
H Y B R I D M U LT I C A S T I N G U S I N G A U T O M AT I C

M U LT I C A S T T U N N E L S (A M T)

dhaifallah alwadani

Doctor of Philosophy

Institute of Computing Science and Mathematics

University of Stirling

March 2017

D E C L A R AT I O N

I, Dhaifallah Alwadani, hereby declare that the work in this thesis is original

and has been composed by myself, except where reference is made to other

works, and has not been submitted for examination for any other degree at this

university or any other learning institutions.

Stirling, March 2017

Dhaifallah Alwadani

iii

A B S T R A C T

Native Multicast plays an important role in distributing and managing delivery of

some of the most popular Internet applications, such as IPTV and media delivery.

However, due to patchy support and the existence of multiple approaches for

Native Multicast, the support for Native Multicast is fragmented into isolated

areas termed Multicast Islands. This renders Native Multicast unfit to be used as

an Internet wide application. Instead, Application Layer Multicast, which does

not have such network requirements but is more expensive in terms of bandwidth

and overhead, can be used to connect the native multicast islands. This thesis

proposes Opportunistic Native Multicast (ONM) which employs Application Layer

Multicast (ALM), on top of a DHT-based P2P overlay network, and Automatic

Multicast Tunnelling (AMT) to connect these islands. ALM will be used for

discovery and initiating the AMT tunnels. The tunnels will encapsulate the traffic

going between islands’ Primary Nodes (PNs). AMT was used for its added benefits

such as security and being better at traffic shaping and Quality Of Service (QoS).

While different approaches for connecting multicast islands exists, the system

proposed in the thesis was designed with the following characteristics in mind:

scalability, availability, interoperability, self-adaptation and efficiency. Importantly,

by utilising AMT tunnels, this approach has unique properties that improve

network security and management.

v

A C K N O W L E D G M E N T S

For me, undertaking this PhD has been a truly life-changing experience and it

would not have been possible to do without the help and support that I received.

First of all, I am extremely thankful to Almighty Allah for his blessings and

providing me with the ability to carry out this research, without which none of

my work would have been possible.

My sincerest gratitude and deepest appreciation goes to my supervisor Dr.

Mario Kolberg for his guidance throughout my PhD study. Without his guidance

and constant feedback this PhD would not have been achievable.

I would also like to express my thanks to my parents, Bakhit and Haya, for

their support, prayers, advice and encouragement throughout my research and

without which, I would not have had the courage to embark on this journey in

the first place. Their prayers and belief have been an amazing source of comfort.

Also, many thanks to my brothers and sisters: Norah, Layla, Eman, Sarah,

Mubarak, Amer, Abdulrahamn and my little sister Lamia.

I would also like to thank my beloved wife, Hajar, for her endless patience,

continuous encouragement, and support and for being by my side throughout

this PhD, living every single minute of it.

Finally, my love to my daughter, Haya, who was a constant source of joy

pushing me forward.

vii

L I S T O F P U B L I C AT I O N S

During the period of this research, the following papers have been published:

• D. Alwadani, M. Kolberg, and J. Buford, "A Simulation Model for Hybrid

Multicast," 2014 Eighth International Conference on Next Generation Mo-

bile Apps, Services and Technologies, pp. 112-116, 2014. [Online]. Available:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6982901

• D. Alwadani, M. Kolberg, and J. Buford, "An evaluation of opportunistic

native multicast," Computer Aided Modelling and Design of Communica-

tion Links and Networks (CAMAD), 2015 IEEE 20th International Workshop

on, pp. 170-174, 2015.

• D. Alwadani, M. Kolberg, and J. Buford, "Opportunistic native multicast

under churn," in SAI Computing Conference (SAI), 2016. IEEE, 2016, pp.

644-648.

• D. Alwadani and M. Kolberg. (2017). Opportunistic Native Multicast. Sub-

mitted to International Journal of Parallel, Emergent and Distributed Sys-

tems

ix

C O N T E N T S

1 introduction 1

1.1 Background . 1

1.2 Research Problem . 3

1.3 Thesis Statement . 4

1.4 Aims and Objectives . 4

1.5 Contributions . 5

1.6 Thesis Scope and Structure . 7

2 background and related work 9

2.1 Multicast . 9

2.1.1 Taxonomy . 11

2.1.2 Native Multicast . 15

2.1.2.1 Host Group Multicast 15

2.1.2.2 Multi-Destination Routing 17

2.1.3 Application Layer Multicast 18

2.1.3.1 CAN-Multicast . 19

2.1.3.2 SCRIBE . 20

2.1.4 Hybrid Multicast . 21

2.1.4.1 Automatic Multicast Tunnelling AMT 22

2.1.4.2 Island Multicast . 23

2.1.4.3 Universal Multicast 23

2.1.4.4 Multicast Delivery Based on Unicast and Subnet

Multicast . 24

2.1.4.5 Hybrid Multicast Issues 24

2.2 Peer To Peer . 26

2.2.1 Taxonomy . 27

2.2.2 Structured Peer-to-Peer Overlay 28

2.2.3 Types of Structured Overlays 29

xi

2.2.3.1 Multi-Hop . 29

2.2.3.2 One Hop . 35

2.2.3.3 Variable Hop . 37

2.2.4 Unstructured . 38

2.2.5 Differences between Structured and Unstructured Overlays . 39

2.3 Automatic Multicast tunnelling (AMT) 40

2.3.1 AMT Operation . 41

2.3.2 Advantages of AMT . 42

2.4 Summary . 44

3 opportunistic native multicast 45

3.1 Introduction . 45

3.1.1 Joining ONM . 46

3.1.2 ONM Alternatives . 48

3.1.3 ONM Advantages . 49

3.2 ONM Operation . 50

3.3 Primary Election . 53

3.4 Secondary Selection . 56

3.5 Failure Recovery . 58

3.6 Summary . 62

4 performance evaluation of onm 63

4.1 Introduction . 63

4.2 Experimental Methodology . 63

4.2.1 Research Questions . 63

4.2.2 Benchmark Selection . 64

4.2.3 OMNet++ and INET Framework 65

4.2.4 OverSim . 66

4.2.5 Simulation Setup . 67

4.2.6 Simulation Model . 68

4.3 AMT . 70

4.3.1 Changes to The Simulation Environment 70

4.3.1.1 AMT Gateway . 70

xii

4.3.1.2 AMT Relay . 71

4.3.1.3 Changes in OverSim 73

4.3.1.4 Network Messages . 74

4.3.2 The Network Model . 75

4.4 Basic Implementation . 75

4.4.1 Overview . 75

4.4.2 Simulation Scenarios . 76

4.4.2.1 Small proof-of-concept network 76

4.4.2.2 Applications . 76

4.5 ONM Vs ALM . 78

4.6 Number of Secondaries . 82

4.6.1 Introduction . 82

4.7 Approaches To Select Primary and Secondary Nodes 86

4.7.1 Heterogeneity . 86

4.7.2 Distinguishing Low Churn Nodes 87

4.7.3 Manual Priority . 89

4.7.4 Passive Priority . 92

4.7.5 Age-Based Priority . 92

4.7.6 Comparing Types of Priority 97

4.8 Dynamic Heartbeat Intervals . 99

4.8.1 Dynamic Control Interval . 99

4.8.2 Probation Period . 100

4.8.3 Graduate Trust . 101

4.9 Detection of Node Failure . 105

4.9.1 Introduction . 105

4.9.2 Heartbeat Timeout Timer . 105

4.9.3 Selecting the value of N . 106

4.10 Comparing ONM with IM . 108

4.10.1 Performance Analysis . 108

4.11 Summary and Conclusion . 109

5 conclusion and future work 115

xiii

5.1 Introduction . 115

5.2 Contributions . 116

5.2.1 Review of current literature . 116

5.2.2 Connecting Multicast Islands using AMT and ALM 116

5.2.3 Detect Nodes Failure . 117

5.2.4 Availability and resilience . 117

5.2.5 Distinguishing between low and high churn nodes in a het-

erogeneous network . 118

5.2.6 Dynamically Optimising control traffic 118

5.2.7 Performance of ONM . 118

5.2.8 The simulator . 119

5.3 Limitations and Future Work . 119

5.4 Summary . 121

xiv

L I S T O F F I G U R E S

Figure 1.1 Example of Multicast Islands 2

Figure 2.1 a) Unicast, b) IP Multicast, c) Application Layer Multicast.[1] 10

Figure 2.2 Multicast Taxonomy . 15

Figure 2.3 HGM Multicasting . 16

Figure 2.4 IGMP Message . 17

Figure 2.5 MDR Multicasting . 18

Figure 2.6 A Sample Hybrid Multicast Network. [2] 21

Figure 2.7 Example of routing a query from node 0132 to node 3121 in

Pastry . 31

Figure 2.8 Example of the finger table in Chord for node a 33

Figure 2.9 Kademlia Routing Buckets for node 110 34

Figure 2.10 The CAN overlay divided into zone in a 2 dimensional co-

ordinate space . 35

Figure 2.11 An Example of an event propagating using Event Detection

and Report Algorithm (EDRA) in D1HT 37

Figure 2.12 The Flow of AMT messages 43

Figure 2.13 Multicast Islands Connected Using AMT 43

Figure 3.1 ONM System Topology . 46

Figure 3.2 An Island Joining ONM . 47

Figure 3.3 The stack of protocol used in ONM 52

Figure 3.4 Primary Node Election Message Sequence 54

Figure 3.5 Message Sequence for Selecting a Secondary Node (SN) . . . 57

Figure 3.6 The Message Sequence for Recovering after The Churn of

The PN . 59

Figure 3.7 The Message Sequence for Recovering after The Churn of

The SN . 60

xv

Figure 3.8 ONM Operation FSM . 61

Figure 4.1 OverSim Structure . 66

Figure 4.2 A view on the design of Standard Host component in INET . 69

Figure 4.3 A view on the design of Standard Host component in INET . 69

Figure 4.4 The stack of components in AMT Gateway 71

Figure 4.5 The stack of components in AMT Relay 72

Figure 4.6 A dialog for the number of multicast islands 75

Figure 4.7 A dialog for the number of client that will be randomly

scattered across different islands 76

Figure 4.8 An example network with two multicast-enabled islands . . 77

Figure 4.9 The AMT Application . 77

Figure 4.10 Comparing the Stretch of different multicast approaches . . . 79

Figure 4.11 Comparing the Stress of different multicast approaches . . . 80

Figure 4.12 Comparing the traffic generated in each island for different

multicast approach . 80

Figure 4.13 Comparing the traffic crossing the backbone for different

multicast approach . 81

Figure 4.14 Comparing the delay for different multicast approaches . . . 82

Figure 4.15 The Effect of lifetime and heartbeat intervals on Success Rate 84

Figure 4.16 The Effect of lifetime and heartbeat intervals on Overhead . . 85

Figure 4.17 The Effect of the Number of Secondary Nodes on Success

Rate (With Heartbeat = 10) . 85

Figure 4.18 The Effect of the Number of Secondary Nodes on Overhead

(With Heartbeat = 10) . 86

Figure 4.19 The Effect of manual selecting of Primary Nodes Success rate 90

Figure 4.20 The Effect of manual selecting of Primary Nodes on Overhead 91

Figure 4.21 The Effect of the Length of the simulation time on Success rate 93

Figure 4.22 The Effect of the Length of the simulation time on Overhead 94

Figure 4.23 The Effect of factoring age on Success rate 95

Figure 4.24 The Effect of Factoring Age on Overhead 96

xvi

Figure 4.25 The Effect of different methods of selecting the Primary

Nodes with different heartbeat frequencies and number of

Secondaries . 98

Figure 4.26 The Effect of Probation-time Dynamic Interval 102

Figure 4.27 The Effect of Dynamic Interval in Graduate Trust 103

Figure 4.28 The effect of heartbeat timeout value 107

Figure 4.29 Comparing Island Multicast (IM) with Opportunistic Native

Multicast (ONM) . 108

xvii

L I S T O F TA B L E S

Table 2.1 Conceptual comparison of IP multicast and ALM 9

Table 2.2 Comparing Different Types of Structured Peer-To-Peer Net-

works . 29

Table 2.3 Example of Pastry Routing Table for a node with ID 12030213

and b = 2 . 30

Table 2.4 Comparing Different Types of Unstructured Peer-To-Peer

Networks . 38

Table 3.1 The ONM Timers . 59

Table 4.1 List of default parameters for the simulations 67

Table 4.2 Example content of an AMT-Gateway Peer Table 71

Table 4.3 Example content of an AMT-Relay Peer Table 74

Table 4.4 Parameters for TTransition . 101

Table 4.5 Calculation of C . 104

Table 4.6 The chance of unneeded takeovers for different values of N

and Packet Drops . 107

Table 4.7 Success Rate of different configurations of Lifetime, Number

of Secondaries and Primary Selection Method 111

Table 4.8 Average overhead of different configurations of Lifetime,

Number of Secondaries and Primary Selection Method . . . 112

Table 4.9 The Average delay of the multicasted messages 113

Table 4.10 Average Number of messages in the island 113

Table 4.11 Average stress on the backbone 114

Table 4.12 Average stretch of the multicasted message 114

xix

xx

L I S T O F A C R O N Y M S

ALM Application Layer Multicast

AMT Automatic Multicast Tunnelling

AMT-GW AMT Gateway

CAN Content Addressable Network

CIM Centralised Island Multicast

DHT Distributed Hash Table

DIM Distributed Island Multicast

EDRA Event Detection and Report Algorithm

GRE Generic Routing Encapsulation

HGM Host Group Multicasting

HM Hybrid Multicast

IGMP Internet Group Management Protocol

IoT Internet of Things

IPTV Internet Protocol TeleVision

IM Island Multicast

MAC Message Authentication Code

MDR Multi-Destination Routing

NED Network Description

xxi

NM Native Multicast

ONM Opportunistic Native Multicast

OSI Open Systems Interconnection

P2P Peer To Peer

PN Primary Node

PRR Plaxton, Rajaraman and Richa

QoS Quality Of Service

SEPastry Security Enhanced Pastry

SHA1 Secure Hash Algorithm 1

SN Secondary Node

TTL Time To Live

UDP User Datagram Protocol

UM Universal Multicast

VoIP Voice Over Internet Protocol

XOR Exclusive OR

xxii

1
I N T R O D U C T I O N

1.1 background

According to Cisco’s Visual Networking Index [3], 91% of the Internet traffic is

expected to be video. Multicast can play an important role in distributing and

managing it. Internet applications, such as Internet Protocol TeleVision (IPTV)

and multimedia conference calls, rely on distributing content in a one-to-many

or many-to-many approach. This way of content delivery is called multicasting.

Multicasting is a very powerful and efficient way to deliver content in the Internet.

It was designed to save bandwidth and manage the routing and delivering of

content to multiple destinations efficiently.

Multicast can be implemented at different layers of the network stack: mainly on

the Network Layer and the Application Layer. If it is implemented at the network

layer, referred to as Native Multicast (NM), routers forward and replicate the

multicast messages. In this case, routers form a spanning tree for each multicast

group. Alternatively, with Application Layer Multicast (ALM), hosts, not routers,

are responsible for forming the spanning tree and to replicate and forward the

multicast messages.

In NM, two main approaches can be used: Host Group Multicasting (HGM)

and Multi-Destination Routing (MDR). In HGM, the routers can keep track of

the multicast group. They are responsible for registering interested hosts. Also,

they keep track of the group state. The sender needs to specify which group the

message is for and the network takes care of the rest. Alternatively, in MDR, the

source of the message needs to specify the destination hosts in the header of the

message. After that, the routers duplicate the data, split the header and forward

the message as needed.

1

Crucially, ALM does not require multicast support from routers. However, it

is less efficient than Native Multicast as it sends multiple copies of the same

message across the same link [4, 5]. On the other hand, to be able to use native

multicasting, the routers need to be multicast-capable. Currently, this is not the

case universally across the entire Internet [6]. This has resulted in multicast-

capable parts of the Internet being scattered across the network as islands as

shown in Figure 1.1. Furthermore, different native multicast technologies exist,

such HGM and MDR [7]. While the spread of the use of multicast-capable routers

is increasing, the problem of multicast islands persists. Without approaches

which bridge the islands, content providers rely on unicast to distribute content

until global adoption of a (single) native multicasting approach is achieved. One

1

Multicast
Island 1

3

2

4

6

5
Multicast
Island 2

7

8Multicast
Island 3

9

- - - Native Multicast
—– Unicast

1

Figure 1.1: Example of Multicast Islands

possible solution to this problem is to connect multicast islands using Application

Layer Multicast. By doing so, the benefits of both techniques can be gained. This

technique is referred to as Hybrid Multicasting.

This thesis discusses our novel approach to hybrid multicasting which utilise

AMT tunnels and ALM together with a Peer-to-Peer overlay network to connect

native multicast islands. We termed our technique Opportunistic Native Multic-

ast (ONM). The thesis demonstrates the performance of the approach through

simulation considering different levels of node churn. Furthermore, in order to

further improve the performance of the approach, besides the basic configuration

with a Primary Node (PN) only, a single or multiple additional Secondary Nodes

2

can be used as backup. An election algorithm to identify these nodes and present

results for ONM for different heartbeat message intervals are introduced and

used. Finally, the thesis makes recommendations regarding the most suitable

configuration of ONM considering different network conditions.

1.2 research problem

Currently, the Internet is fragmented into many isolated area that are not connec-

ted using unicast-only connections due to the lack of support of native multicast

in the backbone and because different types/protocols for native multicast are

deployed. This is a major issue for content distribution as multicast requires the

support of intermediate routers [8]. Since multicast packets are dropped when

leaving a Multicast Island and the backbone of the internet does not support

multicast [9], Native Multicast (NM) cannot be used as an Internet-wide to distrib-

ute data. Alternatively, Application Layer Multicast (ALM) can be used. However,

this is not as efficient as Native Multicast (NM) [5]. A solution to the problem

of Multicast Islands is to connect these Multicast Islands using ALM [10]. This

approach is termed Hybrid Multicast (HM). By doing so, the benefits of both

techniques can be exploited.

