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Abstract 

The stratigraphy of an archaeological site is fundamental to the understanding of that 
site's history of occupation, use and abandonment. Archaeological stratigraphy is 
subject to a variety of post-depositional processes that may damage or destroy this 
stratigraphy. This work focuses on one such process, faunalturbation, i.e. the process 
of mixing by animals. The effects of the invertebrate soil mesofauna, in particular 
earthworms, were studied in this work. Three archaeological sites were investigated 
using faunal surveys, thin section micromorphology, 137CS profiling, field recording 
and determinations of pH, loss on ignition, bulk density and particle size distribution. 

This study views faunalturbation as a system and attempts to delineate and confirm 
the relationships within that study. The results demonstrate that soil properties such 
as loss on ignition and pH have some effect on the populations of soil invertebrates 
and on the intensity and distribution of faunalturbation, but that there are likely to be 
other factors which also have a significant influence. Two models of the possible 
impact that invertebrate faunalturbation has on archaeological stratigraphy are 
advanced and tested, with one being found to be more accurate. This model posits 
that the most rapid and complete impact on archaeological stratigraphy is found to 
occur in the uppermost region of an archaeological site, with significant but lesser 
impact occurring more slowly in the deeper part of an archaeological site. Where a 
site has accumulated in an episodic fashion, there may be zones at depth within an 
archaeological site which have had all stratigraphic units completely reworked by 
invertebrate faunalturbation. 
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Chapter One 

Introduction. 

1.1 Introduction: Archaeological Stratigraphy 

1.1.1 Fundamental Significance of Archaeological Stratigraphy 

Prior to the late nineteenth century an archaeological site's deposits wefe largely 

regarded as a substrate from which artefacts were to be extracted (Trigger 1989: 197). 

With the publication of Lyell's 'Principles of Geology' (1868), archaeologists had a set 

of principles with which to approach the deposits of which a site was formed. The 

application of these principles has, of necessity, undergone some modification for use in 

archaeology. Nevertheless, until comparatively recently students of archaeology were 

told to go back to Lyell as the basis of stratigraphic thought (Woolridge 1961: 6). There 

is considerable debate concerning such matters as: the appropriate application of 

stratigraphic principle; the degree to which such principles should be rooted in geology; 

terminology; and most recently the techniques of classification (Harris 1977, Stein 1990, 

1996, Gilbertson 1995: 101, Barham 1995: 179). Despite this the fundamentals of 

archaeological stratigraphy are essentially agreed (Roskams 2001: 110, 245). There is 

virtually no argument amongst the majority of practising field archaeologists with regard 

to the basic principles of stratigraphy. 

The fundamental importance of studying a site's stratigraphy comes from the range and 

significance of information that the stratigraphic classification of a site's deposits 

provides (Roskams 2001: 110). Firstly. this infonnation may be the result of the 

stratigraphic analysis itself or because such an analysis then permits the study of other 

aspects of the site's archaeology. In the first case the stratigraphy of a site provides a 



basis for the history of the occupation (and abandonment) of a site (Roskams 2001: 

245). Building, levelling, the digging and filling of ditches and pits and a variety of 

other activities can be reconstructed from the stratigraphic units of a site and their 

spatial relationships. A particularly important element of the 'stratigraphic' approach is 

the ability to place these units in a relative chronological sequence. In theoretical terms 

it could be argued that the stratigraphic analysis of a site acts as a device to structure 

information. 

Secondly the stratigraphic analysis is incorporated into the study of the other 

components of a site's archaeology. Such an analysis provides the basis of work on 

nearly all artefacts and environmental material. On-site sampling strategies for 

environmental material, be it biological or sedimentological, usually proceeds on the 

basis of the stratigraphic analysis. This results in the grouping of material and data 

derived from such material according to stratigraphic unit. Each set of data from a 

given stratigraphic unit is analogous to a sample in the statistical sense of the term. All 

comparisons are made on the implicit basis of the stratigraphic classification. 

Thirdly the application of the stratigraphic analysis allows a chronosequence of 

structures and artefacts found on the site to be constructed. This sequence then allows 

the site to be linked to the regional chronology that archaeologists will have constructed. 

This gives the site a temporal context, from which wider interpretations may be made. 

The preceding discussion demonstrates that stratigraphic analysis is essential to modem 

archaeology. It is not simply a matter of what should happen according to writers on 

methodology (e.g. Barker 1977, Harris 1989), it actually is a part of the way 

2 



archaeological work is undertaken in all areas of the archaeological profession. It is 

intrinsic to the process of archaeological excavation. Its fundamental nature is 

demonstrated by the fact that the execution of such an analysis is an implicit assumption 

in documents on archaeological best practice e.g. MAP 2 (English Heritage 1991). 

1.1.2 Post-Depositional Processes 

That the stratigraphic analysis of a site's deposits is fundamental to archaeology has 

been established. While an appreciation of the basic principles of site stratigraphy is 

well established within the archaeological community (e.g. Barker 1977), knowledge of 

formation processes is a more recent phenomenon, and has a far weaker influence 

within the archaeological community (Quine 1995: 77). The value of studying such 

processes was in Britain first stated by archaeologists during the later 1950's and early 

1960's (e.g. Pyddoke 1961, Comwall1958, Barker 1977) (see 1.2.3). The impact of the 

Processualist School, particularly the system outlined by Schiffer (1983), is the advent 

of a more systematic approach. This approach includes the execution of studies of 

specifically archaeological situations. This subsequently led to work on a wide range of 

site formation processes being undertaken. 

The situation has emerged where there is some awareness of the significance of 

formation processes. It is considered axiomatic that an understanding of the formation 

processes that have created the stratigraphy of a site is essential (Atkinson 1957). But 

whereas the broad application of stratigraphic principles to archaeological excavation is 

both agreed upon and actually used, the position with regard to the study of formation. 

The translation of a general awareness of the problems that post-depositional processes 

may present into active attempts to detect or remedy this are highly variable. The 

3 



problem of detection of post-depositional effects is probably the main reason for this. It 

has been suggested that field recording techniques do not allow the separation of the 

primary properties of a stratigraphic unit i.e. those deriving from the time of deposition 

and the secondary properties of the unit i.e. those deriving from post-depositional 

processes (Barham 1995: 155). It is debatable whether these properties can be separated 

in the field, but an awareness of the possible problems and improvements in field 

recording would allow such effects to be detected at the post-excavation stage, by, for 

example, the application of a range of soil and sediment analyses as suggested by 

Barham (1995). 

For most field archaeologists awareness of the significance of formation processes, 

particularly post-depositional disturbance, is expressed through the concept of 

stratigraphic integrity. This is a somewhat nebulous concept. Despite being a 

frequently used concept it seems to have no formal definition. Although treated as a 

single concept it seems to consist of at least two ideas that have become conflated. The 

first of these ideas concerns post-depositional change. For a unit to have 'high' or 

'good' stratigraphic integrity it should have undergone minimal post-depositional 

change, in particular in the sense of mixing or the intrusion of non-contemporaneous 

material into the unit. The second idea concerns the composition of the unit at the time 

of deposition. While a unit may be largely unaffected by post-depositional change, it 

may not necessarily have high or good stratigraphic integrity. The unit may be 

composed of constituents of either a number of pre-existing archaeological deposits or a 

mixture of material from archaeological contexts and material circulating in active use 

immediately prior to deposition (effectively Schiffer's 'systemic' context (Schiffer 

1983: 677». 
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The overall concept of stratigraphic integrity has developed largely with regard to 

dating, a major function of stratigraphy (see 1.1.1). In particular the concept has been 

applied to the selection of suitable material for laboratory based dating procedures, in 

particular radiocarbon dating (Aitken 1990: 87, Gillespie 1986, Moot & Waterbolk 

1985). Outside of the selection of dating material, the concept is less often used. Some 

archaeologists are aware of some of the problems that post-depositional effects may 

cause for stratigraphic analysis and interpretation (see 1.1.1 and 1.1.3). These 

archaeologists are also aware of various approaches to these problems, and apply them 

to fieldwork projects. There is, however, a further issue that for the most part the work 

on formation processes, and in particular post-depositional disturbance, are not carried 

out in an overall framework that would allow the different studies to be linked to one 

another. This tends to make the application of such studies even more of an ad hoc 

affair. A framework would allow comparisons between studies and allow evidence and 

principles derived from various studies to be applied to a wide range of situations in 

archaeology. Such a framework is available, which would allow studies of formation 

processes to be linked to one another and to be applied to excavation work more 

effectively. This framework is the pedological-sedimentological approach, detailed 

further in the following chapter. Here it suffices to note that most geoarchaeologists are 

already working within this framework to some degree. 

With regard to the issue of awareness of the potential significance of post-depositional 

processes amongst field archaeologists, it should be noted that such awareness is largely 

nominal. This leads to the assumption of stratigraphic integrity of any given unit. This 

assumption has been noted by at least one author in the past (Atkinson 1957). Since 

5 



then, the situation has probably improved somewhat due to the work of scholars such 

Schiffer (1983) and Binford (1983) in raising awareness and the improvement in 

excavation techniques by figures such as Barker (1977). The assumption still remains, 

largely because post-depositional effects are often not regarded as significant (Guttmann 

pers. comm., Brown pers. comm.). There is a tendency to assume that it is the norm for 

archaeological sites not to change without obvious external disturbance be it natural e.g. 

sea erosion or human e.g. agriculture. This tendency may be explained by the fact that 

an excavation provides a snapshot of the state of preservation of the site at the time of 

excavation. This can give the impression that post-depositional processes, even if they 

are identified, are short lived and have occurred in the past. The failure to realise that 

post-depositional processes may be ongoing leads to the belief that sites are effectively 

preserved if left free from direct human interference. This view influences the 

assumption in favour of preservation over excavation that is the official policy of the 

various public bodies that are concerned with archaeology (e.g. ACAO 1993, DoE 

1990). The implications of any findings that post-depositional processes are on-going 

rather than short lived, and that archaeological stratigraphy may be destroyed, could be 

substantial in terms of archaeological resource management. 

1.1.3 Faunalturbation and Archaeological Stratigraphy 

One of the major sets of post-depositional formation processes is faunalturbation. It is 

on this set of processes that this study will focus. As will be discussed below, work to 

date on the effects of faunalturbation on archaeological sites has concentrated on the 

movement of artefacts and, latterly, biological remains through the sediment matrix. 

The reworking of the stratigraphy itself of a site has very little considered. The mixing 
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of a site's deposits may have a variety of stratigraphic effects, which can be broadly 

classified as follows. 

The stratigraphic units of an archaeological site may be divided into two broad types, 

deposits and interfaces (Harris 1989: 15), with deposits including sub-soils. Reworking 

by soil animals obviously directly affects deposits. However, as interface units are the 

boundaries between deposits, reworking that has an impact on the boundaries between 

deposits must also affect interface units. The reworking of deposits by soil animals may 

be thought of in terms of a tendency towards the homogenisation of stratigraphic units. 

Total homogenisation of two deposits, and thus three units including an interface is 

included, into a single unit is conceivable. Such an effect is difficult to demonstrate 

using archaeological examples. It should be noted that the 'topsoil' that overlies most 

sites (e.g. the uppermost deposit in fig 1.1, adapted from Alexander 2000) may in some 

cases constitute such a case. Where this happens stratigraphic information will be lost; 

part of the history of the occupation of a site is lost or seriously distorted. Partial 

homogenisation may also occur, such homogenisation will tend to lead to adjacent 

deposits having similar characteristics in terms of colour and texture, leading to 

situations where the top and bottom of the homogenised material are clearly 

distinguishable but it is impossible to distinguish a boundary. It is possible that has 

Fig. 1.1 Site section showing possible impact of faunalturbation in upper loamy 
deposits (adapted from Alexander 2000). 
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occurred in the case of the upper deposits of section in fig. 1.1. Here the interfaces are 

described as being indistinct and the deposits are described as loams with slightly 

varying sand contents, suggesting the possibility of mixing of materials between 

deposits (Alexander 2000). Even where an interface is identified, its original depth is 

going to be difficult to determine, particularly if sectional records are created through 

the method of the continuous section, as there is a tendency to over-excavate where 

deposit boundaries are indistinct. While loss of stratigraphic information is not so 

complete in this circumstance, problems of interpretation may still arise. Evidence for 

the original processes of formation and other post-depositional processes may be 

obscured or lost, including evidence for rates of deposition, or whether deposition on a 

site has been continuous or intermittant. 

A different situation arises where there is highly localised intensive mixing of the 

deposits over their boundary. This is particularly noticeable as an effect of rabbit 

burrowing (see fig. 1.2, adapted from Alexander 2000). It is not as serious a problem, 

partly because it causes less stratigraphic disruption, partly because it is more easily 

detected. It does mean that samples cannot be taken from the mixed areas and artefacts 

in them may have moved (Roskams 2001: 219). This pattern is interesting as it may 

indicate the earlier stages of certain disturbance processes. 
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Fig. 1.2 Site section demonstrating impact of intense, localised animal burrowing 
(see fig. 1.1. for key )(adapted from Alexander 2000). 

Fig. 1.3. Site section showing truncation of deposits through soil reworking (adapted 
from Wooliscroft 2000). 

A further variation is the truncation of deposits. A vertical deposit such as a post-hole infill 

may have the top part homogenised with the adjacent deposits but not its lower section e.g. 

the deposits numbered 1 and 2 in fig. 1.3 (adapted from Wooliscroft 2000). In this situation 

the loss of infonnation on the feature itself and its stratigraphic relationships occurs. 

Other effects include the movement of artefacts, a subject, which is relatively well covered 

elsewhere (see 1.2), so it will not be expanded on here, and the movement of biological 

material or ecofacts (see 1.2.4). This movement has a number of implications. The first is 

the same as that which affects the movement of artefacts - spatial and temporal relationships 

are lost as a result. Many biological remains, such as insect sclerites or plant macrofossils 

are quite fragile and may be damaged by movement through sediment. Most importantly the 

assemblages fonned as a result of different processes or by different communities may 
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become mixed, making reconstruction of past activities or environments difficult or 

producing spurious results. 

The above discussion has established the critical role that stratigraphy plays in 

interpreting archaeological sites and the need to understand formation processes in 

archaeology in general and in particular with regard to the actual stratigraphy of a site's 

deposits. It has also demonstrated the near ubiquity of faunalturbation as a potential 

process of disturbance. It should be noted that sites will tend to bare the strongest traces 

of the most recent processes, so that recent faunalturbation may destroy evidence of 

earlier post-depositional processes, thus obscuring evidence both of other sources of 

stratigraphic disturbance and of subsequent land use or environmental conditions at a 

site. It has been stated that little account has been taken of the processes of 

faunalturbation as a potential process of stratigraphic disruption. While this is true with 

regard to the majority of archaeological field workers, this is not to claim that the issues 

surrounding the faunalturbation of archaeological sites have never been investigated. At 

this point it is necessary to consider earlier work in this field and what significance, if 

any, it has for the current study. 

1.2 The study in relation to previous work published on faunalturbation 

1.2.1 Introduction 

There is a small corpus of published works concerning the effects of faunalturbation on 

archaeological sites. The issues addressed by these papers and the manner in which they 

have addressed them has developed over time. These developments are themselves 
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related to the broader historical development of archaeology, and some of these broader 

developments also have significance for this study, as will be noted below. 

1.2.2 The work of Charles Darwin 

Darwin's book 'The Formation of Vegetable Mould through the Action of Worms' 

(1881) was the first major English language work on earthworms. It should be noted 

that no other invertebrates are considered. The book contains a full chapter on the 

effects of earthworms on ancient structures. Another area of emphasis is on the 

movement of objects, which, whilst dealt with separately, Darwin points out is 

applicable to the burial and movement of archaeological artefacts. This emphasis is 

particularly important in terms of subsequent publications on the archaeological effects 

of earthworms. From Darwin onwards the main emphasis has been on the movement of 

artefacts and thus the disruption of their stratigraphic relationships. 

1.2.3 The Empiricist approach (1957-cI975). 

Between 1890 and 1957 there were no English language publications concerning the 

impact of invertebrate faunalturbation on archaeological sites. It should be noted that 

research into the biology, ecology and impact of the soil fauna, particularly earthworms, 

flourished from around the 1930's onwards e.g. Evans and Guilds' four substantial 

papers all appearing in 1948 (Guild 1948, Evans & Guild 1948a, Evans 1948, Evans & 

Guild 1948b). 

In 1957 Atkinson's paper 'Worms and Weathering.' was published. While drawing 

heavily on Darwin's work this paper was the first to draw on the preceding research in 

soil biology. The use of data gathered for agricultural and ecological research was 
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common in works on faunalturbation of archaeological sites published at this time. The 

use of such data was, and to some degree still is, a necessity. From the 1957 paper up to 

c.1975 the use of such data was often rather uncritical. Neither does there appear to 

have been any attempt made to undertake systematic research in on the effects of 

faunalturbation in a specifically archaeological setting. This is not to say that no new 

data was gathered. Atkinson's paper contains a number of useful ad hoc observations. 

Other publications at this time include more general books on site formation processes 

and the application of soil science to archaeology (e.g. Comwalll958, Pyddoke 1961). 

These tended to include small sections on the effects of earthworm activity. The 

influence of other invertebrates in a British context was generally not addressed. An 

exception to this is Limbrey's book "Soil Science and Archaeology" (1975: 238), in 

which some mention is made of other invertebrates. These summaries were a mixture of 

Darwin's work, the non-archaeological work on earthworms and observations and 

experiences of the writers and their peers. Excavation manuals also made some 

reference to the effects of earthworms. The most popular simply cites Atkinson 

verbatim (Barker 1977). 

Barker's work is in fact typical of the work of most archaeologists at this time. The 

entire approach was very much a 'common sense' approach. The formal theoretical 

approach of the Processualist movement, which was emerging in the later part of this 

period, was generally avoided (Trigger 1989: 358, Barker 1977: 12). With regard to 

publications on formation processes, the period is characterised by Atkinson's paper 

(1957), which throws together two very different sets of formation processes i.e. the 
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movement of artefacts by earthworm activity and the effects of weathering processes on 

sub-soil features. 

Throughout this period the main emphasis was on the movement of artefacts down 

archaeological profiles. Some quantitative data were presented by most authors for the 

distances artefacts have moved, again largely derived from ad hoc observations. The 

other effects of faunalturbation are not generally mentioned although Atkinson does 

point out some of the implications of soil mixing for buried soils (Atkinson 1957). 

However the possibility of disruption of deposit stratigraphy does not seem to have been 

considered in the context of other types of archaeological deposits which occur more 

commonly. Due to the ad hoc nature of the evidence presented in these publications 

there is a lack of coherence to the overall view of the effects of faunalturbation on 

archaeological sites. 

1.2.4 The ProcessualistlSystematic Approach (1975 onwards). 

During the later 1960's and early 1970's there arose within archaeology the 

'Processualist' school (Trigger 1988: 294). Even though there was resistance to certain 

aspects of Processualism amongst more traditional practitioners of archaeology (e.g. 

Daniel 1973) and many criticisms that are more trenchant have been voiced from the 

1980's onwards by 'Post-Processualist' theoreticians, Processualism still has 

considerable influence (Trigger 1989: 349). Processualist archaeology may be defined 

as an approach to archaeology that stresses the dynamic relationship between social and 

economic aspects of culture and the environment as the basis for understanding the 

processes of culture change. It is characterised by the adoption of the scientific 
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methodology of problem statement, hypothesis formulation and subsequent testing (after 

Renfrew and Bahn 1991). 

It could be argued that Processualist ideas have been particularly popular and durable in 

environmental archaeology and formation process studies, where the broadly scientific 

and ecological approach of the Processualist School naturally finds sympathy. Indeed 

the formal concept of formation processes constitutes one of the major contributions of 

the Processualist school, both in terms of theory and of programmes of practical 

research. 

As has been implied above, prior to the work of Binford and, in particular, Schiffer there 

was very little systematic research on formation processes. The response to their 

programmatic statements (e.g. Binford 1983, Schiffer 1983) has been in the form of a 

substantial number of systematic studies of a wide range of different formation 

processes in specifically archaeological settings. Part of this work has been concerned 

specifically with the processes of faunalturbation, as will be discussed in greater detail 

in this section. 

One other effect of the increasing systematisation within archaeology, due to the 

influence of Processualism and increasing professionalism within the field, has been the 

rise of a particular type of review paper (Trigger 1989: 301). These have taken the form 

of statements of the current state of knowledge/speculation concerning a particular 

broad topic, reinterpreted from a Processualist point of view. Schemes of (largely 

unfulfilled) research plans were also laid out. Formation and disturbance processes 

were particularly favoured for these types of papers. The various types of processes 
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have been classified into groups. Faunalturbation has been listed in most such papers as 

one of these processes (e.g. Wood and Johnson 1978, Rolfsen 1980, Schiffer 1983). 

While such papers attempt to bring the issue of faunalturbation to the attention of the 

archaeological community, very little new data was published in these papers. Other 

disturbance and formation processes for which there was more (non-archaeological) 

data e.g. cryoturbation generally take a larger share of such papers (e.g. Wood and 

Johnson 1978). 

Despite the ambitious programmes outlined in some of the review papers relatively little 

research was undertaken concerning the processes of faunalturbation in specifically 

archaeological situations in the earlier part of this period. The main period of activity 

for publications has been the 1990's, with three papers concerning the effects of 

invertebrate faunalturbation on temperate zone archaeological sites (Armour-Chelu and 

Andrews 1994, Carter 1990, Davidson et al. 1999) and at least a further two papers on 

this subject in tropical zone settings (McBrearty 1992, Grave & Kealhoffer 1999). The 

research on faunalturbation published from 1975 onwards shares characteristics which 

previous work has not generally exhibited. The main characteristics relate to the broad 

approach adopted by the various authors of these papers. All the papers are systematic, 

problem led pieces of research rather than collections of ad hoc observations. Most of 

the papers also have a shared area of concern, that of the effects of faunalturbation on 

the post-depositional movement of biological material that might be used in 

environmental reconstruction (Armour-Chelu & Andrews 1994, Carter 1990, Davidson 

et ai. 1999). This emphasis is a new one, reflecting the growing importance of 

environmental archaeology. The concentrations of these papers on the fate of particular 

components of archaeological sites means that, as with the publications of the previous 
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period, there is little coherent view of faunalturbation as a system or set of interrelated 

processes that may have a wide range of impacts. 

The single most significant paper on the subject of faunalturbation since 1975 actually 

predates the papers discussed above. Stein's paper (1983) is the first work to suggest 

that faunalturbation by earthworms may have a variety of stratigraphic effects. 

Movement of artefacts and ecofacts are mentioned. So, for the first time, is the possible 

transfer of chemical markers. Most significantly for the current study, the possibility of 

the movement of the particles and aggregates of which the stratigraphy of a site is 

formed is for the first time posited. Both the possible blurring of boundaries and the 

complete reworking of stratigraphic units are mentioned. While the study did not use 

soil micromorphology, this is recommended for future work on the subject. This 

technique has subsequently been employed in more recent studies (Carter 1990, 

Davidson et al. 1999),and will be employed in this study (see 4.10 and 6.3). 

There has been considerable criticism of the Processualist School. Such criticisms can 

be divided into two broad types. One type has been essentially concerned either with 

some of the theoretical 'excesses' and deficiencies, or with detailed problems of 

application of the earlier programmatic statements and the first attempts to apply 

Processualism. Such an approach may be characterised by the work of archaeologists 

such as Flannery (e.g. Flannery 1976) and Renfrew (summarised in Renfrew & Bahn 

1991). The positions arrived at by these critics broadly form the theoretical background 

of most studies of formation processes and environmental archaeology, and indeed 

much of archaeology in general. It also constitutes the broad epistomological approach 

of this study. 
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While there has been a long-standing interest in the effects of invertebrate 

faunalturbation in archaeology, there has been little systematic work. Those systematic 

investigations that have occurred have generally been during the later 1980's and 

1990's, largely as a result of the application of wider programmes of research into site 

formation processes that initially emerged under the aegis of the Processualist approach. 

Even these papers have not generally looked at the effects of faunalturbation on 

archaeological stratigraphic units. This study is seeks to investigate the effects of 

faunalturbation on the stratigraphic units themselves, as fundamental elements in the 

practice of archaeology (see 1.1). 

1.3 The Sedimentological-Pedological Framework 

In the course of the review of previous work on the faunalturbation of archaeological 

sites one constant problem was identified. This problem is the difficulty of comparing 

the findings of the different papers. This difficulty arises because the various studies 

concentrate on particular components of archaeological sites. Observations on casting 

and the movement of artefacts through the soil profile are presented without any way of 

relating these two sets of processes. Solutions to this problem have already been 

partially articulated. Stein (1983, 1987) has articulated a broadly sedimentological 

approach. This allows all components of archaeological sediments to be placed within a 

single explanatory framework and thus related to one another. Artefacts and ecofacts 

are effectively viewed as particles within a sediment. The stratigraphic units identified 

by archaeologists may be regarded as sedimentary units, in the case of deposits, and 

sedimentary discontinuities in the case of 'interface' units such as floor surfaces and 

ditch cuts. The advantage of having a framework into which the various observations 
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may be incorporated is that this will give greater coherency to the combined findings of 

different studies, allowing the wider application of findings and also a more ready 

appreciation of the defects in different studies. A coherent framework should also allow 

the possible interplay of different formation processes to be examined. 

To be applicable to the formation of the archaeological record any approach needs to 

take account of post-depositional changes: archaeological deposits are not necessarily 

unchanged sedimentary units. As such other approaches from the natural sciences need 

to be adopted and added to the overall framework to allow site formation process 

research to be ordered into a coherent whole. One example of the natural sciences that 

are valuable in this respect is geomorphology. It has been applied to problems such as 

the formation of lynchets on hillsides, and the silting of ditches (e.g. Crabtree 1996). 

The most useful addition to the sedimentological framework, from the point of view if 

this study, is the pedological approach. Such an approach is also implied in Stein's 

work (1987). Johnson has articulated a broad theoretical statement on pedoturbation of 

archaeological sites, positing an evolutionary model. While this is an interesting 

attempt, the framework has problems in that it is tied to a classificatory scheme, which 

uses a crudely dichotomous evolutionary approach. This aspect of the model potentially 

obscures the relationships between various pedoturbatory formation processes and their 

archaeological effects, rather than elucidating them (Johnson 1990). This study will use 

a broad sedimentological-pedological framework, wherein artefacts and ecofacts are 

regarded as sedimentary particles, and archaeological deposits are treated as sedimentary 

units, and as potential or actual parent materials for soils. The explicit use of a 

combined sedimentalogical-pedological framework is a novel aspect of this study. It is 
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reflected in certain methodological choices e.g. the field recording method (see 4.3) and 

analysis of the results of the study (see 9.2). 

1.4. Objectives 

The above discussion has established the critical role that stratigraphy plays in 

interpreting archaeological sites and the need to understand formation processes in 

archaeology in general and in particular with regard to the actual stratigraphy of a site's 

deposits. It has also demonstrated the near ubiquity of faunalturbation as a potential 

process of disturbance. From the preceding review of work on archaeological 

faunalturbation it will be apparent that there are a number of areas concerning the 

processes of faunalturbation of archaeological sites which the extant archaeological 

literature does not address. The objectives of this study have been formulated with a 

view to rectifying this situation. 

The objectives of the study are as follows: 

• To develop an explanatory model of faunalturbation which will allow the effects on 

all archaeological materials to be explained in an integrated manner. The model will 

seek to explain both the processes of faunalturbation and the factors that may cause 

variation in such processes. The model will be developed on the basis of the 

currently available scientific literature. 

• To test the model, both qualitatively and statistically, using data derived from the 

upper regions of archaeological sites, where faunalturbation can be demonstrated to 

be ongoing. Such testing will be based around hypothesised relations between 
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factors, derived from the model itself. Consequent upon the results of the testing the 

model will be modified as necessary. 

• To apply the model to, and further test it with, data derived from the deeper regions 

of archaeological sites, where the nature and magnitude of ongoing faunalturbation 

is less clear. 

Through these objectives this study will seek to assess the significance of 

faunalturbation on site stratigraphy. While the actual methodology is discussed in 

chapter three it is worth prefiguring the type of approach that has been adopted. 

Faunalturbation is a current, ongoing process. As such, one way of assessing the impact 

of faunalturbation is to examine the fauna involved and their current or recent effect. 

Archaeological strata will be examined for evidence of faunalturbation, both 

modern/recent and ancient, the latter to be identified by comparison with modem 

analogues. From this, possible implications for the interpretation of archaeological 

stratigraphy and the other areas of research that rely on stratigraphic analysis can then be 

assessed. 
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Chapter Two 

The Agents and Mechanisms of FaunaIturbation 

2.1 Introduction 

The focus of this study on the effects of invertebrate faunalturbation has already been 

detailed above. In order to construct the conceptual models of faunalturbation it is now 

necessary to consider the agents of faunalturbation and the mechanisms by which these 

organisms mix sediments and soils. As a means of classifying of the different agents, 

the concept of functional groups has been developed. 

The concept of functional groups is an important one for this study. The term may be 

defined as the group of organisms whose behaviour causes them to move the solid 

components of the soil in a similar way and with broadly similar results. Thus the 

criterion of classification is the mechanism of faunalturbation. The word functional is 

used to denote the function of the group in the processes of faunalturbation of the soils 

and sediments of which an archaeological site is composed. The term functional group 

is in use in functional ecology. The ecological use of the term may be defined as those 

organisms that use a habitat resource in a similar manner (Faber 1991). As can be seen, 

there is some overlap in these two forms of classification, in that the mechanism of 

faunalturbation is related to the manner in which an organism utilises the soil. The 

term 'community guild' overlaps still further if laksic's insistence that similarity of 

utilisation is measured in terms of effect on the resource under consideration is 

followed. However it has been decided that the functional group, as defined above, will 

be a more appropriate concept, as it connotes mechanism, agent and effect (J aksic 
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1981). It has also been designed specifically for the scales at which this study operates. 

Throughout the study only the definition specific to this work will be used. 

The functional groups are as follows; endogeic earthwonns; anecic earthwonns; 

geophagous enchytraeids; Coleopteran and Dipteran larvae; burrowing Coleopteran 

adults. The different functional groups and their associated mechanisms of 

faunalturbation are presented below (see following sections). With regard to these 

groups, the different species that make up each group are assumed to be mutually 

interchangeable within that group. This has consequences for the methods adopted (see 

below 5.4). 

The classification of the soil fauna is based upon a single set of criteria. The most 

important of these criteria is the actual mechanism by which an organism moves and 

mixes soil and sediment. Other criteria are the location in a soil profile at which this 

happens and the frequency with which the organism uses this mechanism. As the 

mechanisms, location and frequency are a result of the organism's lifestyle, some of the 

functional groups are also accepted ecological groupings (see below). These criteria 

allow the adoption of the functional groups given above, which correspond to 

ecological groupings, in the case of the earthwonns (Edwards and Bohlen 1996: 113), 

and broad taxonomic and age groupings for the other organisms (Didden 1993, Tashiro 

1990: 1255, Tesky 1990: 1192). 
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2.2 The Agents and Mechanisms of Faunalturbation: Introductory Comments on 

the Literature 

It is unsurprising that there is a substantial literature concerning the organisms that 

affect the structure and physical and chemical properties of the soil, considering that it 

is a resource of the highest importance. However the coverage of the different groups 

of soil organisms is highly variable. It is estimated that for all types of earthworms 

considered together that there were, in 1996, c. 4500 references in the scientific 

literature (Edwards and Bohlen 1996). It is not unrealistic to suggest that at the time of 

writing that this figure is likely to have passed the 5000 mark. By contrast the literature 

on soil burrowing beetles, either as larvae or adults, is very small. A proliferation of 

publications does not necessarily imply a large quantity of relevant material. Of the 

references on earthworms only a small proportion have any relevance to this study. 

There are also the issues of detail and inter-study comparability to be considered. 

Many papers, particularly earlier ones, leave out detail that might be significant in 

assessing the results and concepts. A number of papers neglect to mention the types of 

soil in which research has been undertaken. Species are often treated as 

interchangeable. While these sorts of problems of lack of detail tend to improve with 

the later papers, some of the generalisations accepted within the field of study and 

perpetuated in more generalised texts are often based on some of these earlier papers. 

There is also the issue of comparability. Within ecology, and for that matter 

archaeology, absolute comparability between data sets is not sought, because it is 
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regarded as unattainable. However, that does not mean that an investigator may regard 

any combination of data sets as comparable. Treating results drawn from disparate 

ecosystems as comparable can lead to misleading conclusions, and it has been a 

particular concern in collating the results of literature reviewed in this section to ensure 

that this has not been done. Summaries of current knowledge concerning the effects of 

physico-chemical and ecological factors are tabulated within the relevant section on 

each of the functional groups. 

The majority of research concerning the soil fauna, particularly the Lumbricidae, has 

been undertaken with economic, usually agricultural, goals in mind. This has lead to a 

concentration on such aspects as transport of chemical elements, porosity and water 

conductibility. Movement of the soil material itself has been mentioned, and indeed 

overall turnover figures have been frequently estimated (e.g. Guild 1955, Muller

Leman and Van Dorp 1996). But such movement has had relatively little examination 

in terms of direction, or variation according to differences in the soil ecosystem. 

2.3 The Agents and Mechanisms of Faunalturbation: Endogeic Earthworms 

In this section those aspects of the biology and ecology of the endogeic group of 

earthworms which are relevant to this study will be discussed. These characteristic 

aspects are given in table 2.1 below. The aspects of the biology and ecology of the 

group under consideration are those that are thought to affect overall population sizes, 

population distributions and population activity. Working from the assumption that the 

overall population size and activity level of the fauna effects the degree of 
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faunalturbation that occurs (see 3.4) the relevance of these aspects becomes clear. The 

characteristic mechanisms of faunalturbation of this group will also be examined. This 

section begins with some notes that cover all the taxa of earthworms that are relevant to 

this study, which are grouped in this section to avoid repetition. 

Earthworms belong to the class Oligochaeta. The majority of British earthworms 

belong to the family Lumbricidae (Sims and Gerard 1985: 44). There is some debate 

as to the precise definition of the various species and sub-species (Edwards and Bohlen 

1996: 37-39). The taxonomy and thus keys used by Sims and Gerard (1985: 43-119) 

have been adopted for this study as these are the most widely used in British (and other 

northwestern European) studies. 

As noted above, earthworms have also been classified into ecological groups. The most 

commonly used of the ecological classifications used is that of Bouche, first proposed 

in 1972 and revised in 1977 (Edwards and Bohlen 1996: 113). Under this system 

earthworms are classified into one of three groups: epigeic, anecic and endogeic. This 

system of classification has been used with considerable success throughout the 

temperate zones (Edwards and Bohlen 1996: 115). In essence, the Bouche system 

divides earthworms into three groups on the basis of their broad ecological differences. 

These differences coincide with significant differences in the mode and location of 

faunalturbation (Edwards and Bohlen 1996: 113), allowing two of the groups to be 

incorporated into the system of functional groups that this study is using (See 2.2). The 

first of Bouche's groups is the epigeic group. This group dwell in at very shallow levels 
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in the soil, or in far greater numbers in leaf litter (Curry 1998). They are litter 

consumers and as such they do not move significant quantities of soil or sediment 

(Edwards and Bohlen 1996). Because of this, this group will not be examined in this 

study, and will only be referred to in the context of their interactions with the groups 

directly involved with faunalturbation. 

Table 2.1 The effect of physico-chemical and ecological factors on endogeic 
earthworm populations. 

Moisture 

Texture 

Organic 
Matter 

pH 

Density 

Dispersal 

Predation & 
Parasitisation 

Competition 

Endogeic Earthworms 

Controls overall population size through mortality. fecundity and migration 
(Edwards and Bohlen 1996: 134-136. Evans and Guild 1948a. Sims and 
Gerard 1985: 28). Activity levels also influenced by moisture levels. including 
onset of diapause (Curry 1998). Vertical and lateral distribution also affected. 
In conditions of sufficient moisture most individuals found in top lOcm. Drier 
conditions force individuals to depth of 15-30cm (Barley 1959. Edwards and 
Bohlen 1996: 105). Affects species composition of the group (Edwards and 
Bohlen 1996: 117). 
Effects complex and minor. Largest populations recorded in loams and light 
sandy soils. but positive correlations of population and clay content up to 25% 
also recorded (Curry 1998 Edwards and Bohlen 1996: 147). Species 
composition seems little affected by texture (Guild 1951). 
Major factor of population sizes as source of nutrients - nitrogen content 
probably main constraint (Curry 1998. Syers and Springeu 1983). Feeding 
preference variation within the group means that the species composition of the 
group may vary with organic matter type (Phillipson et al. 1976. Patchiness of 
distribution of organic matter is significant as a factor in determining the 
distribution of earthworm activity (Cook and Linden 1996). 
Current lower limit for indigenous species believed to be pH 3.5 - most 
species above 4.5. Optimum pH for commonest species thought to fall 
between 5 and 6 (Edwards and Bohlen 1996: 144. Satchell 1958). 
Effect of density on populations unknown. High degrees of compression (as 
by heavy machinery) reduces and changes burrowing behaviour to resemble 
that of the anecic species (Joschko et al. 1989. Langmaack et al. 1999). 
Population levels affected in short term by active migration. Main effect is on 
species composition of group. Active transport given at 2.5-10 m per year 
(Edwards and Bohlen 1996: 123). Colonisation probably driven by passive 
transport (Curry 1998). 
Range of predators generally taken as indicator of controlling role on 
population. however. range on Sanday limited (Edwards and Bohlen 1996: 
124-125. 127). While overall predation of earthworms may be significant. 
epigeic species likely to bear the greatest losses. Parasites constitute an 
'uncertain and variable control on populations' (Curry 1998). 
Some competition with other groups of earthworms possible. but niche 
differentiation will reduce the impact of competition, particularly with regard 
to food (Curry 1998). 
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Endogeic earthwonns dwell in the soil, usually to depths of 10-15 cm in temporary 

burrows (Curry 1998). They are true geophages, consuming large quantities of soil, 

from which they derive nutrients. Anecic earthwonns occupy pennanent burrows, at 

depths of up to 3m (usually no more than 1m). The burrows are maintained through 

ingesting or pushing aside intrusive soil material. They are litter consumers, emerging 

usually at night to feed on the surface (Edwards and Bohlen 1996: 113). 

The common endogeic species of the British Isles are; Allolobophora chlorotica 

(Savigny); Aporrectodea calignosa (Savigny), morphs turgida, tuberculata, and 

trapezoides; Aporrectodea rosea (Savigny); Octolasion cyaneum (Savigny); Octolasion 

fyrtaeum fyrtaeum (Savigny). Other species belonging to this group are known but are 

rare, particularly in Scotland (Sims and Gerard 1985: 50-115). 

The endogeic species of earthwonns burrow by two basic mechanisms. The first of 

these is by pushing through cracks and crevices in the soil. While the actual process 

need not be described in detail here, the wonn effectively opens up pre-existing pores 

by pushing out the walls of pores. Those soil or sediment particles that are moved are 

simply compressed into the wall of the earthwonn's burrow. The material moved in 

this fashion is not moved any great distance and is relatively unmixed. Even over 

substantial periods of time this is unlikely to be a particularly significant as a 

mechanism of faunalturbation. 
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The other mechanism of faunalturbation is that of ingestion. As the endogeic species 

are geophagus this potentially constitutes a significant contribution to the 

faunalturbation of sites. Material is ingested as the animal everts its pharynx, fills it 

with soil and then retracts it. This process also creates burrows. The egesta are mainly 

cast into voids in the soil, with some being cast on the surface, 23% in the case of one 

set of determinations using A. tuberculata (Cook and Linden 1996). As has been noted 

in table 2.1 the proportion of burrowing through utilising pre-existing voids versus 

geophagy is partly dependent on soil density, as is the proportion of surface casting 

(Cook and Linden 1996, Muller-Lemans and Van Dorp 1996). Because this 

mechanism involves frequent intakes of materials and transport over some distance 

(although rarely more than 20 cm vertically), greater mixing of material is likely to 

occur in the sections of a soil profile where endogeic earthworms are active. 

As noted above, endogeic earthworms do not typically create permanent burrows by 

ingestion in exceptionally compressed soils and sediments (Muller-Lemans and Van 

Dorp 1996). It would therefore seem a reasonable assumption that in usual conditions 

of soil compression endogeic earthworms use both mechanisms interchangeably. Such 

burrows are not permanent, and may be partially or, more rarely, fully filled by the 

worm casts, or collapse as other burrows are opened nearby (Bohlen and Edwards 

1996: 113, Cook and Linden 1996). 

There are a number of traces left by these mechanisms that may be detected at the 

microscopic level. Perhaps the most obvious traces are the remains of burrows. As 
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voids these would be classified as channels by soil micromorphologists (Bullock et ai. 

1985). The excrement of the organisms is also left. This may take a number of forms. 

Some species line chambers with small stones, probably to assist in preventing 

desiccation (Fitzpatrick 1993). When such linings are detected under the microscope 

they would be described as textural pedofeatures (Bullock et ai. 1985). There are the 

discrete excremental pellets left. Those left by earthworms are generally described as 

having spherical or mamillated shapes (Bullock et ai. 1985). The excremental material 

may be welded to the walls of voids. Finally, the infilling of a channel may be so 

complete that activity can only be traced as a fabric pedofeature, whereby the fabric of 

the infilling is different to the fabric of the surrounding soil. The archetypal feature of 

this kind has a crescentic structure (Bullock et ai. 1985, Fitzpatrick 1993). There are 

issues concerning definition, attribution and interpretation surrounding all these types 

of traces. These issues will be discussed in the methodology (5.3.3). 

2.4 The Agents and Mechanisms of Faunalturbation: Anecic Earthworms 

This ecological group contains far fewer species than the endogeic group, all of which 

are more common across Britain (Sims and Gerard 1985: 30). The group consists of; 

Lumbricus terrestris (Linnaeus); Aporrectodea ionga (Ude); Aporrectodea calignosa 

(Savigny) morph nocturna (Sims and Gerard 1985: 31). As has been noted above (2.3), 

many of the factors that affect endogeic earthworms also affect the anecic species. As 

such much of this section will largely be concerned with the exceptions to those effects 

with regard to the anecic species and any additional effects which need to be noted. 
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The effects of the various physico-chemical and ecological factors may have on this 

group are given in table 2.2. 

Table 2.2 The Effect of Physico-Chemical and Ecological Factors on Anecic 
Earthworm Populations. 

Moisture 

Texture 

Organic Matter 

pH 

Density 

Dispersal 

Predation & 
Parasitisation 

Competition 

Anecic Earthworms 

Controls population size. though has less impact than on the endogeic species 
(Sims and Gerard 1985: 28. Phillipson et al. 1976). Also affects lateral and 
vertical distribution. Drier conditions force individuals to burrow to greater 
depth. While feeding activity reduced. burrowing activity little affected 
(Edwards and Bohlen 1996: 136). May affect species composition of group. 
Positive correlation between population size and clay content up to 25% noted 
(Edwards and Bohlen 1996: 147). May also affect species composition: A. 
longa less significant in high sand and gravel content soils (Guild 1948). 
Available depth may also affect population size. 
Factor of population size and density. As litter feeders. surficial organic matter 
levels most significant. Vegetation coverlland use significant as determinant 
of input of fresh organic matter (Phillipson et al. 1976). Variations of food 
preferences may also affect the species composition of the group (Edwards and 
Bohlen 1996: 149). 
Known lower limits from pH 3.5 -4.5. Optimum falls between pH5 and 7 
(Edwards and Bohlen 1996: 144. Satchell 1958). 
Density unlikely to affect overall activity or population size. May affect 
location of casting and thus of identifiable traces of faunaIturbation (Jocshko et 
al. 1989. Langmaack 1999). 
Little research on dispersive capacities of group. Probably similar to or greater 
than that of endogeic group (Edwards and Bohlen 1996: 123). 
Physiologically adapted to evade predation by surface dwelling predators 
(Sims and Gerard 1985: 17). Range of vertebrate predators relatively limited 
on Sanday. More prone to predation by Artioposthia triangulata than endogeic 
earthworms. however this predator is currently unknown on Sanday (Boag pers 
comm.). 
Competition with endogeic groups is unlikely (see above). however 
competition between endogeic and epicgeic groups cannot be ruled out. 
Commensal relationships between some endogeic and anecic species have 
been posited (Curry 1998). 

Anecic earthworms are primarily litter feeders. They construct permanent or semi-

permanent burrows. As such an individual anecic earthworm is unlikely to ingest the 

large quantities of soil or sediment as an endogeic earthworm. However, in 

constructing and maintaining their burrows anecic earthworms do ingest some soil. 

The significance of this particular mode of faunalturbation is that the ingested material 
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may come from considerable depth (L. terrestris has been found at depths of 3 m) and 

that most of the material is cast on the surface (Edwards and Bohlen 1996: 114), 

Muller-Lemans and Van Dorp 1996). Some material is worked into the walls of 

burrows to maintain them. This material may either be excremental matter or non

ingested material pressed into the walls of the burrow. Many of the resulting traces are 

similar to those of the endogeic earthworms. While the excremental pellets and 

passages of anecic species are likely to be of greater dimensions than those of the 

endogeic species, there are practical difficulties in using this as a criterion of 

differentiation. These issues will be discussed in greater detail in the methodology (see 

5.3.3). 

2.5 The Agents and Mechanisms of Faunalturbation: Geophagous Enchytraeids 

The literature on the Enchytraeidae is considerably smaller than that on the related 

Lumbricidae. Many of the areas for which there is data available for the lumbricid 

groups are not well served with regard to the Enchytraeidae. While the Enchytraeidae 

are being treated as a single group in this study on functional grounds, there is in any 

case little choice in the matter as many ecological studies of the enchytraeids do not 

specify the species compositions of the populations under examination. 

The Enchytraeidae are a large group, including aquatic, littoral and terrestrial species. 

The adults are usually 1-2 cm in length, some species occasionally reaching up to 5 cm 

(Dash 1990: 311). They are generally white, although individuals may be tinged 

slightly with green, brown or yellow. This is due to gut content rather than a direct 

32 



consequence of interspecies variation (Dash 1990: 311). The lifetime of most species 

seems to be 12 to 18 months (Dash 1990: 313). Most species feed through ingesting 

particles which they gather using the sticky pharyngeal pad, in a similar fashion to the 

earthworms. The enchytraeids are classed as decomposers in ecological terms, 

although there is some debate concerning which part of that community they belong to 

(Dash 1990: 316, Didden 1993). 

Table 2.3 The Effect of Physico-Chemical and Ecological Factors on Geophagous 
Enchytraeidae Populations. 

Moisture 

Texture 

Organic Matter 

pH 

Density 

Dispersal 

Predation & 
Parasitisation 

Competition 

Geophagous Enchytraeidae 

Partial determinant of population size, degree of effect uncertain due to 
considerable degree of interspecies variation in moisture preferences. Will 
also effect species composition of group on a site (Dash 1990: 322. Didden 
1993) 
No published data available on the role of soil texture as a factor of population 
size and species composition. 
Predominantly microbivorous. Organic matter significant as substrate for 
microbes. Small scale variations in organic matter distribution may be 
significant as a factor in the clustered population densities associated with this 
group (Didden 1993) 
Associated in literature with acidic soils. However, research suggests optimum 
pH falls around 7 (Didden 1993). 
No direct information on the effects of density. Given tendency to occupy pre
existing soil pores, high densities may reduce population size (Didden 1990). 
No estimates of rates of active dispersal available. Likely to be low in 
comparison with earthworms. Colonisation probably relies on passive 
transport with soil. 
Wide range of predators suggests a significant impact on population sizes. 
Effects of parasitisation unknown, although high pollution levels seem to 
increase proneness to infestation (Didden 1993). 
Main effect seems to be in determining species composition of the group rather 
than overall population size. Previous assumptions concerning competitive 
relationships with earthworm taxa largely explicable in terms of responses to 
abiotic factors (Didden 1993). 

The distribution of enchytraeids throughout a site profile is potentially significant in 

terms of the distribution of any effect the organisms may have on the archaeological 

stratigraphy. A number of factors have been demonstrated to affect the distribution of 

enchytraeid worms through a soil profile. Enchytraeids are generally found in the 
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upper part of a soil profile, the majority occurring in the top 6 cm. It is very rare for 

any to be found below 30 cm, and when so found are usually in very low 

concentrations. Those found at depths greater than 6 cm are thought to have migrated 

to avoid adverse conditions, especially drought (Dash: 1990: 319, Didden 1993). 

