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Abstract

This thesis proposes an intelligent multiple-controller framework for complex
systems that incorporates a fuzzy logic based switching and tuning supervisor along
with a neural network based generalized learning model (GLM). The framework is
designed for adaptive control of both Single-Input Single-Output (SISO) and Multi-
Input Multi-Output (MIMO) complex systems.

The proposed methodology provides the designer with an automated choice of
using either: a conventional Proportional-Integral-Derivative (PID) controller, or a PID
structure based (simultaneous) Pole and Zero Placement controller. The switching
decisions between the two nonlinear fixed structure controllers is made on the basis of
the required performance measure using the fuzzy logic based supervisor operating at
the highest level of the system. The fuzzy supervisor is also employed to tune the
parameters of the multiple-controller online in order to achieve the desired system
performance. The GLM for modelling complex systems assumes that the plant is
represented by an equivalent model consisting of a linear time-varying sub-model plus a
learning nonlinear sub-model based on Radial Basis Function (RBF) neural network.
The proposed control design brings together the dominant advantages of PID controllers
(such as simplicity in structure and implementation) and the desirable attributes of Pole
and Zero Placement controllers (such as stable set-point tracking and ease of
parameters’ tuning).

Simulation experiments using real-world nonlinear SISO and MIMO plant
models, including realistic nonlinear vehicle models, demonstrate the effectiveness of
the intelligent multiple-controller with respect to tracking set-point changes, achieve
desired speed of response, prevent system output overshooting and maintain minimum

variance input and output signals, whilst penalising excessive control actions.
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Chapter 1

Introduction

For complex systems with significant nonlinearity and parametric uncertainty, adaptive
nonlinear control has evolved as a powerful methodology leading to global stability and
tracking results for a class of nonlinear systems [15]. In parallel with the development in
adaptive nonlinear control, there has been a tremendous amount of activity in the
application of artificial intelligence techniques in control engineering. The area of
intelligent control is in fact interdisciplinary, and it attempts to combine and extend
theories and methods from areas such as control engineering, computer science and
operation research to attain demanding control goals [61]. Intelligent control techniques
are nowadays recognised tools in both academia and industry. Methodologies coming
from the field of computation intelligence, such as neural networks, fuzzy logic systems
and evolutionary computation, can lead to accommodation of more complex processes,

improved performance and considerable time savings and cost reductions [13].

An intelligent controller, based on an expert control concept, as a decision-making
element in a feedback control loop requires much the same decision making ability as is
needed in other expert systems, however there are significant differences. One crucial
requirement is the need to provide control signals to the process in real-time. The
second requirement is that the intelligent controller should not need human interaction

to complete its functions. The third is that the intelligent controller must be interfaced



directly to the process and be equipped with the means for applying control to the
process [59]. An intelligent controller based on this type of a controller should be able
to use several different control algorithms as well as to tune the parameters of each
algorithm according to the desired user specifications. It should also autonomously
manage the selection between those control algorithms to maintain the control

objectives at or near their optimal values for specific process conditions.

1.1 Motivation for the Thesis

Inspired by the advances and the on going research in soft-computing techniques and
their applications in intelligent control engineering, the motivations for this thesis are

presented in the following sub-sections.

1.1.1 Control of Complex Systems

During the last few decades, nonlinear control became a field of growing interest. The
reason is twofold. Firstly, new achievements of nonlinear control theory combining
control engineering, computer science and operation research methods strengthened its
power. Secondly, new demands for high performance control arose in science and
engineering. Nonlinearity plays an especially strong role in control of mechanical
systems such as chemical industry, cars, robots, helicopters, ships, etc. Many of those
systems are characterized by a high level of complexity: high dimension of the state
space, multiple inputs and outputs, parametric uncertainty and un-modelled dynamics

[61, 62].



A difficult problem in the control of these complex dynamic systems is due to the
inherent nonlinearities of their models and these problems cannot be solved using
traditional linear control techniques. The application of linear control theory to these
problems relies on the key assumption of a small range of operation in order for the
linear model assumption to be valid. When the required operating range is large, a linear
controller may not be adequate. For this reason, it seems appropriate to extend linear
control to plants with nonlinear models and with plant/model mismatch. A possible way
this can be achieved is by incorporating the inherent nonlinearity of the process into the
control design process using a so-called learning model. “Learning models” result from
a synthesis of learning systems. Learning systems are particularly useful whenever
complete knowledge about the environment is either unknown, expensive to obtain or
impossible to quantify. When learning systems are synthesized with modelling
techniques, so-called learning models emerge. Furthermore, when learning models are

used with advanced control methods, they result in learning control systems [63, 64].

Over the last decade or so, there has been much progress in the modelling and control of
complex processes, using black-box type learning models. Some of nonlinear input-
output representations have appeared, such as Volterra series, Hammerstein (HM),
Wiener, Wiener-Hammerstein, Artificial Neural Networks, etc. Neural networks have
been shown to be very effective for controlling complex non-linear systems, when there

is no complete model information, or when the controlled plant is considered to be a

“black box” [65].



Zhu and Warwick [19] have proposed an improved more generalised method for
developing nonlinear adaptive control based on a general input-output nonlinear
modelling framework. In such designs, which Zayed et al. [37] term the Generalized
Learning Model (GLM), the process model can be split into two parts, namely linear
and non-linear dynamical learning sub-model, so that this special structure allows the
linear part of the controller to exploit classical linear theory. In addition, the coupling
effects and the other relationships are accommodated in the nonlinear learning sub-
model allowing effective compensation. Therefore, this thesis improves the
performance of the GLM to better represent complex real-world systems and develop a

novel intelligent framework to cover complex dynamic systems.

1.1.2 Intelligent Methods in Control Engineering

Intelligent control is a very active and multi-disciplinary field [66]. The concept of
intelligence in control applies to a variety of approaches used for extending classical
control theory that include learning, nonlinear control, model-based control, and, in
general, control of complex systems that will achieve the desired performance when
confronted with unexpected or unplanned situations [67]. There are requirements today
that cannot be successfully addressed with the existing conventional control theory.
They mainly pertain to the area of uncertainty, which is present because of poor models
due to lack of knowledge, or due to high level models used to avoid excessive
computational complexity. Normally the plant is so complex that it is either impossible
or inappropriate to describe it with conventional mathematical system models such as

differential or difference equations. Even though it might be possible to accurately



describe some systems with highly complex nonlinear differential equations, it may be
inappropriate if this description makes subsequent analysis too difficult or too
computationally complex to be useful. The complexity of the plant model needed in
design depends on both the complexity of the physical system and on how demanding

the design specifications are [61].

There are needs in the control of these complex systems which cannot be met by
conventional approaches to control. For instance, there is a significant need to achieve
higher degrees of autonomous operation for robotic systems, spacecraft, manufacturing
systems, automotive systems, underwater and land vehicles, and others. To achieve such
highly autonomous behaviour for complex systems one can enhance today's control

methods using intelligent control systems and techniques [68].

Intelligent control systems are typically able to perform one or more of the following
functions to achieve autonomous behaviour: planning actions at different levels of
detail, emulation of human expert behaviour, learning from past experiences, integrating
sensor information, identifying changes that threaten the system behaviour, such as
failures, and reacting appropriately. This identifies the areas of Planning and Expert
Systems, Fuzzy Systems, Neural Networks, Machine Learning, Multi-sensor
Integration, and Failure Diagnosis, to mention but a few, as existing research areas that
are related and important to Intelligent Control [68]. Therefore, in this thesis, soft-
computing techniques such as neural networks and fuzzy logic will be used to improve
the approximation of the GLM for complex systems and introduce autonomy to the

multiple controller framework proposed by Zayed [17].



1.1.3 Multiple-Controller Structures and Techniques

Control engineers are sometimes confronted with situations in which they have to
design and implement real-time control systems that are composed of a set of
controllers in stead of a single control algorithm. These situations occur for example
when the control problem to solve is complex of nature, that is, when the problem can
be thought of being composed of an interconnection of a set of simpler sub-problems
[8]. A common approach to control such complex dynamic systems is to design a set of
different controllers, each of which for a particular operating region or performance
objective, and then to switch them in real-time to achieve the overall control objective
[69]. Some multiple-controller architectures have been reported in the field of control

engineering, and these are known under the general name of multiple model approach

[8].

Many physical systems are hybrid in the sense that they have continuous behaviours and
discrete phenomena. A good example of a complex hybrid system is an automobile
[69]. Discrete signals are gear ratios, load and road characteristics, driver inputs, and
control signals. The continuous parts are often nonlinear dynamics of motion, motor
characteristics, sensor signals, and so on. Continuous dynamic characteristics vary
according to the state of discrete signals. Dynamics can be changed by the operator
input or due to a change in the environment. Therefore, it is required to implement a
different controller for each operating condition. An intelligent multiple control system
may have the ability to operate in multiple environments by understanding the current

operating condition and achieving the various tasks appropriately.



This research will work towards developing a new intelligent multiple-controller
framework which incorporates a fuzzy logic based switching and tuning supervisor to
provide the system with the choice between deploying the conventional Proportional-
Integral-Derivative (PID) self-tuning controller, or the PID structure based
(simultaneous) pole and zero placement controller. Both controllers, which were
originally proposed by Zayed et al. [17, 39, 70] benefit from the simplicity of having a
PID structure, operate using the same adaptive procedure and can be selected on the

basis of the required performance measure.

1.2 Aims and Objectives of the Research

The general aim of this thesis is to develop a new intelligent multiple-controller
framework for controlling complex Single-Input Single-Output (SISO) and Multi-Input
Multi-Output (MIMO) systems. Specific objectives include: (1) Explore soft-computing
techniques, such as neural networks and fuzzy logic, in order to further develop the
multiple-controller framework proposed by Zayed et al. [17, 39, 70]. (2) Improve the
approximation capability of the nonlinear sub-model in the GLM for more accurate
complex SISO and MIMO plant representation. (3) Introduce autonomy to the manual
switching mechanism among the candidate controllers, namely conventional PID
controller and Pole-Zero Placement controller. (4) Introduce autonomous online tuning
of the parameters of the controllers employed. (5) Apply and assess the developed

intelligent multiple-controller framework in novel realistic challenging applications.



1.3 Original Contributions of the Thesis

The main contributions of this thesis are:

1.3.1 Radial Basis Function Neural network Based Enhanced GLM

In modelling nonlinear dynamics and disturbances of complex systems using the GLM,
the use of the computationally efficient Radial Basis Function (RBF) neural network
(NN) sub-model instead of the Multi-Layered Perceptron (MLP) NN based sub-model,
which was originally proposed in [16, 19], has been shown to improve the system
performance in terms of achieving minimum variance of the output signal and the
control input signal, both for tracking changes in the reference signal and for dealing
with the nonlinearities and addition of random and constant disturbances. The enhanced

RBF based GLM is applied successfully to SISO and MIMO systems.

1.3.2 Fuzzy Logic based Switching between Multiple Controllers

A fuzzy-logic based switching scheme has been developed in order to introduce
autonomy to the conventional manual switching mechanism between multiple controller
modes, which was originally adopted in [17, 39, 70]. The fuzzy-logic based supervisor
operates at the highest level of the system and makes a switching decision, on the basis
of the required performance measure, between two candidate nonlinear controllers,
namely a PID controller, or a PID structure based zero and pole placement controller. In
general, the need for switching stems from the fact that typically no single controller

can guarantee the desired behaviour when connected with the poorly modelled process,



and particularly so for the case of complex processes exhibiting significant nonlinearity,

non-stationarity, uncertainty and/or multi-variable interactions [50].

1.3.3 On-Line Fuzzy Logic based Tuning of Multiple-Controller Parameters

In complex control systems, large changes in the operating state lead to corresponding
variations in the parameters of the plant model about these operating states. It is well
known that it is not possible therefore to design a controller to operate satisfactorily at
one operating state and expect it to perform equally well elsewhere without re-tuning it.
Closed loop system performance is degraded since the controller cannot track the
changes in the operating states [74]. In order to study the sensitivity of tuning the
multiple-controller parameters for achieving the desired performance, an online
parameter tuning strategy has been proposed. Therefore, the aim of this work is to apply
the fuzzy-logic supervisor to tune the parameters of the multiple-controller online,
including the poles and zeros of the (simultaneous) pole-zero placement controller in
addition to the PID gains. This novel tuning strategy builds on the conventional fuzzy
gain scheduling strategies that have been conventionally employed for only PID

controllers [4, 71, 72].

1.3.4 New Intelligent Multiple Controller Framework for Complex Systems

The work in this research is integrated to develop an intelligent multiple-controller
framework for the control of SISO and MIMO complex systems. In the proposed
approach, a switching and tuning fuzzy-logic supervisor is situated at the highest level

of the system in order to govern the selection scheme among the conventional PID and



pole-zero placement nonlinear controllers, and to perform the required changes on the
parameters of the active controller. To model the behaviour of the plant, the framework
incorporates the RBF neural network based GLM. The GLM assumes that the unknown
complex plant is represented by an equivalent stochastic model consisting of a linear

time-varying sub-model plus a nonlinear RBF neural network learning sub-model.

1.3.5 Novel Application of the Proposed Intelligent Multiple-Controller to

Autonomous Vehicle Control

The field of autonomous vehicles is a rapidly growing one with its abundant
applications of electronics, sensors, actuators, and microprocessor based control
systems to provide improved performance, fuel economy, emission levels, comfort, and
safety. Autonomous vehicles represent the intersection of artificial intelligence and
robotics, combining decision-making with real-time control [76]. An important
component of autonomous vehicle control (AVC) is to design control systems for
controlling the throttle, wheel brake and steering systems so that the vehicle can follow
a desired path and target speed, which could be a speed response of a leading vehicle,
and at the same time keep a safe inter-vehicle spacing under the constraint of
comfortable driving [77]. There are though a lot of possible techniques with which to
perform AVC. Conventional methods based on analytical control generate good results
but exhibit high design and computational costs since the application object is a
complex nonlinear element and a complete mathematical representation is impossible.
Therefore, other ways of reaching human-like vehicle control have been developed, for

example, through the application of artificial intelligence techniques [78].
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One important and challenging problem in AVC development from the real-time control
applications is vehicle subsystems integration [76]. Dangerous yaw motions of the
automobile may result from unexpected yaw-disturbances caused by unsymmetrical car-
dynamics perturbations like side-wind forces, unilateral loss of tire pressure or braking
on unilateral icy road. One approach for yaw dynamics improvement is to use
individual wheel braking, thereby creating the moment that is necessary to counteract
the undesired yaw motion. Another approach is to command additional steering angles
to create the counteracting moment [79]. Another alternative approach, which is
suggested in this work, is to treat the three drivetrain sub-systems (i.e., throttle, brake
and steering sub-systems) as one MIMO plant. In this work, the interactions between
the vehicle longitudinal and lateral properties, disturbances and nonlinearities are
considered in the multivariable MIMO control law and modelled using the MIMO
neural network employed in the so called GLM. The application of the proposed
intelligent multivariable multiple-controller framework to the autonomous vehicle
control problem was shown to manage the control of the longitudinal and lateral

complex vehicle model in order to track target speed and path trajectories.
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1.4 Publications Arising

The following nine papers have been resulted from the research:

1.4.1 Journal Papers

[1] R. Abdullah, A. Hussain, K. Warwick and A. Zayed, Autonomous Intelligent
Vehicle Control using a Novel Multiple-Controller Framework Incorporating Fuzzy-
Logic based Switching and Tuning, Neurocomputing (Elsevier Science), 70,

in press, 2007.

[2] A. Zayed, A. Hussain and R. Abdullah, A Novel Multiple-Controller Incorporating a
Radial Basis Function Neural Network based Generalized Learning Model,

Neurocomputing (Elsevier Science), 69 (16), 1868-1881, 2006.

1.4.2 Refereed International Conference Proceedings

[1] R. Abdullah, A. Hussain and M. Polycarpou, Fuzzy Logic based Switching and
Tuning Supervisor for a Multivariable Multiple-Controller, IEEE International
conference on Fuzzy Systems (FUZZ-IEEE 2007), 1644-1649, Imperial College,
London, UK, 23-26 July, 2007.

[2] R. Abdullah, A. Hussain and A. Zayed, Novel Intelligent Multiple Controller
Framework incorporating Fuzzy Logic based Switching, In Proceedings:
International Control Conference (ICC 2006), Glasgow-UK, No. 252, 29 Aug. -1
Sep. 2006.

[3] R. Abdullah, A. Hussain and A. Zayed, A New Radial Basis Function Neural
Network Based Multi-variable Adaptive Pole-Zero Placement Controller, In

Proceedings of the IEEE International Conference on Engineering of Intelligent
Systems (IEEE ICEIS'2006), Islamabad-Pakistan, 22-23 April 2006.
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1.4.3 Invited Papers in International Workshops

[1] R. Abdullah and A. Hussain, Intelligent and Nonlinear Control Design for
Autonomous Vehicle Systems, Workshop on Advances in Real-Time Control for

Nonlinear Systems, Glasgow, UK, 5-7 Sep. 2007.

[2] R. Abdullah and A. Hussain , A New Intelligent Multiple Controller Framework for
Complex Systems Deploying Fuzzy Supervisory Switching and Tuning, Workshop

on Nonlinear Control Design for Industrial Applications, Glasgow, UK, 5-6 April
2006.

[3] R. Abdullah A. Hussain, and A. Zayed , New Intelligent Methods for Nonlinear
Adaptive Control and System Identification, Workshop on Introduction to Nonlinear

Control Techniques for Industrial Processes, Glasgow, UK, 3-4 November 2004.

1.4.4 Book Chapters

[1] R. Abdullah, A. Hussain and A. Zayed, A New RBF Neural Network Based Non-
linear Self-tuning Pole-Zero Placement Controller, Lecture Notes in Computer

Science (LNCS), Springer-Verlag, Chapter p, Vol.3697, 951-956, 2005.

1.5 Thesis Layout

This section provides a chapter-by-chapter guide to the thesis.

Chapter two provides a background to the intelligent control systems. The review
includes an overview of the general requirements and structure of intelligent control
systems. As related topics to the developments reported in this thesis, the issues of
complex systems identification based on neural networks, and using fuzzy-logic in

supervisory control will be discussed.
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The third chapter is devoted to illustrate the concept of multiple-controller approach in
control engineering. The focus will be on the multiple-controller framework proposed in
[17, 39, 70]. A detailed discussion regarding the framework’s three multiple-controller
modes is given, namely: conventional PID controller; pole placement controller; and
(simultaneous) pole-zero placement controller. Finally, the design of the GLM is

presented.

Chapter four introduces intelligence to the conventional SISO multiple-controller
presented in chapter three. The new developments presented here include the enhanced
RBF based GLM and the fuzzy-logic based switching and tuning supervisor. These
developments will form part of the new intelligent multiple-controller framework for
controlling complex system in order to achieve a more effective control action and to

over come certain limitations exhibited in the original design of [17, 39, 70].

Chapter five is an extension to the work proposed in the previous chapter as the
intelligent multiple-controller for SISO systems is extended to cover complex MIMO
plants. The theoretical stability analysis of the proposed intelligent multiple-controller

framework is given also.

Chapter six presents results of a series of simulation experiments. The first experiment
starts with a common control problem occurring in chemical process industries, namely
the control of fluid levels in real-world SISO storage tanks or reaction vessels. In this
case, the proposed intelligent framework will work on tracking a reference signal,
which represents the target fluid level, in addition to dealing with the systems’ nonlinear

dynamics and added disturbances. Finally, this experiment is extended to a coupled
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tanks MIMO system that comprises one container with a centre partition to divide the
container into two tanks. In order to compare the performance of the new RBF based
GLM, with that proposed in [16, 17], a quantitative measure of variance of the
controller output and the control input signals is used to assess the closed-loop system
performance. The second experiment carried out in this thesis exhibit the new
application of the intelligent multiple-controller framework to the challenging problem
of autonomous vehicle control. The proposed methodology is used to simultaneously
control the throttle, brake and steering subsystems of a validated complex nonlinear
vehicle model. This multivariable problem will demonstrate the effectiveness of the
intelligent controller with respect to tracking desired longitudinal and lateral
displacements, vehicle speed changes and achieving the desired speed of response,

whilst penalising excessive control actions.

Finally, concluding remarks are given in chapter seven together with some

recommendations for future work.
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Chapter 2

Background to Intelligent Control Systems

2.1 Introduction

Considerable research is being devoted to an understanding and a representation of
intelligence, and the development of intelligent learning algorithms that can be applied
to technological problems whose complexity defies conventional algebraic model based
solutions. To have a resultant intelligence, a computer needs to be able to sense the
world in some way and then have the ability to carry out physical actions, or to cause
physical actions to be carried out [158]. In intelligent or learning systems a desired

mapping f may be determined by either of the following techniques [1]:

1- Indirectly from the set of inputs via self organisation or by the presentation of

training examples.

2- A direct specification of f(.) through a functional transform algorithm, a look

up table or a rule base.

Intelligent systems are frequently characterised by the estimation of the mapping f'(.)

from experiential evidence via an associative memory without recourse to mathematical
modelling or specification. Intelligent systems naturally involve learning or adaptation

of the systems associational structure or functional dependencies in response to changes
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in process parameters [13]. That is, learning cannot occur, without variation in process
parameters, and equally variations in process parameters lead to new experience and

different functional dependencies which allow learning.

An important concept within connectionist modules is that of local receptor fields in the
input space and its associated response in the output space. It is highly desirable that
similar inputs produce similar outputs to minimise sensitivity to input errors, but more
importantly to ensure that the behavioural response exceeds the specific inputs. This is
called generalisation, allowing a module to generalise beyond specific examples, which

is a common feature of intelligent systems [15].

2.2 Intelligent Control Requirements

The ever increasing complexity of dynamical systems coupled with the increasing
demands in closed loop performance specification necessitates the use of more complex
and sophisticated controllers, yet as systems become more complex uncertainty in
modelling increases. Intelligent controllers are enhanced adaptive or self-organising
controllers that can accommodate significant changes in the plant and its environment,
whilst meeting increasingly stringent controller specifications [73]. Intelligent control
systems are defined as those that can operate successfully in a wide variety of situations
by detecting the specific situation that exists at any instant and serving it appropriately
[21]. External disturbances, changes in sub-system dynamics, parameter variations, etc.,
are examples of different unknown environments in which the system has to operate.

Since environments can change rapidly, the objective is to achieve fast and sufficiently
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accurate adaptation [2]. Central to intelligent control is the construction of an internal
model of the true system processes. Unfortunately many large complex processes are
not amenable to mathematical modelling based upon simple physical laws as the

process may be [1, 3, 15]:

—_—
1

Too complex to understand or present simply.

2- The models are difficult or expensive to evaluate. Variables may not be

easily measured or causal variables may not even be known.

3- The process is subject to large unpredictable environment disturbances.

4- The model structure may not be amenable to simple linear time invariant

modelling, being distributed, nonlinear and time varying.

Yet many such plants are first regulated or manually tuned by human operators before
automatic controllers are installed. The plant operator has few apparent problems with
plant nonlinearities or adjusting to slow parametric changes in the plant or with
satisfying a set of complex static and dynamic process constraints. The human operator
is able to respond to complex sets of observations and constraints, and to satisfy
multiple subjective based performance criteria. However, the control actions of human
are difficult to analyse as they are variable and subjective, prone to error, inconsistent
and unreliable, and in the case of safety critical situations and hazardous processes,

potentially dangerous.

The purpose of intelligent control is to incorporate the positive intelligent and creative

attributes of human controllers, whilst avoiding the elements of inconsistency,
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unreliability, temporal instability, fatigue, which are associated with the human

conditions. Therefore, intelligent controllers should have the following characteristics

[1]:

1- Perform under significant uncertainties in the system and in the environment

in which it operates.

2- Able to compensate for system failures without external interventions.

3- Sufficiently adaptable to deal with unexpected situations, new control tasks

or changes in the control objectives.

2.3 Intelligent Control Architecture

A variety of architectures that support and integrate intelligent control have emerged [9,
10], amongst which the most natural is the hierarchal and functional architecture shown
in figure (2.1). Within this intelligent autonomous control architecture there is an
interface to the process involving sensing (e.g., via conventional sensing technology,
vision, touch, smell, etc.), actuation (e.g., via hydraulics, robotics, motors, heaters, etc.),
and an interface to humans (e.g., a driver, pilot, crew, etc.). Higher levels involve
imprecise conceptual qualitative reasoning operating in non-real-time, whereas at lower
levels more precise and quantitative algorithmic methods dominate in real-time.
Furthermore, there is increasing intelligence accompanied by decreasing precision as

one moves from lower to the higher levels [4].
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The execution level consists of low-level numeric signal processing and control
algorithms. These algorithms could be PID, adaptive, or intelligent control; parameter
estimators, failure detection and identification algorithms. The coordination level
provides for tuning, scheduling, supervision, and redesign of the execution-level
algorithms. Moreover, it provides for crisis management, planning and learning
capabilities for the coordination of execution-level tasks, and higher-level symbolic
decision making for identification and control management. The management level
provides for the supervision of lower-level functions and for managing the interface to
the human and other systems. The human interface can be quite complex. It could allow
the user to monitor all aspects of operation of the system via graphical user interface,
provide the user with information about the overall health of the system, and work the

user to specify reasonable and achievable goals for automation [12].

Human and other subsystems

T T

Management level l

Increasing Intelligence A Increasing Sampling Rate

Decreasing Precision v

Coordination level

A

Execution level

—_

Process

Figure (2.1): Three level intelligent control architecture
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2.4 Review of Complex Systems

In engineering and mathematics, a dynamical system is a deterministic process in which
a function’s value changes over time according to a rule that is defined in terms of the
function’s current value. In general, there are two kinds of dynamical systems: discrete
and continuous. A discrete dynamical system involves step-by-step state changes, and
time is measured in discrete steps. If time is measured continuously, the resulting

system is considered continuous dynamical system [20].

Most dynamical systems encountered in practice are inherently nonlinear. The control
system design process build on the concept of a model. Nonlinearity and model
accuracy directly affect the achievable control system performance. Nonlinearity can
impose hard constraints on achievable performance. When portions of the plant model
are unknown or inaccurately defined, or they change operation, the control performance
may need to be severely limited to ensure safe operation. Therefore, there is often an
interest to improve the model accuracy. Especially in tracking applications this will

typically necessitate the use of complex models [15].

2.4.1 Complex System Identification

The ability to adapt to unknown operating conditions is an important attribute of
intelligent systems. Adaptive control is a promising technique to obtain a model of the
plant and its environment from experimental data and to design a controller. Adaptive
control for a feedback linearizable nonlinear system has attracted much interest among

control system designers over several decades [69]. However, the desired level of
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performance or tracking problems with a sufficiently large operating region may require
in which the nonlinearity be directly addressed in the control system design [18]. If the
exact knowledge of the system is available, it is possible to transform a nonlinear
adaptive control problem into a linear control problem by using a feedback linearization
technique. However, in many cases, the plant to be controlled is too complex to obtain
the exact system dynamics, and the operating conditions in dynamic environments may
be unexpected [69]. Recently, an adaptive control technique has been combined with
function approximators such as neural networks, fuzzy inference systems, and series
expansion. These types of controllers take the capability of learning unknown nonlinear
functions by universal approximation theorem and massive parallel computation. Based
on the fact that universal approximators are capable of uniformly approximating a given
nonlinear function over a compact set to any degree of accuracy, a globally stable

adaptive controller has been developed with an adaptation algorithm [15].

A nonlinear time-invariant dynamic system with single-input, single-output (SISO) can

be represented by the following equation [13]:

y(t)=Su)), y(t)e R, u(t)e R, (2.1)

where ¢ denotes continuous time and S is an operator relating the input signal u(¢) to the

output signal y(¢). The mathematical description of the system itself is unknown, but it
is assumed that input-output data are available. The input and the output are sampled at
a constant rate, resulting in discrete-time signals denoted by u(¢) and y(#). The system
described in equation (2.1) can then be approximated by a SISO Nonlinear Auto-

Regressive model with eXternal input (NARX) [13, 14]:
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Yk +1) = f(x(k)), (2.2)

where f'is an unknown approximation function, the hat denotes approximation and x(¢)

is the regression vector defined as the collection of previous process inputs and outputs:

X(8) = [y, (k),ecs v, (b = 1, + 1)1, (K),cyrty, (k= + )] (2.3)

The parameters n; and m; are integers related to the dynamic order of system (2.1).
Further, denote n = n, + m, the dimension of the regression vector. To properly account
for noise disturbances, such as sensor noise; process noise; etc., more complicated
model structures can be chosen. Some common examples are the nonlinear output error
(NOE) model, which involves the past model predictions instead of the process output

data:

x(t) = [$,(k),..., p,(k — n, +1),u,(k),...,u,(k —m, + D]" . (2.4)

In the Auto-Regressive Moving Average with eXternal input (NARMAX) model the

prediction error e(k)= y(k)— p(k) and its past values are included in the regression

vector as well:

x() =[y,(k),.... v, (k = ny + D),u, (k),...,u; (k —m; +1)

e(k),....e(k —n,)]". (2.5)

The problem of complex system identification is to infer the unknown function f'in the
system equation (2.2) from the sampled data sequences {(u(k)y(k)k = 1,2,...,N}.
Depending on the type of nonlinearity and the manner that the nonlinearity affects the

system, various nonlinear control methods are available [14, 15]. The system designer
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can use general function approximators such as Artificial Neural Networks (ANNs),
Fuzzy Logic systems, splines, interpolated look-up tables, etc. [13]. In particular, ANN-
supported complex dynamic system modelling and control has been well advocated in
the control engineering community. The introduction of neural networks to nonlinear
control system design has significantly relieved the difficulty in resolving mathematical

solutions in theory and tuning controller parameters in practice [19].

In this thesis, the complex plant is modelled using a neural network based Generalised
Learning Model (GLM) proposed by [16, 17] as part of the Multiple-Controller

Framework, which will be discussed in chapter 3.

2.4.2 Complex System Identification with Neural Networks

The aim of systems identification is to determine models from experimental data. The
identified models can then be used for different objectives, such as prediction,
simulation, optimization, analysis, control, fault detection, etc. Artificial Neural
networks, in the context of system identification, are black-box models, meaning that

both the model parameters and the model structure are determined from data [13].