Currently, there exists different approaches to connect multicast islands. How-

ever, they suffer from different shortcomings, such as, the need for manual

configuration, lack of fault tolerance and recovery, lack of standardisation or in-

completeness. ONM, by using ALM for the overlay and AMT to tunnel multicast

between islands, solves many of these issues. In this thesis, the chosen ALM and

Peer To Peer (P2P) algorithms are mature and wildly used, such as in FreePastry

[11] for Pastry, JANUS [12] which implements SCRIBE.

3

1.3 thesis statement

To solve the issues discussed in 1.2, this thesis propose a Hybrid Multicast (HM)

system to connect these islands utilising Automatic Multicast Tunnelling (AMT)

and Application Layer Multicast (ALM). The system takes advantage, for the

first time, of AMT to tunnel traffic between islands. While implementing Hybrid

Multicast (HM) introduces a number of challenges, the proposed system trys to

address them. Some of the challenges that are introduced and addressed in this

thesis: availability, interoperability, self-adaptation and efficiency. In our proposed

model, called Opportunistic Native Multicast (ONM), nodes belonging to the same

island discover each other and join the same native multicast tree. Using native

multicast capability of the island improves the efficiency. Also, it allows nodes to

seamlessly join the multicast group as the islands are connected using AMT.

1.4 aims and objectives

The support for unicast only in the Internet backbone and the support for multiple

NM approaches resulted in multicast-capable parts of the Internet being scattered

across the network as islands. The aim of this thesis is analyse the issue of

multicast islands. The thesis will propose a system that connects these islands

while utilising the islands’ local capabilities, which can often be more efficient

and robust. Also, this thesis will evaluate the possibility, applicability and the

performance of the proposed system. It is hypothesised that using ONM will

provide a significant improvement over using conventional multicasting methods.

The objectives of the thesis are:

• Due to the issue of multicast islands discussed in the Thesis Statement

section above, this thesis introduces a method to connect different multicast

islands using AMT tunnels while allowing the islands to utilise their native

multicast capability.

4

• Design and implement how ONM builds multicast trees while maintaining

efficiency and reliability of delivery. Furthermore, the approach will cope

with different levels of node churn in the network.

• The proposed system allows for one node per island to be responsible for

the delivery and the connectivity between the Native Multicast (NM) tree

and the Application Layer Multicast (ALM) tree. This node is referred to as

the Primary Node (PN). Due to its importance, the thesis investigates how

the election process of the Primary Node (PN) takes place.

• Also, investigate how the islands can detect when the Primary Node (PN)

is not available any more. Also, how can the island react to this event

and select another Primary Node (PN). This is important since the Primary

Node (PN) is susceptible to failure and disconnects and it might get churn

out of the network.

• Design a way to improve efficiency and recovery speed from Primary

Node (PN) failure by allowing the Primary Node (PN) to select a backup

node that takes over when the Primary Node (PN) is not available anymore.

This node is referred to as the Secondary Node (SN).

• Investigate the frequency of the exchanged heartbeat messages and find

the optimum frequency of communication between nodes, between nodes

and the Primary Node (PN), and between the Primary Node (PN) and the

Secondary Node (SN).

• Allow islands to detect the stability of the network and change the frequency

of the heartbeats accordingly.

1.5 contributions

The contributions of this thesis are highlighted in the following list:

• To understand different approaches of multicasting, a review of different

multicast techniques and approaches were identified and presented. The

5

review has identified existing solutions of multicast and focused on the ones

that have attempted to bridge different islands. Also, related technologies

that were used such as P2P and AMT were identified.

• Due to the lack of the support of the current simulators of hybrid multicast

and AMT, an extension was built to the simulator used in the research.

Using this adaptation, the thesis implemented and compared network

environment with varying values of island size and network capabilities.

• A novel Opportunistic Native Multicast (ONM) approach was designed.

The proposed system aims to connect islands and utilising local native

capabilities of the network. The synergies between Application Layer and

Network Layer are maximised by developing native multicast detection and

island awareness techniques.

• Develop, analyse and experiment with the process to elect a Primary Node

(PN). The process needs to allow nodes to interact with other nodes in

their islands. Nodes should be able to detect the need for an election and

unanimously agree on the next Primary Node (PN) at the end of the election.

• Investigate the use of backup nodes, Secondary Node (SN), to improve

the availability and robustness of Opportunistic Native Multicast (ONM).

Also, the thesis investigates the cost and the improvement achieved by

introducing multiple SNs.

• The thesis introduces a number of mechanism for selecting Primary Node

(PN) and the Secondary Node (SN). This allows ONM to select nodes that are

more stable which in turn, improves the overall stability of the network.

• The thesis evaluates the performance of ONM under a number of real

life network configuration and parameters. This ensures that the system

is deployable in practice and improves performance when compared to

different ALM systems.

6

• Opportunistic Native Multicast (ONM) significantly improves on the per-

formance of previous approaches in terms of delivery of messages and

overhead incurred. In this thesis, one of the major Hybrid Multicast (HM)

systems is compared to Opportunistic Native Multicast (ONM).

1.6 thesis scope and structure

This thesis will define the main issues with using Native Multicast (NM) and

Application Layer Multicast (ALM). These issues are mainly: Multicast Islands

and taking advantage of network capability to increase efficiency. After that, the

currently proposed Hybrid Multicast (HM) techniques will be discussed Then,

the thesis will propose a Hybrid Multicast (HM) approach to solve these issues.

The thesis is structured into the following chapters:

• Chapter 1, introduction: This chapter introduces the thesis research

objectives and aims. Also, it identifies the research questions that the thesis

is trying to solve.

• Chapter 2, background and related work: This chapter discusses

P2P and its advantages. Moreover, it will have a look at different types of

P2P protocols and how to use them to achieve ALM. It reviews multicast and

its protocols and discusses different ways to achieve multicast and compare

their advantages and disadvantages.

• Chapter 3, opportunistic native multicast: This chapter discusses

our proposed method to achieve hybrid multicasting. It discusses fail recov-

ery and redundancy mechanism.

• Chapter 4, performance evaluation of onm: This chapter evaluates

our proposed protocol and compare its effectiveness under different settings.

It also, fine tunes different values for variables used in the implementation

to find what yields the best results.

7

• Chapter 5, conclusion and future work: This chapter, based on the

results collected in chapter 4, draws conclusions and suggest ways to take

this work forward.

8

2
B A C K G R O U N D A N D R E L AT E D W O R K

This chapter discusses the background of the three main related technologies:

Peer To Peer (P2P), Multicast and Automatic Multicast Tunnelling (AMT). For P2P,

an overview will be given of its different types: Structured and Unstructured.

Then, this chapter will discuss some of the key examples of each type. Secondly,

the Multicast section will discuss the different approaches of how a multicast tree

can be built and deployed. Examples protocol for each approach will be discussed.

Lastly, for Automatic Multicast Tunnelling (AMT), the chapter will provide an

overview on the operation and approaches that can be used to build tunnels.

2.1 multicast

In computer networking, multicasting is the simultaneous delivery of a message

to a group of destination computers. Some important Internet applications, such

as VoIP, video streaming and recently Augmented Reality (AR) and Virtual Reality

(VR), rely on or take advantage of Multicast capabilities of the network. However,

one of the challenges faced by AR and VR is the lack of Native Multicast support

[13]. Moreover, issues with native multicast has affected the design of protocols.

Issues IP Multicast ALM

Multicast efficiency (delay/bandwidth) High Low - Medium

Complexity or Overhead Low Medium - High

Ease of deployment Low Medium - High

The OSI layer Network Layer Application Layer

Table 2.1: Conceptual comparison of IP multicast and ALM

9

Figure 2.1: a) Unicast, b) IP Multicast, c) Application Layer Multicast.[1]

For example, in designing MP-ALM, ALM was chosen over Native Multicast

due to these issues [14]. In Internet of Things (IoT) domain, multicast plays an

important role on efficiency and power consumption [15]. Also, many of video

streaming protocol did not utilise Native Multicast due to issues with respect

to address allocation, routing, authorisation, group management, security, and

scalability [16].

Since routing is carried out by Layer 3 routers in the Internet, multicasting was

designed, initially, to operate in Layer 3 in the Open Systems Interconnection (OSI)

network stack [17]. In this case, it is called Native Multicast (NM). However,

different methods can be used if Native Multicasting is not supported throughout

the whole network. One of these methods is Application Layer Multicast (ALM).

In ALM, Layer 7 of the OSI network stack is used instead of Layer 3 [18]. Finally,

we could use a hybrid approach employing ALM and NM where both layers (i.e.

3 and 7) are used. This method is called Hybrid Multicast (HM).

As shown in Table 2.1, these types of multicasting can be classified by the OSI

layer they operate in. We can see from the table that Native Multicast is more

efficient and less complex than ALM. On the other hand, ALM is easy to deploy

without the need for the support of the network infrastructure [19].

10

Figure 2.1 illustrates the different methods that messages can be sent in the

network. The figure illustrates three cases: a, b and c which corresponds to

Unicast, Native Multicast and ALM respectively. In the figure, Node A is the

source of the data which will be sent to Nodes B, C and D. In case a in Figure

2.1, the source sends three different unicast messages - to each receiving node.

The routers forward the messages to each receiving node. In case b, Node A

sends a single copy of the message. The routers will deal with forwarding and

duplicating the message to each receiver. Router R1 will have Node B registered

as part of the multicast group so it will send a copy to Node B. Since R2 has

Nodes C and D registered, R1 will send another copy to R2. Finally, R2 will send

copies of the message to Nodes C and D. Lastly, in case c Nodes A, B, C and D

will form a multicast tree. The routers will just forward the exchanged messages

without taking part in the multicast decisions. Node A represents the head of the

tree with Nodes B and C acting as leaves . Node D is a leaf to Node C. So, when

Node A tries to multicast a message to the group, it will send it to all the leaf

nodes connected to it, i.e. B and C. Then Node C will forward the message to

Node D.

Each of the multicast approaches will be discussed further in this chapter.

Section 2.1.2 discusses NM in more detail, followed by section 2.1.3 discussing

ALM, and finally Section 2.1.4 looking at a hybrid approach that combines Native

Multicast and ALM.

2.1.1 Taxonomy

There exists different methods for classifying Multicasting Approaches. Multic-

ast Protocols can be classified by the routing algorithm used by the protocol

to construct the acyclic spanning tree. The routing protocol has two main re-

sponsibilities: to build and manage the state information and to select the most

appropriate path to carry information on [20]. Also, Multicast protocols can have

additional responsibilities such as group management and QoS. Moreover, to

increase the efficiency, Multicast algorithms try to build Minimal Spanning Tree

11

(MST). These protocols can be classified by the type of tree that is built by the

routing algorithm [21] as following:

• Source Tree: Source Tree Algorithms, or Shortest Path Trees, build a separ-

ate tree for each source. To connect a receiver to a source, the protocol uses

Reverse Shortest Path (RSP). This path is built using Reverse Path Forward-

ing (RPF) at the intermediate nodes. This Approach is very efficient for high

data rate sources as data always traverse the shortest path to the receiver.

However, this increase the cost as the number of groups and the number

of senders per group increases [22]. An example of Source Tree algorithm

is Multicast Extension To Open Shortest Path First Protocol (MOSPF) [23]

which use Dijkstra’s algorithm to build the Shortest Path Tree. Another

example is PIM Source-Specific Multicast (PIM-SSM) [24].

• Shared Tree: Here, a single tree is built to be used by all sources. The flow

of data in the tree can be unidirectional or bidirectional. This approach is

efficient for cases where sources send a low rate traffic. However, it increases

the traffic concentration. In Shared Tree algorithms, a single location in the

network is called a Rendezvous Point (RP). At the RP, all data from the

sources are sent to all receivers. Compared to Source Tree, an increase in

the delay may occur as data sent to the RP then to all nodes may not follow

the shortest path. Additionally, the selection of a node to act as RP is critical

to the performance of Shared Tree algorithms. An example of Shared Tree

is found in CBT [25], SCRIBE [26] and PIM-SM [27].

• Steiner Tree: Steiner Tree uses other information to build the spanning

tree by giving links weights or costs [28]. Steiner Tree minimise the the

total cost of a shared tree at the expense of delay. Finding such tree is a

NP-complete problem. So, approximation algorithms have been proposed

such as Kou, Markowsky and Berman (KMB) [29]. The cost resulted using

KMB averages 5% more than the Steiner Tree. However, KMB requires full

network topology to build the tree so it is not practical for large networks.

To overcome the issue of the delay, especially for delay sensitive application

12

such as VoIP, a variant of Steiner Tree that is delay bounded is proposed.

Delay Bounded Steiner Trees [30] will build a tree with minimum cost but

under a set delay limit.

• Reduced Tree: As a way to solve the scalability issues with Multicasting,

Reduced Trees were proposed. Here, the tree does not have any relay nodes

(of degree 2) [31]. This will results in about 80% reduction in the amount of

states maintained for each multicast group.

• Incremental Distributed Asynchronous Algorithm for MST: To avoid the

need for recomputing the Minimal Spanning Tree (MST) from scratch

with every change in the topology, it proposes using the existing tree and

updating it asynchronously. It also requires the knowledge about adjacent

edges only [32].

• Bounded Shortest Multicast Algorithm (BSMA): First, Bounded Shortest

Multicast Algorithm (BSMA) [33] construct a tree with the minimum delay

at a given source that will span all the group’s members. Then, it will

iteratively replace high-cost edges with less costly ones while keeping

under the delay constraint. This will repeat until no further links can be

replace without exceeding the delay constraints.

• Bauer Algorithm: Using the algorithm proposed by Bauer [34], constraints

is imposed on the number of outgoing links for each group. At the beginning

of the tree construction, links are added one at a time to a random starting

point. This is repeated for different starting points. A rearrangement is

triggered when a threshold of damage index as nodes join or leave.

• Delay Variation Multicast Algorithm (DVMA): Here, the delay and delay

variation, or jitter, is considered when building the tree. The jitter is over-

come by using buffers at the source, intermediate and receiving nodes [35].

Also, it will cost more as additional information are needed at different

nodes at the network. However, it will result in a better variation and more

efficient buffering. A Delay Variation-Bounded Multicast Tree (DVBMT) is

13

used to build a tree that is bounded by delay and delay variation. DVBMT

starts with a tree that satisfies the constraints which may not includes all

nodes. Then, the algorithm tries to insert nodes in the network while not

violating the set constraints.

• ARIES / GREEDY / Edge Bounded Algorithm (EBA): Multiple algorithms

were proposed to deal with dynamically updating large network of point-to-

point networks, e.g. A Rearrangeable Inexpensive Edge-based online Steiner

Algorithm (ARIES) [36], GREEDY [37] and Edge Bounded Algorithm (EBA)

[38]. For a new node to join ARIES, it will be assigned to an existing node

in the tree using Geographic-Spread Dynamic Multicast (GSDM) to choose

one with the greatest geographical spread. GREEDY aims to minimise the

spread of the tree as much as possible. A new node will connect to the

closest node tree node using the shortest path. EBA create a limit on the

distance between nodes in the tree for each change. A rearrangement will

take place in EBA when the distance exceeds a set limit.

Another dimension to classify multicast is using what layer of the OSI stack

does the tree multicasting occur. This is more relevant to our work since we

are trying to combine different layers of the OSI stack to achieve multicasting

globally. Therefore, we will use this dimension when discussing different mul-

ticast algorithms. As can be seen in Figure 2.2, there exists three types: Native

Multicast (NM), Application Layer Multicast (ALM) and Hybrid Multicast (HM).

In Native Multicast (NM), the multicast is achieved by the routers in the network

fabric. Alternatively Application Layer Multicast (ALM), the multicast operations

are handled by the end systems without requiring support from the network

routers. In Hybrid Multicast (HM), these operations are handled by both layers.

In this section, these will be discussed.

14

Multicast

Hybrid Multicast

DIMCIMONMSubnet MulticastUniversal Multicast

Application Layer Multicast

Structured

CANScribe

Unstructured

Native Multicast

Multi-DestinationHost Group

Figure 2.2: Multicast Taxonomy

2.1.2 Native Multicast

In Native Multicasting NM, the forwarding and replication of the multicast packet

is carried out at Layer 3. This means that the packet sent to a group is sent only

once by the source node. The network infrastructure will handle replicating the

packet as needed until it reaches every destination in the multicast group. There

exists different approaches to implement NM such as:

• Host Group Multicast (HGM): In this approach, the maintenance of groups’

hosts is handled in the routers.

• Multi-Destination Routing (MDR): Here, the sources are responsible for

the maintenance of their groups’ hosts [39].

Native multicast, such as MDR and HGM, reduces the number of messages

in the network dramatically [40]. However, these approaches rely on their wide-

spread deployment, which is slow and often encounters a number of issues; For

example, the network infrastructure must be configured to support the same mul-

ticast protocol. If any region of the network does not support native multicast or

support a different native multicast protocol, messages might not get forwarded

and passed in this region. This leads to multicast islands.

2.1.2.1 Host Group Multicast

In Host Group Multicast, Layer 3 routers implement the multicasting, that is

routers manage and maintain groups. HGM creates a group address per multicast

tree with the routers keeping track of the active group addresses [1]. Figure 2.3

shows an example of the operation of HGM. HGM works best for a relatively

15

Figure 2.3: HGM Multicasting

small number of groups that can have a large number of subscribers. As more

groups exist, more memory is needed in the routers. Clearly, this limits the

number of groups that a network can support. Since the average lifespan of

a session is relatively short, the states in the routers will need to be updated

frequently. Furthermore, the overhead of a node joining a group is considerable

as this information needs to converge in the groups tree. The most common

protocol used with HGM in IPv4 is IGMP.

