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Abstract

Can education policy reduce the incidence of teenage motherhood? This paper uses

data from the largest UK household-level survey to investigate the impact of a change

in legislation, which increased the duration of compulsory schooling, on the timing of

fertility using a regression discontinuity design. The findings indicate strong evidence

that the schooling reform induced a downwards impact on fertility not only at the new

school-leaving age, but also exerted a non-monotonic effect throughout the teenage

years. Overall the analysis suggests that the increase in mandatory education caused

a postponement of fertility with the influence of the reform dissipating after age 20.
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1 Introduction

Teenage motherhood is widely regarded as an important socio-economic issue for two key

reasons. First, individuals who are restricted in their human capital investment in ado-

lescence may not reach their lifetime’s economic potential. Second, there is an important

inter-generational dimension associated with early childbearing, as the children born to

teenage mothers tend to have poorer outcomes, and also themselves have a higher proba-

bility of becoming mothers at an early age (Paniagua and Walker, 2012).

These direct and indirect consequences of teenage motherhood have been widely doc-

umented. Analysis based on observed differences between women who gave birth as a

teenager and women who became mothers at an older age find substantial adverse ef-

fects of early childbearing on a number of lifetime outcomes, such as lower levels of edu-

cational attainment (Moore and Waite, 1978; Klepinger, Lundberg, and Plotnick, 1995),

and significantly higher rates of poverty, welfare receipt and lower household income

(Bronars and Grogger, 1994; Ermisch and Pevalin, 2003). Studies that address the po-

tential endogeneity of the fertility decision to ascribe a causal effect of adolescent moth-

eerhood reveal somewhat disparate results both with respect to the impact on the mother

herself (see, inter alia, Chevalier and Viitanen, 2003; Hotz, McElroy, and Sanders, 2005;

Fletcher and Wolfe, 2009; Ashcraft, Fernández-Val, and Lang, 2013) and the outcomes of

the child (Francesconi, 2008). Such analyses with arguably a closer comparison group tend

to indicate that teen mothers would have poorer economic outcomes even if they had de-

layed motherhood. Indeed, Kearney and Levine (2012) suggests that for some individuals

the decision to become a young mother is a rational choice in response to low expectations

of future economic opportunities, rather than an unintentional consequence. In short, the

weight of evidence overwhelmingly points to the existence of negative effects both in the

short and long-run. Hence interventions that mitigate adolescent fertility rates are regarded
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as plausible mechanisms through which to improve the life trajectories of young women

whom project a high proclivity toward teenage motherhood.

Given the interdependence of the education and early fertility decision, one potential

channel of influence is education policy. In the context of mitigating teenage motherhood

interest lies in the ability of the institutional environment to affect the timing of fertility.

Exogenous differences in the duration of mandatory schooling have been used to elicit the

causal effect of education on the likelihood of becoming a teenage mother. Changes in

legislation regarding the minimum age at which an individual becomes eligible to leave

school were first used by Black, Devereux, and Salvanes (2008) to investigate the effect of

education on teenage fertility.1 The authors propose two mechanisms through which the

legislation changes exert an effect on fertility. First the “incarceration effect”, which in

the spirit of the findings of Jacob and Lefgren (2003) regarding the impact of schooling

on youth crime, can be understood that as individuals are required to remain at school

for one year longer, this reduces the opportunity to engage in risky activities, which leads

to downward pressure on their fertility. Second, the “human capital effect”, whereby

individuals reduce their fertility in response to receiving more education and hence better

labour market prospects as a result of the legislation change.

Using data for both the US and Norway - two countries with very different institutional

environments - they obtain remarkably similar findings.2 The results indicate only weak

evidence for an incarceration effect, and the authors therefore conclude that the observed

1A tranche of literature uses this strategy to elicit the causal impact of education on overall fertility,
with diverse findings. Using variation in education induced by compulsory schooling laws in 8 European
countries, Fort, Schneeweis, and Winter-Ebmer (2011) find an increase in education is associated with a
large decrease in childlessness and increase in child parity, whereas Monstad, Propper, and Salvanes (2008)
find no overall effect in Norway, and León (2004), using US census data, finds a decrease in the average
number of children per woman. In the UK Braakmann (2011) using survey data finds a marginal increase
overall fertility, whereas Clark, Geruso, and Royer (2014) using cohort-level administrative data find little
effect in completed fertility.

2Using General Household Survey data, Silles (2011) finds effects of a similar magnitude for the UK.
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significant negative effect of education on teen fertility is driven primarily by the human

capital effect. One potential reason for this finding could be that, in both countries,

the reforms that were used for identification had a relatively minor “bite”, affecting a

comparatively small fraction of youth.

But other institutional features also imply variation in the amount of schooling that

individuals obtain without varying the age at which they leave school. Two examples in-

clude school entry policies and changes to the length of the school day. McCrary and Royer

(2011) exploit that in the US different school-entry policies imply that individuals who are

born in adjacent months face different required lengths of schooling, but can effectively

leave school at the same time. In terms of the mechanisms outlined in Black et al. (2008),

the variation in education generated by the school entry policy should only have an impact

on teenage fertility via the human capital effect. Using data from California and Texas

to investigate the impact of education on a number of socio-economic outcomes they find

no effect of education on the timing of fertility, which, in contrast to Black et al. (2008)

suggests a relatively minor importance of the human capital effect. Berthelon and Kruger

(2010) evaluate a policy intervention in Chile which increased the length of the school

day. The policy had been widely criticised as previous evaluations indicated a negligible

effect on educational attainment, suggesting no human capital effect. However the anal-

ysis shows that the intervention induced a significant impact on non-academic outcomes,

specifically an amelioration of risk behaviours such as teen fertility and crime participation.

The authors posit that this effect is entirely due to increased incarceration, as adolescents

received more adult supervision per day and therefore had less time to engage in risky

activities. These aforementioned studies indicate conflicting evidence with regard to the

channels through which the mandatory schooling requirement influences the likelihood of

early childbearing.
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This paper investigates the effect of education policy on adolescent fertility in England

and Wales, exploiting exogenous variation in the length of compulsory schooling induced

by an institutional change, the Raising of School Leaving Age (RoSLA), implemented by

the UK Government in 1972. The contribution of this paper to the literature is threefold.

First, the analysis considers a legislative increase to the compulsory school leaving age

which, in contrast to those studied in Black et al. (2008), impacted a significant proportion

of the population. Second, as eligibility for the reform was determined by a single cut-off

date the analysis proceeds using a Regression Discontinuity Design (RDD) and the paper

contributes by addressing methodological concerns with implementing RDDs which have

been highlighted in the recent econometrics literature. Third, as the UK has one of the

highest rates of teenage pregnancy in Western Europe, the paper contributes to the body

of international evidence that analyses the influence of education policy on the timing of

fertility.

The analysis uses data from the Labour Force Survey, the largest representative UK

household survey, exploiting an institutional change which increased the duration of com-

pulsory education by one year. As the legislative change was implemented nationwide at a

single point in time, it can be thought of as a natural experiment, which induced exogenous

variation in the length of education received by an individual. The variation was deter-

mined solely by a discontinuous function of an observed covariate, the individual’s month

and year of birth, and therefore the estimation proceeds through a regression discontinu-

ity design (RDD), an approach which allows the identification of causal treatment effects

in quasi-experimental settings. The analysis employs both parametric and non-parametric

methodologies to estimate the direct impact of the reform, and a two-stage ‘fuzzy’ RDD ap-

proach is used to address a pertinent policy question, namely quantifying the consequence

of increasing mandatory education by one year on teenage motherhood. The results sug-
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gest that the impact of RoSLA varies non-monotonically throughout the teen years and, in

contrast to Black et al. (2008), reveals strong evidence of the incarceration effect, as well

as the beyond incarceration effect which may be attributable to increased human capital

acquisition. The findings are robust to the empirical methodology employed and the sen-

sitivity of the estimates to the choice of bandwidth is explored. In addition, the analysis is

extended to examine the extent of the bite of the reform by investigating the extent of the

impact of the treatment beyond just the teenage years, the results suggesting that RoSLA

essentially caused a postponement of fertility to the late teenage years, with no observed

impact of the reform after age 20.

