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Abstract 

In this thesis, I undertake an empirical search for the existence of price and 

exchange rate bubbles during the inter-war European hyperinflations of Germany, 

Hungary and Poland. Since the choice of an appropriate policy to control inflation 

depends upon the true nature of the underlying process generating the inflation, 

the existence or non-existence of inflationary bubbles has important policy 

implications. If bubbles do exist, positive action will be required to counter the 

public's self-fulfilling expectation of a price surge. Hyperinflationary episodes 

have been chosen as my case study because of the dominant role that such 

expectations play in price determination. In the literature, there are frequently 

expressed concerns about empirical research into bubbles. The existence of model 

misspecification and the nonlinear dynamics in the fundamentals under conditions 

of regime switching may lead to spurious conclusions concerning the existence of 

bubbles. Furthermore, some stochastic bubbles may display different collapsing 

properties and consequently appear to be linearly stationary. Thus, the evidence 

against the existence of bubbles may not be reliable. In my thesis, I attempt to 

tackle the above empirical problems of testing for the existence of bubbles using 

advances in testing procedures and methodologies. Since the number of bubble 

solutions is infinite in the rational expectations framework, I adopt indirect tests, 
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rather than direct tests, for the empirical study. From the findings of my empirical 

research, the evidence for stationary specification errors and the nonlinearity of 

the data series cannot be rejected, but the evidence for the existence of price and 

exchange rate bubbles is rejected for all the countries under study. It leads to the 

conclusion that the control of the inter-war European hyperinflations was 

attributable to control of the fundamental processes, since the dynamics of prices 

and exchange rates for these countries might not be driven by self-fulfilling 

expectations. 
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CHAPTER ONE INTRODUCTION 

1.1 Purposes 

Price bubbles are defined as explosive processes of asset prices generated by 

self-fulfilling expectations independently of market fundamentals. The existence of 

bubbles represents a possible explanation for the deviation of asset prices from the 

underlying fundamentals. There are many historical examples of incidents that 

could be considered from the evidence as being self-fulfilling bubbles. Famous 

classic cases include the tulip-mania in the Netherlands from 1634 to 1637, 'the 

Mississippi bubble' in France in 1719-1720 and the contemporaneous and related 

'South Sea bubbles' in Britain (Garber, 1989 and 1990). In addition, the US stock 

market crashes of 1929, 1987 and 2000, the Asian stock market slump of 1997, as 

well as the Japanese property market crash in the 1990s, are usually deemed as 

recent examples of bubble bursts. Keynes (1936) considered that the stock prices in 

the 1920s might not be governed by an objective view of fundamentals but by 

"what average opinion expects average opinion to be". The study of bubbles has 

attracted much research interest because bubble bursts will normally have negative 

wealth effects and create economic confusion (Blanchard and Watson, 1982). 



According to Kindleberger (1987), a bubble is defined loosely as a sharp rise in 

price of an asset or a range of assets in a continuous process, with the initial rise 

generating expectations of further rises and attracting new buyers, who are 

generally speculators interested in profits from trading in the asset rather than its 

use of earning capacity; the rise is usually followed by a reversal of expectations 

and a subsequent sharp decline in price often resulting in financial crisis. 

In the literature, general equilibrium arguments can be found about the 

theoretical restrictions concerning the existence of bubbles and the effects of 

bubbles on the economy. For instance, Tirole (1982) considers that rational bubbles 

are ruled out when there exists a finite number of agents in the market. If the 

number of agents is infinite, bubble existence will become possible (Tirole, 1985, 

Weil, 1989). On the other hand, within a monetary framework, Obsteld and Rogoff 

(1983) assert that price bubbles can be ruled out during hyperinflationary episodes 

if the government guarantees a probable minimal redemption value for the currency 

in units of capital. Nevertheless, the analysis in this thesis focuses on the empirical 

examination of the existence of a bubble. This is because, while the existence of 

bubbles cannot always be proven theoretically, it may be reasonable to rely upon 

econometric methods to detect them. 
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Although the empirical search for evidence of bubbles has largely focused on 

capital markets, I contend that the empirical investigation of inflationary bubbles is 

equally important. Since the choice of an appropriate policy to reduce the inflation 

rate may very much depend on the true nature of the underlying process generating 

the inflation, the existence of inflationary bubbles has far-reaching policy 

implications. If inflationary bubbles are not present in the observed price series, 

then it is only necessary to take control of the market fundamentals, by such means 

as the restrictive control of money supply growth and the reduction of fiscal deficits. 

If, however, this inflation has a stubborn self-sustaining momentum and is thus 

being driven by a bubble phenomenon, then positive action will be required to work 

on the expectation mechanism to shock expectations off the speCUlative bubble 

path (Funke et al. 1994). For instance, it would require the government to commit 

itself to a change in its policies for controlling fiscal deficits and money growth in a 

way that is sufficiently binding and convincing for them to be widely believed. 

Further, since bubbles are associated with self-fulfilling prophecies, it is reasonable 

to deduce that if bubbles do actually occur in the data, they are more likely to be 

observed when the expected future market price is an important factor determining 

the current market price level. During hyperinflation, expectation plays a dominant 

role in the determination of the asset price. Hence, it is believed that 
3 



hyperinflationary episodes provide fascinating environments for the empirical 

study of bubbles (Flood and Garber, 1980b). The classic examples include the 

inter-war European hyperinflations of Germany, Hungary and Poland. Sargent 

(1982) provides a detailed description of how the hyperinflation in these countries 

was stopped. It has been found that the government authorities stopped inflation by 

announcing a binding and credible policy regime change and at the same time 

taking control of market fundamentals. Thus, the resulting control of inflation 

cannot explain fully the true nature of the hyperinflation that occurred. It is 

suggested that econometric methods could be used to test for the presence of 

inflationary bubbles during these classic hyperinflationary episodes. 

It is also to be noted that a floating exchange rate system was first 

implemented in European countries during the 1920s following World War I. 

According to Okina (1984), if price bubbles occur, and the purchasing power parity 

is not violated, bubbles in the nominal exchange rate will also appear and are 

reflected in the form of the price bubbles. The country's external competitiveness, 

therefore, would not be adversely affected. On the other hand, when price bubbles 

are not present but exchange rate bubbles do exist, the nominal exchange rate 

bubbles are represented by an explosive deviation from the purchasing power parity, 
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and real exchange rate bubbles will appear as well. With the ups and pops of real 

exchange rate fluctuations, the export sectors will suffer serious consequences and 

will not recover quickly even when the bubbles finally burst. It is important, 

therefore, to check for the presence of both price and exchange rate bubbles over 

the same estimation periods. 

The purpose ofthis thesis is to undertake empirical research into both the price 

and exchange rate bubbles. I have chosen the inter-war European hyperinflations of 

Germany, Hungary and Poland for my case study, because, the data series for both 

prices and the free market exchange rates are available, and they have been widely 

discussed in the literature. 

1.2 Outline of the Thesis 

The thesis is divided into seven chapters, which are structured as follows: 

Chapter Two introduces specifications and solutions of the Cagan 

hyperinflation models. Both the fundamental and bubble solutions of the Cagan 

models under rational expectations will be derived. In the rational expectations 

framework, the specification of a bubble process is related to an arbitrary 

martingale. For any value of a bubble coefficient, there exists an infinite set of 
5 



bubble processes because there also exists an infinity of possible martingales with 

respect to a given sequence of information sets. Some examples of theoretical 

bubble specifications will be explored. In addition, several bursting bubble 

specifications will be illustrated. Owing to the problems of multiple solutions, 

indirect testing methodologies that do not require the specification of particular 

forms of bubble are more appropriate and have been employed for identification of 

bubbles. 

Chapter Three provides a brief description of the data series for the inter-war 

European hyperinflations of Germany, Hungary and Poland. In addition, since the 

stochastic properties of the data series will affect the econometric methods to be 

adopted and the economic interpretations of the empirical results in subsequent 

chapters, I also investigate the stochastic properties of the observed variables. 

Using structural time series modeling techniques, I extract the unobserved 

structural components of the observed data variables and examine the integration 

orders of the data on the basis of the specifications of the structural time series 

components. 

In the existing literature, three main concerns have been aired about the 

empirical investigation of bubbles. First of all, most of the previous empirical 
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studies of bubbles have assumed at the outset that the models they use are correctly 

specified. This means that if the models are in fact misspecified, this may be falsely 

interpreted as evidence for the existence of bubbles. The bubble test is, however, a 

joint test for both bubble existence and correct model specification. The evidence 

for no bubbles implies that no bubbles are present and that the model under study is 

correctly specified. Hence, the appropriate testing procedures and econometric 

methods should be effective enough to separate model misspecification from the 

evidence of bubbles. Secondly, there is a problem of observational equivalence 

between expected future changes in economic fundamentals and bubbles. When the 

Governments attempted to bring runaway inflation under control by enforcing 

monetary reforms during the hyperinflationary episodes in the 1920s, the nonlinear 

movements of price or exchange rate series that are caused by the possible regime 

shifts in underlying fundamentals may often be misunderstood as representing a 

bubble path. Thirdly, it is found that the stochastic bubble process, as illustrated in 

Chapter Two, exhibits an explosive dynamic path over the expanding phase of the 

bubble process only, but not over the whole sample period. Consequently, standard 

econometric methods will be biased towards the rejection of bubble existence. In 

subsequent chapters, I apply advances in econometric procedures and 

methodologies to handle the above empirical issues of bubble detection in different 
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ways. 

In Chapter Four, I design a set of orthogonality testing procedures for 

empirical study, which can help separate tests on model specification from tests for 

bubbles in a more rigorous manner. The orthogonality testing procedure is expected 

to detect any kinds of bubble process that are not orthogonal to information sets. I 

employ the fully modified econometric methodologies to conduct the orthogonality 

tests, which are developed under the assumption of the linear data generation 

process. Hence, I restrict the empirical analysis on pre-reform samples as has been 

done in the previous literature. This chapter develops the ideas contained in my 

work published in Progress in Economic Research (Chapter Two) and the 

International Review of Economics and Finance. 

In order to extend the empirical analysis to cover the excluded observations of 

monetary reforms and to permit a comparison with the evidence for bubbles 

contained in Chapter Four, in Chapter Five I employ the threshold cointegration 

method for bubble detection. Since the threshold cointegration methodology can be 

used to test simultaneously for the existence of nonstationary roots and for 

threshold nonlinearity in two regimes, it is expected to be robust to the presence of 

both a nonlinear switching process and a stochastic bubble. I also choose traditional 
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linear cointegration tests and the cointegrating RALS-ADF test for carrying out the 

comparison study. Moreover, by conducting co integration analyses between the 

real money balances and price changes, and subsequently between the real money 

balances and money growth rate, the existence of a bubble can be separated from 

the model misspecification. In addition, a comparison of the orthogonality tests and 

the cointegration tests in detecting bubbles is made. 

Further, while the regime-switching behaviour of market fundamentals 

discussed in Chapter Five is restricted because it depends on an observed threshold 

value, the switching process described in Chapter Six is specified to depend on 

unobservable Markov-switching states generated by a first-order Markov chain. 

The probability law that governs the Markov-switching states is more flexible in 

that it allows the observed data to determine the specific form of the nonlinearities, 

which are consistent with the sample information. Following the same 

cointegration-testing procedure as in Chapter Five, I adopt the Markov-switching 

cointegrating ADF method in Chapter Six, in order to simultaneously model the 

Markovian regime shifts in underlying fundamentals and to test for bubble 

existence. This method is considered to be effective in identifying nonstationary 

dynamics from the stochastic bubbles. 
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Finally, Chapter Seven summarizes the major findings of the empirical 

research, assesses the suitability of the econometric methods for carrying out tests 

for the existence of bubbles, and contains the concluding remarks. 
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CHAPTER TWO SPECIFICA TIONS AND SOLUTIONS OF THE 

CAGAN MODEL 

2.1 Introduction 

In this chapter, I will briefly describe the specifications of the Cagan model 

under rational expectation in which the price and exchange rate series are expressed 

in first-order linear difference equations. The particular and the homogenous 

solutions to the Cagan model can then be derived. The particular or fundamental 

solution characterizes a unique dynamic movement of an underlying fundamental 

process. Several explicit representations of the fundamental solution will be 

explored. The homogenous or bubble solution is non-unique III a rational 

expectations framework. I attempt to specify some examples of bubble solution 

with different dynamic properties. Also, several bursting bubble specifications will 

be illustrated. It is concluded that the problems of multiple solutions make indirect 

tests more attractive than direct tests for bubble detection. In addition, the general 

solution, which is just the sum of particular and homogenous solutions, will be 

discussed. Hence, the bubble paths are characterized as any deviations of the 

general solution from the fundamental solution when the model is specified 

correctly. The remainder of the chapter proceeds as follows: The specifications of 

the Cagan's hyperinflation models will be explored in Section 2. Sections 3 and 4 
II 



explore the particular and homogenous solutions respectively. The general solution 

is discussed in Section 5. A summary is offered in the final section. Proofs of some 

equations are shown in the appendices. 

2.2 Specifications of the Cagan Model 

Money balances are held as a reserve of purchasing power for contingencies. 

The desired real money balances depend upon several variables including real 

wealth, real income, and the expected opportunity cost of holding money. The 

expected cost of holding money refers to the difference between the expected 

monetary return on holding cash balance and on substitutes of local currency. The 

money return on cash balance is negligible and is usually assumed to be zero. 

Therefore, to the extent that money is held as a substitute for financial assets, the 

expected cost of holding money includes the expected interest rate and capital gain 

yield of holding those financial assets. To the extent that money is held as 

substitutes for non-perishable consumers' goods, the expected cost of holding 

money is the expected rate of depreciation in the real value of money, or 

equivalently, the rate of inflation. According to Cagan (1956), hyperinflation refers 

to the rise in prices at a rate at least equal to 50% per month and only the expected 

inflation rate accounts for the drastic fluctuations in real cash balances during 
12 



hyperinflation, with all other variables being considered to have minor effects on 

desired cash balance. Cagan (1956) assumes the expectation mechanism to be 

adaptive. Sargent and Wallace (1973), Sargent (1977) and Salemi and Sargent 

(1979), however, introduce the rational expectation hypothesis of Muth (1961) to 

the Cagan model. Mathematically, the linear form of the Cagan model under 

rational expectations and instantaneous clearing in the money market is given as: 

(2.1) 

where M 1 is the natural logarithm of the money stock at time t, 1£1,1 is the natural 

logarithm of the price level, E 1 (.) denotes the mathematical expectations operator 

conditional on information set nt, cx.. is a constant, /31 is the semi-elasticity of real 

money demand with respect to the expected inflation rate and u 1,1 refers to a 

money demand disturbance term representing all deviations from the exact Cagan 

model under rational expectations such as demand velocity shocks and all other 

omitted real variables. Theoretically, the value of ~l should be negative because 

money holders will substitute consumers' goods for money when the real value of 

money is expected to fall or the expected inflation rate rises. 

13 



Since local currency loses its value very rapidly during hyperinflation, 

foreign currency balances are often held in order to perform the functions of a 

medium of exchange and a store of value. Even if foreign currencies are held 

merely as a store of value, they are often converted back into domestic money and 

then goods at a later time. Hence, the substitution between domestic money and 

goods can occur, directly or indirectly, via foreign currencies (Moosa, 1999). Such 

phenomenon of currency substitution is documented in Sargent (1982) for the 

inter-war European hyperinflations. In light of this, it is appropriate to replace the 

future inflation rate in Eq.(l) with the expected depreciation rate of domestic 

currency to represent the cost of holding domestic money balance. 1 If I further 

assume that the purchasing power parity (PPP) relationship holds and that all the 

foreign money demand determinants, for example, foreign interest rates and 

income levels, are assumed to be constant, the real money balance represented by 

Eq.(2.1) can be alternatively expressed as: 

(2.2) 

I Frenkel (1977 and 1979) estimated the Cagan money demand using forward premium and 

expected depreciation rate as a measure of expected cost of holding local currency during the 

German hyperinflation. 

14 



where 1t2,t is the natural logarithm of the exchange rate measured as the value of 

domestic currency per unit of foreign currency, ~1t2,t+l represents the exchange 

rate change at time t+ 1, <X2 is an intercept, ~2 is the semi-elasticity of currency 

substitution between domestic and foreign currency and u2,t is a measure of model 

noise from the linear exact Cagan model under rational expectations that include all 

the domestic and foreign money demand shocks and omitted real-side 

determinants. 

Re-arranging Eq. (2.1) and Eq. (2.2) in terms of 1t j ,t (j = 1,2) gives: 

j = 1,2. (2.3) 

Eq.(2.3) is expressed as a first-order dynamic linear difference equation with 

rational expectations. The future expectation and the current variables are 

determined simultaneously. The general solution of (2. 3) is the sum of a particular 

solution and a homogenous solution. 

15 



2.3 Particular Solution 

For sake of notional simplicity, I eliminate the subscript j in subsequent 

equations. By recursively substituting forward for E, (1tI+I +i ) and using the law of 

iterated expectations, I obtain: 

When 1-f3-I< I, the transversality condition: 
f3 -1 

. ( f3 Ji+1 
~lm -- Et(1tt+I+J = 0, 
..... a> f3-1 (2.5) 

is then satisfied. Under this circumstance, the solution of 1t1 is given by: 

(2.6) 

The expression of 1t{ represents a forward-looking particular solution or the 

fundamental solution to the Cagan models (2.1) and (2.2) under rational 

expectations, which is determined by the present discounted value of expected 

levels of the market fundamentals, (Mt+i -u 1+i ), for all i ;S O. If the expectation 

of (M, -u 1 ) grows at a constant rate g, the infinite sum, 1t{, will converge when 
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~ -1 1 2 
(1+g) < - or g < 1- I· 

~ ~ 

By assuming special stochastic processes for the sequence of M, and "t' 

1t; can be written in explicit manners. Let's define X, as _1_M, or ~"t. 
1-13 1-~ 

Gourieroux et al. (1982) considers the ARMA solutions of the Cagan model. 

Assume that 1_13_1< 1 and X, admits an ARMA (p,q) representation, that 
13 -1 

is, qJ(L)X, = 9(L)l'l" where L is a lag operator, qJ(L) = 1- qJlL - ... - qJ plf, 

9(L) = 1 + elL + ... + eqr and '11, is a white noise. Then, the present discounted 

value of X,, i(_J3_)i E, (X,+i ) can be explicitly written as a unique stationary 
;=0 J3-1 

ARMA solution: 

1 L b9(b)qJ(L) X 
{(L-b)[ - qJ(b)e(L)]} I' 

(2.7) 

where b is defined as ~ . J3 -1 

However, many economic variables exhibit non stationarity. If X, follows 

random walk with drift and linear time trend, that is, M, = J..l + rot + l'l/ then the 

present discounted value of X I is written as: 3 

2 In fact, it is similar to the case of the constant dividend growth model in which the growth rate of 

dividend is no larger than the discount rate. 

3 The steps of proof are shown in Appendix 2.1. 
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(l-\3)X, + \3(\3 -l){~ + w[(1-\3) + In, (2.8) 

During hyperinflation, the economic variables are likely to contain double unit 

roots (Haldrup, 1998). 1 then consider the case of double unit roots with drift and 

polynomial time trend. Assume that /).2 X, = ~ + wll + W 2/
2 + 11

" 
The infinite sum 

of X, will be represented as:4 

I[ WI + 2W2 (1 -\3) J} 

(2.9) 

Since the fundamentals, M, and u" may be represented by different 

stochastic processes, for instance, M, is usually 1(2) and u, is either 1(1) or 1(0), 

the explicit representation of the fundamental solution, n{, will be written as a 

combination of Eqs. (2.7), (2.8) and (2.9).5 

2.4. Homogenous Solution 

The homogenous solution of (2.3) denoted by n: is equal to the general 

solution of the homogenous counterpart as follows: 

4 
The work of proof is illustrated in Appendix 2.2. 

5 
The conditions for the particular solutions of the Cagan model to be unique are documented in 

Broze and Szafarz (1991) and Broze et al. (1995). 
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h b1+iE (h ) 7t t = t 7tl+l+i , i ~ 0 (2.10) 

Multiplying both sides ofEq.(2.10) by bt obtains: 

bt h bt+1+iE (h ) 7tt = t 7tt+l+i , (2.11 ) 

Gourieroux et al. (1982) derive the homogenous solution, 7t;, by using the 

martingale process. Let's define mt as bt 7t~, and the stochastic process of mt 

satisfies the martingale property such that Et(mt ) = m" and Et (mt+;) = m" for 

all i > O. The homogenous solution, 7t~, is represented in terms of the martingale 

process: 

(2.12) 

Any arbitrary martingale process, m t , can be considered as a component of 

7t;. It implies the existence of multiple solutions for the Cagan models under 

. . E ( ") E (mt+! ) 1 (mt) h rational expectattons. Smce t 7tt+! = t bt+! = b b' were I b I < 1, the 

stochastic process of 7t; follows a submartingale such that: 

7t
h 

E (7th )= _t > 7th 
t t+l b t· (2.13) 
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Therefore, 1t~ satisfies a bubble process that explodes in expected value and it 

can be interpreted as a bubble solution,Bt . Also, when Eq. (2.11) and (2.12) are 

substituted into the transversality condition of (2.5), it implies 

Et(mt+1+i ) = mt = 0, for i- 00. Consequently, the transversality condition of(2.5) 

implies the nonexistence of B t · 

The stochastic unit root process suggested by Granger and Swanson (1997) 

can be generalized to the martingale process, m
t 

: 

(2.14) 

Suppose that x t - N (11 %' cr;). For an arbitrary A., the moment-generating 

function of a normally distributed variable, x t , is given by E (exp( A.xt » = 

exp(A.~x + 'xA?cr!). Hence, qt is represented by exp[A.xt -(A.~x + liA.2cr!)]. 

Dividing Eq.(2.l4) by btyields the following general bubble specification: 

B = (qtBt-l) + ~ 
t b bt (2.1Sa) 

(2.1Sb) 
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By restricting underlying parameters of bubble process given by (2.1Sb) such 

as ')... and Il x' there are different theoretical bubble specifications with particular 

stochastic properties to be derived (Salga, 1997). I illustrate them with further 

modifications and refinements. 

2.4.1. ')... = 0 

Let's first assume that ')...= 0, the resulting bubble process will be obtained as 

follows: 

_ Bo Li=1 ro I=i --+=:.::.!..--
b' b' 

(2.16) 

Since the above bubble process is driven by time only, it is known as pure 

time-driven bubble process. As t- 00, the time-driven bubble must converge 

toward infinity with I b I < 1 and its dynamics must then be asymptotically unstable. 

In particular, if m, is a constant, the sequence of rot in Eq.(2.14) will become zero. 

Consequently, B
t 

is represented by !~ only, which is known as the deterministic 

bubble. 
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2.4.2. A. *0 and Ilx + Ii A. a! = 0 

If A. * 0 and Il x + Ii A. a! = 0, it then implies Ilx:1= 0 because A. 

-21l 
--2 _x :1= o. The bubble process can be specified as: 

ax 

- 21l 0), 
B, = exp(--2 _x x, -In b) B'_I + l1" 

ax 
(2. 17a) 

Suppose that x, = w t - w t _1 = Ilx + Ext' where Ext ~ N (O,a!). 

Replacing x t by w t - wt-\' substituting one period forward for Bt+1 and 

re-arranging yield:6 

-21l 
B t = exp[--2-X wt -(lnb)t] 

ax 
(2.17b) 

where In b < 0 since b < 1 or 13 < O. 

Assume that wt represents a vector of underlying 1(1) fundamental variables 

in the model. The stochastic bubble process of (2. 17b) thus depends upon both time 

and the underlying fundamental process. Further, by recursively forward 

substitution, W t = Wo + Il xt + L:~I E xt-j , the bubble process given by (2. 17b) can be 

alternatively written as: 

6 Appendix 2.3 proves the general specification of bubble when x t = W t - W tl . 
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(2.17c) 

Given that L:=J E xt-i _ 0 as t- 00, B, will converge toward zero when 
t 

- 2~x Ilx < In b < O. As a result, the dynamics of B, is asymptotically stable. The 
ax 

divergent bubble process driven by the time component, exp[ -(In b )/], would be 

- 211 
somehow offset by the fundamental component, exp[--2 _x 11 x], to a certain 

ax 

degree. Hence, the inclusion of the fundamental-dependent component may help 

stabilize bubble dynamics and exhibit more dynamic properties of the bubble 

process (Ikeda and Shibata, 1992 and 1995).7 

One special case is that 11" + ~ A cr! = 0 but A is restricted to be I, 11 x = 

a 2 

- -=- < 0, then the bubble process of (2.17a) and (2.17c) will be simplified to be: 
2 

B, = exp(x, -Inb) B'_J + :: (2.18a) 

(2.18b) 

7 Ikeda and Shibata (1992 and 1995) however derived the specifications of fundamental-dependent 

bubbles in a continuous-time framework. 
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Similarly, the asymptotic dynamics of bubble process given by (2. 18b) depend 

on the sign of (Il x -In b). If Il x <In b < 0 or exp(1l x) < b < 1, B t will converge 

toward zero and is then asymptotically stable. 

Let In b = (K + H) < 0, where K and H are arbitrary constants. Assume that A 

* 0 and (Allx + Ii A2a~ + K) = 0 with A} and A 2 being the two characteristic roots. 

Hence, 

(2. 19a) 

or B, = exp(A2 W, - Ht) (2.19b) 

(2.20a) 

(2.20b) 

I first consider the case of Il x :t O. While Il x :t 0 and (Il: - 2a:K) = 0, then, 

2 Il 
K = Il x

2 
> 0, H must be negative. From (2.20a) and (2.20b), A) = 1..2 = - -+ The 

2a x ax 

bubble process of (2. 19a) and (2. 19b) will be written as: 
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B, = exp(-f.l; w, -Ht) 
ax 

(22Ia) 

(2.2Ib) 

2 2 

When - f.l; < H, which implies exp( - f.l x2 ) < b, the bubble process will 
ax 2a x 

converge towards zero asymptotically. 

On the other hand, when (f.l! -2a!K) *0, then it can be seen that AJ * A2 . 

The bubble process of (2.19a) or (2.19b) or any linear combination of them still 

satisfies the sub martingale process of (2.13). Let's define Al and A2 as two 

arbitrary constants. The linear combination of bubble process (2.19a) and (2.19b) is 

given as: 

(2.22a) 8 

(2.22b) 

8 Appendix 2.4 provides the proof that the bubble solution (2.22a) can satisfy the submartingale 

property. 
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2 

In particular, while (Il~ -2a~K» 0, or K < Ilx2 ' then AI >A 2 and the A 
2a x 

values are real numbers. The stochastic stability of bubbles specified by (2.22b) 

depends upon whether A;ll x < H or exp(A;llx + K) < b for all i = 1,2. 

2 

Moreover, if (Il~ -2a~K) < 0, or K > :x2 > 0, then H must be negative and 
ax 

the A values contain imaginary numbers: 

(2.23a) 

(2.23b) 

where ; is an imaginary number, ~ . Let's define hI = - ~ x , and h2 
ax 

[(2a2K-1l )1/2] 
x 2 x , so that AI' A2 = hI ± h2 i. The bubble process is specified as: 9 

ax 

(2.24a) 

(2.24b) 

Under this circumstance, the bubble process of (2.24a) and (2.24b) can exhibit 

2 -Il~ 
cyclical patterns. While - 11 x < H < 0, or exp(--2 - + K) < b, the cyclical 

a 2 a x x 

9 Appendix 2.5 offers the detailed steps of proof. 
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dynamics of B t is asymptotically damped. 

Now, I consider the case of Il x = O. When Il x = 0, then K must be negative 

(-2a 2 K)1I2 (-2K) 112 

since (Yz A?a! + K) = O. Also, AI = x 2 > 0, 
ax ax 

(-2K)I!2 
1..2 =- < O. The bubble process will be specified as: 

ax 

( 2K)1/2 (-2KY' 2 

B
t 

= AI exp[ - wt - Ht] + A z exp[ wt - HI] (2.2Sa) 
ax ax 

(2.2Sb) 

On condition that H > 0, the bubble process (2.2Sb) will converge towards 

zero as I~ 00 . 

Suppose that A * 0 and (All x + Yz AZa: + In b) = 0, the bubble process will be 

purely driven by a fundamental process: 

(2.26a) 

or B t = exp(A 2 w t
) (2.26b) 
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(2.27a) 

(2.27b) 

Given the fact that In b < 0, when ~ x 7= 0, it is impossible for (~: - 2cr: In b) 

2 2 

= 0 and (II 2 - 202 In b) < 0, which imply that In b = ~ x2 > 0 and In b > ~ > 0 
"-x x 20 2cr 2 

x x 

respectively. The only possible case is given by (~: - 2cr: In b) > 0, or In b < 0 

2 

<~. Then, AI > A2 and the A values are real numbers. The specification of the 
2cr2 

x 

bubble process will be written as: 

(2.28a) 

(2.28b) 

The stochastic stability of bubbles specified by (2.28b) depends upon whether 

A.II < 0 for all i = 1,2 . • ,.-x 

(-20 2 Inb)1/2 (-2Inb)1/2 
In case of J.l x = 0, then 1..1 = x = > 0 and 

0
2 a x x 

A2 - - (-2Inb)1/2 < 0 since In b must be negative. The bubble process is shown as: 
ax 
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(2.29a) 

(2.29b) 

The bubble process of (2.29b) must exhibit stable dynamics as t-~ 00 • 

From the above, although all bubble processes are derived to explode in 

expected values, they may converge towards zero as t --- 00 under certain 

restrictions on parameters. The different examples of bubble specifications are 

summarized in Table 2.1. The asymptotic stability of bubble process leads to 

difficulties in bubble testing. Nevertheless, the numbers of observations are usually 

not large during hyperinflationary episodes and consequently, such difficulties may 

not be so serious in my subsequent empirical studies. 10 

Other than the asymptotic dynamics of bubble, the bursting properties are the 

main issues about the theoretical specifications of bubble solution. The 

submartingale property of bubble process (2.13) can be further modified by the 

inclusion of a probability that a bubble continues to grow (0:;;;;; n :;;;;; 1): 

10 However, it may create serious problems of bubble detection in financial markets with long data 

horizons. 
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= B, (2.30) 
b 

where E,(Bt+IIG) and E,(B'+IIC) refer to the expected values of Bt+1 given the 

regimes of bubble growth (G) and bubble collapse (C) respectively. I I 

One particular example of a bubble process that is satisfied with the above 

bursting bubble specification (2.30) is given as: 

(2.3Ia) 

(2.3Ib) 

where E,(rot+l) = O. 

The bubble process of (2.31 a) and (2.31 b) would occur with the probability of 

IT in regime G and with the probability of (1- IT) in regime C respectively. They 

represent a general version of the bursting bubbles suggested by Blanchard and 

Watson (1982) who restricted the value of A in (2.31 a, b) to be zero. It is noted that 

the expected value of the bubble in regime G, E,(Bt+IIG) = (bI1)-1 B" where 

(bI1rl > b-I, and the bubble will collapse to zero expected value as it bursts, 

E,(Bt+1 I C) = O. 

II The probability, IT, can be a variable as a function of the size of bubble (Norden, 1996). 
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In addition, Evans (1991) suggests a periodically collapsing bubble 

specification: 

= exp[Axt +1 -(A.~x + ~A.2cr:)][00 +8 t+l n -lb-1(B, -oob)]+ :::11 

for B, > K. 

(2.32) 

where both K and 00 > 0, St is an exogenous independently and identically 

distributed Bernoulli process that takes the value of 1 with probability of n in 

regime G and 0 with a probability of (1- n) in regime C. Since (B'_1 - oob) is 

restricted to be positive, 0
0 

must be smaller than (K b-1
). 12 

For B, ~ K, it implies that n = 1 and E,(B'+I) = B, . For B, > K, 
b 

Et (Bt+l) is equal to ~' for any value of B t and the bubble process of Evans 

(1991) can satisfy the submartingale property. It is found that the collapsing bubble 

is strictly positive and never vanishes. Moreover, the size of bubble collapse or 

explosion and the probability n are dependent upon the sizes of the bubble 

12 The collapsing bubble is specified to be positive since if a bubble collapses to zero, it cannot 

re-start (Diba and Grossman, I 988b). 

31 



compared to the value of K . Also, the bubble bursts partially in contrast to the total 

bubble collapse of the bursting bubble of (2. 31). 

2.5. General Solution 

The general solution to the difference equation (2.3), denoted by 1t: , is equal 

to the sum of particular and homogenous solutions, i.e. 1t{ + B t . The stochastic 

process of 1t{ characterizes the long-run equilibrium path of 1tf ; on the other hand, 

the movement of Bt characterizes the deviation of 1tf from 1t{. If the model 

under study is correctly specified, the task of bubble testing consists in detecting 

whether any movements of asset price deviate from the paths predicted by the 

market fundamental solution. 

2.6. Summary 

I have specified two versions of the Cagan model under rational expectations, 

in which the opportunity costs of holding money are measured by the expected 

inflation rate and the expected depreciation rate of local currency respectively. 