The Internet Group Management Protocol (IGMP) is a protocol that is used

between hosts and adjacent routers to establish and manage multicast groups.

The protocol keeps track of the available multicast groups and makes sure that the

group messages are forwarded consistently without any unnecessary duplication.

This is accomplished through the exchange of IGMP messages:

• Membership query: This is sent by routers to ask hosts if they want to be

member of a multicast group.

• Membership Report: This is sent by hosts to let the router know that they

are interesting in joining a multicast group.

• Leave Group: This messages is sent by hosts when they are no longer

interested in receiving the multicast traffic.

The type of the messages is indicated in the type field in the IGMP message(2.4).

16

0 7 8 15 16 23 24 31

VERS TYPE UNUSED CHECKSUM

GROUP ADRESS

Figure 2.4: IGMP Message

2.1.2.2 Multi-Destination Routing

In Multi-Destination Routing (MDR), each multicast packet is sent with a list

of its destinations. Enabled routers will route this message and keep it as one

message as long as the all the destinations have the same next-hop. Otherwise,

the router will split the addresses and duplicate the message, routing each one

with its corresponding list of destinations, to their own next hop. This is repeated

until a message has only one address as its destination. At this point, the message

becomes a unicast message and is routing accordingly. See Figure 2.5.

The advantage of MDR is that it does not require routers to keep states of

active multicast groups thus making it highly scalable allowing it to support a

high number of groups. This has made MDR suitable for relatively small-sized

groups that have a short life span. In that case, network routers do not incur

overhead when there is a change in the group e.g. create or delete a group.

Another advantage is that there is no overhead in the network when hosts join or

leave groups.

On the other hand, MDR uses a special type of packets that supports multiple

entries as destinations. This requires that routers support this extension to be

able to route the message correctly. Also, MDR adds processing overhead at each

router when routing multicast messages as the routers may need to split packets.

Moreover, the sender is responsible for managing the multicasting group. Also,

there is a limitation on the group size due to the fact that all of the destination

addresses must fit in the header of the message.

17

Figure 2.5: MDR Multicasting

2.1.3 Application Layer Multicast

An alternative to Native Multicast is Application Layer Multicast ALM. With ALM,

the forwarding and replication is carried out in Layer 7 of the OSI model. There are

different approaches that can be used to achieve ALM. These approaches can be

classified into two groups: mesh-first, and tree-first. Mesh-first works by building

a richly connected graph first and then construct the multicast tree. However, the

tree-first approach creates the distribution tree first and then subsequently adds

additional links for control. Using the mesh-first approach allows to build more

than one multicast tree using the same overlay mesh. Since our approach aims

at connecting islands which can carry multiple Multicast Trees, the mesh-first

approach can be achieved. The optimum result happens when the design of the

ALM Layer 7 tree is based on the IP Layer 3 topology. However, this is difficult

with structured overlays with a predefined overlay topology regardless of the

physical location of nodes. Since the overlay network connections are abstract

links with no low-level details, there might be a mismatch between the overlay

structure and the physical network topology. For example, two nodes can be

physically located approximate too each other. However, in the overlay graph,

they are separated by several nodes. Despite these issues, ALM does not require

infrastructure support which makes it easy to deploy. Since there is no support in

18

most part of the internet for Native Multicast protocols, ALM becomes the only

way to carry multicast traffic.

The performance of ALM is measured by the following factors:

• Stretch: is the delay of the overlay path over the delay of a unicast message.

• Stress: is the number of identical copies of a message carried by a link or a

node

• Control Overhead: is the number of control messages needed to make the

ALM work.

2.1.3.1 CAN-Multicast

Content Addressable Network CAN is a distributed infrastructure that provide a

hash table functionality that map keys to values [41]. CAN is designed to not only

be used to share files across the peer-to-peer network but as system to efficiently

distribute content in an Internet-like scale. CAN-Multicast was designed as CAN

extension to provide ALM on top of CAN [42].

CAN-Multicast uses CAN overlay to distribute multicast messages across the

multicast group. If all of the peers in the overlay belong to the same multicast

group, flooding is used to distribute content across the CAN overlay. Otherwise,

multiple mini-CAN systems are created; one for each multicast group. In the

later, the underlying CAN system serve as a base to create the needed mini-CAN

systems. To create the mini-CAN systems, a multicast group is mapped to a node

in the underlying CAN system. This node will act as a bootstrap in the creating of

the mini-CAN.

To propagate multicast messages in the network, two methods were proposed:

naive flooding When the multicast message reaches a peer, the peer will

check if it had already received the message. If the message in new, the peer

will flood the message to all of its neighbours except for the one that it came

from. This method is simple but it will produce a large message replication.

19

efficient flooding Each node will analyse its location and its routing table

to decide which node to forward the message to. The source if the message

will flood it to all of its neighbours. However, subsequent forwarding will

depend on its relationship to the sender. When the message reaches a peer

in the network from a source in the dimension i, it will forward it to peers

who are further on the same dimension i. Also, it will forward it to peers

on the other side of the dimension i.

2.1.3.2 SCRIBE

Scribe is a large scale and decentralised application level multicast infrastructure

[26]. Scribe uses Pastry as its underlying peer-to-peer network.

In Scribe, the multicast address is generated by hashing the creator address

and the group name. The generated address is considered a unique ID that can

be used in the Pastry overlay. Then, the creator will send a create message to the

node in the pastry overlay responsible for the generated address which would be

the node with the closest ID. This node is the rendezvous point for this group.

Moreover, for decentralisation purpose, all nodes that forward the multicasting

traffic will snoop in on subscribe messages passing them. If the forwarding node

happens to subscribe to the same multicasting group, it will not forward it to the

root node and will act as a parent for the subscribing node. This behaviour will

result in a tree structure for each multicast group. Then, a series of keep-alive

messages would be sent periodically from a child to its parent. When the parent

is unreachable, the child would send a new join message to the root node. Also,

keep-alive messages would be sent from the parent to each child. This will allow

the parent to detect any child that is no longer reachable. As for the root node

fault-tolerance, Pastry will handle such failure since keys in the network are

duplicated across multiple node.

20

Figure 2.6: A Sample Hybrid Multicast Network. [2]

2.1.4 Hybrid Multicast

Each discussed approach, i.e. Native Multicast and Application Layer Multicast,

has its own advantages and trade-offs. However, Hybrid Multicasting tries to

combine the two approaches to give better performance. In Hybrid Multicasting,

Layer 7 is used to perform multicast operations e.g. tree creation, joining, leaving,

and re-forming a tree. Wherever possible, tree operations are mapped to native

multicast [43].

In Figure 2.6, we have a hybrid multicast network from [2]. In this network

we have four Native Multicast domains. MDR is used in P8 and P9. While P21

joins the multicast group via an AMT Gateway (AMT-GW). Any peers that reside

outside any IP (layer 3) multicast domain, marked in Blue squares, will use ALM

(layer 7). Moreover, a relay is used to connect any peers that do not have native

connectivity to the multicast backbone. These relays could be another peer. While

some peers could act as a gateway and connect to a relay.

One of the earliest attempts to connecting multiple native multicast islands

was MBone [9]. MBone was an experimental backbone to carry multicast packets

across the internet that requires a specialised hardware and software. MBone

related approaches usually required an administrator to set up and maintain

tunnels. Moreover, MBone suffered from some issues of access control, security,

address allocation and network management[6]. Automatic Multicast Tunnelling

(AMT) was proposed to automate the management of tunnels [44]. AMT defines

21

specific devices, Relays and Gateways, in the network to interact with the native

multicast protocol and to establish tunnels when needed. As such AMT focuses

on connecting island pairs rather than a global unified network. AMT will be

discussed in more detail in Section 2.3.

Except for AMT, one common limitation of the listed approaches is that Layer

4 information are encapsulated and hidden. Layer 4 information are needed to

do Quality Of Service (QoS) and traffic shaping. QoS is very important when the

multicast carries a real time data [45] e.g. VoIP and video conferencing.

Tunnelling multicast over unicast-only network is an important aspect of Hy-

brid Multicast. These tunnels play a vital rule in the performance of multicasting.

We can classify these techniques by the way these tunnels are built into two types:

explicit tunnelling With Explicit Tunnelling, isolated multicast islands are

interconnected using manual tunnels such as Generic Routing Encapsulation

(GRE). This can be done by the network administrators manually where

each tunnel is designed and maintained. In the case of Multicast over

GRE, each multicast packet get encapsulated inside a GRE header[46]. This

encapsulation results in that the layer 4 information is hidden to the router

connecting the two end point of the tunnel. This information is needed for

doing some QoS and traffic shaping.

without explicit tunnelling Here, tunnels will be created and maintained

automatically. The shape and topology of these tunnels will change dynam-

ically as the underlying network changes. This could be done using different

techniques such as peer-to-peer overlays. We can categorise these protocols

into ALM-First (e.g. HM [43], NICE [19]) and Native Multicast-First (e.g.

HIPM [47], ASRM [48], UM [49]).

2.1.4.1 Automatic Multicast Tunnelling AMT

Automatic Multicast Tunnelling AMT provides a way to build the unicast tunnels

between multicast islands when needed without explicit configuration. The

multicast tunnels will keep the layer 4 information in the packet allowing for

22

better QoS. More detail look on AMT operation is in section 2.3. However, AMT

lacks the peer to peer overlay to manage for its scalability. [2] attempts to solve

this issue by extending RELOAD to work with AMT.

2.1.4.2 Island Multicast

In Island Multicast (IM), Native Multicast Islands are combined and connected

using overlay data distribution [50]. Island Multicast (IM) presents two different

protocols to solve the problem of Island Multicast:

centralised island multicast (cim) This protocol is suitable for groups

with small size, have many-to-many communication and high bandwidth require-

ment e.g. multi-party conference calls. Here, there is a central server to build and

maintain the spanning tree. While this allows for fast building of small multicast

groups, it does not scale well for a high number of participants. Also, the need

for central servers in Centralised Island Multicast (CIM) has created a resource

bottleneck and a single point of failure.

distributed island multicast (dim) This protocol is suitable for large

groups where scalability is required. In Distributed Island Multicast (DIM), hosts

in the same multicast island elect a unique leader. The leader node will be

responsible for constructing the delivery overlay. So, DIM will form a two-tier

multicast trees where the island leaders form an overlay tree. Also, each pairs

of island leaders will form a bridge between them. This increases the overhead

of the protocol significantly as will be seen in later sections. Distributed Island

Multicast (DIM) is very comparable to the thesis proposed system, Opportunistic

Native Multicast (ONM) and will be used as a benchmark for the performance of

ONM.

2.1.4.3 Universal Multicast

As been proposed in [51], Universal Multicast UM provides a way to connects

multicast islands using dynamically build unicast tunnels. UM allows for multiple

23

connections for an island. Doing so will allow for an improvement in speed for

large islands. Inside each multicast island, one or more Dedicated Members DM

are elected to natively deliver the multicast to the island using Native Multicast.

However, the DM must advertise for its existence to all other nodes in the island

periodically. The frequency between advertisements determines how fast can an

islands converge and elect a new DM. There are no backup nodes that detect the

failure of the DM that communicate more frequently and hence will react faster

to DM failure.

Also, the authors of Universal Multicast have proposed a protocol for intra-

island multiple-DM management protocol [43]. This protocol is called Host

Group Management Protocol HGMP. HGMP is concerned with dynamically

electing peers to be Dedicated Member and using multiple Dedicated Members

for load-balancing purposes.

However, Universal Multicast (UM) requires that the joining host to search the

Native Multicast (NM) one hop at a time. This has rendered Universal Multicast

(UM) to suffer from a long joining delay [52] especially for a large group sizes.

Also, Universal Multicast (UM) cannot handle a dynamically changing network

[52].

2.1.4.4 Multicast Delivery Based on Unicast and Subnet Multicast

In [53], the paper proposes Subnet Multicast (SM) for connecting multicast

islands by having the source island forward a copy of the data to each receiving

island. The proposed protocol does not depends on the native multicast protocol.

However, there still some issues of scalability and its incompleteness compared

to the other proposed solutions. SM requires the source island to maintain a

database with entries for all other islands. Also, SM assumes that the data is sent

as a unidirectional stream in an one-to-many relationship.

2.1.4.5 Hybrid Multicast Issues

Hybrid Multicast is a promising solution to deploy multicast globally across the

Internet while utilising the native support in part of the network. However, there

24

exists a lot of challenges and issues that need to be considered. [8] deals with

some of the issues with Island Multicast. The issues can be classified into the

following:

nat Due to its operation across multiple different networks, the problem of NAT

devices will affect how peers discover each other. This issues originates

in the peer-to-peer paradigm. Consequently solutions proposed for P2P

also apply to Hybrid Multicast. Solutions proposed in [54],[55] are typical

examples.

fault tolerance and recovery Due to the nature of the Internet, losses

and failure are expected. This issue can be more critical since peer-to-peer

systems will need time to converge and recover from any change to the

topology. While some methods have been used to negate the effect of losses,

some dramatic changes to the underlay or the peer-to-peer overlay can be

drastic. Moreover, some multicast application can be sensitive to delay and

packet-loss such as Voice Over Internet Protocol (VoIP) and Internet Pro-

tocol TeleVision (IPTV). Also, multicast has been used in crisis management

systems which relies heavily on fault tolerance and recovery [56].

standardisation Due to the different ways protocols can be coupled and

combined, it is very challenging to design a standard that is optimised

for all of these scenarios. Also, since the Multicast Islands may belong to

different administrative entities, a unified standard that is agnostic to the

underling topology is preferable.

security As in every notwork, the multicast network is susceptible to different

types of attacks. Moreover, as the network combines different types of

protocols, it will inherit some of their weakness. Especially, the existence

of malicious nodes and peers poses an issue albeit in a very similar way

as in peer-to-peer overlays and native multicast. Consequently, existing

techniques from these two domains can also be applied to Hybrid Multicast.

Some proposed mitigations can be found in [57], [58].

25

2.2 peer to peer

Peer to Peer (P2P) networks are a decentralised and distributed type of network

where every node assumes client and some server functionality [59, 60, 61].

The peers will join to a virtual overlay that is ’overlaid’ over the physical con-

nections of the network. Those nodes or peers will collectively provide different

services to the network such as storage and routing. Using the overlay, nodes can

query other nodes and services. Then, an out of bound connection can be used to

complete the request.

By using P2P overly, node can join and leave with minimum friction. With

the use of a peer-to-peer network, instead of using the centralised Server-Client

model, some wanted features are introduced, such as:

• Decentralisation: With no single point of failure, the peer-to-peer network

is more robust and balanced.

• Self-Organising: As peers join or leave the network, the topology of the

peer-to-peer network is adjusted.

• Scalability: The size of the peer-to-peer network can vary dramatically over

the network lifetime. So, scalability is important to support this growth

without putting stress on a single peer or the network as a whole.

• Availability: With changes in the underlay network, some paths or nodes

can fail. Peer-to-peer networks are designed to recover from these failures.

Broadly, P2P can be classified into: Centralised, Decentralised and Hybrid P2P

system [59]. Centralised P2P system uses dedicated server to maintain the overlay.

A famous example of these systems is Napster [62]. These servers will assists in

locating other nodes and services as they will have a look up tables. However,

they act as a single point of failure and suffer from scalability issues as the

number of nodes increasing rendering the servers a bottleneck. Thus defeating

the purpose that this thesis is using P2P for.

26

Hybrid P2P systems allow for some nodes in the overlay to act as super peers.

These super peer will have responsibility similar to Centralised P2P systems

but they will be dynamically allocated improving the availability of the overlay.

Examples of these overlays are Gnutella 0.6 [63], Gia [64] and JXTA [65]

In Decentralised P2P systems, all nodes play similar roles and share the same

responsibility. This will make the system more robust as it does not have a single

point of failure. The Decentralised P2P system constitutes the majority of the

protocols used and is the focus of our thesis as it will be used at with our system.

According to the structure or the lack thereof, Decentralised P2P systems can

be further classified into: Structured, Unstructured and Hybrid overlay. In this

section, we will discuss each type in more details.

2.2.1 Taxonomy

Commonly, Peer to Peer algorithms are grouped into Structured and Unstructured

overlays. In structured peer-to-peer overlays, there is an overall structured that

is imposed on the network. Based on this structure, nodes in the peer-to-peer

network form links and locate resources. On the other hand, unstructured peer-

to-peer nodes form links arbitrarily. This makes the structure of the network hard

to know and control.

In the unstructured model, there is no structure that is imposed on the overlay.

Instead, nodes connect to each other randomly or in an ad-hoc manner. Due

to the lack of structure, the network is easy to build and can easily adjust to a

high churn rate. However, there are some severe limitations of the design of the

unstructured peer-to-peer overlays. One main disadvantage is that the search

algorithm is not deterministic. In the structured peer-to-peer algorithms, searches

are deterministic and the average latency to complete search requests is known

in advance. However, unstructured peer-to-peer search algorithms does not offer

any guarantee that the searched node can be located. Also, the search process

may visit the same node more than once [66].

27

2.2.2 Structured Peer-to-Peer Overlay

Having a structure imposed on the network can improve the search efficiency

and guarantee that the resources will be reached within a small number of

hops [67, 68]. In structured P2P, resources are mapped to peers in the overlay.

Commonly, this mapping is achieved using a hash function of the resource data

or name. So, when querying a resource , such as a file name, a peer will have a

direct its look up to a particular node in the overlay responsible of that resource.

In structured P2P networks, peers use Distributed Hash Table (DHT) algorithms

to store and locate peers and resources. In DHTs, peers are assigned a unique ID

which is typically generated by hashing the address of the peer. Also, IDs for

resources, such as files and services, are generated by hashing the name of the

resource. Resource IDs are stored on nodes whose hash is closest to the resource

ID plus possibly on some neighbouring nodes for redundancy.