ANNs are typically constructed from layers of simple computation nodes, with
weighting elements between nodes that define the strength of connection between
nodes, which are adapted during learning by some optimisation procedure to yield the
appropriate input/output map. ANNs are specified by the network topology, node

function characteristics, and the associated learning rules that update the weighting
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elements [16, 1]. Neural networks are endowed a number of unique attributes which

make them potentially suitable for intelligent control [18, 19]:

ANNSs learn by experience rather than programming.

They have the ability to generalise, that is, map similar inputs to similar outputs.

They can form arbitrary continuous nonlinear mappings.

Their architectures are distributed, inherently parallel and potentially real time.

For intelligent control or neurocontrol, ANNSs require the additional properties of [15]:

Temporal stability, the stability to absorb new information whilst retaining knowledge

previously encoded across the network.

Real time adaptation or learning in response to plant variations.

Known or proven learning convergence conditions necessary for process closed loop

behaviour prediction or neurocontroller certification.

For neurocontrol, networks that can perform functional approximations are most useful.
An important class of neural networks are those in which the input feeds forward
through the network layers to the output, these are referred to as feedforward networks.
They are able to learn complex input-output functional mappings which are ideal for the
purposes of system identification, modelling and control of complex processes [48]. The
most popular ANNs in neurocontrol are the Multi-Layer Perceptron (MLP), and the

Radial Basis Function (RBF) [21, 22, 23]. Both MLP NNs and RBF NNs are able to
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adaptively model or identify a dynamical nonlinear Multiple-Input Multiple-output

(MIMO) or SISO process/plant on-line while the process is changing [23].

2.4.3 MLP and RBF NNs Function Approximation

Based on Weierstrass approximation theorem [1, 12, 15], for the domain D of a

compact space of n-dimensions, let C(D) be a set of continuous functions on D, with

, for every f e C(D) and given error & >0 there exists an approximation

metric || .

function f such that H f- f H <Eg.

The MLP may be represented by the network set for m hidden units by

NS, :{feCD)/ f(x)= iajd)(ika,g- +w; Iwg,a;,w; €Ry} (2.6)
j=1 k

a; are constants , w, are adaptive weights, and ®(.) are

n

- .

where Zkakj =X'W;; ;
k

invertible, differentiable squashing functions (such as sigmoid functions). The

invertibility and differentiability conditions on ®(.) are required to ensure backward

error propagation through ®@(.) to update the weights w; .

Whereas the associative memory RBF ANN can be represented by the network set

NS,: 4 eCD) fx) =Y w ¥, ([x—c,[bw, eRape, et @)

J=1

where ¢; are fixed centroids of the basis function ‘¥';(.), and w; are adaptive weights.

26



For the network sets NS, and NS, to be dense in the compact domain D (i.e. any
element in D can be approximated by some element from NS, and NS, with as small
an error as desired so that || f' — f‘ ||< e for arbitrary ¢) are dependent upon the choice

of ®(.) and W(.) [1, 18]. The functions in NS, and NS, can be computed by arbitrary

large decaying exponential networks on D.

Since sinusoids can be expressed through transforms (such as cos(a + f) =cos a cos
- sin a sin ) that converts multiplication into addition, and sinusoids can be written in
terms of exponentials, this makes the MLP NN, which is based on NS;, dense in the

domain D. In this context, the NS;, family of cosig(.) squashing functions

0 x<-0.5
(I)(x) = cos(x) = 1+%cos(27[x) -0.5<x<0 (28)
1 x=0

are dense in D since the derivative of cosig(.) is zero outside the interval [-0.5,0],

therefore only a small subset of neurons local to this function are updated by back
propagation, avoiding temporal instability or learning corruption from previous

information.

The Gaussian basis functions are used in RBF NNs

2
Y(x)= exp(— %mJ (2.9)

Vi
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where {d j}jyzl are a set of centre locations which are defined for each node j, (x—d ;)

will serve as H x—d; H which is the norm of distance from the evaluation point to the ;”

N

node centre, and {y;};_

are a set of free parameters that determine the width or region

of influence of the kernel functions around the centre of the nodes (i.e. radiuses for the
N basis functions) [1] and [15]. Since the approximation of the RBF NN is linear in
the parameters, w, any quadratic cost functional used in minimising the approximation
error through weights update will have a unique global minimum. In addition, only
those weights directly related to new information are updated. It is therefore concluded

that the class of artificial neural networks in the form NS, provide unique best

approximation, which are stable if ¥ (.) have compact support on D.

It is stated that the MLPs are slow, convergence cannot be established, and increasing
the state space covered by the training set results in the whole network being retrained.
Usually, nonlinear models use nonlinear approximation methods, such as the stochastic
approximation algorithm, based upon gradient descent optimisation ensuring
convergence to a local minima that contains the initial parameter vector in its attraction
basin [48, 49, 107]. The MLP is highly nonlinear in the adjustable weights or
parameters, generating a complex cost functional surface in the weight space, with
many local minima which traps gradient descent rules. Additionally, MLPs are

temporally unstable.

Associative memory single layer networks such as RBF NN satisfy, in some measure,

neurocontroller functional conditions 1 to 8 in section mentioned in section 2.4.2 above.
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2.5 Review of Neurocontrol: ANN based Control

Multilayer Perceptrons and Radial Basis Functions, trained with the back-propagation
algorithm, have been applied successfully in a variety of control applications. To
control a system is to make it behave in a desired manner. The behaviour of this system
depends on the task to be solved, the dynamics of the system, the actuators, the
measurement equipment, the available computational power, and so on. These factors
influence the formulation of the desired behaviour as well. There are two basic

formulation of the desired behaviour are accepted [24]:

The closed-loop system, consisting of controller and system to be controlled, should
follow a prescribed transfer function model. This class of design methods comprises

well-known strategies like pole placement and model-reference controllers.

Express the desired behaviour in terms of a quadratic criterion and derive the controller
as the minimiser of this criterion. Examples are minimum variance, predictive, and

optimal control.

Often it is preferable to formulate the behaviour in terms of time domain characteristics
such as; steady state error, degree of overshoot, rise and fall time, variance of the
control signal. These types of characteristics can often be handled under linear
conditions. Unfortunately, they are in general hard to satisfy for unknown complex

dynamic systems.

Neural networks have been used as a tool for modelling complex dynamic systems due

to their ability to map complicated output and input nonlinear relationships sufficiently.
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Using back-propagation learning algorithm, neural networks have presented a popular
architecture in many research fields, including complex system identification and
control [16]. Recent results have indicated that neural networks can exactly match input

and output signal behaviours [19].

A neural network based system model can be used in the design of a controller or can
become a part of a model-based control scheme. The next subsections will present a

review of neurocontrol methods.

2.5.1 Gain Scheduling

In classical gain scheduling, slow varying scheduling variables are used to capture
nonlinearities and parameter dependencies. The control law is obtained by interpolating
a number of locally valid linear controllers. In the context of neural network based
control, gain-scheduled control is obtained when using a neurocontroller, usually
designed on the basis of an MLP or RBF neural network model of the plant.
Applications of this approach can be found in [25] where RBFs are used as a gain-
scheduling controller for the lateral motion of a propulsion controlled aircraft, and in
[26] where a neural network is used to improve the performance of a classic continuous

parameter gain-scheduling controller.

2.5.2 Inverse Control

A straightforward application of neural network based design of a controller for
complex process is inverse control [13]. This approach can be explained using the SISO

model
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y(k+1) = f(x(k),u(k)). (2.10)

The vector x(k)=[y(k),..., y(k —n, +1),u(k —1),...,u(k —m, +1)]" denotes the actual
state and thus it does not include the input u(k), such that the system’s output at the
next sampling instant is equal to the desired (reference) output r(k +1). This can be

achieved if the process model (2.10) can be inverted according to:
u(k) = 1 (x(k),r(k +1)). (2.11)

Generally, it is difficult to find the inverse function f~' in an analytical form. It can

however, always be found by numerical optimization, using the following objective

function:

J(u(k)) =[r(k +1) = f(x(k),u(k)T. (2.12)

The minimisation of J with respect to u(k) gives the control corresponding to the

inverse function (2.11) [13]. Given this control scheme, neural controller is considered

in order to let the output y(k) of the plant track the reference input (k) with the above

function

minJ = J(u(k)) (2.13)
w; k

where wl-l is the i interconnection weight at layer / of the neural controller [14].

Important neural network application can be found in [21, 27, 28, 29].

2.5.3 Internal Model Control
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This class of neurocontrol is model-based control strategy. The difference between the
actual plant output and the output of the neural network based model is fed back into the
control scheme. In this method it is assumed that the closed loop system is stable [13,
14, 24, 30]. This technique was used for the control of a bioreactor in [31] and in [32] in

a design procedure of neural internal controller for stable processes with delay.

2.5.4 Model Based Predictive Control

In model predictive control, a neural network model provides predictions of the future
plant response over a specified time horizon. Predictions supplied by the network are
passed to a numerical optimization routine in order to minimize an objective cost
function subject to the dynamical system model. The system’s neural controller is then
trained to produce the same control signal for given plant output [14]. Reference [33]

used this kind on neurocontrol for chemical process.

2.5.5 Controller Tuning

Neural networks have been used to tune the parameters of different kinds of
conventional controllers with a given known structure. References [34, 35] used neural

networks to automatically tune the gains of a PID controller.

2.5.6 Generalized Learning Model (GLM) for identification of Complex Plants
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Zhu et al. [16] introduced a neural network based control structure such that the
unknown complex plant is represented by an equivalent model consisting of a simple
linear sub-model plus a nonlinear sub-model. The parameters of the linear sub-model
are identified by a standard recursive algorithm, whereas the nonlinear sub-model is
identified by Back Propagation Neural Network (BPNN), in which the weights are
updated based on the error between the plant outputs and the outputs of the linear sub-
model. The simple linear dynamic sub-model is used to approximate the dominant
dynamics of a wide range of linear and nonlinear dynamic plants around their operating
points. As an error agent (nonlinear sub-model), the BPNN is used to learn the errors
from the linear sub-model that are due to nonlinearities, uncertainties and disturbances
in the controlled plant. The benefits of using a combined model structure come from the
fact that the self-tuning control design mechanisms developed from linear model
descriptions can be directly expanded to nonlinear dynamic models, and the optimal
performance derived from a self-tuning methodology can be directly implanted into the

control law [19].

In general, a wide range of complex dynamic plants can be described by a discrete time

equation [16]
yit+1)=f(Y,U), (2.14)

where f(Y,U)—>R"; {Y eR";UeR";n= n, +mn,} is smooth nonlinear function, and

y(t)eY and u(t)eU are the plant output and input signals respectively at discrete
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times ¢€1,2,....To control such a plant, a generalised parametric time-varying plant

Az Dyt +1) =B @) + fo, LU +E(E+1), (2.15)

where A(z™') and B(z™') are polynomials with orders n, and n,, z~! is a one-step

backward shift operator. Also, it is considered that the parameters associated with
A(z™") and B(z™') are either time invariant or are slow time varying. The system

disturbances are represented by the function (7 +1) which is an uncorrelated sequence
of random variables with zero mean at the sampling instant ¢. f, (Y,U)—> R" is

potentially a time-varying nonlinear function, and therefore the equivalent model is a
combination of a linear time-varying function plus a nonlinear time-varying error agent.
Therefore, the overall plant model represented by equation (2.15) above, is termed the
Generalized Learning Model (GLM) [37], and can be seen as the combination of a

linear sub-model and a non-linear (learning) sub-model as shown in Figure (2.2).

Nonlinear Sub-model

fa@o) !
: : A(z’l)

1 +

E(+1) e,

vt

u(t) i B(z™") %, {
’ Az _/

_y(+])

Linear Sub-model

Figure (2.2): Generalized Learning Model for complex systems Identification.
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2.6 Review of Fuzzy Logic for Supervisory Control

The idea of using intelligent systems to supervise adaptive control systems was first
introduced in [7] and is also reported in [6, 4]. The supervisor can use any available data
from the control system to characterize the system’s current behaviour so that it knows
how to change the controller and ultimately achieve the desired specifications.
Moreover, the supervisor can be used to integrate other information into the control
decision-making process. It can incorporate certain user inputs, or inputs from other
subsystems. For example, in an automotive vehicle control problem, the other
subsystem information that a supervisor could incorporate for supervisory control for an
automotive vehicle control application could include data from the engine that would

help integrate the controls on the vehicle [4].

Most controllers in operation today have been developed using conventional control
methods. There are, however, many situations where these controllers are not properly
tuned and there is heuristic knowledge available on how to tune them while they are on
operation. This knowledge facilitated the opportunity to utilize fuzzy-logic methods as

the supervisor that tunes and coordinates the application on conventional controllers [6].

2.6.1 Fuzzy Tuning of PID Controllers

Majority of the controllers in operation today are PID controllers. The popularity of PID
controllers is because they are robust to control a wide range of processes, simplicity of
their structure, easy to understand and easy to implement [72, 4, 17]. On the other hand,

many of the PID loops that are in operation are in continual need of monitoring and
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adjustment since they can easily become improperly tuned, that is due to plant
parameter variations or operation condition changes. Therefore, there is a significant
need to develop methods for automatic tuning of PID controllers. In literature, such as
[80, 81, 13, 4], there exists many conventional methods for PID auto-tuning. Beginning
with Ziegler and Nichols’s work [85], various parameters tuning methods for
conventional PID controllers have been proposed [86, 87]. Ever since fuzzy theories are
proposed by Zadeh in [88], fuzzy logic has gradually adopted as one of major
approaches for controller design [86]. There have been numerous articles investigating
different schemes of applying fuzzy logic to the design of PID controllers, which are
generally termed as fuzzy PID controllers. Basically, a fuzzy supervisor is working to
recognise when the controller is not properly tuned and then seeks to adjust the PID
gains to obtain improved performance. The design of the PID auto-tuner (upper-level
supervisor) may be implemented via simple tuning fuzzy rules where the premises of
the rules form part of the behaviour recogniser and the consequents form the PID tuner.
Some candidate rules for such a Mamdani model based fuzzy system may include the

following [4]:

IF steady-state-error IS large THEN increase the proportional-gain.

IF the response IS oscillatory THEN increase the derivative-gain.

IF the steady-state-error IS too-big THEN adjust the integral-gain.

IF the overshoot IS too-big THEN decrease the proportional-gain.
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The approach of fuzzy-logic based auto-tuning is recently used by Chang and Shyu in
[82] for the application of active noise cancellation, and used by Abdul-Mannan ef al. in

[83] for PI controller for high-performance induction motor drive.

2.6.2 Fuzzy Gain Scheduling

Conventional gain scheduling involves using extra information from the plant,
environment, or users to tune, via schedules, the gains of a controller (i.e., schedule
controller gains). The design provides a set of gains for the controller at each operating
condition over the entire operation envelop. A gain schedule is simply an interpolator
that takes as inputs the operating condition and provides values of the gains as its
outputs [4]. In the context of fuzzy systems, gain scheduled control is obtained when
using Takagi-Sugeno model based fuzzy controller represented by the following rule set

[13]:

IF z(k) IS 4; THEN u(k)=C,y(k),i=12,...k
where z(k) is the vector for the scheduled variables, 4; is the antecedent linguistic

terms (such as ‘small’, ‘large’, etc.), represented by fuzzy sets, k£ is the number of rules,

u(k) 1is the control input, y(k) is the systems output signal, and C; is a linear time-
invariant controller. In [72], the PID gains K,, K;, and K, were respectively

calculated through fuzzy logic based on the error signal and the first difference of the

error signal.
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This general gain scheduling approach is widely used in aircraft industry and engine
control [4]. Brdys and Littler [84] used this technique for nonlinear servo tracking

where the servo controls two elements of a tracker mounted on a ship at sea.

2.6.3 Fuzzy Supervisory Control

Fuzzy supervisor control approach can offer more general functionality than only tuning
of gains. They also can provide the capability to completely switch which controllers
are operating at the lower level. That is, they can switch between linear and nonlinear
controllers, controllers of different order or different structure [4]. Garcia-Benitez et al.
[89] proposed a two level hierarchical control strategy to achieve accurate end-point
position of a two-link robot with flexible members. The upper level consists of a fuzzy
logic based supervisor, whereas the lower level consists of three conventional
controllers, all involved in shaping of the control input in order to achieve satisfactory
performance. The fuzzy supervisor chooses within these three control strategies and
tunes their parameters according to the commanded manoeuvre speed and robot arm
configuration. In [90], Jia et al. suggested that fuzzy switching controller can be used to
achieve smooth control input signal in multiple model approach control. Based upon the
arguments presented in this section (2.7), this thesis proposes a fuzzy logic switching
and tuning supervisor for the conventional multiple-controller proposed by Zayed et al.

in [17, 39, 70] and will be discussed in the next chapter.
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2.7 Summary

This chapter started by explaining that intelligent or learning systems are characterised
by the estimation of a desired mapping and they naturally involve learning or adaptation
of the systems associational structure or functional dependencies in response to changes
in process parameters. The ever increasing complexity of dynamical systems coupled
with the increasing demands in closed loop performance specification necessitates the
use of more complex and sophisticated controllers, yet as systems become more
complex uncertainty in modelling increases. Intelligent controllers are enhanced
adaptive or self-organising controllers that can accommodate significant changes in the
plant and its environment, whilst meeting increasingly stringent controller
specifications. After recognising the importance of intelligent control, the chapter then
moved onto the issue of complex systems and how they can be identified using neural
networks. It was assumed that if the exact knowledge of the system is available, it is
possible to transform a nonlinear adaptive control problem into a linear control problem
by using a feedback linearization technique. However, in many cases, the plant to be
controlled is too complex to obtain the exact system dynamics, and the operating
conditions in dynamic environments may be unexpected. Therefore, adaptive control
has been combined with function approximators such as neural networks. These types
of controllers take the capability of learning unknown nonlinear functions by universal
approximation theorem and massive parallel computation. The approximation theory of
neural networks was discussed in section (2.4.3). More details regarding MLP and RBF

neural networks function approximation was illustrated in section (2.4.4).
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Using back-propagation learning algorithm, neural networks have presented a popular
architecture in many research fields, including complex system identification and
control. Recent results have indicated that neural networks can exactly match input and
output signal behaviours. Because of this, a neural network based system model can be
used in the design of a controller or can become a part of a model-based control scheme.
Therefore, section (2.5) was dedicated to present a review of the main application of

neural networks in control engineering.

In section (2.6), the chapter ends by reviewing the capabilities of fuzzy logic in
supervising adaptive control systems. The fuzzy logic based supervisor can use any
available data from the control system to characterize the system’s current behaviour so
that it knows how to change the controller and ultimately achieve the desired
specifications. It was shown that fuzzy supervisor control approach can offer the
functionality of tuning controller gains. Moreover, they also can provide the capability
to completely switch which controllers are operating at the lower level. That is, they can
switch between linear and nonlinear controllers, controllers of different order or

different structure.

The advantages of neural networks in approximating the nonlinear dynamics of
complex systems along with the capabilities of fuzzy logic in tuning controller gains
and switching between conventional controllers, which were summarised above,
represent the tools that will be used, in this thesis, to improve modelling complex plants
and to bring autonomy to the conventional multiple-controller discussed in the next

chapter.
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Chapter 3
Review of Multiple-Controller Architectures

and Algorithms

3.1 Introduction

Control engineers are sometimes confronted with situations in which they have to
design and implement real-time control systems that are composed of a set of
controllers in stead of a single control algorithm. These situations occur for example
when the control problem to solve is complex of nature, that is, when the problem can
be thought of being composed of an interconnection of a set of simpler sub-problems
[8]. A common approach to control such complex dynamic systems is to design a set of
different controllers, each of which for a particular operating region or performance
objective, and then to switch them in real-time to achieve the overall control objective
[69]. Some architectures of multi-controller have been reported in the field of control
engineering, and these are known under the general name of multiple model approach
[8], which is an appealing approach to adaptive control with the potential to include

complex systems [11].

The multiple model approach appears in different forms. Hilhorst ef al. in 1994 [91]

used multiple controllers to control a plant whose behaviour can be described by a
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limited set of so-called modes. A similar approach is used by Narendra and
Balakrishnan in 1997 [73] who exploit multiple controllers to handle plant faults, such
as sensor or actuator fall-outs. Other techniques that use multiple controllers are Gain-
Scheduling Controllers [92], Tagaki-Sugeno Fuzzy Models introduced by Takagi and
Sugeno in 1985 [93] and Logic-based Switching Controllers [94]. An important
category of such systems are those consisting of a process to be controlled, a family of
fixed-gain or variable-gain candidate controllers, and an event-driven switching logic
called a supervisor whose job is to determine in real-time which controller should be
applied to the process. Major reasons for introducing logic and switching are to deal
with communication, actuator and sensor constraints, with model uncertainty, with
unforeseen events or to avoid performing difficult tasks e.g., precise equipment
calibration which might otherwise be necessary were one to consider only conventional

controls [94].

3.2 Multiple-Controller Approach General Architecture

Perhaps the general architecture for a feedback system employing a family of
controllers is that reported by [94] and depicted in Figure (3.1). That is, the measured

output y of a process to be controlled drives a bank of controllers, each controller
generating a candidate feedback signal u,. The control signal applied to the process at

each instant of time is in the form

u=u,, (3.1)
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where 7 is a switching signal. The generation of such a switching signal is typically

carried out by some type of hybrid dynamical system which is called supervisor [97].
The key factor for the simplicity of this structure is that at any instant of sampling time
¢t only one of the constituent controllers is to be applied to the process, which Johansen
and Murray-Smith [95] termed as the local controller. Because of this, at each time ¢ it
is only necessary to generate one candidate control signal [94]. Switching controllers is
needed for reacting to rapidly changing plant characteristics and avoiding catastrophic

failures [98].

u, n S
r »| Controler; Supervisor
A
> u2
»| Controler,
A
> > y
»| Controler; > o Plant >
Lo Us u
o >
; : Switch
| » Controler,, U

Figure (3.1): Multiple-controller general architecture, r is the reference signal, u is the
control input and y is the output signal.

In this approach, the complex mechatronic plant system is modelled as a physical
process that is operating in a limited set of operating regimes. With conventional
methods it might be possible to design one robust controller that controls the plant in all
operating regimes, but it will not work optimally for the current operating regime [96].
Parameter adaptive controllers can be used, but they may respond too slowly to abrupt

changes of the plant’s dynamic behaviour. In the above multiple-controller architecture,
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the plant is controlled by a set of controller modules (u,, ), each optimized for a special

operating regime of the plant. The supervisor is able to switch between the controller

modules to determine the active module. The decision to switch from one u,, to the

next is made on basis of measurements of physical values of the plant. The strategy of
the supervisor can vary from manual switching to simple functions of the measurements

to agent-based techniques [5, 96].

3.3 Complex Systems Modelling for Multiple Controllers

As mentioned above, a variety of multiple controller techniques exist. Although they
share common tasks, such as decomposing the overall control problem and integrating
individual solutions (i.e., controllers), they all deal with these aspects in their own
unique way [5, 8]. There is no general abstract framework for discussing the relevant
issues related to the design of complex control systems that are composed of local
controllers. Such an abstract framework would enhance the divide-and-conquer
strategy, as it would allow the use of heterogeneous multiple model techniques while
using a uniform design method. By considering the design of a multi-controller as a
general distributed problem, the automation capabilities provided by the field of
Artificial Intelligence can be integrated with the concepts and techniques from this field
to the multiple model approach of designing control systems may be advantageous,

from a practical perspective, to solve complex control problems.

44



Recently in 2005, Narendra mentioned in [98] that the control of complex systems is
considered difficult is due to four reasons (i.e., complexity, uncertainty, nonlinearity,
and time-variation). He further stated that adaptation and learning can deal with
uncertainty, while neural networks help to cope with complexity and nonlinearity [101].
For the time-variations problem, adaptive control theorists have been interested in
adaptation in changing environments. Based on the success of employing adaptive
control on time-invariant systems with unknown parameters, it would also prove
satisfactory when the parameters varied with time, provided that the variation occurred

on a relatively slow time scale [98, 99].

To control such a complex system, Zhu ef al. [16, 19] proposed a neural network based
plant model which combines a linear time invariant or slowly time varying sub-model
plus a nonlinear time-varying sub-model (or an error agent), which have been
collectively termed the Generalised Learning Model (GLM) [37, 100]. The linear sub-
model is used to approximate the dominant linear dynamics of the complex plant around
its operating point. On the other hand, the ‘learning’ error agent is used to learn the
errors from the linear sub-model that are due to nonlinearities, uncertainties,
disturbances and model mismatch in the controlled plant. This methodology was
considered by Zayed et al.[ 17, 39, 70] in their proposed multiple controller framework

for controlling complex systems, which will be discussed in the next section.
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3.4 Review of the conventional Multiple-Controller Framework

The multiple-controller proposed by Zayed et al. [17, 39, 70] builds on the concept of
minimum variance control which was originally introduced by Astrdm and Wittenmark
[102], which had as its target the minimisation of the variance of the plant output. On
the other hand, it had considerable limitations in that the control objective was only
appropriate for minimum phase systems and excessive control input might be obtained
if Simple Minimum Variance Controller (SMVC) was used. These limitations were
overcome by the modification of Clarke and Gawthrop [103] in what is known as the
Generalised Minimum Variance Control (GMVC). As an extension to this work, the

GMVC was modified by Allidena and Hughes [104] to achieve pole-placement control.

There are two main reasons behind using pole-placement control. Firstly, in the
regulator case, it provides a means for overcoming the restriction to minimum phase
systems of the original minimum variance self-tuner of [102]. Secondly, in the servo
case, it gives the ability of directly introducing bandwidth and damping ratio as tuning
parameters. However, the modified controller has considerable drawbacks in that the
arbitrary zeros, which may be used to reduce excessive control, are not considered in
the design and the controller design involves the solution of a Diophantine equation,
which in some applications may lead to excessive computational and numerical

instability problems.

Recently, more attention was given to the zeros since they can be used to achieve better

set point tracking and they also help reduce the magnitude of the control action [47,
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105]. The generalised minimum variance controller was extended to achieve pole-
placement control by Hussain et al. [105], and Allidina and Hughes [104] but the zeros
were not considered in these initial designs. To further develop and extend the GMVC
technique in order to achieve zero-pole placement control, Zayed et al.[46] proposed
pole-zero placement controller that overcomes the main problems associated with the

original generalised minimum variance pole-placement controller of [104].

It is a fact that PID controllers are popular for their robustness in a wide range of
operating conditions, the simplicity of their structures, as well as the familiarity of
designers and operators with PID algorithms. Also, they are easy to implement using
analogue or digital hardware and they are inexpensive to implement and reasonably
sufficient for many industrial control needs [72, 4, 17]. For these reasons the
generalised minimum variance controller for the SISO case (Clarke and Gawthrop,
[103]) was then modified for the first time by Cameron and Seborg [106] in order to
combine the advantages of the conventional PID controllers with that of adaptive

regulators.

Aiming towards bringing together the advantages of the adaptive controllers with those
of the PID and pole-zero placement controllers, and benefiting form the neural-network
enhanced generalised minimum variance adaptive controller for nonlinear discrete-time
systems introduced by Zhu et al. [16], the multiple-controller framework was therefore
proposed in [17, 39, 70]. This multipurpose controller provides the user with a choice of
using either a conventional PID, a PID based pole-placement or a PID based pole-zero

placement adaptive nonlinear controller. All these three controllers operate using the
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same adaptation procedure. Effectively, the overall action of the design is that of a
controller which can be implemented as an adaptive PID controller, as a pole-placement
controller or as pole-zero placement controller through the use of a simple switch.
Details of the design of this conventional multiple-controller are presented in the rest of

this chapter.

3.4.1 Derivation of the Multiple Controller Control Law

Consider the following Controlled Auto-Regressive Moving Average (CARMA)

Az Yyt +k)=B(z Hu(t)+ Jo,LU)Y+E(t+k), (3.2)

where y(¢) is the measured output, u(¢) is the control input and &(¢) is uncorrelated
sequence of random variables with zero mean at the sampling instant ¢ =1,2,..., and &
is the time delay of the process in the integer-sample interval. The term f (Y,U) in

equation (3.2) above, is potentially a nonlinear function (which accounts for any
unknown time-delays, uncertainty and nonlinearity in the complex plant model). The
overall plant model represented by equation (3.2) above, is termed the Generalized
Learning Model (GLM), and can be seen as the combination of a linear sub-model and a

nonlinear (learning) sub-model as shown in Figure (3.2) next.
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Figure (3.2): Conventional multiple-controller incorporating the GLM.

Also, in equation (3.2) above, we define y(f)eY, and u(t)eU; {Y e R"*; U e R"}
and A(z™") and B(z™') are polynomials with orders n, and n, , respectively, which can

be expressed in terms of the backwards shift operator, z™' as:
Az =1+az" +..+a, z", (3.3a)
B(z)=by+bz " +..+b,z", b, #0. (3.3b)

In order to simplify the analysis, the time delay is taken as k£ =1 [16, 39]. For this case

the non-linear system represented by equation (3.2) can be written as [39]:
Ay =z Bz ) + 27 f,, (LU) +£(0). (3.4)

The generalised minimum variance controller of interest minimises the following cost

function [16]:

Jy =E{gt+1];, 3.5)
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where

#(t+1) =[Pz )yt + D)+ 0z u(t) - Rz W)~ H\,(z ) f,, (D], (3.6)

where w(t) is a bounded set point and P(z"')=[P,(z")]"'P(z™"), O(z""), R(z")

and H,(z") are user-defined transfer functions in the backward shift operator z™' and
E{} is the expectation operator.
Next, we can introduce the following identity [17]:

P(z"Y=AzHEE )P, (z)+z'F(z"), (3.7)

where E(z™"), F(z™"), P(z"") and P,(z"")are polynomial in z™'.

where P(z') and P,(z"') are the numerator and denominators of the polynomial

matrix P(z™").

The orders of the polynomial matrices E(z™'), F(z™') and P(z™'") in the equations

(3.6) are specified as follows:

n,=k-1
n,=(m, +n,—1) , (3.9)
f £y a

n, =max(n,+n, +n,, k+n;)

where, n,, n, and n, represent the degrees of P,(z™), F,(z”') and P,(z7)

Py

respectively.
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Multiplying equation (3.4) by P,(z"")E(z™") and substitute for (E(z"')4(z™")) from

equation (3.7) gives:
[P Py(t+1) = F(z)y(t)+ Bz YE(z Du(®) + Efy () + ESE+1).  (3.9)

Adding Oz u(t)- R(z"Yw(t)— Hy(z") f,,(..) to both sides of equation (3.9) and

using equations (3.6) and (3.7), yields:

gt + D) =[P, (z )] F(z )y®) +
(O(z")+ Bz )E(z" )u(t) - R(z")w(t) + (3.10)
(E(z)—Hy(z)fo, () + E(z)EE+1).