Hence, they will be used for the subsequent study of price and exchange rate 

bubbles in this thesis. The general solution of the Cagan model is simply the sum of 

fundamental and bubble solutions. The fundamental solutions can be expressed in 
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explicit representations dependent upon the assumed generating processes of the 

underlying fundamentals. There exist arbitrary martingales in the bubble solution, 

which is therefore non-unique in the rational expectations model. By restricting 

parameters of the bubble solution, several examples of different theoretical bubble 

specifications can be explored. Some exhibit asymptotic stability and some display 

different switching behaviours under alternate regimes of explosion and collapse It 

makes the indirect testing methodologies more attractive for bubble detection. In 

subsequent chapters, I will conduct econometric studies to examine whether the 

price or exchange rate series deviate from the particular solutions. Before doing so, 

the first step is to examine the statistical properties of the relevant economic 

variables in the next chapter so that I can adopt appropriate econometric procedures 

and methods on the data set. 
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Table 2.1 Summary for different theoretical bubble specifications 
Parameter restrictions Equations Conditions for dynamic 

stability 
A. =0 2.16 None 

Il + li A. a
2 

= 0 x 2 x 

J..l x*,O and A. *' 0 2.17a, b, c -21l x --2 -Il x < Inb < o. 
ax 

a
2 2.18a, b Ilx < In b < 0 

J..l =-~< 0 and A. = 1 
x 2 

A. *0, and (A.J..lx + li A.2a~ + K) = 0, where In b = (K + H) < 0 

J..lx *0 and 1..)=1..2 2.21a, b 2 
-~<H 

a 2 
x 

Il ... *0 and A.) * 1..2 2.22a,b A.;llx < H 

Il ... *0 and 2.24a,b 2 
-llx<H<O 

1..1> 1.. 2= hi ± h2i a 2 
x 

Il x= 0 and A.) * 1..2 2.2Sa,b H>O 

A. *0 and (A.J..l x + li A.
2
a! + lnb) = 0 

Ilx *0 and A.) * 1..2 2.28a,b A.;llx <0 

Il x = 0 and A.) * 1..2 2.29a,b Must be asymptotically 
stable 
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Appendix 2.1 

Given that 1 b 1< 1, the presented discounted value of X, can be expressed as 

follows: 

'ibiE,(X,+J = X t +bE,(Xt+I)+b2E,(Xt+2)+b3Et(Xt+3)+'" 
i~O 

'" 
= X t + L:lbiE,(M,+J+b 'LbiE,(X'+I+i) 

i~O 

= X t +_1_~", bi E (M .) 
1- b 1 - b ~i=1 ' t+l 

(A.2.1.1) 

Suppose that tlX'+j = J.l+ro(t + j)+llt+j' the values of b i E,(AX,+;} are given as: 

b" E (AX ) = b"J.l + b"rot + nb"ro 
I tH' 

as n- 00 

Hence, L:I b
i 
E, (Mt+i) is equal to the sum of the following three components: 
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The value of each component is calculated as follows: 

L "" bi - b!l L"" b i _ bmt 11_- mt--
i=1 ,... I-b' i=1 I-b' L"" obi I Leo bi bm ,m=-- m=--

i=1 (I-b) H (l-b)2 

(A2.12) 

It is known that _1_ = 1- p, and _b_ = -p, then, from (A.2.1.1) and (A.2. 1.2), I 
I-b I-b 

obtain: 

= (1 - P)Xt + (1- P)[ -pJl- pmt - P(1- p)m] 

= (1- P)Xt - p(1- P)[Jl + mt + (1- p)m] 

= (I - P)X, + P(P -1){Jl + m[(l- P) + t]} 
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Appendix 2.2 

Given that ,11,,2 X t+ j = ~ + 00] (I + j) + 00 2 (I + j)2 + llt+ j' the values of bi E t (fiX t+i ) 

are shown as: 

b 2E t(fiXt+2) = b2AXt+] +b2~+b2oo](t+2)+b2OO2(t+2)2 

= b 2 AXt + 2b2~ + b 2oo] (t + 1) + b2OO2 (t + 1)2 + 

b 2oo] (I + 2) + b 2OO2 (I + 2)2 

b3Et(AXt+3) b3AXt +3b3~+b3oo](t+I)+b3OO2(t+l)2 +b3oo](t+2)+ 

b3OO2 (t + 2)2 + b3oo] (t + 3) + b3OO2 (t + 3)2 

b"Et(DXt+,,) = b"AXt +nb"~+b"0)1(t+l)+b"0)2(t+I)2 + 

b"oo](t +2)+b"OO2(1 +2)2 + b"co l(t+3)+ 

b"co 2(t + 3)2 + .. +b"col(t + n) +b"co 2(t + n)2 as n~ 00 

From the above, L:] b i Et (AXt+i) is equal to the sum of the following four 

components: 
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The finite values of the above four components of :L:I b i E, (M'+i) are derived as 

follows: 

_1-L~ t(biO)I) + (bO)I +0+2)b 2
0)1 +(1+2+3)b3

0)1 + ... ) 
I-b ,~I 

I bO) t + _I_~", ibiO) 
(1-b)2 I I-bL..i~1 I 

1 bO) t 
(1-b)2 I 

+ 1 ~"' biO) 
(1_b)2L..i=1 I 

1 + bO)I 
(1-b)3 ' 

1 ~"' 2 . 1 L"'· 1 L"' 2 . -1 bL..i=lt (b'0)2) + -- ._ t(2ib')0)2 + -- ·_1(; )b'0)2 
- I - b '-I (1- b) .-

t
2
bO) 2 I ",. 1~", . 

(1-b)2 + (1-b)2 Lij(2b')0)2 + (1-b)2 L..i=I(2i-l)b'0)2 

t 2b0)2 + t(2b)ro2 + b0)2 L"' 2biO) 
(1-b)2 (1- b)3 (1-b)3 i=1 2 

t 2bO) 2 + t(2b)ro2 + b0)2 + b2
0)2 (A221) O-b)2 (1-b)3 0-b)4 
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OX) 

From (A.2.1.1) and (A.2.21), the value of L bi E t (X t + i ) is equal to: 
i=-O 

X t 1 M t b~ bro]t bro] t 2bro 2 t(2b)ro 2 --+-[-+ + + + + + 
l-b l-b l-b (I-b)2 (l-b)2 (I-b)3 (l-b)2 (I-b)3 

bro 2 + b2
ro 2] 

(l-b)4 

X t M t b ro] ro 2 (1 +b) b 2ro 2 

= l-b + (l-b)2 + (l-b)3 [~+ (I-b) + (l-b)2 ]+ (l_b)3 [WI + (l_b)]t 

bro 2 t 2 

(1- b)3 

= (1- J3)Xt + (1- J3)2 M t-J3(1- J3)2 {~+ ro] (1- J3) + ro 2[(1- J3)2 - J3(1- J3) + t 2] + 
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Appendix 2.3 

Let x t = wt - wt _l • Substituting one period forward for B t +1 from the general 

bubble specification (2.15), I obtain: 

(A,~ x + ~ A,
2
0: + In b)(t + 1) - (A,~ x + ~ A,

2
0: + In b)] Bt + :::i 

=exp{A,wt+1 -(A,~x + ~A,20: +Inb)(t+l)-

Assume that {O) t} = 0 , then: 

~ _ exp[A,wt+1 - A,(~x + Ji A,
2
0: + In b)(t + I)] 

Bt - exp[Awt -A(~x + JiA20! +Inb)(t)] 

Hence, Bt = exp[A,wt - (A,~x + ~ A,20: + In b)t]. (A.2.3.1) 

By imposing different parameter restrictions upon (A.2.3.1), I can obtain different 

bubble specifications summarized in Table 2.1. 
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Appendix 2.4 

Let's examine whether the linear combination of bubble process (2. 19a) and (2 19b) 

or the bubble process (2.22a) can still satisfy the submartingale property such that 

It is known that bE'_1 (B, ) = Et-J [exp(ln b )B, 1. By substituting the bubble process 

(2.22a) into Et-J [exp(ln b)B,l ,I obtain: 

Also, it is known that Et-J (q,Bt-J) = Et-J (exp[Ax, - (A.ll x + ~ A.2cr!)]B,_I)' By 

substituting the bubble process (2.22a) into E'_I (exp[Ax, - (A.Il x + ~ A.2cr! )]Bt I)' 

I find that Et-J (qtBt-l) is equal to: 

E'_I {exp[A.I W, - 1..1 wt-J - (A.llx + Yz A.2cr!)]AI exp[A.1 wt-J - H(t -1)] + 

exp[A.2w, -A. 2wt-J -(A. 2Ilx + ~A.2cr!)]A2exp[A.2wt-J -H(t-l)]} 
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Given the assumption that In b = K + H, and (A~x + Ii' A2cr~ + K) = 0, then 

Et-j(qtBt_j) = Et_j{A j exp[AjW, -(\~x + li'A~cr: +K)-Ht+Inb]+ 

A2 exp[A2 wt -(A2~x + ~A/cr: +K)-Ht+Inh]) 

= E,_j{Aj exp[Ajw,-Ht+lnb]+ A 2 exp[A 2 wt -Ht+Inb]} 

= bEt-I(Bt ) 
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Appendix 2.5 

AJ = hI + h2 i, and Az = hI - h2 i into (2.22a), I obtain: 

B t = exp( -Ht}[A] exp(h] + hzi}wt + A z exp(h J - h2i}wt ] 

= exp(h]wt -Ht}[A] exp(ih Zwt}+A2 exp(-lo2W t}] 

= exp(h] wt - Ht){A] [cos(hz wt } + i sin(h z wt }]+ 

Az[cos(h 2 wt } - i sin(h z wt }]} 

= exp(hJwt -Ht}[(A] +Az}cos(hZwt}+(AJ -Az}isin(hZwt }] 

= exp(h] wt - Ht}[A3 cos(h 2wt } + A4 sin(h 2w t }]. 

where A3=AI+A2, ~ = (A1-A2}i 
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CHATPER THREE STRUCTURAL TIME SERIES ANALYSIS OF DATA 

3.1 Introduction 

In this chapter, I will provide a brief description of the data series for the three 

inter-war European hyperinflations of Germany, Hungary and Poland. Also, since 

the stochastic properties of economic variables affect the econometric methods 

adopted for subsequent studies, I attempt a structural time series analysis to identify 

the unobserved stochastic components of the observed data series. From the 

reduced forms of the trend component, the integration orders of the data series can 

be found. In addition, some evidence of regime changes in data generation can be 

detected from the trend component or the slope of the trend. Such findings are 

Important for empirical studies conducted in the subsequent chapters. This chapter 

is structured as follows. Section 2 introduces the statistical specifications of the 

unobserved components in a structural time series model. Section 3 discusses the 

data sources, sample lengths and definitions of the variables under study. The 

statistical and graphical analysis of the unobserved components will also be 

presented. Section 4 summarizes the findings. 
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3.2. Statistical Specifications of Structural Time Series Model 

Before taking the empirical testing in subsequent chapters, I try to examine the 

stochastic properties of the economic variables under study. Using the structural 

time series modeling techniques (Harvey, 1989), I attempt to decompose and 

analyze the unobserved components of the observed data series. A univariate 

structural time series model is formulated as: 

(1- 'I'(L»Yot = Ilt +Yt + \lit +f:" 8 t -NID(O, a;), t = 1, ... , T. 

(3.1) 

where Yot is an observed time series variable, 'I'(L) = 1- 'I'lL - ... - '¥pLP where 

'1'; is a parameter of a lagged value of Yot ; the elements Pt , Yt , 'l't and 8, 

represent the unobserved trend, seasonal, cyclical and irregular components 

respectively. 13 

The trend is the long-run component in the series, which indicates the general 

moving direction of the observed series under study. There are two parts to the 

trend specified as: 

13 A first-order autoregressive component and a vector of exogenous variables should also be 

included in the univariate structural time series model (3.1), but they are not found in my empirical 

results and thus are excluded here for simplicity. 
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Pt = P'-I + (,' 

77 t -NID(O, a;), 

(t -NID(O, at), 

(3.2a) 

(3.2b) 

where f..l t is the level, which is the actual value of the trend, p, is the slope of the 

trend. If a; and at are zero, f..lt and Pt will be fixed respectively. 

Different properties of the level, slope and irregular component would result 

in different specifications of the trend model. Let's illustrate them briefly. 14 When 

both a; and a; are zero, then the trend specification given by: 

f..l t = f..lt - I + PH , 

Pt = Pt-I + (" t;, -NID(O, a~), 

(3.3a) 

(3.3b) 

is known as a second differencing model. When a; is not zero; the trend is known 

as a smooth trend model. Also, in case where both a; and a~ are zero, the trend 

model specified as: 

IJ., = f..lH + PH + 77" 

14 The details of the trend specifications are documented in Koopman et al. (2000). 

(3.4a) 

(3.4b) 
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is called random walk with a drift, or random walk if Pt = Pt-I = 0. While cr~ is 

not zero, the trend component is known as the local level with a drift or the local 

level, dependent upon whether Pt = Pt-l is different from zero. 

The seasonal component may be based on the dummy variable form, or the 

trigonometric formulation. Given that s refers to the number of seasonal 

frequencies, the seasonal dummy is given by: 

s-] 

Y1 = L -YI-j + OJt , 

j=] 

Moreover, the trigonometric seasonal formulation is: 

(3.5) 

OJ) ,-NID(O, a;' ). 
, ~ 

(3.6) 

where Aj = 2jK / s refers to the frequency in radians, Y;,t is constructed to 

estimate Yt . 

On the other hand, the stochastic cycle is specified as follows: 
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where Itc is the frequency in radians, in the range 0 $; Itc :<=:; 1( , p is a damping 

factor in the range 0 $; p:<=:; 1 and as in the trigonometric seasonal form (3.6), '1': I 

is constructed to generate 'l't. The period of the cycle is equal to 21( / Itc' 

All the disturbance terms of the structural components, and the irregular 

component, {""t, ~t , OJt , OJ j,t, Kt , 8/ } are independent of one another. The inclusion of 

the disturbance terms produces stochastic properties of the corresponding 

unobserved components. The q-ratio is the ratio of the standard deviation of each 

disturbance term to the standard deviation associated with the largest variance. The 

q-ratio corresponding to a particular component is zero when that component is 

deterministic or nonexistent. 

3.3. Data Description and Structural Time Series Analysis of Data 

The data from Germany, Hungary and Poland include money supply, price 

index and exchange rate series. The money supply series are month-end data, 

whereas the other series are monthly averages; I therefore fonow Abel et al. (1979) 

in applying the geometric averaging method to make the money supply series 

conform to the rest of the data. Also, all of the exchange rate series that are 

originally quoted as the number of US cents per unit of local currency are 
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transformed in terms of the values of domestic currency per US dollar. The German 

exchange rate series and all the data for Hungary and Poland are taken from Young 

(1925), while the German money supply and price index are collected from 

Tinbergen (1934). All series are transformed in logarithm. 

The statistical treatment of the univariate structural time series model (3.1) is 

based on the state space form. The values of the parameters and the unobserved 

components are estimated using the maximum likelihood (ML) method with the 

Kalman filter algorithms. Since the unobserved components are in general 

stochastic, they can only be assessed by examining their behaviours throughout the 

whole samples, not just at the end. The filtered and smoothed estimates of the 

components will then be plotted to provide a guide as to whether the model is best 

decomposed by the estimated components. The model can also be evaluated 

through goodness-of-fit measures and diagnostic statistics. 

For each country under study, the log level and the log difference of money 

supply, price index and exchange rate series, as well as the log level of real money 

balances in terms of both price and exchange rate series will be decomposed into 
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unobserved components for analysis. They are denoted by M, , 1t1." 1tz." 

MI, , L\1tJ.t, L\1t 2." M, - 1tJ.t and M, - 1t 2., respectively. 

3.3.1 Germany 

The German data are collected from January 1920 to December 1923. Money 

in circulation is employed to represent the money supply series, and the cost of 

living index is used as a price index. The exchange rate figures are transformed 

from US cents per German mark. 

Table 3.1 reports the empirical results and Figures 3.1 to 3.8 show the 

graphical components of the economic variables under study. From Table 3.1, all 

observed series do not contain any lagged dependent variables and irregular 

components, so that all of the '1'; and 8, are equal to zero. The trend component for 

the series of M" 1tJ., and 1t2•1 follows a second differencing specification. From 

the q-ratio and the seasonal test, both 1t1., and 1tv contain significant stochastic 

dummy seasonal components. Further, M, contains a fixed seasonal and 

1t1.t contains a nonzero stochastic cycle. 
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Furthermore, the trend component is a random walk with a fixed drift for the 

series of ~1tI,t' ~1t2,t' M t - 1t I,t and M t -1t2,t as well as a random walk for the 

series of ~t. The seasonals in M t , 1tI,t and 1t2,t remain in the structural 

components of ~1t1 t' A1t2,! M t - 1tJ,t and M t -1t2,t· In addition, the stochastic 

cycle contained in 1tI ,t is carried forward to A1t I,!. 

[Table 3.1 to be inserted here] 

From the figures of the structural components, the slopes of the trend for the 

level series, M t , 1tI,t and 1t2,t, as well as the trend for A1tI,!, A1t2,t M t - 1t 1.t and 

M t -1t2,t exhibit changes in moving direction toward the end of 1923. It signifies 

the possible regime shifts in data generation. 

[Figures 3. I to 3.8 to be inserted here] 

3,3.2. Hungary 

The Hungarian data sets starts from July 1921 to March 1925. The money 

supply series includes notes in circulation and deposits. The price index numbers 

from July 1921 through December 1923 represent retail prices based on 60 

commodities. From December 1923 through March 1925, the figures of the price 
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index represent wholesale prices based on 52 commodities. The exchange rate data 

are originally quoted as US cents per Hungarian crown. 

The empirical results of the structural time series models are presented in 

Table 3.2 with the components graphics plotted from Figures 3.9 to 3.16. All series 

under study do not contain any seasonal components. The trend for M, and 7t", is 

found to follow a second differencing specification, but given that the irregular 

component is not zero, the trend for 7t2,1 is known as a smooth trend specification. 

Moreover, there is one cyclical component found in M" 7t", and 7t2,1' The model 

for the series of M" M, - 7t", and M, - 7t2" include lagged values of the 

corresponding dependent variables. 

The trend follows a random walk for the series of 1lM" d7t1,t , and M, - 7t", . 

When the irregular components are nonzero, the trend models for the series of 

M, - 7t2" and d7t2,1 are known as the local level and the local level with a fixed 

slope respectively, dependent upon whether the fixed slope of the trend is existent 

or not. Also, the stochastic cycles are carried forward to the series of 1lM" d7t1,t 

and M, - 7t", from the series of M, and 7t"" but no cycle is found in the series of 
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[Table 3.2 to be inserted here] 

The figures of the structural components indicate that the slopes of the trend 

and the trend or the economic variables start to shift in the second half of 1923. 

They all display some evidence of regime-switching behaviour in the observed data 

series. 

[Figures 3.19 to 3.16 to be inserted here] 

3.3.3. Poland 

The Polish data are collected from January 1921 to March 1924. The money 

supply includes notes in circulation and the wholesale price index is chosen to 

represent the price level. The exchange rate series is transformed from US cents per 

Polish mark. 

The empirical results of the structural models are shown in Table 3.3. As in the 

case of Hungary, all observed series under study do not contain any seasonal 

components. Only the model for the series of M, and tllf, include corresponding 

lagged dependent variables. 
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The trend components for the senes of M t and x 2•t follow a second 

differencing specification but the trend for Xu is a smooth trend in which the 

irregular component exists. Moreover, x l •t and Xv contain a stochastic cycle, 

which however cannot be found in M t · 

[Table 3.3 to be inserted here] 

For the series of 1lM" L1xl.t , L1x 2,t, M, - XI" and M t - X2,t, the fixed slope 

of the trend cannot be found. Also, the irregular components exist for the series of 

L1x1,t and ~X2,t only. Hence, the trend model for the series of 1lM" M, -xu and 

M t - X 2 , follows a random walk but it follows a local level for the series of 

L1XJ,t and ~X2,t' Furthermore, the stochastic cycles remain in series of L1x l ,t , 

M, - XI,t and M, -X2,t but not in L1x2,t ' 

From the movements of the trend as well as the slope of trend for the time 

series variables under study shown in Figures 3.17 to 3,24, some evidence of 

structural changes is found in the data generation occurred in the late 1923. 

[Figures 3,17 to 3,24 to be inserted here] 
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3.4. Summary 

From the analysis of structural time series components, the cycles and 

seasonals are found in some data series. More importantly, the trend for the levels 

of money supply, price and exchange rate is composed of a fixed level with a 

stochastic slope. From the reduced form of the structural time series models 

(Harvey, 1989), the integration order of these level series is two; in other words, 

they contain double unit roots. It is consistent with Haldrup (1998) that the 

economic variables are likely to be 1(2) during hyperinflation. Also, the real money 

balances, the first-differenced price and exchange rate series have a stochastic trend 

with a fixed or zero slope, implying that these series contain a unit root. From the 

figures of the structural components, it indicates possible regime changes in data 

generation, resulting from monetary regime changes that will be further described 

in Chapter Five and Chapter Six. IS Such findings of the stochastic properties play 

an important role in the econometric methods adopted in subsequent chapters. 

IS 
Due to the possible existence of structural breaks and nonlinearity in the raw data series, I do not 

fOnnally conduct the writ root tests in this chapter. Nevertheless, I will conduct writ root tests in the 

residuals of the Cagan money demand functions using nonlinear cointegration methodologies in 

Chapter Five and Chapter Six. 
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Table 3.1 ML Estimation Results of the Structural Time Series Model for 

Germany 
Variables M, 1t I,' 1t 2 ,1 l:!M, L11t I ,1 L11t 2,t M, -1t I " 

Estimated standard deviation of disturbances [q-ratio] 

a,., 0.5004 0.0460 0.4112 0.1837 -- -- --
[1.0000] [0.0979] [0.8001 ] [1.0000] 

a, 0.5024 0.2895 0.4506 -- - --
[1.0000] [0.7189] [1.0000] 

--

air 0.4026 0.4703 - 0.1139 --
[1.0000] 

-- --
[ 1.0000J [0.6198] 

aO) 0.0711 0.2958 0.1557 0.5139 0.1328 --
[0.1767] [0.65641 

--
[0.3311] [1.0000] [0.7228] 

M( -1t 2 ,1 

0.2151 
[ 1.0000] 

--

--

0.2022 
[0.9401] 

Filtered estimates of final state vector at time T with the corresponding root mean square error (RMSE) in the 
brackets 

J.iT 33.2690* 23.186* 29.373* 2.6041 * 1.1880* 3.4429* 6.0249* 4.5411* 
(0.4544) (1.0809) (0.5543) (0.2694) (0.3342) (0.4157) (0.2683) (0.1974) 

PT 2.5691 * 1.7910* 3.5183* 0.0566 0.0377** 0.0861 -0.0731 ** -0.0691** 
(0.5701) (0.5297) (0.6051) (0.0789) (0.0158) (0.0659) (0.0301) (0.0343) 

CPT 4.0166* 1.5518 -0.8133 --- -- -- --
(2.7505) (2.2428) (0.4415) 

YJ.T 
-0.8713** 0.6487 -0.2587 -0.2419 -2.0990 -2.8041 * 0.8982** 0.3066 

* (2.6230) (0.5543) (0.2694) (2.2129) (0.4157) (0.4033) (0.1974) 
(0.4544) I 

Y2,T -0.8839** 3.4688 2.6207* -0.0318 0.4432 3.6239* -0.6341 -1.6454* ~ 
(0.4325) (2.6711) (0.4200) (0.2617) (2.2157) (0.3267) (0.4062) (0.1577) 

Y3,T -0.5708 4.2237 -0.8030*** 0.2899 1.2357 0.0011 -0.6560 0.6287* 
(0.4245) (2.7078) (0.4075) (0.2578) (2.2030) (0.3035) (0.4047) (0.1505) 

Y4,T -0.0511 4.0646 -0.6008 0.4926*** 1.2808 0.1735 -0.2270 -0.1109 
(0.4245) (2.7080) (0.4127) (0.2578) (2.2020) (0.3000) (0.4037) (0.1502) 

Y 5,T 0.6133 3.3656 -0.7189 0.6334** 2.2227 0.1296 -0.8710** -0.3126** 
(0.4325) (2.6712) (0.4228) (0.2617) (2.2121) (0.2994) (0.4064) (0.1503) 

Y6.T 
0.6925 1.5230 -0.8964** 0.0442 2.0706 -0.2761 -0.5816 0.0287 

(0.4544) (2.6257) _(0.4307) (0.2694) (2.2224) (0.2993) (0.4104) (0.1501) 

Y7,T 
0.6790 -0.7016 -0.6769 -0.0350 1.4104 -0.3992 -0.1708 0.2725*** 

(0.4557) (2.6248) (0.4309) (0.2773) (2.2268) (0.3001) (0.4124) (0.1507) 

YS.T 
0.5831 -2.7581 -0.2818 -0.1037 0.4452 -0.1219 0.0684 0.2427 

(0.4495) (2.6712) (0.4260) (0.2825) (2.2149) (0.3018) (0.4094) (0.1518) 

Y9,T 
0.4370 -4.1619 -0.1315 -0.1403 -0.7557 -0.3371 0.4284 0.4940* 

(0.4443) (2.7171) (0.4222) (0.2850) (2.1988) (0.3033) (0.4046) (0.1527) 

YIO.T 
0.1600 -4.4652 0.2009 -0.2576 -1.8780 -0.6201** 0.6170 0.3923** 

(0.4443) (2.7170) (0.4226) (0.2850) (2.1988) (0.3038) (0.4045) (0.1530) 

YII,T 
-0.2185 -3.4875 0.7738*** -0.3456 -2.1109 0.1295 0.5048 -0.1621 
(0.4495) (2.6713) (0.4270) (0.2825) (2.2151) (0.3031 ) (0.4093) (0.1526) 

Estimated parameters of cycle 
Variance 18.3227 8.0315 0.5105 -- -- -- --

p 0.9956 0.9861 0.9872 -- -- -- --
Period (yr.) -- 0.9604 -- -- 0.9684 -- 0.9218 

A, -- 0.5452 -- -- 0.5407 -- 0.5680 --
Seasonal test (at time T) 

%2(11) -- 21.5743** 421.345* I 34.9284* 514.924* 95.5476* 361.616* --
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Goodness-of-fit measures and diagnostic checking 
SE 0.4175 0.7133 0.8542 0.4168 0.6535 0.8706 0.3613 

R(l) 0.2022 0.l393 -0.0865 0.1710 0.0991 -0.1347 -0.0388 
R(6) -0.0756 -0.0790 -0.0099 -0.0797 -0.0456 -0.0134 -0.0793 
Q(4) 6.3655 3.8261 1.3000 6.6425 5.3202 1.4800 8.6160 
Q(7) 6.8320 4.6983 3.1197 7.2309 5.6424 3.2953 9.0970 

PEV 0.1743 0.5087 0.7297 0.1737 0.4271 0.7579 0.1305 

R2 0.8634 0.6813 0.5699 0.2581 0.4060 0.5412 0.3166 
d 

AlC -1.1281 0.1337 0.3515 -1.1314 -0.0412 0.3894 -1.2267 

BIC -0.5903 0.8370 0.9307 -0.5936 0.6621 0.9687 -0.5233 

MaxlnL 7.1769 -4.6230 -7.8919 7.8000 -2.4095 -7.8991 16.6318 

Notes: 

1. A cycle component is not persistent throughout the series; a t-value is therefore not 

appropriate. 

2. SE is the standard error of the residuals of the estimated equations. 

3. r(k) is the residual autocorrelation coefficient at lags (k). 

4. Q(k) is the Box-Ljung Q statistics with degrees of freedom = k. 

s. PEV is the prediction error variance. 

6. R~ is a modified coefficient of determination based on the first difference of the 

dependent variable. 

7. AlC and BIC refer to the Akaike information criterion and Bayes information criterion 

respectively. 

8. Max In L is the maximum log-likelihood function. 

9. *1**1*** Denotes the significance at the 1 %, 5%, and 10% level. 

10. All computations are produced using the STAMP package written by Koopman, 

et al. (2000). 
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-0.0414 
0.1283 
3.5528 
5.8950 
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Figure 3.1 Structural Time Series Components of the German Money Supply 

Level (Mt ) 
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Figure 3.2 Structural Time Series Components of the German Consumer Price 
Level ( 1tlt ) 
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Figure 3.3 Structural Time Series Components of the German Exchange Rate (7t 2t ) 
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Figure 3.4. Structural Time Series Components of the Money Supply Growth 

(1lM, ) for Germany 
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Figure 3.5 Structural Time Series Components of the Price Change (L\1t lt ) for 

Germany 
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Figure 3.6 Structural Time Series Components of the Exchange Rate Change 
(L\1tu) for Germany 
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Figure 3.7. Structural Time Series Components of the Real Money Balance in 

terms of Consumer Price (M t - 1t lt ) for Germany 
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Figure 3.8. Structural Time Series Components of the Real Money Balance in 

terms of Exchange Rate (M, -1t2t ) for Germany 
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Table 3.2 ML Estimation Results of the Structural Time Series Model For 
H ungary 

Variables M t 7t1•t 7t2.t llMt .17t].t .17t 2.t M t -7t].t M t -7t2•t 

Estimated standard deviation of disturbances [q-ratio] 
0.0111 0.0473 0.0761 0.0905 0.1420 

a" - - - [0.7274] [0.47011 [0.4713] [1.0000J 1[1.00001 

a, 
0.0150 0.0531 0.0393 - - - - -

[1.0000] [0.6997] 10.49321 
0.0132 0.0759 0.0796 0.1520 0.1006 - 0.0716 

a K] [0.8826] 11.0000] 11.00001 11.0000] [1.0000) [0.79171 
-

0.0109 - - - -a K2 - - - [0.7142] 
0.0667 - - 0.1615 - 0.0813 

all - - [0.83721 [10000] [0.57241 
Filtered estimates of final state vector at time T and the estimated coefficient of lagged dependent variable with the corresponding 

RMSE in the brackets 
5.5685· 14.571 • 6.5584· -0.0045 -0.0153 -0.0197 0.5336· 

PT (0.9141) (0.1138) (0.1476) (0.0209) (0.0737) (0 1007) (0.1604) 

PT 
0.0086 -0.0227 -0.0424 - -0.0057 

(0.0206) (0.0826) (0.0726) 
-

(00121 ) 
-

fPIT 
0.0025 -0.0049 0.0133 0.0005 -0.0313 0.0254 

(0.0178) (0.1138) (0.1379) _(0.02106) (0.0737) 
-

(0.0868) 

fP2T - - - 0.0101 -
(0.0201 ) 

- -

'P] 1.4445· - 0.7691· 0.5512· 
(0.0928) 

-
(0.1049) 

- -
(0.1249) 

'1'2 -0.7987· -
(0.0922) 

- - - - -

Estimated parameters of the first cycle [second cycle] 

Variance 0.0006 0.0200 0.0411 0.0012 0.0181 0.0130 -
[0.0012] 

P 0.8429 0.8438 0.9195 0.8979 0.6645 0.7783 -
[0.9513] 

Period (yr.) 0.4424 0.6942 0.8341 0.4674 0.5405 0.6661 -
[0.8786] 

Ac 1.1834 0.7542 0.6278 1.1202 0.9687 0.7861 
[0.5960] 

-

Goodness-of-fit measures and diagnostic checking 
SE 0.0321 0.1403 0.1767 0.0325 0.1382 0.1997 0.1322 

R(I) 0.0203 0.1292 -0.0437 0.1149 0.0300 0.0886 0.0746 

R(6) -0.0389 0.0606 0.0126 -0.0821 0.0500 -0.1706 0.0518 

Q(4) 4.5138 3.7516 4.4654 6.3933 2.8203 7.1317 5.2419 

Q(7) 6.7565 8.4173 6.2431 6.5268 5.6989 7.5821 8.3902 

PEV 0.0010 0.0197 0.0312 0.0011 0.0191 0.0399 0.0175 

R2 0.9191 0.3233 0.1630 0.6929 0.2383 0.2479 0.3192 
d 

AlC -6.5683 -3.7064 -3.1996 -6.4889 -3.7769 -3.0852 -3.8200 

BIC -6.2873 -3.5057 -2.9587 -6.1645 -3.6147 -2.9636 -3.6173 

Max InL 140.084 83.0573 72.6282 142.888 84.2527 63.6983 83.8088 

Notes: 
1. a ... ] and a ... 

