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ABSTRACT

The Northern Isles are strongly influenced by changes in the North Atlantic Ocean-
atmosphere system and, as they project northwards from the British Isles, provide an ideal
geographical opportunity to study changing climatic gradients during the last glacial/ interglacial
transition along with the detection of regime shifts. Three proxies, diatoms, pollen, and micro-
XRF sediment chemistry, have been employed to explore the nature and timing of environmental
changes within the water columns and the wider catchments of Loch of Sabiston, Orkney, and
Loch of Clumlie and Loch of Grimsetter, Shetland to better understand the nature and timing of
environmental change within and among the island groups. The records are constrained by
radiocarbon dating, supported by tephrochronology, and the Greenland ice core chronology to
enable the comparison of the records produced by this study with previous research in the North

Atlantic region.

The diatom and lithological results from Loch of Sabiston suggest early deglaciation at
c. 23,000 cal BP followed by gradual warming (GI-1e) punctuated by the cooling events coeval
with GS-1 and GI-1b. However, the pollen record reflects a lagged response in the development
from colonising cold tolerant vegetation to more temperate shrub and woodland communities.
The Oracadian signal is dominated by the switching on and off of the accumulation of marl which
serves as a supporting indicator of warmer conditions. The Shetland landscape appears to have
been deglaciated later at c. 16,400 cal BP, but also has clear representation of GI-1e and the
cooling events of GI-1b and GS-1. Both the Shetland and Orkney records record the dramatic
cooling of the Younger Dryas but also suggest a two stage change from colder and drier to colder
and wetter conditions before the onset of the Holocene. Shetland appears to have experienced less
extreme climatic changes in comparison to Orkney despite being in the same present
phytogeographical region. This is likely due to the former persisting in the arctic domain and the
latter being closer to the latitudinal shifts in the warmer ocean circulation of the North Atlantic

during the LGIT.

Comparison of the three proxies demonstrates that they may differ by several hundred
years in their response to dramatic climatic changes and, therefore, highlights the strength of
multi-proxy approaches to reconstructing Quaternary environments. Combining proxies such as
diatom and p-XRF scanning techniques will provide a greater understanding of the processes

occurring during environmental change in this region.
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Chapter 1

1. Introduction

1.1. Introduction

Reconstructing past terrestrial and aquatic changes in the Scottish Northern Isles in
response to ocean-atmosphere changes in the North Atlantic during the Late Glacial into the early
Holocene will be the focus of this research. The Last Glacial-Interglacial Transition (LGIT) is
well recorded throughout Northern Europe (Birks, 1994; Bradshaw et al., 2000; Coxon, 2016;
Eldevik et al., 2014). Abrupt events such as the Younger Dryas cold period and the Belling -
Allerad Oscillation, along with less observed intra-Allered oscillations have been recorded in lake
sediments in the region (e.g. Birks and Birks 2008; Palmer et al. 2012; Brooks et al. 2012; Turner
et al. 2015; Muschitiello and Wohlfarth 2015). However, the timing of these events across the
region has been found to be diachronous (Lane et al., 2013; Muschitiello and Wohlfarth, 2015;
Viliranta et al., 2015). Future climate model scenarios predict that the North Atlantic region may
potentially see major climatic changes (Jansen et al., 2007; Moritz et al., 2002) such as an increase
in temperature (~ 2.1 °C), the prediction of warmer and drier summers, rising sea levels and winter
storminess which would bring an increase in precipitation (Arnell et al., 2015). It is important to
determine how the terrestrial environment could respond to these changes in atmosphere and
ocean currents and the Northern Isles are ideally located to undertake this type of study due to the

significant maritime influence.

The islands are strongly influenced by periods of cyclic activity, such as the North
Atlantic Oscillation (NAO), and this climatic variability influences both terrestrial and aquatic

ecology (Ottersen et al., 2001), although the magnitude of the influence of these events is varied.
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Chapter 1 Introduction

For example, the LGIT was characterised by abrupt high-magnitude climatic changes while in
contrast, the Holocene is characterised by more subtle environmental changes, based on
palacoclimatic observations (Williams et al., 2011). There is also a discrepancy in the timing of
the occurrence of climatic events throughout Northern Europe (Lane et al., 2013; Muschitiello
and Wohlfarth, 2015). General temperature trends for northern Europe have been developed
through pollen, macrofossil, chironomid and beetle records and have been compared to the high-
resolution Greenland ice core records (e.g. Birks and Birks 2008; Birks et al. 2012; Palmer et al.
2012; Brooks et al. 2012; Turner et al. 2015; Muschitiello and Wohlfarth 2015). However, the
trends observed are not necessarily synchronous across regions and can show temporal
differences. These differences may in part be due to the low resolution of the available data
(Brooks et al., 2012; Muschitiello and Wohlfarth, 2015). The timing of key features of the LGIT,
such as the Bolling-Allered interstadial, which appears to be locally determined and diachronous
across the study region as well (Lane et al., 2013; Muschitiello and Wohlfarth, 2015). A better
understanding of the nature and timing of ecosystem responses to landscape change may provide

insight into the climatic drivers.

Palacoecology is based on the principal of uniformitarianism, and that past environmental
changes may provide information on how a region will respond in the future. The justification for
studying the LGIT and the early Holocene in the North Atlantic is that present forecasts predict
that the temperature fluctuations that occurred at the end of the last glaciation, which was warmer
than the last two centuries, ¢. 9,000-10,000 years ago, will be similar to those that will be reached
this century (Williams et al., 2013). The North Atlantic region also experienced a different rate
of temperature change than the rest of Europe during this time. For example, Greenland warmed
by 10 °C in under 50 years while other parts of Europe experienced less warming (2-5 °C) just as
abrupt, over the same period (Willis and MacDonald, 2011). This illustrates the need to study the
response of multiple regions since climatic changes have been observed to affect regions

differently in both magnitude and duration.

The focus of this research is on the archipelagos of Shetland and Orkney, collectively
known as the Northern Isles (Figure 1.1), which lie at the convergence of the North Atlantic and
the North Sea. These two island groups are part of the same phytogeographical climatic region
along with the Faeroe Islands to the northwest (Bunting, 1994). The archipelago of Orkney is
located 16 km off the north coast of mainland Scotland and consists of approximately 90 islands,
20 of which are inhabited. The Shetland Islands are located 165 km to the northeast of the Scottish
mainland and comprise over 100 islands, 13 of which are inhabited and includes the islands of
Foula and Fair Isle. Any changes in the North Atlantic system will be established in the ecological

record of these islands both in the terrestrial and freshwater record.
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Previous reconstructions of environmental change in the Northern Isles have
predominantly focused on vegetation change (palynology) (e.g. Keatinge and Dickson 1979;
Hulme and Durno 1980; Birnie 1981; Bunting 1994) and stratigraphic analysis (geomorphology
and lithostratigraphy) (e.g. Leinert and Keen 2000; de la Vega Leinert 2007) with some studies
using macrofossils, beetles, molluscs, and organic content and even fewer studies using diatoms
(e.g. Hulme and Shirriffs 1994; Bunting 1996; Birnie 2000; Leinert and Keen 2000; Whittington
et al. 2003; Whittington et al. 2015). However, most of these methods overlook the sensitivity of
lacustrine ecosystems, which are present in abundance on these islands, to environmental changes.
By studying the changing lake ecology, more detailed information on the surrounding
environment will be obtained to enable the detection of thresholds or instability in the aquatic
communities and together with pollen records will allow for more robust inferences concerning

the drivers of environmental change.
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Figure 1.1 North Atlantic region showing the location of Shetland and Orkney in relation to the

wider region.
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1.2. Aims and Objectives

This project will apply a multi-proxy approach using biotic and abiotic proxies to
reconstruct the ecological responses of lochs on Shetland and Orkney to interpret the changes in
LGIT and Holocene climate. The principal technique used for this study is diatom analysis. Their
short life-cycle and sensitivity to ecological changes make them ideal indicators of rapid
environmental change (Last and Smol, 2001). This allows for the detection of rapid responses to
variations in the record that will be in phase with the underlying causes of these changes. With
other proxies such as pollen, there can be a lag in the ecological response to environmental
changes due to the life cycle of terrestrial vegetation (Last and Smol, 2001). The addition of more
diatom-based studies will provide high-resolution information of changes that have occurred in
the freshwater environment along with detecting ecological change that the terrestrial record
might not necessarily detect. The analysis of pollen along with the analysis of the physical and
chemical characteristics of the lake sediments will support the diatom records produced for this
study to explore the terrestrial and sedimentary history of the catchment alongside the aquatic
responses. A single proxy on its own can only provide part of the narrative of the changes
occurring. Therefore, a more detailed understanding of the nature of environmental change will
be obtained by using a multi-proxy approach since changes occurring at different spatial and
temporal resolutions can be revealed due to the individual nature of the proxies. High-resolution
diatom and p-XRF (micro- X-ray fluorescence) records will be analysed to determine significant

changes in the diatom assemblage along with the geochemistry of the sites.

Recently there has been an increase in the development of methods to detect early
changes due to the presently changing climate (Dakos et al., 2015; Scheffer et al., 2012; Streeter

and Dugmore, 2013). Therefore, this research addresses the following research questions:

1) What is the synchroneity of multiple proxies in recording environmental change within

the lake catchment and how do the results compare to the rest of Shetland and Orkney?

2) How synchronous and sensitive are the results from the study lochs with other proxies
when identifying changes in the North Atlantic and other known climate/ environmental data (i.e.

Greenland ice core records)?

3) Is there evidence of a ‘warning signal’ in the diatom, pollen, and geochemical records

that could be a precursor to a regime shift in the environment?

The Lateglacial and early Holocene palacoenvironmental changes will primarily be the
focus of this research. However, results of the later Holocene will be introduced to put the nature
and timing of climatic changes during the Lateglacial and early Holocene into context with those

of the later Holocene and illustrate the probable role of early human influence in the catchment.
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Despite the amount of research that has been undertaken on Shetland and Orkney
regarding the terrestrial response to ecological changes, there is more to be discovered. It is
recognised that even though these islands occupy a similar climatic zone, there are differences to
the response both on the island groups as well as between the island groups. Determining the
timing of events by using aquatic proxies like diatoms, which indirectly provides information on
the environment, will aid in providing a high-resolution record of changes and will fill in some of

the gaps of the ecological history of the Northern Scottish Islands.

1.3. Thesis Structure

This thesis is organized into six chapters. Chapter 2 provides a review of current
understanding of environmental change in the Northern Isles and the wider North Atlantic from
published literature. Chapter 3 outlines the theory and background of the methods used in this
research and discusses any caveats that exist. Chapter 4 presents the results from Loch of Sabiston,
Orkney along with Loch of Clumlie and Loch of Grimsetter (both from Shetland) respectively.
The synthesis and discussion in Chapter 5 considers the implications of the results of this study

in the wider regional context and Chapter 6 concludes the thesis.

1.4. Conventions

With palaeoenvironmental reconstructions there can be confusion when discussing
different time periods and many acronyms are used, especially across different disciplines

(Fig.1.2). In this thesis, the following conventions and abbreviations will be adhered to:

e Any dates that are derived from radiocarbon analysis will be presented as '*C yrs.

BP (Millard, 2014);

e Any dates presented that have been calibrated and/or from an age-depth model

will be presented as the best fit date cal BP and rounded to the nearest 10;

¢ Following suggestions from Rasmussen et al. (2014) the Blytt—Sernander system

of names will be used;

o Bolling-Allered will be used for the generally mild interstadial period
from c. 14,600 — 12,900 cal BP;

o Younger Dryas will be used for the stadial period between Belling-

Allered and the Holocene ¢. 12,900 — 11,700 cal BP.
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o The Holocene will be used for the warm period beginning at the end of
the Younger Dryas c. 11,700 cal BP instead of Preboreal/ Boreal (Fig.
1.2).

e Any dates that are presented from other research have been calibrated using Calib

7.1 and the IntCall3 calibration curve. These updated calibrated dates are

presented in Appendix B.
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Figure 1.2 Climato-stratigraphic sub-divisions covering the Late Pleistocene-Early Holocene
transition showing the various naming conventions commonly found in literature in this region.
This thesis will use a combination of European and Ice-core terminology as out outlined above.
NGRIP, GRIP, and GISP2 integrated chronology based on Rasmussen et al. (2014). Figure
adapted from Mithen et al. (2015).
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2. Literature Review

2.1. Introduction

The focus of this research is on the nature and timing of events in the Northern Isles from
deglaciation through to the early Holocene. This chapter will cover the mechanisms of North
Atlantic Ocean-atmosphere circulation and its climate to provide background information on the
major climatic influences for this region as the marine environment directly influences the
terrestrial environment. A summary of findings from palaecoenvironmental sites situated in the
North Atlantic will then provide a regional context to climatic changes that have occurred. The
island archipelagos of Orkney and Shetland, which make up the Northern Isles, will then be
discussed in more detail, including geology, soils, present land use, and population, along with
their palaeoenvironmental history. This research is also focused on the timing of regional
responses to changing climate and therefore the information presented will outline key findings,
and highlight questions that have arisen that this research will address in this context. Finally the
concept of tipping points and regime shift will be introduced along with Fisher Information to

explore the nature and timing of landscape and climate changes.

2.2. The North Atlantic Region

The North Atlantic is a transitional region between the Arctic and the temperate climates
of North America and Europe. This area consists of the North Atlantic Ocean and the North Sea,

and includes Greenland, Iceland, Faroe Islands, Norway, the Northern Isles of Shetland and
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Orkney, along with the rest of the British Isles (Fig. 2.1). The marine environment heavily
influences the landmasses in this region and, therefore, terrestrial changes reflect the climatic
changes that have occurred. The North Atlantic Current (NAC) is one of the main drivers of
climate in this region as it is the North Atlantic arm of the Atlantic meridional overturning
circulation (AMOC) which transports heat around the globe (Thirumalai and Richey, 2016). The
North Atlantic Current splits into two in the North Atlantic off the west coast of Ireland (Fig. 2.2),
with one half, the Norwegian Atlantic Current, passing through the Faroe-Shetland channel and
the other half towards Greenland. This transport of heat from the southern hemisphere into
northern latitudes stops sea ice from extending and a temperate climate to be observed in the

region compared to other regions at similar latitudes (Rahmstorf, 2007).
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Figure 2.1 Regional map of the North Atlantic showing the main study areas of Shetland and

Orkney along with sites mentioned in the text (blue circles).
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The NAC is influenced by the hydrological cycle and the heating of sea surface waters
(Clark et al., 2002). In the past the NAC appears not to have been as stable as presently and has
undergone major changes in the Quaternary, with three different modes observed in the
palaeoenvironmental record (Clark et al., 2002). These modes were defined as: 1) the modern
mode which sees deep water forming in the Nordic Seas; 2) the glacial mode where deep water
forms in the subpolar North Atlantic; and 3) the Heinrich mode where the NAC is switched off
due to freshwater inputs from meltwater floods or glacial disintegration (Clark et al., 2002;
Rahmstorf, 2007). This third mode was the probable trigger for the Younger Dryas and the 8.2 ka
cold events (Clark et al., 2002; Rahmstorf, 2007). These changes in ocean circulation directly
affect surface climate and, therefore, plays a vital role in modulating the climate of North Atlantic

landmasses.
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Figure 2.2 The Nordic Seas showing the circulation of surface currents (solid curves) and deep

currents (dashed curves) that form the AMOC (from Curry and Mauritzen (2005)).

Solar irradiance, which works on longer-time scales, is another important climatic
influence during the end of the last glaciation and the early Holocene. Solar insolation is the
amount of solar radiation on the surface of the earth and directly influences sea surface
temperatures (SST). Changes in solar irradiance through time have caused periods of instability
and influenced warmer and/ or colder events evidenced in the palaecoecological record

(Rahmstorf, 2007). There is a complex relationship between solar insolation, the NAC which
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impacts sea ice, and SST. The interaction of these, therefore, influences the climate of the North
Atlantic and its effects on the terrestrial environment. The Holocene thermal optimum from c.
9400 BP to ¢. 8000 BP is thought to have been caused by high summer insolation (Kog et al.,
1993). Around 6500 cal BP, summer insolation began to decrease and continued to do so through

the Holocene (Birks and Kog, 2002; Solignac et al., 2004).

2.3. Regional Palacoenvironmental Synthesis

The palacoenvironmental history of the North Atlantic has been well studied using marine
sediment cores and the glacial history explored through glacial geomorphology (Bickerdike et al.,
2016; Hall, 2013; Lambeck, 1995; Walker et al., 1994). More recently offshore multibeam echo
sounding studies have complemented the onshore geomorphic record (Bradwell et al., 2008;
Bradwell and Stoker, 2015; Hall, 2013). Lake and peat bog records have been used to explore in
detail the terrestrial palaeoclimate, often employing multiple proxies such as chironomids, pollen,
80 isotopes, organic content of sediment, diatoms, and biogenic silica which extend from the end
of the last glaciation through the Bolling-Allerad interstadial, Younger Dryas stadial and the early
Holocene (e.g. Jones et al. 1989; Bradshaw et al. 2000; Brooks and Birks 2000; Marshall et al.
2002; Andersen et al. 2004; Bedford et al. 2004; Kaplan and Wolfe 2006; Andresen et al. 2007;
Birks and Birks 2008; Palmer et al. 2012; Massa et al. 2012; Brooks et al. 2012; Turner et al.
2015; Muschitiello and Wohlfarth 2015; Brooks et al. 2016) to inform the Greenland ice core
records. The following sections provide an overview of the general trends of North Atlantic
palaecoenvironmental change from the end of the last glaciation to the early Holocene. The most
detailed results come from chironomid records throughout the North Atlantic and will be used to
illustrate these changes along with other proxies. The dates in the section headings are from the
Greenland ice core records which are made up of cores GRIP, NGRIP, and GISP2 hereafter called

Greenland ice cores (Rasmussen et al., 2014) are used for reference.

2.3.1.Deglaciation & the Bolling — Allerad (>c. 14,700 — c. 12,900 cal BP)

The last glacial interglacial transition (LGIT) is divided into the following events:
deglaciation (LGM), the interstadial period of the Belling - Allerad, the Younger Dryas Stadial,
and the early Holocene. The onset of the termination of the last glacial maximum (LGM) was
characterized by the melting of the ice sheets and the subsequent release of fresh water into the
northern oceans shutting down the AMOC causing low surface salinity and cold SSTs (Eldevik
et al., 2014). The British-Irish ice sheet (BIIS) had retreated and most of Britain was uncovered
by c. 16,000 years ago (Bradwell and Stoker, 2015; Kelly et al., 2017). On land, this change in
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the oceanic environment translated into arctic conditions characterised by permafrost, terrestrial
instability/ erosion, and barren mineral soils. As vegetation became established a Lateglacial flora
developed with heliophilous plant communities that indicated an open areas, disturbed ground,

and cold environment which sometimes included Artemisia (Tipping, 1991).

At ¢. 14,700 cal BP, warming increased along with the return of the AMOC and
increasing SST in the North Atlantic region which signalled the commencement of the Bolling—
Allered interstadial (Bromley et al., 2014; Ebbesen and Hald, 2004; Kog et al., 1993). The
progression of climatic changes which occurred during the Bolling—Allered were complex, with
several cold periods occurring during the interstadial as evidenced in the Greenland ice cores
(Rasmussen et al., 2014) and are outlined in Figure 2.3. The Abernethy Forest record detected
three centennial scale cold periods that relate to Greenland ice core events GI-1d and GI-1c
(Rasmussen et al., 2014) and the Intra Allered Cold Period (IACP) GI-1b. At Muir Park Reservoir
(Brooks et al., 2016), located at the southern limit of the Loch Lomond basin, GI-1d and the GI-
1b along with the warming of the Allered was detected in the chironomid record, while Whitrig
Bog (Brooks and Birks, 2000) and Loch Ashik only detected GI-1d (Brooks et al., 2016, 2012)

due to their various locations across Scotland.
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Figure 2.3 Greenland ice core terminology as it relates to the Belling-Allered interstadial
illustrating multiple cold periods. From right to left the equivalent old terminology along with the
ice core designations: GS-2.1a = Older Dryas; GI-le = Bolling; GI-1d = Older Dryas; GI-1¢3 =
Allerad; GI-1¢2 = cold period; GI-1c1 = Allerad; GI 1b = Intra Allered Cold Period; GI-1a =
Allered; GS-1 = Younger Dryas (modified from Rasmussen et al. (2014)).
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Chironomids were used along with micro-XRF (u-XRF), pollen, sediment and isotopes
to reconstruct a high-resolution multi-proxy record from Thomastown Bog located on the east
coast of Ireland that distinguished the Belling-Allered interstadial along with an Intra Allerad
Cold Period and the transition from the Younger Dryas into the Holocene (Turner et al., 2015). A
comparison of several of these records with the 8'*0 NGRIP Greenland Ice Core record is
illustrated in Fig. 2.4. This evidence illustrates the individual regional responses to the wide
spread warming event of the Bolling—Allerad with the colder periods more evident in some areas
than others. For example, Abernathy Forest demonstrates greater variation in temperature during

Gl-1a and GI-1b compared to Loch Asik (Fig. 2.4).
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Figure 2.4 Chironomid-inferred mean July air temperature from sites located in Scotland and
Norway (from Brooks et al. (2012)) compared with NGRIP oxygen isotope data from Greenland
(Rasmussen et al., 2006).

2.3.2. Younger Dryas Stadial (c. 12,900 — 11,700 cal BP)

In the North Atlantic, the abrupt return to colder, glacial conditions with extensive sea-
ice cover and stable cold wet winters in Europe characterised the first part of the Younger Dryas
with the second half exhibiting a less cold and dry, unstable climate (Bakke et al., 2009; Baldini
et al., 2015; Bradley and England, 2008; Coope et al., 1998; Ebbesen and Hald, 2004; Eldevik et
al., 2014; Isarin et al., 1998). This return to glacial conditions triggered a re-advance of the
Scottish ice sheet (Benn et al., 1992; Bickerdike et al., 2016; Golledge, 2010; Hall, 2013) and is
thought to be caused by an influx of fresh water from the collapse of North American ice dammed

pro-glacial lakes (Broecker et al., 1989). Chironomids were used to show variations in the way
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each location responded to changes in the Younger Dryas indicating regional responses to this
climate change based on sites in Scotland and Northern England (Fig. 2.1) that have a Lateglacial
record (Loch Ashik, Abernethy Forest, Hawes Water and Muir Park Reservoir (Bedford et al.,
2004; Brooks et al., 2016, 2012)). The results demonstrate that there is a definite division of the
Younger Dryas into two distinct periods (Fig. 2.5). At Loch Ashik, the second half of the Younger
Dryas becomes colder, whereas at Abernethy Forest there is evidence of warming which is similar
to the results at Glen Roy which also showed warming at the end of the Younger Dryas (Palmer
et al.,, 2012). However, the later cooling recorded at Loch Ashik may have been due to its
proximity to the Skye Ice Field (Brooks et al., 2012) (Fig. 2.5). The differences observed between
the first half and second half of the Younger Dryas is thought to have been due to changes in

seasonality, sea-ice conditions, and atmospheric forcing (Brooks et al., 2016; Eldevik et al., 2014).
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Figure 2.5 Chironomid-inferred mean July air temperature from sites from Britain and Ireland

demonstrating the 2 phases of the Younger Dryas (from Brooks et al. (2016)).

2.3.3.Early to mid-Holocene (c. 11,700 cal BP — c. 6000 cal BP)

Increased warming defined the end of the Younger Dryas and the beginning Holocene c.
11,700 cal BP (Birks and Birks, 2008; Brooks et al., 2012; Coope et al., 1998; Jennings et al.,
2014; Nesje and Dahl, 1993; Rasmussen et al., 2014). The transition to the Holocene was a
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dynamic period and was influenced by causes such as melting ice sheets, the establishment of
atmospheric and marine currents, along with local environmental thresholds (Andresen et al.,
2006). It is now understood that this warming was probably more complicated and was not
spatially synchronous across regions (Andresen et al., 2006). Warming tended to be step-wise
and punctuated by cold(er) events and these events have been recorded in sea surface temperature
(SST) reconstructions, pollen, diatom and chironomid records, along with the Greenland ice cores
5'80 archives (Wanner et al., 2011). Records of reconstructed SST temperatures from the North
Atlantic indicate a rapid increase of temperature during the beginning of the Holocene which most
likely reflects changes in ocean circulation bringing warmer waters northwards, coupled with
higher solar insolation (Eldevik et al., 2014). The Holocene Thermal Maximum (HTM) in the
North Atlantic began at ¢. 9000 to ¢. 7000 cal BP and lasted to ¢. 5000 cal BP. However,
macrofossils from aquatic plants in Finland (Viliranta et al., 2015) suggest that the onset of the
HTM may have occurred between c. 11,500 and 8,500 cal BP. This conclusion is also supported
by SSTs reconstructed in the North Atlantic (Eldevik et al., 2014). This discrepancy is due to the
fact that aquatic plants are more sensitive to environmental change owing to their quicker

dispersal rates compared to that of trees (Viliranta et al., 2015).

The beginning of the Holocene in the North Atlantic is punctuated by several warm and
cold oscillations which are evidenced in the Greenland ice core records (Rasmussen et al., 2014).
Two of these events, the preboreal oscillation (PBO) and the 8.2 ka event, stand out in various
records across the North Atlantic. The PBO was a gradual cooling that began ¢. 11,400-11,520
cal BP (Rasmussen et al., 2014) and lasted for 100-150 years. By ¢. 11,320 cal BP, warming had
resumed. The changes brought on by this cooling were variable across the North Atlantic. It was
surmised that regions where warm-climate vegetation (such as Betula and Filipendula (Bjorck et
al., 1997)) established itself were affected more than regions where cooler-climate vegetation was
still present (such as grasses and dwarf shrubs) and therefore more able to tolerate the sudden
reversion back to a colder climate (Bjorck et al., 1997). The PBO in Europe was determined to be
cooler and more wet while in the northern regions like Norway and Iceland, it caused colder and
drier conditions (Alley et al., 1993; Bjorck et al., 1997; Kelly et al., 2017; Rasmussen et al., 2007;
Whittington et al., 1996).

The 8.2 ka event which again saw a return of colder and drier conditions across the North
Atlantic and was a result of fresh water input into the North Atlantic (Alley and Agastsdottir,
2005). During the 8.2 ka event in Greenland, the climate cooled and became drier evidenced by
a decrease in snow accumulation and became stormier indicated by an increase in dust and sea
salt spray (Alley et al., 1997). In Sweden and Norway there was a 1 °C decrease in July inferred
temperatures and in the United Kingdom, there was an increase in seasonal differences with more

severe winters (Alley and Agustsdottir, 2005).
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2.3.4.Complications with dating the Late-glacial

Defining the chronology of a site is a crucial step in determining the timing of events in
the palaeoecological record along with producing age-depth models for the record. However,
developing age-depth models is mired with uncertainties during the process. These include
uncertainties in the material that is to be dated and the lack of dateable material, the nature of
sediments (i.e. carbonate content) and the fact that not every level can be dated as well as
analytical uncertainties that arise with the dating process itself (Parnell et al., 2011). Budget
constraints can also limit the strength of the model based on the number of dates that are able to
be obtained (Blaauw et al., 2007). The dates themselves have their own uncertainties due to the
calculations and the resulting calibrated date can be multimodal with no true best point estimate
while statistical applications are used to estimate these uncertainties in the calibrated dates in

order to develop a working age-depth model (Blaauw et al., 2007).

The global carbon cycle and the rate of '*C production has not been uniform and this will
also affect radiocarbon dating by the presence of plateaus in the radiocarbon dating curve (Hajdas
and Ivy, 2006). At several points in the past, '*C in the atmosphere decreased at the same rate as
the decay of '“C, which would cause any dates during that time to be indistinguishable from one
another (Trumbore et al., 2016) (e.g. during the Lateglacial and the 10-kyr '*C age plateau (Hajdas
and Ivy, 2006)). This issue has been mitigated by U/Th dating of corals and accelerated mass
spectrometry dating (AMS) "“C dating of terrestrial macrofossils in annually laminated sediment

(Hajdas and Ivy, 2006) providing ‘fill in dates’ to make the calibration more robust.

When comparing palacoenvironmental records from across a large region there is the
tendency to align these records and ignore the dating uncertainty that is inherent in each record.
This can result in a ‘sucking in’ of separate events or ‘smearing’ out in time of single events
(Baillie, 1991; Blaauw et al., 2006), with the possibly of concluding synchroneity when there is
none. More studies with multiple proxies, at a higher resolution, and with more robust dating are
being undertaken and are starting to untangle asynchronies across records and it is emerging that

there is a time transgressive occurrence of climate change in this region.

In the North Atlantic, the tendency is to compare records to the Greenland ice core
records, however it has now been demonstrated that the response to the abrupt climatic change
occurring at the beginning of the Younger Dryas was time transgressive across Northern Europe
(Lane et al., 2013; Muschitiello and Wohlfarth, 2015). The time transgressive nature of
environmental changes during the LGIT across Northern Europe has been demonstrated using the
Vedde ash layer which highlights unambiguously the temporal differences between sites (Lane et
al., 2013) by providing a benchmark to correlate temporal differences in response to climate. Four

sites across Northern Europe that differed in latitude were analysed by standardizing the published
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dates for the Allerad — Younger Dryas transition using IntCal13 (Lane et al., 2013; Muschitiello
and Wohlfarth, 2015). At each site, the transition to the Younger Dryas occurred a few hundred
years before and after the established GRIP date. Vegetation changes reflecting the conditions of
the Younger Dryas at the two lower latitude sites occurred earlier than the vegetation changes at
the more northern sites. This suggests that there is a need for more independently dated records
and tuning records to the ice cores is likely to be erroneous. The development of
tephrachronologies for the North Atlantic region is mitigating the issues outlined above by
providing the ability to correlate palacoenvironmental records by using known and well dated
tephra layers as anchor points. This then allows for the detection of synchroneity of records to be
established such as the Vedde ash layer (Lowe, 2015; Lowe and Walker, 2015; Timms et al.,
2016).

The alignment of changes of different proxies across regions also needs to be considered.
The use of proxies from different environments (aquatic, terrestrial, ice core) with different life
histories and environmental sensitivities can also lead to conflicting results, especially when
trying to determine synchronous and asynchronous events. At Krdkenes, Norway (Fig 2.2) a well-
dated record of pollen, diatoms and macrofossils indicates that the vegetation changed at a
different rate than the diatoms though the end of the Lateglacial and during the first 600 years of
the Holocene (Birks and Birks, 2008; Bradshaw et al., 2000). The changes observed in the diatoms
were more gradual and asynchronous in the Holocene than the pollen record. The diatoms did not
change until stabilization of the catchment and an increase in organics occurred which is
synchronous with the changes observed in the lithology of the core and not the pollen (Bradshaw
et al., 2000). Bayesian analysis of many age-depth models can assist in determining the timing of
events across regions by providing a probability of the events occurring at a given time (Blaauw

et al., 2007) to help avoid the problems discussed by Baillie (1991).

2.3.5.Summary

The nature and timing of palacoenvironmental changes that have occurred in the North
Atlantic Region since the end of the LGM through the early Holocene have been well documented
using a variety of proxies. At millennial or centennial-scale there is a higher probability that
climatic changes were synchronous, but at sub-centennial or sub-decadal the changes may be
time-transgressive (Blaauw et al., 2007). We need high-resolution and well dated records to be
more confident in the timing of events that are occurring. Due to the complex spatial nature of
climate change, proxies can be affected by other factors than just a changing climate, and therefore
there can be instances where synchroneity could be caused by age model errors, mistakes in

interpretation or wishful matching of regional records (Blaauw et al., 2007).
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2.4. Orkney

2.4.1. Present Orkney

The Orkney Islands are located 16 km north of mainland Scotland off the coast of
Caithness (Fig 2.6). There are around 90 islands, most of which are very small and uninhabited.
According to the census in 2011, the total population of Orkney was 21,349 spread over 20 islands
(National Records of Scotland, 2012) which is just a fraction of what it had been in the past
(Davidson and Jones, 1985). The present climate is mediated by the sea which provides intense
winds and mild temperatures that fluctuate from a low of 1.9 °C in the winter to average highs of
16.0 °C in the summer. Average yearly rainfall is 1039 mm and average yearly wind speed is 13.5
knots (1981-2010 records from Kirkwall http://www.metoffice.gov.uk, accessed October 12,
2016).

The topography of Orkney is made up of low rounded hills smoothed down by glaciers
(except for the island of Hoy, Fig. 2.7) and is composed mostly of Devonian Middle Old Red
sandstones, mudstone and siltstone with glacial till (EDINA, 2016) (Fig. 2.8). The predominant
soil cover on Orkney is peat (33.8%) which includes blanket peat, peaty gleys and podzols,
followed by noncalcaerous soils (30.8%) and brown forest soils (24.2%) (Fig. 2.9). Open fresh
water only makes up 3-4% of the surface area of Orkney (EDINA, 2007) (Fig 2.9). Improved
grassland dominates the land cover (35.7%), along with low productivity grassland (27.4%) and
dwarf shrub heath (13.1%) (EDINA, 2007).

Agriculture and resource extraction have transformed the overall surface of Orkney
through the application of fertilizers, drainage techniques, peat cutting for fuel, and ploughing
since being settled. Agriculture accounts for over 60 % of present land use on Orkney which
includes beef and dairy cattle, sheep farming and some crops such as barley, potatoes, oilseed
rape and oats (Land Use Consultants, 1998). The remainder of the land includes three main
vegetation categories: 1) upland communities above 100 m above sea level (a.s.l.) which is too
poor for agriculture; 2) coastal plant communities and 3) grass heath with tall herb and wetland
communities amongst agricultural land (Davidson and Jones, 1985). There is no native woodland
on Orkney with the exception of Hoy (Keatinge and Dickson, 1979) though there are several

plantations made up of deciduous trees (Davidson and Jones, 1985).
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Figure 2.6 The island archipelago of Orkney showing towns (red dots) and locations that are

mentioned in the text (blue triangles).
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Figure 2.7 The topography of Orkney illustrating the gentle relief of the islands except for the
island of Hoy (bottom left) (OS Terrain 5, Scale 1:10000).
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Figure 2.8 The bedrock configuration of the Orkney Islands (EDINA 2016). Most of the land
consists of sandstone and siltstone (Old Red Sandstone). There are numerous faults also present

on the islands.
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Figure 2.9 The soil profile for the Orkney Islands (EDINA 2007). The calcareous soils on
Mainland tend to have marl lakes located in the region. The peaty areas tend to be restricted to

the higher elevations.
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59°0”N

Figure 2.10 Bathymetric map of Orkney. Since the LGIT ¢. 10,000 BP the sea was around 20 m
below present indicated by the red contour line. By ¢. 8,000 BP. Sea level was ~ 8 m below present
day and by c¢. 7,000 BP ~ 4 m below. By c. 5,500 BP. sea levels reached present day levels
(http://www.landforms.eu/orkney/bathymetry.htm).

The coast of Orkney has changed considerably since the end of the LGIT. Orkney was
attached to mainland Scotland until it was separated by rising sea levels at ¢. 13,000 BP (Davidson

and Jones, 1985) and present sea levels were reached at c¢. 4000 years ago (Fig. 2.10). Early
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deglaciation of the Northern Isles resulted in much of the postglacial isostatic uplift occurring
during the Lateglacial and early Holocene and so relative sea level (RSL) change during the latter

Holocene was limited to ~ 1 to 2 m (Smith et al., 2012).

2.4.2.The Freshwater Aquatic Environment

The low-lying relief of the Orkney islands resulted in many small and very shallow
freshwater lochs except for Loch of Stenness and Loch of Harray which are the two largest lochs
on the archipelago. The small lochs tend to have moderate to high natural nutrient levels and have
a strong maritime influence. Due the unique position of Orkney in the North Atlantic off the coast
of mainland Scotland, the lochs on Orkney exhibit a range of types that are considered to have a
high natural heritage value (Scottish Natural Heritage, 2001). For example, on Hoy there are
acidic-oligotrophic lochs, while a few of the northern islands of Orkney have lochs that are similar
to the machair lochs of the Western Isles with high calcium content and moderate nutrients
(Scottish Natural Heritage, 2001). Presently, eutrophication is the biggest pressure on the lochs
of Orkney along with agriculture and water regulation (Scottish Natural Heritage, 2001).

One particular aspect of the freshwater lochs on Orkney is that many are calcareous or
were marl lakes at some point in their development. Loch of Sabiston, which is part of this study,
is one such lake. Marl lakes in the British Isles tend to form where the geology is carbonate based,
such as Orkney’s Old Red Sandstone (Pentecost, 2009). Marl lakes have a high pH (average pH
of 8 with some lakes as high as 9 in shallow, highly photosynthetic water bodies (Pentecost,
2009)), and have a rich macrophyte and submergent flora, including Chara, which is associated
with marl formation (Pentecost, 2009; Pentecost et al., 2006). These characteristics therefore
present unique biological and chemical properties of the lochs. The vegetation found in marl lakes
also provides suitable habitat for molluscs and crustaceans. Marl lakes can range from
oligotrophic to eutrophic classifications; however, oligotrophic lakes exhibit phytoplankton that
are more commonly associated with eutrophic conditions (Wiik et al., 2013). The macrophyte
community in marl lakes consists of calcareous species such as Potamogeton lucens, P. crispus,
Elodea canadensis, Myriophyllum spicatum and the macrophytic algae the Charophytes (Wiik et
al., 2013). Most marl lakes are nutrient poor due to the co-precipitation of phosphorous (P) with
calcium carbonate, which reduces bioavailable P and thus acts as a buffer to eutrophication
(Pentecost, 2009) but only to a certain point (Wiik et al., 2013). The periphyton in marl lakes
tends to be dominated by diatoms that are normally associated with soft water, nutrient poor lakes
along with other species that could indicate nutrient enrichment such as Asterionella formosa

although in low numbers (Pentecost, 2009).
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Marl is precipitated out of the water column by several different processes, the most
common by photosynthetic activity which occurs mostly in summer. The calcium ion originates
from groundwater input, the bedrock of the catchment and sediment fluxing, while the carbonate
ions come from the atmosphere, the respiration of plants, and bacterial processes (Kelts and Hsil,
1978). Photosynthetic activity removes CO, from the water along with increasing oxygen contect
of the water. This then decreases H+ making the water more alkaline and causing
€03~ compounds (ie CaCOs, SrCOs) to precipitate. The following equations represent this process

(Pentecost et al., 2006; Wetzel, 2001; Wiik et al., 2013):

Ca* (1 CO5 ™ ) (0
I
CaCO; (5 + HoCO3aq) <> Ca*’(aq) + 2HCO3(aq) @
I )
COxaq + H200) CO%™ g+ H'ag) (3)
) )
COz H'ag+ OH g (4)

Marl precipitation in a lake is dependent on the pH, the temperature of the system, and
photosynthetic activity. The warming of the loch reduces the solubility of calcite along with a
decrease in the amount of CO; in the water which in turns can supersaturate the water. This is
visualized in Fig. 2.11 which outlines the physical processes that occur to enable carbonate
precipitation in lakes (2.12a) and how the relationship changes over the course of a year (2.12b).

Evaporation, CO,

exchange
CO, Co,

Erosion

CaCO;, Phytoplankton &

HC 03 :’IZCO Zooplankton ~ CaC g+ Photosynthesis from
CO5* HCO5 COo;? macrophytes

H,CO;4 8

CO,

Ca™ Cac03(s)

Mg™ Sandstone Sandstone

+other ions

Figure 2.11 Illustration of the carbon sequence that forms the marl precipitate in lakes. For
carbonate to precipitate out of the water, temperature must increase which drives out CO, from
the water. HCO;3 breaks down to release the CO- out of the water. Now there is too little HoCO3
to keep the reaction in equilibrium (equations 1-4) therefore reaction (2) must more to the left to
replace the lost H>COj; and CaCOs precipitate out (illustration made from data from (Kelts and
Hsii, 1978; Wetzel, 2001).
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There is also a direct relationship between pH and temperature in the formation of marl.

