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Abstract

The accurate estimation and forecasting of volatility is of utmost importance for anyone who

participates in the �nancial market as it a�ects the whole �nancial system and, consequently,

the whole economy. It has been a popular subject of research with no general conclusion as to

which model provides the most accurate forecasts. This thesis enters the ongoing debate by

assessing and comparing the forecasting performance of popular volatility models. Moreover,

the role of key parameters of volatility is evaluated in improving the forecast accuracy of

the models. For these purposes a number of US and European stock indices is used. The

main contributions are four. First, I �nd that implied volatility can be per se forecasted

and combining the information of implied volatility and GARCH models predict better the

future volatility. Second, the GARCH class of models are superior to the stochastic volatility

models in forecasting the one-, �ve- and twenty two-days ahead volatility. Third, when the

realised volatility is modelled and forecast directly using time series, I �nd that the HAR model

performs better than the ARFIMA. Finally, I �nd that the leverage e�ect and implied volatility

signi�cantly improve the �t and forecasting performance of all the models.
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1 Introduction and Research Focus

1.1 Introduction

Stock market volatility has been one of the most attractive and successful areas of research in

time series econometrics and �nancial economics over the last few years. Indeed, as Campbell et al.

(1997) noted: �...what distinguishes �nancial economics is the central role that uncertainty plays in

both �nancial theory and its empirical implementation...� (p. 3). Volatility has become a crucial

issue not only for investors, but also for almost anyone who is involved in the �nancial markets,

even as a spectator.

To many among the general public, the term volatility refers to the �uctuations in asset prices

within a short period of time. To them, volatility is synonymous with risk and the quantity of

volatility they have to face is a key input in order to take decisions about their investments and

portfolio creations. Market participants are willing to bear a certain level of risk. For this reason

there is the need of a good forecast of the behaviour of stock market volatility. In the economic sense,

Andersen et al. (2006) de�ne volatility as �the variability of the random (unforeseen) component

of a time series. More precisely, or narrowly, in �nancial economics, volatility is often de�ned as

the (instantaneous) standard deviation (or �sigma�) of the random Wiener-driven component in a

continuous-time di�usion model� (p. 780).

The main incentive for the vast empirical and theoretical investigation focusing on the estimation

and forecasting of the stock return volatility was the worldwide stock market collapse of 1987. There

is an extensive body of research in the US stock market, which examines the changes in stock return

volatility because of the 1987 crash. Schwert (1990) examined the in�uence of the 20.4% decrease

in stock prices of the Standard&Poor's (S&P) composite portfolio because of the 1987 crash using

daily data from 1885 to 1988. Baillie & DeGennaro (1990) investigated the volatility in the period

of the 1987 crash providing evidence that the relationship between stock returns and their volatility

is weak.

Volatility is a measure of the dispersion of an asset price about its mean over a speci�c period
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of time. This means that volatility is associated with the variance of the asset price. A volatile

stock means that the price of the stock has a sizable variation over time, something that makes the

stock riskier and can be thought of as a symptom of market disruption.

For those who deal with derivative securities, the need of understanding volatility is mandatory,

because it is the key element which permeates most �nancial instruments. It determines the fair

value of an option or any other �nancial security with these characteristics. The breakthrough in

option pricing occured when Black & Scholes (1973) and Merton (1973) developed an analytical

model which is known as the Black-Scholes option pricing formula for determining the theoretical

value of a European call option. The importance of volatility in their model is determinative, as it

is the only parameter that cannot be directly observed from the market opposite to all the other

parameters - current stock price, strike price, maturity time and risk-free interest rate - that are all

known or can be observed from the market. Except for the valuation of option prices, volatility is

signi�cantly essential for asset pricing models and hedging strategies.

Thus, it is evident that the need of estimating and forecasting volatility is of utmost importance

for anyone who participates in the �nancial market as it a�ects the whole �nancial system and,

consequently, the whole economy. Modelling and forecasting volatility is an important task in

�nancial markets and over the last three decades there is an extensive research that re�ects the

important role of volatility in investment, option pricing and risk management. Although a plethora

of models has been proposed for volatility no conclusion has been reached yet as to which model

produces the most accurate volatility estimates and forecasts. The aim of this thesis is to analyse the

predictive ability of alternative volatility models and assess the role of key parameters in improving

the forecasting performance of these models.

The remainder of this chapter is organized as follows. Section 1.2 introduces the related literature

on volatility modelling and forecasting. It also discusses the stylized facts of �nancial volatility and

the proxies have been developed to measure the latent 'true' volatility. In Section 1.3 the outline

of the thesis is provided.
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1.2 Modelling volatility

Volatility is inherently latent and over the last years several models have been developed in

order to estimate and forecast volatility. In the next subsections a variety of alternative procedures

for modelling volatility is presented. But �rst, I introduce some notation useful for the discussion

of the di�erent models.

1.2.1 Basic notation and notions of volatility

Based on the work of Andersen et al. (2006) and Black & Scholes (1973), consider an asset

whose discrete-time return process is described by the following equation

rt =
St − St−1
St−1

= µt + εt, εt
i.i.d.∼ (0, σ2

t ) (1)

The return at time t, rt, is the percentage change in the asset price S over the period from t− 1

to t. This is equal to the decomposition of the return process into the deterministic mean return,µt

and the random component εt. By de�nition εt is a zero mean random disturbance term, serially

correlated, and its conditional variance equals σ2
t , which may be changing over time.

εt can be expressed as

εt = ztσt, zt ∼ N(0, 1) (2)

where zt is a white noise process and σt is the volatility process should be estimated and forecasted.

So,

rt = µt + σtzt (3)

It is, also, useful to think of the return process as evolving in continuous time. The return

process may be written in standard di�erential equation (sde) form as

dS

S
= µdt+ σdz (4)
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where dS is the change in asset price over the time interval dt, µ denotes the drift, σ refers to the

spot volatility and dz is a standard Brownian motion process. It is the limiting process of equation

(1) as time goes to zero and the result is this lognormal di�usion model. Modern option pricing

theory and the Black-Scholes model based on equation (4) in deriving the option pricing formula.

1.2.2 Simple volatility models

The term simple for the models denoted below pertains to the feature of these models not to

require parameter estimation.

Historical volatility

The most straightforward way to measure and forecast volatility from asset prices is to measure

the historical volatility. Historical volatility can be de�ned as the variance (or standard deviation)

of the return provided by the stock over some historical period and then this becomes the volatility

forecast for all future periods (Brooks, 2008). When the return is expressed as the percentage

change in the market variable over a speci�ed period, like in equation (1), and assuming that the

mean of the return process, r̄, is zero, the variance rate, a measure of volatility, is estimated by

σ2
t =

1

T

T∑
i=1

r2t−i (5)

Exponential Weighted Moving Average

The exponential weighted moving average (EWMA) is an extension of the historical volatility

introduced by Riskmetrics. The EWMA approach has the attractive feature that allows more recent

observations to a�ect more the forecast of volatility that the events belonging further to the past.

σ2
t = λσ2

t−1 + r2t−1 (6)

where λ is the decay factor which governs the weight is given to all lagged observations. Riskmetrics
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has set the decay factor at λ = 0.94 for data sampled at a daily frequency and λ = 0.97 for montly

data.

1.2.3 Characteristics of volatility

It is well known that there are several salient characteristics about �nancial volatility. Athough

volatility is inherently latent, its features are well documented through theory and empirical anal-

ysis. Many volatility models have been developed in order to incorporate some of these stylized

facts. This section highlights and brie�y discusses some of these characteristics.

Volatility clustering

It is �rst observed by Mandelbrot (1963b) who wrote that �Large changes tend to be followed

by large changes, of either sign, and small changes tend to be followed by small changes� (p. 418).

Later on, Fama (1965) stressed that large price changes are followed by large price changes, but of

unpredictable sign. From such observations, one can conclude that volatility is not constant, but

is varying through time and serially correlated, something that gives motivations to GARCH and

stochastic volatility models (see below sections 1.2.4 and 1.2.5, respectively).

Leptokurtosis

Asset prices tend to have fat tails as it has been noted by Mandelbrot (1963b): �The empirical

distributions of price changes are usually too �peaked� to be relative to samples from Gaussian

populations . . . the histograms of price changes are indeed unimodal and their central bells remind

the Gaussian ogive. But, there are typically so many outliers that ogives �tted to the mean square

of price changes are much lower and �atter than the distribution of the data themselves.� (pp.

394-395). Fama (1965) found evidence of excess kurtosis in the distribution of stock returns. This

characteristic led to a literature where stock returns are modeled as independently and identically

distributed random variables having some thick-tailed distribution (Degiannakis & Xekalaki, 2004).1

1See, for example, Mandelbrot (1963a,b), Clark (1973), Hagerman (1978)
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Leverage e�ect

Black (1976) was the �rst one observed that changes in stock returns seem to be negatively

correlated with changes in stock volatility. The phenomenon of the asymmetric response of volatility

to negative and positive returns of the same size is the so-called leverage e�ect. Fixed costs, like

�nancial and operating leverage can partially interpret it. (see, e.g. Black, 1976 and Christie, 1982)

Leverage e�ect is noticeable by plotting the market price and its volatility. Schwert (1989) shows

evidence that periods of market recession are characterized by higher volatility.

Long memory

While stock returns are uncorrelated or exhibit a weak autocorrelation, they are dependent.

Stock returns are not independently and identically distributed (Ding et al., 1993a). There is slow

decay autcorrelation in absolute and squared returns. This is interpreted as a sign of long memory

in volatility.

Non-trading periods

Financial markets seem to be a�ected by the information accumulated during non-trading pe-

riods. This re�ects in the prices when the markets reopen, causing an increase in the volatility

which is not proportional to the period the market was close. As Fama (1965) and French & Roll

(1986) found, information accumulates slower when markets are closed than when they are open.

Also, as French & Roll (1986) and Baillie & Bollerslev (1989) demonstrated, volatility tends to be

higher following weekends and holidays, but not as much as it would be under a constant rate of

information.

Forecastable events

Forecastable announcement of important information is connected with high ex ante volatility.

For example, Cornell (1978) and Patell & Wolfson (1979, 1981) show that volatility is higher when

earning announcements are expected. Also, across a trading day, there are forecastable events that
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increase volatility. For instance, volatility is usually higher in the beginning and end of a trading

day. (see, for example, Harris, 1986, Baillie & Bollerslev, 1991)

Co-movements in volatility

Another characteristic of volatility is that changes in market volatility tend to change stock

volatilities in the same direction as noted by Black (1976). As it has been documented later, this

commonality in volatility changes also applies across di�erent markets.2

Obviously, volatility has many features that �nancial economists and econometricians should

guide in their choice of models and model builders should consider when developing a model. Of

course, not all of these characteristics should be included in order a forecasting volatility model to

be successful.

1.2.4 ARCH/GARCH Models

While it has been long recognized that the assumption of constant volatility is ine�cient and

that volatility clusters (see, Bollerslev et al., 1992 and Bera & Higgins, 1993), it is only since

the introduction of ARCH/GARCH model (Engle, 1982; Bollerslev, 1986) that these temporal

dependencies have been modelled using econometrics techniques. Since then, there is a voluminous

literature that evaluates the predictive power of GARCH models against the simple statistical

models.

ARCH

The current interest in modelling and forecasting asset return volatility has been spurred by the

pioneering work of Engle (1982), in which he introduced one of the most prominent tools that has

emerged for characterizing time-varying volatility, the Autoregressive Conditional Heteroskedas-

ticity (ARCH) model. In the ARCH model, conditional variance varies over time and is a linear

2For example, Engle et al. (1990), Hamao et al. (1990) and King et al. (1994) investigated the inks between
volatility changes across international markets.
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function of past squared error terms.

Consider that returns follow the process as shown in equations (1) and (2), which for convenience

is repeated here.

rt = µt + εt (7)

where

εt = ztht, zt
i.i.d.∼ (0, 1) (8)

where ht is the conditional variance.

The ARCH model characterizes the distribution of the stochastic error term, εt, conditional on

all relevant information through time t− 1. So, it assumes that

εt | Ωt−1 ∼ N(0, h2t )

where

h2t = a0 +

q∑
i=1

aiε
2
t−i (9)

with a0 > 0 and ai > 0, i = 1, ..., q in order to be sure that conditional variance will be positive.

This process is referred to as ARCH(q) process.

GARCH

The generalized ARCH (GARCH) model, which has been developed by Bollerslev (1986), pro-

vides a parsimonious parameterization for the conditional variance

h2t = a0 +

q∑
i=1

aiε
2
t−i +

p∑
j=1

βjh
2
t−j (10)

with a0 > 0, ai > 0 for i = 1, ..., q and β > 0 for j = 1, ..., p. This process is referred to as

GARCH(p,q) process. It generates a one-period ahead estimate for the variance as a weighted long
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run average variance (a0), information about previous volatility (
∑q
i=1 aiε

2
t−i) and the previous

estimated variances (
∑p
j=1 βjh

2
t−j). The model is covariance stationary if and only if

∑q
i=1 ai +∑p

j=1 βj < 1. Its unconditional variance is constant and equal to

h =
ao

1−
∑q
i=1 ai −

∑p
j=1 βj

The GARCH(p,q) models successfully captures some of the characteristics of asset returns, like

volatility clustering and leptokurtosis and can be readily modi�ed to capture features such as non-

trading periods and forecastable events. However, its structure enforces important restrictions. For

this reason, numerous extensions of the GARCH model have been developed.

The empirical success of the GARCH models triggered the development of other more sophisti-

cated GARCHmodels. For example, models that exploit the long memory characteristic of volatility

have been developed such as the FIGARCH models of Baillie et al. (1996) and the FIEGARCH of

Baillie et al. (1996). The component GARCH model of Engle & Lee (1993) and the related devel-

opment in Gallant et al. (1999) and Muller et al. (1997) as well the multifractal model of Calvet

& Fisher (2004) are alternative ways of capturing long memory volatility dynamics. Moreover, the

presence of the leverage e�ect, i.e. the strong negative relationship between the stock returns and

volatility, is a robust empirical �nding and many papers have been written looking at modelling

leverage e�ect in stock returns. Foe this reason, Nelson (1991) and Glosten et al. (1993) have been

proposed two of the most popular extensions of GARCH, the exponential GARCH (EGARCH) and

the GJR-GARCH, respectively. These models seem to provide more accurate forecasts than the

simple GARCH. For example, Cao & Tsay (1992) favor the EGARCH model for stock indices and

exchange rates, while Brailsford & Fa� (1996) �nd GJR better than GARCH for stock indices.

1.2.5 Stochastic volatility models

Another class of time-varying volatility models is known as stochastic volatility (SV) models.

As its name implies, SV models di�er from the GARCH class of models in the assumption of

the latter that volatility is a deterministic function of observable variables given all information
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available. In SV models, volatility is a random latent variable. According to the work of Clark

(1973), SV models postulate that volatility is a function of random information arrival that may

be unobservable. Thus, volatility will have some unpredictable component.

Consider, again, returns follow the process as shown in equation (7). Assuming that the drift is

negligible for small time horizons, the basic log-normal AR(1)-SV model of Taylor (1986) is de�ned

as

rt = ztexp(0.5ht), zt
i.i.d∼ N(0, 1) (11)

where

ht = a0 +

p∑
j=1

βjht−j + ηt, ηt
i.i.d.∼ N(0, σ2

η) (12)

where ηt is an innovation term which could be correlated with zt. This additional innovation in

the dynamics of the conditional variance allows SV model to be more �exible in describing stylized

facts than the GARCH models (Poon & Granger, 2003).

The fact that the SV model allows the logarithm of the volatility to evolve, it is ensured the

positivity of the conditional variance of the process without the need of further constraints. Unlike

the SV models, in GARCHmodels constraints imposed on the parameters in order to ensure that the

volatility remains always positive are often violated during the process of estimation. The process ht

and
∑p
j=1 βj in (19) can be interpreted as the random process of new information arrivals in �nancial

markets and the persistence in the volatility, respectively. There are also di�erent speci�cations of

the SV models. For example, Jacquier et al. (1994) model the log of ht as an AR(1) process, so

that rt =
√
htzt and loght = ao+

∑p
j=1 βj loght−j +ηt, which is clearly equivalent to equations (18)

and (19), respectively.

The e�ect of the leptokyrtosis that many �nancial series exhibit, can be incorporated in SV

models. By allowing zt in equation (18) to have a standardized student t-distribution as used in

Harvey et al. (1994a), Chib et al. (2002) and Jacquier et al. (2004). With regard to accounting for

the leverage e�ect, several extensions of the SV model exist. Harvey & Shephard (1996), Jacquier

et al. (2004) and Yu (2005) allow a negative contemporaneous correlation between the innovation
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zt and ηt to allow for asymmetry.

The �exibility of the SV models to describe stylized facts has drawn the attention of the aca-

demics.3 Another advantage of SV models is their theoretical background that is, SV models are

closer to theoretical models in �nance particularly those in option pricing. On the other hand, one

of the most important limitations of the SV models, unlike the GARCH models, is their analytical

intractability, because they have no closed form solutions. As a result, it is hard the likelihood

function to be evaluated. However, last years advances in research provided various powerful meth-

ods for estimating and forecasting SV models, such as the Method of Moments (MM) approach,

variations of the Generalized Method of Moments (GMM) approach through simulations, analytical

solutions and the likelihood approach through numerical integration.4

Although the SV models were developed in parallel with the GARCH models, they have received

much less attention in the volatility forecasting literature, because of their estimation complexity.

The few studies that evaluate and compare the forecasting performance of the discrete-time SV

model with the GARCH have not reach a conclusion as to which model class performs best, see Yu

(2002), Bluhm & Yu (2000), Pederzoli (2006), Chortareas et al. (2011) among others.

1.2.6 Implied volatility

An alternative option for modelling volatility for cases in which traded options exist is the use of

implied volatility. Implied volatility is based on the Black-Scholes model and various generalizations.

As previously mentioned in the introduction, the Black-Scholes option pricing formula gives the fair

value of a call option c as a function of

c = f(S,K, σ, r, T ) (13)

where S is the price of the underlying asset, K is the strike price, σ is the volatility, r is the

risk-free interest rate and T is the time to maturity. All the independent variables are directly

observables except for the volatility, σ, that must be estimated. Since the market price of an option

3See the review papers byTaylor (1994), Ghysels et al. (1996).
4For a review of the estimation of the SV models see the surveys of Shephard (1996) and Broto & Ruiz (2004).
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is observable, it is possible to solve the Black-Scholes model backwards from the observed price to

derive or imply what the market volatility should be. This measure of volatility is called implied

volatility and it is often used as a market's expectation of volatility over the options' maturity.

Over the last decades, there is a vast academic research about implied volatility. In particular,

initially, academic interest focused one the issues concerning the estimation di�culties of implied

volatility. In e�cient markets, by de�nition, each asset has only one volatility. Di�culties arise when

option traded on that asset with the same expiry, but with di�erent strike price produce di�erent

implied volatility estimates. The implied volatility obtained by Black-Scholes option pricing model

varies with respect to the strike price, so as to deep-in-the-money and deep-out-of-the-money options

exhibit higher volatility than at-the-money options. Volatility smile, skew and smirk are names

given to non-linear shapes of implied volatility plots against the strike price (Poon & Granger,

2003). Starting with Latane & Rendleman (1976) and Chiras & Manaster (1978), various di�erent

weighting schemes have been proposed. Another research category focused on the implied volatility's

information content regarding future realised volatility and its ability to predict the latter. For

example, Engle & Ng (1993) found that historical volatility provides signi�cant superior information

compare with implied volatility.5

Although early studies of option implied volatility su�ered many estimation de�ciencies, a good

number of more recent studies, such as Christensen & Prabhala (1998), Pong et al. (2004) and

Jiang & Tian (2005), found that implied volatility contains a signi�cant amount of information

about future volatility and it sometimes is better than volatility forecast is produced by more

sophisticated time series models.

The importance of the implied volatility can be seen from the fact that the Chicago Board

Option Exchange (CBOE), in 1993, became the �rst organized exchange that introduced implied

volatility indices. In 2003 the construction of VIX changed and the popular VIX uses the current

prices of the S&P500 index options to represent the expected future market volatility over the next

30 calendar days. Following the successful example of CBOE, many other exchanges across the

world have developed their own indices. Thereafter, there is a large amount of literature that assess

5For a review of forecasting volatility see Figlewski (1997) and Poon & Granger (2003).
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the information content of implied volatility in the context of forecasting volatility (Blair et al.,

2001; Koopman et al., 2005; Giot, 2003). Moreover, the forecastability of implie volatility per se

is a more recent relatively underresearched area, see Konstantinidi et al. (2008), Fernandes et al.

(2014) among others.

1.2.7 Realised volatility

An important element in the context of accurately estimating and forecasting volatility is the

measure of the 'true' volatility. As volatility is latent, a proxy is necessary. For several years

the ex-post daily squared returns have been used to evaluate volatility forecasts. However, the

last 15 years the availability of high-frequency data have evolved the literature on measuring and

forecasting. Andersen & Bollerslev (1998) �rst used the high-frequency data to construct a new

volatility measure. They showed that the so-called realised variance (RV), computed by the sum

of squared intraday returns, is a more precise measure of volatility than the ex-post daily squared

returns.

The study of Andersen & Bollerslev (1998) was an answer on the critique about GARCH mod-

els. Until then, several papers had noted that while GARCH models were successful in modelling

volatility, they were explaining little of the variability in ex-post squared returns(Figlewski, 1997;

Jorion, 1995). However, Andersen & Bollerslev (1998) found that the poor perfomance of the

GARCH model is not a failure of the model itself, but a failure to correctly specify the measure of

the true volatility. Although daily squared returns is an unbiased estimate of volatility it is a noisy

measure. More speci�cally, consider the returns rt such that rt = σtzt, where σt is the time-varying

volatility and zt ∼ i.i.d.(0, 1). The volatility proxy using squared returns is r2t = σ2
t z

2
t and if σt

is correctly speci�ed then E(r2t ) = σ2
t . However, the r

2
t is a noisy estimate of σ2

t due to the noisy

component z2t . Thus, Andersen & Bollerslev (1998) suggest that the measure of the true volatility

should be based on cumulative intraday returns, because the noisy component is diminished.

RVt =

√√√√ N∑
i=1

r2t,i (14)
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where rt,i is the ith intraday returns on day i. Andersen et al. (2001a,b) and Barndor�-Nielsen &

Shephard (2002a,b) show that RV is a precise estimator of the latent integrated volatility.

Since then RV is the dominant proxy in the literature. A large part of the literature focuses

on determining the best possible way for measuring daily volatility using intraday data. Several

alternatives to the standard RV measure have been proposed to alleviate microstructure noise

(Barndor�-Nielsen et al., 2008; Hansen & Lunde, 2006; Zhang et al., 2005) or to detect jumps, see

Barndor�-Nielsen & Shephard (2004) among others.

RV was primarly used as an estimator of the actual volatility to assess the forecasting perfor-

mance of the volatility models. The availability of high frequency data has also inspired research

into the potential vlue of RV as an information source to improve existing volatility models (Blair

et al., 2001; Engle, 2002; Hol & Koopman, 2002). These studies indicate that intraday return series

contain incremental information for future volatility beyond that contained in GARCH and SV

models.

Alternatively, as Andersen et al. (2003) noted, the intraday volatility process modelled directly

strongly outperforms the popular GARCH and SV models. They proposed to model the logarithm

of RV using a Autoregressive Fractionally Integrated Moving Average (ARFIMA) model in order

to capture the long memory feature of volatility.

φ(L)(1− L)d(log(RV )− µ) = θ(L)εt (15)

where φ(L) and θ(L) is the lag operator that de�nes the autoregressive and moving average com-

ponents, respectively, and εt is a Gaussian white noise with mean zero and variance σ2
t . Following

Andersen et al. (2003), a number of studies evaluates the forecasting performance of the ARFIMA

model over the GARCH and SV models (Koopman et al., 2005; Hol & Koopman, 2002; Pong et al.,

2004; Martens et al., 2009).

However, Corsi (2009) pointed out that the ARFIMA model is a convenieant math trick, but

without a clear economic interpretation. Corsi (2009), based on the Heterogeneous Market Hy-

pothesis, proposed the Heterogeneous Autoregressive (HAR) model, an additive cascade model of
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di�erent volatility components over di�erent time horizons. The HAR model is

RVt+1 = α0 + αdRVt + αwRVt−5,5 + αmRVt−22,22 + ut (16)

So the HAR model predicts future volatility using three volatility components, the daily, weekly

and monthly. Although its simple structure the HAR model can successfully forecast volatility

and Corsi (2009) using three series, the S&P500, USD/CHF and T-Bond found that the HAR

steadily performs better than short-memory models and is comparable to the ARFIMA. Following

the work of Corsi, several papers evaluate the forecasting performance of the HAR model and

many extensions have been examined in order to account for di�erent stylized facts of volatility,

see Andersen et al. (2007), Corsi et al. (2008), Corsi & Renò (2012), Bollerslev et al. (2009) among

others.

1.3 Outline of Thesis

The accurate estimation and forecasting of volatility in �nancial market is an issue of crucial

importance and has been a popular subject of research with no general conclusion as to which model

provides the most accurate forecasts. This thesis aims to determine the model that best forecast

future volatility. In particular, this research looks into the role of key parameters in improving the

�t and forecasting performance of various volatility models. For the purposes of my analysis an

extensive dataset of US and European stock market indices is used assessing whether the results

may di�erent across countries.

Chapters 2 and 3 evaluate the predictive ability of GARCH and implied volatility models using

US and European indices, respectively. More speci�cally, the goal of these chapters is to assess

whether IV forecast is a better predictor of stock return volatility than the GARRCH. These

chapters bring together two dinstict strand of literature in order to assess the model that produces

the most accurate forecast. First, I investigate the importance of explicitly incorporating several

stylized facts of volatility, volatility clustering, the leverage e�ect and long memory, in the GARCH

models as well as the potential value of IV as an information source for the purpose of forecasting.
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Second, I examine the forecastability of IV itself using a range of autoregressive models that account

for the leverage e�ect and the persistence of voaltility. The results show that IV follows a predictable

pattern. An ARMA model that accounts for the contemporaneous asymmetric relationship between

IV and stock index returns performs best. Moreover, IV contains incremental information about

future volatility beyond that contained in GARCH models. The inclusion of the leverage e�ect

and long memory in the GARCH model improves its performance. In particular, the GARCH

speci�cation that simultaneously accounts for the leverage e�ect and IV performs best. While IV

is more informative than GARCH, the information content of both predictors are complementary.

Results are consistent using both the ex post daily squared returns and RV as measure of true

volatility, and for both US and European indices. Finally, this evidence is further supported by

consideration of value-at-risk.

Chapter 4 investigates the performance of the under-utilized in the literature SV models. I

examine whether the use of the leverage e�ect and IV improve both the in-sample and out-of-

sample performance of the SV models, as in Chapters 2 and 3 signi�cantly improve the accuracy of

the GARCH models. I further compare the SV models with two popular GARCH speci�cations, the

GARCH and EGARCH. The results indicate that incorporating implied volatility in the stochastic

volatility model signi�cantly enhances the performance of volatility forecasts. In contrast, the

presence of the asymmetric e�ect seems not to signi�cantly improve the performance of the SV

models. Overall, the EGARCH-IV model produces the most accurate volatility forecast at one day

horizon. For longer horizons, the GARCH-IV model performs best.

Chapter 5 explores the forecasting performance of ARFIMA and HAR models for realised volatil-

ity. For the purpose of forecasting I investigate the importance of explicitly incorporating several

stylized facts of volatility in these models, the long memory, leverage e�ects, volatility of RV and

IV. The results suggest that the HAR class of models performs better than the ARFIMA. Taking

simultaneously into account IV and leverage e�ect signi�cantly improve the forecasting perfor-

mance of the models. In contrast, modelling the volatility of RV does not substantially improve

the performance of the HAR models. Results are consistent under both the rolling and recursive

scheme.
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2 Forecasting stock return volatility: a comparison of GARCH

models and implied volatility

The accurate estimation and forecasting of volatility in �nancial market is an issue of crucial

importance and has been a popular subject of research with no general conclusion as to which model

provides the most accurate forecasts. There is an extensive literature that addresses the question of

whether implied volatility (IV) contains any additional information useful to predict future volatility

beyond that embedded in GARCH models. Recent studies suggest that IV can be forecasted. This

chapter builds on these two strands of literature by investigating whether the IV forecast is a better

predictor of stock return volatility by analyzing the forecasting performance of GARCH and IV

models for the S&P500, DJIA and Nasdaq100 stock indices. The results indicate that IV per se can

be forecasted. Using both ex post daily squared returns and realized variance the results show that

when IV forecast incorporates the contemporaneous positive and negative returns is a good predictor

of future stock return volatility. In most cases, IV is more informative than GARCH. Nevertheless,

a model which combines the information contained in an asymmetric GARCH with the information

from option markets through an ARMAX model is the most appropriate for predicting future return

volatility.

2.1 Introduction

Modelling and forecasting volatility is an important task in �nancial markets. Over the past

few decades there is an extensive research agenda that has analyzed the importance of volatility in

investment, option pricing and risk management. Thus, an accurate estimation and forecasting of

asset returns volatility is crucial for assessing investment risk.

The topic of volatility forecasting has received extensive attention in the literature by both

academics and practitioners. The main focus of the literature has been on the type of models

used to produce accurate volatility forecasts. Broadly speaking, there are two approaches that

the majority of researchers adopt to generate volatility forecasts. The �rst method is to extract
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information about the variance of future returns from historical data using simple models, GARCH-

type models or stochastic volatility models. The second method is to extract market expectations

about future volatility from observed option prices, using the implied volatility (henceforth IV)

indices. The focus of this study lies on the GARCH-type models and implied volatility.

The observation of clustering in stock market volatility (Mandelbrot, 1963b; Fama, 1965) has

been long ago recognized. However, it is only since the introduction of ARCH model by Engle

(1982) and its generalization (GARCH) by Bollerslev (1986) that these temporal dependencies

have been modelled using formal econometric techniques. The GARCH class of models describes

the conditional variance of the returns. The empirical success of the GARCH models triggered the

development of other more sophisticated models. Models that take into account the leverage e�ect,

such as the exponential GARCH (EGARCH) model by Nelson (1991), the GJR-GARCH model

of Glosten et al. (1993), the asymmetric power ARCH model of Ding et al. (1993b) and several

others have been developed over the years. Moreover, GARCH models that accommodate the long

memory feature of volatility have been proposed. Examples of such models are the integrated

GARCH (IGARCH) by Engle & Bollerslev (1986), the component GARCH (CGARCH) of Engle

& Lee (1993), the fractionally IGARCH (FIGARCH) of Baillie et al. (1996) and the FIEGARCH

of Bollerslev & Mikkelsen (1996).

In contrast to GARCH models, implied volatility is a forward-looking measure of volatility. In

the framework of an option pricing model, such as the Black-Scholes model (Black & Scholes, 1973;

Merton, 1973), implied volatility is the volatility that equates the market price of the option with the

model price. Implied volatility as a concept has gained a growing interest since 1993 when CBOE

launched a volatility index (VIX) based on the S&P100 index options as a measure to assess the

market expectations of the future volatility. IV is frequently considered as a measure of the market

risk and hence as an input to many asset pricing models. Thus, the issue of the predictability of

IV is very important. Over the last years, IV index has become a leading indicator for measuring

and predicting the performance of stock markets.

The aim of this chapter is to make an empirical comparison between a wide range of GARCH-

type models and IV indices models, so as to choose the model that produces the most accurate
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volatility forecasts. To this end, symmetric, asymmetric and long memory GARCH models have

been used as well as ARMA type models for modelling and forecasting IV indices.

The remainder of the chapter is organized as follows: In the next Section, I review the literature.

Section 2.3 introduces the data and the methodology employed. Section 2.4 presents the empirical

results and �nally, Section 2.5 summarizes and concludes.

2.2 Background and related work

There are several studies that investigate the forecasting ability of GARCH models against

naive technical analysis with mixed results. For example, Akgiray (1989) is one of the �rst studies

that investigates the performance of GARCH models. Using data from the US stock market the

author reports that GARCH(1,1) consistently outperforms exponential weighted moving average

(EWMA) and historical volatility. Cumby et al. (1993) conclude that EGARCH is better than

historical volatility. On the other hand, Tse (1991), Tse & Tung (1992), Boudoukh et al. (1997)

and Walsh & Tsou (1998), using di�erent stock markets, provide evidence that some EWMA-type

speci�cations are superior to the GARCH model for forecasting volatility of a wide range of assets.

Finally, other studies �nd ambiguous results. For example, Brailsford & Fa� (1996) examine the

performance of di�erent statistical methods and GARCH type models for the Australian stock

market and are unable to identify a clearly superior model.

However, the usefulness of GARCH models in providing accurate volatility forecasts has been

strengthened by the research of Andersen & Bollerslev (1998) and Andersen et al. (1999). They

provide evidence that the use of ex post daily squared returns as the proxy for the `true' volatility

is defective and suggest the so-called realized volatility which is based upon the sum of squared

intraday returns. Using the realized volatility as the measure of true volatility, McMillan & Speight

(2004), among others, in a dataset of 17 daily exchange rate series, have provided evidence in favor

of GARCH models.

An alternative to GARCH volatility forecasts have been proposed through the use of implied

volatilities from options. A number of empirical studies (Latane & Rendleman, 1976; Chiras &

Manaster, 1978) support the idea of using implied volatility as a predictor for future volatility
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and hence it is of interest to compare its forecasting accuracy with that of GARCH volatility

forecasts. Early studies conclude that IV is biased and ine�cient and performs very poorly when

compared with volatility forecasts based on historical returns. For example, Day & Lewis (1992)

compare the information content of IV for the S&P100 index options to GARCH type conditional

volatility and �nd that IV contains predictive information about future volatility beyond that

contained in GARCH models. A similar conclusion has been reached by Lamoureux & Lastrapes

(1993) who study several individual stocks. But the �ndings in these studies are subject to a few

measurement errors. Overcoming these problems, more recent papers favour the conclusion that

IV is informationally e�cient in forecasting future volatility. For example, Christensen & Prabhala

(1998) utilize the non-overlapping samples to study S&P100 index options and document that IV

outperforms historical volatility.

The original VIX has been launched by Chicago Board Options Exchange (CBOE) in 1993 and

was based on the calculation of the S&P100 stock options. Since then the VIX has become a natural

choice to study the dynamics of market IV and forecast the performance of stock markets. In 2003,

the construction of VIX changed and since then it is based on a broader index, the S&P500. The

VIX uses the current prices of the S&P500 index options to represent the expected future market

volatility over the next 30 calendar days (Whaley, 2009). It essentially o�ers a forward-looking

measure of one-month ahead stock market volatility. It is also referred to as the investor's `fear

gauge', because it re�ects investors' expectations about near term volatility. A higher VIX indicates

that market participants are expecting a higher volatility in the stock market, while a lower VIX

proposes moderate �uctuations in the stock index (Simons, 2003). Over the last 15 years implied

volatility indices have increased quickly in European and U.S. markets.

The accuracy of volatility forecasting has been the subject of extensive research. Literature

that compares volatility forecasts embedded in option prices with those from time series models is

voluminous. Nonetheless, no conclusion has been reached yet and hence, there is still an ongoing

debate between GARCH-type models and IV indices models of �nding the best model in estimating

and forecasting future volatility.

Using daily index returns and/or intraday returns Blair et al. (2001) for the S&P100 index and
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the VIX �nd that VIX provides more accurate forecasts than GARCH-type models in particular

as the forecast horizon increases. A combination of VIX and GJR forecast is more informative

than VIX and GJR alone when forecasting one-day ahead. For the German economy Claessen &

Mittnik (2002) �nd that, although the null hypothesis that the German IV index (VDAX) is an

unbiased estimate for realized volatility is rejected, the GARCH volatility do not contain useful

information beyond the volatility expectations already re�ected in option prices. Giot (2005a) and

Corrado & Miller (2005) conclude that the volatility forecast based on the VIX and VXN indices,

i.e. the IV index based on NASDAQ100 index, have the highest information content both for

volatility forecasting and for market risk assessment framework. However, Giot (2005a) concludes

that combining GARCH and implied volatility often improves on the results from either one alone.

Carr & Wu (2006) for the S&P500 stock index, Yu et al. (2010) using stock index options traded

over-the-counter and on exchanges in Hong Kong and Japan and Yang & Liu (2012) for the Taiwan

stock index reach similar conclusions. Frijns et al. (2010), for the Australian index, �nd that at

short horizons combining GJR-GARCH and IV improve future volatility forecast, but overall IV

outperforms the RiskMetrics and GJR-GARCH. In a similar vein, Cheng & Fung (2012) show that

while IV is more informative than GARCH, the GARCH forecast improves the predictive ability of

Iv for the Hong Kong market. On the other hand, and among others, the results of Becker et al.

(2007) contradict the previous studies, because they show that VIX is not an e�cient volatility

predictor and does not provide any additional information relevant to future volatility. Bentes

& Menezes (2012) using data of both emerging and developed economies conclude that GARCH

volatility is a better predictor of future realized volatility than IV. Finally, Bentes (2015) using four

stock markets show that GARCH is a better predictor of realized volatility than IV.

By contrast, relatively little work has been done on whether the dynamics of implied volatility

per se can be forecasted. Ahoniemi (2006) uses linear and probit models to model the VIX index.

The author �nds that an ARIMA(1,1,1) model enhanced with exogenous regressors outperforms.

The use of GARCH terms in the ARIMA(1,1,1) model are statistically signi�cant, but do not

improve the forecast accuracy of the model. Konstantinidi et al. (2008) examine �ve alternative

model speci�cations to form both point and interval forecasts using a number of US and European
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IV indices. They �nd that the ARIMA(1,1,1) and ARFIMA(1,d,1) speci�cations provide the best

point forecast for the US indices. In a similar spirit, Dunis et al. (2013) investigate the forecastability

of intraday IV on an underlying EUR-USD exchange rate for a number of maturities by combining

a variety of forecasting models. They �nd that the GJR model and the principal component

model perform better for one-month and three-months maturity, while ARFIMA and VAR models

outperform for longer periods. Finally, Fernandes et al. (2014) perform a thorough statistical

examination of the time series properties of the VIX. The out-of-sample analysis shows that ARMA

models perform very well in the short run and very poorly in the long run, while the semiparametric

heterogeneous autoregressive (HAR) process perform relatively well across all forecasting horizons.

Hence, several issues arise from the existing literature. First, there is no clear-cut conclusion

regarding the superior volatility forecasting approach. Second, while IV is often considered as a

measure of market risk and, therefore, an input to many asset pricing models, the question whether

IV per se can be forecasted has received little attention.

The aim of this study is to provide a comparative evaluation of the ability of a wide range

of GARCH models and IV models to forecast stock returns volatility. I provide evidence from

the S&P500, DJIA and Nasdaq100 indices as well as their IV indices. Speci�cally, I attempt to

answer the question whether implied volatility contains additional information about the future

volatility beyond that contained in GARCH forecasts. I examine whether the dynamics of IV per

se can be forecasted by parsimonious ARMA-type models. I address the question whether the IV

forecasts are good forecasts of stock returns volatility, which to the best of my knowledge has not

previously been considered in the literature. In my analysis, I also investigate the contemporaneous

asymmetric relationship between stock index returns and implied volatility. In total, ten GARCH

models are considered, GARCH, GJR, EGARCH, APGARCH and ACGARCH and their 'hybrid'

speci�cations adding the lagged value of the implied volatility. For forecasting IV indices ARMA,

ARIMA and ARFIMA models and their unrestricted speci�cations for capturing the asymmetric

relationship between stock index returns and implied volatility are considered.
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2.3 Data and empirical methodology

2.3.1 Data

The dataset used for the purposes of this study consists of the daily closing price data for the S&P

Composite 500 (S&P500), Dow Jones Industrial Average (DJIA) and Nasdaq100 indices and their

implied volatility indices, VIX, VXD and VXN, respectively. Since the various implied volatility

indices have been listed on di�erent dates, I consider the period from February 2, 2001 to February

28, 2013 in order to study the indices over the same time period. The in-sample period is from

February 2, 2001 to February 23, 2010 consisting of 2,363 daily observations, and the remaining 787

observations (February 24, 2010 to February 28, 2013) will be used for the out-of-sample evaluation.

Both the ex post squared daily returns and the realized variance are used as proxies for the true

volatility. The data of the realized variance are taken from Oxford-Man Institute's Realized Library

version 0.2 Heber et al. (2009).

I compute the stock index returns, rt, by calculating the prices log di�erences, rt = ln (Pt/Pt−1).

Figure 1 clearly shows that the mean of the returns is constant and around zero, but the variance

changes over time showing evidence of volatility clustering.

A non-constant variance of returns indicates a non-normal distribution. Table 1 presents the

descriptive statistics of the stock market returns plotted in Figure 1. The mean and the median

are consistently close to zero. As far as the values of skewness and kurtosis are concerned, for

a normal distribution, they should be zero and three, respectively. The negative skewness of all

series indicates asymmetric distributions skewed to the left, while the kurtosis statistics show the

leptokurtic characteristic of all returns distributions. The evidence of non-normality is further

supported by the Jarque-Bera test statistic which rejects the null hypothesis of normal distribution

at the 1% level.

Similarly, Table 2 shows the summary statistics of the IV indices along with Augmented Dickey-

Fuller (ADF) test for unit roots. The p-values of the ADF tests show that implied volatility indices

are stationary at conventional levels. The IV indices measure the market's expectation over the
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next 30 calendar days. Thus, the IV indices are expressed in annualized percentages. Therefore,

following Blair et al. (2001), the daily implied index volatility is equal to IV
100∗

√
252

.

2.3.2 Empirical methodology

The aim of this chapter is to compare the volatility forecasting ability of GARCH models and

implied volatility indices analyzing the information content of IV.