2 
are the standard deviation of the disturbance terms of the first and the second 

cycle respectively. 
2. fPIT and fP2T are the final state of the first and the second cycle respectively. 
3. Since money supply level contains a stochastic trend component, the standard statistical 

inference of 'P] and 'P 2 is interpreted with care. 
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Figure 3.9 Structural Time Series Components of the Hungarian Money Supply 
Level (Mt ) 
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Figure 3. 10 Structural Time Series Components of the Hungarian Composite Price 
Level ( 1t1t ) 
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Figure 3. 11. Structural Time Series Components of the Hungarian Exchange Rate 
(1t 2, ) 
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Figure 3.12. Structural Time Series Components of the Money Supply Change 
(1lM, ) for Hungary 
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Figure 3.13. Structural Time Series Components of the Price Change (~1tII) for 
Hungary 
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Figure 3.14. Structural Time Series Components ofthe Exchange Rate Change (~1t2t) 
for Hungary 
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Figure 3.15. Structural Time Series Components of the Real Money Balance in 
terms of Composite Price (M t -1t lt ) for Hungary 
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Figu~e 3.16. Structural Time Series Components of the Real Money Balance in 
terms of Exchange Rate (M, -1t 2,) for Hungary 
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Table 3.3 ML Estimation Results of the Structural Time Series Model for 
Poland 

Variables M, 7tJ.t 7t2.t MI, ~7t1,t ~7t2.t M, -7tl,t 

Estimated standard deviation of disturbances [q-ratio] 

ey" -- 0.07877 0.0608 0.1068 0.1468 -- -- [0.4595] [1.0000] [1.0000J [0.4229] 

ey, 0.0788 0.0629 0.0617 -- -- --
[1.0000] [0.4925J . LO.32921 

--

ey", 0.1278 0.1875 0.0675 -- 0.0861 --
[1.0000] 

--
[1.0000] [0.4694] [0.5867] 

eYE 0.0219 0.1438 0.2324 --
[0.1712] 

-- --
[1.000Ql 

--
[l.OOOO] 

M, -7t2., 

0.1159 
[0.7036] 

--

01648 
[1.0000] 

--

Filtered estimates of final state vector at time T and the estimated coefficient of lagged dependent variable 
with the corresponding RMSE in the brackets 

Jlr 3.5694 19.385* 11.350* -0.2807** 0.4218* 0.2877** 0.2424 8.1719* 
(3.7453) (0.2447) (0.3109) (0.1360) (0.1122) (0.1406) (0.1538) (0.1899) 

fiT -0.2807*** 0.4572* 0.4357* 
(0.1571) {0.1l56) (0.1218) 

-- -- -- -- --

fPr -- -0.1282 0.0411 -0.3867 0.5860 0.5837 -- --(0.2191) (0.3109) (0.1127) (0.1538) (0.1899) 

\!'i 0.8362* -- 0.8362* -- -- -- -- --(0.1889) (0.1889) 
Estimated parameters of cycle 

Variance 0.1384 0.1528 0.0392 0.0905 0.1114 
P 0.9392 0.8774 0.9400 0.9581 0.8696 

Period (yr.) 0.9567 l.0921 0.9142 0.7999 0.9153 

..tc -- 0.5473 0.4794 0.5727 0.6546 0.5720 -- --
Goodness-of-fit measures and diagnostic checking 

SE 0.0755 0.2104 0.2689 0.0766 0.2150 0.2880 0.1994 0.2399 
R(l) 0.2588 -0.0226 -0.0386 0.2588 -0.0017 0.1144 0.1531 -0.0374 
R(6) -0.1492 -0.0100 0.0763 -0.1492 -0.0156 -0.0038 0.0433 0.0508 

Q(4) 4.4356 l.4354 4.8692 4.4356 l.9140 3.0416 4.3929 6.2058 
Q(7) 5.9300 2.6137 6.5065 5.9300 3.0594 6.6827 6.2526 8.1936 

PEV 0.0057 0.0443 0.0723 0.0059 0.0462 0.0829 0.0397 0.0576 

R2 0.8936 0.4586 0.2024 0.3819 0.2135 0.2010 0.2749 0.1781 
d 

AlC -5.0049 -2.8100 -2.3703 -5.0286 -2.8113 -2.3845 -3.0149 -2.6442 

BIC -4.8743 -2.5540 -2.1570 -4.9406 -2.5958 -2.2983 -2.8425 -2.4718 

MaxlnL 87.2775 55.8956 46.9873 87.2775 55.6872 45.3099 58.4529 51.9073 

See Notes to Table 3.1 and Table 3.2. 
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Figure 3.17. Structural Time Series Components of the Polish Money Supply Level 
(Mt ) 
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Figure 3.18. Structural Time Series Components of the Polish Wholesale Price Level 
( 1tu) 
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Figure 3.19. Structural Time Series Components of the Polish Exchange Rate (7t 2t ) 
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Figure 3.20. Structural Time Series Components of the Money Supply Growth 
( Mit ) for Poland 
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Figure 3.21. Structural Time Series Components of the Price Change (L\1t lt ) for 
Poland 

I-Trendl 
1922 

0.4 

0.2 

Figure 3.22. Structural Time Series Components of the Exchange Rate Change 
( L\1t2t ) for Poland 
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Figure 3.23. Structural Time Series Components of the Real Money Balance in 
terms of Wholesale Price (M t - 7t lt ) for Poland 

/- Log of real money b:tlance In terms ofprice Trend) 

1.5 I 1.0 

0.5 ~ 

o.o~-------------------~~~-==--:.-=--

1923 1924 

Figure 3.24. Structural Time Series Components of the Real Money Balance in 
terms of Exchange Rate (Mt -7t2t ) for Poland 
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CHAPTER FOUR ORTHOGONALITY TESTS AND BUBBLES16 

4.1 Introduction 

This chapter starts the empirical testing of the presence of both price and 

exchange rate bubbles during the three hyperinflations of Germany, Hungary and 

Poland. Many previous studies have used the Cagan model to detect bubbles during 

hyperinflation but most of them assume that the model they use is correctly specified. 

The presence of model misspecification may be consequently interpreted as evidence 

of bubbles. This chapter shows that it is possible to test model misspecification 

separately from the presence of bubbles. I have designed a set of orthogonality tests 

for conducting an empirical study of bubbles, which can be used to identify 

specification errors and explosive bubbles. The set of orthogonality tests is an indirect 

testing procedure that does not require specifying a particular form of bubble process. 

Any bubbles oot orthogonal to particular information sets will be detected. The 

problems of multiple bubble solutions io the framework of rational expectations 

illustrated in Chapter Two make indirect tests look more attractive. Moreover, based 

on the graphics of the structural time series components shown in Chapter Three, 

there are possible regime changes in data generation for the three countries under 

study. In order to avoid the problems of statistical inference caused by regime 

changes, the final few months of hyperinflations are all truncated in the present 

empirical work. The empirical results indicate the presence of misspecification in 

exact Cagan's hyperinflation model under rational expectations but do not support the 

evidence of price and exchange rate bubbles. The plan of this chapter is organized as 

16 This chapter extends the ideas and empirical results in Woo and Chan (2001) and Woo, et a/ (2003) 
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follows: Section 2 reviews the related literature with critical evaluation. Section 3 

discusses the procedures of orthogonality tests and the econometric methodology. 

Sample periods of data and empirical results are reported in Section 4. The final 

section concludes. 

4.2 Literature Review 

In the bubble-testing literature, many econometric methods have been 

developed to carry out the analysis. I take a brief review of some of them, especially 

those of currency bubble testing. 17 I mainly focus on the indirect tests here, which 

rely on testing for the formulated null hypothesis of bubbles or no bubbles without 

specifying a particular bubble process. 

One early attempt of indirect tests is the variance bounds or variance inequality 

test, which was first suggested by Shiller (1981), and LeRoy and Porter (1981) in 

order to detect whether the fundamental solution or the present value relation alone is 

valid to adequately characterize the actual asset prices. The variance bounds test is 

based upon the mathematical property that the conditional expectation of any random 

variable is less volatile than the variable itself. Hence, if the actual price ( 1t t ) is an 

unbiased forecast of the corresponding perfect foresight analogue (1t;) represented 

by the present discounted value of future underlying fundamentals up to the m
th 

period as m - 00, the variance of the perfect foresight price will constitute the upper 

bound for the variance of actual price such that Yare 1t;) ;;;; Yare 1tt )· Violation of the 

variance bounds implies the rejection of the fundamental solution. Since the violation 

17 Camerer (1989) documents the detailed survey of bubble testing. 
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is attributable to the presence of an unobserved component with large variance, which 

is usually considered as a bubble, rejection of the fundamental solution is equivalent 

to the rejection of the no bubble hypothesis. However, there are some alternative 

methodological problems that cause violation of the variance bounds test, even if the 

fundamental solution is not rejected. According to Flavin (1983), the sample variance 

of 7t will be estimated with downward bias when 7t, is positively autocorrelated and , 

the sample size is smaller than m periods. The sample variance of 7t; are however 

estimated with a greater downward bias because 7t; is more strongly autocorrelated 

than 1t" and the sample size must be smaller than m periods which are infinite under 

the construction of 7t; . Hence, in finite samples, the variance bounds estimated from 

sample variances may be reversed. Moreover, the population variances of 7t; and 

1t, do not exist when both the underlying fundamentals and 7t, follow an integrated 

process with infinite variance. Furthermore, if the sample's actual terminal price is 

used to construct a measurable counterpart to 1t; as suggested by Shiller (1981), the 

presence of bubbles will not cause violation of the variance bounds (Flood and 

Hodrick, 1986). 

West (l988b) derives another kind of variance inequality test to examine the 

presence of bubbles. The inequality states that the variance of the innovations (or 

forecast errors) to the expected present discounted value of fundamentals made with a 

limited information set is larger than that based on the full information set. 18 For H, 

to denote a limited information set, it IS noted that 

18 The West's (1988b) inequality on innovation variance is considered to be a direct implication of the 
LeRoy-Porter inequality (see Cuthbertson, 1996, chapter 6). 
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lead to violation of the inequality if the bubbles are positively correlated with 

fundamentals. Using West's (1988b) variance inequality test, West (1987b) examined 

whether the standard monetary models were consistent with the 1974-84 variability 

of the deutschemark exchange rate, and then provided evidence against speculative 

exchange rate bubbles. Instead of the variance of tt t and 7t;, the variance bound test 

of West (1988b) just requires estimating the variance of innovations, which are 

stationary and assumed to be serially uncorrelated. Thus, West's (1988b) variance 

bounds test does not appear to be subject to the small sample bias, the problem of 

nonstationarity and the problems of the proxy for 7t;, which are all found in the 

variance bounds of Shiller (1981) and LeRoy and Porter (1981). Nonetheless, all 

kinds of variance bounds tests involve a joint hypothesis of correct model 

specification and the absence of bubble solution. Violation of the variance bounds 

may be caused by several possible alternatives other than the presence of bubble 

solution, which include, for instance, the existence of time-varying discount rate, 

irrationality of expectations or omission of fundamentals in the present value relation 

under study. Then, the presence of model misspecification may be erroneously 

interpreted as evidence of bubbles. 19 

Moreover, it is expected that the bubble existence will cause some extremely 

large price increases as they explode, and even larger price drops when they collapse, 

so that the distribution of price changes is considered to have large kurtosis and 

negative skewness if stochastic bubbles exist. Okina (1985) found large kurtosis for 

19 Gilles and LeRoy (1991) and West (l988a) provide detailed surveys and critical evaluations of the 
variance bounds tests. 
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the short-term changes in exchange rates of the Canadian dollar, French franc, 

deutschemark, Japanese yen and British pound during 1973-1980, which was 

consistent with short-lived bubbles. Evans (1986) defined a bubble as a nonzero 

median in the distribution of the excess return to holding foreign currency. He found 

such a bubble in the British pound during 1981-1984. Furthermore, if bubbles grow 

for a while and then burst afterwards, the excess return to holding the assets or simply 

the asset price changes, will tend to be of the same sign while the bubble survives, and 

then of a reverse sign when the bubble collapses. The total number of runs for the 

existence of bubbles will be smaller than that for a random sequence of excess return 

on assets (or asset price changes). The results of run tests conducted by Okina (1985) 

were consistent with short-lived bubbles. Nevertheless, it is found that outliers and 

non-zero median may be equally present in the fundamental components. Also, run 

tests may not have high power against stochastic bubbles with alternate periods of 

explosion and crash. Hence, the above tests for bubble existence are still 

inconclusive. 

Another approach for bubble testing is West's (1987a) specification test, which 

examines whether two sets of parameter estimates differ significantly using the 

Hausman's (1978) specification tests. The first set includes implied values of 

parameters which are constructed using the Hansen and Sargent's (1980) formula 

from the estimates of a pair of equations: one is the equation of an equilibrium 

valuation model that admits a general solution20 and another is the ARIMA equation 

generating the fundamental process. The second set is derived by a distributed lag 

20 It is the arbitrage equation of stock price in West (1987a) that yields the discount rate, or the money 
demand equation in Casella (1989) that yields the elasticity of money demand with respect to expected 
inflation rate. 
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projection of asset price onto the underlying fundamental variables, which satisfies 

the fundamental solution only. The point estimated parameters from the second set 

would be asymptotically biased upwards when bubbles are present and result from an 

overreaction to news about fundamentals, leading to significance of the Hausman's 

(1978) test statistic. Apart from the correlation of the bubble with the fundamentals, 

the bias may also be created by correlation of the bubble innovation with innovations 

in any fundamental variables, or by the bubble's mean which may bias the estimate of 

the intercept term (Flood and Hodrick, 1990). Therefore, West's (1987a) approach 

can detect fundamental-dependent bubbles (Ikeda and Shibata, 1992 and 1995) or 

intrinsic bubbles (Froot and Obsteld, 1991). Using West's (1987a) approach, Meese 

(1986) found evidence of exchange rate bubbles for the deutschemark and British 

pound over the period 1973-82. Casella (1989) independently developed the same 

specification test as West (1987a), and examined the presence of price bubbles during 

the 1920's German hyperinflation. The evidence of bubbles was found under the 

restriction of exogenous money supply, whereas the presence of bubbles was rejected 

if money supply process was assumed to be endogenous. 

However, the distribution of the Hausman's (1978) test statistic may not be 

consistent. That is, in the presence of bubbles, the asymptotic probability ofrejecting 

the null hypothesis of no bubbles may not be unity, even if the two sets of parameter 

estimates will be asymptotically different with probability one (West, 1987a). More 

importantly, the actual size of the Hausman's (1978) test is likely to be larger than the 

designated nominal level in small samples, leading to an incorrect rejection of the no 

bubble hypothesis (Dezhbakhsh and Demirguc-Kunt, 1990). Furthermore, 

conventional econometric methods may lead to spurious empirical results (Phillips, 
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1986) while they were used in regressions with nonstationary variables. In addition, 

Casella (1989) imposed a random walk assumption on the money demand 

disturbances. The random walk assumption implies a misspecification of the Cagan 

model from the outset in sense of Engle and Granger (1987). If the assumption is 

incorrect, misleading conclusions of bubbles will be reached. 

Flood and Hodrick (1990) emphasized that the bubbles tests involve the joint 

hypothesis of correct model specification and no bubbles. They provided a detailed 

description of the model misspecification in West (l987a)?1 The presence of model 

misspecification may be interpreted as evidence of bubbles. Durlauf and Hooker 

(1994) and Hooker (2000) focus on this issue in the context of price bubbles during 

the hyperinflationary episodes, and suggest a testing procedure that relies upon the 

orthogonality properties of the flow and stock variables. Such approach was 

originally designed to identify different sources of the violations of the fundamental 

solution so as to avoid erroneous interpretation of model misspecification as evidence 

of bubbles. Similar to West's (1987a) approach, the Durlauf-Hooker approach only 

requires the bubbles under study to be correlated with information sets. Chen (1995 

and 1999) employed the Durlauf-Hooker approach to test for model misspecification 

and bubbles in the German, Canadian and the US stock markets from 1970 to 1993 

and in the Taiwan's foreign exchange market from 1987 to 1995 respectively. The 

results supported the evidence of model misspecification but rejected the presence of 

bubbles in all cases. Woo, Chan and Lee (2001) employed this approach to test for 

21 Similarly, Flood, Hodrick and Kaplan (1986) found that the Euler equation of stock price and 
dividend forecasting equation employed in West (1987a) for stock market bubble testing were 
seriously misspecified, leading to the false evidence of price bubbles. 
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price bubbles in the Hong Kong residential property markets and found the evidence 

of bubbles in property market before 1997. 

Despite the favourable ideas of the Durlauf-Hooker approach for detecting 

bubbles, there are several drawbacks of the practical testing procedures that warrant 

my attention. First, the works ofDurlaufand Hooker (1994) and Hooker (2000) make 

restrictive parametric process assumptions on the unobservable money demand 

disturbance of the Cagan model. They impose zero, random walk and AR( I) 

assumptions on the money demand disturbance. This is undesirable because the 

assumptions about the nature of the disturbance term may be made erroneously. More 

seriously, specification errors may be caused by or enlarged by misspecification of 

the generating process for the unobserved demand disturbance. Second, for the case 

where both the flow and stock orthogonality conditions are rejected, it implies that 

model misspecification is likely to be present but it is not certain whether bubbles 

exist. As suggested by Durlauf and Hooker (1994) and Chen (1995 and 1999), unit 

root tests are applied to the flow and stock variables for further analysis. 22 Ironically, 

Durlauf and Hooker (1994) and Chen (1995) have ever critically evaluated the use of 

unit root econometric methods in bubble testing. In fact, the Durlauf-Hooker 

approach fails to determine whether the total model noise is caused by the existence 

of a bubble or model misspecification or both when the two orthogonality conditions 

are rejected, although the initiative of the Durlauf-Hooker approach is to separate 

tests of model specification from tests for the presence of bubbles. Third, the 

econometric analysis in literature was based on conventional regression methods 

22 The unit root methodologies for bubble testing will be discussed in Chapter Five and Chapter Six. 
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developed for analyzing stationary variables. It therefore cannot yield valid 

inferential statistics in regression models with nonstationary variables. 

In view of the above drawbacks, my empirical work of bubble testing in this 

chapter differs from that of the conventional Durlauf-Hooker approach in the 

following aspects. In the first place, in contrast to Durlauf and Hooker (1994) and 

Hooker (2000), I have decided not to impose any restrictive and arbitrary 

assumptions on the parametric process of the money demand disturbance of the 

Cagan model on the grounds that these assumptions may not be made correctly. 

Instead, I propose to use the exact version of the Cagan model for conducting our 

analysis. The advantage of using the exact Cagan model is that any deviations from 

the model, including the nonzero demand disturbance of any parametric process, will 

be captured by a model misspecification term?3 It, therefore, obviates the need to 

impose any arbitrary and restrictive assumptions on the unobservable demand 

disturbance. 24 Secondly, in the Durlauf-Hooker framework, the rejection of both the 

flow and stock orthogonality conditions fails to test for the evidence of bubbles, 

though it implies that model misspecification is likely to occur. I therefore suggest a 

testing methodology that is revised from the original Durlauf-Hooker approach with 

an aim to successfully detect the presence of bubbles when evidence of specification 

error is found. Thirdly, I adopt the fully modified (FM) econometric techniques to 

allow for nonstationary components of estimators. The purpose of using the FM 

methods is to make semi parametric correction for the endogeneity and serial 

23 Cagan model is a stochastic model so that a fundamental disturbance term is included in the model 
Hence, model misspecification refers to the omission of the disturbance term in the exact Cagan model 
Misspecification term, disturbance term and random error are the common terminologies and can be 
used interchangeably. 
24 The assumption of zero disturbance term in the Cagan money demand model is then less arbitrary 
than the assumption made by Durlauf and Hooker (1994). 
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correlation bias, caused by nonstationarity of variables in the limit distribution of the 

FM estimators (Phillips and Hansen, 1990)25 On the other hand, the FM inferential 

statistics are employed for hypothesis testing. Since the sample sizes for all three 

hyperinflation episodes under study are not large, I use finite-sample rather than 

asymptotic critical values, generated from the Monte Carlo simulations for evaluating 

our empirical results. Finally, my empirical study detects the presence of price and 

exchange rate bubbles rather than price bubbles only. 

4.3 Procedures of Orthogonality Test and Econometric Methodology 

The models under study in this chapter are the exact version of the stochastic 

Cagan models (2.1) and (2.2) specified in Chapter Two. The linear form ofthe exact 

Cagan models under rational expectations for 7t1,t and 7t 2,t are shown as follows: 

(4.1) 

(4.2) 

Re-arranging Esq.(4, 1) and (4.2) in terms of 7t i,t (j = 1,2) gives us the following 

linear difference equations: 

(J.. M ~. 
1(. =_J ___ t_+_J_E (7t. ). 

J,t ~j-l ~j-l ~j-l t J,t+I' 
j = 1,2. (4.3) 

Since Eq.(4.3) is applicable to both price and exchange rate bubbles, we are able 

to eliminate the subscript} in subsequent equations in order to make the presentation 

25 A d' . 
ppen IX ~.1 provides a simulation study to compare the sampling performance of several FM 

estimators III a finite sample. 
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neater. By recursively substituting forward for E t (7t t + l + i ) and using the law of 

iterated expectations, I obtain: 

. )i+1 I'" f3' . f3 
1tt = -a+-L(-) Et(Mt+i)+hm(~ Et(1t t+ l + j ) 

1-(3 i=O f3 -1 1-)'" ,..,-1 
(4.4). 

Imposing the transversality condition, ~im(!-Ji+1 Et (1tt+I+J = 0, yields the 
,->'" 1-'-1 

fundamental solution, 7t[, in the following form: 

1 "'(f3)i 1tf =-a+-~ - E (M .). 
t 1 - p to- f3 - 1 t t+, 

(4.5) 

Eq.(4.5) shows that the fundamental solution is determined by an infinite sum of 

current and expected levels of money supply. 

If the transversality condition is violated, then 1t{ in Eq. (4.5) is only a 

particular solution. The homogenous or bubble solution, B
t

, satisfies the 

submartingale property of Eq. (2 .13) in Chapter Two: 

(4.6) 

However, it is reasonable to expect that exact relationships do not generally hold 

during hyperinflation. This is partly because some important fundamental variables, 

such as income and real interest rate, have been omitted from the exact Cagan models 

given in (4.1) and (4.2) and partly because measurement errors, expectations errors 
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and deviations from the instantaneous PPP may occur Hence, it is useful to add a 

misspecification term, St, to the general solution, 1[f, so that 7t( is decomposed into 

the following unobserved components: 

7t t == 7t: + St = 1t{ + B t + St· (47) 

The misspecification term, St, represents that component of 1[, which cannot 

be attributed to the exact Cagan models represented by Eqs.(4.1) and (4.2). The sum 

of B
t 

and St is defined as the total model noise. 

The works of Durlauf and Hooker (1994) and Hooker (2000) employ flow and 

stock variables to help detect the presence of model noise. To understand how these 

variables are constructed, let me first introduce the perfect foresight solution, 1t; , 

which is defined as: 

• 1 '" ( 13 )i 
1[ =-a,+-- --

t 1-13 ~ /3 _ 1 M t +i · (4.8) 

Since E(7t; lOt) = 7t{ , the relationship between the perfect foresight and 

fundamental solutions_can be expressed as: 

• - f V 7tt -1t t + t' (4.9) 

where Vt denotes the rational expectations forecast errOT. By definition, V
t 

is 

orthogonal to 'Qt' Substituting VI into Eq. (4.7) obtains: 
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7t1 - 7t; = -VI + BI + SI . (4.10) 

The implementation of the flow and stock tests requires the generation of the 

flow and stock variables. By applying the forward quasi-difference operator, 

<I>=-(l __ J3_ D l) to both sides ofEq. (4.10), I obtain the flow variable, RId as 
J3 -1 ' 

follows: 

(4.11) 

where rot+l denotes a bubble innovation in the dynamic process of Bt+l in Eq.(4.6), 

which implies Et (ro t+l) = O. The stock variable, on the other hand, is simply equal to 

7t1 -ref . The Durlauf-Hooker flow and stock tests are implemented by 

projecting Rt+l and reI -ref, respectively, onto time-t information sets. When 

applying these two tests, there are three possible outcomes. Firstly, if there is no 

bubble and the model is correctly specified, the correlations of Rand 7t -ref 1+1 I I 

with 01 will be statistically insignificant. Secondly, if a bubble is present and the 

model is correctly specified, the ret -ref projection will be nonzero and the Rt+l 

projection will be zero. Finally, if specification error is present, both the flow and 

stock projections will be nonzero irrespective of whether a bubble exists or not. In 

this situation, it is no longer possible to use the flow and stock tests to extract bubble 

noise. 26 To solve this problem, I design a testing methodology to test for specification 

26 Woo, Chan and Lee (2001) used an alternative procedure to extract the bubble noise even when 
misspecification exists, and the results supported the evidence of model misspecification and price 
bubbles in the Hong Kong property markets during 1980s and 1990s. 
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errors and bubbles, which is revised from the original Durlauf-Hooker framework in 

such a way that the presence of bubbles can be detected in a more rigorous way, 

especially when misspecification is found in the model. 

My procedure begins with the analysis of the flow variable, Rt+ 1 . As shown in 

P Eq. (4.11), Rt+l contains three elements; two of which, cj>(- Vt) and --O)t+1 , 
13-1 

involve time t+ 1 white noises. This implies that if St or $(St) is equal to zero, Rt+1 

will be a white noise process because it is constituted merely of two white noise 

components, which are orthogonal to 0t· On the other hand, if cj>(St) is nonzero, 

Rt+l will not be a white noise and it can be represented by an ARIMA (p, d, q) 

structure as follows: 27 

(4.12) 

noise. Since Rt+1 and cj>(St) share the same dynamic process, I can examine the 

model misspecification by investigating the ARIMA process of Rt+I; notice that 

since 8(L)1lt+l is an MA(q) process, 'J'(L)/ld (Rt+1 ) is orthogonal to 0t_q provided 

that the values ofp, d and q are specified correctly. 

27 For instance, if the nonzero S t is a white noise; then cj>( S t ) follows an MA (1) process and so is 

Rt+I' 
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Taking the dth difference of ( 1t t - 1t;) in Eq. (4.7) and applying the 

autoregressive operator '¥(L) to the resulting equation give 

(413) 

Sincel-~-I< 1 and E[<I>(~St)lnt] = E[~d(Rt+I)lnt], applying <1>-1 to both 
~ -1 

sides ofEq.(4.13) yields, in the limit, 

(4.14) 

It may be seen from Eq. (4.14)thatEt['¥(L)~d St] is orthogonal to 0t_q' Hence, 

one can infer from Eq.(4.13) that, under the null hypothesis of no bubble, 

qJ(L)~d(1tt -1t{) is orthogonal to 0t_q' This implies that if the projection of 

'¥(L)~d (1t t -1t;) onto Ot_q is zero, I can reject the existence of a bubble. Clearly, 

even if the total model noise is nonzero, it is still possible for us to check if a bubble 

exists in the data. 

The differences between the original Durlauf-Hooker approach and my 

approach can be summarized in Table 4.1 and Table 4.2. Moreover, the practical 

testing procedures of my orthogonality tests are shown in Fig. 4 .1. 

[Table 4.1 and 4.2 to be inserted here] 

[Figure 4. 1 to be inserted here] 
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From Figure 4.1, my testing procedures involve several major steps. The first 

step is to estimate the values of the flow variable, RH1 . By substituting Eq. (4.8) into 

Eq. (4.11), I can alternatively express Rt+1 as: 

(4.15) 

Using estimates of a and 13, I can construct Rt +1 from the residuals of Eq. 

(4.15). To estimate Eq. (4.15), I propose to employ the FM version of the generalized 

method of moment (GMM) (Kitamura and Phillips, 1997) with time-t information 

sets used as instrumental variables. After obtaining the values of Rt+1 ' I can 

investigate the dynamic process of the specification errors by examining the ARIMA 

(p, d, q) structures of Rt+l . If Rt+l is white noise, i. e., p = d = q = 0, this implies that 

<!I(St) or St is unlikely to exist. In this situation, I can proceed directly to extract the 

bubble noise. However, if the process of Rt+l is not white noise, nonzero 

specification error, S t , is likely to exist. This implies that the orthogonality condition 

of the stationary components of the instruments and R.+l may be violated and 

consequently, the estimation of Eq.(4.1S) may not be consistent. In view of this, I 

propose to obtain the consistent estimators of the Cagan model. This can be achieved 

by applying the operator '¥(L )~d to both sides of Eq. (4.15), which allows us to 

obtain: 

d a 13-1 d 13-1 d 
'¥(L)~ (Mt+I-1tt+1 -Mft+l)='¥(L)-+-'¥(L)~ (Mt-7tt)--'¥(L)~ Rt+1 

13 13 ~ 
(4.16) 
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With time t-q information sets used as instruments, the estimated values of 

'¥(L).1d (Rt+l) in Eq. (4.16) should be orthogonal to Otq. This orthogonality 

property implies that the FM-GMM estimators for a and f3 would have a limit 

theory that is normal for the 1(0) components with ~T consistency and mixed normal 

for the 1(1) components with T consistency, where T stands for the number of usable 

observations. The properties of asymptotic normality and consistency allow the 

derivation of the FM-GMM t-ratio statistics to conduct hypotheses testing of the 

parameters in Eq. (4.16). The orthogonality of 'P(L)Ad (Rt +1) can be examined by the 

FM-GMM instrument validity test statistics (FM-GMM IV) or equivalently by 

projecting 'P(L)A
d (Rt +1 ) onto time t-q information sets via the FM-OLS method 

(Phillips, 1995a). The FM-OLS Wald statistics, WR, can be used to test for zero 

coefficients in the projections. If the projections are statistically insignificant, this 

implies that the values of 'P(L)Ad (Rl+l) and 0t_q are uncorrelated. 

To carry out the analysis of bubble testing in the final step, I need to generate the 

stock variable, ret -ref, which is equivalent to [(Mt -ref) - (Mt - ret)]. In contrast 

to the method of Shiller (1981) adopted by Durlauf and Hooker (1994) and Hooker 

(2000) to estimate 1t;, I employ the Hansen and Sargent's (1980) formula to 

approximate the value of ( M t -ref )?8 The value of ( M t -ref) is estimated from the 

following equation using the Hansen and Sargent's (1980) formula: 

28 Shiller's (1981) method requires the imposition of truncation and terminal values on the infinite sum 
to estimate perfect foresight price. It then implies that the closer an agent gets to the terminal value, the 
less forward-looking he is. Also, as pointed out by Flood and Rodrick (1986), if the terminal value in 
the Shiller approximation contains a bubble, it will be exactly cancelled out in the construction of the 
perfect foresight price and the stock variable will never reveal the bubble. Hence, I choose to employ 
Hansen and Sargent's (1980) formula to estimate fundamental price. 
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~-1 1 

(Mt -7t[) = a - C~=aiMlt-i + Lbi (Mt-i -7tH )] ( 4.17) 
i=O 

where the coefficients a
i 

and bi in Eq. (4.11) are derivable from the consistent 

FM-GMM estimator of ~ as well as the parameters C i, /;, g i and hi of the 

following equations: 29 

~ K 

Mit =J..l+ :LciAM/-i + :LJ;(M/-i -7tH ), (4.1Sa) 
i~ i=1 

1 ~-1 

(Mt -7tt )=l1+ :Lgi(Mt - i -7tt _;) + 'L hiL1Mt-i' (4.1Sb) 
i~ i=O 

Eq.(4.1Sa) is a money growth forecasting equation and Eq.(4.1Sb) describes the 

autoregressive representation of real money balance in terms of lagged real money 

balance and money growth rates. 30 

As explained previously, I can check whether a bubble exists by projecting 

'J'(L)6.d [(Mt -7t{)-(Mt -1t t )] onto time t-q information sets. I employ the 

FM-OLS method to conduct the projections with the FM-Wald statistics, W'I!' being 

used for hypothesis testing. If the null hypothesis is rejected, evidence of a bubble is 

found. If not, the existence of a bubble is ruled out. 

29 The estimates of fundamental real money balance may contain approximation errors when only a 
subset of full information is used to construct the fundamental variable. The approximation errors are 
considered as a kind of specification errors. 
30 Chen (1995) describes the cross equation restrictions of (4.18a) and (4.18b) in greater detail. 
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4.4 Estimation Periods and Empirical Results 

One issue that arises in studies of hyperinflation is the choice of estimation 

sample, given that the European hyperinflations ended with a monetary refonn. The 

possible regime changes in data generation caused by a monetary refonn during the 

final months of the hyperinflations may result in coefficient instability and statistical 

problems of inference. The common practice in literature is to truncate the final few 

observations of the data. Hence, in the present study, the estimates and tests are 

conducted on the pre-refonn samples (up to the months when the expectations of 

monetary reform became significant). Then, the German data used for estimation 

cover the periods from January 1920 up to June 1923, after which expectation of a 

monetary reform began nonnegligible (Flood and Garber, 1980b). For Hungary, the 

data sets include the periods from July 1921 to February 1924 with March 1924 

identified as the reform date. The Polish data cover the period between January 1921 

and December 1923 with the reform date taken as January 1924. The dates of 

monetary reforms are quoted from Sargent (1982). 

4.4. J Price bubbles 

The results from the estimation of 0.1 and ~I as well as R1,t+1 in Eq. (4.15) are 

reported in Table 4.3. The time t information sets used as instruments consist of 

current and lagged ~ M t and ~ 1t1.t • As shown by the Phillips-Perron (1988) unit root 

tests, the values of R1,t+1 are likely to be stationary, i.e., d == 0, for all the countries 

under study. In addition, the FM-GMM instrument validity (FM-GMM IV) test 

statistics indicate that the null hypotheses of the overidentifying restrictions are all 

90 



rejected, signifying the possible correlation of R1,t+1 and the stationary components 

of instruments, i.e., time-t information sets. Therefore, the parameters reported in 

Table 4.3 are not estimated consistently. This may be attributed to the presence of 

non-zero specification errors in the Cagan model (4.1). 

[Table 4.3 to be inserted here] 

Since the values of R1,1+l are possibly correlated with the stationary components 

of the time t information sets, it is necessary to examine the ARMA (p. q) structures 

for R
1
,t+l' which are reported in Table 4.4. For Germany, and Poland, the dynamic 

processes of R1,1+l with respect to all information sets are best represented by the 

ARMA (0,1) and ARMA (0,4) models, respectively. For Hungary, the ARMA (0,2) 

model fits the time series of R1,t+l best, except in two cases where the ARMA (1,2) 

model is preferable. This implies that nonzero misspecification is likely to occur in 

the exact Cagan model (4.1) for all the three countries. This corroborates results 

reported by Engsted (1993) and Taylor (1991) who rejected the exact rational 

expectations Cagan model and found strong evidence for the presence of stationary 

specification errors. However, our result contradicts the random walk assumption on 

money demand disturbances made by, for example, Flood and Garber (1980b), 

Sargent and Wallace (1973), Sargent (1977), Salemi and Sargent (1979) as well as 

Casella (1989). It also contradicts the findings of Goodfriend (1982), which 

supported the exact rational expectations Cagan model for the same European 

countries as are examined here. Goodfriend's (1982) results were based upon the 

absence of serial correlation from the residuals of the Cagan model, but the 

possibility of an MA process in the residuals was ignored. 
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[Table 4.4 to be inserted here] 

Since nonzero specification errors are found for all three countries, I proceed to 

step two in order to consistently estimate Eq.( 4.16), using time t-q information sets as 

instruments. The empirical results of Eq. (4.16) are presented in Table 4.5. The 

consistent estimation allows us to derive the FM-GMM t-ratio statistics for testing the 

null hypotheses that ~ = 0 and (131-1):<:; I in Eq. (4.16), The t-ratio statistics show 
PI 131 

that 131 's are negative for all countries and aI's are nonzero in most cases. 

[Table 4.5 to be inserted here] 

The requirement for consistency relies upon the assumption that the valid 

instruments have been chosen in such a way that the estimated values 

of\{J (L) RI,'+I are orthogonal to 0 ,_" From the FM -GMM IV statistics reported in 

Table 4.5, the null hypothesis of over-identifying restrictions cannot be rejected. 