The remainder of the paper is structured as follows: Section 2 summarises the in-

stitutional context. Section 3 describes the data used in the analysis. The econometric

methodology is outlined in Section 4. Section 5 presents the results and offers interpreta-

tions, Section 6 concludes.

2 Institutional Setting

Compulsory schooling was introduced to the UK towards the end of the 19th Century,

with separate rules governing school-starting and school-leaving ages. A child is required

to commence education no later than the beginning of the academic year3 after which she

reaches the compulsory school-starting age of 5 years, which has remained unchanged since

its inception through the Forster Education Act (1870). The first minimum school-leaving

age of 10 years was introduced by the Elementary Education Act (1880), with incremental

increases to the school-leaving age introduced by subsequent legislation.4

3In England and Wales the academic year runs from September 1st until August 31st in the next calendar
year.

4The Elementary (School Attendance) Act (1893) increased the age requirement to initially to 11, and
up to 12 with an amendment to the act in 1899; another increase up to age 14 followed the Fisher Act
(1918); the Butler Act (1944), enacted in 1947, enabled further rises first to age 15 and subsequently 16;
the Education Act (2008) introduced an initial increase to age 17, and from September 2015 requires formal
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This paper concentrates on the exogenous variation in the minimum education require-

ment induced by the Education (Butler) Act (1944), which initially established a minimum

compulsory school-leaving age of 15. The act made provision for a further raise of the school

leaving age up to age 16, but did not mandate a specific implementation date.5 In the im-

mediate post-war period implementation was not possible due to acute shortages in capital,

material and labour, the latter so extreme that during the 1950’s there were calls to reduce

the length of compulsory education in order to increase the size of the labour force pool.

However following the Crowther Report (1959) there was a distinct shift in attitude in favor

of increasing the duration of mandatory schooling, leading to the announcement in 1964

of the government’s intention to implement an increased school-leaving age in September

1970. Preparations for the age-rise were extensive and included a revised curriculum, large-

scale teacher-training to increase the supply of teachers, and a building initiative enlarging

schools to accommodate the increased number of students. These preparations were halted

due to fiscal constraints imposed following the 1967 devaluation of sterling, with the gov-

ernment delaying implementation by two years. The new school-leaving age was finally

introduced by Statutory Instrument 444 (1972), commonly known as the Raising of School

Leaving Age (RoSLA6), implemented in September 1972 thus affecting academic cohorts

born from 1st September 1957 onwards.

The reform impacted the leaving decisions of individuals in the lower tail of the edu-

cation distribution only. Figure 1(a) depicts the fraction of individuals leaving education

before the age of 16 by their academic cohort of birth. This proportion was steadily declin-

ing prior to the implementation of RoSLA, but there is an immediate drop of approximately

20 percentage points exactly coinciding with the introduction of the new minimum school-

participation in education or training of individuals in England and Wales until their 18th birthday.
5Section 35 of the Act states that the subsequent raise should occur ‘as soon as the Minister is satisfied

that it has become practicable to raise to sixteen the upper limit of the compulsory school age’
6A comprehensive history of the RoSLA can be found in Woodin, McCulloch, and Cowan (2013).
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Figure 1: Participation in Education
0

.2
.4

.6
P

ro
po

rt
io

n

50 55 60 65
Academic Cohort of Birth

(a) Left education before age 16

.5
5

.6
.6

5
.7

.7
5

.8
P

ro
po

rt
io

n

50 55 60 65
Academic Cohort of Birth

(b) Left education before age 17

.3
.4

.5
.6

.7
P

ro
po

rt
io

n

50 55 60 65
Academic Cohort of Birth

(c) Post-compulsory

.1
.2

.3
.4

.5
.6

P
ro

po
rt

io
n

50 55 60 65
Academic cohort

None CSE/O’Level A’Level

(d) Highest qualification level

Notes: The graphs display the proportion of individuals by academic cohort of birth. The vertical line depicts the
implementation of RoSLA.

leaving age, indicating that the RoSLA reform constituted a binding constraint for this

proportion of the school age population. Compliance with the increased mandatory age

was almost ubiquitous. Since the Education Act (1962) an individual did not become eligi-

ble to leave school on the exact day he attained the compulsory school-leaving age, instead

two school exit dates were imposed - the end of the Spring term (at Easter) for individuals

within an academic cohort whose birthday lay between September and January, and the

last day of the Summer term for those attaining school-leaving age between February and
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August. The implication of this ‘Easter Leaving Rule’ was that summer-born children

born at the end of the academic year would become eligible to leave school just before the

birthday where they reached compulsory school-leaving age. Specifically as the end of the

Summer term usually falls around the end of June, one sixth of the first cohort directly

affected by RoSLA (those born in July and August 1958), could leave school at age 15

and still be compliant with the minimum school-leaving age requirements, and therefore

in Figure 1(a), the proportion of individuals leaving education by age 15 does not fall to

exactly zero after the implementation of the increased schooling requirement.

Consistent with previous studies (see e.g., Chevalier, Harmon, Walker, and Zhu (2004);

Dickson and Smith (2011)), the data indicate that there were no ripple-upwards effects of

the RoSLA throughout the duration of education distribution. Figure 1(b) shows that

there is no discontinuity in the downward trend of the proportion of individuals leaving

education by age 17, indicating that the RoSLA did not induce an increase in the propor-

tion of students participating in post-compulsory education. Indeed as verified in Figure

1(c), prior to implementation over 60% of students already participated in post-compulsory

education, but approximately half of these individuals remained in school to age 16 only.7

As a consequence it can be observed that the post-compulsory education rate actually

fell approximately 30 percentage points coincidental to the introduction of the reform, af-

terwhich it reaches a relatively stable level consistent with the RoSLA reform inducing

an increase in schooling for those individuals in the lower tail of the years of education

distribution up to the new minimum school leaving age but not beyond. This is further

supported by examining qualifications obtained: Figure 1(d) illustrates the trends in the

highest academic qualification obtained by individuals. In the RoSLA year there is a drop

7The first tier of academic qualifications in England and Wales are taken at age 16, which prior to
RoSLA may have been the inducement for these individuals to remain in education beyond the minimum
requirement
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in the proportion of individuals without academic qualifications of almost 15 percentage

points, approximately equal to the increase in the proportion of individuals obtaining ei-

ther a Certificate of Secondary Education (CSE) or Ordinary Level (O’Level) qualification,

examinations which are sat in the academic year in which an individual turns 16. In con-

trast, there is no impact of the RoSLA on the proportion of individuals with an Advanced

Level (A’Level), an examination taken at age 18.

3 Data

The analysis combines data from the 1975-2006 Labour Force Surveys (LFS). The survey,

which is the largest representative household-level survey in the UK, contains detailed

information on each individual within a household including month and year of birth,

ethnicity, age at leaving full-time education, area of residence, and country of birth.

The outcome of interest in the analysis, the age at which an individual entered mother-

hood, is determined from the ages of the mother and the eldest child within a household at

the time of the survey using the “own-children methodology” developed by Grabill and Cho

(1965). This reverse-survival technique has been shown to generate age-specific fertility

rates from LFS survey data which are consistent with those calculated from administrative

data (Murphy and Berrington, 1993). Implicit in this procedure is that a mother-child

relationship can be observed only if both individuals are present in the same household at

the time of the survey. Thus in the case of parental separation the child is assumed to be

resident with the mother, so that the observed mother-child relationship is biological. The

determination also assumes away child mortality, and therefore the eldest child observed is

primogeniture. Although these two factors may induce measurement error, it is likely that

any effect would be small.8 As the LFS contains measures of both month and year of birth

8The proportion of multi-family households has declined from 3% in 1961 to approx 1% in 2001 (Social
Trends 32, Office of National Statistics (2002)), with over 90% of stepfamilies in 1990 being comprised of
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it is possible to determine maternal age to within one month, a more accurate calculation

than is possible with census data.9 A further advantage of the detailed reporting of date

of birth in the LFS is that it enables precise assignment of individuals to their academic

cohort of birth, which would not be possible if only calendar year of birth was reported.

To avoid truncation of the distribution of teenage mothers, the sample is restricted

to women aged between 20 and 30; the lower bound reflects that to determine whether

an individual is a teen mother or not the observation must be taken after adolescence,

the upper bound reflects the fact that during this period individuals started to leave the

parental home from age 16 onwards, so above the age of 30 it may not be possible using

information on individuals residing in a household to accurately identify whether a woman

became a mother in her teenage years.

