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Abstract: The deep convolution neural network (CNN), which has prominent advantages in feature
learning, can learn and extract features from data automatically. Existing polarimetric synthetic
aperture radar (PolSAR) image classification methods based on the CNN only consider the
polarization information of the image, instead of incorporating the image’s spatial information.
In this paper, a novel method based on a dual-branch deep convolution neural network (Dual-CNN)
is proposed to realize the classification of PolSAR images. The proposed method is built on two
deep CNNs: one is used to extract the polarization features from the 6-channel real matrix (6Ch)
which is derived from the complex coherency matrix. The other is utilized to extract the spatial
features of a Pauli RGB (Red Green Blue) image. These extracted features are first combined into
a fully connected layer sharing the polarization and spatial property. Then, the Softmax classifier
is employed to classify these features. The experiments are conducted on the Airborne Synthetic
Aperture Radar (AIRSAR) data of Flevoland and the results show that the classification accuracy
on 14 types of land cover is up to 98.56%. Such results are promising in comparison with other
state-of-the-art methods.

Keywords: polarimetric SAR images; deep convolution neural network; dual-branch convolution
neural network; land cover classification

1. Introduction

Polarimetric synthetic aperture radar (PolSAR) is a kind of high resolution imaging system,
which can work under all weather, day-and-night conditions. The PolSAR data can be used to
describe the scattering mechanism of the earth surface and provide rich information for terrain surface
classification with the complex coherency matrix [1], scattering matrix [2], etc. With the development of
the PolSAR system, PolSAR data such as Advanced Synthetic Aperture Radar (ASAR)/Environmental
Satellite (ENVI-SAT), Phased Array L-band Synthetic Aperture Radar (PALSAR)/Advanced Land
Observing Satellite (ALOS) and Radar Satllite-2 are becoming more and more available, thus PolSAR
image classification has become an important research topic [3].

It is a challenge to automatically extract and select features in PolSAR image classification.
Traditional methods generally extract features manually per the scattering characteristics of the terrain
surface. The features include radiation information [4], polarization information [5], sub-aperture
decomposition [6], decomposition information [7], etc. A single feature or combined features are
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then fed into an appropriate classifier for classification. Using features individually cannot achieve
satisfactory performance. Even if these features are combined then, the classification accuracy will
not be improved due to subjectiveness. In addition, the features that can be combined are limited,
and the computational complexity will grow with the increase of the amount of combined features.
Therefore, traditional methods cannot make full use of the rich features of the PolSAR data to improve
the classification accuracy.

In recent years, the theory of deep learning has set off a wave in the field of pattern recognition.
In 2006, Hinton et al. proposed an unsupervised greedy method based on Deep Belief Network (DBN),
which trains layer by layer, solving the vanishing gradient problem caused by deep training [8]. In 2011,
Wong et al. proposed the regularized deep Fisher mapping (RDFM) method per Fisher criterion to
enhance the feature separability by using the neural network algorithm, which can eliminate the
overfitting problem [9]. Then, many scholars put forward a variety of deep learning models based on
different application backgrounds, such as Deep Restricted Boltzmann (DRB) [10], Stacked Denoising
Autoencoders (SDA) [11], and the Deep Convolutional Neural Network (CNN) [12]. As a pillar of
deep learning, the CNN is one of the best models for solving the “perception” issues. For example,
the AlexNet model won first prize in the ImageNet ILSVRC image classification contest in 2012,
which has caused widespread concern in related fields [13]. To solve the problem of inefficient
utilization of features in PolSAR image processing, some scholars introduce the deep learning
framework to extract features of PolSAR images. Wang et al. converted the PolSAR image into the
scattering matrix, and then established multichannels for the CNN model [14]. Afterwards, the features
were extracted automatically and the images were classified by wide training. Experimental results
showed that the PolSAR image classification algorithm based on the CNN is higher than that of the
traditional algorithms using the same dataset. Zhou et al. converted the complex matrix of the PolSAR
image into a real matrix of six channels to suit the input of the neural network, and designed two,
cascaded, fully connected networks to map the features to a certain classifier [15]. This algorithm
further improves the accuracy of PolSAR image classification.

Although the deep learning framework provides an idea to solve the problem of low utilization
of rich features in PolSAR image classification, it still faces the following problems. First, SAR image
is a special kind of microwave image and the regions with the same gray level do not necessarily
have similar optical properties. Therefore, the existing methods for optical images based on the deep
learning framework may not be suitable for PolSAR image processing. Second, the existing PolSAR
image classification methods based on deep learning only consider the polarization features of the
image, while ignoring the spatial features.