However, as pointed out by Kitamura and Phillips (1997), the power properties of the 

FM-GMM IV statistics in finite samples are not fully known. Equivalently, an 

alternative way to confinn the evidence of orthogonality is to project \{J(L) RI.t+l 

onto 0 with the FM-OLS Wald statistics, WR, being used to test for zero 1-, ' 

projections under the null. As the WR statistics in Table 4.6 show, I cannot reject the 

null of zero projections for all three countries. Therefore, the estimations ofEq. (4.16) 

are consistent. Based on these findings, I can proceed to the final step, which projects 

the values of\{J(L) (1tl,t-1t{t) onto 0t_,' From the FM-OLS Wald statistics, W'f" 

reported in Table 4.6, the null hypothesis of zero coefficients in the projections 

cannot be rejected. I therefore conclude that evidence of price bubbles is not found in 
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the data for Gennany, Hungary and Poland. These no-bubble results concur with 

those ofEngsted (1993, 1994). Hooker (2000) provided mixing evidence of flow and 

stock tests in exact case, AR(l) case and random walk case together. Hooker (2003) 

concluded that priors over the model cases could affect the interpretation of the 

results, and he was more inclined to place more weight on the random walk case and 

as contrary to the critical review from Engsted (2003), to view exact case results as 

reflecting type II errors. In my opinion, such arguments mainly arise from the 

puzzling evidence of flow and stock tests, produced by the Durlauf-Hooker testing 

procedure. 

[Table 4.6 to be inserted here] 

4.4.2 Exchange rate bubbles 

The testing procedures in exchange rate bubbles testing are exactly the same as 

those for price bubbles. By estimating the values of (12 and ~2, I construct R 2,t+1 in Eq. 

(4.15) using time-t infonnation sets as instruments. The instruments consist of current 

and lagged tlM, and tl1t 2.,· In Table 4.7, the Phillips unit root t statistics show that 

the values of R
2

,t+1 for all countries are stationary, i.e., d = O. Also, the hypotheses of 

the overidentifying restrictions are rejected for all three countries and the estimations 

of (12 and ~2 in Eq. (4.15) are therefore unlikely to be consistent. This indicates that 

specification errors in the Cagan model (4.2) may be non-zero. 

[Table 4.7 to be inserted here] 

As reported in Table 4.8, the parameters of the ARMA model for R 2,I+1 show 
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that the time series of R2,t+lare best represented by ARMA (0,1), ARMA (0,2) and 

ARMA (0,4) for Germany, Hungary and Poland respectively. In other words, nonzero 

stationary specification errors are contained in R 2,t+l' The results are different from 

Engsted (1996), which supported the exact model for Germany. 

[Table 4.8 to be inserted here] 

Since nonzero specification errors are found in the data for all three countries, it 

is necessary to initiate step two in order to obtain consistent estimates of U2 and P2. To 

do that, I estimate Eq.(4.16) with Qt-q used as instruments, where q is set equal to 1,2 

and 4 for Germany, Hungary, and Poland respectively. The FM-GMM t-ratio 

statistics show that, for all three countries studied, the null hypothesis of~2 ~ 0 can be 

generally rejected in favor of negative alternatives and the null hypothesis of U2 = 0 

cannot be rejected in some cases. 

[Table 4.9 to be inserted here] 

To check if the parameters in Eq.(4.16) for all four countries are consistently 

estimated, I rely on two types of statistics. The first are FM-GMM IV statistics. As 

reported in Table 4.9, I cannot reject the overidentifying restrictions. The second are 

FM-OLS Wald statistics, W R. As shown in Table 4.10, I cannot reject the zero 

projections of \f'(L) R2,t+l onto Qt-q' Hence, both of these test statistics indicate that 

the parameters in Table 4.9 are consistently estimated. 

To check whether a bubble exists, I project the estimated values of 

\f'(L)( 7t 2t -7tL) onto Qt-q' The FM-OLS Wald statistics, W'l" reported in Table 4.10, 
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cannot reject the null hypothesis of no bubble. This leads us to conclude that evidence 

for exchange rate bubbles cannot be found for the four countries studied. 

[Table 4.10 to be inserted here] 

4.5 Concluding Remarks 

In this chapter, I have proposed a testing procedure, which extends the original 

Durlauf-Hooker framework for detecting the presence of specification errors, and 

both price and exchange rate bubbles during the inter-war European hyperinflations 

ofGennany, Hungary and Poland. I rely upon the FM-GMM instrument validity test 

statistics and the ARIMA structures of the flow variables to detect the presence of 

specification errors; stock variables can then be transformed in such a way that I can 

differentiate between the presence of bubbles and model misspecification. My 

empirical results show that evidence of nonzero stationary specification errors in the 

exact Cagan models have been found, but that neither exchange rate nor price bubbles 

are evident in the data ofthe countries under study. The results imply that the control 

of hyperinflation only requires the control of the fundamental process. The dynamics 

of price and exchange rate might not be driven by the self-fulfilling expectations for 

the three inter-war European hyperinflations over the pre-reform samples. 

The monetary reforms that occurred in the last few months of hyperinflations 

might be the main reason for the possible nonlinear behaviours of time series, as 

shown from the graphics of structural components in Chapter Three. The distribution 

theory of the FM inferential statistics under the nonlinear process is however 

unknown. The evidence for the absence of bubbles is therefore limited to the 
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pre-refonn observations. In subsequent chapters, I attempt several recent advances in 

econometric techniques to study bubbles over the extended observations during 

which monetary reforms were expected and even implemented, so that I can compare 

the evidence for the existence of bubbles over different samples. 
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Table 4 1 Durlauf and Hooker's flow and stock tests . 
Flow test 

(Checks whether R'+I ..L Qt-q ) 

Orthogonal Not orthogonal 

Orthogonal No bubble and no Not applicable 
specification error. 

Stock test 
(Checks whether Not orthogonal Bubbles exist and no Specification error 

1t, -1t{ ..L n t•q ) 
specification error. exists; uncertain 

about whether 
bubbles exist. 

Table 4.2 The orthoeonality tests of model misspecification and bubbles. 

Misspecification test 

(Checks whether R'+I is white noise or 

represented by an ARIMA (p, d, q) process) 

White noise ARIMA process 

Orthogonal No specification error; no Specification error 
Bubble test bubble. exists; no bubble. 

(Checks whether 
'l'(L)~d (1t, -1t; ) Not orthogonal No specification error; Specification error 

bubbles exist. exists; bubbles exist. 
..Ln t•q ) 
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Figure 4.1 The Procedures of the Orthogonality Test 

Step 1 
Use the FM-GMM to 

construct R'+!I 

Step 2 
Examine the ARIMA 
structure (p, d, q) of R,+!. 

R,+! is not white noise. 

Specification error exists, 
which implies that the GMM 
parameters of Eq. (15) are not 
consistently estimated. 

Step 3 
Construct qt(L)tf (R,+!) 

using consistently estimated 
parameters, and test the 
hypothesis, H~ , that 

qt(L)ild (RI+!) is orthogonal 

to Q,-o 

RejectH~ I \ notreject H~ 
The ARIMA The ARIMA 
structure of 

R,+! is not 
specified 
correctly. 

structure of 

R,+! is 
specified 
correctly. 

R,+! is white noise. 

Specification error does not 
exist and the GMM parameters 
of Eq. (15) are consistently 
estimated. 

Step 4 
Generate the variable 
'f'(L)ild (7t, -7t;) and then 

test the hypothesis, H ~, that 

\fI(L)ild (7t, -7t;) is 

orthogonal to n,_q. 

Bubble Bubble 
exists does 

exist 
not 
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Table 4.3. Regression results of the Eq. (4.15): 

Infonnation set UI 131 FM-GMMIV Phillips t (T) Phillips t (T-) 

Gennany 

0,,0'_1 9.3577 -3.4168 13.8468** -4.3746** -4.4592** 

0,,···,°'-2 8.8299 -2.0035 21.1945** -4.0599** -4.3837** 

0,,···,°'_3 8.9580 -2.8549 98.0218* -4.3261 ** -4.4827** 

°1'···,°'_4 8.8513 -2.6081 195.5892* -4.2813** -4.4802** 

0,,···,°'_5 9.1702 -4.0330 99.8418* -4.3820** -4.4170** 

0,,···,°'_6 9.1871 -3.8724 105.8213** -4.3828** -4.4285** 

Hungary 
O,,0t-] 1.0238 -3.1244 23.0409* -4.3910** -4.3972** 

0" ... ,°'-2 1.61172 -4.6958 93.5012* -4.2998** -4.3044*** 

0" ... ,0'-3 1.5087 -5.1365 29.8987** -4.2638** -4.2678*** 

0" .. ·,°'-4 1.5744 -5.2658 50.2751 ** -4.2686** -4.2726*** 

0" ... ,°'_5 1.4569 -4.5001 158.8919* -4.3113** 

0" .. ·,°'-6 1.3913 -3.9659 140.4584* -4.3437** 

Poland 

0,,···,°'-1 1.5141 -2.7767 8.3806 -4.6156* 

0" .. ·,°'-2 1.9062 -8.0407 34.1663* -4.5614* 

0" .. ·,°'_3 1.8195 -4.2307 35.5213** -4.6549* 

0,,· .. ,°'-4 1.5976 -3.6010 86.9279* -4.6572* 

0" .. ·,°'_5 1.8037 -4.4056 473.4988* -4.6520* 

0,,···,°'_6 1.7964 -4.0199 608.1891* -4.6573* 

Notes. 
(1) The number of usable observations for Germany, Hungary and Poland are 32, 30 and 28 

respectively. 
(2) For Germany, the 5% simulated critical values ofFM-GMM IV statistics are 10.4536,20.0925, 

27.4595, 39.7697, 55.6095, and 77.2497 with degrees of freedom = 2, 4, 6, 8, 10 and 12, 
respectively, while the corresponding 1% critical values are 15.8314, 29.5017, 38.3168, 
55.8724,77.5442 and 110.3933. 

(3) For Hungary, the 5% simulated critical values ofFM-GMM IV statistics are 11.1404,21.4183, 
28.9268,42.6479,60.1887 and 86.8796 with degrees of freedom = 2, 4, 6, 8, 10 and 12, 
respectively, while the corresponding 1% simulated critical values 16.8410,31.8612,41.6750, 
61.0027,88.6059 and 131.2547. 

(4) For Poland, the 5% simulated critical values ofFM-GMM IV statistics are 11.7754,23.0888, 
31.7244,47.1863,69.0410 and 102.2449 with degrees of freedom = 2, 4, 6, 8, 10 and 12, 
respectively, while the corresponding 1% critical values of FM-GMM IV statistics are 
18.6293,33.4206,44.5272,67.3659, 104.6666 and 155.2173. 

(5) The finite-sample fractiles of the FM inferential statistics are based on 20,000 Monte Carlo 
simulations. 

(6) Phillips t(T) and Phillips t(T2) refer to the Phillips unit root t statistics with a linear trend and a 
quadratic trend respectively included in the Dickey-Fuller regression. 

(7) The critical values for the Phillips' t statistics are obtained from Phillips and Ouliaris (1990). 
(8) */** Denote significance at the 1 %/5% levels, respectively. 

-4.3160** 

-4.3490* 

-4.6244** 

-4.5479** 

-4.6114** 

-4.6217** 

-4.6081 ** 

-4.6515** 
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Table 4.4. The ARMA model for the flow variable RI 1+1 in Eq. (4.15). 

Information set AR(l) MA(1) MA(2) MA(3) Ale Q(I) Q(G) 

Germany 

0,,°'_1 0.4744 -1.0274 1.2503 4.1200 - - --
(0.1234) 

0",,·,°'-2 0.5395 -1.0909 0.6491 2.9166 - -- --
(0.1281) 

0",,·,°'-3 0.3592 -1.2103 0.5281 2.4938 - -- --
(0.1567) 

0",,·,°'-4 0.3789 -1.2111 0.9125 1.8512 - -- -
(0.1447) 

0",,·,°'_5 0.3288 -1.1409 0.8885 2.7730 - -- --
(0.1516) 

0",,·,°'_6 0.3349 -1.1493 0.9484 2.9381 - -- --
JO.1529) 

Hungary 

O,,0t-l 0.8689 -0.2367 -0.6625 -1.1993 1.4571 4.1370 
(0.0680) (0.0870) -.to. 1283) 

--

0",,·,°'_2 0.5020 -0.1678 -0.7255 -1.2636 0.2005 1.8599 
{0.2141) (O.l02~ ~0.0860) --

0",,·,°'_3 -- 0.2862 -0.4351 -1.2780 1.9328 4.3979 
(0.1413) JO. 1 8221 --

0",,·,°'_4 -- 0.1271 -0.6113 -1.3322 2.1137 5.7948 
fO.l2941 (0.1448) --

0",,·,°'_5 0.2086 -0.5204 -1.3294 1.3074 3.0545 --
(0.1140) (0.1330) --

0",,·,°'_6 0.3119 -0.4058 -1.3035 0.7092 1.8619 --
LO.l68Ql LO.1834) --

Poland 

MA(l) MA(2) MA(3) MA(4) Ale Q(l) Q(6) 
n"nt-l 0.2325 0.1297 0.2854 0.8359 -0.7178 2.7172 6.3102 (0.1292) (0.0542) fO.0649) (0.1440) 

0",,·,°'-2 0.3427 0.3012 0.4096 0.79951 -0.2460 1.2914 4.3136 
fO.1251) (0.0668) (0.047n (0.2024) 

0",,·,°'_3 0.2134 0.1117 0.2596 0.8113 -0.5687 1.7832 5.1326 
10.1253) (0.055~ lo.070~ JO.180~ 

0",,·,°'_4 0.2179 0.1150 0.2696 0.8235 -0.6253 2.1695 5.6755 
fO.1250) (0.0575) (0.066~ (0.1723) 

0",,·,°'-5 0.2154 0.1122 0.2579 0.8109 -0.5462 1.6943 4.9911 
10.12631 10.05701 10.07 141 (0.1850) 

0",,·,°'_6 0.2129 0.1124 0.2624 0.8137 -0.5916 1.9020 5.3051 
-.to.1251) (0.0550) (0.0696) (0.1764) 

Notes: 
(I) The figures in parentheses are Newey-West heteroskedasticity-and-autocorrelation 

consistent standard errors. 
(2) Q(k) refers to Ljung-Box Q-statistics with degrees of freedom = k. 
(3) Ale refers to Akaike information criterion. 
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5R Table 4 . . egressIOn resu ts 0 fE (4 16) ~q. 

Infonnation set UI FM-GMM 
PI 

FM-GMM FM-GMM Phillips t (T) 
t(UI) t( (31) IV 

Gennany 

°'_1 8.9339** -2.6573 -3.8664** 2.5370 -- -4.3828** 

°'_1,°'_2 8.9892* -3.8900 -3.4679* 3.6864 2.8954 -4.3766** 

°'_1, .. ·,°'_3 8.9408* -15.0462 -3.2367* 14.6351 19.3396 -4.3651** 

°'_1, .. ·,°'_4 8.9395* -13.3091 -3.3034* 13.0113 23.3083 -4.3692** 

0'_1, .. ·,0, 5 9.0052* -10.0640 -3.3701 * 9.6698 17.1372 -4.3726** 

0, I' ... ,0, 6 8.9654* -8.1694 -3.9361 * 7.8166 38.6320 -4.3827** 

Hungary 

°'-2 
1.4520 -1.5232 -6.2455* 6.3502 -4.5927* --

0,_2, .. ·,0,-3 1.3861 * -5.7722 -4.0222** 2.8233 5.7219 -4.2213** 

0'-2 , ... ,0'_4 1.5909* -7.4402 -4.8989* 3.7227 12.2932 -4.2883** 

°'_2, ... ,° 1_ 5 1.5853* -4.9107 -5.5249** 2.7120 15.6025 -4.2555** 

0,_2, ... ,° 1_ 6 1.5696* -5.8921 -5.1498* 3.2270 23.0465 -4.2747** 

Poland 

°'_4 1.4159* -6.7685 -2.6879* 4.8145 -4.6053* --

°'_4,°'_5 1.4163* -7.8364 -2.5260* 5.7759 5.6631 -4.5817* 

°'_4,··,°'_6 1.4000* -16.4952 -2.6003* 9.9810 9.3812 -4.5933* 

Notes: 
(1) The numbers of usable observations are same as those of Table 4.3. 
(2) For Germany, the 5% and 1% simulated critical values of the one-tailed FM-GMM t 

statistics are 1.9712 and 2.8954, respectively, while the corresponding two-tailed 
FM-GMM t statistics are 2.3852 and 3.3076, respectively. The 5% simulated critical 
values ofFM-GMM IV statistics are 10.4536,20.0925,27.4595,39.7697 and 55.6095 
with degrees of freedom = 2, 4, 6, 8 and 10, respectively. 

(3) For Hungary, the 5% and 1% simulated critical values of the one-tailed FM-GMM t 
statistics are 2.0052 and 2.9569, respectively, while the corresponding two-tailed 
FM-GMM t statistics are 2.4287 and 3.3575 respectively. The 5% simulated critical 
values of FM-GMM IV statistics are 11.1404, 21.4183, 28.9268 and 42.6479 with 
degrees of freedom = 2, 4, 6 and 8, respectively. 

(4) For Poland, the 5% and 1% simulated critical values of the one-tailed FM-GMM t 
statistics are 1.9979 and 3.0044 respectively, while the corresponding two-tailed 
FM-GMM t statistics are 2.4504 and 3.3802, respectively. The 5% simulated critical 
values ofFM-GMM IV statistics are 11.7754 and 23.0888 with degrees of freedom = 2 
and 4 respectively. 

(5) The finite-sample fractiles of the FM inferential statistics are based on 20,000 Monte 
Carlo simulations. 

(6) Phillips t(T) and Phillips t(Tz) refer to the Phillips unit root t statistics with a linear 
trend and a quadratic trend respectively included in the Dickey-Fuller regression. The 
critical values are taken from Phillips and Ouliaris (1990). 

(7) *1** Denote significance at the I %/5% levels, respectively. 

101 

Phillips t (T-) 

-4.4289** 

-4.4560** 

-4.4694** 

-4.4658** 

-4.4620** 

-4.4239** 

-5.1002* 

-4.2246** 

-4.2927*** 

-4.2593*** 

-4.2788*** 

-4.6230** 

-4.6192** 

-4.6212** 



Table 4.6. The FM-OLS Wald statistics for the projections of\f'(L) R1,'+1 and \f'(L) 

(1t I ,-1t{,) 

Infonnation set W R W~, 

Gennany 

°t-l 6.7109 6.8483 

0t-t, Ot-2 11.4442 11.5981 

Ot-1, 0t-2, 0'_3 22.3470 30.2699 

0t-t, Ot-2, 0'_3' 0'-4 38.6098 37.7832 

Ot-l, ... ,0'_5 40.2955 56.5292 

Ot-t, ... ,0,_6 43.0040 101.1938 

Hungary 

Ot-2 5.9507 6.4725 

Ot-2, 0'-3 20.9100 17.7286 

Ot-2, 0'_3' 0'-4 12.6699 20.3563 

Ot-2, 0'_3' 0'_4' 0'-5 32.1923 34.6593 

Ot-2, . "'0'-6 47.8768 40.2012 

Poland 

°'_4 3.0237 3.2044 

°'_4,°'_5 6.6163 18.7541 

0'_4' 0'_5' 0'_6 22.5255 34.8514 

Notes: 
(1) The numbers of usable observations are same as those of Table 4.3. 
(2) For Germany, the 5% simulated critical values of the FM-OLS Wald statistics are 

10.5115,21.4149,35.9424,55.7938,86.2426 and 134.6337 with degrees of freedom 
= 2, 4,6,8, 10 and 12 respectively. 

(3) For Hungary, the 5% simulated critical values of the FM-OLS Wald statistics are 
10.8061,22.1647,38.0158,60.7450 and 98.4709 with degrees of freedom = 2,4,6, 8 
and 10 respectively. 

(4) For Poland, the 5% simulated critical values of the FM-OLS Wald statistics are 
11.5412, 23.2997 and 41.1154 with degrees of freedom = 2,4 and 6 respectively. 
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Table 4.7. The regression results ofEq. (4.15) 

Infonnation set a2 Ih FM-GMMIV Phillips t (T) Phillips t (T2) 

Gennany 

0,.°'_1 6.7069 -4.4022 15.5731* -5.0227* -5.0566* 

0,,···,°'_2 7.0440 -8.2336 61.6458* -5.0559* -5.0752* 

0,,···,°'-3 7.1005 -6.8321 46.9271* -5.0599* -5.0827* 

0,,···,°'-4 7.0357 -5.4984 47.2267** -5.0524* -5.0802* 

0,,···,°'-5 7.4699 -7.0597 63.0164** -5.0598* -5.0819* 

0" .... 0,_6 6.6139 -4.5453 236.4936* -5.0288* -5.0617* 

Hungary 

0,,°'-1 8.9685 -5.5999 10.1694** -3.9202** -4.0676*** 

0,,···,°'-2 8.8779 -4.1975 28.8040* -3.8804*** -4.0993*** 

0,,···,°'-3 8.9280 -4.0972 36.2334** -3.8747*** -4.1009*** 

0, ... ·'°'_4 8.7626 -3.8464 45.6930** -3.8577*** -4.1042** 

°" .. ·.°'_5 8.7359 -4.1937 64.7463** -3.8802*** -4.0993*** 

0" .. ·,°'_6 8.5995 -4.7113 101.6567** -3.9019*** -4.0888*** 

Poland 

O,.0t-l 9.0412 -3.0816 10.1344** -5.5948* -5.5951 * 

°"""°'-2 
9.0100 -3.0441 36.4123* -5.5891 * -5.5906* 

°"""°'_3 9.1612 -2.7175 41.4412** -5.5288* -5.5453* 

0" .... 0,_4 9.0452 -2.4417 56.4205** -5.4583* -5.4950* 

0, .... ,0,_5 9.0543 -2.8960 686.3372* -5.5644* -5.5717* 

°"""°'-6 8.7668 -2.6797 1080.582* -5.5203* -5.5391 * 

Notes: 
(1) The numbers of usable observations are same as those of Table 4.3. 
(2) For Germany. the 5% simulated critical values ofFM-GMM IV statistics are 10.4536. 

20.0925.27.4595.39.7697.55.6095. and 77.2497 with degrees of freedom = 2, 4, 6,8, 
10 and 12. respectively. while the corresponding 1 % critical values are 15.8314, 
29.5017.38.3168,55.8724, 77.5442 and 110.3933. 

(3) For Hungary, the 5% simulated critical values ofFM-GMM IV statistics are 11.1404, 
21.4183,28.9268.42.6479,60.1887 and 86.8796 with degrees of freedom = 2, 4, 6, 8, 
10 and 12, respectively, while the corresponding 1 % simulated critical values 
16.8410,31.8612,41.6750.61.0027,88.6059 and 131.2547. 

(4) For Poland, the 5% simulated critical values ofFM-GMM IV statistics are 11.7754, 
23.0888.31.7244,47.1863,69.0410 and 102.2449 with degrees of freedom = 2, 4, 6, 
8. 10 and 12. respectively. while the corresponding 1 % critical values of FM -GMM 
IV statistics are 18.6293.33.4206,44.5272,67.3659, 104.6666 and 155.2173. 

(5) The finite-sample fractiles of the FM inferential statistics are based on 20.000 Monte 
Carlo simulations. 

(6) Phillips t(T) and Phillips t(Tz) refer to the Phillips unit root t statistics with a linear 
trend and a quadratic trend respectively included in the Dickey-Fuller regression. The 
critical values are obtained from Phillips and Ouliaris (1990). 

(7) */** Denote significance at the 1 %/5% levels, respectively. 
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Table 4.8. The ARMA models for the flow variables R 2.,+1 in Eq. (4.15). 

Infonnation set I MA{l) MA(2) I MA(3) MA(4) I Ale Q(I) 
\ 

Q(6) 

Gennany 

o,,°'_1 0.3282 0.1363 2.3002 8.9765 
- - -

(0.1192) 

°"""°'-2 0.3986 0.2776 1.9510 6.7939 
- - -

(0.1470) 

°"""°'_3 0.3279 0.1988 2.0933 7.7964 
- - -

(0.l374) 

°"""°'_4 0.2642 0.1305 2.2416 8.8674 - - -
(0.1253) 

0" .. ·,°'_5 0.2619 0.1607 1.8602 7.7095 - - -
(0.1297) 

o" .. ·,°'-6 0.3712 - 0.1733 2.5162 8.8768 
(0.1258) 

- -

Hungary 

O"O,_t 0.5458 0.5675 -0.5790 0.8610 4.1379 
(0.1128) 

- -
(0.1429) 

0" ... ,0'-2 0.5450 0.5659 -0.6372 0.9059 4.1627 
(0.1123) (0.1437) 

- -

0" .. ·,°'_3 0.5469 0.5665 -0.6369 0.9190 4.1619 
(0.1132) (0.1448) 

- --

°"""°'_4 0.5451 0.5669 -0.6598 0.9131 4.1731 
(0.1109) 

- --
(0.1419) 

°"""°'-5 0.5458 0.5686 -0.6400 0.9073 4.1770 
(0.1105) (0.1407) 

- -

°"""°'_6 0.5552 0.5783 -0.5981 0.9334 4.1996 
(0.1101) (0.1364) 

- --
Poland 

O"Qt-J 0.0037 -0.1221 0.4759 0.6071 -0.4628 1.7421 4.7429 
(0.1352) (0.0608) (0.0842 (0.0633) 

°"""°'_2 -0.0035 -0.1209 0.4856 0.5940 -0.4589 1.8029 4.8382 
(0.1669) (0.1108) (0.0746) (0.0746) 

°"""°'_3 -0.0044 -0.1065 0.4248 0.6421 -0.5638 2.0156 4.9832 
(0.1960) (0.0843) (0.0572) (0.O572) 

°"""°'_4 0.0451 -0.1947 0.3842 0.7149 -0.6082 2.5710 5.6157 
(0.2033) (0.0744) (0.0456) (0.0456) 

0" ... ,01-5 -0.0026 -0.1016 0.4356 0.6341 -0.5066 1.8152 4.8106 
(0.1731) (0.0929) (0.0689) (0.0689) 

°"''''°'_6 0.0974 -0.1950 0.4117 0.7097 -0.4199 2.7309 5.5394 
(0.2232) (0.0845) (0.1415) (0.1571) 

Notes: 
(1) The figures in parentheses are Newey-West heteroskedasticity-and-autocorrelation 

consistent standard errors. 
(2) Q(k) refers to Ljung-Box Q-statistics with degrees of freedom = k. 
(3) Ale refers to Akaike information criterion. 
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T bl 49Th a e .. It fE (4 16) e regressIOn resu s 0 ~q. 

Information set (1.2 FM-GMM 
P2 

FM-GMM FM-GMM Phillips I(T) 

t(a2) t( (32) IV 

Germany 
0,_\ 7.2958** -2.7145 -6.4436** 2.4202 -5.0595* --

0,_\,0'_2 7.4149* -3.9739 -7.1355* 3.6500 5.2330 -5.0597* 

0,_\,.··,°'_3 7.5052* -3.3792 -5.9558* 2.9761 14.3855 -5.0571 * 

0,_\.···,°'_4 7.7457* -3.9792 -6.4084* 3.3432 13.4743 -5.0594* 

O,-t. ... , Q,-5 7.8523* -4.6388 -7.5722* 3.7606 30.1904 -5.0586* 

0,-1. ... ,0'_6 8.2020* -3.8777 -8.3767* 3.1127 33.4793 -5.0552* 

Hungary 

0'-2 8.9671 -0.9857 -5.2457* 5.6265 -- -4.8517* 

0'-2, ... ,0'_3 9.5881 -0.6714 -9.8582* 6.2525 5.7191 -4.6606* 

0'-2, .... , 0'-4 9.9925 -0.9952 -10.7494* 9.7029 11.6432 -4.6363* 

0'_2,···,°'_5 9.7887 -1.3758 -8.3629* 10.8120 14.6191 -4.7096* 

0'.2,···,°,_6 10.1638 -1.0045 -11.1344* 9.7322 20.7000 -4.6268* 

Poland 

°'_4 8.8654** -2.8554 -1.9017** 2.7416 -5.2403* --

°'_4,°'_5 8.8084* -5.2560 -1.6168* 5.0256 1.7582 -5.0619* 

°'_4,··,°'_6 8.7760* -5.3281 -1.5409* 5.1112 5.8427 -5.0046* 

Notes: 

(1) The numbers of usable observations are same as those of Table 4.3. 
(2) For Germany, the 5% and 1% simulated critical values of the one-tailed FM-GMM t 

statistics are 1.9712 and 2.8954, respectively, while the corresponding two-tailed 
FM-GMM t statistics are 2.3852 and 3.3076, respectively. The 5% simulated critical 
values ofFM-GMM N statistics are 10.4536,20.0925,27.4595,39.7697 and 55.6095 
with degrees of freedom = 2, 4, 6, 8 and 10, respectively. 

(3) For Hungary, the 5% and 1% simulated critical values of the one-tailed FM-GMM t 
statistics are 2.0052 and 2.9569, respectively, while the corresponding two-tailed 
FM-GMM t statistics are 2.4287 and 3.3575 respectively. The 5% simulated critical 
values of FM-GMM IV statistics are 11.l404, 21.4183, 28.9268 and 42.6479 with 
degrees of freedom = 2, 4, 6 and 8, respectively. 

(4) For Poland, the 5% and 1% simulated critical values of the one-tailed FM-GMM t 
statistics are 1.9979 and 3.0044 respectively, while the corresponding two-tailed 
FM-GMM t statistics are 2.4504 and 3.3802, respectively. The 5% simulated critical 
values ofFM-GMM IV statistics are 11.7754 and 23.0888 with degrees of freedom = 2 
and 4 respectively. 

(5) The finite-sample fractiles of the FM inferential statistics are based on 20,000 Monte 
Carlo simulations. 

(6) Phillips t(T) and Phillips t(Tz) refer to the Phillips unit root t statistics with a linear 
trend and a quadratic trend respectively included in the Dickey-Fuller regression. The 
critical values are taken from Phillips and Ouliaris (1990). 

(7) *1** Denote significance at the 1%/5% levels, respectively. 

Phillips I("r-) 

-5.0835* 

-5.0816* 
-5.0830* 

-5.0835* 

-5.0794* 

-5.0742* 

-4.8390** 

-4.6998** 

-4.6821 ** 

-4.7353** 

-4.6752** 

-5.3467* 

-5.2272* 

-5.1886* 
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Table 4.10. The FM-OLS Wald statistics for the projections oflJ'(L) R2,,+1 and lJ'(L) 

(1t2t -1t{,) 

Information set WR W'f' 
Germany 
Ot_1 0_7847 5.6989 

Ot-I> 0t-2 8.1441 16.6208 

Ot-I> 0t-2, 0'-3 28.2595 30.2699 

Ot-I> Ot_2, 0'_3' 0'_4 38.5030 38.3649 

Ot_I> ... ,0'_5 57.1144 28.8212 

Ot-I> ""0'_6 
47.5351 107.8442 

Hungary 

Ot-2 6_6078 6.2457 

Ot-2,0,_3 12.0448 7.7946 

Ot-2, 0,_3' 0'_4 18.6084 23.4400 

Ot-2, 0'_3' 0'_4' 0'-5 44.4652 28.0724 

Ot-2, ... ,0'_6 38.8802 60.7119 

Poland 

°'_4 2.0879 0.0937 

0,_4,°'_5 8.8847 11.2366 

0'_4' 0,_5' 0'_6 17.4438 11.4788 

Notes: 
(I) The numbers of usable observations are same as those of Table 4.3. 
(2) For Germany, the 5% simulated critical values of the FM-OLS Wald statistics are 

10.5115,21.4149,35_9424,55.7938,86.2426 and 134_6337 with degrees of freedom = 
2, 4, 6, 8, 10 and 12 respectively. 

(3) For Hungary, the 5% simulated critical values of the FM-OLS Wald statistics are 
10_8061,22.1647,38.0158,60.7450 and 98.4709 with degrees of freedom = 2,4,6,8 
and 10 respectively. 

(4) For Poland, the 5% simulated critical values of the FM-OLS Wald statistics are 11.5412, 
23.2997 and 41.1154 with degrees of freedom = 2,4 and 6 respectively. 
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Appendix 4.1 

In this appendix, I conduct a simulation study to examine the sampling 

performance of several FM estimators in a small sample. Other than the FM-OLS 

and FM-GMM that are used in the bubble tests, I include FM-LAD and FM-GIVE 

for comparison purposes. The FM-LAD is a FM version of the least absolute 

deviation (LAD) method (Phillips, 1995b), which is a robust estimation method in 

the presence of heavy-tailed errors in a nonstationary regression. FM-GIVE is a FM 

extension of the generalized instrumental variable estimation (GIVE) method 

(Kitamura and Phillips, 1997), which employs GLS transformation to data and 

instruments in a nonstationary regression under the assumption of strictly 

exogenous instruments. 

The regression model used for data generation is shown as follows: 

y, := a + Bx, + "D' a := O,B:= 1. t= l...T. (A.4.1) 

and e 4 = 0.9. In other words, "DI is an MA( 4) process. x I is a 1(1) process and is a 

linear combination of two processes, x al ' and x bl : 
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x, = CJ.Xa, + (l-a)xb, with a = 0.5 and (AA.2) 

(A.4.3) 

1 C 
/),xbl = [~ 2 Je21 +[ ~ 2 JUOI 

(l+c) (l+c ) 
(A.4.4) 

Llz is constructed by four first-differenced nonstationary instruments, Llz II , , 

Llz2t , Llz3, and Llz41 , which are generated in the following way: 

Llz, = 0.25* Llzlt + 0.25* Llz2t + 0.25* Llz31 + 0.25* Llz41 + e31 , (A.4.5) 

[ 0\ 
0.7 0.5 -02] 

mean = 0 and covariance = 1 0.4 -0.3 
0.5 0.4 1 -0.3 

-0.2 -0.3 0.6 1 

where &i' = 0.8 * &//-1 + tiJ il 'd i = 1,2,3,4. It implies that the instruments Zi, 

follow an ARIMA(1,1,0) process. 