There are other factors which, because of the moisture sensitivity of some enchytraeid 

species, also affect distribution. As mentioned above these include the pore size 

distribution and heterogeneity of organic matter distribution. These both affect the 

distribution of desiccation resistant microhabitats that are available to enchytraeids in 

drought conditions. The distribution of organic matter is also significant as a food 

source - enchytraeids have been found concentrated at the plough depth in fields 

because of the additional organic matter deposited by the ploughing (Didden 1990). 

That the lateral distribution of enchytraeids has a tendency to be locally clustered has 

been noted in the literature. The clusters range from 100 to 1000 cm2 in extent. 

Organic matter distribution, changes in physical factors and the normal depth range of 

different species have been put forward as reasons for this clustering (Dash 1990: 319, 

Didden 1993). What has not been established is the duration of such clusters. 

Enchytraeids move soil and sediment by ingesting particles and egesting them as 

droppings. The distance such material is moved is uncertain. Both organic and mineral 

particles are ingested. The mineral particles are thought to be ingested for the microbes 

that coat them (Didden 1993). There seems to a tendency for enchytraeids to follow 
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larger pores in the soil, thus reducing the amount of burrowing undertaken and the 

impact this has in terms of faunalturbation. There has been some debate about the 

burrowing capacity of enchytraeids, but at least one species has been recorded in the 

process of burrowing (Didden 1993). The burrows created are lined with mucus. 

The main traces enchytraeids leave in the soil are their characteristic droppings (Rusek 

1985). Some horizons of certain soils are in fact largely composed of such droppings 

(Dawod and Fitzpatrick 1993). It is worth noting here that enchytraeids feed on the 

droppings of other soil invertebrates, particularly earthworm casts and the droppings of 

collembolans and orbatid mites. Thus the presence of this group could easily mask the 

previous activity of other groups. The other trace the group leaves is the remains of 

their burrows. How easy these are to identify and attribute is debatable (see 5.3.3). 

2.6 The Agents and Mechanisms of Faunalturbation: Coleoptera and Diptera, 

larvae 

When dealing with the biology and ecology of members of the class Insecta there is a 

consistent problem with lack of data. Relatively little research has been undertaken 

with regard to juveniles in most of the taxa under consideration in this section (Newton 

1990: 1140, Teskey 1990: 1195). The information in many ofthe publications is of a 

highly generalised nature (see table 2.4). In some cases, e.g. the Staphylinid, it is 

apparent that adults and larvae occupy the same habitats and have similar requirements 

(Newton 1990: 1142). This cannot be assumed in all cases. 
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Table 2.4 The Effect of Physico-Chemical and Ecological Factors on Populations 
of Soil Dwelling Larvae of Coleoptera and Diptera. 

Moisture 

Texture 

Organic Matter 

pH 

Density 

Dispersal 

Predation & 
Parasitisation 
Competition 

Coleoptera and Diptera; larvae 

Little direct evidence of effects. Physiology suggests sensitivity to desiccation 
(Gull an and Cranston 1994: 173). Coleoptera larvae better suited to drier soils, 
Diptera larvae to moister conditions (Teskey 1990: 1256, Wallwork 1970: 
107). Some evidence for moisture as a factor in vertical distribution (Crowson 
1981: 135). 
Larger populations on loamy and sandy soils. Some species composition 
variation between clayey and sandy soils (Crowson 1981: 137, Wallwork 
1970: 107). 
Factor in species composition of the population. Some effect on population 
size, both directly as food source for saprophagous species and indirectly as 
partial determinant of prey species population sizes for predatory species 
(Wallwork 1970: 109). 
No comprehensive study of effects of pH on this group. Thought to affect 
vertical distribution. No evidence of effect on overall population size of 
functional group. (Crowson 1981: 142). 
No direct information on the effects of density. Given mechanism of 
faunalturbation, high density,low porosity sediments would reduce habitat 
availability. 
Active dispersal low as a larvae; substantially greater for adult phase, which is 
responsible for most of dispersal (see below). Some migration through the 
profile in response to changing conditions (Crowson 1981: 143, Gullan & 
Cranston 1994: 202). 
No quantitative data available for this group. Shallow habitat would probably 
make group more prone to bird predation than either earthworm group. 
Group displays a wide range of ecological preferences (Bell 1990: 1061, 
Newton 1990: 1143, Tashiro 1990: 1193). Competition thus may affect 
species composition, but is unlikely to have any effect on overall population 
size. 

More species of both Coleoptera and Diptera behave as soil dwelling organisms in their 

larval stages than in their adult stages (Crowson 1981: 106, Wallwork 1970: 133), 

Generally the soil dwelling species of these orders in the British Isles live in the upper 

part of the soil profile. 

This group has two mechanisms of faunalturbation. One is a process of pushing or 

compressing soil material to modify voids. It is somewhat like the mechanism 

employed by the Oligochaete groups, but the anatomy of the larvae means that they are 

36 



unable to exert the same sort of pressure and as such have less effect than the other 

groups already discussed. This mechanism is probably more important among the 

Dipteran members of the group. Where this mechanism leaves any trace it is likely to 

be in the fonn of slightly smoothed and compressed void walls. 

The other mechanism is more associated with the Coleopteran members of the group. 

That is of active burrowing using the forelimbs and mandible (Newton 1990: 1143). 

Material thus excavated is either ejected from the mouth of the burrow or pushed into 

convenient voids. The trace that this would leave would be the channel. The usual 

problems of assigning a channel to a given functional group would again emerge (see 

5.3.3). 

The other trace that this group would leave is excrement. The excremental pellets of 

various group members is deemed to be quite distinctive e.g. that of Tipulid and 

Bibionid Diptera (Bullock et al. 1985: 137). 

2.7 The Agents and Mechanisms of Faunalturbation: Coleoptera, burrowing 

adults 

While there is more infonnation concerning the adult soil-dwelling Coleoptera than 

their larvae, the range of data is still not particularly comprehensive (table 2.5). The 

families that provide most of the species in this group are the Carabidae, Scarabidae, 

Elateridae, and the Staphylinidae (Bell 1990: 1153, Newton 1990: 1138, Tashiro 1990: 
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1256, Wallwork 1970: 108). The species occurring in the British Isles are generally 

found at quite shallow levels (Crowson 1981: 132). 

Table 2.5 The Effect of Physico-Chemical and Ecological Factors on Populations 
of Burrowing Adult Coleoptera. 

Coleoptera; burrowing adults 
Moisture Highly scIeratized body reduces impact of dry conditions (Teskey 1990: 1256). 

Interspecies variation in moisture preferences probably means that moisture is 
a factor in group species composition (Crowson 1981: 135). 

Texture 

Organic Matter 

pH 

Density 

Dispersal 

Predation & 
Parasitisation 

Preference towards sandy and loamy soils (Brussard 1985). Such soils may 
support larger populations. Some effect on species composition of the group 
(Crowson 1981: 132, Wallwork 1970: 108). 
Factor of population size, as a food source, both directly and for prey species. 
Factor of species composition of the group (Crowson 1981). 
Cited as a factor in distribution, but no comprehensive survey known. No 
evidence of effect on overall population size of functional group (Crowson 
1981: 238, Wallwork 1970: 106). 
No direct information on the effects of density. Given mechanism of 
faunalturbation, high density, low porosity sediments would reduce habitat 
availability. 
Variable capacity for active dispersal due to wing reductionlloss in soil 
dwelling taxa -likely to affect species composition of group rather than 
overall population size. Active transport more significant than passive in 
establishing populations (Newton 1990: 1142). 
Little quantitative data is available for this group. Wallwork (1970: 109) 
suggests that parasitism is a population control for the Scarabidae. Predation 
by birds is likely to be significant. 

Competition Individual species in competition with species from other functional groups, 
which may affect species composition of the group. Otherwise, the situation is 
largely the same as for the larvae. 

This group has one mechanism of faunalturbation. That is of active burrowing using 

the forelimbs and mandible (Newton 1990: 1140). Material thus excavated is either 

ejected from the mouth of the burrow or pushed into convenient voids. Some species 

may backfill burrows after themselves (Brussard 1985). The traces that this would 

leave would be the channel, and the form of any backfilling. The usual problems of 

assigning a channel to a given functional group would again emerge (see 5.3.3). 

Brussard claims that the species he studied create a 'convex infilling' which is 
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identifiable. However no further description or illustration of what this might look like 

is given, so recognising such a phenomena would be difficult (Brussard 1985). 

The other trace that this group would leave is excrement. The excremental of some 

members of the group are quite distinctive (Bullock et al. 1985). The overall issues of 

discriminating between different traces and the agent responsible will be discussed in 

the methodology (see 5.3.3). 

The data presented above represents that which is available in the scientific literature. 

From this information conceptual models of faunalturbation on archaeological sites will 

be constructed in the following chapter. 
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Chapter Three 

Two Models of Faunalturbation on Archaeological Sites 

3.1 Introduction 

In this chapter two contrasting conceptual models of the processes of faunalturbation 

will be described. These models are both based on the material reviewed in chapter 

two. Given the common evidential basis of the two models it is unsurprising that in 

most respects the two models resemble each other. It is these common aspects of the 

two models that will be discussed first. Subsequent sections will deal with the 

differences between the models. Following on from this means of testing the models 

and discriminating between them will be proposed, followed by a research design that 

allows testing and discrimination to be accomplished. Model one assumes minimal 

archaeological impact from faunalturbation. Model two assumes greater archaeological 

impact resulting from faunalturbation. 

3.2 Faunalturbation as a System 

The comments in this section can be taken to apply equally to both models. The 

processes of faunalturbation can be viewed as a system composed of a set of 

interrelated and interacting components. The components of the system are the factors 

of faunalturbation. The links between the components are the sets of processes that 

govern the relations between the components - they could all be designated, directly or 

indirectly, as processes of faunalturbation. As can be seen from the diagrams, the 

linkages allow for two-way feedback between components (see figs. 3.1 and 3.2). This 
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is not to suggest that all components or their sub-components will be equally subject to 

change - many links in the system will transmit change preferentially in one direction. 

The primary purpose of the models is to provide an explanatory framework for the 

systems of interrelated processes that constitute faunaIturbation. Within this 

framework, the models posit explicit links between specific components of the model. 

These relationships can be directly tested, through checking for statistically significant 

correlations, and are thus the source of most of the hypotheses formulated in this work. 

Fig.3.1 Interactions of the main components in the faunalturbation system. 
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3.3 The Models' Components: SoiVSediment Organisation 

Soil/sediment organisation is the physical arrangement of the discrete soil and sediment 

units of which a site is composed. In reference to the pedological-sedimentological 

framework outlined above, the stratigraphic deposits of which an archaeological site is 

composed are sediment units. Faunalturbation may change the organisation of the soil 

and sediment units of a site. 

3.4 The Models' Components: Guild Structure and Population Distribution 

These two components are treated together because they are closely connected. The 

effects of the sediment properties and the ecological sub-system on the stratigraphy of 

an archaeological site are mediated through these components. 

A guild is defined as 'A group of species that exploit the same class of environmental 

resources in a similar way' (Begon et al. 1990: 853). The guild concept has been used 

in the model over that of community because not all the organisms in the soil, or 

interacting directly with its inhabitants, are agents of faunalturbation. The concept of 

the guild, with its more limited composition, is more appropriate. 

There has been some debate amongst ecologists concerning the usefulness of the guild 

concept with regard to the soil fauna. Other classifications such as the functional 

groups and leagues have been suggested as being more appropriate concepts in some 

circumstances (Faber 1991). Whilst a variation on the concept of functional group has 

been employed for classifying the soil fauna in terms of the mechanisms of 
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faunalturbation, that concept is not sufficiently inclusive at the level that is required for 

the model component. The guild structure refers to the composition, population size 

and structure of the guild in terms of the different functional groups. Species 

composition of individual functional groups is also subsumed within this. 

Population distribution is a less controversial concept. It is simply the distribution of 

each group across the site, encompassing variation in distribution both laterally as well 

as vertically. 

As has been noted above these two components are the direct determinants of 

faunalturbation. Different functional groups have different mechanisms and differing 

rates of faunalturbation. Given this, the structure of a guild and the distributions of its 

constituent populations determine the mechanisms of faunalturbation, the relative 

significance of each mechanism and variations in the location of each mechanism 

within an archaeological profile. This means that the survival of archaeological 

stratigraphy is dependent on the distribution of the agents of faunalturbation. To 

elucidate the role of agent distribution, the concept of zones has been formulated, and 

from this, the significant differences between the two models (see 3.7). 

3.5 The Models' Components: Soil Properties 

For the purposes of this study, the properties of the sediments of which archaeological 

sites are composed will be characterised as their chemical and physical properties. 
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It has been noted above that the diagrams of the system show the linkages of the system 

to operate in both directions between components. The main significance of the 

organisational properties component of the model is, accordingly, not so much a factor 

in the faunalturbation system, but the recipient of the effects of the other factors within 

that system. 

On the basis of the findings from the literature (reviewed above, see 2.3-2.7), the 

physical and chemical properties of the sediments of the profile are predicted to be 

significant as determining factors within the faunalturbation system. The physical and 

chemical properties of the sediments determine the type of habitats available to the soil 

fauna within an archaeological site. While the main requirements of the various taxa of 

soil fauna have been covered in detail already (see tables 2.1 to 2.5), it is worth 

considering the how the main properties may affect the fauna to allow the types of 

interactions involved in the system to be made more explicit. While sediments possess 

a variety of physical and chemical properties, only the ones selected for this study as 

those most likely to have an impact on the soil fauna will be considered here. The 

specific properties that will be considered here: density, texture, organic content and 

pH. The models allow for the alteration of the various soil properties by the operation 

of the system, as well as being determinant factors within the system. It is worth noting 

that properties will not be uniformly prone to alteration because of complex interactions 

within the system. 
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Density has a number of potential effects on soil fauna. If soil bulk density is relatively 

high then some of the non-geophagus fauna may have difficulty moving through the 

soil or sediment. This is largely due to the lack of sufficiently large pores through 

which to move. This is particularly likely to be the case for the smaller fauna which are 

unable to exert sufficient pressure to open up pores, e.g. enchytraeid worms, or those 

that are physiologically poorly adapted to so such as Coleoptera larvae (Didden 1990). 

Even the more voracious geophages e.g. the earthworms of the genus Allolobophora or 

those organisms physiologically well adapted to push through soil e.g. the earthworm 

Lumbricus terrestris (Joschko et al. 1989, Langmaack et al. 1999). Very low densities 

indicate high soil porosity. This can lead to soils and sediments draining very quickly. 

Such 'droughty' soils will be dealt with below, but in brief, the lack of moisture may 

also effectively reduce the activity of soil fauna. 

The texture of a soil or sediment also affects its suitability as a habitat for soil fauna. 

This is primarily through affecting drainage. In sediments with a high proportion of 

clay water retention is often very considerable, making the sediment liable to saturation 

and thus rendering it unsuitable to those groups of soil fauna that are unable to thrive in 

wet habitats. This can be a particular problem for Lumbricid populations. The 

problems of high density material to the soil fauna have already been covered above, 

but it should also be noted that in dry weather clay rich soils and sediments might dry 

to a hardness that makes them impenetrable. 

45 



Textures that encourage good, but not excessive, drainage are generally most 

acceptable to most groups of soil fauna. Such conditions encourage increased species 

diversity as well as high numbers of individuals (White 1997: 44). Soils with a very 

high sand content, with little clay and organic matter tend to have very low water 

retention. Such very 'droughty' soils are unlikely to support large populations of most 

soil fauna. Many taxa of the soil fauna are prone to desiccation. Those animals that can 

cope will tend to be those that are able to operate at some depth where there is likely to 

be more moisture, and enter relatively easily into diapause if conditions become too 

harsh, e.g. the anecic earthworm species. 

The texture of a soil or sediment may also have other effects. Geophagus species of 

earthworm tend to avoid ingesting coarse sand, i.e. >500J,1m. Soils or sediments 

containing high proportions of such material may be unpalatable to these organisms, 

thus effectively reducing the proneness of these sediments to this particular form of 

faunalturbation. 

The pH of a soil or sediment will also have an impact on the species present. Different 

species of soil fauna have different preferences and tolerances with regard to pH. 

Specific tolerances have been discussed above (see 2.3). While it may be broadly 

stated that for the majority of soil fauna species the optimum pH lies between five and 

eight (White 1997: 67), there are species that can at least cope with a pH outside of this 

range, and some enchytraeid species are capable of thriving in low pH environments 

(Dash 1990). In contrast, earthworms are generally found in largest numbers in neutral 
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soils, seem to be unable to tolerate a pH below 4.2, and are found in much reduced 

numbers in habitats of pH range 4.2-6.5 (Edwards & Lofty 1977: 229). As has been 

discussed above, different mechanisms and scales of effect of faunalturbation are 

associated with the different species (see tables 2.1-2.5). From the combination of the 

significance of different species with the influence of pH on guild structure and 

population distribution it could be argued that pH has a profound impact on the pattern 

and magnitude of faunalturbation that a site undergoes. 

The question of the significance of the organic carbon content of archaeological 

sediments as a possible determinant of faunalturbation is a complex one. The majority 

of the soil fauna is detrivorous, either obligately or facultatively. The facultative 

detrivores may also consume living plant material, especially rootlets. The remaining 

fauna prey on other soil dwelling species. The population size of the predaceous fauna 

will be partly dependent on the population size of the other fauna in the ecosystem. 

The population size of the detrivores will vary, partly with the input organic residues 

into the soils and sediments on the site. There is therefore an indirect relationship 

between the organic carbon content of the deposits and the numbers of predaceous soil 

organisms, and thus the degree of faunalturbation that this group of organisms is 

responsible for. 

The significance of soil organic matter as a determinant of the sizes of the detritivore 

populations depends on its distribution. This is itself dependent on the source of the 

organic matter, and the feeding behaviour of the various functional groups. When an 
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archaeological sediment is initially deposited it may contain saprogenous material that 

the organisms which feed directly on such material may consume, provided it is within 

the depth range of the organisms. Many of these organisms are generally fairly 

restricted in their normal depth range (see chapter two). This in itself may reflect the 

effect of limitations on the distribution of food (i.e. organic carbon) on organisms that 

only move relatively small distance in search of nutrients, rather than innate depth 

restriction of range. Over time, this original organic carbon content will be 

supplemented, as organic matter is added to the soil, as well as being diminished due to 

decay. The new organic matter may be plant litter, animal dung or the remains of dead 

animals. This last input of course includes the soil fauna itself. Thus, the quantity of 

organic material available to the soil fauna as food is dependent on organic carbon 

input, which is known to be heavily dependent on land use (White 1997: 36). As has 

been suggested above, part of the significance of organic matter as a potential 

determinant of faunalturbation lies in its distribution. It is apparent from the foregoing 

discussion that the distribution of organic matter may vary over time. In general, it is 

true that available organic material tends to be concentrated within the upper part of the 

profile. The next issue that needs to be addressed, therefore, is the feeding behaviour of 

the soil fauna and the interplay of this factor with the distribution of soil organic matter. 

Among the detritivore species, the functional groups can be divided into those 

organisms that feed directly on saprogenous material and those which ingest soil 

(geophages) for its organic content. The first group can be further sub-divided. One 

SUb-division consists of the organisms that live in the upper part of the profile. The 
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second sub-division consists of the anecic earthworms, which feed on litter but dwell at 

greater depth. 

The interaction between the feeding behaviour of the soil fauna and the original 

distribution of organic material is difficult to assess because the potential for variation 

in organic carbon distribution between sites is enormous. The best generalisation that 

could be offered is that the availability of organic matter at depths generally unknown 

in natural settings could alter the distribution of the various functional groups and thus 

of their effects in terms of faunalturbation. An example might be the possibility of the 

endogeic earthworms burrowing at greater than normal depths if there was sufficient 

organic matter at these depths. 

The effects of the subsequent input of organic material are easier to predict. This will 

occur at the surface of the site, where the matter is consumed by the litter feeding 

species (White 1997: 40). These animals will incorporate organic matter into the upper 

horizon of the profile in the form of droppings and some comminuted but unconsumed 

organic matter (White 1997: 38,40). This material will thus be available to the 

geophagus species. In the case of model two, material will also be incorporated to a 

lesser degree into the zone of partial preservation. The input of materials such as fresh 

plant litter and animal dung would encourage not just the surface dwelling species but 

also the anecic earthworms (Edwards and Bohlen 1996: 157), thereby potentially 

affecting faunalturbation at greater depths. 
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The relationship between the quantity of organic carbon in the soil and its effects on 

degree of faunalturbation caused by detrivores is difficult to determine precisely 

because of the issue of foraging. While it is likely that a greater quantity of organic 

matter in the sediments of an archaeological site will result in larger populations of soil 

fauna, it does not necessarily mean that more extensive faunalturbation will occur. 

Studies have indicated that in situations where there is abundant organic matter 

available earthworms forage less than in comparison with situations where organic 

matter is less abundant (Cook & Linden 1996). Geophagic species consume less soil 

each and the anecic species are likely to maintain fewer permanent tunnels to the 

surface (Cook & Linden 1996) where there is abundant organic material of an 

appropriate kind. 

3.6 The Ecological Sub-system 

In this section the other main set of factors are discussed, and the relative importance of 

this set of factors assessed. The sediment properties of a site are not the only factors 

which may affect the processes of faunalturbation. Figure 3.1 makes it clear that guild 

structure and population distribution are potentially also influenced by ecological 

processes. 

The potential importance ecological and stochastic factors in determining the 

composition of whole communities has been stressed in the context of environmental 

reconstruction by Gee and Giller (1991: 7) who refer to these as the 'intrinsic' factors. 

This is in contrast to environmental factors, such as the sediment properties, are classed 
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as 'extrinsic' factors. For the purposed of generating testable hypotheses the 

assumption is made that the sediment properties are the most significant set of factors 

in the system. This assumption is based on the use of functional groups, as defined for 

the purposes of this study (see 2.1). The infonnation presented in the review of the 

biology and ecology of the soil fauna suggests that the main role of the ecological 

processes are in determining the species composition of the different functional groups, 

rather than the overall population of each group. This appears to be particularly the case 

with regard to processes of competition and transport. Should this assumption prove to 

be incorrect, it is likely that variation within the ecological sub-system, i.e. due to the 

intrinsic factors, would be the cause of variation in the degree of faunalturbation. Gee 

and Giller (1991: 8) have argued that at limited spatial, and temporal, scales intrinsic 

factors are more important in determining community composition. 

Fig. 3.2 The ecological sub-system of the faunalturbation system. 
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The three main factors within the ecological sub-system are to be seen in fig. 3.2: 

competition, predation and transportimigration. This is not necessarily an exhaustive 

list, merely the most significant. Other minor intrinsic factors might include, for 

example, the voltinism of the insect fauna. 

Given the probable dominance of soil/sediment properties in determining the 

population sizes of the different functional groups over the long term, and therefore the 

degree of faunalturbation, these parts of the faunalturbation system are the focus of this 

study. As such it is unnecessary to consider the ecological sub-system in any greater 

detail. 

3.7 The Concept of Zones and its Role in the Models. 

Thus far the two different models of faunalturbation are the same. It is with the 

introduction of the concept of zones that the two different models become different to 

one another. Both the models presented in this chapter use the concept of zones of 

destruction and survival. The zones are three dimensional volumes of soil and 

sediment. At a given location they will are envisaged as each being of uniform depth, 

as layers that are approximately parallel with the current ground surface. Their precise 

extent and depth is posited to be dependent on the population densities of the different 

groups of faunalturbating organisms. 

The zone of destruction is the volume of soil which the processes of faunalturbation 

have caused the complete homogenisation of originally discrete stratigraphic units (see 
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fig 3.3). Generally this zone confonns to the A horizons of biologically active soils 

which have fonned on archaeological deposits. It tends to be the zone in which the vast 

majority of the soil fauna is active - that is faunalturbation is still ongoing. The depth 

of the zone will depend on the predominant functional groups and thus mechanisms of 

faunalturbation, which are in tum dependent on the soil properties. In most temperate 

zone soil conditions this is likely to be that of the endogeic earthworms. This would 

suggest that the zone is generally in the region of 15 cm deep (Edwards and Bohlen 

1996: 103-104). There are conceivable situations where the complete homogenisation 

of archaeological deposits may not be restricted to this relatively minor depth. The first 

is where the A horizons of buried soils have fonned on archaeological deposits. In this 

situation, while faunalturbation has occurred in the past as part of the process of 

pedogenesis, it is unlikely to be ongoing due to the depth of burial of paleosol. The 

second exception is where the deposits of a site have accumulated sufficiently gradually 

to be completely reworked by faunalturbation, but the aggradation of material has 

subsequently covered the lower part of the zone to a depth that prevents the majority of 

soil fauna from reaching it. While faunalturbation will have caused the complete 

homogenisation of the deposits that were within this zone, faunalturbation does not 

cease with the complete destruction of the stratigraphy, with the exception of the two 

types of cases noted above. 
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Fig. 3.3 Model one: two zones, the upper, where aU stratigraphy has been destroyed through 
reworking and the lower zone where stratigraphy is preserved. 
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Fig. 3.4 Model two: three zones. The additional zone, in comparison to model one, 
is an intermediate zone where stratigraphy is partially preserved. 
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The zone of preservation is the zone in which no significant homogenisation of the 

discrete archaeological deposits has occurred. This is not to say that there has been no 

penetration of these deposits by the soil fauna living on the site. The capacity of anecic 

earthworm species to penetrate to substantial depths has already been noted (see 2.4). 

The essential stratigraphic order of the profile has however survived. A brief survey of 

the variety of different types of archaeological sites, in particular with regard to the 

variation of depth of archaeological deposits from site to site, is enough to demonstrate 

that the zone of preservation may form a depth from two or three metres to being non

existent. 

The zone of partial preservation is that volume of sediment in which there has been 

partial homogenisation of the originally discrete units. Some deposits within the zone 

may have been completely homogenised with each other. Other deposits may have had 

a whole section, or sections, of their volume completely reworked into another deposit. 

In other parts of the zone there will be deposits where the boundaries of units have 

become 'blurred' through reworking or have had volumes of reworked material within 

them. This zone forms between the zone of destruction and the zone of preservation. 

The deepest burrowing earthworms in Britain have been found at depths as great as two 

metres (Edwards and Bohlen 1996: 104). From this it is apparent that this zone may be 

of some depth, although it is unlikely that it would reach as great a depth as the two 

metres cited above - earthworms at this depth tend to be aestivating rather than active 

(Edwards and Bohlen 1996: 105). By its very nature and its processes of formation this 
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zone tends to still be undergoing homogenisation through faunalturbation when 

encountered by the archaeologist. As such, it is possible that eventually such a zone 

could become completely reworked i.e. have no surviving stratigraphy and become part 

of the zone of destruction. 

3.8 Model One: Minimal Stratigraphic Disruption 

In model one, only two of the zones described in section 3.7 are used: the zones of 

destruction and preservation respectively. The model assumes that the impact of the 

relatively much smaller numbers of deeper burrowing fauna, essentially the anecic 

earthworms, is insignificant. Thus it is the shallower dwelling functional groups, i.e. 

the adult Coleoptera, Coleopteran and Dipteran larvae, geophagous enchytraeidae and 

most importantly the endogeic earthworms which are the effective agents of 

faunalturbation. The implication of this is a concentration of activity within the zone of 

destruction and the insignificance of the residue of activity outside of that zone. This 

effectively restricts the effect of soil fauna on archaeological stratigraphy. While there 

has been some destruction of stratigraphy, ongoing faunalturbation is essentially 

constrained to the damaged area, so that further damage is minimal. 

3.9 Model Two: Ongoing Stratigraphic Disruption 

In the second model there are three zones within a profile. The uppermost zone is the 

zone of destruction. This zone is essentially the same as in model one. The main 

difference is that if model two is closer to reality than model one, then it is less likely 

that the zone of destruction will be completely congruent with the A horizon. This is 
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because in contrast to model one the impact of the deeper burrowing soil fauna is 

assumed to have a significant impact on the survival of stratigraphy. It is assumed that 

the activity of the deep burrowing fauna takes considerably longer to have a major 

effect on the state of preservation of archaeological stratigraphy. In effect, the 

destruction of the archaeological stratigraphy occurs in two phases. While the zone of 

destruction is initially caused by the activity of the shallow burrowing soil fauna, which 

usually form the majority of the soil fauna population, the depth of the zone of 

destruction may be increased over time due to the effect of the deeper burrowing fauna. 

The deeper burrowing fauna, due to their lower population densities and the processes 

by which they move particles around within a sediment or soil, will tend to cause 

stratigraphic homogenisation at a slower rate. To reflect this model two has an 

additional zone. As in the first model, the lowest of the zones is the zone of 

preservation. Under model two, it is assumed that the impact of the deeper burrowing 

earthworms is significant. As such, it is likely that in general this zone is to expected at 

a greater depth than under the assumptions of model one. Indeed, over time, the upper 

boundary of this zone will be effectively pushed back due to the effects of deep 

faunalturbation. 

It has been argued above that it is necessary to place studies of archaeological 

formation processes, in particular faunalturbation, within the framework of a 

sedimentological-pedological approach. It may initially appear that the models 

presented above do not obviously fit into such a framework. It can, however, be 
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demonstrated that the models do operate within this framework. In addition to this, it 

can be argued that the models can be used to bind the established archaeological 

stratigraphic approach into this framework. 

It has been demonstrated above that the processes of faunalturbation occur at the level 

of the soil/sediment particle or aggregate. The zones delineate regions in a profile that 

are (or are not) subject to varying degrees to the different processes of faunalturbation. 

That is, the zones represent regions where differing quantities of particles have been 

moved and mixed with each other over varying distances. The usual stratigraphic 

classification approach fits into the framework as well, as can be demonstrated through 

the concepts of the different zones. In the zone of preservation the original, discrete 

archaeological deposits are effectively identified in the field by their shared 

sedimentary characteristics: texture, sorting of components, presence or absence of 

particular types of particles - which in the case of archaeological deposits are often 

artefacts - and above all colour (Stein 1987). The deposits can be considered as 

unmodified sediments. Within the zone of partial preservation the deposits have been 

subject to some faunalturbation, i.e. they are sediments that have undergone some 

degree of pedogenesis. Within the zone of destruction the sediments have been 

subjected to sufficient pedogenesis to have completely obliterated their original 

sedimentary structure, and convert them to a soil in which only characteristics such as 

the lithology of the particles may offer any clue as to the nature of the precursor 

sediments. Considered in this respect it becomes possible to think of archaeological 

stratigraphy, formation processes and taphonomy in terms of a single framework (as 
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outlined in 1.3), thus making a wide range of work more easily accessible and 

intelligible. 

In both models, the relative size of the different zones, the rate at which zones grow or 

shrink (if at all) and thus the state of preservation of the archaeological stratigraphy are 

all determined by the different factors which form the overall faunalturbation system. 

As will be apparent from fig. 3.1 there is an element of feedback between the 

components within the system, and this may run in two directions. This is not to claim, 

however, that all the feedback and interactions within the system are of equal 

significance. 

3.10 Hypotheses 

3.10.1 Systemic Relationships. 

In order to test the models, and thus assess their relative validity, testable hypotheses 

are required. That part of the models framed in terms of faunalturbation as a system 

has a series of implicit hypotheses embedded within it in the form of the systemic 

relationships. These are common to both of the models. These are the different sets of 

relationships that the model posits. To allow the mode of testing to be determined it is 

necessary to state the hypotheses explicitly: 

• 1. The population sizes and distributions of the different functional groups 

that comprise the soil dwelling guild of invertebrates are largely determined 

by the physical and chemical properties of the soil. 
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• 2. The distribution of the functional groups detennines the degree and 

distribution of faunalturbation on archaeological sites. 

• 3. Thus the physical and chemical properties of the soil or sediments of 

which an archaeological site is formed determine the degree and distribution 

of faunalturbation of a site. 

To test the hypotheses suitable data must be acquired. The data must be largely derived 

from archaeological sites (see 4.2). It will comprise measurements of selected 

soil/sediment properties, population counts of the fauna, and assessments of the degree 

of faunalturbationlsurvival of archaeological stratigraphy (see 4.3 and chapter 5). To 

allow comparability, and in particular the application of statistical approaches, the 

different types of data must be closely linked in terms of sampling (see 4.4, 4.5 and 

figure 4.2). The required data sets and methods of analysis required for the testing of 

the hypotheses concerning the operation of the faunalturbation system are given in table 

3.1. 

Table 3.1 Data sets and analytical methods for testing systemic relationship 
h th lypO eses. 

Hypothesis Data Sets Analytical Methods 
Type Section Type Section 

1 Faunal Populations 7.3 Bivariate Correlation 8.2.1 
Soil Properties 7.2 Multiple Linear 8.2.2 

Regression 
Chi-Squared 8.2.3 

2 Faunal Populations 7.3 Bivariate Correlation 8.4 
Radiocaesium 6.5 

3 Soil Properties 7.3 Bivariate Correlation 8.5 
Field Descriptions 6.3 8.3 
Thin Section 6.4 
Micromorphology 
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3.10.2 Testing and Discriminating Between Model One and Model Two. 

Testing and discriminating between the two models requires a different approach. 

Direct statistical testing will be of limited applicability to this process. Instead, the 

alternative hypotheses of two and three zone models of faunalturbation will have to be 

tested in a different manner. These hypotheses are numbered 4 to 8 to follow on from 

the preceding set of hypotheses. 

Table 3.2 The Predicted Outcomes From Model One and Model Two 
Two Zone Model Three Zone Model 

4.There should be a macromorphological 4.There should be a macromorphological 
resemblance of the deposits on a site, i.e. resemblance of the deposits on a site, i.e. 
an upper homogenous zone and a lower an upper homogenous zone, a central 
zone of discrete stratigraphic units. zone of partially preserved stratigraphic 

units and a lower zone of preserved units. 
5.The above apparent contrast should be 5.The above apparent contrast should be 
confirmed by substantive confirmed by substantive contrast in 
micromorphological contrast between the micromorphology between the upper and 
zones, with the upper zone being largely lower zones. The middle zone should 
composed of completely faunalturbated combine significant traces of 
material, and the lower having few if any faunalturbation with unaffected areas, 
micromophological traces of such. with a possible increase in unaffected 

areas down the profile. 
6. Where a stoneline is present, it should 6. Where a stoneline is present it need 
conform to the base of the zone of not conform to the base of the zone of 
destruction. destruction, and will probably be 

somewhat above it in the profile. 
7. Radiocaesium should be concentrated 7. Bulk of radiocaesium will be above the 
in the zone of destruction, with a sharp base of the zone of destruction, with a 
reduction concentration at the base of the less abrupt reduction of concentration. 
zone. 
8. Majority of anecic earthworms will be 8. Majority of anecic earthworms will be 
found within the zone of destruction, found below the zone of destruction, and 
above the stoneline. the stoneline. 
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Each model has logical corollaries in tenns of its expression in the soil profile of an 

archaeological site, that is, predicted outcomes of the two different models. In order to 

test the models, and be able to reject one, such predicted outcomes need to be isolated 

and compared with the evidence gathered in the field and laboratory. Such corollaries 

can be stated as paired alternative hypotheses for the two models. Such an approach is 

adopted in the table below, with the numbering of each pair of hypotheses following on 

from the numbering of the hypotheses on the systemic relationships. The particular sets 

of data required to test and discriminate between the two models are implicit in table 

3.1. 

The two models of faunalturbation have been presented. Both are based on the known 

habits of the British soil fauna (see 2.3 - 2.7). Both models are based on the interaction 

of the various components of an environmental system (see 3.2). Two sets of 

hypotheses have been derived from the models, one set concerning the operation of the 

mechanisms of faunalturbation, the other designed to test and discriminate between two 

models. 
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4.1 Introduction 

Chapter Four 

Methodology: Field Sites and Sampling 

This study concentrates on the effects of faunalturbation on a particular type of 

archaeological site. This site type is the fann mound. Prior to detailing the reasons for 

selecting this site type for the study, consideration of the site type and the broader 

archaeological context is appropriate. 

Farm mounds are settlement sites found across, and seemingly unique to, the European 

North Atlantic (RCARMS 1980: 7). Examples of the strict fann mound type are known 

from north Norway, Iceland and parts of Orkney, primarily the islands of Sanday and 

North Ronaldsay (Bertelsen and Lamb 1993: 547, RCARMS 1980: 7, 16-20). There is 

some variation in fonn across the North Atlantic Region, and the fonn discussed here is 

the Orcadian variant. The farm mounds have a wide range of dates associated with 

them, those on Orkney have been argued to have existed as a class at the time of the 

Scandinavian settlements (ninth to tenth century), with material continuing to 

accumulate well into the Norse period (Davidson et al. 1986, Bertelsen and Lamb 1993: 

548). The radiocarbon dates generated from the farm mound samples could be argued 

to demonstrate either a pre-Scandinavian or early Scandinavian origin for the fann 

mounds, although given the possibility of residuality effects the layers dated were 

probably fanned in the early Scandinavian period or later. Radiocarbon dates have 

been generated for two of the sites selected for this study. Two samples from 
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Westbrough were dated as part of a previous study. These dates (SRR-2349 and 2350) 

gave dates that were calibrated to the seventh to eighth centuries (Davidson et al. 

1986). The site of Tofts provided dateable samples (see fig 6.11). The earlier 14C 

determinations from Westbrough are presented along other radiocarbon dates for farm 

mound sites on Sanday for the purposes of comparison. All dates other than those from 

the site of Tofts are taken from Davidson et al. 1986. Both sets of data have been 

calibratedlrecalibrated using the program Calib, version 4.3, provided on-line by 

Queen's University, Belfast (www.calib.org). 

Table 4.1 Radiocarbon Dates From Farm Mounds on Sanda~ 
Location Composition Depth Lab. Code Conventional 14C &13CPDB Calibrated 

(m) No. Age (yrs BP ± Age (year AD) 

lcr~ 

Tofts Charcoal, .80 AA 33828 950 ± 55 -25.0 990-1220 
Pinus 
sylvestris 

Tofts Charcoal, .80 AA 33834 980 ±40 -25.1 998-1160 
fragments 

Tofts Charcoal .80 SRR6400 1025 ±40 -27.9 902-1157 
rich 
sediment 

Westbrough Peat 1.52 SRR2349 1330 ± 60 -29.7 620-810 

Westbrough Peat 1.98 SRR 2350 1360 ± 50 -28.6 600-770 

Skelbrae Soil 1.98 SRR 2351 1330 ± 80 -27.4 540-860 
Langskail Soil 1.65 SRR2352 820 ± 80 -26.1 1020-1380 

Langskail* Shell 1.65 SRR 2353 1000± 70 +1.2 1270-1460 
Langskail* Shell 1.85 SRR2354 101O±60 +1.8 1280-1450 
Langskail Soil 2.62 SRR2355 910±50 -27.6 1020-1250 
Langskail* Shell 2.62 SRR2356 1060± 60 +1.8 1240-1420 
Langskail Charcoal 3.25 SRR2357 1190± 90 -27.6 660-1020 
Langskail Soil 3.25 SRR 2358 1010 ± 70 -26.6 890-1210 
Langskail* Shell 3.25 SRR 2359 111O±60 +1.2 1190-1390 
Langskail* Shell 4.05 SRR 2360 1170 + 50 +1.4 1140-1310 

Samples with an asterisk have been calibrated on the basis of their carbon content being 

obtained from marine reservoirs, all other samples have been calibrated on the basis of 

their carbon being obtained from the atmospheric reservoir (Aitken 1990: 70). 
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The radiocarbon dates from Tofts are closely comparable with those from Langskail, 

and place the formation of the materials dated within the Viking and earlier Norse era. 

The dates for the accumulation of the farm mounds are probably later than these dates, 

given that material is often in circulation for a number of years prior to deposition. In 

particular the charcoal identified as Pinus sylvestris must have either been deliberately 

imported to the island or have been found as drift wood as the species is not native to 

Orkney (Miller pers. comm.). 

The Orcadian mounds generally have a working or recently abandoned farm on the top 

of them (hence their name). The general form of the farm mound is a moderately steep 

sided mound, with a fairly level top with a height of between 1-2 m, occasionally 

reaching 2.5m above surrounding ground level (Bertelsen and Lamb 1993: 547). The 

mounds are formed by the dumping of peat, turf, dung, ash and other waste materials 

(Davidson et al. 1986). There has been some speculation in the past as to the reasons 

for the accumulation of these sites, generally centring on the non

necessity/impracticability of dispersing the materials which now form the mounds 

(Bertelsen 1979, Bertelsen and Lamb 1993: 550-552). 

The farm mounds are a highly significant class of monuments in the European North 

Atlantic region (Bertelsen and Lamb 1993: 545). Given this, an understanding oftheir 

formation processes is essential to understanding the evidence of material culture in this 
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region and might also illuminate some of economic and agricultural processes of this 

region over time. For example, Bertelsen's hypothesis of the impracticability of the 

dispersal of the materials from which the mounds are formed hinges on the 

development of commercial fishing, with a consequent reduction in the work force 

available for such tasks as the removal of domestic and byre waste (Bertelsen 1979). 

The farm mound has been selected as a site type for a variety of reasons. Research on 

the formation of Norse settlement sites in the North Atlantic, and related questions of 

subsistence form an ongoing research interest at the University of Stirling (see e.g. 

Davidson et al. 1986, Simpson et al. 1998). The primary purposes, however, in 

selecting sites from this class of monument lie in their form and more recent history of 

occupation and use. 

The first important characteristic of the sites is that they are of anthropogenic origin. 

This means that all the soils and sediments encountered on such a site are essentially 

archaeological deposits or are derived from them. It is unusual for this to be so 

unequivocally the case with the majority of archaeological sites. The significance of 

this circumstance to this study is that where there are significant volumes of 

faunalturbated material, up to and including fully developed soils, it is possible to be 

certain that these have been formed by the mixing of archaeological deposits. Any 

consequent effective loss of stratigraphic units can also be attributed to faunalturbation 

in these circumstances. 
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This in itself not sufficient to test the models advanced in chapter two: a site composed 

of relatively shallow anthropogenic deposits could be entirely faunalturbated 

throughout. This would not leave sufficient evidence to be able test and discriminate 

between the models, as both effectively predict the complete faunalturbation of shallow 

sites. Farm mounds are, as has been noted above, deep sites. As such completely or 

partially unfaunalturbated deposits should remain within them. The pattern of the 

distribution of evidence of faunalturbation or the lack thereof should be discernible in 

such deep sites. 

One further factor makes the farm mounds useful sites for this type of investigation. 

The flat topped profile of the mounds makes the erosion of surfaces, and subsequent 

loss of both archaeological deposits and evidence of faunalturbation unlikely. Local 

informants advise that the low lying island of Sanday is very rarely subject to ground 

frost, so cryoturbation is also likely to be insignificant. It would therefore seem that the 

only major set of natural post-depositional processes affecting the sites is that of 

faunalturbation. Post-depositional processes of human origin are another issue. While 

the local population has tended to treat known antiquities with respect (RCHAMS 

1980: 7), substantial impact is possible. In comparison with other types of monument 

in Orkney farm mounds tend to have been relatively undisturbed. The mound tops are 

generally either built over or permanent pasture, reducing the probability of agricultural 

impact, particularly through ploughing. Some sites, however, are known to have been 

heavily damaged by modem human activity. Therefore, attempting to screen out sites 

that may have been thus affected is an important part of the site selection process (see 
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4.2). The relative lack of alternative natural forms of post-depositional processes on the 

farm mounds, combined with an awareness of the possibility of human disturbance 

means that the potential problem of distinguishing between overlapping post

depositional effects is substantially diminished. 

4.2 Selection of Sites 

To select the sites used in this study a series of decisions were taken, based on a 

number of criteria. Some of these criteria were formulated on the basis of the scientific 

needs of the study, others with regard to the overall management of the project. The 

first decision was that all the sites should be on the island of Sanday, rather than trying 

to use farm mounds on all the three islands where they occur in Orkney. This decision 

was taken to reduce transport difficulties within the islands. Sanday was selected over 

Papa Westray and North Ronaldsay as it has more farm mounds to make the selection 

from, and because the mounds tend to be deepest on that island (RCHAMS 1980: 8). 

The other criterion derived from the question of overall feasibility of the study was that 

of access, both with regard to being physically able to safely reach and work on the 

sites and obtaining permission to work on the sites. Access proved to be largely 

unproblematic, with most of the farm mounds easy to reach and the landowners 

generally forthcoming with their permission. The few sites which were not accessible 

would have been unlikely to be suitable on the grounds of the other selection criteria. 

Three of the main criteria of selection reflect the original decision to use the farm 

mounds. These were that the sites should be sufficiently deep, level topped and largely 
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undisturbed by processes other than faunalturbation. The reasons for these criteria are 

discussed above. While farm mounds should generally meet these criteria, it was of 

course necessary to check each of them in the field. 

Two further, technically related, criteria were used. The first was to try to avoid sites 

with pre-existing eroded sections, particularly if the section was due to coastal erosion 

or was likely to be very close to the probable location of sampling. This was to avoid 

the possibility of a substantial moisture gradient across the site, which might affect the 

fauna so as to give a systematic bias of distribution across the site. Sea-sections would 

also potentially introduce another possible source of bias through a possible salinity 

gradient, also potentially affecting faunal distributions. The other technical criterion 

employed was too avoid sites that had deposits of pure or near pure sand in their top 

30cm. This criterion was used as sands would be unlikely to provide sufficient 

adsorption sites for caesium to be able to use 137CS profiling as a technique. 

Potential sites were identified using the RCHAMS survey on the antiquities of Sanday 

and North Ronaldsay (1980: 16-20). This gave an initial range of c. 20 possible sites. 

Inspection of these sites eliminated quite a proportion on grounds of shallowness, 

having open sea sections and in two cases not actually being farm mounds. The advice 

of the then Orkney Islands Archaeologist, Dr Raymond Lamb was also taken into 

consideration with regard to site selection. The three sites selected for this study were 

Beafield (HY 68654050), Tofts (HY 7475 4615) and Westbrough (HY 6633 4235) 
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(see fig 4.1). These three sites best fulfil the criteria listed above. At each of these 

locations, control samples were taken close to the monument (see 4.5). 

Fig. 4.1. The locations of the study sites. 
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4.3 Field Recording: method 
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The test pit sections were recorded using a combination of approaches from soil survey 

and archaeological excavation. The combined method is adopted for a variety of 

reasons. The first is that the descriptive methods derived from the soil sciences are 

more methodical, and more importantly, involve the recording of a wider range of 

characteristics than most traditional archaeological approaches, which allows for the 
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identification of pedogenic processes, which on an archaeological site are also post

depositional processes. One advantage of archaeological recording methods is a 

tendency to divide up sediments or soils into units on the basis of their properties to 

greater degree than in soil science. The expectation of a soil scientist is to find broadly 

uniform horizons, which while justified in many situations is unrealistic on 

archaeological sites, where many spatially limited deposits may occur. Investigating 

the relationships between such deposits is a normal procedure for archaeologists, and 

recording is conducted in such a manner as to assist in this. As such the deposits on the 

sites were described in this more 'unitary' manner. The assignment of units to 

horizons, where applicable, was undertaken at the analytical stage, as can be seen from 

the section drawings (see 6.10 to 6.12). Further variance from the strict soil survey 

approach was required by the fact that archaeological sites have 'sedimentary' features 

that do not conform to the system delineated in the soil survey handbook. 