Although the LFS does report country of birth, for all but the latest surveys this

measure is aggregated to the national level for UK-born individuals, as constituent countries

of the UK are measured from only the 2nd quarter of 2001 onwards. Additionally, the LFS

reports contemporaneous region of residence only at the time of the survey, and therefore

does not have information on where an individual spent her childhood. This is problematic

as the education system in Northern Ireland and Scotland differs from that in England and

Wales, and in particular education in Scotland is governed by separate rules and legislation.

For this reason the sample is restricted to those women who were born in the UK, but were

resident in England and Wales at the time of the survey, with the implicit assumption that

these individuals would have been subject to the English education system. It is therefore

children from a previous relationship of the mother (Social Trends 38, Office of National Statistics (2008)).
There has been an upward trend in single-parent families, but a fairly constant proportion of these (circa
85%) are lone-mother families (Social Trends 38, Office of National Statistics (2008)). Childhood mortality
rates have been declining over time - the under-15 mortality rate stood at 31 per 100,000 in 1980, falling
to 15 per 100,000 by 2000 (Child Mortality Statistics, Office of National Statistics (2010a)).

9For instance, the US census records year of birth only for the 1940 and 1950 censuses, thereafter also
quarter of birth allowing a calculation of maternal age to within 3 months at best (Black et al., 2008).
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possible that the sample is affected by random mobility, however internal migration between

constituent countries of the UK is assumed small.10

Table 1: Descriptive Statistics

Variable Mean Std Dev Variable Mean Std Dev

Academic Cohort 57.75 4.876 Age at survey 25.38 3.063
Age left F/T Education 16.61 1.824 Subject to RoSLA 0.605 0.489
White 0.974 0.160 No of children 1.787 0.811
Mother at 15 0.003 0.053 Mother by 15 0.003 0.051
Mother at 16 0.012 0.107 Mother by 16 0.005 0.073
Mother at 17 0.028 0.166 Mother by 17 0.017 0.129
Mother at 18 0.042 0.200 Mother by 18 0.045 0.208
Mother at 19 0.050 0.218 Mother by 19 0.087 0.282
Mother at 20 0.051 0.221 Teen Mother 0.137 0.344

Number of Observations 137,502

Table 1 displays the descriptive statistics for the main sample used in the analysis.

The individuals were all subject to the Butler Act (1944), thus facing a minimum school-

leaving age of either 15 or 16. Academic cohorts range from 1947/48 to 1964/65, with 61%

of individuals within the sample subject to the post-RoSLA schooling regime (minimum

school-leaving age of 16). The sample is predominantly white;11 13.7% of the sample are

teenage mothers, 8.7% are mothers before the age of 19, 4.5% before age 18, 1.7% before

age 17, 0.5% before age 16 and 0.3% before age 15, proportions reflective of those recorded

in administrative data. Amongst mothers in the sample, the number of children per mother

is 1.78. This is lower than official estimates of total fertility rates, but reflects that the

sample measures fertility only up to a maximum age of 30 rather than completed fertility

per woman.12

10Internal migration statistics are not available prior to 1991, however Stillwell, Boden, and Rees (1990)
using doctor registration data from 1975-1986 estimate that the bulk of internal migration over this period
was within rather than between countries of the UK.

11The under-reporting of ethnic minority groups is well-known in the LFS. In an attempt to address
this issue, ‘boost’ samples, which over-sample in areas with a high population density of under-represented
groups, have been taken since 1984.

12The average number of children per woman in the sample is 1.18, which is comparable to cohort fertility
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4 Empirical Methodology

As the RoSLA reform was implemented nationwide at a single point in time, it can be

thought of as a natural experiment inducing exogenous variation in the length of educa-

tion received by an individual. As this variation was determined solely by a discontinuous

function of an observed covariate, the individual’s birth date, the estimation proceeds

through a regression discontinuity design (RDD), an approach which allows the identifica-

tion of causal treatment effects in quasi-experimental settings. The method dates back to

Thistlethwaite and Campbell (1960), who introduced the approach analyzing the impact

of winning a scholarship on subsequent academic outcomes. More recently RDDs have

gained popularity in applied economics and have been used to investigate, inter alia, the

impact of impact of class sizes on scholastic achievement (Angrist and Lavy, 1999), voting

shares (Lee, 2001) and labour market discrimination (Hahn, Todd, and van der Klaauw,

1999).

The RDD approach is based on the idea that a discontinuity in the assignment function

to a treatment is induced in situations where individuals are deterministically assigned to

the treatment based on whether the value of an observed covariate, the running variable,

Zi, falls on either side of a specific threshold value Zi = z∗. The intuition is that individuals

in the neighbourhood of the threshold value are identical in all other characteristics, apart

from whether or not they are assigned to the treatment. Therefore by comparing individuals

‘close’ to the discontinuity from either side of the threshold, a causal effect of the treatment

can be identified. As there is local randomization additional covariates are not necessary,

but may improve precision of the estimates (Lee and Lemieux, 2010).

The assumptions to achieve identification in this context are hence twofold: a) that

rates in administrative data. ONS estimates of children per woman range from 0.99-1.62 for women aged
30 between birth years 1947-1983 (ONS, Cohort Fertility, England & Wales, Office of National Statistics
(2010b)).
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individuals are randomly selected into the RoSLA ‘treatment’; b) that the timing of the

introduction of RoSLA is not related to unobserved characteristics that determine teenage

motherhood. Whether an individual was subject to the increased school-leaving age can

be considered to be as good as randomly assigned for two reasons. Firstly, individuals are

assigned to academic cohorts according to their date of birth, which cannot be perfectly con-

trolled. Second, there is no possibility of announcement effects, whereby forward-looking

parents could time the birth of their children according to RoSLA eligibility, as detailed in

Section 2 plans to raise the school leaving age were not made public before 1964, by which

time the first individuals who would be impacted by RoSLA had already been born.

Formally the RDD estimate αRDD is calculated by taking the difference in the expected

values of the outcome variable either side of the threshold of the observed running variable:

E[αRDD|z] = E[Y1 − Y0|Z = z∗]

= lim
z∗←z+

E(y1
i |z∗)− lim

z−→z∗
E(y0

i |z∗)

= lim
e→0

E(y1
i |z∗ + e)− lim

e→0
E(y0

i |z∗ − e) (1)

where Y1 and Y0 are respectively the ‘treated’ and ‘untreated’ population means; y1
i and

y0
i are observations of individuals respectively to the right or the left of the discontinuity;

the threshold level of the running variable is denoted Z = z∗. When the support of the

running variable is continuous, e can be infinitely small close to the discontinuity so that the

limits in (1) exist, and it is appropriate to use non-parametric methods in the estimation

(Hahn, Todd, and van der Klaauw (2001)). As eligibility for the reform is deterministic,

this representation is a ‘sharp’ RDD.
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4.1 Non-parametric Estimation

The analysis uses kernel-weighted local polynomial smoothing to estimate the expectations

either side of the threshold value of Zi, with the treatment effect calculated as the differ-

ence between the predicted values calculated at the discontinuity. Although triangular

kernels, by assigning larger weights to observations at the threshold in principle have bet-

ter boundary properties (Fan and Gijbels, 1996), in practice kernel choice does not exert a

significant impact on the magnitude of the estimates and rectangular kernels have become

the de facto standard (Imbens and Lemieux, 2008). The order of polynomial smoothing is

guided by the Bayesian Information Criterion.13 Bootstrapped coefficients and standard

errors are calculated.

The running variable in the analysis is the distance in time between an individual’s

birth and the implementation of the RoSLA reform. Time is clearly continuous, however a

practical issue arises because the data contains only discrete measures, so that the lowest

granularity that this distance can be calculated is in months. Lee and Lemieux (2010) argue

that as long as the running variable, Zi, is finely distributed the econometric complication

is limited, as in practice data will always contain discrete measures (Imbens and Lemieux,

2008). In essence the concern with a discretely measured running variable is that it is not

possible to allow e to become infinitely small in the neighbourhood of the discontinuity.

Thus there is an irreducible gap between observations on either side of the threshold,

and the casual effect of the programme is only identified with a parametric assumption

regarding the assignment function (Lee and Card, 2008).