Based on the temperature profile in Figure 2.12a, the threshold appears to be around 10°C for the

onset of marl precipitation. However, it is unknown if this is universal as there is very little

information found on this subject. When applying this information to palacoenvironmental data,

it might be a good indicator of threshold temperatures such as those that are observed at the end

of the last glaciation and during the Younger Dryas where marl precipitation is switched “off”.
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Figure 2.12 An example from Lake Zurich (1974 to 1975) illustrating the relationship between

various parameters and marl precipitation (a) illustrating the state of a marl lake throughout the

course of a year and the relationship between water variables from Kelts and Hsii (1978) along

with (b) demonstrating the relationship between pH and the relative proportions of inorganic

carbon species of CO, (Wetzel, 2001).
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2.4.3. Previous Palaeoecological Research

Despite Orkney’s rich archaeological history, environmental records of past vegetation
and landscape characteristics in relation to archaeological sites tend to be highly localized and
discontinuous (Farrell, 2009). Most records are limited to the Bronze Age (from ¢. 4000 years
BP) (Bunting et al., 2001; Downes, 1994; Hedges, 1974, 1976; Keatinge and Dickson, 1979) and
few in the Neolithic (from ¢. 6000 years BP) (Bates et al., 2016; Davidson et al., 1976; Keatinge
and Dickson, 1979), and are single point reconstructions constrained to the archaeological point
of interest. There are limited records that extend into the Mesolithic (Bunting, 1996; Edwards et
al., 2005; Hulme and Durno, 1980; Keatinge and Dickson, 1979; Leinert and Keen, 2000; Moar,
1969; Whittington et al., 2003) and fewer that span as far as the Late Upper Palaeolithic (Birnie,
2000; Bunting, 1994; de la Vega Leinert, 2007; Hulme and Shirriffs, 1994; Whittington et al.,
2003). There has been more recent published research on the palacoenvironments of Orkney,
however, most are concerned with sea levels (Teasdale et al., 2011), glaciation and isostatic uplift
(Bradwell et al., 2008; Clark et al., 2012; Phillips et al., 2008), storminess (Tisdall and McCulloch,
2013), and archaeology (Bates et al., 2013; Farrell et al., 2012).

The most frequent method of reconstructing environmental changes on the Orkney
islands is pollen analysis along with biostratigraphy and sediment analysis. However, these
methods overlook the ecology of freshwater lake systems and how they respond to changes in
climate. Proxies such as diatoms have been used rarely on Orkney and only in the context of
tracking sea level changes and the occurrences of tsunamis (Bates et al., 2013; de la Vega Leinert,
2007; de la Vega Leinert et al., 2012). These studies employ the change in diatom assemblages
from freshwater to marine species to track sea inundation and the timing of sea level rise in the
record. Over the last ten years there is research ongoing on the Lochs of Stenness and Harray by
the Rising Tides Project investigating sea level rise in these lochs along with reconstructing the
palacoenvironment in relation to the Heart of Neolithic Orkney archaeological sites (Wickham-
Jones et al., 2009). However, these analyses focus specifically on marine influence and not

necessarily direct climatic influences on the diatom assemblages.

2.4.4. Proxies for Reconstructing Environmental Change on Orkney

Palynology has been the primary proxy in the reconstruction of past landscapes and
environments on Orkney. However, several other proxies have been used over time in conjunction
with pollen. Whittington et al. (2015) used molluscs as part of a multiproxy environmental
reconstruction. The mollusc data suggested that a change in mollusc species composition did not

indicate a change in the environment at Crudale Meadow, but rather a change in total numbers at

46



Chapter 2 Literature Review

each sampling level (total numbers were used due to low numbers of species). This because the
species present being first colonizers are ubiquitous, and have wide tolerances of water
characteristics such as salinity, temperature, or substrates (O’Connor and Bunting, 2009;
Whittington et al., 2015). At Quoyloo Meadow, O’Connor and Bunting (2009) also found early
pioneer mollusc species such as Lymnaea peregra, that also have a wide range of tolerances and
are quick to colonize new habitats dominate their records. Based on the assemblages, they
determined that the area was covered with ephemeral, well oxygenated freshwater pools for most
of the record with a change to stagnant conditions occurring prior to evidence of terrestrialization

near the top of the core (O’Connor and Bunting, 2009).

Lesser used proxies on the islands include macrofossils and isotopes. The §'®0 isotope
record from calcite at Crudale Meadow was sensitive enough to pick out major changes such as
the Bolling — Allerad, the inter-Allerad cold period, the Younger Dryas, and the Pre-Boreal
Oscillation at the start of the Holocene. Crudale Meadow represents the most northerly Lateglacial
record from Orkney and is comparable with records from Greenland ice core along with those
from the North Atlantic (Whittington et al., 2015) and appears to be the only record that has
employed isotope analysis. However, the dating of the record was marred by old carbon
influences and therefore the chronology used was based on Greenland records (Whittington et al.,
2015).

Macrofossils compliment pollen analysis as they provide evidence for the physical
presence of vegetation as the presence of pollen may be due to long distance wind transport.
However, not all lake sediments contain macrofossils, so they tend not to be used as a single
proxy. Macrofossils can also refine the taxonomic level since some pollen can only be identified
to genus or family (Smol et al., 2001). On Orkney, terrestrial macrofossils have been used to
confirm the presence of Corylus avellana and the absence of Myrica (Bunting, 1994, 1996) and

as samples for radiocarbon analysis (de la Vega Leinert et al., 2012).

2.4.5.Deglaciation & the Bolling — Allerod (> c. 14,700 — c. 12,900 cal BP)

Orkney was most likely free of glaciers by ~ 16,000 years ago (Bradwell and Stoker,
2015). There are only a few records on Orkney that include the Lateglacial and they are located
at Crudale Meadow and Quoyloo Meadow (Bunting, 1994; Moar, 1969; Timms et al., 2016;
Whittington et al., 2015) and these Lateglacial records from exhibit the tripartite glacial —
interstadial — glacial sequence in their sediment (Whittington et al., 2015). This sequence is
characterized by minerogenic sediments changing to more organic material followed by a return
to minerogenic sediment and then a final shift into postglacial organic sediment (Bunting, 1994;

Whittington et al., 2015). Typically, the site starts with barren sediment after glacial retreat which
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then sees herbaceous taxa such as Poaceae, and Cyperaceae, and dwarf shrub heath being
established (Fig. 2.13) along with the rise in organic content of the sediment and decreasing
erosion in the catchment as vegetation stabilizes the soils (Bunting, 1994; Whittington et al.,

2015). This would be consistent with the onset of the Bolling-Allerad interstadial (c. 14,690 cal

BP). However changes in vegetation lagged behind changes in the sediment at these sites

(Bunting, 1994).
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Figure 2.13 Lateglacial and early Holocene pollen and §'*0 sequence from Crudale Meadow,

Orkney (from Whittington et al. (2015)).

2.4.6. Younger Dryas Stadial (c. 12,900 — 11,700 cal BP)

The Younger Dryas saw a return to a colder climate on Orkney with the possibility of
glacial activity on Hoy (Bunting, 1994; Golledge, 2010). Minerogenic sediment returned with soil
destabilization occurring in the catchment along with a reduction of organic sediment (c.f. Figure
2.12). Vegetation became sparse on Orkney, consisting of arctic-alpine dwarf species such as
Salix (willow) and Empetrum (crowberry). Artemisia, which is associated with low temperatures
and disturbance, (Birks and Heiri, 2010) is also found during the Younger Dryas on Orkney
(Bunting, 1994). Not all pollen records indicate cold events during the Bolling and Allered,
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however, GI-1d and GI-1b are present in the sediment and isotope record from Crudale Meadow

(Bunting, 1994; Whittington et al., 2015).

2.4.7.Early to mid-Holocene (c. 11,700 cal BP — c. 6000 cal BP)

At the beginning of the Holocene, ¢. 11,700 cal BP, Corylus avellana (hazel) begins to
dominate on Orkney along with tall herbs (Bunting, 1994). Progressing into the early Holocene
until ¢. 6000 cal BP woodlands expanded throughout Orkney. However, on Orkney the timing of
woodland decline ranged from c. 7250 cal BP on Hoy to as late as ¢. 3800 BP at Burn of Rusht
on Mainland, with the decline occurring ¢. 6000 cal BP at most sites (Farrell, 2009). Following
on from the decline in woodland, peat formation spread on the Orkney Islands with the earliest
occurring on Hoy ¢. 8000 cal BP and the latest ¢. 2000 cal BP at Lesliedale Moss with the average
occurring ¢. 3000 cal BP (Farrell, 2009). This shows the extent of regional variation in vegetation

and landscape changes across this small island archipelago.

2.4.8.Dating Complications

Due to the calcareous nature of the sediment and the geology on Orkney, there has been
difficulty in confidently dating these records using radiocarbon dating. Studies that have been
undertaken on Orkney with continuous records generally cover short periods (i.e. ~ 2000 years
(Leinert and Keen, 2000), or covering the last ~ 6000 years (Keatinge and Dickson, 1979)), and
are dated solely by tephrochronology or biostratigraphy (Farrell, 2009). There are few studies that
have radiocarbon dates (Bunting, 1996; de la Vega Leinert, 2007; Keatinge and Dickson, 1979)
and they have been complicated due to the calcium carbonate in the sediment. The Freshwater
Reservoir Effect (FRE) is caused by the uptake of dissolved infinite aged carbon from the water
column by plants and other aquatic organisms which leads to older radiocarbon ages than the true
age of the organic material being reported (Marty and Myrbo, 2014; Shotton, 1972; Yu et al.,
2007). The AMS dating technique uses smaller samples of vegetable and other organic matter
than conventional radiocarbon techniques, which reduces the need for bulk samples and the
potential of contamination from old carbon from reworked sediment. However, the FRE may still
affect AMS age estimates. The chronology building for Orcadian records has been assisted by the
development of tephrochronology and the identification of distinct isochrones that have been
accurately and precisely dated outside of Orkney (Timms et al., 2016). This will allow for more
robust dating of Orkney records than was previously attained which will provide the foundation

in determining synchroneity between and within proxies and study sites for this study.
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2.4.9.Summary

Around 16,000 years ago, Orkney became ice free and was colonized by dwarf shrub
heath and herb species resembling a sparse arctic-alpine environment. As the interstadial
commenced thermophilous species began to appear. A return to glacial conditions occurred
interrupted this advance in the middle of the Belling-Allered and again during the Younger Dryas.
During this time, the presence of hazel was negligible until after the beginning of the Holocene
when birch also began to increase and a tall herb grassland was dominant. In the early Holocene,
a birch-hazel scrub woodland predominated with open areas consisting of grasses and sedges.
Though it is not part of the scope of this research, the archaeological record put the arrival of
humans on Orkney at ¢. 7500 years ago. Pollen evidence of woodland decline and a charcoal peak
suggests human clearing (Bunting, 1994). The woodland decline on Orkney has been shown that
it was not synchronous across the islands (Farrell, 2009) with two periods occurring, one ¢. 5500

cal BP and the other ¢. 3800 cal BP.

The palaeoenvironmental records from the LGM to ¢. 6000 years BP are scarce on
Orkney. There are only three palacoecological investigations that extend into the Lateglacial, c.
14,000 cal B; Crudale Meadow/Yesnaby and Quoyloo Meadow (Bunting, 1994; Moar, 1969;
Whittington et al., 2015) located in north west Mainland and two that extend to ¢. 12,000 cal BP;
Scapa Bay (de la Vega Leinert, 2007) and Stove (Morris and Emery, 1986)) in southeast
Mainland. The lack of continuous, high resolution records from Orkney that cover the LGIT and
early Holocene demonstrate the need for more comprehensive multi-proxy palaecoenvironmental
records in order to better understand the nature and timing of climatic changes that have occurred

across the North Atlantic region which this study will address.
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2.5. Shetland

2.5.1. Present Shetland

Shetland is positioned in the North Sea 125 km north of Orkney and 210 km west of
Norway at a latitude of 59° 30” to 60° 25°N, 0° 43’ to 2° 7> W (Fig 2.13). It is an archipelago
made up of over 100 islands, which includes Fair Isle to the south and Foula to the west, and
presently it has a population of around 23,000 inhabitants (National Records of Scotland, 2012).
Past glacial cover, which scoured the land leaving low hills and shallow lochs (Fig 2.14), has
formed the topography of Shetland. The present climate of Shetland, like Orkney is influenced
by the marine environment, which provides intense winds and mild temperatures that fluctuate
from a low of 1.5°C in the winter to average highs of 14.5°C in the summer, with average yearly
rainfall of 1257 mm and average yearly wind speeds of 14.5 knots (1981-2010 recorded at
Lerwick (Met Office 2016).

The northern margins of the British and Irish Ice Sheet (BIIS) covered Shetland during
the LGM and was one of the first areas to become ice free during the Lateglacial (Bradwell et al.,
2008; Golledge et al., 2008; Hall, 2013). Thus, much of the isostatic rebound was achieved before
the Holocene. By c. 10,000 years ago, sea levels were ~ - 65 m a.s.l., by ¢. 5000 BP ~-10 m a.s.L.
and reached present levels by ¢. 3000 BP (Lambeck, 1995). Due to early isostatic uplift during
the Lateglacial, Shetland is the only place in Scotland not to have evidence of marine incursions
during the Holocene (Sissons, 1967). Low lying ground on Shetland is mostly confined to the
coasts on the West and in valleys running north-south through Mainland. Higher ground is found
at Ronas Hill, the highest point of Shetland (Fig 2.15), in ridges running north-south through
Mainland and a ridge along south Mainland island along with high regions on Unst (Gillespies,
1998).

Shetland has a very complex geology, and the Walls Fault is a main feature of Shetland
geology which runs north-south through the middle of Mainland (Fig 2.16). Whalsay, Yell and
the western portion of Unst along with Mainland is predominantly Caledonian Metamorphic rock.
The southeast of Mainland along to the coast and the western lobe is made up of sandstone while
the north-west portion of Mainland is mostly granite with some volcanic rocks at Esha Ness and
Papa Stour and Metamorphic basement at Fetlar (Hall, 2013). The east portion of Unst consists
of Oceanic Crust and Mantle. Shetland also has several major faults running mostly north-south
through it (Fig 2.16). At the end of the last glaciation sea levels around Shetland were ~ -100 m
a.s.l. (Bondevik et al., 2005) (Fig. 2.17).
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Figure 2.14 The island archipelago of Shetland showing present day towns (red dots) and sites

that are mentioned in the text coded based on the time-period each covers.
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Figure 2.15 The topography of Shetland illustrating the gentle relief of the islands except for

Ronas Hill (top left). Glacial scouring of the islands can be observed through the middle of

Mainland (OS Terrain 5, scale 1:10000).
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Presently, extensive areas of Shetland are covered with peat along with peaty gleys and
peaty podzols (Fig 2.18). The land cover of Shetland is made up of bog (grass and heather
dominated, 31.3%), dwarf shrub heath (28.8%), rough low-productivity grassland (23.5%), and
acid grassland (2.9%) while improved grassland only makes up 4.2% of total area (EDINA, 2007),
which are concentrated in the valleys of central Mainland and south Mainland. The majority of
Shetland is only suitable for rough grazing with limited areas of improved grassland while crops
are limited to few low lying areas (Gillespies, 1998). Trees are only found presently on Shetland
in sheltered locations, however there is a plantation located in the Weisdale Valley (Gillespies,

1998), south Mainland.
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Figure 2.18 Soil profile of Shetland illustrating the extensive peat coverage on the islands
(EDINA, 2007).
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2.5.2.The Freshwater Aquatic Environment

There are over 1500 freshwater lochs scattered across the islands that make up Shetland,
although they only account for 2.3% of land cover (EDINA, 2007). Due to Shetland’s unique
geology these lochs exhibit a wide variety of types more than what is found in any other region
in Scotland. In general, the lochs on Shetland exhibit low biodiversity compared to similar lochs
on mainland Scotland due it its isolation in the middle of the North Atlantic and North Sea. The
harsh marine environment with high winds and salt spray also limits the number of species that
can tolerate these unique conditions. Oligotrophic lakes comprise ~ 75% of the lochs which are
characterised by low diversity (Maitland et al., 1994). There are only a few lochs that would be
considered eutrophic, such as Loch of Spiggie. Other lochs on Shetland are classified as
dystrophic due to the presence of peat which causes the water to become stained by humic acids
leaching from the peats and thus reduces the amount of light penetration of the water column
(Maitland et al., 1994). These lakes also tend to be low in nutrients and low in diversity with no

marl lakes present.

2.5.3. Previous Palaeoecological Research

The palaeoenvironmental record on Shetland is quite sparse and there are very few
complete high-resolution records that extend from the LGIT through the Holocene. Most records
either just span the Lateglacial or sections of the Holocene that relate to associated archaeological
sites. There are only three well-dated Lateglacial records from Shetland located at Lang Lochs,
Clettnadal and Aith Voe (Birnie, 1991, 2000; Hulme and Durno, 1980; Hulme and Shirriffs, 1994;
Robinson, 2004; Whittington et al., 2003) (Fig 2.14). Two other Lateglacial sites are located at
Spiggie Water and Grunna Water, however, these are undated (Birnie, 1993, 1981; Edwards et
al., 1993). These studies all used pollen as their principle proxy while Clettnadal, Aith Voe and
Spiggie Water also included diatoms in the analysis. Lang Lochs also included macrofossils
alongside pollen analysis (Hulme and Shirriffs, 1994) while Clettnadal included invertebrate
analysis (Whittington et al., 2003).

When comparing these Lateglacial records, a few issues have been identified with the
datasets. The records from Clettnadal and Aith Voe are very coarse in their resolution with ~>500
years between samples. However, the pollen record from Lang Lochs is at a higher resolution
with ~ 200 years between samples. Also, it is evident from the records that there are site-specific
variations and therefore it is difficult to identify the nature and timing of the regional sequence of
environmental change on Shetland. For example, Clettnadal is located on the west coast of the

island of West Bura and reside on psammites and crystalline limestone and its sediment record is
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dominated by sand while Lang Lochs is located on Shetland Mainland near the east coast and is
a mire-loch complex on metamorphic rocks. Aith Voe is also located on the eastern coast of
Mainland and lies on Old Red Sandstone. The paucity of high-resolution, well-dated records from
this region illustrates the lack of knowledge of how the development from the end of the last
glaciation into the Holocene in this part of Shetland progressed in terms of regional variation and
the nature and timing of these changes in comparison to one another and in the wider context of

the North Atlantic.

2.5.4.Deglaciation & the Bolling — Allerad (> c. 14,700 — c. 12,900 cal BP)

Using the results from the dated records from Aith Voe, Clettnadal, and Lang Lochs a
general description can be made about the sequence of environmental change in Shetland during
the LGIT. Glacial retreat occurred sometime before c¢. 13,000 cal BP. However, no distinct
interstadial organic layer was recorded at Lang Lochs. This may have been due to Lang Lochs
being more inland and at a higher altitude than other sites such as Aith Voe and Grunna Water
(Hulme and Shirriffs, 1994). However, further analysis confirmed a slight increase in organic
content did follow deglaciation at Lang Lochs that could indicate interstadial conditions (but now
visual change in sediment). In regards to the vegetation record, at Lang Lochs, the interstadial
was dominated by Rumex whereas at Aith Voe, Poaceae, Filipendula and Myriophyllum
dominated the assemblage (Birnie, 2000), while the interstadial at Grunna Water is dominated by
Cyperaceae and small amounts of Poaceae (Birnie, 2000). This suggests that during this period,
the landscape was open with short herb species dominating. The Lateglacial diatom records from
Aith Voe indicate that the basin began barren with no diatoms in the basal sediment. As the lake
matured, epiphytic diatoms colonized along with Fragilaria (sensu lato, (s.l)). which is
characteristic of interstadial assemblages (Birnie, 2000; Fritz and Anderson, 2013). This was
followed by a reduction in diatoms with the return of colder conditions of the Younger Dryas
(Birnie, 2000).

2.5.5.Younger Dryas Stadial (c. 12,900 — 11,700 cal BP)

The Lateglacial records from both Lang Lochs and Aith Voe do not show a clear shift
from the Allered interstadial to the Younger Dryas stadial in the pollen and diatom records. The
pollen and diatom evidence at Aith Voe (Birnie, 2000) demonstrates that terrestrial vegetation
disappeared during the Younger Dryas while the aquatic assemblage maintained a low amount of
productivity which suggests that there might have been increased snow cover in the catchment

(Birnie, 2000). As described in the previous section at Lang Loch, there was only a slight increase
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in organic matter that could indicate an interstadial. These conditions continue into the Younger
Dryas, where there is no relative change in the pollen assemblage. Based on the ages provided, it
is difficult to determine a clear Younger Dryas signal in the pollen record at both of these sites

(Birnie, 2000; Hulme and Shirriffs, 1994).

2.5.6.Early to mid-Holocene (c. 11,700 cal BP — c. 6000 cal BP)

The Holocene record of the Shetland Islands is comprised of records that are found across
the Mainland and includes Lang Lochs. Most Holocene studies on Shetland have been undertaken
at sites with archaeological significance such as at Clickimin (Edwards et al., 2005), Catta Ness
(Bennett et al., 1992), and West Mainland (Edwards and Whittington, 1998) while others focused
on the vegetation history and the timing of tree decline on the islands (i.e. Johansen 1975; Hulme
and Shirriffs 1994). Other studies looked for evidence of tsunamis on the coast of Shetland which
is summarized in Bondevik et al. (2005). Similar to Orkney, the main proxy for
palacoenvironmental reconstruction on Shetland is pollen while the only studies that analysed
diatoms through the Holocene used them to determine the sea level rise/ marine inundation at

Norwick and Burragarth (Smith, 1993).

Of the well dated records for the Holocene on Shetland only a few commence at the end
of the Younger Dryas. These include the records of Murraster (¢. 12,270 cal BP), and Lang Lochs
record which begins in the Lateglacial and continues into the Holocene while Dallican Water (c.
10,550 cal BP) and Gunnister (¢. 11,200 cal BP) begin slightly later (Bennett et al., 1992, 1993;
Hulme and Shirriffs, 1994; Johansen, 1975)) while the record at Brunatwatt in West Mainland
covers the period from c. 6,800 cal BP to the present (Edwards and Whittington, 1998). There are
few continuous records that encompass the LGIT into the Holocene and as mentioned previously,
there are distinct regional environmental differences in their responses to climatic change across

sites in Shetland.

There is some similarity between the records at Murraster (Bennett, 1993), Gunnister
(Bennett et al., 1993), Lang Lochs (Hulme and Shirriffs, 1994) and Dallican Water (Bennett et
al., 1992). The sediment at the start of the Holocene at each of these sites changes from
minerogenic to more organic with the vegetation dominated by herb species and dwarf shrubs
such as Poaceae, Rumex and Cyperaceae. At Murraster and Lang Lochs, Poaceae dominates the
assemblage while at Gunnister the dominant pollen was Rumex, Artemisia, along with Salix,
which is typical of early colonizers of a recently deglaciated environment. The appearance of
woodland occurred at ¢. 9260 cal BP at Dallican Water, at ¢. 9400 cal BP at Gunnister, at ¢. 9700
cal BP at Lang Lochs and at ¢. 8900 BP at Murraster when Corylus avellana type appears. At

each site, there is evidence of woodland decline and the formation of peat. The record at Dallican
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Water shows several episodes of tree decline. The first was at ¢. 4000 cal BP and again at ¢. 3120
cal BP which is later than the evidence for the presence of people at c¢. 4500 cal BP (Bennett et
al., 1992). While at Murraster there is landscape change that can be attributed to human influence
at c. 4650 BP based on the presence of Plantago lanceolata which can be an indication of grazing
by animals introduced to the islands by humans (Bennett, 1993; Johansen, 1975). At Gunnister
there is an increase in charcoal presence in the record along with an increase in Calluna vulgaris
occurring at ¢. 8670 cal BP, 7000 cal BP, and 2920 cal BP which is comparable to the record at
Dallican Water (Bennett et al., 1992). At c¢. 2920 cal BP, there is an abrupt decrease in tree pollen
at the same time at Gunnister (Bennett et al., 1993). The record from Lang Lochs indicates peat
formation beginning c¢. 7000 cal BP and trees disappearing by c¢. 6000 cal BP with evidence of
Neolithic activity at ¢. 3000 cal BP, suggested by the presence of grazing indicator Plantago
lanceolata. The short record from Brunatwatt shows woodland reduction occurring at ¢. 5070 BP
and blanket peat spreading by c. 4740 cal BP (Edwards and Whittington, 1998). The overall
patterns of change emerging across Shetland during the Holocene demonstrate a degree of
consistency. However, there are still localized differences such as the timing of tree decline across

Shetland (Table 2.1) that need to be explained in the greater context of the region.

Table 2.1 The differences in the timing of key events in the pollen records of the Shetland Islands.
All dates have been calibrated from their original sources using IntCal 7.1 (Stuiver et al. 2017)
and are in cal BP from: '"Hulme and Shirriffs (1994); *Bennett et al. (1992); *Bennett (1993);
*Whittington et al. (2003) and Robinson (2004); *Edwards and Whittington (1998).

Lang . g 3 4 | Loch of
Event Lochs' Dallican” | Murraster’ | Clettnadal Brunatwait®
Betula 5240 - 5400 10,370 3770
decrease
Corylus avellana type 3300 ) 3360 ) 3770
decrease
Calluna increase 8500 5100 5400 3760 5820
Plantago increase 3180 4400 5400 3760 5740
2.5.7.Summary

The extant palacoecological studies from Shetland suggest there may be a pattern in the
lengths of the records obtained and their geographical location. Studies that occurred north of
Lerwick (60.15° N) are limited to the Holocene with reporting of an impenetrable till or gravel
base limiting the length of the core, including at Murraster, Clickimin, Dallican Water, Garth’s
Voe Burragarth, Gunnister and Basta Voe (Bennett et al., 1992, 1993; Edwards et al., 2005;
Johansen, 1975) (Fig. 2.13). Most Lateglacial records that occur on Shetland are found to the
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South of Lerwick (Fig. 2.13) such as Spiggie Water, Lang Lochs, Aith Voe and Clettnadal (Birnie,
1991, 2000, 1981; Hulme and Durno, 1980; Hulme and Shirriffs, 1994; Robinson, 2004;
Whittington et al., 2003). Grunna Water seems to be the exception, as it is a Lateglacial sequence
that is located north of this boundary (Fig. 2.13), perhaps as a result of the topography (Edwards
et al., 1993). These observations raise questions regarding the extent of the last ice sheet on
Shetland along with the possible glacial coverage of northern Shetland during the Younger Dryas.
This may be consistent with ice sheet modelling and tentative field evidence which suggests that
following glacier retreat after the LGM there was a re-advance of an independent ice cap on
Mainland Shetland during the Younger Dryas (Golledge et al., 2008; Hall, 2013). With the
evidence presented above, the ice/snow cover during the Younger Dryas might have limited itself
to the northern part of the Shetland islands, and the southern portion of the island below Lerwick

had less ice and snow coverage during this time.

2.5.8. Tipping points, and critical transitions

There is pollen, geochemical and stratigraphic evidence of high magnitude and abrupt
changes such as the Belling / Allered interstadial, the LGIT, and events such as the 8.2 ka event
during the Holocene in the North Atlantic region (Schleussner et al., 2015). In comparison to the
large environmental fluctuations evidenced at the end of the LGM, the Holocene events may
appear as signal noise but they have been shown to have significant effects on humans in north-
west European regions and may have contributed to cultural change (Bonsall et al., 2002; Plaganyi
et al., 2014; Tipping, 2010). Identifying the timing of any possible warning signals prior to an

event will be important in defining the timing of any subsequent changes that may have occurred.

Andersen et al. (2009, p. 49) define ecological regime shifts as “abrupt changes on several
trophic levels leading to rapid ecosystem reconfiguration between alternative states”. These shifts
are known as critical transitions which can result in a new ecological state (Randsalu-Wendrup et
al., 2016). Anderson et al. (2009) outlined three main responses to changes that regime shifts
could undertake: Type I, where the abrupt change is directly related to a response (Fig. 2.19a);
Type 11, where the ecosystem responds only after a threshold is surpassed and the relationship is
non-linear (Fig. 2.19b) and Type III that is considered a bi-stable hysteresis system where the
system changes back and forth between two alternate states (Fig. 2.19¢) (Andersen et al., 2009).
Randsalu-Wendrup et al. (2016) used the classifications of Anderson et al. (2009) and reviewed
numerous palaeoecological records to define which type of regime shift occurred based on the
observed changes and determined when the shift occurred, the length of the perturbation and the
resulting duration of the change. Their review showed that regime change can result from both

abrupt and gradual changes. However, it is important to understand the timescales in which these
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changes are acting and the low temporal resolution of many palaeoecological records can affect

the resulting analysis, making it difficult to detect the length of shifts at lesser sampling

timescales.
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Figure 2.19 Illustration of different scenarios of regime shifts and how they theoretically react to
external forces from (Andersen et al., 2009) Column a) illustrates driver threshold where it is a
cause and effect relationship. Example b) shows a gradual change where a some point a threshold
is reached and the state is changed. Example c) illustrates when a driver flips back and forth

resulting in two stable states.

The methods used previously to detect regime shifts have been based on the analysis of
variance (the change in variation approaching a tipping point), skewness (asymmetric fluctuations
around the mean), kurtosis (how wide the ‘tails’ or outliers are in a distribution), autocorrelation
(the similarity between consecutive observations), and critical slowing down (the observation that
the closer to a tipping point the longer it takes to get back to equilibrium after a disturbance)
(Boettiger et al., 2013; Dakos et al., 2012; Kéfi et al., 2014; Scheffer et al., 2009). However, it
has been shown that these methods can only detect a change after it has become established (Eason
et al., 2014; Spanbauer et al., 2014). These methods are also only useful for univariate analyses
in simple systems, and they tend not to be effective in community-level multivariate systems
(Spanbauer et al., 2014). It has also been observed that not all systems exhibit critical slowing
down prior to a change (Dakos et al., 2015) making this method less robust under certain

conditions. There has been an increase in the development of methods to try and detect these
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changes based on these theories as the need for this type of analysis is increasing due to the
presently changing climate (Dakos et al., 2015; Scheffer et al., 2012; Streeter and Dugmore,
2013). Unfortunately, environmental systems are complex (multivariate) and tend to respond non-

linearly to climactic forces acting upon them.

Fisher Information “is a measure of the information present in a dataset being used to fit
an unknown parameter” (Eason et al., 2014, p. 773) and a measure of dynamic order (Fath et al.,
2003; Mayer et al., 2006) or how much a system varies between perfect order or perfect disorder
(Eason et al., 2014; Eason et al., 2016). Perfect disorder is when there is the same probability of
measurements being in any state and perfect order is when measurements are consistently in the
same state within natural variation (Eason et al., 2014). In analysing FI results several trends can
occur. If FI is steadily decreasing the system is said to be losing dynamic order and the system is
changing more quickly. Increasing FI results in a system that is becoming more ordered and stable
while a sharp decrease between states can signify a regime shift (Ahmad et al., 2016; Eason et al.,

2014). The method by which FI is employed is outlined in Chapter 3.

Fisher Information have been predominantly used for human recorded time-series data
and applied to ecosystem management practices (Cabezas et al., 2010; Eason et al., 2016) and
have been little used in palaeoecological analysis. Fisher Information is slowly making its way
from ecology into palacoecological literature to allow for analysis of longer timescales.
Traditionally, in palacoenvironmental research, constrained cluster analysis (CONISS) is
employed to define changes in community composition (Grimm, 1987), and provides a point at
which one set of observations is different from the next. However, this is the point at which things
have already changed. The data from the three study lochs of this research will be used to explore
the applicability and usefulness of Fisher Information and how it relates to CONSIS to explore

changes in palacoenvironmental data.

2.6. Summary

The Scottish Northern Isles are an ideal region to study the nature and timing of climatic
changes in the North Atlantic. The islands are strongly influenced by the North Atlantic which
influences both terrestrial and aquatic ecology (Ottersen et al., 2001). Despite the differing
geology, Orkney and Shetland are considered in the same climatic region. Regardless of being
made up of small islands, there is a heterogeneity of their landscapes, and therefore, there will
most likely be differences in their response to changing climate. This study will determine the
synchroneity of proxies representing terrestrial record (pollen), the catchment (u-XRF) and
aquatic record (diatoms) on Shetland and Orkney and to determine if there are subtle differences

in the ecological response of the study lochs and surrounding catchments on these two
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archipelagos. It has been demonstrated that proxy records other than pollen (such as macrofossils
and molluscs) are sparse on Orkney and Shetland and have been used as supplemental data against
the main conclusions developed though pollen analysis. However, the nature of terrestrial
vegetation, especially in long-lived tree species, produces an inherent lag in their responses to
climatic change and, therefore, may not show up in the palaeoenvironmental record until decades
after the change. Generalizations regarding the rate and timing of changes observed have also

been made which tend to be oversimplified in these instances (Farrell et al., 2012).

There is also a lack of information regarding the nature and timing of changes from the
last glaciation through the Holocene from the limited use of proxies that respond more rapidly to
changes in the environment (such as diatoms) and therefore, studying aquatic proxies along with
terrestrial and geochemical proxies at a higher resolution will provide a record of change at a
higher temporal scale than previously studied in this area. This study will highlight the
asynchronous nature of some of these changes and help to answer the research questions posed
in section 1.2. This type of analysis will also allow for the detection of tipping points and regime
shifts of the aquatic communities, especially ones that are at their limit of their optimal habitat.
By studying these proxies (diatoms, geochemistry and pollen) more robust inferences can be made
regarding the synchronous or asynchronous nature of climate change across Shetland and Orkney

along with the North Atlantic region.
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3. Methodology

This chapter will outline the methods and rationale used in this study to address the
research questions outlined in Chapter 1. This investigation used pollen and diatom analysis along
with physical and chemical sediment characteristics to explore terrestrial and aquatic changes
through time. The chapter will begin with outlining the site selection and field techniques and
then discuss laboratory theory and methodology concerning geochemical analysis and
chronology. Following that, theory and methodology for diatom and pollen analysis will be

discussed. The chapter will conclude with an explanation of the data analysis and presentation.

3.1. Site Selection & Field Methods

The rationale for studying the Northern Scottish Islands is provided in Chapter 2. Two
lochs were selected from Shetland and one loch from Orkney based on the availability of
continuous sediment sequences that extended into the Lateglacial (> ¢. 14,000 cal BP) to allow
for high-resolution sampling of the full core length. The lochs also needed to be accessible, and
with limited fluvial inputs to avoid transport of pollen and diatoms from the wider hydrological
catchment. On Shetland, the only suitable lakes for this study were located in the southern portion
of the Mainland. Lochs in the northern portion of the Shetland Islands consistently did not have
sediment profiles that continued into the Lateglacial (based on the lack of glacial clays and the
inability to core past an impenetrable layer). These criteria for study sites were found in Loch of
Sabiston Orkney, which is located on the northwest side of Mainland (Fig. 3.1). Despite repeated

attempts to find a suitable loch on Shetland with both a Holocene and Lateglacial sequence, two
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lochs were chosen to cover this timeframe. Loch of Clumlie, located in the south of Mainland
Shetland has a complete Lateglacial sequence, however, field observations determined drying out
and possible hiatus in the top most portion of the core. Loch of Grimsetter, from the island of
Bressay (Fig. 3.1), provides a Holocene record for Shetland with no evidence of a Lateglacial

sequence. Specific details regarding the study lochs and site locations are provided in Chapter 4.

3*W 2°W 1°W

North Atlantic

60°N- F60°N

O
20

~ Fair Isle

Loch of
Sabiston-

59°N+ r59°N

North Sea

[ = = m——
0 510 20 30 40

2°W 1°W

Figure 3.1 The locations of the three study lochs on Shetland and Orkney used in this study.
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Preliminary cores were taken with a 1-m long (5-cm diameter) Dutch gouge across the
loch from a small inflatable boat to determine the suitability of the sediment based on the presence
of Lateglacial bluish-grey clays and silts. After the deepest sediment area was identified, a small
raft was anchored over the coring site, (Fig. 3.2). A 1-m long Russian corer with a diameter of 75
mm was used to sample the sediment within the lochs until an impenetrable layer or bottom was
reached. The core was sampled in 1-m sections with a 10-cm overlap to ensure a continuous
record was recovered. Photographs were taken of the core sections in the field prior to being
wrapped with polythene Layflat tubing, and returned to the University of Stirling and stored at a
constant 4°C to reduce microbial activity and to retain moisture. At the Shetland sites, a gravity
corer was used (core length = 50 cm, inner core diameter = 10 cm) to sample the topmost sediment
of'the profile due to insufficient sediment consolidation. The gravity cores were sectioned on site
at 1-cm intervals using a vertical extruder, placed in labelled zip-lock bags, and then stored at a
constant 4°C on return to the University of Stirling. This step was not required for Loch of

Sabiston as well-consolidated peat covered the older lake sediment.

Figure 3.2 Example of the raft set up in the middle of the loch from Loch of Grimsetter, Bressay,

Shetland. The red arrow points to location of the coring raft.
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3.2. Geochemical Analysis

3.2.1.Sediment Characteristics and Loss on ignition (LOIss)

The core stratigraphy was described and the results were used to produce a sediment
profile for all the biostratigraphical figures in this study. Loss on ignition (LOIss0) was used to
estimate organic matter (organic carbon) content of lake sediments (Heiri et al., 2001) following
the procedure outlined in Dean (1974). Samples for Sabiston and Clumlie were taken at 1-cm
contiguous intervals along the length of the cores while Loch of Grimsetter was sampled at 2-cm
contiguous intervals. The samples were dried at 105 °C to remove moisture, cooled and weighed.
Next, the samples were heated to 550 °C for 4 hours to remove organic carbon, cooled, and

weighed. The equation used is as follows (Boyle, 2003):

Weight percent organic matter = 100 (weight at 105 °C — weight at 550 °C)

weight at 105 °C

The results from analysing LOI can provide information on changes in productivity in
the lake, which in turn can be used to determine warmer or colder periods and can signify changes
occurring in the catchment along with other proxy data. It is accepted that the accuracy of LOI
measurements of samples that contain less than 10 % may be affected and organic carbon

underestimated (Mackereth, 1966).

3.2.2.micro-XRF

The micro x-ray fluorescence (u-XRF) core scanner uses x-radiation to cause samples to
emit fluorescence energy that is specific to certain elements and is commonly used in analysing
the composition of rock and sediment cores for paleo-environmental analysis (Weltje and
Tjallingii, 2008). Presently, it has not been used to support palacoecological studies on Shetland
or Orkney. However, wet chemical analysis has been completed for Dallican Water (Bennett et
al., 1992) and Gunnister (Bennett et al., 1993) at a low resolution. The u-XRF scanning for
elemental analysis provides a rapid elemental assessment of the cores, which has been used to
support interpretations based on the analysis of other proxies, along with providing information

concerning tephra layers.

The chemical composition of lake sediments can provide information on the processes
occurring in the catchment such as glacial advance and retreat, weathering, and erosion events
which can be explained by climatic variability, seismic activity, redox changes, and anthropogenic
changes such as pollution, agriculture and deforestation (Davies et al., 2015). The cores taken in
lake sediment studies provide an ideal records of long term environmental changes as they can

provide a continuous record of the lake and catchment. Originally, Mackereth (1966) outlined
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steps for interpreting geochemical analysis of sediment profiles and this was followed up by
Engstrom and Wright (1984) with a comprehensive review of the development of the science
since 1966 and determined that chemical stratigraphy is best used as a supporting technique along

with biological methods such as pollen and diatoms as chemical changes are site specific.