In structured peer-to-peer overlays, the network rely on the DHT to manage the

structure and the operation of the network. DHTs provide a list of characteristics

for peer-to-peer and key advantages for multicasting. These advantages are:

• Decentralisation: With no central point of failure, the DHT provide robust-

ness to the network.

• Fault Tolerance: DHT systems can be reliable despite changes in the topo-

logy.

• Scalability: With the size of the network increasing, DHT adapt and maintain

their performance.

Other properties can be added to the system as required, for instance by imple-

menting security and anonymity on top of the DHT.

28

Structured

Multi-Hop One Hop Variable Hop

Connectivity: Symmetric Fully Meshed Asymmetric

Examples: Chord, Pastry Epichord, OneHop Accordian

Sample Structure:
0 1

2

3

45

7

6

0 1

2

3

45

7

6

0 1

2

3

45

7

6

Table 2.2: Comparing Different Types of Structured Peer-To-Peer Networks

2.2.3 Types of Structured Overlays

A structured peer to peer network can be classified by the upper bound of hops

for a request to reach its destination as seen in Table 2.2. According to this

classification, there exists three main types:

2.2.3.1 Multi-Hop

Here, each node in the overlay connects to a subset of the total number of nodes.

Since the resulting structure of the graph is symmetric, it will have an upper

bound on the number of hops needed to find a resource. Since a node must only

keep track of a subset of the nodes, the routing table is reduced. By reducing

the size of the routing table, it will reduce the overhead needed to update it. For

example, Pastry [69] will take a maximum of O(log2 n) hops. Other common

examples of Multi-Hop overlays are: Chord [70] and Kademlia [71].

pastry A Pastry overlay [69] has a circular structure and each node is as-

signed a 128-bit ID. Based on the modulo 2128 of the ID, the nodes are ordered in

the structure and its will know its place within the circular address space. Each

node keeps routing tables and tries to forward requests to the closest nodes. This

29

Rows 0 1 2 3

0 02030213 ↓ 22030213 32030213

1 10231012 11023121 ↓ 13232103

2 ↓ 12120301 12232231 12303221

3 12003210 12012233 12021002 ↓

4 ↓ 12031231 12032120 12033001

5 12030032 12030112 ↓ 12030322

6 12030201 ↓ 12030223 12030230

7 12030210 12030211 12030212

⊙
Table 2.3: Example of Pastry Routing Table for a node with ID 12030213 and b = 2

process will be repeated until the request reaches the destination. Pastry find

a closer node by matching the most significant bits of the resource with other

nodes since Pastry implements the Plaxton, Rajaraman and Richa (PRR) [72] tree

scheme to locate items in the overlay.

Each node in Pastry will keep three tables: a routing table, a neighbourhood

set and a leaf set as following:

• Routing Table: The routing table in Pastry nodes, with ID base of 2b, holds

logbN rows, where N is the size of the network. Each row holds b − 1

entries where every entry refers to a node which shares the first r bits of

the Node ID but the (r+ 1)th bit does not. In Pastry, b is a parameter that

control the size of the routing table and can be used as trade off between

size and overhead vs. the maximum hop count. So, when we set the value

of b, it will effect both of them as following:

Routing Tables Entries = (logbN)× (2b − 1) (2.1)

Maximum Routing Hop = logbN (2.2)

30

01
32

3 231

31
13

31
2
231
21

Figure 2.7: Example of routing a query from node 0132 to node 3121 in Pastry

Since any node with the correct prefix can be used as entry in the routing

table, Pastry will substitute them with closer nodes. Pastry will update its

routing table by requesting the routing table of other peers in the overlay

and ping the entries in its routing table. From the ping results, it will try

to substitute the entry in its routing table with others that have lower ping

i.e. closer. Table 2.3 shows an example of the routing table of a peer in the

pastry network with ID of 12030213. It can be seen that at row r, the list

contains a peer that shares the first r digits witch are highlighted in the

table. The i+ 1 digit will be the number of the column except for the cell

witch shares r+ 1 digit which will be expanded in the next row.

• Neighbourhood Set: This set contains a list of the m closest nodes. Pastry

allow application to define a distance function that will be used to calculate

the closest nodes.

• Leaf Set: This set holds a list of k nodes whose IDs are closest and centred

around the local node ID. Also, an item in the set i is replicated k times

with k
2 replica preceding i and k

2 after.

31

For a request sent to a destination d, a Pastry node will first check if d is in the

Leaf Set. If so, the request will be forwarded directly. Otherwise, the node will

check its Routing Table to find a node which shares more leading bits with d than

the local node. If such a node is found, it will be forwarded the request. If not,

the local node will try to find a node in its Routing Table that shares a number

of leading bits with d similar to the local node but numerically closer to d. This

process will be repeated until the request reaches d in no more than O(log2BN).

For example, to route a query from 0132 to 3121 as seen in Figure 2.7, the

query will hop across the overlay. In the example, the query takes the maximum

number of hops. With each hop, the query is getting closer to the destination and

matching more leading digits. Since this was the worst case scenarios where the

routing table of every peer on the query route was not able to match more than

one digit, the query can achieve better hop count by matching more than one

digit.

For the purpose of the reference implementation of ONM, we have chosen

Pastry to be used as the overlay. This is mainly due to its widespread use and the

existence of an ALM algorithm, i.e. Scribe [73], that can be used with it.

chord A consistence hash function, such as Secure Hash Algorithm 1 (SHA1),

is used in Chord to consistently assigns nodes and data a unique m-bit identifier.

This is done by taking the output of the hash modulo 2m. Then, a structure is

formed by placing a the node in a ring structure by the order of their identifiers.

Lastly, data items are assigned to the node with the same identifier or the first

node greater than it.

For a overlay of size N, each node will maintain a routing table with size of

O(log2 n). The routing table will hold k successors, or nodes succeeding it in

the ring. Also, it will hold a list of nodes chosen at logarithmically increasing

distance around the ring. This list is known as the finger list. For a node with

identifier n, The ith node in the finger list will be pointing to the first node with

an identifier that is equal to or greater than n+ 2i−1. The logarithmic distance

between nodes in the finger list will allow a node to have a better view of its

32

nearest neighbours. For nodes further away, the finger list have a more disperse

overview of them.

To route a query to a destination d, the sender will select the first node from

the finger list whose identifier is most immediately precedes d. It, in turn, will

do the same and push the query closer to d. As a query if forwarded across the

overlay and get closer to its destination, the more likely it will find a link to the

destination. This process will be repeated until it reach a node that have d in its

successors. As a worst case, it will take a request O(log2 n) hops.

An example for the overlay is shown in in Figure 2.8. In the figure, we can see

node a, which has a finger table of 7 entries. Each entry will have a reference to a

node identifier and it location i.e. IP address. At each entry i, the location of the

at that location or the first one following it. For example, in the finger table at the

entry of i = 5, where looking for the node that is at reference 32 or directly after

it. In that case it is node g.

i distance Node

0 20 = +1 b

1 21 = +2 b

2 22 = +4 c

3 23 = +8 d

4 24 = +16 e

5 25 = +32 g

6 26 = +64 i

a
+1
+2
b
+4

c

+8

d

+
16e

f

+
32

g

h

+
64

i

Figure 2.8: Example of the finger table in Chord for node a

33

kademlia Kademlia [71] uses a 160-bits address space to assign identifier for

peers and services. Similar to Pastry and Chord, Kademlia uses a hash function

to calculate their identifier. With each hop, the peers will move the query one

hop closer to the destination. The distance between nodes are calculated using an

Exclusive OR (XOR) function.

111110

0 1

101100

0 1

0 1

011010

0 1

001000

0 1

0 1

0 1

Bucket 1 Bucket 2
Bucket 3

Figure 2.9: Kademlia Routing Buckets for node 110

The routing table of Kademlia consists of b buckets, where b is the bit-length

of the identifier. In the case of Kademlia, b is 160. For each distance d, a bucket

exists whose nodes do not share the dth bit bit the most significant d-bits are

similar. The size of the buckets is referred to as k. A Kademlia peer will keep

adding nodes that it encounters to the list until k is reached. For a peer, it will

have less value to choose from with closer buckets allowing it to have a better

mapping for nodes in closer buckets.

Figure 2.9 shows an example of the way that the buckets are assigned in

Kademlia. It can be seen that the closer the nodes buckets the smaller the buckets

allowing k to be a larger part of it.

can Content Addressable Network (CAN) [42] uses a virtual d-dimensional

Cartesian coordinate space. As nodes join the overlay, it will be assigned a zone

34

0.
0 0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

a

b

c

d

e

f g h i

j k l m

Figure 2.10: The CAN overlay divided into zone in a 2 dimensional coordinate space

of the space. Data and services will be mapped using a hash function to points

in the coordinate space and will be assigned to the peer owning the zone. In a

CAN overlay with d dimensions, each peer has at least 2d neighbours: one to

move forward across the dimension and another to go backward. Each CAN peer

will keep a coordinate routing table that points to its immediate neighbours. Two

peers are consider neighbours if their coordinate overlap on a d− 1 dimensions.

So, to forward a query to a destination, the hop will be forwarded in a straight

line through the coordinate space to the distention. Each peer will send a periodic

update regarding it status to its neighbours. When the peer fail, its neighbours

will detect the failure and takeover the empty zone in the coordinate space.

An example of a CAN overlay can be seen in Figure 2.10. The figure shows a 2

dimensional coordinate space divided into 13 zones. For example, zone c have 4

neighbours, two for each dimension: a,b,e and g.

2.2.3.2 One Hop

Here, the overlay, when converged, is a fully meshed graph of nodes. Since

all nodes are aware of each other and can communicate directly, it will take

35

a single hop to reach any needed resource in the overlay. While this yields a

high performance of the lookup, it requires a high number of control overhead

messages that needs to propagate to each node in the overlay. This become

expensive when the number of nodes increases resulting in a scalability issues.

An example of this type is Epichord [74] and OneHop [75].

d1ht One example of one hop overlays is D1HT [76]. D1HT tries to achieve a

one hop overlay while trying to conserve on the maintenance traffic. It will try to

propagate events through out the network. Similar to many structured overlays,

D1HT maintain a ring structure. It will assign a m-bit identifier for node and

resources using one-way functions or hashing. Then it will order the node in the

ring using the module 2m of the identifier. The resources items are assigned to

the next node in the ring to the resource identification.

To achieve the one hop routing, each node in the overlay have a routing

table that links to every other nodes in the overlay. Thus allowing each node to

communicate with other nodes directly.

D1HT uses a protocol for to maintain the routing table called Event Detection

and Report Algorithm (EDRA). This protocol allows for events to be propagated

the rest of the overlay. For this process to minimise the bandwidth overhead and

balance the load across multiple nodes, the event takes a logarithmic time to

reach the whole network.

For a peer to join the overlay, it obtain its identifier using a hash function

to allow it to place itself in the ring structure. then, to keep track of current

peers in the overlay, the peers use EDRA to disseminate the event the rest of the

network. According to EDRA, a peer sends a regular propagation message at

every θ seconds. The peer will send ρ copies of the message where ρ = log2 (N),

where N is the number of peers in the overlay. A Time To Live (TTL) value of ` is

assigned to each message, where 0 6 ` < ρ. Also, peers will forward the received

events messages as long as the TTL is valid.

Figure 2.11 illustrate an example of a network with 9 peers, N = 9 and ρ = 4.

P0 advertised an event by sending ρ copies of the message with varying values

36

P0 P1 P2 P3 P4 P5 P6 P7 P8
` = 0

` = 1

` = 2

` = 3

` = 0 ` = 0

` = 1

` = 0

Figure 2.11: An Example of an event propagating using EDRA in D1HT

of ` from 0 to ρ− 1, 0 to 3 in this case. A copy with ` = i will be sent to the 2ith

node. So, event messages with ` = 0, 1, 2, 3 will be sent to the 1st, 2nd, 4th and

8th nodes respectively. If ` > 0 and the message was received within the last θ

seconds, the receiving nodes in turn will forward the message after decreasing

its `. Note that multiple messages are aggregated and sent as a single message to

each receiving end.

epichord Epichord [74] is a structured overlay that utilise DHT. Epichord

can achieve a one hop performance under an intensive look-up loads. In the worst

case, Epichord will need O(log2 n) hops. Epichord in based on Chord (discussed

in 2.2.3.1. Epichord can achieve a O(1) with intensive workload on the network

[77, 78, 79]. Epichord achieves this by caching peers information and updating

the cache by observing lookup traffic.

2.2.3.3 Variable Hop

Here, the structure of the overlay is not symmetric. It will allow nodes to have

any value from a one hop to a multi-hop performance. If a node can handle the

extra resource requirements, it can increase its routing table. The overlay will

take some factors into account when deciding the connectivity of the graph. For

example, Accordian [80], focuses on reducing the latency of the lookup. It will

do so by searching for new nodes and evicting nodes that are assumed to be

dead. The size of the lookup table will depends on the bandwidth of the nodes.

Another example of variable hop overlay is Chameleon [81]. Here, nodes assess

their bandwidth availability and decide if they are Low Bandwidth L-nodes or

37

Unstructured

Centralized Pure Hybrid

Resolve Lookup: Central Servers Peers Super Nodes

Examples: Napster, KaZZa Gnutella GIA

Sample Structure:

Table 2.4: Comparing Different Types of Unstructured Peer-To-Peer Networks

High Bandwidth H-Nodes. Then, a two tier overlay is built, one for each type.

The H-nodes will have a one hop lookup while the L-nodes will complete the

lookups between one hop and O(log2 n).

2.2.4 Unstructured

The first generation of P2P systems was employing unstructured algorithm that

do not have much assumptions about the connectivity of the nodes or the shape

of the resulting graph. In this model of P2P overlay, the connection between

nodes are established randomly. Nodes can form and remove links as they see

fit without an overall structure imposed. The lack of restrictions allows node to

easily join the overlay by copying the routing table of an existing peer.

Table 2.4 shows the three main types of unstructured peer to peer algorithms.

Centralised algorithms rely on the existence of a central servers that will be aware

of the location of resources in the graph and will resolve the lookups made by

the peers.

38

On the other hand, some algorithm will use a pure decentralised peers. So, for

queries to propagate throughout the overlay, mainly two ways are be used:

random walk A node when receiving a query, will forward it to a random

peer or peers other than the source of the query.

flooding A node when receiving a query will flood it all other nodes connected

to it.

More recent unstructured P2P overlays utilise hybrid approaches exist were

some peers play more important roles than others. For example, GIA [64] allows

nodes which can handle more lookup requests to act as a super peers. In GIA,

the lookup will propagate using weighted version of Random Walk approach:

Biased Random Walk. Just like Random walk, Biased Random Walk will direct

lookup queries toward high capacity nodes which will have a higher probability

of answering the request [64].

Since unstructured overlays does not have an overview of the shape of the

network, it will have to create multiple look up queries until a resource is found or

the query expired. A request is expired to prevent it from traversing the network

for too many hops e.g. when stuck in a loop. The node initiating the request

specify a value of Time To Live (TTL). At each hop of the overlay, this value will be

decreased by 1 before forwarding it. When TTL reaches 0, the request is deleted.

This will limit the scalability of the network, as the traffic will increase as nodes

join in.

Unless the whole network is traversed, a node cannot have any guarantee about

the existence of a resource or how many hops it will take to find it. An example

of the unstructured protocols are Freenet [82] and Gnutella 0.4 [83].

2.2.5 Differences between Structured and Unstructured Overlays

Further key differences between structured and unstructured algorithms are [84]:

• Structured algorithms are aimed at exact search while unstructured ones

are better used for keyword and wildcard searches. In our approach, nodes

39

will lookup exact matches for Primary Nodes in the network. Wildcard

searches are not required.

• Unstructured algorithms work well if the resources are highly replicated.

In our approach, we want to minimise replication traffic. This, in turn, will

reduce the overhead in the links connecting islands as they have higher

costs than LAN traffic.

• Unstructured algorithms work well with highly transient networks. How-

ever, we assume minimum peer movements between islands. This is espe-

cially true when considering core network devices to operate as Primary

Nodes.

• Unstructured overlay algorithms use best-effort lookup mechanisms. In our

proposed approach, we opted for the more reliable lookup offered by DHT

as employed in structured overlays.

Due to these limitations, we have chosen to discard unstructured peer-to-peer

algorithms and focus our research on structured approaches.

2.3 automatic multicast tunnelling (amt)

AMT allows for connectivity between multicast islands. Also, it allows users,

connected to unicast-only network, to join in multicast groups. Using AMT,

multicast traffic can be exchanged through a tunnel that is built automatically.

Using the tunnel, the traffic will be encapsulated in User Datagram Protocol (UDP)

packets which will be sent as a unicast through the unicast only network. The

AMT tunnel consists of four parts: AMT site, AMT relay, AMT gateway and AMT

Pseudo-Interface. The AMT site is a multicast network or a host that has a

gateway served by AMT gateway. AMT relay is a multicast router that route traffic

between the AMT site and the native multicast backbone. This relay terminates

one end of the AMT tunnel. Also, it will encapsulate multicast traffic in the

tunnel. AMT gateway is a host or a gateway that is not connected directly to the

40

native multicast backbone but has an AMT Pseudo-Interface. The gateway will

terminate the other end of the AMT tunnel. Also, it will decapsulate multicast

traffic from the tunnel. Finally, AMT Pseudo-Interface is the tunnel end-point. The

Pseudo-Interface is needed since the tunnel will connect to unicast-only network.