To solve the above problems, this paper proposes a dual-branch deep convolution neural network
(Dual-CNN) method for PolSAR image classification. The proposed method is composed of two CNNs:
one is used to extract the polarization features of the real matrix of the six channels (6Ch-CNN) and
the other is used to extract the spatial features of the Pauli RGB image (PauliRGB-CNN). These two
kinds of features are fed into a fully connected layer to achieve mutual harmony, and then the Softmax
classifier is followed immediately to complete the classification work.

The remainder of this paper is structured as follows. Basics of the CNN are introduced in Section 2.
In Section 3, we present the architecture of the proposed method. Experiment results and discussions
are given in Section 4. In Section 5, the conclusion is made.

2. Basics of the CNN

A typical CNN is composed of an input layer, convolution layer, pooling layer and output layer.
The input layer receives the pixels from the image. The convolution layer utilizes the convolution
kernel to extract image features. The pooling layer is followed by the convolution layer, aiming at
reducing the pixels to be processed and formulating the abstract features. The output layer maps the
extracted features into classification vectors corresponding to the feature categories. The training of
the CNN has two processes: the Forward Propagation and the Backward Propagation.



Appl. Sci. 2017, 7, 447 3 of 18

2.1. The Forward Propagation

The Forward Propagation (FP) is a mapping process where the output of the previous layer is
taken as the input of the current layer. To avoid the defects of the linear model, neurons of each layer
should be added with a nonlinear activation function in the mapping process. Since the first layer
only receives pixel values, there are no activation functions. From the second layer to the last layer,
nonlinear activation functions are employed. Thus, the output of each layer can be expressed as:

zl = W l ∗ xl−1 + bl

al = σ(zl)

}
(1)

where l represents the lth layer, and ∗ means convolution operation. W l , bl , and zl are the weights
matrix (for the convolution layer, it is the convolution kernel), the bias matrix and weighted input
of the lth layer respectively. σ is the nonlinear activation function. If l = 2, then x2−1 = x1 is the
image matrix whose elements are pixel values. If l > 2, then xl−1 is the feature maps matrix al−1,
which is extracted from the (l − 1)th layer i.e., xl−1 = al−1 = σ(zl−1). Suppose L is the output layer,
aL represents the final output vector.

2.2. The Backward Propagation

The Backward Propagation (BP) algorithm is a supervised learning method. It first selects a cost
function based on the output and the targeted values, then calculates the error vectors, and lastly
applies the Gradient Descent (GD) to update W l and bl parameters. Specifically:

1. Selection of cost function. The quadratic function is the common cost function. However,
it would be time-consuming if the neurons make an obvious mistake during the training process.
Alternatively, we take Cross-Entropy (EL

0 ) as the cost function which is determined by Equation (2):

EL
0 = − 1

n

n

∑
i=1

N

∑
k=1

[
tL
k lnaL

k + (1− tL
k )ln(1− aL

k )
]

(2)

where n is the total number of training sets, and N is the number of neurons in the output Layer
corresponding to the N classes. tL

k is the targeted value corresponding to the kth neuron of the
output layer, and aL

k is the actual output value of the kth neuron of the output layer.
2. Calculation of error vectors. The error vector of the output layer L is defined by

δL =
∂EL

0
∂zL

(3)

where the symbolic ∂(·) represents the partial derivative operation. Back-propagate the error
vector δL. For each l = {L− 1, L− 2, ..., 2}, δl can be computed by the Chain Rule as:

δl = W l+1δl+1 ◦ σ′(zl) (4)

where the symbolic ◦ is the Hadamard product (or Schur product) which denotes the element-wise
product of the two vectors.

3. Updates of weights and the bias matrix. The gradients of W l and bl are denoted as ∂EL
0

∂W l and ∂EL
0

∂bl

respectively. The partial derivative of EL
0 to W l and bl can be calculated with Equations (1) and (3):

∂EL
0

∂W l =
∂EL

0
∂al ◦

∂al

∂W l = δl ◦ xl−1

∂EL
0

∂bl =
∂EL

0
∂al ◦

∂al

∂bl = δl

 (5)
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The change values of W l and bl : ∆W l and ∆bl , can be calculated respectively by

∆W l = −η
∂EL

0
∂W l

∆bl = −η
∂EL

0
∂bl

 (6)

where η represents the learning rate.

