

The value associated with W0, ω0 is simply the average of Y across the whole data set. The

parity learning rule is not of great interest in its own right, but will be considered again as an

efficient method of finding a starting point for gradient descent learning in the next section.

Section 4.3.6 describes an experiment in which the parity rule is used as an initialisation for a

gradient descent error minimisation, for example.

3.2.3 Regression Rules

The weighted Hebbian learning rule treats the parameters to be estimated independently, which

introduces bias when the assumption of uncorrelated inputs is violated. An unbiased estimate

of the weight values can be found by minimising a squared error cost function over all the

weights together. The squared error cost function, C(ω) maps the weight values, ω = ω1 . . . ω j,

of a MOHN to the squared error on the training data that those weights produce.

C(ω) =
∑
x∈X

1
2
(f (x) − f̂ (x,ω))2 (3.13)

where f̂ (x,ω) is the output of equation 3.1 in response to the input values, x when the weight

values are set to ω.

A MOHN is a linear parameter model with inputs that are formed from the product of

values on subsets of the input variables. Equation 3.1 makes that clear. Minimising the squared

3.2 learning rules 58

error defined in equation 3.13 in a linear model when the errors are homoscedastic and serially

uncorrelated produces an unbiased estimate of the model parameters. Additionally, the squared

error cost function of equation 3.13 is convex, with a single global minimum.

3.2.3.1 Ordinary Least Squares

To use ordinary least squares (OLS) [52] to estimate the weights of a MOHN, an m× |W|matrix

X is constructed where each row is constructed from a training example and each column

represents a weight. The first column represents W0 and always contains a 1. The remaining

columns each represent a weight, W j and contain the product of the values of the inputs

connected by that weight,
∏

i∈I j
xi. A vector Y takes the output values associated with each of

the input rows and the parameters are calculated using singular value decomposition:

ω = (XTX)−1XTY (3.14)

where XT is the transpose of X, X−1 is the inverse of X and ω is a vector of weight values in

the same sequence as the weights were inserted into the matrix X.

3.2.3.2 The Lasso Learning Rule

It may be desirable to introduce estimation bias, particularly to impose a regularisation on the

weights to attempt to avoid overfitting. The lasso [136] may be used to learn regularised values

on the weights of the MOHN. Each input vector is set up in the same way as described for OLS,

by calculating the product of the input values connected to each weight and the coefficients

generated by the lasso are read back into the weights of the MOHN in the same order. The

lasso is described in section 2.1.3.3. The fact that the lasso forces some weights to zero not only

allows the lasso to reject input variables that contribute little, but also to reject higher order

weights that are not needed. The lasso can be used as a simple method for choosing network

structure by over-connecting a network and then removing all the zero valued weights after

the lasso regression has been performed.

3.2.3.3 Online Learning

The weights of a MOHN can also be estimated online (where the data is streamed one pattern

at a time, rather than being available in a matrix as in equation 3.14) using stochastic gradient

descent (SGD). SGD is designed to minimise a cost function. In this case, the unregularised

least squares cost function defined in equation 3.13 is used. It has a partial derivative with

respect to weight ω j of

dC
dω j

=
∑
X∈X

(f (X) − f̂ (X))
∏
i∈I j

Xi (3.15)

3.2 learning rules 59

Individual weights can be updated from individual samples, (X, Y) using stochastic gradient

descent:

ω j ← ω j + η(f (X) − f̂ (X))
∏
i∈I j

Xi (3.16)

where 0 < η < 1 is the learning rate. The optimal learning rate may be sought experimentally

and further improvements might be made using a dynamic learning rate [152].

The iterative nature of the algorithm allows for early stopping to be used to control for

overfitting with reference to a validation set. To that end, the available training data is split into

two sets. Dt is the training data and Dv is the validation data. Note that Dt ∪Dv represents the

full set of data to be used in the learning process and Dt ∩Dv = ∅. Other approaches such as

k-fold cross validation could be used instead. A single member of Dt or Dv is a single (input,

output) pair from the data, (x j, y j). Algorithm 2 describes the learning process.

Algorithm 2 Online MOHN Learning with Stochastic Gradient Descent

Let Dt be a subset of the available data to be used for training the network

Let Dv be a subset of the available data to be used for validating the network as it trains

Let e = 0 count the training epochs

for all (x, y) ∈ Dt do

Initialise the weights in the network using the parity rule of equation 3.12

end for

repeat

for all x ∈ Dt do

Update the weights in the network using the SGD learning rule of equation 3.16

Let Ct and Cv be the root mean squared errors that result from evaluating every

member of Dt and Dv respectively

Increment e

end for

until Ct and Cv or e meet stopping criteria

Note that the weights are initialised with the parity learning rule of equation 3.16, not to

random values as with an MLP. This is because there are no local minima in the error function

and so no need for random starting points. In cases where the entire (input,output) space of the

function may be noiselessly sampled, the initialisation step will produce the correct weights

immediately, without the need for additional error descent learning. The learning algorithm

will work without the initialisation (the weights can be set to zero) but there is experimental

evidence that it requires more iterations of the learning cycle. See section 4.3.6 for an example

of the improvement that this weight initialisation can bring.

3.2 learning rules 60

3.2.3.4 Stopping Criteria

The squared error cost function is convex and has a unique minimum for a given training

set. Algorithm 2 makes use of a validation set to allow early stopping to be applied, meaning

that the algorithm is not allowed to find that minimum. The motivation behind this choice

is that over fitting can occur if the training error is allowed to reduce too far but might be

avoided by stopping the training process early. Prechelt [107] described three criteria for using

the training and validation error for early stopping. They were generalisation loss, which

measures the ratio of current validation error to the lowest observed so far, the quotient of

generalisation loss and progress, which allows training to continue if the training error is still

falling quickly, and sustained validation error increase. As none of these criteria can guarantee

termination, a limit on the number of epochs to train and a target error progress are also used.

As discussed in the introduction, more sophisticated approaches to choosing the right model

such as cross-validation are often used.

Algorithm 2 uses RMSE as part of the stopping criteria as that is the cost that is being

minimised, but it can be useful to use the correlation between the MOHN output and the

target outputs in the validation data, Dv as the measure that is reported as training progresses.

Correlation is not dependent on the scale of Y like RMSE is, so can be more informative to the

human observer.

3.2.4 Comparing Learning Rules

Experimental comparisons of the learning rules’ efficiency and accuracy will be presented in

the next chapter, but some comparisons can be made at this point. SGD has the advantages of

requiring less memory than OLS as the data does not need to be stored in a matrix. When data

sets are very large, this may become particularly important. It also has the advantage of being

what De Campos et. al [38] call an anytime solution as the error diminishes gradually with

time rather than needing the full matrix calculation of OLS to complete. When data sets are

very large, such approaches have the additional advantage of possibly not even needing to

use all of the available data as the stopping criteria may be met before all of the data has been

processed once.

OLS provides an unbiased estimate of the weight values, whereas the lasso offers control over

the degree of estimation bias. In this work, SGD relies on early stopping to introduce estimation

bias, but other methods such as adding noise to the training data may also be used. The next

section describes methods for controlling model bias by adding and removing weights from a

MOHN in an iterative process that requires the weights to be re-estimated at each iteration.

SGD is able to continue to learn the weights of each new structure using the values from the

3.3 structure discovery 61

previous iteration as starting points. See figure 4.40 for an example of SGD learning during

structure discovery.

3.3 Structure Discovery

Section 1.3 states a number of properties of MOHNs. They form a basis for real valued functions

of binary vector inputs, but the basis model contains 2n weights, where n is the size of the

input vector. For some functions, many of the parameter values are zero, which means the

weights have no effect on the function output and can be removed. We call these sparse functions.

MOHNs are linear parameter models so estimating the weight values requires at least as many

data points as there are parameters in the model. Reducing the number of parameters that are

estimated also reduces the required size of the data set. When modelling a fitness function from

noise free samples, the number of function evaluations required is determined by the number

of parameters in the MOHN.

It is trivial to show that sparse functions exist. Let n = 2 and f (X) = 3X1 − 2X2. In this

example, f (X) is sparse because the parameter associated with X1X2 is zero. Multiple linear

regression on the input variables alone (without considering any interactions) creates a sparse

model and makes the assumption that the target function that generated the data is also sparse.

Almost all of the work in this thesis makes an assumption of sparsity about the functions being

modelled. A method for discovering which parameters are non-zero within the constraints of

small data samples is needed.

Section 2.4 describes a number of methods for choosing which parameters to include in a

statistical model. We call this structure discovery. Algorithm 1 on page 45 proposes a generic

approach to structure discovery that summarises a number of approaches from the literature.

Many existing methods reduce the search space by defining a subset of model structures to

explore. Some employ a greedy approach that requires large numbers of candidate parameters

to be considered at each iteration. We believe that a new method is required, which is capable

of providing every possible structure a non-zero probability of being chosen without the need

for exhaustive consideration of each candidate parameter at each iteration.

The number of weights in a MOHN must be smaller than the number of training examples

available. Limits on data quantity, either due to limitations on collection or by a desire to

minimise the number of fitness function evaluations, place limits on model size. If the number

of weights to consider is larger than the training set size, a method of adding and removing

weights is required. Removing weights is the easier of the two. Many methods such as those

reviewed in section 2.1.2 have been proposed. The task of choosing which weights to add is

more challenging.

3.3 structure discovery 62

Greedy methods add a weight at each iteration, considering all candidate weights. For

MOHNs of even moderate size, it is impossible to test every possible weight, even in isolation,

so a method for choosing which weights to consider is needed. There are a number of

requirements for such an algorithm. It must only consider a small proportion of all the possible

weights but be capable of exploring a number of weights that is larger than the size of the

training data. It should be possible for a user to introduce domain knowledge about the function

if available. The algorithm should not rely purely on low order interactions to detect higher

order ones, for example it should be able to discover the correct weights for a function that

has connections at order three alone. It is also desirable to minimise the number of training

examples the algorithm requires.

The goal of the structure discovery algorithm is to minimise a cost function that measures both

the accuracy of predictions and the number of weights used. This suggests an L1 regularisation

approach, as discussed in section 2.4.4, which leads to a sparse connection structure. However,

there is an additional constraint on the number of weights that can be compared at any one

time, which is determined by the number of training examples available and the level of noise

in the data. This motivates an iterative approach to adding and removing weights that keeps

the current model size within bounds dictated by the data set.

Many greedy approaches, such as [106] evaluate every available feature and add only one at

a time. For large networks, exhaustively considering each unused weight is impossible, so a

smaller candidate set must be maintained. Adding or removing weights requires the weight

values to all be re-estimated, so it is also desirable to add and remove as many weights as

possible at each step, rather than the one-at-a-time approach of many greedy algorithms. A

method of fitting the weight values at each iteration efficiently is also needed.

3.3.1 The MOHN Structure Discovery Algorithm (MSDA)

This section proposes and describes the MOHN structure discovery algorithm (MSDA). The

algorithm is incremental, so weights are added and removed as it progresses. Regularisation

is applied by the choice of weights to add or remove, but can also be introduced into the

regression algorithm used to learn the weight values. When we refer to adding or removing a

weight, or recording a set of used weights, the weight refers to the subset of neurons it connects,

I j, not its value, ω.

The MSDA maintains a probability distribution, P(I) from which candidate weights are

sampled and added to the model. The model then undergoes a training phase after which

all the weights are tested for significance. Insignificant weights are removed and as the

model grows, the weight picking distribution is altered to reflect its emerging structure. This

approach is similar to the probabilistic approach taken by Kim and Zhang [75] and to the same

3.3 structure discovery 63

authors’ Bayesian evolutionary approach to classification [120], but it does not apply a Bayesian

framework and is not designed to build classifiers.

Algorithm 1 on page 45 outlines a general algorithm for network structure discovery. The

proposed MSDA is presented below with reference to algorithm 1. At its most abstract level,

the algorithm proceeds as follows:

Algorithm 3 MOHN Structure Discovery Algorithm (MSDA).

Let M← ∅ be the set of weights in the current model

Let H← In be the full set of possible weights

Initialise a discrete distribution, P(I) for I ∈ H

repeat

Sample some weights, C from H, each with probability P(I) without replacement

Add C to M

Remove C from H

Calculate the weight values for the resulting network, M

Regularise by removing some weights from M

Update the weights distribution, P(I) to reflect what has been learned

until Stopping criteria are met

A number of decisions are required when implementing algorithm 3 in detail. They are:

• A representation of the probability mass function, P(I) over unpicked weights

• A method for updating P(I)

• A choice of learning rule for calculating the new weight values in M

• A choice of regularisation method for removing weights from M

The following sections consider these points in more detail. These sections compare a number

of choices for each step and are followed by an example algorithm based on one choice from

each.

3.3.2 Representing the Probability Distribution Across Weights

The structure discovery algorithm is based on the premise that as not all possible weights can

be considered, heuristics for picking weights that have a higher chance of proving useful must

be used. The solution is to maintain a probability mass function over the possible weights

where the probability of a weight being selected is proportional to its chance of being useful.

This requires a representation of the space of possible weights and a method for shaping a

function to reflect a weight’s potential usefulness.

3.3 structure discovery 64

In algorithm 3, H represents the set of all possible weights and grows exponentially in size

with n so it is not feasible to assign a probability to each weight in H. Rather than use a single

distribution that covers every possible weight, in this work two distributions are used. One

covers the order of the weight and the other covers the probability of each neuron in the

network being connected to that weight. Let the probability distribution over the weight orders,

o of an n neuron MOHN be

Po(o) : o ∈ {1, . . . , n} (3.17)

and the probability of picking neuron Xi to be connected by the current choice of order o

weight be

Pn(i) : i ∈ {1, . . . , n} (3.18)

The order, o is sampled first, and then a subset, Q of o neurons are sampled without

replacement from Pn(i). Both distributions are discrete—there are n possible orders and n

possible neurons to choose from—so their representation need not be from any parametrised

class. The probabilities can be represented as a vector of size n with the usual constraint that

each must be between 0 and 1 and they must sum to 1.

For a given weight, I of order o = |I|, the probability of being selected by the algorithm, P(I)

is

P(I) = Po(o)
∏
i∈I

Pn(i) (3.19)

There are 2n possible weights but the size of Po(o) and Pn(i) are both n, making the number

of discrete probabilities that are calculated only 2n, making the maintenance of the distributions

linear in n. How Po(o) and Pn(i) evolve as the algorithm progresses is addressed next.

3.3.3 Updating the Weight Picking Distributions

At the first iteration of the algorithm, the distributions Po(o) and Pn(i) must be set up manually.

This presents an opportunity to include any prior knowledge that exists about the function to

be modelled and also allows some control over the complexity of the model to be imposed.

3.3.3.1 Distribution over Weight Orders

The initial distribution over the weight orders needs to be defined over the integers between 1

and n and sum to one over that range. It should also allow a very tight concentration at a single

weight order if required, so fall from the mode exponentially with distance from it. The discrete

3.3 structure discovery 65

Laplace function with support over {1, . . . , n} has all of these properties. The discrete Laplace,

which is a discrete analogue of the continuous Laplace distribution is defined as

fL(x) =
1

2λ
e−
|c−x|
λ (3.20)

where λ controls the width of the distribution and c defines the mode. The discrete Laplace has

a probability mass function defined by

Po(o) =
fL(o)∑n

m=1 fL(m)
o ∈ {1, . . . , n} (3.21)

In the early iterations of the algorithm where c = 1, there is a high probability of picking

first order weights and an exponentially decreasing probability of picking weights of higher

order. In subsequent iterations, Po(o) is updated in two ways. Firstly, c is increased to allow the

algorithm to pick weights with higher orders and secondly the values of existing weights are

used to shape the distribution to guide the algorithm towards orders that have yielded high

value weights already. Note that the number of available weights at each order is not taken into

account in this process.

After some weights have been removed, the weight order probability distribution, Po(o) is

updated so that each order’s probability changes according to the contribution to the total sum

of absolute weight values made by weights at each order. Let S be the sum of the absolute

weight values across the network, S =
∑

j |ω j| and

Ro =
1
S

∑
j:|I j |=o

|ω j| (3.22)

be the proportion of S accounted for by weights at order o. These proportions are then used

to update Po() along with an updated version of the discrete Laplace distribution as follows:

Po(i)← (1− (α+ β))Po(i) + αRi + β
1

2λ
e−
|c−o|
λ (3.23)

where α is the proportion of Ro to include in the update and β is the proportion of the current

order mode, c that is included such that 0 ≤ α ≤ 1, 0 ≤ β ≤ 1 and 0 < α+ β ≤ 1.

If α+ β = 1 the new distribution is a mixture of the current distribution of weight orders in

the MOHN and the discrete Laplace distribution with a mode of c. If α+ β < 1 the distribution

retains some memory of its previous shape, weighted by 1− (α+ β). In the experiments reported

in this paper, the values α = 0.6, β = 0.2 were used and found to work well.

The weight order mode, c needs to be manipulated as learning progresses. In the work

reported here, c was set to equal the lowest order with remaining unsampled weights. As lower

weight orders are exhausted, the mode naturally moves up. Of course, this does not rule out

3.3 structure discovery 66

higher rates being sampled — the α component will bias the sampling towards higher orders if

they prove useful. The smaller the value of λ, the faster the weight order distribution drops

towards zero as it moves away from c.

3.3.4 Distribution over Neurons

Once the order, o of a new candidate weight has been sampled, the o neurons that it connects

must be picked. These neurons are picked from a distribution, Pn() that evolves as each neuron

is picked. The shape of Pn() is determined by a number of factors. Prior knowledge can be

included by increasing the probability of variables that are known to be useful. If no prior

knowledge is available, then Pn() starts off as a uniform distribution. Once there are some

weights in the network, Pn() is determined by a mixture of the prior knowledge and the role

played by each neuron in the existing network. To connect a weight of order o, there are two

phases to the neuron picking procedure. The distribution from which the first neuron is picked

is shaped by the contribution each neuron is already making. In exploratory mode, neurons

that have not yet played a role are favoured and in exploitative mode, neurons that are already

well connected are more likely to be picked. Subsequent neurons, up to a count of o, are picked

from a distribution that is reshaped by the set of neurons that are already connected to the

existing set under construction at orders other than o.

The trade-off between exploration and exploitation can be managed. Exploration in this case

means favouring neurons that have few or weak connections on the assumption that they do

have a role to play, but it has yet to be found. Exploitation refers to picking neurons that already

have connections on the assumption that those which have proved useful at some orders will

also be useful at others.

The first step in picking the o neurons is to pick the first with a probability proportional to

the contribution it makes to the model. Define the contribution made by neuron i as being the

sum of the absolute values of the weights connected to neuron i.

C(i) =
∑
j:i∈I j

|ω j| (3.24)

where j : i ∈ I j iterates over the values of the weights connected to Xi. The proportion of the

total contribution of all neurons made by neuron i is

Cp(i) =
C(i)∑n

k=1 C(k)
(3.25)

Now let ρ control the level of exploration, such that ρ = −1 means full exploration (bias

the search towards unused neurons), ρ = 1 means full exploitation (bias the search towards

well used neurons) and ρ = 0 leads to a uniformly random choice among the neurons. Any

3.3 structure discovery 67

other value of −1 < ρ < 1 balances the degree to which exploration or exploitation is made.

When ρ > 0, the contribution made by its connectivity strength, C(i) is the proportion Cp(i).

However, when exploring, with ρ < 0, the contributions need to be reversed so that the neuron

with the maximal value of Cp(i) has the smallest probability of being picked, the neuron with

the smallest Cp(i) is most likely to be picked, and those in between are linearly transformed in

between. To achieve this, let

R(i) = max(Cp) + min(Cp) −Cp(i) (3.26)

and let the exploration proportion for neuron i, Rp(i) be

Rp(i) =
R(i)∑n

k=1 R(k)
(3.27)

The probability of picking neuron i is

Pn(i) =

(1− ρ) 1

n + ρCp(i), if ρ > 0

(1 + ρ) 1
n − ρRp(i), otherwise

(3.28)

Equation 3.28 causes the degree of exploration to vary when ρ < 0 and causes the degree

of exploitation to vary when ρ > 0. The closer to zero the value of ρ gets, the more uniformly

random the neuron selection becomes.

Defining a weight involves building the weight’s connection index set, I. Each neuron

connected by the weight being built is selected by sampling an index from Pn(j) without

replacement. Once a neuron, Xi is picked, Pn(j), j < I are updated in two ways. Firstly, the

chosen neuron has its probability set to zero to prevent it being picked again and the probabilities

of the remaining available neurons (those not in I) are increased by an equal amount to force

them to sum to one.

Then, Pn(j), j < I are updated again so that other neurons that are already connected to Xi

at other orders have their probability of being chosen increased, while neurons that are not

connected to Xi at other orders have their probability decreased.

Each neuron’s new probability, Pn(j) is updated so that it receives a proportion of its current

value and a proportion weighted by its connectivity to other neurons already on the weight

under construction. Let V be the set of weights that are connected to any of the neurons that

have been picked for the weight currently under construction. The contribution of a candidate

neuron, X j, based on its connectivity to the last picked neuron, Xi is Cu(j, i) and defined as

Cu(j, i)
∑

k:Wk∈V,Xi∈Ik

|ωk| (3.29)

3.3 structure discovery 68

Any neuron that is not currently connected to any of those currently on the weight being

constructed have Cu = 0. These values are then normalised so that they sum to one:

Cn(j) =
Cu(j)∑n

k=1 Cu(k)
(3.30)

The sum is over all weights that are connected to both Xi and any of the other neurons already

chosen for the new weight. Each probability, j , i is then updated with reference to i as follows

Pn(j)← (1− δ)Pn(j) + δCn(j, i) (3.31)

The parameter δ ∈ [0, 1] controls the mix of the previous shape of Pn() and the update. High

values of δ cause the algorithm to favour neurons that are connected to those already in the set

being built, and low values cause it to favour the contribution of each neuron in isolation. In this

way sets of neurons that form cliques due to low order connections have a higher probability of

being connected at higher orders. Finally, when the number of neurons picked equals o− 1, the

probability associated with all neurons already connected to those neurons at order o is set to

zero to ensure an existing weight is not picked.

Unless the inputs to all pairs of weights are uncorrelated, when weights are learned in

isolation, bias is introduced. That suggests that learning many weights at once is desirable.

There should not be more weights in a model than there are training data points used to

estimate their values, so the number of weights added should be chosen to ensure that the

model has no more weights than there are training examples.

3.3.4.1 Efficient Weight Picking

Once a weight is already in the model or has been tested and discarded, it is considered

used. Only unused weights should be considered for addition to the model. When the ratio

of available weights to used weights is high, it is efficient to simply pick a random weight

using the procedure above and check that it is not already in the network or in a list of weights

that have been considered but removed from the network. To avoid unuseful weights being

repeatedly added and removed, a list of discarded weights is maintained. Newly sampled

prospective weights are first compared to the members of this list and not added if they have

been recently tried. As the model is not invariant under reparametrization, weights may appear

unuseful as part of a poorly structured network, but later prove to be of use when the rest

of the structure is in place. The discard list is periodically emptied to allow weights another

chance of inclusion.

This approach becomes inefficient when there are very few weights available at the chosen

order, meaning very many choices are required before an available weight is found. To ensure

that there are available weights at the chosen order, the algorithm keeps count of how many

3.3 structure discovery 69

weights of each order have been used. There are (n
o) possible weights at each order, o, so when

the order o count reaches this figure, the probability of picking a weight at that order is forced

to zero.

Another efficiency enhancement to the algorithm is the inclusion of a ‘mopping up’ procedure

that is activated when the number of used weights at order o reaches a certain percentage of the

total (a threshold of 90% is used in this work). When the order o count reaches the threshold,

the few remaining weights at order o are automatically added to the model and assessed. This

allows the probability of picking from order o to then be forced to zero, thus avoiding many

fruitless picks from that order.

Algorithm 4 Algorithm for picking a new set of weights to add to an existing MOHN

Let t be the number of weights to add

Let U be the set of discarded weights

Let M be the current network weights

Let V = ∅ be a new weight set

Let Po() be the probability distribution over the possible weight orders

Let Pn() be the probability distribution over the possible neurons

repeat

Let Wnew be the new weight being built

Pick an order, o from Po()

if U∪M∪V is more than 90% full at order o then

Add the rest of the unused order o weights to V

else

Set an initial distribution across the neurons, Pn()

repeat

Update Pn() according to current network structure using equation 3.28

Choose a new neuron Xi from Pn()

Add Xi to the neuron set connected by Wnew

Update Pn() based on the connectivity of Xi using equation 3.31

until o neurons have been selected

if Wnew < U∪M∪V then

Add Wnew to V

end if

end if

until |V| >= t

3.3 structure discovery 70

3.3.5 Learning Rules for the Weights

Section 3.2 summarised three regression learning rules for a fixed structured MOHN: SGD,

OLS and the lasso. Each method has different advantages and disadvantages for estimating

weight values during structure discovery. At each iteration of the structure discovery algorithm,

a small proportion of new weights are added to a network whose existing weight values are

likely to already be close to the correct value. As SGD is incremental, it can take advantage of

this fact rather than starting a new, empty network at each iteration. New candidate weights

can be initially set using equation 3.7, after which the entire new network is improved by SGD

using equation 3.16. Algorithm 5 describes this process.

The nature of the regularisation in the lasso means that weights that are not needed have

values forced to zero, removing the need for an additional weight removal decision, but at the

cost of estimating the entire network structure from scratch at each iteration. The lasso also

imposes regularisation on the weight values, which may or may not be desirable. The penalty

applied by the lasso corresponds to a Laplace prior over the weight values. This expects many

weight values to be at or close to zero and only a few of them to be large, which corresponds

well to the assumption made about the weights in a MOHN. In some experiments in this

work, the lasso has been used to discover network structure, but the final weight values (after

removing those with parameter values of zero) are then re-estimated using OLS to remove the

estimation bias that lasso introduces. This is done in cases where the true, unbiased weight

values can be derived from knowledge of the model and the result of the MSDA needs to be

compared to those known values. Algorithm 6 describes the lasso network update method.

A single value for λ may be chosen or, as is usual in the application of the lasso, a number of

different settings for λ may be tried using least angle regression [41] (see section 2.1.3.3).

Algorithm 5 Weight update algorithm for SGD learning

Let W be the current network weights

Let V be a set of new weights, chosen using algorithm 4

Initialise the weights in V using the parity calculation, equation 3.7

Add the weights in V to W so W←W∪V

Run SGD learning, equation 3.16 on W

Algorithm 6 Weight Update Algorithm for Lasso learning

Let W be the current network weights

Let V be a set of new weights, chosen with algorithm 4

Add the weights in V to W so W = W∪V

Estimate the weight values using the lasso based on equation 2.13

3.3 structure discovery 71

3.3.6 Regularisation and Weight Removal

Regularisation refers to the process of introducing additional constraints to a machine learning

process to prevent over fitting. This often takes the form of a penalty on complexity or a bound

on the norm of the learned parameters. Regularisation can also involve the use of an out of

sample validation set. All of these methods may be applied to a MOHN but the main means

of regularising a MOHN is the removal of insignificant weights. In this section, two options

for weight removal are considered. It is important to remove weights because the rules for

updating the probability distributions from which new weights are chosen depend on the

presence or absence of weights in the model. It is also desirable to keep the model small for

reasons of parsimony, to avoid over fitting and to reduce the time and data quantity required

during learning.

Equation 3.7 shows a first approximation to the correct value of a weight based on the

difference between the mean function output for even and odd parity inputs to the weight.

In cases where the difference between the distributions of the function output under each of

the two parity conditions is not statistically significant, the weight may be excluded. A t-test

is used to compare the mean function output between the odd and even parity input sets,

allowing weights with a p-value above a chosen threshold to be removed. Some fine tuning of

the critical p-value (pcrit) is required to ensure that the algorithm does not discard too many

or too few weights. This can be achieved by trial and error or by including pcrit as one of the

hyperparameters in a grid search. The t-value, t j associated with weight W j is calculated as

t j =
ω j√
σ
m

(3.32)

where ω j is the weight value, σ is the variance of f (X) and m is the number of training data

points. The t-test is used as an approximation to the z-score calculation given in equation 2.14,

without the need to calculate (XTX)−1. The t-test makes the assumption that the difference

between the average function output when the input to a weight is positive and that when it is

negative is normally distributed. An alternative, the Mann Whitney test may be used when this

assumption does not hold. The experiments reported in this work all use the t-test, however.

Section 3.3.5 describes the lasso approach to estimating the weight values, including the

fact that the regularisation forces parameter values towards zero, making the choice of which

weights to remove from the network straight forward.

The least squares estimate of the value of any parameter, ω j depends to some extent on which

other weights, Wi, j are included in the model and the values they take. Consequently, whether

or not ω j should be included in the model also depends on the other weights. Experimental

evidence suggests that some weights that have significant values when certain other weights

are present can be judged insignificant when those weights are not present in the model. For

3.3 structure discovery 72

this reason, weights that are removed during early cycles should be given another chance

of inclusion later in the learning process. This is done by emptying the used weight set, U

according to some schedule. The schedule may be chosen based on the number of elapsed

epochs. In some of the experiments reported in this work, the schedule was chosen by first

running the learning algorithm without emptying U. The number of epochs taken before

the validation error shows little change from epoch to epoch is then used as the interval for

emptying U. A second approach, which was also used here was to include the reset schedule as

a hyperparameter in a grid search approach to finding the best model.

3.3.7 The Full Algorithm

The full structure discovery algorithm is presented in algorithm 7, with reference to partial

algorithms already described above.

Algorithm 7 Full MOHN Structure Discovery Algorithm.

Start with an empty network, W = ∅

Initialise an empty used weight set, U = ∅

Initialise the probability distribution Po() over the possible network orders o = 1 . . . n

repeat

Reset U = ∅ according to a schedule

Use algorithm 4 to select a new set of candidate weights, V

Train and merge V and W using either algorithm 5 or 6

Remove weights based on either a t-test or the zero valued weights after the lasso

Add the removed weights to U

Recalculate Po() using equation 3.23

Calculate the validation error

Update the parameters c and pcrit

until The validation error is sufficiently low or no longer improves

3.3.8 Structure Discovery for Content Addressable Memories

An adaption is now proposed to Algorithm 7 that allows it to discover a set of weights capable

of storing a set of patterns in a content addressable memory (CAM). The high order CAMs

discussed so far in this work [81] [140] are fully connected, so the number of weights grows

rapidly as orders are added. Discovering a sparse representation allows an arbitrary pattern set

to be represented in a CAM with far fewer weights. The disadvantage of this approach is that

each time a new pattern is learned, all of the previous patterns must also be re-learned as a new

structure is found.

3.3 structure discovery 73

The t-test for statistical significance of weights in a content addressable memory is not

appropriate as there is no output, Y. The distribution of parity values across a weight determine

whether or not the weight is useful. A uniform distribution suggests the weight is not useful.

This suggests Pearson’s Chi-squared test with the null hypothesis that the number of patterns

with an even parity across a weight is equal to the number with an odd parity. Weights that

satisfy the null hypothesis are removed.

Let X be a set of patterns to be stored in a CAM. Let P+
j be the number of patterns in X that

have an even parity over the subvector associated with weight W j and P−j be the equivalent

count of odd parity patterns. The Chi-squared test statistic for weight j is

χ2
j =

(P+
j −

|X|
2)2 + (P−j −

|X|
2)2

|X|
(3.33)

where |X| is the number of patterns to learn and P+
j + P−j = |X| for all j. The result, χ2

j is tested

for significance against the chi squared distribution with 1 degree of freedom. Algorithm 8

summarises the CAM structure discovery algorithm, which follows the same pattern as MSDA

and makes use of most of the same processes. The main differences are that learning is Hebbian

rather than using the lasso or SGD and the significance test is Chi-squared.

Algorithm 8 Structure discovery algorithm for content addressable memory.

Let X be the set of patterns to store

Start with an empty network, M

Initialise the probability distribution Po()

repeat

Choose new weights to add to the network as follows:

Pick an order, o from Po()

repeat

Set Pn() according to current network structure using equation 3.28

Choose a new neuron Xi from Pn()

Add Xi to the set connected by the new weight

Update Pn() based on the connectivity of Xi using equation 3.31

until o neurons have been selected

Learn every pattern in X using the standard Hebbian learning rule

Remove any insignificant weights using a Chi-squared test

Recalculate Po() using equation 3.23

until Every pattern in X is a stable attractor in M

3.3 structure discovery 74

3.3.9 Monitoring the Learning Process

As the algorithm progresses, the number of weights of each order in the network may be

reported and compared to the possible total. The maximum number of possible weights at each

order is (n
o) where o is the order and n is the total number of inputs. This gives a measure of the

complexity of the network compared to possible complexity. By reporting the list of tried and

discarded weights, it is also possible to monitor how much of the weight space the algorithm

has sampled.

To ensure the cost function is convex and not under specified, the current number of weights

in the MOHN during learning must be kept smaller than the number of training examples. In

cases where data is generated from a function, the size of the sample may grow in response to

the size of the MOHN as it grows.

3.3.10 Setting the Hyperparameters

The MSDA has a number of hyperparameters, which control the way in which the algorithm

works and encode some assumptions made by the user. They are listed below with comments

on choosing suitable values based largely on experience gained from running experiments

with the MSDA. We describe two learning methods, which we refer to as SGD and lasso. In the

context of this work, we refer to minimising squared error, but with early stopping as the SGD

approach and minimising the L1 cost function as the lasso approach.

• Learning method: Lasso has the advantage of forcing some weight values to zero, making

the decision of which to remove straight forward. Stochastic gradient descent has the

advantage that the values on the weights that remain in the model provide a very good

starting point for the next iteration of the algorithm after weight removal and addition.

On large data sets, this has been found to offer a considerable speed up in learning. We

suggest that OLS is not a suitable choice as weight values need to be re-calculated at

each iteration, rather than continuing from the current point using SGD. Experimental

evidence for this is presented in section 4.4.3.

– Stochastic Gradient Descent

* Number of epochs to train: During gradient descent, the MOHN weights are

updated across several passes through the training data (so called training

epochs). Each iteration of the MSDA involves a number of training epochs on

the current model. How many are required depends on a number of things, such

as the size of the training data set. We suggest stopping when the validation

error ceases to significantly fall. This can be identified by setting a minimum

average decrease size over a number of epochs. Finding a good value can take

3.3 structure discovery 75

some experimentation. Plotting error curves over time can help the user choose

a threshold or a fixed number of epochs.

* Critical p-value for weight removal: We have found that the p-value used for

discarding weights is one of the harder hyperparameters to set. A value that

neither discards nor keeps too many weights can be hard to identify without

experimentation. Also, as the quality of a model improves, the critical value

should reduce to account for the improved accuracy of the estimated weight

values. This is a good hyperparameter to include in a grid search. Alternatively,

starting high (0.5 has been found sufficient in most cases) and reducing by 0.05

every time the weight removal step fails to remove a weight has proved to be a

useful heuristic.

– Lasso

* Degree of regularisation: The regularisation term λ in the lasso cost function

determines the degree of regularisation and also influences the number of

weights that take a zero value. The best level of regularisation can be explored by

including λ in the grid search. We have found that low levels of regularisation

worked well and higher levels tended to leave too many parameters with zero

values.