In the rest of this section, the argument z~' will be omitted from various polynomials
and transfer functions in order to simplify the notation and will only be used where

required for clarification purposes.

Now we can define the optimal predictor ¢" (¢ +1)¢) and the prediction error 5 (t+1]2)

as follows:
¢, +10) =[P, 1" Fy(t) +(Q+ EB)u(t) +[E—H y 1f,,(.)—Rw(t),  (3.11)
Gt +1t) = EEEt+1). (3.12)

If we set ¢ (¢+1)¢) =0 in equation (3.11) and after some arrangement, the generalised

minimum variance control law for non-linear systems is obtained as:

P (EB +Q)u(t) =[P, RwW(t) = Fy(1) + B, (H y — E) f,,,(.)]. (3.13)
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Now, if we set:

R=1£1"H, } (3.14)

Hy =([P,]"AH}, + E)

If we set the transfer function Q(z') such that the following relation is satisfied [17,

37]:
P,(EB+CQ)=v"Aq, (3.15)
then, equation (3.13) becomes:

Aq'u(t) =[vH w(t) = vFy(t) + AvH , £, , ()], (3.16)

where v is a user defined gain [40, 41] and ¢’ is a polynomial in z~' having the

following form:
gz Y=1+q z"+..+ q;qyz_""' , (3.17)
where 7, is the degree of the polynomial ¢'.

We can see clearly from equations (3.15) and (3.16) that the controller denominator has

now conveniently been split into two parts:
An integrator action part ( A ) required for PID design, where A=(1-z7").

An arbitrary compensator (g') that may be used for pole (only) placement and

simultaneous pole and zero placement designs.
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It can be seen from equation (3.15) that the polynomial matrix ¢'(z”') and the gain
matrix v are user-defined parameters since they depend on the user transfer function

QO(z™"). It is also clear from equation (3.14) that H, and H) are user-defined

parameters because they depend on the transfer functions R(z™') and H, respectively.
Now, if we set:
H,=HIHD]'F(1), (3.18)
and combine equations (3.18) and (3.16), then we can readily obtain:
Aq'u(t) = vETH)]" F()w(t) = vEy(t) + AvH ), £, () » (3.19)

where H in equation (3.19) is a user-defined polynomial which can be used to
introduce arbitrary closed loop zeros for explicit pole-zero placement controller and has

the following form:
HEY=l+hz"+.+h, 2" (3.20)

The above equation (3.19) represents the final expression of the control law for the

proposed multiple controller

3.4.2 Multiple Controller Mode 1: Non-Linear PID Controller

In this mode, the multiple controller operates as a conventional self-tuning PID
controller, which can be expressed in the most commonly used velocity form [41, 42]

as:
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Au(t) = K, w(t) = [K, + K, + K, 1v(0) -

(3.21)
(K, 2K, ]y(t —1) = K, y(t —2).
If we assume that the degree of F(z™') is equal to 2, therefore,
FizhY=f +fiz'+f,z", (3.22)

Then, if we switch off, both the pole-placement polynomial ¢’ given by equation (3.17)

and zero-placement polynomial H given by (3.20), by setting:

4 =1 Ge. G = =4, =0) } , (3.23a)
H=1, (ie h =h, =...,...=hn/7 =0)
And, next, if we set:
Hy, =B 'q'(D), (3.23b)
then an adaptive controller with PID structure is obtained, where
Au(t) =[vFOw(@) - v(f, + fiz"' + fLz )y(0) + AvH  f, ()], (3.24)
K, =-f +2vf,], (3.25a)
K, =vfy +/i + /21 (3.25b)
K, =, . (3.25¢)

It can be seen from the above equations (3.24), (3.25a), (3.25b) and (3.25¢) that the PID

control parametersK ,, K, and K, depend on the polynomial matrix F(z™') and the
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gain v [43, 41]. In this case the parameters of the polynomial matrix F(z™'), f,, f;

and f, are computed directly from equation (3.7) by selecting suitable user-defined

polynomials P, and P, which are selected in trial and error basis. It can also clearly be

seen from equation (3.8) that the order of F(z™') which indicates the type of the

controller (PI or PID) is governed by the polynomial 4 and P, [43, 41].

As stated above, the multiple controller mode 1 described by equations (3.21)-(3.25¢) is

tuned by a selection of the polynomials P,

n

and P,, and the gain v. However, the main

disadvantage of many PID self-tuning based minimum variance control designs (see for
example [43, 41]) is that the tuning parameters must be selected using a trial and error
procedure. Alternatively, these tuning parameters can be automatically and implicitly

set on line by specifying the desired closed loop poles [44, 16].

3.4.3 Multiple Controller Mode 2: Non-Linear PID Based Pole (only) Placement

Controller

Substituting for u(z)given by equation (3.19) into the process model described by

equation (3.4), the closed loop system is obtained as:

(Aq'+z'BF)y(t) = z 'BvH[H()] ' F()w(¢) +

, (3.26)
A(z"'BvHY +q') fy, + Aq'E(D)

A=adl (3.27)
B=vB
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We can now introduce the identity:
(qA+z'FB)=T, (3.28)

where T is the desired closed loop poles and ¢’ is the controller polynomial. For

equation (3.28) to have a unique solution, the order of the regulator polynomials and the

number of the desired closed loop poles can be set as [40, 43, 45, 46]:

np=n;—l=n,
ny=n;+k-1 , (3.29)
n <n;+n.+k-1

where n;, n;, and n, are the orders of the polynomials A, B and q , respectively,
and n, denotes the number of desired closed loop poles. Also, n. =n, and n; =n, +1.

Combining equations (3.26) and (3.28), gives:
Ty(t) =z BvH[H()] FQOw(t) + Az BvH |, + @) f,, + Ag'E(2) . (3.30)
If the explicit zero placement polynomial given by (3.20) is switched off by setting:
H=1 (ie.h =hy=..=h_=0). (3.31)
And, if we set:
Hy =—{B(yv]'¢'(D), (3.32)

then the closed loop function of equation (3.30) becomes:
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Ty(t) =z BVF()w(t) + A(z"'Bvg' (D[—(BWV) 1+ 4") fo, + Aq'E(D) . (3.33)
In this case

5

T(z)=l+tz" +t,z7 +..+1, 2" (3.34)

where n. and n, in equations (3.31) and(3.34) represent orders of the polynomials

H(z™") and T(z™") respectively.

It can be seen from equation (3.33) that the closed loop poles are placed at their desired

positions which is pre-specified by the user through the use of the polynomial T(z™").

3.4.4 Multiple Controller Mode 3: Non-Linear PID Based (simultaneous) Pole Zero

Placement Controller

In this controller mode, an arbitrary desired zeros polynomial can be used to reduce
excessive control action, which can result from set point changes when pole placement

is used.

If the zero-placement polynomial ( H ) given by equation (3.20) is switched on then the
closed loop given by equation (3.26) is again obtained and can be simplified such that

the closed loop function of equation (3.33) becomes:

Ty(t) = z' BV[H ()] HF Q)w(7) +

1 1 (3.35)
A(z" Bvg'(D[~(BMv) 1+ ¢') fy, + Aq'S(D).
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Note that in practice, the order of T(z™') and H(z™') are most of the time selected to

equal 1 or 2 [43, 46, 47].

It can be seen from equations (3.35) that the closed loop poles and zero are placed at

their desired positions which are pre-specified by using the polynomials 7(z™') and

H(z™).

It can also be clearly seen from equations (3.7)-( 3.8) and (3.13)-( 3.17) above, that the

user defined transfer functions P, O, R and H, must change at every sampling

instant in order to satisfy the conditions specified by equations (3.22), (3.23), (3.25a),
(3.25b) and (3.25¢) for achieving self-tuning PID control (multiple controller mode 1).
On the other hand, the above user-defined transfer functions must change in order to
satisfy equations (3.28), (3.29), (3.31), (3.32) and (3.34) for achieving pole (only)
placement control (multiple controller mode 2). Finally, for achieving simultaneous
pole and zero placement control (multiple controller mode 3) these user-defined transfer
functions must change automatically in order to satisfy equations (3.28), (3.29), (3.32)
and (3.20). However, note that it is not necessary to explicitly calculate these user

the cost index has time varying weightings in this problem.

3.4.5 GLM based Identification of the Complex Plant Model

This sub-section will provide details regarding the GLM model discussed in section

2.5.6 and included in Figure (3.2) above, where a recursive least squares algorithm is
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initially used to estimate the parameters A and B (equation (3.2)) of the linear sub-
model, and a neural network based learning model is subsequently used to approximate

the non-linear part f ;.

It can be seen from equation (3.4) that the measured output y(#) can be obtained as

follows:

¥y =" (0 )+ fo, (v,u), (3.36)

where 6 is the parameter vector and ¢ € R™ is the data vector as follows:

0(t) =[-ay,....—a, ,by,...b, I’
r a b . (3.37)
O (1) = [t = Doyt = 1) ut = V)it = )]
Equations (3.4) and (3.36) can also be presented as:
YO =3O+ fo, (). (3.38)

It can be seen from Figure (3.2) that y(¢) = " (t)é(t) is the linear sub-model output and

]_”OJ(.,.) = y(¢)— y(¢) is the difference between the actual output y(¢) and the linear sub-

model output ﬁ(t) .

From Figure (3.2) we can also see that fo,t(.,.) can be expressed as:

Jou(s)=fo, (o) +e@) . (3.39)
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Using the above equation (3.39), an MLP neural network is used for estimating the non-

linear function f;,(.,.). The identification error ¢ (¢), with the error-correction learning

rule (delta rule), is used to update the weights and thresholds of the learning MLP
neural network model [16, 19]. The schematic diagram of the MLP neural network is

shown in Figure (3.3), and the non-linear function f;,(.,.) is adaptively estimated by

using the following equations [39]:

n 1
Jo()= 1+exp[-f; layer, ] (3.40)
layerhiddcnz - leyj”,[ 025" + b3i
0, ()= 1
2,r -
’ 1+exp[-; layer;ggen, ]
; | ’ (3.41)
layeniqqen, = ZWZM Oy 0y,
n=1
o ,; ()= :
L\ !
1+ exp[—ﬁl Alayerinput]
,/ , (3.42)

/
layerinput = zwl,w- Xy + blj-
n=1

where Wy and | are the weights and activation factors between the input layer and
5] J
the first hidden layer, w,; , and f; are the weights and activation factor between first

and second hidden layers, and w; and f; are the weights and activation factor

between second hidden layers and the output layer. The parameters &, , b, , and by are
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the threshold values for the jth, r’h, and i" neurons in the first hidden layer, second

hidden layer, and output layer respectively.

’
b,

Figure (3.3): BP MLP neural network to approximate nonlinear function f; (...).

Note that for SISO case i =1 is used in equations (3.40)-(3.42).

It is reported in the literature that the most popular neural networks in neurocontrol are
the MLP and RBF NNs. Both networks are able to adaptively model or identify a
dynamical complex (MIMO or SISO) process online while the process is changing [1,
21, 22, 23]. The RBF NNs ability to uniformly approximate smooth functions over
compact sets is well documented (see for example [48, 49, 107]). From mathematical
prospective, RBF NNs represent one class of linear in the weight approximators.
Compared to the MLP network, the RBF network is simpler to implement, needs less
computational memory, converges faster, and global minimum convergence is achieved

even when operating conditions change or fault occurred during testing with frozen
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weights. The RBF NN also required less training time to converge and fewer

computational complexities to train the network online [23].

In conclusion, opposed to the MLP, the RBF NNs improve the system damping and
dynamic transient stability more effectively than the MLP NNs. Control performance
could be improved if unknown nonlinear portion of the model are more accurately
modelled [15]. Therefore, the RBF should be preferred to the MLP networks for the

online identification of complex systems.

3.5 Summary

Complex control systems can be thought of being composed of an interconnection of a
set of simpler sub-problems. A common approach to control such complex dynamic
systems is to design a set of different controllers, each of which for a particular
operating region or performance objective, and then to switch them in real-time to
achieve the overall control objective. Some architectures of such multi-controller, which
are known under the general name of multiple model approach, have been reported and
shown to be an appealing approach to adaptive control with the potential to include

complex systems.

The chapter discussed about a general architecture for a feedback system employing a
family of controllers for controlling a complex mechatronic plant system which is
modelled as a physical process operating in a limited set of operating regimes. Control

of such complex systems is considered difficult due to their complexity, uncertainty,
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nonlinearity, and time-variation. Then it was concluded that, those difficulties could be
dealt with by considering control adaptation and learning and soft-computing

techniques in the design of a multi-controller for complex systems control.

The discussion focused on the recently developed multiple-controller framework which
incorporated a neural network based generalised learning model (GLM) for modelling
and control of complex systems. The unknown complex plant was represented by an
equivalent model composed of a simple linear sub-model plus a non-linear sub-model.
The parameters of the linear sub-model are identified by a standard recursive least
squares algorithm, whereas the nonlinear sub-model was approximated using an MLP
BP neural network. The controllers employed in this design were built on the concept of
adaptive generalised minimum variance control. This methodology provided the
designer with the choice of using a conventional PID adaptive controller, a PID pole
placement controller or the PID pole-zero placement controller. All of these controllers
operate using the same adaptive procedure. The switching (transition) decision between

these different fixed structure controllers was achieved manually.

The chapter also discussed the limitations of the multiple-controller of Zayed et al. in
modelling and control of complex systems. It was concluded that, these drawbacks were
caused through the use of MLP neural networks to approximate the nonlinear dynamics
and disturbances of the complex system. In addition, the framework lacks the automated
switching among the available controllers. Moreover, the controllers design parameters
(i.e. PID gain, poles and zeros) were fixed during the whole control operation without

any online tuning. Switching controllers is needed for reacting to rapidly changing plant
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characteristics and avoiding catastrophic failures. Tuning of the controller is desirable
for gradually improving the performance of the system. Consequently, both switching
and tuning play important roles in the adaptive control of dynamical systems using

multiple controller approach [98].

The next chapter presents the new intelligent multiple-controller framework which
builds on the multiple-controller of Zayed et al. [17, 39, 70]. The new design uses an
RBF based GLM form modelling the complex systems and incorporates a fuzzy-logic
supervisor for controllers’ switching and tuning. Introducing logic based switching and
tuning are to deal with communication, actuator and sensor constraints, with model
uncertainty, with unforeseen events or to avoid performing difficult tasks e.g., precise
equipment calibration which might otherwise be necessary were one to consider only

conventional controls.
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Chapter 4
New Intelligent Multiple-Controller
Framework Incorporating a Fuzzy Logic

Based Switching and Tuning Supervisor:

SISO Case

4.1 Introduction

The intelligent controller should be able to use several different control algorithms as
well as to tune the parameters of each algorithm according to the desired performance
specifications. It should also automatically manage the selection between those control
algorithms to maintain the control objectives at or near their optimal values for specific
process conditions. In emergency situations where major elements in a system break
down, an intelligent controller may manage the reconfiguration of the control algorithm
or switch to another more appropriate or robust control algorithm [59]. The intelligent
controller knowledge base consists of experiential knowledge about the process along
with facts and rules that are used to infer which control algorithm to apply and what the
current parameter settings for that algorithm should be. By periodically applying

identification algorithms for monitoring the results, the intelligent controller could
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accumulate more and more information about a given process in order to find the best

control law [4].

Intelligent control as defined by Astrom et al. [7, 74] involves the construction of a
composite control structure for complex process including supervisory function,
adaptive control algorithms and low-level control laws all managed by an expert system
which monitor process parameters and control system performance. In this context, it is
desirable to combine fuzzy logic with control systems to achieve better overall control
performance [59]. Multiple controllers switching and tuning is a methodology that
provides a natural framework for the design of intelligent control systems [2]. Switching
controllers is needed for reacting to rapidly changing plant characteristics and avoiding
catastrophic failures. Tuning of the controller is desirable for gradually improving the
performance of the system. Consequently, both switching and tuning play important
roles in the adaptive control of dynamical systems using multiple controller approaches

[98].

The rest of this chapter is organised as follows:

Section (4.2) presents the bases for the design of the proposed intelligent multiple-
controller. These bases will include: the complex plant model along with conventional
multiple-controller control law; the criteria for assessing the performance of the
multiple-controller; and a discussion for the multiple-controller switching decisions.
Section (4.3) will give details about the design of the proposed fuzzy-logic based
switching and tuning supervisor including the behaviour recogniser, the switching logic

subsystem and the tuning logic subsystem. In section (4.4), the improved RBF based
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GLM will be shown. Section (4.5) illustrates the general structure design of the
proposed intelligent multiple-controller. The two control modes (the conventional PID
controller and the Pole-zero Placement controller) will be addressed as well as the
algorithm of the control procedure. Summary of the chapter will be provided in section

(4.6).

4.2 Multiple-Controller Framework for Complex SISO Systems

Considering the Controlled Auto-Regressive Moving Average (CARMA) representation

for a complex plant model [16, 17]:
Az Yyt + k) =B @) + £, YUY+ E(t +k), 4.1)

where y(¢) is the measured output, u(¢) is the control input and &(¢) is an uncorrelated

sequence of random variables with zero mean at the sampling instant =1,2,..., and & is

the time delay of the process in the integer-sample interval. The term f; ,(Y,U) in

equation (4.1) above, is potentially a non-linear function which accounts for any
unknown time-delays, uncertainty and non-linearity in the complex plant model, and is
conveniently represented by an MLP neural network [16, 17]. The overall plant model
represented by equation (4.1) above, is termed the Generalized Learning Model (GLM)
[37], which was discussed in sections 2.5.6 and 3.5, can be seen as the combination of a

linear sub-model and a non-linear (learning) sub-model. Also, in equation (4.1) above,

we define y(f)eY, and u(t)eU; {Y eR";U e R™} and A(z"') and B(z') are
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polynomials with orders n, and n,, respectively, which can be expressed in terms of

the backwards shift operator, z™'. as:
Az Y =1+az"+..+ a, z . (4.2a)
B(z)=by+bz " +..4+b, 27", b #0. (4.2b)

The multiple-controller derived control law for the above complex plant is meanwhile

given in the next equation:

_ DHTHOT F)w() - vFy(@) + AvH Y i, ()]

u(t) g (4.3)

where w(?) is the system set point, f,,(.,.) is a non-linear function representing the
plant non-linear dynamics with unknown time-delays, uncertainty and disturbances. The
variable v is a user-defined gain, A is the integral action required for the PID design,
H is a user-defined polynomial which can be used to introduce arbitrary closed loop

zeros for an explicit pole-zero placement controller, H(1) is the value of H at system
output steady state, F' is a polynomial derived from the linear parameters of the

controlled plant, F(1) is the value of F at the steady state, H) is a user-defined
polynomial. The parameter ¢’ is a transfer function used to bring the closed loop

system poles in the stability unit disc.

It can be seen from the control law in equation (4.3) above that the controller

denominator is split into two parts, namely: an integrator action part (A) required for
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PID design; and, an arbitrary compensator (¢’ ) that may be used for simultaneous pole

and zero placement designs.

4.2.1 Control System Performance Assessment

An essential part of supervision of complex system control is focused on to detect the
criteria for measuring system behaviour in order to provide information about the
controller performance [51]. The interest from both academia and industry in control
performance monitoring has surged tremendously in the last decade. The recent survey
papers by Jelali [110] and Qin and Yu [109] provide a very good collection of recent
development in the control performance monitoring area for SISO and MIMO control

problems.

In order to make a switching decision among multiple controllers based on the user
specifications, a performance assessment criteria has been defined. Both heuristics and
quantitative measures are considered in order to make a decision for the control
algorithm selection. Therefore, performance of each controller is evaluated based on a
number of factors. However, the user specifications about transient accuracy, usually
given in terms of required overshoot, rise time and settling time can give a good
measure about which control algorithm will give the best performance as compared

with the others [4, 108, 110].

Another important widespread criterion considered for controller performance
assessment is the variance of the system output, because of its direct relationship to

process performance, product quality, and profit [110, 111, 112]. A straightforward
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extension of the signal variance is by considering control action penalisation. Both
output variance and control action are useful when more information on controller
performance, such as how much can the output variance be reduced without
significantly affecting the controller output variance, is needed [110]. The price to be
paid is that more information on the process is required, i.e., measurement of the

manipulating variable(s).

Figure 4.1 depicts the performance criteria which are specified in terms of control

action, output variance and meeting user specifications [59].

Using the performance measurements, one can assess the performance of a control loop
and make statements on the potential of improvements resulting from re-tuning of

controller parameters or switching to another controller [112].

Performance
Assessment

User
Specifications

Output Control
Variance Action

A 4

Figure (4.1): Controller Performance Assessment Criteria.
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4.2.2 Discussion for the Multiple-Controller Switching Decision

Due to the robustness, simplicity of structure, ease of implementation, and remarkable
effectiveness in regulating a wide range of processes (assuming correctly tuned), the
conventional adaptive PID controller (multiple controller mode 1) presented in section
(3.4.2) should normally be the first choice to obtain satisfactory closed-loop system
performance. If however, a better closed-loop performance (based on say, a desired
damping ratio, rise time, settling time overshoot or bandwidth) is required, or if the
system to be controlled is difficult to tune using a conventional adaptive PID controller,
then the PID structure based (simultaneous) pole and zero placement controller
(multiple controller mode 3) discussed in section (3.2.4) can be used as a second choice.
This mode conserves the advantages of the pole (only) placement controller, discussed
in section (3.2.3), in addition to including the placement of the zeros in the control
action. However this will be at the expense of a greater computational effort required

for implementing this (simultaneous) pole and zero placement controller.

In the situation where an excessive control action results from set point changes, added
disturbances and/or plant nonlinearity, then the multiple controller can be switched to
operate in the PID structure based (simultaneous) pole and zero placement controller, to
obtain a more efficient control action, at the expense of an even greater computational

requirement [17].
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4.3 New Fuzzy Logic Based Switching and Tuning Supervisor

The fuzzy logic based switching and tuning supervisor is situated at the highest level of
the multiple-controller framework. Following [4, 8, 12, 50], the fuzzy supervisor can
use any available data from the control system to characterise the system current
behaviour so that it knows which controller to choose, which parameters to tune, and
the tuning value for each parameter that is required to ultimately achieve the desired
specification. The main idea behind the fuzzy-logic supervisor approach here is to
employ logic-based tuning and switching between the family of the candidate
controllers. The need for switching stems from the fact that typically no single
controller can guarantee the desired behaviour when connected with a poorly modelled
process, and particularly so for the case of complex processes exhibiting significant
nonlinearity, non-stationarity, uncertainty and/or multi-variable interactions [37]. Such
switching schemes can provide an alternative to more traditional continuously tuned

adaptive control algorithms.

The supervisor employed in this work comprises three subsystems: a behaviour
recogniser, a switching logic and a tuning logic, each of which are discussed next.
Based on the system performance criteria presented in subsection (4.2.1), the supervisor
aims to recognise when the system requires selection of another controller, or when a
selected controller is not properly tuned, and then seeks to switch to the candidate
controller and/or adjust the controller parameters to obtain improved performance. The
whole supervisor is implemented using simple fuzzy logic based switching and tuning

rules where the premises of the rules form part of the behaviour recogniser and the
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consequent form the switching and tuning decision. In this way, a simple fuzzy system

is used to implement the entire supervisory control level.

4.3.1 Behaviour Recogniser Subsystem

The behaviour recogniser seeks to characterise the current behaviour of the control
system in a way that will be useful to the switching and tuning logic subsystems. The
proposed behaviour recogniser subsystem benefits from the system performance criteria
discussed in section (4.2.1). The behaviour of the system is characterized through the
online measurements of parameters listed below. In order to prevent the so called
shattering problem (Zeno behaviour) [8], which can result in an infinite number of
switching between controller modules, the average of the current and last two values of

the measurements are used as output parameters from the behaviour Recogniser.

o Overshoot (£, ) of the closed-system output signal [51]:

¢, (=2 " 100, (4.4)

o0

where y,.. 1S the amplitude maximum value reached at the output signal, and y,, is the

steady state value of the output signal.

. Rise and fall time of the system output signal (o, ):

The output signal rise and fall times represent the amount of time for a signal to change
state. To measure rise time, the behaviour recogniser uses 10% to the 90% point of the

output signal, or vice versa for the output signal fall time.
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o Output signal settling time (7, ):

which is the time required for the measured process variable y(¢) to first enter and then

remain within a band A, whose width is computed as +5 % of the total change in y(z)

[113].
. Steady state error (e, ):

which is the difference between the desired output w(z) and the actual output y(z) as

time goes to infinity (i.e. when the output reached its steady state) [114]. The steady

state error formula can be expressed as [115]:

e, (t)=lim(w()— y())=0. (4.5)
t—0
o The variance of the system output signal (V):

The variance of sampled population of the output signal y(¢) is the mean squared
deviation of the individual values y, of y(¢#) from the population mean [116]. The
mean is considered to be the steady state value y,. Therefore, V, is computed as
follows [116]:

N
D i—v.)

v, (1) == , (4.6)

N -1

where N denotes the size of the sampled population of the output signal y(z).
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o Magnitude of control input signal (control action u(¢)).

o Changes in reference signal state (I1,,):

By comparing the current set-point with the previous one, the behaviour recogniser will
check the state of the reference signal whether it is increasing, decreasing or remaining

as it was in the last state.

IT,,(£) = w(t) — w(t —1). (4.7)

The behaviour recogniser subsystem output is contained in the vector Z(z) and

expressed as:

E() =[¢, (), p,(1),7,(1),e,. (1), V, (),11,, ()], (4.8)

The contents of the variable =(¢) will be used by both fuzzy-logic based switching and

tuning subsystems.

4.3.2 Fuzzy Logic Based Switching Logic Subsystem

The switching logic subsystem is designed according to the multiple-controller
switching criteria presented in section (4.2.2) above, and used by Abdullah et al. in
[100]. The key task of the switching logic subsystem is to generate a switching signal
which determines, at each instant of time, the candidate controller module that is to be
activated [8, 50]. The switching logic is implemented using fuzzy logic rules where the

premises of the rules use four variables from the output of the behaviour recogniser
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E(¢) . These variables will represent the input parameters of the switching logic, which

can expressed as:
E 0 =[¢,0,e,(0).V,().IL (1], E,c=. (4.9)

The consequents of the fuzzy rules form the controller selection decision (i.e. output

parameter) which is symbolized as C,-

C,=lq,.H,]- (4.10)

The switching parameter C, can be set to [1,1] for a Pole-Zero Placement controller or
[0,0] for a conventional PID controller. Based on the system performance, the
supervisor will set g, and H, to switch either to the conventional PID controller, or to

the PID structure based (simultaneous) pole and zero placement controller.

4.3.2.1 Fuzzy Sets for the Switching Logic Parameters

In order to build the switching subsystem which represents a relationship between the
fuzzy-logic supervisor inputs and output, each variable must first be decomposed into a
set of regions and the output or solution variable then redefined into a set of fuzzy
regions. There are four inputs and one output for the fuzzy switching subsystem. The
inputs and the output are defined as fuzzy regions (sets) in a fuzzy logic system as

shown in the following Figures (4.2a-d) and (4.3) respectively.

The membership functions (MFs) used in the fuzzy supervisor play a crucial role in the

final performance of the switching and tuning subsystems. Therefore, selection of the

76



appropriate functions is an important design problem. So, in order to design an optimal
fuzzy supervisor the proper membership functions are searched by using several
simulation experiments. As shown in Figures (4.2a-d and 4.3), the switching subsystem
input variables are characterized by three fuzzy membership functions and the fuzzy
output variable is characterized by two membership functions. From the point of view
of simplicity and computational complexity [4], the fuzzy values are represented by
triangular (TriMF) and trapezoidal (TrapMF) membership functions with not more than
two membership functions overlapping. But, fuzzy membership functions can have

different shapes and sizes depending on the designer’s preference or experience [157].

The TriMF curve is a function of a vector, x, and depends on three scalar parameters a,

b, and c, as given by

0, x<a
x—a’ as<x<b
b—a
f(x,a,b,c) = . (4.11)
c—x’ b<x<c
c—b
0, c<x

The TrapMF curve is a function of a vector, x, and depends on four scalar parameters

a, b, cand d, as given by

0, x<a
x—a’ <x<b
b—a
f(x,a,b,c,d)=1 1, b<x<cy. (4.12)
d—x’ c<x<d
d-c
0, <x
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Figure (4.2a) Switching Logic input parameter: overshooting of the output signal £, (7) .
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Figure (4.2b) Switching Logic input parameter: variance of the output signal V', (¢) .

Degree of membership

Figure (4.2c) Switching Logic input parameter: reference signal state IT (7).
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Figure (4.3): Switching Logic output parameter: controller selection C,@)-

4.3.2.2 Fuzzy Rules for the Switching Decision

Fuzzy logic is used mostly to handle high-level control functions that traditional control
methods do not address such as fuzzy supervisory control for selecting discrete control
actions [151]. Fuzzy switching was applied to guarantee stable switching control of a
radio-controlled hovercraft [150]. Wang et. al. in [149] and Hu and woo [101] used

fuzzy logic based supervisor for switching between sliding-mode controller and a fuzzy
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controller. In [90] the so-called fuzzy switching multiple model was proposed to

provide smooth switching and improve the performance of the controller.