2.3. Feature Extraction

In the training process, the CNN is used to extract the features from the data based on the
convolution operation. The convolution operation includes a convolution layer followed immediately
by a pooling layer. The feature extraction process is shown in Figure 1. From bottom to top, a represents
the input data, b represents the feature data which is obtained by the convolution operation and the
ReLu (Rectified Linear Units) activation function, and c represents the feature data which is obtained
after the pooling process. Red and green patches represent different salient features, blue patches
represent the label of the data(or interesting target), the purple patch in a represents the convolution
kernel, and the purple patch in b represents the feature which is obtained from the purple patch in
a by the convolution operation and the ReLu activation function. More specifically, the CNN works
as follows.

Figure 1. The processing of feature extraction in deep convolution neural network (CNN).

First, the salient features of a are preserved, and then passed to a ReLu function for post processing.
Second, the non-salient features of a are filtered out by ReLu via setting the minus in the feature map
to 0. The derived features are b. Finally, more abstract features c of the input data will be obtained
based on the pooling layer. If features c are not abstract enough, a second convolution operation
is needed. The process is repeated until the most representative features are obtained. This results
in deepening the layers of the CNN. In the whole process, the data-label of a may be filtered out,
but its main neighborhood features can be preserved for judging a-label. In addition, it is worth
noting that there is no clear conclusion how many layers of convolution operations are appropriate.
Thus, the visual convolution operation is needed.
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3. The Proposed Method

The proposed method consists of two frameworks: PolSAR data pre-processing and Dual-CNN
model design. As shown in Figure 2, the Dual-CNN includes the 6Ch-CNN and PauliRGB-CNN.
The polarization features and the spatial features are generated from the pre-processed data by the
6Ch-CNN and PauliRGB-CNN; then, these features are combined by a fully connected layer. In this
paper, the above combined features are named as P-S features. Finally, the P-S features are classified by
the Softmax classifiers.

Figure 2. The main procedures of the polarimetric synthetic aperture radar (PolSAR) images
classification based on the dual-branch deep convolution neural network (Dual-CNN) model.

3.1. PolSAR Data Pre-Processing

Since the obtained PolSAR data contain the complex coherent matrix, they cannot be directly
fed into the Dual-CNN model and a pre-processing is required. The pre-processing of the PolSAR
data contains three steps: creating a 6Ch to allow the input and representation of polarimetric data;
generating a Pauli RGB image to obtain the spatial feature; patching the images with fixed size to
adapt to the CNN.

3.1.1. Creating 6Ch to Represent the Polarimetric Data

Under the multi-look and reciprocity assumption, the single station PolSAR can be represented
by the 3 × 3 complex coherent matrix T which is symmetrical. To adapt the input format of the
convolution neural network, it is necessary to convert the data into a real matrix. We create a 6Ch to
represent the polarimetric data, and each channel is obtained by Equation (7):

A =10ln(SPAN)

B =T22/SPAN

C =T33/SPAN

D =|T12|/
√

T11T22

E =|T13|/
√

T11T33

F =|T23|/
√

T11T33


(7)

where T11, T22, T33 represent the diagonal elements of the matrix T and they are real numbers
while T12, T13, T23 represent complex elements. A is the total scattering power in decibels,
here SPAN = T11 + T22 + T33 ; B and C are normalized power of T22 and T33; D, E and F are the
relative correlation coefficients. Except A, the remaining five parameters are normalized to [0, 1].
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Thus, the PolSAR data are converted into a 6Ch to form a 6×m× n dataset, where 6 represents the
total number of the channels, i.e., A, B, C, D, E and F; m and n represent the number of rows and
columns in a single channel, respectively.

3.1.2. Generating Pauli RGB Image to Obtain the Spatial Feature

The Pauli decomposition of the scattering matrix S is often employed to represent all the
polarimetric information in a single PolSAR image, and its form is:

S =

[
SHH SHV
SVH SVV

]
= aSa + bSb + cSc + dSd (8)

where Sa, Sb, Sc and Sd constitute a set of orthogonal Pauli bases, and a, b, c and d are coefficients. Sa is
the odd scattering mechanism, representing the terrain scattering body; Sb is the dihedral scattering
mechanism rotating 0◦ around the axis, and its echo polarization and incident polarization are on the
mirror symmetry; Sc is the dihedral scattering mechanism rotating 45◦ around the axis, and its echo
polarization and incident polarization are orthogonal; Sd is the antisymmetric component. Since the
corresponding scattering mechanism does not exist in the nature, the weighted coefficient d is 0
generally. After the Pauli decomposition, the Pauli RGB image is synthetized by a pseudo-color process
using the energy corresponding to a, b and c, as is described in Equation (9):

|a|2 → Blue, |b|2 → Red, |c|2 → Green (9)

The synthesised Pauli RGB image contains rich contour, texture, and color features, which is
in greet agreement with those of real ground scenes. This enables recognition by the naked eye.
In addition, the Pauli RGB image can reduce the interference of other data on the feature extraction,
improving algorithm robustness. Furthermore, the CNN is good at dealing with color images, so the
Pauli RGB image is suitable. For these reasons, many classification algorithms use the Pauli RGB image
as their input [16,17], and so does our method.

