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Abstract 

This thesis proposes an intelligent multiple-controller framework for complex 

systems that incorporates a fuzzy logic based switching and tuning supervisor along 

with a neural network based generalized learning model (GLM). The framework is 

designed for adaptive control of both Single-Input Single-Output (SISO) and Multi-

Input Multi-Output (MIMO) complex systems. 

The proposed methodology provides the designer with an automated choice of 

using either: a conventional Proportional-Integral-Derivative (PID) controller, or a PID 

structure based (simultaneous) Pole and Zero Placement controller. The switching 

decisions between the two nonlinear fixed structure controllers is made on the basis of 

the required performance measure using the fuzzy logic based supervisor operating at 

the highest level of the system. The fuzzy supervisor is also employed to tune the 

parameters of the multiple-controller online in order to achieve the desired system 

performance. The GLM for modelling complex systems assumes that the plant is 

represented by an equivalent model consisting of a linear time-varying sub-model plus a 

learning nonlinear sub-model based on Radial Basis Function (RBF) neural network. 

The proposed control design brings together the dominant advantages of PID controllers 

(such as simplicity in structure and implementation) and the desirable attributes of Pole 

and Zero Placement controllers (such as stable set-point tracking and ease of 

parameters’ tuning). 

Simulation experiments using real-world nonlinear SISO and MIMO plant 

models, including realistic nonlinear vehicle models, demonstrate the effectiveness of 

the intelligent multiple-controller with respect to tracking set-point changes, achieve 

desired speed of response, prevent system output overshooting and maintain minimum 

variance input and output signals, whilst penalising excessive control actions. 
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Chapter 1  

Introduction 

For complex systems with significant nonlinearity and parametric uncertainty, adaptive 

nonlinear control has evolved as a powerful methodology leading to global stability and 

tracking results for a class of nonlinear systems [15]. In parallel with the development in 

adaptive nonlinear control, there has been a tremendous amount of activity in the 

application of artificial intelligence techniques in control engineering. The area of 

intelligent control is in fact interdisciplinary, and it attempts to combine and extend 

theories and methods from areas such as control engineering, computer science and 

operation research to attain demanding control goals [61]. Intelligent control techniques 

are nowadays recognised tools in both academia and industry. Methodologies coming 

from the field of computation intelligence, such as neural networks, fuzzy logic systems 

and evolutionary computation, can lead to accommodation of more complex processes, 

improved performance and considerable time savings and cost reductions [13]. 

An intelligent controller, based on an expert control concept, as a decision-making 

element in a feedback control loop requires much the same decision making ability as is 

needed in other expert systems, however there are significant differences. One crucial 

requirement is the need to provide control signals to the process in real-time. The 

second requirement is that the intelligent controller should not need human interaction 

to complete its functions. The third is that the intelligent controller must be interfaced 
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directly to the process and be equipped with the means for applying control to the 

process [59]. An intelligent controller based on this type of a controller should be able 

to use several different control algorithms as well as to tune the parameters of each 

algorithm according to the desired user specifications. It should also autonomously 

manage the selection between those control algorithms to maintain the control 

objectives at or near their optimal values for specific process conditions. 

1.1 Motivation for the Thesis 

Inspired by the advances and the on going research in soft-computing techniques and 

their applications in intelligent control engineering, the motivations for this thesis are 

presented in the following sub-sections. 

1.1.1 Control of Complex Systems 

During the last few decades, nonlinear control became a field of growing interest. The 

reason is twofold. Firstly, new achievements of nonlinear control theory combining 

control engineering, computer science and operation research methods strengthened its 

power. Secondly, new demands for high performance control arose in science and 

engineering. Nonlinearity plays an especially strong role in control of mechanical 

systems such as chemical industry, cars, robots, helicopters, ships, etc. Many of those 

systems are characterized by a high level of complexity: high dimension of the state 

space, multiple inputs and outputs, parametric uncertainty and un-modelled dynamics 

[61, 62].  
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A difficult problem in the control of these complex dynamic systems is due to the 

inherent nonlinearities of their models and these problems cannot be solved using 

traditional linear control techniques. The application of linear control theory to these 

problems relies on the key assumption of a small range of operation in order for the 

linear model assumption to be valid. When the required operating range is large, a linear 

controller may not be adequate. For this reason, it seems appropriate to extend linear 

control to plants with nonlinear models and with plant/model mismatch. A possible way 

this can be achieved is by incorporating the inherent nonlinearity of the process into the 

control design process using a so-called learning model. “Learning models” result from 

a synthesis of learning systems. Learning systems are particularly useful whenever 

complete knowledge about the environment is either unknown, expensive to obtain or 

impossible to quantify. When learning systems are synthesized with modelling 

techniques, so-called learning models emerge. Furthermore, when learning models are 

used with advanced control methods, they result in learning control systems [63, 64]. 

Over the last decade or so, there has been much progress in the modelling and control of 

complex processes, using black-box type learning models. Some of nonlinear input-

output representations have appeared, such as Volterra series, Hammerstein (HM), 

Wiener, Wiener-Hammerstein, Artificial Neural Networks, etc. Neural networks have 

been shown to be very effective for controlling complex non-linear systems, when there 

is no complete model information, or when the controlled plant is considered to be a 

“black box” [65]. 
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Zhu and Warwick [19] have proposed an improved more generalised method for 

developing nonlinear adaptive control based on a general input-output nonlinear 

modelling framework. In such designs, which Zayed et al. [37] term the Generalized 

Learning Model (GLM), the process model can be split into two parts, namely linear 

and non-linear dynamical learning sub-model, so that this special structure allows the 

linear part of the controller to exploit classical linear theory. In addition, the coupling 

effects and the other relationships are accommodated in the nonlinear learning sub-

model allowing effective compensation. Therefore, this thesis improves the 

performance of the GLM to better represent complex real-world systems and develop a 

novel intelligent framework to cover complex dynamic systems. 

1.1.2 Intelligent Methods in Control Engineering 

Intelligent control is a very active and multi-disciplinary field [66]. The concept of 

intelligence in control applies to a variety of approaches used for extending classical 

control theory that include learning, nonlinear control, model-based control, and, in 

general, control of complex systems that will achieve the desired performance when 

confronted with unexpected or unplanned situations [67]. There are requirements today 

that cannot be successfully addressed with the existing conventional control theory. 

They mainly pertain to the area of uncertainty, which is present because of poor models 

due to lack of knowledge, or due to high level models used to avoid excessive 

computational complexity. Normally the plant is so complex that it is either impossible 

or inappropriate to describe it with conventional mathematical system models such as 

differential or difference equations. Even though it might be possible to accurately 
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describe some systems with highly complex nonlinear differential equations, it may be 

inappropriate if this description makes subsequent analysis too difficult or too 

computationally complex to be useful. The complexity of the plant model needed in 

design depends on both the complexity of the physical system and on how demanding 

the design specifications are [61]. 

There are needs in the control of these complex systems which cannot be met by 

conventional approaches to control. For instance, there is a significant need to achieve 

higher degrees of autonomous operation for robotic systems, spacecraft, manufacturing 

systems, automotive systems, underwater and land vehicles, and others. To achieve such 

highly autonomous behaviour for complex systems one can enhance today's control 

methods using intelligent control systems and techniques [68]. 

Intelligent control systems are typically able to perform one or more of the following 

functions to achieve autonomous behaviour: planning actions at different levels of 

detail, emulation of human expert behaviour, learning from past experiences, integrating 

sensor information, identifying changes that threaten the system behaviour, such as 

failures, and reacting appropriately. This identifies the areas of Planning and Expert 

Systems, Fuzzy Systems, Neural Networks, Machine Learning, Multi-sensor 

Integration, and Failure Diagnosis, to mention but a few, as existing research areas that 

are related and important to Intelligent Control [68]. Therefore, in this thesis, soft-

computing techniques such as neural networks and fuzzy logic will be used to improve 

the approximation of the GLM for complex systems and introduce autonomy to the 

multiple controller framework proposed by Zayed [17]. 
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1.1.3 Multiple-Controller Structures and Techniques 

Control engineers are sometimes confronted with situations in which they have to 

design and implement real-time control systems that are composed of a set of 

controllers in stead of a single control algorithm. These situations occur for example 

when the control problem to solve is complex of nature, that is, when the problem can 

be thought of being composed of an interconnection of a set of simpler sub-problems 

[8]. A common approach to control such complex dynamic systems is to design a set of 

different controllers, each of which for a particular operating region or performance 

objective, and then to switch them in real-time to achieve the overall control objective 

[69]. Some multiple-controller architectures have been reported in the field of control 

engineering, and these are known under the general name of multiple model approach 

[8]. 

Many physical systems are hybrid in the sense that they have continuous behaviours and 

discrete phenomena. A good example of a complex hybrid system is an automobile 

[69]. Discrete signals are gear ratios, load and road characteristics, driver inputs, and 

control signals. The continuous parts are often nonlinear dynamics of motion, motor 

characteristics, sensor signals, and so on. Continuous dynamic characteristics vary 

according to the state of discrete signals. Dynamics can be changed by the operator 

input or due to a change in the environment. Therefore, it is required to implement a 

different controller for each operating condition. An intelligent multiple control system 

may have the ability to operate in multiple environments by understanding the current 

operating condition and achieving the various tasks appropriately. 
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This research will work towards developing a new intelligent multiple-controller 

framework which incorporates a fuzzy logic based switching and tuning supervisor to 

provide the system with the choice between deploying the conventional Proportional-

Integral-Derivative (PID) self-tuning controller, or the PID structure based 

(simultaneous) pole and zero placement controller. Both controllers, which were 

originally proposed by Zayed et al. [17, 39, 70] benefit from the simplicity of having a 

PID structure, operate using the same adaptive procedure and can be selected on the 

basis of the required performance measure. 

1.2 Aims and Objectives of the Research 

The general aim of this thesis is to develop a new intelligent multiple-controller 

framework for controlling complex Single-Input Single-Output (SISO) and Multi-Input 

Multi-Output (MIMO) systems. Specific objectives include: (1) Explore soft-computing 

techniques, such as neural networks and fuzzy logic, in order to further develop the 

multiple-controller framework proposed by Zayed et al. [17, 39, 70]. (2) Improve the 

approximation capability of the nonlinear sub-model in the GLM for more accurate 

complex SISO and MIMO plant representation. (3) Introduce autonomy to the manual 

switching mechanism among the candidate controllers, namely conventional PID 

controller and Pole-Zero Placement controller. (4) Introduce autonomous online tuning 

of the parameters of the controllers employed. (5) Apply and assess the developed 

intelligent multiple-controller framework in novel realistic challenging applications. 
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1.3 Original Contributions of the Thesis 

The main contributions of this thesis are: 

1.3.1 Radial Basis Function Neural network Based Enhanced GLM 

In modelling nonlinear dynamics and disturbances of complex systems using the GLM, 

the use of the computationally efficient Radial Basis Function (RBF) neural network 

(NN) sub-model instead of the Multi-Layered Perceptron (MLP) NN based sub-model, 

which was originally proposed in [16, 19], has been shown to improve the system 

performance in terms of achieving minimum variance of the output signal and the 

control input signal, both for tracking changes in the reference signal and for dealing 

with the nonlinearities and addition of random and constant disturbances. The enhanced 

RBF based GLM is applied successfully to SISO and MIMO systems. 

1.3.2 Fuzzy Logic based Switching between Multiple Controllers 

A fuzzy-logic based switching scheme has been developed in order to introduce 

autonomy to the conventional manual switching mechanism between multiple controller 

modes, which was originally adopted in [17, 39, 70]. The fuzzy-logic based supervisor 

operates at the highest level of the system and makes a switching decision, on the basis 

of the required performance measure, between two candidate nonlinear controllers, 

namely a PID controller, or a PID structure based zero and pole placement controller. In 

general, the need for switching stems from the fact that typically no single controller 

can guarantee the desired behaviour when connected with the poorly modelled process, 
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and particularly so for the case of complex processes exhibiting significant nonlinearity, 

non-stationarity, uncertainty and/or multi-variable interactions [50]. 

1.3.3 On-Line Fuzzy Logic based Tuning of Multiple-Controller Parameters 

In complex control systems, large changes in the operating state lead to corresponding 

variations in the parameters of the plant model about these operating states. It is well 

known that it is not possible therefore to design a controller to operate satisfactorily at 

one operating state and expect it to perform equally well elsewhere without re-tuning it. 

Closed loop system performance is degraded since the controller cannot track the 

changes in the operating states [74]. In order to study the sensitivity of tuning the 

multiple-controller parameters for achieving the desired performance, an online 

parameter tuning strategy has been proposed. Therefore, the aim of this work is to apply 

the fuzzy-logic supervisor to tune the parameters of the multiple-controller online, 

including the poles and zeros of the (simultaneous) pole-zero placement controller in 

addition to the PID gains. This novel tuning strategy builds on the conventional fuzzy 

gain scheduling strategies that have been conventionally employed for only PID 

controllers [4, 71, 72]. 

1.3.4 New Intelligent Multiple Controller Framework for Complex Systems 

The work in this research is integrated to develop an intelligent multiple-controller 

framework for the control of SISO and MIMO complex systems. In the proposed 

approach, a switching and tuning fuzzy-logic supervisor is situated at the highest level 

of the system in order to govern the selection scheme among the conventional PID and 
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pole-zero placement nonlinear controllers, and to perform the required changes on the 

parameters of the active controller. To model the behaviour of the plant, the framework 

incorporates the RBF neural network based GLM. The GLM assumes that the unknown 

complex plant is represented by an equivalent stochastic model consisting of a linear 

time-varying sub-model plus a nonlinear RBF neural network learning sub-model. 

1.3.5 Novel Application of the Proposed Intelligent Multiple-Controller to 

Autonomous Vehicle Control 

The field of autonomous vehicles is a rapidly growing one with its abundant 

applications of electronics, sensors, actuators, and microprocessor based control 

systems to provide improved performance, fuel economy, emission levels, comfort, and 

safety. Autonomous vehicles represent the intersection of artificial intelligence and 

robotics, combining decision-making with real-time control [76]. An important 

component of autonomous vehicle control (AVC) is to design control systems for 

controlling the throttle, wheel brake and steering systems so that the vehicle can follow 

a desired path and target speed, which could be a speed response of a leading vehicle, 

and at the same time keep a safe inter-vehicle spacing under the constraint of 

comfortable driving [77]. There are though a lot of possible techniques with which to 

perform AVC. Conventional methods based on analytical control generate good results 

but exhibit high design and computational costs since the application object is a 

complex nonlinear element and a complete mathematical representation is impossible. 

Therefore, other ways of reaching human-like vehicle control have been developed, for 

example, through the application of artificial intelligence techniques [78]. 
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One important and challenging problem in AVC development from the real-time control 

applications is vehicle subsystems integration [76]. Dangerous yaw motions of the 

automobile may result from unexpected yaw-disturbances caused by unsymmetrical car-

dynamics perturbations like side-wind forces, unilateral loss of tire pressure or braking 

on unilateral icy road. One approach for yaw dynamics improvement is to use 

individual wheel braking, thereby creating the moment that is necessary to counteract 

the undesired yaw motion. Another approach is to command additional steering angles 

to create the counteracting moment [79]. Another alternative approach, which is 

suggested in this work, is to treat the three drivetrain sub-systems (i.e., throttle, brake 

and steering sub-systems) as one MIMO plant. In this work, the interactions between 

the vehicle longitudinal and lateral properties, disturbances and nonlinearities are 

considered in the multivariable MIMO control law and modelled using the MIMO 

neural network employed in the so called GLM. The application of the proposed 

intelligent multivariable multiple-controller framework to the autonomous vehicle 

control problem was shown to manage the control of the longitudinal and lateral 

complex vehicle model in order to track target speed and path trajectories. 
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1.4  Publications Arising 

The following nine papers have been resulted from the research: 

1.4.1 Journal Papers 

[1] R. Abdullah, A. Hussain, K. Warwick and A. Zayed, Autonomous Intelligent 

Vehicle Control using a Novel Multiple-Controller Framework Incorporating Fuzzy-

Logic based Switching and Tuning, Neurocomputing (Elsevier Science), 70, 

in press, 2007. 

[2] A. Zayed, A. Hussain and R. Abdullah, A Novel Multiple-Controller Incorporating a 

Radial Basis Function Neural Network based Generalized Learning Model, 

Neurocomputing (Elsevier Science), 69 (16), 1868-1881, 2006. 

1.4.2 Refereed International Conference Proceedings 

[1] R. Abdullah, A. Hussain and M. Polycarpou, Fuzzy Logic based Switching and 

Tuning Supervisor for a Multivariable Multiple-Controller, IEEE International 

conference on Fuzzy Systems (FUZZ-IEEE 2007), 1644-1649, Imperial College, 

London, UK, 23-26 July, 2007. 

[2] R. Abdullah, A. Hussain and A. Zayed, Novel Intelligent Multiple Controller 

Framework incorporating Fuzzy Logic based Switching, In Proceedings: 

International Control Conference (ICC 2006), Glasgow-UK, No. 252, 29 Aug. -1 

Sep. 2006.  

[3] R. Abdullah, A. Hussain and A. Zayed, A New Radial Basis Function Neural 

Network Based Multi-variable Adaptive Pole-Zero Placement Controller, In 

Proceedings of the IEEE International Conference on Engineering of Intelligent 

Systems (IEEE ICEIS'2006), Islamabad-Pakistan, 22-23 April 2006. 

 

 12



1.4.3 Invited Papers in International Workshops 

[1] R. Abdullah and A. Hussain, Intelligent and Nonlinear Control Design for 

Autonomous Vehicle Systems, Workshop on Advances in Real-Time Control for 

Nonlinear Systems, Glasgow, UK, 5-7 Sep. 2007. 

[2] R. Abdullah and A. Hussain , A New Intelligent Multiple Controller Framework for 

Complex Systems Deploying Fuzzy Supervisory Switching and Tuning, Workshop 

on Nonlinear Control Design for Industrial Applications, Glasgow, UK, 5-6 April 

2006. 

[3] R. Abdullah A. Hussain, and A. Zayed , New Intelligent Methods for Nonlinear 

Adaptive Control and System Identification, Workshop on Introduction to Nonlinear 

Control Techniques for Industrial Processes, Glasgow, UK, 3-4 November 2004. 

1.4.4 Book Chapters 

[1] R. Abdullah, A. Hussain and A. Zayed, A New RBF Neural Network Based Non-

linear Self-tuning Pole-Zero Placement Controller, Lecture Notes in Computer 

Science (LNCS), Springer-Verlag, Chapter p, Vol.3697, 951-956, 2005. 

1.5 Thesis Layout 

This section provides a chapter-by-chapter guide to the thesis. 

Chapter two provides a background to the intelligent control systems. The review 

includes an overview of the general requirements and structure of intelligent control 

systems. As related topics to the developments reported in this thesis, the issues of 

complex systems identification based on neural networks, and using fuzzy-logic in 

supervisory control will be discussed. 
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The third chapter is devoted to illustrate the concept of multiple-controller approach in 

control engineering. The focus will be on the multiple-controller framework proposed in 

[17, 39, 70]. A detailed discussion regarding the framework’s three multiple-controller 

modes is given, namely: conventional PID controller; pole placement controller; and 

(simultaneous) pole-zero placement controller. Finally, the design of the GLM is 

presented. 

Chapter four introduces intelligence to the conventional SISO multiple-controller 

presented in chapter three. The new developments presented here include the enhanced 

RBF based GLM and the fuzzy-logic based switching and tuning supervisor. These 

developments will form part of the new intelligent multiple-controller framework for 

controlling complex system in order to achieve a more effective control action and to 

over come certain limitations exhibited in the original design of [17, 39, 70]. 

Chapter five is an extension to the work proposed in the previous chapter as the 

intelligent multiple-controller for SISO systems is extended to cover complex MIMO 

plants. The theoretical stability analysis of the proposed intelligent multiple-controller 

framework is given also. 

Chapter six presents results of a series of simulation experiments. The first experiment 

starts with a common control problem occurring in chemical process industries, namely 

the control of fluid levels in real-world SISO storage tanks or reaction vessels. In this 

case, the proposed intelligent framework will work on tracking a reference signal, 

which represents the target fluid level, in addition to dealing with the systems’ nonlinear 

dynamics and added disturbances. Finally, this experiment is extended to a coupled 
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tanks MIMO system that comprises one container with a centre partition to divide the 

container into two tanks. In order to compare the performance of the new RBF based 

GLM, with that proposed in [16, 17], a quantitative measure of variance of the 

controller output and the control input signals is used to assess the closed-loop system 

performance. The second experiment carried out in this thesis exhibit the new 

application of the intelligent multiple-controller framework to the challenging problem 

of autonomous vehicle control. The proposed methodology is used to simultaneously 

control the throttle, brake and steering subsystems of a validated complex nonlinear 

vehicle model. This multivariable problem will demonstrate the effectiveness of the 

intelligent controller with respect to tracking desired longitudinal and lateral 

displacements, vehicle speed changes and achieving the desired speed of response, 

whilst penalising excessive control actions. 

Finally, concluding remarks are given in chapter seven together with some 

recommendations for future work. 
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Chapter 2  

Background to Intelligent Control Systems 

2.1 Introduction 

Considerable research is being devoted to an understanding and a representation of 

intelligence, and the development of intelligent learning algorithms that can be applied 

to technological problems whose complexity defies conventional algebraic model based 

solutions. To have a resultant intelligence, a computer needs to be able to sense the 

world in some way and then have the ability to carry out physical actions, or to cause 

physical actions to be carried out [158]. In intelligent or learning systems a desired 

mapping f may be determined by either of the following techniques [1]: 

1- Indirectly from the set of inputs via self organisation or by the presentation of 

training examples. 

2- A direct specification of  through a functional transform algorithm, a look 

up table or a rule base. 

(.)f

(.)fIntelligent systems are frequently characterised by the estimation of the mapping  

from experiential evidence via an associative memory without recourse to mathematical 

modelling or specification. Intelligent systems naturally involve learning or adaptation 

of the systems associational structure or functional dependencies in response to changes 
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in process parameters [13]. That is, learning cannot occur, without variation in process 

parameters, and equally variations in process parameters lead to new experience and 

different functional dependencies which allow learning. 

An important concept within connectionist modules is that of local receptor fields in the 

input space and its associated response in the output space. It is highly desirable that 

similar inputs produce similar outputs to minimise sensitivity to input errors, but more 

importantly to ensure that the behavioural response exceeds the specific inputs. This is 

called generalisation, allowing a module to generalise beyond specific examples, which 

is a common feature of intelligent systems [15]. 

2.2 Intelligent Control Requirements 

The ever increasing complexity of dynamical systems coupled with the increasing 

demands in closed loop performance specification necessitates the use of more complex 

and sophisticated controllers, yet as systems become more complex uncertainty in 

modelling increases. Intelligent controllers are enhanced adaptive or self-organising 

controllers that can accommodate significant changes in the plant and its environment, 

whilst meeting increasingly stringent controller specifications [73]. Intelligent control 

systems are defined as those that can operate successfully in a wide variety of situations 

by detecting the specific situation that exists at any instant and serving it appropriately 

[21]. External disturbances, changes in sub-system dynamics, parameter variations, etc., 

are examples of different unknown environments in which the system has to operate. 

Since environments can change rapidly, the objective is to achieve fast and sufficiently 
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accurate adaptation [2]. Central to intelligent control is the construction of an internal 

model of the true system processes. Unfortunately many large complex processes are 

not amenable to mathematical modelling based upon simple physical laws as the 

process may be [1, 3, 15]: 

1- Too complex to understand or present simply. 

2- The models are difficult or expensive to evaluate. Variables may not be 

easily measured or causal variables may not even be known. 

3- The process is subject to large unpredictable environment disturbances. 

4- The model structure may not be amenable to simple linear time invariant 

modelling, being distributed, nonlinear and time varying. 

Yet many such plants are first regulated or manually tuned by human operators before 

automatic controllers are installed. The plant operator has few apparent problems with 

plant nonlinearities or adjusting to slow parametric changes in the plant or with 

satisfying a set of complex static and dynamic process constraints. The human operator 

is able to respond to complex sets of observations and constraints, and to satisfy 

multiple subjective based performance criteria. However, the control actions of human 

are difficult to analyse as they are variable and subjective, prone to error, inconsistent 

and unreliable, and in the case of safety critical situations and hazardous processes, 

potentially dangerous. 

The purpose of intelligent control is to incorporate the positive intelligent and creative 

attributes of human controllers, whilst avoiding the elements of inconsistency, 
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unreliability, temporal instability, fatigue, which are associated with the human 

conditions. Therefore, intelligent controllers should have the following characteristics 

[1]: 

1- Perform under significant uncertainties in the system and in the environment 

in which it operates. 

2- Able to compensate for system failures without external interventions. 

3- Sufficiently adaptable to deal with unexpected situations, new control tasks 

or changes in the control objectives. 

2.3 Intelligent Control Architecture 

A variety of architectures that support and integrate intelligent control have emerged [9, 

10], amongst which the most natural is the hierarchal and functional architecture shown 

in figure (2.1). Within this intelligent autonomous control architecture there is an 

interface to the process involving sensing (e.g., via conventional sensing technology, 

vision, touch, smell, etc.), actuation (e.g., via hydraulics, robotics, motors, heaters, etc.), 

and an interface to humans (e.g., a driver, pilot, crew, etc.). Higher levels involve 

imprecise conceptual qualitative reasoning operating in non-real-time, whereas at lower 

levels more precise and quantitative algorithmic methods dominate in real-time. 

Furthermore, there is increasing intelligence accompanied by decreasing precision as 

one moves from lower to the higher levels [4]. 
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The execution level consists of low-level numeric signal processing and control 

algorithms. These algorithms could be PID, adaptive, or intelligent control; parameter 

estimators, failure detection and identification algorithms. The coordination level 

provides for tuning, scheduling, supervision, and redesign of the execution-level 

algorithms. Moreover, it provides for crisis management, planning and learning 

capabilities for the coordination of execution-level tasks, and higher-level symbolic 

decision making for identification and control management. The management level 

provides for the supervision of lower-level functions and for managing the interface to 

the human and other systems. The human interface can be quite complex. It could allow 

the user to monitor all aspects of operation of the system via graphical user interface, 

provide the user with information about the overall health of the system, and work the 

user to specify reasonable and achievable goals for automation [12]. 

 Human and other subsystems

Process

Management level 

Coordination level 

Execution level 

Increasing Intelligence 
Decreasing Precision 

 

Increasing Sampling Rate 
 

 

 

 

 

Figure (2.1): Three level intelligent control architecture 
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2.4 Review of Complex Systems 

In engineering and mathematics, a dynamical system is a deterministic process in which 

a function’s value changes over time according to a rule that is defined in terms of the 

function’s current value. In general, there are two kinds of dynamical systems: discrete 

and continuous. A discrete dynamical system involves step-by-step state changes, and 

time is measured in discrete steps. If time is measured continuously, the resulting 

system is considered continuous dynamical system [20]. 

Most dynamical systems encountered in practice are inherently nonlinear. The control 

system design process build on the concept of a model. Nonlinearity and model 

accuracy directly affect the achievable control system performance. Nonlinearity can 

impose hard constraints on achievable performance. When portions of the plant model 

are unknown or inaccurately defined, or they change operation, the control performance 

may need to be severely limited to ensure safe operation. Therefore, there is often an 

interest to improve the model accuracy. Especially in tracking applications this will 

typically necessitate the use of complex models [15]. 

2.4.1 Complex System Identification 

The ability to adapt to unknown operating conditions is an important attribute of 

intelligent systems. Adaptive control is a promising technique to obtain a model of the 

plant and its environment from experimental data and to design a controller. Adaptive 

control for a feedback linearizable nonlinear system has attracted much interest among 

control system designers over several decades [69]. However, the desired level of 
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performance or tracking problems with a sufficiently large operating region may require 

in which the nonlinearity be directly addressed in the control system design [18]. If the 

exact knowledge of the system is available, it is possible to transform a nonlinear 

adaptive control problem into a linear control problem by using a feedback linearization 

technique. However, in many cases, the plant to be controlled is too complex to obtain 

the exact system dynamics, and the operating conditions in dynamic environments may 

be unexpected [69]. Recently, an adaptive control technique has been combined with 

function approximators such as neural networks, fuzzy inference systems, and series 

expansion. These types of controllers take the capability of learning unknown nonlinear 

functions by universal approximation theorem and massive parallel computation. Based 

on the fact that universal approximators are capable of uniformly approximating a given 

nonlinear function over a compact set to any degree of accuracy, a globally stable 

adaptive controller has been developed with an adaptation algorithm [15]. 

A nonlinear time-invariant dynamic system with single-input, single-output (SISO) can 

be represented by the following equation [13]: 

))(()( tuSty = R, ∈)(ty R, ∈)(tu

)(t

,                         (2.1) 

where t denotes continuous time and S is an operator relating the input signal u  to the 

output signal y(t). The mathematical description of the system itself is unknown, but it 

is assumed that input-output data are available. The input and the output are sampled at 

a constant rate, resulting in discrete-time signals denoted by u(t) and y(t). The system 

described in equation (2.1) can then be approximated by a SISO Nonlinear Auto-

Regressive model with eXternal input (NARX) [13, 14]: 

 22



))(()1(ˆ kfky x=+ ,                                               (2.2) 

where f is an unknown approximation function, the hat denotes approximation and x(t) 

is the regression vector defined as the collection of previous process inputs and outputs: 
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The parameters n1 and m1 are integers related to the dynamic order of system (2.1). 

Further, denote  the dimension of the regression vector. To properly account 

for noise disturbances, such as sensor noise; process noise; etc., more complicated 

model structures can be chosen. Some common examples are the nonlinear output error 

(NOE) model, which involves the past model predictions instead of the process output 

data: 

11

111111 )]1(),...,(),1(ˆ),...,(ˆ[)( +−+−= mkukunkykytx .                    (2.4) 

In the Auto-Regressive Moving Average with eXternal input (NARMAX) model the 

prediction error e  and its past values are included in the regression 

vector as well: 
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The problem of complex system identification is to infer the unknown function f in the 

system equation (2.2) from the sampled data sequences {(u(k),y(k))|k = 1,2,…,N}. 

Depending on the type of nonlinearity and the manner that the nonlinearity affects the 

system, various nonlinear control methods are available [14, 15]. The system designer 
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can use general function approximators such as Artificial Neural Networks (ANNs), 

Fuzzy Logic systems, splines, interpolated look-up tables, etc. [13]. In particular, ANN-

supported complex dynamic system modelling and control has been well advocated in 

the control engineering community. The introduction of neural networks to nonlinear 

control system design has significantly relieved the difficulty in resolving mathematical 

solutions in theory and tuning controller parameters in practice [19]. 

In this thesis, the complex plant is modelled using a neural network based Generalised 

Learning Model (GLM) proposed by [16, 17] as part of the Multiple-Controller 

Framework, which will be discussed in chapter 3. 

2.4.2 Complex System Identification with Neural Networks 

The aim of systems identification is to determine models from experimental data. The 

identified models can then be used for different objectives, such as prediction, 

simulation, optimization, analysis, control, fault detection, etc. Artificial Neural 

networks, in the context of system identification, are black-box models, meaning that 

both the model parameters and the model structure are determined from data [13]. 

ANNs are typically constructed from layers of simple computation nodes, with 

weighting elements between nodes that define the strength of connection between 

nodes, which are adapted during learning by some optimisation procedure to yield the 

appropriate input/output map. ANNs are specified by the network topology, node 

function characteristics, and the associated learning rules that update the weighting 
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elements [16, 1]. Neural networks are endowed a number of unique attributes which 

make them potentially suitable for intelligent control [18, 19]: 

ANNs learn by experience rather than programming. 

They have the ability to generalise, that is, map similar inputs to similar outputs. 

They can form arbitrary continuous nonlinear mappings. 

Their architectures are distributed, inherently parallel and potentially real time. 

For intelligent control or neurocontrol, ANNs require the additional properties of [15]: 

Temporal stability, the stability to absorb new information whilst retaining knowledge 

previously encoded across the network. 

Real time adaptation or learning in response to plant variations. 

Known or proven learning convergence conditions necessary for process closed loop 

behaviour prediction or neurocontroller certification. 

For neurocontrol, networks that can perform functional approximations are most useful. 

An important class of neural networks are those in which the input feeds forward 

through the network layers to the output, these are referred to as feedforward networks. 

They are able to learn complex input-output functional mappings which are ideal for the 

purposes of system identification, modelling and control of complex processes [48]. The 

most popular ANNs in neurocontrol are the Multi-Layer Perceptron (MLP), and the 

Radial Basis Function (RBF) [21, 22, 23]. Both MLP NNs and RBF NNs are able to 
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adaptively model or identify a dynamical nonlinear Multiple-Input Multiple-output 

(MIMO) or SISO process/plant on-line while the process is changing [23]. 