4.4 Methods of Sampling: Archaeological Sites 

The sampling system was designed to provide two, interlinked, sets of data. One set of 

data was more directly concerned with the current populations of soil organisms and the 

conditions in which they exist and the other set with the effects that these populations 

have had over time. The sampling strategy was also designed to characterise the site in 

terms of fauna and physical and chemical properties as thoroughly as possible and to 

take into account as far as possible intrasite variability. It was decided to use the 

smallest possible intervention into the sites, to reduce impact on the sites. Each site 

was therefore sampled through the use of aIm x 1 m test pit (see fig 4.2). The 
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recording of the field data derived from the test pits is discussed below. The initial 

excavation of the test pits was through the various sampling procedures discussed 

below for the faunal and physical-chemical sampling. After the sampling had occurred, 

the rest of the sediment in the test pit was removed in 1 m by 0.25 m areas, working 

carefully down to a depth of 40 cm, to provide a sequence of sections. It was planned 

that excavation of the test pit would cease once substantial, well preserved, deposits 

were encountered. This did not occur in the first 40 cm of any of the test pits. One of 

the central areas was removed to either the depth of the substantial surviving deposits 

or until a depth of 120 em was reached. This deeper section was also recorded and was 

the section from which the samples for thin section micromorphology and caesium 

profiling were taken. 
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Fig. 4.2 Orthographic projection of the sampling pattern employed in each test pit 
to obtain samples for determining soil properties, fauna counts and CSl37 activity. 
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The set of samples concerned with the current populations of soil fauna was taken as an 

integrated set, to ensure the closest possible identity between the different 

measurements. To take account of the effects of the vertical distribution of the fauna, 

the sampling was depth stratified into 0.1 m deep spits. This part of the approach 

seems to have been effectively an innovation, as the (largely agriculturally based) 

surveys generally undertaken have generally looked to get population estimates of 1m2 

areas of a given, effectively aggregated, solum. The sampling of each site was based 

on aim x 1 m square, with samples for faunal and physical-chemical investigation 

taken from 0.25 m x 0.25 m areas in all of the corners of the 1 m square. This sampling 

was undertaken to a depth of 0.4 m, producing 16 sets of samples per site, that is 4 sets 

of sample for each 0.1 m depth. The pattern of sampling within the square metre was 

designed to give some indication of lateral variation of soil properties and faunal 

populations. 

The order of sampling at each site was to take the faunal samples, each 0.25 m x 0.25 m 

and 0.1 m deep. The ground surface area for the faunal sampling was based on the area 

employed by the Scottish Crop Research Institute (Boag et ai. 1997). The division of 

the sampling area was done to allow for the possible lateral variation of distribution of 

fauna within the test pit. Each column of samples was completely removed before the 

next sample was taken, to reduce the chances of the anecic earthworms from retreating 

from the sample volume, as they are known to be able to do if samples are not removed 
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rapidly (Boag et al. 1997). From each of these blocks a small subsample of c. lOOg 

was taken, handsorted to remove any non-enchytreid fauna and bagged for later 

physical and chemical analysis. Further samples were taken from the remaining sides 

of the holes from which the sample columns had been removed using Kubiena tins of 

known volume for the purpose of determining bulk density and to provide additional 

sample reserves in the event of analytical problems or sample loss. 

The other set of samples taken was for the purpose of evaluating how much 

faunalturbation had occurred. This consisted of samples taken for two sets of 

laboratory techniques, 137CS profiling and soil thin-section micromorphology. These 

sets of samples were taken from the central portion of the test pit. This was because the 

same pattern of sampling used for the other samples would not be feasible, given the 

time consuming nature of the two techniques. Taking these samples from the central 

region of the test pits meant that the caesium and thin section samples were surrounded 

by the physico-chemical and faunal samples, allowing the relating of the two sets of 

data in an interpolatary manner. 

The samples for caesium profiling were taken as 0.01 m thick slices from an area of 0.3 

m x 0.3 m. The overall sample depth was to 0.3 m. This depth was adopted as it was 

thought to present the depth limit to which detectable quantities of caesium would be 

found. Each 'slice' was carefully removed, with line levels and measurements from a 

section line being used to ensure that the slices were of uniform thickness. An initial 

attempt was made to remove the sample in a single monolith tin, but it was found that 
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the sediment of which the sites are composed was too friable to use this method without 

substantial sample loss or mixing. 

Samples for thin section micromorphology were taken in the following fashion. A 

series of overlapping samples were taken from the top 40cm of the test pit using 

Kubiena tins. These samples were taken to be directly comparable to the analytical and 

faunal samples. Further samples were taken throughout the rest of the profile, to allow 

the characterisation of the rest of sediment units recorded and to assess the degree and 

impact of any faunalturbation that they had undergone (see figs. 6.1 - 6.3). 

4.5 Methods of sampling: control sites 

The sampling of control sites was based on the requirement for data concerning the 

relationship between the agents of faunalturbation and soil properties in the absence of 

significant archaeological deposits. The sampling strategy was again designed to 

characterise the site in tenns of fauna and physical and chemical properties as 

thoroughly as possible and to take into account as far as possible intrasite variability. 

The set of samples for the soil fauna populations and soil properties at each control site 

was taken as an integrated set, to ensure the closest possible identity between the 

different measurements. To take account of the effects of the vertical distribution of the 

fauna, the sampling was depth stratified into 0.1 m deep spits. This part of the 

approach seems to have been effectively an innovation, as the (largely agriculturally 

based) surveys generally undertaken have generally looked to get population estimates 

of 1 m2 areas of a given, effectively aggregated, solum. The sampling of each site was 
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based on aim square, with samples for faunal and physical-chemical investigation 

taken from 0.25 m x 0.25 m areas in all of the comers of the 1 m square. This sampling 

was undertaken to a depth of 0.4 m, producing 16 sets of samples per site. 

The order of sampling at each site was to take the faunal samples, each 0.25 m x 0.25 m 

and 0.1 m deep. The ground surface area for the faunal sampling was based on the area 

employed by the Scottish Crop Research Institute (Boag et ai. 1997). The division of 

the sampling area was done to allow for the possible lateral variation of distribution of 

fauna within the test pit. Each column of samples was completely removed before the 

next sample was taken, to reduce the chances of the anecic earthworms from retreating 

from the sample volume, as they are known to be able to do if samples are not removed 

rapidly (Boag et ai. 1997). From each of these blocks a small subsample of c. 100 g 

was taken, handsorted to remove any non-enchytreid fauna and bagged for later 

physical and chemical analysis. Further samples were taken from the remaining sides 

of the holes from which the sample columns had been removed using Kubiena tins of 

known volume for the purpose of determining bulk density and to provide additional 

sample reserves in the event of analytical problems or sample loss. 

Samples for a control caesium profile were taken in conjunction with the other sample 

types at Beafield. The method employed was as at the archaeological sites, with the 

overall depth sampled being 0.3 m. As with the archaeological sites this depth was 

adopted as it was thought to constitute the depth limit to which detectable quantities of 

caesium would be found. 
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Chapter Five 

Methodology: Laboratory Methods and Statistical Analyses 

5.1 Introduction 

In this chapter the laboratory methods and analytical procedures required to produce 

the data sets necessary to test the models are described. Also examined is the 

general role of the statistical techniques to be applied to the data, along with a list of 

the techniques employed. More detailed discussion of these techniques is given in 

chapter eight, in conjunction with the analyses. 

5.2 Assessing Faunalturbation: Caesium 137 Profiling 

5.2.1 Introduction: Sources and Chronology. 

Caesium 137 is an anthropogenic radionuclide derived from nuclear fission. It is 

found in the terrestrial environment, largely as a result of atmospheric testing of 

nuclear weapons. The peak of deposition through atmospheric fallout from 

weapons testing occurred around 1963 (Wright et al. 1999). The only additional 

significant release of radiocaesium into the terrestrial environment has been from 

the Chernobyl accident in 1986. The fallout plume from this incident is known not 

to have covered the Orkney Islands, and as such possible problems from a double 

input of radiocaesium is avoided (Tyler et al. 2001). The element has thus been 

incorporated into soils and sediments following aerial deposition in the last forty 

years. 
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5.2.2 Fixation and Initial Migration. 

The processes of radiocaesium adsorbtion in soils are well understood. The precise 

mechanism, selectivity and stability of fixation is determined by the material to 

which the 137CS bonds and the environment in which bonding occurs (Tyler et al. 

2001). With regard to this study there are two main fractions of material which are 

significant as sites of 137CS fixation. The two fractions are silt size particles and 

organic matter (Cook et al. 1984, Hird et ai. 1995). 

The initial migration of radiocaesium after deposition is thought to be rapid, with 

processes such as diffusion being of greatest significance (Ivanov et al. 1997, Smith 

and Elder 1999). This has formed the basis of most modelling of 137CS migration, 

for time periods of months to years, that has been undertaken to date (Tyler et ai. 

2001). The earliest models were diffusion based models (e.g. Silant'ev and 

Shkuratova 1988). These models have been duly tested and criticised and new 

approaches formulated, such as diffusion advection models (Antonolopoulos-Domis 

et al. 1995) and convective stochastic models (Kirchner 1997). What all these 

models have in common is that they have been constructed using diffusion 

coefficients and migration velocities of 137Cs derived from empirical studies of 

young fallout, particularly from the Chemobyl accident. 

5.2.3 Faunalturbation and the Movement of Fixed l37Cs. 

It has been argued that in the short term (months to years) that faunalturbation is 

relatively unimportant as a mechanism of migration of 137Cs, but that over the 

medium term (years to decades) that the role of faunalturbation more significant 

(Tyler et ai. 2001). Muller-Leman and van Dorp (1996) have suggested that 
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complete homogenisation of 137CS occurs within 5-20 years. This increased 

significance is largely due to the rapid fixation of 137Cs, with subsequent migration 

of 137CS being largely due the movement of the different soil fractions to which the 

element is fixed. Due to the criteria employed in the selection of sites for sampling 

(see 4.2) faunalturbation should constitute the only significant mechanism for the 

migration of fixed 137CS. 

The fixation of a recent, traceable, addition to the soil should allow the detection of 

soil mixing, and give some indication of the depth and rate of movement of the soil, 

or more strictly, the fractions to which the 137CS has adsorped. Where 137CS is 

detectable, then the boundary of the distribution of this isotope should confoIm to 

the depth to which substantial mixing and reworking of soil and sediment has 

occurred in the time since initial fixation. The distribution within such a boundary 

may also give some indication of relative biological activity, but it must be 

remembered that any given distribution is the net result of mixing. Soil with 

adsorped caesium may have been reworked back up a profile, as well as down by 

the activities of soil fauna. Even taking due regard of these caveats, it is evident that 

137Cs distributions may be used as a proxy indicator of soil mixing. 

5.2.4 Measuring 137 Cs Distributions and Assessing Faunalturbation Distribution. 

For the purposes of assessing faunalturbation it is necessary to have a baseline from 

which to work. Using the diffusion coefficients and migration velocities of 137CS 

derived from empirical studies of young fallout, particularly from the Chemobyl 

accident it is possible to construct idealised initial distributions of 137 Cs for this 

purpose (see below). 
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To obtain the actual distribution of 137CS activity at each site the following 

procedure was followed. The samples taken for 137 Cs detennination were oven-dried 

at 105°C, ground and packed into sample containers. A laboratory based n-type 

35% relative efficiency HPGe detector, housed within a Cu-Cd lined lead shield 

was used to collect y ray emission spectra. The counting times used nonnally varied 

between 1O,OOOs and 30,000s, with the times used dependent on 137CS counting 

statistics of 5% or better. The longest counting times were in the region of 

240,000s, which were used to check samples that had no apparent detectable 137 Cs 

content. The gamma spectra were analysed using the EG&G Gamma Vision 

software package. The detector efficiency calibrations had been established using a 

range of deeply buried (Le. having no detectable 137Cs content) soils, with differing 

densities, spiked with mixed gamma solution of known activity (NFL R08-03). 

Individual corrections for sample density variations were made. Calibrations were 

checked with standard reference material confonning to the IAEA 373 and 375 

standards. 

The initial data took the fonn of the specific activities of 137CS (Bq kg-I). These 

were converted to activity loadings (Bq m-2
) by multiplying the specific activity by 

bulk density and dividing by the depth interval of each sample. The total activity 

loading for each sample set provided the 137 Cs inventory of the site from which it 

was sampled. The inventory was then used to calculate the percentage activity 

inventory at each depth interval. 
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In order to be able to assess the amount of movement of fixed 137 Cs, it is necessary 

to be able to reconstruct the distribution of the element in the short term after 

deposition. It is known that this distribution has a negative exponential-like form 

(Beck et al. 1972). Indeed work based on the distribution of 134 Cs deposited after 

the Chernobyl accident concluded that after 4-5 years the vertical distribution of 

137CS in a soil profile may be described by a negative exponential (Tyler 1994). 

Such exponential curves have been used as baselines to examine the effect of 

bioturbation on 137CS distribution (Tyler et ai. 2001). 

To obtain the exponential curve the following equation was used to calculate the 

initial 137Cs depth distribution. Ax. is the specific activity at a given value of x, that 

is mass per unit area depth. 

Equation (1) 

Where Ao is the activity at the surface of the soil profile and the exponential is 

described by the mass relaxation per unit area coefficient p (g cm-2
) (Tyler et al. 

2001). The typical range of values for pis from 2.0g cm-2 for peat to approximately 

4.0 g cm-2 for a mineral-rich soil (Tyler et al. 2001). To take soiVsediment density 

into account, p is calculated using Equation 2, 
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Equation (2) 

where p is the soil density (g cm-3), a is the reciprocal of the relaxation length (cm-

I) and X1l2 is the mass per unit area depth (g cm-2
) at which half the surface activity 

concentration occurs. The reciprocal of the relaxation length was assigned the value 

of .35 cm-I. This value was selected as the mean value found, with a range from .3 

to .4 cm-I (Tyler 1996 and Tyler et al. 2001). 

The vertical distribution of 137CS in undisturbed soils following atmospheric 

deposition quickly assumes a negative exponential-like distribution (Beck et al. 

1972). By examining the 134CS distributions from the Chemobyl depositional event 

in May 1986, Tyler concluded that after 4-5 years, the vertical distribution of I37Cs 

may usually be described by a negative exponential (Tyler 1994). This approach 

has been successfully applied to assess rates of 137CS movement in upland soils 

(Tyler et al. 2001). On this basis the basic 137CS data can be used to reconstruct the 

undisturbed l37Cs depth distribution of each site can be reconstructed by applying 

Equation 3. 

Equation (3) 
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where Px is the dry bulk density at the mass per unit area depth x. The profiles 

derived from Equation 3 were then converted to profiles of 137CS inventories, as was 

done for the actual measurements. Both sets of data were then converted to 

percentage depth distributions enabling comparison with the observed percentage 

l37Cs depth distributions within and between sites. 

5.2.5 Calculating Mass Soil Movement From l37Cs Distribution. 

Using the 137CS inventories calculated using the methods described above (see 

5.2.4) it is possible to derive the net soil movement rate within the archaeological 

sites. This infonnation could provide data on the likely period of survival of 

archaeological stratigraphy in biologically active soils. Previous estimates have 

been based on the application of known casting rates of surface casting earthwonns, 

combined with population estimates of earthwonns on archaeological sites and of 

overall site volume (Stein 1986). The radiocaesium approach differs significantly 

from this approach by taking into account the combined activity of all the 

invertebrate fauna involved in faunalturbation, and possible variations in rates of 

faunalturbation with depth in a site profile. 

On the basis of the assumption that the modelled initial distribution of the 137 Cs is 

essentially correct then the rate of vertical soil mass movement may be obtained as 

follows. The fraction of soil moved,/. from one 1cm sampling depth can be 

calculated thus: 

Equation (4) 
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where ~ is the cumulative % of the modelled inventory and~. The mass, m, of the 

soil being moved through a square metre area of one of the lcm 'slices' of the site 

can also be calculated: 

m=pl 

Equation (5) 

where p is soil density in kg m-3 and I is the sampling depth increment in m. From 

this the mass movement of soil through a unit of volume per unit time may be 

calculated: 

K=fm 
dt 

Equation (6) 

Where K is mass moved per unit volume per unit time (kg m-3 y(l),fis the fraction 

of soil moved, m is the mass moved per unit area of sample (kg m-2
), d is the 

distance moved (m), and t is time (yr). For the purposes of this study t in equation 

(6) is always equal to 35, this being the number of years between peak 137CS fallout 

and the time at which the samples were taken. This allows not only the calculation 

of the movement rate for each lcm depth sample, but the total rate of mass 

movement through that part of the profile where there is detectable radiocaesium. 

From the net rate of movement it is possible to derive the gross period of total 

movement of soil from each lcm layer: 

T =.!!... 
K 

Equation (7) 

where T is the gross period of total movement of soil. 
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5.3 Assessing Faunalturbation: Soil Micromorphology 

5.3.1 Introduction. 

Soil micromorphology is used to assess and produce quantitative estimates of 

faunalturbation, both within the uppermost, and thus probably most biologically 

active region of the soil, and at depth, where there was expected to be greater 

evidence of the survi val of intact archaeological deposits. The pattern of sampling 

of Kubiena samples for soil micromorphology (see 4.4) means that the soil 

micromorphology samples, along with the field recording, constitute an important 

means of linking the other data derived from the other samples. Further, the depth 

to which the Kubiena samples were taken allowed comparisons between the upper 

part of the soil profile, where faunalturbation was known to be occurring, and the 

lower part of the profile to be made. The technique of soil micromorphology was 

applied for a specific purpose: to identify and quantify the traces in the soil which 

would indicate the occurrence of faunalturbation, and where possible identify the 

specific functional group responsible. The method by which this was done is 

discussed below. The micromorphological data was employed to test a number of 

relationships posited by the model. 

5.3.2 Thin Section Preparation. 

The thin sections used in this study were all produced according to the standard 

procedures employed at Stirling University, which are based on those formulated by 

Murphy (1986). All water was removed from the samples by acetone replacement, 

with dehydration checked through specific gravity measurement. The samples were 

then impregnated using a polyester crystic resin, 'type 17449', and a catalyst, 'type 
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Q17447' (methyl ethyl ketone peroxide, 50% solution in phthlate). The mixture was 

thinned with acetone, to give a standard composition of 180 ml resin, 1.8 ml catalyst 

and 25 ml acetone for each Kubiena tin. Some less porous blocks were immersed in 

a resnlhardener solution with a greater acetone component to aid impregnation. No 

acceleration was used but the samples were impregnated under vacuum to ensure 

full outgassing of the soil. The blocks were sliced, bonded on a glass slide and 

precision lapped to 30 J..lm. Polishing and cover-slipping completed manufacture of 

the slides. While it is not unusual for these procedures to have to be modified, due 

to the variable properties and thus reactions of soils to these procedures, it was 

essentially unnecessary in the case of the samples used in this work. The loamy 

nature of the samples allowed good dehydration, although there was some shrinkage 

of the most organic samples, mostly those from uppermost sampling points. The 

texture and structure of the sampled soils allowed for at least adequate, and 

generally good impregnation in all cases. 

5.3.3 Description and Quantification of Thin Sections. 

The thin sections were examined using an Olympus BX50 polarising petrological 

microscope. A range of magnifications were used (xlO-x400) as were a range of 

light types (plane polarised, cross polarised and oblique incident). 

The description and quantification of the thin sections was undertaken for two 

purposes. The first was to assist in the characterisation of the soils and sediments of 

which the sites were composed. The second, and main, purpose was to allow the 

identification of the effects of faunalturbation, and to assess the impact 

faunalturbation has had on the sites through quantifying the traces that 

faunalturbation leaves in the soil. Soil thin section micromorphology started as an 
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essentially descriptive, qualitative method and basic description of slides still forms 

the basis of the insights that can be obtained,using the method. The systems of 

. '.. . ... . .... 
description may vary, from the pedogenetic approach of the pioneer of soil 

futcrbmorphology, Kubiena, to the essentially morphological approach detailed in 

the Handbook of Soil Microm~~hological Description (BuiIock et ~I.· 1985), which 

is' the '~yst~m adopt~d her~. The procedure of descripti~nis ad~~ted from Bullock et 

al. (1985). The level of detail implied by the procedure laid down in the handbook 

has not been followed. While there are proponents of highly detailed descriptions 

of full sections, the majority of practitioners tend to carry out a brief general 

description and concentrate on the more those aspects of the micromorphology 

which directly apply to problem to be addressed, and this has been the approach 

followed here. 

As has been noted (see 2.3-2.7), the different functional groups leave 

microscopic/near microscopic traces of their activity in soils and sediments. The 

most basic use of these traces is to simply identify that faunalturbation has occurred. 

Some of these traces are specific to particular functional groups, others are produced 

by some or all of the functional groups. By using a suite of traces it is possible to 

assess the relative importance of the different functional groups or small 

aggregations of these groups. The traces to be used for the more detailed 

descriptions and the categories by which the thin sections would be quantified are 

generally recognised as indicators of faunal activity and are taken from the 

published works on micromorphology, both general and archaeological. The traces 

selected are given in table 5.1. 
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Table 5.1. Micromorphological Pedofeatures Characteristic of 
Faunalturbation and Associated Agents of Formation. 
Pedofeature 
Total biological fabric 

Associated Organisms 
Mainly associated with Lumbricidae. especially if fabric pedofeatures 
present. but formation may involve any soil dwelling meso fauna (Courty 
et al. 1989: 190). 

Fabric pedofeatures , ~ 
Lumbricidae. with endogeic species probably most significant contributors 
(Bullock et al. 1985: 134 Fitzpatrick 1993: 141). 
Lumbricidae. both endogeic and anecic. 
Lumbricidae. both endogeic and anecic (Bullock et al. 1985: 134). 

Textural pedofeatures 
Mamillated 
excrements 
Bacillo-cylindfical 
Excrements 

Enchytraeidae. Also associated with Lumbricidae (Bullock et al.1985: 134). 

Larvae of Diptera and Coleoptera (Bullock et al.1985: 134). Spheroidal Excrements 
Ellipsoidal Excrements Orbatid mites. Possibly with larvae of Diptera and Coleoptera (Bullock et 

al.1985: 134). 
Tailed Conoidal 
Excrements 
Cylindrical 
Excrements 
Smoothed Channel 
Walls 

Isoptera. Possibly Coleoptera (Bullock et al.1985: 134). 

Larvae of Diptera (Bullock et al.1985: 134). 

Lumbricidae. predominantly anecic species (Bullock et al. 1985: 134. 
Edwards & Bohlen 1996: 127). 

The form of these traces of faunalturbation is largely dependent on the specific 

mechanisms responsible for each, although the properties of the soil or sediment 

may also have some impact on the type of traces found in a given setting and how 

well developed they are. This means that in a given setting certain traces may not 

form or be weakly developed, so that they may not be useful in assessing 

faunalturbation in that setting. This occurred with one of the traces initially selected 

for this study, as will be discussed in the relevant results section (see 6.4). 

The method used for quantifying the traces of faunalturbation is one that has been 

developed at Stirling University. The area of the slide was divided up into lcm 

squares. The slide may be sampled by selecting a proportion of the squares to be 

quantified. In accordance with the original form of this method half the squares 
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were selected (Chrystal 1997). The sampling pattern was essentially stratified as 

every other square was quantified, with the sequence of selection being altered only 

to ensure that each of the zones delineated in the original examination of the slide 

would receive 50% coverage. The percentage area of each square covered by each 

of the selected traces of faunalturbation was estimated by eye, to the nearest 5%. 

Where a trace was present but covered an area less than 5% presence alone was 

recorded. Where a given type of trace was intimately intermingled with another, the 

coverage of the dominant trace was recorded, and the other trace recorded simply as 

present. The visual estimations were made with the aid of charts reproducing given 

percentage coverage (from Bullock et al. 1985: 24-25). This method was adopted 

as it was thought to give reasonably accurate assessments of area coverage 

5.4 Agents and Conditions of Faunalturbation: faunal surveys 

While there has been a variable amount of work on the relationship of different taxa 

of soil fauna with various chemical and physical parameters, there are no 

substantive studies concerning all the taxa that comprise the functional groups, or 

all the physico-chemical parameters selected as most likely to influence population 

composition and size. Thus in order to test the hypothesised relationships posited by 

the models, it was necessary to gather data on the population composition and 

physico-chemical conditions of the archaeological sites and their paired control 

sites. 

The samples taken for faunal analysis were handsorted, with the exception of the 

sub-samples taken for estimating enchytraeid populations (see below). A variety of 

methods of extraction could have been used, including wet sieving, chemical 
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extractions, usually using formalin, and applying electrical currents to an area. 

Handsorting was selected for a variety of reasons. Comparisons of different 

extraction methods have suggested that while there is no absolutely reliable method 

for extracting all earthworms, handsorting gives some of the best results, with more 

labour intensive methods, such as wet sieving, giving relatively little marginal 

return on the additional effort involved (Edwards & Bohlen 1996: 96). There have 

been few other reviews of the methods of recovery of other soil dwelling fauna. 

Another advantage of the method was that it could be applied to the areas within the 

test pit with reasonable precision. This was deemed to be unlikely to be the case 

with regard to the chemical methods. Electrical methods are known to be 

problematic because of the difficulty of calculating the volume of soil affected by 

the current (Edwards & Bohlen 1996: 90). A final advantage of using the method 

was that handsorting has been used in a very high proportion of other studies of 

earthworm populations, and using the same methods would allow closer 

comparability of data sets, so that comparisons could be drawn more readily. 

Handsorting was also adopted for the recovery of the majority of the non-Iumbricid 

components of the fauna (but see below), as it was thought that as the organisms in 

question were of broadly the same size, similar levels of mobility and occupied the 

same habitat that the same method of extraction would be appropriate. 

The only soil fauna to be extracted by a separate method were the enchytraeids. 

These were extracted from 100g of soil using Tullgren funnels. The extractions of 

the enchytraeids were all undertaken by staff of the Scottish Crop Research 

Institute, under the supervision of Mr. Brian Boag. 
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Fig. 5.1 Functional Group Key for British Lumbricidae (after Sims and Gerard 
1985). 

1. Setae behind c1itellum closely paired 
Setae behind c1itellum widely paired or distant 

2. Prostomium tanylobus 
Prostomium not tanylobus 

3. Tubercula pubertatis on segments 33-36, 
clitellar genital tumescences 31-37 & post 
clitellar 38-39 
Other pattern of tubercular pubertatis and 
tumescence 

4. Male pores on segment 13 
Male pores on segment 15 

5. Tubercula pubertatis absent or beginning on 
or before segment 29 
Tubercula pubertatis beginning on or 
behind segment 30 

6. Tubercula pubertatis, anterior pair behind 
segment 34 
Tubercula pubertatis, anterior pair before 
segment 34 

7. Tubercula pubertatis on segments 31 (32) 33 
Clitellar genital tumescences on segments 29,30,32-34 
Clitellar genital tumescences distributed otherwise 

Tubercula pubertatis on segments (31) 32-34, 
clitellar genital tumescences on segments 31,33,34 
Other disposition of tubercula pubertatis and clitellar 
genital tumescences 

8. Male pore tumescences confined to segment 15 
(rarely extending across one furrow) 
Male pore tumescences extend across (both) 
Furrows 14/15 and 15/16 

9. Tubercula pubertatis on segments 30-33, 
clitellar genital tumescences absent 
Other arrangements of tubercular pubertatis 
and clitellar genital tumescences 

10. Tubercula pubertatis on segments 30-35 
Clitellar genital tumescences absent 
Other arrangements of tubercula pubertatis 
and clitellar tumescences 

2 
8 

3 
4 

Anecic 

Epigeic 

Endogeic 
5 

Endogeic 

6 

Endogeic 

7 

Anecic 
Endogeic 

Anecic 

Endogeic 

9 

10 

Epigeic 

Endogeic 

Epigeic 

Endogeic 

The fauna were identified to the level that they could be placed in the functional 

groups selected for the study. In the case of the enchytaeids, this simply meant that 
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the counts of animals were recorded. The non-lumbricid fauna was also simply 

counted by the broad taxonomic/age group which corresponded to the functional 

group. The earthworms were classified into epigiec, endogeic and anecic, using a 

specially adapted key (see fig 5.1), derived from Sims & Gerard (1985). 

All fauna extraction and identification other than that of the enchytraeids were 

undertaken by the author. 

5.5. Agents and Conditions of FaunaIturbation: Soil Physico-Chemical 

Properties 

5.5.1 Introduction. 

The methods employed to quantify the fauna and the physical and chemical 

properties of the soils and sediments of the sites are essentially the standard ones 

found in the literature, and outlined in the main textbooks and handbooks on the 

subject (e.g. Rowell 1994, Tan 1996). There are a number of reasons why these 

methods were used. The first is that these methods are largely accepted as 

producing accurate results. The second is that it would mean that the results of the 

study would be easily comparable with the results from many other studies. The 

third reason for working with these methods is that measuring of these factors was 

not an area in which innovation was being sought, and as such reliable and widely 

accepted methods were used, allowing greater effort to be directed towards the 

novel aspects of the research. 

5.5.2 Bulk Density and Moisture. 

Samples for bulk density determination were taken using a variation on the method 

outlined in Rowell (1994: l38). The sampling was undertaken using Kubiena tins, 
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as these were found to be better for taking the sample without significant 

compression of the material and also allowed rapid sampling. Otherwise the 

method followed was as per Rowell (1994: 86), including the determination of the 

moisture content of these samples. 

5.5.3 Particle Size Distribution. 

Hand testing of the texture of soils and sediments had already been undertaken in 

the field, largely as a means of discriminating between units. Although this gave a 

basic indicator of texture class and thus particle size distribution, the method has its 

limits. Rigorously quantified data cannot be obtained in this manner, and certain 

types of organic content can change the apparent texture in the hand (Rowell 1994: 

134, Tan 1996: 73). The standard method for determining particle size distribution 

is a combination of sieving and sedimentation (Rowell 1994: 27). For this study a 

different approach, using sieving and laser grain size determination was adopted. 

The samples were fractionally sieved down to <500llm. The <500llm fraction was 

sub-sampled, and after ignition to remove organic matter, and analysed using laser 

grain size determination. This was undertaken using a LS230 Coulter counter. This 

instrument analyses the diffraction patterns formed upon passing a beam of laser 

light through a suspension of particles. From this data the equipment then models 

the particle size distribution, theoretically down to O.04Ilm. Although there have 

been some problems reported with the determination of fine clay fractions 

(Buurman et al. 1997), this was not thought to constitute a significant problem for 

this study, as the soils and sediments under consideration have very low proportions 

of clay in them. Each sample was automatically run through the Coulter counter 3 

times to give replicate data. 
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5.5.4 Loss on Ignition. 

There are a variety of ways of detennining the organic content of soils and 

sediments. One possible method is by potassium dichromate oxidization (Tan 

1996: 230). This method involves boiling the sample in acid, and therefore would 

mean that calcareous material in the sample would also be oxidized, giving an 

inflated measurement (Rowell 1994: 50). The particular method of loss on ignition 

used was predicated by the known properties of the soils under consideration. Loss 

on ignition is recognised as providing a good estimate of organic matter for sandy 

soils, such as the ones under consideration. It is mainly problematic with very 

heavily organic soils, which the samples were known not to be, or soils with 

appreciable clay contents, which it was thought that the samples would not have, a 

supposition that proved to be correct. Three replicates were undertaken to given an 

estimate of precision. There are different methods of loss on ignition determination.· 

Because at least two of the sites were known to have a significant calcareous 

content, the method used was a relatively long, overnight, combustion, at a 

temperature of 500e, to avoid decomposition of calcium carbonate, which occurs at 

770e (Rowell 1994: 48). 

5.5.5 pH. 

The pH of a material is a logarithm of the concentration of hydrogen ions. With 

regard to soils and sediments, it is affected by three sets of factors. The set which is 

generally the most significant is the base status of the parent material. Two other 

sets of factors are the drainage of the soil and the biochemical status of the soil. As 
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will be apparent from the discussion of pH in chapter three (see 3.4), the interaction 

of biochemical status with pH is a two way process. 

The determination of pH was carried in the laboratory, using the standard methods 

reported in Rowell (1994: 159). The pH of the samples was determined as a 

suspension in both distilled water and a solution of calcium chloride. The pH of the 

aqueous suspension reflects the pH of the soil solution. The addition of CaCh to the 

suspension causes the displacement of hydrogen ions from exchange sites at the 

surface of organic material or colloidal clay fractions, allowing the determination of 

total acidity and thus the 'reserve' acidity (Tan 1996: 104). The addition of CaCh 

generally depresses the pH as the displaced hydrogen ions go into solution. Both 

types of determination are made, as each represents variations on the interactions of 

soil fauna and habitat. 

5.6 Agents and Conditions of Faunalturbation: Analysing Interactions and 

Associations 

Having posited a set of relationships that form a system, it was necessary to find 

some means of testing whether these relationships exist and whether they have any 

significance. Given the implicitly quantitative nature of the proposed models, 

statistical tests provide a useful means of attempting this. Given the prospect that 

certain easily measurable components of the model might be major determinants of 

other components in and the final outcomes of the system, i.e. the magnitude and 

distribution of faunalturbation, it was originally intended to attempt to derive an 

explicitly quantitative model based on statistical approaches. The statistical tests 

and the precise variations employed are dealt with in detail in the relevant sections 
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of chapters four and five. It suffices at this point to list the techniques and to 

mention that the outcomes of the initial statistical analyses lead to the set of 

techniques ultimately employed. The various tests employed were selected on the 

basis of the requirements of the study and the requirements of the individual data 

sets in terms of statistical integrity. The techniques employed were bivariate 

correlation, using Kendall's Tau coefficient of correlation, multiple linear regression 

and chi-squared tests. 

A general point with regard to the statistical analysis and testing of the models 

concerns the use of paired archaeological and control sites. The control sites were 

employed to compare with the archaeological sites to see if any consistent 

differences emerged between these two groups. This was done to see if there were 

any additional factors that would affect the faunalturbation system by virtue of an 

archaeological site being such. While specific causes would be difficult to divine, it 

was thought that it was possible that there might be significant anthropogenic 

effects other than those affecting the nature of the properties selected for 

measurement in this study. 
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Chapter Six 

Results 1: Faunalturbation in Farm Mounds 

6.1 The Evidence of Faunalturbation on the Archaeological Sites: Introduction 

The results presented in this chapter are those concerning the traces of faunalturbation 

itself. This will establish that faunalturbation is in fact occurring on archaeological 

sites and has a significant impact on the stratigraphy of a site. These results will also be 

discussed with regard to the forms and distribution of faunalturbation. This chapter is 

concerned solely with the evidence of significant effects of faunalturbation on 

archaeological stratigraphy. As such the samples, and thus data, all relate to the 

archaeological sites only. 

6.2 The Evidence of Faunalturbation on the Archaeological Sites: Field 

Descriptions. 

Field descriptions from the archaeological sites are given in tables 6.1-6.3. The spatial 

relationships ofthe different units can be seen in figures 6.1-6.3. Additional 

descriptions are given in Appendix 4. Based on these descriptions the soils and 

sediment units of the three sites can be classified into two broad groups. The first group 

includes the modem 'A' horizons that have developed on the sites. Working from these 

other units which closely resemble the modem 'A' horizons can be provisionally 

classified within the same group. They are characterised by a texture that is loamy, a 

crumb/incipient crumb structure and a fairly homogenous appearance. Colour typically 

falls in the Munsell range 10 YR 3.5-212.5-1, denoted as dark grey brown/dark yellow 

brown. A feature of all the current 'A' horizons and one of the other units within this 
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Fig. 6.1 Stratigraphic sequence in the test pit at Beafield, with projection of 
micromorphology data. 
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group is that they contain stone lines (see figs. 6.10-6.12), a feature generated by 

earthworm activity in biologically active soils which are not undergoing any other 

significant process ofpedoturbation (Edwards & Bohlen 1996: 203). 
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Table 6.1 Description of the soil/sediment units at Beafield, Sanday 
Unit No. 

2 

3 

4 

5 

6 

7 

S 
9 

Description 
Slightly sandy silt, colour 1OYR2/2. Moderately to heavily rooted to 50-100 mm. Largely 
clast free in top 100-150 mm. Layer of clasts - 10-20 mm sub-rounded to sub-angular 
tabular sandstones and limpet shells, conforming to unit boundary. Strongly developed 
crumb structure. Basal matrix boundary highly diffuse. 
Slightly sandy silt, colour 10YR3/2. Frequent clasts with an unsorted distribution. Clasts 
mostly 10-20 mm sub-angular tabular sandstones, with some limpet and cockle shells. 
Frequent orange mottling, 3-4mm and charcoal flecking, 3-5 mm. Weakly developed 
crumb structure. Upper and lower boundaries highly diffuse. 
Slightly sandy silt to silt, base matrix colour 10YR2.5/2, mottle colour 7.5YR9/S. 
Occasional clasts with an unsorted distribution. Clasts mostly 10-20 mm sub-angular 
tabular sandstones, with some limpet and cockle shells. Mottles very abundant, 20-30 mm 
diameter. Upper and lower boundaries moderately diffuse. 
Slightly sandy silt to silt, base matrix colour 10YR3/2.5, mottle colour 7.5YR9/S. Rare 
clasts with an unsorted distribution. Clasts mostly 10-20 mm sub-angular tabular 
sandstones, with some limpet shells. Mottles very abundant, 20-30 mm diameter. Upper 
and lower boundaries moderately diffuse to moderately defined. 
Slightly sandy silt to silt, base matrix colour 10YR2.512, mottle colour 7.5YR9/S. 
Occasional clasts with an unsorted distribution. Clasts mostly 10-20 mm sub-angular 
tabular sandstones, with some limpet shells. Mottles very abundant, 20-30 mm diameter. 
Upper and lower boundaries highly diffuse. 
Silt, colour 2.5Y2.5/1. Some black flecking, 1-3 mm. Rare clasts; 10-20 mm sub-angular 
tabular sandstones. Upper and lower boundaries moderately diffuse to moderately defined. 
Slightly sandy silt, colour 2.5YR12.5/1. Largely clast free. Frequent black flecking, 5-10 
mm. Occasional orange mottling, c. 3 mm diameter. Upper and lower boundaries 
moderately diffuse. 
Pure coarse sand, colour. Structureless. Upper and lower boundaries distinct. 
Slightly sandy silt, colour 7.5YR4/3. Frequent orange mottles, c. 2-4 mm. Frequent black 
flecks, c. 2 mm. Largely clast free. Weakly developed crumb structure. Upper boundary 
distinct. 

Given that the stone line fonns due to the combined covering of stones by surface 

casting and their sinking as old earthwonn burrows collapse beneath them (Darwin 

1881: 72, Edwards & Bohlen 1996: 203), it seems probable that the stone line 

represents a boundary of the most intensive faunalturbation, or at least the sorting effect 

associated with intensive earthwonn activity. Similarly, where faunalturbation is likely 

to be the most significant process of pedogenesis, the base of the current' A' horizon 

may similarly be regarded as marking the boundary of the area which is currently 

undergoing the most intensive faunalturbation. 
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Table 6.2 Description of the soiVsediment units at Tofts, Sanday 
Unit No. 
1 

2 

3 

4 

5 

Description 
Silty clay loam. colour IOYR2.5/1. Heavily rooted to 20 mrn. Clast free to .21 m. At .21-
22 m layer of clasts; predominantly limpet shells. plus occasional tabular sub-rounded 
sandstone. Below this frequent clasts, compositionally as layer above, but unsorted. 
Strongly developed crumb structure. Lower boundary highly to moderately indistinct. 
Silty clay loam. colour 10YR3/2. Occasional clasts; predominantly limpet shells. 
Abundant black flecks, c. 2-4 mm. Abundant mottles, 10-50 mm diameter, colour 
7.5YR4/4. Moderately developed crumb structure. Upper and lower boundaries 
moderately indistinct to moderately distinct. 
Silty clay loam, colour 10YR3.5/2. Occasional clasts; predominantly limpet shells. 
Occasional orange mottles, up to 10 mm diameter. Moderately developed crumb structure. 
Boundaries highly indistinct to moderately distinct 
Silty clay loam, colour 10YR3/2. Occasional clasts; stones, 10-100 mm, tabular sub
rounded to sub-angular; limpet shells. Occasional black flecks, 2-5 mm. Weakly 
developed blocky structure. Upper boundaries moderately indistinct. 
Silty clay loam, colour 10YR3/2. Occasional clasts; predominantly limpet shells. 
Abundant grey mottles up to 20 mm, colour 10YR4/2. Abundant black flecks, c. 2-4 mm. 
Moderately developed sub-angular blocky structure. Upper and lower boundaries 
moderately distinct. 

The 'A' horizon type units therefore can be argued on this basis to be constituted 

largely or solely of faunalturbated material. Such a conclusion requires further 

validation, and the additional evidence for this will be discussed below (see 6.3.2). It 

should be noted that such a conclusion would mean that the 'A' horizon type units are 

equivalent to part or all of the zone of destruction posited in chapter three (see 3.6). 

This point is further discussed below (see 9.2). 

The other group of units tends to be predominantly or totally composed of grey andlor 

orange mottles and often exhibit much black flecking. No consistent type of texture is 

associated with this group, in contrast to the 'A' horizon type of deposit. Where such 

deposits are substantial, as at Westbrough, a laminated structure is apparent. The units 

appear to largely conform to the 'law' of original horizonality, that is to say that these 
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units largely resemble the morphology in section that would be expected of dumps of 

unconsolidated material (Harris 1989: 31). 

Fig. 6.2 Stratigraphic sequence in the test pit at Tofts, with projection of 
micromorphology data. 
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This would be expected of deposits of archaeological material that had not been heavily 

reworked (Harris 1989: 32). The uppermost of this type of deposit on each site often 

appears to have been penetrated with material from the 'A' horizon above. Such 

deposits would probably be interpreted as ash deposits by a field archaeologist. The 

deposits are thus, in effect, the remaining detectable archaeological stratigraphy. 
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Table 6.3 Description of the soiVsediment units at Westbrough, Sanday 
Unit No. Descriptions 
I 

2 

3 

4 

Silty loam, colour 2.5Y2.5/1. Heavily rooted to 60 mm. Generally clast free, except for 
layer of angular, tabular stones and occasional shell, approximately coterminal with basal 
boundary. Boundary is moderately distinct to distinct. Boundary very irregular, 
interdigitating with unit below. Weakly developed sub-angular blocky structure. 
Sandy silt loam, colour IOYR4/2.S. Occasional clasts; angular cuboidaVtabular sandstones, 
c. 10-15 mm with an unsorted distribution. Frequent orange flecks, c. 2-4 mm, colour 
7.5YR5/8. Upper boundary moderately distinct to distinct. Lower boundary moderaely 
distinct to moderately indistinct. Structureless. 
Slightly sandy silt loam, colour IOYR2/2. Occasional clast; sub-angular prismoidal 
sandstone, 7-10 mm. Sorted - tending to form layer at base of unit. Occasional grey 
mottie, IOYRS/8, silt texture. Structureless. Upper boundary moderately distinct to 
indistinct. Lower boundary moderately distinct to moderately indistinct. 
Clay silt, colour IOYRS/3. Occasional clast; sub-angular prismoidal sandstone, 10-40 mm, 
unsorted. Abundant mottles, colour IOYR3/1, 10-20 mm diameter and 7.5Y5/8 2-4 mm. 
Abundant black flecks. 2-4 mm. Structureless. Upper boundary moderately distinct. 

Fig. 6.3 Stratigraphic sequence in the test pit at Westbrough, with projection of 
micromorphology data. 
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It should be noted that the 'A' horizon type units form the bulk of the recorded sections, 

with the exception of Westbrough. At Westbrough the lower 'A' horizon type unit 

(unit 3) is completely stratigraphically isolated from the modem 'A' horizon. This unit 

also contains a stone line. It would appear that this unit constitutes the 'A' horizon of a 

buried soil, with the parent material being the archaeological deposits, such as those 

directly below unit 3. Whether the other deep 'A' horizon type units may be regarded 

as buried soils is a more complex issue. This issue and the implications proceeding 

from it for the different models presented in chapter two will be discussed in chapter 

nine (see 9.2). 

6.3 The Evidence of Faunalturbation on the Archaeological Sites: Thin Section 

Micromorphology. 

6.3.1 Introduction. 

The technique of soil micromorphology was applied for a specific purpose: to identify 

and quantify the traces in the soil that would indicate the occurrence of faunalturbation, 

assess the distribution of faunalturbation in the units, and hence the profile, and where 

possible identify the specific functional group responsible. Descriptions of the slides 

are given in Appendix 3. 

The significant data produced by the examination of the thin sections is that relating to 

the traces of faunalturbation. The methods of identification and quantification of these 

traces, which are largely excrement or derived from excrement, have been discussed 

earlier (see 5.3). Quantification is given as a percentage coverage of area, based on 
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visual estimates on 1 cm squares (5.3 .3). The quantified data is presented in three 

different ways. Representative micrographs of the micromorphological traces in 

question are given in figures 6.4-6.12. 