The elements used for this study provide information regarding the lithogenic elements,
grain size changes along with inferences regarding the biological components of the sediment.
For example, the elements Al, Si, K, Ti, Fe, Rb, and Zr are all geochemically stable and are
associated with lithogenic inputs and clastic sediments. Ratios such as Rb/K can indicate
weathering regimes since K is soluble and Rb is less mobile during weathering (Davies et al.,
2015). Changes in grain size can also be determined with the relationship between Fe/Ti where
an increase in the ratio equates to smaller grain size and Ti/K, where an increase in this ratio
equates to larger grain size, due to Ti being associated with silts and allochthonous input (Davies
et al., 2015). The ratio Zr/Rb also has been associated with changes in grain size as Rb absorbs to

clay material while Zr is more abundant in silts.

The results from p-XRF analysis can also be used to infer changes in the biological
component of the sediment. For example, Si/Ti can be used to estimate biogenic silica from
diatoms, chrysophytes and sponges with higher values indicating high productivity (Brown,
2015). Organic content of the sediment can also be determined by useding the ratio of incoherent
(inc) to coherent (coh) scattering. This scatter is produced when the X-ray interacts with elemental
carbon and water (inc) and water (coh) and therefore a higher value indicates more organic content
in the sediment. Br can also be associated with organic content and productivity of sediment as it
forms strong covalent bonds with organic molecules (Gilfedder et al., 2011), however it can also
beassociated with marine storminess in some instances (Davies et al., 2015). Ca/Ti can indicate
calcium derived from autogenic sources in the lake such as evaporative concentration or biogenic
production from vegetation (Davies et al., 2015). Finally, high Fe/Mn values can indicate
anaerobic conditions at the sediment — water interface due to stratification of the water column or
the result of decay from biological productivity in the lake as Fe and Mn are reduced with Mn

being more affected (Davies et al., 2015).

The cores from the three study lochs were non-destructively analysed for a set of elements
(Al, Si, P, S, Cl, Ar, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Se, Br, Rb, Sr, Zr, Ba, Ce, and Pb) using
a u-XRF Itrax™ core scanner (Croudace et al., 2006) with a Bartington magnetic susceptibility
(MS) instrument at Aberystwyth University. The cores were prepared by removing the top layer
of the exposed surface sediment to remove any contamination and then covered with a 1.5 um
film to protect the core and reduce drying during the scanning process. The settings used for each
ofthe cores are listed in Table 3.1. Due to the different sediment types found in Loch of Sabiston,

different settings were used for the top core, which consisted primarily of peat. There was an issue
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with the core 90-190 cm from Loch of Sabiston for which the XRF current and voltage values
were switched resulting in an intensity difference in the profile. The u-XRF data for this section

of the core have been corrected as the relationship between elements is consistent.

Prior to the p-XRF scan, the core was photographed and a radiographic image was
produced, and MS was measured continuously at a resolution of 2 mm. After scanning all the core
sections, fine-tuning of the alignment between the sections was attained by comparing the p-XRF
elemental results of the overlapping sections and determining suitable tie-in points (distinctive
peaks and trends) to produce a continuous sediment record. These tie-in points were then used to

align the data for all other proxies.

Table 3.1 The parameters used for the p-XRF scanning of the cores from each of the study lochs.
The bold values highlight differences from the standard settings.

Radiograph XRF

Loch/ Interval | (voltage/current/exp time, step size) (exp time /voltage/current,
step size)

Loch of Sabiston
0-100 cm 60 kV/ 30 mA/ 200 ms, 500 um step 10 sec/ 30kV/ 30mA, 500 pm step
90-190 cm 60 kV/ 50 mA/ 350 ms, 200 um step 10 sec/ 50kV/ 30mA, 200 pm step
180-280 cm 60 kV/ 50 mA/ 350 ms, 200 pm step 10 sec/ 30kV/ 50mA, 200 um step
270-370 cm 60 kV/ 50 mA/ 350 ms, 200 um step 10 sec/ 30kV/ 50mA, 200 pm step
342-432 cm 60 kV/ 50 mA/ 350 ms, 200 um step 10 sec/ 30kV/ 50mA, 200 pm step
Ié(l)lilllqﬁi iy | O0KV/50mA/ 100 ms, 200 umstep | 10 sec/ 30KV/ 50mA, 200 um step
Loch of
Grimsetter 60 kV/ 50 mA/ 100 ms, 200 um step 10 sec/ 30kV/ 50mA, 500 pm step
(all)

3.3. Chronology

3.3.1.Tephrochronology

Tephra is comprised of several different pyroclastic materials ranging in size and can be
made up of pieces of rock, glass material and crystals of felsic and mafic (Turney and Lowe,
2001). This material ejected during volcanic eruptions presents a distinct layer in the sediment
record and can be correlated by using dating and geochemical methods to volcanic events thus,
providing a more robust dating profile of the core. This is possible due to the unique geochemical
fingerprints of various eruptions determined by the location and timing of the emitting volcanos.
In the North Atlantic, most tephra found originate from eruptions from Iceland (Dugmore, 1989),
and many are now well known and well dated, such as Vedde ash layer which has been found
throughout Scotland, Northern England and Norway (Lane et al., 2012). These well described

layers can then be used as isochrones when comparing records.

70



Chapter 3 Methods

Once the depth of tephra layers have been identified, the shards were then separated from
the sediment using the protocol for acid digestion for diatoms using a 50:50 molar ratio of
sulphuric to nitric acid (Riihland et al., 1999) to remove organic content. Tephra shards were
mounted on a conductive phenolic resin stubs, and polished for geochemical analysis using
Wavelength-Dispersive X-Ray Spectroscopy Electron Probe Micro-Analyser (WDS EPMA)
(CAMECA SX-100) at the Tephra Analysis Unit (TAU), at the School of Geosciences, University
of Edinburgh. An accelerating voltage of 15 kV, with a beam current of 2 nA for Na, Al, Si, Fe,
K, Ca and Mg, and a beam current of 80 nA for F, Mn, Cl, P, S, and Ti with an operational beam
diameter of 8.8 um was used for this analysis (Hayward, 2012). The results were then compared
to the elemental ratios of known and well-dated tephra layers for comparison from datasets
located on the Tephrabase website (http://www.tephrabase.org/, accessed May 19, 2016; Newton
et al. 2007) and corresponding dates found in relevant literature. The results were then used to
constrain the age-depth model along with the Accelerator Mass Spectrometry (AMS) '*C

radiocarbon dates to provide a robust chronology for the three study lochs.

3.3.2.AMS Radiocarbon Dating

4C AMS assay was carried out at the Natural Environment Research Council NERC
Radiocarbon Facility in East Kilbride, UK. Samples were selected from each of the cores to
constrain specific events in the stratigraphy such as a change in sediment or a notable change in
the pollen or diatom records. Samples were pre-treated with 2 M HCI (to remove carbonates) at
80°C for 8h and then combusted by quartz tube to release CO». The samples from Loch of Clumlie
and Loch of Sabiston were treated by an acid wash with 2 M HCl and the Loch of Grimsetter was
treated using an acid-alkali-acid (AAA) pre-treatment to remove potential charcoal and other
contaminants from the bulk sample. The AAA pre-treatment also removes any contamination due
to secondary organic acids. The samples were then homogenized, combusted and the resulting

CO; recovered and then converted to graphite by Fe/Zn reduction.

The resulting '*C dates were calibrated using the computer program CALIB 7.1 with the
IntCal13 calibration curve (Stuiver et al., 2013) and an age depth model for each study loch was
developed using R ver. 3.3.2 (R Development Core Team, 2016) and the package Clam (Blaauw,
2010) with all ages are reported in cal BP. Clam employs a classical approach to age-depth
modelling which takes into account the multimodal and asymmetric nature of calibrated dates
(Blaauw, 2010) and was chosen due in part to the limited dating obtained for each core, and it
also handles changes in sediment composition and hiatuses more effectively than Bayesian
approaches. Clam uses Monte Carlo sampling (repeated random sampling) to determine the

probability distribution of a given age at a given depth and then each of these dates in the core are
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sampled together over many iterations which result in point-age estimates and a curve drawn
through these points to produce an age-depth model of calendar age estimates. The dates presented

are a best fit date determined by a weighted mean (Blaauw, 2010).

There may be issues with AMS radiocarbon results from the Loch of Sabiston, Orkney
due to potential hard water effects (input of carbon from older sources that can contaminate the
samples). A hard water effect has been observed at Quoyloo Meadow (Bunting, 1994; Keatinge
and Dickson, 1979) which was sampled from an area close to the Loch of Sabiston. Studies on
Orkney have used tephrochronology, along with correlating dated sequences from nearby studies
using pollen (Keatinge and Dickson, 1979; Moar, 1969) to produce feasible age-depth models.
Using present-day techniques including Bayesian statistics coupled with tephra should provide

robust age-depth models for all the study sites.

3.4. Diatom Analysis

Diatoms are unicellular eukaryotic algae (Division Bacillariophyta) and consist of two
thecae (valves) and a girdle band (Battarbee et al., 2001). Diatom analysis was chosen as a proxy
for environmental change in this study owing to their sensitivity to environmental changes due
to: 1) their being highly diverse and ubiquitous; 2) their abundance in most aquatic systems (from
occasional wetting to well-established water bodies); 3) their short generation times (Mann,
1999); 4) their ability to rapidly colonize new habitats (Heegaard et al., 2006); 6) their siliceous
cell wall means they are often well preserved in the sediments of lakes, oceans, rivers and other
aquatic environments; and 7) their microscopic size allows for high resolution environmental
reconstructions from sediment cores (Smol and Stoermer, 2010). Generally, the diatom species
found in each location are representative of that habitat’s characteristics (i.e. physical, chemical
and biological conditions) and thus the assemblage will change over time, reflecting changes

occurring in the aquatic environment.

Diatom species assemblages vary by water depth and its associated aquatic characteristics
(i.e. turbidity, dissolved organic carbon, and the extinction coefficient of light) and can provide
information on the depth and stratification of a waterbody (Kingsbury et al., 2012). Planktonic
species spend their time in the water column while benthic species are associated with various
substrates (i.e. epiphytic = plants, epilithic = rocks, episammic = sand, and epipelon = mud) (Smol
and Stoermer, 2010). There are also some species considered tychoplantonic, which are
considered partly benthic and partly planktonic, spending time in the water column (Smol and
Stoermer, 2010). Light transmission is another important factor when considering the effects of
ice and snow on a loch. Ice cover alone will allow some light to penetrate allowing for algal

growth, however ice and snow cover will obstruct light and impede algal growth. Prolonged ice
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and/or snow cover will change productivity, species composition, and lake chemistry, and
therefore will be recorded in the palacoecological record (Douglas et al., 1994; Douglas and Smol,

1999; Smol, 1988).

Species assemblages also correlate strongly with in lake variables such as salinity, pH or
nutrients, and numerous studies have exploited these relationships to reconstruct past
environments and to infer changes in aquatic ecosystems (Battarbee et al 2001). Examples of
these applications include studies that track changes in ionic concentration of lakes to determine
drought events (i.e. Fritz, 1993; Laird et al., 1996); using diatoms to determine changes in
acidification due to atmospheric contaminants and subsequent recovery (i.e. Battarbee et al.,
1999; Ginn et al., 2007; Jones et al., 1989); and in determining changes in eutrophication and
nutrient input in lake systems (i.e. Bennion et al., 2004; Bennion and Simpson, 2011; Moos et al.,

2009; Wiik et al., 2015b)

Diatoms have also been used to infer changes in the terrestrial environment. For example,
the movement of treelines across a landscape over time have been inferred using diatom
assemblages (Rithland and Smol, 2002). There have been some attempt at developing models to
reconstruct temperature changes using diatom species composition, however many other factors
of the aquatic environment are affected by temperature (such as chemical processes, ice cover,
depth of stratification, pH, and nutrient cycling) and determining a direct relationship between
diatom species assemblage change and temperature is problematic (Anderson, 2000). Despite
diatoms not being a robust indicator of temperature fluctuations in reconstructions, their response
to changing temperature can be indirect, especially during high magnitude changes in the
Lateglacial where cold events which caused persistent ice and snow cover or reduced productivity
of macrophytes would limit available habitat for certain benthic algae, thus possibly reducing

species diversity (K. Riihland et al., 2003).

When using proxies such as diatoms, several limitations or concerns should be addressed.
Dissolution and poor preservation can cause bias in the results as different species are affected
differently; some are quite robust with heavy silica frustules whereas other species are more
delicate (Smol and Stoermer, 2010). Poor preservation may also occur due to variations in pH,
the concentration of available silica in the environment, and sedimentation rates. Typically,
diatoms preserve best in cold soft water in northern latitudes. However, determining whether the
dissolution is constant or if it changed over time can provide information about the environment
(Smol et al., 2001). Taxonomic inconsistencies between researchers may result in bias in the
counting and identification of the diatom species. There is also the potential for the
misidentification of diatom species in large calibration datasets that are combined from different
laboratories along with the application of these models. This can be avoided by using calibration

datasets that contain photomicrographs to allow for comparison of the most common species to
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maintain taxonomic consistency (K. M. Riihland et al., 2003). For this study, diatoms are used as
a proxy for climate reconstruction and for determining the environmental landscape throughout
the LGM and early Holocene in the catchment area of the study lochs. To reduce taxonomic bias,
the identification of species reaching a proportion greater than 3% in the assemblage was

validated by comparing to published authorities and by another researcher.

Diatoms were prepared from 0.2 — 0.3 g of sediment sub-sampled from 0.5 cm sections
of the cores. The interval at which each core was sampled was dependent on the loch and the
accumulation rate of the sediment. Loch of Sabiston was sampled every 4 cm, Loch of Clumlie
every 2 cm and Loch of Grimsetter every 8 cm. Due to the high amount of calcium carbonate
(CaCOs) (marl) deposition in Loch of Sabiston, 10% HCI was used as a pre-treatment to remove
CaCQO;s; as it causes a reaction with the sulphuric acid in the following digestion and produces
gypsum which can form a coating on the diatoms making identification difficult (Riihland et al.,
1999). The samples were then washed with distilled water several times before beginning the
digestion process. After rinsing the samples with distilled water to remove the 10% HCI, 15 ml
of a nitric acid (HNO3) / sulphuric acid (H2SO4) mixture (1:1 molar ratio) was added to remove
organic matter. The samples were left overnight and afterwards heated in a boiling water bath for
at least one hour to accelerate the digestion process. The samples were then left for 24 hours to
allow the fine sediment to settle, then rinsed with distilled water, and allowed to settle for 24
hours. This was repeated until a neutral pH was reached. This method is preferred to centrifuging

the samples between each rinse to avoid damaging the diatom frustules (Rithland et al., 1999).

Microspheres (7000 series copolymer microsphere solution, 6 pm, concentration =
8.43x10° spheres ml™") were added (Battarbee et al., 2001) to allow for the calculation of diatom
concentrations (Battarbee and Kneen, 1982). Known amounts of the rinsed sample slurries were
then pipetted onto coverslips, dried, and mounted onto glass microscope slides using Naphrax
(refractive index: 1.7). For each diatom sample, a minimum of 400 valves were counted and
identified along full transects across the slide using a compound light microscope (Olympus
BX43) under phase contrast with polarized optics under oil immersion (1000X magnification) to
the highest taxonomic level possible using standard taxonomic references (Carter and Bailey-
Watts, 1981; Krammer and Lange-Bertalot, 1991a, 1991b, 1988, 1986). Full diatom names that
occur in the text for each of the study lochs are listed in Appendix A along with the naming

authority.

A consideration specific to this study is that this region has been heavily influenced by
anthropogenic activities for most of the Holocene. Similar studies have been carried out in other
northern areas such as the Canadian Arctic (Michelutti et al., 2013), Greenland (Bichet et al.,
2013; Perren et al., 2012), Denmark (Bradshaw et al., 2005), and Norfolk, UK (Fritz, 1989) which

determined agricultural and anthropogenic impact on the catchment area of lakes. Changes in
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nutrients such as phosphorous, nitrogen and sulphur (eutrophication) have been used to indicate
anthropogenic changes due to farming and animal husbandry and, therefore, were considered in
this research. As the timeframe covered in this research is from the LGM to the early Holocene,
it is unlikely that human influences have affected the climatic/ environmental responses identified

during the LGIT and early Holocene on Shetland and Orkney.

3.5. Pollen Analysis

The study of palynology uses pollen, spores, and other palynomorphs to reconstruct past
terrestrial environments and to track changes in vegetation due to human impact or natural
processes. Since it is abundant in sediment, easily identifiable, and preserves well under anaerobic
conditions such as in lakes, bogs, and fens it is a good indicator for the study of past terrestrial
environments (Bennett and Willis, 2001; Birks and Birks, 1980). Pollen is produced in abundance
from various trees, shrubs, and herbs, and deposited over the surrounding landscape in a ‘rain’
that is assumed to fall uniformly over a given area. This feature allows for the assumption that the
assemblage is a uniform representation of the vegetation of the area (Birks and Birks, 1980).
Pollen also possess a cell wall that contains sporopollenin that is resistant to degradation, which
allows the grain to undergo the chemical processes needed for pollen analysis (Smol et al., 2001;
Stolze et al., 2013). Fungal spores and charcoal are also preserved when preparing pollen, which

can provide additional information regarding the terrestrial environment.

Palynological studies have provided essential information regarding the plants present in
an area of interest and have could track changes in vegetation through time. However, one of the
caveats of pollen analysis is that it is difficult to quantify community structure and ecological
scales based on these records. Pollen analysis provides information on the community present
near the lake. Trees produce pollen at different volumes along with different morphological
features, which causes dispersal of pollen to be species-dependant. There have been attempts to
provide this information (Birks et al., 2016; Fyfe et al., 2013) and models have been developed
and used successfully in quantifying these processes (Marquer et al., 2014). This information,
along with the state of preservation of pollen grains down-core allows for interpretations
regarding the vegetation community structure. There is evidence that pollen can travel long
distances and might not necessarily represent the local site vegetation, for example pollen may
have been blown from the mainland to Orkney (Birnie, 2000; Bunting, 1996). However, there
have been advances in pollen dispersal modelling that incorporate species specific pollen
dispersal distances to get a better understanding of the distances that pollen can travel, and
therefore, a better indication of the actual community that is being described (Fyfe et al., 2013;

Sugita, 1994). This method was applied to the three lochs in this study and it was found that the
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relevant source areas for pollen of 600 - 800 m (based on the values given in Sugita (1994))
incorporated the area of the lake catchment therefore, discussing the pollen results in terms of

catchment processes was appropriate.

Pollen was chosen as a proxy for environmental change in this study to provide a
terrestrial record of catchment change to compare to the results of the diatom and p-XRF analyses
from each of the three study lochs. Pollen analysis has been the most common method of
determining environmental changes in the Northern Isles to date. Therefore, its undertaking here
will provide new records from three previously unstudied sites which will allow for a comparison
to other records to be made and to increase the body of knowledge of environmental and climatic

change during the LGIT and the early Holocene on Shetland and Orkney.

Samples of 1 cm® were taken every 4 cm of the core for Loch of Sabiston and Loch of
Clumlie, and every 12 cm for Loch of Grimsetter for pollen analysis. Tablets containing a known
quantity of Lycopodium clavatum spores (12540 spores/ tablet) were added to the samples to
calculate pollen concentrations (Stockmarr, 1971). Samples were then chemically treated with
HCl to first remove any CaCQOs. Next the samples were treated with NaOH 10% w/v to remove
humic acids and sieved to concentrate the pollen grains following the method presented in (Moore
et al. 1991). Hydrofluoric acid was added to the samples to remove any obstructing silica content
and samples heated in a boiling water bath to accelerate the digestion. Lastly, the pollen samples
were treated with acetolysis solution (1:9 ratio of concentrated sulphuric acid to acetic anhydride)
to remove polysaccharides from the surface of the pollen grains making them easier to view.
Pollen was placed in silicone oil after being dehydrated with tertiary butyl alcohol for analysis.
An aliquot of prepared pollen was then placed on a slide with a cover slip anchored at the four
corners using nail varnish to allow for the movement of the pollen grains during analysis. Pollen
was counted using a light microscope (Olympus BX43) at 400X magnification in full transects
across the slide and identified using the key in Moore et al. (1991) along with the reference
collection at the University of Stirling. Nomenclature follows Bennett et al. (1994). Pollen was
counted to a sum of 300 land pollen grains and values are expressed as percentage of total land

pollen (TLP).

The condition of the pollen grains was also observed and graded based on five
hierarchical categories (well preserved, broken, crumpled, corroded, and degraded, Fig 3.3
(Cushing, 1967; Tipping, 1987) and is presented as a percentage of TLP. This information can
provide evidence of the processes that the pollen grains underwent after release either mechanical,
biological, or chemical (Havinga 1984). For example, pollen grains found in a wet, acidic
anaerobic environment such as a peat bogs or lake sediments tend to be in good condition while
broken and crumpled are considered mechanical degradation attributed to changes in temperature

and moisture (Campbell, 1999) or associated with in washed minerogenic sediment (Birks and

76



Chapter 3 Methods

Birks, 1980; Tipping, 1987). Biological or chemical changes in pollen grains results in corroded
and degraded pollen and can occur in aerobic conditions and chemical oxidation along with the

actions of bacteria and fungi present in the sediment (Havinga 1967, 1984).

Normal pollen

Mechanical deterioration
Broken pollen

Biochemical deterioration

uoneloualap buiseanu

Figure 3.3 Illustration of the various conditions of pollen grains used to classify pollen
preservation. Severity of each example increases from left to right, top to bottom (from Mansilla
2015).
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3.6. Data Analysis

The diatom diagrams were plotted using the Tiliagraph function in Tilia version 2.02
(Grimm, 1987), and the species were organized by their weighted-average optimum to core-depth
(e.g. Birks et al. 1990). For the summary diagrams, diatom taxa, which occurred at greater than 3
percent in at least one of the surface samples were used, and the remaining were combined into
genera or ecological groups in each of the lochs. Pollen diagrams were also produced with Tilia
version 2.02 and presented as percentages of Total Land Pollen (TLP), pollen concentrations and
pollen preservation. To facilitate the description of the pollen and diatom assemblages and to
determine points at which the assemblage significantly changes in the record, assemblage zones
for both diatoms and pollen were defined by a constrained cluster analysis sum of squares
(CONISS within the Tilia program (Grimm, 1987) using a squared-chord distance as a measure
of dissimilarity. The threshold for defining zones was completed at the highest possible levels
(total sum of squares), to define only the largest separations in assemblages along core-depth in
each of the study lakes. The significance and strength of the CONISS zones were determined by
the results from broken-stick and optimal splitting sum-of-squares zoning methods (Bennett,

1996).

The following data analyses were performed with R ver. 3.3.0 (R Development Core
Team, 2016) and the packages Rioja and Vegan (Juggins, 2015; Oksanen et al., 2015) to get a
better understanding of how the species assemblage has changed over time in response to
ecological stressors. To simplify the patterns of change in the species assemblages in each lake
according to sediment depth, a principle components analysis (PCA) was run based on all species
that achieved at least 1% relative abundance. Species diversity measures used in this study include
richness (rarefied), Hill’s N2; a metric of species evenness (Hill, 2013), and Bray-Curtis similarity
coefficient (Bray and Curtis, 1957; Clarke et al., 2006) to represent the species turnover as a
function of core-depth. Estimates of total number of diatom species were based on all the counts
from each of the lakes after counts were standardized by rarefaction to a valve count of 400 using
the package Vegan. The evaluation of species richness (total number of species) and species
evenness was carried out separately and not as an integrated diversity index due to the inherent
loss of information that can occur with using such indices (James and Rathbun, 1981), especially
with assemblages that consist of a few dominant species and many rare species. The perceived
patterns reflected in an integrated index may in fact be an artefact of sedimentation rates in

sedimentation studies (Smol, 1981).
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3.6.1. Tipping points, and critical transitions

Recently, methods that use multivariate and time-series modelling have been developed
to account for the dynamic interactions that occur at the community level. Fisher Information (FI)
developed by Ronald Fisher as a measure of interdeterminancy is one such method and is used to
measure order in a system (Ahmad et al., 2016; Karunanithi et al., 2008). Eason et al. (2014)
refined this method which takes into consideration the multivariate nature of ecological
communities and the resulting non-linear responses that can occur with a change in the
assemblage. It also recognizes that abrupt changes may be the result of sudden tipping points and

that prolonged instability can also instigate a regime shift (Spanbauer et al., 2014).

Fisher Information “is a measure of the information present in a dataset being used to fit
an unknown parameter” (Eason et al., 2014, p. 773) and a measure of dynamic order (Fath et al.,
2003; Mayer et al., 2006) or how much a system varies between perfect order or perfect disorder
(Eason et al., 2014; Eason et al., 2016). Perfect disorder is when there is the same probability of
measurements being in any state and perfect order is when measurements are consistently in the
same state within natural variation (Eason et al., 2014). In analysing FI results several trends can
occur. If FI is steadily decreasing the system is said to be losing dynamic order and the system is
changing more quickly. Increasing FI results in a system that is becoming more ordered and stable
while a sharp decrease between states can signify a regime shift (Ahmad et al., 2016; Eason et al.,

2014).

Regime shifts in ecological systems are the result of long term changes in ecological
communities that result in a change in status such as the changes that occur during eutrophication
(Karunanithi et al., 2008). The theory is that a system will have natural variability and fluctuate
within this variation when stable resulting in a stable FI. If the system is acted on by an external
force, there will be a loss of order and the FI will decrease signalling change in the system while
an increase FI would indicate that the system is becoming more ordered. Finally, a sharp decrease

will indicate a possible regime shift in the system (Ahmad et al., 2016; Eason et al., 2014).

For this study, FI will be calculated to detect patterns in stability in the diatom, pollen
and geochemical record and to determine what was occurring in the record prior to a shift in
assemblage denoted by CONISS using the methods put forward by Spanbauer et al. (2014). For
the diatom and pollen analysis, species/ groups achieving a proportion greater than 1% was used.
The pu-XRF was corrected using inc + coh prior to analysis. For each proxy, a window of analysis
had to be chosen along with step size. Diatom and pollen FI was calculated with a window size
of two with a step size of one. The geochemical data, which is more continuous than either the
pollen or diatom records, was sampled with a window size of four and a step size of one. In most

of the examples given for this method, the time steps are uniform (e.g. every 10 years), however
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with the nature of palaecoenvironmental data and the different sedimentation rates that can occur

in a single core, this research will also look at how FI handles an irregular sampling regime.

3.7. Summary

Using multiple palacoecological and geochemical indicators as proxies for the terrestrial,
catchment, and aquatic records will provide more robust environmental and climatic
reconstructions then what has been done in the past. The combination of the dating techniques
outlined will ensure a reliable chronological framework, especially due to the underlying problem
of'old carbon. This combination of techniques will provide novel information regarding the timing
of palaeoenvironmental change in the Northern Isles and how they relate to the surrounding
region. In the following chapters, these techniques have been applied to three study lochs, one
from Orkney (Loch of Sabiston) and two from Shetland (Loch of Clumlie and Loch of
Grimsetter), which when combined, will cover the Lateglacial and early Holocene for the two
island archipelagos. The data analysis chosen for this research will allow for a quantitative
investigation of how the terrestrial and aquatic environments have changed in the Northern Isles
from deglaciation through the early Holocene and to determine the synchroneity or asynchrony
of these changes within and among the islands groups. The ecological characteristics will provide
information on how species assemblage change in relation to each other over time while

computing Fisher Information will provide information on the trajectory of those changes.
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4. Results

This chapter covers the results from the three study lochs; Loch of Sabiston on Orkney,
and Loch of Clumlie and Loch of Grimsetter on Shetland, along with the application of Fisher
Information to the datasets of the three proxies. A comprehensive analysis of the results will be
presented in Chapter 5, incorporating these results within the wider context of their respective

archipelagos, the Northern Isles, and the North Atlantic region.

4.1. Loch of Sabiston Results

4.1.1.Study Area

The archipelago of Orkney is located 16 km north of Caithness, mainland Scotland, and
is made up of about 90 islands, 14 of which are inhabited (Fig. 4.1.1). The topography of Orkney
is one of low-lying areas and moderately sloped hills (except for the island of Hoy, which has a
steeper landscape) (Chapter 2.4, Fig. 4.1.1). Loch of Sabiston is a freshwater loch situated in the
northwest of the Mainland Island of Orkney (N 59 04°58.6”, W 001°16” 35.9”, 15m a.s.]) and lies
in a depressed area to the south-west of the Hill of Greenay (Fig. 4.1.2). The loch is currently
shallow and alkaline surrounded by actively farmed land that is used primarily for grazing
(EDINA, 2007) (Fig.4.1.3). Characteristics of the loch at the time of sampling are listed in Table
4.1.1. There is an outflow consisting of a small stream to the west that flows to the Burn of Wrath.
The underlying geology is Old Red Sandstone and the soils consist of non-calcareous, peaty gleys
(Fig. 2.6), along with arable pastures, swamp, and sedge mires with bent fescue grassland (Fig.

4.1.2). Presently, the landscape surrounding the loch is fen peat with multiple ditches dissecting
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it for drainage that date back to the early 1900’s. There is also evidence of a probable crannog

and stepping stones in the loch located at its southern end (RCAHMS, 1946).

0 45 9 18
I kM

Figure 4.1.1 The island archipelago of Orkney, north of mainland Scotland showing the
topography of the area with the inset showing the location of Loch of Sabiston and other
palaeoenvironmental study sites mentioned in the text on Mainland Orkney; (1) Quoyloo Meadow
(Bunting, 1994); (2) Glims Moss (Keatinge and Dickson, 1979); (3) Crudale Meadow (Bunting,
1994) / Yesnaby (Moar, 1969).
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Figure 4.1.2 Land use (EDINA, 2007) around Loch of Sabiston with 10 m contours and the coring

location on Sabiston designated with a red diamond. Inset shows the hydrological catchment area

for Loch of Sabiston (Hughes et al., 2004).

Figure 4.1.3 The present-day view of Loch of Sabiston taken on April 29™ 2014 from the

southeast looking north.
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Table 4.1.1 Present-day characteristics of the Loch of Sabiston (taken June 2012).

Depth (max)
Area
Temperature
Conductivity
Altitude

pH

0.72 m

~ 24 ha
11.9°C
347 pS cm’
27 ma.s.l.
8.18

4.1.2.Sediment Profile

A 432-cm undisturbed core was obtained from the loch (Fig. 4.1.4). The basal sediments
consist of bluish-grey clay that continue to 354 cm. Marl then overlays the basal bluish-grey clays
from 354 — 333 cm. At 333 cm, the sediment deposited switches to a silty clay until 324 cm then
returns to marl deposition until 315 ¢cm. From 315 c¢cm to 305 cm, organic silty-clay deposition
occurs which then changes to bluish-grey clay that lasts until 275 cm. A prolonged period of marl
deposition begins at 275 cm and continues to 98 cm (Fig. 4.1.4, summary Table 4.1.2). There is
evidence of charophytes, a macrophytic algae, throughout the marl sediment along with shells
from freshwater snails of the genus Lymnaea, which are part of a sandy 2-cm shell layer occurring
at 98 cm. Above the shell layer colluvium is deposited from 98 cm to 78 cm followed by a change

in sediment to fen-peat which is then overlain by an organic mud at 20 cm that continues to the

sediment / water interface (0 cm).

Table 4.1.2 Summary of sediment profile from Loch of Sabiston.

Depth (cm) Properties

0-20
20-78
98 -178
98 - 100
100 - 120
120 - 275
275 - 305
305 - 315
315-324
324 - 333
333-354
354 - 432

Organic lacustrine mud

Fen-peat
Colluvium

Sand/ silt layer containing shells of the Lymnaea species

Gradation from marl to organic silt

Cream-coloured marl with fragments of Chara present
Bluish-grey clay / silt

Gradation from marl to organic clay / silt
Cream-coloured marl

Bluish-grey clay / silt

Cream-coloured marl

Bluish-grey clay / silt
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0-100 cm 90-190 cm 180-280 cm 270-370 cm 332-432 cm

Figure 4.1.4 Sediment cores from Loch of Sabiston. The scale on the left indicates 10 cm intervals
and the arrows on each of the cores signal the location of the overlap or tie in point in the final
two cores. The grayscale picture to the left of the cores is an x-radiograph of the core illustrating

the varying densities of the sediment units observed in the cores.

4.1.3.Loss on Ignition (550)

The organic content of the sediment from Loch of Sabiston does not rise above 10 %
throughout the lake sediment portion of the core (from 432 - 100 cm) (Fig. 4.1.5). However, subtle
increases of ~ 2 - 4 % do occur along with the onset of clay deposition at 357, 333 and 315 cm.
From 280 - 120 cm, during marl deposition, organic content fluctuates between 3.16 - 8.74 %

with an average organic content of 4.64 %.

4.1.4.Magnetic Susceptibility

Magnetic susceptibly (MS) was measured continuously every 2 mm for the full length of
the core (Fig. 4.1.5). The higher values of magnetic susceptibility (~15 SI units) at the bottom of
the core (430 - 355 cm) are characteristic of minerogenic input of silty clays into the loch through
erosion due to bank and catchment instability. MS increases during clay/ silt deposition at 370 cm

and 325 cm and including from 315 - 280 cm indicated by the sediment profile (Fig. 4.1.5). The
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MS readings are low in the adjacent marl layers (from 355 - 315 cm) and stay consistently low
through most of the core, except for a peak of 5 SI units at 212 cm and 42 SI units at 292 cm. At
120 cm, there was an increase of MS, which coincides with a change in sediment from marl to

organic silt from more allochthonous inputs into the basin.

4.1.5.Micro-XRF Results

Twenty- five elements were detected using the u-XRF core scanner with an average mean
squared error (MSE) of 3.5. The results of the incoherent (inc) and coherent (coh) scans show that
the moisture and organic content remains stable throughout the core. The inc/coh ratio can also
be used as a proxy for organic content and is consistent with the results of the LOIsso analysis
(Fig. 4.1.5). Each element was normalized to the sum of inc + coh (Davies et al., 2015) to account
for Compton-Rayleigh scattering which reduces the effect of organic content and moisture

variations on the u-XRF profiles (Davies et al., 2015).

Overall, the highest positive correlations (Table 4.1.3) occur between the elements
associated with minerogenic detrital input (K, Fe, Ti, and Rb) while Ca is negatively correlated
due to autochthonous marl deposition. Strontium is positively correlated with calcium as it has a
tendency to combine with carbonate to form SrCOs; and will precipitate out of the water as a
constituent of marl (Davies et al., 2015). Phosphorous also is affected by marl production in that

it is removed from being bioavailable (Wiik et al., 2015b) (Fig. 4.1.5).

Table 4.1.3 Correlation matrix of R-values for select elements from the Loch of Sabiston.

Correlation r-values over 0.75 have been highlighted in bold.

Si K Ca Ti Cr Fe Se
K 0.98 1.00
Ca -0.51 -0.47 1.00
Ti 0.96 0.98 -0.56 1.00
Cr 0.90 0.90 -0.64 0.94 1.00
Fe 0.95 0.97 -0.53 0.97 0.92 1.00
Rb 0.96 0.98 -0.51 0.98 0.93 0.96 0.67
Sr -0.41 -0.36 0.83 -0.45 -0.59 -0.44 -0.70

The relationship between individual elements provides important insights into the
changing sedimentation at the site. The Mn/Ti ratio has a negative correlation with Fe/Mn (Fig.

4.1.6) with increases during the beginning of marl deposition and at 80-20 cm.
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Figure 4.1.5 Lithology, organic matter content (% loss-on-ignition at 550°C (LOlIss0)), magnetic susceptibility and u-XRF geochemistry from Loch of Sabiston. Selected elements from
the pu-XRF scan. Fe, Ti, K and Rb, are associated with various catchment input, Ca is associated with marl deposition and Br is associated with storminess. P and Si are associated with
diatom growth, and the deposition of marl limits P. Zones are based on the constrained cluster analysis. Elements have been corrected for organic and moisture content by dividing the

elemental results by the sum of incoherent and coherent scatter results.
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Physical weathering associated with K/Ti and chemical weathering associated with Rb/Sr
also correlate well with the changes in sedimentation. Physical weathering is associated with marl
deposition while chemical weathering occurs during clay and silt deposition (Fig. 4.1.5). The ratio
Fe/Mn which has been used for determining reducing conditions is high at the base of the core
gradually decreasing until ~ 250 cm where it drops significantly. This is the same point at which
Mn/Ti ratio (proxy for oxic conditions) peaks. At 170 cm, the Ca/Fe ratio indicates that an
increase in iron-based accumulation occurred along with an increase in the Zr/Rb and Zr/Ti ratios,
which may indicate an increase in grain size (Davies et al., 2015) (Fig. 4.1.6). At 210 cm, there is
a reduction in Ca/Fe, Mn/Ti and K/Ti along with a spike in Ti/K which suggests a decrease in
pedogenic inputs, a return to anaerobic conditions, a decrease in physical weathering, and an

increase in grain size (Fig. 4.1.6).

There is also correlation between Fe/Si, K/Al, and Fe/Si ratios with Zr/K, Zr/Rb, and
Zr/Ti. The first three are indicators of fine silt/ clay deposition and physical weathering in the
catchment. These elemental ratios increase at ~ 75 cm while the latter Zr-based ratios decrease at
the same time which are indicative of coarser grain size of the sediment. Ca/Si has been used to
track a change in water temperature (Jouve et al., 2013), which in this core is showing a steady
increase from the base to the top of the core (Davies et al., 2015). Finally, the Br/Ti results, which
can indicate increased salinity or marine influence, are showing peaks throughout the record

(Davies et al., 2015).

4.1.6.Chronology

4.1.7. Tephra Analysis

Two tephra layers were located at 212 ¢cm and 292 c¢m respectively using the peaks found
in the magnetic susceptibility results along with peaks in the Ti/K ratio of the u-XRF results.
Eleven glass shards were geochemically analysed from 212 cm and thirteen glass shards from
294 cm at the Tephra Analysis Unit at the School of Geosciences University of Edinburgh. The
results of the geochemical analysis (Table 4.1.4, Fig. 4.1.7) suggest that the tephra located at 212
cm matches that of Saksunarvatn tephra dated at 10,176 + 49 cal BP (Bronk Ramsey et al., 2014)
and the tephra layer at 292 cm matches the tephra from Vedde which is dated 12,023 + 43 cal BP
(Bronk Ramsey et al., 2014). The Vedde ash was made up of primarily the basaltic component of
the record instead of the more commonly found rhyolitic shards (Davies et al., 2012; Mortensen
et al., 2005). The eruptions have been robustly dated and provide anchor points to construct the

age-depth model along with AMS radiocarbon dates.
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Table 4.1.4 Major oxide concentrations of basaltic shards from Loch of Sabiston using WDS
EPMA (CAMECA SX-100) at the Tephra Analysis Unit (TAU), School of Geosciences
University of Edinburgh.