2.4.3 MLP and RBF NNs Function Approximation 

Based on Weierstrass approximation theorem [1, 12, 15], for the domain  of a 

compact space of n-dimensions, let  be a set of continuous functions on , with 

metric 

D
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The MLP may be represented by the network set for m  hidden units by 
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where ;  are constants ,  are adaptive weights, and  are 

invertible, differentiable squashing functions (such as sigmoid functions). The 

invertibility and differentiability conditions on 
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Whereas the associative memory RBF ANN can be represented by the network set 
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where  are fixed centroids of the basis function j jΨ , and  are adaptive weights. jw
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For the network sets  and  to be dense in the compact domain  (i.e. any 

element in  can be approximated by some element from  and  with as small 

an error as desired so that || ||

1NS NS D

NS NS

ˆ

2

D 1 2

ff − ε≤  for arbitrary ε ) are dependent upon the choice 

of  and Ψ  [).(Φ ).( 1, 18]. The functions in  and  can be computed by arbitrary 

large decaying exponential networks on . 
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Since sinusoids can be expressed through transforms (such as cos ( βa cos a cos β  

- sin a sinβ ) that converts multiplication into addition, and sinusoids can be written in 

terms of exponentials, this makes the MLP NN, which is based on , dense in the 

domain . In this context, the NS
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are dense in  since the derivative of cosig  is zero outside the interval [ , 

therefore only a small subset of neurons local to this function are updated by back 

propagation, avoiding temporal instability or learning corruption from previous 

information. 
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The Gaussian basis functions are used in RBF NNs 
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where  are a set of centre locations which are defined for each node j, N
jjd 1}{ = )( jd−x  

will serve as jd−x  which is the norm of distance from the evaluation point to the jth 

node centre, and  are a set of free parameters that determine the width or region 

of influence of the kernel functions around the centre of the nodes (i.e. radiuses for the 

 basis functions) [

N

N

jj 1}{ =γ

1] and [15]. Since the approximation of the RBF NNs is linear in 

the parameters, w, any quadratic cost functional used in minimising the approximation 

error through weights update will have a unique global minimum. In addition, only 

those weights directly related to new information are updated. It is therefore concluded 

that the class of artificial neural networks in the form  provide unique best 

approximation, which are stable if 

2NS

).(Ψ  have compact support on . D

It is stated that the MLPs are slow, convergence cannot be established, and increasing 

the state space covered by the training set results in the whole network being retrained. 

Usually, nonlinear models use nonlinear approximation methods, such as the stochastic 

approximation algorithm, based upon gradient descent optimisation ensuring 

convergence to a local minima that contains the initial parameter vector in its attraction 

basin [48, 49, 107]. The MLP is highly nonlinear in the adjustable weights or 

parameters, generating a complex cost functional surface in the weight space, with 

many local minima which traps gradient descent rules. Additionally, MLPs are 

temporally unstable. 

Associative memory single layer networks such as RBF NN satisfy, in some measure, 

neurocontroller functional conditions 1 to 8 in section mentioned in section 2.4.2 above. 
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2.5 Review of Neurocontrol: ANN based Control 

Multilayer Perceptrons and Radial Basis Functions, trained with the back-propagation 

algorithm, have been applied successfully in a variety of control applications. To 

control a system is to make it behave in a desired manner. The behaviour of this system 

depends on the task to be solved, the dynamics of the system, the actuators, the 

measurement equipment, the available computational power, and so on. These factors 

influence the formulation of the desired behaviour as well. There are two basic 

formulation of the desired behaviour are accepted [24]: 

The closed-loop system, consisting of controller and system to be controlled, should 

follow a prescribed transfer function model. This class of design methods comprises 

well-known strategies like pole placement and model-reference controllers. 

Express the desired behaviour in terms of a quadratic criterion and derive the controller 

as the minimiser of this criterion. Examples are minimum variance, predictive, and 

optimal control. 

Often it is preferable to formulate the behaviour in terms of time domain characteristics 

such as; steady state error, degree of overshoot, rise and fall time, variance of the 

control signal. These types of characteristics can often be handled under linear 

conditions. Unfortunately, they are in general hard to satisfy for unknown complex 

dynamic systems. 

Neural networks have been used as a tool for modelling complex dynamic systems due 

to their ability to map complicated output and input nonlinear relationships sufficiently. 
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Using back-propagation learning algorithm, neural networks have presented a popular 

architecture in many research fields, including complex system identification and 

control [16]. Recent results have indicated that neural networks can exactly match input 

and output signal behaviours [19]. 

A neural network based system model can be used in the design of a controller or can 

become a part of a model-based control scheme. The next subsections will present a 

review of neurocontrol methods. 

2.5.1 Gain Scheduling 

In classical gain scheduling, slow varying scheduling variables are used to capture 

nonlinearities and parameter dependencies. The control law is obtained by interpolating 

a number of locally valid linear controllers. In the context of neural network based 

control, gain-scheduled control is obtained when using a neurocontroller, usually 

designed on the basis of an MLP or RBF neural network model of the plant. 

Applications of this approach can be found in [25] where RBFs are used as a gain-

scheduling controller for the lateral motion of a propulsion controlled aircraft, and in 

[26] where a neural network is used to improve the performance of a classic continuous 

parameter gain-scheduling controller. 

2.5.2 Inverse Control 

A straightforward application of neural network based design of a controller for 

complex process is inverse control [13]. This approach can be explained using the SISO 

model 
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The vector  denotes the actual 

state and thus it does not include the input u , such that the system’s output at the 

next sampling instant is equal to the desired (reference) output r . This can be 

achieved if the process model (2.10) can be inverted according to: 
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Generally, it is difficult to find the inverse function  in an analytical form. It can 

however, always be found by numerical optimization, using the following objective 

function: 

f

.))](),(()1([))(( kukfkrkuJ x−+=                                 (2.12) 

The minimisation of  with respect to  gives the control corresponding to the 

inverse function (2.11) [13]. Given this control scheme, neural controller is considered 

in order to let the output  of the plant track the reference input  with the above 

function 
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))((min                                              (2.13) 

where  is the i  interconnection weight at layer l  of the neural controller [iw 14]. 

Important neural network application can be found in [21, 27, 28, 29]. 

2.5.3 Internal Model Control 
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This class of neurocontrol is model-based control strategy. The difference between the 

actual plant output and the output of the neural network based model is fed back into the 

control scheme. In this method it is assumed that the closed loop system is stable [13, 

14, 24, 30]. This technique was used for the control of a bioreactor in [31] and in [32] in 

a design procedure of neural internal controller for stable processes with delay. 

2.5.4 Model Based Predictive Control 

In model predictive control, a neural network model provides predictions of the future 

plant response over a specified time horizon. Predictions supplied by the network are 

passed to a numerical optimization routine in order to minimize an objective cost 

function subject to the dynamical system model. The system’s neural controller is then 

trained to produce the same control signal for given plant output [14]. Reference [33] 

used this kind on neurocontrol for chemical process. 

2.5.5 Controller Tuning 

Neural networks have been used to tune the parameters of different kinds of 

conventional controllers with a given known structure. References [34, 35] used neural 

networks to automatically tune the gains of a PID controller. 

 

 

2.5.6 Generalized Learning Model (GLM) for identification of Complex Plants 
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Zhu et al. [16] introduced a neural network based control structure such that the 

unknown complex plant is represented by an equivalent model consisting of a simple 

linear sub-model plus a nonlinear sub-model. The parameters of the linear sub-model 

are identified by a standard recursive algorithm, whereas the nonlinear sub-model is 

identified by Back Propagation Neural Network (BPNN), in which the weights are 

updated based on the error between the plant outputs and the outputs of the linear sub-

model. The simple linear dynamic sub-model is used to approximate the dominant 

dynamics of a wide range of linear and nonlinear dynamic plants around their operating 

points. As an error agent (nonlinear sub-model), the BPNN is used to learn the errors 

from the linear sub-model that are due to nonlinearities, uncertainties and disturbances 

in the controlled plant. The benefits of using a combined model structure come from the 

fact that the self-tuning control design mechanisms developed from linear model 

descriptions can be directly expanded to nonlinear dynamic models, and the optimal 

performance derived from a self-tuning methodology can be directly implanted into the 

control law [19]. 

In general, a wide range of complex dynamic plants can be described by a discrete time 

equation [16] 

,                                              (2.14) ),()1( UYfty =+

where ;  is smooth nonlinear function, and 

 and u  are the plant output and input signals respectively at discrete 

n nn

Yty ∈)( Ut ∈)(

RUYf →),( };;{ uy nnnRURY uy +=∈∈

 33



times .To control such a plant, a generalised parametric time-varying plant 

model is used [

,...2,1∈t

16, 17, 37, 38, 39] 

)1()()()()1()( ,0 +++=+ tξY,UftuzBtyzA t
11 −−

1− 1− 1−

1− 1−

)1(

,                      (2.15) 

where  and  are polynomials with orders  and ,  is a one-step 

backward shift operator. Also, it is considered that the parameters associated with 

 and  are either time invariant or are slow time varying. The system 

disturbances are represented by the function 

)(zA )(zB yn un z

)(zA )(zB

+t

n

ξ  which is an uncorrelated sequence 

of random variables with zero mean at the sampling instant t .  is 

potentially a time-varying nonlinear function, and therefore the equivalent model is a 

combination of a linear time-varying function plus a nonlinear time-varying error agent. 

Therefore, the overall plant model represented by equation (2.15) above, is termed the 

Generalized Learning Model (GLM) [

t RY,Uf →)(,0

37], and can be seen as the combination of a 

linear sub-model and a non-linear (learning) sub-model as shown in Figure (2.2). 
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Figure (2.2): Generalized Learning Model for complex systems Identification. 
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2.6 Review of Fuzzy Logic for Supervisory Control 

The idea of using intelligent systems to supervise adaptive control systems was first 

introduced in [7] and is also reported in [6, 4]. The supervisor can use any available data 

from the control system to characterize the system’s current behaviour so that it knows 

how to change the controller and ultimately achieve the desired specifications. 

Moreover, the supervisor can be used to integrate other information into the control 

decision-making process. It can incorporate certain user inputs, or inputs from other 

subsystems. For example, in an automotive vehicle control problem, the other 

subsystem information that a supervisor could incorporate for supervisory control for an 

automotive vehicle control application could include data from the engine that would 

help integrate the controls on the vehicle [4]. 

Most controllers in operation today have been developed using conventional control 

methods. There are, however, many situations where these controllers are not properly 

tuned and there is heuristic knowledge available on how to tune them while they are on 

operation. This knowledge facilitated the opportunity to utilize fuzzy-logic methods as 

the supervisor that tunes and coordinates the application on conventional controllers [6]. 

2.6.1 Fuzzy Tuning of PID Controllers 

Majority of the controllers in operation today are PID controllers. The popularity of PID 

controllers is because they are robust to control a wide range of processes, simplicity of 

their structure, easy to understand and easy to implement [72, 4, 17]. On the other hand, 

many of the PID loops that are in operation are in continual need of monitoring and 
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adjustment since they can easily become improperly tuned, that is due to plant 

parameter variations or operation condition changes. Therefore, there is a significant 

need to develop methods for automatic tuning of PID controllers. In literature, such as 

[80, 81, 13, 4], there exists many conventional methods for PID auto-tuning. Beginning 

with Ziegler and Nichols’s work [85], various parameters tuning methods for 

conventional PID controllers have been proposed [86, 87]. Ever since fuzzy theories are 

proposed by Zadeh in [88], fuzzy logic has gradually adopted as one of major 

approaches for controller design [86]. There have been numerous articles investigating 

different schemes of applying fuzzy logic to the design of PID controllers, which are 

generally termed as fuzzy PID controllers. Basically, a fuzzy supervisor is working to 

recognise when the controller is not properly tuned and then seeks to adjust the PID 

gains to obtain improved performance. The design of the PID auto-tuner (upper-level 

supervisor) may be implemented via simple tuning fuzzy rules where the premises of 

the rules form part of the behaviour recogniser and the consequents form the PID tuner. 

Some candidate rules for such a Mamdani model based fuzzy system may include the 

following [4]: 

IF steady-state-error IS large THEN increase the proportional-gain. 

IF the response IS oscillatory THEN increase the derivative-gain. 

IF the steady-state-error IS too-big THEN adjust the integral-gain. 

IF the overshoot IS too-big THEN decrease the proportional-gain. 
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The approach of fuzzy-logic based auto-tuning is recently used by Chang and Shyu in 

[82] for the application of active noise cancellation, and used by Abdul-Mannan et al. in 

[83] for PI controller for high-performance induction motor drive. 

2.6.2 Fuzzy Gain Scheduling 

Conventional gain scheduling involves using extra information from the plant, 

environment, or users to tune, via schedules, the gains of a controller (i.e., schedule 

controller gains). The design provides a set of gains for the controller at each operating 

condition over the entire operation envelop. A gain schedule is simply an interpolator 

that takes as inputs the operating condition and provides values of the gains as its 

outputs [4]. In the context of fuzzy systems, gain scheduled control is obtained when 

using Takagi-Sugeno model based fuzzy controller represented by the following rule set 

[13]: 

IF  IS  THEN )(kz iA )()( kyCku i= , ki ,...,2,1=  

where  is the vector for the scheduled variables,  is the antecedent linguistic 

terms (such as ‘small’, ‘large’, etc.), represented by fuzzy sets,  is the number of rules, 

 is the control input,  is the systems output signal, and C  is a linear time-

invariant controller. In [

)(kz iA

k

)(ku )(ky i

72], the PID gains , , and  were respectively 

calculated through fuzzy logic based on the error signal and the first difference of the 

error signal. 

pK K Ki d
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This general gain scheduling approach is widely used in aircraft industry and engine 

control [4]. Brdys and Littler [84] used this technique for nonlinear servo tracking 

where the servo controls two elements of a tracker mounted on a ship at sea. 

2.6.3 Fuzzy Supervisory Control 

Fuzzy supervisor control approach can offer more general functionality than only tuning 

of gains. They also can provide the capability to completely switch which controllers 

are operating at the lower level. That is, they can switch between linear and nonlinear 

controllers, controllers of different order or different structure [4]. Garcia-Benitez et al. 

[89] proposed a two level hierarchical control strategy to achieve accurate end-point 

position of a two-link robot with flexible members. The upper level consists of a fuzzy 

logic based supervisor, whereas the lower level consists of three conventional 

controllers, all involved in shaping of the control input in order to achieve satisfactory 

performance. The fuzzy supervisor chooses within these three control strategies and 

tunes their parameters according to the commanded manoeuvre speed and robot arm 

configuration. In [90], Jia et al. suggested that fuzzy switching controller can be used to 

achieve smooth control input signal in multiple model approach control. Based upon the 

arguments presented in this section (2.7), this thesis proposes a fuzzy logic switching 

and tuning supervisor for the conventional multiple-controller proposed by Zayed et al. 

in [17, 39, 70] and will be discussed in the next chapter. 
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2.7 Summary 

This chapter started by explaining that intelligent or learning systems are characterised 

by the estimation of a desired mapping and they naturally involve learning or adaptation 

of the systems associational structure or functional dependencies in response to changes 

in process parameters. The ever increasing complexity of dynamical systems coupled 

with the increasing demands in closed loop performance specification necessitates the 

use of more complex and sophisticated controllers, yet as systems become more 

complex uncertainty in modelling increases. Intelligent controllers are enhanced 

adaptive or self-organising controllers that can accommodate significant changes in the 

plant and its environment, whilst meeting increasingly stringent controller 

specifications. After recognising the importance of intelligent control, the chapter then 

moved onto the issue of complex systems and how they can be identified using neural 

networks. It was assumed that if the exact knowledge of the system is available, it is 

possible to transform a nonlinear adaptive control problem into a linear control problem 

by using a feedback linearization technique. However, in many cases, the plant to be 

controlled is too complex to obtain the exact system dynamics, and the operating 

conditions in dynamic environments may be unexpected. Therefore, adaptive control 

has been combined with function approximators such as neural networks. These types 

of controllers take the capability of learning unknown nonlinear functions by universal 

approximation theorem and massive parallel computation. The approximation theory of 

neural networks was discussed in section (2.4.3). More details regarding MLP and RBF 

neural networks function approximation was illustrated in section (2.4.4). 
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Using back-propagation learning algorithm, neural networks have presented a popular 

architecture in many research fields, including complex system identification and 

control. Recent results have indicated that neural networks can exactly match input and 

output signal behaviours. Because of this, a neural network based system model can be 

used in the design of a controller or can become a part of a model-based control scheme. 

Therefore, section (2.5) was dedicated to present a review of the main application of 

neural networks in control engineering. 

In section (2.6), the chapter ends by reviewing the capabilities of fuzzy logic in 

supervising adaptive control systems. The fuzzy logic based supervisor can use any 

available data from the control system to characterize the system’s current behaviour so 

that it knows how to change the controller and ultimately achieve the desired 

specifications. It was shown that fuzzy supervisor control approach can offer the 

functionality of tuning controller gains. Moreover, they also can provide the capability 

to completely switch which controllers are operating at the lower level. That is, they can 

switch between linear and nonlinear controllers, controllers of different order or 

different structure. 

The advantages of neural networks in approximating the nonlinear dynamics of 

complex systems along with the capabilities of fuzzy logic in tuning controller gains 

and switching between conventional controllers, which were summarised above, 

represent the tools that will be used, in this thesis, to improve modelling complex plants 

and to bring autonomy to the conventional multiple-controller discussed in the next 

chapter. 
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Chapter 3  

Review of Multiple-Controller Architectures 

and Algorithms 

3.1 Introduction 

Control engineers are sometimes confronted with situations in which they have to 

design and implement real-time control systems that are composed of a set of 

controllers in stead of a single control algorithm. These situations occur for example 

when the control problem to solve is complex of nature, that is, when the problem can 

be thought of being composed of an interconnection of a set of simpler sub-problems 

[8]. A common approach to control such complex dynamic systems is to design a set of 

different controllers, each of which for a particular operating region or performance 

objective, and then to switch them in real-time to achieve the overall control objective 

[69]. Some architectures of multi-controller have been reported in the field of control 

engineering, and these are known under the general name of multiple model approach 

[8], which is an appealing approach to adaptive control with the potential to include 

complex systems [11]. 

The multiple model approach appears in different forms. Hilhorst et al. in 1994 [91] 

used multiple controllers to control a plant whose behaviour can be described by a 
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limited set of so-called modes. A similar approach is used by Narendra and 

Balakrishnan in 1997 [73] who exploit multiple controllers to handle plant faults, such 

as sensor or actuator fall-outs. Other techniques that use multiple controllers are Gain-

Scheduling Controllers [92], Tagaki-Sugeno Fuzzy Models introduced by Takagi and 

Sugeno in 1985 [93] and Logic-based Switching Controllers [94]. An important 

category of such systems are those consisting of a process to be controlled, a family of 

fixed-gain or variable-gain candidate controllers, and an event-driven switching logic 

called a supervisor whose job is to determine in real-time which controller should be 

applied to the process. Major reasons for introducing logic and switching are to deal 

with communication, actuator and sensor constraints, with model uncertainty, with 

unforeseen events or to avoid performing difficult tasks e.g., precise equipment 

calibration which might otherwise be necessary were one to consider only conventional 

controls [94]. 

3.2 Multiple-Controller Approach General Architecture 

Perhaps the general architecture for a feedback system employing a family of 

controllers is that reported by [94] and depicted in Figure (3.1). That is, the measured 

output  of a process to be controlled drives a bank of controllers, each controller 

generating a candidate feedback signal . The control signal applied to the process at 

each instant of time is in the form 

y

u

uu

i

η≡ ,                                                        (3.1) 
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where η  is a switching signal. The generation of such a switching signal is typically 

carried out by some type of hybrid dynamical system which is called supervisor [97]. 

The key factor for the simplicity of this structure is that at any instant of sampling time 

 only one of the constituent controllers is to be applied to the process, which Johansen 

and Murray-Smith [

t

95] termed as the local controller. Because of this, at each time t  it 

is only necessary to generate one candidate control signal [94]. Switching controllers is 

needed for reacting to rapidly changing plant characteristics and avoiding catastrophic 

failures [98]. 
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Figure (3.1): Multiple-controller general architecture, r  is the reference signal,  is the 
control input and 

u
y  is the output signal. 

 

In this approach, the complex mechatronic plant system is modelled as a physical 

process that is operating in a limited set of operating regimes. With conventional 

methods it might be possible to design one robust controller that controls the plant in all 

operating regimes, but it will not work optimally for the current operating regime [96]. 

Parameter adaptive controllers can be used, but they may respond too slowly to abrupt 

changes of the plant’s dynamic behaviour. In the above multiple-controller architecture, 
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the plant is controlled by a set of controller modules ( ), each optimized for a special 

operating regime of the plant. The supervisor is able to switch between the controller 

modules to determine the active module. The decision to switch from one u  to the 

next is made on basis of measurements of physical values of the plant. The strategy of 

the supervisor can vary from manual switching to simple functions of the measurements 

to agent-based techniques [

mu

m

5, 96]. 

3.3 Complex Systems Modelling for Multiple Controllers 

As mentioned above, a variety of multiple controller techniques exist. Although they 

share common tasks, such as decomposing the overall control problem and integrating 

individual solutions (i.e., controllers), they all deal with these aspects in their own 

unique way [5, 8]. There is no general abstract framework for discussing the relevant 

issues related to the design of complex control systems that are composed of local 

controllers. Such an abstract framework would enhance the divide-and-conquer 

strategy, as it would allow the use of heterogeneous multiple model techniques while 

using a uniform design method. By considering the design of a multi-controller as a 

general distributed problem, the automation capabilities provided by the field of 

Artificial Intelligence can be integrated with the concepts and techniques from this field 

to the multiple model approach of designing control systems may be advantageous, 

from a practical perspective, to solve complex control problems. 
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Recently in 2005, Narendra mentioned in [98] that the control of complex systems is 

considered difficult is due to four reasons (i.e., complexity, uncertainty, nonlinearity, 

and time-variation). He further stated that adaptation and learning can deal with 

uncertainty, while neural networks help to cope with complexity and nonlinearity [101]. 

For the time-variations problem, adaptive control theorists have been interested in 

adaptation in changing environments. Based on the success of employing adaptive 

control on time-invariant systems with unknown parameters, it would also prove 

satisfactory when the parameters varied with time, provided that the variation occurred 

on a relatively slow time scale [98, 99]. 

To control such a complex system, Zhu et al. [16, 19] proposed a neural network based 

plant model which combines a linear time invariant or slowly time varying sub-model 

plus a nonlinear time-varying sub-model (or an error agent), which have been 

collectively termed the Generalised Learning Model (GLM) [37, 100]. The linear sub-

model is used to approximate the dominant linear dynamics of the complex plant around 

its operating point. On the other hand, the ‘learning’ error agent is used to learn the 

errors from the linear sub-model that are due to nonlinearities, uncertainties, 

disturbances and model mismatch in the controlled plant. This methodology was 

considered by Zayed et al.[ 17, 39, 70] in their proposed multiple controller framework 

for controlling complex systems, which will be discussed in the next section. 
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3.4 Review of the conventional Multiple-Controller Framework 

The multiple-controller proposed by Zayed et al. [17, 39, 70] builds on the concept of 

minimum variance control which was originally introduced by Aström and Wittenmark 

[102], which had as its target the minimisation of the variance of the plant output. On 

the other hand, it had considerable limitations in that the control objective was only 

appropriate for minimum phase systems and excessive control input might be obtained 

if Simple Minimum Variance Controller (SMVC) was used. These limitations were 

overcome by the modification of Clarke and Gawthrop [103] in what is known as the 

Generalised Minimum Variance Control (GMVC). As an extension to this work, the 

GMVC was modified by Allidena and Hughes [104] to achieve pole-placement control. 

There are two main reasons behind using pole-placement control. Firstly, in the 

regulator case, it provides a means for overcoming the restriction to minimum phase 

systems of the original minimum variance self-tuner of [102]. Secondly, in the servo 

case, it gives the ability of directly introducing bandwidth and damping ratio as tuning 

parameters. However, the modified controller has considerable drawbacks in that the 

arbitrary zeros, which may be used to reduce excessive control, are not considered in 

the design and the controller design involves the solution of a Diophantine equation, 

which in some applications may lead to excessive computational and numerical 

instability problems. 

Recently, more attention was given to the zeros since they can be used to achieve better 

set point tracking and they also help reduce the magnitude of the control action [47, 

 46



105]. The generalised minimum variance controller was extended to achieve pole-

placement control by Hussain et al. [105], and Allidina and Hughes [104] but the zeros 

were not considered in these initial designs. To further develop and extend the GMVC 

technique in order to achieve zero-pole placement control, Zayed et al.[46] proposed 

pole-zero placement controller that overcomes the main problems associated with the 

original generalised minimum variance pole-placement controller of [104]. 

It is a fact that PID controllers are popular for their robustness in a wide range of 

operating conditions, the simplicity of their structures, as well as the familiarity of 

designers and operators with PID algorithms. Also, they are easy to implement using 

analogue or digital hardware and they are inexpensive to implement and reasonably 

sufficient for many industrial control needs [72, 4, 17]. For these reasons the 

generalised minimum variance controller for the SISO case (Clarke and Gawthrop, 

[103]) was then modified for the first time by Cameron and Seborg [106] in order to 

combine the advantages of the conventional PID controllers with that of adaptive 

regulators. 

Aiming towards bringing together the advantages of the adaptive controllers with those 

of the PID and pole-zero placement controllers, and benefiting form the neural-network 

enhanced generalised minimum variance adaptive controller for nonlinear discrete-time 

systems introduced by Zhu et al. [16], the multiple-controller framework was therefore 

proposed in [17, 39, 70]. This multipurpose controller provides the user with a choice of 

using either a conventional PID, a PID based pole-placement or a PID based pole-zero 

placement adaptive nonlinear controller. All these three controllers operate using the 
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same adaptation procedure. Effectively, the overall action of the design is that of a 

controller which can be implemented as an adaptive PID controller, as a pole-placement 

controller or as pole-zero placement controller through the use of a simple switch. 

Details of the design of this conventional multiple-controller are presented in the rest of 

this chapter. 

3.4.1 Derivation of the Multiple Controller Control Law 

Consider the following Controlled Auto-Regressive Moving Average (CARMA) 

representation for a complex plant model [16, 17, 37, 38, 39]: 

)()()()()()( ,0 ktξY,UftuzBktyzA t +++=+ 11 −−

)(ty )(tu )(t

,...2,1= k

)Y,U

,                          (3.2) 

where  is the measured output,  is the control input and ξ  is uncorrelated 

sequence of random variables with zero mean at the sampling instant t , and  

is the time delay of the process in the integer-sample interval. The term  in 

equation (3.2) above, is potentially a nonlinear function (which accounts for any 

unknown time-delays, uncertainty and nonlinearity in the complex plant model). The 

overall plant model represented by equation (3.2) above, is termed the Generalized 

Learning Model (GLM), and can be seen as the combination of a linear sub-model and a 

nonlinear (learning) sub-model as shown in Figure (3.2) next. 
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Figure (3.2): Conventional multiple-controller incorporating the GLM. 
 

Also, in equation (3.2) above, we define Yty ∈)( , and Utu ∈)( ;  

and  and  are polynomials with orders  and n , respectively, which can 

be expressed in terms of the backwards shift operator,  as: 

}{ ba nn R; URY ∈∈

)(zA 1− 1−

1−

an−−− 11

bn−−− 11

1

)(zB an b

z

an za...zazA +++= 11)( ,                                    (3.3a) 

bn zb...zbbzB +++= 10)( , b .                               (3.3b) 00 ≠

In order to simplify the analysis, the time delay is taken as =k  [16, 39]. For this case 

the non-linear system represented by equation (3.2) can be written as [39]: 

)()()()()()( 0 tY,UfztuzBztyzA ,t ξ++= 1111 −−−− .                        (3.4) 

The generalised minimum variance controller of interest minimises the following cost 

function [16]: 

}]1[{ )(tEJ ,                                                (3.5) += φN
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where 

)]()()()()()()1()([)1( 0 .,.fzHtwzRtuzQtyzPt ,tN
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,        (3.6) 

where  is a bounded set point and  ,  

and  are user-defined transfer functions in the backward shift operator  and 

 is the expectation operator. 
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Next, we can introduce the following identity [17]: 

)()()()()( += zFzzPzEzAzP dn
111111 −−−−−−

1− 1− 1− 1− 1−

1− 1−

1−

1− 1− 1−

1− 1− 1−

,                            (3.7) 

where , ,  and are polynomial in . )(zE )(zF )(zPn )(zPd z

where  and  are the numerator and denominators of the polynomial 

matrix .  

)(zPn )(zPd

)(zP

The orders of the polynomial matrices ,  and  in the equations 

(3.6) are specified as follows: 

)(zE )(zF )(zPn

⎪
⎭

⎪
⎬

⎫

+++=
−+=

−=

),max(
)1(

1

fepap

aPf

e

nknnnn
nnn

kn

dn

d
,                                 (3.8) 

where, ,  and  represent the degrees of ,  and  

respectively. 

fn
npn

dpn )(zPd )(zPn )(zPd
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Multiplying equation (3.4) by  and substitute for ( ) from 

equation (3.7) gives: 

)()( zEzPd
11 −− 11 −−

1111 −−−−

111 −−−

111 −−−

1−

* ~

1* −

~

*

.,.fEHPtFytRwPtuQEBP

)()( zAzE

)1()()()()()()()1(][ 0 ++++=+ tE.,.EftuzEzBtyzFtyPP ,tnd ξ .       (3.9) 

Adding  to both sides of equation (3.9) and 

using equations (3.6) and (3.7), yields: 

)()()()()()( 0 .,.fzHtwzRtuzQ ,tN−−

).1()()())()((
)()()())()()((

)()()]([)1(

1
0

11

1111

++−

+−+

+=+

−−−

−−−−

tzE.,.fzHzE
twzRtuzEzBzQ

tyzFzPt

,tN

d

ξ

φ

                 (3.10) 

In the rest of this section, the argument  will be omitted from various polynomials 

and transfer functions in order to simplify the notation and will only be used where 

required for clarification purposes. 

z

Now we can define the optimal predictor  and the prediction error  

as follows: 

)1( |tt +φ )|1( tt +φ

)()(][)()()(][)1( 0 tRw.,.fHEtuEBQtFyP|tt ,tNdy −−+++=+φ ,        (3.11) 

)1()1( +=+ tE|tt ξφ .                                            (3.12) 

If we set  in equation (3.11) and after some arrangement, the generalised 

minimum variance control law for non-linear systems is obtained as: 

0)1( =+ |ttφ

)]()()()([)()( 0 ,tNddd .               (3.13) −+−=+
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Now, if we set: 

⎭
⎬
⎫

+′∆=
=

− E)HP(H
HPR

NdN

d
1
0

][
][ −1

1−

.                                       (3.14) 

If we set the transfer function  such that the following relation is satisfied [)(zQ 17, 

37]: 

qvCQEBPd ∆=+ )( ′−1

)]()()([)( .,.fHvtvFytwvHtuq

,                                          (3.15) 

then, equation (3.13) becomes: 

00 ,tN′∆+−=′∆ ,                         (3.16) 

where  is a user defined gain [v 40, 41] and q′  is a polynomial in  having the 

following form: 

1−

qn ′−−− 11

n q

z

qn zq...zqzq
′
′++′+=′ 11)( ,                                  (3.17) 

where  is the degree of the polynomial q′ ′ . 

We can see clearly from equations (3.15) and (3.16) that the controller denominator has 

now conveniently been split into two parts: 

An integrator action part ( ) required for PID design, where . ∆ )1( z 1−−=∆

qAn arbitrary compensator ( ′ ) that may be used for pole (only) placement and 

simultaneous pole and zero placement designs. 
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It can be seen from equation (3.15) that the polynomial matrix  and the gain 

matrix  are user-defined parameters since they depend on the user transfer function 

. It is also clear from equation (3.14) that  and  are user-defined 

parameters because they depend on the transfer functions  and  respectively. 

)(zq 1−′

v

1− ′

1−

)(zQ 0H NH

)(zR NH

Now, if we set: 

)1()]1(~[~ 1−
0 FHHH = ,                                            (3.18) 

and combine equations (3.18) and (3.16), then we can readily obtain: 

)()()()1()]1(~[~)( 0 .,.fHvtvFytwFHHvtuq ,tN′∆+−=′∆ 1− ,                (3.19) 

where H~

n−−−

 in equation (3.19) is a user-defined polynomial which can be used to 

introduce arbitrary closed loop zeros for explicit pole-zero placement controller and has 

the following form: 

n zh...zhzH
h

+++= ~

~~1)(~ 11
1 .                                   (3.20) 

The above equation (3.19) represents the final expression of the control law for the 

proposed multiple controller 

3.4.2 Multiple Controller Mode 1: Non-Linear PID Controller 

In this mode, the multiple controller operates as a conventional self-tuning PID 

controller, which can be expressed in the most commonly used velocity form [41, 42] 

as: 
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).2()1(]2[ −−−−−
)(][)()( −++−=∆ tyKKKtwKtu

1−

111 −−− ++=

q

tyKtyKK DDP

DIPI                            (3.21) 

If we assume that the degree of  is equal to 2, therefore, )(zF

210)( zfzffzF ,                                      (3.22) 

Then, if we switch off, both the pole-placement polynomial ′  given by equation (3.17) 

and zero-placement polynomial H~

−1

1 ′−=′ −

11 ′∆+++−=∆ −−

]2[ vffvK

 given by (3.20), by setting: 

⎪⎭

⎪
⎬
⎫
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===′=′=′
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)0~~~(1~
)0(1)(

~21

21

h

q

n

n

h...,...hhi.e. , H
q..,..qqi.e.  , zq

,                     (3.23a) 

And, next, if we set: 

)1(])1([ qvBH N ,                                         (3.23b) 

then an adaptive controller with PID structure is obtained, where  

)]()()()()1([)( 0210 .,.fHvtyzfzffvtwvFtu ,tN ,           (3.24) 

21P +−= ,                                           (3.25a) 

][ 210 fffvKI ++=

1−

,                                         (3.25b) 

2vfKD = .                                                   (3.25c) 

It can be seen from the above equations (3.24), (3.25a), (3.25b) and (3.25c) that the PID 

control parameters ,  and  depend on the polynomial matrix  and the PK IK DK )(zF
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gain  [v 43, 41]. In this case the parameters of the polynomial matrix , ,  

and  are computed directly from equation (3.7) by selecting suitable user-defined 

polynomials  and  which are selected in trial and error basis. It can also clearly be 

seen from equation (3.8) that the order of  which indicates the type of the 

controller (PI or PID) is governed by the polynomial 

)(zF 1−

P P

1−

0f 1f

2f

d n

)(zF

A  and  [dP 43, 41].  