One way is to add implied volatility as an exogenous variable to GARCH models. By construct-

ing a nested model I can assess whether implied volatility is an important determinant of conditional

variance. As shown in the previous section, daily returns exhibit volatility clustering and fat tails.

The family of GARCH models have been proven to be particularly suitable for capturing not only

these characteristics, but also features like the leverage e�ect and long memory. In this section, I

consider an array of symmetric, asymmetric and long memory GARCH speci�cations.

In order to establish the methods to be used, the return process is given by

rt = µ+ εt (17)

where µ is the constant mean and εt = htzt is the innovation term with zt ∼ N(0, 1).6

To determine whether an ARCH process describes the innovation term sequence is equivalent to

identify the presence of conditional heteroskedasticity. The squared residual series ε̂2t are employed

to test the conditional heteroskedasticity which is known as ARCH e�ect. This is performed by

testing the squared errors for serial correlation.

The two tests for conditional heteroskedasticity used in this exercise are the Ljung-Box test

and the Lagrange Multiplier (LM) test. As referred to the Table 3, the Ljung-Box Q(p) statistics

of all return series are signi�cant with a p-value equal to zero, which indicates that the squared

residuals are autocorrelated. In the same table, according to the LM test the null hypothesis of

homoskedasticity is clearly rejected at 1% signi�cant level, indicating the presence of ARCH e�ect

in all return series. These results provide justi�cation for the next stage in the analysis which

6Using the AIC and SBIC information criteria I found that an AR(0) model is appropriate for the mean equation.
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involves estimating the conditional variance using an ARCH process.

GARCH

The generalized ARCH (GARCH) model, which has been developed by Engle (1982) and Boller-

slev (1986), involves a joint estimation of the mean equation (17) and the conditional variance equa-

tion. On the assumption that εt | Ωt−1 ∼ N(0, ht), the GARCH(1,1) model provides a parsimonious

parameterization for the conditional variance as follows

h2t = a0 + a1ε
2
t−1 + β1h

2
t−1 (18)

with a0 > 0, and a1, β1 > 0. The model is covariance stationary if and only if a1 + β1 < 1.

The GARCH(1,1) speci�cation augmented by implied volatility is given by

h2t = a0 + a1ε
2
t−1 + β1h

2
t−1 + θIV 2

t−1 (19)

Model (18) can be interpreted as the special case of model (19) when θ = 0. The test of interest

is given by H0 : θ = 0. If the null hypothesis is rejected, it means that IV contains incremental

information useful for explaining the conditional variance.

The GARCH(1,1) model successfully captures some of the characteristics of asset returns, like

volatility clustering and leptokurtosis and can be readily modi�ed to capture features such as non-

trading periods and forecastable events. However, its structure enforces important restrictions. For

this reason, numerous extensions of the GARCH model have been developed.

GJR

One primary limitation of the GARCH model is its symmetric response to negative and positive

shocks. However, negative shocks have been found to increase volatility by a greater amount than

positive shocks of the same magnitude. In other words, returns are said to have an asymmetric

impact on volatility. As noted by Black (1976) and Christie (1982), stock price �uctuations are

negatively correlated with volatility, which entails more uncertainty and hence generates more
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volatility. This asymmetric behavior is also known as the leverage e�ect.

Since the �rst generation symmetric GARCH model is unable to account for the leverage e�ects

observed in stock returns, I evaluate three widely known second generation asymmetric GARCH

models.

The GJR model has been proposed by Glosten et al. (1993) and is speci�ed as:

h2t = a0 + a1ε
2
t−1 + β1h

2
t−1 + γε2t−1It−1 (20)

and its encompassing speci�cation as

h2t = a0 + a1ε
2
t−1 + β1h

2
t−1 + γε2t−1It−1 + θIV 2

t−1 (21)

where the leverage e�ect is captured by the dummy variable It−1, such that It−1 = 1 if εt−1 < 0

and It−1 = 0 if εt−1 > 0. a0 > 0, a1 > 0, β1 > 0 and a1 + γ > 0 in order to ensure that

conditional variance is positive. Hence, for the GJR-GARCH(1,1), positive news has an impact of

a1, negative news has an impact of a1 + γ, with negative (positive) news having a greater e�ect on

volatility ifγ > 0 (γ < 0).

EGARCH

The exponential GARCH (EGARCH) model has been proposed by Nelson (1991) in order to

capture the leverage e�ect. Nelson (1991) used the EGARCH model to model daily returns of the

CRSP value-weighted stock market index in the period 1962-1987. Nelson con�rmed that returns

are signi�cantly negatively correlated with volatility.

The EGARCH model and its embedded with IV speci�cation are given byR2

ln(h2t ) = a0 + a1
| εt−1 |
ht−1

+ γ
εt−1
ht−1

+ β1ln(h2t−1) (22)

and

ln(h2t ) = a0 + a1
| εt−1 |
ht−1

+ γ
εt−1
ht−1

+ β1ln(h2t−1) + θIV 2
t−1 (23)
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where the coe�cient γ captures the presence of the leverage e�ects if γ < 0. This model is successful,

because, except that it captures the leverage e�ect, no inequality constraints need to be imposed on

the model parameters. Since the ln(ht) is modeled, even if parameters are negative, ht will always

be positive.

Component GARCH

The component GARCH (CGARCH) model has been developed by Engle & Lee (1993) in order

to investigate the log-run and short-run movement of volatility. While the GARCH model and its

asymmetric extensions show mean reversion to the unconditional variance, which is constant for

all time, the CGARCH model allows mean reversion to a time-varying long-run volatility level, qt.

The speci�cation of the CGARCH model is:

h2t = qt + a1
(
ε2t−1 − qt−1

)
+ β1

(
h2t−1 − qt−1

)
(24)

and

h2t = qt + a1
(
ε2t−1 − qt−1

)
+ β1

(
h2t−1 − qt−1

)
1

+ θIV 2
t−1 (25)

the CGARCH model nested with IV. qt = ao+ρqt−1 +φ
(
ε2t−1 − h2t−1

)
is the time-varying long-run

volatility provided ρ > (a1 + β1). The forecast error (ε2t−1 − qt−1) drives the time-varying process

of qt and the di�erence between the conditional variance and its trend, (h2t − qt), is the transi-

tory or short-run component of the conditional variance. Stationarity is accomplished provided

(a1 + β1) (1− ρ) + ρ < 1, which in turn requires ρ < 1 and a1 + β1 < 1.

Asymmetric Component GARCH

The asymmetric speci�cation, ACGARCH model, and its nested with IV speci�cation are:

h2t = qt + (α1 − γIt−1)
(
ε2t−1 − qt−1

)
+ β1

(
h2t−1 − qt−1

)
(26)
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and

h2t = qt + (α1 − γIt−1)
(
ε2t−1 − qt−1

)
+ β1

(
h2t−1 − qt−1

)
1

+ θIV 2
t−1 (27)

respectively. The asymmetric e�ect is captured by the dummy variable It−1, such that It−1 =

1 if εt−1 < 0 and It−1 = 0 if εt−1 > 0. Stationarity is accomplished provided (a1 + β1 + 1/2γ) (1− ρ)+

ρ < 1, which in turn requires ρ < 1 and a1 + β1 + 1/2γ < 1.

Another way to compare IV with GARCH is to investigate the forecasting ability of IV indices.

That is, whether implied volatility can per se be forecasted and whether the IV index model forecast

will be more accurate than the GARCH type models. In line to previous research, for instance

Konstantinidi et al. (2008) show that the ARIMA(1,1,1) and ARFIMA(1,d,1) speci�cations provide

the best point forecast for the US indices, di�erent autoregressive models are going to be used.

ARMA(1,1)

Univariate autoregressive moving average models are the most general class of models for fore-

casting stationary time series or time series that can be transformed to stationary by taking di�er-

ences. Employing the augmented Dickey-Fuller test in the IV indices, the null hypothesis of a unit

root is rejected for all series. For each IV index an ARMA(1,1) is employed of the form

IVt = c0 + φ1IVt−1 + θ1εt−1 + εt (28)

One lag is used for both the autoregressive and moving average part since this is found to minimize

the BIC criterion.

ARMAX(1,1)

For comparing the IV models to the asymmetric GARCH speci�cations, contemporaneous posi-

tive and negative returns of the underlying stock index are included in equation 28. The predictive

regression has the form
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IVt = c0 + φ1IVt−1 + θ1εt−1 + c1r
+
t + c2r

−
t + εt (29)

where r+t and r
−
t denote the positive and negative stock index returns, respectively, so as to assess

the contemporaneous asymmetric relationship between the index returns and the IV indices (see

also Simons (2003) and Giot (2005b) for a similar approach).

ARIMA(1,1,1)

A generalization of the ARMA models is the autoregressive integrated moving average (ARIMA)

model. It is usually denoted as ARIMA(p,d,q) and is employed to capture the possible presence

of short memory features in the dynamics of implied volatility. The ARIMA(p,d,q) speci�cation is

de�ned by

φ(L)∆dIVt = c0 + θ(L)εt

where d is a positive integer that imposes the order of integration needed to produce stationary and

invertible process. The ARIMA(1,1,1) speci�cation is going to be used here, it is given by

∆IVt = c0 + φ1∆IVt−1 + θ1εt−1 + εt (30)

ARIMAX(1,1,1)

The ARIMAX(1,1,1) model is going to be used, takes into account the possible presence of the

short memory and asymmetric e�ect of the index returns and is given by

∆IVt = c0 + φ1∆IVt−1 + θ1εt−1 + c1r
+
t + c2r

−
t + εt (31)

ARFIMA(1,d,1)

Following Konstantinidi et al. (2008) and Dunis et al. (2013) I apply a franctionally integrated
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ARMA model, which is de�ned by

φ(L)(1− L)dIVt = c0 + θ(L)εt (32)

where d dictates the order of fractional integration and takes non-integer values. If | d |< 0.5, the

ARFIMA is both stationary and invertible. In particular, if d ∈ (0, 0.5), the process is said to exhibit

long memory, while if d ∈ (−0.5, 0), the process exhibits antipersistence. The ARFIMA(1,d,1) model

is employed based on the BIC criterion and estimated by maximum likelihood.

ARFIMAX(1,d,1)

The ARFIMAX(1,d,1) model takes into account the possible presence of the long memory and

asymmetric e�ect of the index returns and is given by

(1− L)dIVt = c0 + φ1IVt−1 + θ1εt−1 + c1r
+
t + c2r

−
t + εt (33)

Random Walk

I assess the predictability of IV by comparing the above mentioned forecasting model against

the random walk benchmark.

IVt = IVt−1 + εt (34)

2.3.3 Forecast evaluation

The next step in the analysis is to evaluate the forecasting performance of the various models

described in Subsection 2.3.2. The forecasts are obtained recursively by increasing the sample length

by one observation. In other words, the initial estimation date is �xed and, once I obtain a forecast

I increase the sample size by one observation and re-estimate.

For examining the forecastability of IV itself, the Diebold-Mariano pairwise test (Diebold &
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Mariano, 1995) is employed. This test evaluates the forecasting performance of two competing

models. In short, let L(yt; ŷt) denote the forecast loss where yt is the 'true' value and ŷt is the

predicted value. The di�erence in loss of model i relative to a benchmark model o is de�ned as

di,t = L(yt; ˆyo,t)− L(yt; ˆyi,t) (35)

The issue is whether the two models have equal predictive ability. That is, the null hypothesis

that is tested is H0 : E(di,t) = 0. The DM test statistic is then expressed as

DM =
d√

LRVd/T
∼ N(0, 1) (36)

where d = 1
n

∑n
t=1 dt and LRVd = γ0 +

∑∞
j=1 γj - γj = cov(dt, dt−j) - is an estimator of the

asymptotic variance of d
√
T . In this application the DM test is used to assess whether any model

under consideration outperforms the random walk model under the MSE and MAE metrics.

Given that volatility is latent, the ex post squared returns are used as a proxy for 'true' volatility

against which the forecast performance of the volatility estimators is assessed. That is, 'true'

volatility is developed by

σ2
t =

∑
r2t (37)

where rt is the daily return on day t.

However, as noted by (Andersen & Bollerslev, 1998) and (Andersen et al., 1999), although the

use of squared returns as a measure of true volatility is a simple and unbiased measure it provides

a very noisy one. Thus Andersen and Bollerslev suggest that the proxy of ex post volatility should

be based on intraday squared returns. The so-called realized variance is de�ned by

σ2
t =

n∑
j=1

r2t,j (38)
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where rt,j is the return in interval j on day t and n is the number of interval in a day.7

The ability of the models described in Subsection (2.3.2) to accurately forecast the 'true' volatil-

ity is assessed using two alternative types of measures for forecast comparisons. In the �rst one,

two di�erent forecast error statistic have been selected. The mean absolute error (MAE) and the

root mean squared error (RMSE)

MAE =
1

τ

T+τ∑
t=T+1

| h2t − σ2
t | (39)

RMSE =

√√√√1

τ

T+τ∑
t=T+1

(h2t − σ2
t ) (40)

where τ is the number of out-of-sample observations, h2t is the GARCH or IV forecast and σ2
t is

the 'true' volatility. The MAE measures the average absolute forecast error and by construction

does not permit the o�setting e�ect of over- and underprediction. The RMSE is a conventional

criterion which clearly weights greater forecast errors more heavily than smaller forecast errors in

the forecast error penalty.

Following previous research, for all forecasting volatility models, the second type of measures

for forecast comparisons is the testing procedure of Mincer-Zarnowitz (1969, hereafter MZ), which

measures how much of the true volatility is explained by the forecasted series. The true volatility

σ2
t is regressed on the forecasted series of the di�erent GARCH models and IV models, denoted h2t ,

as shown below

σ2
t = a0 + a1h

2
t + εt (41)

The primary interest lies in the R2, where the model with the highest R2 is preferred.

In order to examine the relative forecasting performance of the GARCH and IV models, a

forecast-encompassing exercise is also performed. To test for such forecast encompassing the fol-

7As mentioned in Subsection 2.3.1, the daily realized variance of all indices are obtained from the Oxford-Man
Institute's Realized Library.
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lowing extension of the regression model in equation (41) is considered:

σ2
t = a0 + a1h

2f
1,t + a2h

2f
2,t + εt (42)

where h2f1,t refers to the GARCH forecasts and h2f2,t refers to the IV forecasts. If the IV forecast

model carries no additional information then it is said that the GARCH forecast encompasses the

IV forecast and the null hypothesis that a2 = 0 is true. Similarly, If IV encompasses GARCH the

null hypothesis that a1 = 0 is true.

To the best of my knowledge previous studies that investigate whether IV contains incremental

information regarding the future volatility have considered either that IV follows a random walk or

the volatility of IV.8 Since my aim is to examine whether the forecast of implied volatility is a good

predictors for the stock market volatility, I run the equation 42 twice: �rst using the forecast of IV

indices as h2f2,t and second using IV following a random walk (see equation 34) as h2f2,t in order to

examine whether the forecasts of IV indices are better predictors for the future volatility than the

random walk.

Finally, I assess the performance of the forecast encompassing regressions by calculating the

value-at-risk (VaR). VaR is a popular approach to measure risk as it speci�es the portfolio loss

that occurs within a given time and with a given probability. More formally, VaR is calculated

as V aR = a(N)σt+1V , where a(N) is the appropriate left-hand cut-o� of the normal distribution,

σt+1 is the one-step ahead volatility forecast and V is the portfolio's value. In this study, I want to

assess the performance of the forecast encompassing regressions when both the squared daily retuns

and the realized variance are used as the true volatility proxy. Thus, σt+1 is the one-step ahead

volatility forecast as it is estimated through the combinations of GARCH and IV model forecasts.

In order to evaluate the performance of these forecasts for producing reasonable VaR estimates I

examine the models failure rate that is the frequency that the actual loss exceeds the estimated

VaR.

The Kupiec test (Kupiec, 1995) for the equality of the empirical failure rate to a speci�ed

8The volatility of IV is obtained by adding the implied volatility to the variance equation of the various GARCH
speci�cations under the constraint that the time series parameters a1 and β1 equal zero.
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statistical level is computed. Moreover, I also compute the dynamic quantile (DQ) test proposed

by Engle & Manganelli (2004) and argues that in addition to the failure rate, the conditional

accuracy of the VaR estimates is important. Therefore, they test the joint null hypothesis that the

violations should both occur at a speci�ed rate and not be serially correlated. They de�ne the hit

sequence:

Hitt = I(rt < −V aRt)− a

which assumes value (1 − a) every time the actual return is less than the VaR quantile and −a

otherwise. The expected value of Hitt is zero and the the hit sequence must be uncorrelated with

any past information and have expected value equal to zero. If the hit sequence satis�es these

conditions the hits will not be correlated an the fraction of exception will be correct. The DQ test

statistic is computed as

DQ = β̂′X ′X ˆβ/a(1− a)

where X is the vector of explanatory variables and β̂ the OLS estimates. The test follows a χ2

distribution with degree of freedom equal to the number of parameters.

2.4 Empirical results

2.4.1 In-sample results

Table 4 reports the parameter estimates of the alternative GARCH models de�ned above. The

period used for the estimations is February 2, 2001 to February 23, 2010. For all stock index returns,

the estimates of GARCH show that all the coe�cients of the variance equation (a0, a1 and β1) are

statistically signi�cant at 1% level and satisfy the non-negativity constraints. The sum a1 + β1

is less than one, but very close to the unity, which implies that shocks to volatility have a highly

persistent e�ect on the conditional variance. Turning to the results for GARCH-IV model, which

adds implied volatility as an exogenous variable in the conditional variance equation, I �nd that for

all indices the IV parameter θ are signi�cant at the 1% level. The likelihood ratio test9 rejects the

9 The likelihood ratio test is de�ned as LR = −2(Lr − Lu) χ2(m) where Lu is the maximized value of the log
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null hypothesis that implied volatility contains no incremental information useful for explaining the

conditional variance.

In GJR and GJR-IV models, a1 + γ > 0 holds for all indices indicating that bad news increase

the conditional volatility more than good news a1. Unlike the usual restriction of the GJR model,

a1 < 0 for all series in both models. Nonetheless, the restriction for positive unconditional volatility

(a1 + β1 + 1/2γ) still holds. When the information of implied volatility is added the log-likelihood

is signi�cantly higher than in GJR.

The impact of implied volatility in the conditional volatility can also be found by comparing

the EGARCH model and its encompassing speci�cation EGARCH-IV. The coe�cient of the lagged

IV indices were found to be statistically signi�cant at the 1% level. Similar to the results from the

previous models, the likelihood ratio test show that the implied volatility indices information has

incremental explanatory power for conditional volatility. To examine the asymmetric e�ect of news;

the negative and signi�cant γ in both EGARCH and EGARCH-IV speci�cation show the existence

of leverage e�ect in returns.

In CGARCH and CGARCH-IV models, the condition a1 + β1 < ρ < 1 holds for all indices

implying that the long run index return conditional volatility will decay more slowly than the

transitory component of volatility. This result further suggests that the permanent volatility controls

the conditional volatility. The coe�cient of the lagged IV indices were found to be statistically

signi�cant at 1% level.

ACGARCH and ACGARCH-IV models intend to capture the long memory characteristic of the

returns. The conditional volatility shows the existence of both transitory and permanent compo-

nents. The transitory asymmetric volatility is captured by γ and the leverage e�ect feature holds.

Also, the condition a1 + β1 + 1/2γ < ρ < 1 holds in both models for all indices implying that the

long run index return conditional volatility will decay more slowly than the transitory component

likelihood for an unrestricted model (in our case GARCH-IV), Lris the maximized value of the log likelihood for

a model which has been estimated imposing the constraints(in our case GARCH(1,1) imposing the constraint that

θ = 0) and m is the number of the restrictions.
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of volatility. Once more the likelihood ratio test shows the usefulness of implied volatility.

Diagnostic tests in the standardized residuals are performed for all the alternative GARCH

speci�cations. The standardized residuals are expected to have skewness and kurtosis parameters

close to those of a normal distribution as well as not to have remaining non-modelled ARCH e�ects.

As it is referred to the Table 5, the results from diagnostics tests indicate that the standardized

residuals are skewed to the left, while the values of kurtosis and the Jarque-Bera test have noticeably

reduced in absolute values for all series compared to the statistics from the original return series

in Table 1. Thus, it can be inferred that all the models are able to explain the asymmetric and

fat tails characteristics of the return distributions to some extent. With the exception of GARCH-

IV and ACGARCH-IV model in S&P500 index, GARCH-IV in the DJIA and EGARCH-IV in

Nasdaq100, the Ljung-Box Q(m) statistics indicate that the autocorrelations of the residuals are

all statistically insigni�cant at the 1% level for all GARCH family models. So, the null hypothesis

of no autocorrelation is not rejected.

Finally, in order to test whether there are any remaining ARCH e�ects in the residuals the

LM is carried out. If the conditional variance equations are correctly speci�ed, there should be

no ARCH e�ect in the standardized residuals. Indeed, as it can be seen in Table 5, the null

hypothesis of no ARCH e�ect cannot be rejected at the 1% level with the exception of GARCH-IV

and ACGARCH-IV model in S&P500 index, GARCH-IV in the DJIA index and EGARCH-IV in

Nasdaq100 index.

Table 6 summarizes AR(FI)MA(X) models' coe�cients and their p-values for all indices. The

AR(1) and MA(1) terms are statistically signi�cant at the 1% level for all models except the

ARFIMAX speci�cation for the VIX index. The coe�cients of r+t and r−t are also statistically

signi�cant at the 1% level. Moreover, the coe�cient of r−t are greater in absolute values than

the coe�cients of r+t for all models. It is apparent that there are contemporaneous asymmetric

e�ects for all estimations. In other words, negative returns in�uence the implied volatility indices

more than positive returns. The negative and positive stock index returns trigger the IV index to

move asymmetrically in the opposite direction. That is, positive contemporaneous returns decrease

the implied volatility, while negative contemporaneous returns raise implied volatility and thus
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the index level. The di�erence parameter d in the ARFIMA models is signi�cant at 1% level

and d ∈ (0, 0.5) for all series indicating that the processes exhibit long memory. Based on the

log-likelihood, the unrestricted ARMA models, these that allow for asymmetry, outperform their

restricted counterparts. Overall, within the sample, the ARMAX speci�cation performs best for

VIX and VXD indices and the ARIMAX speci�cation for the VXN index.

2.4.2 Out-of-sample results

Regarding the forecast of the implied volatility itself, Table 7 presents the Diebold-Mariano test

in order to address the question whether the dynamics of implied volatility per se can be forecasted.

The DM test using the MSE and MAE criteria of all models assesses the predictive ability of each

forecasting model against the benchmark model. The null hypothesis of equal predictive ability

of each model against the random walk is tested against the alternative hypothesis that random

walk is outperformed. There are 24 cases (out of 36) in which I reject the null hypothesis of equal

predictability. Therefore, in 66.67% of the di�erent combinations of IV and predictability measures

one of the models performs better than the random walk. This indicates that there is a predictable

pattern in the dynamics of implied volatility indices.

In terms of how competing models perform, the ARMAX model performs best yielding the

lowest loss versus the alternative models. According to the MSE metric, the ARFIMA and random

walk perform poorly, while according to MAE, the ARMA and ARFIMA models are outperformed

followed by the random walk. When the model under consideration is an ARMA model that takes

into account the contemporaneous asymmetric e�ect - ARMAX, ARIMAX, ARFIMAX models -

always outperforms the random walk. In those cases, the null hypothesis of equal predictive ability

is always rejected at the 1% level.

Tables 8 and 9 report the mean absolute error and the root mean square error for the various

models when the squared returns and the realized variance, respectively, are used as proxy for

the true volatility. Of particular interest is the question whether the good performance of the IV

in-sample carries over to out-of-sample comparisons.

According to the MAE, Table 8 shows that for both S&P500 and DJIA index the EGARCH spec-
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i�cation seems to perform best closely followed by the EGARCH-IV, while for the Nasdaq100 the

EGARCH-IV provides the best forecast. The majority of the models that are nested with implied

volatility outperform their GARCH counterparts that exclude the implied volatility information.

As for the IV forecasts, the results suggest that under MAE metrics, all the ARMA-type models

perform poorly compare to the GARCH speci�cations. Nonetheless, focusing only on the perfor-

mance of the various IV indices to provide accurate volatility forecasts I �nd that the ARIMAX

model performs best for the S&P500 and Nasdaq100 index, while the ARMAX model provides the

best forecast for the DJIA index.

On the other hand, using the RMSE, there are overwhelming evidence of the superiority of

the GJR-IV speci�cation. In all series, a GARCH speci�cation combined with implied volatility

outperforms its restricted version. Looking at the IV models, the ARMAX model is the best for

the S&P500 and the ARFIMAX model for the DJIA and Nasdaq100. Furthermore, contrary to the

MAE results, in many cases ARMA speci�cations yield lower RMSE than the restricted GARCH

speci�cations.

Similar results are obtained in Table 9 where the realized variance is used as the proxy for the

true volatility. According to the MAE, the EGARCH model yields the lowest loss for the S&P500

and Nasdaq100, while the EGARCH-IV performs best for the DJIA index. The IV forecasts perform

poorly with the ARMAX and the ARIMAX speci�cation to yield the lowest MAE for S&P500, and

DJIA and Nasdaq100, respectively. When the RMSE is used, for both the S&P500 and DJIA the

EGARCH-IV performs best, while for the Nasdaq100 the GJR-IV provides the best forecast. When

the forecasting performance of IV models is assessed, the ARMAX model for the S&P500 index

and the ARFIMAX model for the DJIA and Nasdaq100 indices provides the best forecast.

In sum, on both forecast error statistic, models that capture the leverage e�ect and/or long

memory are superior to the simple GARCH model. In most cases, an asymmetric GARCH model

nested with IV performs best, indicating that both the in-sample and out-of-sample IV contains

incremental information useful for explaining the future volatility beyond that available from the

GARCH models. As for the IV forecasts, the asymmetric ARMA models strictly outperform the

random walk.
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In order to examine how much of the 'true' volatility is explained by the GARCH forecasts and IV

forecasts, the MZ procedure is employed. Tables 10 and 11 report the R2 values from the forecasting

regression in equation (41) using the squared returns and realized variance measure of true volatility,

respectively. The model with the highest R2 is preferred. Examining the results of the MZ test

procedure I �nd that, for both measures of true volatility, the GJR speci�cation embedded with

implied volatility performs best followed by the EGARCH-IV model and the asymmetric ARMA

speci�cations. For all series an unrestricted GARCH speci�cation obtains strictly higher R2 than

its restricted version. In the case that squared returns is used as proxy, the R2 value increases by

about 3% to 6% when the IV is added in the conditional variance equations. When the realized

variance is the proxy of the true volatility, the R2 value rises by about 5% up to 13%. Looking at

the IV forecasts, the ARMA-type models which take into account the contemporaneous asymmetric

e�ect - ARMAX, ARIMAX and ARFIMAX - obtain higher R2 values than the random walk for

all cases. The random walk yields marginally higher R2 than the symmetric ARMA speci�cations,

implying that when the contemporaneous asymmetric e�ect is considered, the forecast of IV does a

better job than the random walk in explaining the variability of the 'true' volatility. Among the IV

forecast, the ARFIMAX speci�cation reports the highest R2 value across all indices and measures

of true volatility. Finally, when realized volatility is the proxy of the true volatility, all models

yields much higher R2 values.

The next step is to investigate the relative forecasting performance of the GARCH and IV models

so as to identify whether these forecasts contain independent information useful in predicting future

volatility and whether the IV forecast through an ARMA-type speci�cation is a better predictor

than the random walk. Tables 12 to 14 present the results of the encompassing regressions described

in equation (42) for all indices using the ex post daily squared returns measure of true volatility.

Estimation results from the encompassing regressions for the S&P500 are given in Table 12. In

this comparison the signi�cance of the a2 coe�cient is of primary interest as it would indicate that IV

is not encompassed by the GARCHmodels. The a2 coe�cient is, in most cases, signi�cantly di�erent

from zero. This implies that the IV forecast contains additional information over the GARCH

forecast. In many cases, the a1 coe�cient is insigni�cant indicating that the GARCH information
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is subsumed by the VIX. There are also a few cases in which both coe�cients are signi�cant

implying that both approaches complement each other. According to the R2, a combination of the

ACGARCH-IV forecast with the ARFIMAX forecast performs best. In this case, both forecasts

contain independent information useful in forecasting future stock return volatility. This can be

clearly observed by comparing the R2 value of the encompassing regression with the one of the

individual regressions presented in Table 10. Furthermore, when the GARCH forecast is combined

with the forecast of an asymmetric IV model always yields higher R2 values than when the GARCH

is combined with the random walk process of IV.

Tables 13 and 14 report the encompassing regressions results for the DJIA and Nasdaq100

indices. The results show that, in most cases, the a2 coe�cient is signi�cant which means that

in these cases IV contains independent information than the one contained in GARCH. In many

encompassing regressions, IV forecast subsumes GARCH forecast information, while there are few

cases in which both forecasts are signi�cant which means that they both contain information useful

for predicting stock index return volatility. Looking at the R2 values, for both indices the highest

R2 is reported when the GJR-IV is combined with the IV forecast through an ARMAX model.

Although, IV is encompassed by the GJR forecast, the R2 of the univariate regressions in Table 10,

indicating that a combination of both predictors is preferred as it can further improve the forecasts.

Similarly to the S&P500 index, when the GARCH forecast is combined with the unrestricted

forecasts of IV yields higher R2 values than when the GARCH is combined with the random walk

process of IV.

Tables 15 and 17 report the results of the encompassing regressions for the forecast models using

the realized variance as proxy for the true volatility. There is a remarkably consistency across all

indices. First, the GJR-IV combined with the ARMAX model reports the highest R2 values for

all indices. This is also con�rmed looking at the R2 which is strictly higher than the R2 for the

univariate regressions in Table 11. Second, regarding the encompassing test, the null hypothesis

that the GARCH forecasts encompasses the IV forecasts is rejected for all series and all indices, with

the exception of the EGARCH-IV speci�cation combined with the random walk for all indies and

the GJR-IV combined with the random walk for the Nasdaq100 index. Nonetheless, in many cases
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in which one approach dominates the other, the adjusted R2 is marginally higher than the R2 of

the univariate regressions indicating that combining GARCH and IV improves on the results from

either one alone. Finally, similarly to the encompassing regressions results in which daily squared

returns measure the true volatility, when the GARCH forecasts are combined with the asymmetric

IV model forecasts yield higher R2 values than when the GARCHs are combined with the random

walk.

The VaR results for the encompassing regressions are reported in Tables 18 and 19 when the

squared returns and the realized volatility are respectively used as the true volatility proxies. More

speci�cally, in Table 18, at both 1% and 5% VaR levels, the combination providing the best VaR

measures in terms of achieving the lowest average failure rate is the ACGARCH-IV combined with

the ARIMAX. In most cases, when GARCH forecasts are combined with the IV forecasts through an

ARMA-type models have lower average failure rate than when the GARCH models are combined

with the IV following a random walk. In terms of the Kupiec and DQ tests, at the 1% level,

both the ACGARCH-IV combined with the ARIMAX speci�cation and the EGARCH combined

with the ARMAX forecast perform best. In these cases only one market does not reject the null

hypotheses of the equality of the number of violations at a speci�ed rate, Kupiec test, and of the non

autocorrelation in the sequence of exceptions, DQ test. Examining the 5% VaR results, I observe

that the majority of the combinations perform well, with none or one index signi�cant on both the

Kupiec and the DQ test.

Similar results are reported in Table 19. At the 1% VaR probability level, combining the

ACGARCH-IV with the ARFIMAX performs best having lowest average failure rate. In terms of the

speci�cation tests, the combination of the EGARCH-IV model with the ARMAX model performs

best, with one index signi�cant. When GARCH forecasts are combined with the asymmetric IV

forecasts outperform the combinations of GARCH forecasts with the random walk. Examining the

5% VaR results, the GJR-IV combined with the ARMAX model performs best in terms of both

the average failure rate and the DQ test. In terms of the Kupiec test the EGARCH-IV combined

with the ARMAX performs well.
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2.5 Conclusion

This chapter provides a comparative evaluation of the ability of a wide range of GARCH models

and IV models to forecast stock index return volatility focused on the S&P500, DJIA and Nasdaq100

indices as well as their IV using the Mincer-Zarnowitz regression test of predictive power.There is a

bulk of literature that investigates the information content of IV using IV as an exogenous variable

in the conditional variance equation or considering that IV follows a random walk. More recent

literature has shown that IV follows a predictable pattern. Therefore, this study analyzes whether

the IV forecasts are good predictors for the stock market volatility. A total of ten GARCH models

are considered, GARCH, GJR, EGARCH, CGARCH and ACGARCH model and the encompassing

variants of these models including IV as a regressor in the variance equation. Additionally, six

ARMA models have been taken into consideration for forecasting IV indices. Both the ex post

daily squared returns and realized variance are used as measures of true volatility.

The results show that the IV forecast contains signi�cant information regarding the future

volatility. With regard to the forecastability of IV itself, I �nd that IV forecasts are statistically

signi�cant. When the IV model accounts for the contemporaneous asymmetric e�ect its forecast

strictly outperforms the random walk. The ARMAX model perform best. As for the GARCH

models, the inclusion of IV in the GARCH variance equations improves both the in-sample and

out-of-sample performance of the GARCH models with and asymmetric GARCH to perform best.

Encompassing regressions indicate that IV forecasts is generally more informative than GARCH

forecasts, but combining both predictors can often improve the forecasts. Finally, with regard to

VaR forecasts, a combination of an asymmetric GARCH model with an asymmetric ARMA model

is preferred when both the ex post daily squared returns and realized variance are used as measures

of true volatility.

To summarize, the results suggest the IV does contain additional information useful for the future

stock market volatility beyond the information contained in the GARCH model based volatility

forecasts. The presence of the asymmetric e�ect is really important as it signi�cantly improves the

performance of both the GARCH and IV indices models. Overall, a model that includes both an
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asymmetric GARCH and the option market information through an ARMAX model is the most

appropriate for predicting future volatility.
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Figure 1: Daily returns of the S&P500, DJIA and Nasdaq100 index

Notes: The �gure shows daily returns for the S&P500, DJIA and Nasdaq100 index for the period
February 2, 2001 to February 28, 2013.

Table 1: Summary statistics for the full sample and in-sample daily stock returns

a) Full sample b) In-sample

S&P500 DJIA Nasdaq100 S&P500 DJIA Nasdaq100

Mean 3.80E-05 8.47E-05 3.37E-05 Mean -9.18E-05 -2.41E-05 -0.0001

Median 0.0006 0.0004 0.0008 Median 0.0006 0.0004 0.0007

Maximum 0.1095 0.1051 0.1185 Maximum 0.1096 0.1051 0.1185

Minimum -0.0947 -0.0820 -0.1111 Minimum -0.0947 -0.0820 -0.1111

Std. Dev. 0.0134 0.0125 0.0180 Std. Dev. 0.0139 0.0131 0.0194

Skewness -0.1704 0.0328 0.0592 Skewness -0.1118 0.1148 0.1001

Kurtosis 11.049 10.778 7.3248 Kurtosis 11.420 10.981 6.7772

Jarque-Bera 8223.4 7666.2 2371.7 Jarque-Bera 6740.0 6056.5 1359.2

p-value 0.0000* 0.0000* 0.0000* p-value 0.0000* 0.0000* 0.0000*

Notes: Entries report the summary statistics of the daily stock returns for a) the full sample period
February 2, 2001 to February 28, 2013 and b) the in-sample period February 2, 2001 to February
23, 2010. In the last row, the p-values of the Jarque-Bera test for normality are reported. * denotes
rejection of the null hypothesis at the 1% level, respectively.
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Table 2: Summary statistics for implied volatility indices

VIX VXD VXN
Mean 0.0137 0.0127 0.0179
Median 0.0123 0.0115 0.0150
Maximum 0.0509 0.0470 0.0508
Minimum 0.0062 0.0058 0.0079
Std. Dev. 0.0060 0.0056 0.0082
Skewness 1.9049 1.8183 1.2459
Kurtosis 8.4758 7.8965 3.7623
Jarque-Bera 5640.3 4715.2 860.67
p-value 0.0000* 0.0000* 0.0000*
ADF (p-value) 0.0051* 0.0091* 0.0113**

Notes: Entries report the summary statistics of the three implied volatility indices for the period
February 2, 2001 to February 28, 2013. In the last two rows, the p-values of the Jarque-Bera test
for normality and the Augmented Dickey-Fuller (ADF) test for unit root are reported. * and **

denote rejection of the null hypothesis at the 1% and 5% level, respectively.