Fig 6.5 Mamillated Excremental Pedofeature, Beafield 
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Fig. 6.6 Baccillo-cylindrical Excremental pedofeatures, Beafield, PPL, frame 
width tmm. 
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Fig. 6.9 Ellipsoidal Excremental Pedofeature, Westbrough,PPL, frame width 
4.2mm. 

~~~1.7c'.J:2 

Fig. 6.] 0 Tailed Conoidal Excremental Pedofeature, Westbrough, PPL, frame 
width 1.2mm. 



Fig. 6.11 Ellipso-cylindrical Excremental Pedofeature, Westbrough, PPL, frame 
width 4mm. , 

Fig 6.12 Typical Fabric of Ash Deposit Units, Westbrough, PPL, frame width 
Smm. 
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The first presentation ofthe data is given in figures 6.1 to 6.3. This breakdown takes 

the form of means of the total traces of faunalturbation, calculated for lcm layers, 

projected on to the field section from which the thin section samples were taken. This 

approach allows the distribution of the micromorphological traces of faunalturbation to 

be compared with the distribution of the different units recorded in the field. These 

figures are presented and discussed in below (see 6.3.2). 

The second way in which data is presented is given in figures 6.13-6.15 (see 6.3.2). 

This breakdown takes the form of the standard deviations of the means of the total 

traces of faunalturbation presented in figures 6.1-6.3, also projected on to the field 

sections from which the thin section samples were taken. This approach allows the 

range of variation in the distribution of the micromorphological traces of 

faunalturbation to be compared with the distribution of the different units recorded in 

the field. These figures are presented and discussed in below (see 6.3.2). 

The third breakdown of the data presented in this chapter is a set of averages of the 

different forms of faunalturbation in the top 40 cm of each site. These averages have 

been calculated to be comparable with the data produced by the analysis of the soil 

properties of each site. This will allow statistical analysis of the relationship between 

the soil properties and the traces of faunalturbation, thus testing some of the 

relationships posited in the models. These data are presented in table 6.9 (see 6.3.3). 
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6.3.2 Distribution of the Total Traces of Faunalturbation; 1 cm depth based means and 

standard deviations. 

The data discussed in this section is to be found in two sets of figures, 6.10-6.12 and 

6.13-6.15. The data is presented in the form of the means of the total traces of 

faunalturbation, calculated for lcm layers, from the constituent lcm2 cells examined 

(see 5.3.3). The total data set may be found in appendix 4. If the mean of the total 

faunalturbation traces in thel cm2 squares quantified in the lcm layer is greater than 

80% this has been coloured black in figures 6.1-6.3. If the mean is less than 80% the 

slice has been left uncoloured. The results have then been projected on to the field 

section from which the thin section samples were taken. The 80% coverage by 

faunalturbation traces has been selected as the threshold in figures 6.1-6.3 because it is 

the level at which it becomes difficult to distinguish thin sections from the modem 'A' 

horizon from those sampled across archaeological deposits. 

The first point to emerge from the thin section data is the ubiquity of the traces of 

faunalturbation. There is no single slide that does not include significant traces of the 

activity of soil fauna. Even with the threshold of identifiability at 80%, the majority of 

the means of total faunalturbation traces are above that threshold. The majority of 

samples where there are means of total faunalturbation features less than 80% are in the 

ash deposit units. Of those areas with less than 80% coverage that fall within the 'A' 

horizon type deposits, a third lie near the edge of the ash deposit units as depicted in 

figures 6.1-6.3. 
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Fig. 6.13 Standard deviation of mean total faunalturbation traces with 
stratigraphic sequence at Beafield. 
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These areas probably represent variation in the position of the unit boundaries in three 

dimensions: while each field section represents one 'slice' through a site at a given 

point, the thin sections in fact represent samples from 1-4 cm further back from the face 

of each of the profiles. As such this third of cases may also have been taken from ash 
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deposit units. In essence the thin sections of the 'A' horizon type units are largely or 

wholly composed of the traces of faunalturbation. Thus with regard to the' A' horizon 

type units the means confirm the points made above (see 6.3.1). 

Fig. 6.14 Standard deviation of mean total faunalturbation traces with 
stratigraphic sequence at Tofts. 
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By contrast the areas of the thin sections that sample the ash deposit units tend to show 

lower mean areas covered by the traces of faunalturbation. Even in these units the 

mean thin section areas covered by faunalturbation traces are often high. While the 

degree to which the 'A' horizon units does not vary greatly from site to site, the means 

presented in figures 6.1-6.3 seem to suggest that there is considerable variation in the 
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degree to which ash deposit units are faunalturbated. At Tofts these units are very 

heavily faunalturbated, those at Westbrough the least. It is worth noting that the 

deposits that have produced the thin sections with the lowest percentage coverage by 

faunalturbation traces, as depicted in figures 6.1-6.3, are those units that were the most 

easily detected in the field, i.e. the archaeological deposits at Westbrough. Thus these 

units could be argued to have the best preservation of archaeological stratigraphy at the 

macromorphological scale. That this should be so is the logical outcome of a system 

where the observed macromorphological characteristics of the different deposits are the 

result of processes occurring at the microscopic scale. 

Fig. 6.15 Standard deviation of mean total faunalturbation traces with 
stratigraphic sequence at Westbrough. 
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The second point that emerges from these findings is that an archaeological deposit 

may have undergone substantial faunalturbation, e.g. over 80% of a 

micromorphological thin section area covered by faunalturbation traces, and still be 
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identifiable as a discrete archaeological unit at the macromorphological scale, as at 

Tofts. The issue of why the levels of faunalturbation vary from site to site of course 

relates to the issue of interactions in the faunalturbation system, which will be further 

examined in chapter seven. 

Variation with depth is particularly noticeable when comparing the slide areas that 

sample the profiles above the stones lines discussed above (see 6.2) with the slide areas 

that sample the profile below the stone lines. Most of the 1 cm2 areas examined from 

the slides of the samples above the stone lines have 100% values, and a number which 

do not (e.g. slide 3, fig. 6.1) are due to the presence of stones, rather than areas of ash 

deposit. This contrasts with the slide areas below the stone line, where a greater range 

of values is seen, albeit still with a substantial proportion with values of 100 per cent. 

This seems to confirm the role of the stone line as the boundary of the most heavily 

faunalturbated area, as posited above (see 6.2). 

Figures 6.13-6.15 depict the standard deviations of the 1 cm depth means, projected 

against the stratigraphic profiles from which the samples had been taken. The single 

most frequent individual value for total faunalturbation is 100%, and a high proportion 

of the lcm depth means are composed entirely of 100% values and thus have standard 

deviations of zero. In fact such values account for all but one of the zero-value 

standard deviations. Plotting zero-value and non-zero values of standard deviation 

gives an approximate distribution of variation in coverage by the traces of 

faunalturbation. As can be seen in figures 6.13-6.15 there is an increased tendency for 
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variation to exist with depth. There is also a greater tendency for variation to occur in 

the ash deposit type units than in the 'A' horizon type units. The spatially abrupt 

occurrence/non-occurrence of variation is a reflection of the scale at which the 

processes of faunalturbation occur, which are in tum determined by the size of the 

agents. Because of the distribution of the actual individual values of total 

faunalturbation traces, non-zero values of standard deviation also can be taken as a 

proxy of some degree of non-faunalturbation, i.e. stratigraphic survival. The abrupt 

occurrence/non-occurrence of variation and thus of survival/non-survival of 

stratigraphy emphasises the 'patchy' nature of the preservation of the archaeological 

units (see 6.2). There are only a few limited areas in the thin sections showing no 

evidence of faunalturbation, and these are rarely larger than 2 cm2 (see appendix 4). 

6.3.3 Distribution of the Traces of Faunalturbation; 10 em depth based means. 

To allow comparison of the micromorphological evidence for faunalturbation with the 

data concerning the soil properties a further set of means of the traces of 

faunalturbation has been calculated. The means have been calculated over 10 cm depth 

intervals for the slide areas that cover the upper 40 cm of each profile. Whereas the 

data so far presented has been in the form of the aggregated totals of all the traces of 

faunalturbation, in this section the contribution of the different forms of faunalturbation 

traces will be considered. The different categories of faunalturbation trace tend to be 

associated with different groups of fauna (see 5.3.3 and 6.3.1.) Thus it may be possible 

to examine the relative impact of the different functional groups. The averaging of the 

thin section data over 10 cm intervals will also allow statistical analysis of the 
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relationship between the soil properties and the traces of faunalturbation, thus testing 

some of the relationships posited in the models, which analysis is detailed below (see 

8.2). This breakdown of the data is presented in table 6.4. 

Table 6.4 Averages of Percentage Slide Area Coverage bI Faunalturbation Traces 
Site Depth T.B.F Fabric Mamillated Bacillo- Textural Other 

Pattern Cxlinder 
Beafield 10 90 X 4 1 3 X 
Beafield 20 89 X 6 1 4 X 
Beafield 30 74 X 10 3 X 
Beafield 40 70 1 8 5 X 

West- 10 100 X X X X X 
Brough 
West- 20 73 X 2 X 

Brough 
West- 30 72 1 1 2 

Brough 
West- 40 92 X 1 X X 

Brough 
Tofts 10 87 X 7 6 X X 
Tofts 20 93 X 1 5 2 
Tofts 30 85 X 2 4 X 
Tofts 40 76 X 1 13 X 

T.B.F: Total Biological Fabric X: presence of trace type at less than 1 % area coverage. 

The category of 'other' covers a variety of different types of excremental pedofeature, 

all associated with the larvae of the coleoptera and diptera. The percentages are 

rounded to the nearest 1 %. Where an 'X' appears this records the presence of the 

feature at an average level less than 1 %. This allows some insight as to the relative 

importance of the different functional groups over the depth to which the fauna and soil 

properties have been jointly sampled. The most noticeable reduction in is the 

percentage coverage by the total biological fabric category ('TBF' in table 6.4). It is 

known that compression of the soil by livestock trampling may be most significant in 

the upper part of the soil (White 1997: 40). The apparent reduction in the total 

biological fabric may be in part be due to less compression of discrete excremental 
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pedofeatures, particularly the mamillated and bacillo-cylindrical forms associated with 

earthworms and enchytraeids respectively. It is noticeable that these two categories of 

excremental pedofeatures are often more abundant with depth. Looking at the total 

percentage area coverage, however, suggests that some of the apparent decrease in 

faunalturbation traces with depth may be genuine. Such variation may be due to 

variation in the predominant functional group at different depths (see 8.2). 

The greatest changes in the apparent faunalturbation over depth occurs at the site at 

Westbrough. These changes correspond to changes in the observable vertical 

distribution of archaeological deposits and soil units. In comparing field and thin 

section observations it is noticeable that variation in levels and nature of 

faunalturbation do partly correspond to variation in the unit types delineated above 

(5.3). The relationship is not, however, uncomplicated, as can be seen by comparing 

tables 6.1-6.4 and figures 6.1-6.3. 

6.4 The Evidence of Faunalturbation on the Archaeological Sites: Caesium 137 

Distribution 

In figures 6.16 to 6.18 profiles of the distribution of l37Cs activity as a percentage of the 

total site inventory are given for the different sites. Each is accompanied by a negative 

exponential curve. The exponential represents a model of the distribution of the 137Cs 

after initial fixation has occurred. This provides a base line against which the actual 

l37Cs distribution may be compared. Variation from the exponential curve can be 
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assumed to be largely due to the net effects of adsorbed 137CS movement due to the 

mixing of the soil or sediment caused by the activity of the soil fauna (6.2.4) (Tyler et 

al. 2001). 

The first point to note with regard to all the sites is that the observed decline in activity 

concentration with depth is much less abrupt than the exponential fonn of the initial 

fixation curve. As such the caesium is distributed in significant quantities at greater 

depths, and somewhat more evenly, than would be the case if there had been no change 

from the initial distribution of the I37Cs. It would appear that one effect of 

faunalturbation is to carry a significant amount of 137CS to some depth. If the 

distribution of the radiocaesium is compared with the distribution of other features of 

the profiles the process of redistribution and thus faunalturbation may be elucidated 

further. 

If the depth of the stone lines and the base of the current 'A' horizons (discussed above 

in section 6.2) are compared with the distribution of caesium in figs. 6.16 - 6.18, it 

becomes apparent that the bulk of the caesium activity lies above these two profile 

features. Given that these features probably represent the boundaries of the majority of 

ongoing activity by certain functional groups (see 7.2) it is not perhaps surprising that 

the bulk of the caesium falls above them. It could be argued that the majority of 

faunalturbation is occurring in the upper levels of the sites. This poses an apparent 

problem in relation to the micromorphological traces of faunalturbation, which is that 

high levels of faunalturbation traces are found at all depths throughout the profile, as 
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will be discussed in chapter nine. There are, however, still differences between the 

effects of faunalturbation on the larger and smaller particle size fractions in the soil. 

Although the measured 137 Cs profiles do not have pronounced peaks in them, the 

highest measurements can be seen, and they all occur at a considerably shallower level 

than the stone lines. This is probably due to the fact that the fine fractions to which the 

caesium is adsorbed are ingested by soil fauna, in particular endogeic earthworms, and 

may be excreted at any depth to which the organism may move. By contrast, the only 

direction that the larger fraction can move under the influence of invertebrate 

faunalturbation is down. It seems therefore that the caesium bearing material is 

reworked quite intensively, but in a bounded area, with a marked reduction in 

reworking with depth within that area. As such the I37Cs profiles have not yet been 

completely homogenised over the approximately thirty-five years since deposition. 

Below the level of the stone line and the base of the current 'A' horizons the amount of 

I37Cs falls off markedly. But there is still a detectable amount, and more than in the 

initial fixation curve. This suggests that there is some fine material being transported 

down the profile. At the low levels of activity recorded, this may be due to the effects 

of the deep burrowing anecic earthworms. The fine material may have been 

transported to depth or by being incorporated into the linings of the burrows that this 

group produces (Edwards & Bohlen 1996: 114). The implications of this interpretation 

are discussed in chapter nine. However, given the low levels of 137CS activity it is also 

possible that displacement through the profile has been due to material being washed 
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through soil pores (including burrows created by the soil fauna) (Muller-Lemans and 

van Dorp 1996). 

It has already been noted that the 137CS profiles have not been homogenised over the 

period since deposition, despite the suggestion that this should occur within 5-20 years 

(Muller-Lemans and van Dorp 1996). Using the two 137CS distributions from each site 

it is possible to calculate the fraction of soil that has moved within each lcm slice of the 

profile (see 5.2.5). This the mean net annual fraction of soil is presented in figs. 6.19-

6.21. It is noticeable that the annual fraction of soil moved reduces rapidly with depth. 

Most of the variation in the fraction of soil moved occurs above the stone line, with the 

fraction of soil moved below the stone line consistently low, generally equivalent to 

between 5-10% in each lcm level over the 35 years since 137CS deposition. The upper-

most samples are those in which the highest fraction of the soil has moved, and even in 

these the proportion that has moved is equivalent to 75-85% over 35 years. 

From the fraction of soil moved it possible to calculate the mass of soil moved (see 

5.2.5). The mean net rate of soil mass movement by depth is presented for the three 

archaeological sites in figures 6.22-6.24. From this the net rate of soil movement for 

the site as a whole may be calculated, as presented in table 6.5. 

Table 6.5 Mean Net Rate of Soil Movement 
Site Beafield Tofts Westbrough 

17.1 22.3 22.3 
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From figs. 6.22 to 6.24 and the above table it can be determined that between 80-95% 

of the net rate of soil movement occurs above the stone line and 85-100% of the net rate 

of soil movement occurs above the base of the 'A' horizon. This again ties in with the 

concept that the upper parts of the site profiles form a particularly biologically active 

region, that the stone lines and the bases of the current 'A' horizons constitute the 

boundary of such a region. In considering both the fraction of soil moved and the rate 

of soil movement, it should be noted that these are net figures, effectively the minimum 

amount of movement to give the currently observed distribution of 137es. Given the 

precise mechanisms of faunalturbation (see chapter two), in particular the casting 

patterns of the anecic and endogeic earthworms (2.3 and 2.4 respectively), with the 

probability of horizontal movement and the movement of material up and down the 

profile, it must be assumed the actual rate and mass of soil movement must be 

somewhat greater than the cited net figures. In particular, the apparent complete stop of 

137es movement toward the bases of the radiocaesium profiles need not indicate that 

there is no faunalturbation occurring at these depths. The apparent cessation is because 

137es cannot be reliably detected at the concentrations in which it may be present, and 

thus there may be no faunalturbation, or simply little faunalturbation. 

The figures of mass movement given above may be compared with those calculated by 

Stein (1983). These vary between 4.4 and 43.4 Kg M-3Yr"1. Stein suggests on the basis 

of her estimate that a mounded archaeological site could be completely reworked in as 

little as 51 years, although this is acknowledged to be a minimum time period (Stein 

1983). The mass movement rates are 2-2.5 times greater than those calculated for the 
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Orcadian sites. A further comparison could be made with surface casting rates 

calaculated for a variety of sites n Britain (collated in Edwards & Bohlen 1996: 200). 

The mean annual rates of soil movement are similar to the lower range of these 

calculations. Given that the surface casting species are primarily anecic earthworms, 

which predominantly move vertically through the soil, and that the 137CS distributions 

are essentially based on vertical movement, such an apparent agreement is unsurprising. 

Stein's estimates are based on data, itself associated with significant uncertainties 

(Satchell 1958), derived from non-archaeological situations. Further, for the purposes 

of calculating the rate of movement, the assumption was made that the invertebrate 

activity can be regarded as effectively as high throughout the archaeological profile as 

it is in the uppermost part of the profile (Stein 1983). The evidence for the distribution 

of the traces of faunalturbation throughout this chapter demonstrates that this is not the 

case, at least in regard to the sites sampled for this study. The change in mass 

movement rate will effect the time taken before a volume of soil or archaeological 

stratigraphy is completely mixed. Such time periods have been derived from the 137Cs 

data, and are given in figs. 6.25-6.27. The time periods are long, and in the case of the 

uppermost region are probably too long. It seems improbable that it takes over 100 

years for the uppermost lcm to be completely mixed. Two points should be made here. 

The first is that these time estimates probably do not take sufficient account of 

horizontal movement, which is probably particularly significant in the upper part of the 

profile due to the effects of the endogeic earthworms (Edwards & Bohlen 1996: 202). 

The second point is that movement is shown to occur down to a considerable depth, but 
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that the variation with depth in the relative length of time taken to completely rework 

the soil or sediment is very considerable. 

The I37Cs based rates are based on the actual movement of soil on the sites. While the 

I37Cs based mass movement rates are net rates, and thus probably underestimate rates 

of movement, they are probably a more accurate reflection of the sorts of rates of 

movement due to faunalturbation, and also their relative variation with depth, certainly 

with regard to archaeological sites in Orkney. 

6.4 The Evidence of Faunalturbation on the Archaeological Sites: Summary. 

The three strands of evidence discussed above all demonstrate that a significant level of 

faunalturbation has occurred on all three of the sites. In some respects the pattern of the 

evidence presents common trends. The evidence suggests that faunalturbation is 

ongoing on all the sites, but that the majority of current activity is constrained to a 

relatively shallow layer, corresponding approximately to the current' A' horizon of the 

sites. There are also substantial dissimilarities. The depths of the' A' horizons and the 

stone lines vary considerably between sites. The micromorphological traces of 

faunalturbation show considerable variation in area coverage between the sites, 

particularly below the depth of the current 'A' horizon. These variations have 

implications for the faunalturbation models that will be discussed in chapter nine. 
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Chapter Seven 

Results 2: Agents and Conditions of Faunalturbation 

7.1 Introduction 

Models based on a system composed of a number of components have been posited in 

chapter three. The active components in the faunalturbation system that are of concern 

to the study are the fauna and the soil properties, that is the agents and conditions of 

faunalturbation. The results of faunal surveys and investigations into the soil properties 

are presented in this chapter. This is followed by the analysis required to test the 

hypotheses presented in 3.10.1, in the following chapter. 

7.2 Faunal populations. 

7.2.1 Faunal populations: endogeic earthworms. 

The main observation to be made with regard to the distribution of the endogeic 

earthworms is the fact that the majority, both on and off-site, are found in the upper half 

of the profile, usually with over 50% in the top lOcm. All the sites have endogeic 

earthworms present, although in the case of the farm mound at Beafield the count is 

very low. In general there are more endogeic earthworms in the controls than the 

archaeological material (see figs. 7.1 and 7.2 and Appendix 2). 
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7.2.2 Faunal populations: anecic earthworms. 

All the sites sampled yielded anecic earthworms (see fig. 7.3 and 7.4 and Appendix 2). 

As with the endogeic earthworms the trend was towards the majority of the anecic 

earthworms being in the upper half of the sampled profile. Although this distribution 

was not as pronounced among the anecic earthworms, generally at least 50% were in 

the top 10 cm. One substantial contrast that emerges between the archaeological and 

control site distributions is the tendency for there to be much higher numbers of anecic 
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earthworms at the archaeological sites than the control sites, in the cases of Beafield 

and Westbrough amounting to a difference of almost an order of magnitude. This 

difference may be explicable in terms of the greater depth of the farm mounds and thus 

the greater availability of suitable habitat. The lower counts of endogeic earthworms 

on the farm mound sites may reflect the effects of competition. 

Fig. 7.3 Distribution of Anecic Earthworms by Depth, 
Archaeological Sites 
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Two further issues need to be considered in relation to the survey of the earthworm 

population surveys. The first is the use of counts rather than biomass measures. 

Biomass measures are often used to supplement counts of individuals. as counts will 

not differentiate between very small and large individuals (Edwards and Bohlen 1996: 

96). Given the nature of the faunalturbation mechanisms associated with both groups 

of earthworms (see 2.3 and 2.4) variation in size between individuals may equate with 

variations in rate or magnitude of soil redistribution (Edwards and Bohlen 1996: 96). 
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Biomass as a measure of earthworm population has certain problems. Measurement of 

live mass requires weighing soon after collection, which is a problem when large 

numbers of samples are taken in the field (Edwards and Bohlen 1996: 99). Further, live 

weight can vary considerably according to gut content, which may form as much as 

20% of total live weight, and the state of hydration of the earthworm (Edwards and 

Bohlen 1996: 83, 100). Due to the logistical problems of live mass weighing during 

prolonged fieldwork, it was not possible to obtain reliable measures of biomass. 

The second issue is the potential implications of species diversity. As has already been 

noted, the effects of species diversity on soil redistribution can in large part be 

accounted for through the use of the ecological groups (see 2.3 and 2.4). Species 

diversity within each group might be thought to have some impact on the rates of 

faunalturbation, and the possible impact of soil properties and ecological processes 

have been noted (see tables 2.1 and 2.2). In practice, the species diversity within the 

two groups tends to be low, with only three species of anecic earthworms being 

commonly found in Britain, with the samples from all the sites on Sanday being 

dominated by L. terrestris. In the case of the endogeic earthworms there are five 

species that occur commonly in Britain (see 2.3). In the case of the samples from 

Sanday, A. calignosa was the dominant species. Such a narrow range of diversity, 

especially the seemingly impauperate Apporectodea assemblage, is to be expected in 

small island settings such as Sanday (Begon et ai. 1990: 873). There is unlikely to be a 

significant degree in variation in soil distribution attributable to intra-group species 

diversity given the low actual level of such diversity. 
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7.2.3 Faunal population: enchytraeid worms. 

The pattern of distri bution of the enchytraeid worms is quite complex (see fig. 7.5 and 

fig. 7.6 and Appendix 2). Generally the majority are di stributed within the upper half 

of the sampled profile. In contrast to the other organisms so far di scussed, every si te 

has some enchytraeids in at least one of the lower two of the sampling depths. 
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The control sites tend to have more enchytraeids overall and in particular in the top 10 

cm. However the onsite samples tend to produce larger counts in the deeper samples. 

A possible explanation of this may lie in the use of existing pore spaces by enchytraeids 

(Didden 1990). There may be in greater abundance of these pores at depth in the farm 

mounds due to the activity of the anecic earthworms, which are in greater abundance on 

the farm mound sites (see above, 7.2.2). 
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7.2.4 Faunal populations: Diptera and Coleoptera. 

The two remaining functional groups of fauna, dipteran and coleopteran larvae and 

adult coleoptera will be dealt with together in this section. With regard to the adult 

Coleoptera, a single example has been recovered from the Tofts control site. Such a 

small count would suggest that burrowing adult coleoptera are an insignificant group 

with regard to the faunalturbation of archaeological sites, and as such no further 

consideration of this group will be made. 
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The larval fauna is distinguished by the small mean size of the counts on most of the 

sites (see fig. 7.7 and 7.8 and Appendix 2). The fauna seem to be distributed towards 

the top of the soil profiles, but the small counts make it difficult to be fully confident of 

this. There also seems to be no great difference between archaeological and control 

samples in terms of numbers or patterns of distribution. 
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7.2.5 Faunal populations: summary and analysis. 

Two sets of charts combining the mean faunal counts are presented below. In the first 

set of charts (fig. 7.9 and fig. 7.10) the mean combined counts of the anecic and 

endogeic earthworms and the larvae. This aggregate has been drawn together to see if 

there are any trends that seem to apply to all fauna. Enchytraeids are excluded from 

this aggregate as when they do occur, they tend to be in numbers of a different order of 

magnitude to the other fauna, thus perhaps giving greater significance to trends that are 

largely related to the enchytraeids. A second aggregate has been calculated which also 

includes the mean counts of enchytraeids, for the purposes of comparison (see fig 7.11 

and 7.12). 
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Fig. 7.10 Distribution of All Non-Enchytraeid Fauna by Depth, 
Control Sites 
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From examining the first of the aggregate charts it is apparent that the difference 

between the upper most part of the profile, particularly the top 10 cm, and the lower 

part of the sampled profile becomes even greater when the functional groups are 

aggregated: there is a strong tendency for the fauna to 'cluster' in the upper part of the 

profiles, particularly in the top 10 cm. While this effect is found at both the control and 

archaeological sites, it is more pronounced on the control sites, further suggesting that 

the greater depth of unconsolidated soil/sediment in the farm mound sites provides 
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more habitat space, at least for functional groups which are able to utilise the deeper 

regions. 

Fig. 7.11 Distribution of All Fauna by Depth, 
Archaeological Sites 
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Given this strong apparent relation between depth and faunal population it is necessary 

to consider the issue of whether depth itself constitutes a soil property, its relationship 

to the other properties and the role it plays in the faunalturbation system. This issue is 

discussed with the relevant statistical procedures (8.2.2), with the emergent 
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implications for the survival of stratigraphy in deep sites such as the farm mounds 

discussed in chapter nine. 

Fig. 7.12 Distribution of All Fauna by Depth, 
Control Sites 
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The issue of the difference or similarity between the faunal populations between the 

archaeological and control sites must now be addressed. As it is possible that there 

may be factors influencing the faunal populations that are unique to archaeological sites 

it is necessary to compare the populations of the different functional groups between 

the archaeological and control sites. To do this the sets of population counts for each of 
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the functional groups have been combined into two sets of data, one for the 

archaeological sites and one for the control. Because this data is not normally 

distributed, the Wilcoxon-Mann-Whitney 'u' test has been selected as the most suitable 

(Pett 1997: 177). This is a test that allows the distributions to be compared and thus 

estimate whether the different data sets are likely to come from different populations or 

from one population. If there is a significant impact from some unknown factor on the 

archaeological site populations, these populations should be statistically distinguishable 

from the control site populations. The null hypothesis of the tests is that there is no 

significant difference in the distribution of the data, and thus the two samples can be 

regarded as coming from the same population. 

Table 7.1 Outcomes of Mann-Whitney 'U' Tests on Archaeological and Control 
Populations. 

Functional N Mean Rank Z P 
Group Archaeological Control 

Sites Sites 
Endogeic 96 45.05 51.95 -1.408 .159 

Earthworms 
Anecic 96 50.93 46.07 -1.040 .298 

Earthworms 
Enchytraeids 96 50.73 46.27 -.815 .415 
Coleopteran 96 44.54 52.46 -1.837 .066 
and Dipteran 

Larvae 
Non- 96 48.02 48.98 -.178 .859 

Enchytraeid 
Fauna 

Total Fauna 96 49.42 47.58 -.326 .744 

Z= standardised test statistic P= significance level 

As can be seen from the results of this analysis, the null hypothesis holds in all cases 

with a = .05, i.e. the 95% confidence level. Thus the populations of the archaeological 

and control sites cannot be regarded as significantly different. 
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7.3 Soil properties 

7.3.1 Soil properties: pH. 

The range of pH across the archaeological and paired control sites and by depth is 

summarised in table 7.2. Raw data is given in Appendix 2. 

Table 7.2 Mean pH and standard error of the mean of soils at all sites (n=8) 
Depth Beafield Beafield Westbrough Westbrough Tofts Tofts 
(em) Control Control Control 

10 7.5± .16 7.3± .05 5.4± .07 4.4± .27 6.7± .27 6.9± .10 
20 8.0± .10 7.3± .03 6.1± .14 4.4± .09 7.5± .17 7.5± .09 
30 7.8± .20 7.7± .11 6.9± .04 4.9± .13 7.8± .10 7.7± .15 
40 8.1+.11 7.6+ .14 7.I± .09 4.8+ .34 8.1+.21 7.5+ .10 

A number of patterns can be observed in the data. The first is that the paired onsite and 

off-site results are generally similar to each another. The results from Beafield and 

Tofts, both onsite and control, are similar, while the values from Westbrough are 

considerably more acidic. This contrast reflects the fact that Beafield and Tofts lie on 

shell sands (see fig. 4.1). The control site pH determinations are typical of the different 

soil series to which they belong (Futty & Dry 1977: 127). As has been discussed above 

(see 3.4.1) some of the materials of which farm mounds are composed include cut 

turves, burnt or unburnt, with ash material being predominant. The similarity between 

onsite and off-site pH would suggest that such materials are likely to be derived from 

somewhere in the vicinity of the farm mound. However, the higher pH of the samples 

from Westbrough in comparison with the Westbrough control site could be taken as 

evidence that some of the material has been transported from a greater distance i.e. 

from the more base-rich shell sand areas which are over a kilometre away from the site. 

This interpretation will be considered further in the context of the particle size 

distribution results below (see 7.3.3). 
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Perhaps the most significant pattern is the generally lower pH of the uppennost sample 

relative to the other samples in each profile. The greater acidity of the upper part of a 

soil profile, particularly mineral soils in the temperate zone, is often due to the greater 

proportion of organic matter incorporated in that level of the soil and its subsequent 

decomposition (Brady 1984: 268). Leaching may also have an effect (White 1997: 

135). It is also noticeable that the difference between the mean pH in the top lOcm and 

the mean pH of the lower samples tends to be greater in the samples from the 

archaeological sites than the control site samples. The significance of this pattern with 

regard the distribution of the fauna is discussed below (see 8.2.3). 

7.3.2 Soil properties: loss on ignition. 

The most notable pattern in the mean percentage mass loss on ignition is the generally 

much higher values for the top 10 or 20 cm of each profile. The implications of this 

pattern for the distribution of the soil fauna are discussed below (see 8.2.3). 

Table 7.3 Mean mass loss on ignition of soils and standard error on the mean as a 
percentage at all sites (n=8). 

Depth Beafield Beafield, Westbrough Westbrough Tofts Tofts 
(em) Control Control Control 

10 13.5± .4 27.2± .3 17.7± .6 21.8± 1.0 21.8± .5 13.9± .6 
20 13.9±2.9 16.8± .2 7.5± .9 13.9± .6 15.2± .9 13.4± 1.1 
30 5.8± .6 9.1± .6 6.6± .2 11.4± .9 9.8± .6 6.3± .6 
40 9.1+ 3. 9.7± .3 6.2± .3 15.6±2.2 7.4± .8 6.7± .4 

The raw data is presented in Appendix 2). It is noticeable that there is some variation 

between the loss on ignition figures of the archaeological and control samples, but that 

this is not consistent. The main source of variation in organic matter input is variation 
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in current land use (Davies et ai. 1993). As such the variations between the 

archaeological and control site pairs of results probably reflects these differences. For 

example, while at Beafield and Westbrough livestock do graze to some degree on the 

mounds, the animals are more often in the fields just around them, i.e. the areas in 

which the control samples would have been taken. As such the higher loss on ignition 

figures for the off-site profiles in these instances is likely to be due to greater organic 

input in the form of manure. 

7.3.3 Soil Properties: particle size distribution. 

In terms of patterns within the sites the most apparent is the broad tendency for the 

relative clay content of the soil to increase with depth. This is a phenomenon 

associated with normal illuviation processes typical of the types of soils sampled 

(White 1997: 173). The raw data is presented in Appendix 2. 

Table 7.4 Mean particle size distribution and standard error of the estimate as a 
percentage, Beafield sites (n=8) 

Depth Beafield 
(em) Clay Silt 

10 4.4± 1.7 37.5± 9.1 
20 4.5± 1.2 44.7± 4.2 
30 7.8± 1.5 55.0± 5.5 
40 7.0± .9 55.4± 2.8 

Sand 
54.4± 11.3 
48.1± 4.7 
34.4± 6.3 
29.8±2.2 

Clay 
2.2± .3 
1.8± .3 
2.6± .3 

6.0± 1.6 

Beafield Control 
Silt 

19.9± 4.1 
15.9± 2.6 
19.6± 1.0 
42.3±9.9 

Sand 
76.1± 4.0 
81.8± 2.8 
77.6± 1.4 

52.7± 1l.5 

Table 7.5 Mean particle size distribution and standard error of the estimate as a 
percentage, Westbrough sites (n=8) 

Depth Westbrough 
(em) Clay Silt 

10 3.2± .4 44.6± 1.8 
20 
30 
40 

6.9±2.0 
5.4± .1 
5.3± .3 

55.6±2.9 
52.3± 1.7 
48.l±4.0 

Sand 
51.0±2.2 
34.2±5.1 
40.7± 1.8 
34.9±4.2 

Clay 
1l.3± 1.2 
8.9±.5 
12.3± .6 
13.4± .7 

Westbrough Control 
Silt 

64.9± 3.1 
53.7± 1.4 
62.0± 1.2 
62.9± .7 

Sand 
23.6±4.4 
28.2± 1.1 
25.1± 1.4 
23.1± .8 
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Comparing the results from the archaeological sites and control sites may throw further 

light on the issue of the source of the materials of which the farm mounds are 

constructed, as discussed above with regard to pH determinations. The range of sand 

contents across the archaeological sites is less than the range across the control sites. It 

is possible to infer from this that the soil derived materials that have accumulated 

during the formation of the sites were a mixture of soils that originally had a variety of 

particle size distributions that have become 'averaged' through the processes of 

bioturbation. 

Table 7.6 Mean particle size distribution and standard error of the estimate as a 
percentage, Tofts sites (n=8) 

Depth Tofts 
(em) Clay Silt 
10 2.5± .4 23.7± 1.6 
20 4.1±.5 25.2± 2.2 
30 8.3± 1.8 37.6± 4.7 
40 6.7+ 2.1 38.8+ 5.1 

Sand 
73.5±2.1 
70.6±2.4 
41.8± 8.3 
50.6+6.6 

Clay 
5.2± 1.8 
3.8±.5 

7.0±2.2 
5.6+2.0 

Tofts Control 
Silt 

32.2± 6.2 
31.5± 4.2 
32.3± 6.3 
29.4+ 2.5 

Sand 
60.4± 8.7 
63.2± 5.5 

54.5± 10.1 
58.3+ 11.8 

Looking in more detail at the different pairs of archaeological sites and controls this 

interpretation can be examined in greater detail. At Tofts there is little difference 

between the onsite and off-site particle size distributions. It is noteworthy that Tofts is 

fairly centrally located within an area of shell sand deposition. By contrast Beafield is 

at the edge of such an area of shell sand, and the particle size distribution of the site has 

a lower sand content than the off-site control. Here materials from the shell sand soils, 

predominantly of the Fraserburgh series, may have been mixed with less sandy 

materials, such as the nearby soils of the Bilbster series (Futty & Dry 1977: 166). In 

contrast, the particle size distribution from the farm mound at Westbrough has a higher 

proportion of sand than that of the control site, which would be classified as belonging 
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to the Bilbster series. Sandier materials would be available most closely in the form of 

an area of skeletal Fraserburgh soil to the west of the site (Davidson et al. 1986). It 

would thus appear that the farm mounds are composed of materials derived from across 

the area in which they are sited and as such may contain soils and sediments of a 

variety of types. 

7.3.4 Soil Properties: bulk density. 

Table 7.7 Mean bulk density of soils at all sites (g cm·3) (n=8) 
Depth Beafield Beafield, Westbrough Westbrough Tofts 
(em) Control Control 

10 .66± .03 .47± .03 .76± .03 .55± .02 .72± .01 
20 .69± .04 .72± .04 .93± .02 .85± .05 .88± .02 
30 .69± .01 .90± .04 .85± .04 .84± .05 .94± .05 
40 .67+ .02 .83+ .03 .89± .02 .68+ .02 .90+ .04 

Tofts, 
Control 

1.03± .04 
1.07± .05 
1.09± .03 
1.11+ .03 

The raw data is presented in Appendix 2. The mean bulk densities of the different sites 

follow a standard pattern of generally increasing with depth, as the mass of soil above 

compresses the lower parts of the soil profile (Brady and Weil 1999: 49). The sites, as 

a whole, tend to have the low bulk densities associated with loamy grassland soils 

(Brady and Weil1999: 390). These relatively low values have implications for the 

usefulness of bulk density as a factor in explaining faunalturbation as will be discussed 

in the following chapter (8.2.1). 

7.3.5 Soil Properties: moisture. 

The main trend to note with regard to the percentage moisture content of the soils and 

sediments is that the archaeological samples generally have a lower moisture content 

than the associated control sites. The raw data is presented in Appendix 2. The 
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differences are explicable in terms of the difference in relief between the archaeological 

and control sites. 

Table 7.8 Mean percentage moisture content of soils by mass at all sites (n=8). 
Depth Beafield Beafield, Westbrough Westbrough Tofts Tofts, 
(em) Control Control Control 

10 
20 
30 
40 

33.3± 0.6 49.4± 3.6 
33.1± 0.3 39.8± 4.6 
33.1± 0.3 28.8± 3.7 
31.0± 0.4 31.3± 6.3 

41.2± 1.3 
29.8± 1.7 
31.2± 0.3 
30.2±0.9 

52.2± 4.5 
37.1± 2.5 
38.5± .3 

46.2± 1.6 

21.4± 12.2 27.5± 2.9 
22.2± 1.9 26.8±0.9 
17.6± 4.1 21.4± 2.8 
19.2± 5.7 21.8± 3.5 
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Chapter Eight 

Explaining Faunalturbation on Archaeological Sites 

8.1 Introduction 

The models and the hypotheses drawn from them (chapter three) have required the 

collection of a variety of sets of data to test them, which have been presented in the two 

preceding chapters. In this chapter those hypotheses relating to the systemic 

relationships in the faunalturbation system will be tested through the application of 

statistical analysis to the data presented in the preceding chapters. 

8.2 Relationships Between Soil Properties and Fauna 

8.2.1Relationships between soil properties and fauna: introduction. 

As part of the faunalturbation system causal relationships are posited between the soil 

properties and the population sizes of the different functional groups and thus the 

structure of the community of soil fauna, and the impact that they are likely to have on 

archaeological stratigraphy (see fig. 3.1). In order to test whether such relationships 

exist, it was decided that analysis by multiple linear regression should be used. To 

generate a regression with the greatest likely resolving power the original soil 

propelties were examined to ensure that it was useful to incorporate them. This was 

done by calculating Kendall's tau coefficient, a nonparametric test of association (see 

tables 8.1 and 8.2 below). The test was selected to take account of the sample sizes and 

the deviations from normality in some of the data. From this it was found that the loss 

on ignition and pH determinations were most often significantly correlated with the 

different faunal groups. Particle size distribution was found to be less consistently 
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correlated with the different groups, although it was still deemed to be sufficiently 

frequently correlated to be included in the initial multiple linear regressions. As has 

been discussed above, low bulk density values were the norm across all sampling areas. 

Research has indicated that it requires high levels of compaction, reflected in high bulk 

density, to cause measurable effects on biological activity (Joschko et al. 1989, 

Langmaack et al. 1999). While there is a statistically significant bivariate correlation 

between bulk density and numbers of endogeic earthworms ('t=.380, n=32), at the level 

of bulk density found on the sites (see 7.3.4) it is more likely that this reflects the effect 

of the fauna on the soil, in effect the reverse of the relationship originally posited. As 

such bulk density has not been included as a term in any of the multiple linear 

regressions that are subsequently presented. 

Multiple linear regression was selected as the means of analysing the relationships 

between a given faunal population and the soil properties discussed above. Multiple 

linear regression is a parametric technique. The technique allows the effects of 

independent variables on a dependent variable to be estimated, while taking account of 

possible interactions between the independent variables (Lindeman et al. 1980: 193, 

Polit 1996: 287). Although there are some deviations from the normal distribution in 

some of the data sets, it was decided to proceed with this technique on two grounds. 

The first of these was that multiple linear regression is relatively robust with regard to 

deviations from the normal distribution. The second is a variation of the first: the 

assumption of normality on which the test is based is one of multivariate normality. As 

such combinations of variables may be normal in multidimensional terms even if there 
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are deviations from univariable normality (Polit 1996: 284). The conformity of the 

variables to the assumptions of the tests was assessed by checking plots of standardized 

predicted values versus standardized residual values. 

Two initial regressions were performed. One was undertaken using data from two of 

the archaeological sites, Beafield and Westbrough. The second was undertaken using 

data from the control sites associated with Beafield and Westbrough. Data from Tofts 

and the associated control site were reserved for testing any apparently significant 

model that emerged. Examination of the residual plots from these initial regressions 

revealed that both regressions in fact significantly violated assumptions of linearity and 

homoscedasity and to a lesser degree that of normal distribution. Use of dummy data 

sets revealed that these violations were largely due to the presence of a large number of 

zero values for the different faunal populations. These zero values effectively skewed 

the distributions. Where data has a skewed distribution it is normal to use a 

mathematical transformation, in this case a logarithm or square root (Pett 1997: 53). 

However, these transformations do not work where the skewing is due to a high 

number of zero values. As such alternatives to the original approach had to be sought. 

Two approaches were selected. The first was to return to the results of the series of 

separate bivariate correlations that had already been calculated. This approach would 

allow the relationships between individual independent and dependent variable to be 

tested. Such an approach would not be able to take account interactions between the 

independent variables, but would allow all the data collected to be used thus including 
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the full range of population counts, which would test the effects of the soil properties 

on both the abundance and distribution of the different faunal populations. The second 

approach would be to restate the hypothesis under consideration, to allow multiple 

linear regressions to be calculated, and to combine this with a chi-squared approach to 

allow issues relating to presence/absence of fauna to be addressed. 

8.2.2 Relationships between soil properties and fauna: the bivariate correlations. 

The results of the correlations given below are all for Kendall's Tau Coefficient. This 

test was selected for reasons stated above (8.2.1), being the most appropriate test for 

most of the correlations and used for all the tests to maintain consistency and thus 

comparability. The correlations were performed using the statistical package SPSS 

(versions 9 and 10). 

Table 8.1 Summary of Calculations of Kendall's Tau Coefficient Between 
Functional Groups and Soil Properties for samples derived from archaeological 
sites . 

Functional Soil Property 
Group Loss on !gnition pH (aQ.) % of total sand 

Anecic Earthworms .415** -.402** .290* 
Endogeic Earthworms .146 -.663 .109 
Enchytraeids .244* -.474** .315** 
Larvae -.105 .099 -.013 
Non-Enchy. Fauna .427** -.419** .331 ** 
Total Fauna .359** -.577** .289* 
In the table above n=32. The '.' indIcates a correlatIOn at the .05 confIdence level, ' •• ' 

a correlation at the .01 confidence level. 

It was decided to use total sand content as a means of quantifying particle size 

distribution for a number of reasons. The first was the necessity of an interval data set, 

rather than the categorical classification that is derived from the percentages of the 
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three main mineral fractions. Of the three fractions, clay sized particles fonn a small 

proportion of the overall percentage, with a limited range. Percentage sand content 

gave the greatest range. As the figures were percentages, and the clay fraction is 

insignificant, variations in sand content would largely be mirrored in variations in silt 

content. 

An additional observation with regard to the test for a correlation between numbers of 

endogeic earthwonns and percentage loss on ignition is that although the there is no 

correlation at 95% significance, the calculated Tau coefficient is .146, the Tau 

coefficient to be exceeded to achieve 95% significance is .147, meaning that there is a 

correlation equivalent to greater than the 90% level. 

Table 8.2 Summary of Kendall's Tau Coefficient Between Functional Groups and 
S '1 P f ~ I d . d f t I 't 01 roper les orsampies erave rom con ro Sl es. 

Functional Soil Property 
Group Loss on Ignition pH (aQ.) % of total sand 

Anecic Earthworms .423" -.120 .005 
Endogeic Earthworms .533" -.155 .062 
Enchytraeids .681" -.007 .Il5 
Larvae .513·· -.123 .123 
Non-Enchy. Fauna .438·· -.1l5 .048 
Total Fauna .444" -.083 .079 

In the table above n=32. The '*' indicates a correlation at the .05 confidence level, '**' 

a correlation at the .01 confidence level. 

Comparison of the two sets of correlations reveals an apparent difference between the 

role of the soil properties on the archaeological sites and on the control sites. Loss on 

ignition would seem to be broadly significant on both types of site, and will be 