As stated above, the multiple controller mode 1 described by equations (3.21)-(3.25c) is 

tuned by a selection of the polynomials  and , and the gain v . However, the main 

disadvantage of many PID self-tuning based minimum variance control designs (see for 

example [

nP Pd

43, 41]) is that the tuning parameters must be selected using a trial and error 

procedure. Alternatively, these tuning parameters can be automatically and implicitly 

set on line by specifying the desired closed loop poles [44, 16]. 

3.4.3 Multiple Controller Mode 2: Non-Linear PID Based Pole (only) Placement 

Controller 

Substituting for u given by equation (3.19) into the process model described by 

equation (3.4), the closed loop system is obtained as: 

)(t

~~~ 111 −−−

~

)()(
)()1()]1([)()(

0
1 tqfqHBvz

twFHHBvztyFBzqA

,tN ξ′∆+′+′∆

+=+′
−

,                    (3.26) 
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vBB
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~ ,                                                     (3.27) 
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We can now introduce the identity: 

TBFzAq =+′ )− ~~( 1

T q

,                                              (3.28) 

where  is the desired closed loop poles and ′  is the controller polynomial. For 

equation (3.28) to have a unique solution, the order of the regulator polynomials and the 

number of the desired closed loop poles can be set as [40, 43, 45, 46]: 

⎪
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−++≤
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′

′

1
1

1
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~

~

knnn
knn

nnn

bat

bq

aaf

,                                         (3.29) 

where   and  are the orders of the polynomials ,~an ,~bn qn ′ A~ , B~

n nn = .1

 and , respectively, 

and  denotes the number of desired closed loop poles. Also,  and 

q′

t bb~ ~ += nn aa  

Combining equations (3.26) and (3.28), gives: 

)()()()1()]1([~)( 0 tqfqHBvztwFHHBvztTy ,tN ξ′∆+′+′∆+= 111 −−− .         (3.30) 

If the explicit zero placement polynomial given by (3.20) is switched off by setting: 

~~~ )0(1~
~21 =====
hnh...hhi.e. , H .                                  (3.31) 

And, if we set: 

)1(])1([ qvBH N −= 1 ′′ − ,                                            (3.32) 

then the closed loop function of equation (3.30) becomes: 
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)()]))1(()[1(()()1()( 0 tqfqvBqBvztwBvFztTy ,t ξ∆++−∆+= 111 ′′′ −−−

tn−−−− 211

n n

.       (3.33) 

In this case 

tn ztztztzT ++++= ...1)( 21 ,                               (3.34) 

where  and  in equations (3.31) and(3.34) represent orders of the polynomials h~ t

)(~ 1− 1−

1−

zH  and  respectively. )(zT

It can be seen from equation (3.33) that the closed loop poles are placed at their desired 

positions which is pre-specified by the user through the use of the polynomial . )(zT

3.4.4 Multiple Controller Mode 3: Non-Linear PID Based (simultaneous) Pole Zero 

Placement Controller 

In this controller mode, an arbitrary desired zeros polynomial can be used to reduce 

excessive control action, which can result from set point changes when pole placement 

is used. 

If the zero-placement polynomial ( H~

~~ 11 −−

) given by equation (3.20) is switched on then the 

closed loop given by equation (3.26) is again obtained and can be simplified such that 

the closed loop function of equation (3.33) becomes: 

).()]))1(()[1((
)()1()]1([)(

0
11 tξqfqvBqBvz
twFHHBvztTy

,t ′∆+′+−′∆

+=
−−

                     (3.35) 
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Note that in practice, the order of  and )(zT 1− )(~ 1−zH  are most of the time selected to 

equal 1 or 2 [43, 46, 47]. 

It can be seen from equations (3.35) that the closed loop poles and zero are placed at 

their desired positions which are pre-specified by using the polynomials  and )(zT 1−

)(~ 1−zH . 

It can also be clearly seen from equations (3.7)-( 3.8) and (3.13)-( 3.17) above, that the 

user defined transfer functions P , , Q R  and  must change at every sampling 

instant in order to satisfy the conditions specified by equations (3.22), (3.23), (3.25a), 

(3.25b) and (3.25c) for achieving self-tuning PID control (multiple controller mode 1). 

On the other hand, the above user-defined transfer functions must change in order to 

satisfy equations (3.28), (3.29), (3.31), (3.32) and (3.34) for achieving pole (only) 

placement control (multiple controller mode 2). Finally, for achieving simultaneous 

pole and zero placement control (multiple controller mode 3) these user-defined transfer 

functions must change automatically in order to satisfy equations (3.28), (3.29), (3.32) 

and (3.20). However, note that it is not necessary to explicitly calculate these user 

defined design transfer functions [

NH

39, 40, 41, 43, 46]. This does, of course, suggest that 

the cost index has time varying weightings in this problem. 

3.4.5 GLM based Identification of the Complex Plant Model 

This sub-section will provide details regarding the GLM model discussed in section 

2.5.6 and included in Figure (3.2) above, where a recursive least squares algorithm is 
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initially used to estimate the parameters A and B (equation (3.2)) of the linear sub-

model, and a neural network based learning model is subsequently used to approximate 

the non-linear part . t,0f

)(ty

T

m

T

It can be seen from equation (3.4) that the measured output  can be obtained as 

follows: 

),()()()( ,0 uyfttty t+= θϕ ,                                     (3.36) 

where  is the parameter vector and  is the data vector as follows: θ ℜ∈ϕ

⎪⎭

⎪
⎬
⎫

−−−−=
−−=

)]()1()()1([)(
][)( 01

ba
T

nn

nt,...ut,unt,...,ytyt
,...,b,ba,...,atθ

ba

ϕ
.                   (3.37) 

Equations (3.4) and (3.36) can also be presented as: 

)()()( ,0 .,.ftyty t+= ˆ .                                             (3.38) 

It can be seen from Figure (3.2) that )()()( tθtty ϕ= ˆˆ T  is the linear sub-model output and 

)()()(,0 tyty.,.f t −= ˆ

ˆ

 is the difference between the actual output  and the linear sub-

model output 

)(ty

)(~ ty . 

From Figure (3.2) we can also see that (.,.),0 tf  can be expressed as: 

)((.,.)(.,.) ,0,0 tεff tt += .                                               (3.39) 
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Using the above equation (3.39), an MLP neural network is used for estimating the non-

linear function . The identification error ε , with the error-correction learning 

rule (delta rule), is used to update the weights and thresholds of the learning MLP 

neural network model [

(.,.)f )(t,0 t

16, 19]. The schematic diagram of the MLP neural network is 

shown in Figure (3.3), and the non-linear function  is adaptively estimated by 

using the following equations [

)(.,.t,0f

39]: 
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where  and  are the weights and activation factors between the input layer and 

the first hidden layer,  and 

jl ,1w β′

w β

j1

rj ,2 r2′  are the weights and activation factor between first 

and second hidden layers, and  and 
ir

w
,3 i3β′  are the weights and activation factor 

between second hidden layers and the output layer. The parameters b1  b  and b  are 
j
, 2 , 3r i
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the threshold values for the jth, rth, and ith neurons in the first hidden layer, second 

hidden layer, and output layer respectively. 
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Figure (3.3): BP MLP neural network to approximate nonlinear function . )(,0 .,.f t

 

Note that for SISO case 1=  is used in equations (3.40)-(3.42i ). 

It is reported in the literature that the most popular neural networks in neurocontrol are 

the MLP and RBF NNs. Both networks are able to adaptively model or identify a 

dynamical complex (MIMO or SISO) process online while the process is changing [1, 

21, 22, 23]. The RBF NNs ability to uniformly approximate smooth functions over 

compact sets is well documented (see for example [48, 49, 107]). From mathematical 

prospective, RBF NNs represent one class of linear in the weight approximators. 

Compared to the MLP network, the RBF network is simpler to implement, needs less 

computational memory, converges faster, and global minimum convergence is achieved 

even when operating conditions change or fault occurred during testing with frozen 
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weights. The RBF NN also required less training time to converge and fewer 

computational complexities to train the network online [23]. 

In conclusion, opposed to the MLP, the RBF NNs improve the system damping and 

dynamic transient stability more effectively than the MLP NNs. Control performance 

could be improved if unknown nonlinear portion of the model are more accurately 

modelled [15]. Therefore, the RBF should be preferred to the MLP networks for the 

online identification of complex systems. 

3.5 Summary 

Complex control systems can be thought of being composed of an interconnection of a 

set of simpler sub-problems. A common approach to control such complex dynamic 

systems is to design a set of different controllers, each of which for a particular 

operating region or performance objective, and then to switch them in real-time to 

achieve the overall control objective. Some architectures of such multi-controller, which 

are known under the general name of multiple model approach, have been reported and 

shown to be an appealing approach to adaptive control with the potential to include 

complex systems. 

The chapter discussed about a general architecture for a feedback system employing a 

family of controllers for controlling a complex mechatronic plant system which is 

modelled as a physical process operating in a limited set of operating regimes. Control 

of such complex systems is considered difficult due to their complexity, uncertainty, 
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nonlinearity, and time-variation. Then it was concluded that, those difficulties could be 

dealt with by considering control adaptation and learning and soft-computing 

techniques in the design of a multi-controller for complex systems control. 

The discussion focused on the recently developed multiple-controller framework which 

incorporated a neural network based generalised learning model (GLM) for modelling 

and control of complex systems. The unknown complex plant was represented by an 

equivalent model composed of a simple linear sub-model plus a non-linear sub-model. 

The parameters of the linear sub-model are identified by a standard recursive least 

squares algorithm, whereas the nonlinear sub-model was approximated using an MLP 

BP neural network. The controllers employed in this design were built on the concept of 

adaptive generalised minimum variance control. This methodology provided the 

designer with the choice of using a conventional PID adaptive controller, a PID pole 

placement controller or the PID pole-zero placement controller. All of these controllers 

operate using the same adaptive procedure. The switching (transition) decision between 

these different fixed structure controllers was achieved manually. 

The chapter also discussed the limitations of the multiple-controller of Zayed et al. in 

modelling and control of complex systems. It was concluded that, these drawbacks were 

caused through the use of MLP neural networks to approximate the nonlinear dynamics 

and disturbances of the complex system. In addition, the framework lacks the automated 

switching among the available controllers. Moreover, the controllers design parameters 

(i.e. PID gain, poles and zeros) were fixed during the whole control operation without 

any online tuning. Switching controllers is needed for reacting to rapidly changing plant 
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characteristics and avoiding catastrophic failures. Tuning of the controller is desirable 

for gradually improving the performance of the system. Consequently, both switching 

and tuning play important roles in the adaptive control of dynamical systems using 

multiple controller approach [98]. 

The next chapter presents the new intelligent multiple-controller framework which 

builds on the multiple-controller of Zayed et al. [17, 39, 70]. The new design uses an 

RBF based GLM form modelling the complex systems and incorporates a fuzzy-logic 

supervisor for controllers’ switching and tuning. Introducing logic based switching and 

tuning are to deal with communication, actuator and sensor constraints, with model 

uncertainty, with unforeseen events or to avoid performing difficult tasks e.g., precise 

equipment calibration which might otherwise be necessary were one to consider only 

conventional controls. 
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Chapter 4  

New Intelligent Multiple-Controller 

Framework Incorporating a Fuzzy Logic 

Based Switching and Tuning Supervisor: 

SISO Case 

4.1 Introduction 

The intelligent controller should be able to use several different control algorithms as 

well as to tune the parameters of each algorithm according to the desired performance 

specifications. It should also automatically manage the selection between those control 

algorithms to maintain the control objectives at or near their optimal values for specific 

process conditions. In emergency situations where major elements in a system break 

down, an intelligent controller may manage the reconfiguration of the control algorithm 

or switch to another more appropriate or robust control algorithm [59]. The intelligent 

controller knowledge base consists of experiential knowledge about the process along 

with facts and rules that are used to infer which control algorithm to apply and what the 

current parameter settings for that algorithm should be. By periodically applying 

identification algorithms for monitoring the results, the intelligent controller could 

 65



accumulate more and more information about a given process in order to find the best 

control law [4]. 

Intelligent control as defined by Aström et al. [7, 74] involves the construction of a 

composite control structure for complex process including supervisory function, 

adaptive control algorithms and low-level control laws all managed by an expert system 

which monitor process parameters and control system performance. In this context, it is 

desirable to combine fuzzy logic with control systems to achieve better overall control 

performance [59]. Multiple controllers switching and tuning is a methodology that 

provides a natural framework for the design of intelligent control systems [2]. Switching 

controllers is needed for reacting to rapidly changing plant characteristics and avoiding 

catastrophic failures. Tuning of the controller is desirable for gradually improving the 

performance of the system. Consequently, both switching and tuning play important 

roles in the adaptive control of dynamical systems using multiple controller approaches 

[98]. 

The rest of this chapter is organised as follows: 

Section (4.2) presents the bases for the design of the proposed intelligent multiple-

controller. These bases will include: the complex plant model along with conventional 

multiple-controller control law; the criteria for assessing the performance of the 

multiple-controller; and a discussion for the multiple-controller switching decisions. 

Section (4.3) will give details about the design of the proposed fuzzy-logic based 

switching and tuning supervisor including the behaviour recogniser, the switching logic 

subsystem and the tuning logic subsystem. In section (4.4), the improved RBF based 
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GLM will be shown. Section (4.5) illustrates the general structure design of the 

proposed intelligent multiple-controller. The two control modes (the conventional PID 

controller and the Pole-zero Placement controller) will be addressed as well as the 

algorithm of the control procedure. Summary of the chapter will be provided in section 

(4.6). 

4.2 Multiple-Controller Framework for Complex SISO Systems 

Considering the Controlled Auto-Regressive Moving Average (CARMA) representation 

for a complex plant model [16, 17]: 

)(),()()()()( ,0 ktUYftuzBktyzA t +++=+ ξ11 −−

y )(tu (t

,                         (4.1) 

where )(t  is the measured output,  is the control input and )ξ  is an uncorrelated 

sequence of random variables with zero mean at the sampling instant t=1,2,…, and k is 

the time delay of the process in the integer-sample interval. The term  in 

equation (4.1) above, is potentially a non-linear function which accounts for any 

unknown time-delays, uncertainty and non-linearity in the complex plant model, and is 

conveniently represented by an MLP neural network [

),( UYf ,0 t

16, 17]. The overall plant model 

represented by equation (4.1) above, is termed the Generalized Learning Model (GLM) 

[37], which was discussed in sections 2.5.6 and 3.5, can be seen as the combination of a 

linear sub-model and a non-linear (learning) sub-model. Also, in equation (4.1) above, 

we define Yty ∈)( Uu, and t ∈) 1( ; }; ba nn RUR  and )( 1−zA  and ( −zB  are {Y ∈∈ )
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ackwards shift oper 1−

an−−− 11

n−−− 11

olynomials with orders an  and bn , respectively, which can be expressed in term f 

the b ator, z . as: 

an zazazA +++= ...1)( 1 .                                   (4.2a) 

b
bn zbzbbzB +++= ...)( 10 , 00 ≠b .                            (4.2b) 

The multiple-controller derived control law for the above complex plant is meanwhile 

given in the next equation: 

q
fHvtvFytwFHHv

tu tN

′∆

′∆+−
=

(.,.)])()()1()]1([[
)( ,0

−~ 1

,                       (4.3) 

where w(t) is the system set point, (.,.)f  is a non-linear function representing the 

plant non-linear dynamics with unknown tim delays, uncertainty and disturbances. The 

variable v is a user-defined gain, 

,0 t

e-

∆  is the integral action required for the PID design, 

H~  is a user-defined polynomial which can be used to introduce arbitrary closed loop 

zeros for an explicit pole-zero placement controller, H(1) is the value of H~

 the 

′  

polynomial. The parameter q

 at system 

output steady state, F is a polynomial derived from the linear parameters of

controlled plant, F(1) is the value of F at the steady state, NH  is a user-defined

′  is a transfer function used  

system poles in the stability unit disc. 

e

 parts, namely: an integrator action part (∆ ) required for 

 to bring the closed loop

It can be seen from the control law in quation (4.3) above that the controller 

denominator is split into two
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PID design; and, an arbitrary compensator ( q′ ) that may be used for simultaneous pole 

and zero placement designs. 

4.2.1 Control System Performance Assessment 

An essential part of supervision of complex system control is focused on to detect the 

criteria for measuring system behaviour in order to provide information about the 

controller performance [51]. The interest from both academia and industry in control 

performance monitoring has surged trem ly in the last decade. The recent survey 

papers by Jelali [110

endous

] and Qin and Yu [109] provide a very good collection of recent 

the user specifications about transient accuracy, usually 

given in terms of required overshoot, rise time and settling time can give a good 

development in the control performance monitoring area for SISO and MIMO control 

problems. 

In order to make a switching decision among multiple controllers based on the user 

specifications, a performance assessment criteria has been defined. Both heuristics and 

quantitative measures are considered in order to make a decision for the control 

algorithm selection. Therefore, performance of each controller is evaluated based on a 

number of factors. However, 

measure about which control algorithm will give the best performance as compared 

with the others [4, 108, 110]. 

Another important widespread criterion considered for controller performance 

assessment is the variance of the system output, because of its direct relationship to 

process performance, product quality, and profit [110, 111, 112]. A straightforward 
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extension of the signal variance is by considering control action penalisation. Both 

output variance and control action are useful when more information on controller 

performance, such as how much can the output variance be reduced without 

significantly affecting the controller output variance, is needed [110]. The price to be 

paid is that more information on the process is required, i.e., measurement of the 

manipulating variable(s). 

Figure 4.1 depicts the performance criteria which are specified in terms of control 

action, output variance and meeting user specifications [59]. 

Using the performance measurements, one can assess the performance of a control loop 

and make statements on the potent ovements resulting from re-tuning of 

ontroller parameters or switching to another controller [112

ial of impr

c ]. 

 

 

Figure (4.1): Controller Performance Assessment Criteria. 
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4.2.2 Discussion for the Multiple-Controller Switching Decision  

Due to the robustness, simplicity of structure, ease of implementation, and remarkable 

effectiveness in regulating a wide range of processes (assuming correctly tuned), the 

conventional adaptive PID controller (multiple controller mode 1) presented in section 

(3.4.2) should normally be the first choice to obtain satisfactory closed-loop system 

performance. If however, a better closed-loop performance (based on say, a desired 

damping ratio, rise time, settling time overshoot or bandwidth) is required, or if the 

system to be controlled is difficult to tune using a conventional adaptive PID controller, 

then the PID structure based (simultaneous) pole and zero placement controller 

(multiple controller mode 3) discussed in section (3.2.4) can be used as a second choice. 

This mode conserves the advantages of the pole (only) placement controller, discussed 

In the situation where an excessive control action results from set point changes, added 

disturbances and/or plant nonlinearity, then the multiple controller can be switched to 

perate in the PID structure based (simultaneous) pole and zero placement controller, to 

obtain a more efficient control action, at the expense of an even greater computational 

requirement [17

in section (3.2.3), in addition to including the placement of the zeros in the control 

action. However this will be at the expense of a greater computational effort required 

for implementing this (simultaneous) pole and zero placement controller. 

o

]. 
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4.3 New Fuzzy Logic Based Switching and Tuning Supervisor 

The fuzzy logic based switching and tuning supervisor is situated at the highest level of 

the multiple-controller framework. Following [4, 8, 12, 50], the fuzzy supervisor can 

use any available data from the control system to characterise the system current 

behaviour so that it knows which controller to choose, which parameters to tune, and 

the tuning value for each parameter that is required to ultimately achieve the desired 

specification. The main idea behind the fuzzy-logic supervisor approach here is to 

employ logic-based tuning and switching between the family of the candidate 

controllers. The need for switching stems from the fact that typically no single 

controller can guarantee the desired behaviour when connected with a poorly modelled 

process, and particularly so for the case of complex processes exhibiting significant 

nonlinearity, non-stationarity, uncertainty and/or multi-variable interactions [37]. Such 

switching schemes can provide an alternative to more traditional continuously tuned 

behaviour recogniser and the 

adaptive control algorithms. 

The supervisor employed in this work comprises three subsystems: a behaviour 

recogniser, a switching logic and a tuning logic, each of which are discussed next. 

Based on the system performance criteria presented in subsection (4.2.1), the supervisor 

aims to recognise when the system requires selection of another controller, or when a 

selected controller is not properly tuned, and then seeks to switch to the candidate 

controller and/or adjust the controller parameters to obtain improved performance. The 

whole supervisor is implemented using simple fuzzy logic based switching and tuning 

rules where the premises of the rules form part of the 
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consequent form the switching and tuning decision. In this way, a simple fuzzy system 

is used to implement the entire supervisory control level. 

alled 

shattering problem (Zeno behaviour) [8

4.3.1 Behaviour Recogniser Subsystem 

The behaviour recogniser seeks to characterise the current behaviour of the control 

system in a way that will be useful to the switching and tuning logic subsystems. The 

proposed behaviour recogniser subsystem benefits from the system performance criteria 

discussed in section (4.2.1). The behaviour of the system is characterized through the 

online measurements of parameters listed below. In order to prevent the so c

], which can result in an infinite number of 

ent and last two values of 

the measurements are used as output parameters from the behaviour Recogniser. 

• Overshoot (

switching between controller modules, the average of the curr

yζ ) of the closed-system output signal [51]: 

)( 100max

∞

∞−
=

y
yy ,                                            (4.4) 

 at the output signal, and y  is the 

• Rise and fall time of the system output signal (

tyζ

where y  is the amplitude maximum value reachedmax  ∞

steady state value of the output signal. 

yρ ): 

The output signal rise and fall times represent the amount of time for a signal to change 

state. To measure rise time, the behaviour recogniser uses 10% to the 90% point of the 

output signal, or vice versa for the output signal fall time. 
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• Output signal settling time ( yτ ): 

which is the time required for the measured process variable )(ty  to first enter and then 

remain within a band ∆ whose width is computed as 5y ± % of the total change in )(ty  

3[11 ]

ed output )(tw  and the actual output )(ty  as 

time goes to infinity (i.e. when the output reached its steady state) [114

. 

• Steady state error ( e ): 

which is the difference between the desir

∞

]. The steady 

state error formula can be expressed as [115]: 

0))()((lim)( ≅−=
∞→

∞ tytwte
t

.                                        (4.5) 

 y

n of the individual values y  of ty  from ean [116

• The variance of the system output signal ( ): 

The variance of sampled population of the output signal )(t  is the mean squared 

deviatio

yV

i )(  the population m ]. The 

mean is considered to be the steady state value y . Therefore, V  is computed as 

follows [116

∞ y

]: 

1

)(
)( 1=

2

−

−∑
=

N

yy
N

                                       (4.6) 

where )(ty . 

∞

tV i
i

y ,      

N  denotes the size of the sampled population of the output signal 
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• Magnitude of control input signal (control action )(tu ). 

• Changes in reference signal state ( wΠ ): 

By comparing the current set-point with the previous one, the behavi

check the state of the reference signal whether it is increasing, decreasing or remaining 

)1()()(

our recogniser will 

as it was in the last state. 

−−=Π twtwt .                                            (4.7) 

The behaviour recogniser subsystem output is contained in the vector )(tΞ  and 

)](),(),(),(),(),([)( ttVtetttt

w

expressed as: 

wyyyy Π=Ξ ∞τρζ ,                           (4.8) 

The contents of the variable )(tΞ  will be used by both fuzzy-logic based switching and 

tuning subsystems. 

4.3.2 Fuzzy Logic Based Switching Logic Subsystem 

The switching logic subsystem is designed according to the multiple-controller 

switching criteria presented in section (4.2.2) above, and used by Abdullah et al. in 

[100]. The key task of the switching logic subsystem is to generate a switching signal 

h determines, at each instant of time, the candidate controller module that is to be 

activated [

whic

8, 50]. The switching logic is implemented using fuzzy logic rules where the 

premises of the rules use four variables from the ou  of thetput  behaviour recogniser 
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)(tΞ . These variables will represent the input parameters of the switching logic, which 

can expressed as: 

,   Ξ⊆Ξ s .                           (4.9) ),(),(),([)( tVtett )](twyys Π=Ξ ζ ∞

The consequents of the fuzzy rules form e controller selection decision (i.e. output 

parameter) which is symbolized as 

 th

ηC . 

],[ ηηη HqC = .                                                 (4.10) 

The switching parameter  can be set to ]1,1[  for a Pole-Zero Placement controller or 

 performance, the 

st be decomposed into a 

ηC

]0,0[  for a conventional PID controller. Based on the system

supervisor will set ηq  and ηH  to switch either to the conventional PID controller, or to 

the PID structure based (simultaneous) pole and zero placement controller. 

4.3.2.1 Fuzzy Sets for the Switching Logic Parameters 

In order to build the switching subsystem which represents a relationship between the 

fuzzy-logic supervisor inputs and output, each variable must fir

set of regions and the output or solution variable then redefined into a set of fuzzy 

regions. There are four inputs and one output for the fuzzy switching subsystem. The 

inputs and the output are defined as fuzzy regions (sets) in a fuzzy logic system as 

shown in the following Figures (4.2a-d) and (4.3) respectively. 

The membership functions (MFs) used in the fuzzy supervisor play a crucial role in the 

final performance of the switching and tuning subsystems. Therefore, selection of the 
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appropriate functions is an important design problem. So, in order to design an optimal 

fuzzy supervisor the proper membership functions are searched by using several 

simulation experiments. As shown in Figures (4.2a-d and 4.3), the switching subsystem 

input variables are characterized by three fuzzy membership functions and the fuzzy 

output variable is characterized by two membership functions. From the point of view 

of simplicity and computational complexity [4], the fuzzy values are represented by 

triangular (TriMF) and trapezoidal (TrapMF) membership functions with not more than 

two membership functions overlapping. But, fuzzy membership functions can have 

different shapes and sizes depending on the designer’s preference or experience [157].  

The TriMF curve is a function of a vector, x, and depends on three scalar parameters a , 

, a d c , as given by b n  
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The TrapMF curve is a function of a vector x, and depends on four scalar parameters 

a , b , c  and d , as given by 

                                 (4.11) 

, 

⎪
⎭

⎪
⎩ ≤ xd

cd
,0
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⎪
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Figure (4.2a) Switching Logic input parameter: overshooting of the output signal 
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Figure (4.2c) Switching Logic input parameter: reference signal state )(twΠ . 
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Figure (4.2d) Switching Logic input parameter: the steady state error . 
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4.3.2.2 Fuzzy Rules for the Switching Decision 

Fuzzy logic is used mostly to handle high-level control functions that traditional control 

methods do not address such as fuzzy supervisory control for selecting discrete control 

actions [151]. Fuzzy switching was applied to guarantee stable switching control of a 

radio-controlled hovercraft [150]. Wang et. al. in [149] and Hu and woo [101] used 

fuzzy logic based supervisor for switching between sliding-mode controller and a fuzzy 
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controller. In [90] the so-called fuzzy switching multiple model was proposed to 

provide smooth switching and improve the performance of the controller. 

orien ervisory control. Therefore, the role of the switching logic rule base is to 

determine the appropriate controller based on the system performance signals received 

from the behaviour recogniser. The rule base is determined by the experimental 

consideration of the influence of each of the switching logic input parameters: namely, 

overshoot of the output signal, variance of the output signal and steady state error; that 

is to select the required controller (output parameter). Rule 1 and Rule 2, below, activate 

the Pole-Zero Placement controller in the cases when the system output signal exhibits 

undershooting or overshooting in addition to high variance in the output signal. These 

two rules will work on avoiding output signal overshoot and high variance which could 

take place due to random and/or constant disturbances [

The fuzzy supervisor in the proposed multiple-controller framework is a performance-

ted sup

17, 46, 70]. When the system 

output signal reaches low degree of overshooting and minimum variance, Rule 3 will 

activate the PID controller. In order to prevent output signal overshooting at any set-

point change [59], Rule 4 is designed to ensure that the Pole-Zero Placement controller 

The complete set of rules for the fuzzy logic based switching subsystem is given below: 

will be activated after each set-point change. When the output signal reaches low steady 

state error, Rule 5 works to activate the PID controller.  

Rule 1: IF t• )(yζ  IS Ntive-High AND ty  IS High THEN tC  is Pole-Zero-

Placement 

V )( )(η
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• Rule 2: IF )(tyζ  IS High AND )(tV  IS High THEN )(tC  IS Pole-Zero-

Placement 

• Rule 3: IF )(t

y η

yζ  IS Norm AND )(tV  IS Norm THEN )(tC  IS PID 

• Rule 4: IF tΠ  IS NOT Norm THEN  IS Pole-Zero-Placement 

• Rule 5: IF )(te  IS Norm THEN  IS PID 

Depending on the fuzzified value of the input parameters, the switching logic subsystem 

will switch either to the conventional PID controller, or PID structure based 

(sim ed 

switching logic is applied to SISO water vesse system presented in chapter 6. 

4.3.2.3 Fuzzy Inference Procedure for the Switching Logic 

At each sampling time the switching logic input parameters are computed and compared 

to their desired values using their fuzzy sets. So assume that the output signal overshoot 

y η

)(w  )(tCη

∞ )(tCη

ultaneous) pole and zero placement controller. The above fuzzy logic bas

l 

yζ  is 2.35%, the variance of the output V  is 5.9, the reference signal is not changing 

=Π ) and the steady-state-error e  is 0.01 as shown in Figure (4.4). Then all 

the input parameters are within the range of Norm. The combination causes rules 2, 3 

and 5 to fire. The three rules have somehow to be combined to form a single switching 

output ( ). The idea is that the premises connected by an AND are combined by 

taking the degre f combination. 

On the other hand, the active rules are comb  together with an OR to take th er 

y

(i.e. 0w ∞

)(tCη

e of membership of the lesser of the two as the value o

ined e larg
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of the three values as the value of the combination at each point on the horizontal axis. 

Therefore, from the combined region, one of the several techniques of defuzzification 

can be applied to produce final switching decision . In this case, Middle-of-the-Max 

defuzzification approach is used as shown in Figure (4.4) where the Conventional PID 

controller is selected. The Middle-of-the-Max defuzzification approach grantees the 

selection of one controller each time. Figure (4.5), next, illustrates the case when the 

overshoot of the control system output signal 

ηC

yζ  and its variance V  have Norm 

memberships, but the reference signal is changing (i.e. decreasing si 1.12−= ). 

The combination causes Rule 3 and Rule 4 to fire. The two rules are com

defuzzif

y

nce Πw

bined and 

ied to form the selection of the Pole-Zero Placement controller. 

Rule 
No. 

)(tyζ  
2.35% 

)(tVy  )(tw

5.29 

Π  
0 

)(te∞  
0.01 

)(tCη  
PID 

 
Figure (4.4): Controller selection procedure using the fuzzy-logic ased switching logic subsystem: 

example for PID controller selection. 
 b
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Rule 
No. 

)(tyζ  )(tVy  )(tw
-1.42e-14% 5.07 

Π  )(te∞  )(tCη  
-1.12 1.09 PolZroPlcmt 

 
Figure (4.5): Pole-Zero Placement controller selection. 

 
Rule 
No. 

)(te∞  
1.41 PolZroPlcmt 

)(tCη  )(tyζ  
40 17.1 

)(tVy  )(twΠ  
0 

 
Figure (4.6): Controller selection procedure using the fuzzy-logic based 

switching logic subsystem: example for Pole-Zero Placement controller selection. 
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Figure (4.6), above, illustrates the case when the overshoot of the control system output 

signal yζ  and the its variance V  have High memberships, reference signal is not 

c ould be 

taking place when high disturbances introdu trol system. The combination 

causes Rule 2 to fire. The defuzzification forms the selection of the Pole-Zero 

Placement controller. 

4.3.3 Fuzzy Logic Based Tuning Subsystem 

The second task of the switching and tuning logic supervisor is to tune the parameters of 

the mult ole-

zero placement controller in addition to the PID gain v . The tuning facility aims to 

make 

action. 

The input parameters of the fuzzy tuning subsystem are contained in Ξ , which 

includes )t , the 

output of the switching logic C  (i.e. the active controller), and the contro )t . 

y

hanging (i.e. 0=Πw ) and the steady-state-error is Positive. This situation c

ced to the con

iple-controller on-line, including poles and zeros of the (simultaneous) p

the system achieve a desired speed of response and/or minimise the control 

t

: part of the measurements supplied by the behaviour recogniser (Ξ

η l action (u

)](),(),(),(),(),(),([)( tutCttetttt wyyy ητρζ Π= ∞tΞ . 

Using the fuzzy sets and fuzzy rules forming the tuning logic subsystem, the supervisor 

will specify the tuning values for the parameters of the active/selected controller. The 

new tuning values are contained in the tuning signal τC , which represents the output 

parameters of the fuzzy tuning subsystem and expressed as: 
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)](),(~),([)( tvtHtTtC ττττ = , 

where )(tTτ  and )(tHτ  respectively represent the tuning values for the poles and zero 

of (simultaneous) Pole-zero Placement controller and )(tvτ  is the tuning value for the 

PID gain. The fuzzy sets and rules designed for the multiple-controller parameters’ 

tuning are given next. 