Table 3: Test for ARCH e�ects in returns

Index Q(p) LM
p = 7 p = 7

S&P500 1509.0
(0.000)

* 634.901
(0.000)

*

DJIA 1386.8
(0.000)

* 595.446
(0.000)

*

Nasdaq100 987.01
(0.000)

* 414.152
(0.000)

*

Note: The Ljung-Box Q(7) test for squared residual autocorrelation and the Lagrange multiplier
(LM) test for homoskedasticity are reported. p-values are in parentheses. * denotes rejection of the
null hypothesis at the 1% level.
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Table 5: Diagnostics tests in squared standardized residuals

Skewness Kurtosis Jarque-Bera Q(7) LM(7)

S&P500

GARCH −0.3185 4.1268 159.17
(0.000)

5.569
(0.591)

5.648
(0.581)

GARCH-IV −0.3739 4.1484 178.42
(0.000)

16.799
(0.019)

* 16.039
(0.025)

**

GJR −0.3374 3.9274 124.95
(0.000)

8.600
(0.283)

8.958
(0.256)

GJR-IV −0.3711 4.1599 180.14
(0.000)

10.130
(0.181)

10.649
(0.155)

EGARCH −0.4015 4.2664 213.62
(0.000)

8.279
(0.309)

8.629
(0.208)

EGARCH-IV −0.4196 4.1792 199.01
(0.000)

11.007
(0.138)

11.934
(0.103)

CGARCH −0.3101 4.0811 147.58
(0.000)

5.744
(0.570)

5.786
(0.565)

CGARCH-IV −0.3784 4.0548 160.10
(0.000)

1.256
(0.990)

1.293
(0.989)

ACGARCH −0.3436 4.1139 162.74
(0.000)

1.866
(0.967)

1.904
(0.965)

ACGARCH-IV −0.3906 4.1927 193.11
(0.000)

17.273
(0.016)

** 16.911
(0.018)

**

DJIA

GARCH −0.2706 4.1045 143.72
(0.000)

7.872
(0.344)

7.751
(0.355)

GARCH-IV −0.3188 3.9265 120.17
(0.000)

15.995
(0.025)

** 15.523
(0.030)

**

GJR −0.2835 3.9357 113.73
(0.000)

8.042
(0.329)

8.097
(0.324)

GJR-IV −0.3079 4.0607 142.92
(0.000)

9.008
(0.252)

9.151
(0.242)

EGARCH −0.3217 4.0930 152.84
(0.000)

7.282
(0.400)

7.361
(0.392)

EGARCH-IV −0.3134 3.8984 115.20
(0.000)

10.436
(0.165)

10.861
(0.145)

CGARCH −0.2809 4.0226 129.31
(0.000)

3.989
(0.781)

4.006
(0.779)

CGARCH-IV −0.3333 3.9386 125.91
(0.000)

2.029
(0.958)

2.023
(0.959)

ACGARCH −0.3138 4.1584 164.89
(0.000)

3.041
(0.881)

3.074
(0.878)

ACGARCH-IV −0.3359 3.9431 127.35
(0.000)

2.162
(0.950)

2.176
(0.950)

Nasdaq100

GARCH −0.1271 3.6512 46.42
(0.000)

7.137
(0.415)

7.171
(0.411)

GARCH-IV −0.1776 3.4726 32.32
(0.000)

11.641
(0.113)

11.548
(0.116)

GJR −0.1891 3.4943 36.80
(0.000)

10.934
(0.142)

11.024
(0.138)

GJR-IV −0.1836 3.4803 34.73
(0.000)

11.437
(0.121)

11.514
(0.118)

EGARCH −0.2263 3.5187 45.02
(0.000)

11.457
(0.120)

11.713
(0.110)

EGARCH-IV −0.2282 3.5177 45.25
(0.000)

14.750
(0.039)

** 15.207
(0.033)

**

CGARCH −0.1406 3.6793 51.34
(0.000)

7.544
(0.374)

7.528
(0.376)

CGARCH-IV −0.1672 3.3971 25.61
(0.000)

5.237
(0.631)

5.0532
(0.654)

ACGARCH −0.1284 3.5689 37.01
(0.000)

2.163
(0.950)

2.149
(0.951)

ACGARCH-IV −0.1746 3.4103 27.57
(0.000)

5.933
(0.548)

5.849
(0.558)

Note: Entries report the diagnostic residual test results of the GARCH models. The Ljung-Box
Q(7) test and the Lagrange multiplier (LM) test for the squared standardized residuals are reported.
p-values are in parentheses. * and ** denote rejection of the null hypothesis at the 1% and 5% level,
respectively.
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Table 6: Estimation output of time series models for implied volatility prediction

ARMA ARMAX ARIMA ARIMAX ARFIMA ARFIMAX

VIX

c0 0.01383
(0.000)

* 0.01374
(0.000)

* −1.85 ∗ 10−7

(0.991)
−4.64 ∗ 10−7

(0.982)
0.01457
(0.440)

0.01454
(0.436)

AR(1) 0.98932
(0.000)

* 0.98813
(0.000)

* 0.56069
(0.000)

* −0.44888
(0.000)

* 0.89105
(0.000)

* 0.71781
(0.000)

*

MA(1) −0.14282
(0.000)

* 0.15798
(0.000)

* −0.70967
(0.000)

* 0.59274
(0.000)

* −0.59004
(0.000)

* −0.06291
(0.124)

d 0.49314
(0.000)

* 0.49651
(0.000)

*

r+t −0.02337
(0.000)

* −0.02331
(0.000)

* −0.02323
(0.000)

*

r−t −0.04256
(0.000)

* −0.04160
(0.000)

* −0.04284
(0.000)

*

Log − L 12332.11 12914.04 12338.69 12910.83 12317.91 12874.81

VXD

c0 0.01291
(0.000)

* 0.01288
(0.000)

* −2.81 ∗ 10−7

(0.985)
−4.99 ∗ 10−7

(0.978)
0.01350
(0.447)

0.01323
(0.347)

AR(1) 0.99098
(0.000)

* 0.99029
(0.000)

* 0.43836
(0.000)

* −0.67812
(0.000)

* 0.91920
(0.000)

* 0.81770
(0.000)

*

MA(1) −0.18672
(0.000)

* 0.05046
(0.000)

* −0.61659
(0.000)

* 0.74711
(0.000)

* −0.65026
(0.000)

* −0.28437
(0.000)

*

d 0.49199
(0.000)

* 0.49335
(0.000)

*

r+t −0.02607
(0.000)

* −0.02602
(0.000)

* −0.02566
(0.000)

*

r−t −0.03674
(0.000)

* −0.03557
(0.000)

* −0.03733
(0.000)

*

Log − L 12590.77 13097.63 12590.79 13095.62 12579.71 13064.72

VXN

c0 0.01978
(0.000)

* 0.01973
(0.000)

* −9.27 ∗ 10−6

(0.60)
−9.57 ∗ 10−6

(0.655)
0.02128
(0.320)

0.02127
(0.324)

AR(1) 0.99405
(0.000)

* 0.99373
(0.000)

* 0.73707
(0.000)

* −0.63943
(0.000)

* 0.86512
(0.000)

* 0.79548
(0.000)

*

MA(1) −0.05258
(0.000)

* 0.10309
(0.000)

* −0.80766
(0.000)

* 0.74476
(0.000)

* −0.45675
(0.000)

* −0.21329
(0.000)

*

d 0.49423
(0.000)

* 0.49583
(0.000)

*

r+t −0.01351
(0.000)

* −0.01367
(0.000)

* −0.01352
(0.000)

*

r−t −0.02111
(0.000)

* −0.02041
(0.000)

* −0.02118
(0.000)

*

Log − L 12418.49 12702.3 12421.5 12707.57 129397.01 12666.19

Note: Entries report results of the alternative implied volatility models as described in equations
(28) - (33). The p-values of the estimated coe�cients are in parentheses. * denotes signi�cance at
the 1% level.
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Table 7: Diebold-Mariano test for the implied volatility models

MSE MAE
V IX V XD VXN V IX V XD VXN

Random walk 0.00152 0.00127 0.00129 0.758 0.692 0.723
ARMA(1,1) 0.00146 0.00121 0.00128 0.756 0.694 0.728**
ARMAX(1,1) 0.00085* 0.00081* 0.00093* 0.583* 0.558* 0.622*
ARIMA(1,1,1) 0.00145*** 0.0012*** 0.00127** 0.753 0.692 0.719***
ARIMAX(1,1,1) 0.00087* 0.00083* 0.00096* 0.589* 0.561* 0.624*
ARFIMA(1,d,1) 0.00148 0.00122 0.00130 0.765 0.702 0.740*
ARFIMAX(1,d,1) 0.00086* 0.00082* 0.00095* 0.590* 0.565* 0.631*

Note: The Diebold-Mariano test results using the mean squared forecast error (MSE) and the mean
absolute forecast error (MAE) of the IV models are reported. The null hypothesis that the random
walk and the model under consideration perform equally well is tested against the alternative that
the model under consideration performs better. All numbers are multiplied by 103. *, ** and ***

denote rejection of the null hypothesis at the 1% and 5% level, respectively.
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Table 8: MAE and RMSE using ex post squared returns measure of true volatility

MAE RMSE
S&P500 DJIA Nasdaq100 S&PComp DJIA Nasdaq100

EWMA 0.1450 0.1189 0.1675 0.3021 0.2395 0.3099
GARCH 0.1451 0.1195 0.1710 0.2993 0.2370 0.3092
GARCH-IV 0.1421 0.1170 0.1644 0.2934 0.2333 0.2989
GJR 0.1390 0.1160 0.1673 0.2931 0.2324 0.3036
GJR-IV 0.1385 0.1152 0.1637 0.2860* 0.2267* 0.2945*
EGARCH 0.1347* 0.1126* 0.1638 0.2936 0.2320 0.3057
EGARCH-IV 0.1376 0.1139 0.1615* 0.2876 0.2282 0.2957
CGARCH 0.1462 0.1195 0.1721 0.3002 0.2411 0.3091
CGARCH-IV 0.1412 0.1156 0.1630 0.2926 0.2321 0.2981
ACGARCH 0.1442 0.1184 0.1706 0.3034 0.2396 0.3099
ACGARCH-IV 0.1423 0.1156 0.1632 0.2930 0.2315 0.2987
ARMA 0.1723 0.1402 0.1978 0.2985 0.2372 0.3042
ARMAX 0.1704 0.1396† 0.1904 0.2935† 0.2343 0.3025
ARIMA 0.1725 0.1402 0.1902 0.2992 0.2377 0.3045
ARIMAX 0.1704† 0.1397 0.1899† 0.2937 0.2346 0.3026
ARFIMA 0.1727 0.1404 0.1911 0.2987 0.2373 0.3043
ARFIMAX 0.1709 0.1397 0.1907 0.2936 0.2340† 0.3024†
Random walk 0.1722 0.1402 0.1902 0.2981 0.2371 0.3038

Note: The mean absolute forecast error (MAE) and the root mean squared forecast error (RMSE)
de�ned in equations (39) and (40), respectively, of both GARCH and IV models when ex post
squared returns measure true volatility are reported. All numbers are multiplied by 103. * denotes
the lowest forecast error. † denotes the lowest forecast error among the IV models.
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Table 9: MAE and RMSE using realized variance measure of true volatility

MAE RMSE
S&P500 DJIA Nasdaq100 S&P500 DJIA Nasdaq100

EWMA 0.0809 0.0714 0.0945 0.1495 0.1394 0.1542
GARCH 0.0796 0.0710 0.1016 0.1461 0.1365 0.1551
GARCH-IV 0.0777 0.0667 0.0974 0.1367 0.1288 0.1414
GJR 0.0763 0.0689 0.1004 0.1429 0.1337 0.1532
GJR-IV 0.0740 0.0661 0.0962 0.1332 0.1254 0.1409*
EGARCH 0.0679* 0.0637 0.0933* 0.1341 0.1289 0.1459
EGARCH-IV 0.0725 0.0634* 0.0950 0.1313* 0.1241* 0.1412
CGARCH 0.0808 0.0729 0.1036 0.1473 0.1458 0.1582
CGARCH-IV 0.0782 0.0664 0.0976 0.1449 0.1307 0.1500
ACGARCH 0.0807 0.0719 0.1035 0.1593 0.1439 0.1632
ACGARCH-IV 0.0778 0.0659 0.0979 0.1357 0.1288 0.1517
ARMA 0.1180 0.0945 0.1453 0.1591 0.1396 0.1807
ARMAX 0.1167† 0.0940 0.1449 0.1562† 0.1380 0.1793
ARIMA 0.1183 0.0946 0.1442 0.1600 0.1401 0.1798
ARIMAX 0.1169 0.0939† 0.1440† 0.1569 0.1384 0.1788
ARFIMA 0.1184 0.0947 0.1455 0.1593 0.1398 0.1801
ARFIMAX 0.1171 0.0942 0.1451 0.1558 0.1377† 0.1786†
Random walk 0.1178 0.0942 0.1445 0.1588 0.1388 0.1802

Note: The mean absolute forecast error (MAE) and the root mean squared forecast error (RMSE)
de�ned in equations (39) and (40), respectively, of both GARCH and IV models when realized
variance measure true volatility are reported. All numbers are multiplied by 103. * denotes the
lowest forecast error. † denotes the lowest forecast error among the IV models.
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Table 10: Out-of-sample predictive power for alternative forecasts using ex post squared returns
measure of true volatility

Models adj −R2

S&P500 DJIA Nasdaq100

GARCH 0.1348 0.1370 0.0983

GARCH-IV 0.1771 0.1689 0.1600

GJR 0.1720 0.1744 0.1296

GJR-IV 0.2090* 0.2090* 0.1846*

EGARCH 0.1699 0.1722 0.1158

EGARCH-IV 0.2037 0.2014 0.1768

CGARCH 0.1305 0.1152 0.1007

CGARCH-IV 0.1730 0.1709 0.1603

ACGARCH 0.1202 0.1249 0.0974

ACGARCH-IV 0.1790 0.1750 0.1570

ARMA 0.1743 0.1693 0.1573

ARMAX 0.2047 0.1909 0.1673

ARIMA 0.1697 0.1660 0.1544

ARIMAX 0.2030 0.1880 0.1657

ARFIMA 0.1734 0.1690 0.1572

ARFIMAX 0.2051 0.1935 0.1675

RW: IVt−1 0.1767 0.1707 0.1588

Note: Entries are the adjusted R2 values from the Mincer-Zarnowitz regression described in equation
(41) when the ex post squared daily returns measure the true volatility. * denotes the highest
adjusted R2 value.
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Table 11: Out-of-sample predictive power of daily volatility forecasts using realized variance measure
of true volatility

Models adj −R2

S&P500 DJIA Nasdaq100

GARCH 0.3207 0.2771 0.1946

GARCH-IV 0.3786 0.3447 0.2970

GJR 0.3849 0.3368 0.2416

GJR-IV 0.4387* 0.3888* 0.3406*

EGARCH 0.3797 0.3355 0.2018

EGARCH-IV 0.4303 0.3877 0.3197

CGARCH 0.3135 0.2163 0.1985

CGARCH-IV 0.3613 0.3293 0.2852

ACGARCH 0.2567 0.2317 0.1617

ACGARCH-IV 0.3900 0.3593 0.2943

ARMA 0.3960 0.3541 0.3072

ARMAX 0.4197 0.3684 0.3179

ARIMA 0.3884 0.3488 0.3017

ARIMAX 0.4161 0.3657 0.3163

ARFIMA 0.3921 0.3518 0.3074

ARFIMAX 0.4206 0.3709 0.3196

RW: IVt−1 0.4060 0.3656 0.3106

Note: Entries are the adjusted R2 values from the Mincer-Zarnowitz regression described in equation
(41) when the realized variance measures the true volatility. * denotes the highest adjusted R2 value.
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Table 12: Forecast encompassing regression results for the S&P500 index using ex post squared
returns measure of true volatility

a0 a1 a2 adj −R2

GARCH & ARMA −6.39 ∗ 10−5

(0.001)
* 0.0211

(0.900)
1.0008
(0.000)

* 0.1732

GARCH-IV & ARMA −4.64 ∗ 10−5

(0.035)
** 1.4168

(0.104)
−0.0974
(0.888)

0.1762

GJR & ARMAX −8.09 ∗ 10−5

(0.000)
* 0.0222

(0.895)
1.0883
(0.000)

* 0.2036

GJR-IV & ARMAX −4.97 ∗ 10−5

(0.018)
** 0.6081

(0.001)
* 0.5092

(0.011)
** 0.2147

EGARCH & ARMAX −9.17 ∗ 10−5

(0.000)
* −0.2307

(0.356)
1.3046
(0.000)

* 0.2045

EGARCH-IV & ARMAX −5.99 ∗ 10−5

(0.005)
* 0.5653

(0.039)
** 0.5971

(0.022)
** 0.2081

CGARCH & ARIMA −6.18 ∗ 10−5

(0.002)
* −0.0053

(0.975)
1.0080
(0.000)

* 0.1686

CGARCH & ARFIMA −6.81 ∗ 10−5

(0.001)
* −0.0272

(0.870)
1.0546
(0.000)

* 0.1723

CGARCH-IV & ARIMA −2.81 ∗ 10−5

(0.294)
0.5948
(0.027)

** 0.3925
(0.171)

0.1740

CGARCH-IV & ARFIMA −3.89 ∗ 10−5

(0.118)
0.4718
(0.078)

* 0.5380
(0.065)

*** 0.1757

ACGARCH & ARIMAX −8.35 ∗ 10−5

(0.000)
* −0.1058

(0.386)
1.1902
(0.000)

* 0.2027

ACGARCH & ARFIMAX −9.12 ∗ 10−5

(0.000)
* −0.0868

(0.467)
1.2167
(0.000)

* 0.2046

ACGARCH-IV & ARIMAX −0.00011
(0.000)

* −2.3353
(0.000)

* 2.9451
(0.000)

* 0.2183

ACGARCH-IV & ARFIMAX −0.00013
(0.000)

* −2.2897
(0.000)

* 3.0072
(0.000)

* 0.2213†

GARCH & IVt−1 −6.04 ∗ 10−5

(0.002)
* 0.0306

(0.850)
0.9737
(0.000)

* 0.1757

GARCH-IV & IVt−1 −5.41 ∗ 10−5

(0.008)
* 0.7710

(0.410)
0.4072
(0.574)

0.1764

GJR & IVt−1 −3.70 ∗ 10−5

(0.082)
*** 0.3973

(0.021)
** 0.5958

(0.002)
* 0.1814

GJR-IV & IVt−1 −7.47 ∗ 10−6

(0.716)
1.0893
(0.000)

* −0.0523
(0.798)

0.2081

EGARCH & IVt−1 −4.66 ∗ 10−5

(0.25)
** 0.4059

(0.122)
0.6697
(0.003)

* 0.1782

EGARCH-IV & IVt−1 −4.20 ∗ 10−6

(0.847)
1.7699
(0.000)

* −0.5817
(0.054)

*** 0.2065

CGARCH & IVt−1 −6.19 ∗ 10−5

(0.001)
* −0.0236

(0.883)
1.0193
(0.000)

* 0.1757

CGARCH-IV & IVt−1 −4.21 ∗ 10−5

(0.062)
*** 0.3742

(0.140)
0.6261
(0.018)

** 0.1780

ACGARCH & IVt−1 −5.89 ∗ 10−5

(0.002)
* 0.0772

(0.522)
0.9337
(0.000)

* 0.1761

ACGARCH-IV & IVt−1 −4.48 ∗ 10−5

(0.039)
** 1.5215

(0.142)
−0.1871
(0.818)

0.1780

Note: Entries are the estimated coe�cients, their p-values in parentheses and the adjusted R2

values from the encompassing regression described in equation (42) when the ex post squared daily
returns measure the true volatility. *, ** and *** denote signi�cance at the 1% level. A signi�cant
p-value indicates that the forecast under consideration is not encompassed by the alternative model,
† denotes the highest adjusted R2 value.
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Table 13: Forecast encompassing regression results for the DJIA index using ex post squared returns
measure of true volatility

a0 a1 a2 adj −R2

GARCH & ARMA −4.38 ∗ 10−5

(0.004)
** 0.1043

(0.531)
0.8966
(0.000)

* 0.1687

GARCH-IV & ARMA −4.17 ∗ 10−5

(0.011)
** 0.5299

(0.489)
0.5712
(0.346)

0.1688

GJR & ARMAX −4.26 ∗ 10−5

(0.012)
** 0.2611

(0.085)
*** 0.7740

(0.000)
* 0.1930

GJR-IV & ARMAX −2.54 ∗ 10−5

(0.118)
0.7744
(0.000)

* 0.2844
(0.135)

0.2103†

EGARCH & ARMAX −5.06 ∗ 10−5

(0.001)
* 0.1874

(0.404)
0.8911
(0.000)

* 0.1906

EGARCH-IV & ARMAX −3.27 ∗ 10−5

(0.046)
** 0.8637

(0.001)
* 0.2637

(0.239)
0.2018

CGARCH & ARIMA −4.25 ∗ 10−5

(0.005)
* 0.0561

(0.663)
0.9230
(0.000)

* 0.1647

CGARCH & ARFIMA −4.66 ∗ 10−5

(0.003)
* 0.0380

(0.766)
0.9612
(0.000)

* 0.1680

CGARCH-IV & ARIMA −1.97 ∗ 10−5

(0.274)
0.7436
(0.017)

** 0.2742
(0.443)

0.1707

CGARCH-IV & ARFIMA −2.70 ∗ 10−5

(0.145)
0.5978
(0.055)

*** 0.4256
(0.163)

0.1720

ACGARCH & ARIMAX −5.33 ∗ 10−5

(0.000)
* 0.0068

(0.957)
1.0277
(0.000)

* 0.1869

ACGARCH & ARFIMAX −6.04 ∗ 10−5

(0.000)
* −0.0091

(0.941)
1.0834
(0.000)

* 0.1925

ACGARCH-IV & ARIMAX −5.05 ∗ 10−5

(0.004)
* 0.0880

(0.748)
0.9499
(0.000)

* 0.1870

ACGARCH-IV & ARFIMAX −6.20 ∗ 10−5

(0.001)
* −0.0483

(0.663)
1.1224
(0.000)

* 0.1925

GARCH & IVt−1 −4.06 ∗ 10−5

(0.007)
* 0.1256

(0.433)
0.8592
(0.000)

* 0.1702

GARCH-IV & IVt−1 −4.23 ∗ 10−5

(0.007)
* 0.1001

(0.912)
0.8869
(0.204)

0.1696

GJR & IVt−1 −1.93 ∗ 10−5

(0.239)
0.4905
(0.002)

* 0.4566
(0.009)

* 0.1806

GJR-IV & IVt−1 −1.90 ∗ 10−6

(0.905)
1.1159
(0.000)

* −0.1171
(0.543)

0.2083

EGARCH & IVt−1 −2.66 ∗ 10−5

(0.097)
*** 0.5900

(0.011)
** 0.4692

(0.025)
** 0.1766

EGARCH-IV & IVt−1 3.95 ∗ 10−7

(0.981)
1.7068
(0.000)

* −0.5287
(0.050)

** 0.2044

CGARCH & IVt−1 −4.17 ∗ 10−5

(0.005)
* 0.0670

(0.586)
0.9082
(0.000)

* 0.1699

CGARCH-IV & IVt−1 −2.77 ∗ 10−5

(0.104)
0.5279
(0.076)

*** 0.4815
(0.088)

*** 0.1730

ACGARCH & IVt−1 −4.01 ∗ 10−5

(0.007)
* 0.1367

(0.270)
0.8488
(0.000)

* 0.1709

ACGARCH-IV & IVt−1 −2.09 ∗ 10−5

(0.234)
0.6858
(0.023)

** 0.3211
(0.3211)

0.1752

Note: As Table 12.
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Table 14: Forecast encompassing regression results for the Nasdaq100 index using ex post squared
returns measure of true volatility

a0 a1 a2 adj −R2

GARCH & ARMA −6.03 ∗ 10−5

(0.004)
* −0.2049

(0.239)
1.1629
(0.000)

* 0.1577

GARCH-IV & ARMA −9.04 ∗ 10−5

(0.788)
3.0665
(0.051)

*** −1.5663
(0.236)

0.1604

GJR & ARMAX −6.91 ∗ 10−5

(0.000)
* −0.0354

(0.851)
1.0760
(0.000)

* 0.1662

GJR-IV & ARMAX −4.15 ∗ 10−5

(0.056)
*** 1.1037

(0.000)
* 0.0745

(0.771)
0.1858†

EGARCH & ARMAX −6.93 ∗ 10−5

(0.000)
* −0.2314

(0.266)
1.2165
(0.000)

* 0.1675

EGARCH-IV & ARMAX −3.92 ∗ 10−5

(0.087)
*** 1.0543

(0.003)
* 0.1114

(0.731)
0.1759

CGARCH & ARIMA −5.96 ∗ 10−5

(0.005)
* −0.1536

(0.363)
1.1294
(0.000)

* 0.1542

CGARCH & ARFIMA −6.46 ∗ 10−5

(0.002)
* −0.1408

(0.391)
1.1352
(0.000)

* 0.1569

CGARCH-IV & ARIMA −1.23 ∗ 10−5

(0.672)
0.9800
(0.022)

** 0.0318
(0.941)

0.1592

CGARCH-IV & ARFIMA −2.66 ∗ 10−5

(0.367)
0.7401
(0.072)

*** 0.2821
(0.499)

0.1597

ACGARCH & ARIMAX −6.63 ∗ 10−5

(0.001)
* −0.1341

(0.361)
1.1446
(0.000)

* 0.1656

ACGARCH & ARFIMAX −7.39 ∗ 10−5

(0.000)
* −0.1170

(0.416)
1.1604
(0.000)

* 0.1672

ACGARCH-IV & ARIMAX −6.67 ∗ 10−5

(0.018)
* −0.0191

(0.957)
1.0571
(0.001)

* 0.1646

ACGARCH-IV & ARFIMAX −7.54 ∗ 10−5

(0.007)
* −0.0416

(0.901)
1.1093
(0.002)

* 0.1665

GARCH & IVt−1 −5.79 ∗ 10−5

(0.005)
* −0.2031

(0.238)
1.1547
(0.000)

* 0.1592

GARCH-IV & IVt−1 −3.15 ∗ 10−5

(0.325)
1.8640
(0.271)

−0.5481
(0.698)

0.1590

GJR & IVt−1 −5.71 ∗ 10−5

(0.006)
* 0.0858

(0.648)
0.9285
(0.000)

* 0.1579

GJR-IV & IVt−1 −2.85 ∗ 10−5

(0.179)
1.4066
(0.000)

* −0.2193
(0.397)

0.1843

EGARCH & IVt−1 −5.87 ∗ 10−5

(0.005)
* −0.1112

(0.595)
1.0822
(0.000)

* 0.1580

EGARCH-IV & IVt−1 −1.54 ∗ 10−6

(0.499)
1.7028
(0.000)

* −0.4921
(0.168)

0.1778

CGARCH & IVt−1 −5.90 ∗ 10−5

(0.004)
* −0.1570

(0.338)
1.1258
(0.000)

* 0.1587

CGARCH-IV & IVt−1 −3.11 ∗ 10−5

(0.260)
0.6225
(0.133)

0.3946
(0.338)

0.1602

ACGARCH & IVt−1 −5.86 ∗ 10−5

(0.005)
* −0.0572

(0.693)
1.0461
(0.000)

* 0.1578

ACGARCH-IV & IVt−1 −3.91 ∗ 10−5

(0.158)
0.3790
(0.293)

0.6111
(0.099)

*** 0.1589

Note: As Table 12.
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Table 15: Forecast encompassing regression results for the S&P500 index using realized variance
measure of true volatility

a0 a1 a2 adj −R2

GARCH & ARMA −4.56 ∗ 10−5

(0.000)
* 0.0854

(0.254)
0.7286
(0.000)

* 0.3962

GARCH-IV & ARMA −6.32 ∗ 10−5

(0.000)
* −1.1479

(0.003)
* 1.7076

(0.000)
* 0.4020

GJR & ARMAX −4.10 ∗ 10−5

(0.000)
* 0.1939

(0.011)
** 0.6288

(0.000)
* 0.4239

GJR-IV & ARMAX −2.63 ∗ 10−5

(0.004)
* 0.5151

(0.000)
* 0.3222

(0.000)
* 0.4477†

EGARCH & ARMAX −4.91 ∗ 10−5

(0.000)
* 0.1215

(0.278)
0.7308
(0.000)

* 0.4198

EGARCH-IV & ARMAX −3.15 ∗ 10−5

(0.000)
* 0.5651

(0.000)
* 0.3181

(0.006)
* 0.4352

CGARCH & ARIMA −4.42 ∗ 10−5

(0.000)
* 0.0692

(0.363)
0.7328
(0.000)

* 0.3882

CGARCH & ARFIMA −4.75 ∗ 10−5

(0.000)
* 0.0669

(0.370)
0.7508
(0.000)

* 0.3920

CGARCH-IV & ARIMA −4.41 ∗ 10−5

(0.000)
* 0.0432

(0.721)
0.3893
(0.000)

* 0.3877

CGARCH-IV & ARFIMA −5.00 ∗ 10−5

(0.000)
* −0.00063

(0.996)
0.8108
(0.000)

* 0.3913

ACGARCH & ARIMAX −5.37 ∗ 10−5

(0.000)
* −0.0470

(0.390)
0.8628
(0.000)

* 0.4159

ACGARCH & ARFIMAX −5.94 ∗ 10−5

(0.000)
* −0.0345

(0.517)
0.8837
(0.000)

* 0.4202

ACGARCH-IV & ARIMAX −6.05 ∗ 10−5

(0.000)
* −0.6735

(0.011)
** 1.3543

(0.000)
* 0.4203

ACGARCH-IV & ARFIMAX −7.11 ∗ 10−5

(0.000)
* −0.7448

(0.003)
1.4604
(0.000)

* 0.4266

GARCH & IVt−1 −4.46 ∗ 10−5

(0.000)
* 0.0730

(0.310)
0.7304
(0.000)

* 0.4060

GARCH-IV & IVt−1 −6.99 ∗ 10−5

(0.000)
* −2.4939

(0.000)
* 2.7074

(0.000)
* 0.4333

GJR & IVt−1 −3.08 ∗ 10−5

(0.001)
* 0.2590

(0.001)
* 0.2587

(0.000)
* 0.4141

GJR-IV & IVt−1 −1.66 ∗ 10−5

(0.066)
*** 0.6071

(0.000)
* 0.2057

(0.022)
* 0.4419

EGARCH & IVt−1 −3.87 ∗ 10−5

(0.000)
* 0.2186

(0.061)
*** 0.6143

(0.000)
* 0.4079

EGARCH-IV & IVt−1 −1.61 ∗ 10−5

(0.000)
* 0.8253

(0.000)
* 0.0545

(0.683)
0.4297

CGARCH & IVt−1 −4.54 ∗ 10−5

(0.000)
* 0.0424

(0.553)
0.7560
(0.000)

* 0.4055

CGARCH-IV & IVt−1 −5.20 ∗ 10−5

(0.000)
* −0.1051

(0.352)
0.8966
(0.000)

* 0.4059

ACGARCH & IVt−1 −4.66 ∗ 10−5

(0.000)
* 6.89 ∗ 10−5

(0.999)
0.7917
(0.000)

* 0.4052

ACGARCH-IV & IVt−1 −6.46 ∗ 10−5

(0.000)
* −1.6572

(0.000)
* 2.0841

(0.000)
* 0.4153

Note: Entries are the estimated coe�cients, their p-values in parentheses and the adjusted R2 values
from the encompassing regression described in equation (42) when the realized variance measures
the true volatility. *, ** and *** denote signi�cance at the 1% level. A signi�cant p-value indicates
that the forecast under consideration is not encompassed by the alternative model, † denotes the
highest adjusted R2 value.
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Table 16: Forecast encompassing regression results for the DJIA index using realized variance
measure of true volatility

a0 a1 a2 adj −R2

GARCH & ARMA −3.76 ∗ 10−5

(0.000)
* 0.0345

(0.706)
0.8519
(0.000)

* 0.3534

GARCH-IV & ARMA −4.11 ∗ 10−5

(0.000)
* −0.3138

(0.454)
1.1277
(0.001)

* 0.3537

GJR & ARMAX −2.99 ∗ 10−5

(0.001)
* 0.2249

(0.007)
* 0.6641

(0.000)
* 0.3736

GJR-IV & ARMAX −1.89 ∗ 10−5

(0.032)
** 0.5713

(0.000)
* 0.3372

(0.001)
* 0.3966†

EGARCH & ARMAX −3.59 ∗ 10−5

(0.000)
* 0.1917

(0.118)
0.7388
(0.000)

* 0.3696

EGARCH-IV & ARMAX −2.17 ∗ 10−5

(0.014)
** 0.7307

(0.000)
* 0.2534

(0.052)
*** 0.3899

CGARCH & ARIMA −3.82 ∗ 10−5

(0.000)
* −0.0656

(0.351)
0.9278
(0.000)

* 0.3487

CGARCH & ARFIMA −4.10 ∗ 10−5

(0.000)
* −0.0690

(0.324)
0.9468
(0.000)

* 0.3518

CGARCH-IV & ARIMA −3.41 ∗ 10−5

(0.001)
* 0.0801

(0.640)
0.7961
(0.000)

* 0.3482

CGARCH-IV & ARFIMA −3.83 ∗ 10−5

(0.000)
* 0.0292

(0.864)
0.8588
(0.000)

* 0.3510

ACGARCH & ARIMAX −4.09 ∗ 10−5

(0.000)
* −0.0431

(0.530)
0.9287
(0.000)

* 0.3652

ACGARCH & ARFIMAX −4.56 ∗ 10−5

(0.000)
* −0.0405

(0.548)
0.9561
(0.000)

* 0.3703

ACGARCH-IV & ARIMAX −3.27 ∗ 10−5

(0.001)
* 0.2103

(0.161)
0.6913
(0.000)

* 0.3665

ACGARCH-IV & ARFIMAX −3.85 ∗ 10−5

(0.001)
* 0.1590

(0.271)
0.7658
(0.000)

* 0.3710

GARCH & IVt−1 −3.67 ∗ 10−5

(0.000)
* 0.0202

(0.815)
0.8545
(0.000)

* 0.3648

GARCH-IV & IVt−1 −4.91 ∗ 10−5

(0.000)
* −2.1207

(0.000)
* 2.4926

(0.000)
* 0.3804

GJR & IVt−1 −2.56 ∗ 10−5

(0.004)
* 0.2374

(0.005)
* 0.6261

(0.000)
* 0.3714

GJR-IV & IVt−1 −1.49 ∗ 10−5

(0.082)
*** 0.6017

(0.000)
* 0.2887

(0.006)
* 0.3941

EGARCH & IVt−1 −3.15 ∗ 10−5

(0.000)
* 0.1990

(0.115)
0.7046
(0.000)

* 0.3668

EGARCH-IV & IVt−1 −1.54 ∗ 10−5

(0.082)
*** 0.8539

(0.000)
* 0.1249

(0.395)
0.3874

CGARCH & IVt−1 −3.81 ∗ 10−5

(0.000)
* −0.0619

(0.353)
0.9224
(0.000)

* 0.3655

CGARCH-IV & IVt−1 −4.16 ∗ 10−5

(0.000)
* −0.1601

(0.352)
1.0175
(0.000)

* 0.3656

ACGARCH & IVt−1 −3.74 ∗ 10−5

(0.000)
* −0.0175

(0.794)
0.3665
(0.000)

* 0.3648

ACGARCH-IV & IVt−1 −3.18 ∗ 10−5

(0.001)
* 0.1636

(0.318)
0.7181
(0.000)

* 0.3656

Note: As Table 15.
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Table 17: Forecast encompassing regression results for the Nasdaq100 index using realized variance
measure of true volatility

a0 a1 a2 adj −R2

GARCH & ARMA −4.00 ∗ 10−5

(0.000)
* −0.1043

(0.096)
*** 0.6378

(0.000)
* 0.3088

GARCH-IV & ARMA −8.02 ∗ 10−5

(0.000)
* −2.4014

(0.000)
* 2.5724

(0.000)
* 0.3227

GJR & ARMAX −4.37 ∗ 10−5

(0.000)
* −0.0436

(0.521)
0.6098
(0.000)

* 0.3174

GJR-IV & ARMAX −3.03 ∗ 10−5

(0.000)
* 0.5167

(0.000)
* 0.1176

(0.000)
* 0.3412†

EGARCH & ARMAX −4.38 ∗ 10−5

(0.000)
* −0.2324

(0.002)
* 0.7439

(0.000)
* 0.3257

EGARCH-IV & ARMAX −3.34 ∗ 10−5

(0.000)
* 0.3424

(0.007)
* 0.2688

(0.022)
** 0.3235

CGARCH & ARIMA −3.96 ∗ 10−5

(0.000)
* −0.0805

(0.187)
0.6228
(0.000)

* 0.3024

CGARCH & ARFIMA −4.25 ∗ 10−5

(0.000)
* −0.0741

(0.210)
0.6268
(0.000)

* 0.3079

CGARCH-IV & ARIMA −4.44 ∗ 10−5

(0.000)
* −0.1119

(0.467)
0.6683
(0.000)

* 0.3013

CGARCH-IV & ARFIMA −5.21 ∗ 10−5

(0.000)
* −0.2047

(0.166)
0.7710
(0.000)

* 0.3082

ACGARCH & ARIMAX −4.24 ∗ 10−5

(0.000)
* −0.1628

(0.001)
0.6989
(0.000)

* 0.3240

ACGARCH & ARFIMAX −4.68 ∗ 10−5

(0.000)
* −0.1497

(0.004)
* 0.7053

(0.000)
* 0.3263

ACGARCH-IV & ARIMAX −4.71 ∗ 10−5

(0.000)
* −0.1034

(0.420)
0.6750
(0.000)

* 0.3160

ACGARCH-IV & ARFIMAX −5.16 ∗ 10−5

(0.000)
* −0.1022

(0.392)
0.6911
(0.000)

* 0.3194

GARCH & IVt−1 −3.88 ∗ 10−5

(0.000)
* −0.1049

(0.091)
*** 0.6350

(0.000)
* 0.3123

GARCH-IV & IVt−1 −9.51 ∗ 10−5

(0.000)
* −3.8683

(0.000)
* 3.7715

(0.000)
* 0.3408

GJR & IVt−1 −3.93 ∗ 10−5

(0.001)
* −0.0108

(0.874)
0.5650
(0.000)

* 0.3097

GJR-IV & IVt−1 −2.64 ∗ 10−5

(0.001)
* 0.5962

(0.000)
* 0.0385

(0.678)
0.3399

EGARCH & IVt−1 −3.93 ∗ 10−5

(0.000)
* −0.2023

(0.007)
* 0.7029

(0.000)
* 0.3163

EGARCH-IV & IVt−1 −2.70 ∗ 10−5

(0.001)
* 0.4791

(0.001)
* 0.1356

(0.293)
0.3197

CGARCH & IVt−1 −3.93 ∗ 10−5

(0.000)
* −0.0832

(0.158)
0.6218
(0.000)

* 0.3115

CGARCH-IV & IVt−1 −5.17 ∗ 10−5

(0.000)
* −0.2855

(0.056)
*** 0.8341

(0.000)
* 0.3130

ACGARCH & IVt−1 −3.93 ∗ 10−5

(0.000)
* −0.1335

(0.010)
** 0.6600

(0.000)
* 0.3156

ACGARCH-IV & IVt−1 −3.98 ∗ 10−5

(0.000)
* −0.0135

(0.917)
0.5695
(0.000)

* 0.3097

Note: As Table 15.
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Table 18: Summary of 1% and 5% VaR failure rates of forecast encompassing regressions when
squared returns is the measure of true volatility

1% 5%

Ave. failure rate Sig. Kupiec test Sig. DQ test Ave. failure rate Sig. Kupiec test Sig. DQ test

GARCH & ARMA 0.0241 All All 0.0622 None None

GARCH-IV & ARMA 0.0249 All All 0.0612 None None

GJR & ARMAX 0.0232 S&P, Nasdaq S&P, Nasdaq 0.0631 S&P S&P

GJR-IV & ARMAX 0.0215 S&P, Nasdaq S&P, Nasdaq 0.0600 None None

EGARCH & ARMAX 0.0232 S&P S&P 0.0613 S&P S&P

EGARCH-IV & ARMAX 0.0259 All All 0.0617 None None

CGARCH & ARIMA 0.0241 All All 0.0604 None None

CGARCH & ARFIMA 0.0245 All All 0.0626 S&P S&P

CGARCH-IV & ARIMA 0.0219 S&P, Nasdaq S&P, Nasdaq 0.0604 None None

CGARCH-IV & ARFIMA 0.0219 S&P, Nasdaq S&P, Nasdaq 0.0613 None None

ACGARCH & ARIMAX 0.0249 S&P, Nasdaq S&P, Nasdaq 0.0609 S&P S&P

ACGARCH & ARFIMAX 0.0259 S&P, Nasdaq S&P, Nasdaq 0.0618 S&P S&P

ACGARCH-IV & ARIMAX 0.0188 Nasdaq Nasdaq 0.0530 None None

ACGARCH-IV & ARFIMAX 0.0215 S&P, Nasdaq S&P, Nasdaq 0.0552 None None

GARCH & IVt−1 0.0245 All All 0.0609 None S&P

GARCH-IV & IVt−1 0.0245 All All 0.0600 None None

GJR & IVt−1 0.0228 S&P, Nasdaq S&P, Nasdaq 0.0600 None None

GJR-IV & IVt−1 0.0241 All All 0.0569 None None

EGARCH & IVt−1 0.0246 All All 0.0600 None None

EGARCH-IV & IVt−1 0.0298 All All 0.0618 None None

CGARCH & IVt−1 0.0232 All All 0.0604 None None

CGARCH-IV & IVt−1 0.0232 All All 0.0622 None None

ACGARCH & IVt−1 0.0241 All All 0.0614 S&P S&P

ACGARCH-IV & IVt−1 0.0249 All All 0.0622 S&P S&P

Note: Entries are the average failure rate of the forecasts encompassing regressions. The series for
which the Kupiec test for the equality of the empirical failure rate at a speci�ed statistical level
and the DQ test for the autocorrelation in VaR violations are signi�cant are listed.
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Table 19: Summary of 1% and 5% VaR failure rates of forecast encompassing regressions when
realized variance is the measure of true volatility

1% 5%

Ave. failure rate Sig. Kupiec test Sig. DQ test Ave. failure rate Sig. Kupiec test Sig. DQ test

GARCH & ARMA 0.0386 All All 0.0823 S&P, Nasdaq S&P, Nasdaq

GARCH-IV & ARMA 0.0425 All All 0.0824 S&P, Nasdaq S&P, Nasdaq

GJR & ARMAX 0.0359 S&P, Nasdaq S&P, Nasdaq 0.0784 S&P, Nasdaq S&P, Nasdaq

GJR-IV & ARMAX 0.0355 S&P, Nasdaq S&P, Nasdaq 0.0758 S&P, Nasdaq None

EGARCH & ARMAX 0.0364 S&P500 S&P500 0.0832 S&P, Nasdaq S&P, Nasdaq

EGARCH-IV & ARMAX 0.0363 All All 0.0766 Nasdaq Nasdaq

CGARCH & ARIMA 0.0394 All All 0.0835 S&P, Nasdaq S&P, Nasdaq

CGARCH & ARFIMA 0.0399 All All 0.0837 S&P, Nasdaq S&P, Nasdaq

CGARCH-IV & ARIMA 0.0421 All All 0.0828 S&P, Nasdaq S&P, Nasdaq

CGARCH-IV & ARFIMA 0.0421 All All 0.0854 S&P, Nasdaq S&P, Nasdaq

ACGARCH & ARIMAX 0.0359 S&P, Nasdaq S&P, Nasdaq 0.0797 S&P, Nasdaq S&P, Nasdaq

ACGARCH & ARFIMAX 0.0351 S&P, Nasdaq S&P, Nasdaq 0.0810 S&P, Nasdaq S&P, Nasdaq

ACGARCH-IV & ARIMAX 0.0332 S&P, Nasdaq S&P, Nasdaq 0.0775 Nasdaq Nasdaq

ACGARCH-IV & ARFIMAX 0.0328 S&P, Nasdaq S&P, Nasdaq 0.0788 Nasdaq Nasdaq

GARCH & IVt−1 0.0386 All All 0.0832 S&P, Nasdaq S&P, Nasdaq

GARCH-IV & IVt−1 0.0390 All All 0.0810 S&P, Nasdaq S&P, Nasdaq

GJR & IVt−1 0.0390 All All 0.0815 S&P, Nasdaq S&P, Nasdaq

GJR-IV & IVt−1 0.0399 All All 0.0775 S&P, Nasdaq Nasdaq100

EGARCH & IVt−1 0.0386 All All 0.0845 S&P, Nasdaq S&P, Nasdaq

EGARCH-IV & IVt−1 0.0381 All All 0.0789 S&P, Nasdaq S&P, Nasdaq

CGARCH & IVt−1 0.0386 All All 0.0837 S&P, Nasdaq S&P, Nasdaq

CGARCH-IV & IVt−1 0.0416 All All 0.0854 S&P, Nasdaq S&P, Nasdaq

ACGARCH & IVt−1 0.0390 All All 0.0832 S&P, Nasdaq S&P, Nasdaq

ACGARCH-IV & IVt−1 0.0399 All All 0.0817 S&P, Nasdaq S&P, Nasdaq

Note: Entries are the average failure rate of the forecasts encompassing regressions. The series for
which the Kupiec test for the equality of the empirical failure rate at a speci�ed statistical level
and the DQ test for the autocorrelation in VaR violations are signi�cant are listed.
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3 Forecasting stock return volatility: Further international

evidence

In this study, I repeat the analysis of Chapter 2 in order to investigate whether the implied

volatility forecast is a good predictor of stock market volatility when European data are examined.

for this purpose, six European indices - EURO STOXX, CAC40, DAX30, AEX, SMI, FTSE100

- and their IV indices are used. The results are consistent with those obtained for the US data

suggesting that an ARMAX model is the best model for modelling and forecasting IV. Moreover,

implied volatility forecast is a good predictor of future volatility and a model which includes the

information contained in an asymmetric GARCH and the information contained in IV through an

asymmetric ARMA model is the best for predicting future stock market volatility.

3.1 Introduction

Volatility forecasting has received extensive attention in literature. Since the construction of

the VIX index by CBOE in 1993, the IV indices have mushroomed. Te IV indices have been

used in the continuing debate of �nding the model that produces the most accurate volatility

forecast. The question whether IV contains incremental information relevant to future volatility

beyond that captured in GARCH model forecasts has been extensively analyzed. While there is

an extensive literature addressing this issue using US data, there are few evidence using data from

other international stock markets.10

For example, Claessen & Mittnik (2002), for the stock market of Germany an the DAX index,

�nd that IV derived from time series models contains all the information useful in predicting future

volatility. Frijns et al. (2010) and Yang & Liu (2012) examine the stock markets of Australia and

Taiwan respectively, and they �nd that IV contains additional information about future volatility.