• Number of weights to add at each iteration The experiments we report in this work

allow for an initial number of weights to be introduced for the first iteration of the MSDA

and for subsequent iterations to have another (usually smaller) number of weights added.

It is essential to keep the number of weights lower than the number of training points in

the data.

• Initial distribution of weight orders In the absence of domain knowledge, a sensible

default assumption is that low order weights are sufficient. In all the examples given in

this thesis, we have used the discrete Laplace distribution centred on order 1 with λ = 1,

which causes 95% of the distribution to fall within two steps of the mode. The space of

potential distributions is too large to address with a grid search and this hyperparameter

should not be considered as part of such a search.

• Update rate of weight order distribution As evidence of useful weights is found, the

order distribution is updated. The distribution itself also changes over time according

to a pre-defined schedule. The schedule used in all of this work is to place the mode of

the distribution over the first weight order that has not been exhaustively searched. The

contribution made by new evidence to each update is controlled by the hyperparameter

α and the proportion contributed by the distribution update schedule by β. We have fixed

these values at α = 0.6, β = 0.2 for the experiments in this work.

3.3 structure discovery 76

Hyperparameter Values

Learning method Lasso or SGD

Exploration trade-off δ ∈ [0, 1]

Weight order distribution update (α, β){(0.6, 0.2), (0.5, 0.5), (0.2, 0.6)}

Number of weights added per iteration A ∈ {n, 2n, 4n, 10n, 20n}, A < m

Lasso Regularisation level All the levels tried during training

Critical p-value cp ∈ [0.9, 0.001]

Table 3.1: Hyperparameters suitable for inclusion in a grid search for the MSDA and some suggested

values or ranges. n is the number of input variables and m is the number of training examples.

• Exploration / Exploitation Trade-off When building a weight, the neurons that are chosen

to connect to it are picked either because they have proved useful already (exploitation)

or haven’t been explored yet (exploration). The trade-off between the two is controlled

by a hyperparameter, δ which can be explored as part of a grid search. An alternative

approach is to alternate from one iteration to the next between exploring (δ = 1) and

exploiting (δ = 0).

• Schedule for emptying the used weights list We have found that emptying the used

weights list when the algorithm reaches a point where adding new weights has very little

effect on validation error is a useful heuristic. If five iterations of adding and removing

weights produces no improvement in validation error, that should trigger an emptying of

the used weight set.

• Stopping Criteria In common with many iterative learning algorithms, the MSDA can be

terminated according to a number of criteria including a limit on run time or execution

cycles, a target validation error level or a consistent rise in validation error over several

iterations.

Some of the hyperparameters can be explored using a grid search. Those that are suitable

are listed in table 3.1 with some suggested values over which to perform the search (n is the

number of input variables and m is the number of training data points). More work is required

on better methods for automatically choosing some of the values such as the number of training

epochs and the used weight list emptying schedule.

3.3.11 Analysis of the Algorithm

The MSDA is incremental and produces a solution that improves (or at worst gets only a little

worse) from iteration to iteration, meaning that it can be stopped at any time and a solution of

3.3 structure discovery 77

some quality will be available. As the model grows and shrinks, the number of parameters

to be estimated at each iteration remains a subset of those that might be considered, allowing

data sets to be smaller. The algorithm is capable of considering more potential weights than the

number of training examples available as long as the number of weights in use at any iteration

remains smaller than the training sample size.

Structure complexity is restricted by the shape of the weight order probability distribution,

Po(), but rather than imposing restrictions a priori, the algorithm attempts to discover the

restrictions as it progresses. This works well on functions where certain orders dominate, but is

not suited to finding randomly, sparsely distributed weight order patterns. Domain knowledge

can be introduced by biasing the order picking distributions towards orders that are known

to dominate in a given function or by limiting the highest allowed order. The neuron picking

distribution can also be set to favour inputs that are known by a domain expert to be more

useful than others.

The algorithm is unlikely to become trapped in a local optimum as the weight picking

distributions can always be made to allow new, untried weights to be added. It can, however

spend long periods on an error plateau, fruitlessly adding then removing the unhelpful weights,

making only small changes to the weight picking distributions. Once weights have been added

and removed, they cannot be added for a certain number of iterations, so the algorithm can

eventually find some new useful weights to help it move off the plateau.

At each iteration of the algorithm, re-fitting the model has complexity O(mwp) where m is the

number of training points, w is the number of weights to update and p is the number of passes

through the data made by the SGD learning. The size of the weight space to be searched grows

in O(2n) but the number of weights actually considered by the algorithm depends on how

quickly it finds sufficient weights, which depends on the structure of the underlying function.

A version of the no free lunch theorem [146] applies as on average across all possible functions

no approach can do better than repeatedly picking random structures and learning them in

turn. However, the assumption is made that many functions underlying real data from the real

world have a structure thatmay be discovered more efficiently. The assumptions that the MSDA

makes can be controlled to some extent:

• The distribution of weight orders in the function is assumed not to be uniform. An

assumption about the shape of the distribution can be imposed (in this work we always

favour lower orders over higher ones) and that assumption can be updated in the light of

evidence as the algorithm progresses;

• It might be assumed that if a variable is included in the data that it is important, so

preference is given during weight selection to variables that have not yet been used in the

model. Alternatively, it might be assumed that a variable that is important at one order is

important at others so that well connected variables are favoured.

3.4 network dynamics 78

3.4 Network Dynamics

A dynamic for a MOHN is defined in terms of the way neuron values are updated according

to the values of other neurons to which they are connected. The values of X may be set from

external stimuli or calculated based on the weights and neuron values of connected neurons. A

simple dynamic is achieved by asynchronously updating single neurons one at a time based on

the values of their connected neurons and the strengths of those connections. The neuron value

Xi is set to 1 or -1 based on connected weights by first calculating the neuron activation ai

ai =
∑
j:i∈I j

ω j

∏
k∈I j\i

Xk

 (3.34)

where j : i ∈ I j makes j iterate over each weight connected to Xi, ω j is the weight value

associated with W j and k ∈ I j \ i iterates over the indices of every neuron connected to W j,

except Xi itself. A neuron’s output is then calculated using the threshold function in equation

3.35.

Xi =

1 if ai > 0

−1 otherwise

(3.35)

Setting the values of X to any chosen pattern and then repeatedly applying equations 3.34

and 3.35 to neurons selected uniformly at random without replacement causes the MOHN to

move to an attractor state, from which those equations cause no further change to the neuron

values (see algorithm 9). The basin of attraction for any attractor is the set of starting patterns

that lead to it by this process. As the order in which the neurons are updated is randomised, the

same starting point may lead to different attractors in repeated trials 2. Algorithm 9 describes

the algorithm for settling from a pattern to an attractor.

To prove the algorithm is guaranteed to terminate, it is sufficient to show that the neuron

updates never lead to an increase in the energy function of equation 3.2. Consider neuron Xk. If

the application of equations 3.34 and 3.35 cause no change to the sign of ak, then Xk and the

network energy remain unchanged. If the sign of ak differs from that of Xk, then the neuron

value undergoes a change of sign.

2 For a trivial example of this, consider a network with only two nodes with a single positive connection between them.

The starting point (−1, 1) will lead to the attractor state (1, 1) if the first neuron is updated first and to (−1,−1) if the

second neuron is updated first.

3.4 network dynamics 79

Algorithm 9 Settling a trained MOHN to an attractor point

X← x . Choose an initial state to settle from

repeat

ch = FALSE . Keep track of whether or not a change has been made

visited = ∅ . Keep track of which neurons have been visited

repeat

i = rand(i : i < visited) . Pick an unset neuron uniformly at random

temp = Xi . Make a note of its value for later comparison

Update(Xi) . Update the neuron’s output using equations 3.34 and 3.35

if Xi , temp then

ch = TRUE

end if . If a change was made to the neuron’s output, note the fact

visited = visited∪ i . Add the neuron’s index to the visited set

until |visited| = n . Loop until all neurons have been updated

until !ch . Loop if any neuron value has changed

Let x be the vector of neuron values before the flip and let x′ be those values afterwards. The

only difference between x and x′ is that xk has its value negated. At this point, ai and xk differ in

sign. The difference between U(x) and U(x′) is in the field of Xk so

U(x) −U(x′) = −akxk − (−akx′k) (3.36)

Noting that x′k = −xk, this is re-written as

U(X) −U(X′) = −ak(xk + xk) = −2xkak (3.37)

As noted above, the signs of ak and xk must differ if a change to the neuron value was made, so

the product must be negative, making the difference positive. This proves the energy must fall

in response to a change in value of a neuron. Given that there are a finite number of states the

network can take, it follows that the neuron updates must ultimately lead to a local minimum

in the energy function.

The pattern of activation across the neurons represents the attractor point, which is a local

minimum in the energy function. The algorithm updates neuron values one at a time so the

minimum is local in the sense that a change in the value of any single neuron will not cause

the function’s output to change. The energy function may contain plateaux, in which case the

network behaviour can be tuned to either move about a plateau (allowing a neuron to flip its

value as long as the energy does not increase) or settle on the first pattern it encounters on the

plateau (insisting on an energy decrease from a neuron flip).

3.5 mohns and local search 80

The traditional application of this type of settling process is the use of a network as a content

addressable memory or de-noiser. The next section considers the simple dynamic described

above along with others as tools for function optimisation.

3.5 MOHNs and Local Search

This section considers the use of a MOHN as a grey box fitness function model (FFM). Section

2.2 introduces the idea of grey box FFMs and makes the distinction between ‘weak’ and ‘strong’

constraints. A MOHN represents the fitness function in an explicit structure of weak constraints

among groups of inputs. Minimising the total cost of violated constraints is equivalent to

maximising the output of the function and the search for a maximal value may be guided by

the structure and value of the constraints.

Any MOHN can be represented as a set of constraints, C j, j = 1 . . .m. Each constraint is

defined by an index set, I j, which specifies which inputs are constrained and a weight ω j

whose sign specifies whether the product of the values across the inputs defined in I j should be

positive or negative and whose magnitude defines the strength (or importance) of the constraint.

The I j and ω j values of the constraints equal those in the MOHN function definition, so it

follows from the fact that the MOHN function is a basis that this form of constraint definition is

universal. That is to say that any fitness function in f : {−1, 1}n → R can be represented as a set

of weighted constraints on the sign of the product across unique subsets of inputs. The number

of patterns across any I j that satisfy the constraint defined by the sign of ω j is (n
|I j |
)/2.

Here is an illustrative example. Let f (X) = 3X1X2 − 2X1 +X2. The constraints may be written

as

C1 : X1X2 = 1, ω = 3

C2 : X1 = −1, ω = 2

C3 : X2 = 1, ω = 1

They may be read as “The product of X1 and X2 should be positive, with an importance of

three. X1 should be negative, with an importance of two and X2 should be positive, with an

importance of one”. Constraints C2 and C3 are incompatible with C1 so it is not possible to

satisfy all three. In this example, it is easy to see which constraints should be satisfied, guided

by the weights. C1 is most important and can be satisfied at points (1,1) and (-1,-1). Satisfying

C1 leaves a conflict between C2 and C3. As C2 is more important, it should be satisfied, which

defines X1 = −1, which dictates the choice of (-1,-1) as the point that satisfies C1. Alternatively,

f (X) has a global maximum at X = (−1,−1) and a local hill climb of f (X) has a local maximum

at X = (1, 1). This can be escaped by considering the steps that are acceptable to C1 as the

3.5 mohns and local search 81

search neighbourhood. General algorithms for attempting to use the constraints to guide local

search are considered in this section.

Fitness function models have been proposed for problems where evaluating the true fitness

function is expensive and a model that can be evaluated more easily can be built from fewer

fitness evaluations than are required to find an optimal input [135]. The fitness function model

might be used to guide a search in an iterative process of modelling and sampling. This

approach is taken by EDAs and Gaussian process optimisation, for example. Alternatively, the

fitness function could be modelled exactly and the model searched without further reference to

the real fitness function. In this latter case, if the fitness function samples are noise free and the

right parameters can be found, a basis function such as a MOHN will be able to reproduce the

fitness function with sufficient accuracy to allow the optimal input to be generated from the

model alone. All that remains is to search the model. This is the approach that is taken in this

thesis.

For a full fitness model to be the most efficient route to an optimal solution requires the

combined modelling and model search to be faster (if speed is the measure of efficiency) than a

search of the fitness function without a model. Whether this is true depends on the efficiency

of the modelling process and the search method employed. Here we compare searching the

fitness function with a range of local search methods to modelling a fitness function with a

MOHN using MSDA and then searching the MOHN using grey box versions of those same

local methods. The local search methods considered are random restart hill climb (RRHC),

iterated local search (ILS), variable neighbourhood search (VNS) and simulated annealing (SA).

The connections in a MOHN define independence and parity constraints among inputs,

which brings the following two advantages to using a MOHN fitness model over a black box

fitness function to implement local search algorithms:

1. Independence among inputs allows the MOHN to support incremental evaluations

as the effect on the output of a local change to the current input can be evaluated by

considering only the weights and neurons connected to the input(s) that have changed;

2. The parity constraints defined by the weights in a MOHN can provide information that

can be used to guide a heuristic search.

3.5.0.1 Incremental Evaluations

Consider a MOHN with inputs currently set to x as part of a local maximisation search with

neighbourhoods of size one. Let Xi be a single variable being considered for a change, which

would move the network state from x to x′. The value of Xi should be changed if f (x′) > f (x). A

black box fitness function would require the full evaluation of f (x′). In graphical models such

as a MOHN the effect of changing Xi can be calculated from the nodes and weights connected

to Xi alone. This provides an improvement in computational complexity.

3.5 mohns and local search 82

3.5.0.2 Weights as Constraints

Each weight, W j = (ω j, I j) in a MOHN represents a weak constraint on the values of the

neurons whose indices are contained in the set I j. The weight has a value, ω j, which defines

two things about the constraint. The sign of ω j determines the required sign of the product

of the values in the connected neurons, indexed in I j. The magnitude of ω j determines the

relative importance of the constraint. The constraints are applied to the output of the MOHN

function (equation 3.1) so that if the parity of the values in the neurons indexed by I j agree

with the sign of ω j, then ω j is added to the output sum that defines the MOHN function.

Otherwise, ω j is subtracted from the output sum. Each neuron may feature in more than one

weight and those weights may apply conflicting constraints on that neuron at some points

in the input space. In some functions, all of the constraints can be satisfied and in others the

conflicting constraints mean that only subsets of the constraints may be satisfied. The output

of the MOHN function has a global maximum at the point where the input values satisfy the

subset of weight constraints that maximise the difference between the sum of the magnitudes

of satisfied constraints and the sum of magnitudes of those that are not satisfied.

Part of this thesis addresses the question of how the explicit representation of constraints as

weights can be used to guide a heuristic search. Some functions may be searched efficiently

by a process of setting the values across connected subsets of neurons so that they satisfy the

constraint defined by the sign on their weight. Other functions have a structure that does not

bring such a benefit. Later experiments will demonstrate this further. For example, section

4.14 describes optimising Ising models, which provide no higher order information to guide a

search, whereas section 4.15 describes experiments that optimise a k-bit trap function, which

can be searched very efficiently using the weights as a guide, once the structure is learned.

There are many ways in which a fitness function model might be searched, but this work

concentrates on implementing versions of local search algorithms that can take advantage of

the network structure. The next sections present methods for searching a MOHN inspired

by random restart hill climb, iterated local search, variable neighbourhood search, simulated

annealing and tabu search.

3.5.1 Random Restart Hill Climb

Random Restart Hill Climb (RRHC) is a simple way to explore the attractors in a MOHN.

Starting points are picked by setting each neuron to 1 or -1 at random after which the network

is settled using algorithm 9. The advantage of RRHC is that there is very little computational

complexity in each restart, but the disadvantage is that restarts in the same basin of attraction

will lead repeatedly to the same attractor point. This may be desirable if the purpose of the

3.5 mohns and local search 83

analysis is to characterise the relative sizes of the basins of attraction, but can be quite inefficient

if the purpose is to find a global maximum.

Algorithm 10 Random Restart Hill Climb

for a MOHN, M = (X, W)

its = 0 . Initialise iteration count

repeat

Xi = rand(−1, 1)∀i . Initialise to a random starting point

X = HC(M) . Apply algorithm 9 to settle to a local maximum

its = its + 1

S = f (X) . Score the found pattern

Record S and X if best sp far

until S >= target OR its = max . Stop when sufficient patterns or a good enough pattern is

found

3.5.2 Weight Satisfaction Search

High order weights encode weak constraints among several input variables, offering an insight

into candidate moves in a variable sized neighbourhood. Any neurons that are not connected

(i.e. there is no path between them in the weights) may be optimised separately and those

that are connected will often form smaller subsets of neurons over which it may be possible

to find optimal values. The weights in some MOHN structures suggest higher order steps,

allowing a variable neighbourhood size to be searched, restricted by combinations defined by

their weights. Algorithm 11 describes the process of settling a network by its weights.

The number of patterns tried when finding those that maximise the network output is

2o where o is the order of the weight so networks with high order weights can produce

slow searches. The search can lead to local optima so may need to be repeated. The simplest

approach that we propose is a random restart weight satisfaction search, (RRWSS), which

repeats algorithm 11 from random starting points.

3.5.3 Iterated Local Search

Iterated Local Search [90] replaces the random restart of RRHC with a restart from a position

that has something in common with the current attractor point. The move away from the

attractor, often referred to as the ‘kick’ [89] is usually designed based on some knowledge of the

problem being solved. In the case of a MOHN, that knowledge is encapsulated in the weight

structure so the kick can involve changing the value across subsets of neurons based on their

pattern of connectivity. A MOHN ILS kick makes a high order jump by applying the weight

3.5 mohns and local search 84

Algorithm 11 High Order Weight Satisfaction Search

Xi =rand(−1, 1)∀i . Choose a random starting point

repeat

ch = FALSE . Keep track of whether or not a change has been made

visited = ∅ . Keep track of which weights have been visited

repeat

W j = rand(W j : j < visited) . Pick a random unvisited weight

temp = {Xi : i ∈ I j} . Make a note of its connected values for later comparison

{Xi : i ∈ I j} = argmax
Xi :i∈I j

(f (X)) . Find the pattern across the connected neurons that

maximises network function output

if Xi : i ∈ I j , temp then

ch = TRUE

end if . If a change was made to any neuron’s output, note the fact

visited = visited∪W . Add the weight to the visited set

until ‖visited‖ = n . Loop until all weights have been visited

until ch = FALSE . Loop if any neuron value has changed

satisfaction search to a subset of weights in the network. The fewer weights that have their

neurons updated, the smaller the effect on the network state of the kick.

Two approaches to the ILS kick in a MOHN are considered. The first uses an exhaustive

search over the states that neurons connected to W j can take, finding the state that maximises

the network’s output given the current value of all the other nodes, Xi : i < I j. The second

updates the neurons connected to W j according to the sign of ω j alone. As ω j is a scalar, the

contribution of any state across its connected neurons can only be one of two possible values: ω j

or −ω j, depending on the sign of
∏

i:i∈I j
Xi. The kick does not need a search, it simply chooses a

random pattern of values across the members of I j so that the sign of their product matches

that of ω j.

3.5.4 Local Optimum Suppression Search

Treating each of the local optima as memories in a content addressable memory suggests the

idea of removing (or un-learning) local optima as they are found to avoid subsequent searches

rediscovering them. We propose this approach and call it local optimum suppression search

(LOSS). The attractor removal step involves applying the weighted Hebbian learning rule with

a negative learning rate. The forgetting rule is

ω j = ω j + η f (x)
∏
i∈I j

Xi (3.38)

3.5 mohns and local search 85

Algorithm 12 ILS with High Order Kicks

for a MOHN, M = (X, W)

repeat

X =HC(M) . Perform a local search using algorithm 9

if f (X) is not satisfactory then

Choose A ⊂W . Choose a random subset of weights

for all W j ∈ A do

ω j = argmax
Xi :i∈I j

(f̂ (X)) . Find neuron values connected to W j that maximises f̂ (X)

end for

end if

until A satisfactory solution is found or timeout

Algorithm 13 ILS with Parity Preserving Kicks

for a MOHN, M = (X, W)

repeat

X =HC(M) . Perform a local search using algorithm 9

its = 0 . Initialise an iteration count

Choose A ∈W . Choose a random subset of weights

for all W j ∈ A do∏
i:i∈I j

Xi =parity(ω j) . Set the values across the connected neurons to any random

combination where the sign of the their product agrees with the weight’s value, ω j

end for

its = its + 1

until S ≥ target OR its = max . Stop when sufficient patterns or a good enough pattern is

found

3.5 mohns and local search 86

where x is the value across the inputs that represents the local optimum to remove and

−1 < η < 0 is the learning rate.

Algorithm 14 Local Optima Suppression Search.

for a MOHN, M = (X, W)

W′ = W . Copy the weight values

repeat

Xi = rand(−1, 1)∀i . Initialise to a random starting point

X=HC(M) . Apply algorithm 9

if f (X) is not acceptable then

Apply learning rule 3.38

end if

until One of the attractors is of sufficiently high quality or the network becomes too degraded

W = W′ . Restore the weight values from the copy

Attractor points may be sampled by picking uniformly random starting points and settling

the network. Once an attractor has been found, it is evaluated by the true fitness function

to verify its score as the output from the MOHN will soon become degraded as weights are

changed. If the score is not sufficient, then X = x is deemed to be a local optimum and is

learned with a negative learning rate, η. A smaller learning rate leads to a longer search as local

optima are suppressed more slowly. In some cases a higher learning rate leads to a solution

much faster but in other cases destroys the function to the extent that a solution is never found.

A rate of η = 0.3 was found to speed the search without damaging the desired attractors in

most of the experiments carried out for this thesis.

The unlearning can also remove true optima so if an acceptable solution is not found within

a small number of iterations, the network structure becomes too degraded and renders the

MOHN unable to represent the true maximum. At this point, which can be identified by

tracking the agreement between the MOHN’s output at local optima and those of the real

fitness function, the MOHN’s weights must be restored to their original values and the process

repeated. This suggests that the LOSS algorithm may be best suited to functions where the

basins of attraction for local optima are large, but few. In cases where there are a great many

local optima, it is unlikely to be able to remove sufficient of them in time to find the global

optimum before the MOHN becomes too degraded.

3.5.5 Simulated Annealing

Simulated annealing (SA) [112], [77] attempts to find the maximum of a function by hill climbing

where each step has a probability of being taken proportionate to the size of the improvement

it will make. This allows down hill steps to be taken in the hope that local maxima can be

3.5 mohns and local search 87

avoided. The annealing process is driven by a parameter known as the temperature, T, which

controls the influence of the function on the search (or, conversely controls the degree of

randomness of the search). The temperature and the stochastic nature of the search combine

to attempt to overcome two problems. Firstly, when the temperature is high, the search can

make repeated down hill steps and so escape quite large local maximum attractors. Secondly,

as the temperature decreases, the search still has the capacity to make smaller downhill steps

to escape smaller local maxima. The hope is that the right cooling schedule will allow the

algorithm to find the attractor to the global optimum before its temperature is sufficiently low

to rule out an escape.

To apply simulated annealing, it is necessary to define a neighbourhood for each state. The

neighbourhood of state x, N(x) is the set of states that the algorithm is permitted to visit in a

single step from state x. It is also necessary to define a transition probability function, P(y, y′, T)

that calculates the probability of the algorithm moving from state x to state x′ ∈ N(x), at

temperature T where y = f̂ (x) and y′ = f̂ (x′).

For a MOHN, there are a number of ways to define N(x). The simplest is to allow any

pattern within a Hamming distance of 1. This is the neighbourhood used by the MOHN settling

algorithm 9, which updates neurons one at a time. Higher order neighbourhoods can also be

defined, similar to those reached by the ILS kicks, by considering sets of connected nodes and

setting their values according to the weights that connect them. In this way, SA can be made to

act like ILS where the kicks are possible at any point, not just the local optima. The probability

transition function proposed by Kirkpatrick [112] is

P(y, y′, T) =

1 if y′ > y

exp((y′ − y)/T) otherwise

(3.39)

A symmetrical version of equation 3.39 may also be used in which the probability of

acceptance climbs towards 1 when y′ > y rather than jumping straight to it. This is implemented

with equation 3.40, which allows the probability of a change to be proportionate to the size

of the change in both directions. Figure 3.2 shows the function P(y, y′, T) at various values

of T. At high temperature, the function is almost uniform at 0.5 and at low temperature, the

probability of taking a negative step is close to zero across almost all of its range.

P(y, y′, T) =
1

1 + exp((y′ − y)/T)
(3.40)

3.5 mohns and local search 88

−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

Energy Difference

P(
ch

an
ge

)

Figure 3.2: Probability of accepting a change by the size of that change at various temperatures during

simulated annealing using equation 3.40. T varies from 20 (the flat line) to 1/20 (the step).

Algorithm 15 Simulated Annealing on a MOHN

T← high

x← rand({−1, 1}n) . Choose a random starting point

X∗ ← x . X∗ will store the best solution so far

best← f̂ (x) . best will store the best score so far

repeat

Pick x′ ∈ N(x) at random

Let y← f̂ (x) and y′ = f̂ (x′)

if y′ > best then

X∗ ← x′

best← y′

end if

x← x′ with probability P(y, y′, T)

Reduce T

if The network is stable then

x← rand({−1, 1}n) . New random starting point

T← high

end if

until A solution is of sufficiently high quality or timeout

X∗ contains the optimal pattern found

Algorithm 15 describes simulated annealing on a MOHN. Applying simulated annealing to

models like the MOHN provides an efficiency gain over applying SA to a black box function as

the decision of whether or not to change each variable’s value can be made with reference to

3.6 network analysis 89

only those other variables that are connected to it rather than requiring a full evaluation of the

function output. The experiments with simulated annealing in this thesis used a neighbourhood

of Hamming distance 1 and the sigmoid update probability of equation 3.40.

3.5.6 Choosing a Search Method

The efficacy of the different search methods depends to a large extent on the structure of

the network. If the MOHN may be partitioned and the partitions are small, then optimising

the partitions with a high order search may be possible. If the graph is densely connected,

particularly at low order, then this approach is less applicable. Examining a visualisation of the

MOHN structure may inform this decision. In situations where the structure of the problem is

unknown, it is sensible to start with the simpler methods such as RRHC and progress to others

should that fail.

LOSS is suitable for functions with a smaller number of local optima with large basins of

attraction. RRHC and ILS may fail on such functions as restarts are very likely to put the

algorithm within the basin of attraction of one of the local optima. Functions with very many

local optima are not suitable for searching with LOSS as it will not be able to remove them all.

3.6 Network Analysis

An advantage of a MOHN over other neural networks, such as the MLP is that the structure

of the function is reflected in the weights in a way that is easier to interpret and analyse. The

previous section described how that explicit structure could be used to direct a search. This

section describes methods for analysing function complexity and comparing the MOHNs in an

ensemble as well as presenting a method for visualising the weights in a network.

3.6.1 Complexity and Regularisation

Section 2.1.1.2 describes the bias/variance trade-off in which model complexity is controlled to

balance between under and over fitting of the training data. This is often controlled by either

limiting the number of parameters in a model (using measures such as AIC or BIC for example)

or by restricting the size of parameter values (for example the lasso restricts the L1 norm).

Models in which the parameters are learned by an iterative process, such as training an MLP

by gradient descent may also make use of early stopping to reduce model variance.

These approaches to regularisation can be employed when training a MOHN. The lasso

learning rule described in section 3.2.3.2, for example employs L1 regularisation to the weight

values. The structure discovery algorithm described in section 3.3 regularises by removing

3.6 network analysis 90

weights and an independent test set may be used along side early stopping of the stochastic

gradient descent training described in section 3.2.3.3.

3.6.1.1 MOHN Ensembles

One method of addressing variance in models such as neural networks is to build an ensemble,

which is a number of different networks, all trained on the same data (or samples from it), and

generate the final output by aggregating the individual network outputs. In a MOHN, a given

weight encodes a defined contribution that is the same in every model with the same input

variables. Given two networks of size n built from measurements from the same variables in

the same order in X, any weight connecting a given subvector of X in one network will play the

same role as it does in the other. This allows the networks in an ensemble to be compared and

near duplicates to be removed. Given two weight sets V and W, V∪W denotes the structure

that results in building a network that contains all the weights in both sets, V∩W denotes the

set of weights that appear in both and V \W denotes the set of weights in V that are not in W.

The fact that weights across different MOHNs in an ensemble share the same meaning (in the

sense that they encode the interaction between the same set of inputs) means that the members

of a MOHN ensemble can be further processed in a way that is not possible with an MLP

ensemble. This section describes two methods of combining the MOHNs in an ensemble.

3.6.1.2 Ensemble Intersection

Reasoning that any weight that has been chosen by all the MOHNs in an ensemble should be

kept, the intersection of all the MOHNs in an ensemble is calculated. The resulting MOHN

contains only those weights that are present in every MOHN in the ensemble. This process

yields a new structure, but the weight values need to be re-calculated so the training data is used

once more to learn new values for the given weights. Finding the intersection of the MOHNs

in an ensemble is achieved by starting with, E1 the first MOHN in the ensemble. For each of

the remaining MOHNs in the ensemble, Ek, any weight that is in E1 but not in Ek is removed

from E1. Any weights remaining in E1 at the end of this process must be in every MOHN in

the ensemble. If no weight is present in every MOHN in the ensemble, the intersection will

be empty. How likely it is that this will happen depends on how each MOHN was trained.

If the assumptions made by the MSDA are similar for each MOHN, then that algorithm has

been found to include a similar weight set across an ensemble of different training sets (picked

during cross validation, for example).

3.6.1.3 Ensemble Average

A common practice in data mining is to build an ensemble [80] of models (either of the same

type of a variety of types) and to take the average output across the ensemble in response

to a given input. The ensemble may be built on the same data but across a variety of model

3.6 network analysis 91

structures, or on different training data subsets (or both). Calculating an ensemble average

is inefficient because it requires a large model set and many evaluations, as pointed out by

Bucilua et al. [22] who propose a solution that involves training a new single model to mimic

the output of the ensemble.

MOHNs have the quality whereby the average of the output of a number of MOHNs is equal

to the output of the single MOHN with weights that are an average of those in the ensemble.

The average MOHN is calculated by summing the value for each W j across the networks in the

ensemble and dividing the result by the number of networks it contains. This requires a method

of matching weights across networks when different networks contain different weights.

Take an ensemble of e MOHNs with weight sets W1 . . .We and a shared neuron set, X. I jk

represents the set of connected neuron indices for weight j in Wk and ω jk represents that

weight’s value. Let U = ∪e
k=1Wk be the union of all the weight sets, W ju be weight j in U and

I ju be the neuron set connected by weight j in U.

Define a mapping, w(j, k, U) that looks in the weight set Wk for a weight with the same

connection set index as weight j from U and returns the value of the weight in Wk that has the

same connection set as W ju or zero if it is not present in Wk:

w(j, k, U) =

ωak : Iak = I ju if I ju ∈ I jk

0 otherwise

(3.41)

where a acts as a selector, identifying the weight in U with the same connectivity set as W jk.

The average output, f̄ (X) over all Wk, k = 1 . . . e is

f̄ (X) =
1
e

e∑
k=1

|Wk |∑
j=1

w(j, k, U)
∏
i∈I jk

Xi (3.42)

The ensemble average weight value, ω̄ j for each weight in U is defined as

ω̄ j =
1
e

e∑
k=1

w(j, k, U) (3.43)

Substituting equation 3.43 into equation 3.42 gives

f̄ (X) =

|U|∑
j=1

ω̄ j

∏
i∈I ju

Xi (3.44)

proving the equivalence between the average of the ensemble outputs and the output of

the average MOHN across the ensemble. By averaging the MOHNs in the ensemble into a

single MOHN, the requirement to maintain e different models and make e different predictions

each time is reduced to the task of using a single MOHN. The resulting MOHN will be at least

3.6 network analysis 92

as large as the largest MOHN in the ensemble and has the potential (if none of the ensemble

members share a weight) to be the same size as the sum of the ensemble members. However, if

the ensemble members share many weights, the average model will not be too much larger

than any single member. Unlike the case where the ensemble intersection is calculated, the

average MOHN does not need to have its weights re-calculated.

3.6.2 Visualising Networks

Simply listing the connection patterns and weights of a MOHN does not make interpretation

easy. Methods of visualising different aspects of a MOHN’s structure are also needed. Figure

3.1 shows a small network and depicts weights with different shapes connecting the neurons.

That is fine as an illustration of the conceptual structure of a MOHN but does not scale well for

visualising large networks trained on real data.

The full network structure and an indication of the size of the weights can be represented by

arranging the weights in rows in combinatoric3 order and the neurons in columns. A weight is

represented on a single row by plotting a point in the column corresponding to each neuron

it connects. The colour of the plotted point indicates the size of the weight. In the examples

shown here, red indicates negative weights and green indicates positive. Figure 3.3 shows an

example for a small network. Further examples are given later to illustrate other experiments.

3 Combinatoric order starts with patterns with only 1 bit set to 1, followed by those with 2, then 3 and so on. Within each

group, the order prioritises weights to the left of the vector. E.g. 100, 010, 001, 110, 101, 011, 111.

3.6 network analysis 93

Figure 3.3: An example visualisation of the weights of a MOHN.

3.6.3 Network Summary Visualisation

Visualising large full networks is not always practical or instructive. During learning it can

be more revealing to see summary information such as the number of weights tried and the

number of weights kept at each order. A histogram showing weight counts at each order

as network structure discovery progresses can show not only the complexity of the current

network, but also the progress being made during learning. See page 148 for an experimental

example of this.

3.7 comparison with existing work 94

3.7 Comparison with Existing Work

Chapter 1 described a number of existing approaches to function approximation, dynamic

systems and heuristic search. This section compares the MOHN with some of the approaches

described in chapter 1 from a theoretical viewpoint. Chapter 4 presents experiments that

compare the MOHN with other approaches on real data.

3.7.1 Function Learning

A MOHN is a linear parameter model which, in the case of a full weight set, forms a basis set.

As such it displays all of the characteristics of a linear parameter model and may be extended

to the set of generalised linear models via a link function. This set includes approaches such as

logistic regression and Markov random fields.

Model bias in a MOHN can be controlled with the choice of which weights to include. A

fully connected MOHN or a MOHN with only the required weights has no model bias. Model

bias can be introduced by excluding weights that are required. This may happen due to the

structure discovery algorithm failing to find the right weights, or due to design decisions.

Estimation bias may be introduced by the choice of learning algorithm. OLS is unbiased, the

lasso introduces estimation bias controlled by the shrinkage parameter, λ and SGD regularises

with early stopping, which offers less precise control than the lasso.

The obvious difference between MOHNs and MLPs (including deep networks) is that

MOHNs are very shallow. There are no hidden units, which means that interpretation is easier,

but the features (i.e. the choice of which weights to include) must be discovered explicitly. Once

the features have been chosen the cost function may be minimised in a number of different

ways, and there are convex cost functions available for doing this. MLPs need to be trained

multiple times to try and avoid local minima, making the task of finding the right model more

difficult.