The fuzzy supervisor in the proposed multiple-controller framework is a performance-
oriented supervisory control. Therefore, the role of the switching logic rule base is to
determine the appropriate controller based on the system performance signals received
from the behaviour recogniser. The rule base is determined by the experimental
consideration of the influence of each of the switching logic input parameters: namely,
overshoot of the output signal, variance of the output signal and steady state error; that
is to select the required controller (output parameter). Rule 1 and Rule 2, below, activate
the Pole-Zero Placement controller in the cases when the system output signal exhibits
undershooting or overshooting in addition to high variance in the output signal. These
two rules will work on avoiding output signal overshoot and high variance which could
take place due to random and/or constant disturbances [17, 46, 70]. When the system
output signal reaches low degree of overshooting and minimum variance, Rule 3 will
activate the PID controller. In order to prevent output signal overshooting at any set-
point change [59], Rule 4 is designed to ensure that the Pole-Zero Placement controller
will be activated after each set-point change. When the output signal reaches low steady

state error, Rule 5 works to activate the PID controller.
The complete set of rules for the fuzzy logic based switching subsystem is given below:

e Rule I: IF £, () IS Ntive-High AND V (¢) IS High THEN C, () is Pole-Zero-

Placement
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e Rule 2: IF £ (r) IS High AND V,(¢) IS High THEN C, () IS Pole-Zero-

Placement

e Rule3:IF £ (#) IS Norm AND V¥, (¢) IS Norm THEN C, (¢) IS PID

e Rule4:IF IT,(z) IS NOT Norm THEN C, (¢) IS Pole-Zero-Placement

e Rule5:IF e,(f) IS Norm THEN C,(¢) IS PID

Depending on the fuzzified value of the input parameters, the switching logic subsystem
will switch either to the conventional PID controller, or PID structure based
(simultaneous) pole and zero placement controller. The above fuzzy logic based

switching logic is applied to SISO water vessel system presented in chapter 6.

4.3.2.3 Fuzzy Inference Procedure for the Switching Logic

At each sampling time the switching logic input parameters are computed and compared
to their desired values using their fuzzy sets. So assume that the output signal overshoot

¢, 1s 2.35%, the variance of the output V', is 5.9, the reference signal is not changing

(i.e. IT,, =0) and the steady-state-error e, is 0.01 as shown in Figure (4.4). Then all

the input parameters are within the range of Norm. The combination causes rules 2, 3
and 5 to fire. The three rules have somehow to be combined to form a single switching

output (Cn (¢))- The idea is that the premises connected by an AND are combined by

taking the degree of membership of the lesser of the two as the value of combination.

On the other hand, the active rules are combined together with an OR to take the larger
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of the three values as the value of the combination at each point on the horizontal axis.
Therefore, from the combined region, one of the several techniques of defuzzification
can be applied to produce final switching decision C,- In this case, Middle-of-the-Max
defuzzification approach is used as shown in Figure (4.4) where the Conventional PID
controller is selected. The Middle-of-the-Max defuzzification approach grantees the
selection of one controller each time. Figure (4.5), next, illustrates the case when the

overshoot of the control system output signal ¢, and its variance V), have Norm

memberships, but the reference signal is changing (i.e. decreasing since I, =—-12.1).

The combination causes Rule 3 and Rule 4 to fire. The two rules are combined and

defuzzified to form the selection of the Pole-Zero Placement controller.

f;\}ﬂe ¢, (0 V(0 IT,(1) e, (1) C,(1)
 235% 529 0 0.01 PID
1
2
|
3 | ! L
4
5 L
=100 100 0 100 100 100 10 10
Bl Lliddle of the Max Position Q
n] 40

Figure (4.4): Controller selection procedure using the fuzzy-logic based switching logic subsystem:
example for PID controller selection.
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Figure (4.6), above, illustrates the case when the overshoot of the control system output
signal ¢, and the its variance V, have High memberships, reference signal is not
changing (i.e. IT,, =0) and the steady-state-error is Positive. This situation could be

taking place when high disturbances introduced to the control system. The combination
causes Rule 2 to fire. The defuzzification forms the selection of the Pole-Zero

Placement controller.

4.3.3 Fuzzy Logic Based Tuning Subsystem

The second task of the switching and tuning logic supervisor is to tune the parameters of
the multiple-controller on-line, including poles and zeros of the (simultaneous) pole-
zero placement controller in addition to the PID gain v. The tuning facility aims to
make the system achieve a desired speed of response and/or minimise the control

action.

The input parameters of the fuzzy tuning subsystem are contained in Z=,, which
includes: part of the measurements supplied by the behaviour recogniser Z(z), the

output of the switching logic C, (i.e. the active controller), and the control action u(%).

E (0 =[5, (0, p,(1),7,(0),e,.(1),11,,(2),C,, (1), u(?)].

Using the fuzzy sets and fuzzy rules forming the tuning logic subsystem, the supervisor
will specify the tuning values for the parameters of the active/selected controller. The
new tuning values are contained in the tuning signal Cz, which represents the output

parameters of the fuzzy tuning subsystem and expressed as:
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Cz(t) =[T.(t), H,(t),v, (t)],

where 7,(¢) and H .(t) respectively represent the tuning values for the poles and zero
of (simultaneous) Pole-zero Placement controller and v_(¢) is the tuning value for the

PID gain. The fuzzy sets and rules designed for the multiple-controller parameters’

tuning are given next.

4.3.3.1 Fuzzy Sets for the Parameters of the Tuning Subsystem

There are seven input and three output parameters for the fuzzy tuning subsystem. The
inputs and the outputs are defined as fuzzy regions (sets) in a fuzzy logic system as

shown in the following Figures (4.7a-g) for the inputs and (4.8a-c) for the outputs.

' FID ' ' "PalZraPlormnt |

—_

o 2 0
E= o [mn]
T T T
1 I I

=
]
T
I

Degree of membership

=

0 0.5 1 1.4 2z 25 3 3.5 4
Cantraller
Figure (4.7a) Tuning Logic input parameter: current active controller C,(t)-
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Figure (4.7b) Tuning Logic input parameter: overshooting of the output signal ¢, (7) .
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Figure (4.7¢) Tuning Logic input parameter: settling time of the output signal 7, (7).
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4.3.3.2 Fuzzy Rules for the Tuning Decision

Many works have shown an interest in applying fuzzy theory to auto-tuning of active
controllers. In 1994 Moudgal et. al. [152] used a high level fuzzy supervisor for
monitoring and adjusting fuzzy controller in order to reduce the overshoot and
oscillation problems in an endpoint control of a two-degree-of-freedom robot with very
flexible links. The approach of fuzzy-logic based auto-tuning is also recently used by
Chang and Shyu in [82] for the application of active noise cancellation, and used by
Abdul-Mannan et al. in [83] for PI controller for high-performance induction motor

drive. In [72], the PID gains K,, K;, and K, were respectively calculated through

fuzzy logic based on the error signal and the first difference of the error signal. The
fuzzy gain scheduling approach also is widely used in aircraft industry and engine
control [4]. Brdys and Littler [84] used this technique for nonlinear servo tracking

where the servo controls two elements of a tracker mounted on a ship at sea.

The fuzzy rule base designed for the proposed tuning subsystem is based on fuzzy rules
for controller tuning used by [4, 72, 83] for PID controllers tuning, and on the
simulation experiments on the SISO water vessel system presented in chapter 6. In the
list of tuning rules below, rules 1, 2 and 3 are designed for tuning the active PID
controller in order to prevent the output signal overshoot and oscillation problems, as
well as preserve low steady state error. Rules 4, 5 and 6 are used to tune poles of the
Pole-Zero Placement controller for preserving the required output signal rise and fall
times. Rules 7 and 8 tune the poles of the Pole-Zero Placement controller in order to

reach the desired output signal settling time. Based on the magnitude of the control
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input u(¢) and the state of the reference signal, rules 9 to 12 are designed to tune the

zeros of the Pole-Zero Placement in order to prevent excessive control actions.

Since the fuzzy sets have been defined, the fuzzy logic based tuning subsystem is

completed by writing the rules that will describe the tuning value for the active

controller’s parameters. The complete set of 12 rules for the fuzzy logic based tuning

subsystem is as follows:

Rule I: IF C, () ISPID AND &, (#) IS Norm THEN v, (#) IS No-Change
Rule 2: IF C, () ISPID AND ¢, (#) IS NOT Norm THEN v, (#) IS Decrease
Rule 3: IF C,(¢) IS PID AND e, (#) IS NOT Norm THEN v, () IS Increase
Rule 4: IF C, (¢) IS PolZroPlemt AND p (¢) IS Slow THEN T, (¢) IS Faster

Rule 5: IF C,(¢) IS PolZroPlemt AND p (¢) IS Average THEN T,(¢) IS

Average

Rule 6: IF C, (¢) IS PolZroPlemt AND p (¢) IS Fast THEN T, (¢) IS Slower
Rule 7: IF C, (¢) IS PolZroPlemt AND 7 () IS Slow THEN T, (7) IS Faster

Rule 8: IF C, (¢) IS PolZroPlemt AND 7 () IS Fast THEN 7 (¢) IS Slower

Rule 9: IF C,(r) IS PolZroPlemt AND u(z) IS PstiveHigh THEN A (z) IS

Increase

Rule 10: IF C,(#) IS PolZroPlemt AND u(¢) IS NgtiveHigh THEN I—NIT(t) IS

Decrease

Rule 11: IF C, (¢) IS PolZroPlemt AND II,,(?) IS Increasing THEN I-NIT(I) IS

Decrease
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e Rule 12: IF C,(¢) IS PolZroPlemt AND IT, (#) IS Decreasing THEN I—NIT () IS

Increase

Depending on the fuzzified value of the input parameters, the tuning logic subsystem
will employ the centre of gravity defuzzification procedure to generate the tuning value

for the parameters of the active controller which could be either for the gain v of the

PID controller, the poles 7' and/or zeros H of the PID structure based (simultaneous)

pole and zero placement controller. The tuning values will be contained in the tuning
signal Crz(t) :[T,(t),PNI,(t),vT (t)]. The above tuning logic subsystem is applied to the

SISO water vessel system presented in chapter 6.

4.3.3.3 Fuzzy Inference Procedure for the Tuning Logic

The required tuning values for the parameters of the active controller are produced
through the operations of fuzzification, inference and defuzzification. The input fuzzy

sets are used to quantify the tuning logic input parameters (contained in Z, ) in the rule-

base, and the inference mechanism operates the rules that are relevant to the current
situation in order to produce the membership of the fuzzified inputs to the output fuzzy
sets. Then, the centroid defuzzification procedure is applied to generate the controller
tuning values Ct . Figures (4.9) and (4.10) next, respectively illustrate an example for
tuning the gain v of the PID controller, and another case where the poles and zeros of
the Pole-zero placement controller are to be tuned. In the case shown in Figure (4.0),
only the Rules 1, 2 and 3 are stimulated due the fact that the active controller was the

conventional PID controller, at that sampling time.
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Figure (4.9): Controller parameters’ tuning procedure:

tuning value for the gain v of the active PID controller.
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In Figure (4.10) above, rules 5, 8, 9 and 11 fired and the fuzzy sets of the Poles and
Zeros output fuzzy sets were defuzzified to provide the new tuning values for the poles

and zeros of the active controller, which was the Pole-Zero Placement controller.

4.4 RBF Based GLM for Complex SISO Systems Representation

As it has been discussed in chapter 2 section (2.4.4) and chapter 3 section (3.5), opposed
to the MLP, the RBF NNs improve the system damping and dynamic transient stability
more effectively than the MLP NNs. Control performance could be improved if the
unknown nonlinear portion of the model is more accurately modelled [15]. Therefore,
the RBF should be preferred to the MLP networks for the online identification of

complex systems.

An RBF neural network based learning model is subsequently used to approximate the

nonlinear part f; (.,.) and the disturbances £(¢) . It can be seen from equation (4.1) that

the measured output y(¢) can be obtained as follows [16]:
e+ =" ()0 + fo(y.u), (4.13)

g(t):[_ala"'s_ananbon"'abnb ]T ) (414)
@T(t):[y (t_l)a'“’y (t_na)vu (t_l)a'“)”l (t_nb)]

From Figure (4.12), next, we can also see that f;(.,.) can be expressed as:

folL) = fy+&(). (4.15)
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Using the above equation (4.15), and as shown in Figure (3.2), a neural network can be
effectively used for estimating the nonlinear function f,, with the identification error
£(t) being used to update the weights and thresholds of the learning neural network
model. The schematic diagram of the RBF neural network is shown in Figure (4.10).
The network has four inputs representing the last and current states of the control input

signal (i.e. u;(¢ —1) and u,(¢)) and the last and current states of the system output signal

(e y(t=1, »@)).

Input layer Hidden layer Output layer

Figure (4.11): RBF neural network used in the representation of the nonlinear sub-model in the GLM.

The nonlinearity and disturbances function f(.,.) is adaptively estimated by using the

following equations [37]:

o) =D wgb, (4.16)

Jj=1
8, =18 Soul for = fo J— fo, 1, (4.17a)
w, () =w;(t=1)+3,, (4.17b)
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g, (1) = exp(— i”xi -l n2ety’ j : (4.18)
i=1

where w, is the hidden layer weights, b is the output layer threshold, o, is the change
in weights, 7 is the learning rate, x; is the inputs, c; is the centre of Gaussian basis
function of the j” hidden unit, / is number of inputs, and g ; 1s the output of the hidden

layer. The variance of the Gaussian units O'j. is dependent on the input dimension

because the RBF inputs are scaled differently [49, 12]. The Gaussian density function is
in the hidden layer as an activation function as recommended by [23, 155] where they
concluded that the RBF NN should be preferred to MLP NN for online system

identification.

4.4.1 RBF Neural Network Parameters Setting

The parameters setting and tuning of the RBF based nonlinear sub-model is done in two
stages: offline stage for selecting the number of neurons including tuning their centres
and widths, and online stage for tuning the network weights. Using a trial and error
approach, the RBF NN for the nonlinear sub-model of the SISO water vessel system
presented in chapter six was designed with five units in the hidden layer two of which
had fixed centres and the remaining three units were selected to have adaptive centres.
The two fixed centres represent the smallest and the largest inputs of the training data
set. The three adaptive centres were fine tuned using the back-propagation method

proposed in [153] and used in [117]:
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Act =25 (x, =)z, [(T - fo)w, 1, (4.19)
O .

z, = exp[— Zl:—(cza_{;;) } , (4.20)

where a >0 [154] which is set to 0.02, T is the desired output and f, is the network

output. The width of the RBF units (O'j-) strongly affects the performance of the RBF

NNs, and in practice it is difficult to estimate the appropriate value of the RBF width
[130]. Unfortunately, the literature of RBF NNS lacks the theory regarding tuning the
unit width, which remains a challenging task in using RBF NNs. Haykin in [18] used

the Delta rule to adjust the width of the RBF hidden layer units. In [130] used the
relation o; = fd;, where o; is the width of i™ neuron, A is a positive scalar and d; is
the minimum of distances from the i” centre to its neighbours. This thesis proposes a
new and simple technique for adjusting the neurons’ width (aj.) of RBF NN of the

GLM

o' = pc’ 4.21)

J J?

where O'j- is the width of the j” neuron in the RBF hidden layer, cj. is the position of

the centre of the j” neuron and S is a positive scalar. The proposed technique gives

promising results in improving the RBF based nonlinear sub-model in approximating
hard nonlinearities and sharp disturbances, as will be presented in simulation results in

chapter (6) section (6.2.3).
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The output layer weights were updated online using the Delta rule. The RBF weights
can be adapted using various algorithms, a good overview of which can be found in

[18].

4.5 Proposed Novel Intelligent Multiple-Controller Framework for

Complex SISO Systems

The work conducted in this thesis was directed toward developing an affective and
efficient intelligent control system. The new proposed intelligent multiple-controller
framework for controlling complex SISO systems incorporates the fuzzy-logic based
supervisor to automatically govern the selection scheme between the adaptive nonlinear
PID controller and the pole-zero placement nonlinear controller, and to perform the
required tuning on the parameters of the selected controller. The switching and tuning
fuzzy-logic supervisor is situated at the highest level of the control system to act
according to the data received from the control system and the environment, as well as
the information supplied by the user. Therefore, the switching and tuning decisions are
made on the basis of the closed-loop system performance measurements and the user

desired performance.

In order to improve the approximation of the complex system model and consequently
accomplish more accurate SISO plant representation, the proposed approach
incorporates the RBF neural network based GLM. The GLM assumes that the unknown
complex plant is represented by an equivalent stochastic model consisting of a linear

time-varying sub-model plus a nonlinear RBF neural network learning sub-model. The
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block diagram of the proposed intelligent multiple-controller for SISO complex systems
is shown if Figure (4.12) next. The transfer function for the proposed intelligent

multiple-controller, show in Figure (4.12) above, can be expressed as follows:

_VOH(H,, H)F(W)w(t) - Fy(t) + AH ), £, (.,)]

e Aq(q,.T,)

(4.22)

Where w(z) is the system set point, f; (.,.) is a nonlinear function representing the

nonlinear dynamics and disturbances of the complex SISO system under control, A is
the integral action required for the PID design, F' is a polynomial derived from the
linear parameters of the controlled plant and includes the desired closed loop poles,

F(1) is the value of F at the steady state, H) is a user-defined polynomial. The

transferred poles ¢ were derived through the following Diophantine equation which is

used to place poles of the system in the required position:
(¢AA+z'"FvB)=T, (4.23)
where T represents the desired closed loop poles and ¢’ is the controller polynomial.

In the multiple-controller above, v(v,) is the tuned PID gain and ¢(q,,T,) represent

the transferred poles of the control system transfer function as a function of the

switching parameter ¢, and the tuning parameter 7, and can be expressed as:

4(q,.T,) =1+ 4,q:(z") +4,4,(z"), (4.24)

where the tuned poles ¢, (¢ +1) = ¢,(¢) +¢, (¢) and ¢,(t+1) =q, (1) +1, (?).
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Figure (4.12): Intelligent Multiple-Controller Framework for SISO complex systems.

The term H (H,],ﬁr) represent the transfer function zeros as a function of the

autonomous switching and tuning parameters, respectively, H, and H . as it can be

seen the next equation:

H(H,,H)=H(H, H)HLH, )", (4.25)

where A, (t+1)=h,(¢)+ }Nzrl (t) and h,(t+1)=h,(t)+ }772 (t) are the tuned zeros,

H(H,,H)=1+Hh(z")+Hh(z"),and H(,H,,H,)=1+Hh +Hh,.

The following subsections will outline the various multiple-controller modes which are

derived from a single minimum variance based control law. The switching between
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these modes is performed autonomously in an integral manner by modifying the
common control law using the fuzzy-logic supervisor. The automatic switching feature
is a key distinction of the new proposed intelligent multiple-controller compared to
other classical multiple-controllers switching paradigms which seek to combine a
switch between different controllers which may lead to undesirable transfer problems
during switching actions [8, 17]. The switching mechanism introduced in this work
guarantees bumpless switching between the different controlling scenarios, i.e.,
switching that does not induce a large transient because of the compatible “initial

conditions” of the controllers connected to the plant [100, 118].

4.5.1 Multiple-Controller Mode 1: Self-tuning PID Controller

In this mode, the multiple-controller operates as a conventional adaptive PID controller,
which is expressed in the velocity form as:

Kow(t) —[Kp + K; + Kpy(0) = [-Kp = 2K, Jy(t =) = Kpy(t = 2)

u(t) = A » (4.26)

To obtain an adaptive PID controller, the degree of F(z™') is initially set to 2 so that

FGzY=fy+ fiz '+ foz72, (4.27)

and both the pole-placement polynomial ¢ and zero-placement polynomial H are
switched off when the fuzzy logic switching and tuning supervisor sets the switching

parameter C, =[q,,H,] to equal [0, 0]. Consequently,
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gz =1, (ie.q;=qy= =g, =0)
~ -~ ~ - (4.28)
H(iz"=1, (ie.ly=hy=...=h, =0)
Therefore, the adaptive PID controller is structured as follows:
. VE(WW(E) =v(fy + fiz '+ foz )y() + AvH y £, ()
= A ’ (4.29)
The PID gains K ,, K; and K, will be as:
K, =—fi+2v/;], (4.30)
K, =vfo+/i+ /2], (4.31)
K, =vf,. (4.32)

4.5.2 Multiple-Controller Mode 2: Pole-Zero Placement Controller

To switch multiple-controller control law in equation (4.22) to the simultaneous pole
and zero placement controller with a PID structure, the switching and tuning supervisor

will set the autonomous switching parameter C,=lq,.H,] be [1, 1]. Consequently,

(4.33)

gz ) =1+q(z")+g,(z7")
HEzY=1+h Y +h:") |

where ¢, and ¢, are the tuned poles placed in their position, /4 and 4, are the tuned

zero placed in their position. Therefore, the pole-zero placement controller will be in the

form:
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_ VO)UH(H, H)FOw(t) = Fy(t) + AH £, ()]

u Aq(q,,T,)

(4.34)

Note that in practice, the order of g(z™") and H(z') are most of the time selected to
equal 1 or 2 [17, 41, 43]. The PID gains K s Ki and K, will be set as in the multiple-

controller mode 1 above for a PID structured pole-zero placement controller.

4.5.3 Intelligent Multiple-Controller Algorithm Summary: SISO Case

The proposed intelligent multiple-controller algorithm can now be summarised into the

following steps:

Step 1: Select the initial desired closed-loop system poles and zeros polynomials 7 and

H respectively.

Step 2: The system current controller is initially set to work with the Pole-Zero

Placement controller (i.e. C,=[11] ) in order to avoid high control action, at the start of

the control process, and consequently prevent output signal overshooting [100].

Step 3: Select F' and the initial value for the gain v for the desired PID control

structure.

Step 4: Read the current values of y(¢) and w(?).

Step 5: Compute the control input u(¢) using (4.34) when the current controller is pole-

zero placement, or using equation (4.29) when the controller is the conventional PID

controller.
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A

Step 6: Estimate the process linear parameters A4 and B using the least squares

algorithm of the linear sub-model in the GLM.
Step 7: Compute fo (.,.) = y(t)— ¥(t),, where ¥(¢) is the output of the linear sub-model.

Step 8: Apply the RBF based nonlinear sub-model of the GLM to obtain f,(.,.) by

using equations (4.16)-(4.21).

Step 9: The behaviour recogniser will assess the current performance of the control

system using the system output y(¢), the set-point w(¢), the control input u(¢) and the

user requirements.

Step 10: The behaviour recogniser will report the system performance to the switching

and tuning subsystems as concluded in Z(¢).

Step 11: The fuzzy logic switching subsystem will employ = (¢) to make the switching
decision for the next controller to be activated, that is achieved by setting C, to [1,1] for

a Pole-Zero Placement controller or to [0,0] for a conventional PID controller.

Step 12: The fuzzy logic tuning subsystem will decide the tuning values for the current

controller parameters’ based on the input Z,(¢).

Steps 4 to 12 are to be repeated for every sampling instant.
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4.6 Summary

A central theme in the study of intelligent control is the modelling and control of
complex systems. Every control system, from the simplest (e.g. the thermostat or a
simple positioning servo) to the most complex currently in use (e.g. control of
unmanned air vehicle) utilize feedback in one form or another. The essence of the
concept involves the triad: measurement, comparison, and correction [98]. That is,
measurement of relevant variables, comparison with desired values, and using the errors
to correct behaviour. The complexity of the control systems used nowadays emphasise
the involvement of more sophisticated and intelligent techniques, that is to cope with
the measurements, comparisons, and corrections required for the control decision
making process. By considering the design of a multi-controller, the automation
capabilities provided by the field of Artificial Intelligence can be integrated with the
concepts and techniques from this field to the multiple controller approach of designing
control systems may be advantageous, from a practical perspective, to solve such

complex control problems.

In this chapter a new intelligent nonlinear multiple-controller framework incorporating
a fuzzy logic based switching and tuning supervisor is developed to control complex
SISO systems. The framework integrates the simple fuzzy rule based supervisor with
the benefits of both the conventional PID and PID structured pole-zero placement
nonlinear-controllers along with a GLM framework. In the GLM, the unknown complex
process to be controlled is represented by an equivalent stochastic model consisting of a

linear time-varying sub-model plus a computationally-efficient RBF neural-network
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based learning sub-model. The proposed methodology provides the designer the choice
between the conventional PID adaptive controller, or the PID structure based
(simultaneous) pole and zero placement controller. Both controllers (multiple controller
modes 1 and 2) benefit from the simplicity of having a PID structure, operate using the
same adaptive procedure and can be selected on the basis of the required performance

measure.

The switching decision between the two nonlinear fixed structure controllers, along
with online tuning of the controller parameters, is made using a fuzzy logic based
supervisor operating at the highest level of the system. The proposed intelligent
multiple-controller works to adaptively tracking a desired reference signal, achieving
the desired output signal performance and penalising excessive control actions, in
response to the current performance of the control systems as assessed by the behaviour
recogniser. The stability analysis of the proposed intelligent multiple-controller
framework for SISO complex systems will be considered as a subset of the general

multivariable case in the next chapter.

It is often the case that higher-level knowledge about how to control a process is
available along with the lower-level data on which simple control systems operate
[156]. In the proposed intelligent framework, the tasks of fuzzy logic based
coordination between multiple-controllers and tuning of the controller parameters are
based on information about the application operating points, including system transfer
function poles and zeros, and the controller PID gains. Accordingly, information

acquired about the system to be controlled was essential to design the fuzzy logic high-
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level supervisor. Taking into account the real-time implementation constraints, such as
minimizing the amount of memory used and the time that it takes to compute the fuzzy
outputs using the given inputs [4], the fuzzy logic based switching and tuning
supervisor is designed with a minimum number of fuzzy rules with minimum input and

output parameters.

The next chapter presents the intelligent multivariable multiple-controller framework

for the general case of complex MIMO systems.
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Chapter 5
Intelligent Multivariable Multiple-Controller
Framework Incorporating a Fuzzy Logic

Based Switching and Tuning Supervisor:

MIMO Case

5.1 Introduction

In practice, most practical systems considered are nonlinear and multivariable in
character. The synthesis of multivariable controllers has received more attention in the
industrial field and more particularly in the domain of chemical engineering. Even
though, it is still common practice, especially in industrial applications, to design a
SISO controller for each (I/O) pair of a MIMO plant by simply ignoring the interaction
between these pairs. Such SISO controllers may work satisfactorily for some MIMO
plants, but advances in performance can only be achieved through the use of MIMO
controllers [120]. Moreover, for MIMO complex systems, the control problem is very
complicated due to the coupling among various inputs and outputs. It becomes in
general very difficult to deal with when there exist uncertain parameters and/or

unknown nonlinear functions in the input coupling matrix [122]. Due to these
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difficulties, it is noticed that in comparison with vast amount of results on controller
design for SISO complex systems in the control literature, there are relatively fewer

results available for the broader class of MIMO complex systems.

The design of multivariable control systems requires identification of the effects of
individual inputs on each of the outputs. In many complex systems whose behaviour is
described by a large set of partial differential equations, the solution cannot be
implemented in real-time due to the large number of unknown parameters and
constraints. Additionally, for fast real-time control, the computationally intensive
model, even if available, must either be reduced, leading to approximation errors, or

replaced with another model with the same input-output characteristics [119].

In the last two decades, control methodologies employing fuzzy logic systems and
neural networks have been a promising way to approach complex control problems.
Particularly, fuzzy logic has attracted the control community because of the simple
approach it provides to use heuristic control knowledge for complex control problems
[121], see chapter (2) section (2.6) for more details. Similarly, there has been
tremendous interest in the study of neural networks in modelling and control of
uncertain nonlinear systems with unknown nonlinearities, and great achievements have
been met both in theory and practical application [122]. As it was discussed in chapter
(2) section (2.5), neural networks are mostly used as approximation models for
unknown nonlinearities due to their inherent approximation powers. With these
capabilities, it is not necessary to spend much effort on system modelling which might

be expensive in many cases.
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Considering the importance of MIMO systems and the promising potentials of fuzzy
logic and neural networks for control engineering, this chapter presents an intelligent
multivariable multiple-controller framework for complex MIMO plants, which extend
the SISO results shown in the previous chapter. The proposed multiple-controller
methodology uses a Mamdani fuzzy system for the supervision of the multivariable
multiple-controller and employs an RBF neural network based GLM for MIMO system

representation.

This chapter is organised as follows:

The convention control law of the GMVC multivariable multiple-controller is presented
in section (5.2). The new proposed fuzzy logic based supervisor for switching and
tuning multivariable multiple-controller is discussed in section (5.3). The discussion
will detail the design of the switching logic and tuning logic subsystems of the high
level supervisor, in addition to be MIMO system behaviour recogniser subsystem. In
section (5.4), the MIMO RBF neural network nonlinear sub-model for the MIMO GLM
will be presented. The complete framework of the intelligent multivariable multiple-
controller for the autonomous control of MIMO complex systems is illustrated in
section (5.5). The structure of the developed control law will be given as well as the
fuzzy logic based switching and tuning mechanisms to activate and tune the two
adaptive multivariable control modes, namely convention PID controller and Pole-Zero
Placement controller. Section (5.6) will present the stability analysis of the proposed
intelligent framework including the two switching modes and the fuzzy logic switching

and tuning mechanisms. Summary of the chapter will be given in section (5.7).
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5.2 Control Law Structure of GMVC for Complex MIMO Systems

The original SISO minimum variance strategy of Astrom and Wittenmark [102] was
extended into a multivariable by Borrison [123] which was a stepping stone to the
developments of the multivariable adaptive control theories. In the sequel, Koivo [124],
Keviczky and Kumar [125] and Grimble and Moir [126] extended the SISO generalised
minimum variance control proposed by Clarke and Gawthrop [103] into MIMO case.
The generalised minimum variance control was also modified to have a MIMO PID
structure by Yusof et al. [41, 43], Zhu and Warwick [19] and Zayed et al. [127], and
extended to achieve the multivariable nonlinear pole-placement control by Zhu and

Warwick [16].

Zayed et al. [17, 39, 46] developed a MIMO multiple-controller framework which
achieved more effective control action, and combined the advantages of adaptive
controller together with those of PID controllers and nonlinear Pole-Zero Placement
controllers. As it will be presented in this chapter, the framework of [17, 39, 46,] is now
further developed to achieve a desired closed-loop control system performance through
the autonomous intelligent tuning and switching between the GMV based multiple-
controllers, and the more efficient complex plant approximation using the new RBF

based MIMO GLM [128].