discussed in greater detail below. The positive correlation of sand content with the 
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numbers of anecic earthworms and enchytraeids at the archaeological sites contrasts 

with the lack of such correlations at the control sites. It should be noted that the control 

sites present a bimodal distribution of sand content, with the modes representing the 

two control sites. From this it may be inferred that while the total sand content has 

some influence on the populations of some of the functional group populations, this 

influence is less important than other variations in properties between sites. This is 

reflected in the relatively low coefficients calculated. 

The pH determinations show a contrast between the complete set of negative 

correlations between the populations counts of all the functional groups and pH on 

archaeological sites and the complete lack of correlations between the population 

counts and pH on the control sites. This contrast is probably a product of the particular 

distribution of pH measurements and the non-linear relationship between pH and 

population counts. Most work on the relationship between populations of soil 

organisms and pH in temperate Europe has concentrated on the pH range from 7 

downwards (Edwards & Bohlen 1996: 298, Didden 1993). The result of this work has 

Suggested that when pH falls below 6-6.5 populations of organisms tends to fall as 

acidity increases. The small amount of work on soil organisms in higher pH soils tends 

to indicate that if pH should be higher than 7.5-8, populations are likely be smaller with 

increasing pH. The modes of the distribution of pH determinations for the control sites 

fall above and below the probable optimum ranges for the majority of soil organisms, 

rather than from optimum to sub-optimum conditions, as with the archaeological 
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samples. This has resulted in little contrast between the faunal counts at different pH 

levels, so that the statistical test has not found any correlation. 

Unlike the other soil properties, organic content, as quantified as percentage loss on 

ignition, is significantly correlated with at least some of the functional group 

populations on both the archaeological and control sites. The magnitude of the various 

Tau coefficients associated with the loss on ignition figures could be taken as indicating 

that organic content is the single most important soil property in terms of determining 

the populations of soil organisms. Given the significance of soil organic matter as a 

direct or indirect food source, and the role it plays in moisture retention in the soil, 

which will be important given the low clay content of the soils, it is to be expected that 

percentage loss on ignition should correlate with numbers of organisms (see chapter 

three). 

As has been noted above (see 7.2.5), depth seems to playa significant role in the 

population levels of the fauna. While depth is not an intrinsic property of a soil or 

sediment, being rather a spatial dimension, the role of depth in the faunalturbation 

system requires examination. Kendall's tau coefficients were calculated between depth 

and functional group populations (see table 8.3). The correlations confirm the findings 

from the graphs, with there being a strong inverse relationship between depth and 

faunal population. 
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Table 8.3 Summary of Kendall's Tau Coefficients Between Functional Groups and 
~epth, Archaeological and Control Sites 

Functional Group Archaeological Sites Control Sites 
Anecic Earthworms -.649** -.336** 

Endogeic Earthworms -.353** -.583** 
Enchytraeids -.367** -.520** 

Larvae -.198 -.333** 
Non-Enchy. Fauna -.635** -.524** 

_ Total Fauna -.562** -.577** 

In the table above n=32. The ,*, indicates a correlation at the .05 confidence level, ,**, 

a correlation at the .01 confidence level. 

As depth is not an intrinsic property of soil or sediment, the effect being seen must be 

due to the depth distributed variability of soil properties that do affect the soil fauna. 

Bivariate correlations of depth with soil properties confirm that such variations do 

occur (see table 8.4). 

Table 8.4 Summary of Kendall's Tau Coefficients Between Soil Properties and 
_Depth, Archaeological and Control Sites 
_ Soil Property Archaeological Sites Control Sites 

pH .400** .286* 
Loss on Ignition -.559** -.557** 

_ Percentage Sand -.407** -.160 

In the table above n=32. The ,*, indicates a correlation at the .05 confidence level, ,**, 

a correlation at the .01 confidence level. 

This would tend to suggest that depth per se is not significant, but that depth related 

distribution of soil/sediment properties are significant. Another matter, which may be 

considered here, is that there may be other soil properties that have not been measured 

that affect the faunal populations. Comparing the amount of variation that the tau 

coefficients for depth and fauna account for with that accounted for by the Tau values 

of the soil properties and fauna shows that similar levels of variation are accounted for. 
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This suggests that no such unmeasured properties that have significant depth distributed 

variability exist. 

Although the Tau coefficients most of the functional groups are highest with loss on 

ignition, and are in some cases highly statistically significant, i.e. the 0.01 significance 

level, the Tau coefficients are not particularly high in absolute terms. Given the 

Complexly interacting nature of the soil environment this is unexceptionable. The 

models advanced in chapter two posit a range of ecological processes that would have a 

role in determining the size and distribution of soil fauna populations. Given that the 

other soil properties have also produced at least some significant correlations, no single 

Tau coefficient is likely to give a very high degree of correlation. The coefficients 

calculated for the different soil properties may also include effects that effectively 

'overlap', that is some of the correlation between pH and anecic earthworms may be 

shared with the correlation between the loss on ignition and anecic earthworm numbers. 

This is because the soil properties are not independent of each other - to follow the 

above example through the organic content of a soil is a factor in the pH of that soil. 

This interaction between variables can be controlled for statistically using multiple 

linear regression, as will be discussed in the succeeding section. 

8.2.3 Relationships between soil properties and fauna: multiple linear regressions. 

As has been stated above, the initial multiple linear regressions calculated were found 

to violate the basic assumptions of the procedure, and as such had to be discarded. To 

circumvent these problems it was decided to restate the hypothesis under consideration 
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to allow the effective sub-sampling of the data to produce sets of data more amenable to 

a multiple linear regression approach. The restatement of the hypothesis was that the 

soil properties affect the abundance of each functional group if they are actually 

present. This allowed a multiple linear regression to be performed for each functional 

group on archaeological sites and on control sites. This restatement has meant that the 

hypothesis was partially tested using multiple linear regression. Other techniques were 

employed to complement and thus more fully test the hypothesis (discussed in 8.2.3). 

Table 8.5 Stepwise Multiple Regressions for Abundance of Functional Group 
Po(!ulations on Soil Pro(!erties on Archaeological Sites (Beafield and Westbrough) 

Dependent N Predictors Predictor Adjusted Predictor Overall 
Variable Selected Coefficient R2 Sigs. Sig. 
Anecic 13 
Worms 

Endogeic 12 Loss on .655 .372 .021 .021 
Worms Ignition 

Enchytraeids 23 pH -.467 .181 .025 .025 
Larvae 4 - - - - -
Non- 21 pH -.633 .369 .002 .002 

Enchytraeid 
Fauna 
Non- 21 pH& -.549 .521 .003 .001 

Enchytraeid Loss on .419 .016 
Fauna Ignition 

Total Fauna 28 pH -.705 .477 .000 .000 
Total Fauna 28 pH& -.584 .650 .000 .000 

Loss on .441 .001 

- Isnition 

The cases used for each of the regressions were selected from the overall data set on the 

basis of the presence of a least one member of the functional group under consideration. 

The regressions are all stepwise regressions, that is the independent (predictor) 

variables are entered one at a time, until adding an additional predictor will make no 

significant impact on the final outcome of the regression. There are other limits to the 

number of variables that can be input into a multiple linear regression. To prevent 

'over-explanation' the number of cases must be at least five times the number of 
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predictor variable (Polit 1996: 284). Because of the smaller sizes of the data sets used 

in these regressions, a selection of two independent variables to be entered into the 

regression had to be made. On the basis of the outcome of the previous bivariate 

correlations it was decided to use the percentage loss on ignition and pH as the 

independent variables. The essential statistics from the two sets of regressions are 

given in tables 8.5 and 8.6. 

In tables 8.5 and 8.6 'N' is the number of cases in the sample, 'predictor selected' refers 

the independent variable(s) selected by the stepwise regression, 'predictor coefficient' 

refers to the Pearson correlation coefficient between each selected predictor and the 

dependent variable. 'Adjusted R2' is the overall amount of variation in the dependent 

variable that the regression accounts for, adjusted for the sample size. 'Predictor 

significances' refers to the statistical likelihood that the bivariate correlations between 

independent and dependent variables has occurred by chance. 'Overall significance' 

refers to the likelihood that the null hypothesis of the whole regression is correct, that is 

that the correlations have occurred by chance. Where a single predictor variable has 

been selected the predictor significance will be the same as the overall significance. 

The first observation is that the data sets for the anecic earthworms and larvae 

functional groups were rejected for running regressions by the statistical package used, 

SPSS, on grounds of insufficient sample size in respect to variability of fauna counts. 

The degree of variation in the different population sizes for which the regressions 

account is variable. The lowest level is for the enchytraeids on archaeological sites is 

.181, that is slightly greater than 18% of variation. 
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Table 8.6 Stepwise Multiple Regressions for Abundance of Functional Group 
Populations on Soil Properties on Control Sites (Beafield and Westbrough) 

Dependent N Predictor Predictor Adjusted Predictor Overall 
Variable Selected Coefficient R2 Sigs. Sig. 
Anecic 11 
Worms 

Endogeic 12 Loss on .726 .479 .008 .008 
Worms Ignition 

Enchytraeids 15 Loss on .703 .455 .003 .003 
Ignition 

Larvae 7 - - - - -
Non- 15 Loss on .761 .546 .001 .001 

Enchytraeid Ignition 
Fauna 

Total Fauna 20 Loss on .835 .680 .000 .000 
Ignition 

The highest level is .680, i.e. 68%, for total fauna on the control sites. The bulk of the 

R2 calculations fall between .350 and .550. Thus while the general level of explanation 

of variation in the different populations by the regressions is useful, it is by no means 

exhaustive. Given that adjusted R2 takes sample size into account, the higher level of 

explanation of the aggregate categories, that is non-enchytraeid fauna and total fauna, is 

perhaps unsurprising. However sample size is not the only consideration in 

determining the overall level of explanation produced by the regressions. The R2 

calculations associated with the archaeological samples are generally lower than those 

of the control samples. This may be due to a slightly varying degree of importance 

between the soil properties and ecological processes between the archaeological and 

control sites. One specific cause of the lower R2 determinations on the archaeological 

samples may be the effect of the larger anecic populations associated with these 

samples. The larger anecic populations would have a greater competitive impact on the 

other groups. Although there are no multiple linear regressions on the anecic 

populations in either the archaeological or control samples which might assist in 
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examining this proposition, the aggregate R2 calculations allow inferences to be made. 

The aggregate population counts contain the counts of anecic earthworms. The 

bivariate regressions discussed above (8.2.3) demonstrate that the anecic populations 

are influenced by soil properties. While the multiple linear regressions calculated for 

the different functional groups must be influenced by the impact of ecological 

processes on the functional groups, the R2 calculated on the aggregate groups will not 

be influenced by the ecological interactions between the functional groups included in 

the aggregate groups. At the same time the effect of the soil properties on the anecic 

populations is included in the calculation of the multiple linear regressions associated 

with the aggregate groups. This being the case, the effective removal of the impact of 

anecic earthworms on the other functional groups from these mUltiple linear regressions 

should result in the R2 figures for the aggregate groups being similar between the 

archaeological and control samples, which is broadly the case. 

As has been argued above (see 8.2.2), the high degree of correlation of the different 

functional groups of fauna and depth is a function of the depth distributed variability of 

soil properties. It has also been argued that there is little evidence to be found in the 

bivariate correlations, or the independence testing between archaeological and control 

populations (7.2.5), to suggest that other depth distributed soil properties that have not 

been measured have a significant effect on the soil fauna at the archaeological and 

control sites sampled. Multiple linear regressions may be applied to further test this 

position. If there are other depth distributed properties that have a significant impact on 

the population sizes of the functional groups, this effect can be detected by using depth 

as a factor in a stepwise multiple linear regression along side the known properties. If 
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the impact of the putative unknown properties is significant, then depth will be selected 

as a predictor variable in the course of the regression. All the mUltiple linear 

regressions run for the different functional groups and aggregates of the functional 

groups were repeated. In all cases the regression results were identical to those 

produced with the inclusion of depth amongst the potential predictor variables. This 

further confirms that with regard to properties with depth distributed variability on the 

sites that have been sampled there are no significant factors not accounted for in the 

original selection of predictors. 

The use of stepwise linear regressions theoretically allows the selection of the 

presumed predictor variable or variables with the greatest contribution to the variation 

in the dependent variable. In the case of the regressions performed for this study, loss 

on ignition has tended to be selected more often than pH or the two variables in tandem. 

While it might be expected that different predictors or a combination of predictors 

might be selected for different functional groups, the main difference seems to be 

between the archaeological samples, where all three possible outcomes are spread 

across the different functional groups and their aggregates, and the control sites, where 

loss in ignition has emerged as the sole selected predictor. The reason for the exclusive 

selection of loss on ignition as a predictor for the control sites may be due to the 

bimodal distribution of the pH determinations, as discussed above (8.2.2), which may 

have effectively masked the effect of pH. 
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The models generated by the multiple linear regressions do explain a significant level 

of variation. However the influence of ecological processes, and perhaps other soil 

properties, mean that it would be difficult to use the regression equations that describe 

the statistical models in a predictive role (see appendix 1). Furthermore, the size of the 

standard errors of the estimate associated with each regression would make the range of 

any predictive estimate so large as to be of doubtful value (see table 8.7). 

Table 8.7 Standard errors of the estimate for multiple linear regressions of faunal 
"populations on soil properties. 

FunctionaU Aggregate 
Group 

Endogeic Earthworms 
Enchytraeids 

Non-Enchytraeid Fauna 

Total Fauna 

Archaeological 
Sites 
8.20 
9.03 
13.58 
11.83 
13.21 
10.80 

Control 
Sites 
5.49 
13.82 
7.17 

13.54 

In explanatory terms, the statistical models appear to be broadly correct in principle, 

although insufficiently precise to be used in a predictive manner. The relative 

imprecision of the models may be a result of the sample size from which the 

regressions are calculated. The standard procedure with models derived from multiple 

linear regression is to test the model against a new set of data (Lindeman et al. 1980: 

176, Polit 1996: 293). The data sets reserved for such a test, derived from the samples 

taken at the archaeological and control sites at Tofts, are unfortunately too small to use 

rigorously when zero counts are taken into consideration. However, a less rigorous test 

is possible. If the models are correct in principle, running the regressions again, 

incorporating the new data with the previously used data should render broadly similar 

results, in terms of selection of predictors and the production of statistically significant 
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regression coefficients. At the same time each new regression should have a reduced 

standard error of the estimate for each regression. The basic statistics of the second set 

of regressions is presented below (see tables 8.8 and 8.9). 

Table 8.8 Stepwise multiple regressions for abundance of functional group 
-populations on soil properties on archaeological sites (all sites). 

Dependent N Predictor Predictor Adjusted Predictor Overall 
Selected Coefficient R2 Sigs. Sig. 

Variable 
Anecic 16 
Worms 

Endogeic 14 pH -.617 .329 .019 .019 
Worms 

Enchytraeids 32 
Larvae 8 -
Non- 25 pH -.624 .362 .001 .001 

Enchytraeid 
Fauna 

- Total Fauna 39 pH -.567 .303 .000 .000 

Table 8.9 Stepwise multiple regressions for abundance of functional group 
-populations on soil properties on control sites (all sites). 

Dependent N Predictor Predictor Adjusted Predictor Overall 

Variable Selected Coefficient R2 Sigs. Sig. 

Anecic 14 
Worms 

Endogeic 21 Loss on .719 .491 .000 .000 
Worms Ignition 

Enchytraeids 25 Loss on .605 .338 .001 .001 
Ignition 

Larvae 16 
Non- 27 Loss on .747 .540 .000 .000 

Enchytraeid Ignition 
Fauna 

Total Fauna 35 Loss on .761 .567 .000 .000 
Ignition 

Total Fauna 35 Loss on .847 .635 .000 .000 
Ignition 
&pH .291 .012 -

The second set of regressions associated with the control sites is essentially 

unproblematic in the implications it bears for both of the conceptual models presented 

in chapter two and the statistical models presented above. It was argued above that if 
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the models are correct in principle then it was likely that a similar statistical model 

should emerge, in conjunction with a reduction in the standard error of the estimate. 

This is precisely what has happened with the control site regressions. Loss on ignition 

has been selected as a predictor variable for all the regressions and in all cases there is a 

reduction in the standard estimate of error (see table 8.10). That the effects of pH may 

have been suppressed by the bimodal form of the distribution of this variable must 

again be noted, even though the bimodal nature of the distribution is less pronounced. 

Table 8.10 Standard errors of the estimate for multiple linear regressions of 
Jaunal populations on soil properties (all sites). 

-

FunctionaU Aggregate Archaeological 
Group Sites 

Endogeic Earthworms 7.85 
Enchytraeids 

Non-Enchytraeid Fauna 
Total Fauna 

12.78 
14.07 

Control 
Sites 
4.75 
12.86 
6.26 
13.13 
12.05 

It should be noted that there has been a slight reduction in the R2 figures calculated for 

each functional group. This would suggest that for this particular set of regressions R2 

is not greatly influenced by sample size. It could be argued that this is confirmed by 

the R2 calculated for the aggregate groups. These are again larger than those calculated 

for the individual functional groups, but almost comparable in size between sets of 

regressions. As has been argued above this would suggest that by aggregating the 

population counts the effects of interactions between the functional groups in the 

aggregate are controlled for. The most likely interactions between the members of the 

different groups would be competitive ones, leading to the conclusion that at least one 

of the sets of ecological processes included in the conceptual models in chapter three 

has a significant effect on the population sizes of the different functional groups. 
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By way of contrast with the control sites, the results of the second set of regressions for 

the archaeological sites are more complicated. The first point to note is that despite an 

increased sample size, the data set for the enchytraeids was rejected. Of the remaining 

regressions, the standard error of the estimate is smaller for two of the three 

regressions. The role of loss on ignition as a predictor appears to have been 'reduced'. 

Whereas it was selected as sole predictor for the endogeic earthworms it has been 

replaced by pH. The two aggregate categories did have two regressions calculated 

each, one with pH as sole predictor and one with pH as most important predictor, along 

with loss on ignition as a secondary predictor. In the new set of regressions for these 

categories there are only regressions selecting pH as sole predictor. Given that the 

range of pH values added to the data set run from optimal to those that are sub-optimal 

due to high pH, it is likely that the effect of pH has been enhanced to the point that loss 

on ignition offers no significant increase in explanation of variation. Both pH and loss 

on ignition generally produced significant bivariate correlations with population counts 

on archaeological sites. Given this point, and the probable overlap of the influence of 

the two variables on the faunal counts, the change in the role of pH vis-a-vis loss on 

ignition in the successive regressions probably represents minor changes in the 

distribution of variation within each variable as sample size has increased, rather than 

grounds for rejecting the basic conceptual model. 

The estimates of R 2 for the second set of regressions are noticeably lower than the first 

sets of regressions. The R2 estimates for both sets of regressions on the archaeological 
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data sets are generally lower than the R2 estimates for the control data sets. Given that 

for the second set of regressions on the archaeological data there is not a large increase 

in R2 from the individual functional groups to the aggregate groups, the explanation 

advanced for the control sites data either does not hold or is insignificant in comparison 

to some further factor. This would suggest that the variations in abundance of the 

different functional groups are influenced by some additional factor. Whether this 

might be a soil property not considered by the statistical model or an ecological process 

is unclear. The likelihood of a soil property with depth distributed variability has been 

effectively discounted (see above). A soil property where variability is not depth 

distributed could still be having an impact on the functional group populations and their 

distributions. The independence testing of the populations of the control and 

archaeological sites (7.2.5) indicates that whatever the source of this lower level of 

explanation of variation, it does not mean that the archaeological and control 

populations are statistically distinguishable. As such it is possible to argue that the 

effect is insignificant in terms of population sizes. 

8.2.3 Relationships between soil properties and fauna: Chi-squared testing of faunal 

distributions. 

While the multiple linear regressions have tackled the relationship of soil properties to 

the abundance of the members of the different functional groups, they do not deal with 

the other part of hypothesis one, the issue of the role of soil properties in determining 

the distribution of fauna. The distribution of the fauna has implications for the 

distribution of the effects of faunalturbation, and thus the pattern of survival and 
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destruction of archaeological stratigraphy. While the overall magnitudes of soil 

properties may in general terms determine numbers of fauna, the role of soil properties 

in determining distribution within a site at the basic level of presence or absence is 

slightly different. 

Within a given area it is unlikely that soil fauna will encounter the full range that a soil 

property can vary through. There will be variations, however, and it is possible that 

these may affect the distribution of fauna, if the fauna select locations on the basis of 

preferences amongst the range of variation in a soil property that is immediately 

available. There is some evidence that at least some of the functional groups will do 

this with regard to certain soil properties (Cook & Linden 1996, Edwards & Bohlen 

1996: 104). 

The distribution of fauna revealed through the sampling of the archaeological and 

control sites might not reflect long term distribution, as some of the possible 

determinants of distribution might themselves vary considerably over time. Such 

variation may mean that the observed distribution of the fauna is also unstable over 

time. The issue of the permanency of the faunal distribution is one that has implications 

for discriminating between the models presented in chapter three. To investigate this 

possibility the effect of soil moisture on the distribution of the fauna was investigated in 

addition to the other soil properties already investigated. Soil moisture was selected as 

a soil property that was likely to vary rapidly and significantly over time, at the same 
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time as being potentially significant for the distribution of the soil fauna, as discussed 

above (see 2.3 to 2.7) (Brady 1984: 231). 

It is possible that the fauna will select locations according to the interaction of different 

soil property preferences. As such it would be preferable for any statistical technique to 

use a multivariate approach. This would need to be combined with a test that could 

allow the broad ranking of soil property values by preference. By ranking the data sets 

the effects of widely different absolute values in the soil properties between sites could 

be controlled for. Given that the distribution of the fauna was most easily approached 

as a presence/absence problem an approach based on categorical data was required. 

The first attempt was made using a log-linear approach. Examination of the data set 

found that basic assumptions of the technique were being violated, so that any log

linear analysis produced would be invalid (Knoke & Burke 1980). 

The other approach that was available was to use r} tests of the different functional 

groups with all the soil properties. The soil property values were recoded into 

preferred/non-preferred categories, using the following criteria. The loss on ignition 

determinations for each site were ranked by magnitude, with the top half of the figures 

on each site assigned to the preferred category and the bottom half on each site assigned 

to the non-preferred category. The recoding of moisture was slightly more complex 

due to the wide range of values over the three sets of sites. The moisture 

determinations form the archaeological and control sites at Beafield and Tofts were 

ranked and the half of the samples from each site with the highest moisture were coded 
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as preferred. Because the samples from the sites at Westbrough were so moist, and 

given that in tenns of broad preference most of the soil fauna tend to move out of very 

wet conditions, the coding of the samples was reversed with the driest half of the 

samples being coded as preferred (Edwards & Bohlen 1996: 135). To recode pH it was 

assumed, based on the literature (see chapter three) that the pH range 6.5-7 was the 

optimum, so that the cases that were closest to that range were coded as preferred. 

Texture was coded in two different ways to take account of two possible effects. The 

first was texture as a factor in drainage. For this the cases were categorised on the basis 

of their overall texture classification, with those presenting the greatest likely water 

retention on the Beafield and Tofts sites being classified as preferred. On the sites at 

Westbrough this categorisation was reversed to take account of the greater moisture 

content of the soil. Texture was also classified on the basis of the potential for 

irritancy, an effect that has been suggested in the literature with particular regard to 

earthwonn species (Edwards & Bohlen 1996: 146-7). For this set of tests the samples 

were ranked according to sand content, with the half of the samples on each site with 

the lowest sand content being coded as preferred. 

The outcomes of the X2 tests are presented in tables 8.11 to 8.12 below. The tests were 

undertaken using the statistical package SPSS, versions 9 and 10. Where consideration 

of sample size has had to be taken account of the relevant procedures have been 

undertaken and are indicated where appropriate. 
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Table 8.11 Outcomes of soil properties vs. functional group X2 tests for 
archaeological sites. 

Functional P P P P P 
Group Moisture pH Loss on Texture Texture 

Ignition ~moisture) ~irritanc~} 
Anecic NS NS .001 NS .012 

Earthworms 
Endogeic NS NS NS NS .011 

Earthworms 
Enchytraeids NS NS NS NS NS 

Larvae NS NS NS NS NS 
Non-Enchytraeid NS NS .001 NS NS 

Fauna 
Total NS NS NS NS NS 
Fauna 

Table 8.12 Outcomes of soil properties vs. functional group X2 tests for control 
sites. 

Functional P P P p P 
Group Moisture pH Loss on Texture Texture 

Ignition (moisture) ~irritanc~) 

Anecic NS NS .013 NS NS 
Earthworms 

Endogeic NS NS .002 NS NS 
Earthworms 
Enchytraeids NS NS .005 NS NS 

Larvae NS NS NS NS NS 
Non-Enchytraeid NS NS .001 NS NS 

Fauna 
Total NS NS NS NS NS 
Fauna 

For all tests n=48, df=l, NS= not statistically significant. 

Table 8.13 Summary of statistically significant X2 tests for archaeological sites. 
Functional Soil "l P $ 

Group Property 
Anecic Loss on 11.344a .001 .530 

Earthworms Ignition 
Anecic Texture 3.787a .012 -.325 

Earthworms (irritancy) 
Endogeic Texture 3.862a .025 -.330 

Earthworms (irritancy) 
Non-Enchytraeid Loss on 10.101 .001 .459 

Fauna Ignition 
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a = Yate's Continuity Correction has been applied to this test. 

Table 8.14 Summary of statistically significant "i tests for control sites. 
Functional Soil 'l P <p 

Group Property 
Loss on 4.941a .013 Anecic .367 

Earthworms Ignition 
Loss on 10.243 .001 Endogeic .462 

Earthworms Ignition 
Loss on 6.762 .005 Enchytraeids .375 
Ignition 
Loss on 10.243 .001 Non-Enchytraeid .462 

Fauna Ignition 

a = Yate's Continuity Correction has been applied to this test, X = chi squared statistic, 

P = significance level, <I> = phi co-efficient. 

The most striking result of the tests is to indicate that the majority of the tests are non-

significant. The exceptions to this are the results of the tests for loss on ignition, 

particularly those on the control sites. The size of the phi coeffiecient in these cases 

indicates a low to moderate degree of association (as defined by Pett 1996: 165), 

suggesting that while the soil fauna may show a preference for higher levels of organic 

content it by no means determines the distribution of the soil fauna. The apparent 

discrepancy between the archaeological and control sites in this case may be partially 

explained in terms of the greater proportion of anecic worms on the archaeological sites 

than the control sites. The anecic worms may be competitively excluding the endogeic 

earthworms on these sites. 

The possible irritant effect of the coarser sand fraction as an influence on the 

distribution of the earthworm functional groups seems to be borne out by the test results 

presented above. It is noticeable that the test results are only significant on the 
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archaeological sites. This probably relates to the overall range of variation in particle 

size distribution, particularly with regard to the coarse sand fraction, on each of the 

archaeological sites in comparison with the control sites. While the overall variation of 

the control sites, when considered as a group, is greater, the variation by site is greater 

on the archaeological sites individually. The lack of significant results for the control 

sites may be as a result of there being insufficient variation on each control site for it to 

be possible for the various earthworms to find locations with an appreciable difference 

in the sand content. Moisture variation of the scale recorded on each of the sites 

appears to have no effect on the distribution of the fauna. 

8.2.4 Relationships between soil properties and fauna: summary. 

The main points to emerge from the results and analysis presented in this chapter can be 

summarised as follows. The role of some of the selected soil properties as at least 

partial factors in the overall size of the populations of the functional groups and of the 

soil mesofauna as a whole has been demonstrated. That in some circumstances a soil 

property may be more influenced by the soil fauna and in other circumstances the 

opposite may be true of the same soil property has been demonstrated by combined 

results of this study and others cited in the discussions of the bulk density results. 

The results of the analysis suggest that some of the soil properties do have a role to play 

in the distribution of the fauna. Loss on ignition is the property most often found to be 

significantly associated with the presence of fauna. Variations in loss on ignition show 

fairly consistent patterns of variation with depth on the archaeological and control sites 
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in this study, and such variations are widely accepted in the literature (e.g. Brady 1984: 

227, White 1997: 43). The frequency of such statistically significant associations 

between the functional groups and loss on ignition may be explained by reference to the 

role of organic matter in the soil as a source of nutrition for the soil fauna, and to a 

lesser degree the role it plays in regulating soil moisture (Brady 1984: 227, White 1997: 

83). 

The models advanced in chapter three proposed a role for a variety of ecological 

factors. The primary focus of this study is upon the role that the properties of an 

archaeological site may play in the preservation of its own stratigraphy. As such the 

role of ecological processes stands outwith the main limits of the study. Nevertheless it 

is possible to make some inferences about the role of ecological processes. The levels 

of explanation provided by the multiple linear regressions suggests that such processes 

may be significant in determining the abundance of the members of the various 

functional groups. In particular it appears that competition between the functional 

groups may have a significant role to play in the relative population sizes of the 

different functional groups. 

8.3 Correlating Radiocaesium Distributions With Faunal Populations 

The soil fauna population counts used in the preceding analyses are the result of 

relatively short term interactions. As such they may be prone to short term fluctuations, 

with the resultant impact on the process of faunalturbation also being short term. The 

visible traces of faunalturbation are of long term and cumulative formation. Ecological 
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theory suggests that populations of organisms are more heavily affected by 'intrinsic' 

factors (sensu Gee & Giller 1991: 7) in the short term, including the ecological 

processes, e.g. predation, competition, colonisation, than the 'extrinsic' factors, which 

would include soil properties. This relationship changes over time, with the 'extrinsic' 

factors playing a more significant role over longer periods oftime (Gee & Giller 1991: 

10). As such, direct attempts at statistical correlation between the visible traces of 

faunalturbation, that is the data from field recording and thin section micromorphology, 

would be of doubtful validity. 

It has been possible to calculate mean annual soil mass movement from the 137CS 

distributions (5.2.5), giving short-term proxy measurements of faunalturbation rates. 

As these rates are annual figures, they are suitable for using in checking for correlations 

with faunal counts. 

The mean annual mass movement rate was calculated for each of the thirty 

measurements on each of the archaeological sites (6.5). As these measurements were 

made on samples taken at lcm intervals, the differences calculated were then summed 

in IOcm blocks, to match the depth intervals of the fauna samples. The data from all 

three of the archaeological sites was used as a single data set to perform the 

correlations. Correlations were sought through the calculation of one-tailed Kendall's 

Tau coefficients (see table 8.15). 
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Table 8.15 Kendall's Tau coefficients for mean annual rate of movement versus 
faunal population. 
Functional Group Endogeic Earthworms Anecic Earthworms Enchytreidae Col. And Dip. Larvae 
Tau Coefficient .364 .730** .177 .160 

*p<.05 **p<.01, n=9 

As can be seen from the Tau coefficients cited above, the only statistically significant 

correlation was with the anecic earthworms. As has been noted above (6.5) 

radiocaesium profiles of a soil are essentially net measurements of vertical movement 

of soil and sediment particles. The functional group that is primarily associated with 

the vertical movement of fine material is that of the anecic earthworms (see 2.4), in 

contrast with the groups of fauna which have a larger lateral component in their 

movement (see 2.5-2.7, Edwards and Bohlen 1996: 114). That the anecic earthworm is 

the functional group which 0 correlates with rates of mass movement based on 137 Cs 

distribution is to be expected, while the greater lateral component, which the 137CS 

based calculation of rate of movement may underestimate, might similarly explain the 

lack of correlation between the population sizes of the other functional groups and 

annual mean rate of soil mass movement. With regard to hypothesis two it is fair to 

state that there is at least some connection between population size and rate of 

faunalturbation. The distribution of the fauna in comparison with the distribution of 

fraction (see figs 6.19-6.21) and annual rate of mass movement (figs. 6.22-6.24) is 

evidence that the distribution of the fauna (see figs. 7.1-712.) also influences the 

distribution of the traces of faunalturbation, with higher rates of faunalturbation in those 

parts of the profile where there are higher fauna counts. Simultaneously there are small 

numbers of soil fauna at greater depth, possible evidence of a slow but continuing rate 

of soil movement from the 137CS distributions and the evidence of the effects of 
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faunalturbation in the fonn of the soil micromorphological data and field observations. 

These points have implications for the discrimination between the two models, as will 

be discussed in chapter nine. 

8.4 Correlating Soil Properties with the Traces of Faunalturbation 

To test hypothesis three (8.1), that is to examine the relationship between the traces of 

faunalturbation and the soil properties it was decided to run a series of correlation tests. 

Sample size and data distribution considerations lead to the selection of the non

parametric Kendall's Tau Coefficient, calculated as a one sided test, as the most 

suitable means of doing this. 

The correlations may be grouped into two main sets. The first set is the correlations of 

the different soil properties against the probable boundaries of the most intensive 

current faunalturbation. Given the completely faunalturbated nature of the region 

above these boundaries, which has been demonstrated by the findings of the soil 

micromorphological work (see 5.2.3), it is necessary to test whether the depth to which 

this region occurs is detennined by the soil properties. This would test the influence of 

the soil properties on the distribution of faunalturbation. The boundaries selected were 

the stone line and the current 'A' horizon. Generally the measurements are similar. 

Both sets of measures were selected, however, as while the 'A' horizon depth probably 

gives the greatest depth of main activity, it could be difficult to detennine the precise 

boundary, particularly where the current 'A' horizon layover very similar units. Using 

the stone line gave an extra set of data to check results against. These correlations were 
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split into two further groups. One set was of the depth of the stone line or 'A' horizon 

boundary versus the measurements of the soil properties in the complete 10 cm 

sampling unit directly above the boundary. The other set was of the depth of the 

boundaries versus the measurements of the soil properties in the complete 10 cm 

sampling unit directly below the boundary. Correlations using data from both sides of 

the boundaries were undertaken to check if there was a marked difference, suggesting 

that the boundaries might occur at threshold values in the soil properties. 

Table 8.16 P values for 'A' horizon and stone line depth versus soil properties 

PH 
Loss on ignition 

% Sand 

'N horizon 
depth, a 

.504'" 
-.412 
.137 

*p<.05 **p<.OI n=12 

'A' horizon 
depth, b 

.572'" 
.389 
-.167 

Stone line 
depth, a 

.500'" 
-.250 
.532'" 

Stone line 
Depth, b 
.690 ...... 
.375 
.219 

From the above results of analysis it is apparent that the only soil property of those that 

were investigated which is significantly correlated with the boundary depths is pH. 

This confirms that the distribution of faunalturbation is influenced by soil properties. 

Thus it would seem that the models presented in chapter three are partially correct. 

Other soil properties do not seem to influence distribution, at least of the most intense 

degree, despite statistical evidence from this study and substantive observations from 

other published sources that soil properties affect the size and distribution of faunal 

populations (see chapters 8.2.land 8.2.2 and 2.4-2.7 respectively). 

The correlation of percentage sand content in the sampling level above the stone line 

with the depth of the stone line is the only other statistically significant correlation. 
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Given the lack of any other correlation, it is doubtful whether there is any causal 

connection between these two variables. The correlation more probably reflects a 

sorting effect on the sand, comparable to, but less complete than, that which has created 

the stone line itself. The lack of a correlation with the sand content below the stone line 

would reflect the relative lack of sorting that has occurred in this region of the profile, 

which can be seen in the field observations (6.3). 

The P values calculated contrast with the bivariate correlations calculated for the soil 

properties and functional group populations (see 8.2.1). This apparent discrepancy 

between correlations of the short and long term effects of soil properties is discussed 

below (see 8.5). 

The other set of correlations that were undertaken were of the lOcm depth averages of 

total faunalturbation traces assessed by micromorphology versus the soil properties. 

Whereas the previous set of correlations was examining the role of the soil properties in 

determining the extent of the region of what is probably most complete faunalturbation, 

these correlations were designed to test the relationship between the different soil 

properties and the overall degree of faunalturbation down the 40 cm profile for which 

the soil properties had been determined. The test selected was again Kendall's Tau. 

The results are given below. 

Table 8.17 P values for total faunalturbation traces versus soil properties. 
Soil Property pH Loss on Ignition % Sand 

Tau Coefficient -.131 .625** .625** 

*p<.05 **p<.01 n=12 

181 



The correlations on total faunalturbation traces vary from those on the boundaries. 

Both loss on ignition and percentage sand content emerge as being significantly 

correlated with the total faunalturbation traces, whereas pH is not. 

The two sets of correlations confirm hypothesis three (see 8.1), with both distribution 

and degree of faunalturbation being determined by soil properties 

The variations in the significant variables between the different assessments of 

faunalturbation may appear to be problematic for the models proposed in chapter two, 

with a lack of consistency in the results of the tests. The variations in the significant 

variables may in fact reflect the differing roles of the individual functional groups, in 

particular the two groups of earthworms. 

The correlations concerning the depth of the boundaries of the region of most activity 

of earthworms probably largely reflect the effect of the endogeic earthworms. The 

relative numbers and size of the individuals of the other functional groups in 

comparison with those of this group, particularly in the upper samples would suggest 

that the endogeic earthworms are the most significant group in the upper part of the 

profile with regard to faunalturbation. That the upper part of the profile is generally 

this functional group's main area of operation is well established (Edwards & Bohlen 

1996: 112-113). 
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The correlation coefficients calculated for total faunalturbation traces include the region 

of the profile in which the • A' horizon and stone line lie, but also includes a profile up 

to 25 cm deeper than those regions. In these correlations the effect of the only 

functional group which is likely to be significantly active at greater depth becomes 

important, that of the anecic earthworms. Given the probability of a varying impact of 

different soil properties on the different functional groups, it is unsurprising that 

different soil properties should appear to significant when differing measures of 

faunalturbation incorporating elements from different depths are examined. Further 

demonstration of this point can be seen in the case of the correlations of radiocaesium 

distributions with modem fauna counts, discussed in the succeeding section. 

8.5 Summary 

The analyses presented in this chapter suggest that in models presented in chapter three 

are essentially correct. The basic relationships posited in the original model have been 

demonstrated to exist. But what further emerges is that a relatively simple system, such 

as that described in chapter two may present considerable subtleties in its workings. In 

particular a more sophisticated view of the inter-relationships between functional 

group, the distribution of functional groups, the distribution of faunalturbation and the 

role of time scales becomes necessary. Whereas the original models posited a pre

eminent role to soil properties and ecological processes in determining distribution of 

fauna and thus faunalturbation, that this position requires modification. While the 

analyses presented demonstrate that soil properties do have an impact on the population 
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sizes, it is apparent that these properties exhibit depth distributed variation. In addition 

to this the distribution of the fauna may also contain an 'innate' component. Thus the 

actual distribution of the fauna, if not the actual numbers, may not vary that greatly 

from site to site. 

Another significant subtlety is that properties on one part of the site may affect 

faunalturbation on a different part of the site. The correlation of radiocaesium 

displacement with anecic earthworms demonstrates that this functional group is active 

at depth, as has been suggested by the literature (see 2.5). But the bivariate correlations 

in chapter four demonstrate that soil properties higher up the soil profile have an impact 

on the size of the anecic earthworm population. 

The other modification to the model is the variation over time of the significance of the 

different factors of faunalturbation. Each set of regressions or correlations, presented in 

the last two chapters, has been of differing outcomes of different parts of the 

faunalturbation system. Different parts of that system appear to operate over different 

lengths of time. An example might be relatively short term, perhaps cyclical, variation 

in the population size of endogeic earthworms caused by variations in the organic 

matter content of the soil. The variation may be real, and may have an impact on the 

cumulative faunalturbation of an archaeological site, but within constraints imposed by 

the pH of the soil/sediment that site is composed of, which may itself change over time. 

184 



These modifications to the models proposed, and the other findings of this chapter have 

implications for the comparison for the two and three zone models. These will be 

discussed in the full consideration of the two models presented in the succeeding 

chapter. 
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Chapter Nine 

Two Zones Versus Three Zones: Testing and Selecting Models 

9.1 Introduction 

In chapter three a pair of opposing models were described (see 3.9). These models 

share many of their components and structure. The relationships consequent upon these 

models have been identified and analysed in the preceding chapters. While the analysis 

of these relationships has allowed the elucidation of some aspects of the distribution of 

faunalturbation, neither the overall distribution of faunalturbation with regard to the 

level of gross archaeological preservation, nor whether faunalturbation has a significant 

effect on archaeological sites have been fully investigated. It was to provide working 

hypotheses that the two contrasting models, which are based on the published data 

available, were advanced. 

To test the relative validity of the different models a number of pairs of hypotheses 

were derived from each model. These hypotheses were selected on the basis that they 

could be compared against the evidence generated by the study, and that they should be 

fulfilled if the model were correct. The succeeding sections of this chapter will 

examine these hypotheses and determine whether they are fulfilled as predictions in the 

light of the evidence presented in chapters six, seven and eight. 

9.2 Macromorphological Characteristics 

9.2.1 Restating the Hypotheses. 
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Two of the pairs of hypotheses posited for the competing models concerned the gross 

morphological and structural effects of faunalturbation. Both pairs of hypotheses will 

be examined in this section. The first pair (number 4 in table 3.2) may be stated in the 

following manner; the deposits of the site will bear a macromorphological resemblance 

to the model, that is having a homogenous upper layer and a bottom layer with 

identifiable archaeological units. In the case of the three zone model there will be an 

intermediate level of material, in which faunalturbated but discernible archaeological 

units may be seen. 

To test these hypotheses it is necessary to check whether there is any 

macromorphological resemblance between the recorded site sections and either of the 

models, in terms of the distribution of different types of soil/sediment unit. As such 

each of the sites will be examined in tum, in the light of the expected distribution of 

faunalturbated and unfaunalturbated material. As the model is based upon the 

identification of different zones, it is necessary to define macromorphological criteria 

by which the different units recorded in the field may be classified into the different 

zones. 

9.2.2 Characterising the Zones. 

The characteristics of the zone of destruction which form the criteria of classification 

are as follows. The material of which this zone is formed is the organo-mineral crumb 

structured soil of the 'A' horizon of a biologically active soil. There should be little or 

no material that is 'non-A horizon', specifically in the case of this study the 'ash-like' 
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deposits identified in chapter six (see 6.3). The zone should be a single unit, a horizon 

of roughly unifonn thickness. 

The characteristics of the zone of partial preservation by which units may be classified 