[85]

The AMT works using the client-server approach. Without the use of AMT,

if the host connected to the unicast-only network were to try to send IGMP

membership update messages, the network would drop these packets due to the

fact that the network does not support multicast. Alternatively, a process in these

hosts may directly intercept such requests. In order to setup an AMT tunnel, an

AMT request will be sent toward the AMT relay. This will establish a tunnel

between the gateway and the relay using a 3-way handshake. With the tunnel in

place, any IGMP membership update messages will be encapsulated in the AMT

tunnel. The AMT relay will decapsulate the IGMP membership report and will

trigger PIM join toward the source. After the tunnel is setup, any further IGMP

messages will be encapsulated in the tunnel directly. Finally, the AMT relay will

send any multicast traffic to the hosts that are interested by encapsulating them

in the tunnel.

2.3.1 AMT Operation

In order for AMT to work, the AMT Relays are assigned an address with a special

prefix so that gateways can find them. The Internet Systems Consortium ISC

has assigned the prefix 154.17.0.0/16 [86]. This address will be advertised in the

unicast-only network using the routing protocol used in the unicast only network

e.g. OSPF, EIGRP. When an AMT Gateway wishes to connect to an AMT Relay,

the gateway will send an AMT Relay Discovery Message to one of the relays in

this prefix. This AMT message is sent to the UDP Port 2268 and includes a nonce.

When an AMT Relay receives the AMT Relay Discovery Message, it will answer

the gateway with an AMT Relay Advertisement Message. This message includes

the unique IP Address for the Relay i.e. the unicast address for the AMT relay. This

41

address will be used in any further communication to the Relay. The Message will

contain the same nonce that has been sent in the AMT Relay Discovery message.

After the gateway receives the advertisement message, the 3-way handshake

can start. This process consists of the exchange of three messages between the

relay and the gateway. The first message is an AMT Request message to the Relay

that includes a new Nonce.

Then, the AMT Relay responds with an AMT Query that includes the same

Nonce from the gateway Request and a Message Authentication Code (MAC).

The MAC will be calculated also in every subsequent message. The AMT Query

will encapsulate an IGMP Membership Query.

If the AMT gateway wants to join a group, it will respond with an AMT

Membership Update. This update will include the original nonce from the AMT

Request and it will encapsulate an IGMPv3 Membership update.

After the tunnel has been set up, the flow of traffic will begin. The relay will

use the pseudo-interface in the gateway as the destination for the downstream.

When the tunnel is already up and the same gateway wishes to join another

group, it will enter the 3-way handshake directly.

An example of the flow of the messages can be seen in figure 2.12

After the establishing of a tunnel, the AMT gateway will start acting as a IGMP

server to the hosting connecting to it. So, the AMT Gateway will periodically

send queries to refresh the membership status for all the groups in the network.

Similarly, The relationship between the AMT gateway and the Relay is according

to the IGMPv3 protocol. This means that the Gateway will send a periodic AMT

Membership Updates to the Relay. Also, if the gateway wishes to leave a group,

it will send an update to leave the group to the relay. If the relay did not receive

the messages from the tunnel it will time out.

2.3.2 Advantages of AMT

For Hybrid Multicast, we will utilise AMT to connect multicast islands. Using

AMT will provide us with the following advantages:

42

Figure 2.12: The Flow of AMT messages

Figure 2.13: Multicast Islands Connected Using AMT

43

• AMT will keep Layer 4 header intact. This will help when performing traffic

shaping and Quality of Service in the network.

• AMT will allow for AMT clients who are not part of the overlay to join

the network. This will give our approach interoperability since AMT is

standardised in RFC7450.

• AMT supports for authentication that can be utilised to add security and

robustness to the system.

Due to all of these mentioned advantages, we will use AMT in our proposed

approach to connect Multicast Islands.

2.4 summary

In this chapter, P2P and its advantages was discussed. Moreover, different types

of P2P protocols and how to use them was reviewed. Next, multicast and its

protocols were discussed. Also, the chapter discussed different ways to achieve

multicasting and compared their advantages and disadvantages.

While multiple P2P protocols were introduced, for our purposes, any one of

these types of overlays will be sufficient as long as there is an ALM protocol

that works with it. However, choosing a Multiple Hop approach may have an

advantage of lower management overhead. Some other approaches that can be

used are: CAN Multicast [87] and NICE [19]. However, since Pastry was validated

for Oversim [88] in [89], which is the base for the module we have developed in

[4], we have chosen Pastry and Scribe for our reference implementation.

44

3
O P P O RT U N I S T I C N AT I V E M U LT I C A S T

3.1 introduction

As discussed in Chapter 2, there are many ways to accomplish one-to-many or

many-to-many communication. There are two main approaches used: Native Mul-

ticast (NM) Application Layer Multicast (ALM). Each one has its own advantages

and trade off as discussed in Sections 2.1.2 and 2.1.3. Also, there exists hybrid

approaches which tries to combine both approaches, discussed in 2.1.4. In this

chapter, we discussed our proposed hybrid multicast approach which is termed

Opportunistic Native Multicast (ONM). The alternative to using opportunistic

approach is to manually declare the capabilities of each island by a network

administrators. However, this approach requires beforehand knowledge of the

network and to update it manually when changes happen. Also, ONM utilise

the use of AMT tunnels which are more suitable for carrying Multicast traffic

between islands as discussed in 2.3.2. ONM takes advantage of cross layer aware-

ness combining information from different layers to make decisions. Network

topology and physical connectivity are only available in the network layer of the

OSI stack. Lower level information is needed for the discovery of islands and

the mechanism to elect nodes, which will be discussed in detail in section 3.3.

By accessing the information available in the lower layers (Network and Data

Link), ALM peers are aware of the status of the underlay including the support

of native multicast and the existence of other peers in the same multicast domain.

Peers joining the same ALM group who are also located in the same native mul-

ticast island communicate more efficiently using native multicast for intra-island

communication. Figure 3.1 shows the topology of connections between nodes at

45

1

2

3

4

5

6

7
8

9

Multicast Island 1

Unicast Only

Multicast Island 2

2

3

4

5

6

7

2

3

4

5

6

7

ONM System Topology

AMT Tunnels

Overlay Network

Physical Network

Figure 3.1: ONM System Topology

different layers. Note how the connection between Node 1 and Node 2 is done

only using the Native network without using the Overlay.

3.1.1 Joining ONM

In this section, we will review how can an island join Opportunistic Native

Multicast (ONM). Figure 3.2 shows the different stages of this process. First, as

can be seen in the subfigure a), the island is connected to rest of the network with

a unicast only link. This will prevent Native Multicast traffic from crossing this

link. This will result in the island being isolated and could not send or receive

Native Multicast traffic with the rest of islands. At this stage, the island nodes

will elect a Primary Node (PN), in this case it is Node A. More information on

how the election process is carried out will be at Section 3.3. Then, the Primary

Node (PN) will move to the next stage shown in subfigure b). At this stage, the

PN will join the overlay and connect to the Application Layer Multicast (ALM).

Here, the PN will be able to receive and send multicast messages to the rest of

46

1

2

3

4

5

6

7
8

9

a
b

c

Multicast Island 1

Unicast Only

Multicast Island 2

New Multicast Island

2

3

4

5

6

7

2

3

4

5

6

7
AMT Tunnels

Overlay Network

Physical Network

(a)

1

2

3

4

5

6

7
8

9

a
b

c

Multicast Island 1

Unicast Only

Multicast Island 2

New Multicast Island

2

3

4

5

6

7a

2

3

4

5

6

7
AMT Tunnels

Overlay Network

Physical Network

(b)

1

2

3

4

5

6

7
8

9

a
b

c

Multicast Island 1

Unicast Only

Multicast Island 2

New Multicast Island

2

3

4

5

6

7a

2

3

4

5

6

7a
AMT Tunnels

Overlay Network

Physical Network

(c)

Figure 3.2: An Island Joining ONM

47

ONM network using ALM. After that, the new PN will build an AMT tunnel to

another PN as shown in subfigure c). Finally, the new island will be part of the

ONM multicast tree. Any new multicast message originating the overlay will be

relayed to the island by the PN. Also, any multicast message originating inside

the island will be relayed to the rest of islands using the AMT tunnels. At this

stage, the PN can select one or more nodes to serve as a Secondary Node (SN).

More on this process in Section 3.4.

3.1.2 ONM Alternatives

One of the earliest attempts to connecting multiple native multicast islands was

MBone [9]. MBone was an experimental backbone to carry multicast packets

across the internet that requires a specialised hardware and software. MBone

related approaches usually required an administrator to set up and maintain

tunnels. Moreover, MBone suffered from some issues of access control, security,

address allocation and network management[6]. Automatic Multicast Tunnelling

(AMT) was proposed to automate the management of tunnels [44]. AMT defines

specific devices, Relays and Gateways, in the network to interact with the native

multicast protocol and to establish tunnels when needed. As such AMT focuses

on connecting island pairs rather than a global unified network. AMT will be

discussed in more detail in Section 2.3.

Except for AMT, one common limitation of the listed approaches is that Layer

4 information are encapsulated and hidden. Layer 4 information are needed to

do QoS and traffic shaping.

Tunnelling multicast over unicast-only network is an important aspect of Hy-

brid Multicast. These tunnels play a vital rule in the performance of multicasting.

We can classify these techniques by the way these tunnels are built into two types:

explicit tunnelling With Explicit Tunnelling, isolated multicast islands are

interconnected using manual tunnels such as GRE. This can be done by

the network administrators manually where each tunnel is designed and

48

maintained. In the case of Multicast over GRE, each multicast packet get

encapsulated inside a GRE header[46]. This encapsulation results in that the

layer 4 information is hidden to the router connecting the two end point

of the tunnel. This information is needed for doing some QoS and traffic

shaping.

without explicit tunnelling Here, tunnels will be created and maintained

automatically. The shape and topology of these tunnels will change dynam-

ically as the underlying network changes. This could be done using different

techniques such as peer-to-peer overlays. We can categorise these protocols

into ALM-First (e.g. HM [43], NICE [19]) and Native Multicast-First (e.g.

HIPM [47], ASRM [48], UM [49]).

3.1.3 ONM Advantages

Using Opportunistic Native Multicast (ONM) has many advantages over the use

of other approached. In this section, Island Multicast (IM) is the main focus of the

comparison. Similar to Opportunistic Native Multicast (ONM), IM uses unicast to

connects islands while utilise Native Multicast (NM) to deliver data the island. As

discussed in Section 2.1.4.2, IM can be implemented either as Centralised Island

Multicast (CIM) or Distributed Island Multicast (DIM). Since CIM requires setting

a central nodes manually, DIM is the one that is comparable to Opportunistic

Native Multicast (ONM). In this section, these advantages will be listed and

discussed. However, this section will leave the performance analyses between

these approaches as they will be discussed in 4.10.

• Layer 4 Header: Since ONM uses AMT to tunnel traffic between islands, the

layer 4 header will be kept intact. This will allow routers to do QoS and

traffic shaping to the traffic which is very critical for real time application

such as VoIP.

49

• Overhead: IM requires that every pair in the overlay to form a bridge. This

increase the requirement on nodes as maintenance traffic in needed for

these bridges.

• Non-Island Nodes: ONM allows unicast only nodes to join the multicast

tree with minimal overhead. In IM, for a unicast only node to join, it will

need to form a bridge with every other nodes in the overlay.

• Standardisation: ONM uses and supports AMT nodes, which was standard-

ised in IETF RFC7450. This will allows for non-ONM nodes to join existing

islands using AMT.

• Resilience: ONM can support multiple backup nodes, Secondary Node (SN).

These nodes helps in improving the recovery speed in the case of Primary

Node (PN) failure. Also, they will localise the control traffic as Primary

Node (PN) exchanges heartbeats messages with the Secondary Node (SN).

• Nodes Priorities: In ONM, multiple factors can be considered when choos-

ing the Primary Node (PN). This allows for more control and better design

as can be seen when using age-based factors. However, IM picks nodes by

allowing the first node to be the island leader. This can cause issues with

large islands as delay can affect the order of messages and contention arises.

Opportunistic Native Multicast (ONM) uses priority field to allow nodes

to express their suitability and a 64-bit random number to be used in the

case of multiple nodes with same priority. In the highly unlikely case of the

collision of both fields, the node with lowest IP address will win.

3.2 onm operation

ONM reduces overhead and increases efficiency by allowing for only one peer

per island to participate in the overlay network. By having only one node par-

ticipating in the ALM tree, the number of copies sent in the ALM tree and the

control overhead needed to maintain a large number of peers is decreased. This

50

participating node is called the Primary Node. The Primary Node is responsible

for connecting the overlay multicast tree to its island’s native multicast tree.

While a single Primary Node is sufficient for the operation of the protocol, it

requires that the network keeps track of the Primary Node. However, the Primary

Node in each island, as any other networked device, is susceptible to be churned

out of the network. In order for the network to discover the disappearance of

the primary node, the primary node will be required to multicast hello messages

periodically to every node in the network to inform them that the Primary is

still active. When the island misses a certain number of ’Hello’ messages, it will

assume that the node is dead. When the network detects a Primary Node failure,

the other nodes in the island will participate in an election process that is costly

in time and bandwidth. So, the concept of a Secondary Node is introduced. The

Secondary Node is a node selected by the Primary Node to act as its backup.

Introducing Secondary Nodes brings two main advantages:

• The Primary Node does not have to send Hello messages to the whole

network as frequently. Instead, the Primary Node will exchange Heartbeat

Messages with the Secondary Node instead. Thus, saving bandwidth.

• When the Secondary Node detects that the Primary Node has failed, it will

assign itself as a new Primary Node. Subsequently, it will select another

Secondary. This will saves entering the election process which is costly in

terms of traffic volume and time.

For the current implementation of ONM, we use the protocol stack illustrated

in Figure 3.3. In the figure, we can see how the used protocols interact with each

other:

• AMT: The Primary Nodes will encapsulate data between the islands using

AMT tunnels. Each Primary Node will act as an AMT Gateway and AMT

Relay for the purpose of carrying locally originating data to other islands

and relaying data to the island.

• Scribe: This protocol is used for creating and maintaining of the ALM tree.

The ALM Tree will be built on top of the P2P network.

51

AMT AMT AMT AMT

Scribe Scribe Scribe Scribe

Pastry Pastry Pastry Pastry

IGMP IGMP IGMP IGMP IGMP

Livello

0

Livello

0

Livello

0

Livello

5

Unicast

Only
Multicast Islands 1 Multicast Islands 2

PN 1 PN 2

Figure 3.3: The stack of protocol used in ONM

• Pastry: Pastry is a structured P2P protocol. It will allow for nodes to join

and discovery of other nodes.

• IGMP: This protocol is used for multicasting messages inside the island.

So, nodes inside the island will communicate with each other using the IGMP

protocol. Also, the primary nodes will join the same ALM tree using Scribe.

When a Primary node receives a message originating from the island, it will

act as an AMT Gateway and forward the message using AMT to other islands.

Alternatively, when the Primary node receives data from the ALM tree, it will act

as an AMT Relay and copy the message to the local island.

In Figure 3.3, we can see the different types of nodes that can participate

in the operation of ONM. In Multicast Island 1, we can see two nodes. The

Primary Node of the island, marked with PN1, will communicate with the rest of

island using IGMP and Native Multicast. Also, PN1 will communicate with other

Primary Nodes, such as PN2, using AMT, Scribe and Pastry. It can be noticed

that the other node in the island supports AMT, Scribe and Pastry. This will make

the node capable of joining the election and perhaps can be a Secondary Node or

future Primary Node.

In Multicast Island 2, PN2 is acting as the Primary Node for the island. The

other node in the island support only Native Multicast. It will not be aware of

52

the existence of the ONM and will communicate using Native Multicast only.

This node can be a node that require Native Multicast to work but is not able or

willing to play a role in the ONM.

In the unicast-only network, a node could use AMT, Scribe and Pastry to join

the multicast tree and communicate with the rest of the network without the

need to Native Multicast support.

3.3 primary election

Each multicast island elects a primary node that all the nodes in the islands agree

on. One option is for the Primary Node to be chosen at random after all of the

interested peer nodes join in an election. Alternatively, different criteria could be

defined such as the oldest node will win.

Since elections are costly in terms of bandwidth and time, they should be

avoided if possible. In ONM, Primary Nodes announce their presence by sending

Hello Messages to the native multicast group once every Thello. So, when a node

joins ONM, it will join the native multicast group and will listen for a specific

length of time Tdiscover. If after Tdiscover it did not detect any Hello messages from

the Primary Node, it will assume that none exists. In that case, the node initiates

the election process by multicasting an Elect Message to the native multicast

group for the duration of Telect. If at that time another peer joins the election, the

node with the highest priority would be elected. This priority can be determined

by age or at random as we discussed before.

Figure 3.4 shows the messages exchanged during the Primary Node election.

In this scenario, Node a joins attempts to detect if there is already an Primary

Node (PN) in the island. So, Node a will wait for a period of time Tdiscover. Then,

if there is no active PN, node a will start the election process by sending an

ONMelect message to the island. when receiving this message, other nodes will

join in the election if:

• They are interested in being the PN.

53

Figure 3.4: Primary Node Election Message Sequence

54

• They have higher priority .

In this example, Node b and c have expressed their interest by sending the

ONMelect as well. After a certain amount of time has passed since the a node

sent its ONMelect and did not receive any contestants by a higher priority node,

it will assume the role of a Primary Node (PN). As PN, it will send a periodic

ONMHello message every Thello.

The values of Tdiscover, Telect and Thello should be selected and tuned to maxim-

ise performance and avoid premature election decisions. To avoid nodes failing

to detect the presence of a Primary Node, Tdiscover should be:

Tdiscover > Thello (3.1)

However, this only applies for perfect network conditions. There is a risk of

having a delay or packet loss in the sending of Hello Messages. So, for our

implementation we have chosen Tdiscover to be:

Tdiscover = 3× Thello (3.2)

As for Telect, it should be chosen so that it allows for enough time for a packet

to propagate through the network. In theory, the minimum value that Telect can

have is:

Telect < 2× Ttrans + Tprocess (3.3)

After a node gets elected as a Primary Node, it will join the overlay network

and start to relay the messages coming from the overlay tree into the native

multicast tree. Also, any multicast messages originated from the island will be

relayed into the overlay tree so it can reach the other islands.