The MIMO complex system considered in this thesis is in the following Controlled
Auto-Regressive Moving (CARMA) representation which is for #n input n output plant

model [17]:

110



Ayt +k) =Bz Hu(t) +1,, (Y,U)+&(t +k), (5.1)

where y(zr) is the measured output vector with dimension (nxl)
yO) =[»@®) »,(t) .. »y,®)], wu(@) 1s the control input vector (nxl)
u(t) =[u,(t) uy(t) ... u,(t)], &r) is an uncorrelated sequence of random variables
with zero mean at the sampling instant ¢ =1,2,..., §(¢) =[&,(¢),&,(?),...,...E,(¢)], and k is
the time delay of the process in the integer-sample interval. The term f,,(Y,U) in

equation (5.1) above, is potentially a nonlinear function which accounts for any
unknown time delays, uncertainty and nonlinearity in the complex MIMO plant model

where f,,(Y,U)=[f,,(5.) fo,(>) . fo..(5)], and is conveniently represented by

a Multi-Layered Perceptron [16, 17]. The overall MIMO plant model represented by
equation (5.1) above, is termed the MIMO Generalized Learning Model (GLM) [37],

and can be seen as the combination of a linear sub-model and a nonlinear (learning)
sub-model. Also, in equation (5.1), y(t)eY, u(t)eU; {YeR";UeR™}, and
A(z™") and B(z") are (nxn) diagonal polynomial matrices with orders n, and n,,

respectively, which can be expressed in terms of the backwards shift operator, z™' as:

A =1+Az"+Az7 +oAA, 2 (5.2a)
B(z')=B,+B;z"' +... +B, z "B B(0)#0, (5.2b)

where 1, and n, are the degrees of the polynomials A(z™"), B(z™")
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The multivariable multiple-controller control law for the above complex MIMO plant is

meanwhile given in the next equation [17]:

_ [VIN{[H(I)]’IF(I)W(t) —vFy(t) + AvH (f ,(.,.)]

u(r) Aq

(5.3)

where w(?) is the (nx1) system bounded set point vector, f;,(.,.) is a nonlinear

function representing the complex dynamics of the MIMO plant, v is a user-defined

gain matrix, A is the integral action required for the PID design, H is a user-defined

polynomial which can be used to introduce arbitrary closed loop zeros for an explicit
Pole-Zero Placement controller, H(1) is the value of H at system output steady state,

F is a polynomial derived from the linear parameters of the controlled plant and

includes the desired closed loop poles, F(1) is the value of F at the steady state, HY is
a user-defined polynomial for activating the nonlinear function f,(.,.) . The parameter
q' is a transfer function used to bring the closed loop system parameters in the stability
unit disc, and is a polynomial in z ' having the following form:

QY =T+qz +qhz 7 +...+ q;lq,z_n“' where n, is the degree of the polynomial q'.

5.3 New MIMO Fuzzy Logic Based Supervisor for Multiple-

Controllers Switching and Tuning

The proposed MIMO fuzzy-logic based switching and tuning supervisor for the

multivariable multiple-controller operates at the highest level of the control system
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framework. The fuzzy supervisor monitors the MIMO control system through the
available input-output data, and then characterises the system current behaviour so that
it knows which controller to choose, which parameters to tune, and the tuning value for
each parameter that is required to ultimately achieve the desired specification. The main
idea behind the fuzzy-logic supervisor approach here is to employ logic-based tuning

and switching between the candidate multivariable controllers.

The supervisor, which is employed for the MIMO control system, comprises three
subsystems: a behaviour recogniser, a switching logic and a tuning logic, each of which
are discussed next. Based on similar system performance criteria presented in chapter
(4) section (4.2), for each control input and system output, the supervisor aims to
configure the best controller, or when the current active controller is not properly tuned.
Consequently, the supervisor seeks to switch to the candidate controller and/or adjust
the controller parameters to obtain improved performance. The whole supervisor is
implemented using simple fuzzy logic based switching and tuning rules where the
premises of the rules form part of the behaviour recogniser and the consequent form the
switching and tuning decisions. In this way, a fuzzy logic system is used to implement

the entire supervisory control level of the multivariable multiple-controller system.

5.3.1 Behaviour Recogniser for MIMO Systems

The behaviour recogniser will characterise the current behaviour of the MIMO control
system in a way that will be useful to the switching and tuning logic subsystems. The
proposed behaviour recogniser subsystem benefits from the system performance criteria

discussed in chapter (4) section (4.2). The multivariable system has »n control input
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signals and n system output signals and characterised through the online measurements

of following parameters:

. Degree of overshoot (g, ) of the MIMO system output signals:

¢, =g, ¢, - ¢, 1 whichis an nx1 vector where n is the number of system

output signals.

g, (ty="m P, (5.4)

;

where y,,,, 1s the amplitude maximum value reached at the i™ (i=1,2,..n) output

signal of the MIMO plant, and y,, is the steady state value of the i output signal.
. Rise and fall time of the MIMO system output signals (p )

The vector p, =[p, p, -+ p, ] isan nxl vector denotes the current rise or fall

time of the n system output signals. The output signal rise and fall times represent the
amount of time for a signal to change state. To measure rise time, the behaviour
recogniser uses 10% to the 90% point of every output signal, or vice versa for the output

signal fall time.

o Settling times of the MIMO system output signals (7 ,):
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where T =[r, 7, -+ 7, ] and 7z, is the time required for a measured process
y Y1 Y2 Yn i

output y;(¢) to first enter and then remain within a band A, whose width is computed

as 5% of the total change in y,(¢).
. Steady state error of the output signals (e, ):

e,=[e, e, - e, ]wheree, isthe difference between the desired output w;(7)

and the actual output y;(z) as time goes to infinity (i.e. when the output reached its

steady state) [114]. The steady state error formula can be expressed as [115]:

e, (1) = lim(w;(1) - y,(1)) = 0. (5.5)
! t—ow
o The variance of the output signals (V,):

The variance of sampled population of the output signal y,(¢) is the mean squared
deviation of the individual values y, of y,;(f) from the population mean. The mean is
considered to be the steady state value y, . Therefore, ¥, is computed as follows
[L16]:

N
>y =y,

v, (t)="12" , (5.6)

N -1

where N denotes the size of the sampled population of the output signal y,(¢) and

V=, V. - V]

y N Y2 Yn
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o Control input signals of the MIMO system (control actions u(z)).

u(®) =) u,(0)

. The state of the reference Signals (I, ):

u, O] .

(5.7)

By comparing the current set-points w,(¢) ,i =1,2,...n, with the previous ones w;,(# —1),

the behaviour recogniser will check the state of the each reference signal whether it is

increasing, decreasing or remaining as it was in the last state.

I, (1) = w ()~ w(t ~1).

The tested states of the reference signals are stored as in IT, =[I1,,  II

The behaviour recogniser subsystem output

expressed as:

5,0 p, @
¢, p, @

£, 0

T)’l (t)
7, (1)

0, ()

Wy

1_Iw" ] .

is contained in the matrix Z(¢) and

e, (1)
e, (1)

e, (1)

V3 ®
V,, ()

/), 0

m, (0]
I, ()

I, (0|

(5.9)

The performance measure variable Z(z) will be used by both fuzzy-logic based

switching and tuning subsystems.

116



5.3.2 Fuzzy Logic Based Switching Subsystem for Multivariable multiple-

controller

The switching logic subsystem for the multivariable multiple-controller is designed
according to the switching criteria presented in chapter (4) section (4.2.2), and used by

Abdullah ef al. in [128]. The switching logic generates the switching signal C, which

determines, at each instant of time, the candidate controller module for every subsystem
in the MIMO plant. The switching logic is implemented using fuzzy logic rules where
the premises of the rules use 4xn variables from the output of the behaviour recogniser

(i.e. E(¢)). These variables will represent the input parameters of the switching logic,
which can expressed as:

$ () e () V, (0 TL,(0)]
6,0 e, V(O I, (1)

O= . (5.10)

[

6,0 e V0 1,0

The consequents of the fuzzy logic rules form the controller selection decision which is

symbolized as C, where

q77| H’7|
q H

cnz[qn Hn]: '7 :'72, (5.11)
4, H,,
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q, =g, 49, - qnn]T’ H, =[H, H, .. H, " and i=12,.n (n is the

n

number of control inputs). Based on the size of » and the system performance, the
supervisor will switch either to the conventional PID controller, or to the PID structure
based (simultaneous) pole and zero placement controller. For instance,
C, = B 1 HT will set the first control input to be controlled by a convention PID

controller and the rest of the control inputs to be Pole-Zero Placement controllers.

T
Another example is that, C,= B i ﬂ will set all control inputs to be controlled

0 0

by Pole-Zero Placement controllers, and Cn = {O 0

T
0} will set all control inputs

to be controlled by a conventional PID controller.

5.3.2.1 Fuzzy Sets for the Switching Logic of the MIMO Systems

To simplify the design of the fuzzy supervisor for the multivariable multiple-controller,
the switching logic fuzzy sets of the SISO case, presented in chapter (4) section
(4.3.2.1), have been used for the MIMO system. Depends on the MIMO application,

different fuzzy set membership functions can be designed for every fuzzy Rule input in

E,(1).

5.3.2.2 Fuzzy Rules for the Switching Decision

The fuzzy switching subsystem for automatic switching between the multivariable

multiple-controller is completed by writing the rules that describe the fuzzy output of
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each combination of the fuzzy input variables. The fuzzy rules for MIMO system
multivariable multiple-controllers switching are designed on the bases of the fuzzy rules
for the SISO system multiple-controller switching detailed in chapter 5 at section
(4.3.2.2). The final derived rules are experimentally implemented on the two MIMO
applications given in chapter 6; namely: MIMO water vessel application (section (6.3))
with n =2, and autonomous vehicle control application (section (6.4)) with n=3,
where 7 is the number of inputs and outputs in the MIMO applications. The complete
set of fuzzy rules for the fuzzy logic based switching subsystem is as follows:

e Rule I: IF £, (1) OR &, (),..., ¢, (1) IS Ntive-High AND 7, (r) OR

V,.(0)....., V, (t) IS High THEN C, (t) OR C, (7)...., C, (1) IS Pole-Zero-

Placement

¢ Rule 2:IF ¢, (t) OR ¢, (t),..., £, () IS High AND V¥, (1) OR V, (1)....,

V, (t) ISHigh THEN C, (1) OR C, (?),..., C, (¢) IS Pole-Zero-Placement

e Rule 3: IF IT, (1) OR II,, (¢),..., IT,, (¢) IS NOT Norm THEN C, (1) OR

C,,®),..., C, (1) IS Pole-Zero-Placement

e Rule4:IF ¢, (1) OR ¢, (1)...., £, () IS Norm AND ¥, (1) OR V,_ (1)....,

7, () 1S Norm THEN C, (1) OR C, (7)...., C, (1) IS PID

e Rule5:IF ¢, (t) OR e, (1)...., e, (1) IS Norm THEN C, (t) OR C, (1)....,

C, (1) ISPID
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Depending on the fuzzified value of the fuzzy input parameters, the switching logic
subsystem will switch either to the conventional PID controller, or PID structure based

(simultaneous) Pole-Zero Placement controller.

5.3.2.3 Inference Procedure for the Switching Logic of the Multivariable Multiple-

Controller

The MIMO system’s switching logic works, at each instant of time, to activate the
appropriate controllers according the desired performance. The input parameters of this
switching logic are computed and compared to desired values using the fuzzy sets. The

fuzzy input parameters in the antecedent part of the fuzzy rules (such as &, and V)

will be related to their corresponding fuzzy output parameters in the consequent part

(such as C, ) through the logic operation OR. The fuzzy rule premises’ are connected

by an AND are combined by taking the degree of membership of the lesser of the two as
the value of combination. On the other hand, the active rules are combined together
with an OR to take the larger of the output values as the value of the combination at
each point on the horizontal axis. The Middle-of-the-Max defuzzification approach is

used to finalise the controller selection decision.

In the example shown in Figure (5.1) below for a MIMO system with two inputs and
two outputs, the first output signal overshoot £, (#) was in Ntive-High fuzzy region, its
variance V), (f) was in High fuzzy region and NOT Norm steady-state error e, ().
Whereas for the second output signal, it had very low overshooting ¢, (¢), low variance

V,, (t) and Norm steady-state error e, (). This combination causes rules 1, 2, 4 and 5
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to fire. The four rules were defuzzified to activate a Pole-Zero Placement controller for

the first input-output subsystem (C,71 (¢) is PolZroPlcmnt) and the conventional PID

controller for the second input-output subsystem (an (z) is PID).

6,0 €0 V0 V0 W0 0 e 0 e, C, (1) GO

i Al
L L A

-100| 100100 (100 O 100 0O 100-100 | 100-100 | 100 -10 10 10 10

] ] ) S

&
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L]
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Figure (5.1): Multivariable multiple-controller selection procedure
using the fuzzy-logic based switching logic subsystem.

5.3.3 Fuzzy Logic Based Multivariable Multiple-Controller Tuning Subsystem

The input parameters of the fuzzy tuning subsystem are contained in =,, which
includes: part of the measurements supplied by the behaviour recogniser Z(¢), the

output of the switching logic C, (i.e. the active controllers), and the current control

input signals u(?) =[u,(t) u,(t) . . . un(t)]T.
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40 p (0 T, (1) e, () T, () Cp (1) ()]
6,0 p, @) 7,0 e, @) I, () C (1) uy(t)

E, (1) (5.12)

&, 0 p, @ 7, e, @ I, ) C, &) u,(t)

The tuning logic will specify the tuning values for the parameters of the active/selected
controllers. The new tuning values are contained in the tuning signal Cz, which

represents the output parameters of the fuzzy tuning subsystem and expressed as:

T.(0) H (1) v, (0
H_(t

T,(0) H,@® v, )
Cr= ) (5.13)

T.(0) H (1) v, (0]
where T.()=I[T, () T,(®) - T,OF and H()=[H,0) H ) -~ H OF

respectively represent the tuning values for the poles and zeros of the active Pole-Zero
Placement multivariable controllers, and v () =[v, (®) v, () - v, (0] is the

tuning values for the gains of the active multivariable PID controllers.
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5.3.3.1 Fuzzy Membership Functions for the MIMO System Tuning Logic

To simplify the design of the fuzzy supervisor for the multivariable multiple-controller,
the tuning logic fuzzy sets of the SISO case, presented in chapter (4) section (4.3.3.1),

have been used for the tuning logic of the MIMO control system.

5.3.3.2 Fuzzy Rules for the Tuning Logic of the Multivariable Multiple-Controller

The fuzzy logic based tuning subsystem is completed by writing the rules which will
prescribe the tuning values for the parameters of the active controllers. The complete set
of rules for the fuzzy logic based tuning subsystem for the multivariable multiple-

controller is given below:

Rule 1: IF C, (f) OR C, (1)...., C, () IS PID AND ¢, (1) OR £, (1)....,

¢,, (1) IS Norm THEN v, (t) OR v, (?),..., v, (¢) IS No-Change

e Rule 2: IF C, (1) OR C, (1),..., C, () IS PID AND ¢, (1) OR ¢, (1)....,

¢, (1) ISNOT Norm THEN v, (1) OR v, (¢),..., v, () IS Decrease

e Rule 3: IF C, (t) OR C, (1),..., C, () IS PID AND e, (t) OR ¢, (1)....,

e, (1) ISNOT Norm THEN v, (t) OR v, (?),..., v, (¢) IS Increase

e Rule 4 IF C, (1) OR C, (9),..., C, (¢) IS PolZroPlemt AND p, (1) OR

p,.(0) ... p, (1) IS Slow THEN T, (t) OR T, (¢),..., T, (¢) IS Faster

e Rule 5: IF C, (r) OR C, (9),..., C, (t) IS PolZroPlemt AND p (1) OR

Py, (@) ,..., p, (t) IS Average THEN T, (1) OR T, (?),..., T, (¢) IS Average

123



e Rule 6: IF C, (t) OR C, (1)..... C, () IS PolZroPlemt AND p, (r) OR

Py, @) ,..., p, (1) ISFast THEN T, (1) OR T, (?),..., T, (¢) IS Slower

e Rule 7. IF C, (1) OR C, (¢),..., C, (t) IS PolZroPlemt AND 7z, (r) OR

7,,(@),...., 7, (t) ISSlow THEN T, (r) OR T, (?),..., T, () IS Faster

 Rule 8: IF C, (1) OR C, (1)...., C, (¢) IS PolZroPlemt AND 7, () OR
7, (@),...., 7, (t) ISFast THEN 7, (1) OR T, (?),..., T, (#) IS Slower

e Rule 9 IF C, (1) OR C, (1),..., G, (1) IS PolZroPlemt AND u(f) OR

uy(t) ..., u,(t) IS PstiveHigh THEN H, (t) OR H_ (f),..., H, (#) IS Increase

e Rule 10: IF C, (1) OR C, (©),..., C, (t) IS PolZroPlemt AND u,(f) OR
uy(0),..., u,(t) 18 NgtiveHigh THEN H, () OR H, (1),..., H, (1) 1S
Decrease

e Rule II: IF C, (¥) OR C, (?),..., C, (t) IS PolZroPlemt AND IT,, (r) OR
M, (0),..., I, (¢) IS Increasing THEN H, (1) OR H,_(1),..., H, (1) 1S
Decrease

e Rule 12: IF C, (t) OR C, (1)...., C, () IS PolZroPlemt AND II, (f) OR
M, (1),..., T, (1) 1S Decreasing THEN H_(f) OR H, (¢),..., H (1) IS
Increase

Depending on the fuzzified value of the fuzzy rules input parameters, the tuning logic
subsystem will employ the centroid defuzzification procedure to generate the tuning

value for the parameters of the active controllers which include the PID gains v of the

multivariable PID controller, the poles in T and/or the zeros in H of multivariable
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Pole-Zero Placement controller. The tuning values will be contained in the tuning

signal C7 in equation (5.13) above.

5.3.3.3 Inference Procedure for the Tuning Logic of the Multivariable Multiple-

Controller

The fuzzy logic based tuning subsystem for adjusting the parameters of the

multivariable multiple-controller uses the fuzzy input parameter =, to prescribe the new

tuning values (i.e. C7) for the parameters of the active multivariable controller. The
Mamdani fuzzy system operations of fuzzification, inference and defuzzification were
used to design the tuning logic for MIMO plants. The input fuzzy sets are used to

quantify the tuning logic input parameters (contained in E,) in the rule-base, and the

inference mechanism operates the rules that are relevant to the current situation in order
to produce the membership of the fuzzified inputs to the output fuzzy sets. Then, the
centroid defuzzification procedure is applied to generate the controller tuning values

Cr.

Figures (5.2) below shows an example a MIMO system with two control inputs and two
system outputs. The tuning logic subsystem employed to tune the poles and zeros of the
active Pole-Zero Placement controller simultaneously with the PID gain of the active
PID controller. In this case, depending on the selected controller and the fuzzy inputs
(premises of the 12 fuzzy rules) only rules 1, 2, 3, 5, 8, 9, and 11 fired. Then, the
fuzzified regions combined together with an OR to form the output regions. Therefore,

the centroid defuzzification approach was used to produce the final tuning values 7, (¢),
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H -, (#) for the poles and zeros of the active Pole-Zero Placement controller (C, (¢)) and

v, (¢) for the PID gain of the other controller C, (#) which was a conventional PID

controller.
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Figure (5.2): Multivariable multiple-controller tuning procedure.

RBF neural network based learning model is subsequently used to approximate the
126

5.4 RBF Based GLM for Complex MIMO Systems Representation

nonlinear part f,,(y,u) of equation (5.3).



The RBF based MIMO neural network is effectively used for estimating the non-linear

function f,, with the identification error &(¢) being used to update the weights and

thresholds of the learning neural network model. The neural network model employed
in the proposed control scheme is chosen to be the computationally less expensive
linear-in-parameters RBF neural network as opposed to the MLP neural network
previously used by [16, 17]. The RBF NNs improve the system damping and dynamic
transient stability more effectively than the MLP NNs. Also, the RBF requires fewer
computational complexities and elapsed time to train the network on-line, than the MLP
[23]. The RBF NNs ability to uniformly approximate smooth functions over compact

sets is well documented in the literature (see for example [48]).

The schematic diagram of the RBF neural network is shown in Figure (5.3), where the

non-linear function f,(.,.) is adaptively estimated by using the following equations

[37]:

Input layer Hidden layer Output layer

Figure (5.3): RBF Neural network based learning model to approximate
the non-linear function fy,(.,.) .

Joi ()= zwjl‘gﬁlg ) (5.14)
j=1
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o; :ﬂgjfo,i[fo,i_fo,i][l_fo,i]a (5.15)

W) =w,(t-1)+35,, (5.16)

&@wmﬂk)u (5.17)

where w; is the hidden layer weights, S is the output layer threshold, J; is the change
in weights, 7 is the learning rate, x; is the inputs, cj. is the centre of Gaussian basis
function of the j” hidden unit, / is the number of inputs, and g ;i 18 the output of the

hidden layer. The variance of the Gaussian units 0'; is dependent on the input

dimension because the RBF inputs are scaled differently [49, 12].

5.4.1 RBF Neural Network Parameters Setting

The parameters setting and tuning of the MIMO RBF neural network is achieved using
the same procedure applied for the SISO RBF neural network, as mentioned in section
(4.4.1) above. The MIMO RBF based nonlinear sub-model is designed with twelve
units in the hidden layer four of which had fixed centres and the remaining eight units
were selected to have adaptive centres which tuned offline using Equations (4.19 and
4.20) in chapter 4 at section (4.4.1). Two of the fixed centres represent the smallest and
the largest inputs of the training data set, and the other two fixed centres are situated in
the middle of the input space of the training data set. The output layer weights were

updated online using the Delta rule. This MIMO RBF design is used for the simulation
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experiments of the two inputs and two outputs MIMO water vessel system presented in
chapter six. The neural network based nonlinear sub-model of the MIMO GLM had
eight inputs and two outputs. The inputs were the last and current of the two control
input signals (i.e. u,(¢ —1), u,(¢), u,(t —1) and u,(¢)) and the last and current of the two
system output signals (i.e. y;(t—1), »,(¢), y,(t—1) and y,(?)). On the other hand, the
two outputs of the RBF neural network nonlinear sub-model were f;,(.,.) and f;,(.,.),
which represent the approximation of the nonlinear dynamics and disturbances of the

complex MIMO plant that is to be accommodated in the multivariable multiple-control

control law.

For the autonomous vehicle control application, given in chapter six in section (6.4), the
MIMO RBF neural network had thirteen units in the hidden layer four of which had
fixed centres and the remaining nine units were selected to have adaptive centres. The
neural network based nonlinear sub-model of this MIMO GLM had twelve inputs and
three outputs. The inputs were the last and current of the three control input signals (i.e.

u(t=1), u(t), uy(t-1), u,(t), u,(t—1) and u,(r)) and the last and current of the

three system output signals (i.e. y,(z—1), (), »,(t=1), »,(¢), y;(t=1) and y,(¢)).

On the other hand, the three outputs of the RBF neural network nonlinear sub-model

were fo()s fon(o) and £ (o).

129



5.5 Novel Intelligent Multivariable Multiple-Controller Framework for

MIMO Complex Systems

In this section the convention multivariable multiple-controller proposed in [17, 39, 46],
presented in equation (5.3), is extended to a novel intelligent multiple-controller
framework for achieving more efficient control of complex MIMO systems. The new
developed methodology combines the advantages of the adaptive conventional PID
controller with the Pole-Zero Placement controller through the autonomous tuning and
switching between the these multivariable controller and by incorporating the MIMO
RBF neural network based GLM. The autonomous switching and tuning actions are
performed by the fuzzy-logic supervisor employed at the top of the MIMO control
system, as can be seen in Figure (5.4) next, according to the data received from the
control system, the environment and the information supplied by the user. Therefore,
the switching and tuning decisions are made on the basis of the closed-loop system

performance measurements and the user desired performance.

The general transfer function for the proposed multivariable multiple-controller is as

follows:

V(v )[HH,, H)F()w(1) - Fy(1) + AH}, ()]

ue Aq(q,,T,)

(5.18)

where w(7) is an nx1 vector represents the system set-points, f,,(.,.) is a nonlinear

function representing the nonlinear dynamics and disturbances of the complex MIMO

system under control, A 1is the integral action required for the PID design, F is a
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polynomial derived from the linear parameters of the controlled plant and includes the

desired closed loop poles, F(1) is the value of Fat the steady state, H', is a user-

defined polynomial used for activating the nonlinear function f;,(.,.) .

The transferred poles q were derived through the following Diophantine equation

which is used to place the poles of the system in the required position:
(AA +z'FVB) =T, (5.19)

where T represents the desired closed loop poles and ' is the controller polynomial.

, w(t)
User inputs .
Set-point
C.(1) Fuzzy Logic Based Switching and Tuning Supervisor
: Tuning Logic =(1) !
Switching Logic [+ Behaviour Recogniser
(:,7 (t ) A A
%
Mode 1: || Switch ll(t)
PID controller Z . MIMO Plant
Mode 2: Pole-Zero [ mmmoees rommmmmmmmeoon
Placement controller| |controller Design: i | RLS Linear sub-
< Compute q' and : model N
H=FOHHD]"'. | ; | 0(?)
Do
£ \ i | RBF-NN Nonlinear [*
v E Sub-model
Wi o, w GLM
Set-point
B é-ﬁ- fo.. ()

Figure (5.4): Intelligent Multiple-Controller Framework for MIMO complex systems.
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In the multiple-controller above, v(v,) is the tuned PID gain and q(q,,,T,) represent

the transferred poles of the control system transfer function as a function of the

switching parameter q,, and the tuning parameter T, and can be expressed as:
q(q,,T,) =1+ qnqlzf1 + q,7qzz*1 +.t+ qnqnqunq . (5.20)

To simplify the representation of the equation (5.20), since the identity matrix I, q,,

q, and q, are diagonal matrices, the above equation can be written in the form:
q

i

a(q,.T,) = diag(1+ 9,9z +q,452 7 +..+q,4, 2 '), (5.21)

where n, is the order of the transferred poles, and the tuned poles are g =q' +1,

The term H(H,],}NIT) represents the control law transfer function zeros as a function of

the autonomous switching and tuning parameters, respectively, H, and ITIT as it can be

seen in the next equation:

= = =\ .|
H(Hn:Hz—) - H(anHz')[H(la quHz—)] H (5223)
where, H(H,,H )=1+H H,z"' +H H,z” +..+ H H, z and can be written as:
H(H, . H,)=diag(l+H bz +H Bz + + Hhiz"), (5.22b)

and

132



H(LH,,H,)=diag(1+H b+ H k) +_ . +H 1), (5.22¢)
which denotes the zeros ITI(H,],}NIT) during the steady state. n, represents the order of

polynomial H, and the tuned zeros are A" = A" + }z’_ and (i=1,2,...,n,).

The next subsections will present the two control modes of the intelligent multivariable

multiple-controller.

5.5.1 Multiple-Controller Mode 1: Conventional Adaptive PID Controller

In this mode, the multiple-controller operates as a conventional adaptive PID controller,

which can be expressed in the most commonly used velocity form [41] as:
Au(t) = Kyw(t) = [Kp + Ky + Kp ly()) = [-Kp = 2Kp Jy(r = 1) = Ky (£ - 2). (5.23)
If we assume that the degree of the polynomial F(z™") is equal to 2
F(z")=diag(fy' + £’z + £’z %), (5.24)

and both the pole-placement polynomial q(q,,T,) and zero-placement polynomial

H(H, ,H,) are switched off when the fuzzy logic supervisor sets the switching

parameter C,, as:

C,=lq, H,]=| " ’72: . (5.25)
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Consequently,
a(q,T,) = diag(1+ (0)gz" +(0)g327 +...+(0)g, z ), (5.26a)
H(H, H,) = diag(1+ (0)h'z™" + (0)hz7 + ...+ (0)h) z™). (5.26b)

Therefore,

-1 . . rii rii ii
q(z") =diag(l), (e.q" =q;, =..,.=q,, =0)

~ S ¢ , (5.27)

H(z) =diag(1), (ie. ' =h'=..,..= hn’; =0)

then a multivariable adaptive controller with PID structure is obtained, where
u(t) = YEOWO) -Vt + fiz7' + 6,27 )y() + AVH) £, (.,) ’ (5.28)
A

K, = —diag(v" f, +2v" f,), (5.29a)
Ky =diag(v" fi +v" I +v7 £31), (5.29b)
K, =diag(v" f3}), (5.29¢)

where i =1,..n. It can be seen from the above equations (5.28), (5.29a), (5.29b) and

(5.29c) that the PID control parameters Kp, K| and K depend on the polynomial

matrix F(z_l) and the gain matrix V [41, 43].
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5.5.2 Multiple-Controller Mode 2: Pole-Zero Placement Controller

This control mode works to achieve more effective control actions and combines the

advantages of the adaptive PID control with the advantages of the placement poles and

zeros [17, 39].

In this multivariable controller mode, the fuzzy logic based switching parameter C, is

set to:
q’?l =1 H771 =1
q’?z =1 H’?z =1
cl7 = [qn Hn] = : : . (5.30)
I, =1 H,, :1_
Consequently,

qa(q,.T,) = diag(1+ 4,4z + 9,452 +..+q,q, 2 *). (5.31)

For a control system with two control inputs and poles of order two, then q(q,,,T,) can

be expressed into:

1 0 qOO O qOO O
,T)= + ! z 4 2 z%. (5.32
q(q,.T,) {0 J lq, q,,z][ 0 ql“} lq, qnz]{ 0 g (5.32)

Appling the fuzzy logic based switching decision in equation (5.30) above, then

1 O qOO 0 qOO 0
,T)= +1 1" a1t 2, 5.33
q(q,.T,) {0 J [ ]{0 qll}z [ ]{o o z (5.33)

1 2
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which will activate all the MIMO system’s transferred poles.

Similarly, with n, =2 the control system zeros will be included in multivariable control

law as follows:

H(H, H)) =diag(1+H Az + H, Wz + +H 1l 27, (5.34)

which can be detailed to

0

~ ~ 1 0 0|
H(H,,H )= 0 1 +[H, H,] 0 Al z +[H, H,] 0 Al
)

1

}-2. (5.35)

Appling the fuzzy logic based switching decision in equation (5.50) above, then

- - 1 0 hOO 0 hOO 0
HMH H )= +1 1 o o1y 2 -2, 5.36
(H,,H,) {o J [ ]{0 hl“} [ ]{0 it z (5.36)

Therefore, an adaptive Pole-Zero Placement controller with PID structure is obtained,

where

_ v(v)[HMH,, H)F)w(1) - Fy(1) + AHf, ()]

ue Aq(q,.T,)

(5.37)

The PID parameters Kp, K; and Ky derived as in mode 1 above.

5.5.3 Multivariable Multiple-Controller Algorithm Summary: MIMO Case

The proposed intelligent multiple-controller algorithm can now be summarised into the

following steps:
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Step 1: Select the initial desired closed-loop system poles and zeros polynomials T and

H respectively.