On the other hand, the predictability of IV itself have received little attention.11 To the best of my

knowledge, Konstantinidi et al. (2008) is the only study that provide international evidence on this

10For a more complete literature review, see Chapter 3, Section 2.
11For a literature review, see Chapter 3, Section 2.
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issue. They examine four American implied volatility indices (VIX, VXO, VXN, VXD) and three

European (VDAX, VCAC, VSTOXX) performing a horse race among alternative models and �nd

that there is a predictable pattern in the dynamics of IV indices.

The aim of this study is to repeat the analysis of Chapter 3 using six European indices -

EURO STOXX, CAC40, DAX30, AEX, SMI, FTSE100 - and their IV indices in order to check

the robustness of the obtained results. I address the question whether IV can be forecasted. In an

MZ regression framework, I attempt to answer whether the IV forecast is a good predictor of stock

index return volatility.

The remainder of the chapter is structured as follows. In the next Section, the dataset is

described. Section 3.3 presents both the in-sample and out-of-sample performance of the models.

The last Section concludes.

3.2 Data and Empirical Methodology

The dataset used in estimating and forecasting exercise consists of the daily closing price data

for six European indices and their IV indices over the period February 2, 2001 to February 28, 2013,

as in Chapter 3. The in-sample period is again from February 2, 2001 to February 23, 2010 and the

remaining period, from February 24, 2010 to February 28, 2013, is reserved for the out-of-sample

evaluation. More speci�cally, the stock indices are the EURO STOXX, CAC40, DAX30, AEX,

SMI, FTSE100 and their IV indices are VSTOXX, VCAC, VDAX, VAEX, VSMI, VFTSE100,

respectively. Both the ex post daily squared returns and the realized variance12 are used as proxies

for the true volatility.

The price indices are converted to returns by calculating the prices log di�erence. Figure 2

shows clearly that returns are centered around zero with their amplitude to vary over time showing

evidence of volatility clustering. The summary statistics of the returns are presented in Table 20

for the full sample and Table 21 for the in-sample period. The mean and median are consistent and

close to zero. As the skewness is concerned, for the STOXX and CAC the skewness value is positive

12I obtain the daily realized variances from Realized Library version 0.2 of the Oxford-Man Institute of Quantitative
Finance Heber et al. (2009). These realized variances are based on the sum of 5-minute intra-day squared returns.
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in both tables indicating asymmetric distributions skewed to the right, while AEX and FTSE100

returns are skewed to the left. DAX and SMI returns' skewness is negative for the full-sample and

positive in-sample. Looking at the kurtosis value both tables show the leptokurtic characteristic

of all returns distributions. Finally, the Jarque-Bera test statistic for normality rejects the null

hypothesis that returns follow a normal distribution.

The IV indices have been constructed to measure the market's expectations of the underlying

index's volatility for the next 22 trading days. European markets encouraged by the success of

CBOE introducing VIX have developed several indices using the same methodology. Thus, EU-

REX and NYSE Euronext exchange have introduced VSTOXX, VDAX, VSMI and VCAC,VAEX,

VFTSE100, respectively. Table 22 show the summary statistics of the IV indices as well as the Aug-

mented Dickey-Fuller (ADF) test for unit roots. The p-values of the ADF test show that implied

volatility indices are stationary at the 1% level.

In this chapter, I follow the same empirical methodology of Chapter 313, because the aim of this

Chapter is to investigate whether the strong results obtained for the US indices hold for the EU

indices.

3.3 Empirical results

3.3.1 In-sample results

To consider whether an ARCH process appears in the innovation term sequence in return equa-

tion (rt = µ + εt)14 is the same as to identify the presence of conditional heteroskedasticity. The

squared residual series ε̂2t are conducted to test the conditional heteroskedasticity which is known

as ARCH e�ect. This is performed by testing for serial correlation in squared errors. The two

tests for conditional heteroskedasticity are carried out in this exercise are the Ljung-Box test and

the Lagrange Multiplier test. As referred to the Table 23, the Ljung-Box Q(m) statistics of all

return series are signi�cant with p-value equal to zero, which indicates that the squared residuals

are autocorrelated. In the same table, according to the Lagrange Multiplier the null hypothesis of
13More details for the methodology has been used can be found in Chapter 3, Subsection 3.2.
14For more details see Chapter 3, Subsection 3.2.
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homoskedasticity is clearly rejected at 1% signi�cant level, indicating the presence of ARCH e�ect

in all return series. These results provide justi�cation for the next stage in the analysis which

involves estimating the conditional variance using an ARCH process.

Table 24 show the in-sample performance of the alternative GARCH models. For all index

returns, the estimates of GARCH show that the coe�cients satisfy the non-negativity constraint.

The models are stationary, because the sum a1 + β1 is less than one, although close to unity.

This implies that shocks to volatility have a highly persistent e�ect on the conditional variance.

In GARCH-IV models, the IV is added as an exogenous variable in the variance equation. Both

the fact that the IV estimated coe�cient is signi�cantly di�erent from zero for all indices and the

value of the likelihood ratio test reject the null hypothesis that IV does not contain incremental

information other than the information contained in GARCH useful for explaining the conditional

variance.

In both GJR and GJR-IV models, the impact of the bad news a1+γ on the conditional variance is

much greater than the one of the good news, a1, indicating a substantial negative asymmetric e�ect.

When the information of the IV is added in the GJR-IV model, the log-likelihood is signi�cantly

higher than in the GJR model. Similar information can be extracted from the EGARCH and

EGARCH-IV models. The presence of the leverage e�ect in returns is captured by the coe�cient

γ which is signi�cantly less than zero. Once more, the presence of IV improves the model's �t

indicating that IV has incremental explanatory power for the conditional variance.

The usefulness of IV is also captured by comparing the CGARCH-IV and its asymmetric spec-

i�cation ACGARCH-IV with their restricted version. The stationarity constraints are satis�ed

implying that the long run index return conditional volatility will decay more slowly than the

transitory component of volatility. Moreover, the asymmetric e�ect in models ACGARCH and

ACGARCH-IV is captured by γ with negative news having greater e�ect on volatility because

γ > 0.

Diagnostic tests in the squared normalized residuals for all alternative GARCH speci�cations

are reported in Table 25. The value of skewness indicates asymmetric distributions skewed to the

left for all series. The kurtosis and the Jarque-Bera test have noticeably reduced in absolute values
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for all series compared to the statistics from the original return series in Table 21. According to

the Ljung-Box Q(7) statistic, the alternative GARCH speci�cations have considerably reduced the

intertemporal dependence of the squared standardized residuals. Nevertheless, the null hypothesis

of no autocorrelation is not rejected at the 1% level for all models and indices. Similar results

are obtained looking at the LM(7) test, where the null hypothesis of homoskedasticity cannot be

rejected at the 1% level in all cases.

Table 26 presents parameter estimates and the log-likelihood of the six ARMA models de�ned

in Chapter 3, Subsection 3.2. The AR(1) and MA(1) coe�cients are statistically signi�cant for all

models apart from the ARIMA model in VDAX indices. Focusing on the coe�cients of r+t and r−t ,

it is apparent that there is an asymmetric e�ect for all indices. In all cases, the coe�cient of r−t is

greater in absolute value than the coe�cient of r+t , which indicates that negative returns yield much

higher implied volatility than positive ones. In the table, negative coe�cients are reported for both

contemporaneous positive and negative returns. Hence, contemporaneous positive returns reduce

IV, while negative contemporaneous returns raise the IV. Focusing on the ARFIMA(X) models, the

fractional integration parameter d is signi�cant at 1% level throughout and lies between 0 < d < 0.5

implying that IV exhibits long memory. Finally, According to the log-likelihood, the inclusion of

both positive and negative returns improves the model's �t. An ARMAX and an ARIMAX model

performs best for the VSTOXX, VDAX, VAEX and VCAC, VSMI,VFTSE100, respectively.

3.3.2 Out-of-sample results

Regarding the forecast of the implied volatility models, Table 27 reports the Diebold-Mariano

(DM) test in order to address the question whether the dynamics of implied volatility per se can

be forecasted. The DM test uses the MSE and MAE criteria in order to assess the predictive

ability of each ARMA forecasting model against the benchmark random walk process. The null

hypothesis of equal predictive ability is tested against the alternative hypothesis that random walk

is outperformed by the ARMA models. There are 42 cases(out of 72) in which we reject the null

hypothesis of equal predictability. Therefore, in 58.33% of the di�erent possible combinations of IV

and predictability measures an ARMA type models performs better than the random walk. This
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indicates that there is a predictable pattern in the dynamics of implied volatility indices.

In terms of how which model performs best, using both the MSE and MAE, the ARMAX

model yields the lowest loss versus the alternative models for all indices with the exception of the

VCAC in which the ARIMAX model performs best closely followed by the ARMAX when the MSE

forecast error is used. The ARFIMA and random walk yield the highest MSE and MAE. Only when

is the model under consideration an ARMA model that takes into account the contemporaneous

asymmetric e�ect - ARMAX, ARIMAX, ARFIMAX models - outperforms the random walk. In

these cases, the null hypothesis of equal predictive ability is always rejected at the 1% level.

In Tables 28 and 29, the ability of both GARCH and IV models to adequately predict volatility

is assessed using the MAE and RMSE. Table 28 present the mean absolute error (MAE) and root

mean square error (RMSE) forecast statistics for each model when ex post daily squared returns is

used as measure of true volatility. On the basis of the MAE the results suggest that the EGARCH-

IV model provides the most accurate forecast for all indices apart from the SMI index in which

the EGARCH model yields the lowest error. With the exception of the GARCH-IV, GJR-IV and

EGARCH-IV for the SMI index, the GARCH models augmented with IV provide better forecasts

than their counterpart restricted GARCH models. The forecast of IV through an ARMA-type

speci�cation or a random walk perform poorly yielding the highest MAE. Focusing just on the

forecasting performance of the IV, the results show that the ARMAX model yields the lowest MAE

for all indices except the DAX index in which the ARIMAX model performs best. When the IV

forecast takes into consideration the asymmetric relationship between returns and IV it always

perform better than the random walk.

On the other hand, in Table 28 and under the RMSE, the IV forecasts perform better than using

the MAE. Speci�cally, the EGARCH-IV model yields the lowest loss for the CAC, AEX, SMI and

FTSE100 indices, while the ARMAX model performs best for the STOXX and DAX indices. In all

series, a GARCH speci�cation nested with implied volatility outperforms when it is compared with

the respective restricted speci�cation. As for the performance of the various IV indices to provide

accurate forecasts for the true volatility, the results show the importance of the asymmetry, as only

the ARMA models that captures the asymmetry perform better than the random walk. Among
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the IV models, the ARMAX model yields the lowest RMSE.

Table 29 reports the MAE and RMSE using the realized variance measure of true volatility.

According to the MAE, the EGARCH-IV provides the best forecast for the CAC, AEX and FTSE100

indices, while the EGARCH performs best for the STOXX and SMI indices. As for the DAX

index, the GJR-IV yields the lowest forecast error. Apart from the SMI index, for all indices a

GARCH model that embeds IV outperforms its restricted version. As the IV models are concerned,

they generally perform poorly. Similarly to the results of Table 28, among the IV models, the

ARMAX and ARIMAX speci�cations yield the lowest MAE. The ARMA models that capture the

contemporaneous asymmetric relationship between IV and index returns provide more accurate

forecast for the true volatility that their restricted versions and the random walk.

According to the RMSE, the EGARCH-IV provides the best forecast for the STOXX, CAC and

AEX index, while the GJR-IV and GARCH-IV performs best for the DAX and FTSE100 index,

respectively. As for the SMI index, similarly to the MAE results, the EGARCH preforms best.

Among the IV forecasts, the ARFIMAX speci�cation perform best for all indices apart from the

SMI in which the ARFIMA speci�cation yields the lowest RMSE.

In order to evaluate the predictive power of the models, i.e. how much of the 'true' volatility

is explained by the GARCH forecasts and IV forecasts, the MZ procedure is employed. Tables 30

and 31 report the results of the MZ procedure over the forecast period when the squared returns

and realized variance are used as proxies for the true volatility, respectively. The primary interest

lies in the R2 values, where the model with the highest R2 is preferred.

Examining Table 30, it is �rst seen the good performance of the forecasts produced by an

asymmetric IV models. The ARFIMAX model is the most informative model for the STOXX, DAX

and AEX indices and the ARMAX model yields the strictly highest R2 values for the FTSE100

index. As for the CAC index, the EGARCH-IV model performs best followed by the ARMAX

model. Only in the case of SMI index, where the EGARCH-IV has the highest predictive power,

the IV forecasts perform noticeably worse. Second, the inclusion of IV in the various GARCH

speci�cations improves the predictive power of the models indicating that IV contains incremental

information beyond the GARCH models. Third, the asymmetric IV model forecasts obtain higher
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R2 values than the random walk.

Table 31 reports the results of the univariate MZ regressions for both GARCH and IV forecasts

when the realized variance measures true volatility. At �rst sight, I observe that, using the realized

variance, I obtain much higher R2 values than using the ex post squared returns. Second, the results

are remarkably consistent across all indices. The GJR-IV obtains the highest R2 value for the DAX

and FTSE100 indices and the EGARCH-IV performs best for all the other indices. Third, and

similar to the results in Table 30, when the GARCH models are augmented with the IV performs

better than their restricted counterparts. Finally, the asymmetric IV model forecasts increases the

R2 values than the random walk with the exception of the CAC index in which the random walk

outperforms the ARMA forecasts.

The next step is to investigate the relative forecasting performance of the models so as to identify

whether IV forecasts contain di�erent information from GARCH forecasts. Tables 32 to 37 present

the results of the encompassing exercise considered in this study for all indices when the ex post

daily squared returns is used as measure of true volatility.

Encompassing regression results for the STOXX index are given in Table 32. The a2 coe�cient

is signi�cantly di�erent from zero in almost all cases implying that IV carries information useful for

predicting future volatility. As for the GARCH models, in many cases, it is dominated by the IV

forecasts, as the a1 coe�cient is insigni�cant. There also are some cases in which both coe�cients

are signi�cant which means that both approaches complement each other. On the basis of the

adjusted R2 values reported, a combination of the ACGARCH model with the ARFIMAX model

performs best. Both approaches are highly signi�cant implying that they both contain independent

information useful in forecasting future volatility. This can also be noticed from the R2 value which

is higher than the R2 for the univariate regressions presented in Table 30. Moreover, in some cases,

even if one forecast dominates the other a combination of both predictors marginally increases the

R2 value. Finally, similarly to the univariate regressions results, when the GARCH models are

combined with an asymmetric IV model yield higher R2 values than when they are combined with

IV following a random walk process.

The results for the DAX index, Table 34, are very similar, in that IV is almost everywhere highly

78



signi�cant and in most cases more informative than GARCH. A combination of the ACGARCH

forecast with the ARFIMAX forecast to obtain the highest R2 value. When the GARCH forecasts

are combined with the ARMA forecasts have stronger predictive power than when they are combined

with the random walk apart from the case in which the RW is combined with the GARCH-IV.

Similar results are reported in Tables 33, 35 and 37 for the CAC, AEX and FTSE100 indices,

respectively. For all these indices, the highest R2 value is reported when EGARCH-IV is combined

with the IV forecast through an ARMAX model. In the case of the CAC index, the EGARCH-IV is

more informative than the ARMAX and the combination of these two forecasts marginally improves

the forecast of future volatility, reporting slightly higher R2. With regard to the encompassing tests,

the results indicate the strong predictive power of the IV forecasts as the a2 coe�cient is highly

signi�cant.

For the CAC and FTSE100 indices, Tables 33 and 37 respectively, show that when the IV

forecast takes into account the contemporaneous asymmetric relationship between returns and IV,

the encompassing regression yields higher R2 than when IV follows a random walk. Table 35 for

the AEX index indicates that when the di�erent ARMA models are combined with the GARCH

models always report higher R2 than when IV following a random walk is combined with the various

GARCH.

Finally, Table 36 reports the encompassing regression results of the SMI index. Looking at the

encompassing tests, there are few cases in which both forecasts complement each other. Nonetheless,

in many cases a combination of these forecasts slightly improves the forecast of future volatility.

Although, in most cases, the IV forecast through an ARMAmodel combined with a GARCH forecast

yields higher R2 values, the highest R2 value is reported when the EGARCH-IV is combined with

the random walk.

Tables 38 to 43 report the encompassing regressions results when the realized variance is used

as measure of true volatility. The results are very similar to those obtained when the ex post

daily squared returns is used. Using the realized variance, the coe�cient a2 continues to be highly

signi�cant in most combinations and indices, while the GARCH forecast is signi�cant in many cases

indicating more its importance.
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Tables 38, 39 and 42 report the encompassing regression results for the STOXX, CAC and

SMI index, respectively. The EGARCH-IV model combined with the ARMAX model yields the

highest R2 value for the STOXX index, while a combination of EGARCH-IV with the random walk

performs best for the CAC and SMI indices. For all indices, in most cases, a combination of both

GARCH and IV, even when one of the two is not statistically signi�cant, yields higher R2 values

than the R2 of the univariate regressions reported in Table 31.

Table 40 and 43 report the results for the DAX and FTSE100 indices. The highest R2 is obtained

when the GJR-IV forecast is combined with the ARMAX forecast. In Table 40, when a GARCH

approach is combined with an IV forecast always performs better in terms of R2 than when it is

combined with the random walk with the exception of the EGARCH-IV model combined with the

random walk. Similar to the univariate regressions results in Table 31 for the FTSE100 index,

only when is IV forecasted through an asymmetric ARMA model performs better than when IV

follows a random walk process. Finally, Table 41 show that for the AEX index a combination of

the ACGARCH-IV forecast with the ARFIMAX forecast is statistically signi�cant and superior in

terms of the R2 values.

The VaR results for the encompassing regressions are reported in Tables 44 and 45 when the

squared returns and the realized volatility are respectively used as the true volatility proxies. More

speci�cally, in Table 44, at the 1% VaR probability level, the combination providing the best

VaR measures in terms of achieving the lowest average failure rate is the GJR combined with the

ARMAX, while at the 5% level the CGARCH-IV combined with the ARIMA performs best. In

most cases, when GARCH forecasts are combined with the IV forecasts through an ARMA-type

models have lower average failure rate than when the GARCH models are combined with the IV

following a random walk. In terms of the speci�cation tests, at the 1% level, several combinations

perform well with only two market signi�cant on both the Kupiec test and the DQ test. At the 5%

level, the CGARCH-IV combined with the ARIMA performs best with no index signi�cant on the

Kupiec test and only one index signi�cant on the DQ test.

In Table 45 the VaR results of the forecast encompassing regressions when realized variance

is the measure of true volatility are reported. At the 1% VaR probability level, combining the
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ACGARCH-IV with the ARIMAX performs best having lowest average failure rate, while at the

5% level, the GJR combined with the ARMAX model performs best. When GARCH forecasts

are combined with the asymmetric IV forecasts outperform the combinations of GARCH forecasts

with the random walk. Contrary to the previous table in which the squared returns is the proxy

of the true volatility, in this table, in terms of the speci�cation tests, no model rejects the null

hypotheses of the equality of the number of violations at a speci�ed rate, Kupiec test, and of the

non autocorrelation in the sequence of exceptions, DQ test.

3.4 Conclusion

This study repeat the analysis of Chapter 3 in order to investigate whether the implied volatility

forecast is a good predictor of stock market volatility when European data are examined.

The results are robust to those obtained for the US data. First, IV can be forecasted and its

forecast contains incremental information regarding the future stock return volatility. Second, asym-

metry proves to be important for both GARCH and IV models both in-sample and out-of-sample.

When IV is modelled and forecasted through an ARMA model that captures the contemporaneous

asymmetric relationship between returns and IV performs better than the random walk. Second,

IV indices can be forecasted and the ARMAX model performs best. Third, IV contains additional

information useful for the future stock market volatility beyond the information contained in the

GARCH model based volatility forecasts. Actually, in many cases, it proves to be more informative

than GARCH. Nonetheless, a combination of both approaches is the most appropriate for predicting

future stock index return volatility.

Overall, and consistently with the results obtained for the US data, an asymmetric GARCH

model augmented with IV combined with the ARMA model that captures the asymmetric relation-

ship between returns and IV performs best both when the squared returns and the realized variance

are used as proxies of the true volatility.
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Table 20: Summary statistics for the full sample daily stock returns

Full sample

STOXX CAC DAX AEX SMI FTSE100

Mean -0.0002 -0.0001 5.04E-05 -0.0002 -1.76E-05 -5.43E-06

Median 7.91E-05 0.0002 0.0009 0.0003 0.0005 0.0003

Maximum 0.1044 0.1059 0.1079 0.1003 0.1078 0.0938

Minimum -0.0821 -0.0947 -0.0887 -0.0959 -0.0810 -0.0926

Std. Dev. 0.0161 0.0157 0.0163 0.0159 0.0128 0.0129

Skewness 0.0314 0.0526 -0.0004 -0.0505 0.0133 -0.1116

Kurtosis 7.2469 7.8069 7.2920 8.8121 9.0066 9.2049

Jarque-Bera 2293.3 2966.8 2341.1 4343.6 4538.6 4892.7

p-value 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000*

Notes: Entries report the summary statistics of the daily stock returns for the full sample period
February 2, 2001 to February 28, 2013. In the last row, the p-values of the Jarque-Bera test for
normality are reported. * denotes rejection of the null hypothesis at the 1% level, respectively.

Table 21: Summary statistics for the in-sample daily stock returns

In-sample

STOXX CAC DAX AEX SMI FTSE100

Mean -0.0002 -0.0001 -7.42E-05 -0.0003 -8.22E-05 -7.12E-05

Median 0.0001 0.0002 0.0007 0.0004 0.0005 0.0004

Maximum 0.1043 0.1059 0.1079 0.1003 0.1078 0.0938

Minimum -0.0820 -0.0947 -0.0887 -0.0959 -0.0810 -0.0926

Std. Dev. 0.0162 0.0158 0.0170 0.0168 0.0135 0.0134

Skewness 0.0027 0.0472 0.0445 -0.0448 0.0537 -0.1010

Kurtosis 7.4630 8.3199 7.4332 8.6479 8.8149 9.6058

Jarque-Bera 1894.7 2720.2 1870.2 3071.0 3188.1 4169.3

Probability 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000*

Notes: Entries report the summary statistics of the daily stock returns for the in-sample period
February 2, 2001 to February 23, 2010. In the last row, the p-values of the Jarque-Bera test for
normality are reported. * denotes rejection of the null hypothesis at the 1% level, respectively.
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Figure 2: Daily returns of the European indices

Notes: The �gure shows daily returns of the European indices for the period February 2, 2001 to
February 28, 2013.
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Table 22: Summary statistics for implied volatility indices

STOXX CAC DAX AEX SMI FTSE100

Mean 0.0165 0.0154 0.0162 0.0157 0.0124 0.0137

Median 0.0150 0.0140 0.0142 0.0137 0.0108 0.0122

Maximum 0.0551 0.0491 0.0524 0.0512 0.0534 0.0475

Minimum 0.0073 0.0058 0.0073 0.0036 0.0054 0.0057

Std. Dev. 0.0068 0.0062 0.0068 0.0073 0.0055 0.0064

Skewness 1.3638 1.4541 1.4997 1.5231 2.0087 1.5452

Kurtosis 5.0875 5.6244 5.3390 5.2907 8.6726 6.0283

Jarque-Bera 1500.3 1970.1 1839.2 1867.9 6080.2 1787.9

p-value 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000*

ADF (p-value) 0.0027* 0.0124** 0.0484** 0.0151** 0.0009* 0.0186**

Notes: Entries report the summary statistics of the three implied volatility indices for the period
February 2, 2001 to February 28, 2013. In the last two rows, the p-values of the Jarque-Bera test
for normality and the Augmented Dickey-Fuller (ADF) test for unit root are reported. * and **

denote rejection of the null hypothesis at the 1% and 5% level, respectively.

Table 23: Test for ARCH e�ects in returns.

Index Q(p) LM
p = 7 p = 7

STOXX 1080.4
(0.000)

* 455.897
(0.000)

*

CAC 976.98
(0.000)

* 427.998
(0.000)

*

DAX 882.21
(0.000)

* 391.023
(0.000)

*

AEX 1372.7
(0.000)

* 579.891
(0.000)

*

SMI 1408.9
(0.000)

* 522.133
(0.000)

*

FTSE100 1293.2
(0.000)

* 514.570
(0.000)

*

Note: The Ljung-Box Q(7) test for squared residual autocorrelation and the Lagrange multiplier
(LM) test for homoskedasticity are reported. p-values are in parentheses. * denotes rejection of the
null hypothesis at the 1% level.
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Table 25: Diagnostics tests in squared standardized residuals

Skewness Kurtosis Jarque-Bera Q(7) LM(7)

STOXX

GARCH −0.3232 4.0096 136.71
(0.000)

14.89
(0.037)

** 15.402
(0.031)

**

GARCH-IV −0.3034 3.6246 72.14
(0.000)

23.77
(0.001)

* 21.585
(0.003)

*

GJR −0.3011 3.4058 50.15
(0.000)

19.27
(0.007)

* 19.622
(0.006)

*

GJR-IV −0.2885 3.3532 43.54
(0.000)

16.91
(0.018)

* 17.634
(0.014)

*

EGARCH −0.2754 3.3331 39.42
(0.000)

14.34
(0.045)

** 14.473
(0.043)

**

EGARCH-IV −0.2901 3.2915 40.11
(0.000)

10.96
(0.140)

11.568
(0.116)

CGARCH −0.3289 4.0894 154.05
(0.000)

6.10
(0.528)

6.229
(0.513)

CGARCH-IV −0.3158 3.6567 78.98
(0.000)

6.87
(0.442)

6.859
(0.444)

ACGARCH −0.3202 4.0854 151.08
(0.000)

6.31
(0.504)

6.431
(0.490)

ACGARCH-IV −0.2932 3.4194 49.45
(0.000)

11.05
(0.137)

11.115
(0.134)

CAC

GARCH −0.3023 3.9437 120.69
(0.000)

12.66
(0.081)

*** 12.765
(0.078)

***

GARCH-IV −0.2731 3.6370 67.66
(0.000)

23.55
(0.001)

* 20.295
(0.005)

*

GJR −0.2889 3.4728 53.56
(0.000)

16.67
(0.020)

** 6.838
(0.019)

**

GJR-IV −0.2792 3.4286 47.61
(0.000)

16.20
(0.024)

** 16.663
(0.020)

**

EGARCH −0.2607 3.3792 39.95
(0.000)

12.34
(0.100)

12.177
(0.100)

EGARCH-IV −0.2829 3.3643 43.50
(0.000)

10.21
(0.177)

10655
(0.154)

CGARCH −0.2839 3.9021 109.17
(0.000)

3.38
(0.848)

3.441
(0.841)

CGARCH-IV −0.2797 3.6082 65.60
(0.000)

3.34
(0.852)

3.320
(0.854)

ACGARCH −0.2799 3.9289 113.02
(0.000)

3.64
(0.820)

3.696
(0.814)

ACGARCH-IV −0.2794 3.4280 47.60
(0.000)

13.63
(0.058)

*** 13.790
(0.055)

***

DAX

GARCH −0.3464 3.9854 138.02
(0.000)

11.55
(0.116)

11.822
(0.107)

GARCH-IV −0.3250 3.6551 81.01
(0.000)

39.77
(0.001)

* 34.038
(0.000)

*

GJR −0.3293 3.4821 63.46
(0.000)

16.22
(0.023)

** 16.357
(0.022)

**

GJR-IV −0.2859 3.3679 43.98
(0.000)

12.56
(0.084)

*** 13.339
(0.064)

***

EGARCH −0.3158 3.4880 60.60
(0.000)

11.18
(0.131)

11.049
(0.137)

EGARCH-IV −0.2953 3.3484 44.73
(0.000)

10.29
(0.173)

10.783
(0.148)

CGARCH −0.3376 3.9701 132.89
(0.000)

3.35
(0.851)

3.364
(0.849)

CGARCH-IV −0.3378 3.6677 85.83
(0.000)

7.06
(0.423)

7.051
(0.424)

ACGARCH −0.3285 3.9748 131.45
(0.000)

3.67
(0.817)

3.694
(0.814)

ACGARCH-IV −0.2894 3.4722 53.08
(0.000)

6.35
(0.500)

6.260
(0.510)

Note: Entries report the diagnostic residual test results of the GARCH models. The Ljung-Box
Q(7) test and the Lagrange multiplier (LM) test for the squared standardized residuals are reported.
p-values are in parentheses. *, ** and *** denote rejection of the null hypothesis at the 1%, 5% and
10% level, respectively.
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cont. Table 25

Skewness Kurtosis Jarque-Bera Q(7) LM(7)

AEX

GARCH −0.2689 3.5751 59.69
(0.000)

20.99
(0.004)

* 20.753
(0.005)

*

GARCH-IV −0.2700 3.5491 57.10
(0.000)

27.37
(0.000)

* 27.207
(0.000)

*

GJR −0.2478 3.2295 28.72
(0.000)

16.05
(0.025)

** 15.883
(0.026)

**

GJR-IV −0.2271 3.1803 22.99
(0.000)

14.56
(0.042)

** 14.494
(0.043)

**

EGARCH −0.2394 3.2557 28.36
(0.000)

12.67
(0.081)

*** 12.316
(0.091)

***

EGARCH-IV −0.2329 3.2018 24.81
(0.000)

11.97
(0.101)

12.204
(0.100)

CGARCH −0.2629 3.5599 56.79
(0.000)

6.64
(0.467)

6.584
(0.473)

CGARCH-IV −0.2756 3.4797 51.38
(0.000)

6.29
(0.506)

6.318
(0.503)

ACGARCH −0.2291 3.5766 52.22
(0.000)

8.09
(0.324)

8.001
(0.333)

ACGARCH-IV −0.2138 3.1774 20.63
(0.000)

12.05
(0.100)

11.955
(0.102)

SMI

GARCH −0.3625 3.8642 119.92
(0.000)

7.57
(0.373)

7.296
(0.399)

GARCH-IV −0.3560 3.7120 96.62
(0.000)

14.67
(0.040)

** 14.737
(0.039)

**

GJR −0.3221 3.5297 65.56
(0.000)

11.03
(0.137)

11.018
(0.138)

GJR-IV −0.3156 3.4493 56.58
(0.000)

10.92
(0.142)

10.839
(0.146)

EGARCH −0.3005 3.5160 59.14
(0.000)

10.99
(0.139)

11.052
(0.136)

EGARCH-IV −0.3003 3.4139 50.16
(0.000)

11.67
(0.112)

11.671
(0.112)

CGARCH −0.3464 3.8196 108.55
(0.000)

5.16
(0.641)

5.200
(0.636)

CGARCH-IV −0.3507 3.5969 79.94
(0.000)

4.01
(0.779)

3.997
(0.781)

ACGARCH −0.3638 3.8815 123.14
(0.000)

7.69
(0.360)

7.436
(0.385)

ACGARCH-IV −0.3040 3.4074 50.48
(0.000)

6.25
(0.511)

6.120
(0.526)

FTSE100

GARCH −0.3208 3.5887 72.38
(0.000)

7.33
(0.396)

7.170
(0.411)

GARCH-IV −0.3354 3.5852 75.64
(0.000)

57.05
(0.147)

45.106
(0.000)

GJR −0.3416 3.4823 66.76
(0.000)

6.86
(0.444)

6.529
(0.479)

GJR-IV −0.3347 3.3562 54.89
(0.000)

8.46
(0.294)

9.014
(0.252)

EGARCH −0.3215 3.4167 56.06
(0.000)

5.81
(0.563)

5.452
(0.605)

EGARCH-IV −0.3526 3.4130 63.75
(0.000)

5.97
(0.543)

6.012
(0.538)

CGARCH −0.3126 3.5449 65.65
(0.000)

3.14
(0.872)

3.047
(0.881)

CGARCH-IV −0.3192 3.4249 56.15
(0.000)

5.80
(0.563)

5.537
(0.595)

ACGARCH −0.3099 3.5704 67.72
(0.000)

4.67
(0.701)

4.604
(0.708)

ACGARCH-IV −0.2992 3.3300 44.58
(0.000)

6.72
(0.458)

7.076
(0.421)
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Table 26: Estimation output of time series models for implied volatilitity prediction

ARMA ARMAX ARIMA ARIMAX ARFIMA ARFIMAX

VSTOXX

c0 0.01631
(0.000)

* 0.01615
(0.000)

* 1.21 ∗ 10−6

(0.955)
7.33 ∗ 10−7

(0.978)
0.01681
(0.394)

0.01666
(0.483)

AR(1) 0.98719
(0.000)

* 0.9857
(0.0000)

* 0.72841
(0.000)

* −0.20120
(0.000)

* 0.81172
(0.000)

* 0.6288
(0.000)

*

MA(1) −0.03327
(0.000)

* 0.26393
(0.000)

* −0.81077
(0.000)

* 0.43779
(0.000)

* −0.38881
(0.000)

* 0.13773
(0.000)

*

d 0.49416
(0.000)

* 0.49755
(0.000)

*

r+t −0.01334
(0.000)

* −0.01336
(0.000)

* −0.01327
(0.000)

*

r−t −0.04193
(0.000)

* −0.04201
(0.000)

* −0.04203
(0.000)

*

Log − L 12112.88 12613.67 12116.53 12607.85 12091.433 12577.895

VCAC

c0 0.01526
(0.000)

* 0.01516
(0.000)

* 8.84 ∗ 10−7

(0.961)
7.01 ∗ 10−7

(0.97)
0.01564
(0.391)

0.01554
(0.393)

AR(1) 0.98705
(0.000)

* 0.98664
(0.000)

* 0.63586
(0.000)

* 0.70893
(0.000)

* 0.83666
(0.000)

* 0.79220
(0.000)

*

MA(1) −0.11204
(0.000)

* −0.0624
(0.000)

* −0.76407
(0.000)

* −0.80871
(0.000)

* −0.48726
(0.000)

* −0.37946
(0.000)

*

d 0.49377
(0.000)

* 0.49476
(0.000)

*

r+t −0.00584
(0.000)

* −0.00563
(0.000)

* −0.00567
(0.000)

*

r−t −0.02523
(0.000)

* −0.02546
(0.000)

* −0.02542
(0.000)

*

Log − L 12245.82 12353.27 12252.14 12359.72 12231.433 12335.508

VDAX

c0 0.01637
(0.000)

* 0.01627
(0.000)

* 1.17 ∗ 10−7

(0.963)
8.17 ∗ 10−7

(0.974)
0.01671
(0.406)

0.01659
(0.453)

AR(1) 0.98799
(0.000)

* 0.98733
(0.000)

* −0.16364
(0.295)

−0.09649
(0.000)

* 0.76888
(0.000)

* 0.68912
(0.000)

*

MA(1) 0.04778
(0.000)

* 0.25313
(0.000)

* 0.20695
(0.177)

0.33505
(0.000)

* −0.22889
(0.000)

* 0.07608
(0.021)

**

d 0.49517
(0.000)

* 0.49681
(0.000)

*

r+t −0.00966
(0.000)

* −0.00972
(0.000)

* −0.00947
(0.000)

*

r−t −0.03164
(0.000)

* −0.03167
(0.000)

* −0.03171
(0.000)

*

Log − L 12368.85 12737.62 12358.74 12727.85 12342.294 12704.853

Note: Entries report results of the alternative implied volatility models. The p-values of the esti-
mated coe�cients are in parentheses. * denotes signi�cance at the 1% level.
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cont. Table 26

ARMA ARMAX ARIMA ARIMAX ARFIMA ARFIMAX

VAEX

c0 0.01664
(0.000)

* 0.016044
(0.000)

* −1.29 ∗ 10−7

(0.976)
1.60 ∗ 10−6

(0.947)
0.01656
(0.339)

0.01648
(0.390)

AR(1) 0.99069
(0.000)

* 0.98974
(0.000)

* 0.99137
(0.000)

* −0.15503
(0.001)

* 0.86060
(0.000)

* 0.76315
(0.000)

*

MA(1) 0.00164
(0.889)

0.22246
(0.000)

* −0.998518
(0.0000)

* 0.36406
(0.0000)

* −0.38700
(0.000)

* −0.02962
(0.000)

*

d 0.48959
(0.000)

* 0.49434
(0.000)

*

r+t −0.01234
(0.000)

* −0.01229
(0.000)

* −0.01239
(0.000)

*

r−t −0.03163
(0.000)

* −0.03166
(0.000)

* −0.03153
(0.000)

*

Log − L 12528.8 12915.25 12867.81 12907.46 12504.22 12871.15

VSMI

c0 0.01256
(0.000)

* 0.01249
(0.000)

* 1.32 ∗ 10−6

(0.947)
1.31 ∗ 10−6

(0.951)
0.01274
(0.395)

0.01267
(0.464)

AR(1) 0.98799
(0.000)

* 0.98664
(0.000)

* −0.64609
(0.000)

* −0.40999
(0.000)

* 0.79753
(0.000)

* 0.71904
(0.000)

*

MA(1) 0.08761
(0.0000)

* 0.20666
(0.000)

* 0.73828
(0.000)

* 0.59853
(0.000)

* −0.23567
(0.000)

* −0.03138
(0.000)

*

d 0.49314
(0.000)

* 0.49600
(0.000)

*

r+t −0.0381
(0.0000)

* −0.00356
(0.000)

* −0.00350
(0.000)

*

r−t −0.02222
(0.000)

* −0.02227
(0.000)

* −0.02202
(0.000)

*

Log − L 12786.11 12911.64 12785.96 12915.69 12749.72 12863.42

VFTSE100

c0 0.01356
(0.000)

* 0.01340
(0.000)

* 7.42 ∗ 10−7

(0.971)
6.58 ∗ 10−7

(0.000)
* 0.01403

(0.285)
0.01386
(0.377)

AR(1) 0.98882
(0.000)

* 0.98596
(0.000)

* 0.22729
(0.000)

* −0.72407
(0.000)

* 0.89094
(0.000)

* 0.79806
(0.000)

*

MA(1) −0.15092
(0.000)

* 0.07735
(0.000)

* −0.37955
(0.000)

* −0.84062
(0.000)

* −0.55649
(0.000)

* −0.30453
(0.000)

*

d 0.48459
(0.000)

* 0.49260
(0.000)

*

r+t −0.00652
(0.000)

* −0.00904
(0.000)

* −0.00551
(0.007)

*

r−t −0.04693
(0.000)

* −0.04634
(0.000)

* −0.04629
(0.000)

*

Log − L 12328.58 12641.44 12319.91 12656.95 12321.56 12607.63
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Table 27: Diebold-Mariano test

MSE

Random walk ARMA ARMAX ARIMA ARIMAX ARFIMA ARFIMAX

V STOXX 0.00154 0.00152*** 0.00095* 0.00151 0.00096* 0.00154 0.00095*

V CAC 0.00141 0.00141 0.00109* 0.00139 0.00108* 0.00142 0.00109*

V DAX 0.00105 0.00102** 0.00070* 0.00103*** 0.00071* 0.00104 0.00071*

V AEX 0.00129 0.00128* 0.00099** 0.00128* 0.00099** 0.00131 0.00100**

V SMI 0.00059 0.00057 0.00046* 0.00058 0.00047* 0.00058 0.00046*

V FTSE 0.00102 0.00105 0.00072* 0.00106 0.00073* 0.00108 0.00076*

MAE

Random walk ARMA ARMAX ARIMA ARIMAX ARFIMA ARFIMAX

V STOXX 0.830 0.827 0.652* 0.826 0.656* 0.835 0.657*

V CAC 0.806 0.808 0.709* 0.807 0.711* 0.816 0.714*

V DAX 0.689 0.683 0.560* 0.684** 0.562* 0.687 0.564*

V AEX 0.732 0.731 0.604* 0.731 0.606* 0.741 0.612*

V SMI 0.510 0.503 0.445* 0.505 0.449* 0.510 0.449*

V FTSE 0.706 0.713 0.582* 0.714 0.583* 0.722 0.594*

Note: The Diebold-Mariano test results using the mean squared forecast error (MSE) and the mean
absolute forecast error (MAE) of the IV models are reported. The null hypothesis that the random
walk and the model under consideration perform equally well is tested against the alternative that
the model under consideration performs better. All numbers are multiplied by 103. *, ** and ***

denote rejection of the null hypothesis at the 1% and 5% level, respectively.
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Table 30: Out-of-sample predictive power for alternative forecasts using ex post squared returns
measure of true volatility

Models adj −R2

STOXX CAC DAX AEX SMI FTSE100
GARCH 0.0700 0.0752 0.1539 0.0961 0.1885 0.1082

GARCH-IV 0.1470 0.1255 0.2176 0.1163 0.2139 0.1645

TGARCH 0.1151 0.1182 0.1834 0.1399 0.2721 0.1562

TGARCH-IV 0.1254 0.1295 0.1943 0.1510 0.2924 0.1706

EGARCH 0.1209 0.1275 0.1916 0.1417 0.2897 0.1650

EGARCH-IV 0.1402 0.1446* 0.2084 0.1564 0.3029* 0.1856

CGARCH 0.0700 0.0752 0.1594 0.0952 0.1710 0.1113

CGARCH-IV 0.1343 0.1185 0.2126 0.1410 0.2634 0.1619

ACGARCH 0.0744 0.0777 0.1636 0.1019 0.1865 0.1192

ACGARCH-IV 0.1240 0.1226 0.1953 0.1522 0.2777 0.1654

ARMA 0.1377 0.1205 0.2073 0.1454 0.2474 0.1617

ARMAX 0.1580 0.1313 0.2288 0.1596 0.2623 0.1927*

ARIMA 0.1341 0.1190 0.2072 0.1454 0.2469 0.1616

ARIMAX 0.1567 0.1296 0.2280 0.1593 0.2616 0.1909

ARFIMA 0.1366 0.1197 0.2074 0.1456 0.2482 0.1616

ARFIMAX 0.1585* 0.1312 0.2301* 0.1601* 0.2613 0.1918

RW: IVt−1 0.1391 0.1232 0.2064 0.1454 0.2438 0.1633

Note: Entries are the adjusted R2 values from the univariate Mincer-Zarnowitz regression when the
ex post squared daily returns measure the true volatility. * denotes the highest adjusted R2 value.
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Table 31: Out-of-sample predictive power of daily volatility forecasts using realized variance measure
of true volatility

Models adj −R2

STOXX CAC DAX AEX SMI FTSE100
GARCH 0.3406 0.3188 0.4524 0.3548 0.4545 0.4308

GARCH-IV 0.4902 0.4958 0.5122 0.4205 0.4793 0.5530

TGARCH 0.4843 0.5143 0.5541 0.4548 0.5999 0.5313

TGARCH-IV 0.5274 0.5711 0.6068* 0.5015 0.6370 0.6034*

EGARCH 0.5374 0.5603 0.5769 0.4831 0.6472 0.5390

EGARCH-IV 0.5626* 0.5890* 0.5951 0.5157* 0.6524* 0.6007

CGARCH 0.2963 0.3188 0.4192 0.3118 0.4193 0.4136

CGARCH-IV 0.4712 0.4784 0.5209 0.4757 0.5478 0.5536

ACGARCH 0.2998 0.3226 0.4127 0.3314 0.4564 0.4362

ACGARCH-IV 0.5196 0.5309 0.5812 0.5147 0.5921 0.6013

ARMA 0.5007 0.4857 0.5201 0.4711 0.4840 0.5276

ARMAX 0.5133 0.4835 0.5306 0.4804 0.4786 0.5468

ARIMA 0.4894 0.4753 0.5197 0.4709 0.4830 0.5249

ARIMAX 0.5107 0.4724 0.5293 0.4784 0.4752 0.5463

ARFIMA 0.4977 0.4827 0.5196 0.4729 0.4844 0.5272

ARFIMAX 0.5098 0.4816 0.5296 0.4838 0.4766 0.5444

RW: IVt−1 0.5037 0.4954 0.5171 0.4712 0.4764 0.5413

Note: Entries are the adjusted R2 values from the Mincer-Zarnowitz regression described in equation
(41) when the realized variance measures the true volatility. * denotes the highest adjusted R2 value.