3.1.3. Patching the Images with Fixed Size

It is required that the CNN processes the data with a fixed size. However, different targets
usually have different sizes, so it is difficult to use a generalized size for all target slices. Thus, some
researchers propose to process the patches via stretching or filling the bounding of the image with
0 pixels. Although these methods can solve this problem to a certain extent, they will bring some
unexpected errors. For example, if the boundary of small objects is filled with 0, the detection accuracy
of the targets in complex environments will be limited, which thereby influences its feature learning.
The details of our patching method are as follows.

First, based on the sliding window with a fixed size, we traverse the entire dataset to obtain a set
of fixed size slices for each channel of the 6Ch and Pauli RGB image, which is shown in Figure 3.

By this way, the maximum number of slices for each channel can be obtained by:

n = (w− s + i)(h− s + i)/i2 (10)

where w and h are the width and height of each channel data respectively, s is the size of the sliding
window, and i is the span while sliding. It should be noted that s and i are relevant to the size of the
target. If the target is small (e.g., several pixels), then i is minor and s should be carefully selected.
The selection of both parameters will be detailed in the experiment section.

Second, we assign a label for each slice. Specifically, each pixel in ground-truth is assigned a label
per the category it belongs to, and then we choose the location of the center pixel of the slice as the
index to search the category label in the ground-truth. The selected label is finally assigned for the slice.
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Figure 3. The generation of the fixed-size slices based on the center pixel.

In this manner, all samples are obtained with labels attached, and we can ensure that the CNN
can process the small target in the complex environment.

Using a sliding window can get enough training sets, but the samples will be more or less repeated.
Therefore, before feeding the data into the CNN, we need to reduce the data redundancy by principle
component analysis (PCA).

3.2. Feature Extraction and Classification Based on the Dual-CNN Model

The Dual-CNN model consists of two CNNs, i.e., the 6Ch-CNN and PauliRGB-CNN.
The 6Ch-CNN contains two convolution layers (Conv61, Conv62), two pooling layers, and two
fully connected layers (FC6_200, FC6_84). It is used to acquire the polarization data feature.
The PauliRGB-CNN also includes two convolution layers (Conv31, Conv32), two pooling layers
and two fully connected layers (FC3_200, FC3_84), and it is applied to obtain the spatial features.
More specifically, as shown in Figure 2, “Conv61, 500@3×3” represents the first 6-channel convolution
layer depending upon the 3×3 convolution kernel and generates 500 feature maps. “FC6_200”
represents the 6-channel fully connected layer consisting of 200 neurons. Notice that the ReLu is
used as the activation function for all the hidden layers and the 2×2 max-pooling is used for the
pooling layers. PauliRGB-CNN is constructed as done in the 6Ch-CNN.

In the training process, the FP and BP are two vital procedures for updating the network.
By training the network, the 6Ch-CNN can obtain the features with the property of polarization,
while PauliRGB-CNN obtains the features which contain spatial characteristics. Then, the Softmax
function is employed to implement the classification.

3.2.1. The Forward Propagation of the Dual-CNN Model

In the 6Ch-CNN, the input polarization data are a 6Ch whose size is fixed. The polarization
feature F1(pn) can be obtained by Equation (1) and pooling. For the PauliRGB-CNN, the spatial feature
F2(sn) can be obtained in the same manner, and the input Pauli RGB image is a fixed size slice with
three channels. Next, two kinds of data are input into the 6Ch-CNN and PauliRGB-CNN separately to
obtain the respective features. Then, the obtained two kinds of features are fed into a fully connected
layer to combine with each other, and the P-S features F(n) can be represented as:

F(n) = ∂[W1 ∗ (F1(pn)� F2(sn)) + b1] (11)
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where W1 and b1 represent the weights and bias matrix in the last fully connected layer, and the joint
operator � stacking the former and the latter items to be input of the last fully connected layer. At last,
F(n) is put into the Softmax to produce a probability vector for each class:

P(n) =
1

∑N
k=1 eWk F(n)+bk


eW1F(n)+b1

eW2F(n)+b2

...

eWN F(n)+bN

 (12)

where N is the total number of the classes. P(n)
max is the max probability in the N-dimensional vector

P(n), and it is recognized as the predicted result.