Step 2: In order to avoid high control action, at the start of the control process, and
consequently prevent output signal overshooting, the MIMO system is initially set to

work with the multivariable Pole-Zero Placement controller by setting C, as follows:

q771 :1 U :1

q’?z :1 M2 :1
C,=lq, H,]= :

g, =1 H””h =1

Step 3: Select F and the initial value for the gain v for the desired PID control

structure.

Step 4: read the current values of y(z) and w(z).

Step 5: Compute the control input wu(f) using equation (5.37) when the current

controller is Pole-Zero Placement, or using equation (5.28) when the controller is the

conventional PID controller.

Step 6: Estimate the process linear parameters A and B using the least squares

algorithm of the linear sub-model in the MIMO GLM.

Step 7: Compute fo (. )=y@®) - ?(t), where y(¢) is the output of the linear sub-model.
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Step 8: Apply the MIMO RBF based nonlinear sub-model of the GLM to obtain fo (-.)

by using equations (5.14)-(5.17).

Step 9: The behaviour recogniser will assess the current performance of the control

system using the system output vector y(z), the set-point vector w(¢), the control input

vector u(¢) and the user requirements.

Step 10: The behaviour recogniser will report the system performance to the fuzzy logic

based switching and tuning subsystems as concluded in E(¢).

Step 11: The fuzzy logic switching subsystem will employ Z (¢) to make the switching

decision for the next multivariable controller to be activated, that is achieved by

reconfiguring the switching matrix C,- For a multivariable Pole-Zero Placement

T
11 1
controller C, = L : J (n is number of control inputs), for a multivariable
o oxn
00 ..o0]
PID controller C, :{0 0 0} . According to the performance of the MIMO
2xn

control system, the fuzzy logic switching decision could set different controllers for the

various control inputs at the same instant of time ¢. For instance, the fuzzy switching

T
01 .. 0
} will set the second control input to the Pole-Zero

command C, =
g {0 1 ... 0

2xn

Placement controller, but the other control inputs to be PID controllers.
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Step 12: Based on E,, the fuzzy logic tuning subsystem will decide the tuning values

for the parameters of the current multivariable controller that is by setting the fuzzy

logic tuning output Cz.

Steps 4 to 12 are to be repeated for every sampling instant.

5.6 Closed Loop Stability Analysis of the Intelligent Multiple-

Controller Framework

Stability of the proposed control algorithm is analysed based on the following

assumptions:

Xny,

Assumption A: Given a positive constant € and a compact set S < R there exist

coefficients W such that f;(., W) approximate the continuous functions f;(.,.) with

accuracy €, thatis:

IW.s.t max(f,(x, W)—f(x) <g<o; xe€S. (5.38)

Assumption B: f,(.,.) is a bounded quantity [52, 16].

Assumption C: the reference signal is bounded.

In order to derive the stability of the overall closed loop system, the stability analysis of

each of the two controller switching modes (Pole-Zero Placement controller and PID

139



controller) is discussed separately in sections (5.6.1) and (5.6.2) respectively, whereas

the stability of the fuzzy switching and tuning system is discussed in section (5.6.3).

5.6.1 Stability Analysis of the Multivariable Multiple-controller Mode 1 (Pole-Zero

Placement controller)

The closed-loop system transfer function at time ¢ and (¢ + k) can be described by the

following Lemma, which is derived from the transfer function of the closed-loop system

in Figure (5.5), next, when the Pole-Zero placement controller is selected.
Let H), = HTH()]'F(1).
Lemma 1:

BB, Ol A Bli,anU,+Q1i,rPd1,.,A1i,z yit+1) u (1)

BlltP +Qil,l])dil’tAil,t BlltP +Q11t yi(t+1) ui(t)

_Bl,k'Rl,t Bi,k'Ri,lil Wl:(t) +|:A11 An:l J’1(t:+l) +

Auhie o Al ) L e

_Bu Bli:lulz(t) N By B+ O E, o Bk Ei +0 P, él(t;+1) N
| B,, B,, ul..(t) B b, B, =B, o Byl E, P, 3 (t.+ )
BBy Hy +OPB, - ByP, Hy +0,P, J 0’1:("') .

| By Hy, <R, ApR Hy B

_Bl,k'El,thl!, Bik'E'th,.‘, Joon (-a-)TJ}Oal(-a-)

BBy, AGEGR (_,.); P '

(5.39)
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Figure (5.5): Non-linear generalised minimum variance
Pole-Zero placement controller.

In Equation (5.39), i=12,..m: m 1is dimension of the MIMO system linear

polynomials A(z™") and B(z™") with matrices size (mxm),

4; = Bi,k-(PdU Ei,tAi,t - Pdu Ei,t'Ai,k) + (Bi,t[—ZiJ - Bz',k'[—:q‘,) ’ (5.40a)
Ay = Ay (B, By 4y =By By A )+ (4 By =4 F ), (5.40c)

Bli = Bi,k'(Pd,-J Ei,tBi,k - Pd,-,, Ei,t'Bi,t) + (Pd,-,, Qi.tBi,t - Bi,k'Pd,-J Qi,t) > (5'4Ob)
By = 4Py E; By =By BB )+(By 4,0~ 4Py O:).  (5.40d)

4, A, B, and B, denote the estimate values of A(z™') and B(z™') at 7 and ¢ +k

moments respectively, i.e.

A, =A@z, 4, =A@ +k,z7), (5.41)

1
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4,.B  =A(t,z ) B(t+k,z")# B 1 4;,, (5.42)
4,,.B,, =AB(t,z"") =B, 4,,. (5.43)

Proof 1: To prove this lemma, reconsider the plant in Figure (5.5):
A, y@+D) =B, u@)+1f,(.,.)+CE(+1). (5.44)

To simplify the derivation let C=1.

Multiplying equation (5.44) by F, E, we obtain:
Pdl-,t E A ,yt+)= Pdw E,,.B; u(t)+ Pdw E; £o(.,)+ Pdl-,t E &+1). (5.45)

Using the equations (5.42) and (5.43), and the applying the following identity

P.(z)=AE HEE P,z + 2z 'F(z") yields:

P, y(t+k)=F, y()~ P, E, B u()-P, E f,(,)=
Pd,.J (E; ;B — E; B Ju(t) + Pd,-J (Ei A, —Ei A )y + k) +. (5.46)

P E, [fy, ()~ (.)]+ Py E, &(t+1)

Then using P,(EB+Q)u(?) =[P,Rw(?)-Fy(t)+ P,(Hy - E)Ify (.,.) [16, 37] and

(5.46) gives:

1

Pd,.J (E;,-Bix — E; /B u(t) + Pd,.,[ (E A, —E Ayt +k)+. (5.47)

B, y(t+k)=Py R W@+ Py O u(t)= Py Hy, fo,(.) =

Pdi,t Ei,f[fo,t (’) - i:O,t('a-)] + Pdi,t Ei,t'a(t + 1)
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The dynamic relationship between the plant input and output given in (5.39) can
subsequently be obtained by multiplying equation (5.47) by B, , and 4, respectively,

and combining the results with equations (5.41), (5.42) and (5.43).

The stability and convergence of the algorithm are then as stated below:

Theorem 1: If assumptions A, B and C are satisfied and hold, the recursive parameter

estimation algorithm has the following properties [16, 38]:

lim[y, ,(#)]<oo; lim[u, ,(f)] <o, (5.48)
t—o t—>wo
limlg, (r+ 1) <02 <. (5.49)
t—oo! 7’ it

The boundedness of y(¢) and u(¢) in equation (5.48) can be proven by considering in

lemma 1 that the terms in the parentheses of (5.39) tend to zero at ¢ — oo subject to

assumptions A and B, and the boundedness of w(¢). Therefore, the algorithm stability

is proven. From equation (5.47) we have that:

. 2 .
lim|g, , (t + 1)‘ = llm‘Pd, (E; By —E; B u(t)+
t—ol (ool T C

by, (E A4, —E; .4 )yt +k)+ 5 (5.50)
. 2
Py B, B4 D+ Py E, 6,000 ~Fo(0)]

limlg,, (¢ + D[ < (P, E, ) =07 <oo. (5.51)
t—o0l . ’

Hence, the convergence of equation (5.49) is proven.
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5.6.2 Stability Analysis of the Multivariable Multiple-controller Mode 2 (PID

controller)

To prove the stability of the adaptive Nonlinear PID controller, consider the transfer

function of the closed-loop system in Figure (5.6).

&(1)

Plant

27, ()

> =

W(t) +

+
Y +
e
=
~
=~
N
v
|
L

y(©) .

vF

Figure (5.6): Non-linear generalised minimum variance PID controller.

y(t) =[1 +%2k %VF]I[(i zk %)VHO]w(t) +[1 +izk %VF]I[E]Q(I) +

. (5.52
H.B (5.52)

_+ B _ _
g VF] I[TZ I, ()

1 T 1 B
[1+Zz —VF] I[Xz k]fo’t(.,.)+[1+zz et

A A

After manipulating the transfer function in equation (5.52) the resultant equation is,

thus,

[z*AA + BvFly(t) = BvH,w(?) + X CAE(t) + [1+ HyBIAS, , (...) . (5.53)

If we let x,(#)=C&(), x,(¢)=[1+HyBIf,,(.,.) and let z7'=d, then the equation

(5.53) above becomes
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[d*AA +BvF]y(r) = BvH,W(1) + d *Ax,(¢) + Ax, (¢). (5.54)
Let the transferred poles to be denoted as G’ such that
G' =d "AA+BvF. (5.55)

The transfer function from the reference input w(¢) to the output y(¢) becomes
G,, =[G'T'BvH,, (5.56)
the transfer function from the disturbance x,(¢) to the output y(¢) becomes

G, =[GT'd*A, (5.57a)

X1y

and the transfer function from the disturbance x,(¢) to the output y(z) becomes
G, =[GT'A. (5.57b)

The poles of the closed loop system are determined by G’ and the zeros are those of the
open loop zeros plus additional zeros provided by the term H,,, assuming that no pole
zero cancellation occurs providing that the Pole-Zero Placement controller is set offline.
The condition for the closed loop stability is then dependent on G’ such that, for
stability, det(G") =0 has all its roots strictly outside the unit circle. The requirement is
equivalent to G’ having non-zero eigen values. Therefore, to prove the stability of the
closed loop system, it is necessary to prove that G’ is a complex matrix which has an

inverse for |d | <1 [53, 54, 43]. From the following identity [17, 37]
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P, = AEP, + z 'F,

we can derive F as

F=d*(P,— AEP)).

Substituting equation (5.59) into the expression for G’, we obtain

G =d *A[A+ A"'Bv(P, - AP,E)].

Knowing that A= (1-d)I and D =(d)I, then G’ can be written as

G' =d *A[I+(-d)dP, - D'+ A"'Bv(P, - AP,E)].

Let

G =(1-d)dP,-D' + A"'Bv(P, - AP,E),

then equation (5.55) becomes

G =d"AI+G)).

For the stability, using the result of [55] and [56],

(5.58)

(5.59)

(5.60)

(5.61)

(5.62)

(5.63)

;” must be less than 1 for all

|d | <1. A further requirement is that A is stable. Recall that P, is diagonal matrix and

letting p, be one of the elements of the matrix, we can choose

~05<@d(1-d)p, 1)< 0.5
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Therefore, |(1-d)dR —d || is less than 0.5 if we select

(0.5/d)+1_ _(05/d)+1

a-a) "~ aza (565)

Finally it is necessary to prove that the remaining term in equation (5.62) has a modulus
less that 0.5 with the assumption that the term is bounded. Therefore, we can consider

that for stability, v, P, and P, can be chosen small enough such that the modulus of

the remaining term is less than 0.5. Hence, referring to the triangular inequality

G

<|a-d)ap, - D’

+[A7'Bv(P, - AR,E)|.
This makes || Gi” less than 1 and the stability of the closed loop system is proven.

5.6.3 Stability of the Fuzzy switching and tuning system

Based on the work of [57, 58], this section will outline the stability of the Fuzzy

switching and tuning supervisory system. Let the system state vector at time instant &
be x(k)=[x (k)...x, (k)] where x,(k)...x, (k) are the state variables of the system at time
instant &, and the controllers state vector at time k be u(k) =[u,(k)..u, (k)] where
u, (k)...u,, (k) are controller state variables and m is the number of controllers. Then the

switching and tuning fuzzy system is defined by the implications below

R':IF(x(k)is S{, AND...AND x, (k) is S,) THEN#(k +1) is u,(k), (5.66)
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for i=1.N, g=1..M and u,(k) is the new controller state updated by switching

and/or tuning.

Here, S| is the fuzzy set corresponding to the state variable x, and implication R'. The

truth value of the implication R' at time instant & denoted by w;(k) 1s defined as

w6 = Aty (5 (), 1, (5, ())), (5.67)
where u,(x) is the membership function value of the fuzzy set S at the position x and
A 1s an operator satisfying
min(/,,...,.,) =2 A(l},...,0,) =2 0.

Usually A is taken to be the minimum operator which gives the minimum of its

operands. Then, at instant k the controllers state vector is updated according to w; (k)

in order to enable the required control state.

A fuzzy system is completely represented by the set of characteristic matrices
A=[4,.,A,] and the fuzzy sets Sj.,l =1..N;j=1..n. Corresponding to this fuzzy

system, the corresponding switching and tuning system is described below.
The state update at time instant & is given as

X(k+1)= Ax(k), (5.68)

where A€ A (i.e., it is one of the matrices 4,,...,4,).

148



The following is a definition of global asymptotic stability of the switching and tuning

system.

Theorem 2: The switching system described in (5.68) is globally asymptotically stable if

X(k+1)= A(k)%(0) —> 0 as k —> 0 Vx(0) e R”, (5.69)

where A(k) e A, . Equivalently A(k) >0 as k —>o0; A(k)e 4,.  (5.70)

The proof of the above theorem 2 is presented in [58].

The multiple-controller framework is not founded to exhibit any transfer problems
during the switching mode in any of the simulation results [17, 37]. In continuous
systems, the problem of the transition between the controller modes can be solved by
using a hold circuit. In our case, the system is discrete and the hold circuit is not needed
and since the controllers exhibit bumpless switching the stability of the controller is

achieved.

5.7 Summary

In the recent years, several control strategies for different process phases have been
developed. Most of these control schemes have been manually activated by operators.
Often the operators have been overwhelmed by the task of choosing the adequate time
instant for activating the several control algorithms and tuning them [129]. Therefore, it
was of utmost importance to develop a supervisory control scheme, which is capable of

activating and tuning autonomously the different process low-level controllers. Due to
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the importance of supervisory control and the fact that multivariable controllers are
great interest in the industrial and engineering fields, this chapter presented the
autonomous intelligent multivariable multiple-controller framework for the control of
complex MIMO plants. The proposed multivariable approach extends the SISO results

shown in the previous chapter.

The proposed methodology uses a Mamdani fuzzy logic system for the supervision of
the low-level multivariable multiple-controller which incorporates a GLM for MIMO
system representation. In the GLM, the unknown complex process to be controlled is
represented by an equivalent stochastic model consisting of a linear time-varying sub-
model plus a computationally-efficient MIMO RBF neural-network based learning sub-
model. The employed multivariable adaptive controllers are the conventional PID
adaptive controller and the PID structure based (simultaneous) pole and zero placement
controller. Both controllers (multiple-controller modes 1 and 2) benefit from the
simplicity of having a PID structure, operate using the same adaptive procedure and can
be selected on the basis of the required performance measure. The proposed intelligent
multiple-controller works by adaptively tracking a desired reference signal, achieving
the desired output signal performance and penalising excessive control actions, in

response to the current performance of the control systems.

To achieve fast recognition of the MIMO control process phases, the fuzzy logic
supervisor employs a behaviour recogniser subsystem to assess the system’s
performance through the system output signals and control input signals. The tasks of

choosing the appropriate control algorithms (either conventional PID or Pole-Zero
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Placement) and online tuning of the parameters of the active control algorithm are
performed by the other two subsystems of the fuzzy supervisor, namely the switching
logic and tuning logic. Both subsystems operate through fuzzy logic rules and fuzzy sets
which are designed according the required performance and control system stability
restrictions. The switching and tuning decisions are based on the specific performance
criteria and continual monitoring of the effectiveness of each multivariable controller in
achieving these criteria in response to set-point changes, nonlinear dynamics and the

external disturbances in the complex MIMO plant.

The chapter provided the derivation of the stability analysis of the proposed intelligent
multivariable multiple-controller framework. The stability of every control mode is
presented in addition to the stability of the fuzzy logic based switching and tuning

mechanism.

The next chapter presents new applications of the proposed intelligent multiple-

controller framework for SISO and MIMO complex systems.
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Chapter 6
Applications of the New Intelligent Multiple-

Controller

6.1 Introduction

As described in the previous two chapters, this thesis proposes a new intelligent
multiple-controller framework for SISO and MIMO complex systems’ modelling and
control. The techniques that this thesis focus on are the improved approximation of the
complex system nonlinear dynamics and disturbances using the RBF based GML, and
the autonomous tuning and switching between the conventional PID controller and the
Pole-Zero Placement controller using the fuzzy-logic based high level supervisor.
Therefore, the simulation experiments conducted in this chapter will seek to highlight
the importance of the improved approximation of nonlinear functions f,(.,.) and
f (.,.), which form part of the SISO and MIMO control laws. Furthermore, the
capabilities of the fuzzy-logic supervisor in improving the performance of the control
system in tracking the target signals, dealing with nonlinearities and disturbances,
maintaining low control actions and minimised system output variance. Also, we

introduce a new challenging control problem which is the application of autonomous

vehicle control.
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The chapter will present three simulation applications. First, is a SISO water vessel
system that will be applied to the SISO design of the intelligent multiple-controller.
Second, is a MIMO water tank system which will be applied to the multivariable design
of the intelligent multiple-controller. Last is the application of autonomous vehicle

control problem.

6.2 SISO Water Vessel Problem

In chemical process industries, one of the most commonly occurring control problems is
that of controlling the fluid levels in storage tanks or reaction vessels. In this example,
the proposed intelligent multiple-controller for SISO cases is applied to a real world

SISO system model shown in Figure (6.1) and described in [17, 46].

Pump

S al

Figure (6.1): Water tank system.
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The tank system is 10cm long, 10cm deep and 30cm high. The main objective of the
control problem is to adjust the inlet flow f;, so as to maintain the level in the tank #_
as close as possible to a desired set-point. The fluid flow rate into the tank (f,,) is

supplied by a pump. To measure this flow rate, a flow meter is inserted between the

pump and the tank. The flow of water from the tank to reservoir (f,,) is controlled by

an adjustable tap. The maximum diameter of this tap is 0.70 cm. The depth of fluid is

measured using a parallel track depth sensor which is located in the tank.

6.2.1 Model of the SISO Water Vessel System
The non-linear model can be presented as follows [17, 37, 46]:

dh

d;I :le_al’Unlzg(hs1 —h,), (6.1)

A

where A is the cross section area of the tank, g, is the cross section area of orifice, o,

1s the discharge coefficient (0.6 for a sharp edged orifice), A, is the minimum water

level and the acceleration gravity is denoted by g =9.81N/m”. The diameter of orifice

is adjusted to 0.95cm and drain valve is fully open.

6.2.2 Simulation Setup

In order to demonstrate the closed loop performance of the intelligent multiple-
controller for the SISO system, initially, it is arranged that each control mode (namely

the conventional PID adaptive controller and the PID based Pole-Zero Placement
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controller) to work independently in controlling the whole control operation. Therefore,
the fuzzy logic switching and tuning supervisor will not be involved in the control
process. These simulation examples will illustrate the behaviour of each control mode in
tracking a desired reference signal and also minimising the effect of the nonlinearities
and disturbances in the complex SISO plant. Moreover, the experiments will present the
effectiveness of using the RBF based GLM in approximating the nonlinear function

f,(.,.) compared to the conventional MLP based GLM. Afterwards, in new simulation

experiments, the intelligent supervisor will be employed to autonomously switch
between the two controlling modes of the multiple-controller, and tune the active

controller parameters.

The simulation examples will be performed over 600 sampling times. A first order
linear model ([1+ 4,z ]y(r) =z 'byu(t)) is used to identify the parameters of the
process using RLS based linear sub-model of the GLM. The initial values for the plant
parameters 4, and I;O were defined as 0.33 and 0.67 respectively [17]. The neural

network based nonlinear sub-model is used to approximate the nonlinear function

f,(,.). The user defined gain and the user-defined polynomials were respectively

selected as:

v=0.05, Pd(z_1)=1+pdlz_1 and Pn(z_l):lernlz_l, where  p,; =-04,

Pn, =—0.3. The desired closed loop poles and zeros polynomials were selected as

T(z'l) =1 +t12_1 +t22_2 and Fl(z'l) =+ lNzlz_l + }722_2).
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where, t; =-0.5, ¢, =0, }71 =0.95 and }72 =0. Since the polynomial A4 is of order

one, therefore a PI controller is obtained.

6.2.3 Fuzzy Supervisor Setup

The application of the SISO water vessel is a system with one control input and one
system output. Therefore, the fuzzy sets used in the switching and tuning subsystems

were built according to information derived from a single control input signal u(¢), a
single system output signal y(¢) and a single reference signal w(z). For instance, the
following sample fuzzy rule, which forms part of the switching logic fuzzy rules given
in chapter 4 at section (4.3.2.2), has two input parameters (&, (¢) and V,(¢)) determined
from the system output signal y(¢) to define its overshoot and variance states in order

to select a single controller C, (¢) that will provide the next control action u(#).

IF £, (#) IS Ntive-High AND V¥, (¢) IS High THEN C, (¢) is Pole-Zero-Placement

Similarly, the input parameters of the tuning logic fuzzy rules are defined from a single
control action and a single system output signal, and the fuzzy output parameter defines
the tuning value of one active controller. The following fuzzy rule is a sample rule from

among the list of the tuning logic fuzzy rules given in chapter 4 at section (4.3.3.2):

IF C,(#) ISPID AND ¢ ,(#) ISNOT Norm THEN v, (¢) IS Decrease

As shown in chapter 4 at sections (4.3.2.1) and (4.3.3.1), from the point of view of
simplicity and computational complexity, the fuzzy switching and tuning subsystems’

variables were represented by triangular (TriMF) and trapezoidal (TrapMF)
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membership functions with not more than two membership functions overlapping. For
this application, 5% to 10% overlap between neighbouring MFs. Other fuzzy
membership functions such as Gaussian and Sigmoid curves with different shapes and

sizes were tested and the results were not significantly different.

In the design of fuzzy switching subsystem MFs for online controllers switching for the
SISO water vessel problem, four factors are considered: degree of output signal

overshoot £ (7), variance in the output signal V, steady state error e, and changes in
the reference signal state Il,,. During the optimization process of the MFs of these

factors, the TriMF and TrapMF scalar parameters a, b, ¢ and d of Equations (4.11
and 4.12) were experimentally adjusted in order to contain quantitative information
about the SISO water vessel system. The final fuzzy sets represent knowledge base
about the physical system behaviour by preserving information including: output signal
undershooting degree of -53.2%, overshooting degree of 47.4%, output signal variance
limit of 18.12, and steady state error between 2% and -2% of the output signal. Details
of the switching logic fuzzy sets are given in Table (6.1) and shown in Figures (4.2a-d)

in chapter 4.

The switching logic output parameter (i.e. the selected controller) is represented by two
TriMFs, one is for the PID controller and the other is for the Pole-Zero Placement
controller, with 10% overlap (see Figure (4.3) in chapter 4). Other MFs can be used
such as the example given in Figure (6.7a) where two TrapMFs were used with almost
0% overlap. The strategy of winner-take-all is used in the selection of the candidate

controller. That is, by applying the Middle-of-Max defuzzification approach, the MF
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which has the highest amplitude will have its corresponding controller selected. In the

case when the two controllers’ MFs have equal amplitudes, then the current active

controller will be selected.

Fuzzy Parameter -
Type Name Range MF Type MF Name a MF Sc; le Pararcneters d
Output TrapMF Ntive-High -100 -100 | -53.2 | -0.01
Input signal [-100, 100] TriMF Norm -3.3 0 33
Overshoot TrapMF High 0.01 474 100 100
Output TrapMF Norm 0 0 2 6
fnput |~ Signal [0.100] 1 oM High 41 | 1812 | 100 | 100
Variance
Reference TrapMF Decreasing -100 -100 -2 0
Input Signal [-100, 100] TriMF Norm -0.01 0 0.01
State TrapMF Increasing 0 2 100 100
Steady- TrapMF Ngtive -10 -10 -2 -0.01
Input State- [-10, 10] TriMF Norm -0.02 0 0.02
Error TrapMF Pstive 0.01 2 10 10
TriMF PID 0 10 20
Output | Controller | {0, 40] TriMF__| PolZroPlemnt | 20 | 30 | 40

Table (6.1): Switching logic parameters for the SISO water vessel system

The input and output parameters of the fuzzy tuning logic are represented by the TriMF

and TrapMF membership functions. The scalar parameters a, b, ¢ and d of these

MFs (Equations 4.11 and 4.12) were experimentally adjusted in order to maintain the

appropriate tuning values for the active controller parameters. For instance, the rise and

fall times of the output signal of the SISO water vessel system are fuzzified through

three MFs (Fast , Average and Slow) distributed in a range between 0Sec to 100Sec

(see Table (6.2)). Applying the corresponding fuzzy rule, such as the example given

next, new tuning values for the controller poles will be derived through the fuzzy set of

the poles output parameters.

IF C,(¢) IS PolZroPlemt AND p () IS Slow THEN T, (¢) IS Faster
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The range of the poles and zeros fuzzy sets represent the dimensions of the stability unit

disc. Whereas the range of the PID gain v output fuzzy parameter ranges between -10

and 10, which are found to be the minimum and maximum stability gains for this

application [17]. Details of the input and output fuzzy parameters are provided in Table

(6.2) next.

Fuzzy Parameter -

Type Name Range MF Type MF Name a MF ch le Parazneters d
TrapMF PID 0 0 2 2.001
Input | Controller | [0, 4] TrapMF | PolZroPlemnt | 1.999 | 2 4 4
Output TrapMF Ntive-High -100 -100 | -53.2 | -0.01
Input signal [-100, 100] TriMF Norm -3.3 0 33
Overshoot TrapMF High 0.01 474 100 100
Steady- TrapMF Ngtive -10 -10 -2 -0.01
Input State- [-10, 10] TriMF Norm -0.02 0 0.02
Error TrapMF Pstive 0.01 2 10 10
Rising TriMF Fast 0 0 12.3
Input Time [0, 100] TrapMF Average 8.52 10.3 | 23.21 | 25.1
TrapMF Slow 19.04 | 52.6 100 100
Settling TrapMF FE.IS'[ 0 0 20 31.2
Input Time [0, 100] TriMF Optimal 20 40 60
TrapMF Slow 534 | 73.54 100 100
Control TrapMF NgtiveHigh -10 -10 -9.6 0
Input Action [-10, 10] TriMF Normt -0.04 0 0.04
TrapMF PstiveHigh 0 8.3 10 10
Reference TrapMF Decreasing -100 -100 -2 0
Input Signal [-100, 100] TriMF Norm -0.01 0 0.01
State TrapMF Increasing 0 2 100 100
TriMF Decrease -10 -5 0
Output Gain V [-10, 10] TriMF NoChange -0.01 0 0.01
TriMF Increase 0 5 10
TrapMF Faster -0.9 -0.9 -0.82 | -0.03
Output Poles [-0.9, 0.9] TriMF Average -0.17 0 0.17
TrapMF Slower 0.02 0.64 0.9 0.9
TrapMF Decrease -1 -1 -0.18 | 0.072
Output Zeros -1, 1] TrapMF Increase -0.07 | 0.18 1 1

Table (6.2): Tuning logic parameters for the SISO water vessel system
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6.2.4 RBF and MLP Neural Networks Based GLM Approximation

The simulations presented in this section are used to demonstrate the effectiveness and
efficiency of using the RBF NN instead of the MLP NN in representing the nonlinear

function f,(.,.). The examples that will be performed in this regard will focus on the

capabilities of the RBF NNs in approximating the soft and hard nonlinearities as well as
sharp disturbances, when compared to the MLP NNs. Other features of the RBF NNs
outperforming the MLP NNs were discussed in sections (3.5), (4.4), (5.4) and well
could include: the ability to uniformly approximate smooth functions; simpler to
implement; need less computational memory; converge faster; require less training

time; and fewer computational complexities to train the network online.

The results below were obtained after trying different designs for the MLP NN structure
such as two hidden layers network and three hidden layers network with various neuron
numbers. The best MLP NN design had one input layer with five units, two hidden
layers with ten and seven units respectively, and one unit output layer. The five inputs

to the MLP NN were the current and last control inputs [u(f) u(f —1)], current and last
system outputs [y(#) »(¢—1)], and a bias with the value of 1. The Sigmoid transfer
function and the Backpropagation learning rule were employed. For the RBF NN
structure design, there were four inputs included: the current and last control inputs
[u(t) u(t—-1)], current and last system outputs [y(¢) »(¢—1)], and the output layer
was a single pure linear unit. The hidden layer had five Gaussian transfer function based

neurons (units) with adjustable centres and adjustable units spread width. The weights
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of the RBF hidden layer and the weights of the MLP layers were randomly selected

offline prior to the control operation and then online fine tuned using the delta rule.

Figure (6.2a) next shows the performance of the MLP NN in approximating the
nonlinear dynamics of the plant under control. It can be seen that the approximation of
the low magnitude target signal was very satisfactory, but when high magnitude signal
involved (i.e. hard nonlinear dynamics) after the sampling time 200 the MLP network
approximation was inconsistent. Similarly, in figure (6.2b) when low value random
disturbances were added to the same nonlinear dynamics, the MLP NN failed to
continue the approximation. Figures (6.2c and d) respectively illustrate reasonable
performance of the MLP NN in approximation of soft nonlinearities and unstable
performance for the estimation of soft nonlinearities mixed with sharp disturbances. On
the other hand, Figures (6.3a, b, ¢ and d) show the successful and stable approximation
of the RBF NN to emulate soft and hard nonlinearities, correspondingly, when law and
sharp disturbances were introduced to the nonlinear dynamics. These sample results
showed the power of the RBF NN in the online consistent approximation of the
nonlinear and unexpected behaviours of the complex SISO plant when compared to the

MLP NN.
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Figure (6.2): MLP NN approximation: (a) hard nonlinearity, (b) hard nonlinearity with disturbances,
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6.2.5 Effect of the Nonlinear Sub-model in the GLM

To simplify the presentation, the SISO plant was under the control of the conventional
PI controller during all the control operation. This experiment will present the
importance of deploying the nonlinear learning sub-model of the GLM within the

multiple-controller control law in order to approximate the nonlinear function f,(.,.),

which represents the nonlinear dynamics and disturbances introduced to the control

system.