95



Table 32: Forecast encompassing regression results for the STOXX index using ex post squared
returns measure of true volatility

a0 a1 a2 adj −R2

GARCH & ARMA −0.00013
(0.000)

* −0.5024
(0.004)

* 1.6024
(0.000)

* 0.1461

GARCH-IV & ARMA −3.56 ∗ 10−5

(0.381)
3.0617
(0.001)

* −1.4285
(0.055)

*** 0.1500

TGARCH & ARMAX −0.00016
(0.000)

* −0.2444
(0.191)

1.4821
(0.000)

* 0.1588

TGARCH-IV & ARMAX −0.00013
(0.000)

* −0.0414
(0.840)

1.2498
(0.000)

* 0.1570

EGARCH & ARMAX −0.00015
(0.000)

* −0.3136
(0.201)

1.5057
(0.000)

* 0.1587

EGARCH-IV & ARMAX −0.00012
(0.002)

* 0.1872
(0.433)

1.0282
(0.000)

* 0.1576

CGARCH & ARIMA −0.00011
(0.003)

* −0.2530
(0.089)

*** 1.3466
(0.000)

* 0.1363

CGARCH & ARFIMA −0.00012
(0.001)

* −0.2474
(0.091)

*** 1.3812
(0.000)

* 0.1387

CGARCH-IV & ARIMA −6.51 ∗ 10−5

(0.125)
0.5671
(0.146)

0.5503
(0.163)

0.1354

CGARCH-IV & ARFIMA −8.10 ∗ 10−5

(0.066)
*** 0.4272

(0.267)
0.7139
(0.073)

*** 0.1368

ACGARCH & ARIMAX −0.00014
(0.000)

* −0.3367
(0.018)

** 1.5107
(0.000)

* 0.1617

ACGARCH & ARFIMAX −0.00016
(0.000)

* −0.3213
(0.022)

** 1.5601
(0.000)

* 0.1631†

ACGARCH-IV & ARIMAX −0.00014
(0.000)

* −0.1612
(0.457)

1.3582
(0.000)

* 0.1562

ACGARCH-IV & ARFIMAX −0.00015
(0.000)

* −0.1652
(0.436)

1.4231
(0.000)

* 0.1580

GARCH & IVt−1 −0.00012
(0.001)

* −0.5082
(0.003)

* 1.5845
(0.000)

* 0.1478

GARCH-IV & IVt−1 −4.73 ∗ 10−5

(0.226)
2.8366
(0.002)

* −1.2150
(0.107)

0.1488

TGARCH & IVt−1 −0.00010
(0.015)

** −0.0148
(0.941)

1.1256
(0.000)

* 0.1380

TGARCH-IV & IVt−1 −8.39 ∗ 10−5

(0.032)
** 0.2137

(0.345)
0.8951
(0.000)

* 0.1400

EGARCH & IVt−1 −9.88 ∗ 10−5

(0.012)
** 0.0113

(0.967)
1.0985
(0.000)

* 0.1380

EGARCH-IV & IVt−1 −6.50 ∗ 10−6

(0.095)
*** 0.5901

(0.032)
** 0.5419

(0.055)
*** 0.1432

CGARCH & IVt−1 −0.00011
(0.002)

* −0.2726
(0.063)

*** 1.3646
(0.000)

* 0.1419

CGARCH-IV & IVt−1 −8.51 ∗ 10−5

(0.040)
** 0.2659

(0.500)
0.8526
(0.030)

** 0.1385

ACGARCH & IVt−1 −0.00011
(0.003)

* −0.1855
(0.195)

1.2829
(0.000)

* 0.1399

ACGARCH-IV & IVt−1 −9.24 ∗ 10−5

(0.021)
** 0.0945

(0.697)
1.0100
(0.000)

* 0.1382

Note: Entries are the estimated coe�cients, their p-values in parentheses and the adjusted R2

values from the encompassing regression when the ex post squared daily returns measure the true
volatility. *, ** and *** denote signi�cance at the 1% level. A signi�cant p-value indicates that the
forecast under consideration is not encompassed by the alternative model, † denotes the highest
adjusted R2 value.
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Table 33: Forecast encompassing regression results for the CAC index using ex post squared returns
measure of true volatility

a0 a1 a2 adj −R2

GARCH & ARMA −7.59 ∗ 10−6

(0.033)
** −0.0090

(0.949)
1.2031
(0.000)

* 0.1194

GARCH-IV & ARMA 8.71 ∗ 10−5

(0.125)
7.0397
(0.000)

* −5.2605
(0.003)

* 0.1342

TGARCH & ARMAX −6.85 ∗ 10−5

(0.089)
*** 0.2165

(0.246)
0.9733
(0.000)

* 0.1317

TGARCH-IV & ARMAX −5.35 ∗ 10−5

(0.166)
0.4723
(0.021)

** 0.7022
(0.001)

* 0.1362

EGARCH & ARMAX −6.16 ∗ 10−5

(0.107)
0.4492
(0.054)

*** 0.7563
(0.008)

* 0.1344

EGARCH-IV & ARMAX −3.50 ∗ 10−5

(0.358)
0.8624
(0.000)

* 0.3065
(0.285)

0.1447†

CGARCH & ARIMA −7.32 ∗ 10−5

(0.039)
** −0.0069

(0.961)
1.1890
(0.000)

* 0.1178

CGARCH & ARFIMA −8.06 ∗ 10−5

(0.026)
** 0.0013

(0.993)
1.2112
(0.000)

* 0.1186

CGARCH-IV & ARIMA −4.38 ∗ 10−5

(0.274)
0.4982
(0.138)

0.6305
(0.105)

0.1203

CGARCH-IV & ARFIMA −5.07 ∗ 10−5

(0.229)
0.4620
(0.169)

0.6898
(0.083)

*** 0.1208

ACGARCH & ARIMAX −9.19 ∗ 10−5

(0.010)
** −0.0606

(0.668)
1.3110
(0.000)

* 0.1286

ACGARCH & ARFIMAX −0.00010
(0.005)

* −0.0534
(0.701)

1.3437
(0.000)

* 0.1302

ACGARCH-IV & ARIMAX −6.32 ∗ 10−5

(0.087)
*** 0.4140

(0.031)
** 0.7899

(0.001)
* 0.1337

ACGARCH-IV & ARFIMAX −7.18 ∗ 10−5

(0.058)
*** 0.3909

(0.041)
** 0.8438

(0.001)
* 0.1347

GARCH & IVt−1 −7.31 ∗ 10−5

(0.036)
** −0.0152

(0.913)
1.1941
(0.000)

* 0.1221

GARCH-IV & IVt−1 −0.00014
(0.075)

*** 11.271
(0.002)

* −8.9263
(0.007)

* 0.1325

TGARCH & IVt−1 −3.86 ∗ 10−5

(0.326)
0.3415
(0.077)

*** 0.7431
(0.006)

* 0.1257

TGARCH-IV & IVt−1 −2.46 ∗ 10−5

(0.518)
0.6288
(0.005)

* 0.4540
(0.099)

*** 0.1315

EGARCH & IVt−1 −3.38 ∗ 10−5

(0.365)
0.6330
(0.009)

* 0.4902
(0.089)

*** 0.1297

EGARCH-IV & IVt−1 −3.66 ∗ 10−5

(0.992)
1.1576
(0.000)

* −0.0770
(0.802)

0.1435

CGARCH & IVt−1 −7.31 ∗ 10−5

(0.036)
** −0.0152

(0.913)
1.1941
(0.000)

* 0.1221

CGARCH-IV & IVt−1 −5.66 ∗ 10−5

(0.145)
0.2300
(0.374)

0.0853
(0.026)

* 0.1230

ACGARCH & IVt−1 −7.18 ∗ 10−5

(0.039)
** 0.0220

(0.873)
1.1551
(0.000)

* 0.1221

ACGARCH-IV & IVt−1 −4.31 ∗ 10−5

(0.235)
0.5015
(0.013)

* 0.6358
(0.009)

* 0.1291

Note: As Table 32.
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Table 34: Forecast encompassing regression results for the DAX index using ex post squared returns
measure of true volatility

a0 a1 a2 adj −R2

GARCH & ARMA −8.28 ∗ 10−5

(0.000)
* −0.5104

(0.008)
* −1.5664

(0.000)
* 0.2135

GARCH-IV & ARMA −1.25 ∗ 10−5

(0.963)
3.1942
(0.000)

* −1.7447
(0.013)

** 0.2229

TGARCH & ARMAX −8.87 ∗ 10−5

(0.001)
* −0.1426

(0.357)
1.2809
(0.000)

* 0.2286

TGARCH-IV & ARMAX −7.95 ∗ 10−5

(0.001)
* −0.0334

(0.856)
1.1539
(0.000)

* 0.2278

EGARCH & ARMAX −8.44 ∗ 10−5

(0.006)
* −0.1269

(0.503)
1.2484
(0.000)

* 0.2282

EGARCH-IV & ARMAX −7.08 ∗ 10−5

(0.004)
* 0.1537

(0.443)
0.9682
(0.000)

* 0.2284

CGARCH & ARIMA −6.68 ∗ 10−5

(0.004)
* −0.1861

(0.266)
1.2300
(0.000)

* 0.2074

CGARCH & ARFIMA −7.55 ∗ 10−5

(0.002)
* −0.1556

(0.341)
1.2411
(0.000)

* 0.2073

CGARCH-IV & ARIMA −1.86 ∗ 10−5

(0.518)
0.8404
(0.020)

** 0.1853
(0.623)

0.2118

CGARCH-IV & ARFIMA −2.26 ∗ 10−5

(0.456)
0.8044
(0.019)

** 0.2319
(0.535)

0.2119

ACGARCH & ARIMAX −8.49 ∗ 10−5

(0.000)
* −0.3044

(0.057)
*** 1.4003

(0.000)
* 0.2307

ACGARCH & ARFIMAX −9.65 ∗ 10−5

(0.000)
* −0.2888

(0.064)
*** 1.4361

(0.000)
* 0.2325†

ACGARCH-IV & ARIMAX −8.18 ∗ 10−5

(0.001)
* −0.1268

(0.506)
1.2423
(0.000)

* 0.2274

ACGARCH-IV & ARFIMAX −9.37 ∗ 10−5

(0.000)
* −0.1375

(0.463)
1.3011
(0.000)

* 0.2296

GARCH & IVt−1 −7.80 ∗ 10−5

(0.000)
* −0.5122

(0.009)
* 1.5484

(0.000)
* 0.2125

GARCH-IV & IVt−1 −6.67 ∗ 10−5

(0.795)
3.1561
(0.000)

* −1.6923
(0.009)

* 0.2234

TGARCH & IVt−1 −5.23 ∗ 10−5

(0.041)
** 0.1073

(0.510)
0.9284
(0.000)

* 0.2058

TGARCH-IV & IVt−1 −4.75 ∗ 10−5

(0.051)
*** 0.2779

(0.162)
0.7732
(0.000)

* 0.2073

EGARCH & IVt−1 −4.99 ∗ 10−5

(0.043)
** 0.2086

(0.303)
0.8396
(0.000)

* 0.2064

EGARCH-IV & IVt−1 −3.47 ∗ 10−5

(0.159)
0.5635
(0.011)

** 0.4915
(0.033)

** 0.2120

CGARCH & IVt−1 −6.67 ∗ 10−5

(0.000)
* −0.1864

(0.269)
1.2300
(0.000)

* 0.2066

CGARCH-IV & IVt−1 −1.57 ∗ 10−5

(0.585)
0.8890
(0.013)

** 0.1336
(0.722)

0.2117

ACGARCH & IVt−1 −6.18 ∗ 10−5

(0.008)
* −0.0497

(0.757)
1.0954
(0.000)

* 0.2054

ACGARCH-IV & IVt−1 −4.72 ∗ 10−5

(0.065)
*** 0.2237

(0.284)
0.8085
(0.001)

* 0.2065

Note: As Table 32.
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Table 35: Forecast encompassing regression results for the AEX index using ex post squared returns
measure of true volatility

a0 a1 a2 adj −R2

GARCH & ARMA −3.33 ∗ 10−5

(0.085)
*** −0.2292

(0.160)
1.0877
(0.000)

* 0.1465

GARCH-IV & ARMA −3.73 ∗ 10−5

(0.058)
*** −0.4098

(0.115)
1.2320
(0.000)

* 0.1470

TGARCH & ARMAX −3.62 ∗ 10−5

(0.079)
*** 0.0915

(0.627)
0.8507
(0.000)

* 0.1587

TGARCH-IV & ARMAX −2.73 ∗ 10−5

(0.188)
0.3053
(0.120)

0.6491
(0.001)

* 0.1611

EGARCH & ARMAX −3.81 ∗ 10−5

(0.057)
*** 0.0711

(0.746)
0.8744
(0.000)

* 0.1586

EGARCH-IV & ARMAX −2.44 ∗ 10−5

(0.242)
0.4110
(0.061)

*** 0.5556
(0.011)

** 0.1623†

CGARCH & ARIMA −3.12 ∗ 10−5

(0.105)
−0.0958
(0.503)

0.9718
(0.000)

* 0.1448

CGARCH & ARFIMA −3.34 ∗ 10−5

(0.086)
*** −0.0872

(0.538)
0.9750
(0.000)

* 0.1449

CGARCH-IV & ARIMA −1.89 ∗ 10−5

(0.394)
0.2829
(0.310)

0.6198
(0.026)

** 0.1454

CGARCH-IV & ARFIMA −2.08 ∗ 10−5

(0.356)
0.2732
(0.327)

0.6363
(0.024)

** 0.1456

ACGARCH & ARIMAX −3.98 ∗ 10−5

(0.037)
** −0.1269

(0.373)
1.0387
(0.000)

* 0.1591

ACGARCH & ARFIMAX −4.48 ∗ 10−5

(0.021)
** −0.1063

(0.447)
1.0455
(0.000)

* 0.1596

ACGARCH-IV & ARIMAX −2.43 ∗ 10−5

(0.240)
0.3238
(0.089)

*** 0.6165
(0.002)

* 0.1614

ACGARCH-IV & ARFIMAX −2.83 ∗ 10−5

(0.182)
0.3166
(0.090)

*** 0.6405
(0.001)

* 0.1621

GARCH & IVt−1 −3.08 ∗ 10−5

(0.107)
−0.2291
(0.160)

1.0771
(0.000)

* 0.1464

GARCH-IV & IVt−1 −3.44 ∗ 10−5

(0.076)
* −0.4092

(0.116)
1.2196
(0.000)

* 0.1470

TGARCH & IVt−1 −1.55 ∗ 10−5

(0.449)
* 0.3277

(0.096)
*** 0.5677

(0.005)
* 0.1473

TGARCH-IV & IVt−1 −5.25 ∗ 10−5

(0.800)
0.5763
(0.006)

* 0.3387
(0.108)

0.1527

EGARCH & IVt−1 −1.90 ∗ 10−5

(0.338)
0.3727
(0.108)

0.5441
(0.016)

** 0.1471

EGARCH-IV & IVt−1 −2.80 ∗ 10−5

(0.989)
0.7752
(0.001)

* 0.1628
(0.487)

0.1558

CGARCH & IVt−1 −2.93 ∗ 10−5

(0.126)
−0.0958
(0.502)

0.9637
(0.000)

* 0.1448

CGARCH-IV & IVt−1 −1.76 ∗ 10−5

(0.418)
* 0.2827

(0.311)
0.6147
(0.026)

** 0.1454

ACGARCH & IVt−1 −2.83 ∗ 10−5

(0.138)
−0.0012
(0.993)

0.8841
(0.000)

* 0.1443

ACGARCH-IV & IVt−1 −2.91 ∗ 10−5

(0.889)
0.5864
(0.004)

* 0.3110
(0.142)

0.1535

Note: As Table 32.
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Table 36: Forecast encompassing regression results for the SMI index using ex post squared returns
measure of true volatility

a0 a1 a2 adj −R2

GARCH & ARMA −6.01 ∗ 10−5

(0.000)
* −0.1945

(0.199)
1.3039
(0.000)

* 0.2480

GARCH-IV & ARMA −5.72 ∗ 10−5

(0.000)
* −0.1658

(0.441)
1.2673
(0.000)

* 0.2470

TGARCH & ARMAX −3.05 ∗ 10−5

(0.032)
** 0.6232

(0.000)
* 0.4443

(0.020)
** 0.2764

TGARCH-IV & ARMAX −2.26 ∗ 10−5

(0.101)
0.9968
(0.000)

* 0.0679
(0.737)

0.2915

EGARCH & ARMAX −3.80 ∗ 10−5

(0.003)
* 0.8804

(0.000)
* 0.3188

(0.045)
** 0.2925

EGARCH-IV & ARMAX −3.44 ∗ 10−5

(0.006)
* 1.1440

(0.000)
* 0.0513

(0.774)
0.3020

CGARCH & ARIMA −6.01 ∗ 10−5

(0.000)
* −0.2604

(0.052)
** 1.3570

(0.000)
* 0.2497

CGARCH & ARFIMA −6.46 ∗ 10−5

(0.000)
* −0.2183

(0.092)
*** 1.3548

(0.000)
* 0.2500

CGARCH-IV & ARIMA −1.14 ∗ 10−5

(0.470)
0.8802
(0.000)

* 0.0724
(0.778)

0.2625

CGARCH-IV & ARFIMA −1.51 ∗ 10−5

(0.355)
0.8273
(0.000)

* 0.1431
(0.578)

** 0.2628

ACGARCH & ARIMAX −6.71 ∗ 10−5

(0.000)
* −0.3443

(0.021)
** 1.4711

(0.000)
* 0.2659

ACGARCH & ARFIMAX −7.19 ∗ 10−5

(0.000)
* −0.2733

(0.057)
1.4498
(0.000)

* 0.2639

ACGARCH-IV & ARIMAX −2.89 ∗ 10−5

(0.036)
** 0.7667

(0.000)
* 0.2919

(0.155)
0.2787

ACGARCH-IV & ARFIMAX −3.09 ∗ 10−5

(0.032)
** 0.7606

(0.000)
* 0.1352

(0.902)
0.2789

GARCH & IVt−1 −5.65 ∗ 10−5

(0.000)
* −0.1754

(0.255)
1.2643
(0.000)

* 0.2441

GARCH-IV & IVt−1 −5.35 ∗ 10−5

(0.000)
* −0.1248

(0.571)
** 1.2080

(0.000)
* 0.2431

TGARCH & IVt−1 −1.17 ∗ 10−5

(0.409)
0.8879
(0.000)

* 0.0995
(0.609)

0.2714

TGARCH-IV & IVt−1 −3.36 ∗ 10−5

(0.805)
1.3536
(0.000)

* −0.3611
(0.081)

*** 0.2943

EGARCH & IVt−1 −2.62 ∗ 10−5

(0.037)
** 1.0949

(0.000)
* 0.0704

(0.661)
0.2889

EGARCH-IV & IVt−1 −2.16 ∗ 10−5

(0.084)
*** 1.4516

(0.000)
* −0.2873

(0.114)
0.3042†

CGARCH & IVt−1 −5.90 ∗ 10−5

(0.000)
* −0.2459

(0.069)
*** 1.3382

(0.000)
* 0.2461

CGARCH-IV & IVt−1 −7.13 ∗ 10−6

(0.650)
0.9520
(0.000)

* −0.0174
(0.946)

0.2625

ACGARCH & IVt−1 −5.71 ∗ 10−5

(0.000)
* −0.1985

(0.199)
1.2858
(0.000)

* 0.2444

ACGARCH-IV & IVt−1 −9.96 ∗ 10−6

(0.476)
1.1074
(0.000)

* −0.1265
(0.555)

0.2770

Note: As Table 32.
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Table 37: Forecast encompassing regression results for the FTSE100 index using ex post squared
returns measure of true volatility

a0 a1 a2 adj −R2

GARCH & ARMA −3.27 ∗ 10−5

(0.030)
** −0.3044

(0.070)
*** 1.1139

(0.000)
* 0.1643

GARCH-IV & ARMA −4.78 ∗ 10−5

(0.818)
1.3001
(0.107)

−0.2001
(0.000)

* 0.1635

TGARCH & ARMAX −4.46 ∗ 10−5

(0.005)
* −0.0474

(0.776)
0.9913
(0.000)

* 0.1917

TGARCH-IV & ARMAX −3.70 ∗ 10−5

(0.019)
** 0.1781

(0.306)
0.7893
(0.000)

* 0.1928

EGARCH & ARMAX −4.14 ∗ 10−5

(0.007)
* 0.0586

(0.761)
0.8982
(0.000)

* 0.1917

EGARCH-IV & ARMAX −3.10 ∗ 10−5

(0.053)
** 0.3775

(0.068)
*** 0.6155

(0.002)
* 0.1952†

CGARCH & ARIMA −2.96 ∗ 10−5

(0.048)
** −0.1972

(0.211)
1.0174
(0.000)

* 0.1622

CGARCH & ARFIMA −3.26 ∗ 10−5

(0.032)
** −0.1734

(0.264)
1.0157
(0.000)

* 0.1619

CGARCH-IV & ARIMA −1.01 ∗ 10−5

(0.606)
0.4815
(0.198)

0.4074
(0.249)

0.1623

CGARCH-IV & ARFIMA −1.16 ∗ 10−5

(0.565)
0.4796
(0.190)

0.4173
(0.236)

0.1624

ACGARCH & ARIMAX −4.37 ∗ 10−5

(0.003)
* −0.3001

(0.047)
** 1.1698

(0.000)
* 0.1940

ACGARCH & ARFIMAX −4.97 ∗ 10−5

(0.001)
* −0.2772

(0.062)
*** 1.1867

(0.000)
* 0.1945

ACGARCH-IV & ARIMAX −3.58 ∗ 10−5

(0.022)
** 0.1224

(0.456)
0.8178
(0.000)

* 0.1904

ACGARCH-IV & ARFIMAX −4.06 ∗ 10−5

(0.012)
** 0.1195

(0.461)
0.8474
(0.000)

* 0.1913

GARCH & IVt−1 −2.85 ∗ 10−5

(0.053)
*** −0.2800

(0.086)
*** 1.0704

(0.000)
* 0.1654

GARCH-IV & IVt−1 −1.80 ∗ 10−6

(0.944)
1.5438
(0.264)

−0.3908
(0.725)

0.1635

TGARCH & IVt−1 −1.40 ∗ 10−5

(0.377)
0.3279
(0.065)

*** 0.5492
(0.002)

* 0.1659

TGARCH-IV & IVt−1 −6.68 ∗ 10−6

(0.672)
0.6063
(0.002)

* 0.3144
(0.091)

*** 0.1727

EGARCH & IVt−1 −1.43 ∗ 10−5

(0.349)
0.5298
(0.011)

** 0.4111
(0.026)

** 0.1693

EGARCH-IV & IVt−1 −7.59 ∗ 10−6

(0.639)
1.1041
(0.000)

* −0.1132
(0.609)

0.1848

CGARCH & IVt−1 −2.76 ∗ 10−5

(0.062)
*** −0.1650

(0.278)
0.9810
(0.000)

* 0.1635

CGARCH-IV & IVt−1 −1.41 ∗ 10−5

(0.476)
0.3492
(0.389)

0.5266
(0.165)

0.1630

ACGARCH & IVt−1 −2.60 ∗ 10−5

(0.078)
*** −0.0390

(0.800)
0.8777
(0.000)

* 0.1622

ACGARCH-IV & IVt−1 −8.90 ∗ 10−6

(0.577)
0.4810
(0.001)

0.4029
(0.030)

** 0.1696

Note: As Table 32.
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Table 38: Forecast encompassing regression results for the STOXX index using realized variance
measure of true volatility

a0 a1 a2 adj −R2

GARCH & ARMA −7.54 ∗ 10−5

(0.000)
* −0.0717

(0.146)
0.8671
(0.000)

* 0.5014

GARCH-IV & ARMA −7.35 ∗ 10−5

(0.000)
* −0.0670

(0.791)
0.8546
(0.000)

* 0.5001

TGARCH & ARMAX −5.02 ∗ 10−5

(0.000)
* 0.2437

(0.000)
* 0.5397

(0.000)
* 0.5261

TGARCH-IV & ARMAX −4.44 ∗ 10−5

(0.000)
* 0.4343

(0.000)
* 0.3763

(0.000)
* 0.5479

EGARCH & ARMAX −4.40 ∗ 10−5

(0.000)
* 0.5256

(0.000)
* 0.3140

(0.000)
* 0.5489

EGARCH-IV & ARMAX −3.98 ∗ 10−5

(0.000)
* 0.6294

(0.000)
* 0.2072

(0.002)
* 0.5674†

CGARCH & ARIMA −7.24 ∗ 10−5

(0.000)
* −0.0737

(0.085)
*** 0.8574

(0.000)
* 0.4907

CGARCH & ARFIMA −8.01 ∗ 10−5

(0.000)
* −0.0722

(0.084)
*** 0.8825

(0.000)
* 0.4990

CGARCH-IV & ARIMA −5.88 ∗ 10−5

(0.000)
* 0.1741

(0.120)
0.6167
(0.000)

* 0.4903

CGARCH-IV & ARFIMA −7.07 ∗ 10−5

(0.000)
* 0.0863

(0.431)
0.7261
(0.000)

* 0.4975

ACGARCH & ARIMAX −7.73 ∗ 10−5

(0.000)
* −0.0807

(0.048)
** 0.8785

(0.000)
* 0.5125

ACGARCH & ARFIMAX −8.59 ∗ 10−5

(0.000)
* −0.0647

(0.108)
0.8966
(0.000)

* 0.5109

ACGARCH-IV & ARIMAX −4.39 ∗ 10−5

(0.000)
* 0.4045

(0.000)
* 0.3791

(0.000)
* 0.5375

ACGARCH-IV & ARFIMAX −4.83 ∗ 10−5

(0.000)
* 0.4068

(0.000)
* 0.3927

(0.000)
* 0.5381

GARCH & IVt−1 −7.23 ∗ 10−5

(0.000)
* −0.0740

(0.130)
0.8564
(0.000)

* 0.5045

GARCH-IV & IVt−1 −7.41 ∗ 10−5

(0.000)
* −0.2696

(0.301)
1.0081
(0.000)

* 0.5037

TGARCH & IVt−1 −4.18 ∗ 10−5

(0.000)
* 0.2630

(0.000)
0.4954
(0.000)

* 0.5169

TGARCH-IV & IVt−1 −3.42 ∗ 10−5

(0.002)
0.4797
(0.000)

* 0.3069
(0.000)

* 0.5391

EGARCH & IVt−1 −3.35 ∗ 10−5

(0.002)
* 0.5967

(0.000)
0.2255
(0.003)

* 0.5423

EGARCH-IV & IVt−1 −2.53 ∗ 10−5

(0.015)
** 0.7487

(0.000)
* 0.0675

(0.371)
0.5625

CGARCH & IVt−1 −7.28 ∗ 10−5

(0.000)
* −0.0845

(0.042)
** 0.8664

(0.000)
* 0.5057

CGARCH-IV & IVt−1 −6.93 ∗ 10−5

(0.000)
* −0.0028

(0.980)
0.7900
(0.000)

* 0.5031

ACGARCH & IVt−1 −7.19 ∗ 10−5

(0.002)
* −0.0595

(0.143)
0.8430
(0.000)

* 0.5044

ACGARCH-IV & IVt−1 −3.58 ∗ 10−5

(0.001)
* 0.4440

(0.000)
* 0.3204

(0.000)
* 0.5300

Note: Entries are the estimated coe�cients, their p-values in parentheses and the adjusted R2

values from the encompassing regression when the realized variance measures the true volatility.
*, ** and *** denote signi�cance at the 1% level. A signi�cant p-value indicates that the forecast
under consideration is not encompassed by the alternative model, † denotes the highest adjusted
R2 value.
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Table 39: Forecast encompassing regression results for the CAC index using realized variance
measure of true volatility

a0 a1 a2 adj −R2

GARCH & ARMA −6.51 ∗ 10−5

(0.000)
* 0.0241

(0.520)
0.8049
(0.000)

* 0.4853

GARCH-IV & ARMA −3.87 ∗ 10−5

(0.796)
2.6952
(0.000)

* −1.6400
(0.000)

* 0.5029

TGARCH & ARMAX −2.45 ∗ 10−5

(0.018)
** 0.4016

(0.000)
* 0.3113

(0.000)
* 0.5260

TGARCH-IV & ARMAX −1.63 ∗ 10−5

(0.086)
0.6327
(0.000)

* 0.0940
(0.150)

0.5717

EGARCH & ARMAX −2.22 ∗ 10−5

(0.019)
** 0.6748

(0.000)
* 0.0852

(0.559)
0.5606

EGARCH-IV & ARMAX −1.41 ∗ 10−5

(0.126)
0.8114
(0.000)

* −0.0572
(0.409)

0.5888

CGARCH & ARIMA −6.20 ∗ 10−5

(0.000)
* 0.0320

(0.402)
0.7845
(0.000)

* 0.4751

CGARCH & ARFIMA −6.83 ∗ 10−5

(0.000)
* 0.0309

(0.409)
0.8105
(0.000)

* 0.4825

CGARCH-IV & ARIMA −4.07 ∗ 10−5

(0.000)
* 0.3879

(0.000)
* 0.3901

(0.000)
* 0.4872

CGARCH-IV & ARFIMA −4.84 ∗ 10−5

(0.000)
* 0.3284

(0.000)
* 0.4728

(0.000)
* 0.4910

ACGARCH & ARIMAX −6.25 ∗ 10−5

(0.000)
* 0.0434

(0.256)
0.7769
(0.000)

* 0.4726

ACGARCH & ARFIMAX −6.98 ∗ 10−5

(0.000)
* 0.0410

(0.272)
0.8082
(0.000)

* 0.4818

ACGARCH-IV & ARIMAX −3.21 ∗ 10−5

(0.000)
* 0.5214

(0.000)
* 0.2521

(0.000)
* 0.5405

ACGARCH-IV & ARFIMAX −3.74 ∗ 10−5

(0.000)
* 0.4972

(0.000)
* 0.2938

(0.000)
* 0.5435

GARCH & IVt−1 −6.31 ∗ 10−5

(0.000)
* 0.0205

(0.576)
0.7979
(0.000)

* 0.4949

GARCH-IV & IVt−1 −4.95 ∗ 10−5

(0.016)
** 0.7704

(0.016)
** 0.1287

(0.884)
0.4951

TGARCH & IVt−1 −2.71 ∗ 10−5

(0.007)
* 0.3698

(0.000)
* 0.3483

(0.000)
* 0.5292

TGARCH-IV & IVt−1 −1.59 ∗ 10−5

(0.088)
*** 0.6279

(0.000)
* 0.0962

(0.153)
* 0.5717

EGARCH & IVt−1 −2.39 ∗ 10−5

(0.009)
* 0.6528

(0.000)
* 0.1100

(0.123)
0.5611

EGARCH-IV & IVt−1 −1.09 ∗ 10−5

(0.230)
0.8476
(0.000)

* −0.0997
(0.178)

0.5894†

CGARCH & IVt−1 −6.31 ∗ 10−5

(0.000)
* 0.0205

(0.576)
0.7979
(0.000)

* 0.4949

CGARCH-IV & IVt−1 −5.18 ∗ 10−5

(0.000)
* 0.2255

(0.011)
** 0.5748

(0.000)
* 0.4989

ACGARCH & IVt−1 −6.27 ∗ 10−5

(0.000)
* 0.0330

(0.364)
0.7849
(0.000)

* 0.4953

ACGARCH-IV & IVt−1 −3.61 ∗ 10−5

(0.000)
* 0.4703

(0.000)
* 0.3107

(0.000)
* 0.5452

Note: As Table 38.
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Table 40: Forecast encompassing regression results for the DAX index using realized variance
measure of true volatility

a0 a1 a2 adj −R2

GARCH & ARMA −5.73 ∗ 10−5

(0.000)
* 0.0123

(0.866)
0.8078
(0.000)

* 0.5195

GARCH-IV & ARMA −6.08 ∗ 10−5

(0.000)
* −0.1549

(0.609)
0.9561
(0.000)

* 0.5196

TGARCH & ARMAX −2.63 ∗ 10−5

(0.005)
* 0.4511

(0.000)
* 0.3248

(0.000)
* 0.5660

TGARCH-IV & ARMAX −2.38 ∗ 10−5

(0.005)
* 0.7814

(0.000)
* 0.0548

(0.426)
0.6077†

EGARCH & ARMAX −2.75 ∗ 10−5

(0.002)
* 0.6477

(0.000)
* 0.1799

(0.015)
** 0.5796

EGARCH-IV & ARMAX −2.43 ∗ 10−5

(0.005)
* 0.7835

(0.000)
* 0.0547

(0.466)
0.5949

CGARCH & ARIMA −5.70 ∗ 10−5

(0.000)
* −0.0533

(0.402)
0.8612
(0.000)

* 0.5195

CGARCH & ARFIMA −6.30 ∗ 10−5

(0.000)
* −0.0320

(0.607)
0.8690
(0.000)

* 0.5192

CGARCH-IV & ARIMA −3.45 ∗ 10−5

(0.002)
* 0.4136

(0.003)
* 0.3843

(0.007)
* 0.5248

CGARCH-IV & ARFIMA −3.79 ∗ 10−5

(0.001)
* 0.4129

(0.002)
* 0.3990

(0.005)
* 0.5252

ACGARCH & ARIMAX −6.08 ∗ 10−5

(0.000)
* −0.0797

(0.191)
0.8989
(0.000)

* 0.5298

ACGARCH & ARFIMAX −6.72 ∗ 10−5

(0.000)
* −0.0590

(0.322)
0.9088
(0.000)

* 0.5296

ACGARCH-IV & ARIMAX −2.19 ∗ 10−5

(0.019)
** 0.6633

(0.000)
0.1208
(0.127)

0.5816

ACGARCH-IV & ARFIMAX −1.98 ∗ 10−5

(0.027)
** 0.6755∗

(0.000)
0.1019
(0.191)

0.5820

GARCH & IVt−1 −5.41 ∗ 10−5

(0.000)
* 0.0208

(0.780)
0.7880
(0.000)

* 0.5166

GARCH-IV & IVt−1 −5.29 ∗ 10−5

(0.000)
** 0.1145

(0.691)
0.7089
(0.005)

* 0.5166

TGARCH & IVt−1 −1.73 ∗ 10−5

(0.063)
*** 0.5130

(0.000)
* 0.2373

(0.001)
* 0.5599

TGARCH-IV & IVt−1 −1.35 ∗ 10−5

(0.105)
0.9056
(0.000)

* −0.0868
(0.229)

0.6071

EGARCH & IVt−1 −1.79 ∗ 10−5

(0.041)
** 0.7516

(0.000)
* 0.0581

(0.449)
0.5767

EGARCH-IV & IVt−1 −1.20 ∗ 10−5

(0.163)
0.9475
(0.000)

* −0.1272
(0.115)

0.5959

CGARCH & IVt−1 −5.66 ∗ 10−5

(0.000)
* −0.0503

(0.433)
0.8575
(0.000)

* 0.5169

CGARCH-IV & IVt−1 −3.18 ∗ 10−5

(0.004)
* 0.4613

(0.001)
* 0.3339

(0.019)
** 0.5237

ACGARCH & IVt−1 −5.58 ∗ 10−5

(0.000)
* −0.0285

(0.641)
0.8356
(0.000)

* 0.5167

ACGARCH-IV & IVt−1 −8.43 ∗ 10−5

(0.353)
0.8019
(0.000)

* −0.0497
(0.552)

0.5809

Note: As Table 38.
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Table 41: Forecast encompassing regression results for the AEX index using realized variance
measure of true volatility

a0 a1 a2 adj −R2

GARCH & ARMA −3.57 ∗ 10−5

(0.000)
* −0.0168

(0.750)
0.6705
(0.000)

* 0.4705

GARCH-IV & ARMA −3.51 ∗ 10−5

(0.000)
* 0.0234

(0.780)
0.6367
(0.000)

* 0.4705

TGARCH & ARMAX −2.87 ∗ 10−5

(0.000)
* 0.2164

(0.000)
* 0.4563

(0.000)
* 0.4883

TGARCH-IV & ARMAX −1.96 ∗ 10−5

(0.003)
* 0.4323

(0.000)
* 0.2553

(0.000)
* 0.5112

EGARCH & ARMAX −2.78 ∗ 10−5

(0.000)
* 0.3655

(0.000)
* 0.3314

(0.000)
* 0.4978

EGARCH-IV & ARMAX −1.71 ∗ 10−5

(0.008)
* 0.5382

(0.000)
* 0.1639

(0.016)
** 0.5186

CGARCH & ARIMA −3.61 ∗ 10−5

(0.000)
* 0.0639

(0.166)
0.7095
(0.000)

* 0.4716

CGARCH & ARFIMA −3.78 ∗ 10−5

(0.000)
* −0.0599

(0.189)
0.7145
(0.000)

* 0.4734

CGARCH-IV & ARIMA −2.03 ∗ 10−5

(0.004)
* 0.3774

(0.000)
* 0.2940

(0.000)
* 0.4824

CGARCH-IV & ARFIMA −2.20 ∗ 10−5

(0.001)
* 0.3608

(0.000)
* 0.3144

(0.000)
* 0.4832

ACGARCH & ARIMAX −3.64 ∗ 10−5

(0.000)
* −0.0195

(0.672)
0.6770
(0.000)

* 0.4778

ACGARCH & ARFIMAX −4.04 ∗ 10−5

(0.000)
* −0.0136

(0.762)
0.6906
(0.000)

* 0.4831

ACGARCH-IV & ARIMAX −1.53 ∗ 10−5

(0.017)
** 0.4846

(0.000)
* 0.1880

(0.003)
* 0.5197

ACGARCH-IV & ARFIMAX −1.85 ∗ 10−5

(0.005)
* 0.4582

(0.000)
* 0.2237

(0.000)
* 0.5220†

GARCH & IVt−1 −3.43 ∗ 10−5

(0.000)
* −0.0174

(0.742)
0.6647
(0.000)

* 0.4706

GARCH-IV & IVt−1 −3.37 ∗ 10−5

(0.000)
* 0.0223

(0.790)
0.6316
(0.000)

* 0.4706

TGARCH & IVt−1 −2.44 ∗ 10−5

(0.000)
* 0.2472

(0.000)
* 0.4120

(0.000)
* 0.4810

TGARCH-IV & IVt−1 −1.46 ∗ 10−5

(0.024)
** 0.4853

(0.000)
* 0.1916

(0.004)
* 0.5062

EGARCH & IVt−1 −2.36 ∗ 10−5

(0.000)
* 0.4183

(0.000)
* 0.2696

(0.000)
* 0.4919

EGARCH-IV & IVt−1 −1.09 ∗ 10−5

(0.092)
*** 0.6272

(0.000)
* 0.0672

(0.356)
0.5156

CGARCH & IVt−1 −3.47 ∗ 10−5

(0.000)
* −0.0645

(0.161)
0.7042
(0.000)

* 0.4719

CGARCH-IV & IVt−1 −1.99 ∗ 10−5

(0.004)
* 0.3750

(0.000)
* 0.2939

(0.001)
* 0.4825

ACGARCH & IVt−1 −3.41 ∗ 10−5

(0.000)
* −0.0009

(0.985)
* 0.6507

(0.000)
* 0.4705

ACGARCH-IV & IVt−1 −1.09 ∗ 10−5

(0.094)
*** 0.5358

(0.000)
* 0.1272

(0.053)
*** 0.5164

Note: As Table 38.
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Table 42: Forecast encompassing regression results for the SMI index using realized variance mea-
sure of true volatility

a0 a1 a2 adj −R2

GARCH & ARMA −3.99 ∗ 10−5

(0.000)
* 0.2650

(0.000)
* 0.5731

(0.000)
* 0.4937

GARCH-IV & ARMA −4.07 ∗ 10−5

(0.000)
* 0.3888

(0.000)
* 0.4675

(0.000)
* 0.4945

TGARCH & ARMAX −2.42 ∗ 10−6

(0.670)
0.9864
(0.000)