There are seven input and three output parameters for the fuzzy tuning subsystem. The 

inputs and the outputs are defined as fuzzy regions (sets) 

~

4.3.3.1 Fuzzy Sets for the Parameters of the Tuning Subsystem 

in a fuzzy logic system as 

shown in the following Figures (4.7a-g) for the inputs and (4.8a-c) for the outputs. 

 
Figure (4.7a) Tuning Logic input parameter: current active controller )(tCη . 
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Figure (4.7d) Tuning Logic input parameter: rising time of the output signal )(tyρ . 
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Figure (4.7e) Tuning Logic input parameter: settling time of the output signal )(tyτ . 

 

 
Figure (4.7f) Tuning Logic input parameter: control action signal )(tu . 

 
 

 
Figure (4.7g) Tuning Logic input parameter: reference signal state . 

 
)(twΠ
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Figure (4.8a) Tuning Logic output parameter: tuning value  for the PID gain. 

 
)(tvτ

 
Figure (4.8b) Tuning Logic output parameter: tuning value )(tTτ  for the 

Poles of the Pole-Zero Placement controller. 
 

 
Figure (4.8c) Tuning Logic output parameter: tuning value )(~ tHτ  for the 

Zeros of the Pole-Zero Placement controller. 
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4.3.3.2 Fuzzy Rules for the Tuning Decision 

Many works have shown an interest in applying fuzzy theory to auto-tuning of active 

controllers. In 1994 Moudgal et. al. [152] used a high level fuzzy supervisor for 

lems in

ning is also recently used by 

Chang and Shyu in [82

monitoring and adjusting fuzzy controller in order to reduce the overshoot and 

oscillation prob  an endpoint control of a two-degree-of-freedom robot with very 

flexible links. The approach of fuzzy-logic based auto-tu

] for the application of active noise cancellation, and used by 

Abdul-Mannan et al. in [83] for PI controller for high-

drive. In [72

performance induction motor 

], the PID gains K , K , and K  were respectivel

fuzzy logic based on the error signal and the first difference of the error signal. The 

ly used in aircraft industry and engine 

control [4

y calculated through p i d

fuzzy gain scheduling approach also is wide

]. Brdys and Littler [84] used this techn

where the servo controls two elements of a tracker mounted on a ship at sea. 

ique for nonlinear servo tracking 

The fuzzy rule base designed for the proposed tuning subsystem is based on fuzzy rules 

for controller tuning used by [4, 72, 83] for PID controllers tuning, and on the 

simulation experiments on the SISO water vessel system presented in chapter 6. In the 

list of tuning rules below, rules 1, 2 and 3 are designed for tuning the active PID 

controller in order to prevent the output signal overshoot and oscillation problems, as 

well as preserve low steady state error. Rules 4, 5 and 6 are used to tune poles of the 

Pole-Zero Placement controller for preserving the required output signal rise and fall 

times. Rules 7 and 8 tune the poles of the Pole-Zero Placement controller in order to 

reach the desired output signal settling time. Based on the magnitude of the control 
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input )(tu  and the state of the reference signal, rules 9 to 12 are designed to tune the 

zeros of the Pole-Zero Placement in order to prevent excessive control actions. 

Since the fuzzy sets ave been defined, the fuzzy logic based tuning subsystem is 

completed by writing the rules that will describe the tuning value for the active 

controller’s parameters. The complete set of 12 rules for the fuzzy logic based tuning 

subsystem is as follows: 

 h

• Rule 1: IF )(tCη  IS PID AND )(tyζ  IS Norm THEN )(tvτ  IS No-Change 

• Rule 2: IF )(tC  IS PID AND )(tη yζ  IS NOT No

• Rule 3: IF  IS PID AND  IS NOT Norm THEN  IS Increase 

• Rule 4: IF  IS PolZroPlcmt AND 

rm THEN )(tv  IS Decrease τ

)(tCη )(te∞ )(tvτ

 IS Slow THEN )(tTτ  IS Faster )(tCη )(tyρ

• Rule 5: IF  IS PolZroPlcmt AND )(tCη )(tyρ  IS

Average 

• Rule 6: IF  IS PolZroPlcmt AND 

 Average THEN )(tTτ  IS 

S Fast THEN )(tTτ  IS Slower )(tCη )(tyρ  I

• Rule 7: IF  IS PolZroPlcmt AND )(tCη )(tyτ  IS Slow THEN  IS Faster 

• Rule 8: IF  IS PolZroPlcmt AND 

)(tTτ

)(tCη )(tyτ  IS Fast THEN  IS Slower 

R

Decrease 

• Rule 11: IF  IS PolZroPlcmt AND 

)(tTτ

• ule 9: IF )(tCη  IS PolZroPlcmt AND )(tu  IS PstiveHigh THEN )(~ tHτ  IS 

Increase 

• Rule 10: IF )(tCη  IS PolZroPlcmt AND )(tu  IS NgtiveHigh THEN )(τ  IS ~ tH

)(tCη )(twΠ  IS Increasing THEN  IS )(~ tHτ

Decrease 
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• Rule 12: IF )(tCη  IS PolZroPlcmt AND )(twΠ  IS Decreasing THEN )(~ tHτ  IS 

Increase 

Depending on the fuzzified value of the input parameters, the tuning logic subsystem 

will employ the centre of gravity defuzzification procedure to generate the tuning value 

for the parameters of the active controller which could be either for the gain v  of the 

PID controller, the poles T  and/or zeros H~  of the PID structure based (simultaneous) 

pole and zero placement controller. The tuning values will be contained in the tuning 

signal )](),(~),([)( tvtHtTtC . The above tuning logic subsystem is applied to the 

4.3.3.3 Fuzzy Inference Procedure for the Tuning Logic 

ττττ =

SISO water vessel system presented in chapter 6. 

The required tuning values for the parameters of the active controller are produced 

through the operations of fuzzification, inference and defuzzification. The input fuzzy 

sets are used to quantify the tuning logic input parameters (contained in Ξ ) in the rule-

base, and the inference mechanism operates the rules that 

situation in order to produce the membership of the fuzzified inputs to the output fuzzy 

sets. Then, the centroid defuzzification procedure is applied

tuning values 

t

are relevant to the current 

 to generate the controller 

τC . Figures (4.9) and (4.10) next, respectively illustrate an example for 

tuning the gain v  of the PID controller, and another case where the poles and zeros of 

the Pole-zero placement controller are to be tuned. In the case shown in Figure (4.0), 

only the Rules 1, 2 and 3 are stimulated due the fact that the active controller was the 

conventional PID controller, at that sampling time. 
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Rule )(tCη   )(tyζ  )(te∞  )(tw

No. PID 0.091 -0.36 
Π  )(ty

0 
ρ  )(ty

0 
τ  )(tu  )(tvτ  )(tTτ  )(
12.8 3.5 0.9 0.0 

~ tHτ  
0.0 

 
 

Figure (4.9): Controller parameters’ tuning procedure: 
tuning value for the gain v of the active PID controller. 

 
Rule 
No. PlZrP 0.152 0.122 

)(tCη   )(tyζ  )(te∞  )(twΠ  
1.22 

)(tyρ  
12.8 

)(tyτ  
22.6 2.07 0.0 0.44 

)(tu  )(tvτ  )(tTτ  )(~ tHτ  
-0.24 

 
 

tuning value for the poles and zeros of the active Pole-Zero Placement controller. 
Figure (4.10): Controller parameters’ tuning procedure: 
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In Figure (4.10) above, rules 5, 8, 9 and 11 fired and the fuzzy sets of the Poles and 

Zeros output fuzzy sets were defuzzified to provide the new tuning values for the poles 

and zeros of the active controller, which was the Pole-Zero Placement controller. 

4.4 RBF Based GLM for Complex SISO Systems Representation 

As it has been discussed in chapter 2 section (2.4.4) and chapter 3 section (3.5), opposed 

to the MLP, the RBF NNs improve the system damping and dynamic transient stability 

more effectively than the MLP NNs. Control performance could be improved if the 

unknown nonlinear portion of the model is more accurately modelled [15]. Therefore, 

the RBF should be preferred to the MLP networks for the online identification of 

complex systems. 

An RBF neural network based learning model is subsequently used to approximate the 

nonlinear part (.,.),0 tf  and the disturbances )(tξ . It can be seen from equation (4.1) that 

the measured output y(t) can be obtained as follows [16]: 

),()()1( 0 uyftty +=+ θϕ ,T                     

−−= ],...,,,...,[)( 01 nn bbaat
ba

θ .                       (4.14) 

From Figure (4.12), next, we can also see that 

                  (4.13) 

⎪⎭

⎫

−−−−= )](),...,1(),(),...,1([)( ba
T

T

ntutuntytytϕ
⎪
⎬

(.,.)0f  can be expressed as: 

)((.,.) 00 tff ε+= .                                              (4.15) 
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Using the above equation (4.15), and as shown in Figure (3.2), a neural network can be 

effectively used for estimating the nonlinear function f , with the identification error 

)(t

0

ε  being used to update the weights and th

del. The schematic diagram of the RBF neural network is shown in Figure (4.10). 

 c ut 

Figure (4.11): rk used in the representation odel in the GLM. 

The nonlinearity and disturbances function  is adaptively estimated by using the 

llowin 37

resholds of the learning neural network 

mo

The network has four inputs representing the last and urrent states of the control inp

signal (i.e. )1(1 −tu  and )(1 tu ) and the last and current states of the system output signal 

(i.e. )1(1 −ty , )(1 ty ). 

tf ,0

1=b

 
 of the nonlinear sub-m

1w

nw

2w

Input layer Hidden layer Output layer

1g

∑
Y 

 g

n

U 2

g

RBF neural netwo

(.,.)0f

fo g equations [ ]: 

n

1
,                                              (4.16) bgwf

j
jj∑

=

=0(.,.)

],0 tf− ,     1][[ ,0,0,0, ttttjw fffηg −=δ                          (4.17a) 

twtw

  

wjj δ+−= )1)( ,                                         (4.17b) (
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⎟
⎠

⎜
⎝

−−= ∑ ⎞⎛

=

l 2
 

where  is the hidden layer weights, b  is the output layer threshold, 

i

i
j

i
jit σcxtg

1

2
,0 )2/(exp)( ,                              (4.18)

jw wδ  is the change 

in weights, η  is the learning rate,  is the inputs, i is the centre of Gaussian basis 

th  hi

ix jc

function of the dden unit,  is num er of inputs, and  is the output of the hidden 

layer. The variance of the Gaussian units i is dependent o

 the RBF inputs are scaled

j  l b jg

jσ  n the input dimension 

because  differently [49, 12]. The Gaussian density function is 

in the hidden layer as an activation function as recommended by [23, 155] where they 

concluded that the RBF NN should be preferred to MLP NN for online system 

ck-propagation method 

proposed in [153

identification. 

4.4.1 RBF Neural Network Parameters Setting 

The parameters setting and tuning of the RBF based nonlinear sub-model is done in two 

stages: offline stage for selecting the number of neurons including tuning their centres 

and widths, and online stage for tuning the network weights. Using a trial and error 

approach, the RBF NN for the nonlinear sub-model of the SISO water vessel system 

presented in chapter six was designed with five units in the hidden layer two of which 

had fixed centres and the remaining three units were selected to have adaptive centres. 

The two fixed centres represent the smallest and the largest inputs of the training data 

set. The three adaptive centres were fine tuned using the ba

] and used in [117]: 
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])[()(2 i

j

i wfTzcxc −−=∆ 0 jjjiij σ
α ,                                (4.19) 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−= ∑

l
l
j

lj
j

xc
z 2)(

)(
exp

σ
,

l 2

                                      (4.20) 

where 0>α  [154] which is set to 02.0 , T  is the desired output and f  is the 0 network 

output. The width of the RBF units ( rongly affect

NNs, and in practice it is difficult to ate the appropriate value of the RBF width 

[130

i
jσ ) st s the performance of the RBF 

 estim

]. rtunately, the literature of RBF NNS lacks the theory regarding tuning the 

unit wid h, which remains a challenging task in using RBF NNs. Haykin in [18

 Unfo

t ] used 

t the width of the RBF hidden layer units. In [130the Delta rule to adjus ] used the 

relation ii dβσ =  where iσ  is the width of th  neuron, i β  is a posi

th . This thesis prop  a 

new and simple technique for adjusting the neurons’ width ( i ) of RBF NN of the 

GLM 

ii ,                                                    (4.21) 

where i  is the width of the th neuron in the RBF

the centre of the th  neuron and 

tive scalar and id  is 

the minimum of distances from the i  centre to its neighbours oses

jσ

jj cβσ =

 hidden layer, i
jc  is the position of jσ j  

j β  is a positive scalar. The proposed techniq

promising results in improving the RBF based nonlinear sub-model in approximating 

hard nonlinearities and sharp disturbances, as w

chapter (6) section (6.2.3). 

ue gives 

ill be presented in simulation results in 
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The output layer weights were updated online using the Delta rule. The RBF weights 

can be adapted using various algorithms, a good overview of which can be found in 

[18]. 

4.5 Proposed Novel Intelligent Multiple-Controller Framework for 

Complex SISO Systems 

The work conducted in this thesis was directed toward developing an affective and 

efficient intelligent control system. The new proposed intelligent multiple-controller 

framework for controlling complex SISO systems incorporates the fuzzy-logic based 

supervisor to automatically govern the selection scheme between the adaptive nonlinear 

PID controller and the pole-zero placement nonlinear controller, and to perform the 

required tuning on the parameters of the selected controller. The switching and tuning 

fuzzy-logic supervisor is situated at the highest level of the control system to act 

according to the data received from the control system and the environment, as well as 

and the user 

desired performance. 

ve the approximation of the complex system model and consequently 

accomplish more accurate SISO plant representation, the proposed approach 

co  represented by an equivalent stochastic model consisting of a linear 

time-varying sub-model plus a nonlinear RBF neural network learning sub-model. The 

the information supplied by the user. Therefore, the switching and tuning decisions are 

made on the basis of the closed-loop system performance measurements 

In order to impro

incorporates the RBF neural network based GLM. The GLM assumes that the unknown 

mplex plant is
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block diagram of the proposed intelligent multiple-controller for SISO complex systems 

is shown if Figure (4.12 he transfer function for the proposed intelligent 

multiple-controller, show in Figure (4.12) above, can be expressed as follows: 

) next. T

),(
(.,.)])()()1()~,()[(

) ,0τητ fHtFytwFHHHvv
tu tN′∆−
= ,                (4.22) (

τη Tqq∆
+

n (.,.) is a nonlinear function representing the 

ics and disturbances of the complex SISO system under control, 

Where )(tw  is the system set poi t, ,0f  t

nonlinear dynam ∆  is 

the integ al action required for the PID design, F  is a polynomial derived from the 

)1(F  is the value of F  at the steady state, H

r

linear parameters of the controlled plant and includes the desired closed loop poles, 

N′  is a user-defined polynomi

i p

 position: 

′( 3) 

al. The 

transferred poles q  were derived through the follow ng Dio hantine equation which is 

used to place poles of the system in the required

TFvBzA =+∆ − )1 ,                                            (4.2q

where T  represents the desired closed loop poles and q′  is the controller polyn l. omia

In the multiple-controller above, )(vv  is the tuned PID gain and ),( Tqq  represent 

u T  a  

11 −− ,                                (4.24) 

(ttτ

τ τη

the transferred poles of the control system transfer function as a function of the 

switching parameter ηq  and the t ning parameter nd can be expressed as: τ

)()(1),( 21 ++= zqqzqqTqq ηητη

where the tuned poles ))()1( 11 tqtq
1

+=+  and )()()1( tttqtq +
222 τ=+ . 
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Figure (4.12): Intelligent Multiple-Controller Framework for SISO complex systems. 
 

The term )~,( τη HHH  represent the transfer function zeros as a function of the 

autonomous switching and tuning parameters, respectively, ηH  and τH~  as it can be 

seen the next equation: 

)] 1~,,1(~)[~,(~)~,( = τητητη HHHHHHHHH ,                           (4.25) −

where )(~)()1( 11 ththth τ+=+  and )()1( 222 ththth τ+=+  are the tuned zeros, 
1

~

)()(1)

)(

~,(~ 11 −−
21 ++= zhHzhHHHH ηητη , and 211)~,,1(~ hHhHHHH ηητη ++= . 

The following subsections will outline the various multiple-controller modes which are 

derived from a single minimum variance based control law. The switching between 
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these modes is performed autonomously in an integral manner by modifying the 

common control law using the fuzzy-logic supervisor. The automatic switching feature 

is a key distinction of the new proposed intelligent multiple-controller compared to 

other classical multiple-controllers switching paradigms which seek to combine a 

switch between different controllers which may lead to undesirable transfer problems 

during switching actions [8, 17]. The switching mechanism introduced in this work 

guarantees bumpless switching between the different controlling scenarios, i.e., 

switching that does not induce a large transient because of the compatible “initial 

conditions” of the controllers connected to the plant [100, 118]. 

4.5.1 Multiple-Controller Mode 1: Self-tuning PID Controller 

In this mode, the multiple-controller operates as a conventional adaptive PID controller, 

which is expressed in the velocity form as: 

∆
−−−−−−++−

=
)2()1(]2[)(][)()( tyKtyKKtyKKKtwKtu DDPDIPI ,   (4.26) 

10)( ++= zfzffzF ,                                      (4.27) 

To obtain an adaptive PID controller, the degree of )( 1−zF  is initially set to 2 so that 

211 −−−

and both the pole-placement polynomial q  and zero-placement polynomial 

2

H~  are 

switched off when the fuzzy logic switching and tuning supervisor sets the switching 

parameter ],[ HqC =  to equal ]0,0[ . Consequently,  ηηη
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21
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n

zH

qqqeizq
⎬
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q

nhhhei
.                      (4.28) 

Therefore, the adaptive PID controller is structured as follows: 

∆

′∆+++−
=

(.,.))()()()1(
)( ,0

2
2

1
10 tN fHvtyzfzffvtwvF

tu ,             (4.29) 

The PID gains pK , iK  and dK  will be as: 

21p

−−

]2[ vffvK +−= ,                                             (4.30) 

][ 210 fffvKI ++= ,                                            (4.31) 

2vfKD = .                                                     (4.32) 

4.5.2 Multiple-Controller Mode 2: Pole-Zero Placement Controller 

To switch multiple-controller control law in equation (4.22) to the simultaneous pole 

and zero placement controller with a PID structure, the switching and tuning supervisor 

will set the autonomous switching parameter ],[ ηηη HqC =  to be ]1,1[ . Consequently,  

−−− 111

,                                   (4.33) 

where q  and q  are the tuned poles placed in their position, h  and h  are the tuned 

zero placed in their position. Therefore, the pole-zero placement controller will be in the 

form: 

⎪⎭

⎪
⎬
⎫

++=

++=
−−− )()(1)(~

)()(1)(
1

2
1

1
1

21

zhzhzH

zqzqzq

1 2 1 2
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),(
(.,.)])()()1()~,()[(

)(tu =

at in practice, the order of )( 1−zq  and )(

,0

τη

τητ

Tqq
fHtFytwFHHHvv tN

∆

′∆+−
,                (4.34) 

Note th ~ 1−zH  are most of the time selected to 

equal 1 or 2 [17, 41, 43]. The PID gai K , K  will be set as in the multiple-

controller mode 1 above for a PID struct

4.5.3 Intelligent Multiple-C

The pro le-controller algorithm can now be summarised into the 

following steps: 

ial desired closed-loop system poles and zeros polynomials T  and 

ns p i d

ured pole-zero placement controller. 

ontroller Algorithm Summary: SISO Case 

posed intelligent multip

K  and 

Step 1: Select the init

H~  respectively. 

Step 2: The system current controller is initially set to work with the Pole-Zero 

Placement controller (i.e. ]1,1[=ηC ) in order to avoid high control action, at the start of 

the control process, and consequently prevent output signal overshooting [100]. 

Step 4: Read the current values of )(ty  and ).(tw  

Step 3: Select F  and the initial value for the gain v  for the desired PID control 

structure. 

Step 5: Compute the control input )(tu  using (4.34) when the current controller is pole-

zero placement, or using equation (4.29) when the controller is the conventional PID 

controller. 
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Step 6: Estimate the process linear parameters Â  and B̂  using the least squares 

algorithm of the linear sub-model in the GLM. 

Step 7: Compute )()((.,.)0 tytyf −= ˆ , where )(tŷ  is the output of the linear sub-model. 

user requirements. 

Step 10: The behaviour recogniser will report the system performance to the switching 

and tuning subsystems as concluded in )(t

Step 8: Apply the RBF based nonlinear sub-model of the GLM to obtain (.,.)0f  by 

using equations (4.16)-(4.21). 

Step 9: The behaviour recogniser will assess the current performance of the control 

system using the system output )(ty , the set-point )(tw , the control input )(tu  and the 

Ξ . 

Step 11: The fuzzy logic switching subsystem will employ )(tsΞ  to make the switching 

decision for the next controller to be activated, that is achieved by setting ηC  to ]1,1[  for 

a Pole-Zero Placement controller or to ]0,0[  for a conventional PID controller. 

Step 12: The fuzzy logic tuning subsystem will decide the tuning values for the current 

controller parameters’ based on the input )(ttΞ . 

Steps 4 to 12 are to be repeated for every sampling instant. 
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4.6 Summary 

A central theme in the study of intelligent control is the modelling and control of 

complex systems. Every control system, from the simplest (e.g. the thermostat or a 

simple positioning servo) to the most complex currently in use (e.g. control of 

unmanned air vehicle) utilize feedback in one form or another. The essence of the 

concept involves the triad: measurement, comparison, and correction [98]. That is, 

measurement of relevant variables, comparison with desired values, and using the errors 

to correct behaviour. The complexity of the control systems used nowadays emphasise 

In this chapter a new intelligent nonlinear multiple-controller framework incorporating 

a fuzzy logic based switching and tuning supervisor is developed to control complex 

SISO systems. The framework integrates the simple fuzzy rule based supervisor with 

nonlinear-controllers along with a GLM framework. In the GLM, the unknown complex 

process to be controlled is represented by an equivalent stochastic model consisting of a 

linear time-varying sub-model plus a computationally-efficient RBF neural-network 

the involvement of more sophisticated and intelligent techniques, that is to cope with 

the measurements, comparisons, and corrections required for the control decision 

making process. By considering the design of a multi-controller, the automation 

capabilities provided by the field of Artificial Intelligence can be integrated with the 

concepts and techniques from this field to the multiple controller approach of designing 

control systems may be advantageous, from a practical perspective, to solve such 

complex control problems. 

the benefits of both the conventional PID and PID structured pole-zero placement 
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based learning sub-model. The proposed methodology provides the designer the choice 

between the conventional PID adaptive controller, or the PID structure based 

with online tuning of the controller parameters, is made using a fuzzy logic based 

supervisor operating at the highest level of the system. The proposed intelligent 

multiple-controller works to adaptively tracking a desired reference signal, achieving 

the desired output signal performance and penalising excessive control actions, in 

It is often the case that higher-level knowledge about how to control a process is 

[156

(simultaneous) pole and zero placement controller. Both controllers (multiple controller 

modes 1 and 2) benefit from the simplicity of having a PID structure, operate using the 

same adaptive procedure and can be selected on the basis of the required performance 

measure. 

The switching decision between the two nonlinear fixed structure controllers, along 

response to the current performance of the control systems as assessed by the behaviour 

recogniser. The stability analysis of the proposed intelligent multiple-controller 

framework for SISO complex systems will be considered as a subset of the general 

multivariable case in the next chapter. 

available along with the lower-level data on which simple control systems operate 

]. In the proposed intelligent framework, the tasks of fuzzy logic based 

coordination between multiple-controllers and tuning of the controller parameters are 

o ,

ut the system to be controlled was essential to design the fuzzy logic high-

based on information about the application operating points, including system transfer 

function poles and zeros, and the controller PID gains. Acc rdingly  information 

acquired abo
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level supervisor. Taking into account the real-time implementation 

minimizing the amount of memory used and the time that it takes to compute the fuzzy 

constraints, such as 

outputs using the given inputs [4], the fuzzy logic based switching and tuning 

supervisor is d signe fu y rules with minimum input and 

output parameters. 

e d with a minimum number of zz

The next chapter presents the intelligent multivariable multiple-controller framework 

for the general case of complex MIMO systems. 
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Chapter 5  

I en i

 

Based Switching and Tuning Supervisor: 

5.1 Introduction 

e

character. The synthesis of multivariable l n e 

industrial field and more particularly in the domain of chemical engineering. Even 

 to design a 

SISO controller for each (I/O) pair of a MIMO plant by simply ignoring the interaction 

between these pairs. Such SISO controllers may work satisfactorily for some MIMO 

ntellig t Multivariable Mult ple-Controller 

Framework Incorporating a Fuzzy Logic 

MIMO Case 

In practice, most practical systems consider d are nonlinear and multivariable in 

 control ers has received more attention i th

though, it is still common practice, especially in industrial applications,

plants, but advances in performance can only be achieved through the use of MIMO 

controllers [120]. Moreover, for MIMO complex systems, the control problem is very 

complicated due to the coupling among various inputs and outputs. It becomes in 

general very difficult to deal with when there exist uncertain parameters and/or 

unknown nonlinear functions in the input coupling matrix [122]. Due to these 
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difficulties, it is noticed that in comparison with vast amount of results on controller 

design for SISO complex systems in the control literature, there are relatively fewer 

results available for the broader class of MIMO complex systems. 

The design of multivariable control systems requires identification of the effects of 

individual inputs on each of the outputs. In many complex systems whose behaviour is 

described by a large set of partial differential equations, the solution cannot be 

implemented in real-time due to the large number of unknown parameters and 

constraints. Additionally, for fast real-time control, the computationally intensive 

model, even if available, must either be reduced, leading to approximation errors, or 

replaced with another model with the same input-output characteristics [119]. 

In the last two decades, control methodologies employing fuzzy logic systems and 

neural networks have been a promising way to approach complex control problems. 

Particularly, fuzzy logic has attracted the control community because of the simple 

approach it provides to use heuristic control knowledge for complex control problems 

[121], see chapter (2) section (2.6) for more details. Similarly, there has been 

tremendous interest in the study of neural networks in modelling and control of 

uncertain nonlinear systems with unknown nonlinearities, and great achievements have 

been met both in theory and practical application [122]. As it was discussed in chapter 

(2) section (2.5), neural networks are mostly used as approximation models for 

unknown nonlinearities due to their inherent approximation powers. With these 

capabilities, t necessary to spend much effort on system modelling which might 

be expensive in many cases. 

 it is no
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Co dering the importance of MIMO systems and the promising nsi potentials of fuzzy 

logic and neural networks for control engineering, this chapter presents an intelligent 

multivariable multiple-controller framework for complex MIMO plants, which extend 

n in the previous chapter. The proposed multiple-controller 

methodology uses a Mamdani fuzzy system for the s

multiple-controller and employs an RBF neural network based GLM for MIMO system 

representation. 

This chapter is organised as follows: 

The convention control law of the GMVC multivariable multiple-controller is presented 

5.2). The new proposed  

 MIMO RBF neural network nonlinear sub-model for the MIMO  GLM 

will be presented. The complete framework of the intelligent multivariable multiple-

controller for the autonomous control of MIMO complex systems is illustrated in 

to 

adaptive multivariable control modes, namely convention PID controller and Pole-Zero 

Placement controller. Section (5.6) will present the stability analysis of the proposed 

elli h  modes and the fuzzy logic switching 

and tuning mechanisms. Summary of the chapter will be given in section (5.7). 

the SISO results show

upervision of the multivariable 

in section (  fuzzy logic based supervisor for switching and 

tuning multivariable multiple-controller is discussed in section (5.3). The discussion 

will detail the design of the switching logic and tuning logic subsystems of the high 

level supervisor, in addition to be MIMO system behaviour recogniser subsystem. In 

section (5.4), the

section (5.5). The structure of the developed control law will be given as well as the 

fuzzy logic based switching and tuning mechanisms  activate and tune the two 

int gent framework including the two switc ing
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5.2 Control Law Str

The original SISO minimum variance strategy of Aström and Wittenmark [102

ucture of GMVC for Complex MIMO Systems 

] was 

extended into a multivariable by Borrison [123] which was a stepping stone to the 

developments of the multivariable adaptive control theories. In the sequel, Koivo [124], 

Keviczky and Kumar [125] and Grimble and Moir [126] extended the SISO generalised 

minimum variance control proposed by Clarke and Gawthrop [103] into MIMO case. 

ied The generalised minimum variance control was also modif to have a MIMO PID 

structure by Yusof et al. [41, 43], Zhu and Warwick [19] and Zayed et al. [127], and 

extended to achieve the multivariable nonlinear pole-placement control by Zhu and 

Warwick [16]. 

Zayed et al. [17, 39, 46] developed a MIMO multiple-controller framework which 

d 

controller together with those of PID controllers and nonlinear Pole-Zero Placement 

controllers. As it will be presented in this chapter, the framework of [17

achieve more effective control action, and combined the advantages of adaptive 

, 39, 46,] is now 

 performance through 

the autonomous intelligent tuning and switching between

controllers, and the more efficient complex plant approximation using the new RBF 

further developed to achieve a desired closed-loop control system

 the GMV based multiple-

based MIMO GLM [128]. 

The MIMO complex system considere  t is thesis is in the following olled 

Auto-Regressive Moving (CARMA) representation which is for n  input n  output plant 

model [

d in h  Contr

17]: 
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)() kt ++ ξ ,                      (5.1) ,()()()()( ,0
11 UYtzktz t+=+ −− fuByA

 with dimension ( n ) 

[ tututu n= , (ξ  is an uncorrelated sequence of random variables 

with zero mean at the sampling insta ,...2,1

where )(ty  is the measured output vector x1

])(...)()([)( 21 tytytyt n=y , )(tu  is the control input vector ( n x1) 

)(tu ])(...)()( 21 )t

nt =t , )](ξ),...,....(ξ),(ξ[)( tttt 21 n=ξ , and  is 

the time delay of the process in th mple interval. The term ,( UYf  in 

equation (5.1) above, is potentially a nonlinear function which accounts for any 

unknown time delays, uncertainty and nonlinearity in the comp

where ](.,.)...(.,.)[),( fff

k

e integer-sa ),0 t

lex MIMO plant model 

(.,.) ,02,01,0,0 nt =UYf , and is conveniently represented by 

a Multi-Layered Perceptron [16, 17]. The overall MIMO plan

ed the MIMO Generalized Learning Model (GLM) [

t model represented by 

equation (5.1) above, is term 37], 

sub-model. Also, in equation (5.1), 

and can be seen as the combination of a linear sub-model and a nonlinear (learning) 

Yy ∈)(t , Uu ∈)(t ; nn , and 

1−  and 1−  are ( ) diagonal polynomial matrices with orders  and , 

1−

21

e 1− 1−

} ;{ ba RR ∈∈ UY

)(zA )(zB nn× a b

respectively, which can be expressed in terms of the backwards shift operator, z  as: 

Anzzzz −−−− ++++= AAAIA ...)( 211 ,                              (5.2a) 

0)0(,...)( 1
10

1 ≠+++= −−− BBBBB Bn

Bn zzz ,                        (5.2b) 

wher  and Bn  are the degrees of the polynomials )(zA , )(zB   

n n

An

 An
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The multivariable multiple-controller control law for the above c

meanwhile given in the next equation [17

omplex MIMO plant is 

]: 

q
fHvvFywFHHv

u N

′∆
∆+−

=
(.,.)])()()1()]1([ ′−~[

)(t ,0
1

ttt
,                    (5.3) 

where )(tw  is the ( 1×n ) system bounded set point vector, (.,.)f  is a nonlinear 

function representing the complex dynamics of the MIMO plant,  is a user-defined 

gain m  is the in a n require f

,0 t

v

atrix, ∆ tegr l actio d or the PID design, H~  is a user-defined 

polynomial which can be used to introduce arbitrary closed loop zeros for an explicit 

Pole-Zero Placement controller, )1(H  is the value of H~  at system output steady state, 

F  is a polynomial derived from e linear parameters of the controlled plant and 

includes the desired closed loop poles, )1(F  is the value of F  at the steady state, NH

th

′  is 

unit disc, and is a polynomial in 1−z  having the following form: 

q
q

qqqIq ′

′

−−−− ′++′+′+=′ n
n zzzz ...)( 2

2
1

1
1  whe

a user-defined polynomial for act f . The param ter 

 is a transfer function used to bring the closed loop system parameters in the stability 

re  is the degree of the polynomial 

ivating the nonlinear function (.,.),0 t e

q′

 qn ′ q′ . 

5.3 New MIMO Fuzzy Logic Based Supervisor for Multiple-

Controllers Switching and Tuning 

multivariable multiple-controller operates at the highest level of the control system 

The proposed MIMO fuzzy-logic based switching and tuning supervisor for the 
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framework. The fuzzy supervisor monitors the MIMO control system through the 

available input-output data, and then characterises the system current behaviour so that 

it knows which controller to choose, which parameters to tune, and the tuning value for 

ve the desired specification. The main 

r and s

ules where the 

prem viour recogniser and the  the 

switching and tuning decisions. In this way, a fuzzy logic system is used to implement 

the entire supervisory control level of the multivariable multiple-controller system. 

5.3.1 Behaviour Recogniser for MIMO Systems 

The behaviour recogniser will characterise the current behaviour of the MIMO control 

system at wil o the switching and tuning logic subsystem

proposed behaviour recogniser subsystem benefits from the system performance criteria 

discussed in chapter (4) section (4.2). The multivariable system has n  control input 

each parameter that is required to ultimately achie

idea behind the fuzzy-logic supervisor approach here is to employ logic-based tuning 

and switching between the candidate multivariable controllers. 