are the following. The zone is likely to be in the fonn of a number of identifiable 

archaeological units, which should be reflected in the composition and shape of the 

deposits in section. These will broadly tend to confonn to the law of original 

horizonality, although localised areas of complete faunalturbation would reduce the 

tendency to completely confonn to this principle (Harris 1989: 31-32, see 3.1). The 

composition of these deposits would be a combination of 'A' horizon type material, 

produced and incorporated through the process of faunalturbation and other sediment, 

the original deposit material, in the case of the sites in the study the 'ashy' material 

identified in chapter six (see 6.4). The process of incorporation of material into the 

original deposits will make the boundaries of such deposits indistinct. 

The characteristics of the zone of preservation will be similar to those of the zone of 

partial preservation. The zone is likely to be fonned of a number of identifiable 

archaeological deposits, which should be reflected in the composition and shape of the 

deposits in section, such as spreads, dumps and fills, tending to confonn to the law of 

original horizonality (Harris 1989: 32). The composition of these deposits should be 

completely or almost completely of material other than 'A' horizon type material. The 

absence of 'A' horizon type unit material incorporated into the constituent units should 
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make the boundaries sharper than those of the deposits in the zone of partial 

preservation. 

9.2.3 Comparing Characteristics with Field Observations 

At Beafield the first point to be noted is that the graded ordering implicit in the move 

from the zone of destruction to the zone of preservation, by way of the zone of partial 

preservation in the 3 zone model, is not to be found in the distribution of the different 

types of deposits (see fig. 9.1). Units 1,2, 7 and 9 in figure 9.1 are 'A' horizon type 

deposits, as identified in chapter five, and thus in terms of composition conforming to 

the criteria of classification the zone of destruction. The material of which these units 

are composed is notable in the Beafield profile by its ubiquity. Not only is the whole 

uppermost horizon composed of this material, as could be predicted from the models, 

there is similar material surrounding all the other non- 'A' horizon units. Thus it would 

appear that in terms of the criteria of classification concerning distribution, only unit 1 

could be assigned to the zone of destruction. While the 'A' horizon type of material is 

Ubiquitous, it is not entirely homogenous. As may be seen from figure 9.1 and table 6.1 

there were slight variations of colour and clast content on which basis this material 

could be sub-divided. These variations would suggest that these various deposits 

developed from slightly different parent materials and thus perhaps at different times. 

The implications of such an inference are discussed below. 

The other units at Beafield are what could be termed as the identifiable archaeological 

deposits. These are units composed of the ash-like sediment, identified and 
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characterised in chapter 6. As such, they are the material which distinguishes the zones 

of preservation and partial preservation from the zone of destruction in terms of 

composition. Within the recorded profile at Beafield these deposits appear to be 

preserved in an attenuated fashion. Deposit boundaries are indistinct, material similar 

to that ofthe 'A' horizon type units surrounding these deposits is incorporated into 

them, and elements that may have been a single discrete unit are apparently broken up 

(e.g. unit 5). As such all of the recorded archaeological deposits would be classified as 

belonging to the zone of partial preservation. None of the units recorded at Beafield 

could be classified as belonging to the zone of preservation. The apparent absence of a 

zone of preservation and the manner in which the surviving archaeological units 'float' 

in completely faunalturbated material appears to contradict both of the models 

presented in chapter three, both in terms of the level of survival of the majority of the 

deposits, and more significantly the distribution of the different types of units with 

regard to their states of preservation as assessed by composition. 

At Tofts, as at Beafield, units of 'A' horizon type material are notable in the profile by 

their ubiquity, in both the size and section area covered (units 1,3,4 in figure 6.12). 

Not only is the whole uppermost horizon composed of this material, as would be 

expected under both of the models, there is similar material above and below the ash 

deposit units. As such, while units conform compositionally to the zone of destruction 

they do not appear to conform to the distribution criteria of that zone. A further parallel 

with Beafield is that while the 'A' horizon type of material is widely distributed, it is 

not entirely homogenous. As may be seen from figure 9.2 and table 6.2 there were 
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slight variations of colour and clast content on which basis this material could be sub

divided. 

Those deposits at Tofts which may be identified as archaeological deposits (see 6.2 and 

6.3) appear to be preserved in an attenuated fashion. In a manner similar to that at 

Beafield, deposit boundaries are indistinct and material similar to that which surrounds 

these deposits is incorporated into them. Under the criteria proposed above (see 9.1), 

With regard to composition these units would be classified as belonging to the zone of 

Partial preservation. However, as at Beafield, these units do not form a single coherent 

region, and so with respect to distribution appear not to conform to the criteria laid 

down for any of the zone types. None of the recorded units at Tofts could be classified 

as belonging to the zone of preservation on the basis of the compositional criteria. The 

apparent absence of a zone of preservation and the manner in which the surviving 

Partially preserved units of archaeological deposits 'float' in completely faunalturbated 

lllaterial is discussed below. 

The distribution of the different deposit types at Westbrough is somewhat different 

from that at Beafield or Tofts. There are two discrete regions of 'A' horizon type units 

of the sort classified as belonging to the zone of destruction. These are separated by a 

band of the 'ash like' deposits (see fig 6.3 and Appendix 3). Below the lower region of 

'A.' horizon type unit there is a further region of units composed of ash deposits. Of the 

two regions of ash deposit units, the preservation of the upper region is somewhat 

attenuated, with material from the overlying current 'A' horizon interdigitating with the 
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largest unit of archaeology, in some cases completely cutting through that ash deposit 

unit. However, the units in this band are still in a better state of preservation than any 

of those found on the other sites. Aside from areas of interdigitation the boundaries are 

quite distinct. There is relatively little 'A' horizon type material, detectable at this 

scale, mixed into these units. Even given this higher level of preservation these units 

are still to be classified as belonging to the zone of partial preservation. 

Towards the base of this region there are smaller, localised deposits (see Appendix 3 for 

full descriptions and figures) which broadly conform to the compositional criteria of the 

zone of preservation. These units possess a set of clear boundaries, their forms in 

section conforming to the law of original horizontality and very little identifiable 'A' 

horizon type material (see fig. 6.2 and Appendix 3). This sequence of a fully 

faunalturbated region overlying a region of partially faunalturbated material, itself 

overlying a region of largely unfaunalturbated archaeological deposits would appear to 

conform to the three zone model. There are two problems with regard to this. The first 

is that the deposits that might be ascribed to the putative zone of preservation are small, 

and rather infrequently found, thus perhaps classifying these units as a zone is 

somewhat presumptuous on this evidence. The second problem is that there is a region 

of 'A' horizon type material directly beneath, succeeded by a further group of ash 

deposit units, thus again violating the basic distributions posited by both the models. 

The boundaries of this lower region of units of archaeological deposits are in places 

disrupted or indistinct, and there is in some cases 'A' horizon type material admixed 

with these deposits. As such, these units are classified as partially preserved. While the 
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distributional order of the different types of deposits apparently violates the basic 

mechanisms of both of the models, the different levels of preservation do seem to form 

coherent regions, an apparent contrast with the sections recorded from Beafield and 

Tofts. 

9.2.4 Reconsideration of the Basic Assumptions. 

It is the issue of the distribution of the different types of deposits within the various 

sites that is crucial to the validation or rejection of both of the models. The pattern of 

deposits does not appear to conform to either of the models posited. The location of 

deposits that conform in composition to the zone of destruction seems to be at odds 

with that predicted by the model. There is a near absence of deposits that conform in 

character to the zone of preservation. There are, however, partially faunalturbated 

archaeological deposits, conforming to the zone of partial destruction in composition, if 

not entirely in location. In particular at Westbrough all the units belonging to the two 

main zone types identified on the basis of composition are grouped into two bands of 

material for both of the two zone types. It is this repetition of the two zones and the 

possible trace of a zone of preservation at Westbrough that may provide the means of 

creating a more sophisticated interpretation of the overall pattern of the deposits in a 

fashion compatible with the basic parameters laid down in one of the models. 

At this point it is necessary to reconsider some of the basic assumptions of the models, 

to ascertain whether there are any fundamental theoretical issues that bear on the actual 

dispositions of the units. The first issue to be considered concerns the basic 
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mechanisms that underlie the models. The models are based on the assumption that the 

current state of preservation of the archaeological stratigraphy depends on the activity 

of the soil fauna, in particular the mechanisms of soil/sediment movement associated 

with the endogeic and anecic earthworms (see 2.3 and 2.4). The two models are 

differentiated on the basis of the importance of the activity of the faunalturbation 

mechanisms associated with the anecic earthworms, that is on the ingestion of soil and 

sediment at depth and the subsequent egestion of this material, sometimes on the 

ground surface, sometimes within pores in the soil (see table 2.2). The possibility that 

these mechanisms did not play any significant role in the processes that have formed the 

units that have been recorded, and thus that the entire basis of the two different 'zone' 

models is wrong, has to be examined. With respect to this possibility the following 

points should be noted. The first is that the casting behaviour of the two groups is 

known from the scientific literature (see chapter two), so that this element cannot be 

considered to be incorrect. Similarly, the role of earthworms as a whole is also known 

with regard to the formation of the 'A' horizon in temperate zone organo-mineral soils, 

which zone is known to be entirely reworked (Edwards & Bohlen 1996: 113, also see 

chapter 2). As the identification of the zone of destruction in macromorphological 

terms is based upon the similarity of that zone to the 'A' horizon of a biologically active 

soil, it seems improbable that this assumption is incorrect. This point is reinforced by 

the lack of other likely, still less observed, processes of pedoturbation on the sites that 

were used in this study, due to the process of site selection employed (see 4.2). If the 

results discussed in this chapter and chapter six are considered, in particular with regard 

to the macromorphological and micromorphological evidence, it is apparent that the 
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processes of faunalturbation have occurred on the sites examined. Furthermore, it is 

demonstrable that there are at least two identifiable 'endpoints', that is units that are 

entirely faunalturbated and those that are partially faunalturbated. This further confirms 

that the assumptions concerning the basic mechanisms of faunalturbation on, which the 

models are based, are broadly correct. The existence of the partially faunalturbated 

units suggests that it is the three zone model which may form the basis of a truer picture 

of the progression of faunalturbation on archaeological sites with regard to the relative 

significance of the different mechanisms of faunalturbation. 

Given that the assumptions concerning the broad significance of the mechanisms of 

faunalturbation appear to be correct, it is necessary to check a different basic 

assumption of the model to find the source of the apparent discrepancy between the 

predicted patterns of the macromorphological evidence and the recorded patterns. Even 

if the assumptions concerning the mechanisms of faunalturbation and the distribution of 

the agents of faunalturbation are correct, a further assumption is required to produce the 

zoned variation in the state of preservation of archaeological stratigraphy. This 

assumption is that the processes of faunalturbation are working on the strata resulting 

from a single depositional event, or rapidly occurring, continuous sequence of 

depositional events. The pattern of zones would be due to the progressive or abrupt 

reduction in faunal activity with increasing depth. If this assumption is incorrect then a 

point implicit in this assumption, that is that all the traces of faunalturbation are the 

result of a single, ongoing, episode of faunalturbation, may also be incorrect. This 

being so, the pattern of stratigraphic preservation would be somewhat different. 
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9.2.5 The Multiple Episode Hypothesis. 

Studies of the fonnation of the Orcadian fann mounds have been discussed (see 4.1), 

but it is valuable to consider the rate and constancy of the aggradation of the sites. In 

doing so it may be possible to detennine whether the evidence of faunalturbation that 

has been recorded is likely to be the result of a single continuous episode of faunal 

activity or of a number of such episodes. Studies of the fonnation of the fann mounds 

suggest that byre clearance may have been a major factor in producing the material that 

accumulated to fonn the mounds (Bertelsen and Lamb 1993: 548 Davidson et ai. 1984, 

1986). In the post-Medieval era the depth of material that accumulated, of which ash 

was a significant component, in a byre before it was removed could be between 1.2-

1.5m deep (Fenton 1978: 280). With animals spending the entire winter in byres, and 

being byred overnight in the summer, there was a rapid accumulation of material (see 

chapter four for a discussion of composition), the byres being emptied several times a 

year (Fenton 1978: 280). On Sanday the contents were left to accumulate around the 

fanns (Fenton 1978: 282). Whether this practice can be inferred in the Norse period, 

when the mounds were accumulating, is uncertain. However, the survival on Sanday of 

the feudal service of the cottars of emptying the laird's dung court suggests that the 

practice of emptying the byre and leaving the manure unused was one with roots in the 

NorselMedieval era (Fenton 1978: 281). 

The evidence cited above concerning the likely primary processes of accumulation of 

the fann mounds suggests that their accumulation would have been episodic. In 
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particular the overall area that such an episode of dumping would cover need not be that 

large. While the probable volume of material could be considerable, perhaps in the 

region of 39-46m3
, if the depth of manure and bedding given above is applied to the 

post-Medieval byre at Beafield (c. 3.3m x 9.9m in area). This is small when compared 

to an overall estimate of the volume of the mound at Beafield, which can be estimated 

as being in the region of 3000m3
• Thus the prospect arises that over time the precise 

location of dumping may have ranged around the farm, leaving material to undergo 

faunalturbation for a period of years prior to the deposition of additional material 

causing the process to be interrupted. 

If such a pattern of multiple episodes of deposition, with periods of non-deposition in 

which faunalturbation took place is correct, then it should leave evidence in the pattern 

of the soil and sediment units of which the site is composed, and in the other evidence 

of faunalturbation. With regard to the evidence of faunalturbation, the hypothesis of 

mUltiple episodes logically necessitates the division of the data into two sets: those 

which cover the entire history of faunalturbation, that is the macromorphological and 

micromorphological evidence; and those which cover only the ongoing and recent 

faunalturbation, that is the distribution of the fauna themselves and of 137CS. 

The evidence concerning the current and ongoing faunalturbation of the archaeological 

sites may be used to test the models in the light of the hypothesis multiple episode of 

deposition and faunalturbation, and also to elucidate points concerning the processes, 

that when combined with the other data may be used to explain the situation in the 
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deeper parts of the sites where only the other, 'historical' evidence exists. As such, the 

faunal and radiocaesium evidence will be examined in the immediately succeeding 

sections, followed by the data from the thin section micromorphology, which will 

effectively constitute a final test and means of discrimination between the two models. 

9.2.6 Applying the Multiple Episode Hypothesis. 

If the two models presented in chapter two are modified in the light of the multiple 

episode hypothesis, then the logical corollaries outlined in chapter two and the criteria 

of classification given above will be somewhat different. With regard to the 

macromorphological characteristics to be expected the main variation is in the ordering 

of the different zones. Under the modified models additional factors will affect the 

pattern of succession of zones. These factors are the initial depth of the archaeological 

depths deposited during each episode, the time elapsed from deposition, particularly 

with regard to the earlier, buried, sets of units and the size of the faunal populations, 

particularly the anecic earthworms in the case of the three zone model. As has been 

demonstrated (see chapter eight) this last factor is in part determined by the soil 

properties of the site. The essential point of discrimination between the two models is 

the identification of the presence or absence of the zone of partial preservation in 

succession to the zone of destruction. That pattern of zoning cannot occur under the 

two zone model, even if in the earliest stages of faunalturbation the incipient zone of 

destruction would contain the partially faunalturbated remains of archaeological 

deposits. 
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The pattern to be expected in the case of multiple episodes of deposition and 

accompanying faunalturbation would be in the most simple situation be a repetitive sets 

of zones, beginning at the current surface with a zone of destruction, and continuing 

with different zones in the order outlined above, each set having a zone of destruction at 

the top. More complex arrangements of the different zones are conceivable. Given a 

shallow initial deposit depth relative to the numbers of fauna, that is the effective level 

of faunalturbation, it is possible that the entire set of archaeological deposits could be 

entirely faunalturbated, simply leaving an apparently rather thick zone of destruction 

overlying the previous set of archaeological units. If the three-zone model is correct, 

then a slightly thicker initial layer of original archaeological deposits relative to the 

numbers of fauna, particularly the endogeic and anecic earthworms, could result in the 

reworking of the archaeological deposits such that the resulting soil and sediment units 

could be classified as belonging to the zones of destruction and partial preservation, but 

none as belonging to the zone of preservation. 

This last described pattern of distribution of degrees of faunalturbation appears to be 

essentially that which is recorded on the sites. As has been remarked above, the 

essential point of discrimination between the two and three-zone models is the presence 

of the zone of partial preservation and in particular its' succession to the zone of 

destruction. This pattern occurs because of the effective 'two-speed' faunalturbation 

that is posited under the three-zone model. That it is possible to define zones of partial 

preservation, each of which is positioned beneath a zone of destruction, on each of the 
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sites would tend to confirm the three-zone model, modified on the basis of the 

hypothesis of mUltiple episodes of deposition and subsequent faunalturbation. 

This division of the profile into a series of sets of zones of destruction/partial 

preservation can be projected on to the recorded profiles, as has been done in figures 

9.1-9.3. From this it will be noticed that each zone of destruction conforms to an 'A' 

horizon type unit, and that each zone of partial preservation conforms to one, or 

occasionally more, ash deposit units. That each zone of destruction should conform to a 

separate 'A' horizon unit is unsurprising: such units are formed through the process of 

complete faunalturbation, and any preceding archaeological units are likely to be 

incorporated into a single homogenised unit/zone. It is to be expected that the zone of 

partial preservation should be composed of multiple ash deposit units, and the relatively 

low numbers of units in each zone is further indication of relatively shallow initial 

deposition in relatively few discrete deposits. 

The other pair of hypotheses concerning the gross morphological/structural properties 

associated with different models is that concerning the position of the stone lines 

produced by the sorting effect of earthworm activity (number 6, table 3.1). The 

hypotheses may be given as follows, modified where applicable to take account of the 

possibility of multiple episodes of deposition and faunalturbation. If the two-zone 

model is true then the position of the stone line will be at the base of the zone of 

destruction. If the three-zone model is true then the stone line will probably not be so 

positioned, instead being positioned somewhat above the base of the zone of 
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destruction. The basis of this means of discrimination between the two models is that 

under the two-zone model faunalturbation is essentially restricted to the uppermost part 

of the profile, and the stone line, a consequence of relatively rapid, repeated reworking 

through faunalturbation, will thus form at the base of the zone of destruction (Edwards 

and Bohlen 1996: 201, Muller-Lemans & van Dorp 1996). Under the three-zone model 

the majority of faunalturbation occurs in the upper part of the profile, in particular the 

repeated reworking by the soil fauna, especially the endogeic earthworms, but there is 

significant activity at greater depths, generally due to the activity of anecic earthworms 

(Edwards and Bohlen 1996: 203). While it may be assumed that there will be stone 

lines in the uppermost of the zones of destruction on each of the sites sampled, this may 

not be the case with regard to the other zones of destruction identified. The stone lines 

take time to form, probably in the region of one to three decades (Darwin 1881: 73, 

Edwards and Bohlen 1996: 202), the uppermost zones of destruction, or at least the 

upper regions of such, being approximately equivalent to the current, active, 'A' 

horizons will have had time to generate such a feature. The other, buried, zones of 

destruction may have been completely faunalturbated without there having been 

sufficient time to generate a stone line prior to the disruption of faunalturbation by 

renewed deposition. 

For the purposes of testing this corollary, the base of the zone of destruction is taken to 

be the base of each soil/sediment unit, or the base of the lowest of a group of units 

which have been identified as the zone of destruction on the basis of 
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macromorphological evidence. Where other evidence suggests that such an 

identification requires reassessment, this will be discussed with the relevant evidence. 

From the diagrams (figures 9.1-9.3), it can be seen that in all but one case stone lines 

are only present in the uppermost, current, zones of destruction. The exception to this 

situation is at Westbrough. Here there are stone lines both in the currently active zone 

of destruction and in the lower zone of destruction (unit 3, fig. 9.3). The presence of 

the deeper stone line underlines two points. The first is to corroborate the 

faunalturbated nature of the unit, confirming the designation as a zone of destruction. 

The second is that the deeper zones of destruction are effectively buried 'A' horizons, 

the stone lines being effectively markers of such in pedological terms (White 1997: 

190). Thus while these units mark the destruction of archaeological units, they are of 

archaeological and palaeoenvironmental interest in their own right as buried soils. 

A comparison of the presence and absence of stone lines between the buried zones of 

destruction on the different sites might be used to suggest the relative lengths of time 

that the zones of faunalturbation were active. Although this may be possible in an 

approximate manner, strict comparisons are probably not possible. The rate at which a 

stone line forms from the initial deposition of a set of archaeological deposits will be 

dependent on the numbers of earthworms (see chapter 8), and this is determined by both 

ecological factors and soil properties. Given the period of time over which stone lines 

form and the likely relative importance of ecological factors versus soil properties (see 

chapter 8), it is possible that ecological factors will be highly significant in determining 
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faunal populations over that period. As such close comparisons even between sites 

with closely matching soil properties may be inadvisable. 

Continuing with the issue of the use of the position of the stone lines with regard to the 

base of the zones of destruction, it may be noted that these relatively rarely coincide 

with the bases of the zones of destruction. At Beafield and Tofts the separation 

between the stone lines and the base of the zone of destruction is considerable. At 

Westbrough the stone lines are much closer to the bases of the zones of destruction. 

Even in these cases there is still a clear and measurable distance between the bases of 

the zones and the respective stone lines. With regard to the hypotheses concerning the 

position of the stone lines it would seem that the three-zone model is corroborated, and 

the two-zone model falsified. 

9.3 Radiocaesium Distribution 

9.3.1 The Multiple Episodes Hypothesis 

As has been noted above, the 131Cs data is relevant only to the ongoing faunalturbation 

associated with the last episode of deposition, that is the upper zone of destruction on 

any site. As such, the radiocaesium based hypotheses do not require revision with 

reference to the multiple deposition hypothesis. The pair of hypotheses (number 7, 

table 3.1) derived from the models with regard to the distribution of 131CS can be stated 

as follows. If the two-zone model is correct, the bulk of the radiocaesium activity 

should be found in the zone of destruction, with a sharp reduction in radiocaesium 

concentration coinciding with the base of the zone. If the three-zone model is correct 

203 



the bulk of radiocaesium should be above the base of the zone of destruction, 

effectively 'perched' somewhat above the base of the zone. The reduction of activity 

with depth should be gradual. Because the 137CS profile only pertains to recent 

faunalturbation, it may also be used to differentiate recent and ancient faunalturbation, 

which is difficult using macromorphological and micromorphological evidence 

unaided. 

For the purposes of comparing the corollaries the base of the zone of destruction is 

taken as the depth at which identifiable archaeological deposits are first recorded. This 

depth is marked on each of the 137Cs profiles (figs. 6.16-6.18). Examination ofthe 137CS 

profiles from each site demonstrates that while there is variation in terms of the 

distribution of the bulk of 137CS and the abruptness of the reduction of activity 

concentration with depth, two main tendencies may be noted. The first is that the bulk 

of 137 Cs inventory is somewhat above the base of the zone of destruction. At Beafield 

and Westbrough there is a noticeable fall off in radiocaesium inventory contribution 

below the stone line, towards the base of the zone of destruction and beyond, forming 

distributions that are 'perched' above the base of the zone of destruction. It is also 

noticeable that the considerable level of variation is replaced by a steady reduction in 

activity from the same point (see figs 6. 16-6.18). The case at Tofts is more extreme, 

with all the detectable 137 Cs being above the base of the zone of destruction. 

Examination of the cumulative percentages of total inventory on the different sites 

reinforces the point, with between 87 and 98% of cumulative total loading being 

somewhat above the stone line. 
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The significance of the stone line has been outlined above (see 6.3), but needs to be 

placed into context with regard to the radiocaesium distribution. The stone line is 

effectively the base of the zone of destruction under the two-zone model, marking the 

limits of the region that will be faunalturbated, if anecic earthworms have no significant 

effect, and thus also the limit to which 137Cs will be distributed. Under the three-zone 

model the stone line has a somewhat different significance. It marks the limit of rapid, 

repeated, faunalturbation, largely driven by the endogeic earthworm population. It is 

the relatively rapid and thorough redistribution of the particles to which 137CS is 

adsorbed that causes radiocaesium to be redistributed in a soil profile. 

The slower rate of faunalturbation at depth is unlikely to have a major role in the 

redistribution of 137CS to over the period since fallout deposition, particularly given the 

manner in which the upper part of the soil profile tends to be reworked largely within 

itself (Muller-Lemans & van Dorp 1996). The overall zone of destruction as identified 

by macromorphological and micromorphological evidence (see 6.3 and 6.7) has formed 

over a considerably longer period. As such, a pattern in which the majority of 

radiocaesium is to be found 'retained' above the base of this zone is to be expected. As 

the hypothesis given for the three-zone model implies, this is not to argue that there is 

no significant redistribution below the depth at which the majority of the fauna is 

active, merely that redistribution is likely to be much slower. The manner in which 

such faunalturbation may have a significant effect on the distribution of radiocaesium is 

discussed above (see 9.5) and below (see 9.3.2). 
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9.3.2 Checking the Hypotheses. 

As has been noted above, there is a change in the pattern of distribution between the 

137 Cs above the stone line and that between the stone line and the base of the zone of 

destruction at Beafield and Westbrough. The change from a trend of a distribution with 

a high degree of variation to one marked by a steady reduction in 137CS activity may 

reflect the different modes of faunalturbation in different parts of the profile. The 

variability in the upper part of the zone of destruction reflects the relatively rapid 

turnover and reworking of this region, which will tend to partially disrupt any trend for 

the 137CS to be redistributed down the profile. The steady reduction in 137CS activity 

below the stone line reflects the largely vertical displacement of material caused by 

anecic earthworms as they clear their permanent burrows and smooth the burrow walls 

with nearby fine particles (Edwards & Bohlen 1996: 114). 

The second main observation is that the reduction of activity concentration is fairly 

gradual over depth on each site. This conforms to the logical corollary of the three-zone 

model. Not only does the distribution of 137CS conform to the three-zone model, but the 

rates of mass movement of soil calculated from the radiocaesium distributions exhibit a 

rapid reduction in rate above the stone line, with no marked change in rate of movement 

at the depth of the stone line (figs. 6.22-6.24). If the two-zone model were correct, it 

would be expected that there would be virtually no 137CS below the stone line, giving a 

sharp cut off in the distribution curve. As it is there is a small but significant proportion 

of 137CS below the stone line, and even a little below the base of the zone of destruction 
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at Beafield and Westbrough. This distribution is to be expected under the three-zone 

model, and is probably due to the activity of the anecic earthworms. 

Reference has already been made to 'two-speed' faunalturbation (9.2.6). Examination 

of the net mean annual rates of soil mass movement tends to broadly confirm this 

concept. While faunalturbation is continuing below the depth of the zone of 

destruction, the rates of soil movement are significantly lower at the greater depths 

(figs. 6.22-6.24). What the variations in the rates of soil mass movement also 

demonstrate is that there is considerable reduction with depth in movement of soil, i.e. 

faunalturbation, even within the different zones of a site profile. 

The main variations in the l37Cs distribution between the three sites have been 

presented and discussed above (see 6.7). While these are insignificant in comparison to 

the overall apparent conformity to the prediction of the three-zone model, they may 

provide significant evidence with regard to explaining variations in the overall state of 

stratigraphic preservation between the three sites, as the 137CS was deposited on the sites 

in a broadly synchronous manner: any subsequent variation in distribution is likely to be 

due to differing rates of the various processes of incorporation, specifically 

faunalturbation in the case of the archaeological sites. The greater proportion of 137CS 

distributed between the stone line and base of the zone of destruction at Beafield could 

be taken to indicate a higher rate of faunalturbation at depth, i.e. below the stone line. 

This might in tum indicate a high proportion of anecic earthworms in the soil fauna 

population over the past thirty years, a trend reflected in the current population counts 
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The situation at Tofts is somewhat different, with 137CS becoming undetectable above 

the base of the zone of destruction. The considerable depth of the zone of destruction 

would seem to imply a high proportion of anecic earthworms in the soil fauna 

community of the site at some point. The 137CS distribution does not, however, support 

this, suggesting a possible change in the structure of the faunal population, subsequent 

to the main period of formation of the zone of destruction, but prior to the deposition of 

137 Cs. Comparison with the current faunal populations indicates that this may have 

been the case, with anecic earthworms forming a small proportion of the current total 

population. 

The relatively shallow distribution of the bulk of 137CS at Westbrough conforms to the 

shallow depths of both the zones of destruction at the site, and the associated stone 

lines. It could be argued that these perhaps tie in with the apparently relatively well 

preserved nature of the zone of partial preservation, indicating a lower general impact 

on the archaeological stratigraphy by faunalturbation. 

The examination of the distribution of 137CS with respect to other features recorded at 

the sites appears to confirm the basic operation of the three-zone model. Comparison 

between the profiles from the three sites with other data, using the framework of that 

model, has suggested more subtle interpretations of the faunalturbation histories of the 

three sites, pointing up the role of changes or stability in different parameters over time. 
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9.4 Distribution of Anecic Earthworms 

9.4.1 The Multiple Episode Hypothesis. 

As has been noted above, the current distribution of the fauna solely relates to the 

current, active zone of destruction. As such the statement of the concerning the two 

different models (number 8, table 3.1) need no substantial restatement because of the 

multiple deposition hypothesis. The corollaries may be stated as follows. Under the 

two-zone model the majority of anecic earthworms will be found within the zone of 

destruction, above the stoneline. Under the three-zone model the majority of anecic 

earthworms will be found below the zone of destruction, and the stoneline. 

9.4.2 Checking the Hypotheses. 

The distribution of the anecic earthworms with respect to the base of the zone of 

destruction and the stone line on each site will be discussed on a site by site basis. 

Figures 7.3 and 6.1-6.3 represent the data under consideration. At Beafield all the 

anecic earthworms were taken from samples within the zone of destruction and the 

majority from above the stone line. At Westbrough the majority of anecic earthworms 

were taken from samples within the zone of destruction and above the stone line. 

Because the lowermost samples from which anecic earthworms were extracted are 

bisected by the stone line and the base of the zone of destruction on this site it is 

possible that all the anecic earthworms came from above these two boundaries, but it is 

not possible to be certain. At Tofts all the samples from which anecic earthworms were 

extracted were taken from the zone of destruction and above the stone line. 
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This evidence would seem to contradict the findings of the previous testing of the 

different pairs of hypotheses. All three of the sites conform to the pattern expected 

from the two-zone model. While the hypothesis for the two-zone model implicitly 

assumes an identity between the base of the zone of destruction and the stone line, and 

this has already been demonstrated not to be the case on the sites examined, it is still the 

case that the majority of anecic earthworms were taken from samples above the stone 

line. If the majority of the anecic earthworms are to be found in this region of the 

profile it might tend to confirm that this functional group has little or no significant 

effect on the deeper reaches of a site profile, being instead confined to regions of rapid 

and repeated turnover of soil. It should also be noted that the distributions of the anecic 

earthworms in no way resemble those predicted for the three-zone model. To resolve 

this apparent impasse it is necessary to re-examine the basis of the hypotheses 

concerning the distribution of the anecic earthworms. 

The hypotheses are based on an implicit assumption that the different functional groups 

of earthworms are always to be found at different depths, an assumption rooted in the 

ecological taxonomy of the earthworms. The anecics are characterised as deep dwelling 

species (see chapter two, also Edwards & Bohlen 1996: 113). Despite their 

designation, it is known that the distribution of the anecic earthworms may vary 

considerably over the short term due to variations in factors such as soil moisture or 

temperature, or movement associated with feeding behaviour (Edwards & Bohlen 1996: 

161). Such variations do not necessarily reflect the underlying distribution of the 

mechanisms of faunalturbation through a soil profile. As such the pair of corollaries 
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advanced with regard to the distribution of the anecic earthworms do not provide an 

adequate means of discrimination between the two models. It seems probable that such 

a distinction could not be made without multiple sampling of the sites over the course 

of at least a year. Examining the distribution of the anecic earthworms in the context of 

the two models has, however, highlighted the fact that the anecic earthworms are also to 

be found within the upper, rapidly faunalturbated, part of the profile, and some of their 

activity may occur within this region. This may further account for the slower rate of 

faunalturbation at depth, and hence the persistence of partially preserved archaeological 

units. 

9.S Micromorphological Characteristics 

9.5.1 The Multiple Episode Hypothesis. 

The pair of hypotheses concerning the pattern of micromorphological characteristics 

(number 5, table 3.1) is in part defined in terms of the pair of hypotheses concerning the 

macromorphological characteristics. As such little explicit adaptation of the hypotheses 

is required to take account of the multiple episodes hypothesis. It is expected that the 

micromorphological characteristics should reflect the macromorphological 

characteristics. As with the macromorphological evidence, a set of criteria can be 

derived form the initially stated corollaries, allowing units to be classified as to which 

of the different zones, if any, they belong. 

Whereas the criteria for the macromorphological evidence are based both on the 

composition and distribution of the different units, those for the micromorphological 
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evidence are based more heavily, though not exclusively, on composition. This is due 

to the scale of observation: the distribution of whole deposits is obviously impossible to 

determine at the microscopic scale, and the boundary variations observable may be due 

to a variety of processes, including both faunalturbation and initial anthropic deposition, 

which cannot be reliably distinguished at this scale (Carter & Davidson 1998). The 

criteria are based around the presence and proportion of the traces of faunalturbation, as 

defined and described in chapter five. The criteria are in this case effectively the same 

as the hypotheses, which are as follows. The zones of destruction, should be largely 

composed of material that in their structure and features are entirely faunalturbated, that 

is the micromorphological traces of faunalturbation defined and described in chapter 

five. The zones of preservation, should have few, if any of the micromorphological 

traces associated with faunalturbation. In the two-zone model the transition between 

the two zones should be fairly abrupt in terms of differences in micromorphological 

characteristics. In the three-zone model the zones of partial preservation should fall 

between the two types already defined and combine a significant proportion of features 

diagnostic of faunalturbation together with the unreworked remains of the original 

archaeological deposits. In the three-zone model the proportion of faunalturbation 

traces should broadly diminish with depth within the sequence of a set of zones, that is 

from the zone of destruction to the zone of preservation. With regard to the multiple 

episodes hypothesis the transitions between all the zones in a set should be gradual. 

Transitions between sets of zones may be gradual or abrupt, with a greater likelihood of 

the latter. 
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Gi ven the observation made above concerning the linked nature of the 

macromorphological and micromorphological characteristics the examination of the 

micromorphology of the sites is very useful in elucidating details of the revised models, 

and in discriminating between the two models. Even though the balance of evidence so 

far presented appears to favour the three-zone model, the model may require further 

adjustment even if it is further confirmed in essentials. Most importantly such an 

examination will allow the verification of whether the classification of the units in to 

zones, a fundamental part of the models, has a good basis in evidence. The multiple 

episode hypothesis may be further tested by the means of the micromorphological 

evidence as well. 

9.5.2 Validating the Concept of Zones of PreservationlDestruction. 

The fundamental issue is the identification of zones in the profile of the archaeological 

sites differentiated on the basis of the apparent state of the preservation of the original 

archaeological deposits. The method of dividing up a profile in this manner was based 

on the initial models derived from the published literature on the soil fauna. The first 

test and revision of the zoned models has been through the examination of the 

macromorphological evidence. This seems to confirm the basic idea of the zoning of 

the states of preservationlfaunalturbation of a site, and the balance of evidence suggests 

that the three-zone model is closer to the truth. What needs to be examined is whether 

the identification of the different zones is justified, using the most pertinent evidence 

available. 
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As has been discussed above the various zones of destruction and partial preservation 

identified are essentially composed of 'A' horizon type units and ash deposit units 

respectively. The micromorphological characteristics of the two types of units have 

been discussed above (see 6.4). To recapitulate these characteristics with regard to the 

fundamental validity of the models, it should be noted that the traces of faunalturbation 

are ubiquitous. All the units on all the sites contain such traces, regardless of unit type. 

These traces are definitely identifiable as the products of faunalturbation (see chapter 

five). The next issue is whether the different types of units and thus zones are 

differentiable in terms of the traces of faunalturbation. Not withstanding the high levels 

of coverage of thin section samples from the different types of units, such 

differentiation is possible. This can be seen in the averages by lcm depth unit displayed 

in figures 6.10-6.15. In the thin section samples taken from the units of the 'A' horizon 

type, area coverage by the micromorphological traces of faunaIturbation is very high, 

often complete, characterised in these sites by lowlzero measurements of standard error 

(e.g. slide 3 fig. 6.13, slides 2 and 3 fig. 6.14, slide 1 fig 6.15). This confirms the 

classification of such deposits as belonging to the zone of destruction in terms of 

compositional characteristics. 

The ash-deposits, which have been classified as belonging to the zones of partial 

preservation, do exhibit a reduction in the proportion of each thin section slide covered 

with the traces of faunalturbation, albeit a slight one. None of the slides which sample 

areas of ash-deposit unit have complete coverage by faunaIturbation traces. A further 

significant difference in composition between the two types of zones/units is the 
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presence or absence of mineral impregnated material. The detection and identification 

of this material has already been discussed (see 6.4.1). Suffice it to say that very little 

such material is found in the 'A' horizon type units, while significant areas of coverage 

are found on the thin sections sampling the ash-deposit units, as can be seen from 

figures 9.4-9.6. It should be noted that where such material does occur in a zone of 

destruction, it is generally found below the stone line, e.g. as at Beafield, further 

suggesting that the stone line marks the lower boundary of the most intense 

faunalturbation. This material seems to be a reliable indicator of archaeological units 

on the sites used in the studies. Thus the two different types of units and thus the zones 

into which it is proposed the sites develop due to faunalturbation are identifiable using 

data other than the macromorphological. 

9.5.3 Checking the Corollaries. 

Having confirmed the empirical validity of using the zoned based models in terms of 

the basic identification and differentiation of such zones it is possible to move on to 

discriminating between the two models. The zones of destruction have been 

unequivocally identified using micromorphological evidence compared to the 

classificatory criteria given for that zone type. This zone type is, however, common to 

both models. As has been discussed above (see 9.2) the main point of differentiation 

between the two models is expressed in the zone of partial preservation. Given the 

degree of faunalturbation found in the all of the various ash deposit units it is not 

possible to classify any of them as belonging to the zone of preservation. The finding 

that no well preserved deposits can be identified in the units sampled for thin section 
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micromorphology confirms the finding from the macromorphological evidence that no 

zone of preservation can be unequivocally identified in the parts of the sites sampled for 

this study. The units which are not classified as belonging to the zones of destruction 

can be classified as belonging to the zones of partial preservation. Thus on the criteria 

of composition the micromorphological evidence tends to conform to the corollary of 

the three-zone model. 

As may be seen in figures 6.10-6.15 the transition from the 'A' horizon type units 

(effectively the zones of destruction) and the ash deposit units (the zones of partial 

preservation) is gradual, being marked, as has been noted above (see 6.4.1) by an 

increase in the range of values of faunalturbation coverage, through an extension of the 

range of lower values. This further confirms the corollary of the three-zone model. 

The identification of the zone of partial preservation does seem to confirm that the 

three-zone model is the more valid of the two models presented. As has been discussed 

above (see 9.2) there is the apparent problem of there only being two identifiable types 

of zones, the zones of destruction and the zones of partial preservation. The solution 

presented was the multiple episode hypothesis. It is now necessary to apply the 

micromorphological data to the further testing of this hypothesis. 

The first means of testing this hypothesis is to check the basic composition of the 

different zones of destruction, to see if there is significant variation within each site. 

Such variation would suggest that the base materials from which such units had formed 
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were of different types, and thus laid down on different occasions. Further, if the zones 

of destruction have different compositions it suggests that they are not part of a single 

region of intense faunalturbation, otherwise they would be homogenised into a single 

unit. Examination of the descriptions of the thin section slides from the different areas 

confirms that there are variations in composition between the different zones of 

destruction on each site (tables 6.4-6.8). These variations are in terms of the 

proportions of different components in the coarse mineral fraction, variations in the 

proportion of organic to mineral matter in the fine material fraction, and less often 

variations in the proportions of the different types of coarse and fine organic material in 

each slide area which samples one of the zones of destruction. 

A possible piece of evidence for faunalturbation occurring at different times, thus 

suggesting multiple discrete episodes of activity comes from the zones of partial 

preservation. It has been noted above that one of the means by which the zones of 

destruction and zones of partial preservation may be differentiated in compositional 

terms is through the presence or absence of mineral impregnation. Within the ash 

deposit units this phenomenon includes the impregnation of traces of faunalturbation, in 

particular fabric patterns and different forms of excremental pedofeatures. Not all such 

traces in these units are so impregnated. In particular, areas of total biological fabric 

and mamillated excrements which appear to be intruding from a neighbouring 'A' 

horizon type unit do not exhibit such impregnation. Given that the impregnation 

pedofeatures appear to be peculiar to the zones of partial preservation, and that both 

impregnated and non-impregnated traces of faunalturbation are found in these units, it 
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may be argued that the impregnated faunalturbation traces represent an earlier phase of 

faunalturbation, the reason for mineral impregnation being that this was a primary 