3.7.2 Structure Discovery and Feature Detection

Section 2.4 reviewed a number of methods for discovering structure in graphical models and

performing the very similar task of selecting features for a regression model. This section

considers the MSDA in the context of these methods. Section 2.4 considered methods for

structure discovery for graphs such as Bayesian networks and MLPs and for hypergraphs

such as Markov random fields and hypernetwork classifiers. It concluded that the latter group

are more relevant to this work so this section concentrates on comparing the MSDA with

the following existing work: Evolving hypernetworks [75], the clique finding method used

3.7 comparison with existing work 95

by sDEUM [94], and the greedy L1 method based on grafting [87]. Algorithm 1 outlined a

framework for structure discovery algorithms and this section shows how the MSDA fits into

that framework.

Algorithm 1 maintains a candidate set C of hyperedges (weights in a MOHN). In a MOHN,

membership of that set is probabilistic. The MSDA is not presented in a Bayesian framework,

though it shares some features of such an approach. Prior knowledge or assumptions about

which weights should be included in a model can be expressed in the form of distributions,

which are updated in the light of new evidence. The updates are not made according to Bayes’

rule, however.

The MSDA takes inspiration from hypernetwork classifiers as it maintains a probability

distribution over weight orders, but extends that idea in two ways. The weight order distribution

is not initialised to be uniform. Rather it is shaped to favour low order weights in early iterations

of the algorithm and allows the mode weight order to climb as lower orders are exhausted.

It also extends the idea of maintaining a distribution to the task of picking the nodes that are

connected by each weight.

The MSDA also takes inspiration from greedy L1 methods, using a regularised cost function

to guide the removal of weights at each iteration. However, rather than use a greedy approach,

new weights are picked purely based on the current probability distributions over the weight

orders and the nodes. This has the advantage of not having to consider every member of the

candidate set, C at each iteration. By allowing membership of C to be probabilistic and allowing

its distribution to evolve the MSDA has the potential to expose the algorithm to a larger set of

candidate weights than an L1 method with a fixed candidate set.

Section 4.15 describes a series of experiments in which a MOHN learns the structure and

weights required to reproduce a k-bit trap function. Table 4.14 shows that a MOHN was able to

learn the correct structure for a 25 bit problem with k = 5 in 8 seconds using 1000 data samples.

The MSDA converged in an average of 35 iterations, starting with 200 weights and adding 100

at each iteration. This led to around 8000 candidate weights being considered in total. If the

grafting algorithm is used and the candidate set is limited to all weight orders under 6, the size

of C at the beginning is
∑5

j=1 (
20
5) = 68, 405. The greedy approach considers more weights on

its first iteration than the MSDA does over its entire run. Of course, the k-bit trap problem is

well suited to the MSDA as its structure leads the algorithm quickly to the solution.

The MSDA also takes some inspiration from DEUM, in which higher order weights are

connected to nodes that form maximal cliques of second order connections. As the probability of

a node being joined to a weight is influenced by the values of other weights already connected

to it at other orders, there is a pressure towards well connected input subsets (though not,

necessarily, cliques) gaining further connections. For that reason, MSDA will be effective on

a very similar set of problems to which the DEUM clique finding approach will be effective.

Those are problems where inputs that are connected at lower orders are also connected at

3.7 comparison with existing work 96

higher orders. The iterative approach of adding and removing weights that MSDA employs

was preferred over the single growth step (clique finding) followed by an L1 pruning step

because it allows the number of weights in the network at any given time to be kept lower,

meaning that smaller training sets may be supported. Section 4.14 provides some experimental

results showing that a MOHN trained on data randomly sampled from a noise free function

is able to reproduce that function perfectly using far fewer samples than DEUM or sDEUM

require.

The MSDA adds weights in batches, rather than using the one at a time approach of grafting.

The number of weights added may be chosen by the user, creating a hyper parameter to

optimise. In cases where the function being learned is noise free (a fitness function model, for

example) the number of weights added can be fixed so that the number of weights in the model

always equals the size of the training set after weight addition but before weight removal.

Table 3.2 provides a summarised comparison of MSDA with sDEUM, greedy L1 and evolving

hypernetworks.

3.7.2.1 Applicable Scope

The MSDA relies on the probability distributions over the weight orders and the input nodes to

guide its search for candidate weights. If the structure of the target function contains no bias

in the weight orders or input variable roles, then there is no information to guide the MSDA.

Functions where weights are very sparse and distributed uniformly across the weight orders

with no preference for any input over any other will be very difficult for the MSDA to learn.

Section 4.1.1.7 describes a set of experiments where a MOHN attempts to learn functions that

contain weights of orders that are picked uniformly at random and connected to inputs that

are also picked uniformly at random. The MOHNs fail to learn the functions, as expected, but

when the same functions are used to generate data to train a multilayer perceptron, the error

rates obtained are almost the same. The assumptions made when using MSDA are described in

section 3.3.11.

There is no function in f : {−1, 1}n → R that cannot be represented by a MOHN but in

practice, there are several sources of limitation that may prevent a MOHN being built to

represent a given function. Limitations are due to computing resources (time and memory),

data availability and the ability of the MSDA algorithm to exploit regularities in the structure

of the MOHN representation of a function. Assume that the structure of a MOHN required

to represent a given function is unknown. If the function requires more weights than the

number of available training data points (and no more data can be collected), then the MOHN

structure and parameters cannot be learned. If data can be collected (or generated) in arbitrary

quantity and from arbitrary locations in the data space, then computing resources are the only

constraint as, in principle, every possible model can be tried. For even modest numbers of

inputs (over 20, say), computing resources start to become the limiting factor, so the search

3.7 comparison with existing work 97

space must be limited. How effectively the MSDA is able to limit the search space depends

on the appropriateness of the assumptions that it makes about the function to be learned, as

discussed in section 3.3.11.

3.7.3 Dynamic Systems

A MOHN that is fully connected at second order only is equivalent to a standard Hopfield

network. Adding higher order connections makes a MOHN equivalent to a high order Hopfield

network. As already mentioned, using an exponential link function allows the MOHN to

function as a MRF. This work does not address the use of MOHNs to represent probability

distributions, but the structure discovery algorithm has the potential to offer a useful method

for discovering MRF structure. This will be the topic of future work.

3.7.4 Heuristic Search

The form of a MOHN allows the development of search heuristics designed to take advantage

of its structure. This allows black box problems (where the function may be sampled, but not

examined and where there are no structural clues to guide a search) into grey box problems

(where the structure of the function model may be used to guide a search). If the correct model

can be discovered, then a set of model searching heuristics can be applied to black box problems

that would otherwise require meta-heuristics. For example iterated local search [90] can choose

the kicks based on the pattern of connectivity. Smaller efficiencies are also made possible for

local searches as each variable can be updated according to the values of the variables it connects

to, rather than the full set. There is a cost in building the model originally, but some conditions

make that cost justifiable. For example, if the fitness function is expensive to evaluate or more

than one potential solution is sought from the same fitness function, searching a model can be

more efficient.

Of the search methods reviewed in chapter 1, the MOHN has most in common with DEUM

in terms of structure. DEUM is nominally an EDA but is reported in the literature as taking a

single generation to build a full model, which is then sampled for optimal solutions, making

the approach more like that of fitness function modelling [117] and [94]. This approach is

obviously wasteful (though no doubt a step towards proving the capabilities of DEUM) because

the selection process required to chose the fitter solutions from a population leads to many

samples being evaluated and discarded. Section 4.14 presents some experimental results that

demonstrate this claim. Section 3.7.2 has already discussed the differences between DEUM’s

clique finding approach to structure discovery and that used in the MSDA.

The MOHN can also implement grey box versions of local search algorithms. Examples based

on RRHC, ILS, SA, and VNS are proposed in this chapter and the next chapter presents some

3.8 summary 98

experimental examples of their use. The crossover methods proposed by Tintos et al. [137] may

also be applicable to searching a MOHN, but exploring that further is left for future work.

3.8 Summary

This section introduced the mixed order hyper network and described methods for estimating

parameters, discovering structure and searching models for input points that maximise the

function output. Page 4 claims a number of properties for a MOHN, which were demonstrated

in this chapter. They are:

1. Basis Function: The equivalence to a Walsh basis up to a change in sign for weights whose

order has an odd value demonstrates that a MOHN forms a basis in f : {−1, 1}n → R.

This proof was given in section 3.2.2;

2. Sparsity: The MOHN structure discovery algorithm (algorithm 7) was introduced. It

attempts to find the non-zero weights of a sparse MOHN in a way that restricts the

number of weights in the MOHN and, consequently, the number of data points needed

during training.

3. Linear Parameter Models: Equation 3.1 represents the MOHN function as a sum that is

linear in its parameters.

A number of local search algorithms for optimising the output of a trained MOHN were

proposed. They make use of the structure of the MOHN to speed up the search. Two types of

efficiency are discussed. When a local change to the inputs is proposed, the effect that it has

on the output may be calculated based only on the weights connected to the neurons being

changed. This is more efficient than re-evaluating the whole function. The weights of some

functions may be used to guide a local search as they explicitly represent the constraints to be

satisfied.

A full treatment of all of the claims made at the start of this thesis is reserved until the end of

the work. This is presented on page 201.

3.8 summary 99

Initial Hyperedge Orders

MSDA Discrete Laplace Distribution by default, others may be user

defined if prior knowledge is available

sDEUM All second order connections

Greedy L1 User defined subset of all possible hyperedges

Evolving HNs Uniform distribution over all orders

Number of Hyperedges Added per Iteration

MSDA User defined or maintain model size less than sample size

sDEUM Defined by maximal cliques

Greedy L1 One at a time

Evolving HNs Depends on size of training data set

Hyperedge Removal

MSDA L1 regularised parameters that go to zero or a t-test with a hyper-

parameter to control the critical p-value

sDEUM L1 regularised parameters that go to zero

Greedy L1 L1 regularised parameters that go to zero

Evolving HNs Based on the number of correct classifications an edge is involved

in

Iterations

MSDA Multiple iterations

sDEUM Two stages - second order interaction discovery and maximal

clique connecting

Greedy L1 Multiple iterations

Evolving HNs Multiple iterations

Updating of Hyperedge Candidate Set

MSDA Order distribution and node distribution evolve with the model

sDEUM A single switch from second order connections to clique filling

Greedy L1 Greedy search over all candidate hyperedges at each iteration

Evolving HNs Hyperedge order probabilities reflect the frequency of occurrence

in the current model

Table 3.2: Comparing MSDA with sDEUM, greedy L1 and evolving hypernetworks.

4
E X P E R I M E N T S A N D A N A LY S I S

4.1 Introduction

This chapter presents the results of a number of experiments that investigate and demonstrate

MOHNs in action. It provides experimental evidence for the claims made about MOHNs in

chapter 3. The first part of the chapter presents a series of small scale experiments on artificial

data. Two subsequent parts follow, the first compares a MOHN to an MLP using a case study

on real data describing customer profiles and the second compares the MOHN to some EDAs

from the literature on a number of heuristic search problems. Some of the results reported

below give execution time in seconds. All of the experiments were run on a PC with a single

core 3.4GHz CPU and 16GB of memory. Programs were written in Java.

4.1.1 Functions and Datasets

A number of different functions will be used to test the MOHNs. Most will be implemented in

Java and sampled to provide training data. This has the advantage that the correct structure of

the function is known and can be compared with that of any resulting MOHN. Real data from

Experian’s Enhance data set will also be used.

4.1.1.1 Symmetry Function

This function defines the degree of symmetry about the vertical axis of a square image of n

pixels where each pixel is a variable in X. The variables in the input are arranged on a
√

n×
√

n

grid to form a square black and white image. The fitness score for a pattern is

f (X) =
2s
n

(4.1)

where n is the number of variables and s is the number of symmetrically placed variable pairs

that share the same value. The correct structure for such a function is a sparsely connected

network with second order weights only.

4.1.1.2 Concatenated XOR

The XOR function has long been of interest in the development of neural networks as it is not

linearly separable. Even for an MLP, XOR functions are interesting because the cost function

100

4.1 introduction 101

had long been considered to possess local minima [15] or at least large plateaux from which

gradient descent could not escape [49]. A concatenated XOR function pairs inputs so that each

Xi where i is even is paired with Xi+1 to form an XOR function. The function output is the

normalised sum of the XOR of the pairs

f (X) =
1

n/2

n/2∑
i=1

⊕(X2i−1, X2i) (4.2)

n is constrained to being even.

4.1.1.3 Multiple Pyramid Functions

In these functions, a varying number of target patterns are set as attractor states (local maxima)

by building a function based on the Hamming similarity to the closest target. Target patterns

can all have the same score, or they can each have different scores (all of which are sufficiently

high to ensure they stay locally maximal). Let T be the set of target patterns with p = |T|

members: T = {T1, . . . , Tp}.

The fitness function is defined with respect to the Hamming similarity between X and each

target pattern T j ∈ T.

Let the Hamming similarity between target t j and pattern X be

H(X, T j) =
n∑

i=1

δXi,T ji (4.3)

where T ji is element i of target j and δXi,T ji is the Kronecker delta function, which is 1 if T ji = X j

and zero otherwise. The function output is the maximal score of all the members of the target

set.

f (X) = maxT j∈T(H(X, T j)) (4.4)

The function is linear in the Hamming similarity to the nearest target pattern, creating a

landscape of pyramids. The advantage of such functions is that it is possible to control the

number of turning points in a function, and so control one aspect of its complexity. By placing

the turning points at random, many different functions can be generated for repeatedly testing

a MOHN.

Variable height pyramid functions can be defined by assigning a scaling parameter to the

height of each peak. Let 0 < h j < 1 be the output of the function when the input is T j, so the

weighted Hamming similarity of a pattern, X to target point T becomes

H(X, T j) = h
n∑

i=1

δXi,T ji (4.5)

Weighting different patterns allows local optima to be placed in the function.

4.1 introduction 102

4.1.1.4 K-Bit Trap Functions

K-bit trap functions are counting functions based on subvectors of k variables from the input

vector. A pattern is split into non-overlapping subvectors, C ⊂ X of size k and each subvector is

scored separately. The function output is the sum of the subvector scores. Each subvector is

scored by counting the number of bits set to 1 and letting patterns with k 1s (all of them) score

k, but letting patterns with < k 1s score k− 1− b where b is the number of bits set to 1:

f (C) =

k, if b = k

k− 1− b, otherwise
(4.6)

and the sum is calculated as

f (X) =
∑
C⊂X

f (C) (4.7)

The correct network structure for a k-bit trap function includes first order connections to

every neuron, and connections up to order k among the neurons in each subvector, C. Trap

functions are deceptive because hill climbing steps of any order less than k increase the score

but move away from the global optimum. They are also of interest because the subvectors, C

should not be broken from one generation of a GA to the next.

4.1.1.5 Ising Spin Glass Models

A spin glass represents a disordered and frustrated magnetic system, which can be represented

by a graph in which the nodes, X = X1 . . .Xn are magnetic spins that can be in one of two

states: up or down, and the edges represent interactions between the spins. Ising spin glass

models have interactions that form a lattice structure, with each spin interacting with its closest

neighbours. In a 2D Ising model, each spin interacts with its closest four neighbours on a

toroidal plane, meaning nodes at the left and right edges connect to each other, as do those at

the top and bottom. Ising models can be defined in higher dimensions, for example a 3D Ising

model organises the nodes in a cube so that each node has 6 neighbours. Figure 4.1 shows the

structure of a 2D Ising model.

The state of an Ising model is defined by the values of the spins where up=1 and down=-1.

Each state has an associated energy, calculated with the Hamiltonian of equation 4.8.

H(X) = −
∑
〈i, j〉

Ji, jXiX j (4.8)

where the sum is over the set of edges in the graph and 〈i, j〉 indicates that spins i and j have

an interaction. When the spin of two connected sites agree with the sign of their connection,

4.1 introduction 103

X1

X6

X11

X16

X21

J1,21

J1,21

J1,5 J1,5X2

X7

X12

X17

X22

J2,22

J2,22

J6,10 J6,10

X3

X8

X13

X18

X23

J3,23

J3,23

J11,15 J11,15

X4

X9

X14

X19

X24

J4,24

J4,24

J16,20 J16,20

X5

X10

X15

X20

X25

J5,25

J5,25

J21,25 J21,25

J2,7

Figure 4.1: A 5× 5 Ising model with the toroidal interactions and a single example interaction, J2,7 shown.

All other interactions, Ji, j connect each Xi with X j where a connection is shown. Note that

Ji, j = J j,i and is only included as a single edge.

they are said to be aligned. The state in which H(X) is minimised is that in which there is the

most alignment between pairs of spins. Depending on the configuration of the connections, an

Ising model will have 2 or more global optima and zero or more additional local optima with

outputs that are lower than the global maxima.

4.1.1.6 Graph Colouring Function

The graph colouring problem involves searching for a way to colour the nodes of a graph so

that no two connected nodes share a colour, using a limited palette of colours. The input is

encoded in d groups of k bits where k is the number of colours available on the palette and d is

the number of nodes in the graph. The colour is encoded by allocating each of the k bits in each

block a colour and using patterns where only one bit (that corresponding to the chosen colour)

is set to one. The fitness function has two components. One ensures that only one colour is

chosen in each group of k and the other counts the number of edges that join same coloured

nodes. The function is implemented as follows:

f (X) =
|ed|

|et|

∑d
i=1

k−|i1 |
k−1

d
(4.9)

where |ed| is the number of edges with a different colour at each end, |et| is the number of

edges in the graph and |i1| is the number of inputs in block i with a value 1. The output of

the function is 1 when a correct colouring for the graph is present and each block has only

one bit set to one. The function has interactions within each block at orders up to k, which

control the only-one-colour constraint and additional high order weights between blocks that

are connected in the graph.

4.2 experimental results 104

4.1.1.7 Randomly Structured Functions

A fully connected MOHN forms a basis for functions in f : {−1, 1}n → R so a MOHN can be

used to generate any function in that domain. Each weight in a MOHN is a tuple, W j = (w j, I j)

where w j is the value of the weight coefficient and I j identifies a set of connected input variables.

By choosing a number of weights such that each w j ∈ R is chosen from a uniform random

distribution and each I j contains a unique subset of input indexes, each chosen uniformly at

random from {1, 2, . . . , n}without replacement, a function of random structure can be produced.

Aspects of the complexity of the function and of how challenging it might be for an algorithm

to discover its structure can be controlled by restricting the order of the weights (i.e. the size of

each set, I j) and the number of weights added.

4.2 Experimental Results

The following sections describe a set of experiments that explore and demonstrate the ability of

a MOHN to learn and optimise a number of functions.

4.2.1 Fully Connected MOHNs

Section 3.2.2 shows that a MOHN is a universal function model over f : {−1, 1}n → R as a

fully connected MOHN provides a basis function in that space equivalent to a Walsh basis.

This is claim number 1 made for MOHNs on page 4. For illustrative purposes, the following

experiment shows the results of training a fully connected MOHN with the weighted Hebbian

learning rule of equation 3.4 on an exhaustive sample of the (input, output) space of a k-bit

trap problem over 8 bits where k=4. A Walsh decomposition of the function reveals that the

correct structure for the network should contain exactly 32 weights, as shown in table 4.2. Note

that the weights and Walsh coefficients agree in value and sign according to the definition in

equation 3.6.

4.2.1.1 Network and Sample Size

Fully connected networks and full samples are a special case. In reality, most functions worth

modelling will have too many inputs to allow a full model or an exhaustive sample. Table

4.1 gives an indication of the size, memory requirement and time to process a full network of

varying size. As the table is for illustration only, some simple assumptions will suffice. They

are that each weight requires 32 bits to represent its value and n bits to represent its pattern of

connectivity. Processing time is linear in the number of weights and experiments show that in

4.2 experimental results 105

one second, around 35,000 weights can be processed, so this is the figure used to illustrate time

in the table.

Neurons Weights Bytes Time Memory

10 1,024 1,284 3 ms 1K

15 32,768 61,444 1 seconds 62K

20 1,048,576 2,621,444 30 seconds 2M

25 33,554,432 104,857,604 16 minutes 100M

30 1,073,741,824 4,026,531,844 8 hours 4G

35 34,359,738,368 150,323,855,364 11 days 150G

Table 4.1: An indication of the speed at which time and memory requirements grow for training fully

connected MOHNs.

It is clear from table 4.1 that for even modestly sized networks, a sparse distribution of

weights is required if models are to be built in reasonable timescales. The next section presents

experiments with such networks.

4.2 experimental results 106

Weight Value Order Index Walsh Coefficient

00000000 0.328 0 0 0.328

00000001 -0.023 1 1 0.023

00000010 -0.023 1 2 0.023

00000100 -0.023 1 4 0.023

00001000 -0.023 1 8 0.023

00010000 -0.023 1 16 0.023

00100000 -0.023 1 32 0.023

01000000 -0.023 1 64 0.023

10000000 -0.023 1 128 0.023

00000011 0.039 2 3 0.039

00000101 0.039 2 5 0.039

00000110 0.039 2 6 0.039

00001001 0.039 2 9 0.039

00001010 0.039 2 10 0.039

00001100 0.039 2 12 0.039

00110000 0.039 2 48 0.039

01010000 0.039 2 80 0.039

01100000 0.039 2 96 0.039

10010000 0.039 2 144 0.039

10100000 0.039 2 160 0.039

11000000 0.039 2 192 0.039

00000111 0.039 3 7 -0.039

00001011 0.039 3 11 -0.039

00001101 0.039 3 13 -0.039

00001110 0.039 3 14 -0.039

01110000 0.039 3 112 -0.039

10110000 0.039 3 176 -0.039

11010000 0.039 3 208 -0.039

11100000 0.039 3 224 -0.039

00001111 0.039 4 15 0.039

11110000 0.039 4 240 0.039

Table 4.2: The Walsh decomposition and non-zero weights of a fully connected MOHN trained on a full

sample from the function space.

4.3 sparse networks and sparse samples 107

4.3 Sparse Networks and Sparse Samples

The rest of this thesis investigates the training of sparsely connected MOHNs on data samples

of limited size.

4.3.1 Comparing with a Multilayer Perceptron

This thesis makes the following claims about the advantages of the structure of connectivity of

the weights in a MOHN, compared to the black box model of an MLP

1. Being a linear parameter model, there are no local minima in the squared error cost

function when training a MOHN;

2. The MOHN structure lends itself to human interpretation more readily than that of an

MLP, both in terms of the role of the inputs and the complexity of the model;

3. The MOHN structure allows heuristic search decisions at variable sizes of local neigh-

bourhood in a way that is more difficult with an MLP;

4. Multiple MOHNs in an ensemble can be structurally combined into a single MOHN

whose function is equal to taking the average of the output of each MOHN across the

ensemble as a whole.

4.3.1.1 Local Minima in the Cost Function

Training a MOHN based on a squared error cost function means that there are no local minima in

the error function and the unbiased weight estimate (via OLS, for example) is unique for a given

training data set. The cost function when training an MLP using gradient based methods is

known to have local minima. Swamy et al. [40] state "Conventional first-order and second-order

gradient based methods cannot avoid local minima.". The presence of local minima in an MLP

when training using the same cost function can add a source of variance among alternate MLPs

trained on the same data. Section 4.15.1 describes a set of experiments in which an MLP is

used to learn to reproduce the functionality of a 4-bit trap function over 40 inputs. In those

experiments, optimising the hyperparameters of the MLP is made more difficult by the fact

that any single hyperparameter set produced variance in the validation error across multiple

training attempts. No such variance was found for the MOHN, which minimised the validation

error on every trial.

4.3.1.2 Human Interpretation

A commonly cited disadvantage of the MLP is the difficulty with which its functional shape can

be interpreted by the human user. For example, Jivani et al. [71] recently began a review paper

4.3 sparse networks and sparse samples 108

of neural network rule extraction with "Although neural networks have performed very well

for many application domains, one of its main drawbacks is the inherent black-box nature". It

can be important to understand the structure of the function implemented by a neural network,

for example in certain financial applications where automated decision making needs to be

supported by an ability to provide reasons behind a decision.

In addition, we claim that the complexity of the function implemented by any particular neural

network is not easy to understand from its structure and weight values alone. For example,

by performing a full Walsh decomposition of the function represented by an MLP at each

epoch during training, we have found that the complexity (in terms of the number of non-zero

Walsh coefficients) varies greatly between the first and final training epoch in an MLP of fixed

structure [129]. This work also showed that local minima when learning parity based functions

coincide with a failure of the MLP to encode higher order interactions among inputs.

By contrast, the interactions among inputs in a MOHN are represented explicitly allowing

visualisations of function structure than can (for some functions more than others) be very

revealing to the human observer. In addition, the number of weights in a MOHN and the

number of inputs each one connects can be interpreted directly as a measure of complexity.

4.3.1.3 Use as Fitness Function Models

MLPs have been used very successfully as fitness function models. By following the derivatives

the networks make available, many gradient based optimisation methods may be applied. In the

case of binary optimisation, we claim that a MOHN makes information explicitly available that

can be used for optimisation methods that make use of variable sized search neighbourhoods.

These include variable neighbourhood search (VNS) and methods such as iterative local search

(ILS) that depend on a perturbation within a defined size of neighbourhood. VNS in a MOHN

can (if the fitness function is suitable) be guided very efficiently to input combinations that

should be searched. Section 4.15 presents an experiment that demonstrates this claim.

4.3.1.4 Combining Model Ensembles

Building an ensemble of models and making a prediction by taking the average output of them

all in response to the same input is a well used method for improving model performance and

avoiding over fitting. However, the practical disadvantage is that rather than making a single

prediction, many are required. When ensembles are large, this can be inefficient. One solution

to this problem, proposed by Bucilua et al. [22] is known as model compression and involves

training a new single model based on the averaged ensemble output for the training data.

Bucilua et al. state that "Often the best performing supervised learning models are ensembles

of hundreds or thousands of base-level classifiers. Unfortunately, the space required to store

this many classifiers, and the time required to execute them at run-time, prohibits their use

4.3 sparse networks and sparse samples 109

in applications where test sets are large(e.g. Google), where storage space is at a premium

(e.g.PDAs), and where computational power is limited (e.g. hearing aids)."

Section 3.6.1.3 shows how an ensemble of MOHNs can be combined into a model whose

output is the same as the average across the ensemble for all input patterns without the need

for re-training. Section 4.10.2 provides an illustrative experimental example of the process.

4.3.2 Experiments

This section experimentally compares MOHNs with MLPs in terms of learning speed, the

variance of solutions learned, the ability to avoid local error minima and the ease with which

the model may be used as a surrogate fitness function. First, let us compare the complexity of

making a prediction and updating the weights of a MOHN with the complexity of doing so

with an MLP. In both cases, making a prediction involves each weight once. Weight values are

multiplied by connected neuron values and summed. This means the time taken to make a

prediction should grow linearly with the number of weights in both cases. Similarly, a single

SGD weight update requires time that grows linearly with the number of weights in a MOHN

and an MLP as each weight is updated once in a single SGD step. Differences in learning speed,

if any are found, can be attributed to the differences in the shapes of the cost function for an

MLP and a MOHN.

4.3.3 Experimental Setup

Each of the following experiments had the same experimental setup. The first step in MLP

training involved a grid search over a defined hyperparameter space. Each combination of

hyperparameters was used to train a single MLP on the same training data and validated on

the same validation set. The hyperparameter set associated with the network with the lowest

test error was selected. In some experiments, several MLPs were trained for each point in

the grid search to account for high variability among results gained from identical sets of

hyperparameter settings.

Once a set of parameter settings were selected, they were used in every instance of a number

of MLPs, each trained on a different sample of data. Each of the experiments described below

uses data generated by a known function and each MLP is trained on a small sample where the

inputs are picked uniformly at random and the associated outputs are the result of evaluating

the chosen input pattern with the known function. Validation data was generated in the same

way, with repetitions of training data being avoided in the validation set by comparison with a

record of the training points. In some experiments, where it is important to limit the size of the

training data, the training and validation sets were generated before each network was trained

and no new samples were generated during training. In those cases, the same training data,

4.3 sparse networks and sparse samples 110

presented in the same order, was used for the MLP and the MOHN being compared. Training

data inputs were generated by setting each variable from a uniform binomial distribution over

{−1, 1}. Values were not normalised, but the mean of this distribution is zero and its variance is

1.

The parameters that were varied in each test were chosen from the following:

• The learning rate, η

• The rate of decay of the learning rate, τ (η← τη on each update)

• How often (every e epochs) the learning rate is decayed

• The momentum rate, α

• The activation of the hidden units, from {Tanh, Logistic, ReLU}

• The number of hidden units in the network

• The number of layers in the network (with an equal number of units in each)

• The range from which the initial random weight values are sampled, given as a single frac-

tion, f and used to set the range of weights from −r to r where r = l
√

6/(f anin + f anout)

where l = 4 when the hidden unit activation is logistic and l = 1 otherwise. These figures

are taken from [13].

• The size of mini batches (1 means SGD is used).

• The dropout probability rate.

For training a fixed structure MOHN, there are fewer parameters to explore. The SGD

algorithm has a learning rate that needs to be set and the lasso has the regularisation factor,

λ. For learning a fixed network with OLS, there are no parameters to set. When running the

MSDA, these experiments restricted themselves to a grid search over values for the following

parameters:

• Initial number of weights to start the network with

• Number of weights to add at each iteration of the algorithm

• For SGD:

– Learning rate

– Initial p-value for removing weights

– P-value decay rate

– Minimum p-value

– Number of epochs to perform gradient descent on each iteration

4.3 sparse networks and sparse samples 111

• For lasso:

– Regularisation parameter, λ

During lasso learning, m different values for λ are used to produce m different models,

M j, j ∈ [1, . . . , m] each with a level of regularisation determined by λ j. The actual value of λ

depends on the residual correlations between features and the output and is calculated by

the lasso learning algorithm. In experiments where data is generated by sampling functions,

the choice of λ made by the grid search process is defined by its index, j, not its value. This

means that when the results of the grid search are applied to new data, the exact value of λ

is re-calculated for that data. This allows a single grid search step to be followed by many

repeated experiments on stochastically generated data sets.

4.3.4 Training Speed, Variance and Local Minima

With a fixed structure MOHN, the squared error cost function with respect to the network

weights is convex and so contains no local minima. The same cost function with respect to the

weights in an MLP can contain local minima. Additionally, if the fixed MOHN contains at least

the required weights required to represent the function underlying a data set, then it will be

able to learn that function from a noise free sample with size equal to the number of weights in

the MOHN. This takes place without the need for the learning algorithm to perform the type of

feature discovery that takes place in the hidden layers of an MLP. For all these reasons, one

should expect a fixed structure MOHN with sufficient weights to learn a function more quickly,

with less error variance across trials and from a smaller data sample than an MLP.

4.3.4.1 Experimental Setup

In this experiment, a concatenated XOR function as described in equation 4.2 with 20 inputs

was used to generate the training and validation data. The sets of hyperparameter values

explored in the initial grid search for an MLP were:

4.3 sparse networks and sparse samples 112

Hyperparameter Grid Set

η Learning rate {0.3,0.2,0.1,0.05}

α Momentum {0.8,0.5,0.1,0.05,0.01,0}

τ Learning rate decay {10,20,50}

Hidden activation {Tanh, Logistic, ReLU}

Number of hidden units {10,20,30,50}

Number of hidden layers {1,2,3}

Random weight range {0.05,0.01,0.1,1}

Mini batch size {1,5,10,40,50,200}

The output unit always had a linear activation function and the output data was scaled to

fall into the range from zero to one. Each network was trained for 200 epochs on a data set

containing 1000 randomly generated examples and the average squared validation error was

reported for each epoch.

A grid search revealed the following results. The 30 networks with the lowest validation

error all had 1 hidden layer of neurons with tanh activation functions, a learning rate of η = 0.3

or η = 0.2 and little or no learning rate decay. Networks with 20, 30 and 50 hidden units

were all represented in the best 30, so 20 was selected due to a preference for fewer weights

where possible. Momentum and initial weight range were uncorrelated with error. The network

hyper-parameter settings for the next step of the experiment were chosen to be:

4.3 sparse networks and sparse samples 113

Hyperparameter Value

Number of trials 50

η 0.3

τ 1

α 0.5

Hidden layers 1

Hidden units 20

Total weights 441

Hidden Activation Tanh

Output Activation Linear

Training set size 1000

Validation set size 1000

Learning method SGD

Epochs 200

Mini batch size 40

The 50 trials produced 50 error traces, each 200 points long. The MOHN experiments were

simpler. A fixed structure of first and second order weights was chosen and single SGD learning

trials were performed with the learning rate set to each of {0.1,0.4,0.8,1}. In this case, a learning

rate of 1 was found to learn most quickly, so larger rates were tried but not found to improve

performance. The parameters for the MOHN experiment described below were:

Hyperparameter Value

Structure Fully connected at orders 1,2

Number of weights 211

Learning rate 1

Learning method SGD

4.3.4.2 Results

Figure 4.2 shows the trace of the validation error during 50 attempts at learning the concatenated

XOR function with an MLP and a MOHN. There is a small variation in the error trace for

the MOHN, which is not due to random starting points—all networks start with weights at

zero—but is due to the fact that each training set is generated at random. Note that there are no

traces that indicate a local minimum for the MOHN; all go to zero error. In contrast, the MLP

4.3 sparse networks and sparse samples 114

Measure MLP MOHN

Mean final validation error 0.05 0

Final validation error s.d. 0.002 0

Average epochs 200 6

Table 4.3: Mean and standard deviation of error and average number of epochs to completion of 50 MLPs

and 50 MOHNs trained on a 20 input version of the concatenated XOR function.

trace shows longer learning times and a number of attempts that have not reached a zero error

after 200 epochs.

Table 4.3 show a summary of the results across the 50 trials of each method. The MOHN

stopped training when the error was less than 0.000001. The same target was used for the MLP,

but was never reached, so training stopped at 200 epochs.

0 50 100 150 200

0.000

0.050

0.100

Training Epoch

V
al

id
at

io
n

Er
ro

r

MOHN and MLP Validation Error

MLP
MOHN

Figure 4.2: Validation error trace of 50 attempts at learning a concatenated XOR function with a MOHN

(blue) and an MLP (red). The MLP learns more slowly, with more variance and with fewer

runs reaching the minimum error.

One aspect of the experiments described above that was not addressed was the question

of required data set size. Data was generated from the training function in a constant stream.

With 1000 examples per training epoch and 200 epochs, the MLPs were presented with 200,000

different training examples. We know that a MOHN that contains the necessary weights can

learn a function correctly with as many noise free unique training examples as there are weights

in the MOHN (see section 4.12.2.2 for experimental evidence of this). A final set of experiments

using concatenated XOR were run to establish the smallest data set that would reliably allow

an MLP to reach the error levels described above.

Possible training set sizes from 500 (just over the number of weights in the 20 hidden unit

network) to 2000 in steps of 500 were tested. A limited grid search was carried out, informed

by the previous experiments. Tests were performed with hidden activation functions chosen

4.3 sparse networks and sparse samples 115

Training Points Average Error

500 0.014

1000 0.0035

1500 0.0027

2000 0.0025

Table 4.4: Average test error over 50 trials of an MLP learning a 20 input concatenated XOR function from

data sets of sizes from 500 to 2000.

from {Logistic,Tanh} and learning rate from {0.1,0.2,0.3}. The logistic activation function with a

learning rate of 0.3 was found to be most effective. The only difference between the networks in

this experiment and the one described above, then, is the choice of activation function on the

hidden units (logistic in this case).