The supervisor, which is employed for the MIMO control system, comprises three 

subsystems: a behaviour recogniser, a switching logic and a tuning logic, each of which 

are discussed next. Based on similar system performance criteria presented in chapter 

(4) section (4.2), for each control input and system output, the supervisor aims to 

configure the best controller, or when the current active controller is not properly tuned. 

Consequently, the supervisor seeks to switch to the candidate controlle /or adju t 

the controller parameters to obtain improved performance. The whole supervisor is 

implemented using simple fuzzy logic based switching and tuning r

ises of the rules form part of the beha consequent form

 in a way th l be useful t s. The 
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sign m ou ig and ch g  onlin as

of following paramet

• Degree of overshoot (ζ ) of the MIMO system output signals: 

][

als and n  syste tput s nals aracterised throu h the e me urements 

ers: 

y

21 nyyyy ζ ζ ζL=ζ  which is an 1×n  vector where n  is the number of system 

output signals. 

100)( max

i

ii
i y

y
ty

∞

∞y −
=ζ ,                                           (5.4) 

where amplitude maximum value reached at the th  ( ) output 

• Rise and fall time of the MIMO system output signals (ρ ): 

i
ymax  is the i ni ,...2,1=

signal of the MIMO plant, and 
i

y∞  is the steady state value of the thi  output signal. 

y

The vector ][
21 nyyyy ρρρ L=ρ  is an 1×n  vector denotes the current rise or fall 

time of the n  system output signals. The output signal rise and fall times represent the 

amo nt of time for a signal to change state. To measure rise time, the behaviour 

recogniser uses 10% to the 90% point of every output signal, or vice versa for the output 

signal fall time. 

y

u

• Settling times of the MIMO system output signals ( τ ): 
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where ][
21 nyyyy τττ L=τ  and 

iyτ is the time required for a measured process 

output )(ty  to first enter and then remain wi  band i thin a
iy∆ whose width is computed 

as 5± % of the total change in )(ty . 

∞

][
21 n

eee ∞∞∞∞ = Le  where 
i

e∞  is the difference between the desired output )(twi  

and the actual outp )(t  as time goes to infinity (i.e. when the output reached its 

steady state) [

i

• Steady state error of the output signals (e ): 

yut i

114]. The steady state error formula can be expressed as [115]: 

0))()((lim)( ≅−=
∞→

∞ ttwte iiti
.                                      (5.5) 

• The variance of the output signals ( ): 

The variance of sampled population of the output signal )(ty  is the mean squared 

deviation of the individual values  of  from the population mean. The mean is 

considered to be the steady state value . Therefore, V  is computed as follows 

[116

y

yV

i

liy )(tyi

i
y∞ iy

]: 

)( 2−∑ ∞yy
N

i

1
)( 1=

−
=

Ni
                 (5.6) 

where N  denotes the size of the sampled population of the output signal ty  and 

][
nyyy VV L=V . 

tV l
y

il

,                           

)(i

21yV
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• Control input signals of the MIMO system (control actions )(tu . )

[ ]Ttututut )(...)()()( =u .                                     (5.7) 

• The state of the reference Signals ( ): 

By comparing the current set-points )(tw  , ni ,...2,1

n21

wΠ

= , with the previous ones )1( −twi , i

the behaviour recogniser will check the state of the each reference signal whether it is 

increasing, decreasing or remaining as it was in the last state. 

)1()()( −−=Π twtwt .                                        iiwi
  (5.7) 

The tested states of the reference signals are stored as in ][ ΠΠ
21 nwwww Π= LΠ . 

The behaviour recogniser subsystem output is contained in the matrix )(tΞ  and 

expressed as: 

⎣ Π

Π
Π

=

∞

∞

∞

)()()()()()(
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
)()()()(
)()()()(

)(

22222

111

2

1

ttVtettt

ttVtet
ttVtet

t

nnnnn wnyyyy

wyyyy

wyy

τρζ

Ξ .                (5.9) 

he performance measure variable )(tΞ  will be used by both fuzzy-logic based 

switching and tuning subsystems. 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

)()(
)()(

11

tt
tt yy

τρζ
τρζ

T
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5.3.2 Fuzzy Logic Based Switching Subsystem for Multivariable multiple-

controller 

The switching logic subsystem for the multivariable multiple-controller is designed 

 

Abdullah et al. in [128

according to the switching criteria presented in chapter (4) section (4.2.2), and used by

]. The switching logic generates the switching signal C  which 

determines, at each instant of time, the candidate controller module for every subsystem 

in the MIMO plant. The switching logic is implemented using fuzzy logic rules where 

the premises of the rules use nx4  variables from the output of the behaviour recogniser 

(i.e. )(tΞ ). These variab resent the input parameters of the switching logic, 

whi  c d

⎦

⎤

⎢
⎢
⎢

⎢
⎢

⎣

⎡

Π

Π

∞

∞

∞

)()()()(

.

.
..

.
.

)
)()()()(

(

222

1

2

ttVtet

e
ttVtet

nwyy

w

w

s

ζ

Ξ .                          (5.10) 

The t cision h

symbo here 

⎥
⎥
⎥

⎦

⎤

⎢

⎣

⎡

==

nn

Hq

ηη

η

η

ηηη
22

1

HqC ,                                    (5.11) 

η

les will rep

ch an expresse  as: 

⎥
⎥....

nn n
ζ

⎥
⎥
⎥
⎥
⎥

⎢
⎢

Π

=
..

)()()((

)

11 1
ttVtt

t

yy

yy

ζ

 consequents of the fuzzy logic rules form the controller selec ion de  whic  is 

lized as ηC  w

[ ]
⎥
⎥

⎢
⎢ Hq

::
⎢
⎢ Hqη

η1
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T
n

qq ]...[
21 ηηη= T

n
HHH ]...[

21 ηηηη =  an n,.2,1=  ( n the 

r of control inputs). he size of

qηq , d ..  is 

numbe  Based on t  n  and the system perform nce, the 

sup i o r  PID t

based ller. For instance, 

T

⎢
⎣

⎡
=ηC  will set the first control input to be controlled by a convention PID 

controller and the rest of the control inputs to be Po

Anothe ⎢
⎣

⎡
=

1...11
1

η  will nputs to be controlled 

by Pole r  and ⎤⎡
0

0...00
C  will set all control inputs 

to b o  conv a  contr

5.3.2.1 Fuzzy Sets for the Switching Logic of the MIMO Systems 

 s t

The fu g subsystem for automatic switching between the multivariable 

multiple-controller is completed by writing the rules that describe the fuzzy output of 

H i

a

erv sor will switch either t  the conventional PID controller, o  to the  struc ure 

(simultaneous) pole and zero placement contro

⎥
⎦

⎤
1...10
1...10

le-Zero Placement controllers. 

r example is that, 
T

⎥
⎤1...1

C et all control i
⎦

 s

-Zero Placement cont ollers,
T

⎥
⎦

⎢
⎣

=
0...0η 

e c ntrolled by a ention l PID oller. 

To simplify the design of the fuzzy supervisor for the multivariable multiple-controller, 

the switching logic fuzzy sets of the SISO case, presented in chapter (4) section 

(4.3.2.1), have been used for the MIMO ystem. Depends on he MIMO application, 

different fuzzy set membership functions can be designed for every fuzzy Rule input in 

)(tsΞ . 

5.3.2.2 Fuzzy Rules for the Switching Decision 

zzy switchin
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each combination of the fuzzy input variables. The fuzzy rules for MIMO system 

multivariable multiple-controllers switching are designed on the bases of the fuzzy rules 

for the SISO syste multiple-controller switching detailed in chapter 5 at section 

(4.3.2.2). The final derived rules are experimentally implemented on the two MIMO 

applications given in chapter 6; namely: MIMO water vessel application (section (6.3)) 

with 2=n , and autonomous vehicle control application (section (6.4)) with 3

m 

=n , 

where n  is the number of inputs and outputs in the MIMO applications. The complete 

set of fuzzy rules for the fuzzy logic based switching subsystem is as follows: 

)(
1

tyζ  OR )(
2

tyζ ,…, )(t
ny• Rule 1: IF ζ  IS Ntive-High AND  OR 

tV ,…, )(tV  IS High THEN tC  OR tC ,…, )(tC  IS Pole-Zero-

Placement 

)(
1

tVy

)(
2y ny )(

1η )(
2η nη

• Rule 2: IF )(
1

tyζ  OR )(
2

tyζ ,…, )(t
nyζ  IS High AND )(

1
tVy  OR )(

2
tVy ,…, 

)(tV  IS High THEN )(tCη  OR )(tCη ,…, )(tC  IS Pole-Zero-Placement 

• Rule 3: IF )(
1

twΠ  OR )(
1

tw

ny 1 2 nη

Π ,…, )(t
nwΠ  IS NOT Norm THEN )(

1
tCη  OR 

)(
2

tCη ,…, )(tC
nη  IS Pole-Zero-Placement 

1
• Rule 4: IF ty )(ζ  OR ty )(

2
ζ ,…, )(t

nyζ  IS Norm AND tVy  OR tVy ,…, 

)(tV  IS Norm THEN  OR ,…, )(tC  IS PID 

• Rule 5: IF )(te  OR )(te ,…, )(te  IS Norm THEN )(tC  OR )(tC ,…, 

)(tC  IS PID 

)(
1 2

ny

)(

 )(
1

tCη )(
2

tCη nη

1∞ 2∞ n∞ 1η 2η

nη
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Depending on the fuzzified value of the fuzzy input parameters, the switching logic 

subsystem will switch either to the conventional PID controller, or PID structure based 

(simultaneous) Pole-Zero Placement controller. 

5.3.2.3 Inference Procedure for the Switching Logic of the Multivariable Multiple-

Controller 

The MIMO system’s switching logic works, at each instant of time, to activate the 

appropriate controllers according the desired performance. The input parameters of this 

switching logic are computed and compared to desired values using the fuzzy sets. The 

fuzzy input parameters in the antecedent part of the fuzzy rules (such as 
iyζ  and V )  

will be related to their corresponding fuzzy output parameters in the consequent p

(such as C ) through the logic operation OR. The fuzzy rule premises’ are connected 

by an AND are combined by taking the degree of membership of the lesser of the two as 

the value o d together 

with an OR to take the larger of the output values as the value of the combination at 

h is 

used to finalise the controller selection decision. 

 1) below for a MIMO system with two inputs and 

two outputs, the first output signal overshoot )(t

iy

art 

iη

f combination. On the other hand, the active rules are combine

each point on the horizontal axis. The Middle-of-the-Max defuzzification approac

In the example shown in Figure (5.

1yζ  was in Ntive-High fuzzy region, its 

variance tVy  was in High fuzzy region and NOT Norm steady-state error te . 

Whereas for the second output signal, it had very low overshooting )(tζ , low variance 

)(tV  and Norm steady-state error . This comb

)(
1 1∞

2y

)(

2y )(
2

te∞ ination causes rules 1, 2, 4 and 5 
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to fire. The four rules were defuzzified to activate a Pole-Zero Placement controller for 

the first input-output subsystem ( )(
1

tCη  is PolZroPlcmnt) and the conventional PID 

controller for the second input-output subsystem ( )(tC  is PID). 

)(
1

ty

2η

ζ
  

)(
2

tyζ  )(
1

tVy )(
2

tVy  )(
1

twΠ  )(
2

twΠ
  

)(
1

te∞  )(
2

te∞  )(
1

tCη
 

)(
2

tCη

 
 

Figure (5.1): Multivar ltiple-controller selection procedure 
using the fuzzy-logic based switching logic subsystem. 

 

5.3.3 Fuzzy Logic Based Multivariable Multiple-Controller Tuning Subsystem 

The inp which 

includes: part of the measurements supplied by the behaviour recogniser )(t , the 

output of the switching logic C  (i.e. the active controllers), and the cu l 

input signals T . 

iable mu

ut parameters of the fuzzy tuning subsystem are contained in tΞ , 

Ξ

η rrent contro

n tututut ])(...)()([)( 21=u
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Ξ .       (5.12) 

eters of the active/selected 

controllers. The new tuning values are contained in the tuning signal 

⎤)()()( 11
tutCt η

τC , which 

g subsystem and expressed as: 

⎥

⎥

⎦⎢

⎢

⎢

⎣ )()()(

...

~

represents the output parameters of the fuzzy tunin

⎥
⎥

⎥
⎥
⎥
⎥

⎤

⎢

⎢
⎢
⎢
⎢

⎡

=

~
...
...

)()()(
)()(~)(

222
tvtHtT
tvtHtT

nnn

τττ

τττ

τC ,                                   (5.13) 

where TtTtTtTt )]()()([)( ττττ L=T  and TtHtHtHt ])(

111

tvtHtT τττ

21 n n

~)(~)(~[)(~
21

Placement multivariable controllers, and  is the 

tuning values for the gains of the active multivariable PID controllers. 

 

ττττ L=H  

respectively represent the tuning values for the poles and zeros of the active Pole-Zero 

T

 

 

tvtvtvt
n

)]()()([)(
21 ττττ L=v
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5.3.3.1 Fuzzy Membership Functions for the MIMO System Tu Logic 

To simplify the design of the fuzzy supervisor for the multivariable multiple-controller, 

the tuning logic fuzzy sets of the SISO case, presented in chapter (4) section (4.3.3.1), 

have 

ning 

been used for the tuning logic of the MIMO control system. 

5.3.3.2 Fuzzy Rules for the Tuning Logic of the Multivariable Multiple-Controller 

controller is given below

η  OR η ,… IS P

The fuzzy logic based tuning subsystem is completed by writing the rules which will 

prescribe the tuning values for the parameters of the active controllers. The complete set 

of rules for the fuzzy logic based tuning subsystem for the multivariable multiple-

: 

• Rule 1: IF C C , ID AND )(ty)(
1

t )(
2

t )(tC
nη  

1
ζ  OR )(ty2

ζ ,…, 

)(t
nyζ  IS Norm THEN )(

1
tvτ  OR )(

2
tvτ ,…, )(tv

nτ  IS No-Chang

Ru

e 

• le 2: IF  OR ,…,  IS PID AND  )(
1

tCη )(
2

tCη )(tC
nη )(

1
tyζ  OR )(

2
tyζ ,…, 

)(t
nyζ  IS NOT Norm THEN  OR ,…,  IS Decrease 

• Rule 3: IF  OR ,…,  IS PID AND  OR ,…, 

 IS NOT Norm THEN  OR ,…,  IS Increase 

• Rule 4: IF  OR ,…,  IS PolZroPlcmt AND 

)(
1

tvτ )(
2

tvτ )(tv
nτ

 )(
1

tCη )(
2

tCη )(tC
nη )(

1
te∞ )(

2
te∞

)(te
n∞ )(

1
tvτ )(

2
tvτ )(tv

nτ

 )(
1

tCη )(
2

tCη )(tC
nη )(

1
tyρ  OR 

)(ty2
ρ ,…, )(t

nyρ  IS Slow THEN )(tTτ  OR )(tTτ ,…, )(tT  IS Faster 

Rule 5: IF )(tCη  OR )(tCη ,…, 

1 2 nτ

•  IS PolZroPlcmt AND 
1 2

)(tC
nη )(

1
tyρ  OR 

t)( )(t
2yρ ,…, 

nyρ  IS Average THEN tT  OR tT ,…,  IS Average )(
1τ 2τ nτ)( )(tT

 123



• Rule 6: IF )(
1

tCη  OR )(
2

tCη ,…, )(tC
nη  IS PolZroPlcmt AND )(

1
tyρ  OR 

)(
2

tyρ ,…, )(t
nyρ  IS Fast THEN )(

1
tTτ  OR )(

2
tTτ ,…, )(tT

nτ  IS Slower 

• Rule 7: IF )(tC  OR )(tC ,…, )(tC  IS PolZroPlcmt AND )(t
1η η y2 nη 1

τ  OR 

)(ty2
τ ,…, )(t

nyτ  IS Slow THEN )(tTτ  OR )(tTτ ,…, )(tT  IS Faster 
1 2 nτ

• Rule 8: IF  OR ,…,  IS PolZroPlcmt AND  )(
1

tCη )(
2

tCη )(tC
nη )(

1
tyτ  OR 

)(
2

tyτ ,…, )(t
nyτ  IS Fast THEN  OR ,…,  IS Slower 

• Rule 9: IF tC  OR tC ,…,  IS PolZroPlcmt AND tu  OR 

)(
1

tTτ )(
2

tTτ )(tT
nτ

)(
1η 2η nη 1

)(2 tu ,…, )(tun  IS PstiveHigh THEN )(

)( )(tC )(

~
1

tHτ  OR )(~
2

tHτ ,…, )(~ tH
nτ  IS Increase 

• Rule 10: IF )(
1

tCη  OR )(
2

tCη ,…, )(tC
nη  IS PolZroPlcmt AND  OR 

u  IS Ng igh TH

)(1 tu

)(2 tu ,…, )(t tiveH EN )(~ )(~ )(~ tHn 1
tHτ  OR 

2
tHτ ,…, 

nτ  IS 

Decrease 

• Rule 11: IF  OR ,…,  IS PolZroPlcmt AND  OR 

,…,  IS Increasing THEN 

)(
1

tCη )(
2

tCη )(tC
nη  )(

1
twΠ

)(
2

twΠ )(t
nwΠ )(~

1
tHτ  OR )(~

2
tHτ ,…, )(~ tH

nτ  IS 

Decrease 

• Rule 12: IF  OR ,…,  IS PolZroPlcmt AND  OR 

,…,  IS Decreasing THEN 

)(
1

tCη )(
2

tCη )(tC
nη  )(

1
twΠ

)(
2

twΠ )(t
nwΠ )(~

1

~
2

tHτ  OR )(tHτ ,…, )(~ tH
nτ  IS 

Depending on the fuzzified value of the fuzzy rules input parameters, the tuning logic 

subsystem will employ the centroid defuzzification procedure to generate the tuning 

value for the parameters of the active controllers which include the PID gains v  of the 

o

Increase 

multivariable PID contr ller, the poles in T  and/or the zeros in H~  of multivariable 
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Pole-Zero Placement controller. The tuning values 

signal

will be contained in the tuning 

τC  in equation (5.13) above. 

5.3.3.3 Inference Procedure for the Tuning Logic of the Multivariable Mu

Controller 

The fuzzy logic based tuning subsystem for adjusting the parameters of the 

ultivariable m er uses the fuzzy input parameter Ξ  to prescribe the new 

ning values (i.e. 

ltiple- 

m ultiple-controll t

tu τC ) for the parameters of the active multivariable controller. The 

Mamdani fuzzy system operations of fuzzification, inference and defuzzification were 

used to design the tuning logic for MIMO plants. The input fuzzy sets are used to 

uantify the tunin ic input param Ξ ) in the rule-base, and the 

echanism operates the rules that are relev situation in order 

to produce the memb rship of the fuzzified inputs to the output fuzzy sets. Then, the 

entroid defuzzif atio rocedure is applied to generate the cont oller tuning values 

q g log eters (contained in t

inference m ant to the current 

e

c ic n p r

τC

-  gain of the active 

PID controller. In this case, depending on the selected controller and the fuzzy inputs 

(premises of the 12 fuzzy rules) only rules 1, 2, 3, 5, 8, 9, and 

the centroid defuzzification approach was used to produce the final tuning values )(tT , 

. 

Figures (5.2) below shows an example a MIMO system with two control inputs and two 

system outputs. The tuning logic subsystem employed to tune the poles and zeros of the 

active Pole Zero Placement controller simultaneously with the PID

11 fired. Then, the 

fuzzified regions combined together with an OR to form the output regions. Therefore, 

1τ
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)(~
1

tHτ  for the poles and zeros of the active Pole-Zero Placement control

)(tv  for the PID gain of the other controller )(tC  which was a conventional PID 

controller. 

ler ( )(
1

tCη ) and 

2 2τ η

 
 

Figure (5.2): Multivariable multiple-controller tuning procedure. 

LM for Complex MIMO Systems Represent

mate the 

nonlinear part ),( uyf  of equation (5.3).  

5.4 RBF Based G ation 

RBF neural network based learning model is subsequently used to approxi

,0 t
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The RBF based MIMO neural network is effectively used for estimating the non-linear 

function 0f , with the identification error )(tε  being used to update the weights and 

thresholds of the learning neural network model. The neural network model em

in the proposed control scheme is chosen to be the computationally less expensive 

o e MLP neural network 

previously used by [16

ployed 

linear-in-parameters RBF neural network as pposed to th

, 17]. The RBF NNs improve the system damping and dynamic 

transient stability more effectively than the MLP NNs. Also, the RBF requires fewer 

computational complexities and elapsed time to train the network on-line, than the MLP 

[23]. The RBF NNs ability to uniformly approximate smooth functions over compact 

sets is well documented in the literature (see for example [48]). 

The schematic diagram of the RBF neural network is shown in Figure (5.3), where the 

non-linear function  is adaptively estimated by using the following equations 

[37

)(,0 .,.tf

]: 

 
 

Figure (5.3): RBF Neural network based learning model to appro
the non-linear function  
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]1][[ ,0,0,0,0 iiiiji ffffηg −−=δ ,                                   (5.15) 

twtw ijiji δ+−= )1()( ,                                          (5.16) 

∑
=

−
=

l

i
i
j

i
ji

ji σ

cx
tg

1
2)2(

exp)( ,

2

      

where w  is the hidden layer weights, 

                                  (5.17) 

β  is the output layer threshold, iji δ  is the change 

in weights, η  is the learning rate,  is the inputs, is the centre of Gaussian basis 

function of the th  hidden unit, ber of inputs, and  is the output of the 

hidden layer. The variance of the Gaussian units i  is dependent on the input 

imension because the RBF inputs are scaled differently [49

ix i
jc

j l  is the num jig

jσ

d , 12]. 

The MIMO RBF based nonlinear sub-model is designed with twelve 

were selected to have adaptive centres which tuned offline using Equations (4.19 and 

4.20) in chapter 4 at section (4.4.1). Two of the fixed centres represent the smallest and 

the largest inputs of the training data set, and the other two fix

the middle of the input space of the training data set. The output layer weights were 

updated online using the Delta rule. This MIMO RBF design is used for the simulation 

5.4.1 RBF Neural Network Parameters Setting 

The parameters setting and tuning of the MIMO RBF neural network is achieved using 

the same procedure applied for the SISO RBF neural network, as mentioned in section 

(4.4.1) above. 

units in the hidden layer four of which had fixed centres and the remaining eight units 

ed centres are situated in 
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experiments of the two inputs and two outputs MIMO water vessel sys

chapter six. The neural network based nonlinear sub-model of the MIMO GLM had 

. −

tem presented in 

eight inputs and two outputs. The inputs were the last and current of the two control 

input signals (i.e  )1(1 tu , )(1 tu , )1(2 −tu  and ) and the last and current of the two 

system output signals (i.e. )1(

)(2 tu

1 −ty , )(ty , )1(1 2 −ty  and )(ty ). On the other hand, the 

two outputs of the RBF neural network nonlinear sub-m (.,.)f  and (.,.)f , 

 of the 

complex MIMO plant that is to be accommodated in the multivariable multiple-control 

control law. 

For the autonomous vehicle control application, given in chapter six in section (6.4), the 

d the remaining nine units were selected to have adaptive centres. The 

neural network based nonlinear sub-model of this MIMO GLM had twelve inputs and 

three outputs. The inputs were the last and current of the three control input signals (i.e. 

, )(tu , )1(

2

odel were 1,0 2,0

which represent the approximation of the nonlinear dynamics and disturbances

MIMO RBF neural network had thirteen units in the hidden layer four of which had 

fixed centres an

)1(1 −tu , )(1 tu , )1(2 −tu 2 3 −tu  and )(tu ) and the last and current of the 

)1(

3

three system output signals (i.e. 1 −ty , )(ty , )1(1 2 −ty , )(ty , )1( −ty  and )(ty ). 

On the other hand, the three outputs of the RBF neural network nonlinear sub-m

were f , (.,.)f  and (.,.)f . 

 

2 3 3

odel 

(.,.)1,0 2,0 3,0
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5.5 Novel Intelligent Multivariable Multiple-Controller Framework for 

MIMO Complex Systems 

In this section the convention multivariable multiple-controller proposed in [17, 39, 46], 

ntroller 

framework for achieving more efficient control of complex MIMO systems. The new 

developed methodology combines the advantages of the adaptive conventional PID 

controller with the Pole-Zero Placement controller through the autonomous tuning and 

RBF neural network based GLM. The autonomous switching and tuning actions are 

performed by the fuzzy-logic supervisor employed at the top of the MIMO control 

system, as can be seen in Figure (5.4) next, according to the data received from the 

control system, the environment and the information supplied by the user. Therefore, 

the switching and tuning decisions are made on the basis of the closed-loop system 

performance measurements and the user desired performance. 

The general transfer function for the proposed multivariable multiple-controller is as 

presented in equation (5.3), is extended to a novel intelligent multiple-co

switching between the these multivariable controller and by incorporating the MIMO 

follows: 

),(
(.,.)])()()1()~,()[(

)( ,0

τη

τητ

Tq∆q
fH∆FywFHHHvv

u tNtt
t

′+−
= ,               (5.18) 

where )(tw  is an 1×n  vector represents the system set-points, (.,.)f  is a nonlinear 

ics and disturbances of the complex MIMO 

system under control, ∆  is the integral action required for the PID design, F  is a 

,0 t

function representing the nonlinear dynam
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polynomial derived from the linear para ters of the controlled plant and includes the 

desired closed loop poles, )1(F  is the value of F at the steady state, NH′  is a user-

defined polynomial used for a

me

tivating the nonlinear function (.,.)f . 

uired position: 

          (5.19) 

c ,0 t

The transferred poles q  were derived through the following Diophantine equation 

which is used to place the poles of the system in the req

TFvB∆Aq =+′ − )( 1z ,                                 

where T  represents the desired closed loop poles and q′  is the controller polynomi l. a

 

 

 

Figure (5.4): Intelligent Multiple-Controller Fra ork for MIMO complex systems. 
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In the multiple-controller above, )( τvv  is the tuned PID gain and ),( τη Tqq  represent 

the transferred poles of the control system transfer function as a function of the 

switching p ning parameter τT  and can be expressed as: 

q

q

n
n zzz −−− ++++= qqqqqqITqq ηηητη ...),( 1

2
1

1 .    

arameter  and the t

                (5.20) 

r

 and  are diagonal matrices, the above equation can be written in the form

q
q

nii
n zq −+ ηq ,              (5.21) 

iiii

( i 2,1=

The term

ηq u

To simplify the rep esentation of the equation (5.20), since the identity matrix I , , 

2 qn

1q

q q : 

...1(),( 2
2

1
1

iiii zqzqdiag −− +++= ηητη qqTqq )

where qn  is the order of the transferred poles, and the tuned poles are 

qn ). 

i
tqq ii τ+=  

,...,

 )~,( τη HHH  represents the control law transfer function zeros as a function of 

s switching and tuning parameters, respectively,  and ~  as it can be 

seen in the next equation: 

ηH τHthe autonomou

~ 1)]~,,1(~)[~,(~),( −= τητητ HHHHHHH ,                         (5.22a) η HH

where, n−−− h

hn zzz ++++= HHHHHHIHHH ~...~ )~,( ~~ 2
2

1
1 ηηητη  and can be written as: 

)...1()~,(~ 21 niiiiii −−− ,          (5.22b) 

and 

21
h

n zhzhzhdiag ++++= ηηητη HHHHHH
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)...1()~,,1(~
2

ii
n

ii
h

hh ηη HH +++ ,                 (5.22c) 1
iihdiag ητη HHHH +=

which denotes the zeros )~,(~
τη HHH  during the steady state.  represents the order of 

polynomial H , and the tuned zeros are 
i

hhh ii τ

hn

~ iiii ~
+=  and ),...,2,1( hni = . 

The next subsections will present the two control modes of the intelligent multivariable 

5.5.1 M e 1: Conventional Adaptive PID Controller 

c tional

multiple-controller. 

ultiple-Controller Mod

In this mode, the multiple-controller operates as a onven  adaptive PID controller, 

which can be expressed in the most commonly used velocity form [41] as: 

)2()1(]2[)(][)()( −−−−−−++−=∆ ttttt yKyKKyKKKwKu .  (5.23) 

If we assume that the degree of the polynomial 1−  is equal to 2 

211 −−− iiiiii ,                               (5.24) 

and both the pole-placement polynomial ),( Tqq  and zero-placement polynomial 

DDPDIPI

)(zF

)()( 210 ++= zfzffdiagzF

τη

)~,(~
τη HHH

parameter 

 are switched off when the fuzzy logic supervisor sets the switching 

C  as: 

.                            (5.25) 

η

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

==

==
==

==

00
::

00
00

][ 22

11

hnqn
Hq

Hq
Hq

ηη

ηη

ηη

ηηη HqC
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Consequently,  

21 qniiiiii −−− ,            (5.26a) ))0(...)0()0(1(),( 21 qn zqzqzqdiag ++++=τη Tqq

))0(...)0()0(1()~,(~ 21 niiiiii −−− .          (5.26b) 

Therefore, 

−1 iiiiii

,              (5.27) 

then a multivariable adaptive controller with PID structure is obtained, where  

21
h

hn zhzhzhdiag ++++=τη HHH

⎪⎭

⎪
⎬
⎫

=====

===′=′=
−

′

)0~...,...~~ i.e.( ),1()(~
)0..,..  i.e.(),1()(

~21
1

21
ii

n
iiii

n

h

q

hhhdiagz

qqqdiagz

H

q

∆

′∆+++−
=

(.,.))()()()1(
)( ,0210 tNtzzt

t
fHVyfffVwVF

u ,
−− 11

         

iiii ,                                    (5.29a) 

iiiiiiiiiiii ,                              (5.29b) 

iiii ,                                          (5.29c) 

where ni ,...1= . It can be seen from the above equations (5.28), (5.29a), (5.29b) and 

(5.29c) tha  the PID control parameters K K  and K  depend on the polynomial 

matrix 1−  and the gain m

   (5.28) 

)2( 21 fvfvdiag +−=PK

)( 210 fvfvfvdiag ++=IK

)( 2fvdiag=DK

t P I D, 

)(zF atrix V  [41, 43]. 
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5.5.2 Multiple-Controller Mode 2: Pole-Zero Placement Controller 

This control mode works to achieve more effective control actions and com

advantages of the adaptive PID control with the advantages of the placement poles and 

zeros [17

bines the 

, 39]. 

In this multivariable controller mode, the fuzzy logic based switching para

set to: 

⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

==

==
==

==

11
::

11
11

][ 22

11

hnqn
Hq

Hq
Hq

ηη

ηη

ηη

ηηη HqC .                             (5.30) 

Consequently,  

21
qn

iiii zqzqzqdiag −− ++++= ηηητη qqqTqq .               (5.31) 

For a control system with two control inputs and poles of order two, then ),( Tqq  can 

be expressed into: 

0000

.    (5.32) 

Appling the fuzzy logic based switching decision in equation (5.30) above, then 

0000 001 ⎤⎡⎤⎡⎤⎡ qq
   

meter ηC  is 

⎥
⎥
⎥

)...1(),( 21
qnii −

τη

2
11
2

21
11
1

1

0
0

][
0

0
][

10
01

),(
2121

−−
⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
= z

q
q

qqz
q

q
qq ηηηητη Tqq

2
11
2

21
11
1

1

0
]11[

0
]11[

10
),( −−

⎥
⎦

⎢
⎣

+⎥
⎦

⎢
⎣

+⎥
⎦

⎢
⎣

= z
q

z
qτη Tqq ,         (5.33)

0
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which will activate all the MIMO system’s transferred poles. 

Similarly, with 2=n  the control system zeros will be included in multivariable control 

law as follows: 

h

)...1()~,(~ 21 niiiiii −−− ,            (5.34) 

which can be detailed to 

00
21

11

00
1 0][0][

01
)~,(~

2121

−−
⎥
⎤

⎢
⎡

+⎥
⎤

⎢
⎡

+⎥
⎤

⎢
⎡

= zhHHzhHH ηηηητη HHH .  (5.35) 

. ve

00
21

00
1 0]11[0]11[

01
)~,(~ −−

⎥
⎤

⎢
⎡

+⎥
⎤

⎢
⎡

+⎥
⎤

⎢
⎡

= zhzh
τη HHH .        (5.36) 

21
h

hn zhzhzhdiag ++++= ηηητη HHHHHH

2
11
21 0010 ⎦⎣⎦⎣⎦⎣ hh

Appling the fuzzy logic based switching decision in equation (5 50) abo , then 

2
11
2

11
1 0010 ⎦⎣⎦⎣⎦⎣ hh

Therefore, an adaptive Pole-Zero Placement controller with PID structure is obtained, 

where  

(.,.)])
),(

)()(1()~,()[(
)(

τη

τητ

Tq∆q
∆FyFHHHvv

u
tt

t
+−

=

The PID parameters K , K  and K  derived as in mode 1 above. 

O Ca

r

,0fHw tN′ .                (5.37) 

P I D

5.5.3 Multivariable Multiple-Controller Algorithm Summary: MIM se 

The proposed intelligent multiple-controller algo ithm can now be summarised into the 

following steps: 
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Step 1: Select the initial desired closed-loop system poles and zeros polynomials T  and 

~  respectively. 

Step 2: In order to avoid high control action, at the start of the control process, and 

consequently prevent output signal overshooting, the MIMO system

work with the multivariable Pole-Zero Placement controller by setting C  as follows: 

⎦

⎤

⎢

⎢

⎣

⎡

==

==

11
::

11
11

hnqn
H

Hq

ηη

ηη

ηηη

Step 3: Select F  and the initial value for the gain v  for the desired PID control 

structure. 