characteristic of the deposit which has survived through the first stages of 

faunalturbation. Another possible explanation is that a process of mineral redistribution 

that occurred early in the formation process of the sites caused the extant 

faunalturbation traces to be impregnated. Subsequent faunalturbation traces have either 

occurred after this process has ceased, or are the product of repeated faunalturbation, 

which has caused the dissolution of the impregnating mineral. The assumption that the 

non-impregnated faunalturbation traces are later is based on the fact that this type of 

material is characteristic of the currently active zones of destruction on the different 

sites, and that this material often appears to be intrusive in the ash deposit units. 

9.6 Summary 

The examination of the data gathered from the different archaeological sites with regard 

to the two models suggests that it is the three-zone model which is the most accurate 

description of the processes of faunalturbation, once the effect of the sites being formed 

through a sequence of episodes of deposition and faunalturbation has been taken into 

account. The distribution of 137CS, the variation in the rates of soil mass movement 

calculated from the radiocaesium data, and to a lesser degree the fauna themselves, 

seems to confirm that 'two-speed' faunalturbation occurs, with the more rapid rate 

occurring in the upper part of the profile, with a slower rate occurring lower down the 

profile, in both the lower region of the zones of destruction, as suggested by the 

occasional small area of impregnated material, and the zones of partial preservation, by 
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their very existence. That there has been a sequence of episodes of deposition and 

faunalturbation is confirmed by three basic pieces of evidence. These are existence of 

completely faunalturbated units in the same site with different basic compositions, the 

presence of impregnated faunalturbation traces and the sealing of one layer of 

completely faunalturbated material by partially preserved archaeological deposits at 

Westbrough. How the distribution of this set of processes and their results integrates 

with the other parts of the model, and the implications of the model for archaeological 

research is discussed in the following chapter. 
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10.1 Introduction 

Chapter Ten 

Discussion and Conclusion 

In this final chapter the conclusions and the consequent recommendations will be 

presented. Two main models were presented in chapter two. These shared many of 

their features, particularly with regard to the basic factors influencing the structure 

and distribution of the soil fauna guild. The various components of the models have 

been modified in the light of the evidence presented in the study, and a particular 

model selected on the basis of this evidence. This model is the three-zone model, 

model 2, modified most significantly by the multiple episode hypothesis (see 

chapter 9). 

10.2 The factors of faunalturbation and hypotheses 1-3. 

Model 2, as modified by the evidence presented, explains the pattern of 

faunalturbation in the following manner. If figure 3.1 is examined it will be seen 

that the system has an element of feedback in it. The different sediment properties 

do not necessarily have the same levels of impact on the system, nor are they all 

equally affected by the feedback from the system. 

It was the physico-chemical properties, also referred to as the soil properties, which 

were hypothesised to have the most significant effect on the guild structure and 

population distribution of the soil fauna (hypothesis 1). The analyses presented in 

chapter 8 (see 8.2) suggest that some of the properties, particularly pH and loss on 

ignition, do affect the sizes of the various functional group populations. Similarly 

the soil properties of loss on ignition and sand content do affect the basic 
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distribution of the various functional groups in terms of their presence or absence 

(see 8.2). 

These analyses, however, suggest that the degree of variation in the population sizes 

and distributions are only partially determined by the soil properties of a site. Thus 

it would seem that over the time span represented by the faunal samples that the 

ecological processes are as at least as important as the soil properties (8.2). That 

this should be so probably reflects the significance of time as a factor in this regard. 

As has been discussed above, ecological theory suggests that 'intrinsic' factors such 

as ecological processes will have a greater impact over the short term than 

'extrinsic' factors such as soil properties (see 8.2, Gee & Giller 1991: 8). Indeed 

one way of viewing figure 3.1 is as a representation of a single iteration of the 

faunalturbation system, with the fauna sampled being the outcome of the interaction 

of the various elements in the ecological sub-system with the sediment properties 

and feeding back into the sediment properties. A single iteration of the system 

could be assumed to occur over a period of a year. 

From the above discussion it is apparent that while ecological processes are likely to 

be important determinants of population size and distribution of the different 

functional groups of soil fauna in the shorter term (see 8.2), ecological theory 

suggests that the physico-chemical properties will be of greater significance over the 

longer term. As has been discussed above (see 6.3 and 6.4), the 

macromorphological and micromorphological effects and traces of faunalturbation 

are the product of longer term faunalturbation activity, over periods from a few 

decades to a few centuries. 
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The annual rates of soil mass movement calculated from the 137CS distribution were, 

by comparison, suitably short term measures of faunalturbation with which to test 

hypothesis 2, with the result that being the distribution of certain of the functional 

groups, specifically the anecic earthworms, determines the distribution and degree 

of faunalturbation, at least over the time period (annual cycles) in question. 

To test hypothesis 3 soil properties where correlated against the depths of the 

macromorphological markers of what are argued to be the boundaries of the region 

of most intense faunalturbation (see 6.3. & 8.3). The soil property that proved to be 

significant was pH. While the boundaries of the region of most intense 

faunalturbation are formed in a cumulative manner, they may form over a period 

corresponding to the shorter part of the time scale mentioned above. If the P values 

calculated for the correlation of the different depths of the boundary markers are 

examined (see 8.3), it becomes apparent that approximately half of the variation in 

boundary depth is accounted for by variation in pH. While it is not possible to 

precisely compare the different amounts of variation accounted for between 

different types of statistical tests, the broad similarity of variation accounted for by 

the multiple linear regressions (8.2) and the correlations (8.3.) is itself suggestive. It 

could be speculated that, under the theory expounded by Gee & Giller (1991), this 

means that the boundaries of the most intense region of faunalturbation form 

sufficiently rapidly to be significantly affected by ecological processes, as well as 

the soil properties. This interpretation is in agreement with the processes posited in 

the three-zone model (see 7.3 below). The varying role of the soil properties over 

time is further demonstrated by the correlations of soil properties against the mean 
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total faunalturbation traces. These traces include areas of faunalturbation from 

below the region of most intense faunal activity. As such, there is likely to be a 

component of the faunalturbation traces that have been formed over the longer term. 

The correlation coefficient for these traces against soil properties accounted for a 

larger part of variation than the coefficient for the region of most intense faunal 

activity, as would be expected (see 8.3). Thus faunalturbation is affected by the 

physico-chemical properties at the various depths at which it occurs. 

10.3 Model 2 and hypotheses 4-8. 

The relationships between the different components of the model described in 

chapter two and recapitulated above cover the interaction of the fauna with the 

physico-chemical properties of a site. But this is only part of the problem under 

consideration. The question of the overall impact of faunalturbation needs to be 

addressed. The correlations of the depths of the boundaries of the most intensely 

faunalturbated regions provides some information on this, but a fuller explanation 

accounting for all sections of the profile of a site is required. 

To this end two competing models were advanced, with the three-zone model 2 

being the model adopted as best accounting for the evidence of faunalturbation. 

Discrimination between the models was based hypotheses 4-8. The model attempts 

to explain the distribution of faunalturbation in terms of the system outlined above, 

which is thus integral to the model. The model proposes the division of an 

archaeological profile in to three possible zones which are regions exhibiting similar 

levels of faunalturbation or preservation. As such all three zones do not have to be 

present in every case. The number and disposition of the zones relies on two things: 
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the point in time that the site is sampled in relation to the rate of faunalturbation, 

and the fundamental history of the site in terms of rates and continuity of initial 

deposition. This latter point is embodied in the multiple episode hypothesis (see 

9.2.5 and lOA). Given that the zones are defined and classified in terms of the state 

of preservation and that such characteristics are cumulative and the factors noted 

above with regard to the number and disposition of the zones, it is possible to have 

current faunal activity distributed differentially through a zone. 

Thus while the distribution of the differing zones, and thus grades, of preservation is 

posited in part on the basis of the distribution of the various functional groups of 

fauna and associated mechanisms of faunalturbation, the cumulative nature of the 

traces of faunalturbation and the role of time since initial deposition are also 

important factors, as is discussed below. 

The three zones were identified as a possible means of characterising the impact of 

faunalturbation on the basis of data derived from the literature on the soil fauna (see 

chapter two). The evidence for the three-zone model comes from a variety of 

sources. The zone of destruction has the predicted properties of resembling (or in 

some cases being formed by) the 'A' horizon of a biologically active soil 

(hypotheses 4and 6, see 3.10), and being wholly or predominantly composed of 

fabrics and pedofeatures attributable to the activity of fauna (hypotheses 5) (see 

3.10,6.3, 604 and 9.5). Zones of preservation could not be unequivocally identified, 

although there is some limited evidence for their presence (see 9.2.2), and the lack 

of such zones is probably explicable in terms of depth of initial deposition, under 

the multiple episode hypothesis (see 9.2, 9.6 and 10.4). The identification of zones 
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of partial preservation has been highly significant, as it is this zone type that 

characterises the model, even in the absence of zones of preservation (9.2, 9.6). 

Having identified the different zone types it is important to maintain the distinction 

between the zones, as volumes of soil or sediment having exhibiting similar levels 

of faunalturbationJpreservation and the regions between which there is a 

differentiation in the relative rates and predominant mechanisms of faunalturbation, 

which may not be immediately apparent from the disposition of the different zones. 

The fact of the stone lines and the distribution of these features in the site profiles, 

and the distribution of 137Cs (hypothesis 7) both confirm the differential distribution 

of activity into different regions that was predicted on the basis of the literature on 

the fauna. There is greater and probably more repetitive activity occurring in a 

region bounded by the stone line or base of the 'A' horizon where these may be 

identified (see 2.10, 6.2 and 6.3). As has been mentioned above, while the region of 

most intense activity may conform to the zone of destruction over the shorter term, 

the cumulative nature of faunaltubation means that this is not necessarily the case 

over the longer term, with this zone potentially being extended by the activity of 

deeper-dwelling fauna. 

10.4 The multiple episodes hypothesis. 

As has been noted, the distribution of the different zones depends in part on the rate 

and continuity of deposition of the archaeological deposits. The multiple episode 

hypothesis has been advanced to take account ofthis influence (see 10.2.5). In 

essence the hypothesis predicts that the profile of a deep site, such as the farm 

mounds sampled in this study, will exhibit a series of partial or complete sequences 
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of zones of destruction/partial preservation/preservation, reflecting the episodic 

nature of deposition and subsequent faunalturbation, with each earlier episode of 

faunalturbation being disrupted by subsequent deposition (see 10.2). This 

hypothesis would account for the lack of zones of preservation and the presence of 

mUltiple zones of destruction and partial preservation. The different composition of 

the various zones of destruction on each site would seem to confirm the hypothesis 

(see 10.5). Examination of figs. 9.1-9.3 may give the impression that the results of 

periodic deposition and faunalturbation will form fairly uniform layers across a site. 

This impression may be no more than that, caused by the relatively limited lateral 

coverage concomitant on the use of test-pits rather than larger sampling 

arrangements. Given the seasonal to annual nature and the likely volume of the 

deposits on the sites (see 10.2) it is likely that, at least with regard to farm mound 

sites there may be considerable lateral variation in the distribution pattern of the 

initial deposits and thus the different zones. It might be speculated that there is in 

effect a three dimensional mosaic of varying states of faunalturbation/preservation, 

perhaps in the form of a frame or net of interconnected, or at least touching, zones 

of destruction, with the other zones in the 'gaps' of the frame. 

10.5 Rates of faunalturbation and patterns of preservation 

With regard to rates of faunalturbation, it has been demonstrated in the study that 

faunalturbation may be regarded as operating at two different rates (see 10.6). The 

more rapid rate of faunalturbation occurs in the upper part of the site profile, usually 

demarcated by a stone line and being approximately equivalent to the current 'A' 

horizon. The slower rate of faunalturbation occurs perceptibly at greater depth, thus 

theoretically even the deeper archaeological stratigraphy of a site may eventually be 
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faunalturbated to the point where all stratigraphic information is lost. To compare 

the different rates in their most extreme examples, the 137CS derived rates of 

faunalturbation at Tofts are 5.49 kg -3yr-1 in the uppermost sample and .05 kg -3yr-1 

in the lowest. This corresponds to a complete turnover of soil and sediment in 131 

and 16,300 years respectively. While these rates are likely to be underestimates (see 

6.5) the contrast of rates within the profile is evident. It is difficult to be certain of 

the period over which complete faunalturbation of archaeological stratigraphy 

occurs. 

The patterns of surviving stratigraphy give some possible indication, with some 

identifiable stratigraphic units, albeit heavily faunalturbated, surviving after 700-

1000 years (based on the radiocarbon determinations tabulated in chapter four). 

This is before the effect of a site being formed through multiple episodes of 

deposition and faunalturbation is considered. It should be remembered that 

stratigraphic units composed of up to 80% faunalturbation traces are still 

identifiable (see 6.3). Thus it could be argued that, with regard to the basic 

identification of units so that relatively full stratigraphic analysis can be undertaken, 

the stratigraphy of the sites sampled has proved moderately durable with regard to 

the slower forms of faunalturbation associated with the anecic earthworms. 

10.6 Archaeological implications of the model 

10.6.1 Introduction 

The importance of stratigraphy in archaeology has already been established (see 

1.1). In this section the practical implications of the model with regard to this 
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fundamental element in archaeology will be discussed. The implications of the 

model vary according to the broad type of site under consideration. Three broad 

groups will be considered: farm mounds and related sites, shallow rural sites, urban 

sites. 

10.6.2 Farm Mounds and Related Sites. 

The significance of the farm mound and the more closely related sites in terms of 

the archaeology of the North Atlantic have already been discussed (see 4.2). The 

comments in this section relate not just to the farm mounds and settlement mound 

sites, but also to other relatively deeply stratified rural sites. Such sites are fairly 

common in Orkney, particularly sites formed of midden accumulations 

(R.C.H.A.M.S 1980: 14). 

The main effect that may be predicted from the model is the loss of stratigraphic 

information identified in chapter one. Collections of stratigraphic units will be 

mixed into regions of soil with the original units being indistinguishable. This zone 

of destruction will correspond to the 'A' horizon of the current soil, that is the 'top 

soil' that is removed prior to excavation proper (Roskams 2001). As such the 

presence of a zone of destruction on an archaeological site with stratigraphy 

surviving below it means that there has been a loss of stratigraphic units and that the 

stratigraphic sequence is incomplete. In the destruction of the uppermost level of a 

stratigraphic sequence information on the processes of site formation and the initial 

history of the deposits that have been completely faunaturbated has been lost. This 

loss creates a hiatus in the sequence from the date of the uppermost surviving 
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archaeological stratigraphy to the present. That a stratigraphic sequence is 

incomplete does not often appear to be observed by field archaeologists. 

Within the zone of partial preservation other effects will occur. Contacts between 

units may be obscured, making the determination of stratigraphic relationships 

difficult. The original extent of deposits may be made unclear. Both these types of 

information are very important in excavation and in the interpretation of 

stratigraphy (Roskams 2001). Materials used in archaeological analysis and 

interpretation may be moved from one unit to another, or even from the surface of 

the site. This may include small biological remains such pollen, seeds and insect 

remains. Potentially the most problematic movement is not of these materials, 

which are still relatively large and have to moved in their own right as particles, and 

thus may form distinctive and recognisable distributions, but with chemical 

evidence. A variety of compounds and some elements are used as markers for past 

activity. To be effective these generally must adsorb to the soil or sediment to 

remain detectable. Some are unlikely to be affected by faunalturbation, such as 

phosphate, which is likely to remain on a site even if the stratigraphy of the site has 

been completely faunalturbated, and is generally simply used as an indicator of 

human activity. Others occur at lower concentrations, such as various biomolecular 

markers e.g. coprostanol (Bull et al. 1997), and are specific to certain processes or 

materials. This specificity is an important part of the value of such markers. As 

adsorbed compounds it is possible that they may, through faunalturbation, move, in 

conjunction with the soil or sediment to which they are adsorbed. They may be 

moved into deposits that originally did not contain the particular marker and thus 

cause false positives in any analyses seeking to detect them. That adsorbed 
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materials do move, and may be introduced to some depth even over a relatively 

short period is demonstrated by the 137CS profiles presented (see 6.5). 

A further issue that is significant with deep sites is the effects of multiple episodes 

of deposition combined with faunalturbation. This can has to the creation of 

multiple zones of destruction, as has happened at the sites investigated in this study. 

In addition to the effect of the uppermost group of stratigraphic units being lost, 

each deeper zone of destruction constitutes a further hiatus in the sequence of the 

history of the formation and use of the site. This is a point not frequently 

considered in the interpretation of archaeological sites. 

There is a further point of complexity in regard to the presence of zones of 

destruction in such situations, which is that the presence of these zones presents 

more than simply a hiatus in the sedimentary sequence of the site, in the sense of a 

loss of stratigraphic information. For significant faunalturbation to occur there must 

have been an actual hiatus in deposition. This in itself is valuable information with 

regard to the processes of formation of a site, even if a somewhat paradoxical 

situation. The time scales for the formation of zones of destruction would be useful 

tools in reconstructing site histories where such zones occur, and the soil movement 

rates derived from the 137CS distribution data is a novel and unique approach to 

provide modem analogue data on this matter. 

The zones of destruction can be classified as the 'A' horizons of biologically active 

soils fonned from archaeological sediments. As such, each zone of destruction, 

other than the current one on each site, is in effect part of a buried soil. This in 

itself is a possible source of information. While with regard to the farm mounds 
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there is currently no indication that such soils were in use by the contemporaneous 

site inhabitants, this may not be the case for all sites. Further research on such 

buried soils may provide insights to soil management in the North Atlantic region, 

where materials similar to those of which the farm mounds are composed were used 

in soil emendation (Fenton 1978: 278). 

Study of the composition of the zones of destruction using the techniques of 

geoarchaeology/pedoarchaeology has the potential to provide other data. While the 

discrete archaeological units have been reworked into a single unit, aspects of the 

composition of the original units may be recoverable. The comparative variations 

in the particle size distributions of the samples from the different sites with regard to 

sourcing has been discussed (see 7.2.3). Micromorphological analysis has 

demonstrated the presence of large quantities of spherulites at Tofts, contrasting 

with their absence on the other sites (see Appendix 4). This again may provide 

evidence for primary formation processes, even in the absence of identifiable 

stratigraphy. Without such study it is difficult to confidently detect and interpret 

traces of faunalturbation and this renders reinterpretation of previous research 

difficult. However, some tentative reinterpretations will be offered in this 

sectionand in section 10.6.4. 
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Fig. 10.1 Stratigraphic section from Skelbrae, Sanday (from Davidson et al. 
1986) 
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If figures 10.1 and 10.2 are examined it becomes apparent that there are alternating 

bands of stones and shells. In the case of the Langskail section the layers of stone 

or shell are associated with the deeper deposits, in contrast to clusters of bands of 

thinner deposits. At Skelbrae there are no clusters of thinner bands of material. 
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Fig. 10.2 Stratigraphic section from Langskail, Sanday (from Davidson et ale 

1986). 
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The layers of stones could be interpreted as the sort of stone lines formed by 

earthworm activity. The association with the thicker deposits looks like that found 

in the case of the heavily faunalturbated deposits in the farm mounds sampled for 

the study. An examination of the 14C determinations associated with the sites (see 

table 4.1) shows that soil determinations tend to have a more recent lower age limit 
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than the stratigraphically associated non-soil samples, and slightly larger error 

ranges, both of which might be expected if one sample type, Le. soil, was composed 

of material from a greater range of sources, particularly some of more recent date 

through top-down mixing processes, as faunalturbation is. This tends to confirm 

that there may be problems using chemicallbiochemical markers in these 

circumstances. 

10.6.3 Shallow Rural Sites 

Although rural sites with shallow stratification were not part of the study, the model 

can easily be extrapolated to this type of site, and the implications of the model in 

this situation considered. Sites with shallow stratification constitute an important 

component in the rural archaeology of Britain, possibly forming the majority of 

archaeological sites (Roskams 2000: 220). One of the reasons that the model can be 

extrapolated to shallow sites is that shallow and deep sites are not discrete groups, 

but different points on a spectrum of depth of stratification. Further, the multiple 

episode hypothesis means that one way of viewing the deep sites with regard to the 

effects of faunalturbation is simply as a superimposed sequence of relatively 

shallow sites. 

For the purposes of this discussion a shallow site is defined as one having the bulk 

of its archaeological deposits and other traces of human activity at a depth no 

greater than 20-30 cm. Comparing such a notional site with the upper 20-30 em of 

the sites sampled suggests that the majority of the original archaeological traces, in 

terms of the stratigraphic ordering of the site would be entirely lost. To refer back 

to the sedimentalogical-pedological model, all those particles which could be 

moved by faunalturbation would be. Those that could not, essentially those too 
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large to be substantially affected by faunalturbation would leave some indication of 

past human activity, but in a form difficult to interpret with any confidence. The 

best example of this would be the case of the remains of a stone structure, whose 

largely unmoved stones would 'float' in the zone of destruction, with no means of 

being linked with other structural remains in the vicinity. Neither would it be 

possible to tell by traditional archaeological means very much concerning the 

history of use or occupation of such remains. Moreover, the issue of whether rural 

sites have had prolonged or multiple phases of occupation is currently an important 

issue with regard to the settlement patterns and population levels in Iron Age 

Scotland. The debate concerning the duration of site occupation seems to have 

taken no account of formation processes of any kind, including faunalturbation 

(Haliday, undated). What is essentially occurring through the processes of 

faunalturbation on such sites is the loss of the information required to usefully 

discriminate between rival interpretations. 

10.6.4 Urban Sites. 

In this section the possibility of applying the model to urban site is considered. If 

such an application is valid then the actual implications for the survival and 

interpretation of stratigraphy will be essentially the same as those for the more 

deeply stratified rural sites like the farm mounds that have already been discussed 

(10.6.2). It could be argued that urban sites should be specifically excepted from 

consideration, and for a variety of reasons. The first reason is that the model has 

been constructed and tested using both the published literature, which is almost 

entirely concerned with rural soil fauna populations, and data collected from rural 

sites. The urban situation might well be likely to be sufficiently different for it to be 
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difficult to extrapolate from a rurally derived model. In current urban settings 

faunalturbation is likely to be insignificant, with the soil fauna being confined to 

gardens. It is difficult to be certain, however, due to the lack of surveys concerning 

urban populations of soil fauna. Pre-modem urban settings are, however, quite 

different from modem ones, lacking the systematic and heavy coverage of ground 

by concrete and tarmac (Sjoberg 1960: 169). The pre-modem urban setting has no 

fully analogous equivalent in modem Europe. Despite having a closer resemblance 

to rural situations (Mumford 1961: 258), there may have been potentially significant 

differences with regard to the conditions for the soil fauna and thus possible 

faunalturbation. The trampling effects associated with higher population density 

and frequent use of thoroughfares could have excluded or reduced numbers of fauna 

(Edwards & Bohlen 1996: 222). Craft and industrial processes may have caused 

substances toxic to some elements of the soil fauna to have been introduced to the 

soils or sediments of urban areas. For example, various heavy metals are known to 

adversely affect at least some species of earthworms (Edwards & Bohlen 1996: 

222). These include copper and lead, both of which are frequently deposited in the 

soil as a result of a range of craft/industrial processes, particularly metalworking 

(Butzer 1982: 97). 

While these may appear to constitute reasons for not applying the model to urban 

sites there are substantial reasons to attempt such an application. As has already 

been noted, sociologists and historians of urbanism have noted that the main 

differences between urban and rural situations in pre-industrial cultures is 

institutional rather than environmental (Sjoberg 1960: 170, Mumford 1961: 257). 

Work on urban sites has thrown up evidence for environments that are more similar 
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to modem rural environments than modem urban settings, e.g. as at York (Kenward 

and Hall 1995: 57). Urban sites constitute an extremely important part of the 

archaeological resource, with the deep stratification providing not just important 

detailed site histories but also often substantial organic remains, both artefacts and 

biological remains (Roskams 2001: 247). 

At the current level of knowledge it is difficult to fully assess the validity of the 

model with regard to urban sites. The possible impact of faunalturbation simply has 

not been investigated, and there is no evidence that field archaeologists working in 

urban settings have been aware of the possibility. It would be necessary to 

specifically investigate pre-industrial urban archaeological deposits with a view to 

detecting the presence of the traces of faunalturbation to evaluate the applicability 

of the model. 

10.7 Conclusions 

Through the construction of a conceptual model, based on evidence derived from 

the literature and testing and subsequent revision of this model, a number of 

conclusions can be drawn concerning the impact of faunalturbation on 

archaeological sites. While it has been long been known that faunalturbation might 

affect the distribution of artefacts on a site e.g. (Atkinson 1957), this study has 

demonstrated that faunalturbation does occur on archaeological sites, with 

potentially wide ranging effects. The faunalturbation that occurs is on a scale and is 

so distributed that it affects the survival of archaeological evidence, particularly in 

the form of the stratification of a site. The integrated basis of the model, based 

around the sedimentalogical-pedological framework, which provides a basis for 
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explaining the fate of all archaeological remains is an entirely novel approach, as 

has been the use of integrated techniques to test and refine the model. The 

integrated use of these techniques has demonstrated that faunalturbation may 

detected, and its role as a formation process may be included in forming 

interpretations of the history of a site. 

Testing of the original model has lead to the conclusion that the population levels 

and distribution of the different functional groups of the soil fauna are determined in 

part by the physico-chemical properties of the soils and sediments of which sites are 

formed, with significant influence from other factors, probably mainly ecological 

processes. This element of the model has been revised to take account of time 

scales, which probably influence the relative importance of the soil properties and 

ecological processes as factors of fauna populations (Gee & Giller 1991: 8). 

The depth to which archaeologically significant faunalturbation occurs is thus 

determined in part by the physico-chemical properties of these soils and sediments. 

Faunalturbation of an archaeological sites proceeds at different rates, with rapid 

faunalturbation occurring in the upper part of the profile and more slow effects 

occurring deeper in a site profile. This pattern is in accordance with the distribution 

of the different functional groups of the soil fauna. 

The effects of faunalturbation on the archaeological record of a site may be grouped 

as follows: the total destruction of stratigraphic units, the movement of artefacts and 

ecofacts, the movement of small ecofacts, the transport of chemical markers. Given 

the techniques successfully applied in assessing the extent of faunalturbation, the 
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possibility of false evidence can be guarded against and the loss of information 

partly compensated for by the application of these and similar techniques. 

10.8 Recommendations 

10.8.1 Recommendations for Archaeological Practice. 

• That suitable techniques are employed to detect evidence of faunalturbation, or 

other processes of pedogenesis as a part of archaeological excavationlpost

excavation analysis to ensure that possible losses of components of stratigraphic 

sequences can be taken into account. 

• That thin section micromorphology be used in parallel with any analysis for 

specific chemical markers of samples from archaeological sites, as a possible 

means of detecting possible contamination of a deposit with material originating 

from other soil/sediment units. 

• That a range of geoarchaeological/pedoarchaeological techniques be applied to 

apparently completely faunalturbated units where such techniques may be 

applicable to the resolution of specific research questions. 

10.8.2 Recommendations for Further Research. 

• Further sampling of a wider range of sites to check the validity of the model 

over a wider range of variation in the physico-chemical properties, particularly 

pH and loss on ignition. 

• Work to improve knowledge of the rate of long term faunalturbation at depth, 

possibly using a range of dating techniques, including radiocarbon dating and 

perhaps optically stimulated luminesence. 
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Appendix One: Regression Equations for Multiple Linear Regressions 

Archaeological Sites, Initial Regressions 

endogeic earthworms = -5.71 + 1.25(pH) 

enchytraeids = 38.62 - 4.9(pH) 

total non-enchytraeid fauna = 86.77- 10.71(pH) 

= 61.03- 9.24(pH) + 1.38(% loss on ignition) 

total fauna = 109.14 - 13.84(pH) 

= 76.05 - 11.48(pH) + 1.62(% loss on ignition) 

Control Sites, Initial Regressions 

endogeic earthworms = -9.82 + .867(% loss on ignition) 

enchytraeids = -23.78 + 1.94(% loss on ignition) 

total non-enchytraeid fauna = -10.18 + 1.16(% loss on ignition) 

total fauna = -33.53 = 2.97(% loss on ignition) 

Archaeological Sites, Final Regressions 

endogeic earthworms = 52.392 - 7.28(pH) 

total non-enchytraeid fauna = 10.58 - 1O.58(pH) 

total fauna = 83.36 = 1O.92(pH) 

Control Sites, Final Regressions 

endogeic earthworms = -5.02 + .67«% loss on ignition) 

enchytraeids = -11.82 + 1.43«% loss on ignition) 

total non-enchytraeid fauna = -5.83 -0.96(% loss on ignition) 

total fauna = -18.08 + 2.27(% loss on ignition) 

= -49.07 + 2.53(% loss on ignition) + 4.20(pH) 
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Appendix Two: Lab Data 

Beafield, Archaeological Site 

Sample % Moisture Bulk pH % Loss 
Depth! Density on Ignition 
No. 
1011 32.61 .62 7.3 14.02 
10/2 34.04 .62 7.5 14.04 
10/3 33.03 .73 7.2 12.52 
10/4 33.33 .66 7.9 13.41 
20/1 33.33 .64 7.9 15.19 
20/2 32.98 .63 8.1 21.57 
20/3 32.69 .70 7.7 9.22 
20/4 33.33 .78 8.1 9.45 
30/1 33.33 .68 7.9 5.15 
30/2 32.67 .68 8.0 7.23 
30/3 33.03 .73 7.2 4.43 
30/4 33.33 .68 8.1 6.40 
40/1 33.33 .62 8.4 4.91 
4012 33.33 .62 8.0 18.21 
40/3 32.69 .70 7.9 7.00 
40/4 32.71 .72 8.1 6.12 

Westbrough, Archaeological Site 

Sample % Moisture Bulk pH % Loss 
Depth! Density on Ignition 
No. 
1011 42.79 .71 5.5 16.39 
10/2 40.53 .75 5.3 18.09 
10/3 39.79 .84 5.2 17.33 
10/4 41.70 .74 5.4 18.95 
20/1 29.57 .88 6.2 6.72 
20/2 28.27 .97 6.3 6.42 
20/3 32.26 .94 5.7 10.19 
20/4 29.05 .92 6.2 6.49 
30/1 31.05 .75 7.0 6.37 
30/2 30.87 .93 6.9 6.97 
30/3 31.21 .83 6.8 6.18 
30/4 31.64 .89 6.9 6.75 
40/1 28.93 .86 7.1 6.26 
40/2 31.10 .84 7.2 6.65 
40/3 30.34 .90 7.2 6.57 
40/4 30.52 .96 6.8 5.31 
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Tofts, Archaeological Site 

Sample % Moisture Bulk pH % Loss 
Depth! Density on Ignition 
No. 
1011 21.48 .71 6.6 20.49 
10/2 27.15 .71 6.0 22.58 
10/3 32.45 .74 6.7 22.20 
10/4 4.29 .70 7.3 21.90 
20/1 20.83 .91 7.8 17.61 
20/2 25.02 .90 7.0 15.15 
20/3 21.05 .83 7.4 13.29 
20/4 22.02 .86 7.6 14.66 
30/1 15.83 .80 7.9 9.89 
30/2 22.35 .98 7.6 10.74 
30/3 19.35 1.00 8.0 8.23 
30/4 12.91 .98 7.6 10.51 
40/1 12.99 .89 8.2 7.55 
40/2 26.76 .93 8.0 5.29 
40/3 19.52 .79 7.6 7.37 
40/4 17.71 .99 8.6 9.28 

Beafield, Control Site 

Sample % Moisture Bulk pH % Loss 
Depth! Density on Ignition 
No. 
1011 50.59 .42 7.2 26.97 
10/2 48.28 .45 7.2 27.21 
10/3 53.61 .45 7.4 26.75 
10/4 45.10 .56 7.2 27.90 
20/1 46.09 .62 7.2 16.30 
20/2 35.71 .72 7.3 16.54 
20/3 39.85 .80 7.3 17.43 
20/4 37.39 .72 7.3 16.76 
30/1 27.69 .94 7.7 8.49 
30/2 25.00 .96 8.0 7.7 
30/3 28.57 .90 7.6 9.7 
30/4 33.88 .80 7.5 10.52 
40/1 25.00 .87 7.3 9.74 
40/2 40.00 .72 8.0 8.92 
40/3 28.69 .87 7.6 9.74 
40/4 31.50 .87 7.6 10.55 
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Westbrough, Control Site 

Sample % Moisture Bulk pH % Loss 
Depth! Density on Ignition 
No. 
1011 54.06 .54 4.0 23.08 
10/2 46.37 .61 3.9 20.31 
10/3 56.93 .50 4.4 19.96 
10/4 51.31 .56 5.1 23.81 
20/1 35.22 .91 4.4 15.11 
20/2 40.25 .80 4.3 12.55 
20/3 35.02 .96 4.6 13.31 
20/4 37.77 .74 4.2 14.79 
30/1 38.54 .85 5.2 12.34 
30/2 38.59 .84 5.0 11.75 
30/3 38.95 .84 4.9 8.80 
30/4 38.16 .83 4.6 12.67 
40/1 44.88 .73 4.1 14.37 
40/2 46.09 .66 5.3 14.80 
40/3 48.42 .67 4.3 21.76 
40/4 45.30 .66 5.4 11.45 

Tofts, Control Sites 

Sample % Moisture Bulk pH % Loss 
Depth! Density on Ignition 
No. 
10/1 29.70 1.07 6.80 14.98 
10/2 23.51 1.02 6.90 12.52 
10/3 29.50 1.10 7.10 14.92 
10/4 27.38 .93 6.60 13.33 
20/1 27.16 1.09 7.20 11.34 
20/2 25.65 1.16 7.60 16.70 
20/3 27.81 1.09 7.50 13.14 
20/4 26.74 .95 7.50 12.39 
30/1 19.63 1.16 8.00 7.12 
30/2 19.62 1.04 7.40 6.21 
30/3 25.58 1.10 7.80 4.76 
30/4 20.80 1.05 7.40 7.19 
40/1 20.44 1.14 7.40 6.32 
40/2 24.14 1.06 7.80 8.00 
40/3 21.54 1.18 7.40 6.82 
40/4 20.86 1.07 7.50 6.72 
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Particle Size Distribution, Beafield Sites 

Sample Beafield Beafield Control 
DepthINo % Clay % Silt % Sand % Clay % Silt % Sand 

1011 1.65 23.79 73.28 3.06 32.14 64.73 
10/2 3.91 30.80 63.10 2.38 15.02 82.01 
10/3 2.79 31.12 59.74 3.03 15.37 76.00 
10/4 9.41 64.14 21.95 1.74 16.91 81.65 
20/1 2.43 51.40 44.95 .93 9.27 89.56 
20/2 4.68 42.83 48.19 2.38 17.18 80.27 
20/3 2.92 33.42 60.90 2.72 15.49 80.81 
20/4 7.83 51.03 38.32 1.93 21.70 76.35 
30/1 5.97 48.26 40.86 1.92 18.15 79.87 
30/2 11.99 69.06 18.25 3.36 22.41 74.01 
30/3 5.38 44.49 47.39 2.88 19.96 77.14 
30/4 7.80 58.04 31.19 2.32 18.01 79.53 
40/1 6.07 53.83 30.98 10.21 67.37 22.68 
4012 9.13 62.24 23.36 5.31 34.80 60.01 
40/3 7.96 56.68 33.83 7.76 46.81 50.18 
40/4 4.91 48.85 31.52 2.00 20.14 77.83 

Particle Size Distribution, Westbrough Sites 

Sample Archaeological Site Control Site 
DepthINo % Clay % Silt % Sand % Clay % Silt % Sand 

lOll 3.36 47.83 46.45 13.44 71.07 15.49 
10/2 4.16 47.22 48.15 9.33 59.40 31.18 
10/3 2.34 40.21 55.34 8.91 59.70 31.07 
10/4 2.72 43.27 53.96 13.51 69.22 16.49 
20/1 4.65 51.76 41.63 7.7 55.95 30.80 
20/2 12.91 64.26 19.67 8.51 49.59 28.84 
20/3 4.91 55.12 34.72 9.75 53.76 26.11 
20/4 5.00 51.36 40.93 9.95 55.34 26.93 
30/1 5.44 52.12 41.20 10.82 60.78 27.36 
30/2 5.70 57.73 35.46 12.30 63.81 23.30 
30/3 5.13 50.25 43.72 13.59 64.08 21.99 
30/4 5.21 51.40 42.31 12.30 59.11 27.63 
40/1 5.29 47.60 37.87 12.68 60.80 24.49 
40/2 4.77 50.12 42.93 12.37 63.46 24.01 
40/3 5.24 56.98 35.60 13.10 64.12 22.73 
40/4 6.02 37.58 23.33 15.41 63.34 21.03 
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Particle Size Distribution, Tofts Sites 

Sample Archaeological Site Control Site 
DepthINo % Clay % Silt % Sand % Clay % Silt % Sand 

1011 1.70 19.69 78.61 1.70 19.69 72.01 
10/2 3.48 27.08 68.64 4.54 30.57 55.30 
10/3 2.37 23.36 74.10 10.23 49.14 27.48 
10/4 2.59 24.83 72.43 4.37 29.22 54.41 
20/1 4.54 30.57 64.82 3.48 27.08 59.51 
20/2 2.78 24.68 72.33 2.78 24.68 64.10 
20/3 5.19 25.71 69.10 3.57 30.61 57.65 
20/4 3.78 19.80 76.05 5.16 43.54 40.61 
30/1 10.23 49.14 37.02 2.37 23.36 69.89 
30/2 3.57 30.61 64.12 5.19 25.71 59.28 
30/3 7.60 29.28 41.64 7.60 29.28 35.91 
30/4 11.61 41.51 24.48 12.87 51.01 27.04 
40/1 4.37 29.22 61.18 2.59 24.83 63.15 
40/2 5.16 43.54 47.64 3.78 19.80 66.41 
40/3 12.87 51.01 33.01 11.61 41.51 15.39 
40/4 4.55 31.57 60.37 4.55 31.57 55.50 

Beafield, Archaeological Site 

Sample Endogiec Anecic Indet. Enchytraeid Coleoptera! Total Non. Total 
DepthINo Earthworms Earthworms Earthworms Diptera Enchy. Fauna 

Fauna 
1011 0 5 0 6 0 5 11 
10/2 0 22 0 2 0 22 24 
10/3 0 8 0 6 0 21 14 
1014 0 21 0 0 0 21 23 
20/1 0 1 0 1 0 1 1 
20/2 0 0 2 1 0 2 1 
20/3 0 0 0 2 0 0 1 
20/4 0 0 0 1 2 2 4 
30/1 0 0 0 1 0 0 1 
30/2 0 0 0 0 0 0 1 
30/3 0 0 0 0 1 1 1 
30/4 0 0 0 0 0 1 0 
40/1 0 0 0 0 0 0 0 
40/2 0 0 0 0 0 0 0 
40/3 0 0 0 0 1 1 1 
40/4 1 0 0 0 0 0 1 
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Westbrough, Archaeological Site 

Sample Endogiec Anecic Indet. Enchytraeid Coleoptera! Total Non. Total 
DepthINo Earthworms Earthworms Earthworms Diptera Enchy. Fauna 

Fauna 
1011 8 37 1 4 0 52 49 
10/2 11 4 1 49 0 20 64 
10/3 38 15 9 13 0 64 66 
10/4 9 7 0 2 0 24 18 
20/1 2 5 0 3 1 8 11 
20/2 6 1 0 2 0 7 9 
20/3 9 6 0 1 0 16 16 
20/4 2 8 0 6 0 10 16 
30/1 1 0 0 1 0 2 2 
3012 1 0 0 0 0 1 1 
30/3 1 0 0 4 0 2 5 
30/4 0 0 0 2 0 0 2 
40/1 0 0 0 0 0 0 0 
40/2 0 0 0 1 0 0 1 
40/3 0 0 0 1 0 0 1 
40/4 0 0 0 6 0 0 6 

Tofts, Archaeological Site 

Sample Endogiec Anecic Indet. Enchytraeid Coleoptera! Total Non. Total 
DepthINo Earthworms Earthworms Earthworms Diptera Enchy. Fauna' 

Fauna 
1011 0 0 0 3 0 0 3 
10/2 4 3 0 0 1 8 8 
10/3 5 3 0 4 13 21 25 
10/4 0 1 0 0 4 5 5 
20/1 0 0 0 19 1 1 20 
20/2 0 0 0 4 0 0 4 
20/3 0 0 0 0 0 0 0 
20/4 0 0 0 0 0 0 0 
30/1 0 0 0 43 0 0 43 
30/2 0 0 0 2 0 0 2 
30/3 0 0 0 1 0 0 1 
30/4 0 0 0 1 0 0 1 
40/1 0 0 0 7 0 0 7 
40/2 0 0 0 0 0 0 0 
40/3 0 0 0 0 0 0 0 
40/4 0 0 0 0 0 0 0 

260 



Beafield, Control Sites 

Sample Endogiec Anecic Indet. Enchytraeid Coleoptera! Total Non. Total 
DepthINo Earthworms Earthworms Earthworms Diptera Enchy. Fauna 

Fauna 
lOll 14 3 0 69 0 18 87 
10/2 14 1 7 24 1 23 47 
10/3 14 5 0 12 1 36 48 
10/4 26 1 5 31 1 16 47 
20/1 8 0 0 0 0 0 0 
20/2 0 0 0 2 0 2 4 
20/3 2 0 0 3 0 0 3 
20/4 0 0 0 0 0 0 0 
30/1 0 0 0 3 0 0 3 
30/2 0 2 0 0 0 2 2 
30/3 0 0 0 0 0 0 0 
30/4 0 0 0 0 0 0 0 
40/1 0 0 0 0 0 0 0 
40/2 0 0 0 0 0 0 0 
40/3 0 0 0 2 0 1 3 
40/4 0 0 0 0 0 0 0 

Westbrough, Control Sites 

Sample Endogiec Anecic Indet. Enchytraeid Coleoptera! Total Non. Total 
DepthINo Earthworms Earthworms Earthworms Diptera Enchy. Fauna 

Fauna 
lOll 3 1 0 10 1 10 20 
10/2 5 1 0 0 2 22 22 
10/3 12 3 1 3 1 17 20 
1014 11 0 1 27 0 16 43 
20/1 1 0 0 0 0 1 1 
20/2 0 0 0 0 0 0 0 
20/3 0 0 0 1 0 0 1 
20/4 0 1 0 1 0 1 2 
30/1 1 0 0 0 0 0 0 
30/2 0 0 0 0 0 0 0 
30/3 1 3 0 0 0 9 9 
30/4 0 0 0 0 0 0 0 
40/1 0 0 0 1 0 0 1 
40/2 0 1 0 0 0 1 1 
40/3 0 0 0 0 0 0 0 
40/4 0 0 0 1 0 0 1 
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Tofts, Control Sites 

Sample Endogiec Anecic Indet. Enchytraeid Coleoptera! Total Non. Total 
DepthINo Earthworms Earthworms Earthworms Diptera Enchy. Fauna 

Fauna 
1011 14 5 0 19 3 22 41 
10/2 0 0 0 3 0 0 33 
10/3 3 0 0 11 4 7 18 
10/4 5 0 0 2 1 6 8 
20/1 1 0 0 1 1 2 3 
20/2 4 3 0 1 0 7 8 
20/3 0 0 0 0 4 4 4 
20/4 2 0 0 7 0 2 9 
30/1 0 0 0 6 0 0 6 
30/2 1 0 0 2 3 4 6 
30/3 0 0 0 0 4 4 4 
30/4 0 0 0 0 1 1 1 
40/1 1 1 0 0 1 3 3 
40/2 0 0 0 0 0 0 0 
40/3 0 0 0 1 0 0 1 
40/4 1 0 0 0 0 1 1 
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Appendix 3 
Thin Section Micromorphology Data: Quantification of Faunalturbation 

Beafield 1-8cm (I) 
Zone Grid Total Fabric Pattern Excrement, Excrement, Other Other Other 

I Square Biological Mamillated Bacillo-
Fabric Cylindrical 

% Dist % Dist % Dist % Dist % Dist % Dist 
I 15 90 5 2 5 2 Xl 

1 17 35 
1 19 100 
1 21 100 x 
1 23 100 x x , 

1 25 100 x x 
1 27 90 x 10 2 x 
2 29 100 x x x.l I 

2 31 100 x x3 

2 33 100 x 
2 35 100 x x XZ 

2 37 100 x 
3 39 100 x 
3 41 60 10 3 303 2 
3 43 100 x 
3 45 100 x xl> 

3 47 80 x 20 2 
3 49 100 x x~ 

3 51 95 x 5~ 2 I 

3 53 90 x x X 103 2 
3 55 100 x x x3 , 

3 59 100 x 
3 61 100 x x x 
3 63 95 x 5 2 x 

- - - -
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Beafield 7-15cm (2) 

Zone Grid Total Fabric Pattern Excrement, Excrement, Other Other Other 
Square Biological Mamillated Bacillo-

Fabric Cvlindrical 
% Dist % Dist % Dist % Dist % Dist % Dist 

1 16 100 x x x 
1 18 75 x x 253 1 
1 20 25 x 50 2 203 1 52 1 
1 23 45 x 40 2 10 3 
1 25 100 x x x 
1 27 100 x x x 
1 30 80 x 10 2 10 3 
1 32 100 x x x 
1 34 100 x x x 
1 36 100 x 
1 38 95 x 5 1 
1 40 100 x x x 
1 43 80 x 10 1 10 3 
1 45 90 x 10 1 X X4 

1 47 100 x x x 
1 51 85 x 10 1 5 3 
1 53 100 x x x 
1 55 90 x 5 1 5 3 
1 58 100 x x x 
1 60 100 x x x 
1 62 60 x 35 1 10 3 

- --
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Beafield 14 - 22cm (3) 

Zone Grid Total Fabric Pattern Excrement, Excrement, Other Other Other 
Square Biological Mamillated Bacillo-

Fabric Cylindrical 
% Dist % Dist % Dist % Dist % Dist % Dist 

1 16 100 x x x" 
1 18 65 x 353 I 
1 20 60 x 5 1 353 1 
1 23 85 x 10 1 x 5 j 1 
1 25 85 x x 15" 1 
1 27 90 x x 103 1 
1 30 100 x x X x3 

1 32 95 x 5 1 
1 34 100 x x x x~ 

2 37 85 x 15 1 x 
2 39 100 x x x 
2 41 100 x x x xj 

2 44 85 x 15 1 x X4 

2 46 95 x 5 1 X X4 

2 48 100 x x x 
2 51 65 x 35 1 x 
2 53 100 x x x 
2 55 100 x x x 
2 58 40 x 50 1 10 3 
2 60 45 x 30 1 15 3 
2 62 100 x x 

'---- --- - - _._-- - - - -_ .. _--
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Beafield 21-29cm (4) 

Zone Grid Total Fabric Pattern Excrement, Excrement, Other Other Other 
Square Biological Mamillated Bacillo-

Fabric Cylindrical 
% Dist % Dist % Dist % Dist % Dist % Dist 

4 9 100 x x x ! 

4 11 80 x 10 3 10 3 
4 13 95 x x 5 1 
4 16 90 x 10 I x 
4 18 90 x 10 I x 
4 20 100 x x x 
4 23 5 x x x 5J 

4 25 100 x x 
4 27 20 x 45 1 30 3 x' 
4 30 100 x x x 
4 32 50 x 30 3 5 1 
3 34 90 10 1 5 I x 
4 37 10 x 15 I x 
4 39 IS x 15 1 x 
2 40 35 x x x 
1 44 10 x x 5 1 
4 46 100 x x x 
3 48 95 x 5 2 x 
I 52 45 x 5 1 10 I 
4 53 100 x x 
4 55 80 

- LX 15 1 5 3 
--_ .. _-
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Beafield 28-33 (5) , , 

Zone Grid Total Fabric Pattern Excrement, Excrement, Other Other Other 
Square Biological Mamillated Bacillo-

Fabric Cvlindrical 
% Dist % Dist % Dist % Dist % Dist % Dist 

I 2 95 x 5 1 
I 4 70 x 30 1 
1 6 100 x x x 
1 8 100 x x x I 

I 12 70 x 25 1 5 3 
1 14 70 x 30 1 x 
1 16 80 x 15 1 5 3 5 j 1 
1 18 100 x x x 
1 20 100 x x 
1 22 85 x x 
1 24 95 x 10 1 5 3 
1 26 70 x x 5 1 
1 30 90 x 25 I 5 1 
1 32 90 x 5 I 5 1 

1 34 90 x 5 I 5 1 
1 36 95 x 10 1 
1 38 60 x 5 1 I 

1 40 20 x 5 1 5 1 
2 42 95 x 5 1 10 1 

3 44 95 x x 5 1 
1 48 95 x 5 I x xj 

2 50 90 x x 5 I 

2 52 90 5 1 x 
3 54 85 x 5 1 x 

2 56 20 3 40 1 x 
2 58 10 1 x x3 

2 59 25 2 15 2 
2 61 5 1 10 I 

- - -- --- - -------- -
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Beafield 35-41cm (6) 

Zone Grid Total Fabric Pattern Excrement, Excrement, Other Other Other 
Square Biological Mamillated Bacillo-

Fabric Cylindrical 
% Dist % Dist % Dist % Dist % Dist % Dist 

1 3 90 x 5 1 5 1 
I 5 100 x x x 
I 10 100 x 10 I x 
1 12 95 5 I x 
I 14 85 x 15 I x 
1 16 95 x 5 I x 
1 18 90 x 10 1 x 
1 20 95 x 5 3 
p 24 65 x x x x 
1 25 70 x 20 I 10 1 
p 27 25 x 15 1 15 1 
p 28 25 x 10 1 5 1 
1 31 95 x x x 
1 33 85 x 5 1 10 1 
1 35 60 x 10 1 10 1 
1 37 80 x 15 1 5 3 
1 39 75 x 10 1 15 1 
p 41 10/80 10 1 
1 45 85 x 5 1 10 1 
1 46 80 x 15 1 5 3 
1 48 100 x x x 
1 52 90 x 5 1 5 1 
1 54 85 x 5 1 10 2 
1 56 90 x x 10 1 

--- --- - - -- -
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Beafield A (7) 

Zone Grid Total Fabric Pattern Excrement, Excrement, Other Other Other 
Square Biological Mamillated Bacillo-

Fabric Cylindrical 
% Dist % Dist % Dist % Dist % Dist % Dist 

I 16 100 x x x xJ 

1 18 95 x x x 5J 2 
1 20 90 x x X t03 2 
I 24 95 x x x 53 2 
I 26 95 x x x 5J 2 
I 28 95 x x x 5J 2 
I 30 90 x 5 I 5 3 xJ 

1 32 20 I to I 15 I 53 2 Xl 

1 34 40 x 5 I 5 I I 

2 37 to x to 1 5 I I 

I 40 100 x x x I 

1 42 95 x x x 53 2 
1 44 70 I 30 I 

• 

1 46 100 x x x 
1 48 100 x x x xJ 

1 52 95 x x 5 I xJ 

I 54 85 x 5 1 to I xJ 

2 56 10/80 x to I 
1 58 100 x x x 
2 60 to I 40 I 30 I 
2 62 x to 1 5 I 51 I 

-~ 
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Beafield B (8) 

Zone Grid Total Fabric Pattern Excrement, Excrement, Other Other Other 
Square Biological Mamillated Bacillo-

Fabric Cylindrical 
I % Dist % Dist % Dist % Dist % Dist % Dist 

1 2 5 1 x 
2 4 20 x 30 3 20 1 1O~ 1 
2 6 10 x 10 1 30 1 x6 x2 

1 10 x 
3 12 70 x 10 1 5' 1 56 1 
4 14 75 x 10 1 
4 16 80 x 15 1 5 1 
3 18 80 x 20 1 X x' 
3 20 80 x x 5 1 5' 
5 23 x 60 1 x 
3 26 95 x 5 1 x 
4 28 x 100 1 
6 30 85 x 10 1 5 1 
6 32 60 x x x 
4 34 50~ 1 
6 38 100 x x x x~ 

6 40 85 x 10 1 5 1 
6 42 90 x 5 1 5 1 , 

6 44 90 x 5 1 5 1 
6 46 100 x x x 
6 48 90 x x 10 1 
6 52 90 x 10 1 x 
6 54 70 x 

L. _ 30 1 x --- -
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Beafield C (9) 

Zone Grid Total Fabric Pattern Excrement, Excrement, Other Other Other I 

Square Biological Mamillated B acil 10-
I Fabric Cylindrical 

% Dist % Dist % Dist % Dist % Dist % Dist I 

1 2 100 x I 

4 4 30 1 
1 9 30 x 25 2 10 2 I 

4 II 10 1 
2 13 85 x x 5 1 103 2 
4 17 10 1 5 1 
5 19 10 x 10 1 70 1 IOz 1 
5 21 10 x 5 1 40 1 
3 23 90 x x 5 1 53 1 
5 25 30 1 60 1 
5 27 40 10 1 95 1 5z 1 
3 30 5 10 1 30 1 
5 33 30 1 50 1 55 1 
5 35 20 1 40 1 
5 37 10 1 75 1 
5 39 20 1 80 1 
5 41 30 x 10 1 70 1 
5 45 5 15 1 40 1 
5 47 10 1 70 1 5,l 1 
5 49 45 x 1 10 1 75 1 
5 51 10 1 35 1 
5 53 10 1 80 1 lOb 1 
5 56 x 40 1 60 1 

- - - -
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Beafield D (10) 

Zone Grid Total Fabric Pattern Excrement, Excrement, Other Other Other 
Square Biological Mamillated Bacillo-

Fabric Cylindrical 
% Dist % Dist % Dist % Dist % Dist % Dist 

1 6 100 x x 
2 7 60 x 20 1 x6 

2 9 15 2 45 1 20 I x6 

1 11 30 20 2 20 I 10 2 x6 x2 

1 13 50 I 30 I x I 
3 15 20 1 40 2 
2 17 5 25 1 10 1 35 1 I 
1 19 30/65 x 5 1 I 
3 21 5 1 95 I I 

3 22 5 1 95 1 ! 

2 24 15 2 20 2 552 I x5 Xl I 
2 26 80 x x 20 1 i! x' Xl 

3 30 15 I 25 1 40 1 51 1 5~ 1 
2 32 IS 10 I 20 1 30 1 
1 34 5 I 5 1 51 1 102 1 
4 36 SO/45 x x x 52 1 
2 38 15/85 x xl Ix 
2 40 30 x 5 1 15 I 252 1 
4 43 90 x x x 1<Y 1 
4 45 90 x 5 1 53 1 
4 47 2SnO xl xl5 II x3 

4 51 95 x x 5 1 
4 53 100 x x x 
4 54 90 x lor I 

~------ .. ----- ---------- --
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Beafield E (11) 

Zone Grid Total Fabric Pattern Excrement, Excrement, Other Other Other 
Square Biological Mamillated Bacillo-

Fabric Cylindrical 
% Dist % Dist % Dist % Dist % Dist % Dist 

I 8 95 x x 5 1 
I 10 95 x x 5 x 
I 12 90 x x 5 I 53 I 
1 14 95 x x 5 I 
1 16 40/40 5 1 
I 18 55/45 xl xix x Ix::i x~ 

I 20 90 x x 5 1 
I 22 10185 xix xix Ix lx' 5l 

1 24 90 x 10 1 x 
1 26 95 x 5 I X x3 

1 28 100 x x x 
1 30 80/20 xix xix xix x' xC> 

I 1 32 85 x 10 2 5 2 
1 34 90 x x x 
1 38 100 x x x 
1 40 90 x 5 2 5 2 ! 

1 42 90 x x 10 2 
1 44 100 x x x 
1 46 95 x 5 1 x 

.p 48 50 x 10 I 5 1 I 

P 49 45 x x x I 

. 1 52 90 x x 10 1 
~ 

1 54 90 x x 10 1 

11 __ 56 95 x x 5 1 
'------- -_ .... _._--- --- -- - --- -----
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Beafield Low 

Zone Grid Total Fabric Pattern Excrement, Excrement, Other Other Other 
Square Biological Mamillated Bacillo-

Fabric Cylindrical 
% Dist % Dist % Dist % Dist % Dist % Dist 

I 9 100 x x x x 
I 11 95 x x 5 1 
I 13 95 x x 5 1 
I 16 85 x 10 1 5 1 Xl 

1 18 100 x x x 
I 22 90 x 5 1 5 1 
1 24 100 x x x 
I 26 100 x x x 
1 30 100 x x x 
1 32 100 x x X I 

1 36 100 x x x 
1 38 100 x x X i 

I 40 100 x x x 
I 44 90 x 5 1 5 1 
1 46 95 x 5 1 x 
1 50 100 x x 

I 52 85 x 10 1 5 1 
1 54 75 x 15 1 10 1 

-