Fifty trials were repeated, training an MLP on a new randomly generated training set of sizes

in {500,1000,1500,2000} with the number of epochs chosen to ensure that each network had

seen the same number of examples (and so, had the same number of weight updates). The total

number of weight updates allowed to the networks was increased to one million to give them a

chance to reach a minimum.

Table 4.4 shows the the average error over 50 trials after 1 million epochs for data sets of each

of the the four chosen sizes. The largest jump is from datasets of size 500 to 1000, after which

the additional gains are much smaller. The MLP contained 441 weights, so required around

twice as many data points as there were model parameters. The MOHN compares favourably,

only needing 1 noise free training example per model parameter.

4.3.4.3 Learning Randomly Structured Functions

The concatenated XOR function was chosen to illustrate the difference between the convex

cost function minimisation carried out by a MOHN and the non-convex function that an MLP

attempts to minimise using gradient descent. With only second order connections, it is clearly

an easy function for the MOHN to learn. This experiment compares MLPs and MOHNs when

attempting to learn a function that is designed to be very difficult for a MOHN to learn, the

randomly structured functions described in section 4.1.1.7.

Randomly structured functions are very difficult for the MSDA to learn as there are no patterns

in the connectivity for it to exploit. MSDA is designed on the premise that the connectivity

pattern in the function being learned is not uniformly random. These experiments address the

question of how well a MOHN with the wrong weights performs and how much better (if at

all) an MLP can do. Two approaches to building a fixed structure MOHN to learn random

structure functions were investigated. MOHNs with only low order weights were compared

with MOHNs with random weight structure.

4.3 sparse networks and sparse samples 116

In the first set of experiments on random structured functions, a single function over 8

inputs and containing 20 weights was generated and learned using an MLP as described below.

Training data of 100 unique examples were generated by picking uniformly random input

patterns and evaluating them with the random structure function. A validation set of 100

examples was also generated in the same way, ensuring that no examples in the validation

set also appeared in the training data. The MLP hyperparameters were searched using grid

search but the initial results suggested that the variation in error due to random weight starting

points was greater than the variation due to hyperparameter choice. A second grid search was

performed but this time each configuration of hyper-parameters was used to train ten different

models and the average performance across each set of 10 was recorded. The hyperparameter

sets used in the grid search were as follows:

Hyperparameter Grid Set

η {0.1,0.2,0.4}

α {0.8,0.5}

Hidden activation {Tanh, Logistic}

Number of hidden units {6,12,24}

Number of hidden layers {1,2,3}

Random weight range {0.01,0.1,1}

All networks had linear output units and were trained using SGD in which weights were

updated once for each training pattern in turn (i.e. batch size was 1) over 20,000 epochs. From

the results of the grid search, a network with 3 layers, each of 4 units was chosen, making a

network with 68 weights for 100 training examples. The full set of parameters was:

Hyperparameter Value

η 0.1

Learning rate decay None

α 0.5

Hidden activation Logistic

Hidden Layers 3: 6,6,6

Random weight range 0.26

Training epochs 20,000

Table 4.5 shows the average correlation between the correct function output and the model

output over 200 random structured functions. The difference between the MLP validation

correlation and that of the 1st and 2nd order MOHN is not statistically significant (p=0.56 on a

4.3 sparse networks and sparse samples 117

Method Average Test Correlation

MLP 0.203

1st and 2nd Order MOHN 0.211

Random weight MOHN 0.049

Table 4.5: Average correlation between the correct function output and the model output over 200 random

structured functions for an MLP and two differently structured MOHNs.

paired, two tailed t-test). MOHNs with first and second order connections significantly out

performed MOHNs with the same number of randomly assigned weights. Of course all of the

models performed very poorly. It was expected that the MOHNs would perform poorly as they

all had the wrong weights to learn the functions. These experiments have shown that MLPs

find such functions equally difficult to learn.

4.3.5 Learning Random Pyramid Functions

In this section, the MOHN regression learning rules are compared with each other and with

a standard multi layer perceptron (MLP). To compare the learning rules separately from the

structure discovery algorithm, these experiments are on MOHNs of fixed structure, and no

attempt is made to optimise the structure. For the MLPs, however, the number of hidden units

is one of the hyperparameters that are searched prior to generating the training results.

The multiple pyramid function of equation 4.4 was used for these tests as it is possible to

generate arbitrary functions containing a chosen number of turning points at random locations.

This allows the different methods to be tested across many different functions of varying

degrees of complexity.

4.3.6 Varying the Number of Inputs

The multiple pyramid function was used to test the training speed of each of the different

MOHN learning algorithms on noisy data, compared to a standard MLP with SGD learning.

The SGD method given in algorithm 2 initialises the network weights using the parity rule of

equation 3.12. In these experiments, that approach is compared to the same algorithm without

the initial parity setting step. For the purposes of comparison here, SGD with the parity step is

referred to as SGDp.

4.3 sparse networks and sparse samples 118

4.3.6.1 Experimental Setup

the data A set of experiments were conducted to compare the speed of each of the MOHN

learning algorithms with an MLP. In each experiment, a function with between 15 and 60 inputs

was built by randomly placing four targets using the Hamming similarity function of equation

4.4. The output from the function had normally distributed noise added to it with a mean of

zero and a variance of 0.01. A data set was then generated containing n2 samples (n is the

number of inputs) from the function, representing approximately twice the number of weights

in a MOHN with first and second order connections. A validation set was used to control early

stopping in the SGD algorithms and an independent test set was generated for each model.

the models Each data set was stored and used to train five different models. Four were

MOHNs, each trained with a different algorithm and the fifth was an MLP. The MOHN training

algorithms were SGD, SGDp, OLS, and the lasso. Each MOHN was fully connected at orders 1

and 2 and no structure discovery took place. No regularisation was applied to the OLS model.

The stopping criterion for the SGD trained models was established by training a MOHN using

OLS and measuring the validation error. This was then used as the target validation error for

the other methods. One would expect some of them to perform better than OLS on validation,

but for measuring learning speed, it is a convenient target. The model hyperparameters were

optimised once, as described below, and the optimised parameters were then used to train 45

models (varying in size from 15 to 60 inputs) 50 times to gather data on both the mean and the

variation in training time for each method.

The MLPs used in this experiment had a single hidden layer and were trained using SGD

and regularised using dropout. As the functions varied in size from 15 to 60 inputs and no

two functions were the same, optimisation of the hyperparameters was done across a sample

of functions of each size. Some hyperparameters were set using a function of the number of

inputs in an attempt to optimise over all the possible functions to be learned. This can become

a time consuming process so only the following hyperparameters were searched:

Parameter Description Range

h Ratio of hidden units to inputs {0.25, 0.5, 1, 2, 3}

lr Product of η and network size (η = lr/n) {1, 2, 3, 4}

sw Starting weight range {0.25,0.5,1,2,4}

d Dropout rate {0,0.2,0.4,0.5}

Each combination of hyperparameters was applied to 10 different randomly generated

pyramid functions and the model with the lowest average test score was selected. The

hyperparameters from that model were used in the next step of the experiment. As the MOHN

4.3 sparse networks and sparse samples 119

structures were fixed, there were few hyperparameters to explore. For lasso, the λ value was

the only hyperparameter and for SGD, only learning rate was explored.

4.3.6.2 Results

Figure 4.3 shows the mean training time with error bars at one standard deviation over 50 trials.

For these data, the parity initialisation step moved the weights of a MOHN very close to the

point where the validation error stopping criteria was met and required a very small number of

further SGD steps to reach it. Consequently, the time taken to reach the stopping criterion was

lowest across the trials. It also grew at the lowest rate of all the methods compared. SGD with

weight values initialised to zero was the worst performer, with the longest training times and

the most variance. The MLP took longer to reach the validation error set by OLS than all of the

MOHN methods except SGD.

Once each model had been trained and validated, the test data was evaluated to provide

a final measure of model quality. Figure 4.4 illustrates how test error varied with number of

inputs for the different learning methods. OLS and SGD both follow a similar pattern, due to

the fact that they are minimising the same unregularised cost function. SGD has a slightly better

test error than OLS due to early stopping. The MLP performs better than the unregularised

OLS and SGD trained MOHN, but the MOHNs trained with parity initialised SGD or lasso

reach a lower test error.

4.3.7 Error Descent Rate

The behaviour of the training and the validation error during training is of interest as it gives a

useful insight into the generalisation and over fitting behaviour of the learning algorithm as it

progresses. These were investigated experimentally by training a MOHN and an MLP on a

function with 30 inputs and 4 randomly placed local maxima. The hyperparameters discovered

for the previous set of experiments were used for the MLP training, that meant an MLP with 15

hidden units in a single hidden layer trained with a learning rate of 0.3, a momentum rate of

0.8, a drop out rate of 0.2, trained using SGD (i.e. batch size of 1). Weights were randomised

within r and −r where r = 4
√

6/(f anin + f anout) = 1.75, as suggested in [13] and found to be

optimal during the grid search of the previous experiments.

MOHNs were built with a fixed structure of first and second order weights only (a somewhat

arbitrary design, aimed at keeping the number of weights similar to those in the MLP and

motivated by the fact that a 30 node Hopfield network should be expected to be able to store 3

to 4 local optima [95]). The purpose of this experiment was not to find the optimal MOHN, but

to study the behaviour of a MOHN of reasonable structure as it learned.

Fifty different functions were generated, each with different randomly placed local maxima

and each was learned as described above based on a training sample of 600 randomly generated

4.3 sparse networks and sparse samples 120

15 20 25 30 35 40 45 50 55 60
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

·104

Number of inputs

Tr
ai

ni
ng

Ti
m

e
(m

s)
Training Time by Network Size

MLP
OLS
SGD
Lasso
SGDp

Figure 4.3: The mean and one standard deviation of training time for an MLP and four different MOHN

learning rules as network size varies. All models were trained on noisy data from functions

with four randomly placed local maximum. Each data point is calculated from 50 trials.

4.3 sparse networks and sparse samples 121

15 20 25 30 35 40 45 50 55 60
2 · 10−2

2.5 · 10−2

3 · 10−2

3.5 · 10−2

4 · 10−2

4.5 · 10−2

5 · 10−2

5.5 · 10−2

6 · 10−2

6.5 · 10−2

7 · 10−2

7.5 · 10−2

8 · 10−2

8.5 · 10−2

9 · 10−2

9.5 · 10−2

0.1

Number of inputs

Te
st

Er
ro

r
Test Error by Network Size

MLP
OLS
SGD
Lasso
SGDp

Figure 4.4: The mean and one standard deviation of test error for an MLP and four different MOHN

learning rules as network size varies. All models were trained on noisy data from functions

with four randomly placed local maximum. Each data point is calculated from 50 trials.

4.4 structure discovery experiments 122

input patterns and their associated outputs. A further 600 data points were used to track

validation error (which, due to the fact that this data was not used to influence any training

decisions, was equivelently the test data).

Figure 4.5 shows the average training and validation error on each pass of the training data

from 50 repeated trials. Several points may be noted. The MLP’s train and validation error

values are always very close together, whereas the MOHNs fit the training data very well but

show a similar validation error to that of the MLP. The MOHN trained on SGD alone trains

slowly and fails to reach the validation error of the MLP, as expected from the results of the

previous experiment.

By initialising the MOHN weights with the parity based values and then learning with SGD,

however, we see that the validation error starts lower than the validation error that either the

MLP or the SGD MOHN ever reach, drops for a small number of steps, and then starts to climb.

The SGD MOHN and the Parity-SGD MOHN both converge in terms of both training and

validation error, as one would expect as they are optimising the same convex function. The

parity based weight initialisation calculates the weight values independently, and as a result

introduces bias. In the case of this experiment, that bias has put the weight vector in an almost

optimal point in terms of generalisation.

4.3.8 Conclusion

The different MOHN learning rules were compared with each other for fixed structure MOHNs

and with MLPs. Using a fixed structure fixes model bias so that the learning rules can only differ

in terms of estimation bias. As the squared error cost function of the weights of a MOHN is

convex, we would expect any unbiased gradient descent method to approach the OLS solution,

and this was shown to be the case. Regularisation (estimation bias) was introduced using lasso

learning and early stopping of the SGD algorithm. Additionally, the parity weight initialisation

was shown to speed SGD learning and, when coupled with early stopping, introduce model

bias.

For most problems, however, using a fixed structure is not a feasible approach as the important

weights are not known and a fully connected structure, even at the lower orders leads to a very

large model. Structure discovery is designed to overcome this problem and is discussed next.

4.4 Structure Discovery Experiments

This section presents the results of some experiments using the MOHN structure discovery

algorithm (MSDA).

4.4 structure discovery experiments 123

0 50 100 150 200 250 300 350 400 450 500 550

1 · 10−2

2 · 10−2

3 · 10−2

4 · 10−2

5 · 10−2

6 · 10−2

7 · 10−2

8 · 10−2

9 · 10−2

0.1

Epoch

Er
ro

r

Error by Training Epoch

SGDp Train
SGDp Validation

SGD Train
SGD Validation

MLP Train
MLP Validation

Figure 4.5: Training and validation error during training of an MLP and a MOHN, the latter using SGD

with and without a parity weight initialisation.

4.4 structure discovery experiments 124

4.4.1 Graph Colouring Function

The first experiment uses the graph colouring problem, which involves searching for a way

to colour the nodes of a graph so that no two connected nodes share a colour, using a limited

palette of colours. The encoding and cost function of the graph colouring problem is described

in section 4.1.1.6. Although this is a problem requiring a search heuristic, the main purpose of

using it in this section is to test the MSDA’s ability to find the correct structure and parameters to

represent the cost function of a graph colouring problem based on samples from that function.

4.4.1.1 Experimental Setup

This set of experiments compares the MSDA with an MLP on the task of learning a randomly

generated graph colouring function. Each trial in this experiment involves a graph of ten nodes

with twelve edges added at random, but in such a way that would permit a four colouring (no

node has more than two neighbours).

The MLP input consisted of 40 neurons (ten groups of four) and the target output was the

fitness value of the given input pattern when evaluated using equation 4.9. Each resulting

function was sampled repeatedly to produce on-line training data and tested periodically on

new randomly generated validation data. A little trial and error revealed that testing every

100,000 epochs gave a useful idea of the progress being made, and this is the interval used to

generate the validation error results in figure 4.7. The MLP hyperparameters were chosen using

a grid search over the following values:

Hyperparameter Grid Set

η {0.05,0.1,0.2,0.3}

α {0.8,0.5, 0.1}

Learning rate decay {0,0.5,1}

Hidden activation {Tanh, Logistic, ReLU}

Number of hidden units {20,40,80}

Number of hidden layers {1,2}

Random weight range factor {0.01,0.1,1}

The MLPs were trained using SGD with no batch learning. Training during the grid search was

limited to 500 epochs (an epoch being the presentation of 100,000 randomly generated training

points) and the validation error at the end of that period was used as the measure of success for

the hyperparameter set. As a result of the preliminary search, the hyperparameter search space

was narrowed to 40 or 80 hidden units, in 1 or 2 layers, a learning rate of 0.05,0.06,0.07 or 0.1, a

momentum value of 0.8, no learning rate decay, and a random weight range of 0.1. A second

4.4 structure discovery experiments 125

Figure 4.6: The weights from a MOHN trained on samples from a graph colouring problem fitness function.

The enlarged examples show parts of the learned implementation of the 1-of-4 encoding used

to represent the colour of a node.

4.4 structure discovery experiments 126

grid search across these values led to a final choice of:

Hyperparameter Value

η 0.06

α 0.8

Learning rate decay 0

Hidden activation Logistic

Number of hidden units 80

Number of hidden layers 1

Random weight range factor 0.1

100 MLPs were then built, trained and tested as described above, with test error being

recorded at the end of each epoch. The mean and standard deviation of the test error at each

epoch across all 100 trials was then calculated.

When training the MOHN, the hyperparameters that control some aspects of the MSDA were

searched. As the error profile for the MLP had already been established, the MOHN search

was limited to attempting to find a model that performed no worse on validation data than

the MLPs. The hyperparameters that were considered were the number of training epochs

made through the data between weight removal and addition (i.e. per iteration), and the critical

p-value that determined which weights were removed. A grid search was not considered

necessary. The number of training epochs was chosen by looking at the rate of decrease in the

test error from one epoch to the next and choosing the point where it became flat (defined as an

average change in absolute validation error over five epochs of less than 0.001). This led to a

choice of ten epochs per iteration of the algorithm. Critical p-values of {0.05, 0.1, 0.2, 0.5, 0.7}

were explored by training one MOHN per candidate value for 500 iterations and comparing

the final validation error. A critical value of 0.5 was chosen from these results.

Other hyperparameter decisions for the MOHN were made as follows. Assuming nothing is

known about the weight orders required, the default assumption that lower orders should be

tried first was made so the weight order picking distribution was initialised with a mode of 1

and λ = 1, which causes the probability of weights with orders over 4 to be very near zero.

As with the MLP, 100 graphs were generated and used to produce training data for 100

MOHNS, each trained for 500 iterations with 10 training epochs per iteration. The validation

error at each epoch was recorded for each network and then averaged over the 100 trials. For the

MOHN, this involved recording the validation error just before weights were removed (at the

point where the new weights had been added and a set of SGD iterations had been performed).

This smooths the error profile as the jumps caused by adding and removing weights are not

recorded. As the MOHN made ten passes through the training data per iteration, the error from

the MLP was extracted at intervals of ten so that the errors were directly comparable.

4.4 structure discovery experiments 127

4.4.1.2 Results

Figure 4.7 shows the mean and two standard deviation range of the validation error for the

MLP and the MOHN as training progressed. The MOHN is consistently faster to learn and

more accurate than the MLP.

0 100 200 300 400 500

0.02

0.04

0.06

0.08

0.1

Training Epoch

V
al

id
at

io
n

Er
ro

r

MOHN and MLP Validation Error for The Graph Colouring Function

MLP
MOHN

Figure 4.7: Mean and two standard deviation range of the validation error over 100 trials learning the

graph colouring problem fitness function with an MLP (top, red line) and a MOHN using

MDSA and SGD (lower, blue line).

Having learned the graph colouring function, acceptable colourings were found using

random restart hill climb on the resulting MOHN. Figure 4.8 shows an example solution

generated by learning a graph function and then settling the resulting network. Figure 4.6

shows the structure of the network with some of the detail that represents the 1-of-4 coding

imposed by the function in equation 4.9 enlarged. The groups of four show negative second

order connections, positive order three connections, and a negative connection at order 4.

Of course, learning a model and then using that model to perform the optimisation is not

an efficient way of solving the graph colouring problem, but the example is used because the

MOHN solves the problem blind. If the structure of the problem were not known, and samples

from the fitness function were the only guide, then the MOHN would be appropriate as it

reveals the structure to a human observer. As graph colouring problems also have many equal

optima, they also serve as an example of a situation where a fitness function model may be

preferable to repeated heuristic search as the model is capable of producing multiple solutions

based on random start points.

4.4 structure discovery experiments 128

Figure 4.8: An example solution of a small graph colouring problem created by learning the function with

a MOHN and then settling the MOHN to an attractor.

4.4.2 Comparing The Lasso and SGD Learning During Structure Discovery

This section compares SGD and the lasso learning rules used in the MSDA. The design

justification for using SGD after the addition of new weights is that the existing weights should

already be close to their desired values so intuition suggests that this will be faster than using

the lasso across the whole network. This section presents some experimental results comparing

the two using the k-bit trap function. Speed and accuracy (in terms of root mean squared error)

were compared over 100 runs of the structure discovery algorithm as it attempted to learn the

structure and weights of a 5-bit trap repeated 6 times over 30 input variables.

The MSDA was run repeatedly with the following hyperparameter settings:

4.4 structure discovery experiments 129

Hyperparameter Value

Training examples 10,000

Initial number of weights 2,500

Weights added per iteration 1,200

SGD epochs 20

SGD critical p 0.5 dropping by 0.1 every 10 iterations

SGD learning rate 0.3

Weight addition iterations 50

Used weight list emptied every 15 iterations

Weight order distribution Mode=1, λ = 1

Algorithm 6 was used when the learning method was lasso and algorithm 5 was used when

the learning method was SGD.

Figure 4.9 shows validation error by iteration of the structure discovery algorithm, averaged

over the 100 trials. The lasso consistently achieved a lower error, but took on average over ten

times as long to compute as SGD learning. Figure 4.10 shows the median, inter quartile range

and full range of the time taken by SGD and the lasso to find the correct structure for the same

problem.

0 20 40 60 80 100

5 · 10−2

0.1

Training Iteration

V
al

id
at

io
n

Er
ro

r
(R

M
SE

)

Validation Error by Epoch

SGD
Lasso

Figure 4.9: Validation error during structure discovery using SGD and a t-test to remove weights (top

blue line) and the lasso to learn and remove weights (lower red line). Both lines represent an

average over 100 trials.

4.4 structure discovery experiments 130

SGD Lasso

0

2,000

4,000

Learning Rule

Tr
ai

ni
ng

Ti
m

e
M

S

Figure 4.10: Median, inter quartile range and full range of the time in milliseconds taken by SGD and the

lasso to find the correct structure for the 5-bit trap over 30 inputs.

4.4.3 Learning Under Noisy Conditions

The examples given so far have involved noise free samples from known functions. This is

motivated by the use of such models as fitness function surrogates, in which cases noise free

samples are often available. The MOHN learning rules (SGD, OLS and the lasso) are all known

to perform under noisy conditions, but the required quantity of data increases with the level of

noise. The presence of noise also affects the performance of the structure discovery algorithm,

as larger samples are required to allow the correct relationships to be found.

A set of experiments was performed to test the efficacy of the MOHN structure learning

algorithm under noisy conditions. The experiments also sought to discover the ability of the

MOHN to scale to larger problems.

4.4.3.1 Experimental Setup

In the first set of experiments in this section, a 4-bit trap function was used to score randomly

generated data points. Data was generated continuously, rather than taken from a sample of

fixed size. Functions with 4-bit traps ranging in size from 16 to 76 inputs were generated (i.e.

numbers of traps from 4 to 19) with normally distributed noise with a mean of zero added to

the outputs from the function. In different trials, noise was set to have a variance of 0 (no noise),

0.01 and 0.05 in turn. Figure 4.11 shows a small sample of the function output plotted against

the noisy equivalent with the variance of the noise at 0.05 to give the reader an indication of the

size of the noise.

The MOHN structure discovery algorithm was trained on data sampled from a function of

each size with its parameters set as follows. The weights added to the MOHN were limited to

4.4 structure discovery experiments 131

0 0.2 0.4 0.6 0.8

0

0.5

Noise Free Value
N

oi
sy

V
al

ue

Noise with Variance of 0.05

Figure 4.11: A sample of outputs from the 4-bit trap function, plotted against the noisy values used to test

the MSDA. Noise is normally distributed with a mean of zero and a standard deviation of

0.05.

order 5 (one above the known weight order for this task). Each iteration of the MSDA used a

sample of data equal in size to the number of inputs to the model times 200, selected at random

and scored with equation 4.7 and with noise added to the output according to the current

experimental settings. A single training iteration involved 20 passes through the training data.

At each iteration of the MSDA, the number of weights added to the model was equal to the

number of training samples divided by eight. Experimentation with the p-value used to discard

weights found that very high values were needed as noise was added, so the critical p-value

started at 0.9 and descended to 0.3 as the learning progressed. The SGD learning rate was fixed

at 0.3.

4.4.3.2 Results

The number of possible weights in a MOHN grows exponentially with the number of inputs

but the number of possible weights up to a given order, o grows more slowly, at a rate given by∑o
k=1 (

n
k). The time taken for each MOHN to learn its target function is plotted in figure 4.12

along with the size of the search space of weights up to order 4. The time taken by MSDA

to find the correct structure grows in line with the search space size. The MSDA is searching

the larger space of weights up to order 5, but the probability distribution over weight orders

prevents the order 5 weight space being searched very far.

At the end of each trial, the error made by the final model was assessed. Possible sources

of error are model bias caused by the MSDA finding an insufficient structure, estimation bias

caused by the SGD algorithm stopping short of the error minimum and the residual error due

to the noise added to the training data. Estimation bias was removed by learning the training

data with the structure generated by the MSDA using OLS, which is an unbiased estimator.

The remaining error was compared to the level of noise that was added to the data (average

4.5 content addressable memories 132

error of 0.01 or 0.05). Across all the trials, the average validation error from the final structured

MOHN, trained with OLS was within 0.0001 of the level of noise added to the training data.

This suggested that the only source of error was the noise. A final test was carried out in which

a new training set with as many examples as there were weights in the model to be tested was

generated without added noise and used to estimate a new set of weights for each structure

discovered by the MSDA. Another noise free validation set was then generated and evaluated

by that final MOHN. In each case, the validation error was zero, showing that no model bias

was present in the structure discovered by the MSDA.

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

0.5

1

1.5

·106

Number of Traps

Ti
m

e
in

m
s

Training Time by Input Size and Noise

No Noise
Noise=0.01
Noise=0.03
Noise=0.05

0

0.5

1

·106

N
um

be
r

of
po

ss
ib

le
w

ei
gh

ts
Figure 4.12: Mean training time in milliseconds over 25 runs learning the 4-bit trap function for network

sizes from 4 to 19 traps and at four different levels of noise. The red line with x markers shows

the size of the search space up to order 4 connections.

4.5 Content Addressable Memories

MOHNs act as content addressable memories by moving to an attractor state from any starting

state, as described in section 3.2.1. The attractor states represent local minima in the energy

function, which is limited in the number of minima it can represent by restrictions on the model.

Attractor states can be fixed by either training the network on the patterns they represent or

by learning the energy function in which they are minima. In the latter case, the identity of

the patterns may not be known, but attractors can be inferred by learning the function from

samples of data. This learning process can be geared towards only learning the attractors, or to

minimising the error between the model and the real function behind the data. These three

modes of learning each have an associated learning rule and are addressed in the following

sections.

4.5 content addressable memories 133

4.5.1 Hebbian Learning

The Hebbian learning rule of equation 3.3 allows a certain number of memories to be loaded

into a MOHN. The result of loading patterns into a MOHN is that the energy function has local

minima at states represented by each of the target patterns. Any set of patterns can be loaded

one at a time up to the point where the most recent pattern causes one or more of the existing

patterns to no longer occupy a local minimum. For a given set of patterns, the number stored

before a memory is lost defines the network’s capacity.

This section investigates the capacity of MOHNs of various sizes for storing sets of random

patterns. The traditional method for experimentally testing the capacity of a Hopfield network

([122] for example) is to load random patterns one at a time and then test whether the network

still maintains all of the patterns learned so far as attractors. The process is given in algorithm

16.

Algorithm 16 Testing the capacity of a MOHN

for a MOHN, M = (X, W)

P = ∅ . Start with an empty pattern set

ω j = 0∀ j . Set all the weights in the MOHN to zero

repeat

Generate x < P . Generate a random pattern that is not in the pattern set

ω j = ω j +
1
m

∏
i∈I j

xi ∀ j . Learn x

stop = f alse

for all x ∈ P do

X = x . Set the inputs to each pattern in the list in turn

X = HC(M) . Update the neurons in fixed order

if X , x then . If any neuron value changes

stop = true . Attractor is destroyed and capacity exceeded

end if

end for

if stop = f alse then . No pattern was lost, so add new one to list

P = P∪ x . Add the pattern to the set

end if

until stop . End when a pattern is lost

To conclude that a pattern is no longer an attractor state in a network, it is only necessary

to find a single neuron that would change its value when the network is in that state. Rather

than the usual method of running a network by updating the neurons in random order, the

attractor test simply updates each neuron in turn in a fixed order (avoiding the overhead of

randomisation) and stops as soon as a neuron changes value, indicating that the pattern is not

4.5 content addressable memories 134

an attractor. When all neurons have been tested and none have changed, the pattern is proved

to be an attractor.

A series of experiments to ascertain the capacity of various MOHNs were performed. Each

involved repeating the process in algorithm 16 for networks of fixed structure but of varied

size. For example, the experiments into the capacity of second order networks (i.e. Hopfield

networks) kept the structure of full connections at order 2 fixed, but varied the number of

neurons connected from 10 to 100. Each network was tested 100 times so that a range of capacity

values could be found. The figures that follow show the results for networks of order 2,3,4,5

and 6 The circles show the average capacity across 100 independent trials and the error bars

show the minimum and maximum capacity found. The solid red line shows the theoretical

weak lower bound on capacity and the solid green line shows the theoretical lower bound, both

according to Baldi et al. [141].

There are a number of things to note from the figures. Firstly, the exponential growth in the

number of weights in a network as higher orders are fully connected means that the figures

4.14, 4.15, 4.16 and 4.17 have fewer points plotted. Secondly, figure 4.17 shows the results for a

network connected at order 6 alone, whereas the others are connected at all orders up to the

indicated maximum.

10 20 30 40 50 60 70 80 90 10
0

0

5

10

15

Number of Neurons

C
ap

ac
it

y

Second Order Network

Figure 4.13: Experimental mean and range of capacity of a second order MOHN (equivalent to a Hopfield

network) (circles and error bars). The minimum weak capacity, n
2 ln n (red line) and the

minimum capacity, n
4 ln n (green line), both according to [141].

4.5 content addressable memories 135

20 40 60 80 10
0

0

200

400

Number of Neurons

C
ap

ac
it

y

Weight Orders 1,2 and 3

Figure 4.14: Experimental mean and range of capacity of a MOHN fully connected at orders 1,2,3 (circles

and error bars). The weak lower bound on capacity, n2

12 ln n (red line) and the lower bound

capacity, n2

20 ln n (green line), both according to [141].

10 15 20 25 30 35 40

0

200

400

600

Number of Neurons

C
ap

ac
it

y

Weight Orders 1,2,3 and 4

Figure 4.15: Experimental mean and range of capacity of a MOHN fully connected at orders 1,2,3,4 (circles

and error bars). The weak lower bound on capacity, n3

48 ln n (red line) and the lower bound

capacity, n3

84 ln n (green line), both according to [141].

4.5 content addressable memories 136

10 12 14 16 18 20

0

100

200

300

Number of Neurons

C
ap

ac
it

y

Weight Orders 1,2,3,4 and 5

Figure 4.16: Experimental mean and range of capacity of a MOHN fully connected at orders 1,2,3,4,5

(circles and error bars). The weak lower bound on capacity, n4

240 ln n (red line) and the lower

bound capacity, n4

432 ln n (green line), both according to [141].

10 12 14 16 18 20 22 24 26

0

1,000

2,000

Number of Neurons

C
ap

ac
it

y

Weight Order 6

Figure 4.17: Experimental mean and range of capacity of a MOHN fully connected at order six alone

(circles and error bars). The weak lower bound on capacity, n5

1440 ln n (red line) and the lower

bound capacity, n5

2640 ln n (green line), both according to [141].

4.5.1.1 Conclusion

The estimates made by Baldi et. al [141] match the experimental findings from MOHNs

reasonably well. Adding higher order connections increases capacity, but at a cost as the number

of weights at each order grows quickly. Fully connected networks are very inefficient but

sparsely connected networks need an efficient method for discovering the right weights.

4.5 content addressable memories 137

4.5.2 Improving Capacity with Structure Discovery

To overcome the problem of exponential growth in the number of weights, a content addressable

memory can be incrementally built using the structure discovery method of algorithm 8 (page

73). In this approach, weights are added to a network until it is able to store the patterns in the

training set and removed if they do not contribute any improvement. The resulting network is

sparsely connected, unlike those in figures 4.13 to 4.16.

4.5.2.1 Experimental Setup

To illustrate the storage capacity of a dynamically built MOHN, a set of patterns representing

the written digits from 0 to 9 were created over 25 neurons, shown in figure 4.18. A traditional

fully connected Hopfield network with 300 second order connections can only store three or

four such patterns and a network with sufficient higher order weights to store them all would

be very large if it was fully connected at those orders. This experiment compares the size of

the smallest fully connected high order network capable of storing the target patterns with

one built using the structure discovery algorithm. Patterns were learned using the Hebbian

learning rule of equation 3.3 and the CAM MSDA, described in algorithm 8. 200 weights were

added at each iteration of the algorithm, drawing orders initially from a Laplace distribution

with a mode of 2 and λ = 2.

Figure 4.18: The written digits from 0 to 9 as 25 bit patterns to be used to test the dynamic structure

discovery algorithm applied to a CAM.

4.5.2.2 Results

Firstly, static networks were tested to find the lowest order at which full connections were

needed to store the patterns. Networks of 25 neurons, fully connected at all orders up to two,

three and four all failed to store all 10 patterns as stable attractors. A network with all weights

connected at all orders up to five was able to store the patterns. This network contained 53,131

weights. The next step is to try and discover a network that will store the same patterns in

fewer weights.

The CAM MSDA, described in algorithm 8 was able to find a network capable of correctly

storing all of the patterns with a total of 362 weights, which is approximately the same number

as found in a standard 25 neuron Hopfield network, which would be able to store only two or

three of the digits.

4.5 content addressable memories 138

4.5.3 Discussion

In principle, this approach gives MOHNs arbitrary storage capacity, as a MOHN can represent

any function in f : {−1, 1}n → R, and for any set of non-neighbouring patterns, P there exists a

function in which each member of P is a local maximum. Of course, some functions may be

difficult to discover the correct structure for, and some may require so many weights that a

solution is impractical, but in principle, MOHNs can store arbitrary pattern sets. If P contains

neighbouring patterns (two patterns are neighbours if there exists an input, Xi such that flipping

its value, Xi = −Xi, switches from one pattern to the other), then the neighbours will form a

plateau where the output from the function is the same for all points. Whether these states can

be considered stable attractors is a question of definition and of the implementation details of

algorithm 9.

If that algorithm only moves from a state to one with higher output, it will stay stable in

the first state of a plateau that it finds. This would mean that seeding it with the target states

would show them all to be attractors, but that some were not accessible from nearby states. As

neurons are updated in random order, the same degraded pattern might produce a different

pattern on the same plateau on repeated trials. An additional step can be added to algorithm 9

in which neighbouring states of a first found attractor state are explored if they lie at the same

height. This can be done by recursively making single steps from each point on the plateau

until they have all been visited.

It should also be noted that building a CAM using MSDA in this way requires all of the

target patterns to be available at the same time. Adding new patterns incrementally would

require new weights to be added to accommodate each new pattern, which is a refinement not

considered here.

4.5.4 Weighted Hebbian Learning

The weighted Hebbian learning rule of equation 3.4 attempts to build a network in which the

local minima in the energy function correspond to turning points in the function that generated

the data. The accuracy of the energy function as a regression model is of lesser importance in

these cases.

This section investigates the question of whether a network with the same structure can

discover the same attractors using samples from a function that maps an input pattern, X onto

the Hamming similarity between X and the local maximum closest to X. These functions are

constructed based on the Hamming similarity to the closest target pattern, as described in

section 4.1.1.3.

By filling a MOHN to capacity using algorithm 16, a Hamming similarity based function can

be built which has turning points (attractors) at each of the learned patterns. These experiments

4.5 content addressable memories 139

are designed to test whether or not a MOHN can discover all of those turning points from a

sample of random data points and their associated output. It is one thing to model a function

in which the turning points of the sampled function are attractors, and another to learn the

function correctly. A later section investigates the question of whether a MOHN needs to learn

the function correctly in order to learn its turning points.