The residual terms, e, ={ ell' e2, ,e3, }', E, ={ E I , , E 2, ,E3, ,E 4, }' and tiJ , = 

{ tiJ II ,tiJ 21 , tiJ 31 ,tiJ 41 } 'are uncorrelated with one another. From Eq.(AA.3) and 

(A.4A), there is a feedback effect from Llz, to /),x, through /),xal; and from U OI to 
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t'J.x
t 

through t'J.xbt ' respectively. Hence, the instruments and the residual term are 

correlated with the regressors separately but they are uncorrelated with each other. 

Also, the parameter c controls the degree of association between L\x' at and rut as 

well as between !'ubt and uot ' When c --* ex; , L\x'at and rut as well as L\x'bt and 

U
ot 

become linearly dependent. When Icl = 1, the squared correlations between 

them are equally 0.5. In the simulation study, the innovation terms, 

distributions, which include standard normal distribution (N(O, 1 )), t distribution 

with 2 degrees of freedom (t 2 ), stable distribution with the characteristic exponent 

being equal to 1.5 (S <1=\.5 ),31 and standardized t 5 distribution with conditional 

variance from an IGARCH(0.5,O.5) model such that E t = Z"tCft where ZOt ~ 15 

(lGARCH(0.5,0.5)-ts). The values of cchosen for the simulation study are c = 1 

and c=lOO. The sample size T is 40 and the number of Monte Carlo replications is 

1000. The sampling performance of the FM estimators is indicated by the average 

bias (BIAS.ve), the root mean square error (RMSE.ve), the quantiles (Qzs, Qso and 

Q7S), interquantile ranges (Qw Qzs) and the concentration probabilities 

A 

(Pr( I b- b I~ k) where k is a constant. In order to examine the performance of the 

31When the characteristic exponent of a stable distribution is below 2, the variance will be infinite. 

The basic properties of stable distribution are described in McCulloch (1996). 
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FM estimators without the effect of the occasional outliers, I include the bias and 

RMSE based on the results excluding 1 % in both tails, denoted by BIAS98 and 

RMSE98 respectively. 

The results of simulation study are reported from Table A.4.1 to Table A.4.16 

below. It is noted that with respect to the estimated intercept terms (a), the mean 

bias of the FM-GMM estimator is the most serious in cases where c =1 and the 

distributions of innovations are non-normal, and where c=IOO and the innovations 

are drawn from N(O,l) as well as IGARCH(O.5,O.5)-t5. For the rest of cases, the 

mean bias ofthe FM-LAD estimator is however found to be the most serious. Also, 

the dispersion of the FM-GMM estimator for the intercept, measured by the RMSE 

and the interquantile range, is the largest in all cases and it is much larger than that 

ofthe FM-OLS and FM-LAD estimators. From the concentration probabilities, the 

FM-GMM estimator is unfavourably compared to other FM estimators, and the 

probability that the absolute deviation of the FM-GMM estimator for the intercept 

is smaller than 0.1 does not exceed 20%. 

On the other hand, with respect to the I( 1) coefficient (B ), the mean bias of the 

FM-GMM estimator is the lowest in most cases whereas the mean bias of the 

FM-GIVE estimator is the most serious in all cases. Based upon the RMSE, 
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interquantile ranges and the concentration probabilities, the dispersion of the 

FM-GIVE estimator for the 1(1) coefficient is the largest in all cases whereas the 

dispersion of the FM-LAD estimator is the lowest in almost all cases. The 

dispersion of the FM -GMM estimator for the 1(1) coefficient is slightly lower than 

that of the FM-GIVE estimator under all circumstances and the dispersion of the 

FM-OLS estimator is found to be slightly lower than that of the FM-LAD in some 

cases. 

In general, the overall performance of the FM-OLS and FM-LAD estimator 

for intercepts and 1(1) coefficients are compared more favourably to that of the 

FM-GMM and FM-GIVE estimators in a small sample of the present simulation 

study whatever the values of c and the distributions ofthe innovations. 
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I 

Table A.4.1. The simulation results of bias, RMSE, quantiles and interquantile range when c=1 

and innovations are drawn from N(O,l) 

Parameter Estimator BIASave RMSEave BIAS'8 RMSE,8 Q2S Qso Q7S Q7S- Q25 I 
a FM-OLS 0.0267 0.4773 0.0256 0.4143 -0.2253 0.0166 0.2770 0.5023 

FM-LAD 0.0157 0.5436 0.0163 0.4774 -0.2857 0.0209 0.3161 0.6011 

FM-GMM 0.0108 2.5481 -0.0012 0.8632 -0.4309 0.0199 0.4199 0.8508 

FM-GIVE 0.0210 0.6547 0.0186 0.4942 -0.2372 0.0321 0.2679 0.5051 

B FM-OLS -0.0270 0.1843 -0.0322 0.1390 -0.1164 -0.0302 0.0598 0.1762 

FM-LAD 0.0364 0.1412 0.0365 0.1303 -0.0499 0.0311 0.1232 0.1731 

FM-GMM 0.0186 0.4711 0.0099 0.2733 -0.1335 0.0099 0.1460 0.2795 

FM-GIVE 0.1468 0.7060 0.1226 0.4095 -0.0795 0.0867 0.3088 0.3883 
- -
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Table A.4.2. The simulation results of bias, RMSE, quantiles and interquantile range when c=1 

and innovations are drawn from t 2 

Parameter Estimator BIAS.ve RMSE.ve BIAS98 RMS~ Qzs Qso Q7S Q7S- Q1S 

a FM-OLS -0.0124 0.4929 -0.0133 0.4140 -0.2678 -0.0154 0.2422 0.5100 

FM-LAD -0.1341 0.4870 -0.0160 0.3964 -0.2506 -0.0250 0.2239 0.4745 

FM-GMM 0.0008 1.8249 0.0122 0.7763 -0.3817 -0.0050 0.3696 0.7513 

FM-GIVE 0.0557 1.8284 -0.0014 0.4767 -0.2684 -0.0139 0.2434 0.5118 

B FM-OLS -0.0277 0.1858 -0.0313 0.1383 -0.1165 -0.0295 0.0564 0.1729 

FM-LAD 0.0315 0.1336 0.0307 0.1196 -0.0415 0.0249 0.0991 0.1406 

FM-GMM -0.0109 0.4085 -0.0042 0.2509 -0.1214 0.0044 0.1355 0.2569 

FM-GIVE 0.1122 0.8661 0.1297 0.4767 -0.0737 0.0983 0.2953 0.3690 
______ __ - - - - _ .. _______ - - _______ ~. I ___ 

113 



Table A.4.3. The simulation results of bias, RMSE, quantiles and interquantile range when c=l 

and innovations are drawn from S (1=1.5 

Parameter Estimator BIAS ave RMSEave BIAS98 RMSE,s Q1S Qso Q75 Q7S- Q1S 

a FM-OLS 0.0048 0.4712 0.0087 0.3910 -0.2344 0.0113 0.2614 0.4958 

FM-LAD -0.0098 0.4923 -0.0042 0.3974 -0.2211 0.0163 0.2350 0.4561 

FM-GMM 0.0108 1.0886 0.0212 0.7398 -0.3646 0.0201 0.3991 0.7637 

FM-GIVE 0.0015 0.7217 0.0061 0.5196 -0.2650 -0.0022 0.2731 0.5381 

B FM-OLS -0.0249 0.1589 -0.0275 0.1281 -0.1066 -0.0240 0.0530 0.1596 

FM-LAD 0.0314 0.1217 0.0302 0.1078 -0.0340 0.0198 0.0892 0.1232 

FM-GMM 0.0286 0.3337 0.0211 0.2216 -0.0952 0.0112 0.1457 0.2409 

FM-GIVE 0.0823 0.9616 0.1073 0.5410 -0.0793 0.0796 0.2914 0.3707 
- - -

I 
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Table A.4.4. The simulation results of bias, RMSE, quantiles and interquantile range when c=l 

and innovations are drawn from IGARCH(0.5,0.5)-ts 

Parameter Estimator BIASave RMSEave BIAS98 RMS~8 QZ5 Qso Q7S Q7S- Q2S 

a FM-OLS 0.0111 0.5118 0.0065 0.4244 -0.2369 0.0036 0.2556 0.4925 

FM-LAD 0.0205 0.5107 0.0185 0.4273 -0.2274 0.0109 0.2443 0.4717 

FM-GMM 0.0983 2.4889 0.0199 0.7840 -0.3752 -0.0068 0.3783 0.7535 

FM-GIVE 0.0024 0.7321 0.0132 0.5024 -0.2635 -0.0028 0.2715 0.5350 

B FM-OLS -0.0213 0.1712 -0.0247 0.1367 -0.1162 -0.0236 0.0559 0.1721 

FM-LAD 0.0351 0.1284 0.0340 0.1168 -0.0377 0.0235 0.1019 0.1396 

FM-GMM 0.0171 0.4679 0.0227 0.2305 -0.1027 0.0083 0.1432 0.2459 

FM-GIVE 0.1275 0.8040 0.1205 0.4485 -0.0627 0.0913 0.2947 0.3574 
- - _.- _._-
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Table A.4.5. The simulation results of concentration probabilities when c = I and 

innovations are drawn from N(O,I) 
1\ 

(Pr(1 b-b I~ k» 

Parameter Estimator k ~ 0.1 k ~ 0.3 k ~ 0.5 k ~ 0.7 k ~ 0.9 

a FM-OLS 0.2150 0.5790 0.7750 0.8790 0.9330 

FM-LAD 0.1720 0.4960 0.7220 0.8400 0.9090 

FM-GMM 0.1280 0.3700 0.5600 0.6820 0.7690 

FM-GIVE 0.2130 0.5590 0.7490 0.8460 0.9020 

B Estimator k ~ 0.01 k ~ 0.03 k :5 0.05 k ~ 0.07 k ~ 0.09 

FM-OLS 0.0540 0.1690 0.2870 0.3970 0.4990 

FM-LAD 0.0670 0.1940 0.2990 0.4060 0.5060 

FM-GMM 0.0350 0.1180 0.1910 0.2710 0.3370 

FM-GIVE 0.0320 0.0830 0.1450 0.2130 0.2710 

Table A.4.6. The simulation results of concentration probabilities when c = 1 and 

innovations are drawn from t 2 

1\ 

(Pr(1 b-b I~ k)) 

Parameter Estimator k ~ 0.1 k :5 0.3 k :5 0.5 k ~ 0.7 k ~ 0.9 

a FM-OLS 0.2020 0.5850 0.7840 0.8860 0.9330 

FM-LAD 0.2180 0.5980 0.8140 0.9060 0.9430 

FM-GMM 0.1340 0.4030 0.6120 0.7280 0.8050 

FM-GIVE 0.2160 0.5700 0.7570 0.8560 0.9100 

B Estimator k ~ 0.01 k:5 0.03 k:5 0.05 k :5 0.07 k :5 0.09 

FM-OLS 0.0710 0.1840 0.3070 0.4260 0.5210 

FM-LAD 0.0890 0.2300 0.3630 0.4900 0.5870 

FM-GMM 0.0450 0.1430 0.2210 0.3020 0.3770 

FM-GIVE 0.0290 0.0900 0.1490 0.2040 0.2600 
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Table A.4.7. The simulation results of concentration probabilities when c = 1 and 

innovations are drawn from S a=1 5 

A 

(Pr(1 b-b I~ k» 

Parameter Estimator k ~ 0.1 k ~ 0.3 k ~ 0.5 k ~ 0.7 k ~ 0.9 

a FM-OLS 0.2020 0.5740 0.8060 0.9000 0.9480 

FM-LAD 0.2210 0.6280 0.8080 0.8990 0.9440 

FM-GMM 0.1590 0.4030 0.6170 0.7440 0.8210 

FM-GIVE 0.2040 0.5460 0.7430 0.8450 0.8940 

B Estimator k ~ 0.01 k ~ 0.03 k :S 0.05 k :S 0.07 k:S 0.09 

FM-OLS 0.0810 0.2160 0.3310 0.4560 0.5430 

FM-LAD 0.1080 0.2830 0.4210 0.5380 0.6460 

FM-GMM 0.0540 0.1710 0.2440 0.3480 0.4190 

FM-GIVE 0.0310 0.1010 0.1630 0.2260 0.2770 

Table A.4.S. The simulation results of concentration probabilities when c = 1 and 

innovations are drawn from IGARCH(0.5,0.5)-tj 
A 

(PrO b- b I:S k») 

Parameter Estimator k :S 0.1 k:S 0.3 k ~ 0.5 k ~ 0.7 k ~ 0.9 

a FM-OLS 0.2150 0.5730 0.7830 0.8790 0.9280 

FM-LAD 0.2460 0.5890 0.7970 0.8780 0.9190 

FM-GMM 0.1740 0.4140 0.5950 0.7230 0.8020 

FM-GIVE 0.2130 0.5690 0.7520 0.8420 0.9060 

Estimator k :S 0.01 k :S 0.03 k :S 0.05 k:S 0.07 k :S 0.09 

B FM-OLS 0.0830 0.1920 0.3230 0.4150 0.4980 

FM-LAD 0.0870 0.2490 0.3870 0.4840 0.5910 

FM-GMM 0.0470 0.1330 0.2340 0.3130 0.3830 

FM-GIVE 0.0260 0.0900 0.1570 0.2220 0.2930 
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Table A.4.9. The simulation results of bias, RMSE, quantiles and interquantile range when c=lOO 

and innovations are drawn from N(O,l) 

Parameter Estimator BIAS ave RMSEave BIAS98 RMSE,s Q2S Qso Q75 Q7S- QZ5 1 

a FM-OLS -0.0215 0.4373 0.0199 0.3819 -0.1965 0.0181 0.2450 0.4415 

FM-LAD 0.0106 0.5662 0.0105 0.4985 -0.2710 -0.0017 0.2978 0.5688 

FM-GMM -0.0960 3.0643 0.0229 0.8358 -0.4191 0.0181 0.4143 0.8334 

FM-GIVE 0.0320 0.6937 0.0200 0.5312 -0.2261 0.0199 0.2668 0.4929 

B FM-OLS -0.0291 0.1199 -0.0301 0.1026 -0.0888 -0.0232 0.0345 0.1233 

FM-LAD 0.0346 0.1124 0.0346 0.10277 -0.0308 0.0281 0.0961 0.1269 

FM-GMM 0.0123 0.5044 0.0130 0.1938 -0.0909 0.01400 0.1208 0.2117 

FM-GIVE 0.1115 0.5705 0.1170 0.3534 -0.0426 0.0757 0.2605 0.3031 
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Table A.4.10. The simulation results of bias, RMSE, quantiles and interquantile range when c=100 

and innovations are drawn from t 2 

Parameter Estimator MBiasave RMSEave Mbia898 RMS~8 Q1S Qso Q7S QWQ1S 
a FM-OLS -0.0039 0.4383 -0.0016 0.3758 -0.2261 -0.0060 0.2323 0.4584 

FM-LAD -0.0181 0.5045 -0.0151 0.4136 -0.2381 -0.0247 0.2173 0.4554 

FM-GMM 0.0123 0.9861 0.0035 0.7478 -0.3503 0.0047 0.3633 0.7136 

FM-GIVE -0.0161 0.6357 -0.0186 0.5082 -0.2575 -0.0095 0.2412 0.4987 

B FM-OLS -0.0314 0.1144 -0.0319 0.1035 -0.0946 -0.0300 0.0310 0.1256 

FM-LAD 0.0268 0.1033 0.0262 0.0931 -0.0317 0.0206 0.0778 0.1095 

FM-GMM 0.0020 0.2449 0.0009 0.1835 -0.0901 0.0035 0.0962 0.1863 

FM-GIVE 0.1191 0.5282 0.1152 0.3419 -0.0356 0.0806 0.2524 0.2880 
_ .. _.- -_ .. _- ~_._. __ . __ .- - - - - - - -
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Table A.4.U. The simulation results of bias, RMSE, quantiles and interquantile range when c=100 

and innovations are drawn from S a=LS 

Parameter Estimator MBiasave RMSEave Mbia598 RMSE,s Q15 Q50 Q75 QWQ15 I 
a FM-OLS 0.0040 0.4884 0.0300 0.3988 -0.2325 0.0037 0.2333 0.4658 I 

FM-LAD -0.0261 0.5216 -0.0210 0.4142 -0.2361 0.0074 0.2190 0.4551 

FM-GMM -0.0135 0.9843 -0.0080 0.7751 -0.3270 0.0126 0.3379 0.6649 

FM-GIVE -0.0181 0.8706 0.0019 0.4894 -0.2290 0.0162 0.2573 0.4863 

B FM-OLS -0.0283 0.1117 -0.0288 0.0975 -0.0871 -0.0251 0.0283 0.1154 

FM-LAD 0.0275 0.0985 0.0272 0.0870 -0.0241 0.0146 0.0725 0.0966 

FM-GMM 0.0088 0.2310 0.01334 0.1740 -0.0705 0.0079 0.0997 0.1702 

FM-GIVE 0.0884 1.0886 0.1124 0.3765 -0.0431 0.0618 0.2467 0.2898 
- - - - -_. __ . __ .-
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Table A.4.12. The simulation results of bias, RMSE, quantiles and interquantile range when c==lOO 

and innovations are drawn from IGARCH(O.5,O.5)-ts 
Parameter Estimator MBiasave RMSEave Mbias98 RMS~8 Q2S Qso Q7S Q7S- Q1S 

a FM-OLS 0.0070 0.4934 0.0092 0.4111 -0.2066 0.0047 0.2234 0.4300 

FM-LAD 0.0237 0.5431 0.0260 0.4466 -0.2159 0.0148 0.2635 0.4794 

FM-GMM 0.0481 1.5786 0.0640 0.8350 -0.3154 0.0107 0.3923 0.7077 

FM-GIVE -0.0230 1.2535 0.0130 0.5396 -0.2482 0.0104 0.2784 0.5266 

B FM-OLS -0.0262 0.1172 -0.0278 0.1018 -0.0907 -0.0256 0.0361 0.1267 

FM-LAD 0.0297 0.1019 0.0285 0.0917 -0.0765 0.0201 0.0816 0.1581 

FM-GMM 0.0385 0.4052 0.0269 0.1931 -0.0798 0.0081 0.1058 0.1856 

FM-GIVE 0.0985 0.8456 0.1090 0.3546 -0.0479 0.0844 0.2360 0.2839 
--- ----- - - - -- - --- - --- ----- --- - -- -- --
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Table A.4.13. The simulation results of concentration probabilities when c = 100 

and innovations are drawn from N(O,l) 
A 

(Pr( 1 b- b 1$ k » 
Parameter Estimator k $ 0.1 k $ 0.3 k $ 0.5 k $ 0.7 k $ 0.9 

a FM-OLS 0.2500 0.6050 0.7910 0.9050 0.9500 

FM-LAD 0.2000 0.5220 0.7280 0.8290 0.8870 

FM-GMM 0.1230 0.3850 0.5640 0.6950 0.7770 

FM-GIVE 0.2130 0.5590 0.7490 0.8460 0.9020 

B Estimator k $ 0.01 k $ 0.03 k $ 0.05 k $ 0.07 k $ 0.09 

FM-OLS 0.0870 0.2580 0.4020 0.5250 0.6500 

FM-LAD 0.0890 0.2550 0.3970 0.5200 0.6250 

FM-GMM 0.0520 0.1360 0.2440 0.3510 0.4380 

FM-GIVE 0.0430 0.1190 0.2040 0.2840 0.3490 

Table A.4.14. The simulation results of concentration probabilities when c = 100 

and innovations are drawn from t2 
A 

(Pr( I b- b 1$ k » 
Parameter Estimator k $ 0.1 k $ 0.3 k $ 0.5 k $ 0.7 k $ 0.9 

a FM-OLS 0.2330 0.6290 0.8230 0.9020 0.9510 

FM-LAD 0.2250 0.6170 0.8040 0.8930 0.9370 

FM-GMM 0.1840 0.4430 0.6260 0.7480 0.8090 

FM-GIVE 0.2230 0.5780 0.7540 0.8420 0.8930 

B Estimator k $ 0.01 k $ 0.03 k $ 0.05 k $ 0.07 k $ 0.09 

FM-OLS 0.0750 0.2420 0.3880 0.5230 0.6100 

FM-LAD 0.2440 0.6200 0.8280 0.9250 0.9640 

FM-GMM 0.0700 0.1910 0.2970 0.3940 0.4850 

FM-GIVE 0.0380 0.1210 0.1970 0.2660 0.3390 
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Table A.4.1S. The simulation results of concentration probabilities when c = 100 

and innovations are drawn from S a=L5 

" (Pr(1 b-b I~ k» 

Parameter Estimator k ~ 0.1 k ~ 0.3 k ~ 0.5 k ~ 0.7 k ~ 0.9 

a FM-OLS 0.2260 0.6000 0.8070 0.9020 0.9440 

FM-LAD 0.2510 0.6130 0.8050 0.8900 0.9310 

FM-GMM 0.1560 0.4600 0.6530 0.7410 0.8040 

FM-GIVE 0.2370 0.5770 0.7670 0.8550 0.9110 

B Estimator k ~ 0.01 k ~ 0.03 k ~ 0.05 k ~ 0.07 k ~ 0.09 

FM-OLS 0.1020 0.2700 0.4110 0.5300 0.6570 

FM-LAD 0.1560 0.3520 0.5060 0.6380 0.7180 

FM-GMM 0.0740 0.2060 0.3380 0.4430 0.5230 

FM-GIVE 0.0520 0.1560 0.2460 0.3110 0.3750 

Table A.4.16. The simulation results of concentration probabilities when c =:: 100 

and innovations are drawn from IGARCH(0.5,0.5)-ts 

" (Pr(1 b- b 1$ k)) 

Parameter Estimator k ~ 0.1 k ~ 0.3 k $ 0.5 k $ 0.7 k ~ 0.9 

a FM-OLS 0.2520 0.6200 0.7980 0.8890 0.9360 

FM-LAD 0.2380 0.5870 0.7830 0.8710 0.9110 

FM-GMM 0.1740 0.4390 0.6190 0.7460 0.8200 

FM-GIVE 0.2220 0.5400 0.7270 0.8290 0.8870 

B Estimator k ~ 0.01 k ~ 0.03 k ~ 0.05 k ~ 0.07 k ~ 0.09 

FM-OLS 0.0890 0.2420 0.4080 0.5340 0.6380 

FM-LAD 0.0970 0.2890 0.4470 0.6040 0.7060 

FM-GMM 0.0680 0.1770 0.3130 0.4060 0.4980 

FM-GIVE 0.0410 0.1280 0.1930 0.2640 0.3350 
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CHAPTER FIVE REGIME SWITCHING AND BUBBLES 

5.1 Introduction 

The empirical study conducted in this chapter continues to examine the 

presence of bubbles during the three inter-war European hyperinflations. It 

nevertheless differs from the study in the last chapter in several aspects. First of all, 

the Cagan models under study are stochastic, and the model specification errors are 

captured by nonzero demand disturbances; moreover, the sample periods under 

study are extended to cover the periods of monetary reform expected and 

subsequently implemented, during which the data generating process and dynamic 

equilibrium adjustment process may be nonlinear; finally, I adopt recent advances 

in cointegration methodologies for the analysis and suggest that they are more 

powerful under nonlinear dynamics than the conventional tests so as to provide 

more reliable conclusions of bubbles. Evidence of nonlinear adjustment process is 

found in almost all cases, but evidence of bubbles still cannot be supported in any 

countries. The remainder of the chapter is set out as follows. Section 2 contains a 

discussion of related literature and empirical issues of unit root econometric 

methods in bubbles testing. Section 3 accounts for the cointegration methods 

adopted in this chapter. Section 4 presents Monte Carlo evidence on the power and 
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size of the cointegration test statistics when the artificial data series exhibits 

threshold stationarity and when periodically collapsing bubbles are present in the 

data respectively. Data and empirical results are reported in section 5. The final 

section concludes the major findings. 

5.2 Related Literature and Empirical Issues of Unit Root Econometric Tests 

The unit root econometric methods in the context of bubble testing were first 

proposed by Hamilton and Whiteman (1985), Campbell and Shiller (1987), and 

Diba and Grossman (1988a). They argue that if an asset price series contains 

bubbles, it will grow faster than an integrated series. The unit root test will 

therefore show that this kind of price series will remain nonstationary even though 

it is taken a finite number of differences. Hamilton and Whiteman (1985) noted that 

the presence of bubbles during the Gennan hyperinflation in the 1920's would 

cause the price series to exhibit a higher order of integration than any of the 

underlying fundamentals in a finite sample. They found that both series for price 

and money contained two unit roots in the Gennan hyperinflation, and rejected the 

existence of bubbles. For the same reason, the residuals obtained from the 

projection of the asset price onto their underlying fundamentals will also be 

nonstationary, which implies that it would not be possible to establish a 
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cointegrated relationship between the asset price and its underlying fundamental 

process when a bubble exists. Meese (1986) found that over the period 1973-1982, 

the exchange rate of the deutschemark was less stationary than market 

fundamentals that included relative money supplies and relative real incomes. Then, 

the null hypothesis that the deutschemark, Japanese yen and British pound did not 

cointegrate with their corresponding fundamentals could not be rejected, signifying 

the possible existence of bubbles in currency markets. 

There are, however, several caveats that one may find in applying unit root 

econometric methods to detect bubbles. First of all, taking a finite number of 

differencing may make the explosive series appear stationary in small samples 

(Durlauf and Hooker, 1994, Hall, et al. 1999). Furthermore, as emphasized by 

Hamilton and Whiteman (1985) and, Diba and Grossman (1988), the 

non-cointegration between asset prices and observable fundamentals may equally 

result from the omission of nonstationary unobservable fundamentals. Under such 

a circumstance, model misspecification may be erroneously interpreted as evidence 

of bubbles. 

In addition, the simulation conducted by Meese (1986) shows that the 

nonlinear bursting bubbles of Blanchard and Watson (1982) may not exhibit 
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nonstationary behaviour discernible from the autocorrelation function. Later, 

Evans (1991) finds that the conventional cointegration tests result in erroneous 

rejection in favour of linearly stable alternatives when the simulated data series 

contain periodically collapsing bubbles that display nonlinear explosive properties. 

The size distortion is serious since the collapsing bubbles may appear in the form of 

a stable linear autoregressive process especially when the probability of the bubble 

collapse is high. 

Finally, there is a problem of observational equivalence between expected 

future changes in economic fundamentals and bubbles (Flood and Garber, 1980b, 

Hamilton, 1986). Assume that there are two regimes of money supply process, 

non-reform and reformed process. Expectation of reform refers to the possibility of 

a shifting from non-reform regime of money growth process to a reformed regime 

at some date. In periods prior to a given reform date, the expected inflation rate32 is 

equal to the rate conditional on the regime of non-reform money supply process 

plus a fraction of the "reform effect", which is defined as the difference between 

reformed process and non-reformed process of money supply in the period 

immediately following the reform (LaHaye, 1985). The value of the reform effect 

32 From the Cagan model (2.2), the rate of inflation is equivalent in value to the rate of currency 

depreciation through the PPP. 
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on the expected inflation rate is negative. Hence, while the expectation of monetary 

reform occurred toward the end of hyperinflations, the expected inflation rate 

would decline and the actual real money balance would increase. Furthermore, 

after the reform was actually implemented, the real money balance and the 

expected inflation rate would shift in response to the regime of reformed money 

supply process. As a result, the expectation and the subsequent implementation of 

monetary reforms might bring about regime shifting of real money balances, 

money supply process and velocity of circulation (Evans, 1986, Flood and Garber, 

1980a, Flood and Hodrick, 1986). 33 At the empirical level, the regime-switching 

behaviours of these time series variables may lead to nonlinear error-correcting 

dynamics in a cointegrated system. 34 To respond to this problem, the common 

practice in the literature as mentioned in the last chapter has been to truncate the 

final months of hyperinflations during which the expectations of monetary reform 

began to take effect (for instance, Casella, 1989, Flood and Garber, 1980b, Engsted, 

1993, 1996, Hooker, 2000, Woo, et al. 2003). However, the existence of bubble 

33 In addition to the issue of monetary regime changes, asynunetric intervention rules, money 

financing of perpetual government deficits, and the presence of transaction costs are other possible 

economic justifications for non-linearity in a cointegrated system (Pippenger and Goering, 1993, 

Peel and Speight, 1994, and Balke and Fomby, 1997). 

34 The existence of nonlinear disequilibrium error will lead to nonlinear adjustment in the 

error-correcting system (Balke and Fomby, 1997 and Granger and Siklos, 2001). 
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during the truncated observations cannot be precluded at a prior. 

This chapter attempts to circumvent the above problems of bubble tests by 

employing an alternative bubble testing strategy. In particular, I propose to apply a 

sequential cointegration-testing procedure, as suggested by Engsted (1993), to 

handle the problem of model misspecification. By conducting cointegration 

analyses between the real money balance and expected price change, and 

subsequently between the real money balance and the money growth rate, Engsted 

(1993) argues that the existence of a bubble can be separated from the model 

misspecification arising from omitted non-stationary fundamentals. In applying 

this testing procedure, however, the econometric methodology chosen must be 

robust to the presence of both a nonlinear dynamic process and a stochastic bubble 

in order to avoid producing misleading cointegration results. In light of this, I 

therefore suggest adopting the threshold autoregressive (TAR) unit root method of 

Caner and Hansen (2001), which is designed to simultaneously test for unit root 

and threshold nonlinearity so as to make it possible to distinguish threshold 

stationarity from nonstationarity. The threshold cointegration methodology is 

expected to have superior power to reject the null hypothesis of noncointegration 
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when the series under study are subject to nonlinear regime-switching behaviors. 35 

Thus, the existence of a nonlinear process in the residuals of the money demand 

models, which results from the agents' expectation of changes in market 

fundamentals that are not observed by econometricians, will probably not be 

identified as a nonstationary bubble path. Furthermore, since a stochastic bubble 

can exhibit both nonstationary and stationary patterns during different phases of its 

data generation process (Funke, et aI., 1994), the ability of the TAR method to 

separate the series under study into different regimes makes it more likely to 

identify the nonstationary dynamics of the collapsing bubbles in at least one regime. 

Thus, the use of the TAR method in bubble detection is expected to produce less 

serious size distortion than would the conventional tests. In order to investigate the 

suitability ofthe TAR method for bubble detection, I compare, by means of Monte 

Carlo experimentation, the relative empirical power and size performances of the 

TAR method with those of some other cointegration tests that do not allow for 

mUltiple regime shifts III the data generation process. I have chosen the 

35 When the nonlinearity of the data generating process is deterministic at known dates, it is suggested that the 

effects of deterministic shifts be captured by the inclusion of an appropriate set of intervention dummies in the 

DF regression or vector error correction model (VECM). For instance, Woo (1999) employed the bootstrapped 

algorithm of van Giersbergen (1996) to generate bootstrapped critical values of johansen's (\ 995) likelihood 

ratio statistics when intercept dummies were added to the V AR model to capture the changes in parities of the 

ERM currencies during 19805 and 19905. 
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conventional residual-based Augmented Dickey-Fuller (ADF) and the 

Phillips-Ouliaris (1990) Z statistics, as well as the 1m's (1996, 2001) 

residuals-augmented least square augmented Dickey-Fuller (RALS-ADF) t 

statistic as comparison tests. The ADF and the class of Z statistics are among the 

most popular co integration tests that have been used in the literature. 1m's (1996, 

2001) method was adopted by Taylor and Peel (1998) for price bubble tests in the 

US stock market and from the simulation study of Taylor and Peel (1998), the 

RALS-ADF test has favourable power and size performance in detecting price 

bubbles. 

5.3 Econometric Testing Procedure and Methodology 

I adopt the stochastic version ofthe Cagan models under rational expectations 

in this chapter that are the same as those described in Chapter Two. For expositional 

convenience, I re-write some of the equations in chapter two as necessary. Let's 

re-write the Cagan models under rational expectations for 1t],/ and 1t 2,/ as follows: 

(5.1) 

(5.2) 
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where u l " and u2,t capture the model misspecification components in the exact 

Cagan models (4.1) and (4.2) respectively. 

By defining the rational expectation forecasting errors as 'tlj,,+1 = 6 

'It . - E (6 'It. ) which are assumed to be serially uncorrelated, Eqs.(5.1) and 
J,I+I, J,I+I ' 

(5.2) can be re-written as: 

M, -'It j,' = a j + ~ jt1.'It },,+I + ~j,,; j = 1, 2, (5.3) 

For notional convenience, I eliminate the subscriptj in subsequent equations. 

Re-arranging Eq. (5.1) and (5.2) in terms of 'It, and by recursively substituting 

forward for E,(1rI+I+I) and using the law of iterated expectations, I obtain: 

1 '" ( !3 )' .~ !3 )'+1 'It, =-a.+--L -- E,(M'+I-u'+I)+b -- E,('ltI+I+i ) (5.4) 
1 -!3 i~O !3 - 1 1-+", !3 - 1 

Imposing the non-bubble transversality condition, Fm -~- E, ('It 1+1+;) = 0, and ( )

i+1 

,-+'" !3- 1 

re-arranging terms yield: 
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The further re-arrangement of terms in Eq.(5.5) gives: 

(M, -7t,)=a+J3M1, +(J3-1)~(J3~1}E,(~2M'+i)+(I~J3)~(J3~Ji E,(U'+i)· 

(5.6) 

Engsted (1993) proposes a set of sequential testing procedures to detect the 

presence of B,. The procedure is conducted by comparing the cointegrating 

relationship between M, -7t, and ~7tt+1 in Eq.(5.3) as well as between M, - 7t, 

and ~, in Eq.(5.6). The Cagan models given by Eq.(5.3) represent a money 

market equilibrium condition that admits a general solution. Therefore, provided 

that ", is stationary, the Cagan models cannot be rejected even if B, exists.36 On 

the other hand, the non-bubble transversality condition is imposed upon Eq.(S.6) 

but not upon Eq.(S.3). Hence, Eq.(S.6) represents a fundamental solution only, 

which can be rejected if B, is present in the price or exchange rate data. 37 

Consequently, three possible outcomes may arise from the tests of these two 

cointegrating relationships. First of all, if M, - 7t, cointegrates both ~7tt+1 and 

36 It should be noted that the rational expectation forecasting error, '11).1+1 ' is a white noise by 

definition. 