Step 4: read the current values of )(ty  and )(tw . 

Step 5: Compute the control input )(tu  using equation (5.37) when the current 

ontroller is Pole-Zero Placement, or using uation (5.28) when the controller is the 

conventional PID controller. 

Step 6: Estimate the process linear param ters  ˆ  and ˆ  using the least squares 

algorithm

Step 7: Compute 

H

 is initially set to 

η

⎥
⎥
⎥
⎥
⎥

⎢

⎢
⎢ ==

==
11

][ 22

q

Hq ηη
HqC . 

c eq

A Be

 of the linear sub-model in the MIMO GLM. 

)()((.,.)0 tt yyf −= ˆ , where )(tŷ  is the output of the linear sub-model. 
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Step 8: Apply the MIMO RBF based nonlinear sub-model of the GLM to obtain (.,.)ˆ
0f  

by using equations (5.14)-(5.17). 

Step 9: The behaviour recogniser will assess the current performance of

 output vector y

vector )(tu  and the user requirements. 

Step 10: The behaviour recogniser will report the system performance to the fuzzy logic 

)(tΞ . 

Step 11: The fuzzy logic switching subsystem will employ )(tΞ  to make the switching 

 to be activated, that is achieved by 

reconfiguring the switching matrix . For a multivariable Pole-Zero Placement 

controller 
T

⎡
=

1...11
C  (  is number of control inputs), for a multivariable 

PID controller  According t

ion c e ers for the 

various control inputs at the same instant of time t . For instance, the fuzzy switching 

command 
T

0...10
0...10

ηC  will set the second control input to the Pole-Zero 

 the control 

system using the system )(t , the set-point vector )(tw , the control input 

based switching and tuning subsystems as concluded in 

s

decision for the next multivariable controller

ηC

n×
⎥
⎦⎣ 21...11η
⎤

⎢ n

T

n×
⎥
⎦

⎤
⎢
⎣

⎡
=

20...00
0...00

ηC . o the performance of the MIMO 

control system, the fuzzy logic switching decis ould set differ nt controll

n×2

Placement controller, but the other control inputs to be PID controllers. 

⎥
⎦

⎤
⎢
⎣

⎡
=
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Step 12: B t , the fuzzy logic tuning subsystem will decide the tuning values 

for the parame ers of the current multivariable controller that is by setting the fuzzy 

logic tuning output 

ased on Ξ

t

τC . 

Steps 4 to 12 are to be repeated for every sampling instant. 

5.6 Closed Loop Stability Analysis of the Intelligent Multiple-

Controller Framework 

Stability of the proposed control algorithm is analysed based on the following 

assumptions: 

Assumption A: Given a positive constant  and a compact set ⊂S , there exist 

 that (f tinuous functions (.,.)f  with 

accuracy ε : 

ba nn ×ε R

coefficients W  such ).,W  approximate the con0 0

, that is

SxεxfWxfW ∈∞<≤−∃ ;)(),(max.. 0ts ˆ .                         (5.38) 

Assumption B: f  is a bounded quantity [52(.,.)0 , 16]. 

nal is bounded. 

In order to derive the stability of the overall closed lo

each of the two controller switching modes (Pole-Zero Placement controller and PID 

Assumption C: the reference sig

op system, the stability analysis of 
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controller) is discussed separately in sections (5.6.1) and (5.6.2) respectively, whereas 

the stability of the fuzzy sw s discussed in section (5.6.3). 

5.6.1 Stability Analysis of the Multivariable Multi

itching and tuning system i

ple-controller Mode 1 (Pole-Zero 

Placement controller) 

 at time t  and )( ktThe closed-loop system transfer function +  can be described by the 

following Lemma, which is derived from the transfer function of the closed-loop system 

in Figure (5.5), next, when the Pole-Zero placement control
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l
Pole-Zero placement controller. 

 

In Equation (5.39), :  is dimension of th

1− 1−

 

 

Figure (5.5): Non-linear genera ised minimum variance  
 

mi ,...2,1= m e MIMO system linear 

polynomials )(zA  and )(zB  with matrices size ( mm× ), 

−+− ,            (5.40a) 

,            (5.40c) 

,       (5.40d) 

,  and denote

).()..(
,,,1, ,,,,,,,1 tititti nkintikitidtitidkii PBPBAEPAEPBA =

).()..(
,,,, ,,,,,,,2 titititi nkintikitidtitidkii PAPAAEPAEPAA −+−=

).()..( ,,,.,,,,,1 ,,,, tidkititidtitidkitidkii QPBBQPBEPBEPBB
titititi

−+−= ,       (5.40b) 

).()..( ,,,,,,,,,2 ,,,, tidkititidtitidkitidkii QPAQAPBEPBEPAB
titititi

−+−=

tiA ,  , kiA , , B  the estimate values of )( 1−zA  and )( 1−zB  at t  and ktti kiB ,  +  

moments respectively, i.e. 

),(),,( ,
1

,
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tiki AB ,,
1) ≠− ,                           (5.42) kiti zktztBA 1

,, ,().,(. += − BA

,,,, ,( =AB .                                     (5.43) 

.                           (5.44) 

To simplify the derivation let IC

titititi ABztBA 1). = −

Proof  1: To prove this lemma, reconsider the plant in Figure (5.5): 

)1((.,.))()1( 0,, +++=+ ttBtA kiki Cξfuy

= . 

Multiplying equation (5.44) by EP ,  we obtain: 
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++ tEP tid ti
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The dynamic relationship between the plant input and output given in (5.39) can 

subsequently be obtained by multiplying equation (5.47) by kiB ,  and kiA ,  respectively, 

and combining the results with equations (5.41), (5.42) and (5.43). 

The stability and convergence of the algorithm are then as stated below: 

Theorem 1: If assumptions A, B and C are satisfied and hold, the recursive parameter 

estimation algorithm has the following properties [16, 38]: 

∞<
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)]([lim ,tit
; ty ∞<
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)]([lim ,tit

tu ,                                  (5.48) 

∞<<+ 22
, )1(lim tti σφ .                                        (5.49) 

The boundedness of )(ty  and )(tu  in equation (5.48) can be proven by considering in 

lemma 1 that the terms in the parentheses of (5.39) tend to zero at ∞→t  subject to 

assumptions A and B, and the boundedness of )(tw . Therefore, the algorithm stability 

is proven. From equation (5.47) we have that: 

∞→ ,tit
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(.,.)](.,.)[)1(.
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ffξ
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φ
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ˆ

)().( y ++− ktAEAEP ,           (5.50) 

∞<=≤+
∞→

2
,,

2
, , titidtit ti

22)()1(lim EPt σφ ε .                            (5.51) 

Hence, the convergence of equation (5.49) is proven. 
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5.6.2 Stability Analysis of the Multivariable Multiple-controller Mode 2 (PID 

controller) 

 

 

 

 
 
 
 
 

To prove the stability of the adaptive Nonlinear PID controller, consider the transfer 

function of the closed-loop system in Figure (5.6). 

Figure (5.6): Non-linear generalised minimum variance PID controller. 
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After manipulating the transfer function in equation (5.52) the resultant equation is, 

thus, 

kk .         (5.53) 

If we let 

(.,.)]1[)()()(][ ,00 tNtzttz ∆fBHC∆wBvHyBvF∆A +++=+ ξ

)()(1 tt Cξx = , (.,.)]1[)( ,02 tNt fBHx +=  and let −1 , then the equation 

(5.53) above becomes 

dz =

)(tw  

- 

+ 
+ 

+ 

)(ty  +
+ )(tu +

vF

NH′

(.,.)kz f−
,to

A

+ 

A
C  1

∆
1  

 Plant 

A
Bkz−0vH
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)()()()(][ 210 ttdttd ∆x∆xwBvHyBvF∆A ++=+ kk −− .                 (5.54) 

Let the transferred poles to be denoted as G′  such that 

−k .                                            (5.55) 

The transfer function fr )(tw  to the output )(ty  becomes 

1− ,                                            (5.56) 

the transfer function from the disturbance )(tx  to the output )(ty  becomes 

yx

BvF∆AG +=′ d

om the reference input 

0][ BvHGG ′=wy

1

∆GG k
yx d −−′= 1][

1
,                                           (5.57a) 

and the transfer function from the disturbance )(2 tx  to the output )(ty  becomes 

∆GG 1][ −′= .                                              (5.57b) 

The poles of the closed loop system are determined by G

2

′  and the zeros are those of the 

open loop zeros plus additional zeros provided by the term 0H , assumin  no po e 

zero cancellation occurs providing that the Pole-Zero Placement controller is set offline. 

The condition for the closed loop stability is then dependent on G′  such that, for 

stability, 0)det(

g that l

=′G has all its roots strictly outside the unit circle. The requirement is 

equivalent to G′  having non-zero eigen values. Therefore, to prove the stability of the 

closed loop system, it is necessary to prove that G′  is a complex matrix which has an 

inverse for 1<d  [53, 54, 43]. From the followi enng id tity [17, 37] 
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FAEPP k
dn z −+= ,                                             (5.58) 

we can derive F  as 

)( dn
kd AEPPF −= − .                                           (5.59) 

Substituting equation (5.59) into the expression for G′ , we obtain 

1 EAPPBvA dn −
− .                                (5.60) [∆AG kd +=′ − )](

Knowing that I∆ )1( d−=  and ID )(d= , then G′  can be written as 

dnd

Let 

)]()1([ EAPPBvADPIAG 1k ddd −+′−−+=′ −− .                  (5.61) 

1 EAPPBvADP dnddd −+′−−= − ,                          (5.62) 

es 

−k .                                             (5.63) 

For the stability, using the result of [55

1G′ )()1(

then equation (5.55) becom

)( 1GIAG ′+=′ d

] and [56], 1G′  must be less than 1 for all 

1<d . A further requirement is that  is stable. Recall that  is diagonal matrix and 

tting p  be one of the elements of the matrix, we can choose 

A dP

le 1

5.0)1)1((5.0 1 ≤−−≤− pdd                                       (5.64) 

 146



Therefore, ddPd −− 1)1(  is less than 0.5 if we select 

)1()1( 1 d
p

d −
1)/5.0(1)/5.0( dd +

≤≤
−

+−

Finally it is necessary to prove that the remaining term in equation (5.62) has a modulus 

less that 0.5 with the assumption that the term is bounded. Therefore, we can consider 

that for stability, v , P  and P  can be chosen small enough such that the modulus of 

the remaining term is less than 0.5. Hence, referring to the triangular inequality 

.                                   (5.65) 

n d

)()1(1 EAPPBvADPG dnddd −+′−−≤′ 1− . 

This makes 1G′  less than 1 and the stability of the closed loop system is proven. 

5.6.3 Stability of the Fuzzy switching and tuning system 

Based on the work of [57, 58], this section will outline the stability of the Fuzzy 

switching and tuning supervisory system. Le tate vector at time instant k  

be 

t the system s

T
n kxkx(k)x )]()...([ 1= where )()...(1 kxkx n  are the state variables of the system at tim

k e k  be 

e 

)]()...([)( kukukuinstant , and the controllers state vector at tim 1 m=  where 

)()...( kku  are controller state variables and m  is the number of controllers. Then the 

switching and tuning fuzzy system is defined by the implications below 

1 um

iR : IF( )(1 kx is iS1 , AND…AND )(kxn  is i
nS ) THEN )1( +ku  is )(kug ,     (5.66) 
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for Ni ...1= , Mg ...1=  and )(kug  is the new controller state updated by switching 

and/or tuning. 

Here, S1  is the fuzzy set corresponding to the state variable ix  and implication i 1R . The 

truth value of the implication 1R  at time instant k  denoted by )(kwi  is defined as 

1
1

nssi i
n

i )))(()),...,((()( kxkxkw µµ∧= ,                               (5.67) 

where )(xsµ  is the membership function value of the fuzzy set S  at the position x  and 

∧  is an operator satisfying 

0),...,(),...,min( ≥∧≥ llll . 

operands. Then, at instant k  the controllers state vector is updated according to kw  

in order to enable the required control state. 

s 

11 nn

Usually ∧  is taken to be the minimum operator which gives the minimum of its 

i

A fuzzy system is completely represented by the set of characteristic matrice

)(

],...,[ 1 n jAAΑ =  and the fuzzy sets l ...1;..1, == . Corresponding to this fuzzy 

system, the corresponding switching and tuning system is described below. 

The state update at time instant k  is given as 

njNlS

)1 (kxA)(kx =+ ,                                              (5.68) 

where AA∈  (i.e., it is one of the matrices ). nAA ,...,1
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The following is a definition of global asymptotic stability of the switching and tuning 

system. 

Theorem 2: The switching system described in (5.68) is globally asymptotically stable if 

0)0()()1( →=+ xkAkx  as ∞→k ; n ,                    (5.69) x ℜ∈∀ )0(

where kAkA ∈)( . Equivalently 0)( →kA  as ∞→k ; kAkA ∈)( .       (5.70) 

The proof of the above theorem 2 is presented in [58]. 

rame n er problems 

during the switching mode in any of the simulation results [17

The multiple-controller f work is not founded to exhibit any tra sf

, 37]. In continuous 

syste i  by 

5.7 Summary 

Often the operators have been overwhelmed by the task of choosing the adequate time 

ms, the problem of the transit on between the controller modes can be solved

using a hold circuit. In our case, the system is discrete and the hold circuit is not needed 

and since the controllers exhibit bumpless switching the stability of the controller is 

achieved. 

In the recent years, several control strategies for different process phases have been 

developed. Most of these control schemes have been manually activated by operators. 

instant for activating the several control algorithms and tuning them [129]. Therefore, it 

was of utmost importance to develop a supervisory control scheme, which is capable of 

activating and tuning autonomously the different process low-level controllers. Due to 
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the importance of supervisory control and the fact that multivariable controllers are 

great interest in the industrial and engineering fields, this chapter presented the 

autonomous intelligent multivariable multiple-controller framework for the control of 

complex MIMO plants. The proposed multivariable approach extends the SISO results 

shown in the previous chapter. 

h n r s

having a PID structure, operate using the same adaptive procedure and can 

be selected on the basis of the required performance measure. The proposed intelligent 

choosing the appropriate control algorithms (either conventional PID or Pole-Zero 

The proposed methodology uses a Mamdani fuzzy logic system for the supervision of 

the low-level multivariable multiple-controller whic  i co porate  a GLM for MIMO 

system representation. In the GLM, the unknown complex process to be controlled is 

represented by an equivalent stochastic model consisting of a linear time-varying sub-

model plus a computationally-efficient MIMO RBF neural-network based learning sub-

model. The employed multivariable adaptive controllers are the conventional PID 

adaptive controller and the PID structure based (simultaneous) pole and zero placement 

controller. Both controllers (multiple-controller modes 1 and 2) benefit from the 

simplicity of 

multiple-controller works by adaptively tracking a desired reference signal, achieving 

the desired output signal performance and penalising excessive control actions, in 

response to the current performance of the control systems. 

To achieve fast recognition of the MIMO control process phases, the fuzzy logic 

supervisor employs a behaviour recogniser subsystem to assess the system’s 

performance through the system output signals and control input signals. The tasks of 
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Placement) and online tuning of the parameters of the active control algorithm are 

performed by the other two subsystems of the fuzzy supervisor, namely the switching 

logic and tuning logic. Both subsystems operate through fuzzy logic rules and fuzzy sets 

which are designed according the required performance and c lity 

restrictions. The switching and tuning decisions are based on the specific perform

criteria and continual monitoring of ctiven  each iva e c ll  

achieving these criteria in response to set-point changes, nonlinear dynam nd  

ex  dist es i lex  plant

The chapter ded t tion stabili lysis  pr osed llig

m a le- ler fr rk. y o very ode is 

presented in

The next chapter presents new applications of the proposed intelligent multiple-

controller framework for SISO and MIMO complex systems. 

ontrol system stabi

ance 

 the effe ess of  mult riabl ontro er in

ics a  the

ternal urbanc n the comp  MIMO . 

 provi he deriva  of the ty ana  of the op  inte ent 

ultivari ble multip control amewo  The stabilit f e  control m

 addition to the stability of the fuzzy logic based switching and tuning 

mechanism. 
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Chapter 6  

Co

Applications of the New Intelligent Multiple-

ntroller 

6.1 Introduction 

As ri e two rs, th sis p es ew lli  

m -con r fram for S nd MI mplex system  modelling a d 

control. The iques that this the us on a proved approxim  of e 

complex system nonlinear dynamics and disturbances using the RBF based GML, and 

the autonomous tuning and switchi een th ventio ID ro nd  

Pole-Zero nt r us e fuzzy-logic bas igh vel supervisor. 

Th re, lation experime uct cha wi k t ghli t 

the importance of the improved approximation of nonlinear functions ,.)  and 

(.,.)f , which form part of the SISO and MIMO control laws. rthe

capabilities of the fuzzy-logic supervisor in improving the perform of con  

system i  

maintaining low control actions and min ised system output variance. Also, we 

introduce a new challenging control problem which is the application of autonomous 

vehicle control. 

 desc bed in th previous  chapte is the ropos  a n  inte gent

ultiple trolle ework ISO a MO co s’ n

 techn sis foc re the im ation th

ng betw e con nal P  cont ller a  the

Placeme controlle ing th ed h le

erefo  the simu nts cond ed in this pter ll see o hi gh

(o .f 

 Fu rmore, the 

ance the trol

o

n tracking the target sign ling nlin es and disturbances,als, dea  with no eariti

im
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The chapter will present three simulation applications. First, is a SISO water vessel 

system that will be applied to the SISO design of the intelligent multiple-controller. 

Second, is a MIMO water tank system which will be applied to the multivariable design 

of the intelligent multiple-controller. Last is the application of autonomous vehicle 

control problem. 

6.2 SISO Water Vessel Problem 

In chemical process industries, one of the most commonly occurring control problems is 

that of controlling the fluid levels in storage tanks or reaction vessels. In this example, 

the proposed intelligent multiple-controller for SISO cases is applied to a real world 

SISO system model shown in Figure (6.1) and described in [17, 46]. 

 

 

 

 

 
Figure (6.1): Water tank system. 
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The tank system is 10cm long, 10cm deep and 30cm high. The main objective of the 

control problem is to adjust the inlet flow 1Lf  so as to maintain the level in the tank h  
1s

as close as possible to a desired set-point. The fluid flow rate into the tank )( 1Lf  is 

supplied by a pump. To measure this flow rate, a flow meter is inserted between the 

pump and the tank. The flow of water from the tank to reservoir )( 0Lf  is controlled by 

an adjustable tap. The maximum diameter of this tap is 70.0 cm. The depth of fluid is 

measured using a parallel track depth sensor which is located in the tank. 

6.2.1 Model of the SISO Water Vessel System 

The non-linear model can be presented as follows [17, 37, 46]: 

)(2
1

1
111 ssL

s hhgaf
dt

A −′−= σ ,                                   (6.1) 

where 

dh

A  is the cross section area of the tank, 1a′  is the cross section area of orifice, 1σ  

is the discharge coefficient (0.6 for a sharp edged orifice), sh  is the minimum water 

level and the acceleration gravity is denoted by 2/81.9 mNg = . The diameter of orifice 

is adjusted to 0.95cm and drain valve is fully open. 

6.2.2 Simulation Setup 

In order to demonstrate the closed loop performance of the intelligent multiple-

controller for the SISO system, initially, it is arranged that each control mode (namely 

the conventional PID adaptive controller and the PID based Pole-Zero Placement 
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controller) to work independently in controlling the whole control operation. Therefore, 

the fuzzy logic switching and tuning supervisor will not be involved in the control 

process. These simulation examples will illustrate the behaviour of each control mode in 

tracking a desired reference signal and also minimising the effect of the nonlinearities 

and disturbances in the complex SISO plant. Moreover, the experiments will present the 

effectiveness of using the RBF based GLM in approximating the nonlinear function 

(.,.)f  compared to the conventional MLP based GLM. Afterwards, in new simulation 

experiments, the intelligent supervisor will be employed to autonomously switch 

between the two controlling modes of the multiple-controller, and tune the active 

controller parameters. 

The simulation examples will be perform pling times. A first order 

linear model ( ameters of the 

process using RLS based linear sub-model of the GLM. The initial values for the plant 

parameters  and ˆ  were defined as 0.33 and 0.67 respectively [17

o

ed over 600 sam

)(ˆ)(]ˆ1 11
1 tubztyza −− =+ ) is used to identify the par[ 0

1â 0b ]. The neural 

network based nonlinear sub-model is used to approximate the nonlinear function 

(.,.)f . The user defined gain and the user-defined polynomials were respectively 

selected as: 

, 11 −−  and 11 −− , where 

o

05.0=v 1
1)( += zpzP dd 1

1)( += zpzP nn 4.01 −=dp , 

−=p . The desired closed loop poles and zeros polynomials were selected as  

21-1 −−zT  and ~~~ 21-1 −− . 

3.01n

211)( ++= ztzt )1()( 21 ++= zhzhzH
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where, 5.01 −=t , 02 =t , 95.0~
1 =h  and 0~

2 =h . Since the polynomial Â

one, therefore a PI controller is obtained. 

6.2.3 Fuzzy Supervisor Setup 

he 

 is of order 

The application of the SISO water vessel is a system with one control input and one 

system output. Therefore, the fuzzy sets used in the switching and tuning subsystems 

were built according to information derived from a single control input signal )(tu , a 

single system output signal )(ty  and a single reference signal )(tw . For instance, t

following sample fuzzy rule, which forms part of the switching logic fuzzy rules given 

in chapter 4 at section (4.3.2.2), has two input parameters ( )(tyζ  and )(tVy ) determined 

to select a single controlle )(tη  that will provide the next control action )(tu . 

IF )(ty

from the system output signal )  to define its overshoot and variance states in order 

r C

(ty

ζ  IS Ntive-High AND )(tVy  IS High THEN )(tCη  is Pole-Zero-P ement 

Similarly, the input parameters of the tuning logic fuzzy rules are defined from a single 

control action and a single system output signal, and the fuzzy output parameter defines 

the tuning value of one active controller. The following fuzzy rule is a sample rule from 

among the list of the tuning logic fuzzy rules given in chapter 4 at section (4.3.3.2): 

IF )(tC  IS PID AND )(t

lac

η yζ  IS NOT Norm THEN )(tv  IS Decrease 

simplicity and computational complexity, the fuzzy switching and tuning subsystems’ 

τ

As shown in chapter 4 at sections (4.3.2.1) and (4.3.3.1), from the point of view of 

variables were represented by triangular (TriMF) and trapezoidal (TrapMF) 
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membership functions with not more than two membership functions overlapping. For 

this application, 5% to 10% overlap between neighbouring MFs. Other fuzzy 

membership functions such as Gaussian and Sigmoid curves with different shapes and 

sizes were tested and the results were not significantly different. 

In the design of fuzzy switching subsystem MFs for online controllers switching for the 

SISO water vessel problem, four factors are considered: degree of output signal 

overshoot )(tyζ , variance in the output signal yV , steady state error ∞e  and changes in 

the reference signal state Π . During the optimization process of the MFs of these 

factors, the TriMF and TrapMF scalar parameters a , b , c  and d  of Equations (4.11 

about the SISO water vessel system. The final fuzzy sets represent knowledge base 

about the physical system behaviour by preserving information including: output signal 

undershooting degree of -53.2%, overshooting degree of 47.4%, output sig

w

and 4.12) were experimentally adjusted in order to contain quantitative information 

nal variance 

limit of 18.12, and steady state error be  output signal. Details 

of the switc y sets en in Ta ) and sho Figures (4.2a-d) 

in chapter 4.

The switching logic output parameter (i.e. the selected controller) is represented by two 

TriMFs, on ID controller and the other is for the Pole-Zero Placement 

controller, w (see Figure (4.3) in chapter 4). Other MFs can be used 

such as the in Figure (6.7a) where two TrapMFs were used with almost 

0% overlap. The strategy of wi -all is n the sele f the candidate 

controller. T ch, the MF 

tween 2% and -2% of the

hing logic fuzz  are giv ble (6.1 wn in 

 

e is for the P

ith 10% overlap 

example given 

nner-take  used i ction o

hat is, by applying the Middle-of-Max defuzzification approa
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which has the h selected. In the 

Fuzzy Parameter - 

ighest amplitude will have its corresponding controller 

case when the two controllers’ MFs have equal amplitudes, then the current active 

controller will be selected. 

MF Scale Parameters Type Name Range MF Type MF Name a b c d 
TrapMF Ntive-High -100 -100 -53.2 -0.01 
TriMF Norm -3.3 0 3.3  Input signal [-100, 100] 

Output 

Overshoot TrapMF High 0.01 47.4 100 100 
TrapMF Norm 0 0 2 6 

Input 
Output 
Signal 

Variance 
[0, 100] TrapMF High 4.1 18.12 100 100 

TrapMF Decreasing -100 -100 -2 0 
TriMF Norm -0.01 0 0.01  Input 

Reference 
Signal [-100, 100] 
State TrapMF Increasing 0 2 100 100 

TrapMF Ngtive -10 -10 -2 -0.01 
TriMF Norm -0.02 0 0.02  Input 

Steady-
State-
Error 

[-10, 10] 
TrapMF Pstive 0.01 2 10 10 
TriMF PID 0 10 20  Output Controller [0, 40] TriMF PolZroPlcmnt 20 30 40  

Table (6.1): Switching logic parameters for the SISO water vessel system 
 

The input and output parameters of the fuzzy tuning logic are represented by the TriMF 

and TrapMF membership functions. The scalar parameters a , b , c  and d  of these 

MFs (Equations 4.11 and 4.12) were experimentally adjusted in order to maintain the 

appropriate tuning values for the active controller parameters. For instance, the rise and 

fall times of the output signal of the SISO water vessel system are fuzzified through 

 to three MFs (Fast , Average and Slow) distributed in a range between Sec0 Sec100  

(see Table (6.2)). Applying the corresponding fuzzy rule, such as the example given 

next, new tuning values for the controller poles will be derived through the fuzzy set of 

the poles output parameters. 

IF  IS PolZroPlcmt AND )(tCη )(tyρ  IS Slow THEN  IS Faster )(tTτ
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The range of the poles and zeros fuzzy sets represent the dimensions of the stability unit 

disc. Whereas the range of the PID gain v  output fuzzy parameter ranges between -10 

and 10, which are found to be the minimum and maximum stability gains for this 

application [17]. Details of the input and output fuzzy parameters are provided in Table 

(6.2) next. 

Fuz ter - zy Parame
MF Scale Parameters Type Name Range MF Type MF Name a b c d 

TrapMF PID 0 0 2 2.001 Input Controller [0, 4] TrapMF PolZroPlcmnt 1.999 2 4 4 
TrapMF Ntive-High -100 -100 -53.2 -0.01 
TriMF Norm -3.3 0 3.3  Input 

Output 
signal 

Overshoot 
[-100, 100] 

TrapMF High 0.01 47.4 100 100 
TrapMF Ngtive -10 -10 -2 -0.01 
TriMF Norm -0.02 0 0.02  Input 

Steady-
State-
Error 

[-10, 10] 
TrapMF Pstive 0.01 2 10 10 
TriMF Fast 0 0 12.3  

TrapMF Average 8.52 10.3 23.21 25.1 Input Rising 
Time [0, 100] 

TrapMF Slow 19.04 52.6 100 100 
TrapMF Fast 0 0 20 31.2 
TriMF Optimal 20 40 60  Input Settling 

me [0, 100] 
TrapMF Slow 53.4 73.54 100 100 Ti

TrapMF NgtiveHigh -10 -10 -9.6 0 
TriMF Normt -0.04 0 0.04  Input Control 

Action [-10, 10] 
10 10 TrapMF PstiveHigh 0 8.3 

TrapMF Decreasing -100 -100 -2 0 
TriMF Norm -0.01 0 0.01  Input 

State TrapMF Increasing 0 2 100 100 

Reference 
Signal [-100, 100] 

TriMF Decrease -10 -5 0  
TriMF NoChange -0.01 0 0.01  Output Gain V [-10, 10] 
TriMF Increase 0 5 10  

TrapMF Faster -0.9 -0.9 -0.82 -0.03 
TriMF Average -0.17 0 0.17  Output Poles [-0.9, 0.9] 

TrapMF Slower 0.02 0.64 0.9 0.9 
TrapMF Decrease -1 -1 -0.18 0.072 Output Zeros [-1, 1] TrapMF Increase -0.07 0.18 1 1 

Table (6.2): Tuning logic parameters for the SISO water vessel system 
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6.2.4 RBF and MLP Neural Networks Based GLM Approximation 

Th d 

efficiency of using the RBF NN instead of the MLP NN in representing the nonlinear 

function (.,.)f . The examples that will be performed in this regard will focus on the 

capabilities of the RBF NNs in approximating the soft and hard nonlinearities as well as 

sharp disturbances, when compared to the MLP NNs. Other features of the RBF NNs 

outperforming the MLP NNs were discussed in sections (3.5), (4.4), (5.4) and well 

documented in the literature (see for example [12

e simulations presented in this section are used to demonstrate the effectiveness an

o

, 15, 23, 48, 49, 107]). These feature 

could incl : the ability to uniformly approximate smooth functions; simpler to 

implement; need less computational memory; converge faster; require less training 

time; and fewer computational complexities to train the network online. 

The results below were obtained after trying different designs for the MLP NN structure 

such as two hidden layers network and three hidden layers network with various neuron 

numbers. The best MLP NN design had one input layer with five units, two hidden 

layers with ten and seven units respectively, and one unit output layer. The five inputs 

to the MLP NN were the current and last control inputs − , current and last 

sy r 

rule were employed. For the RBF NN 

inputs 

ude

])1()([ tutu

stem outputs ])1()([ −tyty , and a bias with the value of 1. The Sigmoid transfe

function and the Backpropagation learning 

structure design, there were four inputs included: the current and last control 

])1()([ −tutu , current and last system outputs ])1()([ −tyty , and the output layer 

was a single pure linear unit. The hidden layer had five Gaussian transfer function based 

neurons (units) with adjustable centres and adjustable units spread width. The weights 
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of the RBF hidden layer and the weights of the MLP layers were randomly selected 

offline prior to the control operation and then online fine tuned using the delta rule. 

Figure (6.2a) next shows the performance of the MLP NN in approximating the 

able 

ed to the 

MLP NN. 

nonlinear dynamics of the plant under control. It can be seen that the approximation of 

the low magnitude target signal was very satisfactory, but when high magnitude signal 

involved (i.e. hard nonlinear dynamics) after the sampling time 200 the MLP network 

approximation was inconsistent. Similarly, in figure (6.2b) when low value random 

disturbances were added to the same nonlinear dynamics, the MLP NN failed to 

continue the approximation. Figures (6.2c and d) respectively illustrate reason

performance of the MLP NN in approximation of soft nonlinearities and unstable 

performance for the estimation of soft nonlinearities mixed with sharp disturbances. On 

the other hand, Figures (6.3a, b, c and d) show the successful and stable approximation 

of the RBF NN to emulate soft and hard nonlinearities, correspondingly, when law and 

sharp disturbances were introduced to the nonlinear dynamics. These sample results 

showed the power of the RBF NN in the online consistent approximation of the 

nonlinear and unexpected behaviours of the complex SISO plant when compar
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Figure (6 MLP NN approximation: (a) hard nonlinearity, (b) hard nonlinearity with disturbances, 
(c) soft nonlinearity, (d) soft nonlinearity with sharp disturbances. 
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Figure (6.3): RBF NN approximation: (a) hard nonlinearity, (b) hard nonlinearity with disturbances, 
(c) soft nonlinearity, (d) soft nonlinearity with sharp disturbances. 
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6.2.5 Effect of the Nonlinear Sub-model in the GLM 

ic

 h the control input signal f  and the nonlinearities and disturbances 

affecting the control system when the nonlinear sub-m del of the GLM is deactivated 

by setting polynomial H ′  (in equation (4.22)) to zero. Figures (6.5a, b and c) 

respectively show the system , the control input signal f  and the 

nonlinearities a ting the control system when the MLP NN is used 

to represent the l of the xim (.,.)f . 

Figures (6.6a, ively dem  the s  output signal h , the 

control inpu the control 

To simplify the presentation, the SISO plant was under the control of the conventional 

PI controller during all the control operation. This experiment will present the 

importance of deploying the nonlinear learning sub-model of the GLM within the 

multiple-controller control law in order to approximate the nonlinear function (.,.)of , 

which represents the nonlinear dynam s and disturbances introduced to the control 

system. 

In the obtained results below, Figures (6.4a, b and c) respectively illustrate the system 

output signal , 
1s 1L

o

N

sh output signal 
1L1

nd disturbances affec

 nonlinear sub-mode  GLM to appro ate the function o

b and c) respect onstrate ystem
1s

t signal f  and rbances affecting the nonlinearities and distu
1L

system when the RBF NN is used to represent the nonlinear sub-model of the GLM to 

approximate the function (.,.)of . The performance of the three cases (i.e. deactivating 

the nonlinear sub-model, employing the MLP NN and employing the RBF NN) is 

summarised in Table (6.3) next. The numerical obtained results show the great 

importance of the GLM in modelling the complex plant. 
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By comparing the computed data in Table (6.3), it can be seen that when the nonlinear 

function (.,.)of  was not considered in the control law the variance of the system output 

signal was clearly high if comp red to the two other cases. It is obvious that the 

performance of the RBF based nonlinear sub-model resulted in minimum variance 

system output signal, and faster settling time. Similarly, the effect of the nonlinear 

dynamics and random disturbances was reduced more efficiently than the MLP based 

nonlinear sub-model. This can be seen by comparing the variance and the magnitude 

range of the nonlinearity and disturbance signals as listed in Table (6.3

a

) and shown in 

Figures (6.4c), (6.5c) and (6.6c). It can be concluded that the RBF case reduced 99.2% 

of the varia ce and 85.7% of the magnitude range of the nonlinear function (.,.)f  

resulting in smoother system output signal as shown seen in Figure (6.6a). 