While the Primary Node node is active, it must send periodic Hello Messages

to the network. The other nodes in the network should keep track of these

messages and detect when the Primary Node has disconnected from the network

as quickly as possible. Since network conditions are not always perfect, Hello

Messages might fail to reach every node in the network. So, we must keep a

balance between fast reaction time and initiation an unneeded elections.

55

In our implementation, we have decided that a node will assume that the

Primary Node is dead when it misses three consecutive Hello Messages.

3.4 secondary selection

The Primary Node, can multicast a messages to all nodes in the island to get a

list of interested nodes. To speed this process up, The Primary Node will cache

the nodes that participated in the election of the Primary Nodes as interested

nodes. The choice of the secondary node is fully decided by the Primary Node.

The Primary Node can send a request to any node to act as a Secondary Node. If

the requested node wants to participate, it will accept the request and initiate the

exchange of heartbeats between the Primary and Secondary nodes.

The Primary Node should choose the Secondary Node that exhibit low delay

and a good stable connection to avoid triggering unnecessary re-elections.

In this thesis, we propose the use of an age factor that is taking into consid-

eration when the Primary Node selects the Secondary Node. A node’s age has

been used to improve the choice of neighbours in an Unstructured Peer To Peer

networks as in [90]. This assumes that the longer that a node has been on-line,

the more likely that it will be available in the future. Also, it will avoid unstable

nodes that do not have a stable connection to the network such as mobile nodes.

The concept will be discussed in more in details later in sections 4.7.2 and 4.7.5.

In Figure 3.5, the message sequence for selecting a Secondary Node (SN) is

shown. First the Primary Node (PN) will send a SN Draft message. This message

is multicasted to the group receiving the multicast traffic. If a node is interested in

acting as SN, it will acknowledge the draft by replaying with Draft Ack message.

Then, the PN will pick a node or more to act as a SN.

56

Figure 3.5: Message Sequence for Selecting a Secondary Node (SN)

57

3.5 failure recovery

The Primary Node is central for delivering the multicast traffic. Any failure or

misbehaving by this node can cut the entire island from the multicast tree. So,

there needs to be a very reliable procedure with low overhead that is able to

achieve the following:

• Elect a Primary Node in the case that the network does not have one.

• Allow the Primary Node to select a Secondary Node.

• Keep track of the status of the Primary and the Secondary nodes.

• Allow for the Primary Node to gracefully handover its role to the Secondary

Node.

• Detect any failure in the Primary or the Secondary nodes.

• When a Secondary Node fails, the Primary node selects another Secondary

node.

• When a Primary node fails, the Secondary Node must become the Primary

node and select a new Secondary node.

• When both nodes -the Primary and the Secondary- fail, the network elects

another primary node who in turn selects a secondary node.

ONM ensures that the network is behaving properly using different timers.

When these timers expire, different events are triggered. Table 3.1 shows the

different timers used in ONM and the events that reset them and the events

triggered by their expiration.

In Figure 3.6, The message sequence are shown for the case when a PN is

churned out. The Secondary Node (SN) heartbeat timeout timers will expire after

missing a heartbeat from the PN. After some number of missed heartbeats, the PN

will be declared dead. Then, the Secondary Node (SN) will takeover as the new

Primary Node (PN).

58

Table 3.1: The ONM Timers

Timer Where Reset Event Expiration Event

PN Timeout SN Receive Heartbeat Message from PN Takeover

SN Timeout PN Receive Heartbeat Message from SN Select another SN

Election Timer All Receive Hello Message from PN Join election

Figure 3.6: The Message Sequence for Recovering after The Churn of The PN

59

Figure 3.7: The Message Sequence for Recovering after The Churn of The SN

In Figure 3.7, The message sequence are shown for the case when a SN is

churned out. The Primary Node (PN) will not receive acknowledgements for its

heartbeat messages from the SN. After some number of missed acknowledge-

ments, the SN will be declared dead. Then, the Primary Node (PN) will pick

another node to act as a Secondary Node (SN).

The protocol behaves as is illustrated by the finite state machine shown Figure

3.8. There are five states. Every nodes that wishes to participate in the protocol

will start in initial state Sinital.

• Sinital: This is the start state of every node joining the island. At this state,

the node will try to join the native multicast group. When the node has

joined the native group successfully, the node will move to state SNM.

• SNM: At this state, the node will track the state of the current PN. If no PN

is detected, due to failure or being the only active node in the island, the

node’s state will change to SElecting. Alternatively, if it receives a message

from the current PN to act as SN it will move to state SSecondaryNode.

60

• SElecting: At the state SElecting, the node is participating in the election to

choose new Primary Node. The nodes participating in the election will

exchange the election messages. If the node wins the election it become

the Primary Node and will move to SPrimaryNode state. Otherwise, it will

fallback to to the state SNM.

• SPrimaryNode: At this state, the node is the active Primary Node. When a

node enters this state, it will join the ALM tree. The node will relay messages

in the ALM tree to the local Native Multicast and vice versa. Also, it will

select a node as Secondary Node. When the selected SN fails, The PN will

select another one.

• SSecondaryNode: When the node enters this state, it will join the ALM. At this

state, the node is acting as Secondary Node. The node will keep track of

the current PN. When a failure is detected, it will become the PN.

SInitalstart

SNM SElecting

SPrimaryNodeSSecondaryNode

Join the MC group
Assigned as SN:

1-Join ALM

Detect PN Failure:

1-Act As PN

2-Select SN

Detect SN Failure:

1-Select New SN

Win Election:

1-Join ALM

2-Act as PN

3-Select SN

Lose Election

No PN

Figure 3.8: ONM Operation FSM

61

3.6 summary

In this chapter, the operation of the proposed protocol was reviewed. This chapter

focused on four main parts of Opportunistic Native Multicast (ONM): The AMT

tunnel, the Primary Node (PN) election, the Secondary Node (SN) selection and

the failure recovery. Also, we compared Opportunistic Native Multicast (ONM)

with the one of main alternative approaches for Hybrid Multicast (HM), which

uses the network layer and the application layer in the network stack as discussed

in Section 2.1.4, Island Multicast (IM).

62

4
P E R F O R M A N C E E VA L U AT I O N O F O N M

4.1 introduction

In our effort to investigate and verify our proposed framework, testing is needed.

This can be done using different approaches such as test-beds, simulation or real-

life implementation. As scalability and flexibility are one of our main concerns, a

simulation approach was chosen.

4.2 experimental methodology

4.2.1 Research Questions

The questions that the experimentation will try to answer are based on the

Research Objectives in Chapter 1. In particular, this section focuses on:

• Demonstrate and verify the operation of the proposed approach.

• Test the efficiency and reliability of delivery. Furthermore, test how the

approach will cope with different levels of node churn in the network.

• Verify the the election process of the Primary Node (PN) as discussed in

Chapter 3.

• Monitor how the islands can detect when the Primary Node (PN) is not

available any more. Also, how can the island react to this event and select

another Primary Node (PN).

63

• Measure the efficiency and recovery speed from Primary Node (PN) failure

introduced by allowing the Primary Node (PN) to select a Secondary Node

(SN).

• Investigate the frequency of the exchanged heartbeat messages and find

the optimum frequency of communication between nodes, between nodes

and the Primary Node (PN), and between the Primary Node (PN) and the

Secondary Node (SN).

• Test different methods introduced to allow islands to detect the stability of

the network and change the frequency of the heartbeats accordingly.

4.2.2 Benchmark Selection

Peer-to-Peer networks can be studies using different approaches. In [91], these

approaches can be summarised in:

crawler Crawlers are specially designed peers that participate in the network.

These nodes are designed to collect data and statistics about the whole

network. Multiple crawlers are used to provide more coverage and speed.

However, the accuracy of this approach is compromised due to the fact that

the crawlers only know about the regions that have been crawled.

emulation Using emulation can be more effective and comprehensive than

crawlers. By deploying a small peer-to-peer network in a controlled envir-

onment, emulation can allow us to study the network as a whole. However,

the scalability limitations of such approach would not allow for any serious

analysing for a large network.

simulation By simplifying some assumptions about the network, simulators

are able to give us a pretty clear and reproducible study of the peer-to-peer

network.

64

Crawler cannot be used to test it performance since ONM is not implemented

in the real world yet. Moreover, emulation can provide more accurate results.

However, simulation was chosen for the following reasons:

• Simulation is cheaper and easier to implement than emulation.

• It allows for more room for testing and tweaking and change of configura-

tions to experiment with different sittings.

• The Scalable Adaptive Multicast Research Group (SAM RG) within the

Internet Research Task Force (IRTF) has identified Oversim as one of the

ways for evaluating hybrid multicast. [92].

Also, simulation is used for testing other similar algorithms in the literature.

For example, Island Multicast (IM) [50] and Universal Multicast (UM) [49]. So, in

our research, we have chosen the simulation approach.

4.2.3 OMNet++ and INET Framework

After reviewing different options for simulating computer networks, it was

decided that the best choice for me was Omnet++ and oversim for the following

reasons:

extensible: This is a must feature since there is no implementation for AMT

in any existing simulator as of this date.

modular: This would help on code reusing some of the existing code for other

models and for giving back to open source community one a working code

has been reached.

c++ based : It will allow for more granular control.

inet model: This model provides wide range of model of several Internet

protocols which

oversim: Which provides a way to simulate peer-to-peer overlays.

65

Application Layer

Overlay

Underlay

DHT TestApp Example App

DHTKBR TestApp

Chord GIA ...

Simple INET Single Host

Figure 4.1: OverSim Structure

However, it did not support the needed functionality for my scenarios. While

Oversim supports P2P protocols, it lacks the ability to support Native Multicast

protocols. Also, it did not have support for AMT tunnels. These two parts are

very essential in the operation of ONM. So, I had to modify Oversim simulator

to support Native Multicast and AMT tunnels.

The changes done to the simulator has been studied and some results of the

initial experimentation with multicasting and AMT testing was done. The results

where published in [4].

4.2.4 OverSim

OverSim is an open source peer-to-peer overlay simulator. It is based on the

OMNeT++ simulator. Oversim contains several models for structured (e.g. Chord,

Kademlia, Pastry) and unstructured (e.g. GIA) peer-to-peer protocols. Because of

its modular design, it is very easy to experiment with different protocol easily.

As been described in [88], Figure 4.1 shows the architecture of OverSim. We can

notice also in Figure 4.1 that the application layer has been divided into two

layers or tiers. That will increase the modularity of the simulator.

66

Parameter Default Value

Network Size 1000 Nodes

Average Node Lifetime 3,000 seconds

Churn Model Weibull Distribution

Generated Traffic Sending Interval 5 seconds

Generated Traffic Message Size 1400 byte

Network Topology Star

Measurement Time 7200 seconds

Repetitions 5

Pastry’s Leaf set size 32 nodes

Pastry’s Neighbourhood set size 16 nodes

Pastry’s Bits per digit 4 bits

Pastry’s lookup redundant nodes 4 nodes

Table 4.1: List of default parameters for the simulations

4.2.5 Simulation Setup

Unless stated otherwise, these are the parameters that are used:

• Network Size: The default number of participating nodes in the multicast

are 1000 nodes.

• Average Node Lifetime: Most of the following simulations use multiple

values of Average Node Lifetime which define the average time of nodes in

the network before it gets churned out. For most simulations, the simulation

is repeated with different values ranging from 1,500 to 6,000. However,

when trying to distinguish between high and low churn node we used three

different lifetimes to represent High, normal and low lifetime which are

1000s, 3000s and 10,000s respectively.

67

• Churn Model: For our simulation we assumed three churn generators

based on the Weibull distribution. It was chosen since Weibull distribution

has been shown to model real-life Peer To Peer (P2P) accurately [93].

• Generated Traffic: To test ONM’s operation, one node generate traffic and

send it to rest of the multicast group. The source node sends one 1400-bytes

message every 5 seconds.

• Network Topology: The layout of nodes and how they connect to each other

can has some effect on the results [94]. For example, having a bottleneck

for the traffic might cause the buffers to overflow resulting in a low success

rate. On the other hand, having unrealistically abundant resources might

not cause some issues to surface. For example, assuming perfect and fast

connections will not test the conditions where we have packet-drops or long

delays. So, for the purpose of simulating ONM, the star-like topology was

used to abstract the connections between islands. Here, each island connects

to the backbone network.

• Measurement Time: The network is simulated for the duration of 2 hours.

• Repetition: Each configuration was repeated for 10 times. Then, the average

of these results was taken.

• Pastry’s Parameters: As the specific configuration is beyond the scope of

this thesis, the default value set by the Pastry’s main paper were chosen

[95]

4.2.6 Simulation Model

One of the most important features in OMNeT++ is its modularity design. Mod-

ules in OMNeT++ can be ether a simple module or a compound model [96]. A

compound module groups other modules inside it and describe how they are

connected. These models are written using the Network Description (NED) Lan-

guage which is topology description language [96]. On the other hand, the simple

68

Figure 4.2: A view on the design of Standard Host component in INET

Figure 4.3: A view on the design of Standard Host component in INET

models are written in C++ and do the logic. Usually, the way these components

connected reflect the OSI network model.

For example, a standard host component is a collection of other components

as can be seen in figure 4.2. Each component in that figure can contain more

components. So, if we take a further look at the network layer component, we

will see it is just another compound module as shown in figure 4.3. This will

keep going until we reach a simple component. Moreover, standard Hosts are

expected to have the full OSI stack. So we can see in figure 4.2 how similar it is to

the full OSI stack.

69

4.3 amt

4.3.1 Changes to The Simulation Environment

Currently, there is no working AMT components and support in omnet++, it

need to be implemented for Omnet++. The components we will try to implement

and simulate are in accordance with the AMT IETF draft [44]. So, the operation

and technical flow is mostly based on the this draft. Some change may be done

to simplify and abstract the simulation. A justification would be given when such

change happen. For this research, the aim is to have a network that consists of

multiple multicast islands interconnected using AMT. After studying OMNeT++

and its available models, we will need these components to be programmed into

the simulator:

amt gateway This component will behave as an AMT Gateway.

amt relay This component will behave as an AMT Relay.

amt network messages We will implement the different kinds of messages

needed in AMT operation.

amt gateway host This host will be able to connect to AMT Relay directly.

simulation signals We will need to add some signals to collect different

relevant results.

We will study how to implement these component in this section.

4.3.1.1 AMT Gateway

the model components To design the AMT Gateway we need to imple-

ment a range of components. The needed components can be seen in 4.4

the amt-gw app. Most of the logic for AMT Gateway will be done in the

AMT-GW App. This App will use UDP to communicate with other node in the

70

Application Layer

Network Layer

Physical Layer

AMT-GW APP

UDP

AMT Peers Table

IGMP

Routing Table

IP

Physical Interface

Figure 4.4: The stack of components in AMT Gateway

Peer IP Type Multicast Group

192.168.1.109 Host Array{224.223.21.21}

10.2.1.12 Relay Array{224.223.21.21}

Table 4.2: Example content of an AMT-Gateway Peer Table

network. Also, it will listen for IGMP traffic as discussed in section 2.3. The work

of the App will be based on algorithm 1.

amt peers table This table will store the known peers and hosts learned

using the operation of AMT. While the operation of the AMT peers table is not

specified in the draft, we will implement. At this state of implementation, this

table will be populated manually for each simulation. An example of this table

shown in Table 4.2.

4.3.1.2 AMT Relay

the model components The AMT Relay model consists of different com-

ponents. These components can be seen in figure 4.5.

71

Algorithm 1 AMT Gateway APP Algorithm

Require: msg . msg is the received message on any interface

1: if msg = AMT_Relay_Advertisment then

2: addRelayToAMTPeerTable msg.source

3: else if msg = AMT_Query & msg.group ∈ AMT_Peer_Table then

4: replay AMT_Membership_Update

5: else if msg = AMT_Data then

6: for all peer ∈ AMT_table do

7: forward msg.encapsulatedData

8: end for

9: else if msg = IGMP_Membership_Update then

10: AddHostToAMTPeerTable msg.source

11: end if

Application Layer

Network Layer

Physical Layer

AMT-Relay APP

UDP

AMT Peers Table

IGMP

Routing Table

IP

Physical Interface

Figure 4.5: The stack of components in AMT Relay

72

the amt-relay app. The AMT Relay behavior will be controlled by the

AMT-Relay App that uses the UDP protocol. The App will listen and wait for

a connection from an AMT Gateway. Also, it will listen to the local Multicast

messages and forward them as appropriate. The pseudo-code that it will be used

in building this App is shown in Algorithm 2.

Algorithm 2 AMT Relay Component Algorithm
Require: msg . msg is the received message on any interface

1: if msg = AMT_Relay_Discovery then

2: replay AMT_Relay_Advertisment

3: else if msg = AMT_Request then

4: replay AMT_Membership_Query

5: else if msg = AMT_Membership_Update then

6: add_to_AMT_table msg.igmp.group

7: else if msg ∈Multicast_Message then

8: for all peer ∈ AMT_table do

9: forward AMT_DATA.encapulate(msg)

10: end for

11: end if

amt peers table Similar to the design of the Peer table in AMT Gateways,

the Peer tables in the AMT relay will keep track of different AMT peers in

the networks. However, in this table, we will only keep track of different AMT

Gateways and the multicasting groups that they are interested in. At this state of

implementation, this table will be populated manually for each simulation. An

example of this table shown in Table 4.3.