3.2.2. The Backward Propagation of the Dual-CNN Model

The cost function is established using the ground-truth after obtaining the output category through
the FP. In our method, the Cross Entropy is selected as the cost function. In addition, the weights and
bias can be obtained on the given training set according to Equations (2)–(4), and (6) by the BP process.

In order to improve the performance of BP, the Adam optimization algorithm is used in the
process of batching gradient descent. The weights in each layer are initialized by a group of values
which are subject to the Gaussian random distribution in a certain interval given in Equation (13):[

−4

√
6

fin + fout
, 4

√
6

fin + fout

]
(13)

where fin and fout are the numbers of the input and the output feature maps at each layer respectively.

4. Experiment

To verify the performance of the proposed Dual-CNN model, we conduct an experiment on the
Flevoland full PolSAR data. The experiment contains the following three aspects:

1. Comparing our method with the single-branch network, i.e., the 6Ch-CNN and PauliRGB-CNN model.
2. Comparing our method with some classical algorithms and some recently proposed classification

algorithms with the same dataset.
3. Discussing how the size of the slices influences the performance of our method, and then

conducting research on the visual representation of the features.

4.1. Flevoland Data

Flevoland full PolSAR data are farmland images at L wave band and were acquired by the
AIRSAR Aircraft platform in 16 August 1989. It contains HH, HV, VH and VV (H and V represent
horizontal polarization and vertical polarization respectively) channels of polarimetric information.
Each channel has 750 × 1024 pixels. The resolution of the image is 6.6 m in the range direction and
12.1 m in the azimuth direction. Since the complex coherent matrix T can describe the scattering
mechanism, we transform the 4-channel original data to T. According to Section 3.1, we convert the T
in the 6Ch and 4-channel original data to the Pauli RGB image. Figure 4a depicts a Pauli RGB image
which includes crops, lake and lands, etc. In this experiment, we first choose 14 types of land cover
classes to complete the classification. Then we use the ArcGIS to obtain the ground-truth image of
Flevoland according to the Pauli RGB image and google earth. The ground-truth image of Flevoland is
shown in Figure 4b.
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Figure 4. (a) Pauli RGB image of Flevoland PolSAR data; (b) Ground-truth image of Flevoland.

When we obtain the 6Ch and Pauli RGB image, we can acquire slices as illustrated in Section 3.1.3.
In Equation (10), we set s to 15 and i to 5. Then, we obtain (750− 15 + 5)× (1024− 15 + 5)/52 slices
with the size of 15 × 15. Due to the fact that the images are converted into the 6Ch and 3-channel Pauli
RGB image, the numbers of the slices of two branches are 6× (750− 15 + 5)× (1024− 15 + 5)/52 and
3× (750− 15+ 5)× (1024− 15+ 5)/52 respectively. Subsequently, we label the slices per ground-truth.
Finally, we divide the slices into two parts, one is the training set and the other is the testing set. Usually,
we chose 75% slices as the training set and the remaining slices as the testing set. It is worth noting that
the slices in the same location of the 6Ch and Pauli RGB image should be assigned to an individual
part. Table 1 shows the terrain training set and the testing set in the 6Ch and Pauli RGB image; it only
includes 14 types of land cover on the ground-truth image.

Table 1. The detailed information of the training set and testing set on 14 types of land cover classes on
Flevoland PolSAR data.

Label Type Color
Train Test

6Ch PauliRGB 6Ch PauliRGB
1 Stembeans 5082 5082 1693 1693
2 Beets 6039 6039 2012 2012
3 Barley 5106 5106 1701 1701
4 Peas 5530 5530 1843 1843
5 Potatoes 9180 9180 3060 3060
6 Wheat2 7343 7343 2447 2447
7 Forest 10,093 10,093 3364 3364
8 Bare soil 3299 3299 4099 4099
9 Wheat3 12,663 12,663 4221 4221
10 Lucerne 6872 6872 2290 2290
11 Grasses 4200 4200 1399 1399
12 Water 14,739 14,739 4913 4913
13 Wheat 12,361 12,361 4120 4120
14 Rapeseed 9013 9013 2838 2838

Total – – 111,520 111,520 37,000 37,000

4.2. Comparing with One-CNN

To verify the effectiveness of the Dual-CNN model, we compare the proposed method with the
6Ch-CNN and PauliRGB-CNN. We apply a Softmax classifier after their own respective last layers.
In this way, we can train and test the networks with the same parameters.