* −0.2730
(0.000)

* 0.6061

TGARCH-IV & ARMAX 1.83 ∗ 10−6

(0.719)
1.3507
(0.000)

* −0.6234
(0.000)

* 0.6670

EGARCH & ARMAX −2.06 ∗ 10−5

(0.000)
* 1.1301

(0.000)
* −0.2243

(0.0000)
* 0.6532

EGARCH-IV & ARMAX −1.84 ∗ 10−5

(0.000)
* 1.3571

(0.000)
* −0.4612

(0.000)
* 0.6730

CGARCH & ARIMA −4.20 ∗ 10−5

(0.000)
* 0.1489

(0.013)
* 0.6781

(0.000)
* 0.4865

CGARCH & ARFIMA −4.48 ∗ 10−5

(0.000)
* 0.1617

(0.005)
* 0.6879

(0.000)
* 0.4890

CGARCH-IV & ARIMA −1.48 ∗ 10−6

(0.824)
0.9748
(0.000)

* −0.3042
(0.005)

* 0.5519

CGARCH-IV & ARFIMA −3.21 ∗ 10−6

(0.642)
0.9262
(0.000)

* −0.2514
(0.021)

** 0.5504

ACGARCH & ARIMAX −3.70 ∗ 10−5

(0.000)
* 0.3139

(0.000)
* 0.5155

(0.000)
* 0.4893

ACGARCH & ARFIMAX −4.01 ∗ 10−5

(0.000)
* 0.3165

(0.000)
* 0.5360

(0.000)
* 0.4922

ACGARCH-IV & ARIMAX −5.13 ∗ 10−5

(0.354)
1.1104
(0.000)

* −0.3913
(0.000)

* 0.6034

ACGARCH-IV & ARFIMAX −5.44 ∗ 10−6

(0.349)
1.0706
(0.000)

* −0.3559
(0.000)

* 0.6010

GARCH & IVt−1 −3.72 ∗ 10−5

(0.000)
* 0.2928

(0.000)
* 0.5323

(0.000)
* 0.4881

GARCH-IV & IVt−1 −3.79 ∗ 10−5

(0.000)
* 0.4487

(0.000)
* 0.3985

(0.000)
* 0.4899

TGARCH & IVt−1 3.42 ∗ 10−7

(0.079)
*** 1.0381

(0.000)
* −0.3339

(0.000)
* 0.6091

TGARCH-IV & IVt−1 5.20 ∗ 10−6

(0.299)
1.4436
(0.000)

* −0.7235
(0.000)

* 0.6756

EGARCH & IVt−1 −1.91 ∗ 10−5

(0.000)
* 1.1702

(0.000)
* −0.2656

(0.000)
* 0.6556

EGARCH-IV & IVt−1 −1.66 ∗ 10−5

(0.000)
* 1.4279

(0.000)
* −0.5324

(0.000)
* 0.6791†

CGARCH & IVt−1 −4.07 ∗ 10−5

(0.000)
* 0.1667

(0.006)
* 0.6553

(0.000)
* 0.4809

CGARCH-IV & IVt−1 1.86 ∗ 10−5

(0.779)
1.0300
(0.000)

* −0.3740
(0.001)

* 0.5543

ACGARCH & IVt−1 −3.70 ∗ 10−5

(0.000)
* 0.3042

(0.000)
* 0.5232

(0.000)
* 0.4890

ACGARCH-IV & IVt−1 −2.15 ∗ 10−5

(0.700)
1.1727
(0.000)

* −0.4642
(0.000)

* 0.6068

Note: As Table 38.
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Table 43: Forecast encompassing regression results for the FTSE100 index using realized variance
measure of true volatility

a0 a1 a2 adj −R2

GARCH & ARMA −1.97 ∗ 10−5

(0.000)
* 0.0396

(0.325)
0.4645
(0.000)

* 0.5276

GARCH-IV & ARMA −7.60 ∗ 10−6

(0.113)
1.5447
(0.000)

* −0.7665
(0.000)

* 0.5669

TGARCH & ARMAX −1.39 ∗ 10−5

(0.000)
* 0.2203

(0.000)
* 0.3048

(0.000)
* 0.5646

TGARCH-IV & ARMAX −8.53 ∗ 10−6

(0.015)
** 0.4258

(0.000)
* 0.1313

(0.000)
* 0.6092†

EGARCH & ARMAX −1.60 ∗ 10−5

(0.000)
* 0.2655

(0.000)
* 0.2864

(0.000)
* 0.5662

EGARCH-IV & ARMAX −7.29 ∗ 10−5

(0.043)
* 0.4786

(0.000)
* 0.0883

(0.044)
** 0.6024

CGARCH & ARIMA −1.89 ∗ 10−5

(0.000)
* 0.0172

(0.650)
0.4761
(0.000)

* 0.5244

CGARCH & ARFIMA −2.06 ∗ 10−5

(0.000)
* 0.0224

(0.549)
0.4819
(0.000)

* 0.5268

CGARCH-IV & ARIMA −1.79 ∗ 10−5

(0.695)
0.6114
(0.000)

* −0.0761
(0.356)

0.5535

CGARCH-IV & ARFIMA −2.28 ∗ 10−5

(0.962)
0.5701
(0.000)

* −0.0369
(0.653)

0.5531

ACGARCH & ARIMAX −2.03 ∗ 10−5

(0.000)
* 0.0602

(0.096)
*** 0.4539

(0.000)
* 0.5474

ACGARCH & ARFIMAX −2.24 ∗ 10−5

(0.000)
* 0.0724

(0.042)
** 0.4569

(0.000)
* 0.5463

ACGARCH-IV & ARIMAX −7.68 ∗ 10−6

(0.027)
** 0.3986

(0.000)
* 0.1355

(0.000)
* 0.6078

ACGARCH-IV & ARFIMAX −8.33 ∗ 10−6

(0.020)
** 0.4002∗

(0.000)
0.1380
(0.000)

* 0.6078

GARCH & IVt−1 −1.92 ∗ 10−6

(0.000)
* 0.0254∗

(0.511)
0.4714
(0.000)

* 0.5410

GARCH-IV & IVt−1 1.09 ∗ 10−5

(0.069)
*** 1.9681

(0.000)
* −1.0864

(0.000)
* 0.5628

TGARCH & IVt−1 −1.14 ∗ 10−5

(0.002)
* 0.2296

(0.000)
* 0.2831

(0.000)
* 0.5589

TGARCH-IV & IVt−1 −4.56 ∗ 10−5

(0.191)
0.4776
(0.000)

* 0.0721
(0.080)

*** 0.6045

EGARCH & IVt−1 −1.35 ∗ 10−5

(0.000)
0.2790
(0.000)

* 0.2621
(0.000)

* 0.5602

EGARCH-IV & IVt−1 −2.27 ∗ 10−5

(0.531)
0.5719
(0.000)

* −0.0057
(0.908)

0.6002

CGARCH & IVt−1 −1.93 ∗ 10−5

(0.000)
* 0.0075

(0.834)
0.4856
(0.000)

* 0.5407

CGARCH-IV & IVt−1 −4.97 ∗ 10−5

(0.282)
0.4407
(0.000)

* 0.0872
(0.000)

* 0.5536

ACGARCH & IVt−1 −1.87 ∗ 10−5

(0.000)
* 0.0687

(0.059)
*** 0.4378

(0.000)
* 0.5429

ACGARCH-IV & IVt−1 −4.06 ∗ 10−6

(0.255)
0.4452
(0.000)

* 0.0805
(0.050)

** 0.6029

Note: As Table 38.
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Table 45: Summary of 1% and 5% VaR failure rates of forecast encompassing regressions when
realized variance is the measure of true volatility

1% 5%

Ave. failure rate Sig. Kupiec test Sig. DQ test Ave. failure rate Sig. Kupiec test Sig. DQ test

GARCH & ARMA 0.0531 All All 0.1036 All All

GARCH-IV & ARMA 0.0500 All All 0.1046 All All

GJR & ARMAX 0.0453 All All 0.0978 All All

GJR-IV & ARMAX 0.0497 All All 0.1046 All All

EGARCH & ARMAX 0.0548 All All 0.1089 All All

EGARCH-IV & ARMAX 0.0568 All All 0.1097 All All

CGARCH & ARIMA 0.0499 All All 0.1039 All All

CGARCH & ARFIMA 0.0516 All All 0.1052 All All

CGARCH-IV & ARIMA 0.0472 All All 0.1008 All All

CGARCH-IV & ARFIMA 0.0466 All All 0.1012 All All

ACGARCH & ARIMAX 0.0431 All All 0.0984 All All

ACGARCH & ARFIMAX 0.0431 All All 0.0999 All All

ACGARCH-IV & ARIMAX 0.0479 All All 0.1036 All All

ACGARCH-IV & ARFIMAX 0.0481 All All 0.1036 All All

GARCH & IVt−1 0.0494 All All 0.1028 All All

GARCH-IV & IVt−1 0.0492 All All 0.1045 All All

GJR & IVt−1 0.0501 All All 0.0991 All All

GJR-IV & IVt−1 0.0497 All All 0.1061 All All

EGARCH & IVt−1 0.0571 All All 0.1098 All All

EGARCH-IV & IVt−1 0.0566 All All 0.1111 All All

CGARCH & IVt−1 0.0494 All All 0.1034 All All

CGARCH-IV & IVt−1 0.0455 All All 0.1019 All All

ACGARCH & IVt−1 0.0499 All All 0.1032 All All

ACGARCH-IV & IVt−1 0.0499 All All 0.1043 All All

Note: Entries are the average failure rate of the forecasts encompassing regressions. The series for
which the Kupiec test for the equality of the empirical failure rate at a speci�ed statistical level
and the DQ test for the autocorrelation in VaR violations are signi�cant are listed.
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4 Forecasting stock index return volatility with Stochastic

Volatility models

In this chapter the performance of the stochastic volatility model for forecasting the daily

volatility of a number of European and US stock indices is assessed and compared with two popular

GARCH speci�cations, the GARCH(1,1) and EGARCH(1,1). The chapter examines whether the

leverage e�ect and implied volatility have any signi�cant e�ect on the performance of the SV model

as, in the previous chapter, they played an important role. The one-, �ve- and twenty two-day out-

of-sample volatility forecasts of the GARCH and SV models are evaluated. The �ndings indicate

that incorporating implied volatility in the stochastic volatility model signi�cantly enhances the

performance of volatility forecasts. In contrast, the presence of the asymmetric e�ect seems not to

signi�cantly improve the performance of the SV models. Overall, the EGARCH-IV model produces

the most accurate volatility forecast at one day horizon. For longer horizons, the GARCH-IV model

performs best.

4.1 Introduction

The accurate estimation and forecasting of volatility in �nancial markets plays a crucial role in

decision making in a number of areas, such as option and derivatives pricing, hedging strategies,

portfolio allocation and Value-at-Risk calculations. Whilst one of the most well known phenomenon

exhibited by the volatility of many �nancial return series is the volatility clustering, it is only since

the introduction of the benchmark GARCH model (Engle, 1982; Bollerslev, 1986) that �nancial

economists have developed alternative model speci�cations to capture this empirical characteristic.

GARCH models have been extensively used be both academics and practitioners. In GARCH

models, the conditional variance is expressed as a deterministic function of the past squared residuals

and the past conditional variance.15

A rival class of time-varying volatility models is known as the stochastic volatility (SV) models

15See Bera & Higgins (1993) and Bollerslev et al. (1994) for a review of the models.
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(Taylor, 1986). In theses models, volatility is modeled as an unobserved component that follows

some latent stochastic process. Similarly to GARCH models, various SV speci�cations have been

developed in order to capture volatility's empirical stylized facts. The leptokurtosis that many

�nancial series exhibit, can be incorporated in SV models and, amongst others, has been studied

by Harvey et al. (1994b) and Chib et al. (2002). Regarding the leverage e�ect, Harvey & Shephard

(1996) and Jacquier et al. (2004) suggest alternative approaches to allow for the correlation between

the two error terms. Finally, Breidt et al. (1998), amongst others, have investigated the feature of

long memory.16

The aim of this chapter is to investigate both the in-sample and out-of-sample performance of the

alternative SV speci�cations for forecasting stock returns volatility. One of the main advantages

of the SV models is that since it contains an additional innovative term in the dynamics of the

conditional variance, it is more �exible than the GARCH models in describing the stylized facts.

Furthermore, SV models the unobserved variance process as a logarithmic �rst order autoregressive

process which can be viewed as a discrete-time approximation of the continuous-time models used

in the option pricing literature.17

While the stochastic volatility approach is both theoretically and economically more attractive

than the GARCH it has been under-utilized in empirical research. This is due to the fact that SV

models are more di�cult to estimate, because an exact likelihood function cannot be derived when

the volatility itself is stochastic. However, in recent years several methods have been developed

for estimating the SV models. Such methods include the quasi-maximum likelihood (QML) of

Harvey et al. (1994a), the generalized methods of moments (GMM) of Melino & Turnbull (1990),

the e�cient method of moments (EMM) of Gallant et al. (1997) and the Markov chain Monte Carlo

(MCMC) of Kim et al. (1998). In this chapter, the QML method is used to estimate the SV models

parameters and obtain one step ahead volatility forecasts.

The goal of this study is to explore the in-sample and out-of-sample performance of SV models.

I investigate whether, in the context of stochastic volatility, the presence of the leverage e�ect

and the information content of IV play such an important role as in the GARCH context. The
16See Taylor (1994), Shephard (1996) and Ghysels et al. (1996) for a review of the stochastic volatility models.
17See, for example, Hull & White (1987b) and Hull & White (1987a).
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GARCH and EGARCH models as well as their augmented versions with IV are forecasted in order

to provide a comparative evaluation of the volatility forecasting ability of SV and GARCH models.

The one-, �ve- and twenty two-day out-of-sample volatility forecasts of the GARCH and SV models

are evaluated.

The remainder of the chapter is organized as follows: In the next Section, I review the literature.

Sections 4.3 and 4.4 introduce the data and the methodology employed. Section 4.5 presents the

empirical results and, �nally, Section 4.5.3 summarizes and concludes.

4.2 Literature review

The SV models are considered as a successful alternative to GARCH models. This class of

model has a long history that goes back to the work of Clark (1973) where asset returns are

modeled as a function of a random information arrival process. Tauchen & Pitts (1983) re�ned this

work suggesting that if information �ows are positively autocorrelated, the return process reveals

volatility clustering and gives rise to the idea that returns volatility follows its own stochastic

process. Later, Taylor (1986) formulated a discrete-time SV model as an alternative to GARCH

models in which a logarithmic �rst order autoregressive process is modeled. Although the SV

models were developed in parallel with the GARCH models, they have received much less attention

in the volatility forecasting literature, because of their estimation complexity.

Heynen & Kat (1994) forecast both stock index and exchange rate volatility and �nd that SV

models provide the most accurate forecast for the indices, but performs poorly when the exchange

rates volatility is forecasted, where a GARCH(1,1) model performs best. So et al. (1999) compare

the usefulness of the SV model with GARCH models in forecasting exchange rates volatility and �nd

that although the two approaches perform similarly, the SV model does not, in general, outperforms

the GARCH approach. Yu (2002) forecasts New Zealand stock market volatility and �nd that the SV

model outperforms GARCH models. Pederzoli (2006) forecasts volatility for the UK stock market

and ranks EGARCH top, while there is no di�erence between GARCH(1,1) and SV. Chortareas

et al. (2011) using intraday data �nd evidence that the SV model performs poorly compare to

other time series models for forecasting daily volatility of the euro bilateral exchange rates. Other
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studies, such as Bluhm & Yu (2000), Dunis et al. (2000) and Hol & Koopman (2000) compare

SV and other time series models with implied volatility without a clear-cut result. Dunis et al.

(2000) conclude that combined forecast is the best for currencies. Both Bluhm & Yu (2000) and

Hol & Koopman (2000) �nd that implied volatility is better than SV when stock index volatility

is forecasted. The mixed results in the existing literature suggest that further research needs to be

done on the merits of SV models with the aim of producing accurate volatility forecasts. Sadorsky

(2005) using di�erent assets compares a discrete-time range-based SV model with simple models

and �nd that simple models outperform the SV.

4.3 Data

The dataset used for the purposes of this chapter consists of the daily closing price data of three

major US indices (S&P500, DJIA, Nasdaq100) and six European (STOXX, CAC, DAX, AEX,

SMI and FTSE100) as well as their implied volatility indices (VIX, VXD,VXN, VSTOXX, VCAC,

VDAX, VAEX, VSMI and VFTSE100). The data have been collected from Datastream for the

period 2 February 2001 to 28 February 2013. I have also obtained daily realized variances from

Realized Library of the Oxford-Man Institute of Quantitative Finance. These realized variances

are based on the sum of 5-minute intra-day squared returns.

4.4 Methodology

4.4.1 Stochastic volatility model

The aim is to investigate both the in-sample and out-of-sample performance of the SV models.

Like GARCH models, the SV models are de�ned by their �rst and second moments. That is, the

conditional mean and conditional variance, respectively.

The standard SV model proposed by Taylor (1986) is a log-normal AR(1) which is formulated

as

rt = σtεt = exp(ht/2)εt, εt
i.i.d∼ N(0, 1) (43)
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ht+1 = φ0 + φ1ht + ηt+1, ηt
i.i.d.∼ N(0, σ2

η) (44)

where

corr(εt, ηt+1) = 0

The parameter φ1 measures the volatility persistence and it is restricted to be positive and lower

than one in order the volatility process to be stationary. Under this assumption, the unconditional

variance is V ar(h) = σ2
η/(1−φ2

1). It is assumed that εt and ηt+1 are independent.18 The SV model, as

an alternative to the GARCH models, is supposed to describe the returns features better than the

GARCH-type models, since the additional innovation in the variance equation makes this model

class more �exible than GARCH.

The SV model can be augmented with IV as explanatory variable in the variance equation.

Thus, equation (44) can be written as

ht+1 = φ0 + φ1ht + θIVt + ηt+1, ηt
i.i.d.∼ N(0, σ2

η) (45)

where IV is the daily implied volatility index computed from the annualized percentages as IV/(100∗
√
252).

IVt is in a logarithmic form so that IVt = lnIV 2
t . Whilst the parameter φ is constrained to be

positive in equation (44), in this speci�cation the stationarity is ensured when | φ |< 1.

The SV models in equations (44) and (45) respond symmetrically to positive and negative

shocks. However, a crucial and well documented stylized fact of the �nancial returns is the leverage

e�ect, which, in the previous chapters, has been proved to signi�cantly improve the performance of

GARCH and IV models.

Harvey & Shephard (1996) and later Jacquier et al. (2004) generalized the basic SV model

proposing two alternative speci�cations that take the leverage e�ect into account. Yu (2005) com-

pares the two speci�cations and show that the model suggested by Jacquier et al. (2004) is inferior

to the Harvey & Shephard (1996) one. Thus, based on his results, I follow Harvey & Shephard

18For review of the SV models see Taylor (1994), Ghysels et al. (1996) and Shephard (1996)
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(1996) speci�cation and, in both equations (44) and (45), I relax the assumption that εt and ηt+1

are uncorrelated. A contemporaneous correlation between the innovations

corr(εt, ηt+1) = ρ

is allowed. When ρ is negative, negative shocks in the return series are linked with contemporaneous

volatility shock, while a positive shock in the return series followed by a decrease in volatility.

The parameters are estimated using the quasi-maximum likelihood, which is consistent and easy

to implement numerically method.

4.4.2 Forecast evaluation

I obtain one-, �ve- and twenty two-day out-of-sample volatility forecasts which in terms of

trading days corresponds to one-day, one-week and one-month forecasting horizons. The forecasts

do not overlap, because they are generated by a rolling window estimation process. That is, the

initial period is rolled forward by adding one, �ve and twenty two observations and removing the

most distant, thus keeping the sample size �xed. I compare the predictive abilities of the SV models

with those of the GARCH models. More speci�cally, the GARCH(1,1) and EGARCH(1,1) models

which are both extended to include the IV and have been evaluated in the previous chapter are

used in this chapter.

The ability of the models described in Subsection 4.4.1 to accurately forecast the true volatility

is evaluated using three of the most popular measures for forecast comparison. The mean absolute

error (MAE), the root mean squared error (RMSE) and the goodness-of-�t R2 statistic of the

Mincer-Zarnowitz (MZ) (Mincer & Zarnowitz, 1969) regression, which measures how much of the

true volatility is explained by the forecast series.

MSE =
1

τ

τ∑
t=1

(h2t − σ2
t )2 (46)
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RMSE =

√√√√1

τ

τ∑
t=1

(h2t − σ2
t ) (47)

σ2
t = a0 + a1h

f
t + εt (48)

where τ is the number of out-of-sample observations and σ2
t is the 'true' volatility. These measures

are useful for forecast comparisons, but they do not provide any statistical test of the di�erence

among the models. Thus, there is the possibility that the model with the lower forecast error

may not be inherently better than the competing model, as their di�erence may be statistically

insigni�cant. Consequently, the Giacomini-White test is employed.

Giacomini and White test

Giacomini-White (GW) pairwise test is a test of conditional predictive ability proposed by

Giacomini & White (2006). The test evaluates the forecasting performance of two competing

models, accounting for parameter uncertainty. In short, let L(yt; ŷt) denote the forecast loss where

yt is the 'true' value and ŷt is the predicted value. The di�erence in loss of model i relative to a

benchmark model o is de�ned as

di,t = L(yt; ˆyo,t)− L(yt; ˆyi,t) (49)

The issue is whether the two models have equal predictive ability. That is, the null hypothesis

tested is H0 : E(di,t+τ | ht) = 0, where ht is some information set. The CPA test statistic is then

computed as a Wald statistic

CPAt = T (T−1
T−τ∑
t=1

htdi,t+τ )
′
Ω̂−1T (T−1

T−τ∑
t=1

htdi,t+τ ) ∼ χ2
1 (50)

where Ω̂T is the Newey an West (1987) HAC estimator of the asymptotic variance of the htdi,t+τ . In

this application the CPA test is used to assess whether any model under consideration outperforms

the random walk model under the squared error metric.
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SPA test

The GW test is a pairwise test that evaluates the forecasts of any two competing models. In order

to investigate the relative performance of various volatility models Hansen (2005) introduced the

Superior Predictive Ability (SPA) test. That is, it evaluates the performance of several alternative

models simultaneously against a benchmark model The test uses a bootstrap procedure to assess

whether the same outcome can be obtained from more than one sample. Forecasts are evaluated

by a pre-speci�ed loss function and the model that produces the smallest expected loss is the best

model.

In short, let the di�erence in loss of model i relative to a benchmark model o is de�ned as

in equation (49). The issue is whether any of the competing models i = 1, ...,K signi�cantly

outperforms the benchmark model testing the null hypothesis that µi = E(di,t) ≤ 0. It is tested

with the statistic

TSPAn = maxin
0.5 d̄i
σi

(51)

where d̄i = 1
n

∑
di,t and σi = lim

n→∞
var(n0.5d̄i) which is estimated via a bootstrap procedure.

4.5 Empirical results

4.5.1 In-sample results

In this subsection, the estimation results obtained with the di�erent SV models are reported.

The results are based on the period 2 February 2001 to 23 February 2010.

Table 46 reports the parameters estimates for the daily returns on the US indices. For the SV

model the volatility persistence estimate, φ1, is statistically signi�cant and very close to unity for all

series which is a typical �nding for daily stock index return series and consistent with the observed

volatility clustering.

The incorporation of the implied volatility in the variance equation of the SV model, i.e. SV-IV

model, always shows signi�cant estimates for the coe�cient θ. This con�rms earlier �ndings in the

117



literature that IV contains incremental information useful for explaining the conditional variance.

For example, Hol & Koopman (2000) and Koopman et al. (2005) found that the incorporation of

the implied volatility in the SV model has a signi�cant e�ect on the �t of the model for the S&P100

index. The estimates of the persistence coe�cient φ1 are negative and statistically signi�cant and

in absolute value less than one.The inclusion of IV has considerably increased the estimates for σ2
η.

Finally, also the likelihood ratio test statistic indicates that IV has incremental explanatory power

for conditional volatility.

Turning to the ASV model the negative value of the parameter ρ denotes the presence of leverage

e�ect, which is signi�cant across all indices. Despite this, likelihood ratio test show that ASV model

does not �t the data signi�cantly better than the SV. The volatility process is highly persistent for

all series as shown by the close to the unity coe�cient φ1. When the IV is added as an exogenous

variable in the variance equation, I �nd that parameter ρ is negative for all series, but signi�cant

only for the DJIA index. However, asymmetry has an insigni�cant e�ect on the �t of the model

as shown by the likelihood ratio test. On the other hand, the e�ect of IV is strong since the

log-likelihood increases in relation to the ASV model. Finally, I �nd that while the σ2
η has highly

signi�cant values the coe�cient φ1is no longer signi�cant.

Similar results I �nd for the European indices that are presented in Table 47. For the SV

models I indicate that the coe�cient for persistence φ1 is statistically signi�cant and very close to

one. When the IV is added in the volatility equation the coe�cient φ1 is negative and less than

one in absolute values, but in most indices it is not signi�cant. At the same time, the value of the

variance of ηt has signi�cantly increased. As in the US data, SV-IV �t the data signi�cantly better

than the SV.

Regarding the ASV model, the coe�cient ρ is not negative and signi�cant for most indices.

However, when IV is incorporated in the variance equation, ρ is negative and signi�cant for STOXX,

CAC, DAX and AEX indices, while it is positive and insigni�cant for FTSE100. Looking at the

likelihood ratio test, I conclude that while the inclusion of IV has a strong e�ect on the �t of the

models, the same does not apply when asymmetry is taken into consideration.
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4.5.2 Out-of-sample results

The one-, �ve- and twenty two-day out-of-sample volatility forecasts of the di�erent GARCH

and SV models are constructed using the rolling forecasting methodology discussed in subsection

4.4.2 for the period 24 February 2010 to 28 February 2013.

Table 48 presents the mean square forecast error results. For the one-day ahead forecast the

results are mixed. For 5 of the 9 indices the EGARCH-IV model yields the lowest forecast error.

As for the rest 4 indices, the SV-IV model provides the best forecast for the Nasdaq100 index, the

GARCH-IV and SV outperform for the CAC and AEX and FTSE100 index, respectively. Focusing

in these indices, the EGARCH-IV model follows closely, apart from the case of Nasdaq100 where

it performs poorly. The performance of GARCH and ASV is generally poor. GARCH provides the

worst forecast for four indices, while ASV yields the highest loss for �ve indices. Finally, within

the group of SV models, the SV-IV speci�cation is superior for all indices with the exception of the

FTSE100, where the basic SV model perform best. In the majority of the series, both SV and ASV

models that are nested with IV provide more accurate forecasts that their SV and ASV counterparts

where IV is precluded. The results are mixed when I compare the forecasting performance of the

symmetric and asymmetric models.

When the predictive ability of the various models is examined for longer forecasting horizons

there is overwhelming evidence of the superiority of the GARCH-IV model. More speci�cally, for

the forecasting horizon of the �ve days, the GARCH-IV provides the best forecast for all indices

with the exception of the Nasdaq100 and STOXX indices in which the SV-IV and EGARCH-IV,

respectively, perform best. For all indices the GARCH model performs poorly yielding the highest

loss apart from the DAX index, where the ASV speci�cation performs worst. Among the SV-class

models, and similar to the one-day ahead results, the SV-IV and ASV-IV speci�cations provide the

best forecasts. As for the twenty two days ahead forecasts, the GARCH-IV performs best for �ve

indices. As for the rest, the EGARCH-IV is superior for the STOXX and AEX indices and the

SV-IV yields the lowest loss for the Nasdaq100 and FTSE100 indices. When the information of

the IV is taken into account both the GARCH and SV models perform better than their restricted
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counterparts.

Table 49 reports the root mean squared forecast error results. First, the results are consistent

with those obtained in Table 48. For the forecasting horizon of one day there is evidence for the

superiority of the EGARCH-IV model in forecasting volatility. More speci�cally, the EGARCH-IV

provides the best forecast for six of the nine indices. Whereas, for longer forecasting horizons, the

GARCH-IV speci�cation performs best for most indices. Second, both GARCH and SV models

that account for IV perform better than those that preclude IV. Third, the GARCH and ASV

speci�cations perform generally poor for most indices. Finally, and withing the group of SV models,

the SV-IV and ASV-IV provide the best forecasts for all indices with the two speci�cations following

very close to one another.

Table 50 presents the goodness-of-�t R2 statistic, with now overwhelming evidence of the su-

periority of the GARCH genre of models in forecasting volatility. That is, the EGARCH-IV has

the best forecasting performance obtaining the highest R2 values for the forecasting horizon of the

one day for all indices and the GARCH-IV performs best for the longer horizons. More specif-

ically, for the �ve days ahead with the exception of the STOXX index where the EGARCH-IV

perform best, the GARCH-IV yields the highest R2 value for all indices. As for the twenty two

steps ahead, the GARCH-IV is superior for all indices apart from the STOXX and AEX indices

where the EGARCH-IV obtains the highest R2 value. Furthermore, the models that are nested

with IV outperform their counterparts that discount IV. Among the di�erent SV speci�cations, the

SV-IV seems to perform best for almost all indices.

Tables 51 to 56 present the GW pairwise test for the squared forecast errors for all the US

and European indices and forecasting horizons. In the tables, I report the p-values for testing

the null hypothesis of equal forecasting performance between the row and column models in terms

of squared forecast error. The signs in bracket indicate which model performs best. A positive

sign shows that the row model forecast yields larger loss than the column model forecast, which

implies that the column model is signi�cantly superior. Similarly, a negative sign denotes that the

row model forecast performs signi�cantly better than the column model forecast, since the latter

produces larger loss.
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Tables 51 and 52 report the GW test results for the one-day ahead forecast for the US and

European indices, respectively. As for the US indices, the GARCH genre of models performs

signi�cantly better than the SV class of models. More speci�cally, for the S&P500 index only the

GARCH-IV model outperforms the SV speci�cations. In all the other cases the null hypothesis

of equal predictive ability between a GARCH model and a SV model cannot be rejected. For the

DJIA index, the GARCH-IV performs signi�cantly better than the SV models, while the ASV

speci�cation performs poorly as it is outperformed by all the other models with the exception of

the GARCH models, where they perform equally well. In the case of the Nasdaq100 index, the

GARCH-IV model is superior to all the other GARCH models as well as to the SV and ASV models.

The majority of the rest GARCH models are outperformed by the SV models. Furthermore, within

the group of the SV models, the models that account for the IV perform better than their restricted

counterparts apart from the S&P500 index where they perform equally well. The basic SV model

perform better than the ASV for both the S&P500 and DJIA indices, while for all indices the SV-IV

and ASV-IV perform equally well.

As for one-day ahead of the European indices, Table 52, the results are similar. First, for all

indices the GARCH-IV and the EGARCH-IV perform signi�cantly better than the other models,

with the exception of the FTSE100 index in which the SV speci�cation perform best, supporting

the results of the MSE and RMSE. Second, in the majority of the indices the GARCH models

performs worst. Furthermore, when the SV models class is examined, the results are mixed. In half

cases, the basic SV performs signi�cantly better than the ASV and in the other half the SV models

is outperformed by the ASV. Finally, in three of the six indices the SV-IV models outperforms the

ASV-IV. In the other indices I cannot reject that both models forecast equally well.

Tables 53 and 55 displays the GW test results for the US indices for the �ve- and twenty two-

day horizons. The results supports the �ndings of the MSE and RMSE. The GARCH-IV performs

signi�cantly better than the other models for all indices. The GARCH model performs poor across

all indices. Within the group of the SV models, the results of the predictive ability of the models

are same with those obtained at the one day horizon. Finally, Tables 54 and 56 show the results

for the European indices for the forecasting horizons of �ve and twenty two days. Once more the
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results are in accordance with those obtained using the MSE and RMSE. The GARCH genre of

models in most cases are superior to the SV models. More speci�cally, the GARCH-IV speci�cation

outperforms the other models for all indices apart from the FTSE100 index. In this case, the SV

class of models is signi�cantly better than the GARCH models and the SV model performs best.

I complement the above results by running the SPA test. Table 57 reports the p-values for testing

the null hypothesis that none of the alternative models is better than the benchmark model. The

p-values are based on 1,000 bootstrap samples under the mean squared forecast error loss function.

The �rst column lists the names of the benchmark models and hence the remaining seven models

are treated as competitive ones. Small p-values indicate that at least one of the competing models

performs better than the base model. Thus, the higher the p-value is, the better the forecasting

performance of the benchmark model is.

The results show that the GARCH class of models performs better than the SV models. More

speci�cally, at the one-day horizon, the EGARCH-IV performs best for �ve of the nine indices. The

EGARCH and GARCH-IV models outperform the competing ones for the SMI and AEX indices

and just for two indices the SV models perform best. That is, the SV-IV and SV speci�cations

provide the best forecasts for the Nasdaq100 and FTSE100, respectively. Overall, the SV models

that take into account IV are found to be superior to SV and ASV. For longer horizons, �ve and

twenty two days ahead, results are in accordance with those obtained before. The GARCH class

of models performs better than the SV models. The GARCH-IV provides the best forecast for

most indices. The EGARCH-IV perform best for the STOXX index, while the SV class of models

outperforms for the Nasdaq100 and FTSE100 indices. The ASV-IV and SV-IV speci�cations are

superior at the �ve and twenty two days ahead.

4.5.3 Conclusion

In this chapter I consider daily volatility forecasts of various US and European stock indices and

examine the predictive ability of the SV models. In the previous chapter, it has been found that the

leverage e�ect and implied volatility proved to have a signi�cant e�ect on the relative performance

of alternative GARCH models. Thus, I extend the basic SV model to a volatility model that allows
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for the presence of leverage e�ect and the inclusion of IV.

In both in-sample and out-of-sample results there is a consensus about the usefulness of incor-

porating IV in the variance equation. IV contains incremental information regarding the future

volatility beyond that captured by SV. In contrast, the presence of the asymmetric e�ect seems not

to signi�cantly improve the performance of the SV models. Within the group of the SV models,

the SV-IV model provides the most accurate forecast for both US and European indices.

This study provides a comparative evaluation of the volatility forecasting ability of SV and

GARCH models, GARCH and EGARCH models. The one-, �ve- and twenty two-day out-of-

sample volatility forecasts of the GARCH and SV models are evaluated. The results show that,

overall, the GARCH genre of models perform better than the SV models. More speci�cally, the

EGARCH-IV performs best at the one-day horizon for all indices and the GARCH-IV provides the

most accurate forecast for the longer horizons (�ve and twenty two days ahead), with the exception

of the Nasdaq100 and FTSE100, in which a SV model performs best.
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Table 46: Estimation results of the SV models for the US indices

SV SV − IV ASV ASV − IV
S&P

φ0 −0.0565
(0.034)

* 1.9459
(0.007)

* −0.0527
(0.046)

** 1.6813
(0.010)

*

φ1 0.9939
(0.000)

* −0.2724
(0.162)

0.9943
(0.000)

* −0.0750
(0.769)

ρ −0.2371
(0.044)

** −0.2052
(0.101)

θ 1.5708
(0.000)

* 1.3314
(0.000)

*

σ2
η 0.0128

(0.002)
* 0.3071

(0.008)
* 0.0145

(0.003)
* 0.2733

(0.017)
**

log − L −5156.60 −5119.87 −5155.38 −5118.75
LR(θ = 0) 73.46 73.26
LR(ρ = 0) 2.44 2.24

DJIA
φ0 −0.0326

(0.000)
* 1.8483

(0.013)
** −0.0448

(0.059)
*** 1.3405

(0.017)
**

φ1 0.9965
(0.000)

* −0.3318
(0.059)

*** 0.9952
(0.000)

* 0.0884
(0.696)

ρ −0.2476
(0.063)

*** −0.3078
(0.007)

*

θ 1.6152
(0.000)

* 1.1140
(0.000)

*

σ2
η 0.0084

(0.001)
* 0.3361

(0.014)
** 0.0119

(0.005)
* 0.3073

(0.018)
**

log − L −5154.67 −5127.09 −5153.06 −5125.18
LR(θ = 0) 55.16 55.76
LR(ρ = 0) 3.22 3.82

Nasdaq100
φ0 −0.0227

(0.128)
0.9427
(0.130)

−0.0209
(0.156)

0.8373
(0.115)

φ1 0.9973
(0.000)

* −0.4017
(0.013)

** 0.9975
(0.000)

* −0.2156
(0.299)

ρ −0.3470
(0.004)

* −0.1970
(0.132)

θ 1.5800
(0.000)

* 1.3726
(0.000)

*

σ2
η 0.0065

(0.003)
* 0.3782

(0.005)
* 0.0078

(0.009)
* 0.3665

(0.004)
*

log − L −5169.45 −5142.20 −5166.84 −5141.37
LR(θ = 0) 54.50 50.94
LR(ρ = 0) 5.22 1.66

Note: Entries report results of the alternative SV models as described in equations (!!!!). The p-
values of the estimated coe�cients are in parentheses. LR(θ = 0) and LR(ρ = 0) are the likelihood
ratio statistics for the hypotheses θ = 0 and ρ = 0, respectively. *, ** and *** denote signi�cance at
the 1%, 5% and 10% level, respectively.
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Table 47: Estimation results of the SV models for the US indices

SV SV − IV ASV ASV − IV SV SV − IV ASV ASV − IV

STOXX CAC

φ0 −0.0577
(0.037)

** 2.0602
(0.012)

** −0.0565
(0.042)

** 1.8793
(0.007)

* φ0 −0.0650
(0.018)

** 1.3258
(0.055)

*** −0.0599
(0.027)

** 1.2317
(0.033)

**

φ1 0.9934
(0.000)

* −0.5990
(0.000)

* 0.9936
(0.000)

* −0.4201
(0.003)

* φ1 0.9926
(0.000)

* −0.3604
(0.022)

** 0.9932
(0.000)

* −0.2063
(0.257)

ρ −0.0654
(0.569)

−0.3687
(0.001)

* ρ −0.2625
(0.034)

** −0.3431
(0.010)

**

θ 1.9224
(0.000)

** 1.7132
(0.000)

* θ 1.5706
(0.000)

* 1.3993
(0.000)

*

σ2
η 0.0126

(0.002)
* 0.2100

(0.029)
** 0.0131

(0.003)
* 0.0735

(0.459)
σ2
η 0.0132

(0.002)
* 0.4309

(0.001)
* 0.0155

(0.003)
* 0.3253

(0.008)
*

log − L −5127.20 −5084.03 −5127.11 −5080.08 log − L −5218.19 −5187.98 −5216.70 −5184.06

LR(θ = 0) 86.34 94.06 LR(θ = 0) 60.42 65.28

LR(ρ = 0) 0.18 7.9 LR(ρ = 0) 2.98 7.84

DAX AEX

φ0 −0.0604
(0.024)

** 1.8233
(0.015)

** −0.0628
(0.024)

** 1.1888
(0.031)

** φ0 −0.0708
(0.015)

** 1.2945
(0.027)

** −0.0720
(0.016)

** 1.1311
(0.023)

**

φ1 0.9930
(0.000)

* −0.3045
(0.275)

0.9928
(0.000)

* −0.0290
(0.906)

φ1 0.9920
(0.000)

* −0.3101
(0.252)

0.9919
(0.000)

* −0.1345
(0.600)

ρ 0.1469
(0.250)

−0.2712
(0.009)

* ρ 0.0676
(0.575)

−0.2180
(0.035)

**

θ 1.5751
(0.000)

* 1.2129
(0.000)

* θ 1.5321
(0.000)

* 1.3280
(0.000)

*

σ2
η 0.0139

(0.002)
* 0.1025

(0.061)
*** 0.0125

(0.003)
* 0.0001

(0.996)
σ2
η 0.0173

(0.000)
* 0.1148

(0.020)
** 0.0166

(0.008)
* 0.0423

(0.249)

log − L −5083.35 −5060.19 −5082.86 −5057.19 log − L −5158.25 −5128.32 −5158.15 −5126.71

LR(θ = 0) 46.32 51.34 LR(θ = 0) 59.86 62.88

LR(ρ = 0) 0.98 6.00 LR(ρ = 0) 0.2 3.22

SMI FTSE100

φ0 −0.0928
(0.018)

** 0.2845
(0.388)

−0.1049
(0.009)

* −0.0711
(0.228)

φ0 −0.0973
(0.009)

* 0.8495
(0.178)

−0.1013
(0.007)

* 0.8475
(0.181)

φ1 0.9898
(0.000)

* 0.4275
(0.170)

0.9885
(0.000)

* 0.9517
(0.000)

* φ1 0.9894
(0.000)

* −0.1300
(0.690)

0.9890
(0.000)

* −0.1272
(0.698)

ρ 0.4748
(0.000)

* 0.4259
(0.000)

* ρ 0.1162
(0.325)

0.0085
(0.933)

θ 0.6185
(0.065)

*** 0.0415
(0.095)

*** θ 1.2862
(0.001)

* 1.2830
(0.001)

*

σ2
η 0.0187

(0.002)
* 0.0003

(0.997)
0.0109
(0.030)

** 0.0002
(0.989)

σ2
η 0.0214

(0.000)
* 0.0163

(0.881)
0.0199
(0.000)

* 0.0185
(0.866)

log − L −4970.49 −4952.86 −4965.20 −4963.76 log − L −5119.56 −5090.12 −5119.26 −5090.12