In the obtained results below, Figures (6.4a, b and c) respectively illustrate the system

output signal hs1 , the control input signal f; and the nonlinearities and disturbances

affecting the control system when the nonlinear sub-model of the GLM is deactivated

by setting polynomial H) (in equation (4.22)) to zero. Figures (6.5a, b and c)
respectively show the system output signal hsI , the control input signal f; and the

nonlinearities and disturbances affecting the control system when the MLP NN is used

to represent the nonlinear sub-model of the GLM to approximate the function f,(.,.).

Figures (6.6a, b and c) respectively demonstrate the system output signal hsl’ the

control input signal f; and the nonlinearities and disturbances affecting the control

system when the RBF NN is used to represent the nonlinear sub-model of the GLM to
approximate the function f,(.,.). The performance of the three cases (i.e. deactivating
the nonlinear sub-model, employing the MLP NN and employing the RBF NN) is
summarised in Table (6.3) next. The numerical obtained results show the great

importance of the GLM in modelling the complex plant.
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By comparing the computed data in Table (6.3), it can be seen that when the nonlinear

function f,(.,.) was not considered in the control law the variance of the system output

signal was clearly high if compared to the two other cases. It is obvious that the
performance of the RBF based nonlinear sub-model resulted in minimum variance
system output signal, and faster settling time. Similarly, the effect of the nonlinear
dynamics and random disturbances was reduced more efficiently than the MLP based
nonlinear sub-model. This can be seen by comparing the variance and the magnitude
range of the nonlinearity and disturbance signals as listed in Table (6.3) and shown in

Figures (6.4c), (6.5¢) and (6.6¢). It can be concluded that the RBF case reduced 99.2%

of the variance and 85.7% of the magnitude range of the nonlinear function f,(.,.)

resulting in smoother system output signal as shown seen in Figure (6.6a).

GLM Nonlinear Sub-model
Not active MLP RBF

Variance of the

. 0.1400 0.0782 0.0007
output signal
Settling time of 7 Sec 7.5 Sec 6.2 Sec
output signal ) '
Rising time of 6.6 Sec 7 Sec 7 Sec
output signal
Variance of the
nonlinearity and 7.5549 3.4853 0.0554
disturbances
% Reduction in
variance of 0.0% 53.86% 99.2%
nonlinearity and
disturbances
% Reduction in
effect of 0.0% 59.7% 85.7%
nonlinearity and
disturbances

Table (6.3): SISO water vessel system performance factors for
comparing the effect of the GLM nonlinear sub-model.

Considering the graphical results shown in Figures (6.4), (6.5) and (6.6), the system

output signal in Figure (6.4a) has high oscillating behaviour during the steady state
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because the nonlinear dynamics and the disturbances of the complex plant were not
included in the control law since the nonlinear sub-model of the GLM was deactivated.
Consequently, the process nonlinear dynamics and disturbances caused high oscillations
in the system output signal and high control actions. In contrast with the system output
signal in Figures (6.5a) and (6.6a), where respectively the MLP and RBF neural
networks implemented the nonlinear sub-model of the GLM, the steady state had less
oscillation. Especially in Figure (6.6a) when the RBF neural network was used to

approximate the function f,(.,.), the steady state was very smooth.

It can be seen from the results illustrated in Figures (6.5) and (6.6) below, that,
compared to the case of the conventional nonlinear sub-model based on MLP neural
networks, the use of the computationally efficient RBF based nonlinear sub-model can
result in improved performance in terms of achieving minimum variance of the output
signal and the control input signal, both for tracking changes in the reference signal and

for dealing with the nonlinearities and added disturbances.
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Figure(6.4): SISO water vessel system Behaviour when the
nonlinear sub-model of the GLM is deactivated, (a) system output signal,
(b) control input signal and (c¢) nonlinearities and disturbances affecting the system.
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6.2.6 Control Performance of the Conventional Adaptive PI Only Controller

In this experiment, the multiple-controller is set to control the SISO water vessel system
using only the conventional adaptive PI controller (multiple-controller mode 1). In the
following experiments, the nonlinear sub-model of the GLM will be represented by the
RBF NN. The acquired results, shown in Figures (6.7) to (6.9) below, give understating
of the behaviour of this controller, which was part of the base knowledge used to design

the proposed fuzzy logic supervisor.

In the simulation results, Figures (6.7a, b), (6.8a, b) and (6.9a, b) respectively illustrate
the system output signal y(z), the control input signal u(¢#) when the gain v of the PI
controller was set to 0.01, 0.1 and 1.1. Table (6.4) presents performance measures for
the three cases of the PI controller. These measures include: the variance of the systems
output signal y(¢), percentage of overshooting in the output signal y(z), the settling
time of y(¢), rise time of y(¢) and the maximum control action in the control input
signal u(¢). The graphical and numerical measures demonstrated next give an idea
about the important effect of the gain v on the performance of the PI controller. It can
be seen that decreasing the gain v will minimise the variance of the output signal y(¢)
and preserve low control action, but the settling time and rise time will be slowed down
and the steady state error increased. On other hand, increasing the gain v will cause fast
settling and rise time, and relatively high overshooting in the system output signal,

moreover the variance of the output signal and the control action will increase.
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Therefore, it can be concluded that the conventional PI controller preserves smooth
steady state signal if the gain v tuned to low value. However, the conventional PI
controller is not the best choice to govern the settling and rise time of the output signal
that is due to the effect of increasing the gain v on maximising the variance of the
output signal and increasing the control actions. Another point is that, the PI controller
causes high overshooting and oscillatory performance in the system output signal when

the gain v is not properly tuned.

Conventional PI Controller

v =0.01 v=0.1 v=1.1
Variance of
the output 0.0016 0.1134 0.8622
signal
% of
Overshooting 0.0% 45.2% 55.1%
in the output
signal
Settling time
of output 9.2 Sec 4.5 Sec 1.3 Sec
signal
Rising time of 5.7 Sec 8 Sec 3 Sec
output signal
Maximum
con)t‘ll‘oll;nput 75 cm® /Sec | 104 cm® | Sec | 20.4 ¢cm® / Sec

Table (6.4): Performance factors of the convention PI controller
at different setting for the PID gain v.
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6.2.7 Control Performance of the Pole-Zero Placement Only Controller

The performance of the Pole-Zero Placement controller depends on the position of its
poles and zeros [17, 37, 46]. Next, an experiment will be devoted to demonstrating the
performance of the Pole-Zero Placement controller through changing the settings of the
controller’s poles. A following experiment will show the effect of tuning the
controller’s zeros. Therefore, the multiple-controller is set to control the SISO water
vessel system using only the adaptive Pole-Zero Placement controller (multiple-

controller mode 2).
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6.2.7.1 Effect of the Poles

In this example, the gain v was set to 0.1 and the zero polynomial }71 =0.95. The
results given in Figures (6.10a, b) and (6.11a, b) below, respectively illustrate the
system output signal y(¢) and the control input signal u(¢#) when the pole ¢, of the
Pole-Zero Placement controller was set —0.5 (case 1) and —0.9 (case 2). Table (6.5)
presents the performance measures for the two cases of the pole #,. The measurements
given in Table (6.5) show the variance of the system output y(¢z), percentage of
overshooting in the output y(¢), the settling time of y(¢), rise time of y(¢f) and the

maximum control action in the control input signal u(¢).

Pole-Zero Placement Controller
t, =-0.5 t, =-0.9
Variance of the output 02 0.1
signal ) )
% of Overshooting in 9.0% 0.0%
the output signal e o
Settling time of output 0.8 Sec 3 4 Sec
signal ) )
Rising time of output 05 Sec 23 Sec
signal ) )
Maximum control 3 3
input 16.36 cm” / Sec | 1091 cm” / Sec

Table (6.5): Performance of the Pole-Zero Placement controller
with different pole settings.

From this experiment, it can be summarised that the settling time of the system output,
as well as the rise time, can be manipulated by tuning the value of the poles of the Pole-
Zero Placement controller. When fast settling and rise times are required, the system
output signal exhibits slight overshooting at the beginning of the control operation,

which can be treated by tuning the zeros as will be seen in the next experiment. As can
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be noticed in the results shown below in Figures (6.10a) and (6.11a), the drawback in
the performance of this controller is the continuous and sharp oscillation during the

steady state of the output signal y(¢). These kind of oscillations could damage or cause

harm to the actuator of the control process [131], which is the water pump in this
application. Therefore, it can be concluded that the Pole-Zero Placement controller can
prevent system output overshooting, which could take place at reference signal changes
and/or caused by the disturbances. In addition, tuning the poles of this controller can be

useful in managing the settling time and rise time of the system output.
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Figure (6.10): Pole-Zero Placement performance at ¢, =-0.5,

(a) system output, (b) control input.
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6.2.7.2 Effect of the Zeros

The results shown in Table (6.6) and Figures (6.12), (6.13) and (6.14) next are used to

illustrate the effect of the zeros of the Pole-Zero Placement controller. The gain v was

set to 0.1 and the controller pole #, =—0.7 throughout the control operation conducted
here. The control law zero }71 was set to three different cases such as }71 =0.95,

}71 =0.55 and }71 =0.35. The system output signals shown in Figures (6.12a), (6.13a)

and (6.14a) expose very low overshooting at start of the control operation and almost
zero overshooting during the rest of the process. As can be observed in the data given in
Table (6.6), decreasing the zeros will minimise the magnitude of control input, as

shown in Figures (6.12b), (6.13b) and (6.14b). Consequently, the variance and
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overshooting in the system output will be minimised, but the settling time and rise time
could be affected. Generally, the zeros can be useful to manipulate the control action of
the Pole-Zero Placement controller but in a range that should not cause negative effect
on the settling and rise times, which can be managed more consistently by the poles of

the controller (as explained in the previous experiment) [37, 100].

Pole-Zero Placement Controller

h =0.95 Iy =0.55 Iy =0.35
Variance of the output 0.1644 0.1475 0.1240
signal ) ) )
% of Overshooting in 21 % 129 03 %
the output signal o - o
Settling time of output 1.0 Sec 1.0 Sec 1.9 Sec
signal ) ) )
Rising time of output 0.6 Sec 0.6 Sec 0.85 Sec
signal ) ) )
Maxi trol
in;:iimum comro 143 cm’ / Sec 13.5 cm’ / Sec 12.12 cm’ / Sec

Table (6.6): Performance of the Pole-Zero Placement controller
with different zeros’ setting.

The observations and conclusions gained from the experimental results here formed the
knowledge base for designing the fuzzy logic sets and rules of the fuzzy logic based
supervisor for switching and tuning in the proposed intelligent multiple-controller. The
next experiment will show the autonomous switching and tuning done by the fuzzy
logic supervisor in order to switch between the two control modes and tune the control
parameters of the active controller. That is to achieve a required system performance

during the whole control operation.
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Figure (6.12): Pole-Zero Placement performance at }71 =0.95, (a) system output, (b) control input.
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Figure (6.14): Pole-Zero Placement performance at }71 =0.35, (a) system output, (b) control input.

6.2.8 SISO Water Vessel Control using the Intelligent Multiple-Controller

The problem of regulating the water level of the water tank is divided into four sub-
problems: preventing overflow situations (output signal overshooting); normal
operation system (smooth steady state); preventing oscillatory output; and maintain low
control input actions to keep the system actuator (water pump) [8]. The fuzzy logic
based supervisor is designed to switch between the two multiple-controller modes to
solve these sub-problems according to the system behaviour detected by the behaviour
recogniser. The controller that solves the first sub-problem is the PI structure based
Pole-Zero Placement controller (mode 2), whereas the controller that deals best with the

second and third sub-problems is the conventional PI controller (mode 1) and finally the
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PI-structured based Pole-Zero Placement controller (mode 2) most effectively tackles
the fourth sub-problem (at the expense of a relatively greater computational

requirement).

Another important aspect of the water storage tanks is the residence time, which is
defined as the time necessary to discharge/charge the storage tank [132]. The residence
time is one of the most informative characterisations of the flow pattern in chemical
reactors since it can provide information on how long the various elements have been in
the reactor [133]. Designing a multiple-controller meets such time-domain
specifications is an important feature of the new proposed intelligent multiple-
controller. In order to demonstrate the effectiveness of the employed fuzzy logic based
switching and tuning supervisor, it was arranged for the supervisor to switch between
the two controlling modes as well as tuning the parameters of the active controller.
Tuning the PID gain v, poles and zeros of the multiple-controller gives the facility to
adjust rise and fall times of the system output signal in order to control the water tank

residence time.

The results given below present the performance of the intelligent multiple-controller in
tracking a reference signal denoting changing water levels. The main targets of this
simulation are to preserve minimum variance and smooth steady state, prevent system
output overshooting, keep low control actions and maintain user defined rise and fall
times. Meeting these goals in the presence of nonlinear dynamics and sharp random

disturbances is a challenging task for the proposed framework.
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As evident from Table (6.7), which summarises the operation of the fuzzy logic
supervisor, the intelligent multiple-controller performed minimum number of switching
actions between the conventional PI controller and the Pole-Zero Placement controller
(mode 1 and mode 2, respectively), and tuned the active controller parameters to
achieve the target goals given above. Figure (6.15a) shows the slow charging of the
water tank at the start of the control operation that is to meet the user defined specified
2.5 Sec rise time. At the sampling times 100 and 200, the Pole-Zero Placement

polynomial #, was tuned to —0.53 in order to boost the rise time as required. Where as

at the sample 500 ¢, was tuned to —0.91 that is to meet 2.6 Sec discharging time for the

target 10 cm height water level. Tuning of the polynomial }Nzl , required for low control

actions, and tuning of the gain v, for smooth steady state, are give in Table (6.7).
Figures (6.15b) and (6.15¢) respectively illustrate the control input signal and
autonomous switching scheme performed to achieve the system output shown in Figure
(6.15a). It can be seen that at the sample 300 the supervisor activated the Pole-Zero
Placement controller (mode 2) to prevent system output overshoot due to sudden
increase in the random disturbances, then the supervisor switched back to the PI

controller (mode 1) to maintain the steady state.

Figures (6.16a, b and c) below show the performance of the multiple-controller in
achieving the same previous goals but with out any random disturbances introduced to
the system (i.e., the nonlinear sub-model of the GLM represented only the nonlinear
dynamics of the SISO plant). These results demonstrate the bumpless switching

mechanism between the two control modes as a result of the compatible “initial
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conditions” of the controllers connected to the plant [100, 118]. Figure (6.16a) shows
almost zero overshooting and zero variance system output signal, which could take

place if the plant nonlinearities were poorly approximated.

Controller Parameters
Sampling Active v p le Aim of the Tﬁ‘;?:l Oiz;zltlif)n
Time Controller 1 1 Switching action g
0 Mode 2 0.1 -0.7 0.9 Prevent overshooting No Action
30 Mode 1 0.313 -- -- Smooth and low Reduce oscillation
54 Mode 1 0.021 -- -- steady state error Smooth steady state
99 Mode2 | - | 053 | 09 | Preventovershooting | Mnt@in requested
rise time
110 Mode 1 0021 _ _ Smooth and low error _
steady state
Prevent overshooting Minimise control
200 Mode 2 - -0.53 0.42 due to high .
. action
disturbances
226 Mode 1 0.021 -- -- Smooth steady state --
229 | Model | 011 | - - - Minimise
oscillation
236 | Model | 00232 | - - - Maintain smooth
steady state
300 Mode 2 -- -0.53 0.32 Prevent overshooting anzéstfoiontr(ﬂ
320 Mode 1 0.0232 -- -- Smooth steady state --
500 | Mode2 | -~ | -091 | 032 | Preventovershooting | MAntin requested
fall time
Prevent oscillation
547 Mode 1 0.433 -- -- Smooth steady state | and low steady state
error
555 | Model | 00312 | - - - Maintain smooth
steady state

Table (6.7): Summary of the fuzzy supervisor behaviour
during level control of SISO water tank system.
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controller switching scheme.
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Figure (6.16): Intelligent multiple-controller performance
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(b) control input signal, (¢) multiple- controller switching scheme.

6.3 MIMO Water Vessel Problem

In this example the proposed intelligent multiple-controller was applied to a real world

MIMO system model shown in Figure (6.17) and described in [17, 70]. The two-input
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two-output coupled-tanks system comprises of one container with a centre partition to
divide the container into two tanks. Both tanks are 10cm long, 10cm deep and 30cm
high. At the base of the partition four holes are provided to allow flow of water between
the tanks. These holes are at the height of 3 cm (i.e. 4, = 3 cm) with different diameters
of 1.27cm, 0.95cm, 0.635cm 0.317cm and together form orifice 1, which is adjustable
by plugging one or more of the holes. The main objective of the control problem is to

adjust the inlet flows f;, and f;, as to maintain the two tank levels (A, and 4, ) as
close to a desired set-point. The fluid flow rates into tank 1 (f;,) and tank 2 (f;,) are

supplied by two pumps. To measure these flow rates, two flow meters are inserted

between pumps and tanks. The flow of water from tank 2 to the reservoir (f;,) is

controlled by an adjustable tap. The maximum diameter of this tap is 0.70 cm. The

depth of fluid is measured using parallel track depth sensors which are located in tanks

1 and 2.
The non-linear model can be presented as follows [17, 70]:

dh

Ad—;‘:le—a{Gng(hsl _hsz)» (6.2)

d

hY
dt2 :sz + a0, /2g(hs1 —hsz) —a,0o, /2g(hs2 -hl), (6.3)

A

where g and a}, are respectively the cross section area of orifice 1 and cross section

area of orifice 2, and A4 1is cross-sectional area of tank 1 and tank 2. o; and o, are the
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discharge coefficient (0.6 for a sharp edged orifice), and g =9.81N/m?*. The diameter

of orifice 1 is adjusted to 0.95cm and drain valve is fully open.

Pump 1 Pump 2
C\_;):‘l l,:(jj
le sz
A w6 w
S
y Ty [ ---------------------- ]_l

Figure (6.17): Coupled-tanks system.

6.3.1 Simulation Setup

The plant model of the complex MIMO system consists of the first order linear model

[I+A12_1]{yl(t)}

A 4
(t) = z‘lBo{ul( )} which used to identify the linear parameters of the
b))

u,(t)
process using RLS based linear sub-model of the MIMO GLM, and the nonlinear

function f;,(U,Y) which represents the nonlinearities and disturbances in the MIMO

plant and approximated by the RBF based nonlinear sub-model of the GLM. The

system output signals y,(¢) and y,(¢) denote the MIMO tank water levels 4, and A,
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respectively, the control input signals u,(¢) and u,(¢) denote the inlet flows f;, and

f1, respectively. The MIMO plant parameters were initially defined as follows:

A 033 0 A 067 0 ) .
B, = , B, = , The matrices U and Y represent the inputs to
0 033 0 0.67
the RBF neural network and denoted as:
4 t—1 t r—1
U:{ul() t( )}, Yz{yl() 7 )}, where u (t—1), u/(¢), u,(t—1) and
uy(t)  uy(r=1) (1) yr(t=1)
u,(¢)) are the last and current of the two control input signals and y,(t—-1), y,(?),

»,(t—1) and y,(#)) are the last and current of the two system output signals. The initial

PID gain matrix (V) and the user-defined polynomial matrices were respectively

selected as:

0 0.63

b _[-08 0 ip |05 0
= an = .
a9 0 -09 " 0 -06

The initial closed loop poles and zeros are respectively selected as:

1.1 0 _1 4 4 - 10
V= , Pg(z )=1+Pzz " and P,(z ")=I+p,z ", where I= o 11

-08 0

095 07
z .
0 -08

T=1+
[ 0 052

}z_l and ITI:I+{

During the 600 simulation samples the intelligent multivariable multiple-controller was

set to track the set-point changes w(¢), which denotes the target water level for each of

the two tanks, where w(r) = [w,(t) w,(1)]" .
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6.3.2 Fuzzy Supervisor Setup

The application of the MIMO water vessel system has two control inputs and two
system outputs. Consequently, the fuzzy sets used in the multivariable multiple-
controller switching and tuning subsystems were built according to information derived
from two control inputs (u,(¢) and u,(¢)), two system output signals ( y,(¢) and y,(¢)),
and two reference signal (w;(¢) and w,(¢)). Therefore, the fuzzy rules of the switching
and tuning subsystems have their fuzzy parameters derived from the two control inputs
and two system outputs. The following sample fuzzy rule, which belongs to the fuzzy
rules given in chapter 5 at section (5.3.2.2), represents the case when any of the two
output signals (y,(¢) and y,(¢)) has high undershoot and high variance will have its
corresponding controller switched to the Pole-Zero Placement controller.

IF &, (1) OR &, (¢) IS Ntive-High AND V| (1) OR ¥, (¢) IS High THEN C, () OR

C,,(#) IS Pole-Zero-Placement

Similarly, the following multivariable multiple-controller tuning fuzzy rule is a sample
rule derived from the list of the general tuning logic fuzzy rules given in chapter 5 at

section (5.3.3.2):

IF C, () OR C, (1) ISPID AND ¢, (1) OR ¢, (¢) IS NOT Norm THEN v, (1) OR

v,, (1) IS Decrease
The above rule checks the overshoot of both signals y,(¢) and y,(#) in order to provide

tuning values for the gains v, or v, of the corresponding active PID controller.
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The membership functions of the input and output fuzzy parameters used for the MIMO
water vessel application are similar to the input and output fuzzy parameters used for
the SISO water vessel application above, section (6.2). The reason for applying the
same MFs is due to the fact that the tank dimensions and water pump specifications are
similar for both the SISO and MIMO applications. In addition, the two applications
have similar control input and system output behaviours, such as: limits of the output
signals overshoot and variance, steady state error, rise time, poles and zeros stability

limits ...etc.

6.3.3 Experimental Results

There are two simulation experiments conducted with their obtained results given
below. The first example experiment is aimed to show the interactions occurring
between the two system’s output signals y,(#) and y,(¢) of the complex MIMO water
tank system. These interaction events happen due the nature of the MIMO plant model
since each system output is affected by the other, as can be seen in Equations (6.2) and
(6.3) above. To demonstrate the significance of the RBF based MIMO GLM employed
in the proposed multiple-controller, the nonlinear sub-model representing the nonlinear
function f;,(U,Y) is deactivated by setting the parameter H)y in Equation (5.18) to
zero. Random disturbances will not be included in simulations below, that is to simplify
the presentation and due to the obvious influence of the unmodelled nonlinearities on

the MIMO system behaviour. Another point is that, in the first experiment, there will be

no controller switching and no online controller parameter tuning. So, it is set that the
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output y,(#) to be controlled by the Pole-Zero Placement controller, and the output

¥,(t) to be controlled by the conventional PID controller.

The second experiment will illustrate the performance of the intelligent multivariable
multiple-controller in eliminating the defects caused by the interaction accommodated
in the complex MIMO system. Activating the nonlinear sub-model of the MIMO GLM
and employing the fuzzy logic switching and tuning supervisor will serve the closed-
loop MIMO system to prevent system outputs overshooting, achieve minimum variance
outputs, penalise high control actions, and attain the desired system outputs rise and fall

times.

6.3.3.1 Experiment One

Figures (6.18a, b and c) below, respectively show the system output signals y,(¢) and
»,(t), the control input signals u,(¢) and u,(¢), and the active controllers C; =Pole-
Zero Placement (Mode 2) and C, =conventional PID (Mode 1). It can be clearly
noticed in Figure (6.18a) that both outputs y,(f) and y,(f) experienced high

overshooting and oscillatory behaviours due to the unmodelled nonlinearities and fixed
controllers parameters. The two simultaneously operating controllers, Pole-Zero
Placement and conventional PID, could not cope with the interactions taking place at
the beginning of the control process and at the reference signals alterations. As a
consequence, the magnified control inputs (see Figure (6.18b)) have increased the
overshooting and variance in system output signals. Table (6.8) below shows high

degrees of overshooting in both output signals especially in y,(¢), which could be a
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result of the untuned gain v of the PI controller and the high nonlinear dynamics at the

start of the control process. The variance of the outputs is given in the table below.

n () ()
% of Overshooting 65% 129%
in the output signal
Variance of the 29293 32267
output signal ) )

Table (6.8): MIMO control system performance measures with unmodelled nonlinearities
and no multiple-controller switching or tuning.

The results shown in experiment two next will demonstrate the satisfactory performance
of the intelligent multivariable multiple-controller in dealing with the problems

experienced in the first experiment above.
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Figure (6.18): Multivariable multiple-controller controls the MIMO water tank system with unmodelled
nonlinearities and fixed controller for each system output signal,
(a) two system outputs, (b) two control inputs, (c) active controllers with no switching nor tuning.
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6.3.3.2 Experiment Two

In this example, the intelligent multivariable multiple-controller was set to
automatically control the coupled tanks system in order to track the two defined water
level reference signals w;(#) and w,(f). The complex system interactions were
approximated using the RBF NN based nonlinear sub-model of the MIMO GML
(presented in section (5.4), chapter 5 above). By appropriately designing the switching

decision Cn for the multivariable conventional PI controller and multivariable Pole-

Zero placement controller (based on the performance measure matrix Z(¢) supplied to

the behaviour recogniser), the fuzzy-logic supervisor worked to prevent any
overshooting and minimize the steady state oscillations while controlling the MIMO
water tank system. The capability of the fuzzy-logic based supervisor to online tune the
multiple-controller parameters also allowed for controlling the rise and fall times of

both output signals y,(¢) and y,(¢) according to user-defined requirements.

In the obtained results below, Figures (6.19a, b and c) respectively show the system
output signals obtained, the control input signals u,(#) and u,(#), the multivariable

controller selection scheme between the multiple-controller modes 1 and 2. Compared
to the results obtained from the previous experiment, it can be seen from Figures (6.19a
and b) that the fuzzy-logic based supervisor effectively managed to prevent output
signals overshooting, simultaneously preserved relatively smooth steady state and
almost zero output variance. Another point to note is that the excessive control action
(resulting from reference set-point changes) is tuned most effectively when the

supervisor activated the required controllers.
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Figure (6.19): Performance of the intelligent multivariable multiple-controller to control coupled water
tank system, (a) two system outputs, (b) two control inputs, (¢) multiple-controller switching scheme.
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Table (6.9) gives a summary of the improved overshooting and variance in the system
output signals after the successful switching and tuning done by the fuzzy logic

supervisor. The given results can be compared with Table (6.8) in the last experiment.

() »()
% of Overshooting 1.24% 0.0%
in the output signal ) )
Variance of the 0.0034 0.0032
output signal ' )

Table (6.9): Intelligent multivariable multiple-controller performance measures
throughout the control of complex MIMO water tank system.

In order to maintain the desired rise and fall times for both system output signals, the
fuzzy supervisor effectively tuned the poles and zeros of the multivariable Pole-Zero
placement controller. It can be seen in Figure (6.19a) system output y,(¢), that at the
beginning of charging tank 1 the rise time was 2.8Sec. A faster tank charging time of
1Sec was requested to reach water levels 15¢m and 25¢m, which was maintained to
1.12Sec with delay error of 0.12Sec that could be due to limits of the used plant model
(Equations (6.2) and (6.3)). The system output y,(¢) in Figure (6.19a) was successfully
controlled to reach 8cm water level in 5.6Sec and discharge tank 2 to 2cm level in

2.48ec. Table (6.10) gives sample tuned poles from the MIMO system control

operation.
Time instant ¥, Target rise/fall time V, Target rise/fall time Tuned poles
0 2.8Sec 1.8Sec ; %92 B (? &
100 1Sec - :_ %71 —(264_
150 i 5.65ec :_ o 596:
500 3.85ec - i 0691 - (2967

Table (6.10): Sample pole tuning actions performed by the fuzzy super\;isor to
achieve user-request rise and fall times for the two system output signals.
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6.4 Autonomous Vehicle Control Problem

Today’s automobile effectively encompasses the spirit of mechatronic systems with its
abundant applications of electronics, sensors, actuators, and microprocessor based
control systems to provide improved performance, fuel economy, emission levels
comfort, and safety [77, 134]. For almost two decades autonomous systems have been a
topic of intense research. Since the mid 1980s, several research programs have been
initiated all over the world, including Advances in Vehicle Control and Safety (AVCS)
in Asia, Intelligent Vehicle Highway Systems (IVHS), and Partners for Advanced
Transit and Highways (PATH) in the United States. Since 2004, the US Defence
Advanced Research Project Agency (DARPA) has started to organize the DARPA
Grant Challenge to test automatic-vehicle technology [135]. In Europe, the DRIVE and
PROMETHEUS projects have aimed at increasing the safety and efficiency in normal
traffic and at reducing the adverse environmental effects of the motor vehicle [136]. In
France, projects such as Praxitele and “La rout automatiée” focus on driving in urban
environments, as do the EU’s Cybercars and CyberCars-2 projects. Another European
project, Chauffeur, focuses on truck platoon driving [135]. Thus, many research groups
are focusing on the development of functionalities for autonomous road vehicles that

are able to interact with other vehicles safely and cooperatively [136, 137, 138].

An important component of Adaptive Cruise Control (ACC) is to design control
systems for controlling the throttle, brake and steering systems so that the vehicle can
follow a desired path and target speed, which could be responses of the leading vehicle

and at the same time keep a safe inter-vehicle spacing under the constraint of
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comfortable driving [139, 140]. There are though a lot of possible techniques with
which to perform ACC. Conventional methods based on analytical control generate
good results but exhibit high design and computational costs since the application
object, a car, is a nonlinear element and a complete mathematical representation is
impossible. As a result, other means of reaching human-like speed control have been
recently developed, for example, through the application of artificial intelligence

techniques [78].