GLM Nonlinear Sub-model 

n o

 Not active MLP RBF 
Variance of the 
output signal  0.1400 0.0782 0.0007 

Settling time of 
output signal 7 Sec 7.5 Sec 6.2 Sec 

R
o 7 Sec ising time of 

utput signal 6.6 Sec 7 Sec 

Variance of the 
nonlinearity and 
disturbances  

7.5549 3.4853 0.0554 

% Reduction in 
variance of 
nonlinearity and 
disturbances 

0.0% 53.86% 99.2% 

%
effec

 Reduction in 
t of 

nonlinearity and 
disturbances 

0.0% 59.7% 85.7% 

 
system performance factors for 

com

Considering the graphica 5) and (6.6), the system 

output signal in Figure (6.4a) has high oscillating behaviour during the steady state 

Table (6.3): SISO water vessel 
paring the effect of the GLM nonlinear sub-model. 

l results shown in Figures (6.4), (6.
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because the nonlinear dynamics and the disturbances of the complex plant were not 

included in the control law since the nonlinear sub-model of the GLM was deactivated. 

Consequently, the process nonlinear dynamics and disturbances caused high oscillations 

in the system output signal and high control actions. In contrast with the system output 

signal in Figures (6.5a) and (6.6a), where respectively the MLP and RBF neural 

networks implemented the nonlinear sub-model of the GLM, the steady state had less 

oscillation. Especially in Figure (6.6a) when the RBF neural network was used to 

approximate the function (.,.)f , the steady state was very smooth. o

It can be seen from the results illustrated in Figures (6.5) and (6.6) below, that, 

compared to the case of the conventional nonlinear sub-model based on MLP neural 

networks, the use of the computationally efficient RBF based nonlinear sub-model can 

result in improved performance in terms of achieving minimum variance of the output 

signal and the control input signal, both for tracking changes in the reference signal and 

for dealing with the nonlinearities and added disturbances. 
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nonlinear sub-model of the GLM is deactivated, (a) system output signal, 
(b) control input signal and (c) nonlinearities and disturbances affecting the system. 
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Figure(6.4): SISO water vessel system Behaviour when the 
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Figure(6.5): SISO water vessel system Behaviour when the MLP NN 

represents the nonlinear sub-model of the GLM, (a) system output signal, 
(b) control input signal and (c) nonlinearities and disturbances affecting the system. 
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Figure(6.6): SISO water vessel system Behaviour when the RBF NN 
represents the nonlinear sub-model of the GLM, (a) system output signal, 

(b) control input signal and (c) nonlinearities and disturbances affecting the system. 
 

(c) 



6.2.6 Control Performance of the Conventional Adaptive PI Only Controller 

using only the conventional adaptive PI controller (multiple-controller mode 1). In the 

following experiments, the nonlinear sub-model of the GLM will be represented by the 

RBF NN. The acquired results, shown in Figures (6.7) to (6.9) below, give understating 

of the behaviour of this controller, which was part of the base knowledge used to design 

the proposed fuzzy logic supervisor. 

In this experiment, the multiple-controller is set to control the SISO water vessel system 

In the simulation results, Figures (6.7a, b), (6.8a, b) and (6.9a, b) respectively illustrate 

the system output signal )(ty , the control input signal )(tu  when the gain v  of the PI 

controller was set to 0.01, 0.1 and 1.1. Table (6.4) presents performance measures for 

the three cases of the PI controller. These measures include: the variance of the systems 

and prese t the settling time e w

On other hand, increasing the gain v  will cause fast 

settling and rise time, and relatively high overshooting in the system output signal, 

moreover t e variance of  the control action will increase. 

output signal )(ty , percentage of overshooting in the output signal )(ty , the settling 

time of )(ty , rise time of )(ty  and the maximum control action in the control input 

signal )(tu . The graphical and numerical measures demonstrated next give an idea 

about the important effect of the gain v  on the performance of the PI controller. It can 

be seen that decreasing the gain v  will minimise the variance of the output signal )(ty  

rve low control action, bu  and rise tim ill be slowed down 

and the steady state error increased. 

h  the output signal and
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Therefore, it can be concluded that the venti ler  

steady state signal if the gain v  tuned to low he co al PI 

controller is not the best choice to govern the se  of the output signal 

that is due to the effect of increasing the gain v  ing the var of the 

output signal and increasing the control actions. Another point is that, the PI controller 

causes high overshooting and oscillatory perform nce in the system output signal when 

the gain v  is not properly tuned. 

 
Conventional

con onal PI control  preserves smooth

 value. However, t nvention

ttling and rise time

on maximis iance 

a

 PI Controller 
  

=v 0.01 =v 0.1 1.1 =v
V of 
the output 
sign

0.0016 0.1134 0.8622 
ariance 

al  
% o
Oversho
in the output 
signal 

% 

f 
oting 0.0% 45.2% 55.1

Settling time 
of output 
signal 

9.2 Sec 4.5 Sec 1.3 Sec 

Rising time of 
output signal 5.7 Sec 8 Sec 3 Sec 

Maximum 
control input  7.5  10.4  20.4Seccm /3  Seccm /3  Seccm /3  

 
ance factors of the convention PI controller 

at different setting for the PID gain . 
Table (6.4): Perform

v
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=vFigure (6.7): PI controller performance at 0.0 (a) system output signal, (b) control input signal. 1, 
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Figure (6.8): PI controller performance at =v 0.1, (a) system output signal, (b) control input signal. 
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Figure (6.9): PI controller performance at =v 1.1, 
(a) system output signal, (b) control input signal. 

6.2.7 Control Performance of the Pole-Zero Placement Only Controller 

The performance of the Pole-Zero Placement controller depends on the position of its 

poles and zeros [17, 37, 46]. Next, an experiment will be devoted to demonstrating the 

performance of the Pole-Zero Placement controlle

 

r through changing the settings of the 

ontrol oles. A following experiment will show the effect of tuning the 

controller’s zeros. Therefore, the multiple-controller is set to control the SISO water 

 using only the adaptive Pole-Zero Placement controller (multiple-

ontroller mode 2). 

(b) 

c ler’s p

vessel system

c
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6.2.7.1 Effect of the Poles 

 this example, the gain  was set to 0.1 and the zero polynomial v 95.0~
1 =hIn . The 

results given in Figures (6.10a, b) and (6.11a, b) below, respectively illustrate the 

system output signal hen the pole t  of the 

troller was set 5.0

)  and the control input signal )(tu  w(ty 1

−  (case 1) 9.0Pole-Zero Placement con  and −  (case 2). Table (6.5) 

presents the performance measures for the two cases of the pole . The measurements 

given in Table (6.5) show the  output )(ty , percentage of 

overshooting in the output )(ty

1t

variance of the system

, the settling time of )(ty , rise time of )(ty  and the 

maximum control action in the control input signal )(tu . 

 
Pole-Zero Placement Controller 

  

5.01 −=t  9.01 −=t  
Var ance of the output 0.2 0.1 i
signal  
% of O ooting n 
the outpu gnal 9.0% 0.0% versh  i

t si
Settling time of output 3.4 Sec signal 0.8 Sec 

Rising time of output 
signal 0.5 Sec 2.3 Sec 

Maximum control 
input  16.36 Seccm /  10.91 Seccm /3 3  

 
Table (6.5): Performance of the Pole-Zero Placement controller 

with different pole settings. 

From this experiment, it can be summarised that the settling time of the system output, 

as well as the rise time b tuning th e

Zero Placement controller. When fast settling and rise times are required, the system 

ing at  ginning  

which can be treated by tuning the zeros as will be seen in the next experiment. As can 

, can be manipulated y e valu  of the poles of the Pole-

output signal exhibits slight overshoot the be  of the control operation, 
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be noticed in the results shown below in Figures (6.10a) and (6.11a), the drawback in 

the performance of this controller is the continuous and sharp oscillation during the 

steady state of the output signal )(ty . These kind of oscillations could damage or cause 

harm to the actuator of ocess [131 the control pr ], which  is the water pump in this 

application. Therefore, it can be concluded that the Pole-Zero Placement controller can 

prevent system output overshooting, which could take place at reference signal changes 

and/or caused by the disturbances. In addition, tuning the poles of this controller can be 

useful in managing the settling time and rise time of the system output. 
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Figure (6.10): Pole-Zero Placement performance at 5.01 −=t , 
 

(a) system output, (b) control input. 

(a) 
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Figure (6.11): Pole-Zero Placement performance at , 

(a) system output, (b) control input. 
9.01 −=t

6.2.7.2 Effect of the Zeros 

The results shown in Table (6.6) and Figures (6.12), (6.13) and (6.14) next are used to 

illustrate the effect of the zeros of the Pole-Zero Placement controller. The gain v  was 

set to 0.1 and the controller pole 7.01 −=t  throughout the control operation conducted 

here. The control law zero 1
~ ~h  was set to three different cases such as 95.01 =h , 

~
1

~55.0=h  and 35.01 =h . The system output signals shown in Figures (6.12a), (6.13a) 

and (6.14a) expose very low overshooting at start of the control operation and almost 

est of the process. As can be observed in the data given in 

Table (6.6), decreasing the zeros will minimise the magnitude of control input, as 

shown in Figures (6.12b), (6.13b) and (6.14b). Consequently, the variance and 

(b) 

zero overshooting during the r



overshooting in the system output will be minimised, but the settling time and rise time 

could be affected. Generally, the zeros can be useful to manipulate the control action of 

the Pole-Zero Placement controller but in a rang at should not cause negative effect 

on the settling and rise times, which can be managed more consistently by the poles of 

the controller (as explained in the previous experiment) [

e th

37, 100]. 

 
Pole-Zero Placement Controller 

  

95.0~ 55.0~
1 =h  1 =h  35.0~

1 =h  
Var ance of the output i
signal  0.1644 0.1475 0.1240 

% of Overshooting in 2.1 % 1.2 % 0.3 % the output signal 
Settling time of output 
signal 1.0 Sec 1.0 Sec 1.9 Sec 

Rising time of output 
signal 0.6 Sec 0.6 Sec 0.85 Sec 

Maximum control 
input  14.3 Seccm /3  13.5 Seccm /3  12.12 Seccm /3  

 
Table (6.6): Performance of the Pole-Zero Placement controller 

with different zeros’ setting. 
 

The observations and conclusions gained from the experimental results here formed the 

knowledge base for designing the fuzzy logic sets and rules of the fuzzy logic based 

supervisor for switching and tuning in the proposed intelligent multiple-controller. The 

next experiment will show the autonomous switching and tuning done by the fuzzy 

logic supervisor in order to switch between the two control modes and tune the control 

parameters of the active controller. That is to achieve a required system performance 

during the whole control operation. 
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1 95.0=h , (a) system output, (b) control input. Figure (6.12): Pole-Zero Placement performance at 
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Figure (6.13): Pole-Zero Placement performance at 55.0~

1 =h , (a) system output, (b) control input. 
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Figure (6.14): Pole-Zero Placement performance at 35.0~

1 =h , (a) system output, (b) control input. 

problems: preventing overflow situations (output signal overshooting); normal 

operation system (smooth steady state); preventing oscillatory output; and maintain low 

control input actions to keep the system actuator (water pump) [8

6.2.8 SISO Water Vessel Control using the Intelligent Multiple-Controller  

The problem of regulating the water level of the water tank is divided into four sub-

]. The fuzzy logic 

based supervisor is designed to switch between the two multiple-controller modes to 

solve these sub-problems according to the system behaviour detected by the behaviour 

recogniser. The controller that solves the first sub-problem is the PI structure based 

Pole-Zero Placement controller (mode 2), whereas the controller that deals best with the 

second and third sub-problems is the conventional PI controller (mode 1) and finally the 

(a) 

(b) 



PI-structured based Pole-Zero Placement controller (mode 2) most effectively tackles 

the fourth sub-problem (at the expense of a relatively greater computational 

requirement). 

 tAnother important aspect of the water storage tanks is he residence time, which is 

defined as the time necessary to discharge/charge the storage tank [132]. The residence 

time is one of the most informative characterisations of the flow pattern in chemical 

reactors since it can provide information on how long the various elements have been in 

the reactor [133]. Designing a multiple-controller meets such time-domain 

specifications is an important feature of the new proposed intelligent multiple-

controller. In order to demonstrate the effectiveness of the employed fuzzy logic based 

switching and tuning supervisor, it was arranged for the supervisor to switch between 

the two controlling modes as well as tuning the parameters of the active controller. 

Tuning the PID gain v , poles and zeros of the multiple-controller gives the facility to 

adjust rise and fall times of the system output signal in order to control the water tank 

residence time. 

The results given below present the performance of the intelligent multiple-controller in 

tracking a reference signal denoting changing water levels. The main targets of this 

simulation are to preserve minimum variance and smooth steady state, prevent system 

output overshooting, keep low control actions and maintain user defined rise and fall 

times. Meeting these goals in the presence of nonlinear dynamics and sharp random 

disturbances is a challenging task for the proposed framework. 
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As evident from Table (6.7), which summarises the operation of the fuzzy logic 

supervisor, the intelligent multiple-controller performed minimum number of switching 

actions between the conventional PI controller and the Pole-Zero Placement controller 

(mode 1 and mode 2, respectively), and tuned the active controller parameters to 

achieve the target goals given above. Figure (6.15a) shows the slow charging of the 

water tank at the start of the is to meet the user defined specified 

2.5 Sec rise time. At the sampling times 100 and 200, the Pole-Zero Placement 

polynomi  was tuned to 53.0−  in order to boost the rise time as required. Where as 

at the sample 500 t  was tuned to 91.0

 control operation that 

al 1t

1 −  that is to meet 2.6 Sec discharging time for the 

target 10 cm ial  height water level. Tuning of the polynom 1
~h , required for low control 

actions, and tuning of the gain ooth steady state, are give in Table (6.7). 

Figures (6.15b) and (6.15c) respectively illustrate the control input signal and 

autonomous switching scheme performed to achieve the system output shown in Figure 

(  

Placement controller (mode 2) to prevent system output overshoot due to sudden 

Figures (6.16a, b and c) below show the performance of the multiple-controller in 

achieving the same prev us goals but with  disturbances introduced to 

the system (i.e. b-model of the GLM represented only the nonlinear 

dynamics switching 

mechanism between the two control modes as a result of the compatible “initial 

v , for sm

6.15a). It can be seen that at the sample 300 the supervisor activated the Pole-Zero

increase in the random disturbances, then the supervisor switched back to the PI 

controller (mode 1) to maintain the steady state. 

io  out any random

, the nonlinear su

of the SISO plant). These results demonstrate the bumpless 
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conditions” of the controllers connected to the plant [100, 118]. Figure (6.16a) shows 

almost zero overshooting and zero variance system output signal, which could take 

place if the plant nonlinearities were poorly approximated. 

 Controller Parameters  

Sampling Active v  t  1 1Time Controller 
~h  Aim of the Aim of the   

Tuning action  
 Switching action  

0 Mode 2 0.1 -0.7 0.9 Prevent overshooting No Action 
30 Mode 1 0.313 -- -- Reduce oscillation 
54 Mode 1 0.021 -- -- ady state error Smooth steady state 

Smooth and low  
ste

99 Mode 2 -- -0.53 0.9 Prevent overshooting Maintain requested 
rise time 

110 Mode 1 0.021 -- -- Smooth and low error -- steady state 

200 Mode 2 -- -0.53 0.42 due to high 
disturbances action 

Prevent overshooting Minimise control 

226 Mode 1 0.021 -- -- Smooth steady state -- 

229 Mode 1 0.111 -- -- -- Minimise 
oscillation 

236 Mode 1 0.023 -- oth 
steady state 2 -- -- Maintain smo

300 Mode 2 -- .53 0.32 Prevent vershooting Minimise control 
action -0 o

320 ode 1 0.0232 -- -- Sm ady state M ooth ste -- 

500 Mode 2 -- 1 0.32 Prevent vershooting Maintain requested 
fall time -0.9 o

547 
scillation 

teady state 
error 

Mode 1 0.433 -- -- Smooth steady state and low
Prevent o

 s

555 Mode 1 0.0312 -- -- -- Maintain smooth 
steady state 

 
Table (6.7): Summary of the fuzzy supervisor behaviour  

during level control of SISO water tank system. 
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Figure (6.15): Intelligent multiple-controller performance during SISO water vessel 
control operation, (a) system output signal, (b) control input signal, (c) multiple- 

controller switching scheme. 
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when no random disturbances involved, (a) system output signal, 

6.3 MIMO Water Vessel Problem 

In thi roposed intelligent multiple-controller was applied to a real world 

-1

Figure (6.16): Intelligent multiple-controller performance 

(b) control input signal, (c) multiple- controller switching scheme. 

s example the p

MIMO system model shown in Figure (6.17) and described in [17, 70]. The two-input 

(a) 

(c) 

⎭

(b) 

⎬
⎫
Mode 2

⎭
⎬
⎫
Mode 1
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two-output coupled-tanks system comprises of  container with a centre partition to 

divide the container into two tanks. Both tanks are 10cm long, 10cm deep and 30cm 

high. At the base of the partition four holes are provided to allow flow of water between 

the tanks. The e holes are at the height of 3 cm (i.e. 3

  one

s =sh cm) with different diameters 

of 1.27cm, 0.95cm, 0.635cm 0.317cm and together form orifice 1, which is adjustable 

by plugging one or more of the holes. The main objective of the control problem is to 

adjust the inlet flo  1L  and 2Lf  as to maintain the two tank levels (
1sh  and 

2sh ) asws f   

close to a desired se int. The f uid flow rates )( f ( f  are 

s

t-po l  into tank 1 1L 2L

supplied by two pumps. To measure these flow rates, two flow meters are inserted 

between pumps and tanks. The flow of water from tank 2 to the reservoir )( 0Lf  is 

controlled by an adjustable tap. The maximum diameter of this tap is 70.0 cm. The 

depth of fluid is measured using parallel track depth sensors which are located in tank  

1 and 2. 

The non-linear model can be presented as follows [

 and tank 2 )

17, 70]: 

)(2
21

1
111 ssL

s hhgaf
dt

A −′−= σ
dh

,                                  (6.2) 

)(
2 ss hh ′−22

212 2211 ssL
s gaga

dt
dh

A ′′+ σσ ,                (6.3) 

here a′  and a

2 f= )( hh −−

w  1 2′ , are respectively the cross section area of orifice 1 and cross section 

rea of orifa ice 2, and A  l area of tank 1 and tank 2. is cross-sectiona 1σ  and 2σ  are the 
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discharge coefficient (0.6 for a sharp edged orifice), and 2 . The diameter 

f orifice 1 is adjusted to 0.95cm and drain valve is fully open. 

 

 

The plant model of the complex MIMO system consists of the first order linear model 

+ −− ˆ]ˆ[ 1111 zz BAI  which used to identify the linear parameters of the 

ted

and y

/81.9 mNg =

o

 

 

 

 

1a

 

 

6.3.1 Simulation Setup 

⎥
⎦

⎤
⎢
⎣

⎡

⎦

⎤
⎢
⎣

⎡
)(
)(

)(
)(

2
0

2
1 tu

tu
ty
ty

process using RLS based linear sub-model of the MIMO GLM, and the nonlinear 

function ),(,0 YUf t  which represents the nonlinearities and disturbances in the MIMO 

plant and approxima  by the RBF based nonlinear sub-model of the GLM. The 

system output signals )(1 ty  )(2 t  denote the MIMO tank water levels 
1s  and 

2sh  

Figure (6.17): Coupled-tanks system. 

=⎥

 h

0Lf  

′

1Lf

sh
1sh  

Pump 1 Pump 2 

2Lf

2a′
2sh

Tank 1 Tank 2 
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respectively, the control input signals )(1 tu  and )(2 tu  denote the inlet flows 1Lf  and 

2Lf   respectively. The MIMO plant parameters were initially defined as follows: 

⎥
⎦⎣ 33.001

⎦⎣ 67.000
⎤

⎢
⎡ 033.0

B̂
⎤

⎢
⎡

=
067.0

B̂ , The ma  and  represent the inputs to 

the RBF neural network and denoted as: 

⎤
⎢ − )1()(

)1

tutu
, ⎢

⎡
−

=
)1()( tyty

y
Y

⎥ trices U, = Y

⎥
⎦⎣

⎡ −
=

1()(

22

1 tutu
U

⎦

⎤

⎣

− )1()(

22

11 tyt
, where )1(⎥ 1 −tu , )(tu , )1( −tu  and 

)(1 tu ) are the last and current of the two control input signals and )1(1 −ty , )(1 ty , 

)1(2 −ty  and )(1 ty ) are the last and curren

1 2

t of the two system output sign

V ) and the user-defined polynomial matrices were respectively 

selected as: 

⎣ 63.00
1

1 ⎣ 10

⎡
−

− 08.0 ⎡− 05.0

The initial closed loop poles and zeros are respectively selected as: 

−
⎥
⎦

⎤

⎣ −
z  and .  

During the 600 simulation samples the intelligent multivariable multiple-controller was 

 level for each of 

the two tanks, where Twt ])(([)( 1=w . 

als. The initial 

PID gain matrix (

⎥
⎤

⎢
⎡

=
0.1

V , 1)( −− += zz dd PIP  and 11)( −− += zz nn pIP , where ⎥
⎤

⎢
⎡

=
01

I , 

⎥
⎦

⎢
⎣

=
9.001dP  and ⎥

⎦
⎢
⎣ −

=
6.001nP . 

                            
.0

⎢
⎡−

+= IT

⎦
1

1 ⎦

⎤ ⎤

1

8.00
08 1

52.00
095.0~ −

⎥
⎦

⎤
⎢
⎣

⎡
+= zIH

set to track the set-point changes )(tw , which denotes the target water

twt) 2
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6.3.2 Fuzzy Supervisor Setup 

system out

ording to in

an

), represents the case when any of the two 

output signals (  and ) has high undershoot and hi

corresponding controller switched to the Pole-Zero Placement controller. 

y

The application of the MIMO water vessel system has two control inputs and two 

puts. Consequently, the fuzzy sets used in the multivariable multiple-

controller switching and tuning subsystems were built acc formation derived 

from two control inputs ( )(1 tu  and )(2 tu ), two system output signals ( )(1 ty  and )(2 ty ), 

and two reference signal ( )(1 tw  and )(2 tw ). Therefore, the fuzzy rules of the switching 

d tuning subsystems have their fuzzy parameters derived from the two control inputs 

and two system outputs. The following sample fuzzy rule, which belongs to the fuzzy 

rules given in chapter 5 at section (5.3.2.2

)(1 ty )(2 ty gh variance will have its 

IF )(t
1

ζ  OR )(t
2yζ  IS Ntive-High AND  OR  IS High THEN  OR 

tCη  IS Pole-Zero-Placement 

Similarly, the following multivariable multiple-controller tuning fuzzy rule is a sample 

rule derived from the list of the general tuning logic fuzzy rules given in chapter 5 at 

section (5.3.3.2): 

IF  OR  IS PID AND 

 )(
1

tVy )(
2

tVy )(
1

tCη

)(
2

)(
1

tCη )(
2

tCη )(
1

tyζ  OR )(
2

tyζ  IS NOT Norm THEN  OR  )(
1

tvτ
)(

2
tvτ  IS Decrease 

The above rule checks the overshoot of both signals )(1 ty  and )(2 ty  in order to provide 

tuning values for the gains 1v  or 2  of the corresponding active PID controller. v
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The membership functions of the input and output fuzzy parameters used for the MIMO 

water vessel application are similar to the input and output fuzzy parameters used for 

the SISO water vessel application above, section (6.2). The reason for applying the 

same MFs is due to the fact that the tank dimensions and water pump specifications are 

similar for both the SISO and MIMO applications. In addition, the two applications 

have similar control input and system output behaviours, such as: limits of the output 

signals overshoot and variance, steady state error, rise time, poles and zeros stability 

limits …etc. 

6.3.3 Experimental Results 

There are two simulation experiments conducted with their obtained results given 

below. The first exam ractions occurring 

odel 

stem output is affected by the other, as can be seen in Equations (6.2) and 

(6.3) above. To demonstrate the significance of the RBF based MIMO GLM employed 

in the proposed multiple-controller, the nonlinear sub-model representing the nonlinear 

function  is deact etting the p er H

ple experiment is aimed to show the inte

between the two system’s output signals )(ty  and )(ty  of the complex MIMO water 

tank system. These interaction events happen due the nature of the MIMO plant m

1 2

since each sy

ivated by s aramet),(,0 YUf t N′  in Equation (5.18) to 

zero. Random disturbances will no luded in sim ns below, that is to simplify 

the presentation and due to the ob ious influence o  unmodelled nonlinearities on 

the MIMO system behaviour. irst experiment, there will be 

t be inc ulatio

v f the

 Another point is that, in the f

no controller switching and no online controller parameter tuning. So, it is set that the 
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output )(1 ty  to be controlled by the Pole-Zero Placement controller, and the output 

)(2 ty  to be controlled by the conventional PID controller. 

The second experiment will illustrate the performance of the intelligent multivariable 

multiple-controller in eliminating the defects caused by the interaction accommodated 

in the complex MIMO system. Activating the nonlinear sub-model of the MIMO GLM 

and employing the fuzzy logic switching and tuning supervisor will serve the closed-

loop MIMO system to prevent system outputs overshooting, achieve minimum variance 

tions, and attain the desired system outputs rise and fall 

times. 

y

)(tu  and )t Pole-

Zero Placem

outputs, penalise high control ac

6.3.3.1 Experiment One 

Figures (6.18a, b and c) below, respectively show the system output signals )(1 t  and 

)(2 ty , the control input signals (2u , and the active controllers 

ent (Mode 2) and 

1 =1C

=2C conventional PID (Mode 1). It can be clearly 

noticed in Figure (6.18a) that both outputs )(1 ty  and )(2 ty  experienced high 

overshooting and oscillatory behaviours due to the unmodelled nonlinearities and fixed 

controllers parameters. The two simultaneously operating controllers, Pole-Zero 

Placement and conventional PID, could not cope with the interactions taking place at 

the beginning of the control process and at the reference signals alterations. As a 

consequence, the magni

hootin d nce able b h 

degrees of overshooting in both output signals especially in )(ty  

fied control inputs (see Figure (6.18b)) have increased the 

overs g an  varia in system output sign ls. T (6.8) elow shows higa

2 , which could be a
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result of the untuned gain v  of the PI  controller and the high nonlinear dynamics at the 

start of the control process. The variance of the outputs is given in the table below. 

)(1 ty  )(2 ty   
% of Overs oting 
i u 65%ho
n the o tput signal  129% 

Variance of th
output signal 3 3.2267 e 2.229  

 

The r

iable multiple-controller in dealing with the problems 

experienced in the first experiment above. 

Table (6.8): MIMO control system performance measures with unmodelled nonlinearities 
and no multiple-controller switching or tuning. 

esults shown in experiment two next will demonstrate the satisfactory performance 

of the intelligent multivar

 191



 192

0 100 200 300 400 500 600

0

5

10

15

20

25

30

35

O
u

pu
t V

lu
e 

(c
)

-1

t
a

m

Sampling Time x10  Sec

 
)(1 tw  
)(tw  

)(1 ty

)(ty

2

2

(a) 

0 100 200 300 400 500 600

-5

0

5

10

15

In
pu

t V
al

u
cm

3
c)

e 
(

/S
e

Sampling Time x10-1 Sec
(b) 

)(1 tu  

)(2 tu

0 100 200 300 400 500 600
Mode 1

Mode 2

Mode 1

Mode 2

Sampling Time x10-1 Sec  
Figure (6.18): Multivariable multiple-controller controls the MIMO water tank system with unmodelled 
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(a) two system outputs, (b) two control inputs, (c) active controllers with no switching nor tuning. 



6.3.3.2 Experiment Two 

In this example, the intelligent multivariable multiple-controller was set to 

automatically control the coupled tanks system in order to track the two defined water 

level reference signals  and . The complex system interactions were 

approximated using the RBF NN based nonlinear sub-model of the MIMO GML 

(presented in section (5.4), chapter 5 above). By appropriately designing the switching 

decision  for the multivariable conventional PI controller and multivariable Pole-

Zero placement controller (based on the performance measure matrix )(tΞ  supplied to 

the behaviour recogniser), the fuzzy-logic supervisor worked to prevent any 

inimize the steady state oscillations while controlling the MIMO 

wat

multip es of 

both output signals )(ty  and )(ty  according to user-defined requirem

In the obtained results below, Figures (6.19a, b and c) respectively show the system 

output signals obtained, the control input signals )(tu  and )(tu , the multiv

controller selection scheme between the multiple-controller modes 1 and 2. Compared 

to the results obtained from the previous experiment, it can be seen from Figures (6.19a 

and b) that the fuzzy-logic based supervisor effectively managed to prevent output 

signals overshooting, simultaneously preserved relatively smooth steady state and 

almost zero output variance. Another point to note is that the excessive control action 

(resulting from reference set-point changes) is tuned most effectively when the 

supervisor activated the required controllers. 

)(1 tw )(2 tw

ηC

overshooting and m

er tank system. The capability of the fuzzy-logic based supervisor to online tune the 

le-controller param e rise and fall timeters also allowed for controlling th

1 2 ents. 

ariable 1 2
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Figure (6.19): Performance of the intelligent multivariable multiple-controller to control coupled water 
tank system, (a) two system outputs, (b) two control inputs, (c) multiple-controller switching scheme. 
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Table (6.9) gives a summary of the improved overshooting and variance in the system 

output signals after the successful switching and tuning done by the fuzzy logic 

supervisor. The given results can be compared with Table (6.8) in the last experiment. 

 )(1 ty  )(2 ty  
% of Overshooting 
in the output signal 1.24% 0.0% 

Variance of the 
output signal 0.0034 0.0032 

Table (6.9): Intelligent multivariable multiple-controller performance measures 
throughout the control of complex MIMO water tank system. 

In order to maintain the desired rise and fall times for both system output signals, the 

fuzzy s e-Zero 

placement controller. It can be seen in Figure (6.19a) system output )(ty , that at the 

beginning of charging tank 1 the rise time was 2.8Sec. A fa e of 

1Sec was requested to reach water levels 15cm and 25cm, which w intained to 

1.12Sec with delay error of 0.12Sec that could be due to limits

(Equations (6.2) and (6.3)). The system output  in Figure (6.19a) was successfully 

contro  to reach 8cm water level in 5.6Sec and discharge tank 2 to 2cm level in 

2.4Sec. Table (6.10) gives sample tuned poles from the MIMO system control 

operation. 

Time instant Target rise/fall time Target rise/fall time Tuned poles 

upervisor effectively tuned the poles and zeros of the multivariable Pol

1

ster tank charging tim

as ma

 of the used plant model 

)(2 ty

lled

1y 2y

0 2.8Sec 1.8Sec ⎥
⎦

⎤
⎢
⎣

⎡
−

−
64.00

092.0  

100 1Sec - ⎥
⎦

⎤
⎢
⎣

⎡
−

−
64.00

071.0  

 150 - 5.6Sec 
⎤⎡− 071.0
⎥
⎦

⎢
⎣ − 96.00

500 3.8Sec - ⎥
⎦

⎤
⎢
⎣

⎡
−

−
96.00

091.0  

Table (6.10): Sample pole tuning actions performed by the fuzzy supervisor to 
achieve user-request rise and fall times for the two system output signals. 
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6.4 Autonomous Vehicle Control Problem 

Today’s automobile effectively encompasses the spirit of mechatronic systems with its 

abundant applications of electronics, sensors, actuators, and microprocessor based 

control systems to provide improved performance, fuel economy, emission levels 

comfort, and safety [77, 134]. For almost two decades autonomous systems have been a 

topic of intense research. Since the mid 1980s, several research programs have been 

initiated all over the world, including Advances in Vehicle Control and Safety (AVCS) 

in Asia, Intelligent Vehicle Highway Systems (IVHS), and Partners for Advanced 

Transit and Highways (PATH) in the United States. Since 2004, the US Defence 

Advanced Research Project Agency (DARPA) has started to organize the DARPA 

Grant Challenge to test automatic-vehicle technology [135]. In Europe, the DRIVE and 

traffic and at reducing the adverse environmental effects of the motor vehicle [136

PROMETHEUS projects have aimed at increasing the safety and efficiency in normal 

]. In 

environments, as do the EU’s Cybercars and CyberCars-2 projects. Another European 

project, Chauffeur, focuses on truck platoon driving [135

France, projects such as Praxitele and “La rout automatiée” focus on driving in urban 

]. Thus, many research groups 

e development of functionalities for autonomous road vehicles that 

are able to interact with other vehicles safely and cooperatively [136

are focusing on th

, 137, 138]. 

An important component of Adaptive Cruise Control (ACC) is to design control 

systems for controlling the throttle, brake and steering systems so that the vehicle can 

follow a desired path and target speed, which could be responses of the leading vehicle 

and at the same time keep a safe inter-vehicle spacing under the constraint of 
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comfortable driving [139, 140]. There are though a lot of possible techniques with 

which to perform ACC. Conventional methods based on analytical control generate 

good results but exhibit high design and computational costs since the application 

object, a car, is a nonlinear element and a complete mathematical representation is 

impossible. As a result, other means of reaching human-like speed control have been 

recently developed, for example, through the application of artificial intelligence 

techniques [78]. 