LR(θ = 0) 35.26 2.88 LR(θ = 0) 58.88 58.28

LR(ρ = 0) 10.58 −21.8 LR(ρ = 0) 0.6 0.0

Note: Entries report results of the alternative SV models as described in equations (!!!!). The p-values of
the estimated coe�cients are in parentheses. LR(θ = 0) and LR(ρ = 0) are the likelihood ratio statistics for
the hypotheses θ = 0 and ρ = 0, respectively. *, ** and *** denote signi�cance at the 1%, 5% and 10% level,
respectively.
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Table 48: Mean square forecast error results

S&P500 DJIA Nasdaq100 STOXX CAC DAX AEX SMI FTSE100

one day ahead
GARCH 0.0213 0.0185 0.0235 0.0412 0.0367 0.0273 0.0183 0.0117 0.1005

GARCH-IV 0.0188 0.0167 0.0191 0.0248 0.0211 0.0216 0.0120 0.0100 0.0708

EGARCH 0.0182 0.0165 0.0222 0.0249 0.0230 0.0210 0.0149 0.0076 0.0837

EGARCH-IV 0.0171 0.0152 0.0200 0.0237 0.0213 0.0198 0.0129 0.0075 0.0769

SV 0.0230 0.0212 0.0194 0.0364 0.0280 0.0334 0.0191 0.0122 0.0648

SV-IV 0.0200 0.0178 0.0181 0.0328 0.0255 0.0237 0.0132 0.0120 0.0661

ASV 0.0232 0.0213 0.0192 0.0364 0.0283 0.0331 0.0192 0.0121 0.0649

ASV-IV 0.0204 0.0182 0.0182 0.0361 0.0279 0.0247 0.0134 0.0128 0.0662

�ve days ahead
GARCH 0.0261 0.0222 0.0259 0.0406 0.0389 0.0316 0.0204 0.0143 0.1147

GARCH-IV 0.0177 0.0160 0.0186 0.0249 0.0208 0.0205 0.0123 0.0104 0.0703

EGARCH 0.0236 0.0208 0.0253 0.0248 0.0275 0.0272 0.0188 0.0112 0.0959

EGARCH-IV 0.0219 0.0191 0.0212 0.0237 0.0234 0.0246 0.0162 0.0111 0.0795

SV 0.0239 0.0220 0.0199 0.0378 0.0297 0.0344 0.0195 0.0133 0.0711

SV-IV 0.0198 0.0175 0.0176 0.0306 0.0238 0.0231 0.0133 0.0118 0.0664

ASV 0.0240 0.0219 0.0198 0.0378 0.0298 0.0344 0.0195 0.0133 0.0710

ASV-IV 0.0198 0.0178 0.0176 0.0309 0.0240 0.0230 0.0131 0.0140 0.0664

twenty-two days head
GARCH 0.0304 0.0254 0.0292 0.0400 0.0458 0.0369 0.0215 0.0212 0.1309

GARCH-IV 0.0177 0.0161 0.0186 0.0247 0.0208 0.0204 0.0126 0.0103 0.0702

EGARCH 0.0263 0.0230 0.0269 0.0247 0.0267 0.0331 0.0166 0.0175 0.1131

EGARCH-IV 0.0221 0.0201 0.0201 0.0236 0.0271 0.0256 0.0113 0.0159 0.0751

SV 0.0251 0.0229 0.0208 0.0410 0.0338 0.0371 0.0218 0.0158 0.0701

SV-IV 0.0197 0.0176 0.0176 0.0296 0.0232 0.0233 0.0132 0.0122 0.0664

ASV 0.0253 0.0230 0.0207 0.0412 0.0340 0.0376 0.0218 0.0159 0.0701

ASV-IV 0.0197 0.0177 0.0177 0.0291 0.0231 0.0235 0.0130 0.0147 0.0665

Note: The mean squared forecast error (MSE) de�ned in equation (46) of GARCH and SV models for the
one, �ve and twenty-two days ahead are reported. All numbers are multiplied by 106. * denotes the lowest
forecast error.
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Table 49: Root mean square forecast error results

S&P500 DJIA Nasdaq100 STOXX CAC DAX AEX SMI FTSE100

one day ahead
GARCH 0.1458 0.1361 0.1532 0.2029 0.1916 0.1651 0.1355 0.1083 0.1003

GARCH-IV 0.1371 0.1291 0.1380 0.1574 0.1453 0.1468 0.1094 0.1000 0.0841

EGARCH 0.1347 0.1283 0.1491 0.1577 0.1516 0.1448 0.1221 0.0873 0.0915

EGARCH-IV 0.1312 0.1232 0.1414 0.1540 0.1459 0.1407 0.1136 0.0868 0.0877

SV 0.1518 0.1457 0.1393 0.1909 0.1673 0.1827 0.1382 0.1107 0.0805

SV-IV 0.1414 0.1333 0.1344 0.1811 0.1598 0.1540 0.1151 0.1094 0.0813

ASV 0.1523 0.1459 0.1387 0.1908 0.1681 0.1820 0.1385 0.1101 0.0806

ASV-IV 0.1428 0.1349 0.1350 0.1899 0.1671 0.1572 0.1156 0.1132 0.0814

�ve days ahead
GARCH 0.1616 0.1491 0.1608 0.2015 0.1972 0.1778 0.1429 0.1196 0.1071

GARCH-IV 0.1331 0.1267 0.1365 0.1576 0.1443 0.1431 0.1110 0.1021 0.0839

EGARCH 0.1536 0.1441 0.1590 0.1576 0.1657 0.1650 0.1371 0.1052 0.0979

EGARCH-IV 0.1480 0.1382 0.1457 0.1540 0.1530 0.1567 0.1273 0.1057 0.0892

SV 0.1547 0.1482 0.1412 0.1945 0.1722 0.1854 0.1396 0.1155 0.0843

SV-IV 0.1406 0.1324 0.1327 0.1748 0.1542 0.1519 0.1154 0.1088 0.0815

ASV 0.1550 0.1481 0.1406 0.1944 0.1728 0.1854 0.1397 0.1153 0.0843

ASV-IV 0.1406 0.1336 0.1327 0.1757 0.1549 0.1515 0.1145 0.1183 0.0816

twenty-two days head
GARCH 0.1743 0.1592 0.1710 0.1999 0.2141 0.1922 0.1467 0.1457 0.1144

GARCH-IV 0.1331 0.1269 0.1363 0.1572 0.1442 0.1430 0.1122 0.1017 0.0838

EGARCH 0.1622 0.1518 0.1640 0.1570 0.1635 0.1819 0.1287 0.1321 0.1064

EGARCH-IV 0.1488 0.1417 0.1416 0.1535 0.1646 0.1601 0.1065 0.1262 0.0866

SV 0.1586 0.1512 0.1442 0.2025 0.1840 0.1925 0.1476 0.1259 0.0837

SV-IV 0.1405 0.1326 0.1328 0.1720 0.1523 0.1528 0.1151 0.1105 0.0815

ASV 0.1591 0.1517 0.1439 0.2029 0.1845 0.1939 0.1478 0.1261 0.0837

ASV-IV 0.1402 0.1332 0.1329 0.1705 0.1520 0.1533 0.1140 0.1212 0.0816

Note: The root mean squared forecast error (RMSE) de�ned in equation (47) of GARCH and SV models
for the one, �ve and twenty-two days ahead are reported. All numbers are multiplied by 103. * denotes the
lowest forecast error.
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Table 50: Out-of-sample predictive power of daily volatility forecasts

S&P500 DJIA Nasdaq100 STOXX CAC DAX AEX SMI FTSE100

one day ahead

GARCH 0.3243 0.2809 0.2047 0.3360 0.3723 0.4512 0.3436 0.4391 0.4180

GARCH-IV 0.3695 0.3405 0.2950 0.4888 0.4870 0.5051 0.4807 0.4983 0.5440

EGARCH 0.3878 0.3436 0.2282 0.5429 0.5726 0.5826 0.4824 0.6374 0.5348

EGARCH-IV 0.4425 0.3989 0.3334 0.5625 0.5871 0.5856 0.5260 0.6407 0.5955

SV 0.2049 0.1706 0.1106 0.2101 0.2920 0.2561 0.2312 0.2887 0.3216

SV-IV 0.3177 0.2884 0.2168 0.3256 0.3370 0.4295 0.3588 0.3783 0.4373

ASV 0.1990 0.1681 0.1034 0.2058 0.2738 0.2514 0.2332 0.2967 0.3193

ASV-IV 0.3035 0.2706 0.2123 0.2868 0.2996 0.4081 0.3494 0.3123 0.4353

�ve days ahead

GARCH 0.2017 0.1701 0.1230 0.3386 0.3197 0.3599 0.2484 0.3158 0.3107

GARCH-IV 0.4080 0.3678 0.3163 0.4873 0.4954 0.5338 0.4577 0.4742 0.5472

EGARCH 0.2264 0.1942 0.1191 0.5425 0.4518 0.4320 0.3049 0.4234 0.3671

EGARCH-IV 0.2820 0.2477 0.2117 0.5620 0.4788 0.4507 0.3319 0.4207 0.4333

SV 0.1794 0.1474 0.0859 0.1887 0.2568 0.2296 0.1988 0.2265 0.2637

SV-IV 0.3247 0.2984 0.2341 0.3566 0.3694 0.4455 0.3564 0.3851 0.4365

ASV 0.1750 0.1460 0.0810 0.1851 0.2416 0.2227 0.2010 0.2318 0.2634

ASV-IV 0.3222 0.2851 0.2326 0.3509 0.3634 0.4475 0.3577 0.2539 0.4363

twenty-two days head

GARCH 0.1255 0.0971 0.0656 0.3407 0.1769 0.2531 0.2456 0.1009 0.1638

GARCH-IV 0.4077 0.3647 0.3162 0.4912 0.4970 0.5338 0.4476 0.4846 0.5518

EGARCH 0.1296 0.1027 0.0542 0.5435 0.3429 0.2522 0.3453 0.1285 0.1712

EGARCH-IV 0.2505 0.1950 0.1760 0.5655 0.3424 0.3887 0.4646 0.1706 0.3292

SV 0.1399 0.1163 0.0647 0.1422 0.1684 0.1727 0.1422 0.1188 0.1888

SV-IV 0.3260 0.2954 0.2349 0.3745 0.3834 0.4411 0.3590 0.3690 0.4397

ASV 0.1349 0.1105 0.0588 0.1369 0.1588 0.1615 0.1432 0.1209 0.1878

ASV-IV 0.3261 0.2888 0.2331 0.3805 0.3844 0.4368 0.3642 0.2199 0.4390

Note: Entries are the adjusted R2 values from the Mincer-Zarnowitz regression described in equation (48).
* denotes the highest R2 value.
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Table 51: Conditional Giacomini-White test results for the one day ahead volatility forecasts of the
US indices

GARCH-IV EGARCH EGARCH-IV SV SV-IV ASV ASV-IV

S&P

GARCH 0.094(+) 0.000(+) 0.031(+) 0.277 0.349 0.284 0.711

GARCH-IV - 0.379 0.401 0.054(−) 0.040(−) 0.051(−) 0.030(−)

EGARCH - 0.358 0.168 0.150 0.161 0.135

EGARCH-IV - 0.155 0.160 0.150 0.163

SV - 0.468 0.032(−) 0.461

SV-IV - 0.444 0.199

ASV - 0.434

DJIA

GARCH 0.114 0.000(+) 0.002(+) 0.231 0.685 0.237 0.391

GARCH-IV - 0.384 0.451 0.004(−) 0.068(−) 0.006(−) 0.058(−)

EGARCH - 0.108 0.029(−) 0.246 0.034(−) 0.191

EGARCH-IV - 0.112 0.091(−) 0.018(−) 0.130

SV - 0.025(+) 0.090(−) 0.022(+)

SV-IV - 0.032(−) 0.612

ASV - 0.028(+)

Nasdaq100

GARCH 0.001(+) 0.000(+) 0.001(+) 0.000(+) 0.003(+) 0.000(+) 0.003(+)

GARCH-IV - 0.000(−) 0.005(−) 0.050(−) 0.232 0.033(−) 0.325

EGARCH - 0.001(+) 0.000(+) 0.024(+) 0.000(+) 0.021(+)

EGARCH-IV - 0.002(+) 0.534 0.002(+) 0.514

SV - 0.070(+) 0.000(+) 0.038(+)

SV-IV - 0.069(−) 0.550

ASV - 0.038(+)

Note: The p-values of the conditional Giacomini-White test are reported. The null hypothesis that
the row model and column model perform equally well is tested in terms of squared forecast error.
The superscripts +and −indicate rejection of the null hypothesis, with a positive (negative) sign
denoting that the row (column) model is outperformed by the column (row) model.
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Table 52: Conditional Giacomini-White test results for the one day ahead volatility forecasts of the
European indices

GARCH-IV EGARCH EGARCH-IV SV SV-IV ASV ASV-IV

STOXX

GARCH 0.000(+) 0.000(+) 0.000(+) 0.022(+) 0.037(+) 0.020(+) 0.399

GARCH-IV - 0.000(−) 0.001(+) 0.001(−) 0.004(−) 0.001(−) 0.002(−)

EGARCH - 0.001(+) 0.054(−) 0.130 0.057(−) 0.056(−)

EGARCH-IV - 0.051(−) 0.095(−) 0.055(−) 0.045(−)

SV - 0.363 0.000(+) 0.628

SV-IV - 0.369 0.001(−)

ASV - 0.613

CAC

GARCH 0.000(+) 0.000(+) 0.000(+) 0.007(+) 0.002(+) 0.06(+) 0.016(+)

GARCH-IV - 0.000(−) 0.000(−) 0.001(−) 0.012(−) 0.002(−) 0.003(−)

EGARCH - 0.000(+) 0.024(−) 0.029(−) 0.032(−) 0.060(−)

EGARCH-IV - 0.035(−) 0.072(−) 0.044(−) 0.099(−)

SV - 0.169 0.010(−) 0.251

SV-IV - 0.205 0.012(−)

ASV - 0.273

DAX

GARCH 0.000(+) 0.039(+) 0.019(+) 0.084(−) 0.093(+) 0.106 0.275

GARCH-IV - 0.017(+) 0.060(+) 0.001(−) 0.167 0.001(−) 0.089(−)

EGARCH - 0.036(+) 0.094(−) 0.079(−) 0.107 0.169

EGARCH-IV - 0.064(−) 0.136 0.075(−) 0.176

SV - 0.005(+) 0.007(+) 0.023(+)

SV-IV - 0.007(−) 0.033(−)

ASV - 0.029(+)

AEX

GARCH 0.000(+) 0.012(+) 0.005(+) 0.002(−) 0.001(+) 0.002(−) 0.002(+)

GARCH-IV - 0.000(−) 0.001(−) 0.003(−) 0.484 0.0013(−) 0.485

EGARCH - 0.000(+) 0.047(−) 0.000(+) 0.043(−) 0.000(+)

EGARCH-IV - 0.051(−) 0.016(−) 0.046(−) 0.029(−)

SV - 0.000(+) 0.000(−) 0.000(+)

SV-IV - 0.000(−) 0.404

ASV - 0.000(+)

SMI

GARCH 0.094(+) 0.012(+) 0.013(+) 0.068(−) 0.243 0.066(−) 0.059(−)

GARCH-IV - 0.188 0.135 0.140 0.066(−) 0.141 0.115

EGARCH - 0.540 0.139 0.046(−) 0.140 0.134

EGARCH-IV - 0.132 0.040(−) 0.133 0.130

SV - 0.062(+) 0.066(+) 0.074(−)

SV-IV - 0.054(−) 0.118

ASV - 0.046(−)

FTSE100

GARCH 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+)

GARCH-IV - 0.000(−) 0.000(−) 0.001(+) 0.417 0.002(+) 0.409

EGARCH - 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+)

EGARCH-IV - 0.000(+) 0.004(+) 0.000(+) 0.004(+)

SV - 0.016(−) 0.001(−) 0.014(−)

SV-IV - 0.017(+) 0.286

ASV - 0.015(−)

Note: The p-values of the conditional Giacomini-White test are reported. The null hypothesis that
the row model and column model perform equally well is tested in terms of squared forecast error.
The superscripts +and −indicate rejection of the null hypothesis, with a positive (negative) sign
denoting that the row (column) model is outperformed by the column (row) model.

130



Table 53: Conditional Giacomini-White test results for the �ve day ahead volatility forecasts of the
US indices

GARCH-IV EGARCH EGARCH-IV SV SV-IV ASV ASV-IV

S&P

GARCH 0.003(+) 0.003(+) 0.019(+) 0.345 0.008(+) 0.396 0.004(+)

GARCH-IV - 0.025(−) 0.024(−) 0.039(−) 0.044(−) 0.037(−) 0.046(−)

EGARCH - 0.159 0.461 0.101 0.441 0.077(+)

EGARCH-IV - 0.115 0.246 0.112 0.250

SV - 0.315 0.001(−) 0.274

SV-IV - 0.304 0.163

ASV - 0.262

DJIA

GARCH 0.002(+) 0.017(+) 0.006(+) 0.707 0.002(+) 0.763 0.001(+)

GARCH-IV - 0.012(−) 0.024(−) 0.006(−) 0.054(−) 0.006(−) 0.046(−)

EGARCH - 0.023(+) 0.057(−) 0.024(+) 0.072(−) 0.014(+)

EGARCH-IV - 0.020(−) 0.173 0.023(−) 0.182

SV - 0.015(+) 0.014(−) 0.013(+)

SV-IV - 0.018(−) 0.595

ASV - 0.015(+)

Nasdaq100

GARCH 0.001(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+)

GARCH-IV - 0.001(−) 0.048(−) 0.070(−) 0.216 0.062(−) 0.276

EGARCH - 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+)

EGARCH-IV - 0.001(+) 0.000(+) 0.000(+) 0.000(+)

SV - 0.096(+) 0.000(+) 0.086(+)

SV-IV - 0.106 0.288

ASV - 0.095(+)

Note: The p-values of the conditional Giacomini-White test are reported. The null hypothesis that
the row model and column model perform equally well is tested in terms of squared forecast error.
The superscripts +and −indicate rejection of the null hypothesis, with a positive (negative) sign
denoting that the row (column) model is outperformed by the column (row) model.
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Table 54: Conditional Giacomini-White test results for the �ve day ahead volatility forecasts of the
European indices

GARCH-IV EGARCH EGARCH-IV SV SV-IV ASV ASV-IV

STOXX

GARCH 0.000(+) 0.000(+) 0.000(+) 0.010(+) 0.002(+) 0.009(+) 0.003(+)

GARCH-IV - 0.000(+) 0.001(+) 0.000(−) 0.003(−) 0.000(−) 0.001(−)

EGARCH - 0.001(+) 0.036(−) 0.164 0.039(−) 0.168

EGARCH-IV - 0.036(−) 0.104 0.038(−) 0.111

SV - 0.060(+) 0.000(+) 0.068(+)

SV-IV - 0.064(−) 0.721

ASV - 0.072(+)

CAC

GARCH 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.001(+) 0.000(+)

GARCH-IV - 0.004(−) 0.284 0.000(−) 0.068(−) 0.000(−) 0.067(−)

EGARCH - 0.000(+) 0.022(−) 0.004(+) 0.029(−) 0.005(+)

EGARCH-IV - 0.070(−) 0.127 0.083(−) 0.129

SV - 0.007(+) 0.009(−) 0.008(+)

SV-IV - 0.008(−) 0.388

ASV - 0.008(+)

DAX

GARCH 0.000(+) 0.053(+) 0.003(+) 0.169 0.000(+) 0.160 0.000(+)

GARCH-IV - 0.000(−) 0.015(−) 0.002(−) 0.164 0.002(−) 0.232

EGARCH - 0.000(+) 0.175 0.004(+) 0.181 0.000(+)

EGARCH-IV - 0.054(−) 0.146 0.060(−) 0.029(+)

SV - 0.001(+) 0.000(+) 0.001(+)

SV-IV - 0.001(−) 0.566

ASV - 0.001(+)

AEX

GARCH 0.000(+) 0.000(+) 0.000(+) 0.001(+) 0.000(+) 0.001(+) 0.000(+)

GARCH-IV - 0.000(−) 0.007(−) 0.006(−) 0.484 0.005(−) 0.634

EGARCH - 0.000(+) 0.000(−) 0.000(+) 0.000(−) 0.000(+)

EGARCH-IV - 0.016(−) 0.021(+) 0.014(−) 0.009(+)

SV - 0.002(+) 0.000(−) 0.001(+)

SV-IV - 0.002(−) 0.164

ASV - 0.001(+)

SMI

GARCH 0.002(+) 0.002(+) 0.004(+) 0.001(+) 0.053(+) 0.001(+) 0.006(+)

GARCH-IV - 0.498 0.587 0.001(+) 0.077(−) 0.007(−) 0.010(−)

EGARCH - 0.004(−) 0.102 0.149 0.103 0.055(−)

EGARCH-IV - 0.121 0.314 0.122 0.052(−)

SV - 0.188 0.013(+) 0.008(−)

SV-IV - 0.192 0.164

ASV - 0.006(−)

FTSE100

GARCH 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+)

GARCH-IV - 0.000(−) 0.024(−) 0.009(−) 0.549 0.009(−) 0.533

EGARCH - 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+)

EGARCH-IV - 0.000(+) 0.018(+) 0.000(+) 0.017(+)

SV - 0.030(+) 0.007(+) 0.029(+)

SV-IV - 0.032(−) 0.386

ASV - 0.032(+)

Note: The p-values of the conditional Giacomini-White test are reported. The null hypothesis that
the row model and column model perform equally well is tested in terms of squared forecast error.
The superscripts +and −indicate rejection of the null hypothesis, with a positive (negative) sign
denoting that the row (column) model is outperformed by the column (row) model.
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Table 55: Conditional Giacomini-White test results for the twenty-two days ahead volatility fore-
casts of the US indices

GARCH-IV EGARCH EGARCH-IV SV SV-IV ASV ASV-IV

S&P

GARCH 0.000(+) 0.000(+) 0.000(+) 0.002(+) 0.000(+) 0.003(+) 0.000(+)

GARCH-IV - 0.003(−) 0.069(−) 0.017(−) 0.044(−) 0.015(−) 0.047(−)

EGARCH - 0.000(+) 0.192 0.035(+) 0.298 0.024(+)

EGARCH-IV - 0.023(−) 0.594 0.019(−) 0.535

SV - 0.175 0.003(−) 0.145

SV-IV - 0.156 0.469

ASV - 0.127

DJIA

GARCH 0.000(+) 0.002(+) 0.000(+) 0.043(+) 0.000(+) 0.070(+) 0.000(+)

GARCH-IV - 0.002(−) 0.020(−) 0.003(−) 0.051(−) 0.002(−) 0.044(−)

EGARCH - 0.000(+) 0.882 0.007(+) 0.942 0.004(+)

EGARCH-IV - 0.001(−) 0.133 0.001(−) 0.126

SV - 0.018(+) 0.013(−) 0.011(+)

SV-IV - 0.013(−) 0.676

ASV - 0.007(+)

Nasdaq100

GARCH 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+)

GARCH-IV - 0.000(−) 0.169 0.099(−) 0.214 0.094(−) 0.240

EGARCH - 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+)

EGARCH-IV - 0.000(−) 0.017(+) 0.000(−) 0.010(+)

SV - 0.045(+) 0.000(+) 0.037(+)

SV-IV - 0.050(−) 0.205

ASV - 0.042(+)

Note: The p-values of the conditional Giacomini-White test are reported. The null hypothesis that
the row model and column model perform equally well is tested in terms of squared forecast error.
The superscripts +and −indicate rejection of the null hypothesis, with a positive (negative) sign
denoting that the row (column) model is outperformed by the column (row) model.

133



Table 56: Conditional Giacomini-White test results for the twenty-two days ahead volatility fore-
casts of the European indices

GARCH-IV EGARCH EGARCH-IV SV SV-IV ASV ASV-IV

STOXX

GARCH 0.000(+) 0.000(+) 0.000(+) 0.008(−) 0.000(+) 0.008(−) 0.000(+)

GARCH-IV - 0.000(+) 0.001(+) 0.000(−) 0.007(−) 0.000(−) 0.010(−)

EGARCH - 0.001(+) 0.025(−) 0.072(−) 0.024(−) 0.055(−)

EGARCH-IV - 0.025(−) 0.049(−) 0.024(−) 0.043(−)

SV - 0.007(+) 0.000(−) 0.003(+)

SV-IV - 0.006(−) 0.082(+)

ASV - 0.003(+)

CAC

GARCH 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+)

GARCH-IV - 0.000(−) 0.000(−) 0.000(−) 0.084(−) 0.000(−) 0.089(−)

EGARCH - 0.000(−) 0.005(−) 0.005(+) 0.012(−) 0.003(+)

EGARCH-IV - 0.007(−) 0.003(+) 0.016(−) 0.002(+)

SV - 0.000(+) 0.001(−) 0.000(+)

SV-IV - 0.000(−) 0.827

ASV - 0.000(+)

DAX

GARCH 0.000(+) 0.000(+) 0.000(+) 0.100 0.000(+) 0.157 0.000(+)

GARCH-IV - 0.002(−) 0.125 0.000(−) 0.113 0.000(−) 0.115

EGARCH - 0.000(+) 0.047(−) 0.014(+) 0.031(−) 0.010(+)

EGARCH-IV - 0.000(−) 0.213 0.000(−) 0.220

SV - 0.000(+) 0.000(−) 0.000(+)

SV-IV - 0.000(−) 0.458

ASV - 0.000(+)

AEX

GARCH 0.000(+) 0.000(+) 0.000(+) 0.000(−) 0.000(+) 0.000(−) 0.000(+)

GARCH-IV - 0.000(−) 0.212 0.000(−) 0.766 0.000(−) 0.884

EGARCH - 0.000(+) 0.025(−) 0.085(+) 0.023(−) 0.065(+)

EGARCH-IV - 0.002(−) 0.228 0.002(−) 0.305

SV - 0.000(+) 0.000(−) 0.000(+)

SV-IV - 0.000(−) 0.072(+)

ASV - 0.000(+)

SMI

GARCH 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+)

GARCH-IV - 0.008(−) 0.034(−) 0.083(−) 0.048(−) 0.079(−) 0.054(−)

EGARCH - 0.000(+) 0.000(+) 0.023(+) 0.000(+) 0.004(+)

EGARCH-IV - 0.000(+) 0.117 0.000(+) 0.042(+)

SV - 0.196 0.004(−) 0.051(+)

SV-IV - 0.194 0.191

ASV - 0.058(+)

FTSE100 GARCH-IV EGARCH EGARCH-IV SV SV-IV ASV ASV-IV

GARCH 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+)

GARCH-IV - 0.000(−) 0.124 0.016(+) 0.563 0.017(+) 0.564

EGARCH - 0.000(+) 0.000(+) 0.000(+) 0.000(+) 0.000(+)

EGARCH-IV - 0.000(+) 0.237 0.000(+) 0.235

SV - 0.087(+) 0.000(−) 0.085(+)

SV-IV - 0.087(−) 0.184

ASV - 0.085(+)

Note: The p-values of the conditional Giacomini-White test are reported. The null hypothesis that
the row model and column model perform equally well is tested in terms of squared forecast error.
The superscripts +and −indicate rejection of the null hypothesis, with a positive (negative) sign
denoting that the row (column) model is outperformed by the column (row) model.
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Table 57: SPA test (MSE)

S&P500 DJIA Nasdaq100 STOXX CAC DAX AEX SMI FTSE

one day ahead

GARCH 0.009 0.006 0.015 0.004 0.001 0.001 0.002 0.051 0.001

GARCH-IV 0.602 0.373 0.457 0.427 0.570 0.658 0.994 0.152 0.361

EGARCH 0.680 0.120 0.028 0.523 0.221 0.337 0.005 0.934 0.042

EGARCH-IV 0.886 0.968 0.325 0.853 0.807 0.916 0.495 0.814 0.243

SV 0.094 0.035 0.329 0.031 0.026 0.056 0.022 0.204 0.930

SV-IV 0.352 0.167 0.979 0.013 0.039 0.161 0.341 0.070 0.914

ASV 0.094 0.036 0.474 0.025 0.038 0.049 0.025 0.294 0.618

ASV-IV 0.311 0.156 0.392 0.008 0.034 0.076 0.307 0.139 0.263

�ve day ahead

GARCH 0.020 0.022 0.001 0.004 0.000 0.002 0.002 0.018 0.000

GARCH-IV 0.876 0.905 0.304 0.420 0.870 0.912 0.787 0.968 0.361

EGARCH 0.061 0.036 0.001 0.542 0.002 0.002 0.000 0.620 0.001

EGARCH-IV 0.039 0.046 0.001 0.852 0.263 0.025 0.014 0.542 0.045

SV 0.099 0.034 0.195 0.021 0.017 0.064 0.024 0.264 0.592

SV-IV 0.335 0.281 0.726 0.020 0.075 0.191 0.076 0.081 0.828

ASV 0.099 0.028 0.238 0.018 0.022 0.048 0.026 0.367 0.603

ASV-IV 0.388 0.188 0.975 0.012 0.090 0.213 0.405 0.113 0.945

twenty-two day ahead

GARCH 0.000 0.000 0.000 0.003 0.000 0.001 0.000 0.001 0.000

GARCH-IV 0.953 0.921 0.377 0.427 0.942 0.952 0.242 0.948 0.336

EGARCH 0.010 0.007 0.000 0.550 0.000 0.013 0.000 0.015 0.000

EGARCH-IV 0.076 0.052 0.034 0.841 0.001 0.120 0.863 0.099 0.244

SV 0.064 0.026 0.115 0.017 0.009 0.009 0.002 0.151 0.696

SV-IV 0.355 0.213 0.911 0.040 0.113 0.141 0.111 0.027 0.988

ASV 0.034 0.026 0.117 0.015 0.009 0.008 0.006 0.173 0.505

ASV-IV 0.418 0.186 0.790 0.031 0.116 0.155 0.361 0.101 0.197
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5 Forecasting realised volatility: the role of implied volatility,

leverage e�ects and the volatility of realised volatility

I assess the forecasting performance of time series models for realised volatility, which take

into consideration implied volatility, leverage e�ects, as well as the volatility of realised volatility.

Realised volatility is modeled and forecasted with ARFIMA and HAR models for a number of US

and European indices. I �nd that accounting for these stylized facts of volatility leads to a signi�cant

improvement of the models' predictive performance. The results suggest that a HAR model which

accommodates implied volatility and leverage e�ects produces the most accurate volatility forecast

.

5.1 Introduction

Volatility, and in particular volatility forecasting, is of crucial importance for derivative pricing,

asset allocation and risk management. Over the last �fteen years the availability of high-frequency

data has shed more light on modelling and forecasting daily volatility. Andersen & Bollerslev

(1998) �rst used the high-frequency data to construct a new volatility measure. They showed

that the so-called realised variance (RV), computed by the sum of squared intraday returns, is a

more precise measure of volatility than the ex-post daily squared returns. There is now a range of

volatility estimators that are constructed using high-frequency data. (see, for example, Andersen

et al. (2006) and Barndor�-Nielsen & Shephard (2007))

Since then realised volatility has been used not only as a measure of the true volatility but

also in modelling and forecasting future volatility. The potential value of realised volatility as an

information source to improve existing volatility models has been extensively examined. Among

others, Blair et al. (2001), Martens (2001; 2002) and Engle (2002) were some of the �rst to incorpo-

rate realised volatility as an exogenous variable in the GARCH equation. They found that realised

volatility is highly informative about future volatility.

One of the most salient features of volatility is the long memory, that is the autocorrelation
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function decays hyperbolically.19 Reduced-form time series models that directly model and forecast

realised volatility have been developed in order to capture its persistence. Andersen et al. (2003)

suggests the use of autoregressive fractionally integrated moving average (ARFIMA) models for this

purpose. They show that long memory models outperform the traditional GARCH and SV models

which use low frequency returns for future volatility forecasting. Since then several studies employ

the ARFIMA models. Among others, Martens & Zein (2004), Pong et al. (2004) and Koopman

et al. (2005) �nd that ARFIMA models produce more accurate forecast than GARCH and SV

models for di�erent asset classes.

A related-type of reduced form volatility forecasts is the Heterogeneous Autoregressive (HAR)

model of Corsi (2009). Inspired by the Heterogeneous Market Hypothesis and the HARCH model

of Muller et al. (1997), Corsi (2009) proposed a regression based approach - an additive cascade

model of volatility components over di�erent time horizons. Its ability to reproduce the volatility

persistence combined with the fact that it is easy to implement has encouraged its use in several

studies.

In this chapter, I assess the forecasting performance of the long memory models. I also examine

the importance of embedding in these models other stylized facts of realised volatility for the purpose

of forecasting. First, I take into account the leverage e�ect, that is volatility tend to increase more

after a negative shock than a positive shock of the same magnitude as �rst noted by Black (1976).

Bollerslev et al. (2009) show a prolonged leverage e�ect at the intradaily level of S&P500 futures

returns. Martens et al. (2009) provide evidence that accounting for the leverage e�ect improves the

performance of the di�erent models. Corsi & Renò (2012) extends the HAR model to capture the

heterogeneous leverage e�ect. They �nd that not only the daily but also the weekly and monthly

negative returns have a signi�cant e�ect on future volatility. Similar results are provided in Wang

et al. (2015) for the Chinese stock market.

Second, I account for the potential value of implied volatility as an information source for

volatility forecasting. It has been widely perceived as a natural forecast of future volatility. In the

context of forecasting the realised volatility, Busch et al. (2011) �nd that IV contains incremental

19See Andersen et al. (2001a,b) for more details on the dynamic properties of realised volatility.
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information about future realised volatility in foreign, stock and bond market.

Third, following the empirical evidence of Corsi et al. (2008), I allow for time-varying volatility

of the realised volatility. It is common in the HAR literature to assume that the residuals of the

HAR model are i.i.d. However, volatility clustering in the residuals of the realised volatility models

are often observed. Corsi et al. (2008) show that for the S&P500 index futures the volatility of

realised volatility is important and a GARCH model should be taken into account. However, Bubak

& Zikes (2009) and Todorova (2015), who compare the forecasting performance of the HAR and

HAR-GARCH models for the exchange rate and metal market, respectively, �nd that while the

HAR-GARCH model performs better in-sample, it cannot signi�cantly improve the out-of-sample

performance of the simple HAR model.

The main contribution of this chapter is that it considers models that simultaneously capture

long memory, leverage e�ects, IV and volatility of realised volatility. The main focus is on the

importance of these features for the purpose of forecasting. I assess the predictive ability of several

reduced form time series models for forecasting realised volatility for a number of US and European

indices. I use both a rolling and recursive sample to estimate the parameters of forecasting models.

I employ three loss functions to analyze the accuracy of competing forecasts and evaluate the

statistical signi�cance by implementing the Giacomini-White and the SPA test.

Two are the main results of this study. First, accounting for the leverage e�ects and the infor-

mation content of implied volatility improves the predictive power of the models. While taking into

account implied volatility is more important than the leverage e�ect, accounting for both features

signi�cantly improves the forecast performance of the models. Second, it seems not to be bene�cial

to model the volatility of realised volatility as it does not lead to a substantial improvement of the

forecast performance of the HAR models. These results generally holds for all loss functions and

indices under both the rolling and recursive scheme.

The remainder of the chapter is organized as follows. Section 5.2 discusses the empirical frame-

work, including the realized measure and the volatility models, and describing the data.. Section

5.3 presents the empirical results and Section 5.4 concludes.
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5.2 Methodology and Data

5.2.1 Realised measures

The fact that volatility is latent makes it hard to assess the performance of volatility models.

Thus, a proxy for the true volatility is used. For several years, the daily squared returns has

been used, but it is now widely accepted that they provide a poor proxy of the true volatility. As

noted by Andersen & Bollerslev (1998), although the use squared returns is justi�ed because it is

an unbiased estimate of volatility, it provides a noisy measure. However, Andersen & Bollerslev

(1998) advocate that estimator of volatility based on cumulative intraday squared returns are more

accurate. Building upon this line of research Andersen et al. (2003) de�ned the so-called realised

volatility (RV) on day t as

RVt =

m∑
i=1

r2t,i (52)

where m is the number of intraday returns during day t. Letting m → ∞, that is in case of

continuous time sampling, RVt converges to the true integrated volatility. Since the introduction

of the standard RV measure several RV estimates have been developed using a variety of sampling

frequency and capturing di�erent characteristics of RV. Here, following the results of Liu et al.

(2015), who compare over 400 di�erent realized voaltility measures and �nd that it is di�cult to

signi�cantly beat the simple realised variance estimator, I use the simple RV which is constructed

based on �ve-minute returns data.

5.2.2 Modeling volatility

ARFIMA model

By treating volatility as an observed variable rather than latent, it allows the direct estimation

and forecasting using reduced-form time series approaches. My empirical approach adopts the

ARFIMA model and HAR model.

I employ the ARFIMAX(p,d,q) developed by Granger & Joyeux (1980) expressed as
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φ(L)(1− L)d(yt − α
′
X) = θ(L)εt (53)

where φ(L) is the lag operator that de�nes the autoregressive components, θ(L) is the moving

average polynomial and εt is an approximately Gaussian white noise. d is the degree of fractional

integration and 0 < d < 0.5 in order to capture the long memory characteristic. The model allows

for k × 1 vector X of explanatory variables.

Andersen et al. (2003) suggests the use of a ARFIMA model for the log(RV) in order to deal

with the long memory behavior of the volatility series. As Andersen et al. (2001a; 2001b) pointed

out, while RV is heavily skewed and exhibits fat tails the log(RV) is approximately bell shaped.

In this study, I forecast the logarithmic realised variance and equation (54) displays the nature

of this log transformation. This is motivated by the fact that Andersen et al. (2007) �nd similar

results when the realised variance, realised volatility or the logarithmic realised volatility is used

for estimating HAR models parameters. In this study,

yt = log(RV 2
t ) (54)

By placing various restrictions on parameters of equation (53) four di�erent models are ob-

tained that assess the relative importance of di�erent stylized facts of RV. More speci�cally, I

consider i) the linear ARFIMA model setting α
′
X = α0, which is a well-known realized volatil-

ity model �rst proposed by Andersen et al. (2003) and then examined by Koopman et al. (2005),

Pong et al. (2004), Martens et al. (2009) among others. ii) the ARFIMAX model that captures

the leverage e�ect replacing α
′
X = α0 + α1r−t−1 (hereafter ARFIMA-L), iii) a ARFIMAX model

that uses the information provided by the IV with α
′
X = α0 + β1log(IV2

t−1) (hereafter ARFIMA-

IV), and iv) a ARFIMAX model that simultaneously accounts for the leverage e�ect and IV with

α
′
X = α0 + α1r−t−1 + β1log(IV2

t−1), (hereafter ARFIMA-L-IV).

HAR model

An alternative to the ARFIMA model that successfully reproduces the volatility persistence,
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though formally not a long memory model, is the HAR model developed by Corsi (2009). Corsi

(2009) proposes a simple autoregressive-type model for realised volatility considering RVs over

di�erent time horizons. The standard HAR model in the realised volatility literature includes daily,

weekly and monthly realised volatility components. In this study, I use a slightly di�erent lag

structure from the one in Corsi (2009) following the HAR model recently implemented in Patton

& Sheppard (2015) in order to avoid overlapping horizons. This reparameterization allows for the

direct interpretation of the e�ect of each component.

Hence, the HAR model for the logarithmic realised variance I use is as follows

yt = α0 + αdyt−1 + αwyt−2,t−5 + αmyt−6,t−22 + ut (55)

where

yt−2,t−5 =
1

4

5∑
i=2

yt−i

yt−6,t−22 =
1

17

22∑
i=6

yt−i

with yt−2,t−5 and yt−6,t−22 be the average weekly and monthly RV components.

In order to assess whether the explicit incorporation of various realised volatility features in

HAR model improve its forecasting performance I consider a more general HAR model of the form

yt = α0 + αdyt−1 + αwyt−2,t−5 + αmyt−6,t−22 + β
′
X + ut (56)

so that the model allows for k × 1 vector X of exogenous variables. In this study I employ the

following models.

First, Corsi & Renò (2012) extends the HAR model of Corsi (2009) by taking into account

the leverage e�ect. More speci�cally, they extend the Heterogeneous Market Hypothesis and con-

sider that realised volatility reacts asymmetrically not only to previous daily returns, but also to

weekly and monthly returns. I take into account the leverage e�ect by replacing β
′
X = βdr

−
t−1 +

βwr
−
t−2,t−5 +βmr

−
t−6,t−22, where rt−2,t−5 and r

−
t−6,t−22 are the weekly and monthly negative returns
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(hereafter HAR-L). Second, I use a HARmodel that investigates the information content of IV (here-

after, HAR-IV) setting β
′
X = γIV 2

t−1. Third, I consider a HAR model that simultaneously includes

the asymmetry and IV (HAR-L-IV) replacing β
′
X = βdr

−
t−1 + βwr

−
t−2,t−5 + βmr

−
t−6,t−22 + γIV 2

t−1.

Moreover, an important empirical issue is the conditional heteroskedasticity of the innovations

of realized volatility. Corsi et al. (2008) observed that the innovations of realised volatility are not

i.i.d., but exhibit volatility clustering. To account for the volatility of realised volatility they extend

the HAR model in by incorporating a GARCH component (hereafter, HAR-G). So, the innovation

term is not anymore a Gaussian white noise, but its variance is time-varying ut = htzt, where

zt ∼ N(0, 1) and h2t = a0 + a1u
2
t−1 + b1h

2
t−1. I also extend the HAR-G speci�cation in order to

account for the leverage e�ect (HAR-L-G), the IV (HAR-IV-G) and simultaneously the asymmetry

and IV (HAR-L-IV-G). Since the ARFIMA models are inferior to HAR in terms of forecasting and

the estimation of the extended ARFIMA model to include the volatility of the realised volatility will

be even more challenging, I focus on extending only the HAR model by the GARCH component.