The training process of our method is performed iteratively 100 times on NVIDIA’s GeForce GTX 1070
with 8GB of GPU memory, and 1000 training samples are used in every epoch. Figures 5a, 6a and 7a show



Appl. Sci. 2017, 7, 447 10 of 18

the loss curve of the 6Ch-CNN, PauliRGB-CNN and Dual-CNN, where the horizontal axis represents
the number of epochs and the vertical axis denotes the loss value. Figures 5b, 6b and 7b show the
accuracy curve of the 6Ch-CNN, PauliRGB-CNN and Dual-CNN, where the horizontal axis represents
the number of epochs and the vertical axis denotes the classification accuracy. In addition, the blue
line depicts the training curve and the green line indicates the testing curve.

Figure 5. (a) Loss curve of the 6Ch-CNN; (b) accuracy curve of the 6Ch-CNN.

Figure 6. (a) Loss curve of the PauliRGB-CNN; (b) accuracy curve of the PauliRGB-CNN.

Figure 7. (a) Loss curve of the Dual-CNN; (b) accuracy curve of the Dual-CNN.
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As shown in Figure 5, the loss curve of the 6Ch-CNN is not very stable, and its accuracy curve
has a large fluctuation as shown in Figure 5b. It is due to the fact that the 6Ch-CNN cannot obtain
the general features of the same class in complicated polarimetric data. Moreover, compared with the
6Ch-CNN, although the loss curve and accuracy curve are stable in PauliRGB-CNN, the 3-channel
data of the Pauli RGB image are scarce. This fact causes the accuracy rate of the PauliRGB-CNN to be
below 95%.

However, in Figure 7b, it can be found that the training accuracy of the Dual-CNN reaches 100%.
The testing accuracy is becoming coincident, keeping at 98%. The training loss and the testing loss
are stable except for the 45th, 70th and 75th epoch. It proves that the polarimetric features and spatial
features are well combined. In Figure 7a, the loss value of the Dual-CNN model decreases, beginning
with a minor value 2.25, in which case the training accuracy is 50%, cutting down the training time
and the number of epochs. That proved the validity of Equation (13). We draw the conclusion in terms
of the accuracy that although there are some anomalies in the training set, the Dual-CNN model is
not impacted.

To clarify the result, we list the accuracy rate of the three different methods in Table 2. For the
classification of 14 types of land cover classes, the lowest accuracy rate of the Dual-CNN model is
still above 95%. Especially, the accuracies of Wheat2 (Label: 6) and Bare soil (Label: 8) reach 100%.
However, the average accuracies of the 6Ch-CNN and PauliRGB-CNN are 5.71% and 4.45% lower
than the Dual-CNN model.

Table 2. The detailed classification accuracy of the Dual-CNN, 6Ch-CNN, and PauliRGB-CNN on
Flevoland PolSAR data.

Label Dual-CNN (%) 6Ch-CNN (%) PauliRGB-CNN (%)

1 97.77 96.04 95.64
2 98.21 90.85 90.70
3 97.88 93.94 94.17
4 96.72 91.91 93.67
5 95.96 88.56 92.57
6 100 95.05 94.26
7 99.94 97.08 95.97
8 100 95.54 93.45
9 95.95 87.84 90.48

10 99.51 92.70 94.07
11 98.85 95.40 95.42
12 99.92 91.34 96.74
13 99.85 93.20 93.48
14 99.39 90.45 95.53

overall 98.56 92.85 94.01

For the convenience of comparison, the classified results are labelled using the same color as the
ground-truth. The results of the ground-truth, Dual-CNN, 6Ch-CNN and PauliRGB-CNN are shown
in Figure 8a–d, respectively.

Analyzing Figure 8c,d, we find that the 6Ch-CNN and PauliRGB-CNN have obvious faults.
The 6Ch-CNN tends to have more scatter errors while PauliRGB-CNN tends to have block errors.
However, the Dual-CNN only has a few scatter errors and almost no block errors, which is better than
the single branch way. It also demonstrates that the combination of the 6Ch-CNN and PauliRGB-CNN
with a fully connected layer is effective for classification.
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Figure 8. (a–d) represent the classification results of the ground-truth, Dual-CNN, 6Ch-CNN,
and PauliRGB-CNN, respectively.