4.3.1.3 Changes in OverSim

Developing a new simulation to study in OverSim is very straight forward. How-

ever, since Hybrid Multicast using peer-to-peer overlay has net been implemented

yet, we will need to do some coding. As has been discussed in Section 4.2.4,

73

Peer IP Type Multicast Group

10.2.1.12 Gateway Array{224.223.21.21}

10.3.8.24 Gateway Array{224.223.21.19}

Table 4.3: Example content of an AMT-Relay Peer Table

OverSim is very modular. We will use the existing peer-to-peer overlays available

in OverSim. Moreover, we plan to implement hybrid multicasting in Oversim.

4.3.1.4 Network Messages

We will define the following AMT message to be use for the negotiation the AMT

tunnel:

amt relay discovery: A discovery message from AMT Gateway to an AMT

Relay.

amt relay advertisement: A response from AMT Relay to the AMT Dis-

covery message.

amt request : A message from the AMT Gateway to the AMT Relay starting

the Three-way handshake sequence.

amt membership query: A message from the AMT Relay to the AMT Gate-

way encapsulating an IGMP Membership Query Message. This message is

the second message in the Three-way handshake.

amt membership update: A message from the AMT Gateway to the AMT

Relay. It is the last step in the Three-way handshake. This message will

encapsulate an IGMP Membership Update Message.

amt multicast data: A message from the AMT Relay to the AMT Gateway

encapsulating a multicast date message.

74

4.3.2 The Network Model

As a working AMT component and support is not yet available for omnet++, it

need to be implemented for Omnet++. The components we will try to implement

and simulate is in accordance with [1]. So, the operation and technical flow is

mostly based on the this draft. Some change may be done to simplify and abstract

the simulation. A justification would be given when such change happen. For this

research, the aim is to have a network that consists of multiple multicast islands.

These islands are interconnected using AMT.

4.4 basic implementation

4.4.1 Overview

For the purpose of validating the implementation of our modules,we have build

and simulated a network of interconnected multicast-enabled islands. A number

of client has been scattered and assigned to islands randomly. Moreover, Each

island has an AMT server which runs a generic AMT app. This app can act

as either an AMT server or an AMT Gateway depending on the type of traffic

received. At this stage of development most of operation of AMT is done statically.

We aim to have a fully automatic AMT operation by the end of the development.

At each run of this scenario, the number of multicast-enabled islands and the

number of clients will be set as can be seen in figures 4.6 and 4.7. This will

allow us to test our network at different sizes easily. One of the client will start

generating multicast traffic and sending it to its islands. The AMT server in that

Figure 4.6: A dialog for the number of multicast islands

75

Figure 4.7: A dialog for the number of client that will be randomly scattered across

different islands

island will receive the traffic and encapsulate it in a unicast UDP packets and

forward them to the other AMT servers at the other islands.

4.4.2 Simulation Scenarios

4.4.2.1 Small proof-of-concept network

At this simulation, we wanted to verify our design. We build a network with two

multicast-enabled islands as can be seen in Figure 4.8. In this network, the AMT

servers will encapsulate and send any multicast message that it receives to the

other island. Making the two islands behave as if they were a single multicast-

enabled network. Also, we can see in Fig 4.9 a closer look on one of the AMT

server. It can be seen that the UDP App is receiving AMT messages.

4.4.2.2 Applications

AMT logic and processing is done on the AMT App. This app runs on both of

AMT Gateway and AMT Relay. This app will use UDP as per the AMT draft.

Also, there will be a peer table that will store different AMT addresses.

76

Figure 4.8: An example network with two multicast-enabled islands

Figure 4.9: The AMT Application

77

4.5 onm vs alm

After the simulator was prepared, the basic operation of ONM protocol was

designed and implemented . In order to test the proposed hybrid multicast frame-

work and our implementation on Omnet++/Oversim, we have setup a number of

experiments. Our experiments use a 1000 node network with a multicast group

size ranging from 200 up to 1000 nodes. A source node sends multicast traffic at

1 packet every 5 seconds.

We use a setup which has 50 networks which can be used as multicast islands

which are all interconnected by a backbone network of routers. We have setup

the following configurations:

alm only: Scribe is used to manage the group and distribute the multicast data.

There is no native multicast support anywhere in the network.

native only: IGMPv2 is used to manage the groups and distribute multicast

data. The 50 networks and the backbone routers support IGMP.

onm : This is our proposed model.

We have presented our approach of delivering Multicast in an environment that

does not offer universal support for Native Multicast. Our approach creates an

ALM tree and connects hosts that are unable to connect to the tree source natively.

To optimise the performance of the delivery, the nodes that are present in the

same multicast-enabled island will elect one of the nodes to act as an AMT device

allowing other nodes to utilise native multicast to propagate the information

inside the island. Clearly, this will decrease the number of copies of the same

message to cross the backbone.

For the purpose of evaluation, we have identified five metrics: Stress, Stretch,

intra-island traffic, inter-island traffic and delivery rate. Our approach has shown

better results than pure ALM in every metric. However, as can be expected, the

performance decreases with the increase of the number of islands. In the extreme

case, if the number of islands becomes too large, ONM will yield similar results

as ALM (every node would form its own single-node island).

78

0 20 40 60 80 100

2

4

6

8

Size of Multicast Group

A
ve

ra
ge

St
re

tc
h

ALM
ONM
NM

Figure 4.10: Comparing the Stretch of different multicast approaches

These results where published in the IEEE 20th International Workshop on

Computer Aided Modelling and Design of Communication Links and Networks

(CAMAD) [97].

The stretch of the multicast message depends heavily on the number of the

node participating on the overlay. In the case of the pure ALM, the is no difference

on the number of islands the nodes divided into. So, we expect the ALM to be

not affected by the number of islands. However, in the case of ONM, the size of

the ALM tree, and subsequently the stretch, depends on how many islands in the

topology. So, we expect the stretch to increase as more islands exists.

In Figure 4.10, with small number of islands, we can see that ONM results

in a better Stretch in the overlay. However, we can see that the stretch has little

dependence on the number of islands in the case of pure ALM. After a certain

threshold, the stretch of ONM would converge to give similar results to ALM’s

stretch.

From figure 4.11, we can see that the ALM Stress on the backbone is exponen-

tially greater than ONM’s. This is due to fewer copies sent between islands. In

the case of ALM we have a linear correlation between the number of receiver and

the stress on the backbone. However, ONM correlate to the number of islands.

ONM results in much lower Stress on the backbone.

79

0 20 40 60 80 100 120 140 160

100

101

102

103

Size of Multicast Group

A
ve

ra
ge

St
re

ss
on

th
e

ba
ck

bo
ne ALM

ONM
NM

Figure 4.11: Comparing the Stress of different multicast approaches

0 20 40 60 80 100 120 140 160
0

0.5

1

1.5

2

2.5
·108

Size of Multicast GroupN
um

be
r

of
m

es
sa

ge
s

in
si

de
th

e
is

la
nd

ALM
ONM

Figure 4.12: Comparing the traffic generated in each island for different multicast ap-

proach

80

0 20 40 60 80 100 120 140 160

105

106

107

Size of Multicast GroupN
um

be
r

of
pa

ck
et

cr
os

si
ng

th
e

ba
ck

bo
ne

ALM
ONM

Figure 4.13: Comparing the traffic crossing the backbone for different multicast approach

Figure 4.12 display the number of packet routed inside every island. With a

fixed number of nodes such as our case, as the number of islands increases, the

average number of nodes per island decreases. This would result in a lower traffic

inside the network. Moreover, we can see that ONM produce significantly less

traffic inside the island compared with ALM.

In Figure 4.13, the traffic crossing the backbone is high regardless of the

number of islands in the case of ALM. However, in the ONM case, the traffic on

the backbone increases with the increase of the number of islands and is much

lower than ALM.

Figure 4.14 shows the effect of using different multicasting approaches on

the average delay of the multicasted messages. It can be seen in the figure that

ALM has the highest delay regardless of the size of multicast group. On the

other hand, Native Multicast (NM) has the lowest average delay which does not

show a significant increase as the multicast group increases in size. Also, using

Opportunistic Native Multicast (ONM) has resulted in a delay better than ALM

and closer to Native Multicast (NM). As the size of multicast group increases, the

number of peers in the overlay will increases since more islands results in more

Primary Nodes.

81

0 20 40 60 80 100
0

10

20

30

Size of Multicast Group

A
ve

ra
ge

D
el

ay

ALM
ONM
NM

Figure 4.14: Comparing the delay for different multicast approaches

4.6 number of secondaries

4.6.1 Introduction

We have run simulations of our protocol in three different configurations. Firstly,

we configured each island to select a Primary Node only. In this configuration,

no secondary nodes are used. In the second configuration, the Primary Node

selects a single Secondary Node. In the third configuration, the Primary Node

selects two Secondary Nodes: Secondary Node 1 and Secondary Node 2. The

Primary Node communicates with the Secondary Node 1 more frequently than

with Secondary Node 2. The reason to select two secondary nodes, is to reduce

the need for running a full election sequence when the Primary Node fails. Such

a re-election is costly in terms of time and bandwidth and thus should be avoided

as much as possible. Crucially, during re-election, the island is disconnected from

the overlay. Consequently, any such period should be minimised.

We have simulated these three different configurations with different node

churn values (lifetime) and different heartbeat intervals. Figure 4.15 depicts the

results, Graph a) with a Primary node only, Graph b) with a single Secondary

node, and Graph c) with two Secondary nodes. Graph a indicates that using only

82

the Primary Node with no Secondary Node makes the islands very susceptible

to node churn and consequently disconnect from the main multicast tree. This

is especially noticeable with a low heartbeat frequency. When we introduce a

Secondary Node as in Graph b, we can see that the network is considerably

more resilient to high node churn. Whereas with only a primary node the best

possible performance was about 80% at the highest node churn, with a Secondary

node 95%+ can be achieved. At the lower levels of churn the difference is less

pronounced but still evident. Graph c depicts the system’s performance when

two Secondary Nodes are employed. Compared with the performance with a

single Secondary node, there is only a slight improvement in the performance.

However, the difference is more noticeable with higher churn and lower heartbeat

frequency.

To analyse the full effect of the use of Secondary Nodes, the achieved message

delivery and the control overhead were investigated. While the use of another

special node that communicates with the Primary Node intuitively would mean

added control traffic to the network, it is evident from Figure 4.16 that in fact it

results in a net decrease in the overhead traffic in the island.

This seemingly counter intuitive result is due to the fact that the use of a

secondary node improves the stability of the network and thus results in fewer

costly re-election events. In other words, the slight increase in control traffic is

offset with a reduction in election traffic.

To better observe the benefits of choosing two secondaries on the success rate,

we need to focus on the environment where this configuration can be utilised

the most i.e. with high churn and long heartbeat intervals. In Figure 4.17, the

three configurations are combined in one graph. A low heartbeat frequency of 10

seconds was configured. It can be seen that the effects of choosing two secondaries

is only noticeable up to a maximum node life time of 3000s.

However, the measures for the same environment, as shown in Figure 4.18,

indicate a reduction in the overhead with an increase of the average lifetime of

nodes. Figures 4.17 and 4.18 show that the use of an additional Secondary Node

83

1,500 3,000 4,500 6,000

20

40

60

80

100

The average lifetime in seconds

A
ve

ra
ge

Su
cc

es
s

R
at

e

(a) No Secondaries

1,500 3,000 4,500 6,000

40

60

80

100

The average lifetime in seconds

A
ve

ra
ge

Su
cc

es
s

R
at

e

(b) One Secondary

1,500 3,000 4,500 6,000
40

60

80

100

The average lifetime in seconds

A
ve

ra
ge

Su
cc

es
s

R
at

e

1s
2s
3s
4s
5s
6s
7s
8s
9s
10s

(c) Two Secondaries

Figure 4.15: The Effect of lifetime and heartbeat intervals on Success Rate

in stable networks does not improve the success rate but incurring increased

overhead.

84

1,500 3,000 4,500 6,000
0

50

100

150

The average lifetime in seconds

O
ve

rh
ea

d
M

sg
/S

ec

(a) No Secondaries

1,500 3,000 4,500 6,000
0

50

100

150

The average lifetime in seconds

O
ve

rh
ea

d
M

sg
/S

ec

(b) One Secondary

1,500 3,000 4,500 6,000
0

50

100

150

The average lifetime in seconds

O
ve

rh
ea

d
M

sg
/S

ec 1s
2s
3s
4s
5s
6s
7s
8s
9s

10s

(c) Two Secondaries

Figure 4.16: The Effect of lifetime and heartbeat intervals on Overhead

1,500 3,000 4,500 6,000

20

40

60

The average lifetime in seconds

A
ve

ra
ge

Su
cc

es
s

R
at

e

1 PN 2 SN
1 PN 1 SN
1 PN 0 SN

Figure 4.17: The Effect of the Number of Secondary Nodes on Success Rate (With Heart-

beat = 10)

85

1,500 3,000 4,500 6,000
8

10

12

14

16

18

20

The average lifetime in seconds

O
ve

rh
ea

d
M

sg
/S

ec

1 PN 2 SN
1 PN 1 SN
1 PN 0 SN

Figure 4.18: The Effect of the Number of Secondary Nodes on Overhead (With Heartbeat

= 10)

4.7 approaches to select primary and secondary nodes

4.7.1 Heterogeneity

So far our experiments have assumed that the values for the life-time of all the

nodes in the network are drawn from the same probability distribution. However,

it is far more likely in real networks, that different types of devices are connected

to the overlay. For example, mobile peers connected to the island will have a

lower life-time average than fixed devices installed by network administrators.

As we have discussed earlier, selecting nodes with lower lifetime expectancy to

act as primary nodes will lead to lower multicast success rates. This is due to the

island being disconnected from the rest of the main multicast tree until another

Primary Node has been elected and takes over. Clearly in order to achieve the

best possible results, nodes that are expected to have a lower chance of churning

out should be selected as primary (and secondary) nodes.

To simulate a network with nodes with different churn rates, three types of

devices have been assumed to be present in our network:

86

• Infrastructure: Those are nodes who have a low likelihood of churning out

of the network. However, typically there are very few of them present in

the network. An example of this type of nodes are servers and routers.

• Common: These are the most common nodes in the network. They have an

average churn rate. For example, Personal Computers fall into this category.

• Short-lived: These are nodes which are not very reliable and are very likely

to churn out. For example, mobile devices are part of this group.

4.7.2 Distinguishing Low Churn Nodes

In the previous set of results, nodes were chosen randomly to serve as Primary

and Secondary nodes. Consequently, the islands do not necessarily utilise nodes

with the longest lifetime. To allow islands to select better nodes, we have identified

three possibility:

• Manual Priority: The network administrators can assign a priority value

to nodes. Nodes with higher priority value will be selected. This method

requires manual configuration of nodes but is expected to yield the best

results since the expected lifetime of every node is known in advance. Using

this method provides the following advantages:

- It will allow islands to quickly and deterministically use nodes

chosen by the network administrators.

- Network administrators are able to include other factors such as

security, bandwidth and processing power in their consideration.

However, this approach has the following significant drawbacks:

- It requires manual configuration of each node.

- It requires manual reconfiguration when circumstances change.

- It requires that the network administrators have control over nodes.

87

- It requires that the network administrators know the expected

lifetime of the nodes.

- It is unable to handle events where nodes are not already classified

by the network administrators.

This approach is not practical but has been included as a baseline for

comparison purposes as it will yield the best possible results.

• Passive Priority: As the simulation time of the network increases, the

probability that a low-churn node is elected will increase. This method

depends on the concept of survival of the fittest. Since active nodes with a

low lifetime will be churn out quickly while long lifetime nodes will last

longer as active nodes. Eventually, the island will select a low churn node.

When that happens, the new chosen node will have a higher probability to

last longer.

When secondary nodes are introduced, the primary node will look for

another node to act as secondary. This will allow to use the same process of

going through different possible nodes until another node with a low-churn

rate is selected. This will allow the network to minimise the need for a new

re-election.

• Age-based Priority: Here, the oldest node will be selected. As nodes ages it

will be more probable that they belong to the distribution with the highest

mean life-time. We assumed that the longer the network is left running the

better results that we will get.

In the following each of the three approaches is discussed and evaluated according

to its strengths and weaknesses.

To test the effectiveness of these approaches, we simulated a network with

10 islands and 500 participating nodes. For our simulation we assumed three

churn generators based on the Weibull distribution. The lifetime of these nodes

provided in the following table:

88

Node Type Percent Lifetime Mean

Short-lived 10% 1000s

Normal 80% 3000s

Infrastructure 10% 10,000s

We configured the nodes’ priority to reflect the nodes’ lifetime expectancy.

As before, we varied the frequency at which the nodes are communicating by

changing the heartbeat intervals from 1s to 10s. We have run the simulation

for different simulation times ranging from 1800s to 7200s. The simulation was

carried out with 5 repetitions.

4.7.3 Manual Priority

For manual selection of the primary node, the results are shown in Figure 4.19.

The three subfigures represent having no secondary, one secondary and two

secondary nodes respectively. In subfigure a), we get a success rate of 90%+

with heartbeats interval less than 5 seconds. However, with longer intervals the

success rate drops to below 80%. With one Secondary Node present, as can be

seen in subfigure b), there is a considerable improvement especially with longer

simulation times. Slight improvement can be noted with the introduction of

another Secondary Node as can be seen in subfigure c).

Figure 4.20 shows the native overhead in the island. Clearly, the heartbeat

interval is a crucial influencing factor. Extending the interval from 1 second to

3 seconds cuts the native traffic down to a third. Furthermore, adding a further

Secondary Node increases the control traffic in the islands only marginally.

However, as before, there are no noticeable improvements in the success rate

when doing so.