13The Bayesian Information Criterion (BIC) indicated that a linear polynomial was appropriate over all
outcome variables. The BIC applies a larger penalty for higher order terms than the Akaike Information
Criterion, which proved to be less definitive, but indicated either a linear or quadratic polynomial according
the outcome variable in question. As the role of the polynomial is to reflect the underlying data generating
process that governs fertility, rather than fertility at a specific age as measured by the relevant outcome
variable, the same order of polynomial was applied across all specifications.
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4.2 Parametric Estimation

Recall from equation (1), the estimate of interest is E[Y1 − Y0|Z = z∗]. The issue at hand

with discretely measured data is that it is possible to observe E[Y1|Z ≥ z∗], the outcome of

the set of individuals at precisely the threshold or above who are subject to the treatment,

and E[Y0|Z = z∗ − e], the outcomes of the set of individuals strictly below the threshold

who are not treated. With discrete Zi, e takes on a finite number of values over the range

Z = zj , j = (1, .., J), which implies that the limits in equation (1) do not exist. Specifically,

the closest realisation below the threshold, where z∗ = zk, is E[Y0|Z = zk−1] and therefore

to predict E[Y0|Z = zk−0] a parametric approach is required. As the outcome variable is

binary, probit regressions are estimated using a treatment dummy, T , indicating whether

the individual was subject to the RoSLA reform, and include a polynomial function of the

running variable, zj . Including interaction terms between the treatment dummy and the

polynomial allows the polynomial coefficients to differ either side of the discontinuity.14

The estimation equation thus becomes:

Yij = α0 + β0Tij + γ0P
l
j + δ0(Ti × P lj) + aj + εij (2)

where Yij is the outcome for individual i born at a distance of j, in months, from the relevant

threshold; Tij is a dummy variable indicating whether an individual born in month j was

subject to the RoSLA reform, thus β0 captures the impact of the treatment, and is hence

the parametric estimate of αRDD; P lj is a vector of polynomial functions of zj , with (l ∈ N)

14Although the polynomial is allowed to have different coefficients either side of the discontinuity, the same
order of polynomial is applied, reflecting that the polynomial is capturing the underlying data-generating
process. Lee and Lemieux (2010) note that constraining the coefficients of the polynomial to be the same
on both sides of the discontinuity is inconsistent with the intuition behind the RDD approach as data from
above the threshold would be used to estimate E[Y0|Z = z∗] and data from below the cutoff would be used
in the calculation of E[Y1|Z = z∗]. However this approach is often seen in the literature, see for example
Silles (2011), as imposing this constraint will lead to more efficient estimates.
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denoting the order of the polynomial; aj is a specification error term that describes the

difference between the true value at each zj and the estimated polynomial function; εij is

an idiosyncratic error term.

The magnitude of the coefficient estimates of interest can be sensitive to the choice

of polynomial in the running variable. A certain degree of smoothing may be desirable

to minimise the influence of outliers and seasonality, although at a cost of deterioration

in the model’s fit. Higher degree polynomials follow the data more accurately, but may

overstate outliers. With small bandwidths the number of higher degree polynomials is

limited as J constrains the total parameters that can be estimated. The optimal order of

the polynomial is again guided chosen according to the Bayesian Information Criterion.

With this approach it is necessary to include more conservative standard errors to reflect

modeling uncertainty. Lee and Card (2008) advocate inflating standard errors in relation

to their goodness of fit statistic G,15 and therefore (2) includes the specification error

term aj , which is assumed identical either side of the discontinuity and to be random and

orthogonal to Z. The estimation computes robust standard errors with random, identical

specification errors by clustering on zj .

In practice both the parametric and non-parametric approaches should yield similar

estimates of the RDD parameter as long as the discretisation of Z is not too coarse.

Therefore Section 5 presents results utilising both methodologies in order to illustrate that

the analysis does not rely on one particular method or specification.

15The Lee and Card (2008) G-statistic is calculated as:

G ≡ (RSSR −RSSUR)/(J −K)

RSSUR/(N − J)

where RSSR is the residual sum of squares for the model using polynomial functions and RSSUR for
the unrestricted model using dummies respectively. Under the assumption of normality, G follows an
F(J−K,N−J) distribution, with K the number of parameters estimated in the restricted model, N the
number of observations and J the total number of values in the support of Z. The null hypothesis is that
there is no systematic difference in the residual sum of squares in the restricted and unrestricted estimations.
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4.3 Bandwidth Choice

A key issue in both the parametric and non-parametric approaches is the determination

of the appropriate size of the window around the discontinuity to use in the estimation.

From a theoretical perspective, by taking the limits either side of the threshold the small-

est window width around the discontinuity yields unbiased estimates of the true treatment

effect. However such an estimation would use only a paucity of data points and there-

fore have little statistical power. Wide bandwidths use a greater number of observations

and will produce more efficient estimates, however a degree of bias may be introduced

by including observations far from the discontinuity, the concern being that there may

be unobserved changes over the bandwidth period, for instance to legislation or benefit

entitlement16, which could independently impact the proclivity toward teen motherhood,

potentially confounding the analysis. It might also be expected that the magnitude of the

treatment effect is different for those cohorts closer to the timing of the implementation.

In addition, too great a window size may indicate a sizable treatment effect even when

the data is smoothly distributed around the discontinuity. There is therefore an inherent

trade-off between bias and efficiency in choosing the appropriate window of observations

to include in the estimation.

Ludwig and Miller (2007) propose an optimal bandwidth selection procedure specific

to a RDD context. For each candidate bandwidth, h, the cross-validation function is

computed via a leave-one-out procedure, whereby for each observation, i, a regression is

estimated omitting observation i and the difference is calculated between the predicted

value for observation i from this regression, ŷ(zi), and the actual value yi. To reflect that

RDD estimates are estimated at the boundary, if the value of the running variable for

16The Child Benefit Act (1975), enacted 1977, replaced family and child tax allowances paid to the
household with child benefit paid directly to the primary child caretaker (usually the mother). Therefore
estimates using a window width larger than 5 years may reflect the introduction of this benefit entitlement.
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observation i is to the left of the threshold, then the regression uses only observations

where zi − h ≤ z < zi. If observation i has a value of Z to the right of the threshold then

the regression uses only observations where zi < z ≤ zi + h. Repeating this procedure

for each observation i with every possible bandwidth h yields the cross-validation function

CVY (h) = 1
N

∑
i=1N(yi − ŷ(zi))

2. The optimal bandwidth is then the value of h that

minimises CVY (h), the mean square difference of the predicted value to the true value of

Y (Imbens and Lemieux, 2008).

4.4 Fuzzy RD

The methodology presented thus far allows the estimation of the impact of an increase in

mandatory education from age 15 to age 16 on adolescent motherhood. However a more

general determination of the impact of schooling duration on fertility behaviour may be

pertinent to policy formation. As the education and fertility decisions are interrelated,17

a simple estimation of the impact of schooling on fertility using Ordinary Least Squares

(OLS) may produce biased estimates.

Using an instrumental variable (IV) approach is a standard method to address such

endogeneity. In the context of regression discontinuity design, the IV approach is a ‘fuzzy’

(FRD) regression discontinuity (Trochim, 1984). The FRD differs from the sharp design,

described by (1), insofar that treatment assignment is not required to be a deterministic

function of Zi. Instead the probability of receiving treatment as a function of the running

variable, Pr(Ti = 1|zi), is discontinuous at the threshold, Zi = z∗, as there are factors

unobserved by the econometrician that can influence assignment to treatment, such that

17Specifically there may be non-observed characteristics that affect both the fertility and education deci-
sion. The specification may also suffer from reverse causality: an individual with low academic attainment
may choose to become a mother early. This was described by Harris, Duncan, and Boisjoly (2002) as the
‘Nothing-to-lose’ hypothesis, as such an individual would be likely to have poor economic opportunities
regardless of the timing of her fertility. However it is also plausible that an individual who experiences
early fertility may elect to curtail her education prematurely in response to motherhood.
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treatment participation is not perfectly predicted by the cohort rule. Hahn et al. (2001)

argue that the FRD allows the determination of a Wald estimator even when the standard

IV assumption is violated. As the estimates are applicable only to the sub-population of

individuals, for whom the RoSLA reform actually induced an increase in the schooling (the

‘compliers’), the estimated coefficients therefore describe a Local Average Treatment Effect

(Angrist and Imbens, 1994).18

As in (2) the estimation allows for random, identical specification errors in the estima-

tion and receive robust standard errors by clustering on zj . The two step approach can be

written as:

AGELEFTij = α1 + β1Tij + γ1P
l
j + δ1(Ti × P lj) + a1j + ν1ij (3)

Yij = α2 + ξ ̂AGELEFT ij + γ2P
l
j + δ2(Ti × P lj) + a2j + ν2ij (4)

In the first stage (3), the impact of the RoSLA treatment on school-leaving age for individ-

ual i born at a distance of j months from RoSLA implementation is estimated, and then

included in the second stage equation (4). Thus the Wald estimate, ξFRD, describes the

causal effect of one year of schooling on the fertility outcome of interest Yij , and is thus

equivalent to the ratio of the sharp RDD estimate from equation (2) and the first stage

estimate, β1, so that ξFRD = αSRD

β1
. This has an intuitive interpretation: as not everybody

responds to the treatment, the reduced form estimate has to be multiplied by the inverse

of the proportion of the affected population.