4.5.4.1 Experimental Setup

The procedure followed in this set of experiments is given in algorithm 17. The MOHNs in

these experiments were connected at second order only.

Algorithm 17 Testing the capacity of the MOHN Learning Rule

For a MOHN, M = (X, W) . Create a network of chosen structure

D = capacityset(M) . Generate a set of patterns that fill M to capacity

f (X) = Hamming(D) . f (X) returns the Hamming similarity to the closest member of D

repeat

X =rand({−1, 1}n)

Y = f (X)

M learns (X, Y) . Sample from f (X) and allow M to learn each (X, f (X)) pair

if Test(M, D) then . Test to see if every member of D is an attractor in M

Learned = true

else

Learned = f alse

end if

until Learned or Give up

4.5.4.2 Results

A series of experiments using algorithm 17 showed that the weighted Hebbian learning rule

was able to produce a function with attractors at each of the patterns in the set originally learned

by loading the patterns with the Hebbian rule.

Figure 4.19 compares the experimentally discovered capacity of second order MOHNs

compared to the theoretical capacity of a Hopfield network. Networks varying in size from 10 to

100 units were tested in steps of five units. Each network size was tested with 100 repeated trials

over random pattern sets using algorithm 17. The capacity of a network for storing turning

points in f (X) learned from samples of (X, f (X)) is found to be the same as the capacity for a

CAM with the same structure.

4.5 content addressable memories 140

0 10 20 30 40 50 60 70 80 90 10
00

2

4

6

8

10

12

Network Size

N
et

w
or

k
C

ap
ac

it
y

Experimental and Theoretical Second Order MOHN Capacity

Figure 4.19: The mean and inter-quartile range of the capacity of second or-

der MOHN networks of varying sizes trained with weighted

Hebbian learning and the theoretic capacity of similar HNNs

trained with simple Hebbian learning (single line).

4.5.5 Linkage Order and Network Capacity

The attractors of a CAM can be discovered from a function that maps patterns to their distance

from the closest local maximum using the weighted Hebbian learning rule. However, weighted

Hebbian learning does not attempt to minimise MSE between the MOHN output and the

distance function. This section investigates some properties of the Hamming similarity based

function compared to the energy function learned by the weighted Hebbian approach.

4.5.5.1 Experimental Setup

In these experiments, a standard Hopfield network is trained incrementally on patterns until

the addition of a new pattern causes one of the previous patterns to be forgotten, that is, the

pattern is no longer an attractor state. Once the network has reached capacity, the set of patterns

that it has learned are used as the local optima in a multiple pyramid function as in equation

4.4. The Walsh decomposition of this function is calculated and the highest order weight is

recorded. This process generates pairs of numbers: the network capacity and the highest order

of the function whose local optima are the patterns that fill that capacity.

4.5 content addressable memories 141

4.5.5.2 Results

Figure 4.20 shows the results of these experiments as a set of histograms, one for each network

capacity from 2 to 5. A Hopfield network with capacity m has learned all the attractors in

a function with m local optima using the standard Hebbian rule. The Hamming similarity

function behind these attractors undergoes a Walsh decomposition and the highest non-zero

order of the resulting coefficients is recorded. This highest order is counted across many trials

for representation in the histograms. As capacity grows, so does the highest order of non-zero

Walsh coefficients. It is clear from the histograms that many functions may have their attractors

represented by a second order Hopfield network, even if the underlying structure of the

function is of higher order. This is of particular interest if the reason for modelling the function

is to find optima as part of a heuristic search.

The cost of using a low order model (second order alone in this case) is high model bias and

the presence of spurious attractors (more on this in section 4.6.1). The benefit is that there is no

need to learn the full function in detail or to match its complex structure if all that is needed is a

CAM with attractors in the right place.

1 2 3 4 5 6 7 8 910

0

200

400

600

Highest Linkage order

Fr
eq

ue
nc

y

Network Capacity 2

1 2 3 4 5 6 7 8 910

0

1,000

2,000

Highest Linkage order

Fr
eq

ue
nc

y

Network Capacity 3

1 2 3 4 5 6 7 8 910

0

500

1,000

Highest Linkage order

Fr
eq

ue
nc

y

Network Capacity 4

1 2 3 4 5 6 7 8 910

0

100

200

300

Highest Linkage order

Fr
eq

ue
nc

y

Network Capacity 5

Figure 4.20: Histograms showing the frequency of the highest linkage

order across 10,000 trials, organised by Hopfield network

capacity. Networks are trained with the standard Hebbian

rule. Networks with capacity greater than 5 require a number

of units greater than that for which it is practical to run

multiple Walsh decompositions.

4.6 constraint learning 142

4.6 Constraint Learning

Constraint learning is akin to optimisation in that it is a process designed to generate patterns

that are very good examples of something based only on the scores attributed to a set of

examples. Often the scored examples that are available do not score very highly, and certainly

don’t need to contain perfect examples. Rather than producing one optimal example, however,

the goal is to produce many good examples. The desirable patterns should occupy multiple

local minima in the fitness function.

4.6.0.3 Experimental Setup

An experimental example will clarify. In this experiment, the constraints to be learned are those

that define symmetry, defined in equation 4.1. A second order MOHN was built using the

weighted Hebbian learning rule of equation 3.4 with no error descent or structure discovery.

For this task, the absolute value of the MOHN output need not be accurate as long as the

attractors are correct. Training data was generated at random, scored with the fitness function

of equation 4.1 and used to train the MOHN. At regular intervals during training, the MOHN

was searched by picking random start points and settling to an attractor state, which was then

scored. The maximum output of the symmetry function is one. When the number of different

start points that all lead to attractors that score one, the process is terminated.

Figure 4.21 shows some examples of start points and their associated attractors after training

a second order MOHN on random samples scored using equation 4.1. Patterns were generated

in a 6 x 6 image of binary pixels. There are 236 (68,719,476,736) possible patterns in such a matrix.

Of those, there will be one vertically symmetrical pattern for every possible pattern in one

half of the image. There are 218 (262,144) such half patterns, representing 0.00038% of the total

number of possible patterns. The network was allowed to learn until ten different symmetrical

patterns had been found. At this point, the learning process was terminated and the network

was tested with a set of local searches designed to count the number of attractor states learned.

4.6.0.4 Results

Across 50 trials, the 36 node MOHN took an average of 9932 pattern evaluations before it

terminated having found 10 perfect scoring patterns. A record of the samples made showed

that none of the randomly generated patterns used during training gained a perfect score,

so the network was only trained on less than perfect patterns. The average trained model’s

capacity was found to be 132 patterns, which gives an average of 75 fitness function evaluations

per attractor found. A MOHN with 36 inputs has 1260 second order weights, so over 9000

fitness evaluations is higher than would be needed with regression learning, suggesting that

the weighted Hebbian approach is not efficient.

4.6 constraint learning 143

Figure 4.21: Random start points and their associated attractors in a MOHN trained using a fitness

function that measures vertical symmetry.

A similar example involves learning the constraint of ’horizontal’, which is defined as the

number of variables in each row of a square image that are all the same value (all 1 or all -1).

Figure 4.22 shows some examples of starting points and attractors after training on the fitness

function of equation 4.10, which is

f (X) =

√
n∑

i=1

e(i)
√

n
(4.10)

where
√

n is the number of rows in the square image and e(i) returns the largest number of

variables in row i that share the same value. As before, none of the training examples were a

perfect example of a horizontally consistent pattern, but the constraints between pixels required

to produce such a pattern were discovered by the learning algorithm based on the relative

scores of a small set of suboptimal example patterns.

Figure 4.22: Random start points and their associated attractors in a MOHN trained using a fitness

function that measures horizontal consistency.

4.6 constraint learning 144

0 20 40 60 80 100
0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

Training Epoch

V
al

id
at

io
n

Er
ro

r

0

200

400

600

800

1,000

Sp
ur

io
us

A
tt

ra
ct

or
s

Validation Error and Spurious Attractor Count During Training

Error
Spurious Attractors

Figure 4.23: As the number of learning iterations increases, the validation error decreases as does the

number of spurious attractors in the model.

4.6.1 Energy Function Regression Learning

The previous section addressed the task of learning a function in which local minima in a

function underlying a data sample were also local minima in the MOHN’s energy function. This

section investigates the effect of learning that underlying function with more precision, fitting

the energy function as a regression model of that which generated the data. Two experiments

were carried out, the first measured the effect of SGD learning on the number of spurious

attractors in a MOHN and the second measured the effect of using SGD on MOHN capacity.

4.6.1.1 Spurious Attractor Removal

Experiments were run in which a 100 neuron MOHN was trained on a function that contained

four true attractor states. During training, the RMSE was recorded and the number of spurious

attractors in the MOHN was estimated by picking uniformly random starting patterns and

settling to an attractor point. This was repeated until 50 consecutive starting points were found

not to add a new attractor to the set. Figure 4.23 shows the average results of running 100 trials

on different randomly produced data sets of 20,000 samples from the Hamming similarity

based function of equation 4.4. The number of spurious attractors drops with the RMSE. The

first iteration of the learning process was a weighted Hebbian step in which all four attractors

were found, so the target attractors were always present in the network from iteration 1.

More generally, the reduction in the number of spurious attractors depends on the ability of

the structure of the network to represent the underlying function in which the only turning

4.6 constraint learning 145

10 15 20 25 30 35 40
2

4

6

8

10

Network Size

N
um

be
r

of
Pa

tt
er

ns

Attractor Capacity for SGD and Weighted Hebbian Learning

SGD Capacity
Hebb Capacity

Figure 4.24: The mean and standard deviation of the capacity of a fully connected Hopfield Network

trained with the Hebb rule and stochastic gradient descent.

points are the desired attractor patterns. In principle, a MOHN can represent any function

(though time and memory constraints may prevent it in practise) to arbitrary accuracy, so for

any set of target memories, there exists a MOHN that can not only represent those memories as

local optima, but that also contains no spurious attractors.

4.6.1.2 Improving Capacity

Additionally, SGD allows a fixed size MOHN to increase its capacity over the equivalent trained

with the Hebbian rule. The network capacity experiments described above were repeated with

networks from size 10 to 40 with each trial learning one MOHN with the Hebbian rule and

another with SGD. In each trial, a set of target patterns were generated at random, one at a

time. Each pattern was learned by one MOHN using the Hebbian weight update rule and by

another MOHN by a process of adding the pattern to the target set of a Hamming similarity

based function and re-learning the pattern set from scratch using SGD. Each MOHN learned

the same set of patterns until one failed, at which point the other continued to add patterns

until it too failed. The number of patterns stored in each was recorded.

Figure 4.24 shows the average and standard deviation of the capacity of MOHNs from size 10

to 40, calculated from 50 trials of each learning rule at each network size. The learning process

for SGD is longer and requires all of the previous memories to be present each time a new

memory is added, but it has the advantage of providing a larger capacity and fewer spurious

attractors.

4.6 constraint learning 146

4.6.2 Visualising Network Structure

The MSDA produces useful summary statistics during learning. As the structure evolves,

the weight profile and the weight probability distributions may be reported and analysed to

understand the progress being made. This section illustrates the structure discovery process

using the same k-bit trap function described above. A visual representation of network structure

is used to produce an image with n columns and j rows where each column represents a

neuron and each row represents a single weight. The pixel at coordinate (i, j) is plotted if W j is

connected to Xi and its colour reflects the strength of the connection. If W j is not connected

to Xi, then no pixel is plotted. The weights are sorted in combinatoric order, with first order

weights at the top of the image, second order weights below them, and so on. If a weight is not

present in the network, it does not appear in the image, so the height of the image depends on

the number of weights in the network.

Figure 4.25 shows an example for a correctly fitted 5-bit trap problem over six repeated traps.

The interactions among the neurons in each trap are plain to see, as is the lack of inter-trap

connections. Images such as figure 4.25 provide an insight into the function that has been

learned and the complexity of the representation of that function. They also allow for a human

led phase of learning. If a small number of weights were missing from figure 4.25, it would be

easy for the human eye to spot them and add them manually to the model for a final round of

learning.

Order Weights

1

2

3

4

5

Figure 4.25: The weight structure of a MOHN after learning a 5-bit trap problem using MSDA. The

groupings of the weights show how the trap function is made up of the sum of six independent

functions concatenated across the inputs. Each function acts on a non-overlapping subset of

the inputs and is fully connected within that set.

4.6 constraint learning 147

The structure of a network may be monitored during training both by full network repres-

entations such as that in figure 4.25 and by summary information about weight orders and

neuron contributions. Figure 4.26 shows the structure of a network at selected points during

the structure discovery of a 5-bit trap function. Weights at each order are easily identifiable.

The behaviour of the algorithm is exposed as the network first grows (partly due to a higher

critical value for the t-test) and then shrinks to the correct structure. It is also clear that the

network has cleared the insignificant weights away from the lower orders before the higher

order weights. Monitoring the image of a network allows the user to understand the current

solution’s level of complexity and the rate at which it is changing, allowing decisions to be

made about terminating the process or altering the structure by hand.

5 10 15 20 30 40 45 47

Figure 4.26: The structure of a MOHN during MSDA as a 5-bit trap problem is learned. The number

below each column indicates the number of iterations of MSDA at which the snapshot was

taken. Positive weights are green and negative are red.

Figure 4.27 shows the weight counts for each order during training for the 5-bit trap function.

No upper limit was imposed on the order of weights added, but the Laplace distribution forced

them to zero after order 6. By monitoring the number of weights used as training progresses,

the user is able to gain an insight into the size of the remaining search space and the weight

orders that remain to be explored. This helps the user make decisions about when to stop

training and allows some insight into the likely quality of a model from their data. The MOHN

can provide additional metrics such as the number of weights tried since a new significant

weight was added, which provides further insight into whether continued training is likely to

yield improvements in error.

4.7 network search experiments 148

0 5 10 15 20 25 30
0

5

10

15

Training Cycle

O
rd

er
C

ou
nt

Weight Order Count Distribution Over Time During Structure Discovery

Order 1
Order 2
Order 3
Order 4
Order 5
Order 6
Higher

Figure 4.27: Weight counts at each order during MSDA for a 5-bit trap problem. Each line represents a

weight order and shows the number of weights of that order the network contained at each

iteration of MSDA. The far right hand points show the correct configuration.

4.7 Network Search Experiments

Section 2.2 described a number of ways of searching for attractor states in a MOHN. They were

repeated network settling (random restart hill climb, RRHC), local search with high order kicks

(iterated local search, ILS), high order search guided by weights (weight satisfaction search,

WSS), search by removal of attractors (local optima suppression search, LOSS) and simulated

annealing (SA). This section compares their performance.

4.7.1 Hamming Based Functions

The first experiment aimed to find the single global optimum from a 100 neuron network

that was trained on samples from a fitness function with ten randomly placed attractors. The

function output was from zero to one, with a single pattern producing the global maximum

of one and nine other randomly placed patterns producing a local maximum of 0.9. All other

input patterns produced values less than 0.9. The MOHNs were trained using the weighted

Hebbian rule with no error descent, so learning was fast, but the number of spurious attractors

was high, making the task of finding the global optimum more difficult. In fact, there were on

average 148 spurious attractors in each network tested in addition to the local optima that were

loaded as part of the test.

1000 trials were run, each with a different randomly produced fitness function. The five

different search algorithms were used to search for the global maximum in each network and

the number of times the algorithm needed to restart after a local optimum was visited was

recorded for each. A restart for SA occurs after a full pass through its cooling schedule, meaning

that a single pass of SA is generally much longer than a single hill climb of any of the other

4.7 network search experiments 149

algorithms. Table 4.6 shows the average number of restarts needed for each method. A t-test

comparing the LOSS count with each of the others was significant at p = 10−7.

Method RRHC ILS WSS SA LOSS

Restarts 18 15 16 257 12

Table 4.6: The average number of restarts needed to find the global maximum across 1000 trials of

randomly generated functions. On average, functions contained 148 local maxima.

4.7.2 K-Bit Trap Functions

Finding the global optimum for a k-bit trap function presents a greater challenge for algorithms

that make single step improvements (such as the hill climbing part of those described here) as

the score of a pattern is improved by setting a variable to -1 in all cases except those where

the other k− 1 of the k bits in a set are already equal to 1. Consequently, most hill climbs will

take the network to a state where all the neurons have a value of -1. In this situation, the LOSS

algorithm removes the all negative state as an attractor and subsequent attractors begin to

include values of 1. This allows the algorithm a better chance of moving to the target state of a

network where every neuron value is 1.

These experiments used a 10 variable function with a trap size of five, so the function

contained two separate traps. The function was learned by a MOHN with full connections at

all orders from one to five, so it was able to learn the function perfectly from samples from

the fitness function. The resulting MOHN was searched using RRHC, WSS and LOSS and the

results compared.

Table 4.7 shows the results of running 100 separate trials where a 5-bit trap function was

learned from fitness function samples and the resulting network was searched using WSS,

LOSS and RRHC. In these experiments, simulated annealing was quickly found to be very

poor and was not included in the analysis. The only way for the RRHC algorithm to find the

global optimum is for it to start very close to the solution, with each block (each k bit trap)

being either optimal (all values equalling one) or only one step away (k-1 values equalling one).

WSS climbed directly to the global maximum without any restarts. This particular function

was made up of only two concatenated traps, so the search involved a full enumeration of

each separate sub network. In cases where the structure reveals a large number of small sub

networks, WSS is an obvious choice for finding a global maximum quickly. In reality, however,

few functions will be quite so neat in their structure.

4.8 measuring function complexity 150

RRHC Restarts LOSS Restarts P-value

211 129 0.0003

Table 4.7: The average number of restarts made when searching for a single global optimum in a MOHN

trained on a 5-bit trap function.

This section has presented some early evidence that LOSS is able to reduce the number of

restarts required when searching certain types of function. It is most likely that other, different

functions will not be amenable to this type of search. Search and fitness modelling will be

considered in more detail when the MOHN approach is compared to EDAs in section 4.11.

4.8 Measuring Function Complexity

This section addresses the following question: Given two different functions, each implemented by

a MOHN, is it possible to consistently compare them in terms of their complexity? The complexity

of a model may be defined in terms of either its structure, its behaviour or its performance.

Structural complexity is reflected by the number, size and (for higher order models like MOHNs)

the order of the parameters that define them. Behavioural complexity is defined in terms of

qualities of the output of the function such as its smoothness, sensitivity and the number of

turning points it possesses. Performance complexity is equivalent to model bias and can be

defined in terms of accuracy on a test set or cross validation run.

There are many possible measures of function complexity. Here three simple measures of

network structural complexity are proposed: the number of weights, the sum of the weight

orders and the L1 norm of the weights. The number of weights in a network is simply the size

of the weight set, |W|. The sum of the weight orders is calculated as

|W|∑
j=0

|I j| (4.11)

where |I j| is the size of the set of neurons connected to weight W j. The L1 norm of the weights is

|W|∑
j=0

|ω j| (4.12)

where |ω j| is the absolute value of the weight value ω j.

4.8.0.1 Experimental Setup

1000 MOHNs with 10 inputs connected by 10 weights were created by sampling weights of

uniformly random order and with uniformly random weight values in [−10, 10]. From each

4.8 measuring function complexity 151

resulting MOHN, measurements were taken of the average weight order, the L1 norm of the

weights, the number of attractors and the average change in output produced by flipping

a single random input bit, taken over 500 random patterns (sensitivity). The correlation of

each pair of measurements was calculated and is shown in table 4.8. The highest correlation is

between the number of attractors found and the average order of the weights in the network.

L1 Weights Sensitivity Attractors

Av. Order -0.03 0.83 0.94

L1 Weights 0.47 -0.03

Sensitivity 0.77

Table 4.8: Correlations between different measures of MOHN complexity.

4.8.1 Complexity and Training Example Requirements

The number of training data points required to build a statistical model depends on how

noisy the data is and how many parameters there are in the model. A linear model with

j parameters can be trained with a minimum of j unique noise free training points. This

experiment demonstrates that, as long as the correct structure is known, this limit holds for

networks with weights of any order.

4.8.1.1 Experimental Setup

100 functions were built by constructing MOHNs with weights of uniformly random values at

uniformly random orders. The structure, but not the weight values, of each MOHN was copied

onto a new MOHN. A sample of unique uniformly random input patterns was generated

and evaluated using the energy function of the source MOHN. The size of this sample was

equal to the number of weights in the MOHN. OLS was used to train the new MOHN on the

training data and the new MOHN was then tested on another random data set of equal size.

Each MOHN was 100 neurons in size and had 1000 randomly placed weights. The correlation

between the output of the trained MOHN and the target MOHN was measured for each trial.

4.8.1.2 Results

For every trial, regardless of the order of the weights in the network, the MOHN with the

correct structure was able to learn the weight values and produce a correlation on validation

data between the MOHN output and the target output of 1. This is not an unexpected result, but

it demonstrates that the order of the weights makes no difference to the sample size required to

learn their correct values, once the correct MOHN structure has been learned. A MOHN with

4.8 measuring function complexity 152

the correct structure and j weights needs j random noise free samples of f (X) to learn f (X)

perfectly.

These two experiments lead us to two conclusions of note. Firstly, that the number of attractors

a MOHN contains is highly correlated with the average order of the weights it contains and

secondly that the number of training samples required to learn a function is not dependent on

the number of attractors or the order of the connections. It is purely dependent on the number

of parameters in the model.

It is worth highlighting the fact that the number of data points required only equals the

number of parameters in the model when the model is correct. Generally the correct structure

of the model is unknown, making the number of parameters and, consequently, the required

sample size also unknown. Further more, if the model structure is wrong, and the sample

size equals the number of parameters, then the training error will be very low. In such cases,

increasing the training set size or (similarly) using an independent validation set provides

valuable information about how well the model fits the data. An experiment illustrates the

point.

4.8.1.3 Experimental Setup

A first order only model with 30 inputs was trained on random pyramid functions with varying

numbers of local optima. The greater the number of optima, the more complex the underlying

model that is required to model them. For each trial, a random pyramid function with k local

optima was generated and the first order model was trained on samples of increasing size, m,

from 30 (just sufficient to learn the data) up to 276. For each training sample size, the correlation

between the training data and the model output was calculated, as was the correlation between

the test data and the model output. Fifty trials were repeated for each k and the correlations

averaged.

4.8.1.4 Results

When k = 1, the function has a single local maximum and is learned perfectly by the MOHN

in 30 samples, producing zero error on test data. For k > 1 the training correlation is 1 when

m = 30 and drops as m grows larger. Conversely, the test correlation starts low when m = 30

and grows, but never reaches the training correlation level. Figure 4.28 shows the results for

k ∈ {4, 6, 10, 15, 50}. These experiments involved noise free data and in such cases (as is common

when modelling a fitness function model), the sample size should allow for the number of

parameters in the model plus a number to perform an independent test. As the quality of the

model structure improves, training and test correlation converge.

4.8 measuring function complexity 153

50 100 150 200 250 300

0

0.2

0.4

0.6

0.8

1

Sample Size

C
or

re
la

ti
on

Train (T) and Validation (V) Correlation by Sample Size (m) and Complexity (k)

T k = 4
T k = 6

T k = 10
T k = 15
T k = 50
V k = 4
V k = 6

V k = 10
V k = 15
V k = 50

Figure 4.28: The training and test correlation between a model and the target data as sample size grows

when the model is under fit, plotted for models of different complexity. k is the number of

local maxima in the target function, which is used as the complexity measure.

4.8.2 Conclusion

That concludes the experiments on small problems. They have provided some insight into the

use of a MOHN, but not really tested it in earnest. The next sections test a MOHN on real data

and compare it to other methods in the recent literature.

4.9 consumer profile data 154

4.9 Consumer Profile Data

This section describes a number of experiments using real data describing consumer behaviour.

The data makes use of Experian’s Enhance data set, which is a demographic data appending

service with a mixture of personal, household and postcode level variables. Personal level

variables include gender, age band, marital status and occupation. Household level data

includes income, household composition and length of residency. Experian data is used to

target marketing material, design advertising campaigns and literature, and make decisions

about consumer credit. The data used in the experiments reported here are derived from real

data from a real client.

Experian’s Enhance variables are all coded as discrete variables. Numeric variables such as

age and income are split into bands so all of the variables lend themselves to a 1-of-k binary

coding where k is the number of values a variable can take (its cardinality). This creates a

MOHN with a number of nodes equal to the sum of the number of values each variable can

take.

Formally let V be a vector of m nominal variables, Vk where k = 1 . . .m each of cardinality

Ck. These are mapped onto n binary variables, X = X1 . . .Xn where n =
∑

k Ck. Contiguous

non-overlapping subvectors in X of size Ck represent the possible values Vk can take. The

subvector of X corresponding to variable Vk is Xk and Xk
l represents the lth value of variable Vk.

The values of X are constrained so that only one element in each Xk can take the value of 1, all

others being set to -1.

4.10 Clothing Mail Order Case Study

Data describing the demographics and annual spend of 14,609 customers of a mail order

clothing retailer were used in this case study. The goal was to build a model capable of taking

the description of new potential customers and providing a prediction of their expected annual

spend. Demographic data was appended using Experian’s Enhance data set and a subset

of variables describing gender, age, marital status, income, number of children and home

ownership status was chosen for modelling. The 1-of-Ck coding across these variables resulted

in a MOHN with 36 nodes.

4.10.1 Model Training

The data set was initially split into a training set containing 70% of the data and a test set

containing the rest. The training data was further divided into training and validation (or

multiple cross validation) sets. When a single validation set was used, it contained 30% of the

4.10 clothing mail order case study 155

original training split, leaving 70% to be used to learn the weight values. The splits were made

by selecting training examples uniformly at random without replacement. For cross validation,

10 folds were used.

There are a number of hyperparameters that can be tuned when using the MSDA and a

subset of the available combinations were explored using a grid search for those that produced

a promisingly low error when trained on the training data and tested on a 30% validation split.

The grid search parameter sets were:

Hyperparameter Grid Set

Learning Method {SGD, Lasso}

Initial weights {100,500,1000,4000,6000}

Added weights {100,200,500}

Iterations {10,30,50,80}

For SGD

Learning rate {0.1,0.3,0.6}

Critical p-value {0.9,0.6,0.3,0.1}

For Lasso

λ constraint {1,2,3,5,7}

During lasso learning, a number of different values for λ are used to produce a number of

different models, each with a level of regularisation determined by its λ. In these experiments, 7

models were built (i.e 7 different λ values were set) and the model used to choose which weights

to remove was selected according to its place in the list of regularised models, where model 1

has the least regularisation and 7 has the most. The actual value of λ depends on the residual

correlations between features and the output so their relative indexes are used to specify the grid

search. The settings found to give the best generalisation (the lowest RMSE on the test data) were:

Hyperparameter Value

Learning Method Lasso

Initial weights 4000

Added weights 500

Iterations 30

λ constraint 3

The training data partition was then split further for use in a cross-validation training process

where ten validation sets are created, each consisting of a unique 10% of the training data

such that each data point is included in exactly one validation set. Each of the ten training sets

4.10 clothing mail order case study 156

Train Validation Test AvMOHN Intersect

5.5

6

6.5

·10−2

Ensemble Model

R
M

SE

Train, Validation and Test Error Across an Ensemble

Figure 4.29: RMSE measures across 10 validation folds for training, validation and test data sets and of

the average MOHN on the test set. Note that the Y axis does not start at zero, which makes

the differences easier to see.

consist of the data that is not set aside for their corresponding validation set. Ten models were

then built, one from each training set. The models were tested on their own training data, their

own validation data and on the independent test partition.

The ten models were trained using the MSDA described in section 3.3 with the hyperparamet-

ers described above. The networks in the ensemble were combined using both the intersection

and averaging methods described in section 3.6.1.1, giving 12 MOHNs in total.

4.10.2 Results

Figure 4.29 shows the root mean squared error for the training, validation and test data from

each of the 10 validation folds of the experiments described above. Figures are shown for

the accuracy of each model on its own training and validation split and when tested on the

single separate test data. A single test error figure is also given for the average MOHN and the

intersection of the ten ensemble models. There is variation in the performance of the ensemble

members on their validation sets, but they all perform with very similar results on the test data.

The average MOHN performs very slightly better (though not statistically significantly) on the

test data.

Examination of the intersection model, shown in figure 4.31, can also reveal some clues as to

the correct structure to explore. The intersection model only contains first and second order

weights, suggesting that those orders are consistently important in this case. It may be the case

that second order weights are sufficient, but that the intersection of the models does not contain

all those that are required. This is investigated next.

4.10 clothing mail order case study 157

4.10.3 Further Pruning

The average MOHN is quite large. The obvious question to ask is whether it is possible to prune

the networks further without appreciable loss of performance. When a network is pruned, the

remaining weights need to be re-learned so an iterative approach to pruning and testing can be

carried out by removing a subset of weights and then retraining and testing. At each iteration,

weights may be removed according to a criteria of increasing severity. In this example, each

iteration removes weights of the highest order currently in the model.

At each iteration, the highest order weights were removed (starting at five, which was the

highest order in the original network) and the network was re-trained on its training data and

tested on its validation split. Table 4.9 shows the results, where it can be seen that the test error

actually improves slightly for the first and second order network, although the training error

rises. This suggests that the network with higher order weights had overfit, leading us to adopt

the second order model.

Highest order Weights Train RMSE Test RMSE

5 5067 0.0585 0.0647

4 4557 0.0588 0.0632

3 3134 0.0588 0.0633

2 660 0.0604 0.0633

1 36 0.0707 0.072

Table 4.9: Test and train error after removing weights of successively lower order and the size of the

resulting network. The final row is a standard first order linear regression. The error differences

look small, but make a significant difference to prediction accuracy.

4.10.4 Gaining Knowledge from the Network

Having built and tested the MOHN, there are two ways in which knowledge may be extracted,

in addition to the usual activity of making predictions for new potential customers. Firstly, the

attractors of the model, which represent local maxima in amount spent, can be analysed and

then the weights of the network can be studied.

4.10.4.1 Extracting Local Maxima in the Spend Function

By allowing the network to settle from different starting points, profiles describing high

spending customers may be extracted from the network. The 1-of-Ck coding scheme for inputs

means that unless precautions are taken against it, an attractor can occupy a point where any

number of the values for each variable are set to 1. This can lead to nonsensical answers where

4.10 clothing mail order case study 158

setting many of the possible values of a single variable can inflate the predicted output. If the

one bit only rule is not enforced, maxima in the function will be points where every value that

has a positive effect is set to one. A MOHN can represent a 1 of C coding across a set of nodes

but this requires full connection among all the nodes at all orders up to C, giving 2C weights in

the group.

This inefficiency can be avoided by altering the network settling algorithm to ensure that

it settles only on patterns where exactly one of the neurons in each variable’s subset takes a

value of 1. This was implemented by repeatedly finding the single neuron in each variable’s

subvector (i.e. the single value from those that the variable could possibly take) that makes

the highest contribution at the current point. Simple hill climbing takes the values across the

network to a point where the predicted output is locally maximised. This process is repeated

from random starting points to generate a distribution of optima with associated outputs and

counts. Algorithm 18 describes the process.

Algorithm 18 Settling a trained MOHN to an attractor point across nominal variables

repeat

ch = FALSE . Keep track of whether or not a change has been made

visited = ∅ . Keep track of which variable have been set

repeat

i = rand(k : k < visited) . Pick a random variable

cur = f (X) . Make a note of the current predicted output for later comparison

Maximise(Xk) . Set the single neuron, Xi in the subvector Xk that maximises the

output of the network when Xi = 1

if f (X) , cur then

ch = TRUE

end if . If a change was made to the neuron’s output, note the fact

visited = visited∪ k . Add the variable’s index to the visited set

until |visited| = m . Loop until all variables have been updated

until !ch . Loop if any neuron value has changed

Algorithm 18 was run from 200 random starting points on the MOHN that was trained on

the data described above and seven different local maxima were found. Figure 4.30 shows the

predicted output (i.e. the customer’s predicted spend) from the model at each attractor point,

plotted against how often that pattern was found from 200 random starting points.

The most common pattern described well off married women with children who own their

own home, which matches the client’s known profile very well. One of the less frequently

found (only three times in the 200 trials) attractors revealed a pattern of young unmarried

women with no children, which might indicate a market that is currently under exploited for

the company.

4.10 clothing mail order case study 159

0 20 40 60
200

300

400

500

600

Frequency

Sp
en

d

Spend Against Frequency From MOHN Search

Figure 4.30: The seven attractor points of the customer profile optimisation search plotted as predicted

spend against the number of times the attractor was found.

4.10.4.2 Studying the Weights

Although the intersection MOHN was not the most accurate, its output still had a correlation

with the actual sales data in the test set of 0.82. It has the analytical advantages of representing

a set of weights that all ten MOHNs in the ensemble discovered to be significant while being

small enough to visualise and study. The network studied in this example is the result of finding

the intersecting weights across all ten of the cross-validation networks and then re-training the

resulting small network on all of the training data so that the weight values are coherent with

the structure.

Figure 4.31 shows a visual representation of the weights of the ensemble intersection,

annotated to show the variables that the nodes represent. The first order connections show

positive contributions to spend from being married, from an upper-middle age band, from

people with higher incomes and from people with children. The green squares indicate a

positive influence on spend and red indicates a negative influence. Looking at the second

order connections reveals some exceptions to those patterns, however. For example, it can

be seen that young (the second column in age band, see rows 18 and 19 of the second order

weights) customers with no children and young customers with high income both spend a lot

with the company. This observation agrees with the findings from the analysis of attractors

described in the previous section. There are a few connections between pairs of values of the

same variable (a good example is at the top of the married column in the second order weights).

These connections have negative values, indicating the fact that they cannot both take a value

of 1 at the same time.

4.10.5 Comparing Ensemble Members

One advantage of the explicit structure of a MOHN is that one can be compared with another

in terms of structure. A measure of the difference between two MOHN weight sets, W and V is

4.10 clothing mail order case study 160

the difference between the size of their intersection and their union as a proportion of the size

of their union.

d =
|V∪W| − |V∩W|

|V∪W|
(4.13)

which measures the number of weights that appear in only one network as a proportion of

the number of weights in both. Table 4.10 shows the proportional distance between network

pairs in the ensemble where weight orders were limited to below five and table 4.11 shows the

figures for the ensemble of second order networks. The second order networks are in closer

agreement than those with higher order weights, showing less structural variance.