4.3. Comparing with Other Methods

In this section, we compare our method with some classical algorithms and some newly published
methods on the same dataset. The classical algorithms include Maximum Likelihood [18], Support
Vector Machine (SVM) [19], and Minimum Distance [20], which are all performed on the ENVI remote
sensing image processing platform [21,22]. Lee et al. [23], Zhou et al. [15] and Wang et al. [24] are
newly published methods; the method of Lee et al. is an unsupervised algorithm, and those of Zhou et al.
and Wang et al. are supervised algorithms.

Table 3 shows the results of the classification. We performed our experiment on both 11 and
14 types of land cover classes. For classical algorithms, SVM has the highest accuracy, but it is still
lower than our method. For these newly published methods, supervised algorithms are better than
unsupervised ones; the method of Zhou et al. is better than others’ supervised algorithms for 11 classes
because of using the CNN. However, our method is still the best. In addition, we find that the accuracy
decreases when the number of classes increases.

Table 3. Comparison of results with other methods.

Types Names Number of Classes Accuracy (%)

Classical
Maximum Likelihood 14 64.26

SVM 14 71.29
Minimum Distance 14 54.66

Newly Published
Lee et al. [23] 11 81.63

Zhou et al. [15] 11 93.38
Wang et al. [24] 11 93.24

Proposed Dual-CNN 14 98.56
11 98.93

4.4. Different Fixed Size Slices and Visualization of Feature Maps

4.4.1. The Effect of Slicing Size on Classification Accuracy

The category of the center pixel in the slice served as the label. In order to evaluate how the
slice size influences the performance of the algorithm, we performed the experiment with slices
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of 11 × 11, 15 × 15 and 19 × 19, which are subject to the span equalling to 5. The results of the
classification are shown in Figures 9 and 10.

Figure 9. The classification accuracy of the Dual-CNN with the slices of different sizes.

Figure 10. (a,c) represent the classification results of the Dual-CNN with slices of 11 × 11 and 19 × 19
respectively; (b,d) display the false results in (a,c).

As shown in Figure 9, the experiment which uses the slices of 11 × 11 and 19 × 19 has lower
classification accuracy than that of using slices of 15 × 15. Therefore, the slices of 15 × 15 are
appropriate for Flevoland full PolSAR data. As is shown in Figure 10a, for the slices of 11 × 11,
the Dual-CNN does not perform well for large area targets such as wheat (Wheat: brown; Wheat3:
purple); and as is shown in Figure 10b, for the slices of 19 × 19, the Dual-CNN does not perform
well for small area targets such as stem bean, peas and so on. However, for the slices of 15 × 15,
as shown in Figure 8b, the Dual-CNN conducted on large or small area targets such as wheat or stem
beans and peas is better than that of the other two methods. The slice size affects the Dual-CNN
classification accuracy.

If the size of the slice is too small, then the Dual-CNN learns inadequate feature information.
Slices of large area targets, such as the wheat category, will contain the reduplicated information.
Therefore, the features of large area targets learned by the Dual-CNN are not only small in number but
also single, which leads to the low classification accuracy. As the size of slices is enlarged, the learning
ability of the feature enhances, and the classification accuracy is improved. However, if the size of
slices is too large, it will contain the extra features of other objects, which would cause the features of
the small area targets to be submerged by other surrounding features. Thus, the Dual-CNN can extract
many useless features of small area targets, and the accuracy of classification will decrease.
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4.4.2. The Visualization of Feature Maps

To better represent the Dual-CNN model, the 6Ch-CNN and the PauliRGB-CNN are visualized in
this paper. As is shown in Figure 11, the visualization processes of two branches are located at the
convolution layer and max-pooling layer. The visualization contents include input data visualization,
feature extraction visualization, and convolution kernel visualization.

Figure 11. The location of the visualization process.

For input data visualization, two Lucerne slices of 15 × 15, which come from the 6Ch and
Pauli RGB image in the same location, are selected as the samples to show the visualization process.
Two slices are named as the 6Ch-input and PauliRGB-input respectively. Figures 12–14 represent
the visualization process of the 6Ch-CNN, and Figures 15–17 depict the visualization process of the
PauliRGB-CNN. Figures 12 and 15 show the visualized images of 6Ch-input and PauliRGB-input;
where Figures 12a and 15a denote the mixed visualized images of the 6Ch-input and PaulRGB-input
respectively, Figures 12b and 15b denote their unfolded visualized images in an individual channel.
Since the data information of the 6Ch-input and PauliRGB-input are significantly different, it is difficult
to infer whether they represent the same object from the visualized images. As shown in Figure 12,
both the mixed and unfolded visualized images have scatter pixels for the 6Ch-input. This reflects
the various scattering phenomena of the polarized waves. In Figure 15, for the PauliRGB-input, some
contours can be observed from the mixed and unfolded visualized images. This indicates the spatial
characteristics of the terrain surface. These are the most salient features that the CNN requires, which
is beneficial for enhancing the classification accuracy. After this visualization process, the 6Ch-input
and the PauliRGB-input are put into the trained Dual-CNN model.