37 The idea of Engsted (1993) is similar to that of West (1987a), which compares the differences of 

parameters obtained from two sets of equations rather than the differences in their cointegrating 

properties. 
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[).M t' it implies that "t is 1(0) and the presence of B, is less likely to occur. 

Moreover, if M, -1t t only cointegrates with Ll1tt+l but not with LlM t , it indicates 

that "t is 1(0) and B t may be present. However, if neither Ll1tt+l nor LlM t 

cointegrates with M - 1t it indicates the fundamental failure of the Cagan 
t t' 

models due to the presence of a nonstationary ", . Therefore, this testing procedure 

can distinguish the existence of bubbles from the model misspecification caused by 

omitted nonstationary fundamentals. For further investigating whether B, exists in 

the final case, the model must have to be re-specified so that the omitted 

nonstationary fundamental variables are included in the model. 

One econometric method I choose to conduct the above cointegration-testing 

procedure in this chapter is the residuals-based threshold cointegration test. By 

applying the two-regime TAR unit root method of Caner and Hansen (2001) to the 

OLS estimated residuals of Eq.(5.3) and (5.6),38 it can test for cointegration and 

threshold nonlinearity simultaneously, which is considered to be ideal for threshold 

cointegration analysis by Balke and Fomby (1997). The TAR regression can be 

represented by the following equation: 

38 As pointed out by Balke and Fomby (1997), the OLS estimates of a cointegration vector remain 

superconsistency under certain conditions even though the disequilibrium error exhibits threshold 

nonlinearity. Also, it is assumed to be constant in the threshold cointegration framework. 
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(5.7) 

where Y, denotes the OLS residual of either Eq.(5.3) or (5.6); SI_I = (Y,_pl, t, 

t.Y,_1 , ... , t.Y,_k )' is a vector of regressors in which t denotes a linear time trend, O; 

= (Pi' C i' bi' 'l'U-I' ... ' 'I'/,t-k)' represents the slope parameters associated with 

the corresponding regressors of SI_I. /(.) is an indicator function, Z,_I is the 

observable threshold variable, 1...0 is a threshold value and e, is an i.i.d. error. In 

practice, there are two possible ways to specify Z'_I' as either Yt-I - Yt-m-I or Yt-m-

Yt-m-I. which are known as long difference and lagged difference thresholds, 

respectively. Although the particular specification for the threshold variable is not 

essential, Zt-l must be strictly stationary and ergodic. Hence, the long difference 

or lagged difference threshold specification is preferred to the lagged level of Yt 

becauseYt is 1(1) under the nUll.39 The OLS estimate of AD is found by minimizing 

0
2(1...0) in the unrestricted Eq.(5.7). 

The sufficient conditions for the convergence of Yt in a two regime threshold 

model require -2 < PI < 0 for i= 1,2 (Enders and Granger, 1998).40 Caner and 

Hansen (2001) propose using a class of RT Wald statistics, which comprises the 

39 Eq. (5.7) is alternatively known as momentum TAR model, first introduced by Enders and 

Granger (1998), in which b.Yt-h rather thanYt_h is used as the threshold value. 

40 As given in Chan and Tong (1985), there are less stringent conditions for stability of a first-order 

threshold model. 
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one-sided (Rn) and two-sided (R2T) Wald statistics, which are expressed as t]2I(p] 

< 0) + t22I(p2 < 0) and t12 + tl respectively, to test for the null hypothesis that PI = 

P2 = o. The Rn and R2T Wald statistics can lead to a rejection of the null hypothesis 

when Pi< 0 and Pi *0, respectively, for at least one i = 1,2. The distributions of 

the Rr statistics are nonstandard and have to be approximated by bootstrapping. In 

practice, there are two methods to carry out the bootstrapping. The first one is the 

unidentified bootstrap that assumes no threshold effects on parameters in ej under 

the null and the second is the identified bootstrap that imposes the restriction of 

threshold effects. Caner and Hansen (2001), however, recommends the use of the 

unidentified bootstrap to calculate the bootstrap p-values because the size 

distortions of unit root test obtained by simulation from the identified bootstrap 

method are substantially large. Other than the joint test statistics, there are two 

individual t-ratio statistics, tl and t2, for PI and P2 respectively. Nevertheless, as 

found in the simulation study of Caner and Hansen (2001), the power of the t-ratio 

statistics associated with the lower absolute value of PI will substantially 

deteriorate with an increase in I PI - P2 1 and I cI - c2 1. It is also found that even if the 

series of y, is stationary in two regimes, the powers of the individual t-ratio 

statistics are no larger than those of the RT Wald statistics. Following the lines of 

argument by Granger and Siklos (2001), the RT Wald statistics are still useful when 
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the point estimates for Pi fall within the ranges of -2 and 0, V i, and especially 

when there are threshold effects in coefficients.4
] The evidence for the existence of 

nonstationary roots in two regimes is rejected when the RT Wald statistics are 

significant with all point estimates of PI and P2 lying between -2 and O. 

On the other hand, the existence of threshold effects can be tested under the 

null hypothesis of no threshold effect, i.e., 8] = 8 2• The Wald statistics, WT, for 

examining this restriction is given by T (a~ / a 2
( "-0) - 1), where T refers to the 

number of usable observation and a~ IS the residual variances from OLS 

estimation of the null linear model. The asymptotic distribution of WT depends 

upon the presence of nonstationarity in Yt. Hence, Caner and Hansen (2001) 

suggests the unconstrained and constrained bootstrapping approximations to the 

asymptotic distribution ofWT; the former based upon the unrestrictive estimates of 

parameters in Eq. (5.7) and the latter enforcing the restriction ofa unit root. Also, 

the Wald statistics can be implemented to test for the equality of individual 

coefficients of 8 across regimes. 

41 Enders and Siklos (200 I) fmd that the F statistic for the null hypothesis of non-cointegration in 

two regimes of a M-TAR model has more power than the individual t-ratio (t-rnax and t-min) 

statistics in simulation experiments. Hence, they recommend the use of F statistic for conducting a 

threshold cointegration test in cases where the point estimates of p; imply convergence for all i. 
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The other cointegration tests considered for comparing with the TAR RT 

statistics include the conventional ADF and the Phillips-Ouliaris (1990) Z statistics, 

as well as the 1m's (1996, 2001) RALS-ADF t statistic. While the ADF t statistic 

corrects for serial correlation by adding lagged terms in the Dickey-Fuller (DF) 

regression (Said and Dickey, 1984), the cointegrating Za and Zt statistics of 

Phillips and Ouliaris (1990) employ the semi-parametric method to asymptotically 

eliminate the bias caused by the weakly dependent and heterogeneously distributed 

innovations of the DF regression. Consider the standard DF regression for the OLS 

residual y, : 

y, =OY'_I +e"" {e",} - i.i.d. (0, (1;,>. (5.8) 

The Z a and Zt statistics are given as: 

A T 

Za= T(o-I)-(s2 -S;)(2r2 LY;_I)-\ (5.9) 
,=\ 

(5.10) 

2 _ 1· -IE["T]2 2 2 • . f 2 2 cr - ImT -+00 T 4.J'=1 e t • s. and s are consIstent estImates 0 cr e. and cr 
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T 

respectively. The term (S2 -s~)(T-22>;_lr1 IS referred to as the serial 
1=1 

correlation correction factor. As argued by Perron and Ng (1996), the SIze 

distortion will be serious in the semiparametric procedure of the unit root tests 

when there are innovations of the DF regression with a moving average root close 

On the other hand, the RALS-ADF t statistic introduced by 1m (1996, 2001), is 

a variant of the Hansen's (1995) covariate ADF (CADF) statistic, which is 

developed by including correlated stationary covariates into the ADF regression 

with an aim to increase the power of the ADF unit root test. To illustrate the 

working ofCADF, let's suppose that there exists an m-vector X"~ which is related to 

the series, Yt, that is, the OLS residual ofEq.(5.3) or (5.6). Further suppose that X"~ is 

1(1) and its differenced series, t::.Xt, is therefore 1(0). f).Xt is known as stationary 

covariates of the following CADF regression: 

(5.11) 

42 Haldrup (1994 and 1998) recognize that the size distortion for the semiparametric double unit root 

tests is serious in the presence of large negative MA errors in the DF regression. Appendix 5.1 

presents a work of simulation study to examine the size distortion of the semiparametric double unit 

root tests. 
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polynomial allowing for both leads and lags of the deviation of the covariates from 

their expected means. The values of p, ql and q2 are chosen to make e, white noise. 

For conducting the analysis, it is useful to define a variable, v" which equals 

e(L)'(~, - ux ) + e,. Using this variable, I can further define the long-run squared 

correlation between VI and e" denoted p2, as a~. I( a; a;), where a;. = f (v,e H ), 
k=O 

<1; = fe,e'-k and <1; = fV,V'_k' and the variance ratio, denoted R2, as a;la;. 
k=O k=O 

The value of p 2 lies between 0 and I, which measures the relative contribution of 

~, to V,. As p2 approaches zero (unity), ~, tends to explain all (none of) the 

movement in V,. Hence, the inclusion of Ax, in Eq.(5.11) leads to a smaller <1~, 

which therefore increases the power of the ADF test statistic to reject the false null 

hypothesis that 0 = O. The asymptotic critical values of the CADF statistic in the 

context of unit root testing are dependent upon the values of p2 and are obtained in 

Hansen (1995) from simulation. Using the same number of Monte Carlo 

replications with the same length of sample as in Hansen (1995), the asymptotic 

critical values of the co integrating CADF statistic are simulated and are reported in 

Appendix 5.2. The asymptotic critical values are obtained from applying the CADF 

to an OLS estimated residual of a regression. From Appendix 5.2, the critical 

values for p2 = 1 are equal to those reported in Phillips and Ouliaris (1990). As the 
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values of p2 approach toward zero, the corresponding critical values (in absolute 

terms) become smaller. 

When the distribution of Vt exhibits strong skew and excess kurtosis, the 

standardized third central moment of Vt will differ from zero, i.e. E, (v: - cr~) = 

E [v (v 2 - cr 2)] "* ° and the standardized fourth central moment will exceed three, 
t t tv' 

i.e. E,(V,4 -3cr:) = E,[v,(v; -3cr!v,)] "* 0, respectively. Based on these 

observations, 1m (1996 and 2001) suggest that the appropriate choice of lu, be 

[(V ,
3 -30"~v,)' (V/ -O"~)']'. The tstatistic for 0= o is known as the RALS-ADF 

t-ratio statistic, which will the be more robust to the presence of skew and kurtosis 

in the distribution of the innovation term of the DF regression. The asymptotic 

critical values of the RALS-ADF and the CADF test statistics are the same with the 

2 same value of p . 

5.4. Monte Carlo Experiments 

In this section, I use Monte Carlo experiments to evaluate the power and size 

properties of the above cointegration methodologies in a finite sample. 

141 



5.4a. Power test 

To implement the power tests, 1 first need to generate an 1(0) cointegrating 

regression residual with a two-regime threshold nonlinearity, which can be 

obtained from the following data generating process oflength 45: 

p/ = 0.5 F, + y" (5.12a) 

Fo =Oand vl.t ~N(O,l), (5.l2b) 

(5.12c) 

be median of y, and e,~ N(O,I). Eq. (5.12a) represents a cointegrating regression 

andy, is the residual of the Eq. (5.12a) with threshold effects. The empirical power 

of the co integration tests is calculated by applying the test statistics to the estimated 

residuals, y" which are obtained from regressing p/ on F, using the OLS method. 

By specifying the threshold effects on y" 1 denote b..c = C2 - CI with 6.c being 

varying among {0,I,3}; moreover, 1 vary P2 among {-O.l, -0.3, -0.5, -0.7} when PI 

= -0.1, and vary P2 among {-0.05, -0.3, -0.5, -0.7} when PI = -0.3. Notice that the 

threshold effect is absent when 6. c = 0 and PI = P2. The powers ofthe TAR Rr tests 

are evaluated using the corresponding 5% bootstrapped critical values. On the other 

hand, the corresponding finite-sample 5% critical values of the cointegrating ADF 
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and Z statistics are obtained from Phillips and Ouliaris (1990), and the critical 

values of the cointegrating RALS-ADF test statistics are obtained from the 

simulated 20,000 draws of length 45 from two I( 1) processes for Ut and F t , and 

1\ 

applying the test statistics to the estimated residuals, U / ' from regressing p/ on Ft, 

where p/ is constructed as follows: 

p2 =Ft+ Ut / 
(5.12d) 

where Ut = Ut- I + v2,/' U 0 = 0 and v2,/ ~ NCO,!) 

In conducting the Monte Carlo study, the simulated series of p/ , p/ and F t 

are demeaned and detrended using the OLS method. For each cointegration test, 

1000 Monte Carlo replications were performed. From the results reported in Table 

5.1, the TAR RT statistics have the greatest powers among other test statistics across 

all parameterizations of PI and b. c. In addition, the power superiority of the TAR 

RT statistics over other cointegration tests in the simulation study remains 

unchanged even when there are no identified threshold effects, i.e. b. c = ° and PI = 

P2 = -0.1 or = -0.3. By comparison, the power of the cointegrating RALS-ADF test 

generally shrinks with an increase in b. c. Nevertheless, the RALS-ADF test still 

performs much better than the classes of ADF and Z tests, though its power is 

inferior to that of the TAR RT statistics especially whenb.c is large. On the other 
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hand, the class of ADF and Z statistics suffers noticeable power loss especially 

when t:.. c is different from zero.43 The performance of the ADF and Z, tests are 

somewhat better than that of the Za test. The rejection frequencies of Za fall to 

about the 5% nominal size in 13 of the total of 24 cases that I conducted in the 

experiment, and the rejection frequencies of the ADF and Z, are lower than 10% 

in about 12 of the 24 cases. 

[Table 5.1 to be inserted here] 

5.4b. Size test 

As pointed out by Evans (1991), the periodically collapsing bubbles may 

appear to be stationary as well as nonstationary (both integrated and explosive). 

This means that the statistical rejections of the noncointegration between asset 

prices and underlying fundamentals may be attributable to size distortion rather 

than the high power of the tests. Taylor and Peel (1998) thus argue that the 

co integration methods chosen for bubble testing must have a relatively small size 

distortion in accepting the non-cointegration null when the stochastic bubbles 

43 Likewise, Pippenger and Goering (1993) produced unfavourable conclusions on the power of 

standard DF statistics under the threshold process. 
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actually exist in the data.44 It is therefore necessary to assess the relative empirical 

sizes of the above cointegration test statistics while the Evans' (1991) periodically 

collapsing bubbles are present in the artificially generated data. The percentages of 

rejection frequencies for the size test are calculated in the same way as for the 

above power test, except the fact that y/ in Eq.(5.l2c) is now replaced by the 

collapsing bubble, B" with the same parameterization as given in Evans (1991) 

such that p/ = F, + B. 45 

Table 5.2 presents the findings for the empirical sizes of all the cointegration 

tests examined in the simulation experiment with different values of n, which 

denote the probability that the collapsing bubble will continue, as illustrated in 

Chapter Two. In general, the size distortions of the cointegration tests tend to 

increase with the frequency of bubble collapses. In particular, when the bubble 

process is almost deterministic with the value ofn approaching zero, the empirical 

sizes would become much smaller. More specifically, when the value ofn does not 

exceed 0.7, the classes of ADF and Z tests reject over 20%, and even up to about 

44 It is different from Bohl (2003), which focuses upon the asymmetric adjustment of the M-TAR 

model proposed by Enders and Siklos (200 I) in detecting periodically collapsing bubbles in the US 

stock market. 

45 The specification and the parameterisation of the Evans' (1991) periodically collapsing bubbles 

were illustrated as Eq. (2.32) in Chapter Two. 
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80%. Therefore, the collapsing property of the bubble process makes it difficult for 

these tests to identify a nonstationary root contained in the artificial series. When 

the value ofD rises to 0.9 or above, the empirical rejection frequencies of the ADF 

and the Z tests are found to fall below the 5% nominal size. As for the TAR RT tests, 

they perform much better than the ADF and Z tests, especially when the simulated 

bubble process exhibits a high frequency of periodic collapses. The TAR RT tests 

reject no more than 14.5% for all values ofrr. Only in cases where the value of 0 is 

equal to 0.9 or higher, are the rejection rates of the TAR RT statistics higher than 

those of the ADF and Z statistics, but the empirical sizes of the TAR RT statistics 

converges toward the 5% nominal level. As mentioned above, the threshold model 

that is designed to separate the artificial data series into two separate regimes makes 

it more capable of identifying the non-stationary dynamics of the collapsing 

bubbles in at least one regime. In the simulation experiment, the number of times 

that an explosive root is found in anyone regime ranges from about 56% to about 

72% (unreported here) when the value ofrr rises from 0.2 to 0.95. Moreover, the 

cointegrating RALS-ADF test performs the best in the size test. The rejection 

frequencies of the RALS-ADF test are higher than those of the TAR RT tests when 

D is not greater than 0.5, they however fall sharply to be the lowest as 0 exceed 0.5. 

The rejection rates of the RALS-ADF test is even under-sized, that is, lower than 
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the 5% nominal size, while the value of n is greater than 0.625. Such findings of 

favourable size performance for the RALS-ADF test are similar to those of Taylor 

and Peel (1998) with a larger sample size. As mentioned in Section 4.2, the 

existence of bursting bubbles may cause large kurtosis and excessive skewness in 

the distribution of price changes. The RALS-ADF test based upon an estimator 

originally designed to be robust to the presence of skewness and kurtosis, as argued 

by Taylor and Peel (1998), may be less biased toward erroneous rejection of 

noncointegration when the periodically bursting bubbles are present under the null. 

To sum up, the power of the TAR RT tests is the highest among all the tests for 

all parameterizations of Pi and b. c under the threshold stationary processes in the 

finite sample that I have simulated. The power of the RALS-ADF test is reasonably 

high enough to detect the nonlinear dynamics with the inclusion of stationary 

covariates, although the RALS-ADF statistic is a linear cointegration test. On the 

other hand, in the presence of periodically collapsing bubbles, all statistics under 

study may falsely reject the null of noncointegration when n is low. As n is 

lower than 0.5, the empirical sizes for the TAR RT tests are the lowest. As n 

increases, the RALS-ADF test is more likely to accept the null of non co integration 

than other cointegration test statistics. 
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[Table 5.2 to be inserted here] 

5.5 Estimation Periods and Empirical Results 

My sampled data for the three European hyperinflations in this chapter are 

extended to cover the periods of monetary reforms that are truncated in literature 

such as Engsted (1993, 1994 and 1996) and Taylor (1991). In other words, the 

observation periods of the data in this chapter are the same as those used in Chapter 

Three for the structural time series analysis. 

5.5.1 Price bubbles 

I first use the OLS method to estimate PI by regressing M t - 7t 1•t onto 

Ll7t 1,l+l in Eq. (5.3), and by regressing M t - 7tl,t onto LlMt in Eq. (5.6). I then 

implement the conventional ADF and Z tests of bubble existence and report all of 

the results in Table 5.3. From this I learn that all the values of PI ofEqs (5.3) and 

(5.6) are found to have the correct negative sign. In addition, the cointegrating ADF 

and Z tests could not identify any cointegrated relationships between M t - 7t 1,t and 

Ll7t 1,t+1 or between M t - 7t 1,t and 6.Mt for the three countries under study. In other 

words, the classes of ADF and Z tests reject the validity of the Cagan model for the 

sampled countries. 
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[Table 5.3 to be inserted here] 

However, from the results of the cointegrating RALS-ADF tests presented in 

Table 5.4, the RALS-ADF test statistics are all significant, thereby indicating that 

the residuals, u
lt 

ofEq.(5.3) and u lt ofEq.(5.6) are both stationary. The empirical 

findings are interpreted against the evidence of price bubbles in all countries under 

study. In addition, the values of p2 vary from 0.11 to 0.77. Therefore, the power of 

the RALS-ADF test is likely to be increased by the inclusion of the stationary 

covariates in the ADF regressions. 

[Table 5.4 to be inserted here] 

To extend the analysis, I repeat the bubble testing exercise but this time using 

the residual-based threshold cointegration tests, which take into account a threshold 

process with multiple regime shifts in the data series. The empirical results of this 

test are reported in Table 5.5, which can be compared with those ofthe ADF, Z, and 

RALS-ADF tests. As shown in Table 5.5, the point estimates of PI and P2 for the 

regression of M t -1t I ,t on Ll1tI,1+1 , are all negative with significant Rr statistics. 

Hence, the existence of nonstationary roots across two regimes in the money 

demand equilibrium errors, U It , in Eq. (5.3) for the sample countries, are ruled out. 
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In addition, the significance of the WT statistics indicates that the equilibrium errors, 

"It' exhibit threshold nonlinearity in all three countries, which are caused by the 

regime shifting of one or more elements in Eli across their corresponding thresholds. 

On the other hand, when the threshold cointegration tests are applied on the 

regression of M, -1tI,' on AM" I obtain negative estimates of PI and P2 as well 

as significant RT statistics, thereby implying that the residuals of Eq. (5.6) are 

stationary for all the sampled countries. Therefore, given the fact that the 

cointegrating relationships can be established for both Eqs (5.3) and (5.6), I do not 

find any evidence of price bubbles in the data for all of the sampled hyperinflations. 

It is also noted that the W T statistics for the joint threshold effects in the residuals of 

Eq. (5.6) are significant for all the countries except Poland, where only W(t) is 

significant at the 10% level. Hence, the evidence of threshold nonlinearity cannot 

be rejected for the residuals of both Eqs (5.3) and (5.6). 

[Table 5.5 to be inserted here] 

From the above empirical results, I find that the TAR RT tests and the 

RALS-ADF test consistently reject the null of non-cointegration, while the ADF 

and Z tests accept the null. Based upon the finite-sampled power properties of the 

cointegration tests considered in my simulation experiment, the frequent 
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acceptance of the noncointegration null for the classes of the ADF and Z tests are 

likely to be caused by their low power characteristics in handling data series that 

possibly display threshold nonlinear dynamics with multiple regime shifts. It is 

important to note that when the final few observations of three hyperinflationary 

episodes are truncated, Engsted (1993,1994) and Taylor (1991) could find evidence 

of cointegrating relationships in Eqs.(5.3) or (5.6). Further, the Monte Carlo 

findings of my size test show that the TAR RT tests and the RALS-ADF test are 

more likely to accept the true null of non-co integration than the classes of ADF and 

Z tests when the periodically cOllapsing bubbles are actually present. Consequently, 

my empirical results of the tests do not point to the existence of collapsing bubbles. 

5.5.2 Exchange rate bubble 

I now tum to the exchange rate bubbles testing. The results of the ADF and Z 

tests are presented in Table 5.6 The OLS estimates of P2 are all correctly signed. 

The ADF and Z test statistics provide evidence of cointegration between M, - 7t 2., 

and D.7t 2.,+1 for Germany only. Moreover, the cointegration relationships between 

M, -7t 2., and 1lM, for all three countries are rejected. Therefore, the classes of the 

ADF and Z statistics provide some empirical evidence of exchange rate bubbles in 

the German data. 
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[Table 5.6 to be inserted here] 

However, it should be noted that the ADF and Z tests would be biased towards 

the null of noncointegration when the data are subject to regime changes. To 

investigate further, I apply the co integrating RALS-ADF test statistics to the 

residuals ofEqs (5.3) and (5.6) again. I report the results of the test in Table 5.7, 

which cannot reject the validity of the Cagan model and can provide evidence 

against exchange rate bubbles in all sampled countries. Note that the values of p2 

vary from 0.17 to 0.67, indicating an increase in power of the test that is made 

possible by the inclusion of stationary covariates. 

[Table 5.7 to be inserted here) 

Finally, I apply the TAR unit root tests to the residuals ofEq. (5.3) and Eq. (5.6) 

with the results presented in Table 5.8. I find that the point estimates of PI and P2 

for the residuals ofEq. (5.3) are all negative and the RT statistics are significant. In 

addition, the WT statistics are significant except in the case of Poland, indicating 

that "2t exhibits threshold nonlinearity only for Hungary and Germany. Based on 

the individual Wald statistics, I observe that the nonlinearity in the data for Hungary 

is caused by the asymmetric values of PI and P2' whereas the nonlinear dynamics 
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for Germany are produced by the asymmetric changes in all the elements in Eli .. For 

the estimation of Eq. (5.6), the results suggest that M, -7t 2" and 1lM, are 

co integrated for all the sampled countries as indicated by the negative values of PI 

and P2 as well as the significance of the RT statistics. The dynamics of the residuals 

in the regression (5.6) are found to be nonlinear in the cases of Germany and 

Hungary, as shown by the asymmetric values of PI and P2 • In the case of Poland, 

however, the joint and individual hypotheses of threshold effects for the residuals 

of Eq. (5.6) are all rejected.
46 

In conclusion, since the cointegrating relationships 

are established for Eqs (5.3) and (5.6), these results do not suggest any evidence of 

exchange rate bubbles in the data for the sampled hyperinflations. Also, the 

dynamics of the equilibrium errors "I' ofEq. (5.3) and the residuals ofEq. (5.6), 

generally display threshold nonlinearity in the data for all the sampled countries. 

[Table 5.8 to be inserted here] 

The findings of threshold effects in the data series leads me to conclude that 

the frequent non-rejection of the ADF and Ztests is probably attributable to the low 

46 As shown in the above Monte Carlo findings, the powers of the TAR RT statistics are still the 

highest in a small sample even under unidentified threshold effects. 
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power property of these tests under nonlinear processes with multiple shifts. 

Similar to the case of the price bubble tests, the results of the threshold 

cointegration tests corroborate those of the RALS-ADF test. It is found that when 

the final few observations of the German data were truncated, Engsted (1996) could 

reject the evidence of the exchange rate bubble in Germany. Moreover, the overall 

size distortion of the TAR RT tests and the RALS-ADF test from the Monte Carlo 

simulation are found to be smaller than that of the class of the ADF and Z tests. 

Thus, the empirical results that the null of noncointegration is rej ected by the TAR 

RT tests and the RALS-ADF test while it is frequently accepted by the ADF and Z 

tests can be interpreted as evidence that contradicts the existence of collapsing 

bubbles in the data for all the three countries. 

5.5 Concluding Remarks 

In order to overcome the problems of identifying bubbles caused by 

anticipation of changes in fundamentals, the common practice is to concentrate the 

empirical tests on pre-reform samples. Using longer sample horizons, I attempt to 

employ a threshold cointegration method together with some linear cointegration 

test statistics for the further investigation of bubbles in this chapter. From the 

findings of the Monte Carlo study, the power of the TAR RT tests is the highest in a 
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finite sample no matter whether there are threshold processes or not. The 

RALS-ADF test gains substantial power improvement under the threshold 

processes by the inclusion of stationary covariates in the ADF regression in finite 

samples. The empirical results of the TAR RT concur with those of the RALS-ADF 

test statistics and support the evidence of cointegrating relationships between real 

money balance and expected inflation rate (or expected depreciation rate) as well as 

real money balance and money growth rate for all countries of interest. Given the 

fact that the orthogonality tests in Chapter Four reject the evidence of bubbles on 

the pre-reform observations, the evidence against the existence of bubbles in 

Chapter Five conclude that bubbles cannot be found on periods after the monetary 

reforms as well. Furthermore, the evidence of threshold nonlinear processes cannot 

be rejected in almost all cases for the countries under study. Hence, it is found that 

the low power of the conventional cointegration tests in small samples under 

nonlinear process is likely to produce a spurious conclusion of bubbles. Moreover, 

the Monte Carlo findings show that in the presence of Evans' (1991) bubbles, the 

TAR RT tests and the RALS-ADF test are more likely to accept the null of 

noncointegration than the classes of ADF and Z statistics. The above empirical 

results are obviously not consistent with the evidence for collapsing bubbles in the 

hyperinflationary data for Germany, Hungary and Poland in the inter-war period. 
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However, the co integration-testing methodology has its own drawbacks for 

bubble testing. For example, if an explosive bubble exists and the money supply is 

endogenous, then the money supply and the price series may contain a common 

explosive component. Real money balance may be stationary but the inflation rate, 

the currency depreciation rate or the money growth is nonstationary. Consequently, 

it may lead to misleading results. Given the fact that every econometric 

methodology has its own limitations as well as advantages, it is then suggested to 

adopt more than one method for the empirical study of bubbles. The orthogonality 

methodology and the cointegration methodology should be complementary for 

bubble testing. In fact, the two methodologies have their own specialties. The 

former can exploit the high-frequency properties of the data whereas the latter 

exploits the low-frequency properties (Engsted, 2003). 

On the other hand, the switching processes so far have been restricted to 

depend upon observable threshold values. Actually, threshold and Markov models 

can be observationally equivalent (Carrasco, 2002). Thus, it is required to further 

examine the evidence of bubbles when the regime-switching process of time series 

variables is assumed to depend on unobservable Markov states. In the next chapter, 

I carry out a Markov switching cointegration analysis to achieve the objective. 
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------ ---- - -------e- -- --.. ------ ----. ------ -e----- -- ------- ---. - -- ----- - -

PI =-0.1 I1c=O I1c=1 I1c=3 

pz = -0.10 -0.30 -0.50 -0.70 -0.10 -0.30 -0.50 -0.70 -0.10 -0.30 -0.50 -0.70 

RIT 30.20 45.90 72.80 91.00 30.00 35.50 52.70 75.60 29.00 29.60 35.00 41.30 

RZT 29.30 44.30 70.50 90.00 29.30 33.70 50.80 74.30 28.10 29.00 33.30 40.20 

RALS-ADF 25.60 38.60 53.20 66.00 20.20 21.00 24.60 33.40 24.00 20.40 20.50 18.70 

ADF 9.10 15.30 29.70 48.00 5.70 5.50 7.40 15.90 8.80 6.40 6.80 5.60 

Z" 5.80 10.40 21.60 40.30 2.50 2.20 4.50 11.20 4.80 3.20 3.20 3.20 

Z, 10.30 18.10 33.70 54.40 7.00 7.30 10.00 18.10 9.90 7.40 8.00 7.00 

PI =-0.3 I1c=O I1c=l I1c=3 

P z = -0.050 -0.30 -0.50 -0.70 -0.050 -0.30 -0.50 -0.70 -0.050 -0.30 -0.50 -0.70 

RIT 47.40 56.70 74.20 86.90 64.10 67.30 76.00 87.10 61.10 68.70 76.40 83.80 

R2T 44.10 54.90 72.30 86.00 62.80 66.10 74.00 85.50 59.30 67.60 75.30 82.20 

RALS-ADF 37.90 52.70 70.70 83.00 23.40 27.40 36.00 49.10 35.80 28.30 26.60 25.20 

ADF 12.20 30.00 50.00 72.40 5.80 7.10 12.70 26.40 17.40 4.80 3.90 4.80 

Z" 7.50 21.30 38.90 63.00 3.30 4.70 9.50 20.00 9.30 2.70 1.90 2.30 

Z, 14.50 34.00 55.40 76.20 7.10 9.50 17.20 32.30 19.80 6.10 5.90 6.90 
Notes: 
1. Each entry is the percentage of instances in which the null hypothesis was correctly rejected. 
2. The Monte Carlo study is based on 1,000 replications for each case, with the finite sample of 45. 
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Table 5.2. Percentage of rejection frequencies of non-cointegration in the 

presence of periodically collapsing bubbles 
n RJT R2T RALS-ADF ADF Za Zt 

0.20 12.17 11.50 46.10 49.90 48.80 52.60 
0.40 11.87 11.63 43.60 71.80 72.50 73.70 

0.50 13.60 13.30 40.70 78.10 75.80 79.50 

0.60 14.43 14.14 9.50 72.40 55.60 76.20 

0.625 14.14 13.71 5.60 65.10 45.10 69.90 

0.65 12.29 11.86 3.30 56.00 36.80 62.00 

0.70 12.70 12.60 0.80 37.00 21.70 42.60 

0.80 7.80 7.90 0.30 10.10 4.90 13.60 
0.90 4.00 4.00 0.00 2.10 1.50 2.50 
0.95 4.30 4.20 0.80 1.20 1.20 1.50 

Notes: 

1. Each entry is the percentage of instances in which the null hypothesis was incorrectly 

rejected. 

2. The Monte Carlo study is based on 1000 replications for each case, with the finite sample 

of45. 
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Table 5.3. Cointegrating ADF and Z tests for price bubbles 
Country UI PI ADF Za Zt 

Cointegration test for the regression of M, - 1tI" on Ll1t I ,t+1 

Gennany 8,3271 -0.6871 -2.1934 -18.5794 -2.0782 

Hungary 0.8043 -1.0091 -1.9475 -8.8528 -2.0928 

Poland 0.9500 -1.0635 -3.5561 -17.6590 -3,6762 

Co integration test for the regression of M, -1t I " on LlM, 

Gennany 8.3731 -0.9652 -3.4910 -20.8454 -3.5395 

Hungary 1.1051 -3.3883 -3.0770 -9.1919 -2.1644 

Poland 1.1947 -2.003 -3.2723 -13.8429 -2.7591 

Notes: 

1. For conducting the ADF and Z tests the data are demeaned and detrended by using the 

OLSmethod. 

2. The significance of the ADF and Z tests are based upon the critical values from Phillips 

and Ouliaris (1990). 

3. */**/*** denote significance at the 1 %/5%/1 0% levels, respectively. 

Table 5.4. Cointegrating RALS-ADF test for price bubbles 
Country RALS-ADF[P] t( LlX",) p2 Rl Q(l) Q(6) 

Cointegration test for the regression of M, - 1t1,t on Ll'1t t .1+1 

Germany -3.6496[3]** (2.2286**,6.9937*) 0.2039 0.2153 0.7590 1.7591 

Hungary -3.5117[3]* (-6.4991 *, -3.5032*) 0.1087 0.1354 1.3321 5.1044 

Poland -4.8816[0]* (6.0132*) 0.5861 0.5157 0.2790 2.0401 

Cointegration test for the regression of M, -1t I ., on LlM, 

Germany -3.8575[3]** (-2.3619**,4.7527*) 0.3467 0.4129 0.1467 2.7035 

Hungary -5.4648[3]* (1.3867, -3.6878*) 0.5495 0.2449 0.3422 2.7865 

Poland -3.8267[1]** (-0.0582, 1.5024) 0.7751 0,8883 0.0434 2.9459 

Notes: 

1. The significance of the RALS-ADF tests depends upon the simulated finite-sample 

critical values. The asymptotic critical values reported in appendix 4.1, however, lead to 

the same results of significance. 