18Individuals (the ‘always takers’) who would always stay in school until age 16 would not have been
affected by the increase in school leaving age. As the reform mandated compulsory attendance, the popu-
lation of ‘never-takers’ should not exist. Key to identification is the monotonicity assumption that RoSLA
had a non-negative effect on an individual’s duration of schooling, so that individuals who in absence of
the reform would have remained at school after age 16 reduce their duration of education in response to
the RoSLA legislation (the ‘defiers’) are ruled out.
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5 Results

In Section 5.1 the main results explore the impact of the RoSLA reform first over each of

the individual teenage years, and also the cumulative effect over the years of adolescence.

To examine the extent to which RoSLA bites, the analysis is extended by investigating the

extent of any impact of the treatment beyond just the teenage years. The robustness and

sensitivity of the analysis is explored in Section 5.2. In Section 5.3 the analysis is extended

to examine at the policy relevant question, the impact of years of education on the timing

of entry to motherhood.

5.1 Main Results

To illustrate the transparency of the sharp RDD approach, the results are first presented

graphically. Figure 2(a) depicts the impact of the reform on the probability of becoming

a mother at age 16, whereas the cumulative of becoming a mother before the age of 17 is

shown in figure 2(b). These graphs are estimated using the local polynomial smoothing

approach, as described in Section 4.1, with a bandwidth of 48 months and a smoothing

polynomial of degree 1. In each case the timing of the implementation of the RoSLA

reform has been normalised to 0. Appendix A displays the full set of results over each of

the outcome variables.

Considering fertility at each of the individual teen years, the graphs in Appendix A are

indicitive of a clear difference in fertility before and after the reform, for all but mother

at age 17. As RoSLA raised the age of compulsory schooling from age 15 to age 16, the

observed effect at age 16 reflects the immediate ‘bite’ of RoSLA and can be interpreted

as the direct incarceration effect associated with the requirement to complete one year

of additional schooling. At ages beyond 16, the RoSLA constraint is not binding, and

therefore any observed effect cannot be attributed to incarceration alone. The graphs
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Figure 2: Graphical Results - Sharp RDD
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(b) Mother by age 17

Notes: The graphs display local-linear polynomial smooths, as described in Section 4.1, using a bandwidth of 48
months, a smoothing polynomial of degree 1, and a rectangular kernel, of the probability of becoming a mother a)
at age 16 and b) before age 17. The horizontal axis measures the distance, in months, of individuals’ births to the
RoSLA cutoff. The scatterplot indicates the proportions of mothers in each month-bin. The dashed lines are 95%
confidence intervals of the local polynomial.

illustrate a non-monotonic impact of the reform over the teenage years, with negative

effects for motherhood at age 16 and at age 18, a negligible effect at age 17, and positive

effects at age 15 and age 19.

Analytical results are presented in Tables 2 and 3. Panel A displays results estimated

using the parametric procedure as detailed in section 4.2, for the probability of becom-

ing a mother at a specific year of age, or before a certain age respectively (thus teenage

motherhood is defined as entering motherhood before the age of 20). The first estimation

uses the preferred bandwidth of 48 months, then estimates using half and double the pre-

ferred bandwidth are displayed to illustrate the robustness of the results to the choice of

bandwidth (Imbens and Lemieux, 2008). Panel B shows the bootstrapped estimates and

coefficients from the non-parametric method described in Section 4.1.

Examining first the estimations with fertility at a specific age as the outcome vari-

able, the regression coefficients reveal evidence of both an ‘incarceration’ and a ‘beyond
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Table 2: Sharp RDD - Mother at specific ages

At 15 At 16 At 17 At 18 At 19

Panel A:
BW = 48 0.0015 -0.0040∗ -0.0019 -0.0081∗∗ 0.0058∗

N = 64,359 (0.0011) (0.0022) (0.0026) (0.0034) (0.0031)

% change 49.67% -36.73% -6.85% -19.63% 11.41%

BW = 24 0.0000 -0.0059∗ -0.0021 -0.0038 0.0049
N = 31,566 (0.0015) (0.0030) (0.0035) (0.0051) (0.0036)

BW = 96 0.0008 -0.0047∗∗∗ -0.0032 -0.0072∗∗∗ 0.0025
N = 124,458 (0.0008) (0.0014) (0.0020) (0.0026) (0.0025)

Panel B:
BW = 48 0.0014∗ -0.0043∗∗ -0.0020 -0.0076∗∗ 0.0055
N=64,359 (0.0007) (0.0018) (0.0028) (0.0031) (0.0035)

Notes: Panel A displays estimates from the parametric estimations, as described in Section 4.2, of
each dependent variable over columns, with different bandwidths over rows. Robust standard errors,
which allow for random and identical specification errors, are reported in parentheses. Panel B shows
bootstrapped coefficients and associated standard errors from the local-linear polynomial smoothing
procedure described in Section 4.1, using 1,000 replications. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

incarceration’ effect. The negative significant effect of 0.40 percentage points at age 16

reflects the direct impact of the increase in the schooling requirement, and can therefore be

interpreted as the incarceration effect of RoSLA. This implies that the effect of requiring

young women to stay an additional year at school is to reduce the incidence of pregnancy

at the age of 16 by 36.73% relative to the sample mean. Although a positive effect at age

15 of 0.15 percentage points is observed, translating to a large increase in the incidence of

pregnancy at this age, the estimate is imprecise due to the very small fraction of individ-

uals who experience such early motherhood. A back-of-an-envelope calculation indicates

approximately one quarter of the decrease in incidence of motherhood at age 16 may be

attributed to individuals bringing fertility forward to age 15.19

19This quantitatively small effect may be attributed to individuals with preferences for extreme early
fertility, who in absence of the RoSLA would have postponed motherhood to age 16, due solely to the social
norm of not having a child whilst still in education. However with the increased schooling requirement
these individuals find that the perceived cost of delaying fertility one more year is so great that the reform
actually induces them to enter motherhood earlier than they would have done in absence of the increase in
mandatory schooling.
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The pertinent question is whether the remainder of the decrease in incidence of mother-

hood at age 16 is due to individuals delaying fertility by one year only (a pure incarceration

effect) or by more than one year. If pure incarceration only is present, then fertility should

shift by one year, which would induce a positive impact of 10% at age 17. However, the

coefficient in Table 2 suggests that there is no significant impact of the reform at age 17,

in turn implying that some individuals who were not directly constrained by the RoSLA

reform also delayed their fertility. This consequently should induce a positive impact at age

18, but the coefficient reveals that there is also a significant decrease in fertilty at age 18 of

0.81 percentage points, almost double the level impact seen at age 16, but implying a lesser

decrease of the incidence of motherhood of 19.63% due to the larger number of individuals

entering motherhood at this age. Therefore the results provide strong evidence of both

incarceration and an additional downward impact of the reform on fertility that cannot be

explained purely by incarceration. Furthermore, at age 19 there is a significant positive

impact on fertility of 11.41%, which suggests that overall RoSLA induced a postponement

of fertility to late teen years.