5.2.3 Forecast evaluation

Forecasting models are estimated using both the rolling and recursive methods.20 While most

of the realised volatility literature uses rolling samples it is not clear whether the rolling or recursive

scheme should be used. For example, Corsi et al. (2008) uses recursive sample for forecasting the

realised volatility for the S&P500 index. Vortelinos (2015) uses both recursive and rolling samples

for forecasting the realised volatility in several US �nancial markets �nding no di�erences of forecast

accuracy between recursive and rolling samples.

The ability of the models described in Subsection 5.2.2 to accurately forecast the true volatility

is evaluated using four popular measures for forecast comparison. The mean absolute error (MAE),

the mean squared error (MSE) , the quasi-Gaussian log-likelihood (QLIKE) and the goodness-of-�t

R2 statistic of the Mincer-Zarnowitz (MZ) (Mincer & Zarnowitz, 1969) regression, which measures

how much of the true volatility is explained by the forecast series.

20According to the rolling scheme forecasts are generated by a moving average window of size N, while according
to the recursive scheme the initial window increases adding new observations.
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MAE =
1

τ

T+τ∑
t=T+1

| ˆRV 2
t −RV 2

t | (57)

MSE =
1

τ

T+τ∑
t=T+1

( ˆRV 2
t −RV 2

t )2 (58)

QLIKE =
1

τ

T+τ∑
t=T+1

[
log( ˆRV 2

t ) +
ˆRV 2
t

RV 2
t

]
(59)

RV 2
t+1 = a0 + a1

ˆRV 2
t+1 + εt+1 (60)

where τ is the number of out-of-sample observations, ˆRV 2
t is the volatility point forecast and RV 2

t

is the proxy for the 'true' volatility. As a proxy is needed to measure the true volatility, Patton

(2011) provided the necessary and su�cient conditions to ensure that the ranking of the various

forecasts is preserved when noisy volatility proxies are used. Moreover, Patton & Sheppard (2009)

showed that the MSE and QLIKE loss functions are the most robust to noise in the volatility proxy,

here the realised variance.

However, these measures are useful for forecast comparisons, but they do not provide any sta-

tistical test of the di�erence among the models. Thus, there is the possibility that the model with

the lower forecast error may not be inherently better than the competing model, as their di�erence

may be statistically insigni�cant. the signi�cance of any di�erence in the MAE, MSE and QLIKE

loss functions is tested via the Giacomini-White test and SPA test.

Giacomini and White test

Giacomini-White (GW) pairwise test is a test of conditional predictive ability proposed by

Giacomini & White (2006). The test evaluates the forecasting performance of two competing

models, accounting for parameter uncertainty. In short, let L(yt; ŷt) denote the forecast loss where

yt is the 'true' value and ŷt is the predicted value. The di�erence in loss of model i relative to a
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benchmark model o is de�ned as

di,t = L(yt; ˆyo,t)− L(yt; ˆyi,t) (61)

The issue is whether the two models have equal predictive ability. That is, the null hypothesis

tested is H0 : E(di,t+τ | ht) = 0, where ht is some information set. The CPA test statistic is then

computed as a Wald statistic

CPAt = T (T−1
T−τ∑
t=1

htdi,t+τ )
′
Ω̂−1T (T−1

T−τ∑
t=1

htdi,t+τ ) ∼ χ2
1 (62)

where Ω̂T is the Newey and West (1987) HAC estimator of the asymptotic variance of the htdi,t+τ .

In this application the CPA test is used to assess whether any model under consideration outper-

forms the random walk model under the squared error metric.

SPA test

The GW test is a pairwise test that evaluates the forecasts of any two competing models. In order

to investigate the relative performance of various volatility models Hansen (2005) introduced the

Superior Predictive Ability (SPA) test. That is, it evaluates the performance of several alternative

models simultaneously against a benchmark model The test uses a bootstrap procedure to assess

whether the same outcome can be obtained from more than one sample. Forecasts are evaluated

by a pre-speci�ed loss function and the model that produces the smallest expected loss is the best

model.

In short, let the di�erence in loss of model i relative to a benchmark model o is de�ned as

in equation (61). The issue is whether any of the competing models i = 1, ...,K signi�cantly

outperforms the benchmark model testing the null hypothesis that µi = E(di,t) ≤ 0. It is tested

with the statistic

TSPAn = maxin
0.5 d̄i
σi

(63)
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where d̄i = 1
n

∑
di,t and σi = lim

n→∞
var(n0.5d̄i) which is estimated via a bootstrap procedure.

5.2.4 Data

The same dataset from Chapter (2) and (3) is used. The daily closing price data and the volatility

index data have been collected from Datastream. The daily realized variances based on �ve-minute

returns are sourced from the Realized Library of the Oxford-Man Institute of Quantitative Finance.

Table 58 shows the descriptive statistics for the RV, the log(RV) as well as the daily returns. The

returns distribution is skewed and leptokurtic for all series. The RV distribution is severely skewed

and exhibits fat tails while it is highly peaked around the mean relative to the normal distribution.

In contrast, the skewness and kurtosis for the log(RV) appears approximately Gaussian as previously

documented by Andersen et al. (2001a; 2001b). This is also illustrated by Figure 3, which shows

the distribution of RV and log(RV) along with the normal distribution. For this reason, in this

chapter, I model the log(RV). Moreover, the sample autocorrelation function of RV and log(RV)

appears to decay hyperbolically evidence of the presence of long memory.

5.3 Results

Tables 59 to 66 report the MAE, MSE, QLIKE and R2 for the various models using both the

rolling and recursive methods. The results show that all evaluation statistical criteria yield more

or less the same performance ranking for the models.

Several interesting conclusions arise. First, the best forecast per index and forecasting method

is consistent across di�erent criteria. More speci�cally, the HAR-L-IV-G model performs best for

both S&P500 and DJIA indices, the HAR-L for the SMI, while the HAR-L-IV provides the best

forecast for all other indices. The results are consistent between the rolling and recursive forecasting

methods.

Second, comparing the relative performance of the basic ARFIMA model versus the simple

HAR model and their speci�cations augmented with the IV component and the leverage e�ect

component, I �nd that the HAR class of models consistently performs better than their ARFIMA
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counterparts across all indices and loss functions. The remarkably higher R2 values of the HAR

speci�cations than those of the ARFIMA con�rm this conclusion. For example, the R2 for the

simple HAR model for the S&P500 index is 37.9% compared to 33.1% for the simple ARFIMA.

When the leverage e�ect and IV are included in the models their R2 values increase, but still the

HAR-L-IV performs better than the ARFIMA-L-IV. More speci�cally, the R2 value is 37.2% for the

ARFIMA-L-IV model and 46.9% for the HAR-L-IV speci�cation. Moreover, explicitly accounting

for the leverage e�ect and IV in both ARFIMA and HAR models enhances the forecast accuracy.

In particular, models that simultaneously incorporate the asymmetry and IV yield lower loss than

their restricted counterparts. This �nding is also con�rmed by the R2 values. This is consistent

with the �ndings of previous studies. For example, Martens et al. (2009) and Wang et al. (2015)

show that taking into account the leverage e�ect signi�cantly improves the forecast performance

of the models for the S&P500 index and the Chinese stock market, respectively, and Busch et al.

(2011) �nd that the IV is important in forecasting future realised volatility.

Third, the conditional heteroskedasticity of the innovations of realized volatility is taken into

account in order to evaluate whether it signi�cantly improves the forecasting performance of the

HAR models. According to Corsi et al. (2008) allowing for time-varying volatility of the realised

volatility improves the predictive ability of the S&P500 index. I �nd that only for the S&P500 and

DJIA indices accounting for the GARCH e�ect yields lower loss than the restricted HAR versions.

In particular, only when is the HAR-L-IV-G is compared to the HAR-L-IV leads to relatively

modest increase of the R2 value of about 0.2% for the S&P500 index and 0.1% for the DJIA. For

all other indices accounting for the volatility clustering of realised volatility does not noticeably

improve the predictive power of the model. Similar results are reported in Todorova (2015) for the

LME non-ferrous metal market.

As in many cases there is little di�erence in the forecasts errors of the competing models I

use the GW pairwise test and the SPA test in order to investigate whether these di�erences are

statistically signi�cant.

Tables 67 and 68 present the GW pairwise test for the US and European indices. The p-values

reported on the tables are based on the mean di�erences between the row model and the column
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model. The null hypothesis of equal forecasting performance between the row and column models

in terms of squared forecast error. The signs in bracket indicate which model performs best. A

positive sign shows that the row model forecast yields larger loss than the column model forecast,

which implies that the column model is signi�cantly superior. Similarly, a negative sign denotes

that the row model forecast performs signi�cantly better than the column model forecast, since the

latter produces larger loss.

The results are consistent for all indices. First, the ARFIMA model is signi�cantly outperformed

by the other models. In general, all ARFIMA speci�cations are inferior to the HAR counterparts.

Second, the simple HAR model is signi�cantly worse than its more sophisticated rivals except

when the HAR models is competing the HAR-G model. In this case, the high p-value indicates

that the null hypothesis cannot be rejected, which means that the two models forecast equally

well. Third, the HAR-G is signi�cantly inferior to its more sophisticated speci�cations. Moreover,

allowing for time-varying volatility of realised volatility does not lead to a substantial improvement

of the model's predictive ability. This result is in line with the study of Bubak & Zikes (2009) and

Todorova (2015) who compare the forecasting performance of the HAR and HAR-G models for the

exchange rate and metal market, respectively. They �nd that while the HAR-G model performs

better in-sample, it cannot signi�cantly improve the out-of-sample performance of the simple HAR

model. Finally, simultaneously accounting for the leverage e�ect and IV signi�cantly improves the

accuracy of the volatility forecasts.

The SPA test of Hansen (2005) using the MAE, MSE and QLIKE loss functions is implemented

to assess the signi�cance of the relative forecasting performance of the models. The null hypothesis

is that the forecast under consideration, i.e. the benchmark model, is not inferior to any alternative

model. Tables 69 to 71 and Tables 72 to 74 present the SPA test results for the rolling and recursive

scheme, respectively, using consecutively all models as benchmark models. The p-values reported

are based on 1,000 bootstrap samples under the MAE, MSE and QLIKE loss functions. Small

p-values indicate that at least one of the competing models perform better than the model under

consideration. Thus, the higher the p-value, the better is the predictive ability of the model under

consideration.
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In Tables 69 to 71, for all the loss functions employed under the rolling scheme, the p-values

of the SPA test show that the HAR-type models perform better than the ARFIMA speci�cations.

Comparing the simple HAR and ARFIMA to their more sophisticated rivals I �nd evidence to

suggest that explicitly incorporating the leverage e�ect and IV in these models signi�cantly improves

the accuracy of the volatility forecasts. Conversely, accounting for the volatility of realised volatility

does not signi�cantly enhances the HAR models. Moreover, the small p-value of the models that

include the leverage e�ect but not the IV indicate that the null hypothesis is rejected, which means

that these models are outperformed by the competing models. However, models that simultaneously

account for the asymmetry and IV produces higher p-values. The results are consistent between

the rolling and recursive techniques.

In particular, the HAR-L-IV-G model produces the highest p-values for both the S&P500 and

DJIA indices indicating that the null hypothesis cannot be rejected which means that HAR-L-IV-G

model is not outperformed by the competing models. This result is consistent across loss functions

and for both the rolling and recursive methods. The only exception is under the QLIKE loss

function for the DJIA where the HAR-IV-G model performs best. For the Nasdaq, STOXX, CAC,

DAX, AEX and FTSE100 indices the HAR-L-IV model produces the highest p-values. For these

indices the inclusion of the conditional heteroskedasticity in the innovations of realized volatility

does not signi�cantly improve the forecasting performance only of the HAR models. The HAR-L

speci�cation proved the best forecast for the SMI index.

In sum, the results clearly show that accounting for the volatility clustering signi�cantly improves

the forecasting performance of the S&P500, similarly to the Corsi et al. (2008) �ndings, and DJIA

indices. Modelling the IV is more important than the leverage e�ect, but accounting for both

features signi�cantly improves the predictive ability of the models.

5.4 Conclusion

In this chapter I evaluate the forecasting performance of several reduced-form time series models

for realised volatility. I mainly explore the e�ect of explicitly accounting for important stylized facts

of realised volatility. More speci�cally, I examine the role of leverage e�ects, implied volatilities
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and volatility clustering of realised volatility. The analysis is based on daily realised variances of a

number of US and European indices. I focus on the class of ARFIMA and HAR models as well as

to extensions in order to capture the well-known features of volatility.

The empirical results lead to two main conclusions. First, the out-of-sample results show that

accounting for the leverage e�ects and the information content of implied volatility improves the

predictive power of the models. While taking into account implied volatility is more important than

the leverage e�ect, accounting for both features signi�cantly improves the forecast performance of

the models. Second, it seems not to be bene�cial to model the volatility of realised volatility as it

does not lead to a substantial improvement of the forecast performance of the HAR models.

Overall, the HAR models perform better than the ARFIMA models. The HAR-L-IV seems to

be the most appropriate for predicting realised volatility.
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Table 58: Descriptive statistics

Mean Std. Dev. Skew Kurt
S&P500
rt 3.80 ∗ 10−5 0.0134 -0.1704 11.0489
rvt 0.00014 0.0003 10.175 188.585
log(rvt) -9.5664 1.0547 0.5769 3.4244

DJIA
rt 8.47 ∗ 10−5 0.0125 0.0328 10.778
rvt 0.00014 0.0003 11.734 244.481
log(rvt) -9.5970 1.0531 0.6152 3.5312

Nasdaq100
rt 3.37 ∗ 10−5 0.0179 0.0592 7.3248
rvt 0.00013 0.0002 6.5738 74.906
log(rvt) -9.4848 0.9744 0.4455 3.0527

STOXX
rt −0.00019 0.0161 0.0314 7.2470
rvt 0.00020 0.0004 11.5445 246.611
log(rvt) -9.1458 1.0377 0.3570 3.2080

CAC
rt −0.00014 0.0158 0.0526 7.8070
rvt 0.00016 0.0003 7.8074 101.719
log(rvt) -9.2888 1.0134 0.3189 3.0304

DAX
rt 5.04 ∗ 10−5 0.0163 -0.0004 7.2921
rvt 0.00021 0.0004 6.6967 74.834
log(rvt) -9.1197 1.0647 0.3866 2.9911

AEX
rt -0.00020 0.0159 -0.0506 8.8121
rvt 0.00014 0.0002 5.5914 50.501
log(rvt) -9.4690 1.0492 0.4504 2.9598

SMI
rt −1.76 ∗ 10−5 0.0128 0.0133 9.0066
rvt 0.00010 0.00018 6.4170 68.204
log(rvt) -9.7506 0.9665 0.7485 3.3368

FTSE100
rt 5.43 ∗ 10−6 0.0129 -0.0112 9.2049
rvt 9.99 ∗ 10−5 0.00019 9.7089 164.582
log(rvt) -9.8500 1.0586 0.4177 2.9650
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Figure 3: Daily realised variance of the S&P500 index

a) Realised variance b) Logarithmic realised variance
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Note: The graph shows the time series (�rst row), histogram (second row) and correlogram (third
row) of the S&P500 realised variance in level and logarithms over the period February 2, 2001 to
February 28, 2013.
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Table 59: MAE under the rolling scheme

MAE

S&P500 DJIA Nasdaq100 STOXX CAC DAX AEX SMI FTSE100

ARFIMA 0.05733 0.05648 0.04124 0.08048 0.06917 0.07194 0.04446 0.03262 0.03251

ARFIMA-IV 0.05712 0.05670 0.03475 0.06590 0.05797 0.05370 0.03856 0.03009 0.02426

ARFIMA-L 0.05959 0.05834 0.03818 0.08055 0.06260 0.06554 0.03988 0.02907 0.03019

ARFIMA-L-IV 0.05654 0.05611 0.03475 0.06504 0.05818 0.05351 0.03870 0.03035 0.02486

HAR 0.05688 0.05650 0.03372 0.06564 0.05637 0.05588 0.03607 0.02755 0.02503

HAR-IV 0.05387 0.05349 0.03284 0.06167 0.05252 0.05256 0.03459 0.02676 0.02359

HAR-L 0.05442 0.05424 0.03219 0.06101 0.05169 0.05255 0.03408 0.02381 0.02373

HAR-L-IV 0.05293 0.05278 0.03178 0.05900 0.04995 0.05070 0.03342 0.02400 0.02299

HAR-G 0.05689 0.05647 0.03377 0.06571 0.05642 0.05594 0.03608 0.02750 0.02495

HAR-IV-G 0.05357 0.05337 0.03293 0.06198 0.05298 0.05270 0.03468 0.02670 0.02350

HAR-L-G 0.05434 0.05428 0.03233 0.06107 0.05208 0.05236 0.03426 0.02398 0.02380

HAR-L-IV-G 0.05280 0.05266 0.03190 0.05952 0.05012 0.05101 0.03362 0.02415 0.02305

Note: This table presents out-of-sample mean absolute forecast errors (MAE) de�ned in equation
(57) for the twelve volatility models considered. Out-of-sample forecasts are obtained using a rolling
window method. In bold is the lowest forecast error. In order to facilitate the presentation of my
results, all numbers are multiplied by 103.
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Table 60: MSE under the rolling scheme

MSE

S&P500 DJIA Nasdaq100 STOXX CAC DAX AEX SMI FTSE100

ARFIMA 0.02145 0.01917 0.01464 0.03509 0.02778 0.03242 0.01390 0.01338 0.00512

ARFIMA-IV 0.01877 0.01774 0.01289 0.02315 0.02062 0.01808 0.01120 0.01032 0.00292

ARFIMA-L 0.01861 0.01767 0.01367 0.03440 0.02319 0.02843 0.01193 0.01129 0.00476

ARFIMA-L-IV 0.01852 0.01750 0.01269 0.02248 0.02045 0.01690 0.01110 0.01024 0.00294

HAR 0.01833 0.01750 0.01118 0.02082 0.01596 0.01708 0.00886 0.00816 0.00291

HAR-IV 0.01641 0.01562 0.01076 0.01884 0.01467 0.01566 0.00824 0.00774 0.00250

HAR-L 0.01604 0.01583 0.01006 0.01501 0.01084 0.01279 0.00706 0.00481 0.00226

HAR-L-IV 0.01528 0.01487 0.00993 0.01481 0.01121 0.01303 0.00696 0.00512 0.00220

HAR-G 0.01866 0.01766 0.01136 0.02118 0.01635 0.01750 0.00905 0.00835 0.00294

HAR-IV-G 0.01662 0.01577 0.01097 0.01958 0.01527 0.01618 0.00856 0.00800 0.00254

HAR-L-G 0.01603 0.01578 0.01026 0.01534 0.01124 0.01317 0.00729 0.00497 0.00229

HAR-L-IV-G 0.01520 0.01487 0.01015 0.01553 0.01137 0.01369 0.00730 0.00532 0.00226

Note: This table presents out-of-sample mean squared forecast errors (MSE) de�ned in equation
(58) for the twelve volatility models considered. Out-of-sample forecasts are obtained using a rolling
window method. In bold is the lowest forecast error. In order to facilitate the presentation of my
results, all numbers are multiplied by 106.
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Table 61: QLIKE under the rolling scheme

QLIKE

S&P500 DJIA Nasdaq100 STOXX CAC DAX AEX SMI FTSE100

ARFIMA -8.40648 -8.46261 -8.63000 -7.83379 -7.95368 -8.03037 -8.42849 -8.84181 -8.73819

ARFIMA-IV -8.43070 -8.48491 -8.69841 -7.93078 -8.04093 -8.16551 -8.45511 -8.89825 -8.86314

ARFIMA-L -8.39537 -8.45059 -8.67500 -7.82019 -8.01431 -8.09504 -8.47729 -8.89464 -8.77605

ARFIMA-L-IV -8.43221 -8.48665 -8.70430 -7.93192 -8.03971 -8.16647 -8.46004 -8.89460 -8.85560

HAR -8.42339 -8.47580 -8.72077 -7.92481 -8.04941 -8.14607 -8.50394 -8.91659 -8.85587

HAR-IV -8.46692 -8.52513 -8.73476 -7.94610 -8.06631 -8.16713 -8.50672 -8.92787 -8.87205

HAR-L -8.43721 -8.48815 -8.73068 -7.93527 -8.06220 -8.15861 -8.51327 -8.93099 -8.86391

HAR-L-IV -8.46852 -8.52435 -8.73879 -7.94933 -8.07143 -8.17149 -8.51357 -8.93674 -8.87396

HAR-G -8.42274 -8.47442 -8.71918 -7.92304 -8.04796 -8.14510 -8.50236 -8.91505 -8.85455

HAR-IV-G -8.46856 -8.52578 -8.73412 -7.94342 -8.06438 -8.16662 -8.50431 -8.92692 -8.87146

HAR-L-G -8.43738 -8.48748 -8.72919 -7.93534 -8.06184 -8.15791 -8.51223 -8.93009 -8.86311

HAR-L-IV-G -8.46985 -8.52537 -8.73770 -7.94825 -8.07087 -8.17093 -8.51198 -8.93614 -8.87347

Note: This table presents the quasi�likelihood loss (QLIKE) de�ned in equation (59) for the twelve
volatility models considered. Out-of-sample forecasts are obtained using a rolling window method.
In bold is the lowest forecast error.

Table 62: R2 values under the rolling scheme

R2

S&P500 DJIA Nasdaq100 STOXX CAC DAX AEX SMI FTSE100

ARFIMA 0.33119 0.29631 0.19417 0.36778 0.34296 0.29290 0.32457 0.30079 0.21907

ARFIMA-IV 0.35591 0.30403 0.30628 0.51099 0.49036 0.58717 0.46672 0.48228 0.55554

ARFIMA-L 0.37533 0.32181 0.27459 0.38042 0.47326 0.41400 0.43327 0.44310 0.28945

ARFIMA-L-IV 0.37197 0.31908 0.33138 0.53650 0.51168 0.61862 0.48858 0.51905 0.56137

HAR 0.37910 0.32596 0.35210 0.54369 0.54838 0.59641 0.51596 0.53974 0.53276

HAR-IV 0.44326 0.39979 0.38555 0.59946 0.60231 0.63426 0.56617 0.57282 0.59305

HAR-L 0.44789 0.38223 0.41891 0.66016 0.69496 0.68660 0.63268 0.75072 0.63796

HAR-L-IV 0.46985 0.41540 0.43122 0.67294 0.69741 0.68786 0.64669 0.73765 0.64148

HAR-G 0.36984 0.32291 0.34420 0.54086 0.54274 0.59018 0.51063 0.53801 0.53238

HAR-IV-G 0.44277 0.39963 0.37922 0.59114 0.59416 0.62662 0.56100 0.56818 0.58955

HAR-L-G 0.44944 0.38605 0.40961 0.65465 0.68497 0.68050 0.62092 0.74109 0.63373

HAR-L-IV-G 0.47413 0.41863 0.42331 0.66370 0.69712 0.67752 0.63324 0.72712 0.63370

Note: Entries are the R2 values from the Mincer-Zarnowitz regression described in equation (60).
Out-of-sample forecasts are obtained using a rolling window method. In bold is the highest R2

value.
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Table 63: MAE under the recursive scheme

MAE

S&P500 DJIA Nasdaq100 STOXX CAC DAX AEX SMI FTSE100

ARFIMA 0.05758 0.05663 0.04301 0.07842 0.06776 0.06970 0.04488 0.03145 0.03049

ARFIMA-IV 0.05791 0.05679 0.03512 0.06626 0.05860 0.05649 0.03846 0.03142 0.02482

ARFIMA-L 0.05682 0.05842 0.03986 0.07104 0.06085 0.06304 0.03914 0.02830 0.02794

ARFIMA-L-IV 0.05724 0.05606 0.03504 0.06516 0.05905 0.05592 0.03848 0.03154 0.02562

HAR 0.05695 0.05659 0.03373 0.06582 0.05652 0.05599 0.03613 0.02759 0.02505

HAR-IV 0.05397 0.05362 0.03293 0.06190 0.05276 0.05326 0.03454 0.02689 0.02377

HAR-L 0.05433 0.05426 0.03235 0.06086 0.05155 0.05245 0.03400 0.02353 0.02358

HAR-L-IV 0.05287 0.05277 0.03206 0.05881 0.04974 0.05100 0.03327 0.02365 0.02295

HAR-G 0.05679 0.05645 0.03377 0.06582 0.05659 0.05593 0.03611 0.02743 0.02495

HAR-IV-G 0.05373 0.05347 0.03299 0.06200 0.05311 0.05308 0.03461 0.02670 0.02364

HAR-L-G 0.05424 0.05424 0.03250 0.06088 0.05195 0.05228 0.03418 0.02369 0.02364

HAR-L-IV-G 0.05275 0.05275 0.03218 0.05924 0.05028 0.05107 0.03346 0.02358 0.02299

Note: This table presents out-of-sample mean absolute forecast errors (MAE) de�ned in equation
(57) for the twelve volatility models considered. Out-of-sample forecasts are obtained using a
recursive window method. In bold is the lowest forecast error. In order to facilitate the presentation
of my results, all numbers are multiplied by 103.
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Table 64: MSE under the recursive scheme

MSE

S&P500 DJIA Nasdaq100 STOXX CAC DAX AEX SMI FTSE100

ARFIMA 0.02155 0.01936 0.01468 0.03378 0.02630 0.03015 0.01348 0.01257 0.00461

ARFIMA-IV 0.01906 0.01783 0.01315 0.02289 0.02092 0.02047 0.01131 0.01059 0.00293

ARFIMA-L 0.01927 0.01881 0.01385 0.02744 0.02125 0.02612 0.01118 0.01010 0.00402

ARFIMA-L-IV 0.01877 0.01752 0.01292 0.02210 0.02083 0.01963 0.01115 0.01032 0.00313

HAR 0.01829 0.01740 0.01118 0.02085 0.01587 0.01697 0.00880 0.00802 0.00290

HAR-IV 0.01639 0.01558 0.01088 0.01863 0.01442 0.01540 0.00814 0.00751 0.00249

HAR-L 0.01600 0.01583 0.01030 0.01503 0.01073 0.01283 0.00696 0.00456 0.00221

HAR-L-IV 0.01526 0.01491 0.01023 0.01472 0.01062 0.01272 0.00683 0.00471 0.00214

HAR-G 0.01853 0.01758 0.01136 0.02117 0.01630 0.01740 0.00899 0.00821 0.00293

HAR-IV-G 0.01658 0.01575 0.01107 0.01930 0.01510 0.01598 0.00844 0.00778 0.00253

HAR-L-G 0.01599 0.01585 0.01049 0.01528 0.01112 0.01314 0.00714 0.00472 0.00224

HAR-L-IV-G 0.01524 0.01493 0.01044 0.01529 0.01118 0.01328 0.00711 0.00462 0.00218

Note: This table presents out-of-sample mean squared forecast errors (MSE) de�ned in equation (58)
for the twelve volatility models considered. Out-of-sample forecasts are obtained using a recursive
window method. In bold is the lowest forecast error. In order to facilitate the presentation of my
results, all numbers are multiplied by 106.
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Table 65: QLIKE under the recursive scheme

QLIKE

S&P500 DJIA Nasdaq100 STOXX CAC DAX AEX SMI FTSE100

ARFIMA -8.40834 -8.46313 -8.61109 -7.84800 -7.97785 -8.06969 -8.43280 -8.86509 -8.78077

ARFIMA-IV -8.42239 -8.47899 -8.69052 -7.93160 -8.03958 -8.15582 -8.45707 -8.88821 -8.85909

ARFIMA-L -8.40241 -8.45949 -8.65788 -7.89767 -8.02787 -8.11558 -8.48518 -8.90651 -8.82158

ARFIMA-L-IV -8.42586 -8.48195 -8.69851 -7.93335 -8.03675 -8.15963 -8.46317 -8.88513 -8.85084

HAR -8.42423 -8.47674 -8.72104 -7.92535 -8.04987 -8.14688 -8.50443 -8.91718 -8.85643

HAR-IV -8.46699 -8.52315 -8.73299 -7.94717 -8.06625 -8.16748 -8.50786 -8.92833 -8.87255

HAR-L -8.43873 -8.48940 -8.72981 -7.93620 -8.06285 -8.15930 -8.51389 -8.93162 -8.86489

HAR-L-IV -8.46880 -8.52294 -8.73674 -7.95019 -8.07158 -8.17172 -8.51485 -8.93738 -8.87470

HAR-G -8.42354 -8.47521 -8.71934 -7.92325 -8.04832 -8.14572 -8.50284 -8.91560 -8.85517

HAR-IV-G -8.46854 -8.52407 -8.73177 -7.94437 -8.06420 -8.16690 -8.50553 -8.92744 -8.87200

HAR-L-G -8.43908 -8.48857 -8.72836 -7.93571 -8.06231 -8.15837 -8.51289 -8.93074 -8.86412

HAR-L-IV-G -8.47042 -8.52379 -8.73560 -7.94871 -8.07056 -8.17114 -8.51337 -8.93763 -8.87438

Note: This table presents the quasi�likelihood loss (QLIKE) de�ned in equation (59) for the twelve
volatility models considered. Out-of-sample forecasts are obtained using a recursive window method.
In bold is the lowest forecast error.

Table 66: R2under the recursive scheme

R2

S&P500 DJIA Nasdaq100 STOXX CAC DAX AEX SMI FTSE100

ARFIMA 0.32708 0.29331 0.16486 0.37653 0.37969 0.37191 0.33800 0.37321 0.33372

ARFIMA-IV 0.34037 0.29812 0.29847 0.50595 0.46789 0.50771 0.43866 0.44596 0.54623

ARFIMA-L 0.36823 0.27251 0.23936 0.49957 0.50639 0.46296 0.46272 0.51752 0.43371

ARFIMA-L-IV 0.35737 0.31635 0.32072 0.53409 0.49062 0.53672 0.46491 0.49999 0.52471

HAR 0.37924 0.32752 0.35059 0.54019 0.54827 0.59533 0.51672 0.54298 0.53278

HAR-IV 0.44244 0.39963 0.38257 0.59756 0.60046 0.62863 0.56639 0.57499 0.59025

HAR-L 0.44917 0.38134 0.40961 0.65962 0.69723 0.68583 0.63820 0.76282 0.64573

HAR-L-IV 0.47029 0.41355 0.42226 0.67206 0.70692 0.68821 0.65119 0.75223 0.65084

HAR-G 0.37462 0.32432 0.34322 0.53819 0.54149 0.58979 0.51167 0.54060 0.53263

HAR-IV-G 0.44153 0.39839 0.37672 0.59039 0.59118 0.62123 0.56146 0.57063 0.58723

HAR-L-G 0.45013 0.38217 0.40033 0.65576 0.68813 0.68111 0.63000 0.75466 0.64177

HAR-L-IV-G 0.47240 0.41417 0.41474 0.66479 0.69699 0.67961 0.64133 0.75616 0.64486

Note: Entries are the R2 values from the Mincer-Zarnowitz regression described in equation (60).
Out-of-sample forecasts are obtained using a recursive window method. In bold is the highest R2

value.
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Table 69: SPA test (MAE) under the rolling scheme

SPA-MAE

S&P500 DJIA Nasdaq100 STOXX CAC DAX AEX SMI FTSE100

1 ARFIMA-log(RV) 0.050 0.027 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 ARFIMA-log(RV)-IV 0.008 0.002 0.038 0.037 0.026 0.171 0.020 0.015 0.117

3 ARFIMAX-log(RV)-alt2 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.056 0.000

4 ARFIMAX-log(RV)-IV-alt2 0.068 0.071 0.035 0.052 0.020 0.174 0.016 0.015 0.000

5 HAR-log(RV) 0.000 0.000 0.003 0.002 0.000 0.000 0.003 0.012 0.002

6 HARX-log(RV) 0.200 0.389 0.031 0.140 0.048 0.092 0.068 0.020 0.091

7 AHAR-log(RV)-alt 0.005 0.001 0.021 0.017 0.009 0.018 0.015 0.872 0.002

8 AHARX-log(RV)-alt 0.505 0.452 0.805 0.941 0.868 0.864 0.931 0.568 0.891

9 HAR-log(RV)-GARCH 0.002 0.000 0.005 0.001 0.000 0.000 0.004 0.016 0.002

10 HARX-log(RV)-GARCH 0.379 0.376 0.049 0.129 0.053 0.168 0.077 0.035 0.187

11 AHAR-log(RV)-GARCH-alt 0.017 0.002 0.031 0.014 0.008 0.011 0.015 0.035 0.005

12 AHARX-log(RV)-GARCH-alt 1.000 0.991 0.285 0.267 0.160 0.719 0.376 0.134 0.534

Note: The p-values of the SPA test are reported. The null hypothesis is that the forecast under
consideration is not inferior to any alternative forecast.

Table 70: SPA test (MSE) under the rolling scheme

SPA-MSE

S&P500 DJIA Nasdaq100 STOXX CAC DAX AEX SMI FTSE100

ARFIMA-log(RV) 0.028 0.061 0.021 0.008 0.018 0.013 0.018 0.029 0.001

ARFIMA-log(RV)-IV 0.161 0.098 0.093 0.104 0.101 0.132 0.120 0.127 0.193

ARFIMAX-log(RV)-alt2 0.023 0.036 0.030 0.001 0.053 0.037 0.097 0.095 0.025

ARFIMAX-log(RV)-IV-alt2 0.317 0.286 0.083 0.133 0.088 0.221 0.117 0.138 0.178

HAR-log(RV) 0.040 0.036 0.061 0.011 0.033 0.052 0.116 0.066 0.062

HARX-log(RV) 0.393 0.496 0.215 0.109 0.070 0.107 0.110 0.071 0.077

AHAR-log(RV)-alt 0.064 0.078 0.034 0.618 0.801 0.803 0.403 0.926 0.417

AHARX-log(RV)-alt 0.652 0.797 0.972 0.976 0.737 0.808 0.924 0.308 0.982

HAR-log(RV)-GARCH 0.051 0.040 0.054 0.006 0.033 0.073 0.101 0.041 0.072

HARX-log(RV)-GARCH 0.378 0.285 0.195 0.064 0.090 0.129 0.140 0.102 0.102

AHAR-log(RV)-GARCH-alt 0.047 0.085 0.082 0.313 0.089 0.540 0.146 0.068 0.099

AHARX-log(RV)-GARCH-alt 0.987 0.969 0.318 0.143 0.155 0.335 0.244 0.085 0.177

Note: The p-values of the SPA test are reported. The null hypothesis is that the forecast under
consideration is not inferior to any alternative forecast.
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Table 71: SPA test (QLIKE) under the rolling scheme

SPA-QLIKE

S&P500 DJIA Nasdaq100 STOXX CAC DAX AEX SMI FTSE100

ARFIMA-log(RV) 0.006 0.004 0.001 0.000 0.001 0.010 0.002 0.006 0.001

ARFIMA-log(RV)-IV 0.045 0.043 0.042 0.040 0.044 0.356 0.027 0.000 0.078

ARFIMAX-log(RV)-alt2 0.000 0.000 0.002 0.000 0.000 0.008 0.028 0.017 0.005

ARFIMAX-log(RV)-IV-alt2 0.045 0.037 0.030 0.038 0.026 0.440 0.015 0.000 0.001

HAR-log(RV) 0.000 0.000 0.000 0.000 0.002 0.000 0.012 0.000 0.000

HARX-log(RV) 0.128 0.380 0.247 0.162 0.073 0.171 0.038 0.009 0.313

AHAR-log(RV)-alt 0.000 0.000 0.013 0.000 0.003 0.000 0.537 0.003 0.000

AHARX-log(RV)-alt 0.051 0.141 0.978 0.874 0.986 0.917 0.574 0.677 0.934

HAR-log(RV)-GARCH 0.000 0.000 0.001 0.000 0.000 0.000 0.012 0.000 0.000

HARX-log(RV)-GARCH 0.584 0.780 0.195 0.002 0.039 0.163 0.023 0.018 0.151

AHAR-log(RV)-GARCH-alt 0.000 0.000 0.014 0.000 0.001 0.000 0.004 0.000 0.000

AHARX-log(RV)-GARCH-alt 0.705 0.695 0.164 0.052 0.096 0.481 0.012 0.019 0.242

Note: The p-values of the SPA test are reported. The null hypothesis is that the forecast under
consideration is not inferior to any alternative forecast.

Table 72: SPA test (MAE) under the recursive scheme

SPA-MAE

S&P500 DJIA Nasdaq100 STOXX CAC DAX AEX SMI FTSE100

1 ARFIMA-log(RV) 0.000 0.035 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 ARFIMA-log(RV)-IV 0.000 0.006 0.027 0.031 0.025 0.074 0.024 0.000 0.037

3 ARFIMAX-log(RV)-alt2 0.000 0.004 0.000 0.003 0.003 0.002 0.007 0.000 0.001

4 ARFIMAX-log(RV)-IV-alt2 0.000 0.105 0.024 0.046 0.017 0.103 0.021 0.000 0.003

5 HAR-log(RV) 0.000 0.000 0.002 0.002 0.000 0.000 0.001 0.014 0.002

6 HARX-log(RV) 0.205 0.375 0.028 0.088 0.048 0.053 0.060 0.024 0.054

7 AHAR-log(RV)-alt 0.005 0.000 0.092 0.004 0.000 0.003 0.004 0.825 0.004

8 AHARX-log(RV)-alt 0.414 0.646 0.982 0.931 0.957 0.769 0.924 0.398 0.801

9 HAR-log(RV)-GARCH 0.001 0.000 0.007 0.002 0.000 0.000 0.002 0.026 0.003

10 HARX-log(RV)-GARCH 0.316 0.560 0.034 0.103 0.058 0.137 0.071 0.037 0.097

11 AHAR-log(RV)-GARCH-alt 0.010 0.002 0.055 0.010 0.001 0.009 0.005 0.054 0.006

12 AHARX-log(RV)-GARCH-alt 1.000 0.987 0.280 0.182 0.096 0.851 0.119 0.804 0.559

Note: The p-values of the SPA test are reported. The null hypothesis is that the forecast under
consideration is not inferior to any alternative forecast.
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Table 73: SPA test (MSE) under the recursive scheme

SPA-MSE

S&P500 DJIA Nasdaq100 STOXX CAC DAX AEX SMI FTSE100

ARFIMA-log(RV) 0.086 0.047 0.016 0.008 0.013 0.014 0.033 0.038 0.006

ARFIMA-log(RV)-IV 0.026 0.098 0.087 0.105 0.123 0.132 0.169 0.141 0.127

ARFIMAX-log(RV)-alt2 0.335 0.068 0.026 0.080 0.053 0.034 0.137 0.137 0.038

ARFIMAX-log(RV)-IV-alt2 0.123 0.323 0.072 0.136 0.104 0.171 0.154 0.179 0.123

HAR-log(RV) 0.056 0.033 0.063 0.008 0.026 0.027 0.112 0.068 0.064

HARX-log(RV) 0.511 0.570 0.208 0.096 0.064 0.121 0.108 0.075 0.068

AHAR-log(RV)-alt 0.090 0.067 0.369 0.566 0.583 0.642 0.286 0.875 0.198

AHARX-log(RV)-alt 0.843 0.847 0.990 0.988 0.972 0.974 0.942 0.423 0.987

HAR-log(RV)-GARCH 0.067 0.036 0.067 0.006 0.034 0.046 0.092 0.039 0.073

HARX-log(RV)-GARCH 0.419 0.313 0.167 0.062 0.088 0.130 0.146 0.101 0.085

AHAR-log(RV)-GARCH-alt 0.087 0.060 0.119 0.310 0.111 0.148 0.147 0.062 0.097

AHARX-log(RV)-GARCH-alt 0.976 0.908 0.256 0.129 0.122 0.400 0.244 0.647 0.233

Note: The p-values of the SPA test are reported. The null hypothesis is that the forecast under
consideration is not inferior to any alternative forecast.

Table 74: SPA test (QLIKE) under the recursive scheme

SPA-QLIKE

S&P500 DJIA Nasdaq100 STOXX CAC DAX AEX SMI FTSE100

ARFIMA-log(RV) 0.016 0.004 0.000 0.000 0.000 0.002 0.001 0.007 0.001

ARFIMA-log(RV)-IV 0.025 0.029 0.024 0.034 0.050 0.090 0.028 0.000 0.024

ARFIMAX-log(RV)-alt2 0.000 0.000 0.000 0.000 0.002 0.003 0.021 0.012 0.003

ARFIMAX-log(RV)-IV-alt2 0.051 0.035 0.024 0.038 0.036 0.255 0.019 0.000 0.000

HAR-log(RV) 0.000 0.000 0.000 0.000 0.000 0.000 0.011 0.000 0.000

HARX-log(RV) 0.356 0.240 0.206 0.172 0.078 0.199 0.036 0.004 0.236

AHAR-log(RV)-alt 0.001 0.000 0.042 0.000 0.000 0.000 0.450 0.001 0.000

AHARX-log(RV)-alt 0.184 0.163 0.979 0.863 0.953 0.925 0.699 0.148 0.901

HAR-log(RV)-GARCH 0.001 0.000 0.001 0.000 0.000 0.000 0.008 0.000 0.000

HARX-log(RV)-GARCH 0.508 0.796 0.116 0.001 0.046 0.197 0.024 0.015 0.124

AHAR-log(RV)-GARCH-alt 0.001 0.000 0.042 0.000 0.000 0.000 0.002 0.000 0.000

AHARX-log(RV)-GARCH-alt 0.922 0.687 0.155 0.001 0.026 0.406 0.010 0.852 0.301

Note: The p-values of the SPA test are reported. The null hypothesis is that the forecast under
consideration is not inferior to any alternative forecast.
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