1 2 3 4 5 6 7 8 9

2 0.74

3 0.76 0.74

4 0.73 0.73 0.76

5 0.76 0.74 0.74 0.73

6 0.75 0.75 0.76 0.73 0.74

7 0.74 0.71 0.73 0.72 0.73 0.73

8 0.76 0.75 0.75 0.73 0.75 0.76 0.74

9 0.73 0.72 0.75 0.72 0.75 0.76 0.72 0.76

10 0.72 0.71 0.70 0.71 0.72 0.73 0.70 0.73 0.72

Table 4.10: Proportional distance between each pair in an ensemble of ten order five limited MOHNs

measured using equation 4.13

4.10 clothing mail order case study 161

1 2 3 4 5 6 7 8 9

2 0.40

3 0.45 0.41

4 0.40 0.39 0.43

5 0.46 0.42 0.45 0.40

6 0.44 0.42 0.46 0.42 0.44

7 0.41 0.37 0.40 0.37 0.42 0.40

8 0.44 0.43 0.41 0.37 0.43 0.45 0.41

9 0.37 0.36 0.44 0.40 0.44 0.44 0.41 0.41

10 0.39 0.38 0.39 0.36 0.40 0.43 0.38 0.39 0.38

Table 4.11: Proportional distance between each pair in an ensemble of ten second order limited MOHNs

measured using equation 4.13

4.10.6 Comparing a Multi Layer Perceptron

For the purpose of comparison, the task of modelling the same data was performed using

MLPs. The data sets used were the same as those employed to train the MOHN, with the same

training, validation and test splits. The output values were rescaled to a range between zero

and 1 across all of the data and the input values were left in {−1, 1}. Initially, for the purpose of

performing a grid search for a promising set of hyperparameters for training the networks,

the data were split into a training partition of 70% test partition of 30%. The grid search sets were:

Hyperparameter Grid Set

η 0.1,0.2,0.4, 0.6, 0.8

Learning rate decay 1, {0.9,0.6,0.3} every {50,100,500} epochs

α 0.2,0.5,0.8

Hidden activation Logistic, Tanh, ReLU

Output activation Linear

Hidden Layers {1,2,3}

Hidden units {6,10,14,18,20}

Random weight range {0.01,0.1,1}

Training epochs 20,50,100,500

4.10 clothing mail order case study 162

A network with the following hyperparameters during learning performed the best:

Hyperparameter Value

η 0.4

Learning rate decay None

α 0.5

Hidden activation Logistic

Output activation Linear

Hidden Layers 3

Hidden units 4 per layer

Random weight range 0.1

Training epochs 100

Another 50 networks were trained with the same hyperparameters on the same training

and test data to verify the variation due to random starting weights was smaller than the

variation due to hyperparameter choice. The variance among the test error of this set (0.0000005)

was much smaller than the variance across the grid search (0.007), indicating the choice of

parameters was reliable.

The training partition of the original data set was then split into ten training sets, each

consisting of 90% of the training partition. The remaining 10% in each case was used for

validation. Ten MLPs were built, each trained on one of the ten training splits and validated on

its corresponding validation split. Figure 4.32 shows the MOHN and MLP accuracy over the

ten training and ten testing data splits.

Figures 4.33 and 4.34 show the predictions made by the average MOHN and the MLP

ensemble, each plotted against the actual output from the data in a test set. The two plots

appear similar and the agreement between the MLP and the MOHN can be seen in figure 4.35,

where the MLP output is plotted against the MOHN output for the same data set.

Although the accuracy of the two models was similar, the advantages of using the MOHN

were the insight into the relationships being modelled that the MOHN allowed, which also led

to the ability to simplify the model, and the fact that the MOHN ensemble could be combined

into a single model, rather than using all ten MLPs each time an averaged prediction is needed.

4.10 clothing mail order case study 163

Figure 4.31: The weights of the intersection of all ten MOHNs in the clothing retailer example. Green

indicates positive weights, red negative and the brighter the colour, the larger the size of the

weight.

4.10 clothing mail order case study 164

MOHN Train MLP Train MOHN Valid MLP Valid MOHN Test MLP Test

5.5

6

6.5

·10−2

Ensemble Model

R
M

SE

Test and Train Error For MLP and MOHN Ensembles

Figure 4.32: RMSE measures across 10 validation folds for training and test data for the average output of

an MLP ensemble and an average MOHN model. Note that the Y axis does not start at zero,

which makes the differences easier to see.

0 100 200 300 400

100

200

300

400

Actual Sales

M
O

H
N

Pr
ed

ic
te

d
Sa

le
s

MOHN Prediction Against Actual Sales Value

Figure 4.33: MOHN predicted output plotted against actual output from the data in a test set.

0 100 200 300 400

100

200

300

400

Actual Sales

M
LP

Pr
ed

ic
te

d
Sa

le
s

MLP Prediction Against Actual Sales Value

Figure 4.34: MLP predicted output plotted against actual output from the data in a test set.

4.10 clothing mail order case study 165

100 200 300 400

100

200

300

400

MOHN Predicted Sales

M
LP

Pr
ed

ic
te

d
Sa

le
s

MLP Prediction Against MOHN Prediction

Figure 4.35: MLP predicted output plotted against MOHN predicted output from the data in a test set,

showing the close agreement between the two.

4.11 comparing mohns with edas 166

4.11 Comparing MOHNs with EDAs

One way that a MOHN can be used as a surrogate fitness function to aid a heuristic search is to

build an accurate model of the function to be searched and then search the MOHN, making

use of its transparent structure. This is essential in situations where a sample of data rather

than a fitness function is available, such as that described in section 4.9. It may also be useful if

the fitness function is expensive to evaluate and the modelling process can complete in fewer

evaluations than an alternative search heuristic. This may be particularly beneficial in situations

where the same fitness function needs to be locally optimised many times from different starting

points.

An alternative but related approach to building a surrogate fitness function is to build an

EDA, which models the probability distribution of high scoring solutions and generates samples

from that distribution. The EDA usually follows several generations of distribution modelling

and sampling and attempts to introduce model bias so that the distribution models only part of

the full distribution. This section addresses the question of whether it is more efficient in terms

of fitness function evaluations to build a fitness function model (a MOHN) or an EDA. An

EDA has one obvious advantage and one obvious disadvantage compared to a fitness function

model (FFM). Its advantage is that the model it builds at each generation can be simpler than

the full model required in a fitness function model as it only needs to represent those parts

of the function that score well. Its disadvantage is that the quantity of data required to select

the best from a population and model its distribution completely is more than that required to

simply learn the fitness function. The question is whether or not a partial EDA can find the

solution in fewer evaluations than a full FFM.

4.11.1 General Experimental Methods

The experiments that follow use MSDA to build MOHN fitness function models, which are then

searched for optimal inputs with respect to the output of the function. The data are noise free

samples from the target functions and the target for the training process is a validation error of

zero. Earlier in this chapter, experiments with the MSDA under various hyperparameter regimes

are described. The results of exploring hyperparameters in those experiments are applied to

the experiments that follow. For all of the following experiments, most of the hyperparameters

are fixed to a value that, while not optimal, has a high probability of allowing the algorithm to

reach the target validation error (based on evidence from previous experiments). For example,

the learning rate is fixed at 0.3 throughout. This was never found to be too high in previous

experiments and although higher values may allow the algorithm to converge faster, that is not

the primary goal.

4.12 comparing mohns and bmda 167

The hyperparameters for the MSDA are described in section 3.3.10. They were set according to

the following regime. When the lasso was used for parameter fitting, the level of regularisation

is set to the minimal non-zero value chosen by the lasso fitting algorithm. When the parameters

are estimated with SGD, there is always a parity learning step at the start, learning rate is always

0.3 and the number of epochs for a single iteration is fixed at 20. The p-value for the weight

removal t-test begins at 0.5 and is reduced by 0.05 whenever an iteration of the algorithm fails

to remove any weights, stopping at a minimum of 0.001.

The weight order distribution is always a discrete Laplace with mode=1 and λ = 2. The

weight order update rule is always set to α = 0.6, β = 0.2. The exploration/exploitation trade-off

is set to full exploitation at all time. The algorithm ensures that there are never more weights in

the MOHN than there are training data points. The schedule for emptying the used weight list

is chosen by running the MSDA until it enters a phase where weights were being added and

removed with no improvement in validation error. The number of iterations taken to reach that

point is used as the reset schedule (usually the figure was rounded to the nearest 10 or 100).

The number of weights in the initial iteration and the number added at each subsequent

iteration was set by default to be one third of the number of training examples. This was chosen

to balance between exploring many weights at each iteration with the need to keep the number

of weights below the number of training examples. Some experiments deviate from this regime,

and where they do, the fact is noted and justified in the description of the experiment. Some of

the following experiments compare the MOHN to an alternative EDA approach based on a

paper from the literature. In those cases, the training set size is chosen to be smaller than that

reported in the associated paper. Little effort is made to minimise sample sizes, as that is not

part of the MSDA process, so the choices are a little arbitrary. From any chosen data set, 90% of

the data is used for training and 10% for validation.

4.12 Comparing MOHNs and BMDA

The bivariate marginal distribution algorithm (BMDA) [103] is a second order EDA that models

conditional probabilities with a pairwise variable interaction graph. Pelikan and Mühlenbein

[103] present results that measure the number of fitness function evaluations required to find a

global optimum for three different fitness functions using BMDA. This section considers one of

them: the quadratic fitness function

fq(X) =

n
2∑

i=1

f2(X2i−1, X2i) (4.14)

4.12 comparing mohns and bmda 168

where f2(u, v) is

f2(u, v) = 0.9− 0.9(u + v) + 1.9uv (4.15)

where u, v ∈ {0, 1}. For the sake of comparison, this domain is used in the following experiments

and inputs of -1 to the MOHN are simply replaced with a value of 0 before evaluation with

equation 4.15. Pelikan and Mühlenbein [103] pair variables from randomised locations, so there

is no prior knowledge about which input interacts with which. Allowing the knowledge that

the function has no interactions above second order means the search is among n(n − 1)/2

second order and n first order interactions.

4.12.1 Learning the Quadratic with the Lasso

Armed with the knowledge that a second order function is sought, and the result shown in

section 4.8.1 that with a noise free sample of data, the sample size should be no less than the

number of parameters in the model, the minimum sample size required to learn the function

may be calculated. Not knowing which pairs are significant requires them all to be considered,

so a full first and second order model with n inputs would require n(n− 1)/2 + n + 1 samples.

The following experiment tests this limit on the quadratic equation described above.

4.12.1.1 Experimental Setup

A MOHN with first and second order connections was built and trained using the lasso with

minimum regularisation and a sample of size n(n− 1)/2 + n + 1 for n ranging from 10 to 120,

the same as the range used in [103]. The correlation between the model output and the desired

output of equation 4.14 was measured in each case. In this case, an additional validation set was

generated, with size equal to 10% of the training data set size. The MOHN was then searched

to find the optimal pattern, using weight satisfaction search.

4.12.1.2 Results

In every case for n = 10 . . . 120, the model was able to learn the function to a correlation

coefficient of 1 with the validation data and the weight satisfaction search moved directly to the

correct optimum. Pelikan et al. [103] compare BMDA with a genetic algorithm with one-point

cross over given the task of finding the global optimum of fq(X), which occurs when Xi = 1 in

every element. They report that the average number of fitness evaluations that BMDA needed

to find the optimum for n = 10 . . . 120 were approximately double the n(n − 1)/2 + n + 1

estimate made here. The GA took up to an order of magnitude more than that. In this case, the

MOHN fitness function was able to model the function and find the optimum in around half

the evaluations reported for BMDA and a tenth of those reported for the GA. The quadratic

4.12 comparing mohns and bmda 169

also provides an example of a function that leads a first order hill climb to local optima, where

any joined pair of variables both have values of zero. The structure revealed by the MOHN

tells the weight satisfaction search which pairs are joined and so allows it to move from (0,0)

across a pair directly to (1,1) without needing to try every possible pair. There are n/2 pairs in a

function of n variables and the weights between them in the MOHN specify that they must

have a positive product, so each weight defines two possible points. The full search requires

the n/2 weights to try each of their two points, making the size of the search space equal n. To

try every second order combination without the structural knowledge reveal by the MOHN

would require n(n− 1)/2 function evaluations. That number of evaluations were required to

build the model, so any reduction in the sample size used to build the model represents an

improvement over a blind second order search. This will be addressed in section 4.12.3.

4.12.2 Reducing Evaluations Further

Observing that the final, pruned MOHN after the lasso had forced the unnecessary weights

to zero always contained n + 1 + n
2 weights, suggests that the number of evaluations could

be reduced further. This is hindered by the fact that even though the majority of weights are

not required, fitness evaluations are needed to discover which can be ignored. Regression

algorithms such as the lasso and OLS cannot just ignore the unused weights. Brownlee [21], for

example reports a experimental evidence that the quality of an OLS model suffers dramatically

as the number of samples drops below the number of parameters being learned. To illustrate

this point, an experiment was carried out to show the effect of adding unnecessary weights to a

MOHN.

4.12.2.1 Experimental Setup

100 repeated trials of the following experiment were made and the results averaged. In each

trial a single model of size n was built and pruned using the lasso with n(n − 1)/2 + n + 1

random inputs evaluated with the quadratic of equation 4.14 and a fully connected first and

second order MOHN. The resulting MOHN had its zero valued weights removed and was

re-trained with a sample of size |W| where |W| is the number of weights it contained. New

second order weights were then added one at a time to the model, connecting two nodes picked

at random. The model was re-trained on the same smaller sample used in the previous step

and the correlation between target and MOHN output recorded for both the training data

and an independent test set. Two sets of experiments were conducted, one using OLS to learn

the parameters and the other using stochastic gradient descent. In the SGD case the weights

from the previous step were set to zero when each new weight was added, to ensure a fair

comparison with OLS.

4.12 comparing mohns and bmda 170

4.12.2.2 Results

Figure 4.36 shows the correlation between the MOHN output and the target from equation

4.14 for MOHNs of growing size trained using OLS and stochastic gradient descent. Every

MOHN contained the correct weights, but an increasing number of unnecessary weights in

addition. Using OLS, the correlation very quickly falls towards zero as new weights are added,

as reported in [21]. Even though the model contains the correct weights, the presence of even

a small number of unnecessary weights prevents it from learning if the sample is too small.

The models trained using stochastic gradient descent maintain a high correlation between the

training data and the target outputs for that data, but the correlation for data in the test set falls

quickly. This highlights the need for care when building fitness function models as overfitting

is still possible even if the data are noise free.

0 20 40 60 80

0.0

0.5

1.0

Added Weights

C
or

re
la

ti
on

Train and Test Correlation for a Fixed Training Sample by Weight Count

SGD Train
OLS Train
SGD Test
OLS Test

Figure 4.36: Train and test correlation for a fixed sample and a MOHN with incrementally added weights

in addition to those needed to represent the function. OLS train and test correlation degrade

at the same rate, SGD overfits, keeping the train correlation near 1 as the test correlation

drops.

As long as the sample is larger than the number of weights in the model, it is possible to

make some judgement about whether or not each weight is necessary. As the number of good

weights increases, the judgement made about other weights improves. This suggests that it

may still be possible to reduce the number of fitness evaluations by using the MOHN structure

discovery algorithm. The next experiment tests this.

4.12.3 Using Structure Discovery to Reduce Evaluations Further

Although the lasso cannot be used when the number of weights exceeds the number of data

samples, the knowledge that not all of the weights are going to be kept can be used to reduce the

required sample size. In the following experiments, the size of the sample is kept smaller than

4.12 comparing mohns and bmda 171

the theoretical lower bound for the network in question and the structure discovery algorithm

is used to discover the right weights while maintaining a network that only ever contains a

subset of the weights that are possible. The size of this subset of weights is managed to ensure

it never exceeds the number of training data points.

4.12.3.1 Experimental Setup

The previous experiments based on the quadratic function used a fixed size sample to learn

the fitness function model in the form of a MOHN. That sample’s size equalled the number of

weights in a fully connected first and second order MOHN. In these experiments, the training

sample size was fixed at half that amount.

The MOHN structure discovery algorithm (MSDA) was run on the same range of problem

sizes reported in [103], using the lasso for parameter estimation and weight removal. The

hyperparameter settings described in section 4.11.1 were used, with the number of weights

added at each iteration fixed at a third of the size of the training sample, up to a fixed limit

to maintain a weight set smaller than the number of training examples. A maximum of 400

iterations of the algorithm were allowed with the used weight set being emptied every 50

iterations. Early stopping was permitted when the correlation between target and MOHN

output was over 0.99. A final verification of the quality of the model was made by using weight

satisfaction search to find the optimal input.

4.12.3.2 Results

The MOHN structure discovery algorithm (MSDA) was able to find the correct MOHN structure

and weights in every trial from size 20 to 120, achieving a correlation over 0.99 and finding

the optimal input pattern. A summary of the results achieved by Pelikan et al. [103], a fully

connected first and second order MOHN and MSDA are shown in figure 4.37. The number of

fitness evaluations required to optimise the function are plotted against the number of variables

in the function input. In the original paper, Pelikan and Mühlenbein also showed the results for

a genetic algorithm but they were so much higher than the figures presented here they have

been excluded from the chart. The GA required 140,000 fitness evaluations for the 120 variable

version of the function.

It may be possible to reduce the sample size further by iteratively adding to a sample only

when the algorithm needs it, rather than using an arbitrarily chosen 50%, but that is a subject

for future work. These results illustrate the benefit of being able to swap weights in and out of

a MOHN to either minimise the size of the required data set as in this case, or to make the most

of a fixed data set without over-fitting.

4.13 comparing structure discovery with markov random fields 172

20 40 60 80 100 120

0

5,000

10,000

15,000

Number of Inputs

Fi
tn

es
s

Ev
al

ua
ti

on
s

Comparing MOHN and BMDA

BMDA
Static MOHN

MSDA

Figure 4.37: Number of fitness function evaluations required to optimise the quadratic fitness function

given in [103]. The top line shows the figures for BMDA taken from [103], and the other two

are different approaches to training a MOHN.

4.13 Comparing Structure Discovery with Markov Random Fields

This section compares the MOHN used as a fitness function with two Markov random field

approaches to building an EDA, DEUM [117] and MARLEDA [2].

First we compare the MOHN structure discovery algorithm with the DEUM clique based

structure learning approach described in [117]. DEUM is designed as a search heuristic, which

follows the EDA pattern of building a distribution of promising candidate solutions and then

sampling from it to produce an improved generation of solutions. Although DEUM uses the

EDA framework, it is generally not reported as being used in an evolutionary mode. Rather, it

builds a distribution in a single step and then samples that until the solution is found.

The DEUM structure learning algorithm finds all pairwise interactions between variables

and uses the resulting graph to infer higher order interactions. A cross entropy measure is used

to detect pairwise interactions. Cross entropy between two variables, X1 and X2 from a data set

D is

CE(X1, X2) =
∑

x1,x2∈D

p(x1, x2) ln

 p(x1, x2)

p(x1)p(x2)

 (4.16)

An edge is connected between any pair of variables with cross entropy above a threshold,

TR, which is the average of the cross entropy values of every possible pair multiplied by 1.5.

Once the second order connections have been found, the maximal cliques of the resulting graph

are found using the Bron-Kerbosch algorithm [20], which recursively builds a set of maximal

cliques in a graph. The simple version of Bron-Kerbosch is described in algorithm 19.

4.13 comparing structure discovery with markov random fields 173

Algorithm 19 Bron-Kerbosch Maximal Clique Finding Algorithm

BronKerbosch(C, X, E)

if X = ∅ AND E = ∅ then report C as a maximal clique

end if

for x ∈ X do

BronKerbosch(C∪ x, X∩N(x), E∩N(x))

X = X \ x

E = E∪ x

end for

The Bron-Kerbosch algorithm is run by calling the function in algorithm 19 with parameters

BronKerbosch(∅, X, ∅) where X is the set of nodes in the graph. The set C builds the maximal

cliques, the function N(x) finds all the neighbours of node x and the set E keeps track of used

nodes to exclude them from further consideration.

By definition, every node in a clique is connected to every other, meaning that every node

is a singular clique, every connected pair is a clique of two and so on. Maximal cliques are

those cliques, C where there are no other nodes in the network that could become a member of

C and preserve its status as a clique. The smaller cliques that make up C are the sub cliques

of C. At this point, each maximal clique represents a fully connected second order sub graph

(like a Hopfield network). The resulting network will have a certain capacity for representing

functions, but this capacity could be improved by adding higher order connections. [117]

present three options for choosing the higher order connections within a clique, C:

1. Add connections only at the order of the size of the clique, |C|, so that each clique has

only a single parameter associated with it,

2. Fully connect the nodes in each clique at all orders so that each clique represents a basis

over its nodes, meaning each clique contains 2|C| parameters,

3. Choose a subset of the 2|C| possible connections within the clique

The second option is used in [117] and once the structure is defined, the function is learned

using ordinary least squares regression. The paper also imposes a limit on the number of

connections any node can have in an attempt to avoid overly large cliques. One problem

associated with fully connecting the cliques is that increasing the number of parameters drives

up the number of function evaluations needed to learn the values for those parameters. As

discussed in section 4.12.2.2, even if the weights turn out to be unnecessary, their presence

requires additional data.

4.13 comparing structure discovery with markov random fields 174

4.13.1 Experiments comparing DEUM with a MOHN

The maximal clique based approach to structure learning has the advantage of being simple

to implement and apply. The only parameters that control the algorithm’s behaviour are the

thresholds for accepting a connection between a pair of nodes and for limiting the number of

connections to a node. It is well suited to functions where second order connections are good

predictors of higher order connections. However, it is easy to design functions that it would

fail on. Any high order interactions that are not also fully connected at order two would not

be found, for example. Functions with large numbers of second order connections but few at

higher orders would also cause the algorithm problems, either by creating cliques that are very

large, or by failing to find all the second order interactions due to the limit on the number of

connections allowed. Imagine the extreme example where a function requires a fully connected

second order network (a Hopfield network, in other words). This would lead either to one

maximal clique that includes every node in the network or to many of the required second

order connections being missed.

It should be clear that the MSDA does not suffer from these same drawbacks. If only second

order weights are needed, then it will only include second order weights, without limit on

their number. If higher order weights are needed, it can still find them even if they are not

predicted by the second order structure. However, MSDA is less efficient than clique finding if

the function is well suited to the latter approach due to the overhead involved in sampling and

testing weights instead of exhaustively assessing every pair in order.

4.13.2 Multi-Modal Functions

To compare the two approaches experimentally requires care as it would be easy to design

functions that would suit one better than the other. The first set of experiments, described

below, uses randomly generated Hamming similarity based functions, as described in section

4.1.1.3, to compare the two approaches. These functions have a single global maximum and a

number of local maxima, all at randomly chosen positions in input space. The rest of the input

space maps to an output that is proportional to its distance from the closest maximum. This

choice allows many different functions to be tested, all with sparse structure and low order

connections, which should suit both approaches equally.

4.13.3 Experimental Setup

For each experiment in this set, 100 functions of 20 inputs were built and learned, each with

nine local maxima and one global maximum, all randomly placed. Each function generated

4.13 comparing structure discovery with markov random fields 175

2000 training points and 200 validation points, which were used to learn a model structure

using the maximum clique approach and MSDA. The resulting structures were then trained on

the same sample using OLS (the weights found during the MSDA learning were not used so

that the structures both had an identical training regime).

The clique finding algorithm was implemented to generate a parameter for every sub clique

in the maximal cliques (option 2 from above). The MSDA used lasso for weight value estimation

and removal, and used the hyperparameter settings described in section 4.11.1. Ten initial

experiments ran with 600 weights being added before each learning iteration (approximately a

third of 2000, as described in section 4.11.1). On noting that the resulting MOHNs contained

around 50 weights in total, the full experimental run of the algorithm across 100 different

target functions was made where only 50 weights were added at each iteration. The initial runs

required 10 iterations of the MSDA so the used weight emptying schedule was set to every 5

iterations on the remaining experiments.

The average root mean squared error on validation data across the 100 functions was

calculated for both the MOHN and the clique finding algorithm, as was the average size of the

resulting networks and the variance of both of these measures.

4.13.3.1 Results

Figure 4.38 shows the mean, standard deviation, maximum and minimum of the validation

RMSE and number of weights in the networks generated by the clique finding algorithm and

MSDA. The MSDA is more accurate and produces smaller networks on average.

Clique Find MSDA
4

5

6

·10−2

Structure Learning Rule

V
al

id
at

io
n

R
M

SE

Clique Find MSDA

50

100

Structure Learning Rule

N
um

be
r

of
W

ei
gh

ts

Figure 4.38: Comparing the accuracy and size of models with weights learned using clique finding and

MSDA.

4.13.4 Clique Finding with The Lasso

One of the limitations of clique based structure learning is that the resulting networks can be

too large if the cliques are large. Malago et al. [94] propose a method for limiting the number

4.13 comparing structure discovery with markov random fields 176

of parameters that each clique in DEUM produces by replacing OLS with the lasso as the

regression method. The lasso’s regularisation forces some parameters to zero, allowing a sparser

pattern of connectivity in each clique. In [94], the Ising model was used as a test case, which we

will return to later. The Ising model may seem like a poor choice to test this algorithm as all of

the cliques are of size two. The only possibility for finding larger cliques occurs if the cross

entropy measures used by DEUM to find the pairwise connections choose spurious connections

that cause larger cliques to form.

4.13.4.1 Experimental Setup

To test whether this approach is more generally applicable, the same experiments using various

multiple pyramid functions described above were repeated comparing an approach where the

maximal cliques were fully connected at all orders to one where they were only connected

where the lasso found non-zero coefficients. 100 trials were repeated with a randomly generated

function with nine local and one global maximum. The RMSE and the number of weights in

each model was recorded.

4.13.4.2 Results

Figure 4.39 shows the mean and variance of the RMSE of the 100 networks built using the

fully connected cliques and OLS compared to the RMSE of 100 networks built by training

fully connected cliques with the lasso. Figure 4.39 also compares the two methods in terms of

resulting network size. The average error in both cases is the same, but the lasso network is

smaller on average (40 connections) than the OLS (48 connections).

OLS Lasso

5

5.5

6

6.5

·10−2

Regression Algorithm

R
M

SE

OLS Lasso

50

100

Regression Algorithm

N
um

be
r

of
W

ei
gh

ts

Figure 4.39: Comparing the accuracy and size of models with weights learned using OLS and the lasso

from fully connected cliques.

4.14 ising spin glass learning 177

4.14 Ising Spin Glass Learning

The fitness function used to demonstrate the clique finding algorithm in Brownlee et. al [117]

was the Ising spin glass problem. Although the Ising model is not an ideal test for structure

discovery algorithms as the fitness function has only second order components, [117] provides

a set of results with which the MOHN structure discovery algorithm can be compared.

4.14.1 Learning Structure with The Lasso MOHN

This section first shows that an Ising model can be learned from a number of fitness evaluations

equal to the number of weights in the MOHN. Assume that the fact that the model is second

order only is known, but that the connection pattern is not. A MOHN with n(n− 1)/2 weights

is needed, so the data sample should be that size.

4.14.1.1 Experimental Setup

In the first set of experiments, a MOHN was used to learn ten randomly generated 10 × 10

Ising models. With 100 input nodes, the model would have 1 + 100(99)/2 = 4, 951 weights

(including ω0), so the MOHN was trained on 4,951 samples of the Hamiltonian energy function

described in equation 4.8. Parameters were learned using the lasso on a network fully connected

at order two. Any parameters set to zero by the lasso were then removed from the MOHN.

The correlation between the model output and the energy Hamiltonian of the Ising model in

the validation data was calculated and the parameters remaining in the model after the lasso

pruning were compared to the known structure. The experiment was repeated on ten different

randomly generated Ising models.

For comparison, [117] use three samples of diminishing size: the population, P, the selection

sample, D and the parameter learning sample, L where L ∈ D ∈ P. L is used to estimate the

parameters rather than D for the sake of speed, but the number of fitness evaluations used for

comparison is |P|.

4.14.1.2 Results

With 4,951 fitness evaluations, all ten Ising models were learned by a MOHN with a validation

correlation of 1 and all ten contained exactly 200 weights in the correct configuration for the

target Ising model. The experiments reported in [117] used a sample of size |D| = 5, 000 to

estimate the model structure, but used a population of size |P| = 30, 000 to select sample D.

4.14 ising spin glass learning 178

4.14.2 Finding the Optimal Spin Configuration

Having learned a MOHN that can mimic the Ising Hamiltonian, it should be possible to apply a

search method to generate the configuration of inputs that minimises the energy of the learned

model. Section 3.5 describes a number of methods for searching a MOHN for an optimal pattern

and these were compared for their ability to find the optimal spin configuration of the MOHN

Ising model.

4.14.2.1 Experimental Setup

A single 100 node Ising model with connections drawn randomly from {−1, 1} was used for

these experiments. A MOHN was trained using the lasso followed by OLS and an examination

of the weights showed them to form a perfect representation of the Ising model in question.

The ground state of the network was found using the on line resource from the University of

Cologne 1 and this pattern was scored with the Ising model. This score was used as the target

for testing the methods for searching the MOHN.

An initial analysis of the search space was carried out by performing RRHC for 5000 restarts

and building a histogram of the frequency with which the algorithm visited each attractor. This

produced 4989 unique local optima and no global optimum. This shows that RRHC will not be

able to solve the Ising model and that LOSS and ILS are unlikely to be applicable in this case

due to the number of local attractors. Simulated annealing and weight satisfaction search were

chosen for comparison. Each method was run until either the optimal pattern was found or

5000 iterations were complete. An iteration of WSS involves reaching a point where no neuron

update can improve the score (a local optimum) and an iteration of SA is one pass through the

temperature cooling schedule, also resulting in a local optimum. If no solution was found after

5000 iterations, the algorithm was deemed to have failed.

In the cooling schedule for SA, T started at 200 and was halved every 20 steps of the whole

network until it reached 0.003, at which point the network was allowed to settle and the next

iteration began. It takes 17 updates of T to get from 200 to 0.003 and 20 steps of the network

to make one update, meaning a full pass of the cooling schedule take 17× 20 = 340 network

updates. For a network of size n, that equates to 340n evaluations if the true fitness function

was being used. For a 100 node network, that is 34,000 and for a 400 node network, 136,000

fitness evaluations. If ns > 1 iterations of the cooling schedule are required, then these values

are multiplied by ns. As simulated annealing could be run on the fitness function itself with no

modelling required, these are the targets to beat.

1 http://www.informatik.uni-koeln.de/spinglass/

4.14 ising spin glass learning 179

4.14.2.2 Results

Table 4.12 shows the number of iterations required by SA and WSS to find an optimal

configuration of spins over 100 trials of the same Ising model. It also shows the number of

failed attempts (from 5000 iterations) and the variance of the number of attempts. The average

iterations is taken over the number of successful attempts. It is clear that SA out performs WSS

significantly. WSS fails 11% of the time and has a large variance in the number of iterations it

needs. In this case, simulated annealing is clearly the best choice. It also suggests that, for Ising

models at least, it is more efficient to learn and search a model of the function than to build

an EDA that needs a larger training sample. The simulated annealing took an average of 2.5

iterations of the cooling schedule, so the number of fitness function evaluations it would have

needed is 2.5× 34, 000 = 85, 000. The MOHN modelling process has reduced the number of

evaluations considerably, using only 4989 evaluations.

Method Iterations Variance Fails

SA 2.5 1.8 0

WSS 1,666 1,262 11

Table 4.12: Average iterations of simulated annealing and high order search on a MOHN representation

of an Ising model.

4.14.3 Discovering Ising Structure

A number of aspects of the previous experiment can be improved upon. The second order

weights were all added in a single pass, and no higher order weights were considered (a piece of

prior knowledge that might not be available). A set of experiments were carried out to address

these issues where the weights were allowed to take any order from 1 to 5 and new weights

were added in smaller increments.

4.14.3.1 Experimental Setup

The same 10 × 10 Ising structure as described above was used to generate a sample of data

to train a MOHN containing 3000 samples generated uniformly at random and evaluated by

the Ising Hamiltonian. The MSDA was run with an initial 1000 weights and with 1000 added

at each iteration. The learning method was SGD and the rest of the MSDA hyperparameter

values were set as described in section 4.11.1. The stopping criterion was a RMSE of less than

one (which corresponded to a correlation between the model output and the target function

output of over 0.99). An initial run of the algorithm suggested that the used weight list should

be emptied every 15 iterations.

4.14 ising spin glass learning 180

4.14.3.2 Results

Figure 4.40 shows the training and validation RMSE of the MOHN by epoch as it learned.

The error trace reflects a number of properties of the algorithm. The reduction in error during

gradient descent is visible between peaks that show the points where weights are discarded and

new weights are added. It is also clear from the trace that although these changes in weights

cause the error to spike, they do not take the error back up to the point it was at when the

network was new. This is evidence of the efficiency of the gradient descent approach over

learning each network from scratch at each iteration. Validation error is greater than training

error while the MSDA is searching for the correct weights, which represents model bias, but

as more of the required weights are found and model bias diminishes, the gap between the

training and validation error closes until, at the point where the model is correct, they converge.

There is no model bias (as we will verify when we look at the weights, next) and minimal

estimation bias, which can be removed entirely using OLS if required.

Figure 4.41 shows a trace, by iteration, of the number of weights at each order from 1 to 5

in the network as it learned, with the top line showing the total number of weights. Note the

spikes at iterations 15 and 30 where the history of weights to avoid was emptied and the way

the number of second order weights grows as the rest reduce in number in the second half of

the training. At the final step, the number of second order weights reaches 200 (which is the

correct number) and the rest all drop to zero, which is also correct.

0 100 200 300 400 500 600 700

0

0.1

0.2

0.3

Training Epoch

R
M

SE

RMSE by Epoch During Training

Validation
Training

Figure 4.40: Training and Validation RMSE during MSDA learning of a 100 node Ising model from 3000

training samples.

The algorithm has found the correct structure, and achieved a correlation with the target

function output of 1 using only 3000 evaluations of the fitness function. This figure is only a

tenth of the 30,000 required by [117] and is even fewer than the number of possible second

order interactions in the network. It was done without the prior knowledge that weights need

only be at order 2. A clique finding method that relies on comparing every pair could not work

4.14 ising spin glass learning 181

0 5 10 15 20 25 30 35

0

1,000

2,000

Training Iteration

W
ei

gh
ts

Weight Counts by Order

All
1
2
3
4
5

Figure 4.41: Weight counts at different orders during MSDA learning a 100 node Ising model.

with so few samples as there are 4950 possible pairs to consider. The MSDA is able to use fewer

evaluations as it considers subsets of weights in the context of a partial model. This is why

the history of weights to avoid needs to be deleted occasionally as the context in which those

weights were first discarded is different from the context later in the training process.

4.14.4 Reducing the Sample Size Further

The required sample size may be reduced further by not requiring the network to discover the

relevant weight orders. If the knowledge that the weights are second order only is used (or the

second order interactions are all that are required as step one of a clique finding approach) the

same process can be run with smaller samples.

4.14.4.1 Experimental Setup

The same Ising model was used again in this experiment. The sample of fitness evaluations

was limited to 2000 and the order of weights in the MOHN was restricted to two. As before, the

MOHN was initialised with 1000 weights and had up to 1000 added at each iteration, ensuring

that the total number of weights remained below the training set size of 2000. The used weight

list was emptied every 20 iterations.

4.14.4.2 Results

The training process was longer than that for previous experiments, needing a total of 90

iterations of the algorithm. The correlation between model and target did reach 1, however.

Figure 4.42 shows the error trace by epoch and figure 4.43 shows the weight count by iteration

(the weight count does not change by SGD epoch, but the error does). An interesting aspect

of figure 4.43 is that the weight count hovers around 650 for many iterations before suddenly

4.14 ising spin glass learning 182

dropping to 200, the correct amount. The error is diminishing during this time, but it is only

when the last required weight is included that the others are able to lose significance and be

dropped.