ALO; CaO FeO K>O MgO MnO Na,O SiO TiO;

Sabiston (212 cm)

13.1674 9.7715  14.7037 0.5100 5.3384 0.2385 2.4126 49.3770 3.1567
13.3203 9.5953  14.8097 0.4764 5.3800 0.2328 2.8747 50.0082 3.1790
12.8910 9.4113  15.7715 0.6122 5.0732 0.2585 2.8755 49.8516 3.2697
13.5144 9.8517 14.5721 0.4613 5.1112 0.2329 2.5986 49.2312 3.1434
13.5210 9.4934  15.1235 0.3050 4.8533 0.2416 3.2108 49.7954 2.9368
13.0603 10.1545 14.1978 0.4428 5.6188 0.2263 2.7557 49.1098 2.9669
12.9663 9.7240  14.7023 0.5229 52310 0.2359 2.8676 49.7929 3.1649
14.0323 12.0738 12.6974 0.2672 7.1859 0.2252 2.3674 48.7430 1.8937
13.2041 9.57010 14.9893 0.4969 5.5016 0.2244 2.8752 49.9374 3.1415
12.8465 9.6439 143165 0.4615 5.2918 0.2322 2.6590 49.4053 3.1409

Sabiston (292 cm)

13.0574 9.8276  14.5046 0.7500 4.9067 0.2318 3.0315 47.1367 4.5579
12.9349 9.8204 14.7466 0.7385 5.3299 0.2177 3.0479 46.8954 4.5694
12.9256 10.0541 149153 0.7835 5.1700 0.2366 3.0307 48.0500 4.6077
13.5731 10.0539 15.792  0.8232 5.2252 0.2293 2.9542 46.7872 4.5769
13.5493 9.7268  15.5298 0.7994 5.1270 0.2376 2.542 48.1986 4.2762
12.5296 11.2183 14.6436 0.6268 6.5495 0.1985 24112 47.7109 4.5396
12.6053 8.8148 14.5164 0.8002 4.9088 0.2147 3.3330 47.7880 4.5042
13.5405 9.8496  15.0592 0.8809 4.9300 0.2339 2.9475 48.7610 4.7298
12.7716  9.7921  14.7262 0.8121 5.0614 0.2168 3.1308 46.6675 4.6822
12.9862 1.2168 3.7640 3.4604 0.1935 0.1335 5.0268 68.8283 0.2711
12.8916 10.0781 143763 0.8176 4.8172 0.2280 2.8413 47.5897 4.4875
13.3288 10.2782 14.7005 0.6586 4.7086 0.2375 3.1773 48.3428 4.9960
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Figure 4.1.7 Geochemical results of the tephra analysis showing chemical bi-plots of major
chemical fractions. Sabiston data is compared with reference data from the Tephrabase website

accessed May 12,2016 (Newton et al., 2007).

4.1.8.Radiocarbon Dating

Historically, '*C dating on Orkney has been problematic due to the carbonate rich nature
of the sediment and soil and therefore, constructing a robust chronology is difficult (Whittington
et al., 2015). Nine radiocarbon dates have been obtained from the Loch of Sabiston core and two
well dated tephra layers supplement these dates (outlined above). The radiocarbon dates for eight
of the samples were macro-plant fibres sieved from sub-sampled core material, while the ninth
radiocarbon age was obtained from a bulk sample of fine detrital organic rich mud due to the lack
of suitable macro-plant fibres. The results of the analysis of the nine samples and two tephra

samples are summarized in Table 4.1.5. Sample SUERC-67382 was omitted as it was deemed
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too old based on the tephra dates while SUERC-67383 appears to be also from aquatic carbon
sources based on the 0 °C results. These two dates were outliers and have not been included in

the age-depth model as they are out of sequence (Table 4.1.5). Sample SUERC-67384 and
SUERC-67379 were probably contaminated by younger material, either by root penetration from
younger overlying layers or through laboratory contamination during the sub-sampling and
sieving to isolate the plant fibres. The age estimates are anomalously younger and out of sequence
and are also excluded from the age-depth model. The satisfactory dates along with the tephra were
then used to construct an age-depth model (Fig 4.1.8) using R (R Development Core Team, 2016)
and the package Clam (Blaauw, 2010).

Table 4.1.5 Radiocarbon dates submitted to NERC March 2016, calibrated using CALIB 7.1
(Stuiver et al., 2013) and the IntCall3 atmospheric calibration curve (Reimer, 2013). Samples
omitted from the age-depth model have been marked with *. The dates for the tephra layers were

obtained from Bronk Ramsey et al. (2014).

4C age 31 Calib Calib

Sample ID Depth (cm) Material . err(%r CvppB cal age BP wmean

% 0.5 (20) cal BP

SUERC-67389 99 - 101 plant fibres 3,460 £ 36 -25.1 3,638 — 3,832 3,730

SUERC-67388 114-116 plant fibres 4,790 + 38 -24.5 5,465 — 5,601 5,519

SUERC-67384*  155-156.5 plant fibres 1,517 £37 -24.0 1,335-1,522 1,404
SASK-TEPH 212-213 tephra - - 10,257 - 10,056 -

SUERC-67383*  239.5-240.5 plant fibres 5,210 £ 37 -18.0 5,905 -6,019 5,963

SUERC-67382*  269.5 - 271 plant fibres 10,881 +£44  -16.6 12,696 — 12,818 12,750

VEDDE-TEPH 292 -293 tephra - - 12,102 - 11,914 -
SUERC-67379*  312-314 plant fibres 9,083 £ 39 -26.3 10,184 - 10,294 10,235
SUERC-67381 329 -331 plant fibres 11,074 £44  -28.0 12,807 - 13,061 12,941

SUERC-67380 354.5-356 plant fibres 11,988 £48 -27.1 13,731 - 14,003 13,838

BETA-447582 402.5-403.5 bulk clay/silt  18380+70  -24.8 22,410 -22,115 22,310
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Figure 4.1.8 The selected calibrated AMS *C dates used along with the dates acquired from the
tephra analysis to construct an age-depth model for Loch of Sabiston generated using R v. 3.3 and
the package Clam (Blaauw, 2010). Accumulation rate is also presented (inset). The dates
designated with blue dots are the ones rejected for the model and have been passively added for

illustration purposes.

4.1.9.Diatoms

Seventy-two diatom samples were analysed from Loch of Sabiston, with 163 diatom
species identified throughout the record. The diatoms were only sampled from the lake sediments
as the acidic nature of peat tends to decrease the preservation of diatoms and thus decrease the
reliability of the assemblage which has occurred in the peat layer of the Loch of Sabiston core.
Seven distinct temporal zones with two of the zones divided into two sub-zones were identified
using CONISS (Grimm, 1987) and optimal zonation (Bennett, 1996) in the diatom assemblage
from the end of the basal clay layer and through the extended marl deposition. The primary
CONISS break with the highest variance reduction was detected at 270 cm (c¢. 11,510 cal BP)
where the sediment changes from bluish-grey clay/silt to marl (Fig. 4.1.9). The break with the
second highest level of variance occurred at 114 cm (¢. 5400 cal BP) that coincides with the

change in sediment from the marl to silt accumulation. However, the third highest break is not
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associated with any change in sediment deposition and is located at 153 cm (c¢. 7340 cal BP)
during marl deposition. The fourth highest break occurs at 330 cm (c. 12,937 cal BP) again
associated with a change in sediment. The subsequent breaks are associated with the changing
sediment types that occurred at the end of bluish-grey clay/silt deposition, and within two periods
of marl accumulation and not associated with a change in sediment (Fig. 4.1.9). The seven zones
and four sub-zones have been labelled SABD-1 to SABD-7 and sub zones as ‘a’ and ‘b’ (5a/b
and 6a/b) (Fig. 4.1.9) and are described in detail below. The authorities for the diatom species

names for all the lochs are listed in Appendix A.

SABD-1 (412 - 355 cm; ¢. 23,828 — 13,840 cal BP): The basal zone is divided into two
sub-zones, based on the change of species richness. SABD-1 is dominated by Staurosira
construens, Neidiomorpha biodonis, Staurosirella pinnata, Staurosira venter and
Pseudostaurosira brevistriata. The diatom concentration fluctuates in this sub-zone between 6.7

x10% and 3.22 x 10° valves/g wet sediment (Fig. 4.1.9).

SABD-2 (355-330 cm; 13,840 - c. 12940 cal BP): begins at ~ 355 cm marked by an
increase in the epiphytic species Navicula (s.1.), Denticula tenuis, Cymbella (s.l.), Brachysira
vitrea and B. zellensis along with Gomphonema angustatum and the planktonic species Cyclotella
meneghiniana. Mastogloia lacustris, which is a characteristic species of marl lakes (Gaiser et al.,
2010), also appears for the first time in this zone. Fragilaria (s.l.), which was dominant in Zone

SABD-1, have drastically decreased along with the diatom concentration in SABD-2 (Fig. 4.1.9).

SABD-3 (330 — 302 cm; ¢. 12,940 — 12,260 cal BP): The beginning of the diatom zone
SABD-3 sees a disappearance of Gomphonema angustatum, Cyclotella meneghiniana, Cymbella
(s.1.) species and Brachysira vitera and B. zellensis; M. lacustris are also in decline. There is a
sharp increase of Amphora pediculus to 40 % relative abundance along with an increase in
Denticula tenuis, Navicula (s.1.), Nitzschia and Achnanthidium minutissimum. Fragilaria (s.l.)

also increase returning to an assemblage which is similar in composition to that of SABD-1 (Fig.

4.1.9).

SABD-4 (302 — 270 cm; ¢. 12,260 — 11,510 cal BP): A disappearance of many of the
species present in the lower zones occurs in SABD-4. Fragilaria (s.l.) again dominates (> 80 %)
along with S. pinnata along with P. brevistrata., S. venter which also reaches maximum

abundance in this zone.

SABD-5a (270 — 238 cm; ¢. 11,510 — 10,780 cal BP): Amphora pediculus decreases to
~ 10 % and Achnanthes (s.1.) reappear. The diatom concentrations reach their highest value of
6.76 x 10° valves/g wet sediment in this zone (Fig. 4.1.9). The start of zone SABD-5a is the point
at which the largest CONISS break occurs along with changes in the sediment record.

Cymbellafalsa diluviana appears for the first time along with a return of M. lacustris, C.
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meneghiniana and G. angustatum but at a higher relative abundance. Other species that returned
are characteristic of those found in Zone SABD-2 including Navicula taxa, Denticula tenuis,
Cymbella (s.1.) species and Brachysira vitrea and B. zellensis along with G. angustatum and the
planktonic species C. meneghiniana. Fragilaria (s.l.) are also still present, however they follow
a decreasing trend towards the top of the zone. Diatom concentrations start to decrease drastically

in this zone and stay low through to the top of the record core (Fig. 4.1.9).

SABD-5b (238 — 190 cm; c. 10,7780 — 9120 cal BP): At the start of the zone SABD-5b
the diatom assemblages change to salt-tolerant species such as Epithemia goeppertiana and
subsequently Fragilaria (s.l.) reaches very low abundances. Encyonopsis microcephala reaches
its highest abundance of ~ 15 %, along with B. vitrea (15 %). Cyclotella meneghiniana, found in
brackish and freshwater environments, reaches its highest abundance of ~ 35 %. The high

abundance of M. lacustris (~ 20 %) corresponds with marl deposition (Fig. 4.1.9).

SABD-6a (190 — 153 cm; c¢. 9120 — 7340 cal BP): Zone SABD-6a is driven by the
increase in C. meneghiniana, a planktonic species, while M. lacustris and Amphora libyca begin

to reach their maximum abundance in this zone (Fig. 4.1.9).

SABD-6b (153 - 114 cm; ¢. 9120 — 5400 cal BP): Within the diatom assemblage of zone
SABD-6b, there is an increase of C. diluviana, P. brevistriata, and Amphora pediculus and a
decrease of Encyonema silesiacum and G. angustatum (Fig. 4.1.9). The diatom assemblages

abruptly change to a dominance of C. diluviana and A. pediculus in zone.

SABD-7 (114 — 90 cm; c. 5,400 — 3,350 cal BP): This corresponds with a reduction in
the three-dominant species in the previous zones. M. lacustris, C. meneghiniana and F.
goeppertiana are drastically reduced or disappeared. This change corresponds to a change in

sediment from marl to organic mud, just prior to the shelly layer (Fig. 4.1.9).

The changes in species richness and evenness throughout the core are consistent with the
changes observed in sediment that has accumulated (Fig. 4.1.9) with higher diversity in the marl
sediment than that found in the clay / silt sediment. At each boundary between zones, there is a
change in both species richness and evenness particularly within the transition from the blueish-
grey clay/ silt layer to the marl at the base of the core. However, Zone SABD-3 is characterized
by highly variable species richness and evenness. At 270 cm (c¢. 11,510 cal BP), there is a sharp
rise in species richness which fluctuates between 35 and 40 species, until 190 cm (¢. 9120 cal BP)
where species richness begins to decline to a ~ 20 species. At 120 cm (c. 5760 cal BP), species
numbers increase again quickly to ~ 40 species followed by a sharp decrease to ~18 species at the

point where the loch changes from marl to peat deposition.
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The results of the PCA analysis on the diatom assemblage shows that PCA axis-1 explains
38.1 % of the observed variation in species composition (A = 0.381) related to sample depth (Fig.
4.1.10 a/b). Species positively related to axis-1 such as S. construens, S. pinnata and P.
brevistriata, and negatively related species include M. lacustris, G. angustum, E. silesiacum and
C. cymbiformis. PCA axis-2 explains 11.7 % of species variation (A = 0.117) and species
positively correlated include C. divulana, A thumensis, A. libyca, while C. microcephala, E.

smithii and B. vitera are negatively correlated with PCA axis-2 (Fig. 4.1.10a/b).
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Figure 4.1.9 The dominant (>3 % relative abundance) diatom taxa found in Loch of Sabiston. Species with arelative abundance under 3 % have been grouped based on genus. Solid lines indicate major zones and dashed lines indicate sub-zones determined by constrained cluster analysis (CONISS) (Grimm 1987).

The modelled dates appear on the l€ft side by the y-axis along with alithology of the core. Species evenness, richness and Bray-Curtis similarity are also presented. The diatom assemblage has also been summarized in respect to water pH and salinity of the water (Van Dam et al. 1994)
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Figure 4.1.10 PCA analysis of the diatom species in relation to sample depth from Loch of
Sabiston. PCA axis-1 describes 38.1 % of the observed variation in species composition related
to sample depth and PCA Axis 2 explains 11.7 % of species variation. Graph ‘a’ shows the
relationship of species to the PCA axis and ‘b’ shows the relationship of the samples to the PCA

axis.
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4.1.10. Pollen

The core was sampled for pollen from 369 cm to 91 cm at 4-cm intervals for 68 samples.
There are several intervals where there was insufficient pollen to count (~ 180 cm, ~ 295 cm and
between 335 - 324 cm). The following section outlines the main trends in the pollen assemblage.
Five distinct temporal zones and three sub-zones were identified using CONISS (Grimm, 1987)
and optimal zonation (Bennett, 1996) in the pollen assemblage from the start of the basal clay
layer and through the extended marl deposition. The primary CONISS break with the highest
variance reduction was detected at 237 cm (c. 10,750 cal BP) where the sediment has changed
from silty clay to marl (Fig. 4.1.11). The break with the second highest level of variance occurred
at 164 cm (c. 7870 cal BP) which is located in the middle of the marl deposition and is not
associated with any change in sediment. The third highest break occurs at 270 cm (c¢. 11,514 cal
BP), and is associated with a change in sediment from bluish-grey clay to marl. The fourth break
is associated with another change in sediment that occurred at the end is in bluish-grey clay/silt
deposition and not associated with a change in sediment (Fig. 4.1.11). The five zones and three
sub-zones have been labelled SABP-1 to SABP-5 and sub zones as ‘a’ and ‘b’ (1, 2/ab, 3, 4 a/b,
and Sa/b) (Fig. 4.1.11) and are described in detail below.

LPAZ SABP-1 (380 — 302 cm ¢ 18,202 — 12,270 cal BP): The basal pollen LAPZ
SABP-1 begins at the top of Lateglacial clay sediment and continues to 302 cm. Grasses (65 %)
and other herb species such as Empetrum, Asteraceae Subfam: Cichorioideae, and Calluna
dominate the assemblage. Betula and Pinus are present in the record with 25 % and 15 %
respectively. SABP-1 encompasses the change in sediment from clay to marl, with the grasses
peaking at the end of the first marl occurrence. Unfortunately, insufficient countable pollen was
present within the clay sediments at 333-324 cm (c. 13,050 - 12,790 cal BP) (Fig. 4.1.11). The

pollen concentrations increase in the subsequent marl period at ~ 320 cm (c. 12,700 cal BP).

LPAZ SABP-2 (302 -270 cm; ¢. 12,270 — 11,510 ca BP): The LPAZ SABP-2 is divided
into two sub sections however this is most likely due to the samples that did not have enough
pollen to count (Fig.4.1.11). The start of LAPZ SABP-2 is at the same depth as the beginning of
the accumulation of bluish-grey clay/silt at 310 cm (¢. 12,460 cal BP) with only a small portion
of samples with sufficient pollen concentrations to be countable. The assemblage during this
LAPZ dominated by grasses along with Cyperaceae, Corylus avellana type which begins to
increase along with an increase in Pinus and Betula. There is a decrease in Asteraceae Subfam:
Cichorioideae to 4 % which reached 20 % by the top of LPAZ SABP-1 (Fig. 4.1.11). At the top
of LPAZ SABP-2 the onset of marl sedimentation that marks the beginning of the Holocene.

Algae begins to decrease and grasses begin to increase at 280 cm (c. 11,750 cal BP), prior to the
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LPAZ boundary which occurs at 270 cm (c. 11,510 cal BP) (Fig. 4.1.11), but at the same time as

changes occurring in the sediment.

LPAZ SABP-3 (270 — 237 cm; ¢. 11,510 — 10,750 cal BP): The lower boundary of
LAPZ SABP-3 occurs ~10 cm (~ 230 years) after the change in sediment deposition from bluish-
grey clay/silt to marl. There is a marked increase in Betula (from 17 to 33 %) and a continuing

increase in Pinus and Empetrum with grasses still dominant (~ 30 %) (Fig. 4.1.11).

LPAZ SABP-4a (237 — 213 cm; c. 10,750 - 10,200 cal BP): By the beginning of LAPZ
SABP-4a, grasses still dominate with Corylus avellana type increasing from ~ 5 % to 30 %.
Betula and Pinus continue to be the dominant tree groups while Filipendula, which started to
slightly increase in the previous zone to ~ 10 %, is stable though this LPAZ at ~ 6 %. Empetrum
disappears by the top of this LPAZ while Calluna increases into SABP-4b.

LPAZ SABP-4b (213 - 164 cm; ¢. 10,200 - 7870 cal BP): Calluna continues to slightly
increase to ~ 10% while there is a slight increase in Corylus avellana type and decrease in Poaceae
which distinguished this LPAZ from SABP-4a. At ~ 180 cm (c. 8640 cal BP) near the top of
SABP-4b (Fig. 4.1.11) the pollen samples did not contain enough pollen to be countable.

However, there is no stratigraphic evidence to suggest any break in the sediment accumulation.

LPAZ SABP-5a (164 - 116 cm; c. 7870 — 5560 cal BP): SABP-5 begins at 164 cm and
is characterized by an increase of Corylus avellana type during the LPAZ along with a
corresponding decrease in Poaceae. Pinus remains stable though this LPAZ at ~ 11 %, while
Betula reaches its maximum abundance of 40 % at 155 cm and then begins to decrease to a low
of 15 % at 130 cm. By the top of the zone, Betula has recovered to ~ 30 % abundance and
Polypodiaceae doubled in abundance though the LAPZ (Fig. 4.1.11).

LPAZ SABP-5b (116 — 92 cm; ¢. 5560 — 3430 cal BP): The lower boundary of LPAZ
SABP-6 begins at 110 cm, just after a change in sediment from marl to organic mud-silt
composition. There is an increase in Poaceae at 100 cm (c. 3730 cal BP) along with a decrease in
Betula and Corylus avellana type pollen. At the same time charcoal is present in the pollen record

and Polypodiaceae reaches its maximum abundance of 44 % (Fig. 4.1.11).
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Figure 4.1.11 Percentage pollen and spore diagram of the dominant taxa found in Loch of Sabiston. Taxa under 1% are designated by ‘+' and under 2% by ‘++'. Solid lines indicate the major zones and dashed lines indicate the sub-zones determined by constrained cluster analysis
(CONISS) (Grimm 1987). The modelled dates appear on the | eft side by the y-axis along with alithology of the core.
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4.2. Loch of Clumlie Results

4.2.1.Study Area

Loch of Clumlie is found in the southern part of Mainland Shetland on the eastern coast
(59°56°21.5”,001° 16” 35.9”), at 23 m a.s.l. (Fig. 4.2.1). It lies in a low area surrounded by hills
to the northwest that reach a maximum height of 256 m a.s.l. (Fig. 4.2.2). The loch was shallow
and slightly alkaline at the time of sampling (full characteristics listed in Table 4.2.1). A strand
line of vegetation debris circling the loch several metres above the waterline demonstrates
intermittent high-water events. There are old 19" century mills located along the outlet, which
shows the history of the area and the loch’s use for grain processing. A combination of heather,
improved grassland, and rough, low productivity grassland dominate the present-day land cover

(Figs 4.2.2 and 4.2.3).

»

Loch of
Clumlie

082:585 10

Figure 4.2.1 Shetland with the location of Loch of Clumlie highlighted and the location of the

loch (inset).
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|| Despoiledland [ | Inland rock
| [ Arable bare || Rough low-productivity grassland

[ ] Acid grassland [ Lake

| 77 Bog, grass dominated Littoral rock
| || Bog, heather dominated [II Suburban
|| Heather and dwarf shrub

Figure 4.2.2 Present land cover (EDINA, 2007) and topography (NEXTMAP Britain digital
elevation data (Intermap Technologies)) in the Loch of Clumlie catchment. The purple point
designates the coring location in Loch of Clumlie. The catchment area for Loch of Clumlie

(Hughes et al., 2004) is shown in the inset.
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Table 4.2.1 Present day characteristics of the Loch of Clumlie at the time of sampling.

Depth (max) 1.04 m
Area 14.5 ha
Temperature 15.4 °C
Conductivity 305 uS
Altitude 23 ma.s.L
pH 8.15

Figure 4.2.3 Loch of Clumlie on the day of sampling (September 3, 2014).

4.2.2.Sediment Profile

The loch was cored to an impenetrable layer and a 200-cm core was retrieved including
~ 20-cm long gravity core to sample the top surface sediment-water interface. The composition

of the sediment is outlined in Table 4.2.2 and illustrated in Figure 4.2.4.

Table 4.2.2 General characteristics of the sediment make up from Loch of Clumlie.

Depth (cm) Properties

0-35 Organic mud

35-52 Iron pan layer with organic mud

52 Coarse sediment/ sand layer

52-280 Iron pan layer with organic silt

80-119 Bluish-grey clay

119 — 128 Silty organic clays with coarse sediment/ sand layers at 119 and 121
cm

128-130 Coarse sediment/ sand layer

130-137 Silty organic clays with coarse sediment/sand layers at 132 cm

137-141 Bluish-grey clay

141-180 Silty clay

180-200 Bluish-grey clay
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10-110cm 100 -200 cm

Figure 4.2.4 The 1-m core sections retrieved from Loch of Clumlie. The scale on the left indicates
1-m sections with 10 ¢cm intervals. The red arrow designates the location of the 10-cm overlap.
The grayscale picture to the left of the core image is an x-radiograph of each section illustrating
the different densities of the sediment. The pictures have been enhanced to enable the detection
of variations in the sediment and the colour of the core does not represent the original colour of

the sediment at the time of coring.

There is evidence that the basal sediment is Lateglacial in origin due to the presence
bluish-grey clay from 200 cm to 180 cm. At 180 cm, the sediment becomes more silty and organic
content increases. This lasts until 141 cm at which point bluish-grey clay covers the silty clay
which lasts until 137 ¢cm. The sediment accumulation returns to a silty organic layer from 137 -
130 cm and is intersected with a coarse sediment layer at 132 cm. Another coarse sediment layer

consisting of silt and sand is deposited from 130 - 128 cm. (Table 4.2.2). Between 128 and 119
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cm silty organic clays with coarse sediment sand layers at 119 and 121 cm make up this part of
the core. There is a return to bluish-grey clays between 119 - 80 cm core depth. At this point the
organic content has increased in the sediment with a change to organic silt with evidence of
oxidation and iron pan which lasts until 52 cm where another coarse sediment sand layer is
deposited. The oxidation continues and the sediment consists of an organic mud until 35 cm where

the oxidation disappears and there is organic mud until the top of the core.

4.2.3.Loss on Ignition (550)

The organic content of the sediment follows closely the changes in sediment composition.
(Fig. 4.2.5). At the base of the core, organic content begins at ~ 4 % and reaches 5 % at the
transition to a siltier sediment at 177 cm. During the accumulation of the silty-clay, organic
content continues to rise to ~ 10 % at 159 cm. Then organic content gradually decreases to ~ 3 %
at 133 cm. There is a step-wise increase in organic content with peaks at 127 cm (8 %) and 120
cm (11 %). From 120 - 78 cm, there is a consistent decrease of organic content to a low of 1.5 %.
From 78 - 55 cm, another rise and fall in organic content occurs with 18 % organic content at
66cm. From 55 cm to the top of the core, the organic content is highly variable and fluctuates

from 5 - 18 %, peaking at 34 % at the top.

4.2.4. Magnetic Susceptibility

Magnetic susceptibly (MS) was measured continuously every 2 mm for the full length of
the core (Fig. 4.2.5). High values of magnetic susceptibility were observed at the bottom of the
core (200 - 180 cm) and remains stable until the occurrence of peaks at 42, 90, 95, 100, 110 and
124 cm. These peaks were investigated for the evidence of tephra layers, however, these locations
in the core did not reveal any tephra shards. The peaks in MS are more likely associated with

minerogenic in-wash of sediment.

4.2.5.Micro-XRF Results

Twenty-five elements were selected during the p-XRF process with an average mean
squared error (MSE of 3.5). Overall, the highest positive correlations (Table 4.2.3) occur between
elements associated with minerogenic inputs (K, Ti, Rb, Zr, and Sr, Fig. 4.2.5) while manganese
is found to be negatively correlated with potassium and titanium. The relative changes in elements
throughout the core correlate with changes in lithology (Fig. 4.2.5). There are several occurrences

in the core where these minerogenic elements increase. These take place at 140 cm, from 120 to
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80 cm and from 55 to 30 cm. Silica also follows this trend and to a lesser extent iron (Fig. 4.2.5).

Bromine is slightly negatively correlated with K, Ti, Rb and Si.

Table 4.2.3 Correlation matrix of select elements analysed using p-XRF. Correlations with a

probability greater than 0.5 are highlighted in bold, negative correlations are also underlined.

Si K Ca Ti Rb
K 0.716
Ca 0.456 0.589
Ti 0.633 0.866 0.616
Mn -0.484 -0.565 -0.228 -0.584
Rb 0.654 0.930 0.527 0.797
Sr 0.667 0.730 0.421 0.687 0.728
Fe -0.389 -0.191 0.023 -0.108 -0.288
Br 0313 -0.378 -0.152 -0.363 -0.330
Zr 0.367 0.373 0.210 0.446 0.405

In Loch of Clumlie, the relationship between Ca/Ti, Zr/K, and Rb/K show fluctuations
from 160 cm to 120 cm with a decrease from 142 - 136 cm. Between 120 cm and 80 cm values
remain stable until a maximum peak is reached ~ 70 cm (Fig. 4.2.6). There is high variability in
these elemental relationships at the top of the core (from ~ 60 cm onwards). The Fe/Si ratio
follows the same pattern as the one described above, however, the changes observed from 160 -
120 cm are subtle and less variable. The relationship between Si and Ti shows stability at the base
of the core until ~ 136 cm where values peak (Fig. 4.2.6). Between 120 - 80 cm, values slightly
increase by 100 cm, but then decrease by ~ 90 cm. By 80 c¢m, the ratio increases again to a peak
at 70 cm. Fe/Mn and Mn/Ti are showing a different pattern to those observed above. The Fe/Mn
shows a steady decline from the base of the core with high variability. Between ~ 90 cm and 75
cm, it begins to rapidly decrease to virtually zero which persists for until 55 cm (Fig. 4.2.6). Mn/Ti
mirrors this pattern with low values for most the core, and then reaches its highest value ~ 75 cm.

The peaks in Mn/Ti mirror the lows in the Fe/Mn values (Fig. 4.2.6).
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Magnetic
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Figure 4.2.5 Lithology, organic matter content (% organics based on loss-on-ignition at 550°C (LOlss0)), magnetic susceptibility and selected u-XRF geochemistry from Loch of
Clumlie. Zones are based on the constrained cluster analysis of the u-XRF results and elements have been corrected for organic and moisture content by dividing the elemental

results by the sum of incoherent and coherent (inco+coh) scatter results (Davies et al. 2015).
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4.2.1.Chronology

Five dates were obtained from the NERC AMS radiocarbon facility at East Kilbride
(labelled SUREC) while the Beta sample was analysed at Beta Analytic Inc., Miami, Florida. The
results of the analysis are summarized in Table 4.2.4. During sampling for suitable material, it
was noted the presence of roots penetrating the lower sediment from the fen-peat layer at the top
of the core which is probably the cause of contamination from younger carbon, and therefore,
sample SUERC-68213 was omitted from the age depth model as it was out of sequence and
believed to be too young. Sample SUREC-68211 was determined to be too old based on the
sediment stratigraphy. In the topmost organic portion of the core, there is evidence of drying out,
leaching and oxidation of the sediment along with evidence of a hiatus from 78, cm to the top of
the core. Due to the nature of the sediment, the chronology will only incorporate the Lateglacial

period below 78 cm.

These dates were then used to construct an age-depth model using R (R Development
Core Team, 2016) and the package Clam (Blaauw, 2010). Based on evidence from the pollen,
diatoms, and geochemistry results, the age-depth model constructed was determined to be too old
as the start of the IACP has been dated to c¢. 13,311 cal BP while the date from the Loch of Clumlie
age-depth model was c. 14,210 cal BP) (Fig. 4.2.7). To compensate for this, three dates from the
Greenland ice core records (Rasmussen et al., 2014) were supplemented into the model along
with the basal radiocarbon age from Loch of Clumlie (SUERC-68210) and sample SUREC-
68212. The Greenland dates define the beginning of the Holocene at 80 cm (11,703 cal BP + 4),
the start of the Younger Dryas at 120 cm (12,896 cal BP = 4), and the start of the IACP at 142 cm
(c. 13,311 cal BP). The depths at which to place these sample were determined by the results of
the u-XRF analysis whereby a change in sediment composition determined these points. BETA-
447119 was omitted as its variation was such that it caused an age reversal error when running
the model. The resulting age-depth model (Fig. 4.2.7) is in good agreement with the lithology of
the core. However, the chronology will be used with caution during interpretation as the
assumption has been made that these events on Shetland and Greenland are synchronous by using

the NGRIP dates.

A search of tephra layers was undertaken based on the results of the magnetic
susceptibility and pu-XRF elemental scan using elements that have been associated with tephra

(Mn, Fe, TI, Zr, K, Co/Ni) (Davies et al., 2015). However, no tephra shards have been identified.
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Table 4.2.4 Radiocarbon dates submitted to NERC / SUERC and Beta, calibrated using CALIB
7.1 (Stuiver et al., 2013) and the IntCall3 atmospheric calibration curve (Reimer, 2013). The

samples marked with an * were used in the development of the age-depth model due to age

reversal.
Calib Calib
VPDB
Sample ID Depth (cm) Material 14C age d13C cal age BP wmean
+ error %0 £0.5
(20) cal BP
SUERC-68210 177-179* plant fibres 12,784 + 49 -27.9 15,071 — 15,431 15,230
SUERC-68211 141.5-142.5 plant fibres 12,287 +£47 -24.9 14,034 — 14,520 14,210
SUERC-68212 118.5-119.5 plant fibres 10,982 + 44 -26.3 12,727 — 12,981 12,832
BETA-447119 116-117* plant fibres 11,030 + 30 -26.5 12,995 — 12,795 12,855
SUERC-68213 89.5-91 plant fibres 4,700 + 35 -21.4 5,320 - 5,580 5,406
BETA-447119
= | SUERC-68212  \&—NGRIP (start of IACP)
8
SUERC-68211

140
1

(start of YD)
o
8
SUERC-68210
S
- T T T T
12000 13000 14000 15000

cal BP

Figure 4.2.7 The selected calibrated AMS '*C dates used along with the dates from Rasmussen et
al. (2014) to construct an age-depth model for Loch of Clumlie generated using R v. 3.3 and the
package Clam (Blaauw, 2010). Accumulation rate is also presented (inset). The depth chosen for
the Greenland dates was based on the change in sediment composition from the u-XRF data. The

red dates are the ones rejected for the model.
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4.2.2.Diatoms

Ninety-two samples were counted from Loch of Clumlie, with 178 diatom species
identified. Eight distinct temporal zones were identified by CONISS (Grimm, 1987) and optimal
zonation (Bennett, 1996) in the diatom assemblage. The primary CONISS break with the highest
variance reduction was detected at 142 cm (c. 13,310 cal BP) which occurs just before a change
in sediment from silty to bluish-grey clay (Fig. 4.2.8). The break with the second highest level of
variance occurred at 90 cm (c. 12,020 cal BP) and the third highest break was located at 119 cm
(c. 12,882 cal BP). The eight significant zones have been labelled CLMD-1 to CLMD-7b (Fig.
4.2.8) and are described in detail below.

CLMD-1 (200 - 166 cm; c. 16,400 — 14,590 cal BP): This basal zone of the core
incorporates the transition from glacial bluish-grey clay to a more organic silty-clay (Fig. 4.2.4)
and is characteristic of a Lateglacial diatom assemblage with a dominance of Staurosira
construens and Staurosirella pinnata. However, despite the dominance of S. construens and S.
pinnata, the overall species richness begins at 20 species and then steadily climbs throughout the
zone reaching a maximum abundance of 45 species (Fig. 4.2.8) indicating an established
community including Nitzschia (3 species), Achnanthes suchlandtii (which reaches its highest
abundance in this zone), Rossithidium pusillum, Staurosira venter, Pseudostaurosira brevistriata,
in quantities under 10 %. The similarity between the samples is stable within the zone (Fig. 4.2.8),
while evenness steadily increases along with species richness (Fig. 4.2.8). By the top of the zone
(167 cm; c. 14,650 cal BP) F. construens has decreased from over 60 % of the diatom community
to around 20 %. Diatom concentrations start quite low and then fluctuate in a series of peaks at

169 cm (c. 14,750 cal BP), 177 cm (c. 15,180 cal BP) and 187 cm (c. 15,710 cal BP) (Fig. 4.2.8).

CLMD-2 (166 - 142 cm; c. 14,590 — 13,310 cal BP): Zone CLMD-2 continues through
the silty-clay sediment and its top boundary is at 142 cm, ~ 4 cm below the transition back to
bluish-grey clay. Across the transition from CLMD-1 to CLMD-2 S. construens proportionally
continue to decrease while S. pinnata increased by 15 % along with an increase in P. brevistriata
and a slight increase of Fragilariforma exigua. Achnanthes lanceolata also appears at the end of
CLMD-1 and continues through CLMD-2 (Fig. 4.2.8). Diatom concentrations increase and are
again variable in this zone with peaks at 160 cm (c. 14,270 cal BP), 155 c¢cm (c. 14,000 cal BP),
and 143 cm (c. 13,360 cal BP). Hills N2 shows a lower value at the beginning of the zone but
then increases to 10 by the top of the zone. This trend is also found in species richness with an
increase occurring at the top of the zone, although the similarity between the samples remains

quite consistent (Fig. 4.2.8).

CLMD-3 (142 - 119 cm; c. 13,310 — 12,880 cal BP): The boundary between CLMD-2

and CLMD-3 at 142 cm has the highest level of variance in the diatom assemblage (as determined
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by CONISS) marked by the decrease in S. construens and P. brevistriata and the rapid increase
of F. exigua, along with an increase in species diversity (Fig. 4.2.8), with the appearance of
Navicula (s.1.) and Pinnularia species. Diatom concentrations are lower at the start of CLMD-3
as the sediment changes to bluish-grey clay and organic content decreases but then increases along
with diatom concentrations through the zone. Evenness begins to fluctuate in a series of peaks
during this zone, from a low index of 2 to a high of 21, while there is a decrease in species richness
around 135 c¢cm (c. 13,180 cal BP) from 48 to 30, followed by an increase to 47 again by the top
of the zone. Bray-Curtis reflects this dynamic by increasing in this zone and then fluctuating

between 0.61 and 1.75 indicating that adjacent samples are less similar to each other (Fig. 4.2.8).

CLMD-4 (119 -98 cm; ¢. 12,880 — 12,270 cal BP): Low diatom concentrations are found
throughout this zone (Fig. 4.2.8). Navicula (s.l.) and Pinnularia species reach their maximum
proportions in this zone along with Fragilaria capucina, S. construens almost disappears in this
zone and S. pinnata drops below 5 % (Fig. 4.2.8). Species richness also decreases in this zone
along with Hills N2 which corresponds with the accumulation of bluish-grey clay. Bray-Curtis
also indicates variability at the beginning of the zone, however, the samples are more similar in

the upper half of the zone.

CLMD-5 (98 — 90 cm; ¢ 12,270 — 12,020 cal BP): There is a reduction in species
diversity along with a sharp increase of F. exigua, which dominates the diatom assemblage at the
transition from CLMD-4 to CLMD-5 (Fig. 4.2.8). CLMD-5 is a very short zone (10 cm)
characterized by a rapid change in species assemblages and Hills N2. The cold tolerant species
(e.g. 4. helveticum, Naviculadicta digitulus, Navicula molestiformis. Pinnularia biceps) that were

dominant in zone CLMD-4 now have declined.

CLMD-6 (90 - 80 cm; ¢. 12,020 — 11,700 cal BP): The boundary between CLMD-5 to
CLMD-6 was the second highest level of variance indicated by CONISS. The zone is
characterised by a fast turnover of species with a rapid decrease in F. exigua and a return of S.
pinnata, P. brevistriata and S. construens (Fig. 4.2.8). Species richness also decreased with the
disappearance of A. helveticum, N. digitulus, N. molestiformis, and Pinnularia biceps from the

diatom community.

CLMD-7a (80 — 24 cm; ¢. 11700 cal BP >): The top 80 cm of the core has two depths
that did not have adequate diatoms to count at ~ 55 cm and from 32 to 47 cm. There was evidence
of dissolution of the diatom content probably due to a drying out of the loch resulting in a hiatus.
There is a peak in concentration values at the transition between CLMD-6 and CLMD-7a but a
drastic reduction at 60 cm follows which continues to the top of the core (Fig. 4.2.8). Although

there is an increase in species diversity in this zone dominated by Fragilaria (s.l.) species, it is
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difficult to comment on the diatom diversity and similarity near the top of the core during the

probable hiatus.

CLMD-7b (24 - 0 cm): The topmost zone CLMD-7b consists of the top 15 cm of the
core. However, this assemblage is analogous to the CLMD-7a and is likely affected by a hiatus
or multiple hiatuses. The lack of diatoms present limits the effectiveness of the cluster analysis in

this section of the core (Fig. 4.2.8).