2. R2 refers to the variance ratio defined in Hansen (1995). 

3. t( LlX",) denotes t statistics for the coefficients of stationary covariates included in the 

ADF regression. 

4. Q(k) refers to Ljung-Box Q-statistics with degrees of freedom = k. 

5. */**/***Denote significance at the 1 %/5%/1 0% levels, respectively. 
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Table 5.5. Threshold Cointegration test of price bubbles 

Threshold cointegration test statistics for the regression of M t -1t I ,t on ~1tI,1+1 

Country A[m] R2T RIT PI P2 Wr# Wee) Wet) W(Yt_l) 

Germany -0.061[4] 85.8* 85,8* -1.0200 -1.6900 130* 2.8700 18.2** 4.39* 
(0.0092) (0.0000) (0.0000) (0.8370) (0.0464) (0.0020) 

[0.1090] 

6.5700 I Hungary 0.055[1 ] 22.0*** 22.0*** -0.9290 -0.2710 25.3 ** 12.2*** 19.1 * 
(0.0631) (0.0622) (0.0226) (0.0541) (0.0092) (0.1160) I 

[0.0319] I 

Poland -0.266[2] 21.8** 21.8** -0.8300 -0.6540 22.4** 4.9800 10.8** 0.2850 
(0.0502) (0.0485) (0.0339) (0.3490) (0,0519) (0.7520) 

rO.033'fl 
Threshold cointegration test statistics for the regression of M t -1t I ,t on AMt 

Country A[m] R2T RIT PI P2 WT# Wee) Wet) W(Yt_l) 
,----

Germany 0.087[1] 32.7** 32.7** -0.1380 -1.2800 59.4** 28.9** 31.9** 16.4** 
(0.0484) (0.0482) (0.0194) (0.0374) (0.0267) (0.0486) 

[0.02641 
, 

- -- -----

Hungary 0.162[4] 28.3** 28.3** -0.1270 -0.9840 26.2** 0.0044 0.9820 16.00* 
(0.0357) (0.0356) (0.0188) (0.9860) (0.6650) (0.0039) 

[0.0362] 

. (~i~f~)l Poland -0.046[2] 24.9** 24.9** -0.9900 -0.7690 12.2000 0.1320 8.08*** 
(0.0456) (0.0452) (0.2940) (0.9090) (0.0736) 

--- -- ------ ---------,-- - -- --------- --- -------- --- ----- - ----- -----
,[0.43~OL 
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Notes: 

1. The number of usable observations for Germany, Hungary and Poland are 37, 42, and 37, respectively. 

2. t.[m] denotes the value of threshold with delay number, m. 

3. Wee), Wet), W( Y,_I ) and W(!:l Y'_I) refer to the Wald statistics to examine the hypothesis that the intercepts, the coefficients oflinear time trend, Yr-I and 

!:l Yr- I respectively are equal between two regimes. 

4. # the figure in the (.) denotes the unconstrained bootstrapped p value; whereas the figure in the [.] denotes the constrained bootstrapped p-value. 

6. */**/***Denote significance at the 1 %/5%/10% levels, respectively. 

5. Since the empirical results reject the null of unit root, the */**/*** refer to the significance to the unconstrained bootstrapped p value. 
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Table 5.6. Co integrating ADF and Z tests for exchange rate bubbles 
Country U2 ~2 ADF Za Z, 

Cointegration test for the regression of M, -1t 2,1 on tm2.t+1 

Germany 6.0429 -0.3154 -4.9178* -34.0155* -5.1365* 

Hungary 8.3513 -0.8426 -2.7531 -12.0403 -2.7210 

Poland 8.5968 -0.5950 -2.9242 -18.3954 -3.1626 

Co integration test for the regression of MI -1t 2" on t}.M1 

Germany 6.1433 -0.5996 -2.2389 -11.1121 -2.3384 

Hungary 8.5766 -2.1281 -2.1803 -8.3965 -2.3195 

Poland 8.8065 -1.4736 -2.2823 -11.9840 -2.4829 

See notes to Table 5.3. 

Table 5.7. Cointegrating RALS-ADF Test for exchange rate bubbles 
Country RALS-ADFfp] t(6x, ) p2 R2 Q(l) Q(6) 

Cointegration test for the regression of M, -1t 2., on Ll1t 2.,+1 

Germany -3.9711 [0]** (-4.8783*, 8.4394*) 0.4837 0.3788 0.6681 3.4756 

Hungary -4.1294[0]* (-6.3331 *, -3.7160*) 0.1739 0.1757 0.5769 6.8238 

Poland -4.7557[0]* (-2.540 1**, -1.2725) 0.6773 0.6667 0.0004 2.8828 

Cointegration test for the regression of MI -1t21 on LlMI 

Germany -3.9074[3]* (1.6479,3.1490*) 0.2846 0.1606 0.0046 4.7146 

Hungary -3.7618[2]** (-0.2391,6.7937*) 0.5412 0.6136 0.5093 6.4561 

Poland -5.1258[3]* (7.1830*) 0.1601 0.2777 0.5532 2.1798 

See notes to Table 5.4. 
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Table 5.8 Threshold Cointegration test of exchange rate bubbles 

Threshold cointegration test statistics for the regression of M, -1£2" on ~1£2,t+1 

Country A[m] R2T RIT PI P2 
WrfI Wee) Wet) W(Y,_I) 

Germany OJ04[1] 4S.4* 4S.4* -1.9300 31.0** 27,6* 25,2* 15.6* 
(0.0039) (0.0039) -0.5100 (O.OIOS) (0.0027) (0.0032) (0.00S2) 

[0.0254] 
Hungary 0.2S4[1 ] 2S.6** 2S.6** -1.5200 19.3*** 2.5S00 2.8600 17.0* 

(0.0337) (0.0324) -0.1700 (0.0839) (0.5620) (0.4320) (0.006S) I 
[0.1210] I 

Poland -0.350[2] 31.7* 31.7* -0.7410 11.900 1.3100 0.0156 5.25 
(0.0060) (O.OOSS) -1.7600 (0.2890) (0.6770) (0.9470) (0.140) 

rO.3IS0] 

Threshold co integration test statistics for the regression of M, -1£2 t on ~, 

Country A[m] R2T Rn PI P2 
WT# Wee) Wet) W(Yt_l) 

Germany 0.166[2] 33.3** 33.3* -0.4730 -1.7100 20.3000 1.4500 2.6800 7.45*** 
(0.0163) (0.0158) (0.1060) (0.7490) (0.5250) (O.069S) . 

[0.21101 
---~-~--, 

Hungary 0.325[3] 26.3*** 26.3*** -0.3620 -1.4200 \3.2000 7.0700 5.0500 9.6S** , 
(0.0699) (0.0692) (0.2060) (0.19S0) (0.2630) (0.0461) . 

[0.3440] .. ... I Poland 0.42[2] 25.5*** 25.5*** -1.2200 -1.2S00 15.5000 0.0061 4.0S00 0.0106 
(0.0504) (O.OSOI) (0.16S0) (0.9820) (0.3160) (0.948~) 

---- --- - - -- - -- -- __ ___ __ -_ ____ _ ______ _~ ___ ~ __ @.llO()L 
---- -- -- - ~---- ---

See notes to Table 5.5. 
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Appendix 5.1 

Consider a regression of the generalized ADF form: 

p-2 

tJ,?y, = (al-l)Yt-I + (a2-1)ilYt-I + L4>l il
2
Yt-i +e, (A.S.I) 

1=1 

where Y, is a variable of interest, p is the autoregressive order of Y, and e, is an 

II II 

i.i.d innovation term. If Y, contains two unit roots, then a l = a2 = 1. Hence, it is 

natural to test the joint hypothesis by a F-test. Haldrup (1994) documents the 

advantages of a joint test for a double unit root over a sequential testing procedure of 

Dickey and Pantula (1987). 

Haldrup (1994) derives a semiparametric F test (H-F) to implement the joint 

tests for double unit roots, which is an extension to the parametric F test ofHaza and 

Fuller (1979). Moreover, a symmetrized version of (A.S.I) suggested by Sen and 

Dickey (1987) is given as: 

p-2 

il2y, = (al-I)Yt-I + (a2-I)ilYH + L4>lil2Yt-I +e1t t=p+1, ... ,T. 
1=1 

(A.S.2) 

il2y, = (al-I)Yt-I -(a2-I)ily, + ~4>lil2YI+; +e2, t = 3, ... ,T-p+2. 
;=1 

(A.S.3) 
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where ell and e2t refer to i.i.d. innovation terms. Likewise, a symmetrized joint test 

A A 
for double unit roots is conducted by a F-test for a1 = a2 = 1. Shin and Kim (1999) 

introduces a semiparametric F test (SK-F) based on the symmetric estimation of Sen 

and Dickey (1987). The detailed survey of the 1(2) tests are documented in Haldrup 

(1998). 

When the semiparametric procedure is adopted, no augmentation through 

lagged second differences, ,1)/ Y,±i ' in (AS.l), (AS.2) and (A.S.3) is required. 

Nevertheless, Perron and Ng (1996) explain how these size distortions relate to the 

kernel estimator of (12 in the semiparametric procedure of the Phillips and Perron 

(1988) when there are innovations of the DF regression with an MA root close to -1. 

Since the test statistics of Haldrup (1994) and Shin and Kim (1999) are derived with 

an application of the semiparametric procedure of Phillips and Perron (1988), they 

are likely to have a similar size distortion problem. In this appendix, I provide a size 

test of the above two 1(2) tests when the data generating process is simulated as 

1J,,2 Y, = (1 + 8)&, with &, - N(O,I) and 8 = -0.1, -0.2 , ... , -0.9. The number of 

incorrect rejections is calculated using the finite-sample critical values obtained from 

the Monte Carlo simulation with 8 = O. 
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The results of the empirical size are shown in Table A.5.1. The size distortion is 

quite serious for the large negative MA roots (e) for both semiparametric 1(2) test. In 

particular, when T=30, the size distortion of SK-F(C) is much lower than that of 

H-F(C); whereas the incorrect rejection rate of the SK-F(T2) and SK-F(T) arc 

generally larger than that ofH-F(T2) and H-F(T) respectively. When T increases to 50, 

the semiparametric tests of Shin and Kim (1999) generally suffer from less serious 

size distortions than that of Haldrup (1994) for any orders of the time polynomial in 

fitted regressions. Therefore, symmetric estimators are likely to result in smaller size 

distortion when T is large. 

It is also noted that the size distortion of the SK-F(T2) is larger than that of the 

SK-F(T), which is in turn more substantial than that ofthe SK-F(C). For the SK-F(C), 

the percentage of incorrect rejection frequencies is around the 5% nominal size when 

the absolute value of 9 is no larger than 0.4. It however rises sharply from less than 

30% to over 60% when the absolute value of 9 increases from 0.8 to 0.9. On the 

other hand, the size distortion of the H-F(C) is larger than that of the H-F(T2), which 

is in tum more serious than that of the H-F(T) for most values of e. The percentage 

of incorrect rejection frequencies for the tests of Haldrup (1994) is larger than the 5% 

nominal size for all detrending specifications even when the absolute value of 0 is 
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0.1 only. 

From the above, semiparametric tests of double unit root suffer from size 

distortion in the presence of negative MA roots in the innovation terms of the OF 

regression. Hence, I feel doubtful about adopting semiparametric double unit root test 

methods to examine the stochastic properties of the relevant time series variables. 
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Table A.5.l. Empirical sizes of the semiparametric double unit roots tests when 

the true data generating processes contain negative MA roots 
T MA(e) SK-F(T2) I H-F(TL) SK-F(T) H-F(T) SK-F(C) H-F(C) 

30 -0.1 0.0925 0.0610 0.0486 0.0613 0.0465 0.0853 
-0.2 0.1063 0.0588 0.0601 0.0526 0.0421 0.0979 
-0.3 0.1646 0.0697 0.0801 0.0553 0.0532 0.1308 
-0.4 0.2094 0.1006 0.1118 0.0806 0.0598 0.2001 
-0.5 0.3167 0.1583 0.1394 0.1381 0.0966 0.3106 
-0.6 0.4186 0.2597 0.2518 0.2384 O.llOl 0.4627 
-0.7 0.5686 0.4030 0.3877 0.3998 0.2433 0.6420 
-0.8 0.7386 0.5715 0.5803 0.6189 0.2841 0.8150 
-0.9 0.7829 0.6991 0.8182 0.8322 0.7070 0.9196 

50 -0.1 0.0551 0.0627 0.0386 0.0577 0.0331 0.0847 
-0.2 0.0691 0.0679 0.0386 0.0566 0.0331 0.1166 
-0.3 0.0979 0.0951 0.0562 0.0722 0.0360 0.1793 
-0.4 0.1436 0.1588 0.0562 0.1182 0.0457 0.2905 

-0.5 0.2193 0.2905 0.1136 0.2126 0.0623 0.4618 

-0.6 0.3373 0.4886 0.1136 0.3761 0.0926 0.6789 
-0.7 0.5238 0.7303 0.3045 0.6143 0.1553 0.8767 
-0.8 0.7517 0.9180 0.3045 0.8689 0.2966 0.9800 
-0.9 0.9272 0.9883 0.8607 0.9916 0.6017 0.9995 

Notes: 

1. SK-F(T2) and H_F(T2) are the semiparametric F tests of Shin and Kim (1999) and 

Haldrup (1994) respectively when Y t is de trended by a constant, a linear trend and a 

polynomial trend. 

2. SK-F(T) and H-F(T) are the semiparametric F tests of Shin and Kim (1999) and HaJdrup 

(1994) respectively when Y t is detrended by a constant and a linear trend. 

3. SK-F(C) and H-F(C) are the semiparametric F tests of Shin and Kim (1999) and Haldrup 

(1994) respectively when Y, is detrended by a constant. 

4. The number of the Monte Carlo replications is 10,000. 
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Appendix 5.2 

Table A5.2. Asymptotic critical values for cointegrating CADF t-statistics 
Standard Demeaned Detrended 

2 
1% 5% 10% 1% 5% 10% 1% 5% p 

1.0 -2.4631 -2.7648 -3.3369 -3.9060 -3.3502 -3.0486 -4.3599 -3.7791 
0.9 -3.3268 -2.7410 -2.4431 -3.8625 -3.3044 -2.9950 -4.2754 -3.7208 

0.8 -3.3076 -2.7246 -2.4187 -3.8078 -3.2484 -2.9407 -4.2037 -3.6333 

0.7 -3.2872 -2.7031 -2.3963 -3.7636 -3.1900 -2.8716 -4.1261 -3.5503 

0.6 -3.2886 -2.6825 -2.3737 -3.7176 -3.1262 -2.8054 -4.0344 -3.4582 

0.5 -3.2795 -2.6575 -2.3425 -3.6531 -3.0570 -2.7222 -3.9646 -3.3568 

0.4 -3.2480 -2.6319 -2.3079 -3.6007 -2.9856 -2.6464 -3.8779 -3.2409 
0.3 -3.2257 -2.6003 -2.2795 -2.5581 -2.9028 -2.5581 -3.7779 -3.1188 

0.2 -3.1927 -2.5824 -2.2542 -3.4707 -2.8260 -2.4739 -3.6592 -2.9743 

0.1 -3.1800 -2.5602 -2.2279 -3.3993 -2.7422 -2.3736 -3.5247 -2.8236 

Notes: 

1. The critical values were calculated from 60,000 draws generated from samples of sizes 

1,000 with i.i.d. Gaussian innovations. 

2. Parzen kernel is used and the bandwidth is calculated using the suggestion of Andrews 

(1991). 
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10% 
-3.4962 

-3.4195 

-3.3358 

-3.2443 

-3.1422 

-3.0343 

-2.9147 
-2.7822 
-2.6298 

-2.4575 



CHAPTER SIX 

6.1 Introduction 

MARKOV-SWITCHING COINTEGRATION TEST 

FOR BUBBLES 

It is noted that the expectations and implementation of monetary reforms during 

periods of hyperinflation might lead to regime changes in economic variables. Failure 

to model the regime-shifting behaviour of time series may lead to biased conclusions 

with respect to cointegration and the existence of bubbles. In the previous chapter, 

threshold cointegration analysis was employed to model the switching processes that 

are restricted to depend upon observable threshold values. However, threshold 

nonlinearity and Markovian regime shifts may be observationally equivalent. In this 

chapter, I will continue to use the same Cagan model specifications, and the testing 

procedure of Engsted (1993), as in the previous chapter, to conduct the empirical 

study of bubbles. The regime shifting behaviour of time series variables are, 

alternatively, assumed to depend on unobservable states generated by a first-order 

Markov chain, and I adopt the Markov-switching cointegration method for bubble 

testing. The probability law that governs the Markov-switching regimes is 

advantageous in that it is more flexible and allows the data to detennine the specific 

fonn of nonlinearities that are consistent with the sample infonnation. The empirical 
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findings still do not support the evidence for bubbles but the Markovian 

regime-switching behaviour can be identified. Also, inferences about the 

probabilities of the unobservable states at each point in time can be made. The chapter 

is structured as follows: Section 2 contains a discussion of the econometric 

methodology; Section 3 reports the empirical results; concluding remarks are 

contained in Section 4. 

6.2. Econometric Methodology 

Krolzig (1996, 1997), and Yao and Attali (2000) argue that a linear co integration 

method is asymptotically valid to test for the number of cointegrating vectors in a 

Markov error-correction model. However, Nelson et al. (2001), Psaradakis (2001) 

and Cavaliere (2003) consider that the conventional unit root tests will result in 

biased conclusions when the series under study exhibit Markov shifts. Hence, 

Cavaliere (2003) suggests that unit root or cointegration tests be carried out using a 

statistical method that allows for the Markov switching process. 

In this chapter, I conduct the cointegration-testing procedure of Engsted (1993), 

as illustrated in Chapter 5, for the identification of bubbles by sequentially applying 

the MS-ADF unit root test of Hall et al. (1999) to the OLS residuals ofEqs (5.3) and 
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(5.6). The MS-ADF co integration methodology can be used to simultaneously test for 

the existence of non stationary roots and allow for the possibility of Markovian regime 

shifts in the structure of the disequilibrium errors.47 The Markov shifts in the series 

under study can be detected by allowing the ADF parameters to switch values 

between different regimes generated by a Markov process. Further, the simulation 

study conducted by Hall et al. (1999) confinn that, compared to the standard ADF 

test, the MS-ADF t test statistics can effectively detect the periodically collapsing 

bubbles of Evans (1991) by identifying the existence of an explosive root at least in 

one regime. Using the MS-ADF unit root test for empirical studies, Funke et al. (1994) 

and Hall et a/. (1999) found some evidence of inflationary bubbles in the data for 

Poland from 1991-1993 and for Argentina from 1983 to 1989 respectively. 

I start with the general fonn of the Markov-switching ADF regression of order p 

with 2 regimes, which allows for different regime shifts in the parameters: 48 

L\y, = C(s,) + p(s,)Yt-l + I'I'j(s,)L\Yt-I +b(s,)t+e, e,ls,-NID(O,CJe(S,», 
)=1 

t=l...T. (6.1) 

47 Similarly. the methodology of Caner and Hansen (2001) used in Chapter Five is designed to test for 

unit root or cointegration under threshold nonlinearity. 

48 Some argue that the inclusion of regime-dependent deterministic trend may capture the explosive 

dynamics of a bubble process. 
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where y, is an OLS residual ofEq. (5.3) or (5.6),49 is a white noise process with zero 

mean and regime-switching standard deviation cr e (s,) . All parameters of the 

autoregression, c(s,), p(s,), 'I' /s,), and crt (s,) are conditioned on a finite number 

of stochastic unobservable Markov-switching state variable s, E {l,2} such that: 50 

(6.2) 

where Sl, takes on the value 1 when s, = i, and 0 otherwise, for i = 1,2. 

The stochastic process generating the unobservable regimes is an ergodic 

Markov chain governed by the transition probabilities, Pij= Pr [s, = j I S,_1 = i] with 

2:;=1 PIj = 1 "t i, j E {1,2}. For an ergodic Markov chain, regime shifts are persistent 

if Pij =1= Pu for some i =1= j, but not permanent if Pii =1= 1 "t i. The filtered probability of 

2 

S, = j, denoted by Pr[s, = j 10,], is equal to L Pr[s, = j, S,_1 = i I 0, J, conditional 
1=1 

on information up to time t, 0,. The smoothed probability of s, = j, denoted by 

Pr[s, = j I Or], conditional on all the information in the sample, Or> and is 

49 As pointed out by Yao and Attali (2000). the OLS estimates of a cointegration vector remain 

superconsistent under regular conditions even though the disequilibrium error exhibits a 

Markov-switching process. 
so I 

n Hall et al. (1999). the Markov state s, is set to 0 or I. but in this chapter. s, is set to be 1 or 2 

instead. 
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2 

calculated by LPr[s, = j,st+1 = i I QT]' The Hamilton's (1989) filtering and the 
;=1 

Kim's (1994) smoothing algorithms are employed to make inferences about the 

filtered and smoothed probabilities of the unobservable Markov regimes respectively. 

An expectation-maximization (EM) algorithm for maximum likelihood estimation is 

used to yield estimated parameters of the ADF regression (6.1). 

The existence of non stationary roots is rejected when the two individual t-ratio 

statistics, t\ and t2, reject the null hypothesis that PI ;;;; 0 against the alternative of Pi 

< 0, for all i = 1 and 2.5\ In addition to the t-ratio statistics, I propose a Wald statistic 

to test for the joint hypothesis that PI = P2 = 0 against the alternative of Pi =F 0 for 

at least one i. When both the point estimates of PI and P2 lie in the open interval of 

-2 and 0, the significance of the Wald statistic implies the rejection of the existence of 

nonstationary roots across two regimes in the data series of interest. The associated 

p-values ofthe Wald and t-ratio statistics are obtained via simulation. 

On the other hand, the number of the Markov-switching regimes cannot be 

tested using conventional testing approaches due to the presence of unidentified 

nuisance parameters such as the transition probabilities under the null of linearity. 

51 • 
The more ngorous stability conditions for a Markov-switching model are documented in Yao and 

Attali (2000). 
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Hansen (1992, 1996) derived fonnal tests of Markov-switching nonlinearity, which 

involve the approximation of the asymptotic distribution of the likelihood ratio (LR) 

via simulation and evaluation of the likelihood function across a grid of different 

values for the transition probabilities as well as for each state-dependent parameter. 

This is, however, computationally demanding and time consuming. In practice, 

Krolzig (2002) suggests the alternatives that include the upper bound of Davies (1977, 

1987) for the significance level of the LR test statistics under nuisance parameters,52 

and information criteria such as AIC, SC and HQ (see for example, Krolzig, et al. 

2002 and Clarida, et al. 2003). 

6.3 Empirical Results 

The data and the sample periods in this section are identical to those in Chapter 

Five. They include data series of price levels, money supply and exchange rates for 

the inter-war European hyperinflations of Gennany, Hungary and Poland. In the 

subsequent empirical studies, the estimation is conducted using the maximum 

likelihood method with the expectation-maximization (EM) algorithm. The intercept 

52 The Wald statistic for the joint hypothesis that the intercept terms are equal across two regimes is 

valid (Krolzig, et.a/. 2002). Hence, if singular matrix occurs when the LR test is implemented, the 

Waid statistic will be used instead. 
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tenus c(s,), standard deviation of error O"e (s,), and the coefficients b(s,), \I' j (s,) , 

and pes,), of the MS-ADF regression (6.1), can be made regime-dependent if the 

corresponding upper bound LR test statistic of Davies (1977,1987) is significant. The 

number of lag length, p, is chosen to make e, white noise. The p-values of the 

MS-ADF Wald and t-ratio statistics are obtained via simulation. 53 

6.3.1 Price bubbles 

Table 6.1a contains the maximum likelihood estimates of the MS-ADF 

regressions for the OLS residuals of Eq.(5.3), which are obtained from regressing 

(M, -7t I.,) on ~7tI.t+1 • The estimation results show that all parameters of the 

MS-ADF regression are made regime-dependent for all of the hyperinflations under 

study, except the fact that the intercept term is regime-invariant for Germany. All the 

point estimates of PI and P2 in two regimes are negative and the corresponding Wald 

and t-ratio statistics are significant from the associated p-values. Hence, the results 

favour the evidence of co integrating relationships between M, - 7tJ.t and ~7t1.t+1 • 

Table 6.1 b presents the estimation results of the MS-ADF test for the OLS residuals 

obtained from regressing (M, - 7t I,,) on 11M, . As shown in Table 6.2b, the 

53 
For some cases, I add a vector of regime-dependent stationary covariates into the MS-ADF 

regressions to increase power as suggested in Hansen (1995). 
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intercepts of the MS-ADF regression are allowed to be regime-dependent for 

Hungary only. The coefficients b(s,), \If j (s,), and p(s,) can vary across different 

regimes for Germany and Poland. The standard deviation of e, can be 

regime-dependent for Germany and Hungary. All point estimates of PI and P2 are 

negative, and both the Wald and t-ratio statistics are significant. This signifies the 

acceptance of the co integrated relationships of eM, -1t1.,) on 11M, . When 

eM, -1t1,,) co integrates with ~1tI,t+l and 11M, the evidence for price bubbles in the 

data, as suggested by Engsted (1993), is rejected. 

[Table 6.1a and 6.1 b to be inserted here] 

Figures 6.1 to 6.6 plot the filtered and smoothed probabilities of regime I for the 

residuals of the regression of (M, -1tt,,) on ~1tl,t+l and of (M, -1t I,,) on 11M" from 

which the Markovian regime shifts are found in the residuals of Eqs (5.3) and (5.6) 

throughout the whole samples. 

[Figure 6.1 and Figure 6.6 to be inserted here] 
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6.3.2 Exchange rate bubbles 

The maximum likelihood estimates of the MS-ADF regressions for the OLS 

residuals ofEq.(5.3) are obtained from regressing (M, -1t 2,,) on ~1t2,'+1 • The results 

are presented in Table 6.2a. The intercept term of the MS-ADF regression is made 

state-dependent for Germany and Hungary. The joint LR allows the coefficients 

b(s,), \jJ J(s,), and p(s,), of the MS-ADF regression to switch between regimes for 

Germany and Hungary. Also, the standard error of e, can be state-dependent for 

Germany and Hungary. In other words, all the parameters of the MS-ADF regression 

for Poland are restricted to be regime-independent and the t-ratio value of p is the 

standard ADF t test statistic. For Germany and Hungary, the point estimates of PI 

and P2 in two regimes are found to be negative and the MS-ADF Wald and t-ratio 

statistics are significant. From the above, it can be concluded that there exists a 

cointegrating relationship between (M, -1t 2,,) and ~1t2'1+1 for all of the countries 

under study. Moreover, the results of the cointegrating tests applied to the OLS 

residuals of Eq.(S.6) obtained from regressing (M, -1t 2,,) on ~, are presented in 

Table 6.2b, For Germany, only the intercept ofthe MS-ADF regression is restricted to 

be state-invariant; whereas for Poland, only the intercept can be made 

regime-dependent. All the parameters of the MS-ADF regression are different across 
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regimes for Hungary. From the negative point estimates of PI and P2 with 

significant Wald and t-ratio statistics, the existence of a cointegrated relationship 

between (M, -7t2,,) and 11M, cannot be rejected. While (M, -7t z,,) cointegrates 

with ~7t2,'+1 and with 11M" no nonstationary roots are found in the residuals of Eqs 

(5.3) and (5.6) respectively. Hence, the evidence for an exchange rate bubble is 

rejected in the data for all of the hyperinflations under study .. 

[Table 6.2a and Table 6.2b to be inserted here] 

The patterns of regime shifts can be seen from Figures 6.7 to 6.11 where the 

filtered and smoothed probabilities of regime 1 for the residuals of the regression of 

(M, -7t 2,') on ~7t2,'+1 and of (M, - 7t 2,,) on ~, , are plotted. The 

regime-switching behaviours can be found throughout the whole estimation periods 

for the countries under study. 

[Figure 6.7 and Figure 6.11 to be inserted here] 

6.4. Concluding Remarks 

In this chapter, I have continued the cointegration tests to examine the bubble 

existence using the co integrating Markov-switching ADF tests. The regime shifts in 
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the MS-ADF regression are allowed to depend on an unobservable state variable 

governed by the Markov chain rather than on an observable threshold value. The 

empirical results show that the evidence of Markovian regime shifts is found in the 

cointegration residuals from the regression of M, -1t, and L\1t1+\ as well as M, - 1t, 

and Mit. Also, the point estimates of Pi are all negative and the Wald and t-ratio 

statistics are all significant. Hence, the evidence favours the MS cointegrating 

relationship in both Eqs (5.3) and (5.6), and it rejects the presence of bubbles in any of 

the countries under study. 
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Table 6.1a. MS Cointegrating ADF test for the regression of(M, - 7t u ) on ~7tI.t+ I 

Country Gennany Hungary Poland 
Parameters Regime 1 I Regime 2 Regime 1 Regime 2 R~ime 11 R~ime 2 

Intercept of the MS-ADF regression: 
c(s,) 0.2028*** 1.0282* 0.0918 1.0687* I 0.1634 

(0.1072) (0.21 991 (0.0769) (0.0859) (0.1576) 
LR(c1 == c2 ) 0.0025# 18.4070* 8.7839** 

[0.9599] 10.0004] [0.0323) 
Coefficients of the ADF regression: 

b(s, ) -0.0046 -0.0294* -0.0508* -0.0006 -0.0495* -0.0021 
(0.0037) (0.0053) (0.0078) (0.0021) (0.0026) (0.0069) 

pes,) -0.2697 -l.5341 -0.8473 -0.2527 -0.7355 -0.6644 

t(p(s, » -4.3517* -6.7925* -6.4622* -3.8816** -25.1221* -3.8598** 

W (p(s,» 66.0191* 51.4814* 652.829* 

Joint LR 51.0888* 25.6972* 12.1681 ** 
[0.0000] [0.0001] [0.0300) 

Standard error of residuals 

O"e(s,) 0.0695 0.9889 0.1200 0.1153 0.0370 I 0.2731 

LR(0"1 == 0"2) 53.6782* 14.4253* 9.1883** 
[0.00001 [0.0024] [0.02691 

Transition probability matrix: 
PII Pl2 0.8310 0.1690 0.4837 0.5173 0.4110 0.5890 
P21 P22 0.6773 0.3227 0.1729 0.8271 0.1816 0.8184 

Diagnostic checking 
AIC -0.0332 -0.3292 0.6719 
HQ 0.1663 -0.1782 0.8250 
SC 0.5386 0.0804 1.1208 
Q(l2-p) 8.1515 7.9668 9.8592 
Notes: 

1. t(p(s, »and W (p(s, »refer to the MS-ADF t and Wald statistics respectively. 

2. Joint LR refers to the joint LR linearity test for the coefficients \jJ I (s,). b(s,) and 

pes,), of the MS-ADF regression. 

3. # Denotes the Wald statistic, rather than the LR statistic, for linearity tests. 

4. The figures in (.) are standard errors. The figures in [.] are the p-values for the 

significance of the upper bound LR linearity tests. 

5. AIC, HQ and SC refer to the Akaike, Schwarz, and Hannan and Quninn criterion 

respectively. 

6. Q(k) refers to Ljung-Box Q-statistics with degrees of freedom = k. 

7. *1**1*** Denote significance at the J%, 5% and 10% level. 

8. For the case of Gennany, the stationary covariates include ~27t2.H and ~l M, ,. 
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Table 6.tb. MS Cointegrating ADF test for the regression of (M, -1t
I
,l) on 11M, 

Country Germany Hungary Poland 
Parameters Regime 1 I Regime 2 Regime 1 I Regime 2 Regime 1 J Regime 2 

Intercept of the ADF regression: 
c(s,) 0.6770* -0.1264**/ 0.1889* 0.1935* 

(0.1069) (0.0499) (0.0477) (0.0164) 
LR(cl =c2 ) 0.0000# 11.2275** 0.0003# 

[0.9932] [0.0106] [0.9855] 
Coefficients of the ADF regression: 

\ill (s,) 0.5581 * -0.0385 0.6612* 
(0.0873) (0.0444) (0.1968) 

\il2 (s,) 0.3992* 0.6127* 
(0.0452) (0.2025) 

b(s, ) -0.0258* -0.0249* -0.0027** -0.0178* -0.0044* 
(0.0036) (0.0042) (0.0013) (0.0008) (0.0014) 

pes,) -0.3968 -0.4378 -0.6259 -0.2293 -0.8422 

t(p(s, » -5.0306* -4.4110* -8.5393* -7.9263* -5.6670* 

W (p(s,» 33.5772* 72.9204* 87.431 * 

Joint LR 50.4305* 9.4629 35.2855* 
[O.OOOOJ [0.2284] [O.OOOOJ 

Standard error of residuals 
cr.(s,) 0.0562 0.1384 0.09442 0.0175 J 0.1200 

LR(cr1 = (T2) 32.5865* 0.0232 19.4283* 
[0.0000] [0.87891 LO.00021 

Transition probability matrix: 
PII PI2 0.5937 0.4063 0.8625 0.1375 0.4373 0.5627 
P21 P22 0.5332 0.4668 0.0769 0.9231 0.2889 0.7111 

Diagnostic checking 
AIC -0.8563 -0.9086 -0.7081 
HQ -0.6568 -0.7873 -0.4804 
SC -0.2786 -0.5777 -0.0211 
Q(12-p) 13.2538 12.7802 10.8851 
Notes: 

1. For the cases of Germany and Poland, the stationary covariates include 112 M'_I' for 

i=I,2, and 1l21t 2 H respectively. 