0 500 1,000 1,500

0

0.1

0.2

Training Epoch

R
M

SE

RMSE Error by Epoch

Validation
Training

Figure 4.42: Training and Validation error during MSDA learning of a 100 node Ising model with 2000

data points. The MSDA was limited to searching first and second order weights only.

0 20 40 60 80

200

400

600

800

1,000

Training Iteration

W
ei

gh
tC

ou
nt

Number of Weights by Iteration

Figure 4.43: Weight count during MSDA learning a 100 node Ising model at order two with 2000 data

points.

Figure 4.44 shows the 100 node Ising model learned by a MOHN presented in the visualisation

method described in section 3.6. Each column is a node and each row represents a weight. Each

row has two pixels, representing a second order connection. The nodes in the MOHN vector,

X represent the square structure of the Ising lattice so that X1 . . .X10 are the first row of the

lattice, X11 . . .X20 are the second, and so on. Figure 4.44 clearly shows the connections between

adjacent pairs that are the right hand neighbours, the connections 10 bits apart that represent

the neighbours below and the few distant connections that represent the wrapped connections

of the torus.

4.14 ising spin glass learning 183

Figure 4.44: The weights of a 100 node Ising model learned by a MOHN using structure discovery. Each

row represents a weight and its connections to nodes, which are represented in columns.

The resulting image has three diagonal lines of connections. The left hand line shows nodes

connected to their immediate horizontal neighbour. The middle row shows the vertical

connections to a node below and the final, smaller line shows that the top row of nodes is

connected to the bottom row.

Figure 4.45 shows in more detail the relationship between the weight chart and the Ising

model. With a little practice at reading them, the weight charts can become fast and convenient

tools for checking the structure of a MOHN once it is built. In regular structures such as the

Ising model, it is also quite easy to spot any missing or spurious weights by studying the chart.

4.14 ising spin glass learning 184

Figure 4.45: Detail of the weight chart and connections from a single node, X1 in a nine node 2D Ising

model. Compare this to the top rows of figure 4.44 to see where the connection from top to

bottom (D in this figure) is shown.

4.14.5 A Larger Network

Brownlee et al. [117] also present results for Ising models of 256 and 400 nodes. The final

experiment in this section describes the MOHN structure discovery algorithm working on a

20× 20 Ising model with 400 nodes. The algorithm was given a sample of 20,000 evaluations

of the 400 node Ising Hamiltonian and run with 6,000 weights being added at each iteration.

Parameter estimation was by SGD and all the MSDA hyperparameter values were set as

described in section 4.11.1 and the stopping criterion was a correlation with the target output in

the validation set above 0.99. The algorithm required 195 iterations to find the correct structure.

Table 4.13 summarises the results of the Ising model experiments comparing DEUM to a

MOHN.

4.14 ising spin glass learning 185

Method Size Evaluations

DEUM 100 30,000

MOHN-Lasso 100 5,500

MSDA-Order 5 100 3,000

MSDA-Order 2 100 2,000

DEUM 400 150,000

MSDA 400 20,000

Table 4.13: Comparing the number of fitness function evaluations used to learn Ising models of 100 and

400 nodes using DEUM and MOHN structure discovery.

4.14.6 Comparing MOHNs to MARLEDA

Another Markov random field approach, MARLEDA [2] has used the Ising model to demonstrate

its capabilities. MARLEDA uses a very similar approach to DEUM in that it uses a MRF. Pairwise

interactions are found using Chi squared rather than cross entropy. Alden and Miikkulainen

[2] report some recent results on similar experiments comparing its approach to a standard

GA using GENEsYs [6] and the Bayesian optimisation algorithm (BOA) [102]. They compare

results from a version of MARLEDA that learns the function structure with a version that is

given the structure and only needs to learn the parameters. Results are presented for a 400 node

Ising model, as here, but the process is stopped after 20,000 fitness evaluations, at which point

only the MARLEDA with the given model structure is able to reliably find the global optimum.

Alden and Miikkulainen [2] report that the version of MARLEDA that also performed structure

learning found only solutions that scored 80%-85% of the global optimum. They report “The

deceptive qualities of this domain were not completely overcome”. Based on the analysis

presented in the experiments in this section, it seems likely that MARLEDA would have needed

more fitness evaluations to find the correct model. For a 400 node Ising model, the minimum

sample required to model all of the second order interactions is (400 ∗ 399)/2 = 79, 800. The

MSDA was able to discover the correct structure (unlike MARLEDA, which needs the structure

to be defined) with 20,000 fitness evaluations. The GENEsYs GA and BOA are both reported in

[2] to perform worse than MARLEDA, and so worse than the MOHN.

4.14.7 Comparing MOHNs to sDEUM

An alternative approach to choosing which weights to include in a DEUM model was proposed

by Valentini et al. [139], who used the lasso to set unused weights to zero in an approach they

4.14 ising spin glass learning 186

called Sparsified DEUM (sDEUM). They presented results comparing standard DEUM, sDEUM,

simulated annealing and hBOA given the task of finding the global optimum in a 3D Ising

model. A 3D model extends the neighbourhood of each node to those other nodes that would

be its neighbours in a cube. The largest model analysed in [139] contained 25× 25× 25 = 125

nodes and it is that size of network that is used to compare the performance of a MOHN.

sDEUM required an average of around 20,000 evaluations of the 125 node Ising Hamiltonian to

find an optimal input pattern. The next experiment attempts to solve the same problem in 5,000

evaluations.

4.14.7.1 Experimental Setup

The MSDA was used to discover the correct structure of randomly generated 3D Ising models

of 125 nodes. 20 repeated trials of the experiment were carried out to verify that the results were

robust. For each trial, a training set of 5000 examples was generated, consisting of uniformly

random input patterns and their associated output from the Ising Hamiltonian. The MSDA

regime from previous Ising experiments was kept, which meant adding 1000 weights at each

iteration and using the default hyperparameter settings listed in section 4.11.1. The learning

process was stopped when the correlation between the MOHN output and the validation data

from the target Ising model was greater than 0.99. A total of 20 trials with random networks

were repeated and the results averaged, but an initial run was made to provide a clue as to

where the used weight list should be emptied. This run suggested that 50 iterations would be a

good interval as it began a plateau of training and validation error.

4.14.7.2 Results

A MOHN trained on 5000 samples from the Ising energy function was able to find the correct

structure and weights in an average of 51 iterations of the MSDA. This suggests that the

emptying of the used weights list (done at 50 iterations) was important in allowing the

algorithm to find the correct weights. The resulting correlation between Ising model and

MOHN on validation data was always 1. Figure 4.46 shows an example trace of the root mean

squared training and validation errors during training. Figure 4.47 shows the weight counts at

each order. Note that the total number of weights is always below half the training sample size,

meaning the model is not overfit during learning. Figure 4.48 reproduces part of figure 3 from

[139] showing the results reported in that paper for a 125 node Ising model with an additional

entry for the MOHN.

4.14 ising spin glass learning 187

0 10 20 30 40 50

0

10

20

Training Iteration

R
M

SE

Training and Validation RMSE by Iteration

Validation
Training

Figure 4.46: Training and validation error during MSDA learning of a 125 node 3D Ising model with 5000

data points.

0 10 20 30 40 50

0

1,000

2,000

Training Iteration

W
ei

gh
tC

ou
nt

Number of Weights by Iteration

Order 1
Order 2
Order 3
Order 4
Order 5

Total

Figure 4.47: Weight count during MSDA learning of a 125 node 3D Ising model with 5000 data points.

MOHN sDEUM DEUM SA hBOA

104

105

106

Search Method

Fi
tn

es
s

Ev
al

ua
ti

on
s

Fitness Evaluations on 3D Ising Search

Figure 4.48: Average number of fitness evaluations (log scale) required to find the first optimal solution to

a 3D Ising model by different algorithms.

4.14 ising spin glass learning 188

4.14.8 Learning Ising Models with an MLP

A MOHN was able to find the correct structure for 2D and 3D Ising models with small sample

sizes. This section addresses the question of whether an MLP would be a suitable alternative. If

an MLP could be trained in fewer samples, it could be searched using simulated annealing and

provide a solution in fewer fitness evaluations.

A 100 node Ising model was used for these experiments. The MLP that was used had a single

linear output unit, and a grid search was employed to find suitable hyperparameters values.

The search was across all combinations of the following hyperparameter value sets:

Hyperparameter Grid Set

η {0.1,0.2,0.4}

η decay {1,0.9,0.8,0.5}

hidden units {80,120,180,300,600,1000}

hidden layers {1,2,3}

Initial weight range {0.01,0.1,1}

momentum {0.1,0.5,0.8}

Hidden activation {ReLU, Tanh, Logistic}

Mini batch size {1,10,50,100}

The first experiment used a data set containing 20,000 training examples. This figure is higher

than the target we are aiming for, but the first set of experiments are designed to establish an

effective architecture and training regime without the uncertainty associated with having a

training set that is too small.

The error trace of the first four combinations in the grid search over 500 training epochs

showed the validation RMSE flattening after 150 epochs. This figure was used as the stopping

criterion for the training regime during the grid search, with the intention of exploring longer

training regimes once the hyperparameters were fixed.

The results of each combination in the grid search were sorted by validation error and the

top ten (the ten with the lowest validation error) were selected to guide a further refinement

of the search. All of the top ten networks had 1 layer of tanh activation units, an η value of

0.1 or 0.2, no learning rate decay and a batch size of 1 (i.e. SGD). The momentum and starting

weights range values were uncorrelated with the error rate. Networks with 300, 600 and 1000

hidden units all featured in the top 10. The validation error for the top ten networks ranged

from 0.055 to 0.133, which are very high but the short training time may explain that.

A narrower grid search was performed over networks with 300, 600 and 1000 hidden units,

all with tanh activation functions and learning rates in {0.1,0.2}, momentum of 0.5, no learning

4.15 comparing mohns to boltzmann machine edas 189

rate decay, a batch size of 1 and random starting weights in a range of 0.1. In this search the

number of training epochs was increased to 200,000. The best network achieved a validation

score of 0.044 with 1000 hidden units. Another attempt was made with an MLP with 2000

hidden units, keeping all other hyperparameters at the same level, and it achieved a validation

RMSE of 0.034, but with considerably longer training time.

At this point, having spent a lot more time exploring MLP hyperparameters than was spent

training many MOHNs to a validation error of zero, the search was terminated. Reducing

the validation RMSE further is almost certainly possible, but these experiments were with

20,000 examples and the aim was to build an MLP based on fewer than 3000, which is what the

MOHN required. For those reasons, we conclude that further experiments with the MLP are

not helpful and that in this case, the MOHN is preferable. It is true, of course, that the MOHN

matches the Ising model very well in terms of structure and we would expect a MOHN with

the right structure to reproduce an Ising model perfectly. Some fitness functions suit a MOHN

well, others will suit an MLP very well. Our claim is that a MOHN provides a method worth

including in a fitness function modeller’s tool kit for the times when it can be discovered that

the function is well suited to its abilities. The Ising model provides a benchmark example of

such a function.

4.15 Comparing MOHNs to Boltzmann Machine EDAs

Boltzmann machines are a type of neural network that use a stochastic activation function that

enables them to model probability distributions. They represent dynamic systems that can be

used to generate data in a Boltzmann distribution using Gibbs sampling. Both deep Boltzmann

machines [108] and restricted Boltzmann machines [109] have been used to build EDAs for

combinatorial optimisation. This section compares the results from Probst and Rothlauf [108]

and Probst et al. [109] with results from using a MOHN to model and search a single fitness

function: the k-bit trap.

Both Probst and Rothlauf [108] and Probst et al. [109] present results for searching k-bit

trap problems of various sizes with Boltzmann EDAs, reporting both the number of fitness

evaluations required to find a solution and the CPU time taken. In [108], deep Boltzmann

machines were used in a method called DBM-EDA and in [109], the RBM-EDA used restricted

Boltzmann machines. Both papers compared the performance of the EDAs to that of a Bayesian

optimisation algorithm (BOA) on a number of problems including the k-bit trap.

Unlike the results reported above for DEUM, the Boltzmann EDAs make use of a number of

generations of a cycle of data generation, selection and modelling to perform an evolutionary

search. The principle behind an evolutionary EDA is that the model can be simpler as only the

space of promising (and eventually, very good) solutions is modelled. The risks associated with

4.15 comparing mohns to boltzmann machine edas 190

the evolutionary approach are that larger samples from the fitness function may be needed to

build multiple populations. This is in contrast to the approach of building and then sampling

an accurate model reported in [94] and [117] and employed by the MOHN model and search

approach.

4.15.0.1 Experimental Setup

Some of the RBM-EDA and DBM-EDA experiments were repeated using a MOHN as a fitness

function model. Specifically, the k-bit trap problems for 4 and 5 bit traps were modelled and

searched using a MOHN. The number of fitness evaluations and the time taken to model and

search each problem was recorded. The MSDA was used with the same settings for every

trial. The SGD learning rule was used with the settings given in section 4.11.1 and the used

weights list was emptied every 20 iterations of the algorithm. The number of samples to use for

learning was fixed for each experiment based on the size of the problem and the number of

samples reported in [108]. Each fitness function was modelled 10 times and the average time

and number of fitness evaluations was recorded.

4.15.0.2 Results

In all cases, the MOHN was able to model and successfully search the fitness function in far

fewer evaluations and in much less time than the results reported for RBM-EDA, DBM-EDA

and BOA. Table 4.14 summarises the results, taking data from [108] and [109]. Note that the

results from the DBM-EDA are for trials where the global optimum was found 90% of the time

or more. All other results provide numbers where all searches found the global optimum. The

BOA and DBM-EDA figures were taken from table 1 in [108]. The figures for RBM-EDA are

approximate as they were read from the graphs in figure 3 in [109].

4.15 comparing mohns to boltzmann machine edas 191

Problem Algorithm Evaluations Time

4-trap BOA 13,673 2,728

40 bits DBM-EDA 47,231 2,201

RBM-EDA 16,000 150

MOHN 2,000 22

4-trap BOA 43,777 43,935

80 bits DBM-EDA 153,278 13,271

RBM-EDA 160,000 1,100

MOHN 10,000 170

5-trap BOA 14,924 1,384

25 bits DBM-EDA 13,291 566

MOHN 1,000 8

5-trap BOA 47,904 20,199

50 bits DBM-EDA 49,886 3060

RBM-EDA 63,000 300

MOHN 20,000 295

Table 4.14: Unique fitness function evaluations and time required to find the global optimum in different

k-bit trap functions using a MOHN and the figures presented in [108] and [109]. No data is

available for the RBM-EDA performance on the 5-bit trap problem over 25 bits.

The models built by the MOHN were searched using weight satisfaction search (see section

3.5.2), which was able to find the global optimum in a single pass of the algorithm. This is very

fast — in every case it took less than an additional second to search the model once it had been

successfully built. Of course, this function is perfectly suited to the WSS as each trap is small

and can be solved independently.

4.15.1 Learning the K-Bit Trap with an MLP

This section compares the use of MLPs to learn and search the same set of k-bit trap fitness

functions described above. The questions of interest concern the smallest number of samples

an MLP would require to accurately reproduce a k-bit trap function, the variance of results

across an ensemble of such solutions, and methods for using the MLP to search for an optimal

input pattern.

4.15 comparing mohns to boltzmann machine edas 192

4.15.1.1 Experimental Setup

The search for an MLP capable of learning a k-bit trap function with the smallest number of

training data points was carried out by first attempting to optimise the hyperparameters of the

MLP structure and training regime on a training set that was assumed to be large enough, guided

by the training set sizes reported in table 4.14. Using 60,000 uniformly random input patterns

and the result of evaluating each with a 4-bit trap function over 40 bits (those used for the first

set of results in table 4.14), a grid search was performed over the following hyperparameter space:

Hyperparameter Grid Set

η {0.1,0.2,0.4}

α {0.8,0.5}

Hidden activation {Tanh, Logistic, ReLU}

Number of hidden units {10,20,30,40}

Number of hidden layers {1,2,3}

Random weight range {0.01,0.1,1}

Mini Batch size {1,5,10,20,40,80}

All MLPs used a single linear output unit and the output data were scaled to fall within the

range from zero to one. The grid search was ordered so that smaller numbers of hidden units

were tried first, and stopped when more than three networks of the current size achieved a

correlation over 0.99 as there is no requirement for a larger network if a smaller one can find

the solution. Ten hidden units were found to be insufficient, but networks with 20 hidden units

were able to achieve a validation correlation of 1.

As a smaller network should require fewer training examples, a second search was performed

to attempt to reduce the hidden unit count further, using a single hidden layer of sizes from 11

to 19 and the rest of the hyperparameters set as follows, based on the results of the first grid

search:

4.15 comparing mohns to boltzmann machine edas 193

Hyperparameter Grid Set

η Learning rate 0.1,0.2,0.4

Learning rate decay None

α Momentum 0.5

Hidden activation Logistic

Hidden Layers 1

Hidden units {11,12,13,14,15,16,17,18,19}

Random weight range 0.26

Training epochs 500

Training samples 60,000

Mini Batch size 1 (Simple SGD)

The only two parameters that were searched were the learning rate and the number of

hidden units. The goal was to find the largest learning rate that was stable for the smallest

number of hidden units. This was found at networks with 14 hidden units and a learning rate

of 0.2, which are the values that were used for the rest of the experiments described in this

section. The variance of validation correlation for the chosen hyperparameter set was tested by

generating 20 random data sets of size 60,000 and training an MLP on each. The test correlation

between the MLP output and the known function output varied between 0.73 and 0.99 across

the networks built.

The selected hyperparameter set was used for the attempt to minimise the training set size,

which was performed with a simple search, starting with a training set size of 1000 examples

(half that required by the MOHN) and increasing by doubling the size up to 36,000. The test set

consisted of 2000 randomly generated examples. Twenty random training sets were generated

for each size in an attempt to account for variation from one MLP to the next. The results

showed that a sample of 16,000 data points was the first to produce a test correlation above 0.99.

To narrow the search further, the process was repeated with training samples starting at 9,000

and increasing in increments of 1,000 until a training set size was found that consistently gave

a test correlation over 0.9. The smallest training set to achieve this contained 14,000 training

points. The MOHN value of 2,000 training points required compares very well to this.

Note that SGD, with a batch size of 1 was chosen over a mini batch approach. This was

because more SGD trained models found correlations over 0.99 during the grid search than

any of the mini batch approaches. However, the optimal mini batch, of size 20, had a lower

variance of test correlation than the SGD solutions so the option to train using that size of mini

batch was investigated further. Two sets of twenty additional MLPs were trained using the

settings described above, one using SGD and the other a mini batch of 20.

4.15 comparing mohns to boltzmann machine edas 194

Batch size CC Mean CC Variance CC Max CC Min

Mini batch 0.905 0.0005 0.94 0.86

SGD (batch size = 1) 0.907 0.006 1 0.73

Table 4.15: Comparing the mean, variance and maximum of the validation correlation when training

MLPs on the k-bit trap problem with mini batches of 20 compared to training with SGD (batch

size of 1).

Table 4.15 compares the mean, variance and maximum of the validation correlation of the

MLPs trained with mini batches of 20 and those trained with simple SGD (batch size of 1).

There is no difference between the average correlations between mini batch and SGD (p=0.9

from a t-test) but there is a difference in variance, which also results in a difference in maximum

correlation. SGD was chosen for the continued experiments with this data because of the

observed ability to reach a validation correlation of 1, even though the variance across models

was higher.

Each of the 20 MLPs for each batch size was trained on the same training data, so the only

difference from one example to the next was the random starting position of the weights. Both

batch sizes settled in local error minima (or, perhaps on large plateaux) but SGD showed better

ability to escape them at a cost of greater variance across trials. The MOHN, by comparison

trained using MSDA was able to produce a correlation between predicted output and actual

output on validation data of 1 for every trial. In conclusion, this experiment found that the

MOHN was able to learn the 4-bit trap function over 40 inputs in fewer training samples, with

lower validation error and lower variance across models than the MLP.

4.15.1.2 Searching the MLP

MLPs have been used as surrogate fitness functions, but the motivation in many cases has been

to replace a costly fitness function with a model that is faster to evaluate [135]. However, the

partial derivatives of the output with respect to each of the inputs to an MLP are easy to compute,

meaning that gradient based methods may be employed to search the MLP representation of

the fitness function. This is a simple version of the approach used in deep networks to extract

images that maximise a class score [119], or to invert the network function [93].

The partial derivative ∂Y
∂Xi

represents the local gradient of the network output in the direction

of input Xi at the current input point. It is calculated using the chain rule to calculate the partial

derivative of each non-input neuron in the network as the weighted sum of the derivatives

from below.

4.15 comparing mohns to boltzmann machine edas 195

Let a j represent the activation of neuron j in the first hidden layer and u j = f (a j) be its

output, then the partial derivative of u j with respect to input xi, which are connected with a

weight value of wi j is

∂u j

∂xi
= wi j f ′(a j) (4.17)

Neurons in following layers, including the output are calculated as the weighted sum of

derivatives from below multiplied by the derivative of their activation function at their current

activation. Now let uk be the output from a neuron above the first hidden layer:

∂uk
∂xi

=
∑

j

w jk f ′(ak) (4.18)

where the sum is over all neurons in the layer below that containing neuron k.

From a random starting point, a gradient based search may be employed to search for an

input that generates a desired value at the output. Random restarts may be required if there are

local optima in the function.

The MOHN surrogate models of the k-bit trap problem were searched very efficiency using

weight satisfaction search, which is able to take advantage of the fact that only combinations of

nodes with weights among them need to be searched. This allows a MOHN representing a

function with the structure of a k-bit trap (for example) to be searched very quickly by making

changes to more than one input at a time. This final experiment uses a gradient based search to

attempt to optimise the inputs to an MLP model of a k-bit trap problem.

4.15.1.3 Experimental Setup and Results

The best of the MLP models of the 4-bit trap over 40 inputs was used to guide a hill climbing

algorithm in an attempt to find a global maximum output. The hill climber chose a uniformly

random starting point and climbed by repeatedly calculating the partial derivatives of the

output with respect to each input and changing a single input value in the direction indicated

by the gradient. As inputs are binary, that means ensuring the value of the chosen input matches

that of the derivative. Inputs were picked uniformly at random with replacement and the

derivatives were re-calculated after every change of input value. When no further changes are

possible, the algorithm terminates. This process is repeated from different random starting

points. As expected, the deceptive nature of the trap function guides the search towards local

maxima in which all of the values in a block have a value of zero. Only blocks in which the

number of 1s is 3 or 4 in the random start pattern are able to climb to or remain in a global

maximum state where all 4 values are set to 1.

4.16 conclusions 196

4.16 Conclusions

This section has shown that a MOHN can learn a zero error representation of a fitness function

and find optimal patterns from it in fewer function evaluations than those reported in some

of the literature for EDAs. In the case of the quadratic example from [103] and the k-bit trap

problem, a weight satisfaction search was found to be sufficient to find the global optimum from

the MOHN model. For Ising models, this approach was less reliable and simulated annealing

was found to be effective.

The combination of fast learning from small data sets and guided model search makes

MOHNs an attractive option for search and optimisation. Building a full model will never

require more data than building a full EDA model and has been shown here to require

considerably less in a number of cases. A full model also has the advantage over a partial,

evolved EDA that it can be re-used in situations where a number of different solutions need to

be generated or a nearest local solution needs to be found quickly.

No single MOHN search algorithm has been found to work well across all the functions

tested. In some cases different algorithms were tried and the most successful one chosen, for

example when searching the Ising models. In other cases, looking at the weights of the MOHN

suggested a sensible choice of search algorithm, such as weight satisfaction search for k-bit trap

problems where blocks of separate input sets of clearly defined.

4.16.1 Further Development

The MOHN experiments were not as dynamic as they could be in the sense that the sample sizes

were fixed. An approach that adds both weights and samples as structure discovery proceeds

might yield even better results. Such an approach would start to become population based in

the sense that new data (i.e. a new population) would be added at each iteration, allowing the

model to grow more complex as the sample size grew.

Similarly, the method described here took a two stage approach to search, which involved

building an accurate model and then searching it. An integrated approach where a model is

searched as it grows might find a maximum sooner if a poorer model leads to it, or it might

take longer if the overhead of searching the model outweighs the gain from stopping early.

Further work is required to address these questions.

Part III

S U M M A RY A N D C O N C L U S I O N S

5
C O N C L U S I O N S A N D F U T U R E D I R E C T I O N S

MOHNs have been presented as regression models with a structure that allows human

interpretation, guided heuristic search and informed regularisation. They can also be used

as content addressable memories with arbitrary capacity. This final section considers future

directions for MOHN research and presents a conclusion.

5.1 Future Directions

This thesis has concentrated on functions of the form f : {−1, 1}n → R. That means a restriction

to binary valued inputs and a single, real valued output. The following sections suggest further

research directions for work on MOHNs that relax these constraints and show some speculative

and very preliminary results in those directions.

5.1.1 Real Valued MOHN

This work has restricted its attention to MOHNs with binary valued inputs. The main reason

for this is the fact that a full MOHN forms a basis for functions in f : {−1, 1}n → R. It also

allows comparison with Hopfield networks as content addressable memories and simplifies

the search algorithms. The method would be more broadly applicable if it were extended to

cover functions in f : Rn
→ R.

The MOHN learning methods (OLS, the lasso and SGD) all work on real valued inputs so at

the simplest level, the MOHN architecture presented here could be used to learn a function

of Rn if the MOHN structure was given. For structure discovery, the lasso could be used for

each iteration of the MSD algorithm as the unnecessary weights are automatically set to zero,

allowing the algorithm to learn, prune and add as it does in its present form.

The greater challenge in learning a function of Rn is the fact that a sum of products among

subsets of inputs does not form a basis. Take for example f (X) = sin(X) where X is a random

variable. A univariate MOHN has only two weights and could not capture such a relationship.

A solution would require either hidden units such as those in an MLP or an expansion, for

example a power series f (X) = ω0 + ω1X + ω2X2 + A full solution would require the

ability to add nodes to the network for new variables representing a series (X2, X3 etc.) in

198

5.1 future directions 199

addition to the current structure discovery approach in which higher order interactions might

involve X2X3 or X2
1X2

2 for example.

5.1.1.1 Experimental Examples

Two small experimental examples are given here to illustrate the ideas. In the first experiment,

the univariate function f (X) = sin(3X) + sin(6X)/2 is learned in the range −1 ≤ X ≤ 1 by

allowing the MOHN to have 8 nodes: one to represent the value of X and the others that are

given the values Xi, i = 2 . . . 7. The MOHN was given first order weights only and trained

on a random sample of 1000 instances of X, f (X) using the lasso and achieved a correlation

coefficient between the target and the predictions of 0.993. The weights revealed the function

learned by the network to be approximately 5.7X − 19X3 + 21X5, the powers not included

having been forced to zero by the lasso.

In a second experiment, the function f (X) = 1.3X0X1 + X2 − 3X2X3 was learned with a first

and second order MOHN of 4 nodes, again using the lasso. In this example, no inputs were

allocated to X2 etc, but all interactions between pairs of variables were considered. The resulting

MOHN had 11 possible weights and set them all to zero except those corresponding to those in

the target function.

5.1.2 Heuristic Optimisation

The experimental results comparing a MOHN to other EDA approaches to optimisation are

encouraging and require further investigation. The learning and searching phases are currently

separate, but it would be interesting to attempt to combine them into a single process with the

goal of finding an optimal solution with the fewest fitness function evaluations. For example,

it may be that some functions yield an optimal solution before the validation error reaches

its minimum. The experiments on content addressable memory and model bias reported in

section 4.5.5 suggest that this can be the case for some functions.

Two questions raised by this work are How can the structure of the MOHN guide a heuristic

search? and Which functions are amenable to a MOHN optimisation approach? Section 3.5.0.2

proposes some ways in which local search can be guided by the weight structure of the MOHN,

for example making the perturbations of iterated local search based on the weight values, but

the effectiveness of the approach depends greatly on the structure of the network. It is very

effective for the MOHN that represents a k-bit trap, but does not add much to the search of a

MOHN model of an Ising network. Other methods from the literature such as those proposed

by Whitley et. al. [143], [29], [137], propose fast methods for searching variable interaction

graphs such as a MOHN. Their effectiveness for a range of MOHN functions needs to be

investigated. There are other optimisation problem frameworks that use a set of weighted

constraints to define a function, for example weighted Max-Sat problems [56] are defined by

5.1 future directions 200

a weighted set of disjunctions over subsets of X. Further work is needed to apply the most

efficient weighted Max-Sat solvers to MOHN optimisation.

Some functions can be optimised in fewer evaluations than are required to train a MOHN.

For example, consider a function that counts the number of inputs with a value of 1 and outputs

the Hamming distance between the input vector and either a vector where every input has a

value of 1, or one in which every output has a value of -1, which ever is smaller. The function

is minimised where all the inputs have the same value. A simple hill climbing algorithm is

guaranteed to move to one or other of the solutions, which ever it is closest to at the start point.

To learn the function fully, however requires a fully connected MOHN.

Other functions can be learned in fewer evaluations than current state of the art search

methods require to optimise them without a model. This is the premise on which the practice of

building fitness function models is based. Hybrid approaches that use a model free search on

one hand but use the points visited to contribute to building a MOHN should be investigated.

Where fitness function evaluations are expensive, the overhead of building and searching a

model may be small compared to continuing a search that make more evaluations than the

MOHN would need. As fitness function evaluations are often noise free, MOHNs for modelling

such functions can be restricted in size to match the number of available data points (evaluations

so far).

5.1.3 Other Possibilities

The structure discovery learning algorithm could be made more sophisticated. For example,

there may be local patterns among subsets of inputs that are repeated and a suitable pattern

matching approach may be able to find them. The simpler approach of designing a good user

interface to the learning process may allow a mixture of MOHN visualisation and human

guidance to spot such patterns.

The possibility of adding a link function to a MOHN was proposed in section 3.7.1 but not

pursued. Using a logit function would allow for binary classification, for example. The use of

an exponential link function would make the MOHN equivalent to the Markov random fields

used in DEUM. Other learning algorithms would be more appropriate than those studied here

in these cases, iteratively reweighted least squares [63], for example is preferable to OLS when

the output errors are not normally distributed.

Training a large MOHN is a suitable task for modern distributed computing techniques such

as cluster computing or the use of a GPU. With a large data set distributed across a cluster, it is

possible that a mapreduce job could build smaller local models in the map phase to produce a

large ensemble that is then averaged in the reduce phase. Diversity across the ensemble could

be managed by controlling the distribution of weight orders each map task samples from or by

allowing some map tasks to explore while others exploit.

5.2 conclusions 201

5.2 Conclusions

5.2.1 Main Contribution

Section 1.3 lists the properties we have claimed for a MOHN, the key algorithms required to

build and search one, and some experimental findings. That list is summarised below with

references to the parts of the thesis that hold a proof, algorithm or experimental evidence for

the claims.

1. Basis Function: Section 3.2.2 provides a proof of equivalence between the Walsh basis

and the MOHN basis. Section 3.5 show that basis coefficients can represent any function

as a set of weak constraints. A MOHN can represent any function in f : {−1, 1}n → R as a

MOHN function and a weak constraint set.

2. Sparsity: The MSDA, which is algorithm 7 on page 72 proposes a method for finding the

non-zero weights for a MOHN. The approach is motivated by the need to work with

small data sets. Experiments such as those in section 4.4 provide evidence that the MSDA

can discover the correct sparse structure from fewer data points than other methods in

the literature.

3. Linear Parameter Models: Equation 3.1 on page 53 shows the form of the MOHN

linear parameter model. A MOHN has the well known properties of such a model. The

experiment on page 151 demonstrates how a MOHN with the correct structure can learn

randomly generated functions with a number of noise free training points equal in size

to the number of weights in the MOHN. The mean squared error, lasso and ridge cost

functions are convex for such models, which means there are no local minima in the error

function, and removes a source of variance compared to non-convex functions such as

the equivalents for an MLP. Illustrative examples are given on pages 111, 122 and 188.

4. Interpretability: The structure and values of the parameters in a MOHN have a meaning

that is open to human interpretation. This allows networks to be visualised, compared

and (to some extent) produce human readable facts. Section 3.6 proposes a network

visualisation method and figure 4.31 on page 163 shows an annotated visualisation of a

MOHN’s weights and highlights its human readable nature. Section 3.6.1.1 explains how

an ensemble of MOHNs can be combined into a single average model due to the fact that

the weights play the same role in each model in an ensemble. There is an example of this

being used in section 4.10.2.

Heuristic algorithms for performing two important tasks with MOHNs were presented:

1. Structure Discovery: The MSDA was proposed in section 3.3, as discussed above.

5.2 conclusions 202

2. Model Search: Versions of local search algorithms designed to make use of the MOHN

weight structure were proposed including random restart hill climb, iterated local search

and variable neighbourhood search. Methods for performing simulated annealing and

a method that allowed a MOHN to forget local optima were also proposed and tested.

Different methods were found to suit some problems better than others, but all offered a

gain in efficiency from only needing to partially evaluate the MOHN function on each

step of the search. Examples of the MOHN structure leading a search algorithm directly

to the global optimum when a simple hill climb would fail are given in sections 4.12

and 4.15. More work is needed to investigate how much can be gained from the MOHN

structure during search, and how broadly any gains might apply.

The thesis also presents experimental evidence to suggest that MOHNs compare well with

MLPs for regression modelling and EDAs for optimisation in certain circumstances.

1. Non-Linear Regression: For a number of benchmark functions, a MOHN showed

advantages over an multi layer perceptron including finding a lower test error, requiring

fewer data points, using fewer training epochs and displaying less variance across a

number of training runs. Illustrative examples are given on pages 111, 122 and 188.

2. Fitness Function Models: MOHNs are capable of modelling benchmark fitness functions

and finding the input values that produce the global maximum output of those functions

in fewer evaluations of the fitness function than a number of published state-of-the-art

methods. Section 4.11 provides examples where a MOHN is able to model and search

a function in fewer evaluations than those reported in the literature for EDA methods

using Markov random fields, Boltzmann machines, and Bayesian optimisation.

5.2.2 Other Results

A MOHN has also been shown to function as a high capacity content addressable memory,

though at the expense of not being able to learn new patterns incrementally. An incremental

approach that adds weights as it adds patterns may be possible, but that is left for future

work. It was also shown that learning a Hamming distance based function where the desired

memories are local maxima in the function reduces the number of spurious attractors. When

the structure of the network is correct, the number of spurious attractors is reduced to zero.

CAMs are probably of less interest in their own right but their study reveals points of interest

about the capacity of regression models to capture multiple turning points in a function (and,

consequently, local optima in a fitness function).

Most of the examples given in this work have involved variables that played a defined role

in the function to be learned, for example Age in the examples using Experian data or the

variable that encodes a certain node taking a certain colour in the graph colouring problem.

5.2 conclusions 203

Signal processing type applications (image or speech recognition, for example) are more likely

to benefit from the stages a deep neural network can offer: convolution and repeated feature

extraction, for example. MOHNs are inherently shallow in their architecture but it might be

interesting to investigate deep networks where some layers take the form of a MOHN.