PCA axis-1 describes 36.7 % of the observed variation in species composition (A= 0.367)
related to sample depth and PCA axis-2 explains 16.6 % (A = 0.166) of species variation (Fig.
4.2.9). Axis-1 is positively correlated to species associated with small Navicula (s.l.) and is
negatively correlated to pioneer diatom species such as S. construens, F, constricta, and A.
pediculus (Fig. 4.2.9). PCA axis-2 is negatively correlated with diatoms species such as

Pseudostaurosira. elliptica, R. pusillum, A. minutissimum, and P. brevistriata (Fig. 4.2.9).
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Figure 4.2.8 The dominant (>3 %) diatom taxa found in Loch of Clumlie. Species with arelative abundance below 3% were grouped based on genus. The record has been divided up into zones based on a constrained cluster analysis
(CONISS) (Grimm 1987). Species evenness, richness and Bray-Curtis similarity are presented. The diatom assemblage has also been summarized in respect to water pH and salinity of the water (Van Dam et al. 1994).
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Figure 4.2.9 PCA analysis of the diatom species from Loch of Clumlie in relation to sample depth.
PCA axis-1 describes ~ 36.7 % and PCA axis-2 explains ~ 16.6 % of the observed variation in

species composition related to sample depth. Graph ‘a’ shows the relationship of species to the

PCA axis and ‘b’ shows the relationship of the samples to the PCA axis.
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4.2.3.Pollen

The core was sampled for pollen analysis at 4-cm intervals (1-cm® samples) for 50
samples along the full length of the core. Five significant local pollen assemblage zones (LPAZ)
were identified by CONISS (Grimm, 1987) and optimal zonation (Bennett, 1996). The primary
CONISS break with the highest variance reduction was detected at 52 cm (Fig. 4.2.10). The break
with the second highest level of variance occurred at 78 cm (c. 11,640 cal BP). The third highest
break occurs at 122 ¢cm (c. 12,930 cal BP), while the fourth occurs at 166 cm (¢. 14,590 cal BP)
(Fig. 4.2.10). The zones have been labelled CLMP-1 to CLMP-5.

LPAZ CLMP-1 (180 - 166 cm; ¢. 15,340 — 14,590 cal BP): The beginning of the pollen
record occurs at 180 cm (c. 15,340 cal BP) and coincides with the beginning of silty-clay sediment.
The early record is dominated by Poaceae, Ranunculus type herb, Rosaceae and Cyperaceae
(sedges). Salix which begins at ~ 5 % at the beginning of the record steadily increases to the top
of the zone (Fig. 4.2.10). The algae Pediastrum was also abundant during this time in the loch.

LPAZ CLMP-2 (166 - 122 cm; c. 14,590 — 12,93 cal BP): The LPAZ CLMP-1
assemblage continues into LPAZ CLMP-2 where the percentage of herb species decline
corresponding with the increase in trees and shrubs. However, Poaceae remains the dominant
taxon at ~ 50 % with lesser proportions of Salix ~ 20 %. Pediastrum remains dominant in the
aquatic environment until ~ 140 cm when it decreases to ~ 10 % which corresponds to a change
in the sediment to silty clay and a decrease in organic content (Fig. 4.2.10). Pediastrum
subsequently increases slightly at ~ 130 cm to 20 % however, steadily declines until the top of

the LPAZ.

LPAZ CLMP-3 (122 - 78 cm; c. 12,930 — 11,640 cal BP): During LPAZ CLMP-3
Cyperaceae increases to ~ 40 % and Salix reaches its maximum abundance of 35 % (Fig. 4.2.10).
However, the proportion of Sal/ix decreases to under 5 % by the top of the LPAZ. Poaceae slightly
decreases in the middle of the LPAZ while Salix reaches its maximum abundance. Poaceae
increases again to reach its maximum abundance (~ 60 %) at the top of the LPAZ while Salix
decreases (Fig. 4.2.10). The percentage of trees and shrubs in this zone remain quite low with

Corylus avellana type having the highest dominance in this groups at ~ 5 %.

LPAZ CLMP-4 (78 — 52 cm; 11,640 cal BP >): In this LPAZ, Poaceae dominates this
zone comprising of over 60% of the TLP. Salix, which consisted of almost 40% of TLP has
decreased to below 5 % in this LPAZ (Fig. 4.2.10). Again, there is minor change in the trees and
shrubs (excluding Salix) in this LPAZ and their proportions continue to be below ~ 25 %.
Cyperaceae increases in this zone and aquatic pollen and spores reach their maximum abundance

in this zone (Fig. 4.2.10).
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LPAZ CLMP-5 (52 — 0 cm): At ~ 50 cm where a hiatus has been suggested based on
the diatom record in CLMP-5. At this point, the pollen assemblage switches to heath and peat
development along with a reduction in aquatic pollen and spores and Cyperaceae. The terrestrial
vegetation is now dominated by Poaceae along with Calluna and herbs. Trees and shrubs have

been reduced to below 5 % of the assemblage (Fig. 4.2.10).
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Figure 4.2.10 Percentage pollen and spore diagram of the dominant taxa found in Loch of Clumlie. Taxa under 1% are designated by ‘+' and under 2% by ‘++'. Solid lines indicate the major zones and dashed lines indicate the sub-zones determined by constrained cluster analysis

(CONISS) (Grimm 1987). The modelled dates appear on the |eft side by the y-axis along with alithology of the core.
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4.3. Loch of Grimsetter Results

4.3.1.Study Area

Loch of Grimsetter is located on the eastern side of the island of Bressay (60° 08°22.2”,
001° 04° 10.9”) which lies off the eastern coast of Mainland Shetland opposite the town of
Lerwick (Fig.4.3.1). The loch has one inlet to the north-west and one outlet to the south-east and
is surrounded by hills with West Hill reaching a height of ~150 m a.s.l. to the south-west (Fig.
4.3.2). There is evidence of a Norse settlement as well as the remains of 18" century crofts in the
catchment. To the south, a Bronze Age burnt mound and souterrain are located at Wadbister (Fig.
4.3.2). The present-day characteristics of the Loch are listed in Table 4.3.1 at the time of sampling.
The catchment is presently used for sheep grazing (Fig. 4.3.3).

Lochof |
Grimsetter -
0o 1 2 .

Figure 4.3.1 Shetland highlighting the island of Bressay and the location of Loch of Grimsetter

(inset).
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Land Cover || improved grassland
[ Despoiled land | | Rough low-productivity grassland
[ | Bog, heather dominated | | Lake

|| Heather and dwarf shrub || Littoral rock

|| Heather grass
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Figure 4.3.2 Present land cover (EDINA, 2007) and topography (NEXTMAP Britain digital
elevation data (Intermap Technologies)) around Loch of Grimsetter on the island of Bressay. The
purple point in the loch designates the coring location. The catchment area (inset) for Loch of

Grimsetter (Hughes et al., 2004).

130



Chapter 4 Results — Loch of Grimsetter

Table 4.3.1 Present day characteristics of the Loch of Grimsetter at the time of sampling.

Depth

Area
Temperature
Conductivity
Altitude

pH

2.30m

10.9 ha
15°C

1136 pMcm™!
27 ma.s.l.
8.03

Figure 4.3.3 Loch of Grimsetter on the day of sampling (September 1, 2014). Note the location

of the raft in the middle of the loch where coring was undertaken.

4.3.2.Sediment Profile

The sediment of the loch consists of soft, organic rich gyttja throughout the core. Due to

the soft nature of the sediment, the first ~ 20 cm (from the sediment-water interface into the

sediment) was sampled with a gravity corer to reach a depth where the sediment would be more

consolidated and could be retrieved successfully with a Russian corer to an impenetrable base. A
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total of 568 cm was retrieved (Fig. 4.3.4) with 10 cm overlap of each of the core sections to

guarantee a continuous record.

250-350cm  340-440cm  430-530cm  520-620cm 610-710cm  698-798 cm

Figure 4.3.4 The 1-m core sections retrieved from Loch of Grimsetter. The scale on the left
indicates 1-m section with 10-cm intervals. The red arrows designate the location of the 10-cm
overlap. The grayscale picture to the left of the core image is an x-radiograph of each section
illustrating the different densities of the sediment. The pictures have been enhanced to enable the
detection of variations in the sediment and the colour of the core does not necessarily represent

the original colour of the sediment at the time of coring.

4.3.3.Loss on Ignition (550)

The results of the LOIsso show that the organic content of Loch of Grimsetter gradually
increased from the bottom of the core to the top from 20 % to 40 % (Fig. 4.3.5). At the bottom of
the core, organic content starts around 22 % and then has a sharp decrease at 545 cm to ~ 12 %
and then returns to previous values at 520 cm. There are other decreases in organic content
occurring at 475 cm and 430 cm. At 320 cm, a peak is present with an increase in organic content

of 28 %, which stays consistent until 130 cm. Organic content gradually increases until 70 cm to
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~ 32 %. At 70 cm, organic content increases again reaching a maximum of 42 % at the top of the

core.

4.3.4. Magnetic Susceptibility

Magnetic susceptibility was not performed during the XRF scanning process for Loch of
Grimsetter. The MS detector rests on the core during the scan which resulted in significantly

disturbing the soft sediment and risked destroying the cores.

4.3.5. Micro-XRF Results

The results of the u-XRF analysis are based on the core taken with the Russian corer with
the sediment record beginning at ~ 20 cm below the sediment-water interface. Twenty-five
elements were selected during the p-XRF process with an average mean squared error (MSE) of
3.5. Each element was standardized using the sum of inc + coh (Davies et al., 2015) to account
for Compton-Rayleigh scattering which reduces the effect of organic content and moisture on the
profiles (Davies et al., 2015). The results of the incoherent (inc) and coherent (coh) scans show
that the moisture and organic content remains stable throughout the core. The ratio of inc/coh can
be used as a proxy for organic content and is consistent with the results of the LOI analysis (Fig.
4.3.5).

The elemental changes within the sediment from Loch of Grimsetter are subtle,
suggesting that the catchment has been relatively stable over time (Fig.4.3.5). There is strong
correlation between K, Ti, Fe, Rb, and Sr whereas Si correlates with Ca and Br (Table 4.3.2). At
530 cm, there are peaks in Ti, K, Rb, and Sr with corresponding decreases in LOI and inc/coh.
These elements then stabilized throughout the remainder of the core until ~ 320 cm where there
is a slight increase. By ~ 78 c¢m the elements increased again and remain elevated to the top of the
core. Manganese has three zones where it increases with peaks at 230 - 200 cm, 120 — 100 cm

and ~ 60 cm.

Table 4.3.2. Matrix of elements that are highly correlated. Bold =>0.50.

Si K Ca Ti Fe Rb
Ca 0.57 0.12
Ti -0.10 0.93 0.05
Fe -0.35 0.71 -0.18 0.77
Br 0.59 0.31 0.46 0.22 -0.08
Rb 0.08 0.77 0.17 0.71 0.45
Sr -0.03 0.79 0.09 0.76 0.51 0.74
Mn -0.37 0.18 -0.19 0.31 0.27 0.08
Zr -0.25 0.06 -0.12 0.14 0.12 -0.02
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Si Ca Mn Ti K Rb Sr Br LOI (%) inc/inco

0.0000 0.0010 0.0020 0.000 0.100 0.200 0.300 0.000 0.002 0.004 0.006 0.000 0.005 0.010 0 20 40 60

0.004 0.000 0.005 0.010 0.000 0.005 0.010 0.0E+00 5.0E-03 1.0E-02 0.000 0.010 0.020 0.030 5 6

cps normalized by (inc+coh) cps

Figure 4.3.5 Lithology, organic matter content (% loss-on-ignition at 550°C (LOlss0)), and selected p-XRF elements from Loch of Grimsetter. Zones are based on the constrained
cluster analysis of the u-XRF results and elements have been corrected for organic and moisture content by dividing the elemental results by the sum of incoherent and coherent

scatter results (Davies et al. 2015).
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Ca/Fe Vigail Zr/K Br/Ti K/Ti Ti/Ca Fe/Ti Fe/Mn Fe/Si Si/Ti Mn/Ti
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Figure 4.3.6 Selected elemental ratios from pu-XRF scan from Loch of Grimsetter. Zones are based on the constrained cluster analysis of the p-XRF results. Ratios were determined

by using elements corrected for organic and moisture content (Davies et al. 2015).
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The relationship between individual elements provides important insights into the
changing sedimentation at the site. The ratio between Fe/Mn is high at the base of the core and
then gradually decreases until ~ 250 cm where there is a significant drop while Mn/Ti peaks.
Subsequent peaks in Mn/Ti correspond with a decrease in Fe/Mn at the top of the core (Fig. 4.3.6).
There are several subtle changes that occur in the geochemical analysis of the core from Loch of
Grimsetter. At 321 cm, there is a consistent decrease in many of the elemental relationships (Fig.
4.3.6) such as Ca/Ti, Ca/Fe, Zr/Ti, Zr/K, and Br/Ti. All but Ca/Fe return to previous levels by ~
295 cm while Ca/Fe remains lower. At the top of the core ~ 100 ¢cm the most notable change
occurs (based on the results of CONISS) where there is has been another decrease in many of the
ratios along with the variation that was present in the rest of the record. There is an increase in

the K/Ti and Ti/Ca relationship which began ~ 150 cm.

4.3.6.Chronology

The chronology of the core is constructed from four radiocarbon dates (3 from NERC
and 1 from BETA). Bulk samples were used due to the lack of plant macrofossils found in the
sediment and high organic content. The dates from NERC were prepared and analysed at the AMS
radiocarbon facility at East Kilbride, Scotland. The Beta sample was analysed at Beta Analytic
Inc., Miami Florida, USA (Table 4.3.3). The dates were calibrated using CALIB 7.1 (Stuiver et
al., 2013) and the IntCall3 atmospheric calibration curve (Reimer, 2013). Due to the lack of
magnetic susceptibility results (see below), a search of tephra layers was undertaken based on the
results of the u-XRF elemental scan using elements that have been associated with tephra (Mn,
Fe, TI, Zr, K, Co/Ni) (Davies et al., 2015). Minute concentrations of tephra were located however
spread out over a large section of the core and therefore not ideal for use as an age constraint at
this time. The acceptable dates were then used to construct an age-depth model using R (R
Development Core Team, 2016) and the package Clam (Blaauw, 2010). The resulting age-depth

model based on the four radiocarbon dates is presented (Fig. 4.3.7).
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Table 4.3.3 Radiocarbon dates submitted to NERC and Beta, calibrated using CALIB 7.1 (Stuiver
et al., 2013) and the IntCal13 atmospheric calibration curve (Reimer, 2013).

14C age 613C . Calib Calib
Sample ID Depth (cm)  Material & VPDB% - cal age BP wmean

+ error +0.5 )

(2 sigma) cal BP

25215117{(:- 564.5-565.5 Bulk 8147440 -20.8 9.006-9.144 9,083
232]511;0 47854795 Bulk 5985438 -22.1 6.734-6934 6,824
D 69.5-70.5  Bulk 2841437 -21.9 2.860-3.062 2949
68219
Beta-447118 | 319-320 Bulk 5320430 -29.5 6.200-5.995 6,094

Surface

Depth (cr)
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] ] ]
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|
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Figure 4.3.7 The selected calibrated AMS *C dates used to construct an age-depth model for

Loch of Grimsetter generated using R v. 3.3 and the package Clam (Blaauw, 2010). Accumulation

rate is also presented (inset).
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4.3.7.Diatoms

Eighty-three samples were counted from the base of the core to 20 cm from Loch of
Grimsetter, with 150 diatom species identified throughout the record. The diatom assemblages
are divided into six distinct temporal zones and four sub-zones identified by CONISS (Grimm,
1987) and supported by optimal zonation (Bennett, 1996). The primary CONISS break with the
highest variance reduction was detected at 101 cm (c. 3350 cal BP). The break with the second
highest level of variance occurred at ¢. 6880 cal BP (480 cm), and the third highest break located
at 317 cm (c. 6060 cal BP). The fourth highest break occurs at 69 cm (c. 2900 cal BP). The six
zones (and four sub-zones) have been labelled GRMD-1 to GRMD-6 (with the four sub zones
GRMD-1a/b and GRMD-4a/b) (Fig. 4.3.8) and are described in detail below.

GRMD-1 (a/b) (568 — 528 cm; c. 9170 — 8100 cal BP): The basal zone GRMD-1 is
dominated by the planktonic species Cyclotella stelligeroides along with Fragilariforma

virescens, Nitzschia species, A. minutissimum, R. pusillum, and B. neoexilis. (Fig. 4.3.8).

GRMD-1b (528 cm - 480cm; c. 8100 — 6880 cal BP): There is a slight decrease in C.
stelligeroides at the break between zones 1a and 1b which then increases throughout GRMD-1b.
There is also an increasing trend found in S. construens and Cyclotella bodanica var lemanica
from zone GRMD-1a to GRMD-1b. The diatom concentration also decreases at this transition
point. Species richness in this zone fluctuates between 31 and 38 species, peaking at the very top
of the zone at 43 species. The dissimilarity between the samples reflects these changes as Bray-

Curtis index also fluctuates noticeably along with species evenness reflected in Hills N2 values.

GRMD-2 (480 — 372 cm; c. 6880 - 6340 cal BP): There is a decrease in the dominant C.
stelligeroides with an increase in F. exigua from the previous zone into GRMD-2 and an increase
in Brachysira neoexilis. Staurosira construens steadily decreases progressing through the zone
reaching its lowest concentration at 425 cm (c. 6580 cal BP) and then increases again by the top
of the zone (Fig. 4.3.8). There is also a corresponding decrease in the proportion of A.
minutissimum and increase in C. stelligeroides at 425 cm. Species richness again fluctuates
throughout the zone, however at a lower frequency, but higher amplitude than the basal zone.
Bray-Curtis has sharp fluctuations at the beginning of the zone while by the middle of the zone ~
450 cm (c. 6690 cal BP) becomes less drastic. This change in amplitude and change in frequency
is also reflected in the Hills N2 where there are sharp changes at the beginning of the zone that in

turn become more gradual (Fig. 4.3.8).
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GRMD-3 (372 - 317 cm; ¢. 6340 - 6060 cal BP): Zone GRMD-3 represents a short
period characterized by an increase of B. neoexilis (characteristic of bogs and associated with
sphagnum) which reaches its maximum abundance in the core. S. construens also disappears at
the beginning of the zone and only reappears at the top in low abundance. The assemblage
continues to be dominated by F. exigua and C. stelligeroides. However, C. stelligeroides
abundance has decreased from a maximum abundance of 30 % in the previous zone to ~ 20 %.
Diatom concentrations stay low compared to previous zones (Fig. 4.3.8) and the change from
lower amplitude, lower frequency changes in the Bray-Curtis similarity index that began in the
middle of the previous zone, continues until 110 cm (c. 3460 cal BP). At the same time, the species
evenness decreases in this zone while species richness again fluctuates between 36 and 43 species

(Fig. 4.3.8).

GRMD-4a (317 - 205 cm; ¢. 6340 - 4650 cal BP): The diatom assemblage in zone
GRMD-4a remains quite stable throughout. There is a suggestion of a degree of periodicity
corresponding to the rising and falling of S construens, F. exigua, C. stelligeroides and
Achnanthidium minutissimum every 24 cm (~ 300 years). There is also the emergence of
Sellaphora vitabunda, Diatoma tenuis, and Staurosirella leptostauron in this zone. The diatom

concentrations also rise and fall with the periodicity in the assemblages (Fig. 4.3.8).

GRMD-4b (205 - 101 cm; c. 4650 - 3340 cal BP): The sub zones of GRMD-4 are defined
by a change in rare species such as Staurosirella leptostauron, Nupela vitiosa and Tabellaria
flocculosa at 205 cm (c. 4650 cal BP) which either initially appears in zone b or at a higher
concentration than in zone a. There are several periods of sharp increases in species richness in
this zone occurring at 281, 249, 177, and 137 cm (c. 5610, 5210, 4300, and 3800 cal BP
respectively) where richness spikes to over 40 species present. However, Bray-Curtis does not
reflect these changes, however Hills N2 does with peaks in the values at those locations. Hills N2
reaches a low point at 200 cm (c. 4590 cal BP) that does not have a corresponding event occurring

in the richness data (Fig. 4.3.8).

GRMD-5 (101 - 69 cm; c. 3340 - 2910 cal BP): GRMD-5 is another short zone
consisting of 25 cm of sediment (~ 315 years) which denotes the start of a notable change in
diatom species composition. This is the location of the highest CONISS break and sees the
appearance of ‘small’ Fragilaria (s.l.) species. These were too small to be identified to species
level but could be Pseudostaurosira elliptica, S. pinnata or F. exigua. Nupela vitiosa also
increased in concentration and Navicula minima appeared for the first time in the palaeorecord
along with a decrease in C. stelligeroides. Species diversity also decreases with a disappearance
of the rarer species (right side of the diagram Fig. 4.3.8). Species richness peaks slightly in this
zone to 40 species, however the assemblage is quite different based on the results of Bray-Curtis

analysis which reaches its highest value of 1.9 at 97 cm (c. 3290 cal BP).
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GRMD-6 (69 - 20 cm; ¢. 2910 - 800 cal BP): Diatom concentrations increase in the
uppermost zone GRMD-6. The changes that started in the previous zone continue with a decrease
in S. construens while the smaller Fragilaria (s.l.) reach their highest abundance and C.
stelligeroides reach their lowest abundances (Fig. 4.3.8). There is a turnover of species with the
appearance of Planothidium conspicuum, Aulacoseira granulata, Hippodonta capitata and
Eolimna rotunda and a disappearance of Achnanthes childanos, and reduction of Tabellaria
flocculosa. Species richness peaks in this uppermost zone with 44 species, however it decreases
to 26 by the top of the record while evenness remains comparable to the previous zone. The
similarity of the samples in this zone are more similar due to the less variance in the Bray-Curtis

results.

The results of the PCA show that the first axis explains 31.4 % (A = 0.314) of species
variation per sample depth and PCA axis-2 16.0 % of species variation (A =0.381). The site scores
(Fig. 4.3.9b) show that for the beginning of the loch’s history, diatom assemblage began in the
upper left quadrant driven by C. stelligeroides. For most of the record it shifted back and forth
above and below the first axis migrating to below the first axis until ~ 100 cm when the
assemblage shifted to a very distinct and unique assemblage to the right of the secondary axis

(Fig. 4.3.9).
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Figure 4.3.9 PCA analysis of the diatom species from Loch of Grimsetter in relation to sample

depth. PCA axis-1 explains 31.4 % of the observed variation in species composition related to

sample depth and PCA Axis 2 explains 16.0 % of species variation. Graph ‘a’ shows the

relationship of species to the PCA axis and ‘b’ shows the relationship of the samples to the PCA
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4.3.8.Pollen

The core was sampled for pollen analysis at 8-cm intervals (1-cm’ samples) for 48
samples the full length of the core. Six significant temporal zones were identified by CONISS
(Grimm, 1987) and optimal zonation (Bennett, 1996) in the pollen assemblage. The primary
CONISS break with the highest variance reduction was detected at 77 cm (c. 3040 cal BP) (Fig.
4.3.10). The break with the second highest level of variance occurred at c. 5460 cal BP (269 cm).
The third highest break occurs at 534 ¢cm (c. 8290 cal BP) (Fig. 4.3.10). The fourth and fifth occur
at 390 cm (c. 6420 cal BP) and 209 cm (c. 4700 cal BP) respectively. The zones have been labelled
GRMP-1 to GRMP-5.

LPAZ GRMP-1 (568 - 534 cm; c. 9170 - 8290 cal BP): The basal LPAZ GRMP-1 is
short and characterized by typical Betula/ Pinus/ Corylus avellana type canopy with Poaceae/
Empetrum dominant understory with some Ranunculaceae. The spore record is dominated by
Polypodiaceae. The ratio of trees/herbs/shrubs show around 45 % trees, 20 % shrubs and 35 %
herbs (Fig. 4.3.10).

LPAZ GRMP-2 (534 - 390 cm; c. 8290 — 6420 cal BP): Betula, Pinus, Corylus avellana
type and Poaceae still dominate in LPAZ GRMP-2 along with an increase in Ranunculaceae.
Species diversity has increased with the appearance of Asteraceaec Subfam: Asteraceae, Caltha,
Campanula and Scabiosa, though their abundances are quite low and are classified as rare. Both
Polypodium and Polypodiaceae decrease from levels seen in zone GRMP-1. The concentrations
of the pollen fluctuate through the LPAZ, with peaks at 516, 480, and 432 cm (c. 7820, 6880,
6610 cal BP respectively).

LPAZ GRMP-3 (390 - 269 cm; c. 6420 - 5460 cal BP): The proportions of Poaceae
slightly decrease in LPAZ GRMP-3 and there is a corresponding increase in Corylus avellana
type. Betula levels remain consistent at ~ 20 %, along with Pinus and Alnus (Fig. 4.3.10). There
is also an increase in Polypodiaceae. Pollen concentrations slightly fluctuate through the LPAZ,

though they remain stable overall.

LPAZ GRMP-4 (269 - 209 cm; c. 5460 - 4700 cal BP): LPAZ GRMP-4 is a short zone
(~ 50 cm) which sees a peak of 25 % in Poaceae and a slight reduction of ~ 5 % in Corylus
avellana type and Betula. Alnus slightly increases while Pinus decreases (Fig. 4.3.10). At the top
of this LPAZ (210 cm; c. 4720 cal BP) Plantago lanceolata begins to increase from ~ 8 % to ~
12 %. Rumex appears for the first time in this zone while Cyperaceae peaks in this LPAZ at ~ 10
%, the highest abundance for it in this core. Pollen concentrations remain similar to the previous

LPAZ.
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LPAZ GRMP-5 (209 - 77 cm; c. 4700 - 3040 cal BP): At the start of this LPAZ, Poaceae
slightly decreases and then remains constant at ~ 15 % while Empetrum gradually increases from
10 % to 20 % by the top of the LPAZ (Fig. 4.3.10). Plantago has also increased from the previous
zone to around 18 %. Midway through the LPAZ, Erica starts to increase around 120 cm (¢. 3580
cal BP) from 1 to 5 %. At the top of the LPAZ at ~ 100 cm (c. 3330 cal BP) Betula and Alnus
begin to decrease. Again, the pollen concentration remains comparable to the previous LPAZs.

Charcoal starts to appear at the bottom of the zone (Fig. 4.3.10).

LPAZ GRMP- 6 (77 - 20 cm; ¢. 3040 - 800 cal BP): The top-most LPAZ GRMP-6 is
defined by CONISS as the highest sum of squares break in the record. This is due to a considerable
decrease of Corylus avellana type, Betula, Alnus and Pinus, together with an increase in Poaceae,
Calluna, Erica and Empetrum. Pollen concentrations peak in this LPAZ. Charcoal concentrations
also increase to their highest values (4833 charcoal per cm®) in this LPAZ starting at 65 cm (c.

2740 cal BP), around the same time as the proportions of trees and shrubs decrease (Fig. 4.3.10).
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4.4. Fisher Information

This section will explore the relationship between the change of multiple proxies through
time using time-series statistical techniques. The previous sections have shown the differing
responses to climatic influences across the three study lochs located on Shetland and Orkney
along with differences in the rates of change during the Lateglacial through the early Holocene.
It has been demonstrated in palacoenvironmental records that during the Lateglacial more abrupt
changes had occurred in proxy data while during the Holocene changes were deemed subtler or

gradual (Shuman et al., 2005).

Fisher Information was applied to diatom, pollen, and geochemical data which are distinct
types of data that are routinely used in palaeoenvironmental reconstructions to provide
information on the state of the catchment, terrestrial vegetation, and the aquatic environment. The
benefit from using multiple proxies in this type of analysis is that each proxy responds to change
in diverse ways. Diatoms have a short life span and generation time and respond quickly to
changes in the aquatic environment while pollen tends to have a lag in its response to
environmental change due to the longevity of certain plant groups (i.e. trees) and provides a
terrestrial signal for the catchment. The geochemical data provides information on both the
catchment and aquatic environment as the sediment composition is made up of allochthonous and
autochthonous input and, depending on the environmental change, can respond quickly (i.e.

precipitation, catchment instability) or slowly (i.e. drought).

As outlined in Section 2.6, the technique chosen for this analysis is Fisher Information,
which takes into consideration the multivariate nature within ecological communities and the
resulting non-linear responses that can occur with changes in the environment. These results can
be used to identify trends in the data that can result in a signal prior to a critical transition by
combing multiple variables into an index (FI) that can be followed through time (Eason et al.,
2014). It also recognizes the fact that abrupt changes can be a result of sudden tipping points and
that prolonged instability can also instigate regime shifts (Spanbauer et al., 2014).

Between the three lochs, the Lateglacial and early Holocene is represented for both
Orkney and Shetland. These three proxies should provide a comprehensive look at how the
vegetation, catchment and loch are responding to changes in the environment and at what
temporal resolution and to determine whether there are any trends in the data that might be used
as warning signals prior to a change in assemblage. It will also determine if these methods are

appropriate for palacoecological data and highlight the benefits from their use.
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4.4.1.Results: Loch of Sabiston

The results of the FI analysis from Loch of Sabiston are presented in Figure 4.4.1. The
pollen and diatom records were calculated with a window of 2 samples and progresses through
the record one sample at a time while the u-XRF data had a window size of 4 with the data
smoothed to an 8-point average. This was necessary due to the amount of noise in the u-XRF data
(Fig. 4.4.1a). Starting with the pu-XRF data, there seems to be some agreement with the CONISS
breaks and sharp changes in FI. At the beginning of the record there is a decrease in FI which
signifies that the system is losing order and stability. This continues until ¢. 16,500 cal BP when
FI begins to increase until ¢. 15,000 cal BP. At this point, there is a sharp decrease which indicates
a regime shift that lasts until ¢. 14,200 cal BP. The record during GI-1d illustrates a gradual shift
until this point where the beginning of the interstadial is recorded. Through the Belling interstadial
there is a steady climb of FI to ¢. 13,250 cal BP with a series of increases and decreases which
correlate with GI-1d, the Allered and IACP (GI-1b) and possibly other climatic shifts that have
been recorded in the Greenland ice core records (Rasmussen et al., 2014). Again, there is an abrupt
decrease in FI at the beginning of the Younger Dryas stadial. The Younger Dryas is relatively
variable with increasing and decreasing FI values, followed by an extreme rise in FI transiting out
of the Younger Dryas and into the Holocene at c¢. 11,770 cal BP. The rapid rise in FI indicates
that the geochemical system is becoming more organized and stable (Ahmad et al., 2016).
Therefore, the Holocene appears to have been more stable than the preceding LGIT. The
beginning of the Holocene has a high FI and appears to have been stable, however, there is
relatively high variability throughout this period. At c. 8880 cal BP there is a rapid decrease in FI
that is in good agreement with a CONISS zone (Fig. 4.4.1a) which then transition into a prolonged
stable period. This stability lasts until ¢. 5000 cal BP where a start of a gradual downward trend
that extends to the top of the record indicating a reduction in order and stability of the geochemical

record.

The diatom results of the FI analysis (Fig. 4.4.1b) suggests the GI-1d was relatively stable
until ¢. 14,700 cal BP after which FI became unstable signifying a tipping point occurring that
began the interstadial. There are multiple sharp increases and decreases in FI during the Bolling
— Allered which indicates a very unstable time leading up to the Younger Dryas. During the
Younger Dryas, the FI is stable but with an overall decreasing trend that ends in a sharp decline
signifying the beginning of the Holocene. The first part of the Holocene is characterised by a
steadily increasing F1 score until ¢. 9120 cal BP after which FI became stable and orderly until c.
7700 cal BP when FI begins to decrease suggesting an increase in instability in the diatom
assemblage. At c¢. 6000 BP there is a sharp decline in FI that is not reflected in the zonation

systems (Fig. 4.1.8), but is marked by a drop in Cyclotella meneghiniana and an increase in
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Gomphonema angustum abundance. At c¢. 5200 cal BP the FI scores begins to gradually decrease

to the top of the record.

The FI results for the pollen record indicates changes in the assemblages also not reflected
in the zonation system for the LGIT (Fig. 4.4.1c). There is a definite instability signal during the
Bolling — Allered interstadial. The Allered pollen assemblage (which is combined with the
Younger Dryas in the results from CONISS) has a low FI that decreases until the transition into
the Younger Dryas c¢. 11,700 cal BP when FI increases. The variability during the Younger Dryas
and the beginning of the Holocene are similar in indicating a very unstable time. There is a subtle
upward trend in FI scores which continues into the Holocene. Until ¢. 10,000 cal BP where it
begins to decrease again until c. 8600 cal BP when there is a sharp increase in FI to ¢. 8500 cal
BP. After this the Holocene record stabilizes and remains consistent until ¢. 4500 cal BP when it

begins to decrease to the top of the record.

4.4.2. Results: Loch of Clumlie

There is high variability in the results of the FI analysis for u-XRF record in Loch of
Clumlie (Fig. 4.4.2a). The geochemical FI scores in GI-1d shows instability until ¢. 16,030 cal
BP and then FI becomes more stable as it heads into the Bolling interstadial. During the Belling
the FI score remains stable with high variability until ¢. 13,740 cal BP when dynamic order begins
to decrease and the system becomes more unstable as it proceeds into the GI-1d. The FI score
remains low though this zone and into the Allered when it increases and peaks at ¢. 13,030 cal
BP. The end of the Allerad is characterized by a step-down trend which could indicate the IACP.
During the Younger Dryas, the FI score has high variability with a subtle trend upwards to c.
12,330 cal BP. The second half of the Younger Dryas sees another peak in FI score ¢. 11,860 cal
BP with subsequent tipping point reached as it heads into the Holocene. There is a prolonged
transitional zone in the record that has a low and stable FI prior to the sharp increase into the
Holocene. The uppermost portion of the core that contains the Holocene must be interpreted with
caution because of the evidence for hiatuses. After ~ 40 cm core depth the FI value steadily

increases which suggest a more stable environment at the top of the record.

The diatom FI results are in good agreement with the abrupt changes observed in the
assemblage along with the results of the zonation established with CONISS (Fig. 4.4.2b). The GI-
1d shows a general downward trend in F1 until ¢. 14,750 cal BP when an abrupt but small decrease
occurred prior to the CONISS zone at c. 14590 cal BP. The FI then suggests a stable Bolling until
¢. 13,900 cal BP when the FI begins to decrease until the after the start of the Allerad. The Allered
shows a steady decrease of FI throughout the period until the start of the Younger Dryas which
also agrees with the CONISS zonation. The FI steadily increases during the Younger Dryas until
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c. 12,330 cal BP after which the variability of FI increases. There is a tipping point where the
species assemblage changes from one group to another in the second half of the Younger Dryas
(at ¢. 12,050 cal BP) which is also indicated by CONISS. There is an increase in FI at the end of
the Younger Dryas followed by a downward trend indicating a loss of stability of the record. This
downward trend continues into the Holocene until ~ 60 cm core depth. The FI during the Holocene
is very stable and orderly, however, caution in interpretation is needed due to the complexity of

the top of the core with the probably hiatus.

The pollen FI record for Loch of Clumlie shows there is a slight general trend through
the GI-1d into the Bolling - Allered of decreasing order and resilience in the system (Fig. 4.2.2¢).
Like the record from Loch of Sabiston, there is no abrupt change during the transition from the
end of the Allered. The result of the FI through the Younger Dryas is variable with a slight
decreasing trend during the first half of the Younger Dryas and a slight increasing trend during
the second half. By c. 12,330 cal BP core depth the FI index remains quite stable and orderly

through the Holocene with little variability occurring.

4.4.3. Results: Loch of Grimsetter

The FI results from Loch of Grimsetter illustrate a very stable environment over the
length of the record. In the p-XRF results there is probable evidence for the 8.2 ka event (yellow
arrow, Fig. 4.4.3a), but the environment remains relatively stable throughout the record. It could
be argued that the perpetration of the 8.2 ka event began at c¢. 8500 cal. BP based on the FI
analysis. Another probable event occurred ¢. 6900 cal BP that CONISS does not record. The
different sedimentation rates are evident in the XRF data as the middle of the record from c¢. 6800
to ¢. 3000 cal BP has a slower sedimentation rate and therefore the data points will be at a higher

resolution than the rest of the core. However, the overall trends can be interpreted.

The FI results also suggest relative stability in the diatom record overall. However, there
is a difference in the rate of change from c. 6800 to c¢. 6000 cal BP with a higher amount of
instability in the record. Based on the large decrease in FI there are two other potential events, the
first occurring between c¢. 8400-8150 cal BP, which is most likely the 8.2 ka event. The other
begins at ¢. 3700 cal BP, ~ 360 years prior to the CONISS break in the assemblage. The early
Holocene pollen record is quite stable in Loch of Grimsetter with a loss of order occurring at c.
6330 cal BP after the CONISS break at c. 6420 cal. It then returns to a stable state for the
remainder of the record. At ¢. 6000 cal BP there was a loss of order followed by a return to a

stable state which lasted for ~ 530 years.
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Chapter 5

5. Discussion and Synthesis

The central aim of this research is to determine the nature and the timing of
palaeoenvironmental changes that occurred at the end of the LGM through to the early Holocene
on the island groups of Shetland and Orkney. Traditional constrained cluster analysis was used
along with Fisher Information, a new technique to assess the stability of a system (in this case
diatom, pollen, and geochemical systems), to determine the nature and the timing of changes that
occurred in each of the proxies and how each analysis relates to the other. Discussion will focus
on the relationship between diatom, pollen, and geochemical records from the study lochs on
Shetland and Orkney and will examine how these results compare to their respective island

archipelagos and to the wider North Atlantic

This synthesis will begin with an examination of the chronological uncertainties that
occur when undertaking palacoenvironmental studies and the considerations that were taken in
this present study. This will be followed by an examination of the robustness of applying Fisher
Information to palaecoenvironmental data and how well it detects tipping points in the data.
General observations of each of the study lochs will be presented followed by the discussion of
the palacoenvironmental evidence for climatic change arranged chronologically from
deglaciation, through the Bolling-Allerad interstadial and the Younger Dryas Stadial concluding

with the early Holocene.
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5.1. Chronological Considerations

The key to understanding any synthesis of climatic and environmental changes that have
occurred though time is having a robust chronology. Chronologies developed from Shetland and
Orkney are often impacted by dating issues such as o/d carbon or contamination of older sediment
from younger sediment above which compromises the accuracy of ages (Marty and Myrbo, 2014;
Shotton, 1972; Yu et al.,, 2007). In locations such as the Northern Isles, fine-tuning of
chronologies can be carried out with the application of tephrochronology. Using known and well-
dated tephra horizons that are independent of site specific variables can be used to correlate
palacoenvironmental data sets (Bronk Ramsey et al., 2014; Lowe, 2015). Another method is to
correlate the sequence of regional climatic events to other records that are well-dated or
stratigraphically constrained such as the Greenland ice core records (synchronized NGRIP, GRIP,
and GISP2 records and resulting chronology presented in Rasmussen et al. (2014) (used for this
study) which are based on the 'O isotope ratio that is associated with variations in
palacoprecipitation and is temperature-controlled. However, it is acknowledged that by aligning
two different climate records, it prevents the identification of any time transgressive changes

across the region without leading to circular arguments (Baillie, 1991; Blaauw, 2012).

The chronology developed for Loch of Sabiston appears to be independently consistent
with the ages of the Saksunarvatn and Vedde tephra layers used to constrain the age-depth model
(Figure 4.1.8). This strengthens the reliability of the dates between the Younger Dryas and the
early Holocene, but dates younger or older than the timespan between the tephra layers may be
less reliable. In comparison with the Greenland ice core records (Rasmussen et al., 2014), it is
apparent that there is an offset of ~ 200 years between the Sabiston age-depth model and the
climate-stratigraphy. It is not clear however, if this offset is an artefact of the age-depth model or
if it represents an actual delay in the Orcadian response to events recorded in the ice core records.
This offset will be discussed further below. Despite this, the Loch of Sabiston record represents

the most precise age-depth model from Orkney to date.

The chronology from Loch of Clumlie was difficult to reconcile due to the drying out of
the loch and hiatuses during the early and mid-Holocene. There was visible evidence that root
penetration most likely contaminated underlying older sediment with younger material. Also, the
accumulation of lake sediment was halted and subjected to pedogenetic processes near the top of
the core. The correlation of the Lateglacial climate-stratigraphy from Loch of Clumlie to the
Greenland ice core records (the transitions from the LGM to the Bolling - Allerad, the IACP and
the Younger Dryas) provides a chronological framework in which to place palacoenvironmental
interpretations. However, this restricts the interpretation of the evidence from Loch of Clumlie to

a regional record based on the assumption that events were synchronous between Greenland and
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Shetland. Finally, the chronology from Loch of Grimsetter, which covers the Holocene, is
considered to be somewhat reliable due to the high organic content of the sediment and the lack
of any evidence of contamination from earlier sediment or old carbon input. The identification of
crypto tephra layers in the lochs from Shetland would have provided more robust independent
age-depth models to enable comparisons to be made across the North Atlantic region but

unfortunately no definitive tephra horizons were found in the cores.