Table 3: Sharp RDD - Cumulative effect over teen years

By 16 By 17 By 18 By 19 By 20

Panel A:
BW = 48 -0.0007 -0.0048* -0.0067* -0.0145*** -0.0088*
N = 64,359 (0.0013) (0.0024) (0.0037) (0.0046) (0.0053)

% change -14.52% -29.69% -15.18% -17.06% -6.57%

BW = 24 -0.0018 -0.0076** -0.0096* -0.0133* -0.0082
N = 31,566 (0.0019) (0.0036) (0.0051) (0.0074) (0.0078)

BW = 96 -0.0002 -0.0049*** -0.0082*** -0.0154*** -0.0132***
N = 124,458 (0.0009) (0.0016) (0.0027) (0.0036) (0.0041)

Panel B:
BW = 48 -0.0007 -0.0050** -0.0070** -0.0146*** -0.0090
N = 64,359 (0.0012) (0.0021) (0.0035) (0.0046) (0.0056)

Notes: See notes to Table 2.
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The estimates in Table 3 reflect the cumulative effect of the individual year impacts

displayed in Table 2. The coefficient for mother by age 16 captures the impact of the RoSLA

treatment on the probably of entering motherhood for all ages up to but not including the

individuals 16th birthday. Thus the coefficient for mother by age 17 cumulates the ‘by 16’

effect with the ‘at 16’ effect from Table 2. Here the clear evidence of the incarceration effect

is indicated by the coefficient on mothers by age 17, whereas the beyond incarceration effect

is evident from the increasing magnitude of the coefficients for older teenage mothers.

To investigate the extent and duration to which the overall effect of RoSLA on fertility

bites,20 the analysis is extended to investigate fertility outcomes beyond the teenage years.

In order to determine the effect on cumulative motherhood ‘by’ a particular age the sample

must be restricted to individuals strictly above that age, that is to observe whether an

individual became a mother at any age before her 25th birthday, we must observe her at

age 25 or above. Table 4 presents the estimates of cumulative fertility by year up to by

age 25. Results for each year of motherhood before age 25 use the sample of individuals

aged 25-30; before age 24 use the sample of individuals aged 24-30 and so on.

The estimates in Table 4 confirm that the treatment exerted a significant impact over

the teenage years only. The coefficients for each outcome in each of the sub-samples are

consistent in sign and magnitude, displaying the same pattern of an increasing magnitudes

for ages before 19, and a decrease in the size of the effect before age 20 (consistent with the

positive impact at age 19 as shown in Table 2). After age 20 the impact of RoSLA on fer-

tility is quantitatively small relative to the sample mean, and statistically indistinguishable

20Note that the analysis of the impact of RoSLA on fertility is restricted to the incidence and timing
of fertility. To investigate quantum fertility requires knowledge of completed fertility, which is generally
measured as the number of children per woman at age 45. However, as previously discussed, in order to
accurate determine teenage motherhood it is necessary to restrict the sample to individuals aged between
20 and 30, and therefore it is not possible to investigate the impact of RoSLA on the number of children per
woman. Administrative data indicates that there is no difference in completed fertility between pre-RoSLA
and post-RoSLA cohorts beyond the long-run (downward) trend (ONS, Cohort Fertility, England & Wales,
2010), a result also found in the cohort analysis of Clark et al. (2014).

25



Table 4: Sharp RDD - Extended results - cumulative years
By 16 By 17 By 18 By 19 By 20 By 21 By 22 By 23 By 24 By 25

25 - 30 sample -0.0009 -0.0019 -0.0062 -0.0164∗∗∗ -0.0132∗ -0.0040 0.0011 -0.0017 -0.0052 -0.0110
N = 39,912 (0.0015) (0.0029) (0.0043) (0.0058) (0.0067) (0.0070) (0.0078) (0.0088) (0.0084) (0.0094)

24 - 30 sample -0.0015 -0.0036 -0.0066 -0.0151*** -0.0095 -0.0016 0.0037 -0.0012 -0.0059
N = 45,621 (0.0014) (0.0028) (0.0041) (0.0053) (0.0061) (0.0067) (0.0080) (0.0085) (0.0080)

23 - 30 sample -0.0011 -0.0040 -0.0066* -0.0150*** -0.0090 -0.0028 0.0034 -0.0014
N = 51,164 (0.0014) (0.0027) (0.0039) (0.0049) (0.0057) (0.0065) (0.0082) (0.0084)

22 - 30 sample -0.0007 -0.0046* -0.0071* -0.0163*** -0.0108* -0.0030 0.0029
N = 56,204 (0.0014) (0.0027) (0.0039) (0.0049) (0.0056) (0.0064) (0.0079)

21 - 30 sample -0.0008 -0.0048** -0.0060* -0.0154*** -0.0106* -0.0029
N = 61,023 (0.0013) (0.0025) (0.0036) (0.0047) (0.0055) (0.0060)

20 - 30 sample -0.0007 -0.0048** -0.0067* -0.0145*** -0.0088*
N = 64,359 (0.0013) (0.0024) (0.0037) (0.0046) (0.0053)

Notes: The table shows estimates from local parametric estimations, as described in Section 4.2, of each dependent
variable over columns, using different sub-samples over rows as indicated. Robust standard errors, which allow for
random and identical specification errors, are reported in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

from zero.

5.2 Sensitivity Analysis

Panel A from Tables 2 and 3 included estimates using three different bandwidths, the

preferred, as well as double and half this bandwidth, to illustrate the robustness of the

estimates to the choice of bandwidth. The preferred bandwidth was chosen according to

the cross-validation procedure as described in Section 4.3, calculated and examined for each

of the outcome variables in turn. This analysis did not yield a unique optimal bandwidth

appropriate for all outcome variables, however a bandwidth between 36 and 60 months was

consistently indicated.

As an illustration, Figure 3(a) displays the cross-validation function for mother at age

16 over bandwidths ranging from 15 to 72 months. The function decreases in value as

the size of bandwidth increases, but the graph suggests that increases in bandwidth above

40 exert little difference in the magnitude of the function. The cross-validation function

for mother at age 18 is displayed in Figure 3(b). In this case the function does suggest a
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Figure 3: Cross-Validation
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Notes: The graphs display the cross-validation function calculated as described in Section 4.3. The optimal bandwidth
is given by the minimand of the function CVY (h) = 1

N

∑
i=1N(yi − ŷ(zi))

2.

clear minimand, at approximately 40 months. The cross-validation functions for each of

the outcome variables are displayed in Appendix A.

A corollary to the cross-validation procedure is to directly examine the sensitivity of

the estimates to bandwidth choice. Figure 4 displays the magnitude of the coefficients

estimated using bandwidths ranging between 18 and 72 for fertility at (a) age 16 and (b)

up to, but not including age 17. The estimated impact displays some sensitivity to smaller

bandwidths, but the magnitude of the estimates is essentially stable for bandwidths greater

than 40. This is a reflection of what was seen in Figure 3(a), that increases in bandwidth

exert little effect on the cross-validation function for bandwidths greater than 40. Appendix

A includes the full set of results displaying the sensitivity of the estimates to bandwidth

choice over each of the outcome variables. The graphs generally indicate stability in the

estimated coefficients for all outcome variables at bandwidths from approximately 40 on-

wards, apart from the estimates for mother at age 18 (also affecting cumulative fertilty by

ages 19 and 20), which achieve stability after approximately 60 months.
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Figure 4: Sensitivity of Estimates to bandwidth choice
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Notes: The graphs display the magnitude of the estimates, along with the 95% confidence interval, over different
bandwidths based on the parametric regression discontinuity design as described in Section 4.2.