The MOHN architecture might seem cumbersome compared to the more elegant multi layer

perceptron. The necessity to perform structure discovery independently, rather than let the

hidden units carry it out might seem like an unnecessary complication to an existing and well

used technique. This criticism might gain strength when applied to real valued MOHNs that

require added nodes for higher powers of the inputs too. Certainly there will be cases where an

MLP out performs a MOHN, and times when a MOHN’s ability to avoid local minima in the

error function make it a better choice. In general machine learning involves trying a number of

methods from a tool box and comparing their performance and the results presented in this

thesis make a strong case for a place in that tool box for a MOHN.

My personal experience from machine learning with noisy data from commercial applications

is that a simple linear model is rarely sufficient, but that the interactions between variables are

generally of low order and the gains of an MLP over linear regression, while significant, are

generally not massive. Such data is generally a mix of binary, nominal and real valued inputs

and so a standard MOHN with a few real valued nodes would probably be a good choice.

Certainly, I would include a MOHN in future consultancy jobs where the data was suitable (the

Experian data, for example) as the insight they provide is so valuable.

B I B L I O G R A P H Y

[1] David H. Ackley, Geoffrey E. Hinton, and Terrence J. Sejnowski. A learning algorithm for

boltzmann machines. Cognitive Science, 9(1):147–169, 1985.

[2] Matthew Alden and Risto Miikkulainen. Marleda: Effective distribution estimation

through markov random fields. Technical Report TR-13-18, Department of Computer

Science, The University of Texas at Austin, Austin, TX, November 2013.

[3] Timothy L Andersen and Tony R Martinez. Dmp3: A dynamic multilayer perceptron

construction algorithm. International journal of neural systems, 11(02):145–165, 2001.

[4] M.G Augasta and T. Kathirvalavakumar. Reverse engineering the neural networks for

rule extraction in classification problems. Neural Processing Letters, 35(2):131–150, 2012.

[5] M.G. Augasta and T. Kathirvalavakumar. Rule extraction from neural networks - a

comparative study. pages 404–408, 2012. cited By (since 1996)0.

[6] T. Bäck. A user’s guide to genesys 1.0. Technical report, 1992.

[7] J. Bala, K. De Jong, J. Huang, H. Vafaie, and H. Wechsler. Using learning to facilitate the

evolution of features for recognizing visual concepts. Evolutionary Computation, 4:297–311,

1996.

[8] Shumeet Baluja and Scott Davies. Combining multiple optimization runs with optimal

dependency trees. Technical report, DTIC Carnegie Mellon University, 1997.

[9] Shumeet Baluja and Scott Davies. Using optimal dependency-trees for combinatorial

optimization: Learning the structure of the search space. pages 30–38. Morgan Kaufmann,

1997.

[10] Eric B. Bartlett. Dynamic node architecture learning: An information theoretic approach.

Neural Networks, 7(1):129–140, 1994.

[11] Elena Băutu, Sun Kim, Andrei Băutu, Henri Luchian, and Byoung-Tak Zhang. Evolving

hypernetwork models of binary time series for forecasting price movements on stock

markets. In Evolutionary Computation, 2009. CEC’09. IEEE Congress on, pages 166–173.

IEEE, 2009.

[12] K.G. Beauchamp. Applications of Walsh and Related Functions. Academic Press, London,

1984.

204

BIBLIOGRAPHY 205

[13] Yoshua Bengio. Practical recommendations for gradient-based training of deep architec-

tures. In Neural Networks: Tricks of the Trade, pages 437–478. Springer, 2012.

[14] Chris M Bishop. Training with noise is equivalent to tikhonov regularization. Neural

computation, 7(1):108–116, 1995.

[15] E. K. Blum. Approximation of boolean functions by sigmoidal networks: Part i: Xor and

other two-variable functions. Neural Comput., 1(4):532–540, December 1989.

[16] Jeremy S. De Bonet, Charles L. Isbell, Jr., and Paul Viola. Mimic: Finding optima by

estimating probability densities. In Advances In Neural Information Processing Systems,

page 424. The MIT Press, 1996.

[17] Jakramate Bootkrajang, Sun Kim, and Byoung-Tak Zhang. Evolutionary hypernetwork

classifiers for protein-protein interaction sentence filtering. In Proceedings of the 11th

Annual conference on Genetic and evolutionary computation, pages 185–192. ACM, 2009.

[18] Remco R. Bouckaert. Probalistic network construction using the minimum description

length principle. In ECSQARU, pages 41–48, 1993.

[19] Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression

Trees. Wadsworth, 1984.

[20] Coen Bron and Joep Kerbosch. Algorithm 457: Finding all cliques of an undirected graph.

Commun. ACM, 16(9):575–577, September 1973.

[21] A Brownlee. Multivariate Markov Networks for Fitness Modelling in an Estimation of

Distribution Algorithm. PhD thesis, Robert Gordon University, 2009.

[22] Cristian Bucilua, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In

Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and

data mining, pages 535–541. ACM, 2006.

[23] Erick Cantú-Paz. Feature subset selection with hybrids of filters and evolutionary

algorithms. In Scalable Optimization via Probabilistic Modeling, pages 291–314. Springer,

2006.

[24] Gonzalo Joya Caparrós, Miguel A. Atencia Ruiz, and Francisco Sandoval Hernández. Hop-

field neural networks for optimization: study of the different dynamics. Neurocomputing,

43(1-4):219–237, 2002.

[25] Pierre Chardaire, Jean Luc Lutton, and Alain Sutter. Thermostatistical persistency: A

powerful improving concept for simulated annealing algorithms. European Journal of

Operational Research, 86(3):565–579, 1995.

BIBLIOGRAPHY 206

[26] Yutian Chen and Max Welling. Bayesian structure learning for markov random fields

with a spike and slab prior. arXiv preprint arXiv:1408.2047, 2014.

[27] Daniel L Chester. Why two hidden layers are better than one. In Proceedings of the

international joint conference on neural networks, volume 1, pages 265–268, 1990.

[28] Siddhartha Chib and Edward Greenberg. Understanding the Metropolis-Hastings

Algorithm. The American Statistician, 49(4):327–335, 1995.

[29] Francisco Chicano, Darrell Whitley, and Andrew M Sutton. Efficient identification of

improving moves in a ball for pseudo-boolean problems. In Proceedings of the 2014

conference on Genetic and evolutionary computation, pages 437–444. ACM, 2014.

[30] David Maxwell Chickering, David Heckerman, and Christopher Meek. Large-sample

learning of bayesian networks is np-hard. Journal of Machine Learning Research, 5:1287–1330,

2004.

[31] Nicos Christofides. Worst-case analysis of a new heuristic for the travelling salesman

problem. Technical report, DTIC Document, 1976.

[32] David Coffin and Robert E Smith. Linkage learning in estimation of distribution

algorithms. In Linkage in evolutionary computation, pages 141–156. Springer, 2008.

[33] Gregory F. Cooper and Edward Herskovits. A Bayesian method for the induction of

probabilistic networks from data. Machine Learning, 9:309–347, 1992.

[34] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics

of control, signals and systems, 2(4):303–314, 1989.

[35] Corinne Dahinden, Giovanni Parmigiani, Mark C. Emerick, and Peter Bühlmann. Pen-

alized likelihood for sparse contingency tables with an application to full-length cdna

libraries. BMC Bioinformatics, 8(1):1–11, 2007.

[36] George E Dahl, Dong Yu, Li Deng, and Alex Acero. Context-dependent pre-trained deep

neural networks for large-vocabulary speech recognition. Audio, Speech, and Language

Processing, IEEE Transactions on, 20(1):30–42, 2012.

[37] Yuval Davidor. Epistasis variance: A viewpoint on GA-hardness. In Foundations of Genetic

Algorithms, pages 23–35, San Francisco, 1990. Morgan Kaufmann.

[38] Cassio P De Campos and Qiang Ji. Efficient structure learning of bayesian networks

using constraints. The Journal of Machine Learning Research, 12:663–689, 2011.

[39] Stephen Della Pietra, Vincent Della Pietra, and John Lafferty. Inducing features of random

fields. IEEE transactions on pattern analysis and machine intelligence, 19(4):380–393, 1997.

BIBLIOGRAPHY 207

[40] K.L. Du and M.N.S. Swamy. Neural Networks and Statistical Learning. SpringerLink :

Bücher. Springer London, 2013.

[41] Bradley Efron, Trevor Hastie, Iain Johnstone, Robert Tibshirani, et al. Least angle

regression. The Annals of statistics, 32(2):407–499, 2004.

[42] Marcus Frean. The upstart algorithm: A method for constructing and training feedforward

neural networks. Neural computation, 2(2):198–209, 1990.

[43] Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths for generalized

linear models via coordinate descent. Journal of statistical software, 33(1):1, 2010.

[44] Yasser Ganjisaffar. Lasso4j. https://github.com/yasserg/lasso4j.

[45] Nicolás García-Pedrajas, Domingo Ortiz-Boyer, and César Hervás-Martínez. An altern-

ative approach for neural network evolution with a genetic algorithm: Crossover by

combinatorial optimization. Neural Networks, 19(4):514–528, 2006.

[46] Fred Glover. Future paths for integer programming and links to artificial intelligence.

Computers & operations research, 13(5):533–549, 1986.

[47] David E. Goldberg. Genetic Algorithms in Search Optimization and Machine Learning.

Addison-Wesley, 1989.

[48] Mark A. Hall. Correlation-based feature selection for discrete and numeric class machine

learning. In ICML, pages 359–366, 2000.

[49] Leonard G.C. Hamey. {XOR} has no local minima: A case study in neural network error

surface analysis. Neural Networks, 11(4):669 – 681, 1998.

[50] J.M Hammersley and P Clifford. Markov fields on finite graphs and lattices. Unpublished,

1971.

[51] Georges R. Harik, Fernando G. Lobo, and Kumara Sastry. Linkage learning via probabil-

istic modeling in the extended compact genetic algorithm (ecga). In Scalable Optimization

via Probabilistic Modeling, pages 39–61. 2006.

[52] Trevor Hastie, Robert Tibshirani, Jerome Friedman, T Hastie, J Friedman, and R Tibshirani.

The elements of statistical learning. Springer, 2009.

[53] Simon Haykin and Neural Network. A comprehensive foundation. Neural Networks,

2(2004):41, 2004.

[54] Robert B Heckendorn and Alden H Wright. Efficient linkage discovery by limited probing.

Evolutionary computation, 12(4):517–545, 2004.

https://github.com/yasserg/lasso4j

BIBLIOGRAPHY 208

[55] David Heckerman, Dan Geiger, and David Maxwell Chickering. Learning bayesian

networks: The combination of knowledge and statistical data. Machine Learning, 20(3):197–

243, 1995.

[56] Federico Heras, Javier Larrosa, and Albert Oliveras. Minimaxsat: An efficient weighted

max-sat solver. J. Artif. Intell. Res.(JAIR), 31:1–32, 2008.

[57] Geoffrey Hinton. Training products of experts by minimizing contrastive divergence.

Neural Computation, 14:2002, 2000.

[58] Geoffrey Hinton. A practical guide to training restricted boltzmann machines. Technical

report, University of Toronto, 2010.

[59] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for

deep belief nets. Neural computation, 18(7):1527–1554, 2006.

[60] R. R. Hocking. A biometrics invited paper. the analysis and selection of variables in linear

regression. Biometrics, 32(1):pp. 1–49, 1976.

[61] Arthur E Hoerl and Robert W Kennard. Ridge regression: Biased estimation for nonortho-

gonal problems. Technometrics, 12(1):55–67, 1970.

[62] J.H. Holland. Adaptation in natural and artificial systems: an introductory analysis with

applications to biology, control, and artificial intelligence. University of Michigan Press, 1975.

[63] Paul W Holland and Roy E Welsch. Robust regression using iteratively reweighted

least-squares. Communications in Statistics-theory and Methods, 6(9):813–827, 1977.

[64] Young-Seok Hong, Hungu Lee, and Min-Jea Tahk. Acceleration of the convergence speed

of evolutionary algorithms using multi-layer neural networks. Engineering Optimization,

35(1):91–102, 2003.

[65] J. J. Hopfield and D. W. Tank. Neural computation of decisions in optimization problems.

Biological Cybernetics, 52:141–152, 1985.

[66] John J. Hopfield. Neural networks and physical systems with emergent collective

computational abilities. Proceedings of the National Academy of Sciences USA, 79(8):2554–

2558, April 1982.

[67] Eduardo R. Hruschka and Nelson F.F. Ebecken. Extracting rules from multilayer per-

ceptrons in classification problems: A clustering-based approach. Neurocomputing, 70(1-

3):384 – 397, 2006. Neural Networks Selected Papers from the 7th Brazilian Symposium

on Neural Networks (SBRN ’04) 7th Brazilian Symposium on Neural Networks.

[68] Hemant Ishwaran and J Sunil Rao. Spike and slab variable selection: frequentist and

bayesian strategies. Annals of Statistics, pages 730–773, 2005.

BIBLIOGRAPHY 209

[69] Tommi Jaakkola, David Sontag, Amir Globerson, and Marina Meila. Learning bayesian

network structure using lp relaxations. In International Conference on Artificial Intelligence

and Statistics, pages 358–365, 2010.

[70] Yaochu Jin, Michael Hüsken, Markus Olhofer, and Bernhard Sendhoff. Neural networks

for fitness approximation in evolutionary optimization. In Yaochu Jin, editor, Knowledge

Incorporation in Evolutionary Computation, volume 167 of Studies in Fuzziness and Soft

Computing, pages 281–306. Springer Berlin Heidelberg, 2005.

[71] K. Jivani, J. Ambasana, and S Kanani. A survey on rule extraction approaches based

techniques for data classification using neural network. International Journal of Futuristic

Trends in Engineering and Technology, 1(1), 2014.

[72] H. Kargupta. The gene expression messy genetic algorithm. In Evolutionary Computation,

1996., Proceedings of IEEE International Conference on, pages 814–819, 1996.

[73] Hillol Kargupta and Kevin Buescher. The gene expression messy genetic algorithm

for financial applications. In Computational Intelligence for Financial Engineering, 1996.,

Proceedings of the IEEE/IAFE 1996 Conference on, pages 155–161. IEEE, 1996.

[74] Hyun-Woo Kim, Byoung-Hee Kim, and Byoung-Tak Zhang. Evolutionary hypernetworks

for learning to generate music from examples. In Fuzzy Systems, 2009. FUZZ-IEEE 2009.

IEEE International Conference on, pages 47–52. IEEE, 2009.

[75] Joo-Kyung Kim and Byoung-Tak Zhang. Evolving hypernetworks for pattern classifica-

tion. In Evolutionary Computation, 2007. CEC 2007. IEEE Congress on, pages 1856–1862.

IEEE, 2007.

[76] Jason M. Kinser. Inability of higher-order outer product learning to map random higher-

order problems. Neurocomputing, 8(3):349 – 357, 1995. Optimization and Combinatorics,

Part I-III.

[77] Scott Kirkpatrick. Optimization by simulated annealing: Quantitative studies. Journal of

statistical physics, 34(5-6):975–986, 1984.

[78] Ron Kohavi and George H. John. Wrappers for feature subset selection. Artif. Intell.,

97(1-2):273–324, 1997.

[79] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with

deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.

Weinberger, editors, Advances in Neural Information Processing Systems 25, pages 1097–1105.

Curran Associates, Inc., 2012.

[80] Anders Krogh and Jesper Vedelsby. Neural network ensembles, cross validation, and

active learning. In NIPS, pages 231–238, 1994.

BIBLIOGRAPHY 210

[81] T. Kubota. A higher order associative memory with Mcculloch-Pitts neurons and plastic

synapses. In Neural Networks, 2007. IJCNN 2007. International Joint Conference on, pages

1982 –1989, aug. 2007.

[82] Pedro Larrañaga, Cindy M. H. Kuijpers, Roberto H. Murga, and Yosu Yurramendi.

Learning bayesian network structures by searching for the best ordering with genetic

algorithms. IEEE Transactions on Systems, Man, and Cybernetics, Part A, 26(4):487–493,

1996.

[83] Saskia Le Cessie and Johannes C Van Houwelingen. Ridge estimators in logistic regression.

Applied statistics, pages 191–201, 1992.

[84] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–

444, 2015.

[85] Yann LeCun, John S Denker, Sara A Solla, Richard E Howard, and Lawrence D Jackel.

Optimal brain damage. In NIPS 89, San Francisco, 1989. Morgan Kaufmann.

[86] Beom-Jin Lee, Jung-Wo Ha, Kyung-Min Kim, and Byoung-Tak Zhang. Evolutionary

concept learning from cartoon videos by multimodal hypernetworks. In Evolutionary

Computation (CEC), 2013 IEEE Congress on, pages 1186–1192. IEEE, 2013.

[87] Su-In Lee, Varun Ganapathi, and Daphne Koller. Efficient structure learning of markov

networks using l_1-regularization. In Advances in neural Information processing systems,

pages 817–824, San Francisco, 2006. Morgan Kaufmann.

[88] Xuesong Li and Lin Ma. Minimizing binary functions with simulated annealing algorithm

with applications to binary tomography. Computer Physics Communications, 183(2):309 –

315, 2012.

[89] Thomas Liddle. Kick strength and online sampling for iterated local search. In Proceedings

of the 45th Annual Conference of the ORSNZ, 2010.

[90] Helena R Lourenço, Olivier C Martin, and Thomas Stützle. Iterated local search. Springer,

2003.

[91] Sean Luke. Essentials of metaheuristics. Lulu Com, 2013.

[92] David J.C. MacKay. Bayesian interpolation. Neural Computation, 4:415–447, 1991.

[93] Aravindh Mahendran and Andrea Vedaldi. Understanding deep image representations

by inverting them. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 5188–5196, 2015.

BIBLIOGRAPHY 211

[94] Luigi Malago, Matteo Matteucci, and Gabriele Valentini. Introducing the l1-regularized

logistic regression in markov networks based edas. In Evolutionary Computation (CEC),

2011 IEEE Congress on, pages 1581–1588. IEEE, 2011.

[95] R. McEliece, E. Posner, E. Rodemich, and S. Venkatesh. The capacity of the hopfield

associative memory. Information Theory, IEEE Transactions on, 33(4):461 – 482, jul 1987.

[96] Nicolai Meinshausen and Peter Bühlmann. High-dimensional graphs and variable

selection with the lasso. The annals of statistics, pages 1436–1462, 2006.

[97] Toby J Mitchell and John J Beauchamp. Bayesian variable selection in linear regression.

Journal of the American Statistical Association, 83(404):1023–1032, 1988.

[98] N. Mladenović and P. Hansen. Variable neighborhood search. Computers and Operations

Research, 24(11):1097 – 1100, 1997.

[99] Radford M Neal. Annealed importance sampling. Statistics and Computing, 11(2):125–139,

2001.

[100] Radford M Neal. Bayesian learning for neural networks, volume 118. Springer Science &

Business Media, 2012.

[101] Pekka Parviainen and Mikko Koivisto. Exact structure discovery in bayesian networks

with less space. In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial

Intelligence, pages 436–443. AUAI Press, 2009.

[102] M. Pelikan, D.E. Goldberg, and E. Cantú-Paz. Linkage problem, distribution estimation,

and bayesian networks. Evolutionary computation, 8(3):311–340, 2000.

[103] M. Pelikan and H. Mühlenbein. The bivariate marginal distribution algorithm. In R. Roy,

T. Furuhashi, and P. K. Chawdhry, editors, Advances in Soft Computing - Engineering Design

and Manufacturing, pages 521–535, London, 1999. Springer-Verlag.

[104] Martin Pelikan and David. E. Goldberg. Hierarchical bayesian optimization algorithm =

Bayesian optimization algorithm + niching + local structures. pages 525–532. Morgan

Kaufmann, 2001.

[105] Hanchuan Peng, Fuhui Long, and Chris H. Q. Ding. Feature selection based on mutual

information: Criteria of max-dependency, max-relevance, and min-redundancy. IEEE

Trans. Pattern Anal. Mach. Intell., 27(8):1226–1238, 2005.

[106] Simon Perkins, Kevin Lacker, and James Theiler. Grafting: Fast, incremental feature

selection by gradient descent in function space. Journal of machine learning research,

3(Mar):1333–1356, 2003.

BIBLIOGRAPHY 212

[107] Lutz Prechelt. Early stopping-but when? In Neural Networks: Tricks of the trade, pages

55–69. Springer, 1998.

[108] Malte Probst and Franz Rothlauf. Deep boltzmann machines in estimation of distribution

algorithms for combinatorial optimization. arXiv preprint arXiv:1509.06535, 2015.

[109] Malte Probst, Franz Rothlauf, and Jörn Grahl. Scalability of using restricted boltzmann

machines for combinatorial optimization. arXiv preprint arXiv:1411.7542, 2014.

[110] Carl Edward Rasmussen. Gaussian processes in machine learning. In Advanced lectures

on machine learning, pages 63–71. Springer, 2004.

[111] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Parallel distributed processing:

Explorations in the microstructure of cognition, vol. 1. chapter Learning Internal

Representations by Error Propagation, pages 318–362. MIT Press, Cambridge, MA, USA,

1986.

[112] M. P. Vecchi S. Kirkpatrick, C. D. Gelatt. Optimization by simulated annealing. Science,

220(4598):671–680, 1983.

[113] E.W. Saad and D.C. Wunsch II. Neural network explanation using inversion. Neural

Networks, 20(1):78–93, 2007. cited By (since 1996)22.

[114] T. Samad and P. Harper. High-order hopfield and tank optimization networks. Parallel

Computing, 16(2-3):287–292, 1990.

[115] Mark Schmidt. Graphical Model Structure Learning with `1 Regularization. PhD thesis,

University of British Columbia, 2010.

[116] Alexander Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1998.

[117] S. Shakya, A. Brownlee, J. McCall, F. Fournier, and G. Owusu. A fully multivariate deum

algorithm. In Evolutionary Computation, 2009. CEC ’09. IEEE Congress on, pages 479–486,

2009.

[118] Yi Shen, Xiaojun Zong, and Minghui Jiang. High-order hopfield neural networks. In

Jun Wang, Xiaofeng Liao, and Zhang Yi, editors, Advances in Neural Networks - ISNN

2005, volume 3496 of Lecture Notes in Computer Science, pages 235–240. Springer Berlin

Heidelberg, 2005.

[119] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional

networks: Visualising image classification models and saliency maps. CoRR, abs/1312.6034,

2013.

BIBLIOGRAPHY 213

[120] Jung-Woo Ha Soo-Jin Kim and Byoung-Tak Zhang. Bayesian evolutionary hypergraph

learning for predicting cancer clinical outcomes. J. of Biomedical Informatics, 49(C):101–111,

June 2014.

[121] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.

Journal of Machine Learning Research, 15:1929–1958, 2014.

[122] A. J. Storkey and R. Valabregue. The basins of attraction of a new hopfield learning rule.

Neural Netw., 12(6):869–876, July 1999.

[123] Matthew J Streeter. Upper bounds on the time and space complexity of optimizing

additively separable functions. In Genetic and Evolutionary Computation Conference, pages

186–197. Springer, 2004.

[124] Joe Suzuki. Learning bayesian belief networks based on the MDL principle: An efficient

algorithm using the branch and bound technique, 1998.

[125] Kevin Swingler. On the capacity of Hopfield neural networks as EDAs for solving

combinatorial optimisation problems. In Proc. IJCCI (ECTA), pages 152–157. SciTePress,

2012.

[126] Kevin Swingler. A walsh analysis of multilayer perceptron function. In NCTA 2014 -

Proceedings of the International Conference on Neural Computation Theory and Applications,

part of IJCCI 2014, Rome, Italy, 22 - 24 October, 2014, pages 5–14, 2014.

[127] Kevin Swingler. A comparison of learning rules for mixed order hyper networks. In

Proceedings of the 7th International Joint Conference on Computational Intelligence (IJCCI 2015)

- Volume 3: NCTA, Lisbon, Portugal, November 12-14, 2015., pages 17–27, Setubal, 2015.

ScITePress.

[128] Kevin Swingler. Local optima suppression search in mixed order hyper networks. In

Proc. UKCI 2015, 2015.

[129] Kevin Swingler. Opening the black box: Analysing MLP functionality using Walsh

functions. In Juan Julian Merelo, Agostinho Rosa, José M. Cadenas, António Dourado,

Kurosh Madani, and Joaquim Filipe, editors, Computational Intelligence, volume 620 of

Studies in Computational Intelligence, pages 303–323. Springer International Publishing,

2016.

[130] Kevin Swingler. Structure discovery in mixed order hyper networks. Big Data Analytics,

2016.

[131] Kevin Swingler. High capacity content addressable memory with mixed order hyper net-

works. In Juan Julian Merelo, Agostinho Rosa, José M. Cadenas, António Dourado, Kurosh

BIBLIOGRAPHY 214

Madani, and Joaquim Filipe, editors, Computational Intelligence, Studies in Computational

Intelligence. Springer International Publishing, in press.

[132] Kevin Swingler and Leslie S. Smith. Mixed order associative networks for function

approximation, optimisation and sampling. In ESANN 2013, 21st European Symposium on

Artificial Neural Networks, Proceedings, 2013.

[133] Kevin Swingler and Leslie S. Smith. An analysis of the local optima storage capacity of

hopfield network based fitness function models. Transactions on Computational Collective

Intelligence XVII, LNCS, 8790:248–271, 2014.

[134] Kevin Swingler and Leslie S. Smith. Training and making calculations with mixed order

hyper-networks. Neurocomputing, (141):65–75, 2014.

[135] Yoel Tenne and Chi-Keong Goh. Computational intelligence in expensive optimization problems,

volume 2. Springer Science & Business Media, 2010.

[136] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society. Series B (Methodological), 58:267–288, 1996.

[137] Renato Tintos, Darrell Whitley, and Francisco Chicano. Partition crossover for pseudo-

boolean optimization. In Proceedings of the 2015 ACM Conference on Foundations of Genetic

Algorithms XIII, FOGA ’15, pages 137–149, New York, NY, USA, 2015. ACM.

[138] Miwako Tsuji, Masaharu Munetomo, and Kiyoshi Akama. Modeling dependencies of

loci with string classification according to fitness differences. In Genetic and Evolutionary

Computation–GECCO 2004, pages 246–257. Springer, 2004.

[139] Gabriele Valentini, Luigi Malagò, and Matteo Matteucci. Optimization by l1-constrained

markov fitness modelling. In Learning and Intelligent Optimization, pages 250–264. Springer,

2012.

[140] Santosh S Venkatesh and Pierre Baldi. Programmed interactions in higher-order neural

networks: Maximal capacity. Journal of Complexity, 7(3):316–337, 1991.

[141] Santosh S Venkatesht and Pierre Baldi. Programmed interactions in higher-order neural

networks: The outer-product algorithm. Journal of Complexity, 7(4):443 – 479, 1991.

[142] J.L. Walsh. A closed set of normal orthogonal functions. Amer. J. Math, 45:5–24, 1923.

[143] Darrell Whitley and Wenxiang Chen. Constant time steepest descent local search with

lookahead for nk-landscapes and max-ksat. In Proceedings of the 14th annual conference on

Genetic and evolutionary computation, pages 1357–1364. ACM, 2012.

BIBLIOGRAPHY 215

[144] L. Willmes, T. Back, Yaochu Jin, and B. Sendhoff. Comparing neural networks and kriging

for fitness approximation in evolutionary optimization. In Evolutionary Computation, 2003.

CEC ’03. The 2003 Congress on, volume 1, pages 663 – 670 Vol.1, dec. 2003.

[145] G. V. Wilson and G. S. Pawley. On the stability of the travelling salesman problem

algorithm of hopfield and tank. Biol. Cybern., 58(1):63–70, January 1988.

[146] David H Wolpert and William G Macready. No free lunch theorems for optimization.

Evolutionary Computation, IEEE Transactions on, 1(1):67–82, 1997.

[147] Kok Sung Won, T. Ray, and Kang Tai. A framework for optimization using approximate

functions. In Evolutionary Computation, 2003. CEC ’03. The 2003 Congress on, volume 3,

pages 1520–1527 Vol.3, 2003.

[148] Man Leung Wong, Wai Lam, and Kwong-Sak Leung. Using evolutionary programming

and minimum description length principle for data mining of bayesian networks. IEEE

Trans. Pattern Anal. Mach. Intell., 21(2):174–178, 1999.

[149] Man Leung Wong, Shing Yan Lee, and Kwong-Sak Leung. A hybrid data mining approach

to discover bayesian networks using evolutionary programming. In GECCO, pages

214–222, 2002.

[150] Xin Yao and Yong Liu. Towards designing artificial neural networks by evolution. Applied

Mathematics and Computation, 91(1):83–90, 1998.

[151] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional

networks. In Computer vision–ECCV 2014, pages 818–833. Springer, 2014.

[152] Tong Zhang. Solving large scale linear prediction problems using stochastic gradient

descent algorithms. In ICML 2004: Proceedings of the twenty first International Conference on

Machine Learning., pages 919–926. Omnipress, 2004.

	Abstract
	Acknowledgments
	Publications
	Contents
	List of Figures
	List of Figures
	List of Tables

	List of Tables
	List of Algorithms
	List of Symbols and Abbreviations

	Introduction
	1 Introduction
	1.1 Setting the Scene
	1.2 Scope
	1.2.1 Notation

	1.3 Thesis
	1.4 Plan of the Thesis

	2 Literature Review
	2.1 Existing Work
	2.1.1 Statistical Learning
	2.1.2 Variable Selection
	2.1.3 Regression Methods
	2.1.4 Multi Layer Perceptrons
	2.1.5 Training, Testing and Validation
	2.1.6 Deep Neural Networks
	2.1.7 Regression Trees
	2.1.8 Basis Functions

	2.2 Meta-Heuristic Optimisation
	2.2.1 Local Search
	2.2.2 Estimation of Distribution Algorithms
	2.2.3 Fitness Function Models

	2.3 Dynamic Systems
	2.3.1 Graphical Models

	2.4 Structure Discovery
	2.4.1 Linkage and Building Blocks
	2.4.2 Bayesian Belief Networks
	2.4.3 Multi Layer Perceptrons
	2.4.4 L1 Regularisation Methods
	2.4.5 Structure Discovery As Variable Selection
	2.4.6 Hypernetwork and HyperGraph Structure Discovery
	2.4.7 Structure Learning Summary

	2.5 Search in Graphical Models
	2.5.1 Hopfield Networks
	2.5.2 Steepest First Search
	2.5.3 Gibbs Sampling
	2.5.4 Crossover Methods

	2.6 Summary

	Contribution
	3 Mixed Order Hyper Networks
	3.1 Introduction
	3.1.1 Definition and Notation

	3.2 Learning Rules
	3.2.1 Hebbian Learning
	3.2.2 Weighted Hebbian Learning
	3.2.3 Regression Rules
	3.2.4 Comparing Learning Rules

	3.3 Structure Discovery
	3.3.1 The MOHN Structure Discovery Algorithm (MSDA)
	3.3.2 Representing the Probability Distribution Across Weights
	3.3.3 Updating the Weight Picking Distributions
	3.3.4 Distribution over Neurons
	3.3.5 Learning Rules for the Weights
	3.3.6 Regularisation and Weight Removal
	3.3.7 The Full Algorithm
	3.3.8 Structure Discovery for Content Addressable Memories
	3.3.9 Monitoring the Learning Process
	3.3.10 Setting the Hyperparameters
	3.3.11 Analysis of the Algorithm

	3.4 Network Dynamics
	3.5 MOHNs and Local Search
	3.5.1 Random Restart Hill Climb
	3.5.2 Weight Satisfaction Search
	3.5.3 Iterated Local Search
	3.5.4 Local Optimum Suppression Search
	3.5.5 Simulated Annealing
	3.5.6 Choosing a Search Method

	3.6 Network Analysis
	3.6.1 Complexity and Regularisation
	3.6.2 Visualising Networks
	3.6.3 Network Summary Visualisation

	3.7 Comparison with Existing Work
	3.7.1 Function Learning
	3.7.2 Structure Discovery and Feature Detection
	3.7.3 Dynamic Systems
	3.7.4 Heuristic Search

	3.8 Summary

	4 Experiments and Analysis
	4.1 Introduction
	4.1.1 Functions and Datasets

	4.2 Experimental Results
	4.2.1 Fully Connected MOHNs

	4.3 Sparse Networks and Sparse Samples
	4.3.1 Comparing with a Multilayer Perceptron
	4.3.2 Experiments
	4.3.3 Experimental Setup
	4.3.4 Training Speed, Variance and Local Minima
	4.3.5 Learning Random Pyramid Functions
	4.3.6 Varying the Number of Inputs
	4.3.7 Error Descent Rate
	4.3.8 Conclusion

	4.4 Structure Discovery Experiments
	4.4.1 Graph Colouring Function
	4.4.2 Comparing The Lasso and SGD Learning During Structure Discovery
	4.4.3 Learning Under Noisy Conditions

	4.5 Content Addressable Memories
	4.5.1 Hebbian Learning
	4.5.2 Improving Capacity with Structure Discovery
	4.5.3 Discussion
	4.5.4 Weighted Hebbian Learning
	4.5.5 Linkage Order and Network Capacity

	4.6 Constraint Learning
	4.6.1 Energy Function Regression Learning
	4.6.2 Visualising Network Structure

	4.7 Network Search Experiments
	4.7.1 Hamming Based Functions
	4.7.2 K-Bit Trap Functions

	4.8 Measuring Function Complexity
	4.8.1 Complexity and Training Example Requirements
	4.8.2 Conclusion

	4.9 Consumer Profile Data
	4.10 Clothing Mail Order Case Study
	4.10.1 Model Training
	4.10.2 Results
	4.10.3 Further Pruning
	4.10.4 Gaining Knowledge from the Network
	4.10.5 Comparing Ensemble Members
	4.10.6 Comparing a Multi Layer Perceptron

	4.11 Comparing MOHNs with EDAs
	4.11.1 General Experimental Methods

	4.12 Comparing MOHNs and BMDA
	4.12.1 Learning the Quadratic with the Lasso
	4.12.2 Reducing Evaluations Further
	4.12.3 Using Structure Discovery to Reduce Evaluations Further

	4.13 Comparing Structure Discovery with Markov Random Fields
	4.13.1 Experiments comparing DEUM with a MOHN
	4.13.2 Multi-Modal Functions
	4.13.3 Experimental Setup
	4.13.4 Clique Finding with The Lasso

	4.14 Ising Spin Glass Learning
	4.14.1 Learning Structure with The Lasso MOHN
	4.14.2 Finding the Optimal Spin Configuration
	4.14.3 Discovering Ising Structure
	4.14.4 Reducing the Sample Size Further
	4.14.5 A Larger Network
	4.14.6 Comparing MOHNs to MARLEDA
	4.14.7 Comparing MOHNs to sDEUM
	4.14.8 Learning Ising Models with an MLP

	4.15 Comparing MOHNs to Boltzmann Machine EDAs
	4.15.1 Learning the K-Bit Trap with an MLP

	4.16 Conclusions
	4.16.1 Further Development

	Summary and Conclusions
	5 Conclusions and Future Directions
	5.1 Future Directions
	5.1.1 Real Valued MOHN
	5.1.2 Heuristic Optimisation
	5.1.3 Other Possibilities

	5.2 Conclusions
	5.2.1 Main Contribution
	5.2.2 Other Results

	Bibliography