5.2. The Nature and Timing of Events During the LGM and the Holocene

Fisher Information was developed to identify the dynamics of multivariate systems and
to determine points at which regime shifts occurred (Spanbauer et al., 2014). It also attempts to
record the changes and calculate the stability in species assemblages as they are occurring, and
therefore it is used for active monitoring regimes (Cabezas et al., 2010). The application of FI to
palaeoecological data is relatively new (Spanbauer et al., 2014) and many of the published
research using palacoecological data are theoretical outputs or based on simple or model systems
(Ahmad et al., 2016; Eason et al., 2014; Fath et al., 2003; Karunanithi et al., 2008; Mayer et al.,
2006). Other zonation procedures, such as constrained cluster analysis (CONISS, (Grimm,
1987)), averages the ecological changes occurring in the assemblages and therefore some species
might be responding to events prior to others. This can be observed in the diatom, p-XRF, and
pollen figures in Chapter 4 for the three lochs where the zone boundary can sometimes be found
on the peak or trough of a species’ relative abundance. Overall for the three lochs, the zonation
boundaries appear to correlate with transitional points in the FI results. In some instances, there
is agreement regarding the timing of critical transitions with the zone boundary coincident with a
FI peak or trough (Fig. 4.4.1 - 4.4.3), however, zones can also lie in the middle of a FI transition
(i.e. in between zones SABD-4 and SABD-5, Figure 4.4.1). This indicates the FI is detecting the
start of a change, with a decrease in FI (indicating a decrease in stability) occurring while the
zonation is detecting the threshold at which the assemblages have changed significantly. There
are also changes indicated by the FI index that are occurring in each of the proxies that have not
been identified using CONISS. CONISS does not provide detail on the rate and duration of
ecological changes (fast or slow, long or short) occurring across or between the zones while FI
provides information on the nature of the change (fast or slow, long or short). This is observed in
the Sabiston diatom record (Fig. 4.4.1), where there are two instances at ¢. 6100 cal BP and c.
10,000 cal BP when changes are evident in the FI index but are not reflected in the CONISS zones

which have been deemed significant using Broken Stick (Bennett, 1996).

It is assumed that abrupt climate changes lead to abrupt ecological changes, however, the

results of the FI index from this study suggests this is not always the case. By using the types of
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climate shifts outlined in Section 2.6, FI can be used to characterize the nature of changes in the
diatom, pollen, and geochemical data sets observed in the palacoenvironmental records from the
three lochs. Types I and II (smooth regime shifts and threshold responses) were most observed in
palaecoenvironmental data from this study with Type II being the most common. Type III (bistable
shifts) were associated with anthropogenic activities (for example in Figure 2.19) (Randsalu-
Wendrup et al., 2016). This is evident when comparing changes that occurred during the LGIT
with those in the Holocene in the three study lochs. Based on the FI index most changes can be
considered Type II tipping points based on threshold responses (Randsalu-Wendrup et al., 2016).
There are more abrupt changes over shorter periods of time during the LGIT while the Holocene
has more gradual shifts over longer periods. Also, the intensity of the shifts is higher during the

LGIT with a larger difference between high and low FI values than in the Holocene.

FI demonstrates how an ecological system behaves by establishing how assemblages are
changing (i.e. fast or gradual) and gives structure to the changes occurring between zonal
boundaries providing information on different rates of change occurring throughout the zones.
For example, the Loch of Sabiston diatom record suggests that ecological changes during the
Lateglacial were more abrupt and with a higher degree of variability in FI scores than changes
that occurred during the Holocene; which was more stable and with less variability. A comparison
of the Shetland and Orcadian lochs suggest that the intensity of the ecological change was subtler
at the Shetland sites. This could be due to Shetland being located at a higher latitude and lower /
less severe temperature oscillations. For instance, shifts from cool to cold would be less extreme
than from warmer to colder during the Lateglacial and early Holocene. Fisher Information has
provided a regional comparison on the nature of changes that have occurred across the Northern
Isles. The results here show that using the results of FI along with the zonation from a constrained
cluster analysis provides more insight into how a system or assemblage changes through time.

Detailed discussion about the individual FI results are discussed below.

5.3. Overview of the results from each of the study lochs

5.3.1.Loch of Sabiston

The results from Loch of Sabiston represent a multiproxy palaeoecological record that
extends further into the Lateglacial than previous studies undertaken on Orkney. This is also the
first high-resolution freshwater diatom record that extends from initial colonization of a newly
deglaciated catchment to the mid-Holocene on Orkney. Based on the geochemical results,
chronology, and the sediment stratigraphy, the sediment accumulation in Loch of Sabiston closely
follows recorded major changes in temperature trends for the North Atlantic including the

Bolling-Allered, Younger Dryas and start of the Holocene (Boomer et al., 2012; Levesque et al.,
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1993) (Fig.5.1). The results of the PCA analysis of diatom species show that species positively
related to axis-1 are associated with clay and silt sediment, which corresponds to cold events in
Loch of Sabiston, while negatively related species are associated with marl deposition,
macrophytes, and warmer conditions. PCA axis-2 relates to the change from aquatic to a more
terrestrial environment with a change in water levels and the beginning of peat deposition (Fig.

4.1.10).

Sabiston is a marl lake and its diatom assemblages have no strong analogues in the
European Diatom Database (EDDI) for environmental reconstructions. Therefore, the diatom
record is interpreted using the ecological preferences of known diatom species to reconstruct
palaeolimnological conditions (Van Dam et al., 1994). This approach is coupled with the high-
resolution geochemical analysis and the processes for the formation of marl sediments to support
inferences regarding the environment and climatic conditions of the catchment. Marl lakes are
highly alkaline, carbonate-rich, and precipitate calcite out of the water column due to
photosynthetic activity including Characeae. Previous studies have not considered the role of
marl deposition, and the circumstances surrounding its production in relation to environmental
reconstructions on Orkney. The environment in which marl accumulates is quite unique and
certain conditions must be met for it to precipitate. Temperature and pH are the main driving
factors in marl precipitation along with the geology of the catchment (see section 2.4, Figs 2.5 -

2.7).

Marl precipitation tends to occur in the summer months during warmer temperatures,
influenced by high productivity of aquatic macrophytes such as Characeae and
Potamogetonaceae (Pentecost, 2009; Wiik et al., 2013), which dominate the macrophyte
community in marl lakes. CaCO3 and CO; is more soluble in colder water so the switching on
and off of marl deposition on Orkney can be used as a proxy for temperature change as these
systems are quite alkaline and a change in pH is not likely. In present marl lakes, the precipitation
is initiated in the spring when the water temperature reaches above ~ 10°C (Cole and Weihe,
2015). Using the results from the u-XRF data and the Ca/Ti curve, which can indicate calcium
derived from autogenic sources in the loch such as biogenic production from vegetation, the
sediment sequence corroborates the change in temperature that occurred during the history of the
loch. The onset of marl accumulation occurs when temperatures increased and the shutting down
of the marl process occurred when temperatures returned to colder conditions. The main elements
in this analysis that are highly correlated all correspond to in-lake processes and primary
productivity (Table 4.1.3) and have very little relationship with catchment-based sediment input.
There are peaks in Rb, Ti, K and Sr during the Lateglacial which correspond to detrital
minerogenic input along with fine silt like particles which correspond to cooling events when

marl production was shut down due to changes in the environment. These changes are also
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illustrated in changes occurring in the pollen and diatom record to an extent, which will be

discussed below.

5.3.2.Loch of Clumlie

The record from Loch of Clumlie is complex, due to several drier phases which have
likely resulted in hiatuses in the record at the top of the core. Inferences can still be made using
the diatom, pollen, and elemental record to infer events such as the Bglling-Allered, Younger
Dryas and define the beginning of the Holocene. Due to the nature of each proxy, each responds
at different temporal frequencies which show up in the palacoenvironmental record, and how they
responded will provide a better understating on the nature and timing of changes in the catchment
at Loch of Clumlie. There are several instances where the geochemical profiles indicate changes
that are not evidenced by the diatom or pollen records which illustrates the advantage of the high-
resolution p-XRF core scanning. The timing of changes in Loch of Clumlie recorded by the three
proxies is summarised in Figure 5.2. Due to the number of uncountable diatom samples in the top
portion of the core, the reporting of the data will be limited to the record below 78 cm as inferences

made from above this point would be suspect (section 4.2.3).

The palacoenvironmental history of Loch of Clumlie is dominated by fluctuations in
effective moisture (precipitation — evaporation) leading to changes in the loch’s water levels.
During the Lateglacial, especially during the Bolling—Allered, there is evidence of wet and dry
periods along with evidence of water pulses into the loch based on the results of the diatom
analysis evidenced by fluctuations aerophilous taxa such as Achnanthes marginulata and
Pinnularia biceps (Fig. 4.2.8), and in the geochemical results evidenced by coarser grain size and
increase in Si (Fig. 4.2.5). An increase in temperature and a sustained lowering of the water level
marks the beginning of the Holocene which by ~ 60 cm core depth, led to oxidation of the
sediments and a hiatus in the record while the spread of heathland across the site is indicated by
the increase in Calluna. Loch of Clumlie presents a complex record that provides more insight
into what has occurred during the Lateglacial on Shetland and provides evidence of how different

areas in a small region can respond differently to larger regional influences.
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PCA axis-1 describes 36.7 % of the observed variation in species composition related to
sample depth and PCA axis-2 explains 16.6% of species variation (Fig. 4.2.9). Axis-1 is
negatively correlated to pioneer diatom species such as S. construens, F, constricta, and A.
pediculus assemblage found in the base of the core containing clays and silty sediment. Axis-1 is
positively correlated to species associated with small Navicula species where there is an increase
in fresh water and the pH becomes more circumneutral (Fig. 4.2.9) and is associated with sites
located at the top of the core (119 — 91 cm). PCA axis-2 is negatively correlated with diatoms
species such as P. elliptica, R. pusillum, A. minutissimum. and P. brevistriata, which are
predominately found in the organic component at the top of the core and are also associated with

the diatom Zone CLMD-3 which correlates with the warmer Bolling — Allergd period (Fig. 4.2.9).

5.3.3.Loch of Grimsetter

The Holocene record from Loch of Grimsetter is characterized by a uniform record
demonstrating subtle changes in the palacoecological record. The records establish the
progression of lake development highlighting the gradual changes in the aquatic and terrestrial
environment. The climate on Bressay may be described as stable through the early Holocene with
only subtle shifts in percentages occurring between plant groups in the terrestrial record (Fig.
4.3.10). Different influences in the environment define the zonation systems in both the pollen
and the diatom records as there is no agreement in the timing of changes occurring (Fig. 5.3). The
diatoms are consistently changing following shifts in the geochemistry while the pollen record
seems to be changing prior to both with a distinct amount of time in between. This suggests,
through most of the Holocene, the three proxies are responding to different influences in the

environment over time.
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5.4. Deglaciation after the LGM

5.4.1.Deglaciation of the North Atlantic

The retreat of the British-Irish Ice Sheet from the Northern Isles demonstrates a complex
history in the rate of retreat and uncovering of land masses (Bradwell and Stoker, 2015). The
warming at the end of the LGM caused rapid melting of the ice sheets covering the Nordic region.
The way in which the pattern of sea ice retreat is still being debated and existing evidence suggests
that Orkney was deglaciated c. 15,000 - 17,000 cal BP (Clark et al., 2012). Recently, older dates
of deglaciation have been discovered such as on the Isle of Lewis (c. 25,000 cal BP) (Bradwell
and Stoker, 2015). However, at Loch of Sabiston, the basal radiocarbon date of the core was
determined to be c. 22,300 cal BP located ~ 30 cm from the base of the core, which extends the
date of ice free conditions earlier than anticipated. This date is plausible in the light of recent
reconstructions of the extent of the LGM (Bradwell and Stoker, 2015). These reconstructions
suggest that Orkney might have been ice free at this earlier time if the pattern of deglaciation
began to the west of Orkney, exposing land from west to east while the Fair Isle Channel to the
north and the Pentland Firth to the South remained ice covered (personal comm. R. McCulloch).
However, there is historically an issue with radiocarbon dating on Orkney and the influence of
old carbon. The Lateglacial environment has not been well studied on Orkney and presently there
are three records: Crudale Meadow, Quoyloo Meadow, and now, Loch of Sabiston, all located in
western Mainland within 8 km of each other and only Loch of Sabiston has been independently
dated.

Discussion on the nature and rate of deglaciation in Shetland after the LGM (Ballantyne,
2010; Bradwell et al., 2008; Bradwell and Stoker, 2015; Clark et al., 2012; Merritt et al., 2016)
suggests that glacial retreat was complex in this region due to interactions between the British-
Irish Ice Sheet and the Fennoscandian Ice Sheets (FIS). The oldest terrestrial dates for deglaciation
after the LGM on Shetland are from Burn of Aith at c. 16,510 cal BP (13,680 + 110 BP '*C)
(Birnie, 1993) and Lang Lochs at ¢. 16,181 + 332 cal BP (Hulme and Durno, 1980), while sites
further east in the North Atlantic, such as the west coast of Norway, do not provide ages older
than the Bolling-Allerad (i.e. prior to c¢. 14,600 BP) due to the extent of the Fennoscandian Ice
Sheet (Eldevik et al., 2014). At Loch of Clumlie, the basal age located ~ 25 cm from the base of
the core is ¢.15,230 cal BP while at Lang Lochs, the basal age is ¢. 15,860 cal BP. However, a
30-cm bulk sample was used to obtain the age from Lang Loch and so the accuracy is less certain
(Hulme and Shirriffs, 1994). The BRITICE project nevertheless concurs with these published
dates for an ice-free Shetland (Golledge et al., 2008). Overall, there are few well dated Lateglacial

records in the North Atlantic and subsequently the chronologies from Loch of Sabiston and Loch
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of Clumlie provide a significant advancement in the dating of deglaciation from the LGM in the

North Atlantic.

5.4.2.Loch of Sabiston during the early Late Glacial Interstadial Transition

It is difficult to determine the basal age of the 432-cm core from Loch of Sabiston due to
lack of organic matter in the basal sediment and therefore the earliest radiocarbon sample with
adequate carbon is located at 403 cm which has an estimated date of ¢. 22,310 cal BP. The onset
of the diatom record occurs at c. 23,830 cal BP (extrapolated) and the development of vegetation
and the beginning of the pollen record occurs at ¢. 18,200 cal BP (Fig. 5.1). The geochemical
record at the base of the core indicates an unstable, barren catchment denoted by the influx of
minerogenic input caused by physical and chemical weathering of the catchment along with
blueish grey clay/silt input which are most likely glaciogenic. This minerogenic input steadily
decreases between the base of the core and ¢. 18,200 cal BP together with an increase in organic
content which is typical of primary succession in recently deglaciated landscapes (Fritz and
Anderson, 2013). The pollen record in Loch of Sabiston begins at ¢. 18,200 cal BP, just prior to
the end of the LGM and contains species such as dwarf-shrubs, grasses, heath, and arctic-alpine
species. The catchment would have been unstable arctic tundra, not very productive and probably

had snow patches year round due to the presence of Salix (Wijk, 1986).

The diatom assemblage which begins at ¢. 23,830 cal BP has low diversity and is
dominated by Fragilaria (s.l.) species which is typical of the first colonizers in recently
deglaciated lakes (Haworth, 1976; Round, 1957). They are indicative of low light, low nutrient
environments and persisted until c¢. 13,840 cal BP, the beginning of the Belling-Allered
interstadial. These pioneer assemblages persisted for ~ 2500 years due to the colder temperatures
and the minerogenic input into the loch. The low organic content and lack of macrophytes
(observed during sampling for radiocarbon dating) during this time also indicates low
productivity. Due to the periglacial environment, extended snow and ice cover during the year
along with fine glacial clay particles in the water column would also have contributed to lower
oxygen, together with extended low light conditions favoured by these pioneer species. The
gradual change in species assemblage would be also due to changes in nutrient input into the loch
from the stabilization of the catchment and soil formation rather than a response to changes in

temperature or precipitation during this time (Fritz and Anderson, 2013).

The timing of the changes between the three proxies exhibit leads and lags in their
occurrence (Fig. 5.1). The initial colonization of the catchment of both aquatic and terrestrial
organisms was offset by ~ 5600 years with diatoms and macrophytes arriving first in the

palaecoenvironmental record. The diatom assemblage appears to then change at c. 13,840 cal BP
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(355 cm) while evidence in the geochemical record shows a change ~ 320 year earlier. Whereas,
the pollen assemblage does not change significantly until after the beginning of the Younger

Dryas at c. 12,270 cal BP.

Based on the results of the Fisher Information analysis, the stability of the ecosystem
during deglaciation after the LGM is apparent in all three proxies studied from Loch of Sabiston.
In the case of the pollen and diatom records, this is most likely due to the adaptation of cold
tolerant species as even with warming it is still a periglacial environment. Gradual changes in
stability occur towards the start of the Bolling — Allerad interstadial. The FI index shows change
in the composition for the geochemistry starting at ¢. 14,500 cal BP, while the diatom FI begins
to show slight instability in the assemblage at ¢. 15,400 cal BP with an increase in intensity of the
shift from c. 14,700 cal BP, which is ~ 200 years prior to the change in geochemistry. Pollen FI
index changes occur last with a subtle shift in FI at ¢. 14,900 cal BP, ~ 700 years prior to the onset
of marl deposition at ¢.14,200 cal BP. This lag in the onset of marl precipitation is most likely
due to the temperature not reaching the threshold to instigate marl precipitation. However, none
of the changes occurring during the early phases of the LGIT and deglaciation could be considered
to mark tipping points (which is determined by a sharp decrease in FI index) and only show

gradual changes occurring prior to the full interstadial (Belling - Allered).

5.4.3.Orkney Islands during the early Late Glacial Interstadial Transition

At the two other Lateglacial sites on Orkney, Quoyloo Meadow and Crudale Meadow,
the countable pollen record began just prior to the start of the interstadial (based on sediment
stratigraphy) (Bunting, 1994; Whittington et al., 2015) while at Loch of Sabiston it began ~ 2280
years prior to the start of the interstadial (at c. 18,200 cal BP) however the chronologies at Crudale
Meadow and Quoyloo Meadow are not as precise as the chronology from Loch of Sabiston.
Crudale Meadow is correlated with the GICCO5 dates (Whittington et al., 2015) due to problems
associated with hard water error while previous attempts at dating Quoyloo Meadow (which also
had problems with the calcareous nature of the underlying sediment) incorporated a radiocarbon
sequence from Caithness along with the date of elm decline in Britain and the Saksunarvatn tephra
layer for its chronology (Bunting, 1994). Loch of Sabiston shows a similar Lateglacial vegetation
cover to Crudale and Quoyloo Meadow (Bunting, 1994; Whittington et al., 2015) indicating a
sparsely vegetated and unstable landscape during the Lateglacial (from the beginning of the
Bolling to the start of the Younger Dryas) with low-lying, open vegetation, such as grasses, and

crowberry, sedges are typical with dwarf birch also thought to be present.

The diatom record from Loch of Sabiston is the first high resolution Lateglacial

freshwater diatom record for the region and therefore, there are no other records on Orkney during
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the Lateglacial to compare to. Diatoms are recorded in sediments dating from c. 23,830 cal BP
and consist of an assemblage dominated by pioneer species tolerant of low light, alkaline waters
that are typical of a deglaciated environment that had prolonged ice cover throughout the year

(Fritz and Anderson, 2013; Round, 1957).

5.4.4.Loch of Clumlie during the early Late Glacial Interstadial Transition

The basal age of the core from Loch of Clumlie has been estimated to be ¢. 16,400 cal
BP based on a AMS calibrated radiocarbon date. The lithology and geochemistry of the basal
sediment indicates an unstable, barren catchment denoted by the influx of minerogenic input
caused by physical and chemical weathering along with fine silt and clay input. This input steadily
decreases though the zone along with an increase of organic content which is typical of primary
succession in recently deglaciated landscapes (Fritz and Anderson, 2013). Loch of Clumlie does
not have an obvious visual organic layer that would reflect a warmer interstadial during the

Lateglacial in the geochemical record.

The Lateglacial diatom assemblage at Loch of Clumlie is dominated by S. construens and
S. pinnata and other Fragilaria (s.l.) species which is typical of the first colonizers in recently
deglaciated lakes (Fritz and Anderson, 2013; Haworth, 1976; Round, 1957) and characteristic of
an established but developing ecosystem after glacial cover in a low light, nutrient poor, alkaline
environment. The high species diversity (compared to that of other Lateglacial sites with pioneer
assemblages (Birnie, 2000; Haworth, 1976; Round, 1957; Smol, 1983)) and the increased
presence of Pediastrum (Fig. 4.2.9), however, indicates a more developed successional stage
which may suggest that the record does not include the earliest evidence for deglaciation. Due to
the presence of a developed diatom community at the base of the core prior to the beginning of
the interstadial (Fig. 4.2.8), Loch of Clumlie most likely experienced prolonged ice/ snow cover

while the terrestrial environment was probably a less productive arctic tundra (Birnie, 2000).

The CONISS zonation for the three proxies shows variation in the timing of changes
during the Lateglacial (Fig. 5.2). The geochemistry of the sediment changes at 180 cm (c. 15,340
cal BP) with an increase in organic content and silt signalling the beginning of the Belling-Allered
interstadial, while the pollen record also begins at 180 cm. The diatoms do not show a significant
shift in species assemblage until after the start of the Bolling-Allered at 166 cm (c. 14,590 cal
BP) along with an increase in diatom concentration. The time difference between the observed
changes in the three proxies could be due to prolonged cold after deglaciation for longer periods
of the year which may have resulted in a lag in response. Based on the ecological proxies (pollen

and diatoms) the interstadial warming began at 166 cm (c. 14,590 cal BP).

174



Chapter 5 Discussion & Synthesis

The FI results of the geochemical analysis from Loch of Clumlie responded more abruptly
than those observed at Loch of Sabiston. At ¢. 16,000 cal BP, the steep decrease in FI in the
geochemical record (Fig. 4.4.3) marks a tipping point that corresponds to the change in sediment
from being purely minerogenic to the beginning of increasing organic content along with a peak
in magnetic susceptibility indicating an early transition in a landscape that is undergoing
deglaciation (minerogenic sediments) and low lacustrine productivity and then with initial early

LGIT warming an increase in lacustrine productivity and a rise in organic content.

During the remainder of the LGIT the FI index stabilized until ~ 100 years prior to the
onset of the Bolling — Allered interstadial (Fig 4.4.2) at which time FI increases indicating further
changes in sediment composition. The results of the diatom FI analysis during the LGIT show a
stable assemblage until c¢. 15,700 — 15,500 cal BP where there is a change in assemblage
composition prior to the change in geochemistry and increase in organic content which could
indicate increased productivity in the loch at this time. The pollen record from Loch of Clumlie
does not begin until after the onset of the Bolling — Allered interstadial and the FI index data sets

are discussed in Section 5.5.4.

5.4.5.Shetland Islands during the early Late Glacial Interstadial Transition

Palacoenvironmental evidence for the early Lateglacial on Shetland appear to be
constrained to sites in the southern part of Mainland below Lerwick, with the exception of Grunna
Water, which lies to the north (see Fig. 2.14, Chapter 2). The aquatic environment at Loch of
Clumlie during the Lateglacial had a well-developed flora (unlike Loch of Sabiston where the
base of the core was barren of diatoms) containing diatom species that are associated with
macrophytes. These basal sediments also contained pioneer Fragilaria (s.l.) species that are
tolerant of low light alkaline waters and Pediastrum was also quite abundant. The landscape was
likely barren with very little organic content during the early Lateglacial based on the low
concentration of pollen and the results of the LOI analysis (Figs 4.2.10 and 4.2.5). This
juxtaposition between the productivity of the aquatic environment and the lack thereof in the
terrestrial record is evident in the palaeorecords. Clettnadal has a similar pre-interstadial
Lateglacial diatom record (c. 15,800 to c¢. 12,000 cal BP) but at a lower temporal resolution than
Clumlie (Robinson, 2004), and is characteristic of other periglacial assemblages dominated by
pioneer Fragilaria species (s.l) (Birnie, 2000; Smol, 1983) which are typical of the first
colonizers in recently deglaciated lakes (Haworth, 1976; Round, 1957) and are indicative of low

light, low nutrient environments.

There is little detail regarding the vegetation during the early phases of the LGIT on
Shetland as most pollen records begin just before the start of the Belling — Allered interstadial.
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The terrestrial environment at Loch Clumlie is comparable to other records from Shetland such
as Aith Voe and Clettnadal (Birnie, 2000; Robinson, 2004) which suggest low, herb-dominated
vegetation tolerant of the unstable slopes, (glaciogenic regolith) and a cold arctic-alpine type

environment.

5.4.6. Regional Synthesis for the early Late Glacial Interstadial Transition

In the North Atlantic, the literature suggests a similar successional pattern to that
described from Loch of Sabiston and Loch of Clumlie. After deglaciation of barren unstable
sediments were left, which were then colonized by open ground vegetation including dwarf arctic-
alpine species (Walker et al., 1994). However, there are regional variations that have arisen that
seem to be dependent on local conditions on Shetland. Similar to the findings from Loch of
Sabiston and Loch of Clumlie, locations are affected by altitude, exposure, catchment
characteristics, and geochemistry which can alter the timing of responses to change in the wider
North Atlantic (e.g. Bradshaw et al. 2000; Brooks and Birks 2000a; Robinson 2004; Turner et al.
2015). The response of glacial retreat in Norway was later than that at the Northern Isles due to
the continued presence of the FIS. At Krakenes, Norway the pollen and diatom record showed
similar successional patterns after the LGM, however this occurred during the timing of the
Bolling — Allerad in the Northern Isles where the warmer temperatures had a greater influence on
the newly deglaciated landscape. In southern sites early LGIT palacoenvironmental records from
Hawes Water (Brooks et al., 2012) and Thomastown Bog (Turner et al., 2015), suggest that sparse,
open, herb rich terrestrial vegetation was established during the transition into the interstadial at
¢. 16,000 cal BP. Evidence for local conditions impacting on the timing of vegetation colonisation
is seen at Whitrig Bog, where there was a delay in the response to warming due to persistent ice
cover at the site during the early Lateglacial (based on stratigraphical evidence as there was a

problem with radiocarbon dating) (Brooks and Birks, 2000).

The results from Loch of Sabiston and Loch of Clumlie provides insight into what these
lacustrine environments were like just at the point of deglaciation which is what is
underrepresented in much of the literature. This makes the present research new and the records
incredibly valuable in terms of what can now be said about how these landscapes responded to

the ice retreat and early colonisation.
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5.5. Bolling — Allered Interstadial

5.5.1. Characteristics of the North Atlantic Ocean

After glacial retreat, sea ice and increased fresh water entering the oceans from melting
glaciers became strong influences on the North Atlantic climate (Ebbesen and Hald, 2004).
During the Bolling-Allerad, there was an ice-free corridor between Shetland and Norway which
allowed for warmer waters to influence the region, and therefore sea ice extent and density varied
giving rise to cooling and warming events in the terrestrial climate records (Kog et al., 1993;
Polyak et al., 2010). At ¢. 14,700 cal BP the oceans in the North Atlantic responded to the
warming of the Northern Hemisphere, the AMOC resumed, driven by the release of fresh water
from the melting glaciers, and warmer SSTs in the North Atlantic (Eldevik et al., 2014). However,
this warming was not uniform across the Nordic Sea to Greenland and the North Atlantic
(Rasmussen and Thomsen, 2008) with the maximum warming occurring at the beginning of the
Bolling—Allered (c¢. 14,700 cal BP) with cooling occurring during the final stages of the
interstadial (c. 13,000 cal BP) (Eldevik et al., 2014).

5.5.2.Loch of Sabiston during the Bolling - Allerod Interstadial

A warming climate and the onset of marl precipitation signalled the commencement of
the Bolling-Allered interstadial at ¢. 14,160 cal BP at Loch of Sabiston. This interstadial is
characterized by a series of warming and cooling events (Table 2.1) which are not always evident
in Lateglacial records. The catchment of the loch is dominated by grasses, sedges and Empetrum
species indicating open low-lying vegetation along with dwarf birch. The aquatic environment,
represented by the diatom record, was very dynamic through the Bolling—Allerad at Loch of
Sabiston and has corresponding subtle changes in sediment (Fig. 4.1.11). The pioneer diatom
species that were present during the LGM, such as Fragilaria (s.l.) species decrease abruptly
concurrent with the change in sediment from glacial clay to marl, while species diversity increased
which included an increase in epiphytic species. The diatom community responded to a brief
cooling event at c¢. 12,940 cal BP identified as the Intra Allerad Cold Period (IACP) evidenced
by the change in sediment from marl back to a 5-cm layer of bluish-grey clays, likely due to the
periglacial process of solifluction (Fig. 5.1), which suggests a return to a colder environment and
increased ice cover. Diatom diversity slightly decreases and the return of post glacial colonizers
occur during this colder period. However, a cooling event cannot be identified from the pollen
assemblages due to the lack of countable pollen in this part of the core. There is however, a

reduction in the pollen concentrations during this cold event. This could be due to prolonged ice
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cover during this cold period of the area along with the loch (Keatley et al., 2008; Whittington et

al., 2015) or perhaps just reduced vegetation productivity due to the colder climate.

The switching on and off of the marl precipitation with the warming and cooling of the
environment during the Bolling-Allered is reflected in the elements associated with detrital input
and physical weathering of fine grained sediment from the catchment (K, Si, Ti, Fe, Rb) and the
elements associated with in lake productivity and marl deposition (Ca, Sr, Br) (Fig. 4.1.5). The
high resolution geochemical record at Loch of Sabiston detects many of the cooling events during
the Bolling - Allerad interstadial due to the sensitivity of marl precipitation to temperature
changes (Kelts and Hsii, 1978; Pentecost, 2009; Wetzel, 2001). Changes in the minerogenic
fractions (K, Fe, Rb, and Zr) along with Ca/Ti defined the cooling/warming events Gl-le (c.
14,700 — 14,000 cal BP), GI-1b (c. 13,900 — 13,100 cal BP), and GI-1a (c. 13,100 — 12,900 cal
BP) (Fig. 5.1). GI-1d (c. 14,100 — 14,000 cal BP) is very subtle in the geochemical record from
Loch of Sabiston at ¢. 13,700 - 13,590 cal BP which is slightly later than the Greenland ice core
record of c¢. 14075 + 169 cal BP. It is evident that the sediment composition at Loch of Sabiston

is mediated by temperature changes during the Lateglacial.

During the Bolling-Allerad interstadial, the changes in FI were dynamic (Fig. 4.4.1).
During the initial warming of the Bpelling (GI-le) the FI index indicates stability in the
geochemistry of Loch of Sabiston. By ¢. 13,350 cal BP FI begins to decrease indicating instability
in the geochemical composition ~ 450 years prior to the observed change in sediment during the
IACP (GI-1b). There is some evidence in the FI diatom results that a drop in the FI index at c.
13,800 cal BP could indicate a change that would be associated with the cooling during GI-1d.
However, there is no significant evidence for such cooling recorded in the three proxies and
therefore this signal is ambiguous, but does highlight the fact that FI distinguishes the subtle
nature of instabilities that can lead to changes in proxies by modelling the length of time a change
takes based on the slope of the line in the graph. In both the diatom and pollen records, there are
abrupt changes occurring within short times in between FI index changes, with some under ~100
years in length. At the onset of GI-1b cold event, the diatom assemblages rapidly changed
indicated by sharp peaks, which is highlighted by the FI results and Bray-Curtis analysis. The
diatom assemblages were very dynamic due to species turnover caused by the rapid changes in

the environment at the transition between the Belling-Allerad and the Younger Dryas.

5.5.3.Orkney Islands during the Bolling - Allerad Interstadial

The start of the interstadial at Loch of Sabiston is dated to c¢. 14,160 cal BP. Greenland
ice core records were used to determine that the beginning of the Belling at Crudale Meadow at

¢. 14,650 cal BP due to the problems and uncertainties of dating on Orkney (Whittington et al.,
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2015) while at Quoyloo Meadow, the only reliable dates during the Lateglacial designate the
beginning and end of the Younger Dryas (Bunting, 1994), leaving the start of the Belling - Allered
interstadial undated. Quoyloo Meadow and Crudale Meadow show similar pollen assemblages
and geochemical conditions during the transition out of the LGM into the Belling-Allerad
(Bunting, 1994; Whittington et al., 2015) as those found at Loch of Sabiston. The landscape on
mainland Orkney during the Lateglacial consisted of open areas dominated by low lying herbs,
grasses, and sedges along with dwarf shrub heath. The terrain consisted of glacial clays low in
organic content and very minerogenic, which gradually increased in organic content progressing
into the Belling - Allerad. By the start of the interstadial, grasses, sedges, and willow colonized
Orkney reflecting an arctic-alpine type environment with increasing organic content and

stabilization of the catchment.

The pollen record at Loch of Sabiston displays an increase in grasses during the Bolling
(at ¢. 13,500 cal BP), however, there is a gap in the record that extends from the end of GI-1e
through to the TACP/ GI-1b (c. 13,000- 12,800 cal BP). This lack of countable pollen only occurs
in the Sabiston record whereas at Crudale Meadow and Quoyloo Meadow the records are
continuous, although it was noted that the preservation of the pollen was ‘pitted and thinned” and
concentration was very low during this period (Bunting, 1994; Whittington et al., 2015). This gap
in the Sabiston record could mean that there was prolonged snow cover in this area which might
have been the case as Loch of Sabiston is more inland than the other two sample sites (particularly

since sea levels were ~ -40 m a.s.l. from present day).

Using the events outlined for this period from the Greenland ice core records (Rasmussen
et al., 2014), the revised pollen record from Crudale Meadow is similar to that of Sabiston in that
it showed no distinction between the Bolling (GI-1e) and following cold event GI-1d (Whittington
etal., 2015), however, the IACP is present. There is also no differentiation between the TACP and
the end of the Allerad in the pollen record. The low-resolution record at Quoyloo Meadow also
finds no difference in the pollen assemblage through the interstadial until the start of the Younger

Dryas (Bunting, 1994).

5.5.4.Loch of Clumlie during the Bolling — Allerad

The warming of the Bolling-Allered period began c. 15,340 cal BP at the Loch of Clumlie
as determined by the age-depth model produced with the Greenland ice core dates. Diatom species
richness and evenness becomes stable while organic content keeps increasing which indicates that
the aquatic environment is maturing and becoming more stable during this warm period. The
geochemistry also indicates a more stable catchment with a levelling off the elements associated

with minerogenic input (i.e. K, Rb, Fe) (Fig. 4.2.5). Bromine is higher during the early Bolling-
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Allered, which is an indicator of productivity as Br forms strong covalent bonds with organic
molecules (Gilfedder et al., 2011). There is also an increase in diatom concentration that coincides
with this increase in primary productivity, however the Si/Ti ratio does not reflect an increase in
biogenic silica production (Brown, 2015). During this time grasses, dwarf willow, and sedges
dominate the catchment vegetation along with herb species. This assemblage is characteristic of
an arctic alpine environment with snow-loving Salix (Wijk, 1986) which continues until the start
of the Younger Dryas. The results of the CONISS suggests that diatoms and geochemistry are
changing together at the end of the Bolling-Allerad where the IACP begins at 142 cm (c. 13,310
cal BP) as well as the end of the Bolling-Allerad interstadial at ¢. 12,900 cal BP (Fig. 5.2). The
pollen record shows no correlation with the end of the Bolling-Allered but does start to change
just prior to the diatoms and stratigraphy at the onset of the Younger Dryas. This slight offset

could be due to the difference in the sampling resolution of the pollen.

There is a return to colder conditions at ¢. 13,310 cal BP which indicates the start of the
IACP with the geochemistry responding first to the colder conditions with a return to minerogenic
input along with a decreasing trend in organic content (Fig. 4.2.5). Bromine also decreases
indicating a reduction in productivity in the loch. The diatom assemblage does not significantly
change during the interstadial, however, the assemblages during the IACP are more comparable
to the latter half of the Bolling-Allerad assemblages than those that were observed at the start of
the interstadial. This indicates that the end of the interstadial was cooler than the start, which has
been demonstrated elsewhere (Brooks et al., 2012). The pollen record does not show any
significant change until 122 cm (c. 12,930 cal BP) around the beginning of the Younger Dryas
(Fig. 4.2.10).

The geochemistry data suggests the end of the TACP began ~138 cm (¢. 13,240 cal BP)
(Figs 4.2.5 and 4.2.6) with a return to similar conditions to those found during the earlier half of
the Bolling-Allered, with reduced minerogenic input and an increase in organic content. The
diatom assemblages have lower species richness and more variability between samples which
indicate an unstable period. The diatom assemblage also indicates less brackish water was present
(Fig. 4.2.8). The diatom species in this zone such as Achnanthes marginulata and Achnanthidium
subatomoides are similar to those found in low to mid energy aquatic systems like pools in rivers,
margins of streams and in backwaters (Patrick, 1996) which is consistent with the multiple layers
of coarse sandy sediment bands that suggest a higher energy environment at this time causing
coarse sediment to be washed into the loch from the catchment. The relationship of Zr/K has been
shown to be a proxy for grain size (Fig. 5.6), with smaller numbers corresponding to finer
sediment and larger numbers to coarser sediment which corresponds to the coarse sediment layers
that are present in the Allered. The Ca/Ti relationship (Fig. 4.2.6) can be used to determine

hydrological variability where high values correspond with dry periods and low values with wetter
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conditions (Haberzettl et al., 2007) and also with autogenic and allogenic (detrital) lake
productivity (Turner et al., 2015). Loch of Clumlie has variability in the Ca/Ti ratio through the
Bolling-Allered interstadial demonstrating periods of drier and wetter conditions. The Ca/Ti ratio
corresponds to the coarse sediment inputs during the latter half of the Bolling-Allered interstadial.
This suggests that the catchment was at a hydrological tipping point between wetter and drier

conditions and slight changes in the environment caused a detectable response.

The FI index response to environmental change in Loch of Clumlie during the interstadial
are subtler than those found at Loch of Sabiston. Overall, all three proxies are quite stable through
the interstadial despite the sediment geochemistry being highly variable. The occurrence of the
IACP was characterized by smaller changes in the FI index (which reflects the intensity of the
change occurring) than what was observed for Loch of Sabiston during this time. This response
corroborates the fact that Shetland is more northerly and most likely did not experience as drastic

temperature changes as more southern sites and therefore the response would be subtler.

5.5.5.Shetland Islands during the Bolling - Allerad

The evidence of the progression into the Bolling — Allered at Loch of Clumlie was
difficult to pinpoint due to the subtle responses of the proxies to warming and the uncertainties
introduced with the age-depth model. The first location in the core that might correlate with the
start of the interstadial has a date of ¢. 15,390 cal BP where the sediment consists of glacial clays
and pioneer diatom species which is comparable to Clettnadal (c. 15,233 cal BP) (Robinson, 2004)
and Aith Voe (c. 15,408 cal BP), although the record at Aith Voe has been adjusted to account
for contamination due to old carbon which could make this date less reliable (Birnie, 2000).
However, at ¢. 14,590 cal BP there are changes occurring in the record that more closely resemble
those of a warming climate in both the diatom and geochemical records, which is more in line
with the Greenland ice core records. It could be that this 800-year ‘transition’ evidenced in the
data from Loch of Clumlie is due to the pattern of retreat of the BIIS and FIS, which could cause

gradual warming on the eastern side of Shetland instead of a rapid response.