At the boundary the comparison is between individuals born at the end (August) of

one academic cohort with individuals who are born at the beginning (September) of the

next academic cohort. The key identifying assumption is that individuals in the neigh-

bourhood of the discontinuity are identical in characteristics apart from their assignment

to the treatment. However there may be fundamental differences in individuals accord-

ing to their relative and social age within an academic cohort and therefore the RDD

estimation, which is essentially a between-cohort comparison at the boundary, may just

reflect compositional differences of those born at the beginning versus the end of a co-

hort. For instance, Crawford, Dearden, and Meghir (2010) find that relative age within

a cohort exerts an important influence on academic outcomes, younger individuals in a

cohort perform on average significantly worse than their older peers in assessments, which

the authors attribute to the absolute age of the individual when taking the test. In the

context of fertility behaviour, a priori it may be expected that older individuals within a

cohort would have higher fertility due to their higher emotional and physical maturity, as
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forging a relationship requires a set of social skills that are likely to be more developed in

individuals born earlier within a cohort. In addition because fecundability increases over

the period of adolescence (Wood and Weinstein, 1988), older individuals are more able to

conceive. However, analyzing the fertility outcomes within academic cohorts in Sweden,

Skirbekk, Kohler, and Prskawetz (2004) find that individuals born at the beginning of a

cohort actually enter motherhood up to 4.9 months later than those born at the end of the

academic cohort, which the authors attribute to the ‘social age’ effect.

Table 5: Placebo Analysis

Panel A At 15 At 16 At 17 At 18 At 19

1951 -0.0032** 0.0011 0.0002 0.0010 -0.0005
N=42,803 (0.0014) (0.0026) (0.0031) (0.0043) (0.0043)

RoSLA 0.0015 -0.0040* -0.0019 -0.0081** 0.0058*
N=64,359 (0.0011) (0.0022) (0.0026) (0.0034) (0.0031)

1964 -0.0023** 0.0013 -0.0032 0.0000 -0.0032
N=73,021 (0.0009) (0.0017) (0.0025) (0.0033) (0.0034)

Panel B By 16 By 17 By 18 By 19 By 20

1951 -0.0019 -0.0009 -0.0006 0.0004 -0.0002
N=42,803 (0.0025) (0.0040) (0.0035) (0.0068) (0.0106)

RoSLA -0.0008 -0.0049** -0.0068* -0.0147*** -0.0089*
N=64,359 (0.0013) (0.0024) (0.0037) (0.0046) (0.0053)

1964 -0.0016 -0.0002 -0.0034 -0.0033 -0.0066
N=73,021 (0.0012) (0.0020) (0.0036) (0.0040) (0.0050)

Notes: The table shows estimates from parametric estimations, as described in Section 4.2, of each
dependent variable over columns using the preferred bandwidth of 48 months, with the discontinuity
defined in different years over rows. Robust standard errors, which allow for random and identical
specification errors, are reported in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01

In order to confirm that the results presented in Section 5.1 are indeed driven by the

reform rather than inherent between cohort effects two further robustness checks are under-

taken. Firstly a falsification exercise is undertaken, placebo regressions are estimated under

the assumption that RoSLA was implemented prior to or after actual implementation. The
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results of the placebo analysis are displayed in Table 5, which are not consistent with the

estimates that use the correct RoSLA assignment. The sign, magnitude and significance

of the coefficients differ non-systematically, suggesting that observed effect on fertility is in

fact driven by the implementation of RoSLA.

Table 6: RD-DiD estimates
Panel A At 15 At 16 At 17 At 18 At 19

Pre-RoSLA DiD 0.0013 -0.0066*** -0.0116*** -0.0188*** 0.0006
N = 79,852 (0.0010) (0.0017) (0.0029) (0.0036) (0.0035)

Pre-Post RD-DiD 0.0008 -0.0043*** -0.0037* -0.0091*** 0.0007
N = 137,502 (0.0008) (0.0012) (0.0022) (0.0025) (0.0028)

Panel B By 16 By 17 By 18 By 19 By 20

Pre-RoSLA DiD 0.0003 -0.0062*** -0.0179*** -0.0363*** -0.0355***
N = 79,852 (0.0012) (0.0022) (0.0037) (0.0051) (0.0061)

Pre-Post RD-DiD 0.0000 -0.0043*** -0.0080*** -0.0169*** -0.0165***
N = 137,502 (0.0009) (0.0015) (0.0026) (0.0036) (0.0042)

Notes: The table shows estimates from the Regression Discontinuity difference in difference procedure, as
described in Section 5.2 of each dependent variable over columns, using non-overlapping windows of observa-
tions and a bandwidth of 36 months. The Pre-RoSLA RD-DiD is estimated over the 47/48 - 52/53 and 53/54
- 59/60 windows. The Post-RoSLA RD-DiD is estimated over the 53/54 - 59/60 and 60/61 - 64/65 windows.
The Pre-Post RD-DiD is estimated over all three windows. Robust standard errors, which allow for random
and identical specification errors, are reported in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01

Second, following Danzer and Lavy (2013), a difference in difference approach is applied

in the context of the regression discontinuity design (RD-DID). This procedure explicitly

nets out any inherent between cohort differences at the August-September threshold by

using three non-overlapping windows of observations21- the pre-RoSLA period (academic

cohorts 1947/48 - 1952/53), the post-RoSLA period (1960/61 - 1964/64) and the period

around the RoSLA discontinuity (1953/54 - 1959/60). For each sub-period the running

variable is defined as the distance in months from the relevant August-September threshold.

21Distinct windows are required to form the counterfactual observations. In order to accommodate the
total observation window a bandwidth of 36 months is used in the estimations
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Two versions of following specification are then estimated:

Yij = β0 + β1Rightij + β2RoslaRightij + Σ3
k=1Periodk + γ0P

l
j + δ0(Ti×P lj) + aj + εij (5)

where Yij is the outcome of interest for individual i born at a distance of j from the relevant

threshold; Right is an indicator variable for an observation being on the right-hand side

of the relevant discontinuity; Period are period dummies for each window of observations;

RoslaRight is a dummy equal to 1 if the observation is on the right-hand side of the

discontinuity in the period around the RoSLA discontinuity, thus β2 describes the RD-DiD

estimate. The γ and δ capture the polynomial smooth in the running variable.

Table 6 presents the results of the difference-in-difference analysis considering first the

pre-RoSLA period only as counterfactual observations, and second using both pre and post-

RoSLA periods for comparison. The estimates are qualitatively similar to those presented

in the main analysis and therefore adjusting the original RoSLA coefficients to account for

any inherent between-cohort discontinuities does not an induce a significant impact on the

sign or magnitude of the RDD estimates.

5.3 Further Estimations

Finally the analysis considers the impact of education as measured by years of schooling

on adolescent fertility in a two-stage approach. In the first stage the impact of the RoSLA

reform on schooling duration, measured by the age at which an individual finished full-time

education is measured. This prediction is used in the second stage to analyse the effect on

the probability of entry to motherhood. Figure 5 presents these two stages graphically.

The analytical results are reported in Tables 7 and 8. The top panel presents the Wald

Estimates using the preferred bandwidth of 48 months, as well as estimates produced using

half and double the preferred bandwidth. The middle panel displays results of simple OLS
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Figure 5: Graphical results - Fuzzy RDD
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(b) Mother by age 19

Notes: The graphs display local-linear polynomial smooths, as described in Section 4.1, using a bandwidth of 48
months, a smoothing polynomial of degree 1, and a rectangular kernel, for a) age an individual left school (first-stage
of the fuzzy RDD) and b) the probability of becoming a mother before age 19 (second-stage of the fuzzy RDD) .
The horizontal axis measures the distance, in months, of individuals’ births to the RoSLA cutoff. The scatterplot
indicates the proportions of mothers in each month-bin. The dashed lines are 95% confidence intervals of the local
polynomial.

regressions of the impact of years of schooling on the probability of teen motherhood,

and the bottom panel presents the reduced form and first stage of the estimation (for

expositional convenience only the preferred bandwidth estimates are reported in these

latter panels).