One of the important and challenging problems in ACC relates to dangerous yaw
motions of the automobile that may result from unexpected yaw-disturbances caused by
unsymmetrical car-dynamics perturbations like side-wind forces, unilateral loss of tire
pressure or braking on unilateral icy road. One approach for yaw dynamics
improvement is to use individual wheel braking, thereby creating the moment that is
necessary to counteract the undesired yaw motion. Another approach is to command
additional steering angles to create the counteracting moment [79]. Another alternative
approach, which is used in this work, is to treat the three drivetrain sub-systems (i.e.,
throttle, brake and steering sub-systems) as one MIMO plant. Therefore, the interactions
between the vehicle longitudinal and lateral properties, disturbances and nonlinearities
are considered in the multivariable control law and modelled using the MIMO neural

network based GLM.

6.4.1 Longitudinal and Lateral Vehicle Model for Autonomous Vehicle Control

In general, the process of autonomous vehicle control consists of two stages. During the

first stage, the desired path and vehicle speed are determined on the basis of the driving
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environment. In the second stage, the vehicle is operated with the aim of realising the
anticipated path and speeds. Basically, the autonomous vehicle controller is composed
of three modules: a driver decision module, co-ordinates’ transfer module and driver
following module [141]. The driver decision module provides the desired path

Yputn = Fpun(x) and speed V. =G, (S,) described in the space domain, where s, is

the distance along the path Y, = F,,,;,(x) . The co-ordinates’ transfer module changes
the target path and speed into the time domain as y,,,;, = f,.,(t) and v, =g, (¢) in

order to form the input for the driver-following module. On the other hand, the driver
following module outputs the desired control elements which are the steering wheel

angle o

> throttle angle ¢ and brake torque 7, [145].The driver decision and the co-
ordinate transfer modules are not covered by the discussion in this thesis. Assuming that
the desired path and vehicle speed have been provided, the focus is on the approaches of

achieving the above desired control elements (0,0 and 7)) in order to follow the

swo

target path in the desired speed.

A simplified functional diagram of a MIMO vehicle model control system incorporating
the proposed intelligent multivariable multiple-controller is given in Figure (6.20) [138,

141, 145]. Each block can be considered as a subsystem with various inputs and

outputs. The throttle, brake and steering subsystems are considered as one MIMO

system with the desired throttle angle &, , braking torque 7, and steering wheel angle J,
as inputs, and throttle angle &, braking torque 7, and steering wheel angle &, as

outputs, which will deliver the vehicle to the desired path in the desired speed.
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Figure (6.20): Longitudinal and lateral vehicle model incorporating the
intelligent multivariable multiple-controller.

A simplified longitudinal and lateral vehicle model can be represented using the

following equation [77, 138, 142, 143]:

1
:;[—cvvz —c,v—d, + f[,(v.,T,)-G,T, = C,5,,)],

T, = 1,(0)

VX,)’

(6.4)

where Vi is the vehicle speed, m is the vehicle mass, ¢, is the coefficient of

v

aerodynamics drag, ¢, is the coefficient of friction force, d,, is the mechanical drag,

p

the function f,(v,T,) is the ideal tire force which is generally measured by steady-state
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tests [138] and it depends mainly on the vehicle speed and the engine torque 7,. The

engine torque 7, itself is a nonlinear mapping from @ to 7, . Finally, £,(8) is the steady
state characteristics of engine and transmission systems, and in this thesis it was
represented by an RBF neural network with @ as its input, and 7, as the output
variable. The RBF design parameters were selected on a trial and error basis. The term
G, T, represents the braking force, where G, is effective gear ratio from the engine to

the wheel and 7, is the braking torque. The term C,J;,, is the cornering force [144],

where C, is corner stiffness coefficient and J;,, is the steering angle.

The following three subsections will present the complex plant models of the throttle,
braking and steering subsystems used in this thesis (as in shown Figure (6.20) above).

Other model representations can be found in [145].

6.4.2 Electronic Throttle Control (ETC) Subsystem

The ETC system uses a torque motor (DC servo-motor) to regulate the throttle plate
angle @ between 0< @< /2 radians (i.e., closed to wide-open-throttle) in order to
adjust the inlet airflow. The servo-motor is controlled by the applied armature voltage

e, in volts, which represents the control input to the ETC system. The nonlinear model

of the ETC can be presented as follows [77]:

o(t) = by —e,(t)— APcos” O(t) - 6, (6.5)

l+az" +a,z
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where 6 is the ETC system output, ¢, is pre-tension angle of the throttle spring, the

linear process parameters a,, a,, b,, and c,; are estimated using the linear sub-model
of the GLM model, AP is the manifold pressure across the throttle plate. The nonlinear
function APcos”(¢) is approximated by the RBF neural network in the GLM. The

main objective of the control problem is to adjust the throttle plate angular position &

so0 as to maintain the desired speed v.

6.4.3 Wheel Brake Subsystem

The brake system plant model used in this work is defined as in [142]:

L= e )+d). (6.6)

l+az" +a,z " +a,z

The zero of the braking process model was experimentally found restricted to
OSZ;O <0.5. The first two poles of the braking process were restricted to

0.9<a,,d, <1.1 and the third pole (the pole of the torque sensor) was restricted to
0.6<a, <0.8. The term d(¢) will include the nonlinear dynamics and disturbances of

the process [142]. Based on the amount of wheel slip and other factors, the controller

requests a desired braking torque 7, at the wheel. To reach the requested torque, the
controller controls the brake line pressure by means of a voltage control e, at the

actuator, that consists of a DC motor and a ball-screw/piston device [142].
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6.4.4 Steering Wheel Subsystem

The transfer function from the front wheel steering angle &, to the desired vehicle

lateral position f,,,(¢) can be computed as [79]:

50 + l;lz_1

l+az"' +az " +ayz

5sw(t) = -3 esw(t) + Md (t) ’ (67)

where e, is an input voltage applied to the DC servomotor installed in the steering
wheel column, 1;0 , b_1 , 4, a, and a, are approximated using the RLS based linear sub-
model in the GLM. The yaw-disturbance M, is approximated using the RBF based

nonlinear sub-model of the GLM.

6.4.5 Simulation Setup

The proposed intelligent multiple-controller framework was applied to the complex
longitudinal and lateral vehicle model in order to demonstrate the effectiveness of the
framework with respect to tracking desired vehicle speed and path changes and
achieving the desired control performance and maintain the required speed of response,
whilst penalising nonlinearities and disturbances. The complex vehicle model below

was used to identify the parameters of the MIMO process:
[+ A0, 720, 33O =Bl (0,15 (0),u3 (D] 27 +65, () . (6.8)

The variables y,(?), ¥,(#) and y;(¢) represent the output signals &, 7, and o,,

respectively, u,(?), u,(¢) and u,(¢) are respectively the control inputs e,, e, and e,,,.

202



The nonlinear dynamics f,(.,.) were approximated by the MIMO RBF based nonlinear

sub-model of the GLM. The parameters I, A and B of the MIMO process above were

defined as:
1 0 O a, a, a -1.7713 -2.0632 -1.3251
I=|0 1 O0,A=|a, a, a,|=| 0.8107 1.0098 0.7622
0 0 1 0 a, a 0 —-0.0444 -0.0214 |
B by b, b_o _ 0.1122 0.1123 0.0909
0 0 b 0 0  0.0841

The vehicle parameter values are given in Table (6.11) [145].

Parameter Value
m 1067 kg
c, 1.42
c, 03
G, 2.66
Cf —15000N / rad

Table (6.11): Vehicle parameters.

To demonstrate performance of the intelligent multivariable multiple-controller in
controlling the complex autonomous vehicle control application, two simulation
experiments will be performed next. In the first experiment, the MIMO control system
will work in tracking a reference signal representing a changing target vehicle speed
along a longitudinal track with no lateral displacements (i.e., no steering actions
required). This example will focus on the interactions between the throttle and wheel
brake systems to reach the target speed. The second experiment will illustrate the
performance of the MIMO control system in tracking target path along with target

speed. So, longitudinal and lateral displacements will be involved in the control process.
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6.4.6 Fuzzy Supervisor Setup

The application of the autonomous vehicle control has three control inputs and three
system outputs. Consequently, the fuzzy sets used in the multivariable multiple-
controller switching and tuning subsystems were built according to information derived

from three control inputs (u,(?), u,(t) and u,(¢) are respectively the control inputs e,
e, and e, ), three system output signals (y,(¢), ¥,(t) and y,(¢) represent the output
signals @, T, and o,,, respectively), and three reference signal (w,(¢) , w,(¢) and w,(?)).

Therefore, the fuzzy rules of the switching and tuning subsystems have their fuzzy
parameters derived from the three control inputs and three system outputs. The
following sample fuzzy rule, which belongs to the fuzzy rules given in chapter 5 at
section (5.3.2.2), represents the case when any of the three output signals has high
undershoot and high variance will have the corresponding controller switched to the

Pole-Zero Placement controller.
IF £ ) (t) OR ¢ B (t) OR ¢ . (¢) IS Ntive-High AND V., (r) OR V., (r) OR Vy3 () 1S
High THEN C, (r) OR C, (r) OR C, (¢) IS Pole-Zero-Placement

Similarly, the following multivariable multiple-controller tuning fuzzy rule is a sample
rule derived from the list of the general tuning logic fuzzy rules given in chapter 5 at

section (5.3.3.2):

IF C, (1) OR C, (1) OR C, (t) ISPIDAND ¢ (r) OR &, (1) OR & () ISNOT
Norm THEN v, (¢) OR v, (¢) OR v, () IS Decrease
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The above rule checks the overshoot in the three system output signals y,(¢), »,(¢) and
¥5(¢) in order to provide tuning values for the gains v, v, or v, of the corresponding

active PID controllers.

In the design of the fuzzy MFs for the switching and tuning subsystems for this MIMO
application, the TriMF and TrapMF scalar variables a, b, ¢ and d of the switching
and tuning fuzzy parameters were experimentally adjusted in order to contain
quantitative information about the autonomous vehicle model subsystems (i.e.
electronic throttle, wheel brake, and steering wheel subsystems). The final fuzzy sets
represent knowledge base about the vehicle model subsystems’ behaviour by preserving
different information including: output signals degree of overshooting, output signal
variance limit, steady state error, and so on. By adjusting MFs scalar variables a, b, ¢
and d (given in Equations 4.11 and 4.12 and Tables 6.1 and 6.2) of each vehicle model
subsystem, the overlap between neighbouring MFs will differ between the different

input and output fuzzy parameters.

6.4.7 Experiment One

The obtained results presented in Figures (6.21a, b and c) and (6.22a, b and ¢) show the
performance of the intelligent multivariable multiple-controller in simultaneous
controlling of the throttle subsystem and wheel braking subsystem while dealing with
the nonlinearity and disturbance interactions. Figure (6.21a) shows the closed-loop
system output obtained when the multiple-controller framework is used to maintain the

desired vehicle speed v. Figure (6.21b) shows the selection scheme for the two multiple-
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controllers C; and C, (resulting from use of the fuzzy switching and tuning supervisor)

which led to effective tracking of the desired speed changes whilst penalising excessive
control action, and achieving non-overshooting and minimum variance system outputs.
It is interesting to note that at the sample time 700 the brake system was activated in
order to reach the new desired vehicle speed of 10m/Sec. The throttle angle was set to

its minimum by the throttle controller C;, (Figure (6.22a and b)) while the brake

controller C, was activated to slow the vehicle system to the target low speed (Figure

(6.22c and d)).

It can be seen through the multiple-controller switching in Figure (6.21b), Figures
(6.22a) and (6.22c¢), for both the throttle and brake subsystems, the fuzzy logic based
switching and tuning supervisor activates the Pole-Zero Placement controller at the
points of changes in the speed reference signal. As a result of these switching decisions,
the nonlinearity effects and overshooting in the throttle and brake subsystems were
prevented. When the signals reach the steady state, the PID controller was automatically
activated resulting in minimum variance steady states in both subsystems. Also in
Figure (6.22a), at sampling time of 500 the poles of the Pole Zero placement controller,
were automatically tuned online by the fuzzy supervisor. The tuning logic caused
adjustment in the rising time of the throttle angle signal, which in turn affects the
turning speed of the throttle plate. The zeros were also simultaneously tuned to

minimize the control action (Figures (6.22b and d)).
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Figure (6.21): Intelligent multiple-controller in tracking target vehicle speed (I):
(a) output speed trajectory, (b) multiple-controller switching scheme among

throttle and wheel brake subsystems.
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6.4.8 Experiment Two

The complex vehicle plant model consists of three-input three-output MIMO system
includes interacting nonlinearities from the throttle, braking and wheel steering
subsystems, was a challenging task for the intelligent multivariable multiple-controller.
Due to complex nature of this task and to simplify the simulation process, there were no
random disturbances involved in this experiment. The obtained results in Figures (6.23)
to (6.24) illustrate the capability of the proposed framework in producing non-
overshooting and smooth steady state system output signals with minimum control input
actions, which were results of proper switching and tuning actions performed by the

fuzzy logic supervisor.
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Figure (6.23): Intelligent multiple-controller in tracking target speed and target path (I):
(a) tracking of the target path displacements, (b) tracking of the target speed.
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Figure (6.24): Intelligent multiple-controller in tracking target speed and target path (11):
(a) maintaining the required steering angle O o - (b) maintaining the required throttle angle g,

(c) maintaining the required braking torque T}, .
Figures (6.23) and (6.24) illustrate the results obtained by controlling the throttle, brake
and steering wheel systems through the use of the longitudinal and lateral MIMO
autonomous vehicle model. The simulation results demonstrate that the proposed

methodology is able to follow control decisions within the desired path and speed
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trajectories. During the sampling times from 0 to 86 the autonomous vehicle had to
follow the path with a speed of 30m/sec, then slow down to 20m/sec to follow the left
side turn. This was to be followed by slowing down to a speed of 10m/s to track a sharp
turn right within the target path, and then speeding up to 20m/sec and lastly attaining

the target speed of 30m/sec (as shown in Figures (6.23a and b).

Figure (6.24a) shows the output steering wheel angle during the operation of tracking
the target path. As can be seen in Figure (6.24b), during sampling times from 100 to 104
the throttle plate was set to its minimum in order to slow down the speed to 10m/sec.
However, as this minimum throttle angle was not sufficient to reach this low target
speed, simultaneously the wheel brake system was triggered to produce the required

braking torque as shown in Figure (6.24c).

6.5 Summary

The chapter presented a set of experiments to demonstrate the performance of the new
proposed intelligent SISO and MIMO multiple-controller frameworks given in chapters
four and five respectively. The conducted simulation experiments, which were used to
evaluate the proposed methodology, have been performed on benchmark control
applications. Each control application can be characterised as a complex control
problem, as each was modelled in terms of estimated linear parameters, approximated
nonlinear dynamics and added random disturbances. To assess the behaviour of the
SISO design of the intelligent multiple-controller, a SISO water vessel plant model was

used. Also, for the MIMO design, a coupled water tank system was used. The
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simulations were ended by introducing the proposed methodology to a new challenging
application which was the complex multivariable problem of autonomous vehicle

control.

Generally, the experiments were aimed to achieve four goals. Firstly, to justify the
choice of employing the RBF neural network based GLM instead of the conventional
MLP neural network based GLM for both SISO and MIMO multiple-controllers.
Secondly, to demonstrate the stable and bumpless fuzzy logic based switching actions
between the conventional PID controller and the Pole-Zero Placement controller.
Thirdly, to illustrate the effectiveness of the novel fuzzy logic based online tuning of the
multiple-controller parameters including the PID gain of the conventional PID
controller, and poles and zeros of the Pole-Zero Placement controller. The switching
and tuning tasks were performed autonomously by the proposed fuzzy-logic supervisor
to maintain the required closed-loop system performance. Fourthly, to examine the
proposed framework on a more complex application namely autonomous vehicle
control. This application has more than one actuator with the involvement of

nonlinearities and interactions between its subsystems.

The obtained results from the SISO and MIMO case studies showed how the RBF
neural network consistently outperformed the sigmoidal MLP neural network through
stable learning and a improved approximation of high nonlinearities and sharp
disturbances. Due to the online switching and tuning, the fuzzy logic supervisor
successfully performed the minimum switching actions required for producing control

system signals which preserve low overshooting and minimum variance system outputs,
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and penalised control inputs. Furthermore, tuning the parameters of the multiple-
controller showed satisfactory outcomes in adjusting the rise and fall times of the
system output signal, penalising control actions, minimising the steady state errors and

minimising output variance.

The output results produced from applying the intelligent multiple-controller framework
to the new application of autonomous vehicle control had provided promising
outcomes. It was shown that this proposed interdisciplinary control strategy managed to
control the longitudinal and lateral complex vehicle model to track target speed and path
trajectories, which was achieved through the simultaneous control of the throttle, wheel

brake and steering complex subsystems.

The next chapter presents this thesis’s concluding remarks together with some

recommendations for future work.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Motivated by the demand for the use of more generalised plant modelling methods and
sophisticated controllers, which is due to the increasing complexity of dynamical
systems coupled with the increasing demands in closed loop performance specification,
the research work reported in this thesis was directed towards integrating control
engineering tools with soft computing techniques in order to achieve the development
of a new intelligent framework for modelling and control of complex systems. The
proposed intelligent multiple-controller methodology for SISO and MIMO complex
systems employed an RBF neural network based generalised learning model (GLM) for
modelling complex plants, and suggested a high level fuzzy logic supervisor for
autonomous online tuning and switching between a conventional PID controller and a

Pole-Zero Placement controller.

There were two review chapters included in this thesis. Chapter two aimed at
highlighting the importance of intelligent control and introducing the issue of complex
systems and how they can be dealt with using neural networks and fuzzy logic. Chapter
three discussed a general architecture for a feedback system employing a family of

controllers for controlling a complex mechatronic plant system which is modelled as a

214



physical process operating in a limited set of operating regimes. The discussion focused
on the recently developed multiple-controller framework which incorporated an MLP
neural network based GLM for modelling and control of complex systems. The
controllers employed in this design were built on the concept of adaptive generalised

minimum variance control.

The contributions of this thesis were presented in chapters four, five and six. Chapter
four presented the new intelligent multiple-controller framework incorporating a
Mamdani fuzzy logic system designed to supervise the multiple-controller switching
and tuning processes in order to control complex SISO systems. The complex plant was
modelled using an improved GLM based on an RBF neural network. The proposed
intelligent multiple-controller operates adaptively for tracking a desired reference
signal, achieving the desired output signal performance and penalising excessive control
actions, in response to the current performance of the control systems as assessed by a
behaviour recogniser. In chapter five, due to the importance of supervisory control and
multivariable controllers, an autonomous intelligent multivariable multiple-controller
framework for the control of complex MIMO plants was presented. The switching and
tuning decisions are based on the specific required performance criteria and continual
monitoring of the effectiveness of each multivariable controller in achieving these
criteria in response to set-point changes, nonlinear dynamics and added disturbances in
the complex MIMO plant. The chapter was concluded by proving the derivation of the
stability analysis of the proposed intelligent multivariable multiple-controller
framework. Finally, chapter 6 presented the simulation experiments used to assess the

behaviour of the SISO and MIMO designs of the intelligent multiple-controller. The
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simulations concluded by applying the proposed methodology to a new challenging

application, namely the complex multivariable problem of autonomous vehicle control.

On the basis of the theoretical discussions and the simulation experiments presented in

the previous chapters, the following conclusions can be drawn:

o The GLM based on the RBF neural networks consistently outperformed the
sigmoidal MLP neural network based GLM. The RBF neural network’s stable learning
and its improved approximation of high nonlinearities and sharp disturbances added an
advantage to the proposed intelligent multiple-controller. The GLM approach for
modelling complex systems simplified the design of control systems for both SISO and
MIMO complex plants. Generally speaking, modelling complex systems with
nonlinearities, disturbances and uncertainties is a difficult task and traditional solutions
involve linearization of system dynamics to establish control techniques imported from
linear control systems theory. On the other hand, implementing globally stable
nonlinear controllers with adequate performance during all stages of the control process
is not an easy task. By using nonlinear PID structure based minimum variance control
designs, such as the multiple-controller used in this thesis, coupled with a learning
nonlinear plant modelling approach, supported by online controllers switching and

tuning, we can successfully control a general class of complex discrete-time systems.

o The proposed fuzzy logic supervisor successfully performed the desired
switching actions required for producing control system signals which preserve low
overshooting and minimum variance system outputs, and penalised control inputs.

Moreover, the selection decisions experienced no conflict in the choice between the two
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candidate controllers. These switching advantages can be dedicated to the multiple
system assessment factors (such as: degree of overshooting; signal variance; settling
time; steady state error; ...etc.) used in the fuzzy rules and supplied by the supervisor’s
behaviour recogniser subsystem. That was also due to the facility of online tuning for
the multiple-controller parameters, which had its fuzzy rules given higher priority than
the switching fuzzy rules. In this manner, the active controller had the chance for its
tuneable parameters to be adjusted before it could be deactivated in order to switch to
another candidate controller. Furthermore, tuning the parameters of the multiple-
controller showed satisfactory outcomes in adjusting the rise and fall times of the
system output signal, penalising control actions, minimising the steady state errors and
minimising output variance. Tuning of the PID gain, poles and zeros of the multiple-
controller is a novel use of fuzzy logic in online tuning of control parameters, in view of
the fact that fuzzy supervisor has conventionally only been employed for tuning PID

controllers [4].

. The simulation results demonstrated that the proposed intelligent framework is
able to compensate complex system deficiencies caused by subsystems' interactions,
nonlinearities and disturbances. Novel application of the intelligent multiple-controller
framework to the autonomous vehicle control problem showed promising results. It was
shown that this proposed interdisciplinary control strategy managed to control the
longitudinal and lateral complex vehicle model to track target speed and path
trajectories, which was achieved through the simultaneous control of the throttle, wheel

brake and steering complex subsystems.
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7.2 Implementation Challenges

In the fuzzy logic based supervisory system proposed for tuning and switching between
the multiple-controllers for each of the SISO and MIMO applications, the selection of
the supervisor structure involved a series of over two dozens trial-and-error experiments

to set up the final structure parameters, which included the following choices:

(a) Input and output variables for the fuzzy switching and tuning subsystems: Details of
the input and output fuzzy variables for the SISO and MIMO supervisor systems are

given in sections (4.3) and (5.3) respectively.

(b) Number and type of membership functions for the fuzzy variables: The membership
functions used for the fuzzy values of fuzzy variables are selected based on
experimental observations for each of the SISO and MIMO applications illustrated in
chapter 6. From the point of view of simplicity and computational complexity, the fuzzy
switching and tuning subsystems’ variables were represented by TriMF and TrapMF
membership functions with not more than two membership functions overlapping.
During the optimization process of the MFs of the fuzzy variables, the MFs scalar
parameters a, b, ¢ and d of Equations (4.11 and 4.12) were experimentally adjusted
in order to adequately represent quantitative information about the SISO and MIMO
applications. The final fuzzy sets represent the knowledge base about the physical
system behaviour by preserving information such as: output signal(s) degree of
overshooting, output signal(s) variance limit, and steady state error range(s). Details of

the fuzzy logic sets are given in Tables (6.1 and 6.2) chapter 6.
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(c) Rule base: The rules of the fuzzy switching and tuning supervisor were designed
based on the SISO and MIMO controllers’ performance assessment criteria given in
section (4.2.1) in chapter 4, and on the experimental consideration of the influence of
each of the input and output fuzzy variables in the switching and tuning logic
subsystems. The final rule bases were implemented with the minimum possible number
of rules such that the switching logic and the tuning logic employed 5 rules and 12 rules

respectively.

The employed membership functions and rule bases play a crucial role in the final
performance of the fuzzy supervisory system. Therefore, selection of the appropriate
MFs and fuzzy rules is an important design problem. Depending on the designer’s
preference or experience, fuzzy membership functions can have different shapes and
sizes, fuzzy rules can have different orientations and number of rules, which can in turn

lead to an improvement in the system’s performance.

Taking into account the real-time implementation constraints, such as minimizing the
amount of memory used and the time that it takes to compute the system outputs using
the derived control inputs, the fuzzy logic based switching and tuning supervisor is
designed with a minimum number of fuzzy rules with minimum input and output
parameters. From the point of view of computational complexity, a maximum of three
membership functions is considered for both the inputs and outputs with not more than
two membership functions overlapping. In order to improve the computation time, the
triangular and trapezoidal membership functions are used, which have the advantages of

simplicity and require minimum rules. To reduce the memory requirements and to
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enable online operation (switching and tuning), the fuzzy supervisor is designed to
compute the rule-base at each time instant rather than using a stored one.
Implementation prospects could be improved by using a state-of-the-art microprocessor
or signal processing chip. An alternative would be to investigate the advantages and
disadvantages of using a fuzzy processor (i.e., a processor designed specifically for

implementing fuzzy controllers) as in [4].

The field of supervisory control is a combination between decision-making and real-
time control. The decision-making aspect corresponds to ‘“‘autonomous” (or
independent) supervision and the real-time control corresponds to plant control (or
execution). The developers of autonomous intelligent control for real-time systems
cannot work on autonomy and computer processing separately from working on the
plant system mechanics and specifications. Therefore, integration of these two areas
into one physical system presents a significant challenge in itself. Not only does the
computer equipment need to be able to physically withstand the operational
environment of the plant under control, but it also needs to appropriately connect the
algorithms to the incoming sensor data and decide which sensor information is needed

in the first place.

In practical implementations of control structures for trajectory control, one difficulty in
achieving accurate trajectory tracking is the existence of observation disturbances and
plant nonlinear dynamics, which could corrupt the parameters involved in the design of
the multiple-controller. To overcome the effects of this situation, which is very likely to

be encountered in practice, research is still required in accurate estimation of plant
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parameters, as well as precise approximation of disturbances and nonlinearities,
especially in the area of transfer learning (i.e. generalising from a previous example to a
novel situation). Full understanding of this excellent generalisation ability of humans
and then having it accomplished in computers would improve learning times and high
costs in system modelling, that are often the cause of brittle performance. To achieve
these goals, the future work section, next, proposes other forms of neurobiologically
motivated learning and control perspectives, along with alternative approaches for
online neural network construction to further improve the approximation of the

nonlinearity and disturbances.

In order to make a switching decision among various controllers and tuning them based
on the required specifications, adequate performance criteria have to be defined. The
heuristics and quantitative performance measures of each controller have to be
evaluated based on a number of factors, such as energy consumption (magnitude of
control actions), output variance and meeting user specifications. The user
specifications, which are usually given in terms of required overshoot, rise time and
settling time, can give a good measure about which control algorithm will give the best
performance as compared to others. Therefore, it is important to translate these
specifications accurately into supervision (decision-making) parameters represented in

the fuzzy sets to guarantee that each controller meets the desired specifications.

221



7.3 Future Work Recommendations

Now that it has been established that the proposed intelligent multiple-controller can be
functionally useful, further work is required to understand the extent of this usefulness.

Some proposals in this regard are presented next.

o One main drawback of the new multiple-controller framework for MIMO and
SISO cases is that Diophantine equations need to be solved to obtain the control
algorithms. This limitation may be overcome by using an implicit Pole-Zero Placement
controller as an additional control mode option within the new multiple-controller
framework. Another novel option could be a fuzzy logic controller designed on the
basis of a minimum variance control scheme. The mathematical structure of fuzzy logic

world also offers a promising implementable solution.

o The structure of the proposed intelligent multiple-controller control law, for both
SISO and MIMO cases, is built on the basis of generalised minimum variance control
with a PID structure. Therefore, the interesting relationship between the control law

polynomials (4, P, and F') and the design of the three term PID controller as a PI, PD

or PID controller provides a possibility of adaptively changing the structure of the
conventional PID controller (mode 1) into PI, PD or PID according to the system
behaviour and the required performance. This means additional controllers would be
involved in the multiple-controller framework, particularly PID controllers which are

the most commonly applied algorithms in the control industry.
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o Within the above suggested control strategies various parameters would need to
be chosen based on the required control system performance, which could vary in time
according to system configurations and nonlinearities. Nonetheless, the multiple-
controller switching activity and parameters tuning could be further developed through
fuzzy logic based on the error signals and the first difference of the error signals as in

[72].

o Modelling the complex plant with the GLM could be further investigated to
ensure whether linear sub-model plus neural network based nonlinear sub-models are
adequate to model dynamical systems operating in "critical environments" where, for
example, the safety of a crew (e.g., in an aircraft/spacecraft), or environmental issues
(e.g., from nuclear power plants or process control) are of concern. Hence, it is both
possible, and of significant importance to introduce robust mathematical modelling and
analysis techniques to be used in the verification and certification of the behaviour of
intelligent control systems. In complex plants or processes of this kind, nonlinearities
are present due to the large range of operating conditions and power levels experienced
during a typical mission. Also, such systems are restricted due to mechanical,
aerodynamic, thermal, and flow limitations. RBF based GLM could be useful because it
can explicitly handle the nonlinearities, and both input and state constraints of many
variables in a single control formulation. To improve the online approximation
capabilities of the RBF NN used in the GLM nonlinear sub-model, the current offline
trial-and-error approach used for the design of the network structure could be replaced
with the online allocation and tuning methods for RBF units which have been proposed

by Platt in [153]. An alternative approach could be that the nonlinear sub-model in the
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GLM could be represented by fuzzy logic or a neuro-fuzzy sub-model in order to
further improve the approximation of the nonlinearity and disturbances. Alternatively,
instead of representing the GLM with two sub-models, it could be interesting to
represent the GLM with a single model based on a type-2 Fuzzy Logic System (FLS).
The type-2 FLSs have started to emerge as a promising control mechanism for
autonomous mobile applications navigating in real world environments. This is because
such applications need control mechanisms such as type-2 FLSs which can handle large
amounts of uncertainties present in real world environments [146, 147, 148]. There are
various types of learning models that could be integrated into the framework to produce
an intelligent multiple model switching and tuning framework, in which a controller

could be associated with its corresponding optimised learning model.

. As discussed in this thesis, intelligent control is a discipline in which control
algorithms are developed by emulating certain characteristics of intelligent biological
systems. It is quickly emerging as a technology that may open avenues for significant
advances in many areas. In fact fuelled by advancements in computing technology, it
has already achieved some very exciting and promising results. Other forms of
neurobiologically motivated learning and control perspectives could be incorporated
into the framework, such as reward based learning (also known as re-enforcement
learning), multiple models, multiple agents and Genetic Algorithms. These techniques
can support complex single and multiple autonomous agents (vehicle, robot, or software
entity) and make use of the plethora of environmental information they receive to guide

purposive and useful behaviour.
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