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Westbrough 0-7.5cm (1) 

Zone Grid Total Fabric Pattern Excrement, Excrement, Other Other Other 
Square Biological Mamillated Bacillo-

Fabric Cylindrical 
% Dist % Dist % Dist % Dist % Dist % Dist 

I 9 100 x x x 
I II 100 x x x 
I 13 100 x x x 
I 17 100 x 
I 19 100 
1 23 100 x x x 
1 25 100 x 
1 27 100 x x x 
1 31 100 x x 
1 33 100 x x x 
1 37 100 x x 
1 39 100 x x 52 1 
1 41 100 x x 
1 45 100 x x 5 1 
1 47 100 x 
1 49 100 x x 
1 51 55/45 xix xl 
1 53 100 x x x 
1 55 100 x x 
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Westbrough 6.5-14cm (2) 

Zone Grid Total Fabric Pattern Excrement. Excrement. Other Other Other 
Square Biological Mamillated Bacillo-

Fabric Cylindrical 
% Dist % Dist % Dist % Dist % Dist % Dist 

1 9 100 x x 
1 11 100 x x 
1 13 100 x x X xJ 

1 17 100 x x 
1 19 100 x x XO 

I 21 75/25 xix x x 
I 23 100 x xl xix 
I 25 100 x x x 
1 27 100 x x x 
1 31 100 x x x 
1 33 100 x x x 
1 35 100 x 5 I x 
I 37 100 x x x 
I 39 100 x x 
1 41 90 x x x 
1 45 100 x x x 
1 47 95 x x x 
1 49 40 x 20 1 10 1 
1 52 50 x x x 
1 54 100 x x x 
1 55 100 x x x 

276 



Westbrough I3.5-2Ocm (3) 

Zone Grid Total Fabric Pattern Excrement. Excrement. Other Other Other 
Square Biological Mamillated Bacillo-

Fabric Cylindrical 
% Dist % Dist % Dist % Dist % Dist % Dist 

2 3 30 x 
I 5 100 x x x 
2 9 x 5 I 
2 II 50/50 x xix 
I 13 100 x 
I I7 60 xl x 
I 19 100 x x x 
1 21 95 xix x x 
2 23 25/35 x xl /x 

1 25 80 x x x 

1 27 95 x x 
1 31 8515 xix 51 11 5/x 31 
1 33 85 x 10 1 5 1 
1 35 100 x x x 

2 37 10 x x x 
2 39 5 x 
2 41 30150 x 
1 45 60 x 5 1 30 1 
2 47 45/15 x xl xl , 

2 48 1015 x xl xl Ix" 
2 51 25150 x xl 
2 53 70 x 10 3 
1 55 100 x I _._- -
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Westbrough 21.5-29cm (4) 

Zone Grid Total Fabric Pattern Excrement, Excrement, Other Other Other 
Square Biological Mamillated Bacillo-

Fabric Cylindrical 
% Dist % Dist % Dist % Dist % Dist % Dist 

2 2 25 x x 
1 4 55/10 xix xl Ix 
2 6 75 IOlx 1 Ix I 

2 10 60 x x I 

1 12 100 x x 5 1 
1 16 70 xix x i 

I 18 80 x 5 1 5 
2 20 515 xl 20/x 11 
1 23 6015 xix xl I 

1 25 80/5 xix xl 
2 27 51 11 xl 5110 111 
2 31 120 101 11 51 21 Ix 
2 33 80/20 xix xl xix 
1 37 95 x x x 
1 39 95 x 5 1 
2 41 10190 Ix 
1 45 100 x x 
2 47 85 x x 

-
- ---- - -
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Westbrough 28.5-36.5 (5) 

Zone Grid Total Fabric Pattern Excrement, Excrement, Other Other Other 
Square Biological Mamillated Bacillo-

Fabric Cylindrical 
% Dist % Dist % Dist % Dist % Dist % Dist 

I 9 8515 xix 
2 12 30/5 xl xl 15 12 
1 16 100 x x x 
I 18 100 x x x 
I 20 100 x x 
I 24 100 x x x 
I 26 100 x x 
1 30 100 x x x 
1 32 100 x x 
1 34 100 x x 
1 38 100 x x x 
1 40 100 x x 
1 42 100 x x 
1 44 100 x 
1 46 100 x x 
1 48 100 x x 
1 51 100 x x 
1 53 100 x x x 
1 55 100 x 

------ L-._. _ ----- ----_ .. - - - --- -- -
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Westbrough 35.5-42.5 (6) 

Zone Grid Total Fabric Pattern Excrement, Excrement, Other Other Other 
Square Biological Mamillated Bacillo-

Fabric Cylindrical 
% Dist % Dist % Dist % Dist % Dist % Dist 

1 3 100 x x 
1 5 100 x x 
1 11 95 x 5 2 
1 13 100 x x 
1 17 70 5 1 x 
1 19 10 x 
1 21 100 x x 
2 25 10 x 
1 27 95 x 5 1 x 
1 30 100 x x 
2 32 15n5 xix xl 
2 34 85/15 xix xix xl 
2 38 60/40 xix xix xl 
2 40 90/10 xix xl Xl 

2 44 100 x x x 
2 46 90 x 10 2 x 
2 48 60 x x 10 2 
2 52 100 x x x 
2 54 100 x x 

"-- - '----- - -- - - --- ~ -- -- --
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Westbrough A (7) 

Zone Grid Total Fabric Pattern Excrement, Excrement, Other Other Other 
Square Biological Mamillated Bacillo-

Fabric Cylindrical 
% Dist % Dist % Dist % Dist % Dist % Dist 

2 2 30nO xix 
2 4 100 x x 
2 6 100 x 
2 10 100 x 
2 12 75 x 
2 16 25n5 xix 
2 18 20/45 xix xl 
2 20 5135 Ix 
2 24 35 x 
2 26 20/80 xix xl Xl 

1 30 100 x x 
, , 

2 32 30150 xix xix 
2 34 20/30 xix xix 
I 38 90 x 5 1 
2 40 35 x x 
1 44 100 x ,-

I 46 100 x 
1 48 80/20 xix xl 
1 52 100 x 
1 54 100 x 
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Westbrough B (8) 

Zone Grid Total Fabric Pattern Excrement, Excrement, Other Other Other 
Square Biological Mamillated Bacillo-

Fabric Cylindrical 
% Dist % Dist % Dist % Dist % Dist % Dist 

I 2 100 x Xl I 

1 4 100 x Xl 

1 6 100 x 
1 11 95 x 5 1 
1 13 95 x 5 1 
1 15 95 x 5 I Xl 

2 18 65/35 xl xl Ixl 
I 20 90 x 5 2 5 2 
I 22 90/10 xix xl xix 
I 24 100 x I 

2 25 50150 xix xix xl I 

2 27 50/50 xix xix xl 
I 29 100 x x 
I 31 95 x 5 2 Xl 

2 34 35 x x 
2 36 x 
2 38 85 x 
I 40 100 x x x 
I 41 30/40 xix xl xl 
2 43 40 x 10 1 
2 45 60 x x 
I 47 100 x 

-- -
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Tofts 0-7.5cm (1) 

Zone Grid Total Fabric Pattern Excrement, Excrement, Other Other Other 
Square Biological Mamillated Bacillo-

Fabric Cylindrical 
% Dist % Dist % Dist % Dist % Dist % Dist 

I I x 100 I 
I 3 80 x 20 I 
I 5 75 x to I 15 1 
1 8 90 x 5 1 5 I 
I to 70 x 25 1 5 1 
I 13 90 x 5 1 5 1 
I 15 90 x x to 3 
1 17 100 x x x 
1 20 80 x to 1 to 1 
I 22 100 x x x 
I 25 100 x 5 1 x 
1 27 90 x 5 I 5 I 
1 29 90 x x to 2 
1 32 85 x to 1 5 I 
1 34 85 x to 1 5 1 
1 36 65 x 15 1 20 I 
I 37 90 x x 10 1 
1 39 90 x 5 I 5 1 
1 41 95 x x 

- --
5 _1 

-- - -- ---- --- - -
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Tofts 6.5-14cm (2) 

Zone Grid Total Fabric Pattern Excrement, Excrement, Other Other Other 
Square Biological Mamillated Bacillo-

Fabric Cylindrical 
% Dist % Dist % Dist % Dist % Dist % Dist 

1 1 90 x 5 1 
1 3 100 x x 
1 5 100 x x 
1 8 100 X xb 

1 10 100 x 10 1 x.l 

1 12 95 x 5 1 
1 13 95 x x 5 1 X

Z 

1 15 95 x x 5 1 
1 17 90 x 5 1 5 1 
1 20 95 x x 5 1 
1 22 100 x x x 
1 24 75 x 10 2 15 2 xJ 

1 25 100 x x x 
1 27 90 x x 10 1 
1 29 100 x x x 
1 32 95 x x 5 1 
1 34 85 x x 10 1 53 2 
1 36 100 x x Xl 

1 37 95 x x 5 1 
1 39 90 x x 10 1 
1 41 85 x 5 1 10 1 
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Tofts 15.5-2lcm (3) 

Zone Grid Total Fabric Pattern Excrement, Excrement, Other Other Other 
Square Biological Mamillated Bacillo-

Fabric Cylindrical 
% Dist % Dist % Dist % Dist % Dist % Dist 

1 1 90 x 5 1 5 1 
1 3 95 x 5 1 
1 5 95 x x 5 1 
1 7 100 x x x 
1 9 95 x x 5 1 
1 12 90 x 5 1 5 1 
1 14 100 x x x 
1 16 90 x 5 1 5 1 
1 18 90 x 5 1 5 1 
1 20 95 x x 5 1 
1 22 85 x 5 1 10 1 
1 24 90 x x 10 1 
1 26 95 x x 5 1 
1 28 90 x 5 5 1 
1 30 85 x 5 1 10 1 
1 34 75 x 10 2 15 2 
1 36 100 x x x 
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Tofts 20-27.5cm (4) 

Zone Grid Total Fabric Pattern Excrement, Excrement, Other Other Other 
Square Biological Mamillated Bacillo-

Fabric Cylindrical 
% Dist % Dist % Dist % Dist % Dist % Dist 

I 2 100 x x x x~ 

1 4 85 x 5 1 10 1 
1 6 95 x x 5 1 53 2 I 
1 10 100 x x x 
1 12 95 x 5 1 x 
1 14 100 x x 
1 16 70 x 30 1 x 
1 18 75 x 20 2 5 1 
1 20 95 x 5 1 x 
1 24 100 x x x 
1 26 90 x x 10 3 
1 28 95 x x 5 2 
1 30 90 x x 10 1 
1 32 95 x x 5 1 5~ 

1 34 95 x x 5 1 
1 38 85 x x 15 1 
1 40 90 x 5 1 5 1 
1 42 100 x x x 
1 44 100 x 
1 46 85 x x 15 2 
1 48 95 x 5 2 
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Tofts 26.5-34cm (5) 

Zone Grid Total Fabric Pattern Excrement, Excrement, Other Other Other 
Square Biological Mamillated Bacillo-

Fabric Cylindrical 
% Dist % Dist % Dist % Dist % Dist % Dist 

1 2 100 x x X xb 

1 4 100 x x x 
1 6 90 x x lO 1 
1 lO 100 x 
1 12 100 x x x 
1 14 95 x x 5 
1 17 100 x x x 
1 19 90 x x lO 
1 21 90 x x lO 
1 23 100 x 
1 25 100 x x 
1 27 85 x x 15 2 
2 31 40 x x 60 1 
2 33 40 x 20 1 40 1 
1 35 80 x x 20 2 
2 38 30/60 xix xix lO 1 
2 40 75120 xix xix xix 
1 42 85 x x 15 1 
2 45 90 lO/x 1 x x 
2 47 30/40 xix x lO 1 
1 ~ 85 x x 15 1 
-- -- -
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Tofts A (6) 

Zone Grid Total Fabric Pattern Excrement. Excrement. Other Other Other 
Square Biological Mamillated Bacillo-

Fabric Cylindrical 
% Dist % Dist % Dist % Dist % Dist % Dist 

1 2 85 x x 15 1 
1 4 65 x x 35 1 
1 6 90 x x 10 2 
2 10 80 x 5 1 15 1 
2 12 20/80 xix xl xl 
1 16 80 x x 20 1 
1 18 90 x x 10 1 X

Z 

2 20 60130 xix xix xix 
1 24 100 x x X x:l 

1 26 90 x x 10 1 
2 30 60/30 xix xix xl 
1 32 100 x x x 
2 34 20/80 xix Ix xix 

1 38 70 x x 30 1 
2 40 30170 xix xix xl Ixb 

1 44 100 x x 
1 46 100 x x x 
1 48 100 x x x 
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Tofts B (7) 

Zone Grid Total Fabric Pattern Excrement, Excrement, Other Other Other 
Square Biological Mamillated Bacillo-

Fabric Cylindrical 
% Dist % Dist % Dist % Dist % Dist % Dist 

1 2 100 x x x 
2 4 125 xix xix IOlx 11 
2 6 75 x 5 1 20 1 
2 10 95 x x 5 1 
2 12 60 x 10 1 20 1 511 1 5~ I 
2 16 90 x x 10 1 x6 

2 18 60 x 5 1 15 1 
2 20 85 x x 15 1 
2 24 100 x x x 
2 26 60 x x 30 1 
2 30 80 x 5 1 15 1 
2 32 100 x x x 
2 34 25 x 50 1 25 1 x" 
2 38 75 x x 25 1 
2 40 80 x x 20 1 
2 44 90 x x x 
2 46 90 x 5 1 5 1 
2 48 90 x 5 1 5 1 
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Tofts C (8) 

Zone Grid Total Fabric Pattern Excrement, Excrement, Other Other Other 
Square Biological Mamillated Bacillo-

Fabric Cylindrical 
% Dist % Dist % Dist % Dist % Dist % Dist 

1 2 100 x x x 
1 4 100 x x 
1 6 100 x 
1 10 70 x 10 1 20 1 
1 12 100 x x X xb 

1 16 100 x x x 
1 18 95 x 5 1 
1 20 100 x x 
1 24 95 x x 5 1 
1 26 100 x x x 
2 30 5 x 5 1 
2 32 25n5 xix Ix Ix 
2 34 100 x x x 
2 38 9515 xix x x x~ 

2 40 85 x 5 1 
2 44 20 x 5 1 25 1 
2 46 100 x x x 
2 48 100 x x X x3 

2 52 100 x x x 
2 54 100 x x x 
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Tofts D (9) 

Zone Grid Total Fabric Pattern Excrement, Excrement, Other Other Other 
Square Biological Mamillated Bacillo-

Fabric Cvlindrical 
% Dist % Dist % Dist % Dist % Dist % Dist 

I 2 100 x x x 
I 4 100 x x 
I 6 100 x 
I 10 70 x to 20 1 
1 12 100 x x X xb 

1 16 100 x x x 
I 18 95 x 5 I 
1 20 100 x x 
1 24 95 x x 5 I 

1 26 100 x x x 
2 30 5 x 5 I 
2 32 25175 xix Ix Ix I 

I 

2 34 100 x x x 
2 38 9515 xix x x Xl I 

2 40 85 x 5 1 
2 44 20 x 5 1 25 1 
2 46 100 x x x 

2 48 100 x x X xJ 

2 52 100 x x x 
2 54 100 x x x _ .. _._-- - -~ - _._- - -- ~- - - ~- - -- ~- -~ --.-
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Tofts E (10) 

Zone Grid Total Fabric Pattern Excrement, Excrement, Other Other Other 
Square Biological Mamillated Bacillo-

Fabric Cylindrical 
% Dist % Dist % Dist % Dist % Dist % Dist 

1 2 95 x x 5 1 
1 4 95 x x 5 1 
1 6 100 x x x 
1 10 100 x x x 
1 12 95 x x 5 1 
1 14 100 x x x 
1 16 100 x x x 
1 18 100 x x x 
2 20 95 x 5 1 
1 24 90 x x 10 1 
2 26 95 x x x 
1 28 90 x x 10 1 
1 30 100 x x X 53 2 
1 32 95 x x 5 1 
2 34 100 x x x 
1 38 95 x x 5 1 
2 40 100 x x x 
1 42 95 x x 5 1 
1 44 100 x x x 
1 46 95 x x x 5j 1 
1 48 100 x x x 
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Tofts F (11) 

Zone Grid Total Fabric Pattern Excrement, Excrement, Other Other Other 
Square Biological Mamillated Bacillo-

Fabric Cylindrical 
% Dist % Dist % Dist % Dist % Dist % Dist 

1 2 100 x x x 
1 4 60 x x 40 2 
1 6 100 x x x 
1 10 85 x 5 1 
1 12 95 x x 5 1 
1 16 100 x x x 
1 18 100 x x x 
1 2 90 x x 10 1 
1 24 50/50 xix xl 
1 26 95 x x x 
1 30 100 x x x x" 
2 32 50/40 xix xix xix X

Z 

1 34 90 x x 5 1 
1 38 95 x x x 
1 40 100 x x x 
1 44 90 x x 5 1 
1 46 90 x x 5 1 
1 48 95 x x 5 1 
1 51 80 x x xC> 

1 53 100 x x X xC> 

1 55 100 x x x J - -- - -- _ .. _-
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Tofts G (12) 

Zone Grid Total Fabric Pattern Excrement, Excrement, Other Other Other 
Square Biological Mamillated Bacillo-

Fabric Cvlindrical 
% Dist % Dist % Dist % Dist % Dist % Dist 

1 2 95 x x 5~ 2 
1 4 100 x x~ 

1 6 100 x X 53 1 
1 8 100 x x X x3 

1 12 95 x x x 5j 1 
1 14 100 x x x~ 

1 16 100 x x x3 

1 20 90 x x 5 1 53 1 
1 22 95 x x 5j 2 
1 24 95 x x 5j 2 
1 26 95 x x x 53 2 
1 30 100 x x 
1 32 100 x x X x3 

1 34 100 x x 
I 38 95 x x x 5j 2 
1 40 90 x 10 1 x x~ 

1 42 100 x x x x
j 

1 44 100 x x x
j 

1 48 100 x x x 

1 50 100 x X x3 

1 52 -100. x x 103 1 
. -
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Tofts H (13) 

Zone Grid Total Fabric Pattern Excrement, Excrement, Other Other Other 
Square Biological Mamillated Bacillo-

Fabric Cylindrical 
% Dist % Dist % Dist % Dist % Dist % Dist 

1 2 95 x x 

t 4 95 x x 
t 6 tOO x x x 
1 10 95 x x 5 2 
1 12 85 x x 15 1 
1 16 100 x x x 
1 18 tOO x x X

Z 

1 20 90 x 10 2 
1 24 100 x x x 
1 26 100 x x X I 

1 30 100 x x x 
1 32 95 x x 5 1 
1 34 tOO x x x 
1 38 95 x x x 53 1 
1 40 tOO x x x 
1 44 100 x x x 
1 46 100 x x 
1 48 tOO x x x 
t 52 x 
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Key to Superscripts: 
1: Cylindrical Excremental Pedofeature 
5: Tailed Conoidal Pedofeature 
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2: Ellipsoidal Excremental Pedofeature 
6: Spheroidal Excremental Pedofeature 

3: Textural Pedofeature 4: Impregnated Fabric 
I: Divisions between non-impregnated limpregnated fabric 



Appendix Four: Soil & Sediment Descriptions 

On site descriptions are based on the systems outlined in the Soil Survey Field 
Handbook (ed. Hodgson 1976) and the Cambridge Archaeological Manual on 
Excavation (2001), those of the off-site profiles are based entirely on the Soil 
Survey Field Handbook. 

Site Descriptions. 
Beafleld 

Site description 
The site is a mound of c2.5m height. Local relief is essentially level, with the 
mound forming the only higher ground in the immediate vicinity. The mound sides 
are straight to convex. There is no evidence of recent erosion or deposition on the 
area of the test pit. The land use regime of the current sampling area is permanent 
pasture. Vegetation cover is abundant on the sampling area. Slight poaching of 
surface due to animal (cattle) trampling is evident. 

Unit 1 
Section No: 1 
18-20 cm thickness. Colour: 10 YR2/2. Organic matter intimately mixed with 
mineral component. Humose slightly sandy silt. Stones mostly concentrated at base 
of unit, as are shells (limpet). Stones c 1-2 cm long, sub-angular tabular. Material is 
moist. Structure consists of medium to coarse granular peds, weakly to moderately 
developed. The material is moderately weak to moderately firm, deformable and 
slightly to moderately plastic. Many to common (grading down unit) fine fibrous 
roots. Clear to gradual boundary. 

Unit 1 is considered to be cognate with units 4, 9, 13, 17 and 19. 

Unit 2 
Section No: 1 
Thickness: 38 cm. Colour: 10 YR3/2. Organic matter intimately mixed with 
mineral component. Humose sandy silt, with sand fraction coarser than unit 1. 
Slightly stony, predominantly small to mediumsub-angular tabular sandstone. 
Material is moist. Structure consists of medium to coarse granular peds, weakly to 
moderately developed. The material is moderately weak to moderately firm, 
deformable and slightly to moderately plastic. Common to few (grading down unit) 
fine fibrous roots. 

Unit 2 is considered to be cognate with units 5, 10, 14,18 and 20. 

Unit 3 
Section No: 1 
Thickness: 3cm. Colour: 2.5Y 3.5/1, Silt, with very little organic matter except 
charcoaVcharred material (c. 3x5-7mm) which is abundant. Both organic fractions 
intimately mixed with the mineral fraction. Virtually stone free. Material is moist. 
Structure is apedal. Sediment strength is weak, is weakly deformable and non
plastic. No roots. The unit has an outer zone that interpenetrates with unit 2, with a 
diffuse bonundary with that unit. The outer zone has very many medium sized 
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mottles, with a colour of 2.5YR 4/8, a distinct contrast and a diffuse boundary with 
the matrix. The outer zone has a basic matrix colour of 10 YR 3/2, with a silt loam 
particle size distribution (very low on sand and clay). 

Unit 3 is considered to be cognate with units 6 and 21. 

Unit 4 
Section No: 2 
19-20 cm thickness. Colour: 10 YR2.512. Organic matter intimately mixed with 
mineral component. Rumose, slightly sandy silt, with sand content reducing down 
profile. Stones mostly concentrated at base of unit, as are shells (limpet). Stones c 
1-2 cm long, sub-angular tabular. Material is moist. Structure consists of medium to 
coarse granular peds, weakly to moderately developed. The material is moderately 
weak to moderately firm, deformable and slightly to moderately plastic. Many to 
common (grading down unit) fine fibrous roots. Gradual boundary. 

Unit 4 is considered to be cognate with units 1,9, 13, 17 and 19. 

Unit 5 
Section No: 2 
Thickness: 38 cm. Colour: 10 YR312. Organic matter intimately mixed with 
mineral component. Rumose sandy silt, with sand fraction coarser than unit 1. 
Slightly stony, predominantly small to mediumsub-angular tabular sandstone, 
occasional cockle, winkle and limpet shell fragments (c 4-8mm) and very 
occasional fragments of burnt bone (2-5 mm). Material is moist. Structure consists 
of medium to coarse granular peds, weakly to moderately developed. The material . 
is moderately weak to moderately firm, deformable and slightly to moderately 
plastic. Common to few (grading down unit) fine fibrous roots. There are common, 
and locally very many (see section 2) fine to medium mottles, colour 7.5 YR 5/3 
with a prominent contrast and sharp boundary with the matrix. Similar particle size 
distribution to the matrix, but with less sand. Boundaries clear to gradual, 
occasionally sharp. 

Unit 5 is considered to be cognate with units 2, 10, 14, 18 and 20. 

Unit 6 
Section No: 2 
Thickness: 3cm. Colour: 2.5Y 2.5/1, Silt, with very little organic matter except 
charcoal/charred material (c. 3x5-7mm) which is common. Both organic fractions 
intimately mixed with the mineral fraction. Virtually stone free. Material is moist. 
Structure is apedal. Sediment strength is weak, is weakly deformable and non
plastic. No roots 

Unit 6 is considered to be cognate with units 3 and 21. 

Unit 7 
Section No: 2 
Thickness: 40+ cm. Colour: 7.5 YR312.5. Organic matter intimately mixed with 
mineral component. Sandy silt, with very low sand content, but of coarse, almost 
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gritty nature. Very few clasts. Occasional fine mottles, colour; 7.5 YR 5/3, with 
prominent contrast and sharp boundary with the matrix. Material is moist. 
Structure consists of medium to coarse granular peds, weakly to moderately 
developed. The material is moderately weak to moderately firm, deformable and 
slightly to moderately plastic. No roots found. Boundaries clear to gradual, 
occasionally sharp. 

Unit 7 has no cognate units. 

Unit 8 
Section No: 2 
Colour: 7.5 YR 4/3. Organic matter intimately mixed with mineral component. 
Sandy silt/silt, with very low sand content, but of coarse, almost gritty nature. Very 
few clasts. Many fine mottles, colour; 7.5 YR 5/3, with prominent contrast and 
sharp boundary with the matrix. Material is moist. Structure consists of medium to 
coarse granular peds, weakly to moderately developed. The material is moderately 
weak to moderately firm, deformable and slightly to moderately plastic. No roots 
found. Boundaries clear to gradual. 

Unit 8 has no cognate units. 

Unit 9 
Section No: 3 
19-22 cm thickness. Colour: 10 YR3/2. Organic matter intimately mixed with 
mineral component. Rumose, sandy silt. Stones mostly concentrated at base of unit, 
as are shells (limpet). Stones c 1-4 cm long, sub-angular tabular. Few very fine to 
fine mottles, colour; 7.5 YR 5/3, with prominent contrast and sharp boundary with 
the matrix. Material is moist. Structure consists of medium to coarse granular peds, 
weakly to moderately developed. The material is moderately weak to moderately 
firm, deformable and slightly to moderately plastic. Many to common (grading 
down unit) fine fibrous roots. Gradual boundary. 

Unit 9 is considered to be cognate with units 1,4, 13, 17 and 19. 

Unit 10 
Section No: 3 
Thickness: 38 cm. Colour: 10 YR3/3. Organic matter intimately mixed with 
mineral component. Rumose sandy silt. Slightly stony, predominantly small to 
mediumsub-angular tabular sandstone c.2cm. Material is moist. Structure consists 
of medium to coarse granular peds, weakly to moderately developed. The material 
is moderately weak to moderately firm, deformable and slightly to moderately 
plastic. Common to few (grading down unit) fine fibrous roots. There are common, 
and locally very many (see section 2) fine to medium mottles, colour 7.5 YR 5/3 
with a prominent contrast and sharp boundary with the matrix. Similar particle size 
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distribution to the matrix, but with less sand. Common to many fine fragments of 
charcoal/charred material. Boundaries clear to gradual. 

Unit 10 is considered to be cognate with units 2, 5, 14, 18 and 20. 

Unit 11 
Section No: 3 
Colour: 10 YR4/. Organic matter intimately mixed with mineral component. 
Humose sandy silt. Slightly stony, predominantly small to medium sub-angular 
tabular sandstone c.2cm. Material is moist. Structure consists of medium to coarse 
granular peds, weakly to moderately developed. The material is moderately weak, 
slightly deformable and slightly plastic. No roots. There are many fine mottles, 
colour 7.5 YR 5/3 with a prominent contrast and sharp boundary with the matrix. 
Similar particle size distribution to the matrix, but with less sand. Common to many 
fine fragments of charcoal/charred material. Boundaries clear to gradual. 

Unit 11 is considered to be cognate with unit 15. 

Unit 12 
Section No: 3 
Thickness: 3cm. Colour: lOYR4/1.5, Silt, with very little organic matter except 
charcoal/charred material (c. 3x5-7mm) which is common. Both organic fractions 
intimately mixed with the mineral fraction. Virtually stone free. Many very fine to 
fine mottles, colour; 7.5 YR 5/3, with prominent contrast and sharp boundary with 
the matrix. Material is moist. Structure is apedal. Sediment strength is weak, is 
weakly deformable and non-plastic. No roots 

Unit 12 is considered to be cognate with unit 16. 

Unit 13 
Section No: 4 
17-20 cm thickness. Colour: 7.5 YR3/2.5. Organic matter intimately mixed with 
mineral component. Sandy silt. Stones mostly concentrated at base of unit, as are 
shells (limpet). Stones c 1-5 cm long, sub-angular tabular. Material is moist. 
Structure consists of medium to coarse granular peds, weakly to moderately 
developed. The material is moderately weak to moderately firm, deformable and 
slightly to moderately plastic. Many to common (grading down unit) fine fibrous 
roots. Gradual boundary. 

Unit 13 is considered to be cognate with units 1,4,9, 17 and 19. 

Unit 14 
Section No: 4 
Thickness: 38 cm. Colour: 7.5 YR3/1.5. Organic matter intimately mixed with 
mineral component. Sandy silt/sandy silt loam. Slightly stony, predominantly small 
to medium sub-angular tabular sandstone c.2cm. Occasional shell fragment, c. 2-3 
cm length. Material is moist. Structure consists of medium to coarse granular peds, 
weakly to moderately developed. The material is moderately weak to moderately 
firm, deformable and slightly to moderately plastic. Common to few (grading down 
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unit) fine fibrous roots. There are many fine to medium mottles, colour 7.5 YR 5/3 
with a prominent contrast and sharp boundary with the matrix. Similar particle size 
distribution to the matrix, but with less sand. Many fine fragments of 
charcoal/charred material. Boundaries clear to gradual. 

Unit 14 is considered to be cognate with units 2, 5, 10, 18 and 20. 

Unit 15 
Section No: 4 
Thickness: c.20cm. Colour: 7.5 YR 4/3, Gritty silt, with very little organic matter 
except charcoal/charred material (c. 3x5-7mm) which is common. Both organic 
fractions intimately mixed with the mineral fraction. Slightly stony, predominantly 
small to medium sub-angular tabular sandstone c.2cm. Very many very fine to fine 
mottles, colour; 7.5 YR 5/3, with prominent contrast and sharp boundary with the 
matrix. Common grey mottles, colour; 2.5 YR 3.5/1, with distinct contrast and sharp 
boundary with the matrix. Material is moist. Structure consists of medium to coarse 
granular peds, weakly developed. Sediment strength is weak, is weakly deformable 
and non-plastic. No roots. 

Unit 15 is considered to be cognate with unit 11. 

Unit 16 
Section No: 4 
Thickness: c. 18cm. Colour: 7.5 YR 3/3, Gritty silt, with very little organic matter 
except charcoal/charred material (c. 3x5-7mm) which is common. Both organic 
fractions intimately mixed with the mineral fraction. Stoneless. Very many very 
fine to fine mottles, colour; 7.5 YR 5/3, with prominent contrast and sharp boundary
with the matrix. Common grey mottles, colour; 2.5 YR 3.5/1, with distinct contrast 
and sharp boundary with the matrix. Material is moist. Structure consists of 
medium to coarse granular peds, weakly developed. Sediment strength is weak, is 
weakly deformable and non-plastic. No roots. 

Unit 16 is considered to be cognate with unit 12. 

Unit No: 17 
Section No: 5 
18-20 cm thickness. Colour: 10 YR2/2. Organic matter intimately mixed with 
mineral component. Humose slightly sandy silt. Stones mostly concentrated at base 
of unit, as are shells (limpet). Stones c 1-2 cm long, sub-angular tabular. Material is 
moist. Structure consists of medium to coarse granular peds, weakly to moderately 
developed. The material is moderately weak to moderately firm, deformable and 
slightly to moderately plastic. Many to common (grading down unit) fine fibrous 
roots. Clear to gradual boundary. 

Unit 17 is considered to be cognate with units 1,4,9, 13 and 19. 

Unit No: 18 
Section No: 5 
Thickness: 35-36 cm. Colour: 10 YR312. Organic matter intimately mixed with 
mineral component. Humose sandy silt. Slightly stony, predominantly small to 
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medium sub-angular tabular sandstone. Material is moist. Structure consists of 
medium to coarse granular peds, weakly to moderately developed. The material is 
moderately weak to moderately firm, deformable and slightly to moderately plastic. 
Common to few (grading down unit) fine fibrous roots. There are common, and 
locally very many (see section 5) fine to medium mottles, colour 7.5 YR 4.5/3 with 
a prominent contrast and sharp boundary with the matrix. Similar particle size 
distribution to the matrix, but with less sand. Boundaries gradual. 

Unit 18 is considered to be cognate with units 2, 5, 10, 14 and 20. 

Unit No: 19 
Section No: 6 
19-21 cm thickness. Colour: 10 YR2/2.5. Organic matter intimately mixed with 
mineral component. Humose slightly sandy silt. Stones mostly concentrated at base 
of unit, as are shells (limpet). Stones c 1-2 cm long, sub-angular tabular. Material is 
moist. Structure consists of medium to coarse granular peds, weakly to moderately 
developed. The material is moderately weak to moderately firm, deformable and 
slightly to moderately plastic. Many to common (grading down unit) fine fibrous 
roots. Gradual boundary. 

Unit 19 is considered to be cognate with units 1,4,9, 13 and 17. 

Unit No: 20 
Section No: 6 
Thickness: 35-36 cm. Colour: 10 YR2.5/2. Organic matter intimately mixed with 
mineral component. Humose sandy silt. Slightly stony, predominantly small to 
medium sub-angular tabular sandstone. Material is moist. Structure consists of 
medium to coarse granular peds, weakly to moderately developed. The material is 
moderately weak to moderately firm, deformable and slightly to moderately plastic. 
Common to few (grading down unit) fine fibrous roots. There are common fine to 
medium mottles, colour 7.5 YR 4.5/3 with a prominent contrast and sharp boundary 
with the matrix. Similar particle size distribution to the matrix, but with less sand. 
Boundaries gradual. 

Unit 20 is considered to be cognate with units 2, 5, 10, 14 and 18. 

Unit No: 21 
Section No: 6 
Thickness: 3-5cm. Colour: 2.5Y 3.5/1, Silt, with very little organic matter except 
charcoal/charred material (c. 3x5-7mm) which is abundant. Both organic fractions 
intimately mixed with the mineral fraction. Virtually stone free. Material is moist. 
Structure is apedal. Sediment strength is weak, is weakly deformable and non
plastic. No roots. The unit has an outer zone that interpenetrates with unit 2, with a 
diffuse bonundary with that unit. The outer zone has very many medium sized 
mottles, with a colour of 2.5YR 4/8, a distinct contrast and a diffuse boundary with 
the matrix. The outer zone has a basic matrix colour of 10 YR 312, with a silt loam 
particle size distribution (very low on sand and clay). 

Unit 21 is considered to be cognate with units 3 and 6. 
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Tofts 

Site description 
The site is a mound of 2.75m height. Local relief is essentially level, with the 
mound forming the highest ground in the immediate vicinity, with some lower 
mounds at a distance of c 200m away, in a north to north-easterly direction. The 
mound sides are straight to convex. There is no evidence of recent erosion or 
deposition on the area of the test pit. The land use regime of the overall area is 
permanent pasture, with the immediate location of the sampling site being covered 
with vegetation more in line with rough grazing/set aside. Grass is rank, seemingly 
ungrazed, with c. 10% of the vegetation being formed by Rumex spp. Vegetation 
cover is abundant on the sampling area. Slight poaching of surface due to animal 
(cattle) trampling is evident. 

Unit 1 
Section No: 1 
Depth: 37cm. Munsell colour is predominantly lOyr2/2 though locally value may 
reach 3 and chroma may vary between 1 and 3. Texture is predominantly a humose 
silty clay loam although locally the deposit may be a sandy clay loam. Sand content 
is generally coarse and increases slightly below c. 20 cm. Organic material is 
intimately intermixed with the mineral fraction. The deposit is heavily rooted to a 
depth of between 2 and 7 cm. Starting at a depth of 19-20 cm from the ground 
surface and continuing to a depth of 23-25 cm from the ground surface is a layer 
largely composed of limpet shells. Occasional clasts generally sub-angular and 
tabular in shape, size range 3-4 cm length by 1-2 cm thickness. Area above layer is . 
generally free of inclusions, below this are occasional (locally frequent) shells, 
mainly limpet, occasional fish bone and occasional clasts, tabular, angular to sub
rounded varying from 2 -15 cm in length. Material is moist. Structure consists of 
medium to coarse granular peds, moderately developed. Soil strength is weak, is 
weakly deformable and slightly plastic. Lower boundary moderately distinct. 

Unit one is cognate with units 3,8, 11, 14 and 16. 

Unit 2 
Section No: 1 
Thickness: 10+ cm. Munsell colour is predominantly lOyr3/1 Texture is 
predominantly humose silty clay loam. The material is more compact and may 
contain slightly less sand than the material in unit 1. Localised mottling, in section 
generally 3-4 cm across, colour predominantly lOyr5/6, with a prominent contrast 
and sharp boundary with the matrix. Also occasional orange flecking, 2-4mm, also 
lOyr5/6. Black flecks frequent throughout deposit, usually 2-4 mm with a prominent 
contrast and sharp boundary with the matrix. Possibly charcoal. Other inclusions 
include: occasional clasts, 3-4 cm in length, tabular, sub-rounded to sub-angular; 
occasional shells, mostly limpet. Upper boundary clear to gradual. 

Unit 2 is cognate with units 7,9, 12, 15, and 17. 
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Section No: 2 
Depth: 37cm. Munsell colour is 10 YR 2.5/1. Texture is predominantly a humose 
silty clay loam. Sand content is generally coarse and increases slightly below c. 20 
cm. Organic material is intimately intermixed with the mineral fraction. Many to 
common (grading down unit) fine fibrous roots. Starting at a depth of 2Icm from 
the ground surface and continuing to a depth of 24 cm from the ground surface is a 
layer largely composed of limpet shells. Occasional clasts generally sub-angular 
and tabular in shape, size range Ix2cm. Area above layer is generally free of 
inclusions, below this are occasional (locally frequent) shells, mainly limpet, 
occasional fish bone and occasional clasts, tabular, angular to sub-rounded varying 
from 2 -15 cm in length.. Material is moist. Structure consists of medi urn to coarse 
granular peds, moderately developed. Soil strength is weak, is weakly deformable 
and slightly plastic. Lower boundary moderately distinct. 

Unit 3 is cognate with units 1, 8, 11, 14, and 16. 

Unit 4 
Section No: 2 
Thickness: 2-lOcm. Munsell colour is lOYR 312 Texture is silty clay loam, with 
very little sand. Little organic matter except black flecks (see below). Very many 
mottles, in section generally 1-5 cm across, colour 7,5YR 4/4, with a prominent 
contrast and sharp boundary with the matrix. Black flecks frequent throughout 
deposit, usually 2-4 mm with a prominent contrast and sharp boundary with the 
matrix. Possibly charcoal. Other inclusions include: a very few shells, mostly 
limpet. Material is moist. Structure consists of fine to medium granular peds, very 
weakly developed. Soil strength is weak, is semi-deformable and non-plastic. 
Boundaries clear to gradual. 

Unit 4 is cognate with units 10 and 13. 

Unit 5 
Section No: 2 
Thickness: I5cm. Munsell colour islOYR 3.5/2. Texture: humose silty clay loam. 
Organic material is intimately mixed with the mineral fraction. Few mottles, in 
section generally Icm across, colour predominantly 10 YR 5/6, with a prominent 
contrast and sharp boundary with the matrix. Other inclusions include: very few 
shells, mostly limpet. Few fine fibrous roots. Boundaries gradual. 

Unit 5 has no cognate units. 

Unit 6 
Section No: 2 
Thickness: 2-lOcm. Munsell colour is lOYR 312 Texture is silty clay loam, with 
very little sand. Little organic matter except black flecks (see below). Very many 
mottles, in section generally 1-2 cm across, colour lOYR 4/2, with a distinct 
contrast and sharp boundary with the matrix. Black flecks frequent throughout 
deposit, usually 2-4 mm with a prominent contrast and sharp boundary with the 
matrix. Possibly charcoal. Material is moist. Structure consists of fine to medium 
granular peds, very weakly developed. Soil strength is weak, is semi-deformable 
and non-plastic. Boundaries clear to gradual. 
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Unit 6 has no cognate units. 

Unit 7 
Section No: 2 
Thickness: 40+ cm. Munsell colour is predominantly 10 YR3/2. Texture is 
predominantly humose silty clay loam. Organic matter is intimately mixed with the 
mineral fraction. Black flecks frequent throughout deposit, usually 2-4 mm with a 
prominent contrast and sharp boundary with the matrix. Possibly charcoal. Other 
inclusions include: occasional clasts, 3-4 cm in length, tabular, sub-rounded to sub
angUlar; occasional shells, mostly limpet. Upper boundary clear to gradual. 

Bone comb found in this context at a depth of 73 cm from the ground surface, 
tOtcm depth from the site datum (see section two and plan). 

Unit 7 is cognate with units 2, 9,12,15 and 17. 

Unit 8 
Section No: 3 
Depth: 35cm. Munsell colour: 10 YR 3/1.5. Texture is predominantly a humose 
silty clay loam although locally the deposit may be a sandy clay loam. Sand content 
is generally coarse and increases slightly below c20 cm. Organic material is 
intimately intermixed with the mineral fraction. The deposit is heavily rooted to a 
depth of between 2 and 7 cm. Starting at a depth 20cm from the ground surface and 
continuing to a depth of 23cm is a layer largely composed of limpet shells. Below 
this layer there are occasional clasts, generally sub-angular and tabular in shape, 
size range 3-4 cm length by 1-2 cm thickness. Area above layer is generally free of 
clasts, below this are occasional (locally frequent) shells, mainly limpet, occasional 
fish bone and occasional clasts, tabular, angular to sub-rounded varying from 2 -15 
cm in length .. Material is moist. Structure consists of medium to coarse granular 
peds, moderately developed. Soil strength is weak, is weakly deformable and 
slightly plastic. Lower boundary clear to gradual. 

Unit 8 is cognate with units 1,3, 11, 14 and 16. 

Unit 9 
Section No: 3 
Thickness: 15+ cm. Munsell colour is predominantly 10 YR 3/1. Texture is 
predominantly humose silty clay loam. The material is more compact and may 
contain slightly less sand than the material in unit 8. Very few to few mottles, in 
section generally 2mm across, colour predominantly 10 YR 5/6, with a prominent 
contrast and sharp boundary with the matrix. Other inclusions include: a very few 
clasts, 2-3 em in length, tabular, sub-rounded to sub-angular; very few shells, 
mostly limpet. Boundaries clear to gradual. 

Unit 9 is cognate with units 2, 7, 12, 15 and 17. 

Unit 10 
Section No: 3 
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Thickness: 2-5cm. Munsell colour is IOYR 3.5/2.5 Texture is silty clay loam, with 
very little sand. Few to very few mottles, in section generally 1-4 cm across, colour 
7.5 YR 5/6, with a prominent contrast and sharp boundary with the matrix. Other 
inclusions include: a very few shells, mostly limpet, and a very few clasts, tabular, 
sub-angular to angular. Material is moist. Structure consists of fine to medium 
granular peds, very weakly developed. Soil strength is weak, is semi-deformable 
and non-plastic. Boundaries clear to gradual. 

Unit 10 is cognate with units 4 and 13. 

Unit 11 
Section No: 4 
Depth: 35cm. Munsell colour: 10 YR 212. Texture is predominantly a humose 
silty clay loam. Organic material is intimately intermixed with the mineral fraction. 
The deposit is heavily rooted to a depth of 7 cm, with fine fibrous roots. There is a 
layer largely composed of limpet shellsat a depth of 19-25cm, of c.2cm thickness. 
Below this layer there are occasional clasts, generally sub-angular and tabular in 
shape, size range 3-4 cm length by 1-2 cm thickness. Area above layer is generally 
free of clasts, below this are occasional (locally frequent) shells, mainly limpet and 
occasional clasts, tabular, angular to sub-rounded varying from 2 -15 cm in length .. 
Material is moist. Structure consists of medium to coarse granular peds, moderately 
developed. Soil strength is weak, is weakly deformable and slightly plastic. Lower 
boundary clear to gradual. 

Unit 11 is cognate with units 1,3,8, 11, 14 and 16. 

Unit 12 
Section No: 4 
Thickness: 20+ cm. Munsell colour is predominantly 10 YR 3/1. Texture is 
predominantly humose silty clay loam. The material is more compact and may 
contain slightly less sand than the material in unit 11. Very few to few fibrous roots 
present. Very few to few mottles, in section generally 2-4mm across, colour 
predominantly 10 YR 5/6, with a prominent contrast and sharp boundary with the 
matrix. Other inclusions include: a very few clasts, 2-3 cm in length, tabular, sub
rounded to sub-angular; very few shells, mostly limpet. Boundaries clear to 
gradual. 

Unit 12 is cognate with units 2,7, 9,15 and 17. 

Unit 13 
Section No: 4 
Thickness: 2-5cm. Munsell colour is IOYR 3/3 Texture is sandy clay loam. Many 
mottles, in section generally 1-4 cm across, colour 7.5 YR 5/6, with a prominent 
contrast and sharp boundary with the matrix. Few black flecks, generally c.2mm, 
with a prominent contrast and sharp boundary with the matrix. Other inclusions 
include: a very few shells, mostly limpet, and a very few clasts, tabular, sub-angular 
to angular. Material is moist. Structure consists of fine to medium granular peds, 
very weakly developed. Soil strength is weak, is semi-deformable and non-plastic. 
Boundaries clear to gradual. 
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Unit 13 is cognate with units 4 and 10. 

Unit 14 
Section No: 5 
Depth: 38cm. Munsell colour is 10 YR 3/1.5. Texture is predominantly a humose 
silty clay loam. Sand content is generally coarse and increases slightly below c. 20 
cm. Organic material is intimately intermixed with the mineral fraction. Many to 
common (grading down unit) fine fibrous roots. Starting at a depth of c. 24cm from 
the ground surface and continuing to a depth of c. 29cm from the ground surface is 
a layer largely composed of limpet shells. Occasional clasts generally sub-angular 
and tabular in shape, size range lx2cm. Area above layer is generally free of 
inclusions, below this are occasional (locally frequent) shells, mainly limpet, 
occasional fish bone and occasional clasts, tabular, angular to sub-rounded varying 
from 2 -15 cm in length .. Material is moist. Structure consists of medium to coarse 
granular peds, moderately developed. Soil strength is weak, is weakly deformable 
and slightly plastic. Lower boundary moderately distinct. 

Unit 14 is cognate with units 1,3, 8, 11 and 16. 

Unit 15 
Section No: 5 
Thickness: 37+ cm. Munsell colour is predominantly 10 YR2.5/2. Texture is 
predominantly humose silty clay loam. Organic matter is intimately mixed with the 
mineral fraction. Black flecks frequent throughout deposit, usually 2-4 mm with a 
prominent contrast and sharp boundary with the matrix. Possibly charcoal. Other . 
inclusions include: occasional clasts, 3-4 cm in length, tabular, sub-rounded to sub
angular; occasional shells, mostly limpet. Upper boundary gradual. 

Unit 15 is cognate with units 2,7, 9, 12 and 17. 

Unit 16 
Section No: 6 
Depth: 37 - 43cm. Munsell colour is predominantly lOyr2/2. Texture is 
predominantly a humose silty clay loam although locally the deposit may be a sandy 
clay loam. Sand content is generally coarse and increases slightly below c20 cm. 
Organic material is intimately intermixed with the mineral fraction. The deposit is 
heavily rooted to a depth of between 2 and 7 cm. Starting at a depth of 20-27 cm 
from the ground surface and continuing to a depth of 23-30cm from the ground 
surface is a layer largely composed of limpet shells. Occasional clasts generally 
sub-angular and tabular in shape, size range 3-4 cm length by 1-2 cm thickness. 
Area above layer is generally free of inclusions, below this are occasional (locally 
frequent) shells, mainly limpet, occasional fish bone and occasional clasts, tabular, 
angular to sub-rounded varying from 3 -15 cm in length. Material is moist. 
Structure consists of medium to coarse granular peds, moderately developed. Soil 
strength is weak, is weakly deformable and slightly plastic. Lower boundary 
moderately distinct. 

Unit 16 is cognate with units 1,3, 8, 11 and 14. 
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Unit 17 
Section No: 6 
Thickness: 34+ cm. Munsell colour is predominantly 10 YR3/1.S. Texture is 
predominantly humose silty clay loam. Organic matter is intimately mixed with the 
mineral fraction. Black flecks frequent throughout deposit, usually 2-4 mm with a 
prominent contrast and sharp boundary with the matrix. Possibly charcoal. Other 
inclusions include: occasional clasts, 2-S cm in length, tabular, sub-rounded to sub
angular; occasional shells, mostly limpet. Upper boundary gradual. 

Unit 17 is cognate with units 2,7, 9, 12 and IS. 

Westbrough 

The site is a mound of approximately 1.Sm height. Local relief is essentially level, 
with the mound forming the only higher ground in the immediate vicinity. The 
mound sides are straight to convex. There is no evidence of recent erosion or 
deposition on the area of the test pit. The land use regime of the current sampling 
area is permanent pasture. Vegetation cover is very abundant on the sampling area. 
Slight poaching of surface due to animal (cattle) trampling is evident. 

The units recorded at Westbrough were carefully followed through the course of 
sampling and excavation, as such there are no cognate units as all sections are 
effectively correlated. 

Unit 1 
Section No: 1 
Depth: 12-16cm. Munsell colour is predominantly 2.S Y 2.S/1. Texture is 
predominantly a humose silty loam. Organic material is intimately intermixed with 
the mineral fraction. The deposit has many fine fibrous roots to a depth of 7 cm. 
There is a layer largely composed of angular, tabular clasts with a thickness of 1-
2cm, and a very few heavily dergraded shell fragments, at a depth of 12-16cm from 
the suface. Material is moist. Structure consists of medium to coarse granular peds, 
moderately developed. Soil strength is weak, is weakly deformable and slightly 
plastic. Lower boundary is clear, interdigitating considerably with unit below. 

Unit 2 
Section No: 1 
Thickness: 1O-1Scm. Munsell colour is predominantly 10 YR 4/2.S Texture: sandy 
silt loam. Many orange mottles, in section generally 2-4mm across, colour 
predominantly 7.S YR S/8, with a prominent contrast and sharp boundary with the 
matrix. Very few lenses of charcoal, tabular sub-rounded section, 4-7cm long, with 
prominent contrast and sharp boundary with the matrix. Other inclusions: few 
clasts, 1-2 cm in length, cuboidaVtabular, sub-rounded to sub-angular. Soil strength 
is weak, is weakly deformable and slightly plastic. Boundaries clear. 

Unit 3 
Section No: 2 
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Depth: 1-4cm. Munsell colour is predominantly 5 YR 4/6. Texture: sandy silt. 
Organic material is intimately intermixed with the mineral fraction. Many orange 
mottles, in section generally 2-4mm across, colour predominantly 7.5 YR 5/8, with 
a prominent contrast and sharp boundary with the matrix. Material is moist. 
Structure consists of medium to coarse granular peds, moderately developed. Soil 
strength is weak, is weakly deformable and slightly plastic. Lower boundary is 
clear to gradual. 

Unit 4 
Section No: 2 
Depth: 12+cm. Munsell colour is predominantly lOYR 2/2. Texture is 
predominantly a slightly sandy silty loam. Little organic content, what organic 
material is present is intimately intermixed with the mineral fraction. The deposit 
has no roots. There are usually few clasts, those presently mostly as part of a layer 
composed of angular, prismoidal clasts with a thickness of 7 -lOmm, towards the 
base of the unit. Very few mottles, colour 10 YR 5/8 with a prominent contrast and 
sharp boundary with the matrix. Material is moist. Structure consists of medium to 
coarse granular peds, moderately developed. Soil strength is weak, is weakly 
deformable and slightly plastic. Upper boundary is clear, lower boundary is clear to 
gradual. 

Unit 5 
Section No: 
Depth: 2-1O+cm. Very many mottles, effectively forming fabric of deposit, colours 
10 YR 5/3 and 10 YR 3/2 with a prominent contrast and sharp boundary with 
respect to one another. Texture: clay silt. Little organic content, what organic 
material is present is intimately intermixed with the mineral fraction. The deposit 
has no roots. Very few clasts, sub-angular, prismoidal clasts with a thickness of 5-
7mm, towards the base of the unit. Material is moist. Structure consists of fine to 
medium granular peds, weakly developed. Sediment strength is moderately strong, 
is deformable and moderately plastic. Upper boundary is gradual, lower boundary 
is clear to gradual. 

Unit 6 
Section No: 
Depth: 2-1O+cm. Colour: 10 YR 3/1. Texture: clay silt. Little organic content, 
what organic material is present is intimately intermixed with the mineral fraction. 
The deposit has no roots. Many limpet shell fragments, heavily degraded. Material 
is moist. Structure consists of fine to medium granular peds, weakly developed. 
Sediment strength is moderately strong, is deformable and moderately plastic. 
Upper boundary is clear to gradual. 

Unit 7 
Section No: 
Thickness: lO+cm. Munsell colour is predominantly 10 YR 311 Texture: clay silt. 
Very many mottles, in section generally 1-2cm across, colour predominantly 10 YR 
5/3, with a prominent contrast and sharp boundary with the matrix. Within these are 
many flecks, colour 7.5 Y 5/8 with a distinct contrast and sharp boundary with the 

309 



matrix (i.e. enclosing mottle). Material is moist. Soil strength is weak, is 
deformable and moderately plastic. Boundaries clear to gradual. 

Unit 8 
Section No: 
Thickness: 2-8cm. Munsell colour is predominantly 10 YR 3/3 Texture: slightly 
sandy silt. Very few to few mottles, in section generally 1cm across, colour 
predominantly 7.5 YR 5/6, with a faint to distinct contrast and sharp boundary with 
the matrix. Very few flecks of charcoal, c. 1-2 cm length. Material is moist. Soil 
strength is weak, is weakly defonnable and slightly plastic. Boundaries clear to 
gradual. 

Unit 9 
Section No: 
Thickness: 3-7cm. Munsell colour is predominantly 10 YR 3/2 Texture: slightly 
sandy silt loam. Many flecks of charcoal, c. 1-2 cm length. Many framents of 
highly degraded shell (?limpet) very many clasts, 20-50mm long sub-angular 
cuboidaVtabular. Material is moist. Sediment strength is weak, is weakly 
defonnable and slightly plastic. Boundaries clear to gradual. 

Unit 10 
Section No: 
Thickness: 8+cm. Munsell colour is predominantly 10 YR 5/3. Texture: sandy silt. 
Many framents of highly degraded shell (?limpet). Mottles common, c. 30mm in 
section, pure silt, 10 YR 2/1, with a faint to distinct contrast and sharp boundary 
with the matrix and orange flecks, 7.5 YR 7/8, c. 2mm. Material is moist. 
Sediment strength is weak, is weakly deformable and slightly plastic. Boundaries 
clear. 

OtT-site Descriptions 

Beafield 

Ah horizon 
Thickness 12cm. Colour: 10 YR 2/2. Clay silt, with visible sand content. Clast 
free. Material is slightly moist. Structure consists of fine to medium granular peds, 
moderately developed. The material is moderately weak to moderately finn, 
defonnable and slightly plastic. Many to common (grading down unit) fine fibrous 
roots. Clear to gradual boundary. 

Bw horizon 
Thickness 12cm. Colour: 10 YR 4/3. Silt loam with visible sand content. Very 
few clasts, c 6cm length, tabular sub-angular. Material is moist. Structure consists 
of medium to coarse granular/sub-angular blocky peds, moderately developed. The 
material is moderately weak to moderately finn, defonnable and slightly plastic. 
Few to very few (grading down unit) fine fibrous roots. Clear to gradual upper 
boundary, clear lower boundary. 
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C horizon 
Thickness: 8cm. Colour: 10 YR 7/3. Well sorted fine to medium sand. No clasts. 
Apedal structure. Material is loose, brittle and non-plastic. Clear upper boundary. 

Tofts 

Ap(h) horizon 
Thickness 32cm. Colour: 10 YR 312. Silt loam texture. Many clasts of 2-5cm, 
sub-rounded to sub-angular tabular/prismoidal, concentrated at 5-lOcm depth, with 
few clasts below this. Material is slightly moist. Structure consists of medium to 
coarse granular peds, moderately developed. Soil strength is weak, is weakly 
deformable and non-plastic. Many to common (grading down unit) fine fibrous 
roots. Clear to gradual boundary. Local informants tell that the field has been 
ploughed, once, around 10-12 years ago. 

AB horizon 
Thickness 30+em. Colour: 10 YR 3/2. Silt loam. Very few clasts, c 6cm length, 
tabular sub-angular. Material is moist. Material is slightly moist. Structure consists 
of medium to coarse granular peds, moderately developed. Soil strength is weak, is 
weakly deformable and non-plastic. Few fine fibrous roots. Clear to gradual upper 
boundary. Combined depth of horizons suggests that this may be a deepened 
topsoil. 

Westbrough 

Ah horizon 
Thickness 7cm. Colour: 10 YR 3/2. Clay silt. Clast free. Material is moist to 
wet. Structure consists of fine to medium granular peds, moderately developed. The 
material is moderately firm, deformable and moderately plastic. Many to common 
(grading down unit) fine fibrous roots. Clear boundary. 

Bgfhorizon 
Thickness 15cm. Colour: 10 YR4/3. Clay silt texture. Very few clasts, c 6cm 
length, tabular sub-angular. Many mottles, 7.5 YR 5/6,c. 2cm in section, with a 
faint to prominent contrast and sharp boundary with the matrix. Material is moist to 
wet. Structure consists of medium to coarse granular/sub-angular blocky peds, 
weakly to moderately developed. The material is moderately weak to moderately 
firm, deformable and moderately plastic. Few to very few (grading down unit) fine 
fibrous roots, with ferruginous deposition in rootlet channels. Clear to gradual 
upper boundary, gradual lower boundary. 

Cgfhorizon 
Depth 22+em. Colour: 10 YR 4/3. Clay silt texture. Very few clasts, c 6cm 
length, tabular sub-angular. Few mottles, 7.5 YR 5/6,c. 2cm in section, with a faint 
to prominent contrast and sharp boundary with the matrix. Material is moist to wet. 
Structure consists of medium to coarse granular/sub-angular blocky peds, weakly 
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developed. The material is moderately firm, deformable and moderately plastic. 
Gradual upper boundary. 
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Appendix Four, Part Two: Field Sections 
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Beafield Section Four 
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Tofts Section Three 
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Westbrough Section One 
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Westbrough Section Five 
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Appendix Five 
Caesium Data 

Beafield 
Depth (cm) Activity Error (lcr) 

(Bq kg-I) (Bq kg-I) 

1 43_99 1.86 
2 51.8 2.42 
3 51.48 2.25 
4 54.69 2.01 
5 38.73 1.64 
6 60.74 2.44 
7 55.07 2.27 
8 57.62 2.1 
9 50.65 2.43 
10 44.7 1.88 
11 39.24 0.86 
12 31.74 0.86 
13 2.92 0.37 
14 15.51 0.59 
15 10.95 0.43 
16 5.09 0.44 
17 5.22 0.41 
18 3.07 0.33 
19 2.61 0.39 
20 1.41 0.33 
21 1.25 0.2 
22 0.83 0.19 
23 0_85 0.19 
24 2.39 0.53 
25 0.71 0.17 
26 0.39 0.19 
27 0.62 0.14 
28 0 0 
29 0 0 
30 0 0 
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Westbrough 

Depth (cm) Activity Error (ICY) 
(Bq kg· l

) (Bg kg· l ) 

1 29.35 0.65 
2 26.74 1.55 
3 33 1.42 
4 33.31 0.61 
5 35.4 1.22 
6 32.66 0.42 
7 31.21 1.21 
8 26.28 0.53 
9 29.97 LI5 
10 23.42 Ll4 
11 18.32 0.88 
12 18.12 1.03 
13 12.67 0.81 
14 9.12 0.49 
15 7.7 0.56 
16 5.6 0.56 
17 4.95 0.47 
18 4.28 0.51 
19 3.06 0.32 
20 3.19 0.52 
21 2.21 0.3 
22 1.97 0.32 
23 1.8 0.26 
24 1.82 0.25 
25 1.44 0.25 
26 1.91 0.43 
27 1.5 0.31 
28 1.53 0.29 
29 1.11 0.37 
30 1.04 0.3 
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Tofts 
Depth (cm) Activity Error (10') 

(Bq kg· l
) (Bg kg· l

) 

1 36.23 1.42 
2 47.96 Ll6 
3 53.54 1.27 
4 51.91 1.24 
5 64.51 1.63 
6 50.53 1.2 
7 43.66 1.82 
8 35.47 1.71 
9 38.38 1.11 
10 26.79 0.8 
11 21.98 0.72 
12 17.94 0.63 
13 13.7 0.54 
14 13.01 0.55 
15 10.28 0.53 
16 10.63 0.64 
17 7.57 0.48 
18 6.55 0.45 
19 5.27 0.49 
20 5.4 0.47 
21 2.96 0.41 
22 3.28 0.46 
23 2.06 0.35 
24 2.39 0.41 
25 1.71 0.42 
26 1.35 0.4 
27 0.96 0.24 
28 0.87 0.25 
29 1.14 0.23 
30 0.95 0.35 
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