The OLS coefficients consistently indicate that there is a negative relationship between

an individual’s propensity of early motherhood and the age at which she left full-time ed-

ucation. However, as discussed in Section 4.4, there may be omitted variables which imply

that the residual term is correlated with years of education. If the unobserved heterogeneity

is such that it asserts a positive impact on the propensity for early motherhood and a neg-

ative impact on schooling, then the OLS coefficients will be biased upwards. Conversely if

the unobserved heterogeneity impacts both teen motherhood and years of schooling in the

same direction, then the OLS estimates will be understated. This potential endogeneity is

addressed using the FRD procedure described in Section 4.4. Recall this is analogous to an
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Table 7: Fuzzy RDD - Impact of years of education - individual years

At 15 At 16 At 17 At 18 At 19

Wald Estimates
BW = 48 0.0047 -0.0147 -0.0064 -0.0250∗ 0.0202∗

N= 64,359 (0.0035) (0.0082) (0.0086) (0.0124) (0.0100)

BW = 24 -0.0010 -0.0207 -0.0079 -0.0126 0.0179
N = 31,566 (0.0050) (0.0124) (0.0120) (0.0184) (0.0126)

BW = 96 0.0024 -0.0176∗∗ -0.0132∗ -0.0244∗∗ 0.0091
N = 124,458 (0.0025) (0.0054) (0.0065) (0.0092) (0.0081)

OLS
Years of Education -0.0004** -0.0030*** -0.0069*** -0.0088*** -0.0096***

(0.0001) (0.0002) (0.0002) (0.0003) (0.0003)

IV
Reduced Form 0.0014 -0.0043* -0.0019 -0.0073** 0.0059*

(0.0010) (0.0023) (0.0027) (0.0033) (0.0030)

First stage 0.2934∗∗∗ 0.2934∗∗∗ 0.2934∗∗∗ 0.2934∗∗∗ 0.2934∗∗∗

(0.0586) (0.0586) (0.0586) (0.0586) (0.0586)

Notes: The table shows estimates from local parametric estimations, as described in Section 4.2, of each dependent
variable over columns, using a bandwidth of 48 months. First-stage F-statistic = 25.07. Robust standard errors,
which allow for random and identical specification errors, are reported in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗

p < 0.01

IV approach, where the RoSLA treatment is applied as an instrument for schooling. The

identification assumption is that the timing of the RoSLA implementation is orthogonal to

unobserved determinants of motherhood, and therefore the effect of the reform on fertility

can be understood as operating only through its impact on years of education. The first

stage reveals that the reform had a significant positive impact on years of schooling, rais-

ing it on average by approximately 3 months, which reflects that prior to implementation

of RoSLA a substantial proportion of the school age population already stayed at school

until at least age 16, as depicted in Figure 1(c). Considering the wald estimates over the

individual years, Table 7, of the effect of the duration of education on teen motherhood,

these differ from the OLS estimates non-systematically: the coefficients on mother at age

15 and mother at age 19 change sign (from positive to negative) indicating that the OLS
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estimates of these coefficients are downwardly biased. The coefficients on mother at age

16 and at age 18 are the same sign (negative) as the OLS coefficients, and are larger in

magnitude indicating that the OLS estimates are understated. The coefficient on mother

at age 17 also has the same sign (negative) but is smaller in magnitude than the OLS

coefficient. These observations imply that not only does RoSLA have a varying impact

on fertility depending on the age of the mother, but also that the correlation between

unobserved factors and years of schooling varies throughout the teen years.

Table 8: Fuzzy RDD - Impact of years of education - cumulative years

By 16 By 17 By 18 By 19 By 20

Wald Estimates
BW = 48 -0.0026 -0.0173 -0.0237 -0.0487∗∗ -0.0226
N= 64,359 (0.0047) (0.0094) (0.0122) (0.0164) (0.0187)

BW = 24 -0.0058 -0.0248 -0.0296 -0.0398 -0.0207
N = 30,338 (0.0065) (0.0150) (0.0188) (0.0269) (0.0297)

BW = 96 -0.0011 -0.0193∗∗ -0.0346∗∗∗ -0.0575∗∗∗ -0.0519∗∗

N = 118,388 (0.0031) (0.0062) (0.0098) (0.0132) (0.0161)

OLS
Years of Education -0.0007*** -0.0037*** -0.0106*** -0.0194*** -0.0290***

(0.0001) (0.0002) (0.0003) (0.0004) (0.0006)

IV
Reduced Form -0.0008 -0.0051* -0.0070* -0.0143** -0.0084

(0.0014) (0.0026) (0.0038) (0.0045) (0.0053)

First stage 0.2934∗∗∗ 0.2934∗∗∗ 0.2934∗∗∗ 0.2934∗∗∗ 0.2934∗∗∗

(0.0586) (0.0586) (0.0586) (0.0586) (0.0586)

Notes: see notes for Table 7. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Considering the cumulative fertility estimates, Table 8, the first stage of course is

identical to that in Table 7. A comparison of the OLS and the wald estimates reveals that

they all share the same sign, in contrast to the results in Table 7 for the estimations at

each of the individual teen ages. The cumulative estimates thus suggest that any positive

correlation between the measure of education and unobservables (such as at age 16) is
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offset by negative correlation (for instance at age 15).

To reconcile the differences between the reduced form (sharp RDD) and the wald (fuzzy

RDD) estimates, recall that the SRD measures the causal effect of the reform, which is the

average effect of being subject to the RoSLA regime in comparison to the pre-RoSLA regime

(on average an extra three months of schooling). In contrast, the FRD approach rescales

the reduced form results so that the Wald estimates reflect the effect on the propensity for

motherhood of an additional year of education for the sub-population of individuals who

were induced to increase the duration of schooling by the RoSLA reform.

6 Conclusion

This paper has investigated the impact of an increase in the minimum compulsory school-

leaving age on teenage fertility rates, using data from the UK Labour Force Survey, the

largest representative UK household survey. The findings indicate a non-monotonic impact

over the individual teenage years. In contrast to previous research, the results provide

strong evidence of a large incarceration effect. This discrepancy may be explained by

the proportion of individuals directly affected by the institutional change to mandatory

education. The Norwegian reform analysed by Black et al. (2008) increased the duration

of schooling by two years, yet the estimated increase to individuals’ education was just

0.122 years, indicating that only a small fraction of the population were impacted. In

contrast the UK’s RoSLA, compelling an increase to compulsory schooling of just one

year, increased the average years of schooling by 0.293 years due to the higher proportion

of individuals affected. Hence although the incarceration effect, by capturing the shift in

fertility for the age at which the legislation bites, may be thought of as just a mechanical

response to the extra year of schooling induced by the legislation change, the evidence

suggests that if mandating a higher school graduating age raises the schooling durations
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of a large share of the school-age population, teenage fertility rates will be substantially

affected.

Unfortunately, the data used in this analysis does not allow examination of the mech-

anism that results in the beyond incarceration effect, the question therefore remains to

what extent this is attributable to the impact of education on human capital acquisition.

Extending the analysis beyond the teenage years revealed that the impact of RoSLA was

to essentially induce a postponement of fertility from early teen to the late teenage years,

with a large increase in the incidence of fertility at age 19, and the impact of the increase

in compulsory education tailing off after age 20. Given that these individuals continued to

bear children at a relatively young age, a question for future research is whether this post-

ponement of fertility positively impacted outcomes for these mothers and their children.
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Appendices

A Full Graphical Results

Figure A.1: Sharp RDD for all outcome variables
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(f) Mother by age 16
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(g) Mother by age 17
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(h) Mother by age 18
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(j) Mother by age 20

Notes: The graphs display local-linear polynomial smooths, as described in Section 4.1, using a bandwidth of 48
months and a rectangular kernel, for the probability of becoming a mother at age 15 - age 19 (graphs a - e) and by
age 16 - by age 20 (graphs f - j). The horizontal axis measures the distance, in months, of individuals’ births to the
RoSLA cutoff. The scatterplot indicates the proportions of mothers in each month-bin. The dashed lines are 95%
confidence intervals of the local polynomial.
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Figure A.2: Cross-Validation functions
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(b) Mother at age 16
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(c) Mother at age 17
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(d) Mother at age 18
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(e) Mother at age 19
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(f) Mother by age 16
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(g) Mother by age 17
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(h) Mother by age 18

.0
85

94
.0

85
95

.0
85

96
.0

85
97

.0
85

98
C

ro
ss

−
va

lid
at

io
n 

fu
nc

tio
n

10 20 30 40 50 60 70
Bandwidth

(i) Mother by age 19
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(j) Mother by age 20

Notes: The graphs display the cross-validation function for each of the outcome variables over the range of bandwidths
following the procedure described in Section 4.3. The optimal bandwidth is defined as the value of the bandwidth,
h, that minimizes the cross-validation function, CVY (h), which is computed as the mean square difference of the
predicted value to the true value of Y
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Figure A.3: Sensitivity of Estimates to bandwidth choice
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Notes: The graphs display the magnitude of the estimates, along with the 95% confidence interval, over different
bandwidths based on the parametric regression discontinuity design as described in Section 4.2.
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