The pollen records from Shetland do not indicate a response to the warming and cooling
events during the Belling-Allered (G1-1e to 1a). At Clettnadal, there is no evidence of change in
the pollen record to mark the start of the interstadial while the record from Aith Voe suggests
there is evidence for the beginning of the Belling. However, there is no evidence of the subsequent
cold and warm events that occurred during the interstadial. These observations also hold true for
Loch of Clumlie, where significant changes in the pollen assemblage occur only after the
beginning of the interstadial and at the start of the Younger Dryas. The pollen records at Grunna
Water and Lang Lochs also do not seem to detect the IACP (GI-1b) but it is evident in the record
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from Clettnadal (Robinson, 2004; Whittington et al., 2003). This lack of sensitivity in the pollen
record could be due to the position of the Shetland Islands in relation to the change in climate
during this time. The species that dominate the assemblage are cold-tolerant and, therefore, a
decrease in temperature would have not adversely affected them. It has been suggested that Salix,
Poaceae, and Rumex would be the best indicators of stadial/ interstadial changes on the islands
(Birnie, 2000). This is also observed in the record from Loch of Clumlie where arboreal taxa are
not sensitive to stadial/ interstadial changes and changes in Salix, Poaceae, and Rumex were more
indicative of the stadial-interstadial transition. The pollen records from Shetland show variation
in their responses to climate change during the Lateglacial. It has been suggested that these
changes could be due to a difference in altitude between the sites since the sea level was ~ 100 m
lower than present sea levels (Birnie, 2000), and therefore a site such as Lang Lochs, which is
presently 75 m a.s.l, is unique in that Rumex dominates, grasses were much lower in
concentration than at other Shetland sites, and Filipendula was absent, suggesting that the high-

altitude site was less stable and a harsher environment (Birnie, 2000).

Despite the lack of sensitivity in the pollen record during the Lateglacial on Shetland, the
diatom records from Aith Voe, Clettnadal, and Loch of Clumlie appear to be more sensitive to
climatic changes. However, the records at both Aith Voe and Clettnadal were completed at a very
low resolution, therefore the possibility of observing subtle changes in the record may have been
missed. At Aith Voe, the diatom record does not begin until after the beginning of the Bolling
while at Loch of Clumlie and Clettnadal there are diatoms present in the glacial clays of the early
Lateglacial. This suggests that at Aith Voe, there was significant snow and ice cover on the loch
to inhibit diatom colonization during this time which was not the case at Loch of Clumlie. This
caused the assemblage at Aith Voe to have a delayed response in colonization thus having an
assemblage similar to that found in the LGM and not typical of an interstadial assemblage such
as the one found at Loch of Clumlie. The diatom record at Loch of Clumlie responded to the
changes occurring between the Bolling and the Allered, however, the colder event of GI-1b
(IACP) is not differentiated from the Allered. This is similar to the results found at Krékenes
Norway. Both diatom records have persistent pioneer Fragilaria (s.l.) that extends into the
Bolling — Allered which is thought to be delayed lake development due to low summer

temperatures and colder winters (Bradshaw et al., 2000).

Loch of Clumlie does not have a visible organic layer in the interstadial sediments similar
to Lang Lochs (Hulme and Shirriffs, 1994). Hulme and Shirriffs (1994) thought that since Lang
Lochs was further from the coast, at a higher altitude, and surrounded by hills, and that these
conditions would allow organic content to increase only slightly without changing the appearance
of the sediment due to the exposed nature of the loch. Loch of Clumlie has hills surrounding it

however it is ~ 50 m lower a.s.l. and ~ 0.5 km closer to the coast than Lang Lochs. However, the
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lack of an obvious organic layer in Loch of Clumlie could also be due to persistent snow patches
throughout the year limiting growth of vegetation in the catchment as opposed to exposure. The

lack of countable pollen at the base of the core also supports this conclusion at Loch of Clumlie.

The geochemical record from Loch of Clumlie provides the most complete information
regarding the changes occurring on Shetland during the LGM and Belling — Allerad. Due to its
high resolution, changes in the sediment content are quite apparent during the changes from warm
to cold events of the interstadial. This is recorded in the results of the elements associated with
minerogenic input, K, Rb and Ti where increases in the cps occurs during colder periods. The
cold event associated with GI-1b is also evident (Figs 4.2.1 and 5.2). These results illustrate the
usefulness of high resolution scanning of sediment cores in detecting short term climatic events

where before they have been undetected.

5.5.6. Regional Synthesis for the Bolling—Allerad

The results from Loch of Clumlie and Loch of Sabiston demonstrate a sensitivity to
temperature variability during the interstadial and there are subtle differences in the way that the
two lochs responded to these changes. The geochemistry of Loch of Clumlie and Loch of Sabiston
was the most sensitive of the three proxies in their response to the changing environment during
the interstadial. In the case of Orkney, the islands seem to be at a location where the threshold for
temperature driven marl precipitation occurs and, therefore, when there is a change in temperature
during a cold event the marl formation ceases causing a change in sediment composition. The
geology of Orkney has provided suitable conditions for the accumulation of marl sediments at
Loch of Sabiston and therefore the switching on and off of marl deposition in response to climatic
change provides a valuable temperature estimate for the North Atlantic region during the

Lateglacial.

There is more variability observed between the sites on Shetland than between the sites
on Orkney (this study and previous research) which all show a similar response to the changes
occurring during the interstadial. On Shetland, there is more variation in the location of
Lateglacial sites with Clettnadal located on the west coast, Lang Lochs is at an elevated altitude,
and Spiggie Water which was the largest of the lochs and was formed from an inlet cut off from
the sea. The site at Aith Voe is an infilled loch/ fen located in lowland Shetland while Loch of
Clumlie adds to the heterogeneity of sites by being a small loch located also in the lowlands with
a very dynamic past. On Orkney, the three Lateglacial sites are within 8 km of each other and
respond similarly to the changes that underwent during the Belling — Allerad in the pollen record.
This regional variation has led to slight differences in the pollen assemblages between the two

study sites on Shetland, and between Shetland and Orkney. For example, Calluna and Empetrum
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(~ 30 %) is present in the Loch of Sabiston records as well as other records from Orkney during
the interstadial (Bunting, 1994; Whittington et al., 2015) while they were a negligible component
of the assemblage found at Loch of Clumlie and absent at other Shetland sites (Birnie, 2000).
However, the Lateglacial pollen assemblage from Orkney is comparable to that found in Northern
Scotland at Cross Lochs, Caithness (Charman 1994) which also did not respond to cold events
during the Beolling — Allerad despite evidence in the lithology. The pollen record and to some
extent, the diatom record did not respond to all three cooling events during the Belling — Allered

as outlined in the Greenland ice core records (Rasmussen et al., 2014).

In the North Atlantic, the best evidence for temperature oscillations during the interstadial
are provided by chironomid records and reconstructed summer temperatures along with the
Greenland ice core records. In other Lateglacial records from southern Scotland, the demarcation
of the IACP is usually not evident in the sediment stratigraphy. However, it does appear in some
northern Scottish sites such as Shebster, Caithness (R McCulloch pers. comm.) and now on
Orkney and Shetland. This could be due to the latitude in which these islands lie. This is in
comparison to the records from Fiddaun, Co. Galway (Van Asch et al., 2012) where the marl is
only interrupted during the Younger Dryas and did not completely shut off for lesser cooling
events such as GI-1d and GI-1b. At Whitrig Bog, Loch Ashik, and Abernethy Forest GI-1d was
colder than that of GI-1b while the reverse is found in Greenland (Brooks et al., 2012). Krékenes,
Norway chironomid inferred reconstructed mean July air temperatures were cooler than those
found at the Scottish sites during the same period (Brooks and Birks, 2000). The results from
Norway demonstrated a lag in the response to the warming of the interstadial with conditions
resembling a pre-interstadial environment (Bradshaw et al., 2000). The diatom record from both
Loch of Sabiston and Loch of Clumlie show that the assemblage for the cooling event GI-1d is
not distinguishable from the Allered. This suggests that the warming of the Allered was not

sufficient to significantly change the diatom community from what was present during GI-1d.

At Thomastown bog, another carbonaceous site, the relationship between Ca/Ti
represents lake productivity and the biogenic production of calcium which is associated with marl
production and is also meditated by temperature changes. Loch of Sabiston shows the same trends
in the Ca/Ti ratio as Thomastown Bog with peaks during warm events, and it seems that marl
lochs in the Northern Atlantic region are particularly sensitive to temperature changes regarding
marl precipitation, and therefore demonstrate that chemo-stratigraphy can be used to track
changes in climate variables that cause calcite to fluctuate with marl precipitation (Turner et al.,
2015). The records from Thomastown Bog have been successfully correlated with §'*O records
from Greenland (Rasmussen et al., 2014). The §'0 records from Crudale Meadow also show
good agreement with the ice core sequence in the various warming and cooling events during the

Bolling - Allerad interstadial including the IACP (GI-1b) (Whittington et al., 2015) and highlights
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a lag in the pollen response at Crudale Meadow to the cold events GI-1d and GI-1b compared to
the '®O records. The '"*O and p-XRF investigations on Orkney provide crucial high-resolution
information regarding the timing of changes occurring on the island archipelago. Most proxies do
not distinguish GI-1d, but do detect the IACP on Orkney except for the §'*O results from Crudale
Meadow which detected both events (Whittington et al., 2015).

The results from chironomid inferred temperature reconstructions in marl lochs (Turner
et al., 2015) has demonstrated that marl precipitation commences at ~ 10 - 12 °C. This consistent
relationship between chironomid inferred temperature and marl production provides a benchmark
to determine when temperature shifts above or below this threshold. This relationship is most
evident in more northern lochs that are closer to the temperature transition than warmer, more
southerly locations. Hawes Water (Marshall et al., 2002) shows this relationship, however, it does
not detect the ICAP or any cold events during the interstadial. Irish carbonate sites (i.e. Van Asch
et al. 2012) appear to be more sensitive to climatic changes but not to the same extent as Loch of
Sabiston. The marl — temperature record from Loch of Sabiston provides a very useful (and high-
resolution) temperature reconstruction for the region in determining temperatures above or below

10 °C.

5.6. Younger Dryas Stadial

5.6.1.Characteristics of the North Atlantic Ocean

In the North Atlantic the abrupt return to colder, glacial like conditions with extensive
sea-ice cover and stable cold humid winters in Europe characterised the first part of the Younger
Dryas, with the second half characterised by a less cold drier and a more unstable climate (Bakke
et al., 2009; Baldini et al., 2015; Bradley and England, 2008; Coope et al., 1998; Ebbesen and
Hald, 2004; Eldevik et al., 2014; Isarin et al., 1998). The differences observed between the first
half and second half of the Younger Dryas are thought to have been due to changes in seasonality,
sea-ice conditions, and atmospheric forcing (Brooks et al., 2016; Eldevik et al., 2014; Isarin et al.,
1998). This return to glacial conditions triggered a re-advance of the Scottish ice sheet centred
around Rannoch Moor (Benn et al., 1992; Bickerdike et al., 2016; Golledge, 2010; Hall, 2013)
(The Loch Lomond Stadial). It is thought to have been caused by an influx of fresh water from
the collapse of North American ice dammed pro-glacial lakes (Renssen et al., 2015; Teller et al.,
2005) which caused a reorganization of the oceanic and atmospheric flow which in turn led to

colder conditions across the Northern Hemisphere.
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5.6.2.Loch of Sabiston during the Younger Dryas

The accumulation of bluish-grey clays and silts suggest a return to periglacial conditions
at Loch of Sabiston and is further illustrated in the geochemical record where a return to
increasing minerogenic sedimentation occurred (Fig. 4.1.5). This cooling signal is evidenced in
the sediment and geochemical record at ¢. 12,580 cal BP, some ~ 300 years prior to changes in
the pollen and diatom records. According to the ice core chronology (Rasmussen et al., 2014), the

Younger Dryas began c. 12,900 cal BP.

The transition from the Younger Dryas into the Holocene has the diatoms responding to
changes in the environment in relation to the warming occurring prior to the onset of marl
deposition in the loch. This is also the case for the pollen record. This demonstrates that there is
a threshold that had to be surpassed for marl precipitation to begin which is why there is a
transitional zone of ~ 330 years detected in the geochemistry between these two periods. The
lower boundary of this transitional zones has the highest sum of squares in the CONISS zones
meaning that the most significant change occurred at ¢. 11,770 cal BP which would put this date

as the start of the Younger Dryas, 260 years prior to the change in diatom and pollen assemblages.

The terrestrial vegetation record from Loch of Sabiston during the beginning of the
Younger Dryas displays an open landscape dominated by grasses and sedges along with hazel
and an increase in cold tolerant Artemisia. There is a reduction of pollen concentration with at
least one sample containing insufficient pollen (296 cm; ¢. 12,120 cal BP) during the Younger
Dryas. By the end of the stadial however, the vegetation composition changed with an increase
of birch, grasses and Ranunculaceae and a decrease of low herb species such as Artemisia and
Asteraceae. The aquatic environment of the loch also demonstrates a return to colder conditions
in the diatom record where an assemblage resembling that of glacial conditions dominated by S.
pinnata reappears which is indicative of high alkalinity and low light conditions caused by
prolonged ice cover (Fritz and Anderson, 2013; Lotter and Bigler, 2000; Smol, 1988) (Fig. 5.1).
By the middle of the stadial the aquatic environment has shifted and P. brevistriata and S. venter
increase while S. pinnata decreases however still indicating a cold environment. The pollen and
diatom record seem to be responding to the different phases that have been observed for the
Younger Dryas with it being cold and dry during the first half and less cool and wetter during the

end of the stadial while there is no evidence in the geochemical record for this shift in climate.

The types of changes occurring during the Younger Dryas at Loch of Sabiston as
indicated by the FI demonstrates quite well in the diatom and pollen records the two phases that
have been described during the Younger Dryas with two distinct decreases in FI along with
distinct zones of change. Along with the CONISS zonation, there is good agreement regarding

how the individual records are responding to changes in the environment. The geochemistry FI
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index is quite stable throughout the Younger Dryas after the initial (rapid) switch to a more
minerogenic clay sediment at the commencement of the stadial. Whereas the diatom FI index
shows initial instability at the beginning of the Younger Dryas and more stability in the latter half
while the pollen also shows initial instability followed by a short plateau which occurred later
then the start of the diatom stabilization in the second half. This discrepancy in the pollen response

demonstrates the lag in the response to the change in climate during the Younger Dryas.

5.6.3.Orkney Islands during the Younger Dryas

The Younger Dryas stadial is well represented in the three Lateglacial records from
Orkney. Based on the geochemical record, the Younger Dryas began at ¢. 13,080 cal BP at Loch
of Sabiston, slightly earlier then the Greenland ice core records which record the beginning at c.
12,900 cal BP (Rasmussen et al., 2014). All three sites exhibit similar responses to the return to
glacial conditions of the Younger Dryas with evidence of increased minerogenic sediment and
decreased organic content in the catchment along with the cessation of marl deposition and the
accumulation of bluish-grey clays and silts through solifluction. The condition of pollen during
this event was found to be ‘pitted and thinned’ at Crudale Meadow and Quoyloo Meadow
suggesting that the pollen was being redeposited from the catchment into the basin (Bunting
1994). At Loch of Sabiston, which is more inland, samples with insufficient pollen to count were
from the Younger Dryas sediments (Appendix C1). During the Younger Dryas, the sea level
would have been ~ -40 m from present levels making Loch of Sabiston more inland than Crudale
Meadow and Quoyloo Meadow (Bunting, 1994; Whittington et al., 2015). The location of
Sabiston could have been inland enough and more sheltered to have persistent ice and snow cover
that would have supressed the growth of existing vegetation. Along with pollen and geochemical
results, evidence for persistent snow and ice cover at Loch of Sabiston is also found in the diatom
record with the return of a periglacial assemblage of pioneer taxa tolerant of low light conditions
(Fritz and Anderson, 2013; Round, 1957). Other records have indicated that during the Younger
Dryas, glaciers reformed on the northern part of Hoy (Gordon and Sutherland, 1993) and

elsewhere on Orkney extended ice snow cover throughout the year was inferred (Bunting, 1994).

At Loch of Sabiston there seems to be a lag in the pollen response to the beginning of the
Younger Dryas whereas, the pollen assemblage at Crudale and Quoyloo Meadows appear to
change with the onset of the Younger Dryas (Bunting, 1994; Whittington et al., 2015). Again, this
could be due to the location of Loch of Sabiston being further inland. The terrestrial vegetation
from Loch of Sabiston suggests that the second part of the Younger Dryas was characterized by
less colder and drier conditions than those during the first part of the Younger Dryas with birch

and grasses increasing and Artemisia and sedges decreasing (Bakke et al., 2009). The pollen
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records at Crudale and Quoyloo Meadows do not reflect a vegetation response to this mid-

Younger Dryas change in climate (Bunting, 1994; Whittington et al., 2015).

The diatom record from Loch of Sabiston is the only proxy that provides an indication of
the aquatic environment during the Younger Dryas on Orkney. There is evidence that during the
Younger Dryas the diatom record returned to an assemblage resembling that of glacial conditions
dominated by S. pinnata which corresponds to high alkalinity and low light likely caused by
prolonged ice cover as inferred for prior to the Bolling — Allered interstadial (Fritz and Anderson,
2013; Lotter and Bigler, 2000; Smol, 1988). The mollusc record from both Crudale Meadow and
Quoyloo Meadow was poorly preserved (O’Connor and Bunting, 2009; Whittington et al., 2015)
and no individuals were recorded during the Younger Dryas. The lack of mollusc record at these
sites could be explained by the diatom results from Loch of Sabiston suggesting prolonged snow

and ice cover inhibiting mollusc persistence.

5.6.4.Loch of Clumlie during the Younger Dryas

The geochemical record indicates that the cooling during the Younger Dryas stadial
began at ~ 120 cm (c. 12,900 cal BP). The loch sediment became more minerogenic with
decreasing organic content. The pollen record indicates increases in Salix and Cyperaceae and to
a lesser extent Ranunculus occurred due to the colder climatic conditions during the beginning of
the Younger Dryas which favours dwarf willow and other arctic-alpine species such as
Ranunculus. In the second half of the Younger Dryas, Salix begins to decrease and is replaced by
grasses and at the top of the zone, Salix has virtually disappeared suggesting long lasting snow
cover has been diminished (Wijk, 1986). The diatom record during the Younger Dryas
encompasses three diatom zones (CLMD-4 to CLMD-6, Fig. 4.2.8) which illustrates the dynamic
nature of the aquatic environment during this period. It has been suggested that the Younger Dryas
began cold and wet and in the second half, became drier and slightly warmer (Alley, 2000; Benn
et al., 1992; Isarin et al., 1998). This is reflected in the Clumlie record where in CLMD-4 diatoms
such as Pinnularia spp. N. molestiformis, S. anceps F. capucina and A. helivaticum that are found
in arctic and alpine waters with minimal ice cover (Smol, 1983). This is in step with CLMD-5
during the second half of the Younger Dryas which is said to have been drier and more unstable.
Species richness decreases and F. exigua, which can survive in circumneutral moist to wet
locations, dominates the diatom assemblage (Flower et al., 1996). Finally, by the beginning of
CLMD-6 water depth deepens and a return of planktonic diatom species are present prior to the
start of the Holocene occurring within ~ 126 years of the end of the Younger Dryas (Fig. 4.2.8).
The results for Loch of Clumlie also demonstrates how hydrologically sensitive Clumlie is to a

change in effective moisture that is reflected in the sediment composition and diatom assemblage.
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At the end of the Younger Dryas, there appears to be a flickering climate signal prior to
the shift into the Holocene recorded in the geochemical record (Fig. 4.2.5, 4.2.6). Most literature
states that the transition from the Younger Dryas into the Holocene was abrupt (e.g. Alley et al.
1993; Tipping et al. 2012; Birks et al. 2012; Lane et al. 2013; Pearce et al. 2013; Rach et al. 2014),
however, the records from Loch of Clumlie show over a period of ~185 years a decrease in the
minerogenic elements occurred (i.e. K, Ti, Rb, Figs 4.2.5, 4.2.6) followed by a slight increase and
then a final decrease associated with a colder environment. A similar signal in reconstructed
temperature records has also been observed in chironomid data from Nova Scotia, Canada and
other terrestrial and marine records surrounding the North Atlantic (Vincent and Cwynar, 2016).
There are also corresponding increases and decreases in organic content, and in Si/Ti and Br,
indicating variations in organic content, diatom concentration, and primary productivity which
suggests a more gradual, step-wise transition between the Lateglacial and the Holocene at this
site. The charcoal present at the end of the Younger Dryas (Fig. 4.2.10) has been recorded at other
sites on Shetland (Edwards et al., 2000) and it has been suggested that it is due to the increase in
aridity in the latter portion of the Younger Dryas due to reduced precipitation causing less
breakdown of organic materials and conditions favourable to burning. It is also suggested that it
could be due to long distance transport as is evident with Pinus pollen on the Northern Isles

(Edwards et al., 2000).

5.6.5.Shetland Islands during the Younger Dryas

The palacoenvironmental record from Loch of Clumlie provides a high-resolution
analysis of the geochemical, terrestrial, and aquatic environment of an east coast, high elevation
site and thus detected changes during the Younger Dryas that have not been recorded in the other
Lateglacial records from Shetland. The pollen record responded to the start of the stadial and both
the diatom and geochemical records have recorded changes during the Younger Dryas that are
consistent with a shift from colder and wetter to less cold and drier conditions. However, the

pollen record does not reflect this change.

The record of the Younger Dryas on Shetland reflects the individual nature of each of the
Shetland Lateglacial sites demonstrating the regional variability in the response to the climatic
cooling. Spiggie Water is 3 km West of Loch of Clumlie at ~ 1 m a.s.l while Aith Voe sits 13 km
north of Loch of Clumlie at ~ 1 m a.s.l, both lower than Loch of Clumlie at 23 m a.s.l. This
difference in altitude could be the cause of the differing records in this part of Shetland since
during the Younger Dryas, sea levels were ~ -80 m from present day levels (Lambeck, 1991). The
combination of being father inland (relative to sea levels) and slightly higher might have been

enough to demonstrate these differences in climatic responses.

189



Chapter 5 Discussion & Synthesis

At Spiggie Water, Grunna Water, Clettnadal, and Loch of Clumlie (Birnie, 1981;
Edwards et al., 2000, 1993; Robinson, 2004; Whittington et al., 2003), there is a distinct change
in the sediment stratigraphy to clay marking the commencement of the Younger Dryas. However,
at Aith Voe there is no real influx of minerogenic sediment into the basin which would suggest
periglacial processes (Birnie, 2000). At Clettnadal the sediment during the Younger Dryas was
comprised of silt and sand while the other sites consisted of mostly clay (Robinson, 2004;
Whittington et al., 2003). This could be due to the location of Clettnadal on the west coast that is
more exposed to the influence of the North Atlantic and high winds whereas the other sites are

more sheltered on the east coast.

The Lateglacial records from both Lang Lochs and Aith Voe do not show a clear shift
from the Bolling-Allered interstadial to the Younger Dryas stadial in the pollen and diatom
records (Birnie, 2000; Hulme and Shirriffs, 1994). The pollen and diatom evidence at Aith Voe
(Birnie, 2000) demonstrates that terrestrial vegetation disappeared during the Younger Dryas
while diatom palaeo-productivity was very low, however, epiphytic taxa were observed that
would indicate some aquatic macrophytes were present. This may suggest that there might have
been increased snow cover in the catchment (Birnie, 2000) but enough light entering the aquatic
environment to support minimal productivity during the summer months. Loch of Clumlie also
saw a reduction in productivity during the Younger Dryas but unlike Aith Voe, the diatom
richness remained high during the stadial and there was no break in the pollen record such as at
Spiggie Water and Aith Voe (Birnie, 2000, 1981). The diatom assemblage at Clettnadal is similar
to Loch of Clumlie as it also divides the Younger Dryas up into several zones which could suggest
a two phase Younger Dryas, however this evidence is based on 4 samples spanning the Younger
Dryas (Robinson, 2004). Further evidence of a drier latter portion of the Younger Dryas is found
in the charcoal record where there is increased charcoal where the diatom record indicates drying

out of the basin which could make the catchment more vulnerable to fires (Edwards et al., 2000).

Though Spiggie Water is undated (Birnie, 1981), it displays similarities to the pollen
record from Loch of Clumlie during the Younger Dryas. They both contain a pollen record
dominated by grasses, sedges, willow, and Artemisia. However, at Aith Voe (Birnie, 2000) there
is no evidence of terrestrial vegetation present during the Younger Dryas and it was concluded
that the pollen present was long distance transport onto an ice-covered basin with a very low
sedimentation rate (Birnie, 2000). Clettnadal, which is on the west coast also showed no distinct
environmental change during the transition from the interstadial to the Younger Dryas with a
pollen record dominated by willow and sedges and similar to the taxa found at Grunna Water
(Edwards et al., 2000). On Shetland, Birnie (2000) determined that the relative changes in willow,
grasses, and Rumex are the best indicators of changes between stadials and interstadials with

Rumex either present or increasing during the stadial along with willow and less grasses
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contributing to the pollen taxa. This pattern also is evident at Loch of Clumlie with willow,

grasses, and sedges dominating the assemblage during the Younger Dryas with Rumex present.

5.6.6. Regional Synthesis for the Younger Dryas

There are emerging subtle differences in the way that Orkney and Shetland have
responded to the climatic changes that occurred during the Younger Dryas. Since the age-depth
model developed for Loch of Clumlie is tied to the Greenland ice core chronology, specific timing
of regional comparisons cannot be made. However, general comparisons can be made since most
palaeoecological records from the Northern Isles that include the Younger Dryas show a change

in sediment which can be used to constrain the event.

At Loch of Sabiston there was a return to a periglacial diatom assemblage and a decrease
in species richness. This suggests that extended ice and snow cover resulted on Orkney. The shift
from cold and humid to cool and dry is indicated with a change in dominant Fragilaria (s.l.) taxa,
but the species present during the Younger Dryas remained constant (Fig. 4.1.9). In contrast, sites
on Shetland with a Lateglacial diatom record (Birnie, 2000, 1993), provides evidence that the
lochs did not return to a pioneer assemblage and that epiphytic species were present, however in
low concentrations. This suggests that despite the return to a cold environment on Shetland there
was still a sufficient amount of light entering the lochs to support the macrophyte and diatom
communities. Loch of Clumlie, with its high-resolution diatom record, is the first on Shetland that

confirms evidence for a two stage Younger Dryas event.

The transition from interstadial to stadial is apparent in the pollen record from Orkney,
however some sites on Shetland do not show a difference in vegetation cover from the end of the
Allered to the Younger Drays. There is a slight difference in vegetation cover on the two island
groups during the Younger Dryas. On Orkney pine, birch, and hazel dominate along with grasses
and sedges while on Shetland willow, grasses and sedges are dominant. However, both island
groups show a response to the two stage Younger Dryas climate. At Loch of Sabiston, Orkney,
birch and grasses increase and Artemisia decreases in the second part, while Loch of Clumlie sees
an increase in grasses with a decrease in snow-loving Sal/ix. The FI index for Loch of Clumlie
also demonstrates quite well in the diatom and pollen records for the two phases that have been
described during the Younger Dryas (Fig. 5.2). However, the changes occurring at Loch of
Clumlie are more subdued than those observed for Loch of Sabiston (Figs 5.1 and 5.2).

Both Loch of Clumlie and Loch of Sabiston show an increase in the minerogenic fraction
of the sediment input into the lochs, along with a decrease in organic content and a return to clay
deposition. As it was outlined in section 5.6.4, there is evidence at both Loch of Clumlie and Loch

of Sabiston for a more transition-like progression out of the Younger Dryas into the Holocene in
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the geochemical record despite it being described as abrupt (Alley et al., 2003). With higher-
resolution analysis being undertaken, especially with p-XRF core scanning results, more evidence
of a short-term transition period will become evident. This transition has also been observed in
marine sediment records where a series of events might have occurred rather than one drastic

event (Pearce et al., 2013).

Comparison of Greenland ice core records (Rasmussen et al., 2014) and northern
European pollen records (Lane et al., 2013; Muschitiello and Wohlfarth, 2015) suggests that there
is a time-transgressive shift during the beginning of the Younger Dryas across Northern Europe
in the pollen records. It was demonstrated that there is a latitudinal delay of the onset of the
Younger Dryas probably influenced by a gradual regional cooling from the south to the north
(Lane et al., 2013; Muschitiello and Wohlfarth, 2015). The pollen record from Loch of Sabiston
indicates that the beginning of the Younger Dryas commenced at c¢. 12,580 cal BP which is ~ 300
years earlier than that indicated by the pollen record from Krékens, Norway (Lohne et al., 2014)
and c. 320 years after the age of the beginning of the Younger Dryas determined by the Greenland
ice core record (Rasmussen et al., 2014). Madtjarn, Sweden, which is latitudinally similar to Loch
of Sabiston, has a mean age for the beginning of the Younger Dryas of c¢. 12,677 cal BP
(Muschitiello and Wohlfarth, 2015) which is closer to the Orcadian age for the onset of the
Younger Dryas. Subsequently, the chronology from Loch of Clumlie utilised the event
chronological framework from Rasmussen et al. (2014), it cannot be confidently compared

latitudinally to these sites.

Other Scottish sites that have a Younger Dryas pollen record show an east to west
moisture gradient with sites in the east such as Abernethy Forest, having high incidences of
Artemisia indicating aridity. There is a suggestion in the pollen record from Abernethy forest for
two part Younger Dryas with Pediastrum and Rumex increasing in the latter part of the Younger
Dryas and Artemisia decreasing (Birks and Mathewes, 1978). At Loch Ashik, there is a similar
assemblage however a lower percentage of Artemisia suggests a wetter environment (Walker and
Lowe 1991). However, the most comprehensive analysis of the temperature changes that occurred
during the Younger Dryas in the North Atlantic can be found in chironomid records. Sites in
Scotland and Northern England that have a Lateglacial chironomid record (Loch Ashik,
Abernethy Forest, Hawes Water, and Muir Park Reservoir (Bedford et al., 2004; Brooks et al.,
2016, 2012)) show variations in the way each location responded to changes in the Younger Dryas
indicating regional differences in responses to the associated climate changes. Their results
demonstrate that there is a definite division of the Younger Dryas into two distinct periods,
however, each site responds differently based on regional variations. At Loch Ashik, the second
half of the Younger Dryas becomes colder, whereas at Abernethy Forest there is evidence of

warming which is similar to the results at Glen Roy which also showed warming at the end of the
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Younger Dryas (Palmer et al. 2012), However, the later cooling recorded at Loch Ashik may have
been due to its proximity to the Skye Ice Field (Brooks et al., 2012). At Hawes Water, comparable
timing of temperature changes occurred with these other Lateglacial sites, however inferred
slightly higher temperatures most likely due to the southerly nature of the site (Bedford et al.,
2004).

5.7. Early Holocene

5.7.1.Characteristics of the North Atlantic Ocean

The transition from the stadial conditions of the Younger Dryas to the warmer interstadial
of the Holocene was rapid, occurring ¢. 11,700 cal BP over a span of ~ 40 years (Oldfield, 2005;
Taylor et al., 1997). This return to a warmer climate was due in part to maximum solar insolation
occurring along with the stabilization of ocean circulation and the return of the AMOC bringing
warmer waters from the south and driving sea ice extent northward allowing warmer Atlantic
water to reach the region. However, this was an incomplete return from glacial conditions and the
final deglaciation process (Mayewski et al., 2004) involved three cool events; the preboreal
oscillation at ¢. 11,400 cal. BP, the 9300 cal BP event, and the 8200 cal BP event occurred during
the early Holocene as defined from the Greenland ice cores (Rasmussen et al., 2014). The cool
events at 9300 cal BP and 8200 cal BP are thought to be due to the still high and variable presence
of sea ice and the polar front advancing and retreating southward (Mayewski et al., 2004). Post
8200 cal BP, the warming climate trend continues to the Holocene thermal maximum c. 7500 cal
BP (Viliranta et al., 2015) after which temperatures began to decrease in the North Atlantic
(Andersen et al., 2004).

5.7.2.Loch of Sabiston during the early Holocene

The start of the Holocene is marked by several rapid and high magnitude changes in the
three proxies. The onset of the precipitation of marl suggests warmer temperatures are occurring
while the geochemical record from Loch of Sabiston indicates that the sediment composition took
~ 350 years to change completely from the bluish-grey clay/silts of the Younger Dryas to the marl
of the Holocene with the start of the change occurring at c. 11,950 cal BP (Fig. 5.1). This may
have been due to a gradual increase in temperature or the result of continual lake development

and infill through time (Fritz, 1989).

Macrophytes increased in the loch, especially charophytes, along with the presence of
epiphytic diatoms and diatom species richness also increased. The vegetation record reflects the

development of a more mature catchment with the increase of trees, shrubs, and herbs. This

193



Chapter 5 Discussion & Synthesis

continued until c. 9120 cal BP when water levels and water chemistry changes affected the nature
of the sediment and the diatom record. The decrease in the Ca/Fe, which indicates a change in
sediment composition, is likely indicative of a decrease in authigenic carbonate precipitation in
the catchment and therefore drier conditions (Mueller et al., 2009). During this time, the diatom
assemblages decreased in diversity and evenness. Dominant species such as G. angustatum and
C. meneghiniana are replaced by the brackish-freshwater, alkaline species E. goeppertiana along

with M. lacustis.

The water levels in the loch at this point were probably lower and therefore became more
concentrated in solutes. The lowering of the water levels can also be evidenced by the
disappearance of planktonic Cyclotella species (Fig. 5.1) and the substantial increase in
Polypodiaceae which may have flourished around the expanded margins of the loch. There is no
equivalent change in the land pollen assemblage at this point in the core, however, between 179
and 175 cm (c. 8590 - 8400 cal BP) there was insufficient pollen to count in the samples which
could be related to the conditions in between the 9300 cal BP event and the 8200 cal BP event
when cooler and drier conditions occurred (Marshall et al., 2007). This lack of pollen could be
due to lack of preservation, a reduction of pollen influx, or an increase in sediment deposition

resulting in lower pollen concentration.

At c. 4000 cal BP the sediment stratigraphy and chemistry indicate a substantial lowering
of the water level at the site and the switch to a terrestrial fen-peat. Manganese, which has been
used to indicate oxidization of the sediment and to infer lower water levels indicating a decrease
in water level. The diatom assemblage shifts to one that is dominated by few species while the
pollen record sees an increase in charcoal, along with a slight decline in trees and shrubs (Fig.
4.1.9). The marl deposition switches off and a layer of Lymmnea sp. shells formed indicating a near-
shore environment at the coring location prior to the commencement of fen-peat deposition. (Fig.
5.1). The pollen record from Loch of Sabiston suggests that tree cover, comparable to the early
Holocene, consisting of a birch-hazel woodland with a grass-fern understory persisted until after
¢. 3100 cal BP. The decline in tree cover has not been identified in the lacustrine part of the record
and so likely happens within the top 100 cm of the fen-peat sediment. This evidence suggests a
greater conservation of woodland resources in certain locations on the Orkney mainland than

previously thought.

The correlation with the three proxies to each other seem to disconnect during the early
Holocene with the diatom and pollen records appearing to respond to different environmental
conditions. This could be due to the stabilization of the catchment and the overwhelming presence
of marl precipitation in the loch. However, at the top of the record with the reduction of water
levels, changes in the loch and in the catchment occurs prior to the final deposition of marl to be

replaced by fen peat. The cessation of marl precipitation occurs ¢. 5500 cal BP is concomitant
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with the end of the Holocene thermal maximum and a shift to cooler summers (Geirsdottir et al.,
2013). Overall the general trend in the FI index is showing subtler changes occurring during the
Holocene compared to the Lateglacial at Loch of Sabiston. There is slight variation occurring in
each of the three proxies until a downward trend begins at c. 4900 cal BP which corresponds to

the beginning in the change in sediment from marl to silt and then peat.

5.7.3.Orkney Islands

On land, the warming trends exhibited at the start of the Holocene translated into an
increase in productivity and successional changes in vegetation across the North Atlantic. The
transition from the Younger Dryas to the Holocene on Orkney was characterized by a return to
marl deposition, a loss of the taxa associated with cold, open landscapes such as Artemisia and
Asteraceae and an increase in diversity in both the aquatic and terrestrial taxa at Loch of Sabiston,
Crudale Meadow and Quoyloo Meadow (Bunting, 1994; Whittington et al., 2015). These are the
only three sites from Orkney that contain the transition from the Lateglacial into the Holocene.
Thermophilous species increased such as Betula and Corylus avellana type while grasses

continued to be an important part of the landscape.

Throughout the early Holocene the terrestrial succession of vegetation in the North
Atlantic started with Ericaceous heath followed by replacement with tall herb taxa along with
arrival of hazel and increasing birch. Vegetation succession on the islands is indicated by the
development of woodlands and the corresponding decline in open landscapes. The process of
woodland development on Orkney takes an east to west progression with sites in the east
establishing birch - hazel woodlands at c. 9800 cal BP at Blows Moss (Farrell, 2009) while at
Crudale Meadow and Quoyloo Meadow this occurred c. 8540 cal BP (Bunting, 1994), at Scapa
Bay ¢. 9400 cal BP (de la Vega Leinert, 2007), and at Loch of Sabiston ¢. 7870 cal BP.

The decline of woodland across Orkney was not synchronous and probably occurred over
several thousand years. On Hoy, this occurred from ¢. 7500 — 7000 cal BP, and at c¢. 6500 at Bay
of Skaill while Glims Moss, Scapa Bay, and Loch of Knitchen showed woodland decline closer
to ¢. 6000 cal BP. Quoyloo Meadow records a two stage decline with disturbance occurring at c.
7400 cal BP which reduced the tree cover and the later final decline at ¢. 5900 cal BP. While at
Crudale Meadow, the final woodland decline occurred at ¢. 5400 cal BP. The region around Loch
of Sabiston also showed variation with a reduction in tree cover occurring at Glims Moss at c.
5500 cal BP (3 km away) while at Burn of Rusht (6 km away) it was much later at ¢. 3800 cal
BP. The record at Loch of Sabiston also appears to follow a two stage decline in arboreal pollen,
however, the date of the initial disturbance is later at ¢. 5000 cal BP, some ~ 2400 years after the

decline at Quoyloo Meadow. The date of the tree decline at Loch of Sabiston occurred sometime
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after c. 4000 cal BP. The latest dated tree disappearance occurs at Burn of Rusht ¢. 3590 cal BP
which is near to both Loch of Sabiston and Glims Moss. However, Burn of Rusht lies at an altitude
of 90 m a.s.l and is thought to have been a small relict stand (Keatinge and Dickson, 1979). At
both Crudale and Quoyloo Meadow, there is evidence of a hiatus at the top of the marl deposition
thus truncating the mid Holocene record. This is also plausible in Loch of Sabiston due to the
shell layer indicating a ‘near shore’ environment or one that is wet/ moist that would be capable

of drying out ceasing sedimentation (O’Connor and Bunting, 2009).

The change from lacustrine sediments to peat accumulation at the top of the record was
during a time when climatic changes along with human influence impacted the region. There is
evidence of a change to cooler and wetter conditions in Northern Europe ¢. 3000 cal BP (Bunting,
1996; Frenzel, 1966; Keatinge and Dickson, 1979). This may have led to waterlogging of soils
and assisted in peat formation. The situation at Loch of Sabiston is similar to what occurred at
Burn of Rusht, which still had trees present in the catchment prior to the commencement of peat
formation (Keatinge and Dickson, 1979). However, the catchment at Loch of Sabiston during this
time was in flux with changes in the geochemical record indicating an unstable catchment with

an influx of minerogenic sediment and evidence of burning with charcoal increasing in the record.