2. Other notes to Table 6.1 a stilI apply. 
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Figure 6.1. Filtered and smoothed probabilities of regime 1 for the residuals of the 

regression of (M, -1t I., )on ~1tI.t+1 in Germany 
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Figure 6.2. Filtered and smoothed probabilities of regime 1 for the residuals of the 

regression of (M, -1tI.,) on ~1tI.'+1 in Hungary 
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Figure 6.3. Filtered and smoothed probabilities of regime 1 for the residuals of the 

regression of (M, - 7t 1.,) on ~7tI.t+1 in Poland 
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Figure 6.4. Filtered and smoothed probabilities of regime 1 for the residuals of the 

regression of (M, -7tI.,)on flM, in Gennany 
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Figure 6.5. Filtered and smoothed probabilities of regime I for the residuals of the 

regression of (M, -1t I ,,)on t:.M, in Hungary 
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Figure 6.6. Filtered and smoothed probabilities of regime 1 for the residuals of the 

regression of (M, -1tI,l)on AM, in Poland 
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Table6.2a Cointegrating MS-ADF test for the regression of(M -7t ) on L\7t 
, 2" 2,'+1 

Country Getmany Hungary Poland 
Parameters Regime 1 I Regime 2 Resime 1 I Regime 2 Regime 11 Regime 2 

Intercept of the ADF regression: 
c(s,) 2.1098** I 1.3878* -0.8864* I -0.0460 0.4547* 

(0.7046) (0.3523) (0.0676) (0.0791) (0.1595) 
LR(c1 =c2 ) 9.2272** 65.0991 *# 3.6115 

[0.0264J [O.OOOOJ [0.3066] 
Coefficients of the ADF regression: 

lJI 1 (s,) -0.7453* 0.1874** 
(0.0956) (0.0738) 

lJI2(S,) 0.2020** 0.2024* 
(0.0936) (0.0627) 

b(s,) -0.0909* -0.0412* 0.0237* 0.0044*** -0.0217* 
(0.0191) (0.01 141 _LO.0018) (0.0023) (0.0070) 

p(s,) -1.0375 -0.6391 -0.1768 -0.2710 -0.7360 

t(p(s,» -6.8660* -5.1620* -4.0354** -3.8991** -4.5379* 

W(p(s,) ) 73.8228* 32.1445* 20.6209* 

Joint LR 33.0602* 44.9593* 6.6673 
[0.0000] [0.0000] [0.5732] 

Standard error of residuals 

O',(s,) 0.4678 0.1119 0.0344 0.0849 0.3107 

LR(O'I = 0'2) 22.7773* 6.7481*** 2.3391 
[0.0000] [0.0804] [0.5051] 

Transition probability matrix: 
Pll P12 0.7322 0.2678 0.1909 0.8091 
P21 P22 0.1516 0.8484 0.3819 0.6181 

Dil!8llostic checking 
AlC 0.8359 -0.6609 0.7222 
HQ 1.0201 -0.3847 0.7836 
SC 1.3637 0.1390 0.8981 
Q(l2-p) 9.0479 11.7997 7.3214 

Notes: 

1. For the cases of Germany and Hungary, the stationary covariates are L\2 7t I,'_I' and 

L\2 7t1 ,,_I' i = 1,2, respectively. 

2. Other notes to Table 6.1 a still apply. 
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Table 6.2b. Cointegrating MS-ADF test for the regression of (M - 1t7 ) on AM 
I _.1 I 

Country Gennany Hu~_ Poland 
Parameters Regime I /Regime 2 Regime 1 1 Regime 2 Regime 1 I Regime 2 

Intercept of the ADF regression: 
c(s,) 0.8312* 0.1508* 1-0.4197* -0.3880* 1 0.0220 

(0.] 875) (0.0453) (0.0879) (0.0667) (0.0548) 
LR(c) =c2 ) 0.0022# 32.1756*# 9.1718** 

[0.9625] 10.00001 10.0271] 
Coefficients of the ADF regression: 

'V\(s,) 1.7130* -0.4274* -0.5732* 0.3166* 
(0.2334) (0.0861) (0.0925) (0.1085) 

b(s,) -0.0236* -0.0310* -0.0103* 0.0141 * 0.0029 
(0.0070) (0.0059) (0.0018) (0.0026) (0.0023) 

pes,) -0.5922 -0.3631 -0.2790 -0.4094 -0.7084 

t(p(s,» -4.0692* -5.0590* -3.5969** -4.9534* -8.1681* 

W(p(s,) ) 34.0088* 38.2115* 66.7179* 

Joint LR 34.8726* 23.1208* 10.5068 
[0.0000] [0.0068] JO.321 41 

Standard error of residuals 

cr~(s,) 0.2600 0.2276 0.0463 I 0.0824 0.1170 

LR(cr) = 0"2) 25.9889* 12.0458* 0.0000# 
[0.0000] [0.007~1 [0.9973] 

Transition probability matrix: 
PH Pl2 0.2778 0.7222 0.6893 0.3107 0.5628 0.4372 
P21 P22 0.3094 0.6906 0.1540 0.8460 0.1811 0.8189 

Diagnostic checking 
Ale 1.1407 -1.0614 0.0253 
HQ 1.3095 -0.8179 0.1631 
SC 1.6295 -0.3927 0.4293 
Q(I2-p) 11.5172 10.3732 11.1613 
Notes: 

l. For the cases of Hungary and Poland, the stationary covariates are equally ~21t).H' i = 

1,2. 

2. Other notes to Table 6.1a still apply. 
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Figure 6.7. Filtered and smoothed probabilities of regime 1 for the residuals of the 

regression of (M, -1t 2,/) on A1t 2,/+1 in Gennany 
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Figure 6.8. Filtered and smoothed probabilities of regime 1 for the residuals of the 

regression of (M, -1t 2,/) on L\1t 2,t+l in Hungary 
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Figure 6.9. Filtered and smoothed probabilities of regime 1 for the residuals of the 

regression of (M, -1t 2,,) on tlM, in Germany 
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Figure 6.10. Filtered and smoothed probabilities of regime 1 for the residuals of the 

regression of (M, -1t 2,,) on tlM, in Hungary 
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Figure 6.11. Filtered and smoothed probabilities of regime 1 for the residuals ofthe 

regression of (M, -1t 2 •1 ) on tlM, in Poland 
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CHAPTER SEVEN SUMMARY and CONCLUSION 

In this thesis, I have adopted several econometric methods to investigate for the 

presence of price and exchange rate bubbles, using the inter-war European 

hyperinflations of Germany, Hungary and Poland as a case study. This chapter 

summarizes the major findings of the thesis and offers my concluding remarks. 

In Chapter Two, two versions of the Cagan model under rational expectations 

are specified. The general solution to the Cagan models is the sum ofthe fundamental 

and bubble solutions. Dependent upon the assumed generating processes of the 

driving fundamentals, several explicit representations of the fundamental solutions 

are derived. In the rational expectations framework, the bubble solution contains an 

arbitrary martingale process. Consequently, there exists an infinite set of bubble 

processes for any value of a bubble coefficient. Several examples of theoretical 

bubble specifications are explored by imposing parametric restrictions. Some ofthese 

exhibit asymptotically dynamic stability, and some display different bursting 

properties. The problem of non-uniqueness in the bubble solutions makes it difficult 

to specify and test for every form of bubble. Hence, the general or indirect tests look 

more attractive for empirical research, because they focus upon the statistical 
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properties of the data series used for bubble detection and do not require the 

specification of a particular fonn of bubble process. 

In Chapter Three, I carry out a structural time series analysis to decompose the 

various structural time series components of the data over the full sample periods. 

This facilitates the examination of the statistical properties and integration orders of 

the relevant economic variables. It is found that the trend components for the data 

series on the level of money supply, prices and exchange rates follow a second 

differencing or a smooth trend specification. For the data series on real money 

balances, money supply growth, inflation rates and currency depreciation rates, the 

trend components follow a random walk or a local level representation. Some 

evidence for seasonal or cyclical components is found in the data series. On the basis 

of the reduced fonns of the structural time series models, the series of the different 

levels are integrated at the order of two; and the other data series contain one unit root. 

Such findings are important for the selection of the econometric methods to be 

adopted for bubble testing in the thesis. 

Some concern has been frequently expressed in the literature about the value of 

empirical research into the existence of bubbles. It has been argued that model 

misspecification and the process switching in fundamentals could lead to false 
192 



conclusions concerning the existence of bubbles. Furthermore, as illustrated in 

Chapter Two, some stochastic bubbles may exhibit nonlinear explosive dynamics and 

consequently appear to be linearly stationary. Under these circumstances, 

conventional econometric methods may fail to test for the existence of bubbles even 

if they actually occur in the data series. In this thesis, I have employed new 

econometric procedures and methods to handle the above empirical problems of 

bubble identification. 

In Chapter Four, I propose a new testing procedure using orthogonality tests, 

which is designed to effectively distinguish between bubbles and specification errors. 

I rely upon the FM-GMM instrument validity test statistics and the ARIMA structures 

of flow variables to detect the presence of specification errors. The stock variables are 

transformed in such a way that I can differentiate between the presence of bubbles 

and any model misspecification. Evidence for stationary specification errors in the 

exact Cagan models can be found. Moreover, while the transformed stock variables 

are orthogonal to the information sets in the FM regressions, both exchange rate and 

price bubbles are rejected in the data for those European hyperinflations under study. 

The results conclude that the control of inflation in those countries might only be 

required to gain control of the fundamental process. This is because the dynamics of 

193 



prices and exchange rates might not be driven by the self-fulfilling expectations for 

these countries. It is argued that the expectation and implementation of monetary 

refonns that occurred in the final months of the sampled European hyperinflations 

might lead to nonlinear behaviour by the underlying fundamental variables. The 

distribution theory of the FM inferential statistics is developed, however, under the 

assumption of linear data generation. Hence, the nonlinear movements of 

fundamentals that display regime-switching behaviour may be misinterpreted as 

indicating a bubble path. The usual practice in such cases is to truncate the estimation 

periods under study, as was done in Chapter Four. The evidence for no bubbles given 

in Chapter Four is therefore limited to the pre-refonn observations. The dilemma is 

that by doing this, the ability to detect bubbles may be diminished even when bubbles 

actually exist during the truncated observation periods. I suggest that advanced 

cointegration-testing methodologies be used to further identify bubbles over the full 

sample periods. 

In Chapter Five, I employ a residual-based cointegrating TAR method to 

investigate the evidence for bubbles over the full sample periods. I also choose the 

conventional ADF and Z tests as well as the RALS-ADF test to carry out a 

comparison study. From the Monte Carlo findings, the power of the TAR tests is 
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shown to be the highest no matter whether there are nonlinear threshold processes in 

the data generation or not. The RALS-ADF test gains substantially in power when 

using the threshold processes and it is made robust to the presence of non-normal 

errors by the inclusion of stationary covariates in the ADF regression. The results of 

the TAR and the RALS-ADF tests reject the evidence for the existence of bubbles, 

but some evidence of threshold nonlinear processes is nevertheless found in the data 

generation throughout the whole sample periods for all of the countries of interest. 

The low power of the conventional ADF and Z tests under the nonlinear process is 

likely to produce a spurious conclusion concerning the existence of bubbles. On the 

other hand, it is argued that rejection of non-co integration may be attributable to a 

serious size distortion when nonlinearly explosive bubbles are present. The Monte 

Carlo findings, however, show that in the presence of periodically collapsing bubbles, 

the TAR tests and the RALS-ADF test are more likely to accept the null of 

non-cointegration than are cointegrating ADF and Z statistics. The empirical results 

reported in Chapter Five are not consistent with the presence of collapsing bubbles in 

the data. 

The switching processes described in Chapter Five are assumed to depend upon 

observable threshold values. Actually, the threshold model and the Markov model 
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can be observationally equivalent. Hence, in Chapter Six, I continue the cointegration 

tests to test for bubble existence using the Markov-switching cointegration ADF tests. 

The regime shifts in the Markov-switching ADF regression are allowed to depend on 

an unobservable Markov state variable rather than on an observable threshold value. 

The empirical results favour some evidence of Markov regime shifts in the data but 

reject the evidence of bubbles for any of the European hyperinflations under study. 

The co integration-testing methodology, however, has been criticized in the 

literature as having its own drawbacks for bubble testing. Given the fact that every 

econometric methodology has limitations as well as advantages, it is proposed that 

more than one method be adopted for the empirical study of bubbles. The 

orthogonality methodology and the cointegration methodology should be 

complementary for this purpose. They each have their own specialties. The 

orthogonality method can exploit the high-frequency properties of the data whereas 

the cointegration method exploits the low-frequency properties. 

From the above, it is apparent that it is necessary to select the appropriate 

econometric procedures and methods for bubble testing, in order to handle the issues 

of model misspecification, the regime-switching behaviour of fundamentals and the 

nonlinear stochastic properties of bubbles. If any of these is ignored, misleading 
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conclusions concerning the existence of bubbles are likely to result. Although the 

above econometric procedures and methods are useful for studying inflationary 

bubbles, they can be equally applied to the investigation of asset price bubbles in 

capital markets, and it is expected that this wiIl be tackled in future research work. 

197 



References: 

1. Abel, A., Dornbusch, R., Huizinga, J. & Marcus, A. (1979). Money Demand 

During Hyperinflation. Journal of Monetary Economics, 5, 97-lO4. 

2. Andrews, D.W.K. (1991). Heteroskedasticity and Autocorrelation Consistent 

Covariance Matrix Estimation. Econometrica, 59, 817-858. 

3. Balke, N. and Fomby, T. (1997). Threshold Cointegration. International 

Economic Review, 38,627-645. 

4. Bhargava, A. (1986). On the Theory of Testing for Unit Roots in Observed Time 

Series. Review of Economic Studies, 53, 369-384. 

5. Blanchard, O. J. and Watson, M. W. (1982), "Bubbles, Rational Expectations, 

and Financial Markets," in Paul Wachtel (eds.) Crisis in the Economic Financial 

Structure, MA: Lexington Books. 

6. Bohl, M. T. (2003), Periodically Collapsing Bubbles in the US Stock Market? 

International Review of Economics and Finance, 12,358-397. 

7. Broze, L., Gourieroux, C. and Szafarz, A. (1995). Solutions of Multivariate 

Rational Expectations Models. Econometric Theory, 11, 229-257. 

8. Broze, L. and A. Szafarz, (1991). The Econometric AnalYSis of Non-Uniqueness 

in Rational Expectations Models, Amsterdam: North Holland. 

9. Cagan, P. (1956). The Monetary Dynamics of Hyperinflation. In M. Friedman 

(eds.), Studies in the Quantity Theory of Money. Chicago: University of Chicago 

Press. 

10. Camerer, C. (1989). Bubbles and Fads in Asset Prices. Journal of Economic 

Surveys, 3, 3-41. 

11. Campbell, J. Y. and Shiller, R. J. (1987). Co integration and Tests of Present Value 

Models. Journal of Political Economy, 95, lO62-lO88. 

198 



12. Caner, M. and Hansen B. E. (2001). Threshold Autoregression with a Unit Root. 

Econometrica, 69, 1555-1596. 

13. Carrasco, M. (2002). Misspecified Structural Change, Threshold or 

Markov-Switching 

Models. Journal of Econometrics, vol. 109,239-273. 

14. Casella, A. (1989). Testing for Rational Bubbles with Exogenous or Endogenous 

Fundamentals: The German Hyperinflation Once More. Journal of Monetary 

Economics, 24, 109-122. 

15. Cavaliere, G. (2003). Asymptotics for Unit Root Tests under Markov 

Regime-switching. Econometric Journal, 6, 193-216. 

16. Chan, K. S. and Tong, H. (1985). On the Use of the Deterministic Lyapunov 

Functions for the Egodicity of Stochastic Difference Equations. Advances in 

Applied Probability, 17,666-678. 

17. Chen, L. T. (1995). Essays on Testing for Speculative Bubbles in the Stock 

Market. Monograph Series, No.65, The Institute of Economics, Academia 

Sinica. 

18. Chen, L. T. (1997). Misspecification Versus Bubbles in the Stock Market: The 

Case for Time-varying Discount Rates. Academia Economic Papers, 25, 

427-461. 

19. Chen, L. T. (1999). Model Misspecification Versus Speculative Bubbles in the 

Foreign Exchange Market: The Case of Taiwan's Effective Exchange Rate. 

Taiwan Economic Review, 27, 43-68. 

20. Clarida, R. R., Sarno, L., Talyor, M. P. and Valente, G. (2003). The 

Out-or-Sample Success of Term structure Models as Exchange Rate Predicators: 

A Step Beyond. Journal o/International Economics, 60, 61-83. 

21. Cuthbertson, K. (1996). Quantitative Financial Economics. John Wiley & Sons. 

199 



22. Davies, R. B. (1977). Hypothesis Testing when a nuisance parameter is present 

only under the Alternative. Biometrika, 64, 247-254. 

23. Davies, R. B. (1987). Hypothesis Testing when a nuisance parameter is present 

only under the Alternative. Biometrika, 74, 33-43. 

24. Dezhbakhsh, H. and Demirguc-Kunt, A. (1990). On the Presence of Speculative 

Bubbles in Stock Prices. Journal of Financial and Quantitative Analysis, 25, 

101-112. 

25. Diba, B. T., and H. I. Grossman (l988a). Explosive Rational Bubbles in Stock 

Prices? American Economic Review, 78, 520-30. 

26. Diba, B. T., and H. I. Grossman (1988b). Rational Inflationary Bubbles. Journal 

of Monetary Economics, 21, 35-46. 

27. Dickey, D.A. and Pantula, S. G. (1987). Detennining the Order of Differencing 

in Autoregressive Processes. Journal of Business and Economic Statistics, 5, 

455-461. 

28. Durlauf, S. N. & Hooker, M. A. (1994), "Misspecification versus Bubbles in the 

Cagan Hyperinflation Model," in C. Hargreaves (eds.), Non-stationary Time 

Series AnalysiS and Cointegration. Oxford: Oxford University Press. 

29. Enders, W. and Granger, C. W. J. (1998). Unit Root Tests and Asymmetric 

Adjustment with an Example Using the Tenn Structure of Interest Rates. Journal 

of Business and Economic Statistics, 16,304-311. 

30. Enders, W. and Siklos, P. (2001). Cointegration and Threshold Adjustment. 

Journal of Business and Economic Statistics, 19, 166-176. 

31. Engle, R. F. and Granger, C. W. J. (1987). Cointegration and Error-correction: 

Representation, Estimation and Testing. Econometrica, 55, 251-276. 

32. Engsted, T. (1993). Cointegration and Cagan's model of Hyperinflation under 

Rational Expectations. Journal of Money, Credit and Banking, 25, 350-360. 

200 



33. Engsted, T. (1994). The Classic European Hyperinflations Revisited: Testing the 

Cagan Model Using a Cointegrated VAR Approach. Economica, 61, 331-341. 

34. Engsted, T. (1996). The Monetary model of the Exchange Rate under 

Hyperinflation: New Encouraging Evidence. Economics Letters, 51, 37-44. 

35. Engsted, T. (2003). Misspecification versus Bubbles in Hyperinflation Data: 

Comment. Journal of International Money and Finance, 22, 441-451. 

36. Evans, G. E. (1986). A Test for Speculative Bubbles in the Sterling-Dollar 

Exchange Rate: 1981-84. American Economic Review, 76, 621-636. 

37. Evans, G. E. (1991). Pitfalls in Testing for Explosive Bubbles in Asset Prices. 

American Economic Review, 81,922-930. 

38. Flavin, M. (1983). Excess Volatility in the Financial Markets: A Reassessment of 

the Empirical Evidence. Journal 0/ Political Economy, 91, 929-956. 

39. Flood, R. P. and Garber, P. M. (1980a). An Economic Theory of Monetary 

Reform. Journal 0/ Political Economy, 88, 24-58. 

40. Flood, R. P. and Garber, P. M. (1980b). Market Fundamentals versus Price-Level 

Bubbles: The First Tests. Journal o/Political Economy, 88, 745-770. 

41. Flood, R. P. and Hodrick, R. J. (1986). Asset Price Volatility, Bubbles and 

Process Switching. Journal o/Finance, 41,831-842. 

42. Flood, R. P. and Rodrick, R. J. (1990). On Testing for Speculative Bubbles. 

Journal o/Economic Perspectives, 4,85-101. 

43. Flood, R. P., Rodrick, R. J. and Kaplan, P. (1986). An Evaluation of Recent 

Evidence on Stock Market Bubbles. NBER Working Paper, No. 1971. 

44. Frenkel, J. A. (1977). The Forward Exchange Rate, Expectations and the 

Demand for Money: The German Hyperinflation. American Economic Review, 
67,653-670. 

201 



45. Frenkel, J. A. (1979). Further Evidence on Expectations and the Demand for 

Money During Gennan Hyperinflation. Journal of Monetary Economics, 5, 
81-96. 

46. Funke, M., Hall, S. and Sola, M. (1994). Rational Bubbles During Poland's 

Hyperinflation: Implications and Empirical Evidence. European Economic 

Review, 38, 1257-1276. 

47. Garber, P. (1989). Tulipmania. Journal of Political Economy, 97, 535-560. 

48. Garber, P. (1990). Famous First Bubbles. Journal of Economic Perspective, 4, 

35-54. 

49. Gilles, C. and LeRoy, S. F. (1991). Econometric Aspects of the Variance-Bounds 

Tests: A Survey. Review of Financial Studies, 4, 753-791. 

50. Granger, C. W. J. and Swanson, N. R. (1997). An Introduction to Stochastic 

Unit-Root Process. Journal of Econometrics, 80, 35-62. 

51. Goodfriend, M. S. (1982). An Alternate Method of Estimating the Cagan Money 

Demand Function in Hyperinflation under Rational Expectations. Journal of 

Monetary Economics, 9,43-57. 

52. Gourieroux, C., Laffont, J.J. and Monfort, A. (1982). Rational Expectations in 

Dynamic Linear Models: Analysis of the Solutions. Econometrica, 50, 409-425. 

53. Haldrup, N. (1994). Semiparametric Tests for Double Unit Roots. Journal of 

Business and Economic StatistiCS, 12, 109-122. 

54. Haldrup, N. (1998). An Econometric Analysis of 1(2) Variables. Journal of 

Economic Surveys, 12,595-650. 

55. Hall, S. G., Psaradakis, Z. and Sola, M. (1999). Detecting Periodically 

Collapsing Bubbles: A Markov-Switching Unit Root Test. Journal of Applied 

Econometrics, 14, 143-154. 

202 



56. Hamilton, J. D. (1986). On Testing for Self-fulfilling Speculative Price Bubbles. 

International Economic Review, 27,545-552. 

57. Hamilton, J. D. (1989). A New Approach to the Economic Analysis of 

NonstationaryTime Series and the Business Cycle, Econometrica, 57, 357-384. 

58. Hamilton, J. D. and Whiteman, C. H. (1985). The Observable Implications of 

Self-Fulfilling Expectations. Journal of Monetary Economics, 16, 353-373. 

59. Hansen, B. E. (1995). Rethinking the Univariate Approach to Unit Root Testing. 

Econometric Theory, 11, 1148-1171. 

60. Hansen, L. P. & Sargent, T. J. (1980). Formulating and Estimating Dynamic 

Linear Rational Expectations Models. Journal of Economic Dynamics and 

Control,2,7-46. 

61. Harvey, AC. (1989). Forecasting, Structural Time Series Models and Kalman 

Filter. Cambridge University Press. 

62. Hausman, J. A (1978). Specification Tests in Econometrics. Econometrica, 46, 

1251-1271. 

63. Haza, D. P. and Fuller, W. A. (1979). Estimation of Autoregressive Processes 

with Unit Roots. The Annuals of Statistics, 7, 1106-1120. 

64. Hooker, M. A. (2000). Misspecification versus Bubbles in Hyperinflation Data: 

Monte Carlo and Interwar European Evidence. Journal of International Money 

and Finance, 19, 583-600. 

65. Ikeda, S. and Shibata, A. (1992). Fundamentals-dependent Bubbles in Stock 

Prices. Journal of Monetary Economics, 30, 143-168. 

66. Ikeda, S. and Shibata, A (1995). Fundamentals Uncertainty, Bubbles and 

Exchange Rate Dynamics. Journal of International Economics, 38, 199-222. 

67. 1m, K. S. (1996). Least Squares Approaches to Non-Normal Errors. DAE 

working paper, No. 9603, University of Cambridge. 

203 



68. 1m, K.S. (2001). Unit Root Tests Using More Moment Conditions Than Least 

Squares. Working paper, University of Central Florida. 

69. Imrohoroglu, S. (1993). Testing for Sunspot Equilibria in the German 

Hyperinflation. Journal of Economic Dynamics and Control, 17, 289-317. 

70. Johansen, S. (1995). Likelihood Based Inference Cointegrated Vector 

Autoregressive Models. Oxford University Press. 

71. Keynes, J. M. (1936). The General Theory of Employment, Interest, and Money. 

Macmillan. 

72. Kim, C. J. (1994). Dynamic Linear Models with Marko-Switching, Journal of 

Econometrics 60, 1-22. 

73. Kindleberger, C. P. (1987). Bubbles. New Palsgrave Dictationary, Vol. 1,20-22. 

74. Kitamura, Y. & Phillips, P. C. B. (1995). Efficient IV Estimation in 

Nonstationary Regression: An Overview and Simulation Study. Econometric 

Theory, 11, 1095-1130. 

75. Kitamura, Y. & Phillips, P. C. B. (1997). Fully Modified IV, GIVE and GMM 

Estimation with Possibly Non-stationary Regressors and Instruments. Journal of 

Econometrics, 80, 85-123. 

76. Kleidon, A. W. (1986). Variance Bounds Tests and Stock Price Valuation models. 

Journal o/Political Economy, 94, 953-1001. 

77. Koopman, S. J., Harvey, A. C., Doomik, J. A. and Shephard, N. (2000). STAMP: 

Structural lime Series Analyser, Modeller and Predictor. Timberlake 

Consultants Ltd. 

78. Krolzig, H. M. (1996). Statistical Analysis of Co integrated VAR Processes with 

Markovian Regime Shifts. SFB 373 Discussion Paper, 2511996, Humboldt 

Universitat zu Berlin. 

204 



79. Krolzig, H. M. (1997). Markov Switching Vector Autoregression. Modelling. 

Statistical Inference and Application to Business Cycle AnaZvsis. Berlin: 

Springer. 

80. Krolzig, H. M. (2002). Regime-Switching Models. Mirno, University of Oxford. 

81. Krolzig, H. M., Marcellino, M. Mizon, G .. E. (2002). A Markov-switching 

Vector equilibrium correction model of the UK Labour Market. Empirical 

Economics, 27, 233-254. 

82. LaHaye, L. (1985). Inflation and Currency Refonn. Journal of Political 

Economy, 93, 537-560. 

83. LeRoy, S. F. and Porter, R. D. (1981). The Present-Value Relation: Tests Based 

on Implied Variance Bounds. Econometrica, 49,555-574. 

84. McCulloch, 1. H. (1996), "Financial Applications of Stable Distributions," in G. 

S. Maddala and C. R. Rao (eds.), Handbook of Statistics, Vol., 14, Elsevier, 

pp.393-425. 

85. Meese, R. (1986). Testing for Bubbles in Exchange Markets: A Case of 

Sparkling Rates? Journal of Political Economy, 94, 

86. Moosa, 1. A. (1999). Testing the Currency-Substitution Model under the Gennan 

Hyperinflation. Journal of Economics, 70, 61-78. 

87. Muth, J. F. (1961). Rational Expectations and the Theory of Price Movements. 

Econometrica, 29, 315-335. 

88. Nelson, C., Piger, J. and Zivot, E. (2001), Markov Regime Switching and 

Unit-Root Tests. Journal of Business and Economic Statistics, 19,404-415. 

89. Okina, K. (1984). Rational Expectation, Bubbles and Foreign Exchange Market. 

Bank of Japan Monetary and Economic Studies, 2, 81-118. 

90. Okina, K. (1985). Empirical Tests of Bubbles in the Foreign Exchange Market. 

Bank of Japan Monetary and Economic Studies, 3, 1-45. 

205 



91. Peel, D. A. and Speight, A. E. H. (1994). Testing for Non-Linear Dependence in 

Inter-War Exchange Rates. Weltwirtschaftliches Archiv, 130,391-417. 

92. Perron, P. and Ng, S. (1996). Useful Modifications to some Unit Root Tests with 

Dependent Errors and their Local Asymptotic Properties. Review of Economic 

Studies, 63, 435-463. 

93. Phillips, P.c.B. (1986). Understanding Spurious Regressions in Econometrics. 

Journal of Econometrics, 33, 311-340. 

94. Phillips, P. C. B. (I995a). Fully Modified Least Squares and Vector 

Autoregressions. Econometrica. 63, 1023-78. 

95. Phillips, P. C. B. (1995b). Robust Nonstationary Regression. Econometric 

Theory. 11,912-951. 

96. Phillips, P. C. B. & Hansen, B. E. (1990). Statistical Inference in Instrumental 

Variables Regression with 1(1) Processes. Review of Economic Studies, 57, 

99-125. 

97. Phillips, P. C. B. & Ouliaris, S. (1990). Asymptotic Properties of Residual Based 

Tests for Cointegration, Econometrica. 58, 165-193. 

98. Phillips, P. C. B. and Perron, P. (1988). Testing for a Unit Root in Time Series 

Regression. Biometrika, 75, 335-346. 

99. Pippenger, M. K. and Goering, G. E. (1993). A Note on the Empirical Power of 

Unit Root Tests under Threshold Processes. Oxford Bulletin of Economics and 

Statistics, 55, 473-481. 

100.Psaradakis, Z. (2001). Markov Level Shift and the Unit Root Hypothesis. 

Econometrics Journal, 4, 226-42. 

101.Salge, M. (1997). Rational Bubbles. Berlin: Springer. 

206 



102.Salemi, M.K. & Sargent, TJ., (1979). The Demand for Money during 

Hyperinflation under Rational Expectations: II. International Economic Review, 

20, 741-758. 

103. Sargent, T. J. (1977). The Demand for Money during Hyperinflations under 

Rational Expectations: 1. International Economic Review, 18,59-82. 

104.Sargent, T. J. (1982), "The Ends of Four Big Inflations", in: Robert E. Hall (Ed.), 

Inflation: Causes and Effects. Chicago University Press. 

1OS.Sargent, T. J. and Wallace, N. (1973). Rational Expectations and the Dynamics of 

Hyperinflation. International Economic ReView, 14, 328-S0. 

1 06. Sen, D. L. and Dickey, D. A. (1987). Symmetric Test for Second Differencing in 

univariate time series. Journal o/Business and Economic statistics, S, 463-473. 

1 07. Shiller, R. J. (1981). Do Stock Prices Move Too Much to be Justified by 

Subsequent Changes in Dividends? American Economic Review, LXXI, 421-36. 

lOB.Shin, D. W. and Kim, H. J. (1999). Semiparametric Tests for Double Unit Roots 

Based on Symmetric Estimators. Journal of Business and Economic Statistics, 

17,67-73. 

109.Taylor, M. P. (1991). The Hyperinflation Model of Money Demand Revisited. 

Journalo/Money, Credit and Banking, 23, 327-3S1. 

110.Taylor, M. P. and Peel, D. (1998). Periodically Collapsing Stock Price Bubbles: 

A Robust Test. Economics Letters, 61, 221-228. 

11 1. Tinbergen, J. (ed.) (1934). International Abstract o/Economic Statistics 1910-30. 

London: International Conference of Economic Services. 

112. Tirole, J. (1982). On the Possibility of Speculation under Rational expectations. 

Econometrica, SO, 1163-1181. 

113. Tirole, J.(198S). Asset Bubbles and Overlapping Generations. Econometrica, 53, 

1499-1S28. 

207 



114.van Giersbergen, N.P.A. (1996). Bootstrapping the Trace Statistic in VAR 

models: Monte Carlo Results and Applications. Oxford Bulletin of Economics 

and Statistics, 58, 391-408. 

115. Webb, S. B. (1985). Government Debt and Inflationary Expectations as 

Determinants of the Money Supply in Gennany: 1919-23. Journal of Money, 

Credit and Banking, 17,479-92. 

116.Weil, P. (1989). Overlapping Families of Infinitely-lived Agents. Journal of 

Public Economics, 38, 183-198. 

117. West, K. D. (1987a). A Specification Test for Speculative Bubbles. Quarterly 

Journal of Economics, 102, 553-580. 

1I8.West, K. D. (1 987b). A Standard Monetary Model and the Variability of the 

Deutschemark-Dollar Exchange Rate. Journal of Monetary Economics, 23, 

57-76. 

119.West, K. D. (I988a). Bubbles, Fads and Stock Price Volatility Tests: A Partial 

Evaluation. Journal of Finance, xx, 639-656. 

l20.West, K. D. (I 988b). Dividend Innovations and Stock Price Volatility. 

Econometrica, 56, 37-61. 

121.Woo, Kai-Yin (1999). Cointegration Analysis of the Intensity of the ERM 

Currencies under the European Monetary System. Journal of International 

Financial Markets, Institutions and Money, 9, 393-406. 

I22.Woo, Kai-Yin and Chan, H. L. (2001), "Testingfor Model Misspecijication and 

Bubbles Under the Chinese Hyperinflation", in Albert Travidze (Ed.), Progress 

in Economics Research, Vol. 4, NOVA, pp.13-28. 

123.Woo, Kai-Yin, Chan, H.L. and Lee, S.K. (2001). Detecting Rational Bubbles in 

the Residential Housing Markets of Hong Kong. Economic Modelling, 18, 

61-73. 

208 



124.Woo, Kai-Yin, Chan, H.L. and Lee, S.K. (2003). An Empirical Investigation of 

Price and Exchange Rate Bubbles during the Interwar European Hyperinflations. 

International Review o/Economics and Finance, 12,327-344. 

125. Yao, J. F. and Attali, J. G. (2000). On Stability of Nonlinear Processes with 

Markov Switching. Advances in Applied Probability, 32, 394-407. 

126.Young, J.P. (1925). European Currency and Finance, Vol. 2. Washington, D.C: 

U.S. Government Printing Office. 

209 