One of the important and challenging problems in ACC relates to dangerous yaw 

motions of the automobile that may result from unexpected yaw-disturbances caused by 

unsymmetrical car-dynamics perturbations like side-wind forces, unilateral loss of tire 

pressure or braking on unilateral icy road. One approach for yaw dynamics 

improvement is to use individual wheel braking, thereby creating the moment that is 

necessary to counteract the undesired yaw motion. Another approach is to command 

additional steering angles to create the counteracting moment [79]. Another alternative 

approach, which is used in this work, is to treat the three drivetrain sub-systems (i.e., 

throttle, brake and steering sub-systems) as one MIMO plant. Therefore, the interactions 

between the vehicle longitudinal and lateral properties, disturbances and nonlinearities 

are considered in the multivariable control law and modelled using the MIMO neural 

network based GLM. 

6.4.1 Longitudinal and Lateral Vehicle Model for Autonomous Vehicle Control 

first stage, the desired path and vehicle speed are determined on the basis of the driving 

In general, the process of autonomous vehicle control consists of two stages. During the 
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environment. In the second stage, the vehicle is operated with the aim of realising the 

anticipated path and speeds. Basically, the autonomous vehicle controller is composed 

of three modules: a driver decision module, co-ordinates’ transfer module and driver 

following module [141]. The driver decision module provides the desired path 

)(xFY pathpath =  and speed )( xvref SGV =  described in the space domain, where xS  is 

the distance along the path )(xFY pathpath = . The co-ordinates’ transfer module changes 

the target path and speed into the time domain as )(tfy pathpath =  and )(tgv =  in vref

order to form the input for the driver-following module. On the other hand, the driver 

following module outputs the desired control elements which are the steering wheel 

angle swδ , throttle angle θ  and brake torque bT  [145].The driver decision and the co-

ordinate transfer modules are not covered by the discussion in this thesis. Assuming that 

the desired path and vehicle speed have been provided, the focus is on the approaches of 

achieving the above desired control elements ( swδ ,θ  and T ) in order to follow the b

target path in the desired speed. 

A simplified functional diagram of a MIMO vehicle model control system incorporating 

the proposed intelligent multivariable multiple-controller is given in Figure (6.20) [138, 

411 , 145]. Each block can be considered as a subsystem with various inputs and 

outputs. The throttle, brake and steering subsystems are considered as one MIMO 

system with the desired throttle angle tθ , braking torque T  and steering wheel angle t tδ  

as inputs, and throttle angle θ , braking torque T  and steering wheel angle b swδ  as 

outputs, which will deliver the vehicle to the desired path in the desired speed. 
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intelligent multivariable multiple-controller. 

A simplified longitudinal and lateral vehicle model can be represented using the 

following equation [77

 

 

 

Figure (6.20): Longitudinal and lateral vehicle model incorporating the 

, 138, 142, 143]: 

)(2 θfTe =

where v  is the vehicle speed, m  is the vehicle mass, c  is the coefficient of 

the function ),(1 eTvf  is the ideal tire force which is generally measured by steady-state 

)],),(1 δCTGTvfdvc
m swfbremp −−+−

                  (6.4) 

,

aerodynamics drag, c  is the coeff nt of friction force, d  is the mechanical drag, 

[1 2
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tests [138] and it depends mainly on the vehicle speed and the engine torque eT . The 

engine torque eT  itself is a nonlinear mapping from θ  to eT . Finally, )(2 θf  is the steady 

state characteristics of engine and transmission systems, and in this thesis it was 

represented by an RBF neural network with θ  as its input, and  as the output eT

variable. The RBF design parameters were selected on a trial and error basis. The term 

brTG  represents the braking force, where rG  is effective gear ratio from the engine to 

the wheel and bT  is the braking torque. The term swfC δ  is the cornering force [144], 

where fC  is co tiffness coefficient and rner s swδ  is the steering angle.  

The following three subsections will present the complex plant models of the throttle, 

braking and steering subsystems used in this thesis (as in shown Figure (6.20) above). 

Other model representations can be found in [145]. 

6.4.2 Electronic Throttle Control (ETC) Subsystem 

The ETC system uses a torque motor (DC servo-motor) to regulate the throttle plate 

angle θ  between 2/0 πθ <<  radians (i.e., closed to wide-open-throttle) in order to 

adjust the inlet airflow. The servo-motor is controlled by the applied armature voltage 

ae  in volts, which represents the control input to the ETC system. The nonlinear model 

of the ETC can be presented as follows [77]: 

0
2

121
0 )(cos)(

1
)( θθθ −∆−

++
= −− tPcte

zaza
bt a ,                       (6.5) 

21
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where θ  is the ETC system output, 0θ  is pre-tension angle of the throttle spring, the 

linear process parameters ,,, 021 baa  and 1c  are estimated using the linear sub-model 

of the GLM model, P∆  is the manifold pressure across the throttle plate. The nonlinear 

function )(cos2 tP θ∆  is approximated by the RBF neural network in the GLM. The 

ma st the throttle plate angular position in objective of the control problem is to adju θ  

so as to m iaintain the des red speed v . 

6.4.3 Wheel Brake Subsystem 

The brake system plant model used in this work is defined as in [142]: 

)()(
ˆˆˆ1

ˆ
3

3
2

2
1

1 zazaza
b

bb +++ −−−

1.1ˆ,ˆ9.0 21 <≤ aa  and the third pole (the pole of the torque sensor) was restricted to 

8.0ˆ6.0 3 <≤ a . The term )(td  will include the nonlinear dynamics and disturbances of 

the process [

)( 0 tdtetT += .                           (6.6) 

The zero of the braking process model was experimentally found restricted to 

ˆ . The first two poles of the braking process were restricted to 5.00 0 <≤ b

142]. Based on the amount of wheel slip and other factors, the controller 

requests a desired braking torque bT  at the wheel. To reach the requested torque, the 

controller controls the brake line pressure by means of a voltage control be  at the 

actuator, that consists of a DC motor and a ball-screw/piston device [142]. 

 

 201



6.4.4 Steering Wheel Subsystem 

swThe transfer function from the front wheel steering angle δ  to the desired vehicle 

lateral position )(tf  can be computed as [79]: path

)()(
1 3

3
2

2
1

1

1

zazaza
zbb

dswsw +++
+

−−−

−

sw

wheel column, 

)( 10 tMtet +=δ ,                       (6.7) 

where e  is an input voltage applied to the DC servomotor installed in the steering 

0b , 1b , 1a , 2a  and 3a  are approximated using the RLS based linear sub-

model in the GLM. The yaw-disturbance dM  is approximated using the RBF based 

nonlinear sub-model of the GLM. 

The proposed i

6.4.5 Simulation Setup 

ntelligent multiple-controller framework was applied to the complex 

321321 t

epresent the output signals

longitudinal and lateral vehicle model in order to demonstrate the effectiveness of the 

framework with respect to tracking desired vehicle speed and path changes and 

achieving the desired control performance and maintain the required speed of response, 

whilst penalising nonlinearities and disturbances. The complex vehicle model below 

was used to identify the parameters of the MIMO process: 

(.,.))](),(),()][([)](),(),()][([ 111 TT ztututuztytytyz fBAI +=+ −−− .  (6.8) 

The variables )(),( 21 tyty  and )(3 ty  r

,0

 θ ,  and bT swδ  

respectively, u tu  are respectively the control inputs e e  and e .  )(),( 21 tut  and )(3 a , b  sw
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The nonlinear dynamics (.,.),0 tf  were approximated by the MIMO RBF based nonlinear 

sub-model of the GLM. The parameters I , A  and B  of the MIMO process above were 

defined as: 
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Parameter Value 
m  kg1067  

vc  1.42 

pc  0.3 

rG  2.66 

fC  radN /15000−  
 

 w e

 path along with target 

speed. So, longitudinal and lateral displacements will be involved in the control process. 

Table (6.11): Vehicle parameters. 

To demonstrate performance of the intelligent multivariable multiple-controller in 

controlling the complex autonomous vehicle control application, two simulation 

experiments ill b  performed next. In the first experiment, the MIMO control system 

will work in tracking a reference signal representing a changing target vehicle speed 

along a longitudinal track with no lateral displacements (i.e., no steering actions 

required). This example will focus on the interactions between the throttle and wheel 

brake systems to reach the target speed. The second experiment will illustrate the 

performance of the MIMO control system in tracking target
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6.4.6 Fuzzy Supervisor Setup 

21 a

be  and swe ), three system

The application of the autonomous vehicle control has three control inputs and three 

system outputs. Consequently, the fuzzy sets used in the multivariable multiple-

controller switching and tuning subsystems were built according to information derived 

from three control inputs ( )(),( tutu  and  are respectively the control inputs , 

als ( )(),( tyty  and )(ty  represent the output 

signals 

)(3 tu e

 output sign 21 3

θ , bT  and swδ  respectively), and three reference signal ( )(tw , )(tw  and )(tw ). 

Therefore, the fuzzy rules of the switching and tuning subsystems have their fuzzy 

parameters derived from the three control inputs and three system outputs. The 

following sample fuzzy rule, which belongs to the fuzzy rules given in chapter 5 at 

section (5.3.2.2), represents the case when any of the three output signals has high 

undershoot and high variance will have the corresponding controller switched to the 

Pole-Zero Placement controller. 

IF t

1 2 3

)(
1yζ  OR t)(

2yζ  OR t)(
3yζ  IS Ntive-High AND tV  OR tV  OR tV  IS )(

1y 2y 3y

High THEN )(tCη  OR )(tCη  OR )(tCη  IS Pole-Zero-Placement 

Similarly, the following multivariable multiple-controller tuning fuzzy rule is a sample 

rule derived from the list of the general tuning logic fuzzy rules given in chapter 5 at 

section (5.3.3.2): 

IF )(
1

tCη  OR )(
2

tCη  OR )(
3

tCη  IS PID AND )(
1

ty

)( )(

1 2 3

ζ  OR )(
2

tyζ  OR )(
3

tyζ  IS NOT 
Norm THE  OR N )(

1
tvτ )(

2
tvτ  OR )(

3
tvτ  IS Decrease 
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The above rule checks the overshoot in the three system output signals )(1 ty , )(2 ty  and 

)(3 ty  in order to provide tuning values for the gains 1v , 2v  or 3v  of the corresponding 

active PID controllers. 

In the design of the fuzzy MFs for the switching and tuning subsystems for this MIMO 

application, the TriMF and TrapMF scalar variables a , b , c  and d  of the switching 

and tuning fuzzy parameters were experime  order to contain 

The obtained results presented in Figures (6.21a, b and c) and (6.22a, b and c) show the 

ntally adjusted in

quantitative information about the autonomous vehicle model subsystems (i.e. 

electronic throttle, wheel brake, and steering wheel subsystems). The final fuzzy sets 

represent knowledge base about the vehicle model subsystems’ behaviour by preserving 

different information including: output signals degree of overshooting, output signal 

variance limit, steady state error, and so on. By adjusting MFs scalar variables a , b , c  

and d  (given in Equations 4.11 and 4.12 and Tables 6.1 and 6.2) of each vehicle model 

subsystem, the overlap between neighbouring MFs will differ between the different 

input and output fuzzy parameters. 

6.4.7 Experiment One 

performance of the intelligent multivariable multiple-controller in simultaneous 

controlling of the throttle subsystem and wheel braking subsystem while dealing with 

the nonlinearity and disturbance interactions. Figure (6.21a) shows the closed-loop 

system output obtained when the multiple-controller framework is used to maintain the 

desired vehicle speed v. Figure (6.21b) shows the selection scheme for the two multiple-
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controllers 1C  and 2C  (resulting from use of the fuzzy switching and tuning supervisor) 

which led to effective tracking of the desired speed changes whilst penalising excessive 

control action, and achieving non-overshooting and minimum variance system outputs. 

It is interesting to note that at the sample time 700 the brake system was activated in 

order to reach the new desired vehicle speed of 10m/Sec. The throttle angle was set to 

its minimum by the throttle controller 1C  (Figure (6.22a and b)) while the brake 

controller C  was activated to slow the vehicle system to the target low speed (Figure 2

(6.22c and d)). 

It can be seen through the multiple-controller switching in Figure (6.21b), Figures 

(6.22a) and (6.22c), for both the throttle and brake subsystems, the fuzzy logic based 

the nonlinearity effects and overshooting in the throttle and brake subsystems were 

activated resulting in minimum variance steady states in both subsystems. Also in 

adjustment in the rising time of the throttle angle signal, which in turn affects the 

inimize the control action (Figures (6.22b and d)). 

switching and tuning supervisor activates the Pole-Zero Placement controller at the 

points of changes in the speed reference signal. As a result of these switching decisions, 

prevented. When the signals reach the steady state, the PID controller was automatically 

Figure (6.22a), at sampling time of 500 the poles of the Pole Zero placement controller, 

were automatically tuned online by the fuzzy supervisor. The tuning logic caused 

turning speed of the throttle plate. The zeros were also simultaneously tuned to 

m
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Figure (6.21): Intelligent multiple-controller in tracking target vehicle speed (I): 
(a) output speed trajectory, (b) multiple-controller switching scheme among 

throttle and wheel brake subsystems. 
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Figure (6.22): Intelligent multiple-controller in tracking target speed (II): (a) the required throttle θ, 
(b) throttle subsystem control input(c) the required braking torque, (d) braking subsystem control input. 
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6.4.8 Experiment Two 

The complex vehicle plant model consists of three-input three-output MIMO system 

includes interacting nonlinearities from the throttle, braking and wheel steering 

subsystems, was a challenging task for the intelligent multivariable multiple-controller. 

Due to complex nature of this task and to simplify the simulation process, there were no 

random disturbances involved in this experiment. The obtained results in Figures (6.23) 

to (6.24) illustrate the capability of the proposed framework in producing non-

overshooting and smooth steady state system output signals with minimum control input 

actions, which were results of proper switching and tuning actions performed by the 

fuzzy logic supervisor. 
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Figure (6.23): Intelligent multiple-controller in tracking target speed and target path (I): 

(a) tracking of the target path displacements, (b) tracking of the target speed. 

(a) 

(b) 

Obstacle 

 209



0 20 40 60 80 100 120 140 160 180 200

-0.1

 210

-0.05

0

0.05

0.1

0.15

Sampling time (10-1 sec)

ee
rin

g 
an

ra
d)

 
Output steering angle

gl
e 

(
S

t

 
(a) 

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

Samp

 

ling time (10-1 sec)

Th
ro

ttl
gl

e 
(ra

d)

 
Throttle angle

e 
an

(b) 

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

Sampling time (10-1 sec)

or
qu

e 
(N

m
)  

Output braking torque

B
ra

ki
ng

 t

 

 
 

Figure (6.24): Intelligent multiple-controller in tracking target speed and target path (II): 
a) maintaining the required steering angle sw( δ . (b) maintaining the required throttle angle θ , 

(c) maintaining the required braking torque bT . 

Figures (6.23) and (6.24) illustrate the results obtained by controlling the throttle, brake 

autonom lation results demonstrate that the proposed 

methodology is able to follow control decisions within the desired path and speed 

(c) 

and steering wheel systems through the use of the longitudinal and lateral MIMO 

ous vehicle model. The simu



trajectories. During the sampling times from 0 to 86 the autonomous vehicle had to 

 the path with a speed of 30m/sec, then slow down to 20m/sec to follow the left follow

side turn. This was to be followed by slowing down to a speed of 10m/s to track a sharp 

the target speed of 30m/sec (as shown in Figures (6.23a and b). 

Figure (6.24a) shows the output steering wheel angle during the operation of tracking 

the th /sec. 

speed

braking torque as shown in Figure (6.24c). 

6.5 S

The c

propo eworks given in chapters 

evalu

applic rised as a complex control 

nonlinear dynamics and added random disturbances. To assess the behaviour of the 

used. Also, for the MIMO design, a coupled water tank system was used. The 

turn right within the target path, and then speeding up to 20m/sec and lastly attaining 

the target path. As can be seen in Figure (6.24b), during sampling times from 100 to 104 

rottle plate was set to its minimum in order to slow down the speed to 10m

However, as this minimum throttle angle was not sufficient to reach this low target 

, simultaneously the wheel brake system was triggered to produce the required 

ummary 

hapter presented a set of experiments to demonstrate the performance of the new 

sed intelligent SISO and MIMO multiple-controller fram

four and five respectively. The conducted simulation experiments, which were used to 

ate the proposed methodology, have been performed on benchmark control 

ations. Each control application can be characte

problem, as each was modelled in terms of estimated linear parameters, approximated 

SISO design of the intelligent multiple-controller, a SISO water vessel plant model was 
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simul

applic

control. 

Gene

choice of employing the RBF neural network based GLM instead of the conventional 

Secondly, to dem

between the conventional PID controller and the Pole-Zero Placement controller. 

Thirdly, to illustrate the e

multiple-controller parameters including the PID gain of the conventional PID 

contro

and tu

to ma ed-loop system performance. Fourthly, to examine the 

contro of 

The o w the RBF 

stable

disturbances. Due to the online switching and tuning, the fuzzy logic supervisor 

system signals which preserve low overshooting and minimum variance system outputs, 

ations were ended by introducing the proposed methodology to a new challenging 

ation which was the complex multivariable problem of autonomous vehicle 

rally, the experiments were aimed to achieve four goals. Firstly, to justify the 

MLP neural network based GLM for both SISO and MIMO multiple-controllers. 

onstrate the stable and bumpless fuzzy logic based switching actions 

ffectiveness of the novel fuzzy logic based online tuning of the 

ller, and poles and zeros of the Pole-Zero Placement controller. The switching 

ning tasks were performed autonomously by the proposed fuzzy-logic supervisor 

intain the required clos

proposed framework on a more complex application namely autonomous vehicle 

l. This application has more than one actuator with the involvement 

nonlinearities and interactions between its subsystems. 

btained results from the SISO and MIMO case studies showed ho

neural network consistently outperformed the sigmoidal MLP neural network through 

 learning and a improved approximation of high nonlinearities and sharp 

successfully performed the minimum switching actions required for producing control 

 212



and penalised control inputs. Furthermore, tuning the parameters of the multiple-

ller showed satisfactory outcomes in adjusting the rise and fall times of the contro

system output signal, penalising control actions, minimising the steady state errors and 

The o sults produced from applying the intelligent multiple-controller framework 

outcom  

trajectories, which was a simultaneous control of the throttle, wheel 

brake and steering complex subsystems. 

The 

recommendations for future work. 

 

minimising output variance. 

utput re

to the new application of autonomous vehicle control had provided promising 

es. It was shown that this proposed interdisciplinary control strategy managed to

control the longitudinal and lateral complex vehicle model to track target speed and path 

chieved through the 

next chapter presents this thesis’s concluding remarks together with some 
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Ch

Motiv

sophisticated controllers, which is due to the increasing complexity of dynamical 

the research

engineering tools with soft computing techniques in order to achieve the development 

of a new intelligen s. The 

proposed intelligent multiple-controller methodology for SISO and MIMO complex 

system

modelling complex plants, and suggested a high level fuzzy logic supervisor for 

auton ing between a conventional PID controller and a 

Pole-Zero Placement controller. 

There  aimed at 

system fuzzy logic. Chapter 

three discussed a general architecture for a feedback system employing a family of 

controllers for controlling a complex mechatronic plant system which is modelled as a 

apter 7  

Conclusions and Future Work 

7.1 Conclusions 

ated by the demand for the use of more generalised plant modelling methods and 

systems coupled with the increasing demands in closed loop performance specification, 

 work reported in this thesis was directed towards integrating control 

t framework for modelling and control of complex system

s employed an RBF neural network based generalised learning model (GLM) for 

omous online tuning and switch

 were two review chapters included in this thesis. Chapter two

highlighting the importance of intelligent control and introducing the issue of complex 

s and how they can be dealt with using neural networks and 
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physical process operating in a limited set of operating regimes. The discussion focused 

e recently developed multiple-controller framework which incorporated an MLP on th

neural network based GLM for modelling and control of complex systems. The 

minimum variance control. 

The c  four, five and six. Chapter 

Mam

and tuning processes in order to control complex SISO systems. The complex plant was 

intelli tracking a desired reference 

signal, achieving the desired output signal performance and penalising excessive control 

action

behav  to the importance of supervisory control and 

frame  and 

monit  achieving these 

isturbances in 

e derivation of the 

stability analysis of the proposed intelligent multivariable multiple-controller 

framework. Finally, chapter 6 presented the simulation experiments used to assess the 

behaviour of the SISO and MIMO designs of the intelligent multiple-controller. The 

controllers employed in this design were built on the concept of adaptive generalised 

ontributions of this thesis were presented in chapters

four presented the new intelligent multiple-controller framework incorporating a 

dani fuzzy logic system designed to supervise the multiple-controller switching 

modelled using an improved GLM based on an RBF neural network. The proposed 

gent multiple-controller operates adaptively for 

s, in response to the current performance of the control systems as assessed by a 

iour recogniser. In chapter five, due

multivariable controllers, an autonomous intelligent multivariable multiple-controller 

work for the control of complex MIMO plants was presented. The switching

tuning decisions are based on the specific required performance criteria and continual 

oring of the effectiveness of each multivariable controller in

criteria in response to set-point changes, nonlinear dynamics and added d

the complex MIMO plant. The chapter was concluded by proving th
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simulations concluded by applying the proposed methodology to a new challenging 

ation, namely the complex multivariable problem of autonomous vehicle coapplic ntrol. 

On th  the simulation experiments presented in 

the previous chapters, the following conclusions can be drawn: 

• med the 

and its im

modelling complex systems simplified the design of control systems for both SISO and 

nonlinearities, disturbances and uncertainties is a difficult task and traditional solutions 

linear s theory. On the other hand, implementing globally stable 

nonlinear controllers with adequate performance during all stages of the control process 

is not an easy task. By using nonlinear PID structure based minimum variance control 

nonlin  and 

• 

switching actions required for producing control system signals which preserve low 

More between the two 

e basis of the theoretical discussions and

The GLM based on the RBF neural networks consistently outperfor

sigmoidal MLP neural network based GLM. The RBF neural network’s stable learning 

proved approximation of high nonlinearities and sharp disturbances added an 

advantage to the proposed intelligent multiple-controller. The GLM approach for 

MIMO complex plants. Generally speaking, modelling complex systems with 

involve linearization of system dynamics to establish control techniques imported from 

 control system

designs, such as the multiple-controller used in this thesis, coupled with a learning 

ear plant modelling approach, supported by online controllers switching

tuning, we can successfully control a general class of complex discrete-time systems. 

The proposed fuzzy logic supervisor successfully performed the desired 

overshooting and minimum variance system outputs, and penalised control inputs. 

over, the selection decisions experienced no conflict in the choice 
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candidate controllers. These switching advantages can be dedicated to the multiple 

 assessment factors (such as: degree of overshooting; signal variance; settling system

time; steady state error; …etc.) used in the fuzzy rules and supplied by the supervisor’s 

the m , which had its fuzzy rules given higher priority than 

tunea

anoth

controller showed satisfactory outcomes in adjusting the rise and fall times of the 

minim

controller is a novel use of fuzzy logic in online tuning of control parameters, in view of 

contro

behaviour recogniser subsystem. That was also due to the facility of online tuning for 

ultiple-controller parameters

the switching fuzzy rules. In this manner, the active controller had the chance for its 

ble parameters to be adjusted before it could be deactivated in order to switch to 

er candidate controller. Furthermore, tuning the parameters of the multiple-

system output signal, penalising control actions, minimising the steady state errors and 

ising output variance. Tuning of the PID gain, poles and zeros of the multiple-

the fact that fuzzy supervisor has conventionally only been employed for tuning PID 

llers [4]. 

• The simulation results demonstrated that the proposed intelligent framework is 

nonlinearities and disturbances. Novel application of the intelligent multiple-controller 

framework to the autonomous 

shown that this proposed interdisciplinary control strategy managed to control the 

longit

trajec of the throttle, wheel 

brake and steering complex subsystems. 

able to compensate complex system deficiencies caused by subsystems' interactions, 

vehicle control problem showed promising results. It was 

udinal and lateral complex vehicle model to track target speed and path 

tories, which was achieved through the simultaneous control 
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7.2 Implementation Challenges 

 proposed for tuning and switching between In the fuzzy logic based supervisory system

the supervisor structure invol ents 

(a) Input and output variables for the fuzzy switching and tuning subsystems: Details of 

given

functions used for the fuzzy values of fuzzy variables are selected based on 

chapt

switc iables were represented by TriMF and TrapMF 

During the optim

parameters a , b , c  and d  of Equations (4.11 and 4.12) were experimentally adjusted 

in order to adequately repr

applic  the physical 

overs

the fuzzy logic sets are given in Tables (6.1 and 6.2) chapter 6. 

the multiple-controllers for each of the SISO and MIMO applications, the selection of 

ved a series of over two dozens trial-and-error experim

to set up the final structure parameters, which included the following choices: 

the input and output fuzzy variables for the SISO and MIMO supervisor systems are 

 in sections (4.3) and (5.3) respectively. 

(b) Number and type of membership functions for the fuzzy variables: The membership 

experimental observations for each of the SISO and MIMO applications illustrated in 

er 6. From the point of view of simplicity and computational complexity, the fuzzy 

hing and tuning subsystems’ var

membership functions with not more than two membership functions overlapping. 

ization process of the MFs of the fuzzy variables, the MFs scalar 

esent quantitative information about the SISO and MIMO 

ations. The final fuzzy sets represent the knowledge base about

system behaviour by preserving information such as: output signal(s) degree of 

hooting, output signal(s) variance limit, and steady state error range(s). Details of 
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(c) Rule base: The rules of the fuzzy switching and tuning supervisor were designed 

 on the SISO and MIMO controllers’based  performance assessment criteria given in 

each of th  and tuning logic 

of rules su

respe

in the final 

MFs 

preference or experience, fuzzy membership functions can have different shapes and 

lead to an improvement in the system’s performance. 

Takin  the 

the d  switching and tuning supervisor is 

param

membership functions is considered for both the inputs and outputs with not more than 

triangular and trapezoidal membership functions are used, which have the advantages of 

section (4.2.1) in chapter 4, and on the experimental consideration of the influence of 

e input and output fuzzy variables in the switching

subsystems. The final rule bases were implemented with the minimum possible number 

ch that the switching logic and the tuning logic employed 5 rules and 12 rules 

ctively. 

The employed membership functions and rule bases play a crucial role 

performance of the fuzzy supervisory system. Therefore, selection of the appropriate 

and fuzzy rules is an important design problem. Depending on the designer’s 

sizes, fuzzy rules can have different orientations and number of rules, which can in turn 

g into account the real-time implementation constraints, such as minimizing

amount of memory used and the time that it takes to compute the system outputs using 

erived control inputs, the fuzzy logic based

designed with a minimum number of fuzzy rules with minimum input and output 

eters. From the point of view of computational complexity, a maximum of three 

two membership functions overlapping. In order to improve the computation time, the 

simplicity and require minimum rules. To reduce the memory requirements and to 
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enable online operation (switching and tuning), the fuzzy supervisor is designed to 

ute the rule-base at each time instant rather than using a stored one. 

mentation prospects could be

comp

Imple  improved by using a state-of-the-art microprocessor 

or signal processing chip. An alternative would be to investigate the advantages and 

disad

imple

vantages of using a fuzzy processor (i.e., a processor designed specifically for 

menting fuzzy controllers) as in [4]. 

The field of supervisory control is a combination between decision-making and real-

time control. The decision-making aspect corresponds to “autonomous” (or 

independent) supervision and e control corresponds to plant control (or 

execution). The developers of autonomous intelligent control for real-time systems 

canno

plant 

into one physical system presents a significant challenge in itself. Not only does the 

enviro

algorithms to the incoming sensor data and decide which sensor information is needed 

achie ce of observation disturbances and 

the m ikely to 

be encountered in practice, research is still required in accurate estimation of plant 

the real-tim

t work on autonomy and computer processing separately from working on the 

system mechanics and specifications. Therefore, integration of these two areas 

computer equipment need to be able to physically withstand the operational 

nment of the plant under control, but it also needs to appropriately connect the 

in the first place. 

In practical implementations of control structures for trajectory control, one difficulty in 

ving accurate trajectory tracking is the existen

plant nonlinear dynamics, which could corrupt the parameters involved in the design of 

ultiple-controller. To overcome the effects of this situation, which is very l
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parameters, as well as precise approximation of disturbances and nonlinearities, 

ially in the area of transfer learning (i.e. generalising from a previous example to a espec

novel situation). Full understanding of this excellent generalisation ability of humans 

costs in system modelling, that are often the cause of brittle performance. To achieve 

these goa

motivated learning and control perspectives, along with alternative approaches for 

nonlinearity and disturbances. 

on the required specifications, adequate performance criteria have to be defined. The 

evaluated based on a number of factors, such as energy consumption (magnitude of 

specifications, which are usually given in terms of required overshoot, rise time and 

settling tim st 

performance as compared to others. Therefore, it is important to translate these 

specif

the fuzzy sets to guarantee that each controller meets the desired specifications. 

 

and then having it accomplished in computers would improve learning times and high 

ls, the future work section, next, proposes other forms of neurobiologically 

online neural network construction to further improve the approximation of the 

In order to make a switching decision among various controllers and tuning them based 

heuristics and quantitative performance measures of each controller have to be 

control actions), output variance and meeting user specifications. The user 

e, can give a good measure about which control algorithm will give the be

ications accurately into supervision (decision-making) parameters represented in 
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7.3 Future Work Recommendations 

ed that the proposNow that it has been establish ed intelligent multiple-controller can be 

Some

• 

SISO cases is that Diophantine equations need to be solved to obtain the control 

contro iple-controller 

basis 

world also offers a promising implementable solution. 

• 

SISO sis of generalised minimum variance control 

polyn

functionally useful, further work is required to understand the extent of this usefulness. 

 proposals in this regard are presented next. 

One main drawback of the new multiple-controller framework for MIMO and 

algorithms. This limitation may be overcome by using an implicit Pole-Zero Placement 

ller as an additional control mode option within the new mult

framework. Another novel option could be a fuzzy logic controller designed on the 

of a minimum variance control scheme. The mathematical structure of fuzzy logic 

The structure of the proposed intelligent multiple-controller control law, for both 

 and MIMO cases, is built on the ba

with a PID structure. Therefore, the interesting relationship between the control law 

omials ( A , dP  and F ) and the design of the three term PID controller as a PI, PD 

conventional PID controller (mode 1) into PI, PD or PID according to the system 

involved in the multiple-controller framework, particularly PID controllers which are 

or PID controller provides a possibility of adaptively changing the structure of the 

behaviour and the required performance. This means additional controllers would be 

the most commonly applied algorithms in the control industry. 

 222



• Within the above suggested control strategies various parameters would need to 

osen based on the required control system performance, which could vabe ch ry in time 

controller switching activity a

[72

according to system configurations and nonlinearities. Nonetheless, the multiple-

nd parameters tuning could be further developed through 

fuzzy logic based on the error signals and the first difference of the error signals as in 

]. 

• omplex plant with the GLM could be further investigated to 

adequ

exam  in an aircraft/spacecraft), or environmental issues 

(e.g., from nuclear power plants or process control) are of concern. Hence, it is both 

possib d 

analysis techniques to be used in the verification and certification of the behaviour of 

intelli

are pr and power levels experienced 

aerod

can explicitly handle the nonlinearities, and both input and state constraints of many 

capab  GLM nonlinear sub-model, the current offline 

trial-and-error approach used for the design of the network structure could be replaced 

with 

by Platt in [153

Modelling the c

ensure whether linear sub-model plus neural network based nonlinear sub-models are 

ate to model dynamical systems operating in "critical environments" where, for 

ple, the safety of a crew (e.g.,

le, and of significant importance to introduce robust mathematical modelling an

gent control systems. In complex plants or processes of this kind, nonlinearities 

esent due to the large range of operating conditions 

during a typical mission. Also, such systems are restricted due to mechanical, 

ynamic, thermal, and flow limitations. RBF based GLM could be useful because it 

variables in a single control formulation. To improve the online approximation 

ilities of the RBF NN used in the

the online allocation and tuning methods for RBF units which have been proposed 

]. An alternative approach could be that the nonlinear sub-model in the 
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GLM

furthe atively, 

represent the GLM with a single m

The type-2 FLSs have started to emerge as a promising control mechanism for 

autonom ecause 

such applications need control mechanisms such as type-2 FLSs which can handle large 

amounts of uncertainties present 

 could be represented by fuzzy logic or a neuro-fuzzy sub-model in order to 

r improve the approximation of the nonlinearity and disturbances. Altern

instead of representing the GLM with two sub-models, it could be interesting to 

odel based on a type-2 Fuzzy Logic System (FLS). 

ous mobile applications navigating in real world environments. This is b

in real world environments [146, 147, 148]. There are 

s types of learning models that could be integrated intovariou  the framework to produce 

could

• As discussed in this thesis, intelligent control is a discipline in which control 

system y open avenues for significant 

has a mising results. Other forms of 

into t e-enforcement 

can su

entity ironmental information they receive to guide 

an intelligent multiple model switching and tuning framework, in which a controller 

 be associated with its corresponding optimised learning model. 

algorithms are developed by emulating certain characteristics of intelligent biological 

s. It is quickly emerging as a technology that ma

advances in many areas. In fact fuelled by advancements in computing technology, it 

lready achieved some very exciting and pro

neurobiologically motivated learning and control perspectives could be incorporated 

he framework, such as reward based learning (also known as r

learning), multiple models, multiple agents and Genetic Algorithms. These techniques 

pport complex single and multiple autonomous agents (vehicle, robot, or software 

) and make use of the plethora of env

purposive and useful behaviour. 
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