At Loch of Sabiston there is evidence of a lowering of water levels and subsequent drying
out at the transition from marl deposition to the development of fen peat accumulation. At
Quoyloo Meadow there is evidence for a similar drying out at the transition from marl to peat
formation with the recording of mollusc species that are associated with periodic desiccation
(O’Connor and Bunting, 2009). At Crudale Meadow, the observed mollusc taxa are all generalist

and associated with permanent water (Whittington et al., 2015) with no evidence of drying out.

The termination of marl deposition would have been triggered by the infilling of the loch
of Sabiston and subsequent drying out as evidenced by the layer of mollusc shells on the top of
the marl, just prior to the accumulation of fen peat. This caused an increase in nutrients and
organic matter accumulation effectively changing the aquatic environment from one that
stimulates marl production to one that is more acidic due to the fen peat. There is also more
phosphorous available which would increase productivity based on the geochemical record which
demonstrates the relationship between Ca (and marl production) and P and how during the process
of marl formation P is sequestered in the sediments and is, therefore, not bioavailable (Pentecost,
2009). Following the hydroseral change from a lacustrine to a peat environment (which is also
evidenced by the FI index indicating a regime shifty prior to the start of the CONISS zone SABP-
Sa), P became more available and along with evidence of grazing animals in the catchment, there
were higher levels of P in the mid to Late Holocene compared to the LGM and early Holocene.
However, the intensity of the P curve in the geochemical results (Fig. 4.1.5) indicates that

phosphorous levels and eutrophication were not the cause of the marl deposition discontinuing

196



Chapter 5 Discussion & Synthesis

(Wiik et al., 2015a) and was most likely due to an increase in acidification along with the reduced

water levels that occurred at the time.

5.7.4.Loch of Clumlie during the early Holocene

The warming that marks the start of the Holocene is identified at ~ 78 cm (c. 11,700 cal
BP extrapolated) which is also very close to the end of the Younger Dryas (GS-1) (Rasmussen et
al., 2014) at Loch of Clumlie, with a change in lithology to a more organic sediment and a
reduction in minerogenic input. The top portion of the core is difficult to interpret due to the
catchment drying out and the presence of one or more hiatuses in the stratigraphy. Therefore, the
date of this transition is based on the Greenland ice core chronology (Rasmussen et al., 2014).
There is compelling evidence in the diatom, pollen, and sediment stratigraphy that a hiatus might
have occurred later (between ~ 50-25 cm), when the site may have dried out completely, marked
by the development of an iron-pan (a terrestrial indicator) (Fig. 4.2.5, 4.2.6) and the lack of
diatoms in that zone (Fig. 4.2.8). The condition of pollen preservation also deteriorates in this part
of the core (Appendix C2). The ratio of Mn/Ti also reflects the development of oxic conditions
and implies that oxygenation of the sediment has occurred by lowered lake levels (Kylander et
al., 2011), along with an increase in Fe which results from detrital input and weathering (Fig.
4.2.6). The Ca/Ti relationship (Fig. 4.2.6) can also be used to determine hydrological variability
where high values correspond with dry periods and low values with wetter conditions (Haberzettl
et al., 2007), with extreme dry events evidenced during the beginning of the Holocene with

maximum peaks occurring in the Ca/Ti record at Loch of Clumlie.

Despite the hiatus and the lack of an independent time line for this section of the core,
some general inferences can be made regarding the history of the loch during this time. Between
78 — 52 cm, there is an increase in water level based on the number of green algae in the pollen
samples along with the diatom record. Organic content also increases during this time as well as
increased productivity and diatom concentration evidenced in the Br and Si/Ti signals
respectively (Fig. 4.2.5, 4.2.6). Grasses and sedges are dominant in the catchment with the
Calluna increasing in the record (Fig. 4.2.10). By 60 c¢m, peat formation has begun and any trees
that were present have been drastically reduced. At this point, there is a clear hiatus due to the
loch drying out completely and the loss of the diatom record. The pollen record also corroborates
this in the increase in deteriorated pollen grains due to aerobic conditions (Fig. 4.2.10) and at least

one sample with too few pollen to count at 40 cm.
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5.7.5.Loch of Grimsetter during the early Holocene

The sediment record from Loch of Grimsetter, located on the island of Bressay, began in
the early Holocene as a fresh to fresh-brackish, alkaline, oligotrophic loch (c. 9000 cal BP).
Grasses, birch, and hazel along with some Empetrum and Ranunculus dominated the catchment,
indicating a scrubby open woodland. This assemblage persisted until c. 5500 cal BP when grasses
increased and Plantago spp. began to be more dominant. The increase in Plantago spp. has been
associated with agriculture and land disturbance (Stolze et al., 2013) as it is photophilic and likes

open spaces to which grazing contributes (Bonsall et al., 2002).

There is evidence in the pollen, diatom, and geochemical record for the 8.2 ka event with
a return to a colder climate across Northern Europe (Rasmussen et al., 2014). The pollen record
has a reduction in Poaceae and a slight increase in Empetrum while Polypodiaceae begins to
decrease, which reflects the beginning of the event at ¢. 8300 cal BP. The geochemical record
also indicates an increase in the elements associated with increased minerogenic input and a
decrease in organic content probably in response to cooling and a reduction in productivity. At c.
8100 cal BP the Loch of Grimsetter diatom assemblage increases in species richness and evenness
along with an increase in concentration which suggests a shift to a more temperate climate at the
end of the 8.2 ka cooling event. The record from Loch of Grimsetter appears to be the first clear

evidence for cooling lasting ~ 250 years, coeval with the 8.2 ka event on Shetland.

The most significant change occurred at ¢. 3040 cal BP in the pollen record at Loch of
Grimsetter when trees and shrubs disappear to be replaced by Calluna and Empetrum heathland.
At the same time, charcoal concentrations are at their highest in the record which suggests a likely
human influence in the catchment. The burnt mound at Cruester on Bressay has been dated at c.
3000 cal BP which correlates with the Grimsetter charcoal record (Canmore, 2017). However, the
most significant change occurred in the diatom record at c¢. 3330 cal BP with the increase in
Fragilaria s.l. and small Fragilaria. Another major change also occurred at ¢. 2910 cal BP, ~ 150
years prior to the change in terrestrial vegetation, while the geochemistry recorded a slight
increase in minerogenic elements at ¢. 3330 cal BP and a most distinctive change in sediment
with a significant increase in minerogenic elements which was contemporary with changes in the
pollen at c¢. 3050 cal BP. The influx of minerogenic material into the loch along with an increase

in organics suggest increased disturbance in the catchment at ¢. 3050 cal BP.

Based on the diatom classification set out in Van Dam et al. (1994), the loch has been
circumneutral to alkaliphilous and fresh to brackish during its existence. There does not seem to
be any nutrient enrichment as oligotrophic diatom species dominate the loch record. The increase
in undefined species at the top of the record is being driven by the small Fragilaria group which

are prevalent in the assemblages. They can survive under a wide range of conditions but prefer
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higher nutrient levels and can survive lower dissolved oxygen levels in the water. Small
Fragilaria (s.l.) are also known to tolerate low-light and fluctuating physical and chemical

conditions (Griffiths et al., 2002; Punning and Puusepp, 2007).

The environment at Loch of Grimsetter has very little evidence of human influence in the
catchment until ¢. 4500 cal BP and the increased presence of charcoal and Plantago spp. which
indicates grazing animals (Stolze et al., 2013). The Loch of Grimsetter catchment remained a
semi-open area with a combination of trees, shrubs, and herbs, while the loch remained a slightly
alkaline, oligotrophic freshwater loch until ¢. 3000 cal BP when the catchment dramatically
changed with a loss of trees and shrubs together with evidence of burning. Thereafter, the loch
became more acidic and less oligotrophic and with a greater influx of minerogenic material into
the loch reflecting the development of a less stable catchment. This may indicate greater
population pressures on the isle of Bressay and an intensification of grazing pressures. The timing
of changes between the three proxies are not necessarily in step with each other and there are
considerable leads and lags between them which suggests that they are responding to different

pressures which could be either human, climate or a combination of the two.

Loch of Grimsetter has a very stable FI index throughout the Holocene except for marked
change in the sediment geochemistry (Fig 4.3.5) which is correlated to the 8.2 ka cooling event.
This demonstrates the stable nature of the early Holocene climate on Shetland. By ¢. 6300 cal BP
the FI index highlights a distinct change in the pollen record and did not stabilize until ¢. 5850 cal
BP.

5.7.6.Shetland Islands

Due to the early to mid-Holocene hiatus in the accumulation of sediment at Loch of
Clumlie the Holocene record from Shetland is provided by Loch of Grimsetter. The transition
into the Holocene from the Younger Dryas was recorded in Loch of Clumlie ¢. 11,700 cal BP
however at Grimsetter, the recovered record begins ~ 2600 years later at ¢. 9100 cal BP and does
not include the Younger Dryas — Holocene transition. Other Shetland sites (Murraster, Lang
Lochs, Clettnadal, Aith Voe (Bennett, 1993; Bennett et al., 1990; Birnie, 2000; Hulme and
Shirriffs, 1994; Robinson, 2004; Whittington et al., 2003)) along with Loch of Clumlie have a
distinct change in sediment occurring at the Younger Dryas — Holocene transition indicating an
increase in organic content which is confirmed with the results of the LOI analysis. However,
after the transition in the Holocene, there is evidence of dying out ~ 60 cm core depth. There is
evidence that there was a hiatus a Grunna Water in the mid to late Holocene which could be
related to the hiatus observed at Loch of Clumlie, however without confident dating in this part

of the core it would be difficult to correlate the two.
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After the initial increase in temperature and subsequent increase in bio-productivity at the
start of the Holocene, Shetland palacoenvironmental records start to deviate from each other and
there tends to be more limited responses, likely driven by local conditions. As more records are
obtained from Shetland, it is becoming clearer that the islands do not respond uniformly to
changes in the environment during the Holocene and the record from Loch of Grimsetter is no
exception. In the wider context of Shetland, the pattern of change at Loch of Grimsetter displays
similarities and differences with other sites. Overall, herbs and shrubs dominated the vegetation
of Shetland in the early Holocene alongside an open woodland (Hulme and Shirriffs, 1994). The
dominant herbs tended to be grasses and sedges which is comparable to the vegetation that
surrounded Loch of Grimsetter. However, as the Holocene progresses spatial differences
developed between the various sites due to geographical factors along with the timing of changes
that occurred. For example, while birch appears early at Dallican Water (Bennett et al., 1992),
Lang Lochs (Hulme and Shirriffs, 1994), Murraster (Bennett, 1993) and Loch of Bunatwatt
(Edwards and Whittington, 1998), at Clettnadal an Atlantic maritime grassland is formed which
could be due to it being an extreme costal site on the west directly facing the North Atlantic

(Whittington et al., 2003).

Several benchmark events that can be tracked across Shetland also demonstrates variation
in the timing of these events. The rise of Calluna and the beginning of heath across Shetland
ranges from early appearance at Lang Lochs ¢. 8500 cal BP (Hulme and Shirriffs, 1994) and the
latest at Grimsetter ¢. 3000 BP (Table 5.1). Plantago lancelota has been used as evidence for the
presence of grazing and disturbance (Bonsall et al., 2002; Stolze et al., 2013). At Grimsetter
abundances of Plantago lancelota do not reach greater than 2 % in the pollen record, whereas at
other sites it makes up a larger constituent such as at Clettnadal (~ 20%) which can indicate that
Clettnadal had higher grazing pressures than other sites. Lang Lochs seems to have the latest
arrival of Plantago lancelota while the earliest occurrence is at Loch of Brunatwatt (Table 5.1).
Shetland has many early Holocene sites that are situated in areas with regional differences such
as altitude, distance from the sea, vegetation, and bedrock, and the palacoclimatic signal becomes
more complex. Are these regional variations in the palacoenvironmental record strong enough to
mitigate the influences of changes in the marine environment or is it that the human influence is
more pronounced with the addition of grazing animals and clearing of the land promoting
increased wetness, burning, and podsolization instigating the increase in Calluna and peat

formation during the early Holocene?

The diatom record at Clettnadal is the only other well dated Holocene record on Shetland
and it is difficult to compare the catchments of Grimsetter and Clettnadal. The latter is located on
the west coast with a strong marine influence in the diatom record (Robinson, 2004). Loch of

Grimsetter is located on the east coast and appears to have received negligible impacts from the
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sea. The record at Clettnadal is also at a lower resolution which makes it difficult to pinpoint the
precise timing of environmental changes recorded. There is a need to study more sites on Shetland
to get a more complete picture of the timing of change that occurred on the Shetland Islands in
both the diatom and pollen records. The environmental changes recorded in the diatom record at
Grimsetter are quite subtle which suggests a stable environment though the early Holocene (Fig
4.3.8). The more substantial changes in the catchment are identified in the pollen and geochemical

record at ¢. 3000 BP and were most likely human induced (Fig. 4.3.5, 4.3.10).

Table 5. 1 The differences in the timing of key events in the pollen records of the Shetland Islands.
All dates have been calibrated using IntCal 7.1 (Stuiver et al. 2017) and are in cal BP from:
"Hulme and Shirriffs (1994); “Bennett et al. (1992); *Bennett (1993); *Whittington et al. (2003)
and Robinson (2004); *Edwards and Whittington (1998).

Event Loch of Lang Dallican®> Murraster’ Clettnadal* Loch of
ven Grimsetter  Lochs! Brunatwatt’
Calluna c. 3000 c.8500 ¢c.5100 ¢c.5400  ¢.3760  c. 5820
increase
Plantago c. 5500 c.3180 . 4400 c.5400  ¢.3760  c. 5740
increase
Betula c. 3300 c. 5240 - c.5400 ¢ 10,370  c. 3770
decrease
Corylus
avellana type c. 3000 ¢. 3300 - c. 3360 - c. 3770
decrease

5.7.7. Regional Synthesis for the Holocene

The warming and the stabilization the Atlantic Ocean underwent in terms of circulation
and SST during the Holocene allows sites in the North Atlantic to respond more locally to any
changes in the environment that may be occurring. During the Lateglacial, the terrestrial
environment of the northern North Atlantic was most likely at the edge of tolerable ranges (i.e.
temperature, nutrients) for many species and therefore succession would be constrained by severe
climate and short summers which would reduce survival and slow advancement (Svoboda and
Henry, 1987). Tipping (1994) outlines the general succession of woodland development and
decline since deglaciation throughout Scotland and the Northern Isles and demonstrates the
complex migration of trees from refugia from the south over several thousand years with Orkney
and Shetland recording the latest changes in this regard. At this point in the Holocene, the human
influence on the landscape is becoming more prevalent in the southern North Atlantic and can
obstruct the climatic signal in palaeoenvironmental proxies. Therefore, this summary will be

constrained to Shetland and Orkney only as they were more isolated and have a later date of
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human colonisation and an in-depth analysis of human influence on the landscape is outside the

scope of this research.

In the Northern Isles, changes in the terrestrial and aquatic environments tend to be subtler
during the Holocene compared to the Lateglacial, however no less significant on local scales,
depending on the site. Loch of Grimsetter and Loch of Sabiston have different aquatic histories
throughout the early Holocene. Grimsetter, on the Island of Bressay, is quite stable in all three
proxies and is not responding to perturbations that have been recorded in other Shetland sites, but
does show evidence of the 8200 cal BP event in the geochemical record which has not been
recorded in either the pollen or the diatom record. Loch of Sabiston in comparison, has more
variability recorded in its proxies during the early Holocene reflecting changes in the catchment
including succession of terrestrial vegetation and lake ontogeny along with climatic changes.
There is also evidence that terrestrial and aquatic proxies begin to respond independently of each
other reflecting possible different forcings on the catchment such as lake ontogeny or succession
in the catchment that would not necessarily react at the same time. Loch of Grimsetter and Loch
of Sabiston both exhibited a stable FI index until ¢. 6500 cal BP at Sabiston and ¢. 6300 cal BP
at Grimsetter where the FI index highlights a distinct change in the pollen record and did not
stabilize until ¢. 5950 cal BP and c. 5850 cal BP respectively. However, neither of these time
periods correspond to any known climatic events in the region, but are most likely related to

human influences on each of the island groups.

The detection of cold events outlined in the Greenland ice cores during the early Holocene
have been problematic in some proxies such as pollen in the North Atlantic. These cooling events
such as the preboreal oscillation, the 8200 cal BP event and the 9300 cal BP event are thought to
be caused by freshwater inputs into the North Atlantic during the final deterioration of the
Laurentide Ice Sheet in North America (Nesje et al., 2004). However the evidence for these events
are difficult to detect in more northern sites (Bjorck et al., 1997). This holds true for sites on
Shetland where evidence for the 8200 cal BP event shows up in the geochemical record for Loch
of Grimsetter. At Loch of Sabiston, there is no evidence in any of the proxies for the 8200 cal BP

event.
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6. Conclusion

This study set out to determine the synchroneity of multiple proxies (diatoms, pollen, and
geochemistry), in reconstructing past environments in the Northern Isles to determine the nature
and timing of climatic and landscape changes. This study also sought to identify evidence of
‘warning signals’ in the records as precursors to regime shifts in the environment. Despite Orkney
and Shetland being in the same phytogeographical climatic region, evidence has been shown that
there are differences in the ecological responses of the study lochs and surrounding catchments
on these two archipelagos to the nature and timing of Lateglacial and Holocene environmental

changes.

The research undertaken here has demonstrated the relationship between terrestrial,
aquatic and catchment based proxies and how they respond individually to changes in the
environment in the Northern Isles. There are leads and lags that have been identified between the
responses of the proxies that can differ by several hundred years, along with instances when
proxies are synchronous. Therefore, constraining the timing of specific events based on one proxy
can be problematic if it doesn’t take into account the nature of the proxy as demonstrated by this
study. At Loch of Sabiston and Loch of Clumlie, there is more synchroneity between the proxies
during the Lateglacial than found during the Holocene, likely due to the higher magnitude of the
climatic changes during the LGIT.

Applying Fisher Information to multiproxy palacoenvironmental data demonstrates that
it can be a useful and valuable tool in exploring the nature and timing of environmental changes
that have occurred over time. It establishes when assemblages begin to shift and become unstable

and not just the point at which the proxy becomes significantly different from an earlier time as
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is the case when using constrained cluster analysis and Broken Stick methods. It also provides
information on when destabilization begins in a system, and when used together with constrained
cluster analysis, FI provides a greater understanding of what is happening through time with

individual proxies.

This research has provided new evidence for the nature of the palacoenvironmental
changes across the Northern Isles after deglaciation to the early Holocene. It has been shown that
Orkney was free of ice at ¢. 23,830 cal BP; ~ 4000 - 6000 years earlier than what has previously
been recorded. While this age appears anomalously older, there is no reason to reject it and
therefore predicting a prolonged LGM into the Bolling — Allered. Evidence of deglaciation from
Loch of Clumlie corroborated other dates from Shetland at ¢. 16,000 cal BP. However, since Loch
of Clumlie is not independently dated and is bound to the Greenland ice core chronology, further
analysis to search for tephra to use to constrain the age-depth model rather than the Greenland ice

core dates would be the logical next step in developing an independent chronology.

The ice retreat exposed a minerogenic landscape with little to no organic content at both
sites. The dating of ice free conditions from Loch of Sabiston and Loch of Clumlie provides
important insight for ongoing research on the timing and nature of the retreat of the BIIS. The
palacoecological record from Orkney begins at ¢. 23,830 cal BP with the initial colonization of
the loch with pioneer diatom taxa followed by open, cold-tolerant vegetation species ~ 5600 years
later. On Shetland, this process began at Loch of Clumlie prior to ¢. 16,000 cal BP in the aquatic
record however, unlike Sabiston, the diatom assemblage was more mature with the presence of
epiphytic species, along with taxa considered to be pioneer or arctic assemblages suggesting that
the margins of the loch became ice free during the summer allowing for macrophytes to develop
while maintaining a low-light cold environment for the remainder of the loch (Smol, 1988). The
surrounding landscape at Loch of Clumlie remained mostly barren of vegetation during this period
with evidence of terrestrial plants not present until the start of the interstadial. The diatom records
from Loch of Sabiston and Loch of Clumlie provide greater insight into the lake environment at
the point of deglaciation which hitherto have been neglected in the literature for the Northern
Isles. This study provides a better understanding of the differences that are occurring in how the
aquatic environment and the landscape responded to ice retreat and initial colonization. These
differences are illustrated in Figure 6.1 which shows the timing of the climatic changes in the

three study sites in comparison with §'*0 Greenland ice core records (Grootes et al., 1993).

The results of the palaecoenvironmental reconstructions during the Belling - Allered
interstadial in the Northern Isles is quite complex in terms of disentangling the detection of the
warm and cold events which have occurred (Fig. 6.1). The beginning of the interstadial was at c.
14,160 cal BP at Loch of Sabiston and on Shetland c. 15,300 cal BP based on Loch of Clumlie
along with other Shetland sites (Birnie, 2000; Robinson, 2004). The initial warming of the
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interstadial resulted in grasses, sedges, and willow colonizing Orkney reflecting an arctic-type
environment with increasing organic content and stabilization of the catchment while on Shetland
there was a comparable assemblage, however lacking the Calluna and Empetrum which was
present on Orkney. The Loch of Sabiston diatom community responds to the brief cooling event
of the Intra Allered Cold Period (IACP) which suggests a return to a colder environment and
increased ice cover while at Loch of Clumlie the diatom assemblage does not significantly change
during the interstadial providing evidence that the cooling occurring on Shetland was less

influential on an already cold environment.

The Greenland ice core records indicate a series of cooling events during the Bolling -
Allered interstadial designated GI-1d, GI-1¢2, and GI-1b. These events are not always evident in
other palacoecological records such as pollen in the North Atlantic region (Fig. 6.1), however
chironomid and §'*O records suggest periods of cooling contemporary with these events. In other
Lateglacial records from southern Scotland, the demarcation of GI-1b (IACP) is usually not
evident in the sediment stratigraphy. However, at Loch of Sabiston, Orkney, the IACP was
identified from ¢. 13,900 — 13,100 cal BP, and is most distinct in the geochemical record which
suggests that the sediment composition was strongly driven by temperature changes during the
Lateglacial period. Loch of Clumlie also has evidence in the geochemical record for cooling
during GI-1b from ¢. 13,310 - 13,240 cal BP. However, in the diatom records from both Loch of
Sabiston and Loch of Clumlie the cooling event GI-1b is not distinguishable from GI-1a. This
suggests that the warming of the Allered was not sufficient to significantly change the diatom

community from what was present during GI-1b.

The return to glacial-like conditions marks the Younger Dryas stadial. At both Loch of
Sabiston and Loch of Clumlie there was a return to the accumulation of bluish-grey clays and silts
and a decrease in bio-productivity. At Loch of Sabiston the precipitation of marl correspondingly
ceased. At Loch of Sabiston arctic/alpine diatom assemblages returned, while the pollen record
indicates a shift to more cold tolerant taxa and the loss of warm-temperate vegetation and increase
in algae, most likely due to increased snow and ice cover in the catchment with periods of open
water around the margins of the loch allowing for aquatic productivity. The terrestrial response
at Loch of Clumlie was less extreme with an increase of willow along with grasses and sedges.
This muted response could be due in part to the fact that warm-temperate vegetation never really
established on Shetland during the interstadial and therefore the shift to stadial conditions would

be subtler.
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The diatom and geochemical records from Loch of Clumlie demonstrate that the initial
stage of the Younger Dryas (12,880 cal BP to 12,270 cal BP) was characterised by colder and
wetter conditions. This was then followed by a later stage (c. 12, 270 cal BP and 12,020 cal BP)
marked by a shift to a cooler and drier environment. At Loch of Sabiston there is an increase in
bio-productivity and a subtle shift in the diatom record during the Younger Dryas which could be
indicative of cooler and drier conditions at c¢. 11,900 cal BP. The results from the diatom records
from Loch of Clumlie and Loch of Sabiston provide strong evidence for a two stage Younger

Dryas in the North Atlantic.

Across the North Atlantic there is evidence of time transgression of environmental and
climatic changes that occurred at the beginning of the Younger Dryas (Alley and Agustsdottir,
2005; Lane et al., 2013; Muschitiello and Wohlfarth, 2015) brought on by a gradual south to north
regional cooling spanning from ¢. 12,550 cal BP to 13,150 cal BP from Sluggan Bog Ireland in
the south (54°N) to Krédkenes Norway (62°N) in the north. Madtjérn, Sweden (58°N), has a mean
age for the beginning of the Younger Dryas of ¢. 12,677 cal BP (Muschitiello and Wohlfarth,
2015) which is close to the age for the onset of the Younger Dryas at Loch of Sabiston (59°N).
Loch of Sabiston provides an independently dated record further strengthening the concept of
time transgressive cooling during the start of the Younger Dryas. The chronology from Loch of
Clumlie (60°N) is based on the Greenland chronological framework from Rasmussen et al (2014).
However, the Greenland ice core date for the start of the Younger Drays at ¢. 12,880 cal BP is
comparable to that of Krakenes (62°N) with a maximum presumed start of ¢. 12,800 cal BP.

Therefore, it would be expected to be in that range.

The beginning of the Holocene was marked by a rapid warming at ¢. 11,700 cal BP over
a span of ~ 40 years (Oldfield, 2005; Taylor et al., 1997) after the Younger Dryas. The warmer
conditions during the early Holocene was punctuated by three cooler events identified in the
Greenland ice cores; the preboreal oscillation at ¢. 11,400 cal. BP, the 9300 cal BP event, and the
8200 cal BP event (Rasmussen et al., 2014). These cooling events have not been clearly identified
in the Northern Isles in previous studies. The geochemical record from Loch of Grimsetter suggest
cooling contemporary with the 8200 cal BP event which is not reflected in either the pollen or the
diatom record. However, the Loch of Grimsetter record suggests stable environmental conditions
throughout the remainder of the early Holocene. Loch of Sabiston in comparison, demonstrates
changes in the catchment during the early Holocene in its pollen, and diatom records reflecting
succession of terrestrial vegetation, lake ontogeny and hydroseral succession along with climatic
changes, and yet does not record the 8200 cal BP event. There is also evidence on both Shetland
and Orkney that terrestrial and aquatic proxies begin to respond independently of each other

reflecting possible different forcing on the catchment that would not necessarily react at the same

207



Chapter 6 Conclusion

time as well as localized human perturbations with the exception of Grimsetter, which does

respond to the 8.2 ka event and shows little change through the mid Holocene.

The mid-Holocene pollen record from Loch of Grimsetter contrasts markedly with others
from Shetland in the timing of deforestation. The catchment on Bressay retained its woodland
cover until ¢. 3000 cal BP, ~ 2000 - 5000 years later in comparison to other sites on Shetland. The
loss of woodland coincides with increased human activity on the island recorded after ~ 3000
years in Loch of Grimsetter. This indicates that the island of Bressay was left relatively
undisturbed during much of the Holocene in contrast to other sites from Shetland. This suggests
a re-evaluation in how people interacted with the landscape and questions the assumption of the

scale of the mid-Holocene clearances of woodland on Shetland.

With the increase in the use of tephrochronology, more independent chronologies can
allow for better comparisons of regional climate patterns without having to make assumptions
about synchroneity with other dated records. The carbonate rich geology of the Orkney Mainland
has thwarted previous efforts to constrain palacoenvironmental data using radiocarbon dating.
The age-depth model obtained from Loch of Sabiston, using a combination of radiocarbon and
tephra ages, is the most robust chronology that has been developed from Orkney. An expanded
tephrochronology has been developed for Quoyloo Meadow (Timms et al., 2016), but has not yet
been applied to any palacoenvironmental records to date. There is a potential offset in the
chronology for Loch of Sabiston of 100 - 300 years, however, it is not clear if this represents a
regional difference (or lag) in the response to paleoclimatic changes in Orkney when correlated
to the distant Greenland ice core records or if it is an artefact of the dating. Dating Loch of Clumlie
has been difficult due to root penetration and hiatuses caused by drying out of the basin. In order
to develop a working chronology for Loch of Clumlie, dates from Greenland ice core records
supplemented the radiocarbon dates from the core. However, this ties the palacoenvironmental
records of Loch of Clumlie to Greenland assuming synchroneity in the two regions. However, the
results from this research suggest that Shetland has more in common with the Norwegian/
Greenland region than with Orkney and Northern Europe and that correlating Loch of Clumlie
with the Greenland ice core records is a suitable alternative to an independent chronology. This
study also highlights the potential of high-resolution sediment chemistry enabled by p-XRF
analysis to correlate regional climatic events, particularly during the Lateglacial and so may be

used as chemo-chronostratigraphical information to aid the development of age-depth models.

This research has contributed to and expanded the knowledge of the nature and timing of
palacoenvironmental change in the Northern Isles with high-resolution diatom, pollen, and
sediment chemistry profiles from three previously unstudied lochs on Shetland and Orkney to
describe the changing aquatic environment and the surrounding landscape. The findings of this

study in the context of the research questions posed in Chapter 1 are summarized as follows:
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1) Comparison of the synchroneity of the changes occurring in the three proxies in each
of the study lochs demonstrates that in some cases that they can differ by several hundred years
and therefore stating the start or end of a climatic event on one proxy can be problematic. Also.
the sensitivity of each proxy has been revealed in their ability to respond to the cold events that
occurred during the Belling — Allerad interstadial such as the TACP, GI-1d and GI-1c3
(determined by 6180 records). Only the IACP was recognized in the p-XRF records, to a lesser
extent in the diatom records, and not at all in the pollen records of Loch of Sabiston and Loch of
Clumlie. The addition of diatoms and pu-XRF geochemical analysis along with pollen analysis
provides a better understanding of the nature and timing each loch responded to climatic changes

in their catchments.

2) Determining the sensitivity of the proxies and how synchronous they are with other
North Atlantic records was problematic due to complications in radiocarbon dating for Loch of
Clumlie whereby the age-depth model had to be supplemented with NGRIP ice core dates.
Suitable chronologies were developed however, for Sabiston and Grimsetter. Therefore,
conclusions regarding the timing during the Lateglacial will not be independent from Greenland
when comparing Loch of Clumlie to other sites. The results demonstrate that the changes that
Shetland experienced were less extreme compared to those experienced on Orkney due to its more
northerly location and that despite being in the same phytogeographical climatic region, there is
a difference in the way each archipelago responds to climatic changes. On each of the
archipelagos regional variation was more pronounced on Shetland than Orkney with site

characteristics having an increased influence on the observed response to a changing climate.

3) The results of Fisher Information provide information on when changes begin to occur
in the three proxies examined, allowing for a better understanding of the nature and timing of
these changes. FI compliments the results of the constrained cluster analysis, which delineates
zones and determines when something significantly changes thus presenting a more
comprehensive look at the nature and timing of climatic changes. The FI results also shows
periods of rapid changes or “tipping points”, however the results do not always coincide with the
results of CONISS, therefore the breaks of the CONISS zonation cannot be assumed to be regime

shifts in each proxy.

This research shows that the nature and timing of the palacoenvironmental changes that
occurred from the end of the LGM through the early Holocene are not straight forward and
utilizing proxies such as diatom and p-XRF scanning techniques more often in the future will
provide greater understanding of the processes occurring during environmental change in this
region. This research will also provide insight for modelling future climate scenarios by providing

information on how various proxies have reacted in the past under different climatic conditions.
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APPENDIX

Appendix A - Diatom species names and authorities

Names and naming authority of species reaching a relative abundance of greater than three percent

in the diatom assemblage of the three study lochs.

Species Name

Achnanthes childanos
Achnanthes lacusvulcani
Achnanthes lanceolata
Achnanthes marginulata
Achnanthes suchlandtii
Achnanthes ventralis
Achnanthidium helveticum
Achnanthidium minutissimum
Achnanthidium subatomoides
Amphora libyca

Amphora ovalis

Amphora pediculus

Amphora thumensis
Aulacoseira granulata
Brachysira aponina
Brachysira neoexilis
Brachysira styriaca
Brachysira vitrea

Brachysira zellensis

Caloneis latiuscula

Cocconeis placentula var. lineata

Cyclotella bodanica var. lemanica

Cyclotella comta
Cyclotella distinguenda
Cyclotella meneghiniana
Cyclotella stelligeroides
Cymbella cistula
Cymbella cymbiformis

Naming Authority
Hohn & Hellerman

Lange-Bertalot & Krammer
(Brébisson ex Kiitzing) Grunow
Grunow

Hustedt

(Krasske) Lange-Bertalot

(Hustedt) Monnier, Lange-Bertalot & Ector
(Kiitzing) Czarnecki

(Hustedt) Monnier, Lange-Bertalot & Ector
Ehrenberg

(Kiitzing) Kiitzing

(Kiitzing) Grunow ex A.Schmidt
(Mayer) Krieger

(Ehrenberg) Simonsen

Kiitzing

Lange-Bertalot

(Grunow) R.Ross

(Grunow) R.Ross

(Grunow) Round & D.G.Mann
(Kiitzing) Cleve

(Ehrenberg) van Heurck

(Otto Miiller ex Schroter) Bachmann
(Ehrenb.) Kiitz.

Hustedt

Kiitzing

Hustedt

(Ehrenberg) O.Kirchner

C.Agardh
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Cymbella descripta
Cymbellafalsa diluviana
Denticula kuetzingii
Denticula tenuis
Diatoma tenuis
Encyonema silesiacum
Encyonopsis microcephala
Eolimna rotunda
Epithemia goeppertiana
Epithemia smithii
Eucocconeis flexella
Eunotia arcus
Fragilaria capucina
Fragilaria constricta
Fragilaria nanana
Fragilariforma exigua
Fragilariforma virescens
Gliwiczia calcar
Gomphonema angustum
Halamphora veneta
Hippodonta capitata
Mastogloia smithii
Navicula minima
Navicula molestiformis
Navicula rhynchocephala
Naviculadicta digitulus
Neidiomorpha binodis
Nitzschia bacillum
Nitzschia palea
Nitzschia perminuta
Nitzschia linearis
Nupela vitiosa
Pinnularia biceps
Pinnularia microstauron
Planothidium conspicuum

Psammothidium levanderi

Appendix

(Hustedt) Krammer & Lange-Bertalot

(Krasske) Lange-Bertalot & Metzeltin

Grunow

Kiitzing

C.Agardh

(Bleisch) D.G.Mann

(Grunow) Krammer

(Hustedt) Lange-Bertalot, Kulikovskiy & Witkowski
Hilse

Carruthers

(Kiitzing) Meister

Ehrenberg

Desmaziéres

Ehrenberg

Lange-Bertalot

(Grunow) M.G.Kelly

(Ralfs) D.M.Williams & Round

(Cleve) M.Kulikovskiy, Lange-Bertalot & A.Witkowski
C.Agardh

(Kiitzing) Levkov

(Ehrenberg) Lange-Bertalot, Metzeltin & Witkowski
Thwaites ex W.Smith

Grunow

Hustedt

Kiitzing

(Hustedt)

(Ehrenberg) M.Cantonati, H.Lange-Bertalot & N.Angeli
Hustedt

(Kiitz.) W. Sm.

(Grunow) M. Perag.

(C. Agardh) W. Sm.

(Schimanski) P.Siver & P.B.Hamilton

W.Gregory

(Ehrenberg) Cleve

(A.Mayer) M.Aboal

(Hustedt) L.Bukhtiyarova & Round
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Pseudostaurosira brevistriata
Pseudostaurosira elliptica
Rossithidium pusillum
Sellaphora laevissima
Sellaphora vitabunda
Stauroneis anceps

Staurosira construens
Staurosira venter
Staurosirella leptostauron
Staurosirella pinnata

Tabellaria flocculosa
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(Grunow) Williams and Round 1987
(Schumann) Edlund, Morales & Spaulding
(Grunow) Round & Bukhtiyarova
(Kiitzing) D.G.Mann

(Hustedt) D.G.Mann

Ehrenberg

(Ehrenberg) Grunow

(Ehrenberg) Cleve & Moeller
(Ehrenberg) D.M.Williams & Round
(Ehrenberg) D.M.Williams & Round
(Roth) Kiitzing



Appendix

Appendix B — Standardization of published radiocarbon dates used in text to IntCall3
calibration curve (Reimer, 2013).

alibrat
Site Sample ID ]zsﬁlt)h ];;(tje El;ro (zad ;;ge Reference
(median)

Shetland
Dallican Q-2755 698-710 9350 90 | 10562 | Bennett et al. 1992
Water Q-2756 652-664 7775 90 8565

Q-2757 578-590 5670 95 6466

Q-2758 552-564 5085 | 100 5821

Q-2759 478-486 3350 70 3590

Q-2760 433-439 1565 65 1461
Gunnister Not cited Not cited 9785 80 | 11205 | Bennettetal. 1993
Water Not cited Not cited 9405 70 | 10638

Not cited Not cited 9300 70 | 10491

Not cited Not cited 8605 | 100 9608

Not cited Not cited 7110 70 7936

Not cited Not cited 5660 | 125 6463

Not cited Not cited 2685 60 2804

Not cited Not cited 1870 50 1807

Hulme and

Lang Lochs SRR-1552 | 725-755 13200 | 100 | 15859 | Shirriffs 1994
Mire SRR-1551 | 645-650 10450 70 | 12346

SRR-1550 | 515-520 9000 70 | 10156

SRR-1549 | 370-375 7720 70 8503

SRR-1548 | 295-300 7280 60 8095

SRR-1648 | 280-285 6445 80 7361

SRR-1547 | 195-200 5250 50 6023

SRR-1647 | 180-185 4575 95 5237

SRR-1646 | 65-70 1030 45 947
Murraster Not cited Not cited 10400 | 160 12237 | Bennett 1993

Not cited Not cited 10110 | 160 11721

Not cited Not cited 7850 | 120 8695

Not cited Not cited 4650 80 5391

Not cited Not cited 520 70 548
Crudale Whittington et al.
Meadow * Too old - Hard water effect 2015
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210.5- Whittington et al.
Clettnadal AA-33292 | 211.5 3545 55 3833 2003
218.5-
AA-33291 | 219.5 3755 55 4119
CAMS-
63296 225-226 7070 30 7896
CAMS-
63297 235-236 8560 50 9532
AA-33290 | 245-246 9190 75 10366
254.5-
AA-33289 | 255.5 9530 | 100 10871
AA-33288 | 265-266 10125 80 11741
AA-33287 | 288-289 11180 80 13041
AA-33286 | 296-297 12070 85 13923
AA-33285 | 305-306 11575 80 13404
AA-33284 | 309-310 12780 90 15233
Orkney
Loch of 232.5-
Knitchen Q-2892 243.5 2780 50 2880 Bunting 1996
377.5-
Q-2891 386.5 5345 55 6126
Q-2890 407-414 5975 70 6816
Loch of 257.5-
Torness Q-2897 266.5 5500 50 6302
289.5-
Q-2896 298.5 5930 50 6757
369.5-
Q-2895 378.5 7035 60 7869
Q-2894 407-415 7350 65 8164
Q-2893 428-434 7660 60 8460
Keating and
Glims Moss SRR-973 225-232 2145 65 2140 Dickenson 1979
SRR-974 288-295 2090 60 2066
SRR-975 369-376 2886 65 3022
Birm-634a | 395-400 2690 | 500 2808
Birm-634b | 395-400 2960 | 110 3122
Birm-635 454-459 4200 | 160 4727
SRR-976 501-508 5681 55 6468
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Appendix C — Condition of Pollen from Loch of Sabiston and Loch of Clumlie
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Figure C1. Condition of pollen from Loch of Sabiston. Spaces in the graph represent not enough

pollen to count.
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Pollen Grains (%)
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Figure C2. Condition of pollen from Loch of Loch of Clumlie. Spaces in the graph represent not

enough pollen to count.
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