(a) (b)

Figure 12. (a) Mixed visualized image of the 6Ch-input; (b) Unfolded visualized images of the 6Ch-input.
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As shown in Figure 1, the feature extraction process is performed with three operations,
i.e., convoluting, ReLu processing, and pooling processing. Figure 13 depicts the visualized image of
the 6Ch-input during extracting features where Figure 13a–c denote the visualization of the convolution
operation, ReLu operation and max-pooling operation of the first round of feature extraction; and
Figure 13d–f represent the visualization of the second round of feature extraction. As is shown
in Figure 13a, the 15 × 15 6Ch-input serves as the input of the 6Ch-CNN. Then, these data are
processed by the 3 × 3 convolution kernel in the first layer and are converted into a 14 × 14 feature
map as the output. Figure 13 shows the derived 12 visualized images. Compared with Figure 12b,
the salient polarization features are preserved since 0 elements (light orange) in the 6Ch-con1 are
increased. Figure 13b illustrates the feature map of the 6Ch-con1-reLu1 after ReLu operation; thus,
most of the data are set to 0 (blue). By the max-pooling operation, the visualized feature map of
6Ch-con1-reLu1-maxpooling1 after the first round of feature extraction can be obtained, as shown in
Figure 13c. Although the polarization features are salient, there exists a lot of redundancy, so a second
round of feature extraction is recommended. The processes are shown in Figure 13d–f. Figure 13f
shows the final visualized feature map, where the red squares and the orange squares are the basic
features of the input slices.

The visualized feature maps of the convolution kernels in the two rounds of feature extraction are
shown in Figure 14a,b. From the colorful block in Figure 14, it can be found that the elements of each
convolution kernel are not all zero, which indicates that the Dual-CNN has been well trained and the
obtained features are obvious.

Figures 16 and 17 show the visualization of feature extraction and convolution kernels for the
PauliRGB-input. It illustrates that the PauliRGB-input requires a second round of feature extraction to
extract more abstract spatial features as done in the 6Ch-input.

(a) (b)

(c) (d)

(e) (f)

Figure 13. Visualized feature maps of the 6Ch-input. (a,c,e) denote the visualized feature maps of
the convolution operation, ReLu operation and max-pooling operation in the first round of feature
extraction; and (b,d,f) denote the visualization of the second round of feature extraction.
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(a) (b)

Figure 14. Visualization of the convolution kernel of the 6Ch-CNN: (a) visualization of the convolution
kernel in the first round of feature extraction; and (b) visualization of the convolution kernel in the
second round of feature extraction.

(a) (b)

Figure 15. (a) Mixed visualized image of the PauliRGB-input; (b) Unfolded visualized images of the
PauliRGB-input.

(a) (b)

(c) (d)

(e) (f)

Figure 16. Visualized feature maps of the PauliRGB-input. (a,c,e) denote the visualized feature maps
of the convolution operation, ReLu operation and max-pooling operation in the first round of feature
extraction; (b,d,f) denote the visualization in the second round of feature extraction.
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(a) (b)

Figure 17. Visualization of the convolution kernel of the PauliRGB-CNN: (a) visualization of the
convolution kernel in the first round of feature extraction; and (b) visualization of the convolution
kernel in the second round of feature extraction.

Note that the features extracted by the 6Ch-CNN and PauliRGB-CNN have polarimetric and
spatial characteristics. Visualization can help to check whether the Dual-CNN model is well trained
and to illustrate how to extract the P-S features.

5. Conclusions

By exploring the unique characteristics of the PolSAR data, we have presented a new method that
achieves excellent accuracy in PolSAR classification. The main contributions of this work lie in the
following three aspects. First, we proposed a method of pre-processing the PolSAR data to facilitate
subsequent work. Second, a novel CNN framework which consists of two CNNs was presented to
extract and fuse the polarization feature and spatial feature of the pre-processed data. Last but not
least, visualization of the CNN was applied to help us tune the parameters of the model. We carried
out the experiments on 14 types of land cover classes, and the results show that our model is superior
to the classical classification methods such as SVM, and Maximum Likelihood. Compared with a single
CNN, our method still has higher accuracy due to its P-S features.
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