89

1,800 3,600 5,400 7,200

60

80

100

Simulation Time (Sec)

A
ve

ra
ge

Su
cc

es
s

R
at

e

(a) No Secondaries

1,800 3,600 5,400 7,200

60

80

100

Simulation Time (Sec)

A
ve

ra
ge

Su
cc

es
s

R
at

e

(b) One Secondary

1,800 3,600 5,400 7,200

60

80

100

Simulation Time (Sec)

A
ve

ra
ge

Su
cc

es
s

R
at

e

1s
3s
5s
7s
9s

(c) Two Secondaries

Figure 4.19: The Effect of manual selecting of Primary Nodes Success rate

90

1,800 3,600 5,400 7,200

10

20

Simulation Time (Sec)

O
ve

rh
ea

d
M

sg
/S

ec

(a) No Secondaries

1,800 3,600 5,400 7,200

20

40

Simulation Time (Sec)

O
ve

rh
ea

d
M

sg
/S

ec

(b) One Secondary

1,800 3,600 5,400 7,200

20

40

Simulation Time (Sec)

O
ve

rh
ea

d
M

sg
/S

ec 1s
3s
5s
7s
9s

(c) Two Secondaries

Figure 4.20: The Effect of manual selecting of Primary Nodes on Overhead

91

4.7.4 Passive Priority

Figure 4.21 depicts the results for the Passive Priority approach. As can be seen

in subfigure a), the network performance shows very little improvement as the

simulation time increases. However, improvements are more noticeable with

longer intervals between heartbeats. With a 9s heartbeat interval, the success rate

increases from 30% to more than 50% across the simulation times.

In subfigure b), the results are considerable better. For the shorter heartbeat

intervals a performance of 90%+ is achieved. Even with longer heartbeat intervals

a performance of 80%+ can be achieved in longer simulation runs. Subfigure c)

shows very similar results as in b).

Figure 4.22 shows the native overhead in the island. Again the heartbeat interval

is a deciding factor, and an additional Secondary Node has little impact on the

overheads as well success rates.

4.7.5 Age-Based Priority

Figure 4.23 depicts the results for the Aged-based Priority approach. In subfigure

a), we can see that having heartbeat intervals of 3s or less will result in a success

rate of higher than 80%. With the introduction of one or two Secondary Nodes as

shown in subfigures b) and c) respectively, we achieve more than 80% success in

the scenarios with the longest simulation time of 7200s. However, the perform-

ance can drop considerably for longer intervals between heartbeats, and shorter

simulation times.

Figure 4.24 shows the overhead in the island. The results are very comparable

with the previous approaches by heavily influenced by the heartbeat interval.

Using one Secondary Node improves the performance, but adding additional

Secondary Nodes does not yield any benefit.

92

1,800 3,600 5,400 7,200

40

60

80

100

Simulation Time (Sec)

A
ve

ra
ge

Su
cc

es
s

R
at

e

(a) No Secondaries

1,800 3,600 5,400 7,200
40

60

80

100

Simulation Time (Sec)

A
ve

ra
ge

Su
cc

es
s

R
at

e

(b) One Secondary

1,800 3,600 5,400 7,200
40

60

80

100

Simulation Time (Sec)

A
ve

ra
ge

Su
cc

es
s

R
at

e

1s
3s
5s
7s
9s

(c) Two Secondaries

Figure 4.21: The Effect of the Length of the simulation time on Success rate

93

1,800 3,600 5,400 7,200

10

20

30

Simulation Time (Sec)

O
ve

rh
ea

d
M

sg
/S

ec

(a) No Secondaries

1,800 3,600 5,400 7,200

20

40

Simulation Time (Sec)

O
ve

rh
ea

d
M

sg
/S

ec

(b) One Secondary

1,800 3,600 5,400 7,200

20

40

Simulation Time (Sec)

O
ve

rh
ea

d
M

sg
/S

ec 1s
3s
5s
7s
9s

(c) Two Secondaries

Figure 4.22: The Effect of the Length of the simulation time on Overhead

94

1,800 3,600 5,400 7,200

40

60

80

100

Simulation Time (Sec)

A
ve

ra
ge

Su
cc

es
s

R
at

e

(a) No Secondaries

1,800 3,600 5,400 7,200
40

60

80

100

Simulation Time (Sec)

A
ve

ra
ge

Su
cc

es
s

R
at

e

(b) One Secondary

1,800 3,600 5,400 7,200
40

60

80

100

Simulation Time (Sec)

A
ve

ra
ge

Su
cc

es
s

R
at

e

1s
3s
5s
7s
9s

(c) Two Secondaries

Figure 4.23: The Effect of factoring age on Success rate

95

1,800 3,600 5,400 7,200

10

20

30

Simulation Time (Sec)

O
ve

rh
ea

d
M

sg
/S

ec

(a) No Secondaries

1,800 3,600 5,400 7,200

20

40

Simulation Time (Sec)

O
ve

rh
ea

d
M

sg
/S

ec

(b) One Secondary

1,800 3,600 5,400 7,200

20

40

Simulation Time (Sec)

O
ve

rh
ea

d
M

sg
/S

ec 1s
3s
5s
7s
9s

(c) Two Secondaries

Figure 4.24: The Effect of Factoring Age on Overhead

96

4.7.6 Comparing Types of Priority

In the previous sections, we presented simulation results showing the effect of

different types of selecting the Primary node. To aid comparison across the three

approaches we have plotted selected results in graphs showing results for all

three approaches. These are depicted in Figure 4.25. As can be expected the

manual selection achieves the best results. However, practically, this approach

cannot be employed and is shown here as baseline. Generally, the age based

priority scheme performs very slightly better than the passive priority approach.

However, the difference is rather minor.

More specifically, with the higher heartbeat frequency, as in subfigures a), c)

and e), the difference between the three types is especially low. This is due to the

fact that with the high heartbeat frequency, the islands can detect and react to

failure very quickly. This in turn results in the down-time suffered through the

election process very small. Thus, used to select a primary node does not have a

big effect.

Also, the number of Secondary Nodes can effect the success rate especially

with low heartbeat frequency as in Figures a, c and e.

In addition, the control overhead in islands is shown for each setup. In conclu-

sion, for environments where the island can react quickly to changes, as in a),

c) and e), the use of Secondary Nodes will only increase the overhead without

noticeable increase in the success rate. However, with slower reacting islands as

in b), d) and f), the use of Secondary Nodes decreases the control traffic as it will

avoid costly re-elections.

97

1,800 3,600 5,400 7,200

92

94

96

98

100

Simulation Time (Sec)

A
ve

ra
ge

Su
cc

es
s

R
at

e

28

30

32

A
ve

ra
ge

O
ve

rh
ea

d

Manual Overhead
Age Overhead

Passive Overhead

(a) HB = 1 with No Secondares

1,800 3,600 5,400 7,200

40

60

80

100

Simulation Time (Sec)

A
ve

ra
ge

Su
cc

es
s

R
at

e

Manual Success Rate
Age Success Rate

Passive Success Rate

3

4

5

6

A
ve

ra
ge

O
ve

rh
ea

d

(b) HB = 10 with No Secondares

1,800 3,600 5,400 7,200

98.5

99

99.5

100

Simulation Time (Sec)

A
ve

ra
ge

Su
cc

es
s

R
at

e

45

45.2

45.4

45.6

A
ve

ra
ge

O
ve

rh
ea

d

(c) HB = 1 with One Secondary

1,800 3,600 5,400 7,200

40

60

80

100

Simulation Time (Sec)

A
ve

ra
ge

Su
cc

es
s

R
at

e

3.5

4

4.5

A
ve

ra
ge

O
ve

rh
ea

d
(d) HB = 10 with One Secondary

1,800 3,600 5,400 7,200

99

99.5

100

Simulation Time (Sec)

A
ve

ra
ge

Su
cc

es
s

R
at

e

47.2

47.4

A
ve

ra
ge

O
ve

rh
ea

d

(e) HB = 1 with Two Secondaies

1,800 3,600 5,400 7,200

40

60

80

100

Simulation Time (Sec)

A
ve

ra
ge

Su
cc

es
s

R
at

e

4

4.5

5

5.5

A
ve

ra
ge

O
ve

rh
ea

d

(f) HB = 10 with Two Secondaries

Figure 4.25: The Effect of different methods of selecting the Primary Nodes with different

heartbeat frequencies and number of Secondaries

98

4.8 dynamic heartbeat intervals

For the islands to detect and react to changes in the network, exchanges of

heartbeat messages between nodes need to take place. Setting the frequency too

high will result in unnecessary control traffic and unnecessary overhead. On the

other hand, setting it too low will delay reacting to failures and will result in

lower success rates.

The optimum value of the heartbeat interval depends on the network condition.

If the network is stable, a lower frequency will be sufficient as it lowers the

overhead. However, in an unstable network, a higher frequency is required since

it will allow the network to react faster to changes which are more likely in such

networks.

4.8.1 Dynamic Control Interval

Until now, our simulations assumed that the heartbeat interval is fixed throughout

the simulation. In this section we propose an approach to let the network change

this value depending on the network conditions. This allows for a more automated

and scalable operation of the network. The approach proposes that the interval

between heartbeats be changed from an initial value xi to a final value xf. The

change from xi to xf will take a set amount of time TTransision. The change can be

implemented using two different methods which we will discuss below: Probation

Period and Graduate Trust. The two methods achieve the same value of xf in the

same amount of time TTransision.

probation period: This approach assumes that newly selected nodes are

"high-risk" until some probation time has passed. Then, the heartbeat frequency

will be decreased. Once a newly selected Secondary Node has been available for

an initial period, The Primary node increase its trust in that node’s operation and

decreases the frequency at which the heartbeats are exchanged.

99

graduate trust: Here, the Primary Node starts with a cautious value for

the heartbeat frequency. This value will be relaxed with each successful heartbeat

acknowledgement. This process will continue until a threshold is reached. In

this approach, the primary node will start with the initial heartbeat interval xi

and with each heartbeat acknowledgement, the primary node will increase the

interval by a fixed increment c. This process will continue until a threshold is

reached xf. We can calculate the value of xf by using this equation:

xf = xi + rc (4.1)

Where r is the number of heartbeats exchanges in the transition time.

To test the effectiveness of this approach, a network with 10 islands and 500

participating nodes has been simulated. The lifetime of these nodes is distributed

according to the following table:

Node Type Percent Lifetime Mean

Short-lived 10% 1000s

Normal 80% 3000s

Infrastructure 10% 10,000s

For comparison networks with static heartbeat intervals ranging from 1s to

10s between heartbeats have been simulated. The simulations were run with 10

repetitions. For the following simulations, xi was varied between 1 and 10. The

values for xf and TTransition were chosen according to Table 4.4.

4.8.2 Probation Period

As can be seen from Figure 4.26 subfigure a), both static and dynamic approaches

achieve a very similar success rate. However, we can see in subfigure b) a decrease

in the overhead while not impacting on the success rate. In the same graph, the

effect of the probation time is noticeable, in that a short probation time decreases

the message overhead. For example, with heartbeat intervals equal to 1 second,

choosing 500 seconds instead of 1000 seconds as the probation period, the message

100

Table 4.4: Parameters for TTransition

Type xf TTransition

Probation Time 2× xi 500s

Probation Time 2× xi 1000s

Probation Time 4× xi 500s

Probation Time 4× xi 1000s

Graduate Start 2× xi 500s

Graduate Start 2× xi 1000s

Graduate Start 4× xi 500s

Graduate Start 4× xi 1000s

overhead is reduced by about 30%. As is to be expected, the effect becomes less

pronounced with lower heartbeat frequencies.

4.8.3 Graduate Trust

Figure 4.27 subfigure a) shows that both static and dynamic approaches have

very similar success rate, albeit with a marginally wider spread than with the

Probation Period approach. Figure 4.27 subfigure b) demonstrates a reduction

in message overhead which even exceeds the reduction achieved through the

Probation Period approach. Unlike with the probation period method, the value

of Ttransition had less of an effect on the number of heartbeat message exchanged.

For exampling, changing Ttransition from 1000 to 500 decreased the number of

heartbeat messages by only around 10%.

In order to be able to compare the two approaches, the two networks must take

the same amount of time to reach the final state Ttransition. With the probation

period method, this is achieved by setting the probation value to the desired

time. However, using the Graduate Start method, the increment C can be used.

101

1 2 3 4 5 6 7 8 9 10

60

80

100

Set Heartbeat intervals in seconds

A
ve

ra
ge

Su
cc

es
s

R
at

e

(a) Interval effect on Success rate

1 2 3 4 5 6 7 8 9 10

0

10

20

30

Set Heartbeat intervals in seconds

A
ve

ra
ge

H
B

M
es

sa
ge

s/
Se

co
nd

Fixed Interval

Doubling Probation 500

Doubling Probation 1000

Quadrupling Probation 500

Quadrupling Probation 1000

(b) Interval effect on Overhead

Figure 4.26: The Effect of Probation-time Dynamic Interval

To calculate the Ttransition of the Graduate Start method the following calculation

can be used:

Ttransition =

r∑
k=0

(xi + kc)

= (r+ 1)xi +

r∑
k=1

kc

= (r+ 1)xi +
rc(r+ 1)

2

=
2(r+ 1)xi + rc(r+ 1)

2

=
(r+ 1)(2xi + rc)

2

=
(r+ 1)(xi + (xi + rc))

2
(substituting xf from equation 4.1)

Ttransition = (r+ 1)
xi + xf
2

(4.2)

To find r for a specific amount of transition time, as in our case, the equation

can be transformed to:

Ttransition = (r+ 1)
xi + xf
2

(r+ 1) = Ttransition
2

xi + xf

r =
2Ttransition
xi + xf

− 1

(4.3)

102

1 2 3 4 5 6 7 8 9 10

60

80

100

Set Heartbeat intervals in seconds

A
ve

ra
ge

Su
cc

es
s

R
at

e

(a) The Interval effect on Success Rate

1 2 3 4 5 6 7 8 9 10

0

10

20

30

Set Heartbeat intervals in seconds

A
ve

ra
ge

H
B

M
es

sa
ge

s/
Se

co
nd

Fixed Interval

Doubling Graduate Trust 500

Doubling Graduate Start 1000

Quadrupling Graduate Trust 500

Quadrupling Graduate Trust 1000

(b) The Dynamic Interval effect on Overhead

Figure 4.27: The Effect of Dynamic Interval in Graduate Trust

From Equation 4.1,the increment c can be calculated:

xf = xi + rc

rc = xf − xi

c =
xf − xi
r

(4.4)

By combining Equation 4.4 and Equation 4.3, the following equation can be

used to calculate the value of the increment c:

c =
xf − xi

2Ttransition
xi+xf

− 1
(4.5)

For experimentation, Ttransition values of 1000 and 500 seconds are used. The

simulations included final value of heartbeat interval xf to be double and quad-

ruple the initial value xi. Using Equation 4.5, the values of c can be calculated

and are shown in the following table:

103

Table 4.5: Calculation of C

xi xf
c

Ttransition = 500 Ttransition = 1000

1 2 0.003009027 0.001502253

2 4 0.012072435 0.006018054

3 6 0.027245207 0.013561025

4 8 0.048582996 0.024144869

D
ou

bl
in

g

5 10 0.076142132 0.037783375

6 12 0.109979633 0.054490414

7 14 0.150153218 0.074279939

8 16 0.196721311 0.097165992

9 18 0.249743063 0.123162696

10 20 0.309278351 0.152284264

1 4 0.015075377 0.007518797

2 8 0.060606061 0.030150754

3 12 0.137055838 0.068010076

4 16 0.244897959 0.121212121

Q
ua

dr
up

lin
g

5 20 0.384615385 0.189873418

6 24 0.556701031 0.274111675

7 28 0.761658031 0.374045802

8 32 1 0.489795918

9 36 1.272251309 0.621483376

10 40 1.578947368 0.769230769

104

4.9 detection of node failure

4.9.1 Introduction

The purpose of Heartbeat messages is to let nodes keep track of the availability

of other nodes in the network. By detecting failures, nodes can take actions. For

example, a secondary node can replace and act as a Primary nodes as soon as it

detects that the Primary node is no longer available in the network.

Due to the unreliable nature of network connections, some packets may be

dropped. In that case, if enough consecutive heartbeats get dropped, the node

sending them may be falsely declared dead. This may lead a network to enter an

unneeded reelection or make the Secondary Node takes control and declare itself

as a Primary node even though the Primary node is still operating.

4.9.2 Heartbeat Timeout Timer

To avoid unnecessary election events as much as possible, at the Primary and

the Secondary nodes, there is a timeout timer that keeps track of the exchanged

heartbeats. The heartbeat timers will be reset every time a heartbeat message

arrives. The timer timeout value will be THeartbeatTimeout. In our implementation,

THeartbeatTimeout is set to be a multiple of Theartbeat as in the following equation:

THeartbeatTimeout = N× Theartbeat (4.6)

The value of N in Equation 4.6 represents the time the node will wait between

heartbeats. So, a value of 1 would mean that timer will wait for the period of a

single heartbeat. This will result in that any delay or jitter in the network will

result in the node to be declared dead if a single heartbeat message is missed.

Clearly, a value of 1 is not a advisable setting. Alternatively, a large value of N

will result in the network reacting with a considerable delay to changes in the

network.

105

4.9.3 Selecting the value of N

To select a reasonable value of N, experiments with different values for N were

carried out. Two relevant statistics were collected for every run:

unneeded coup: This represents the number of times another node took

over as Primary Node while the previous Primary Node is still operating.

success rate : The percentage of messages that were delivered successfully.

We simulated 500 nodes participating in ONM which were randomly divided

into 10 islands. In the experimentation we used the following packet drop rates:

• No Packet Drops: In this scenario, all packets eventually reach their destin-

ation.

• 1% Packet Drops: Here, 1% of the packets will be dropped before reaching

their destination.

• 2% Packet Drops: Here, 2% of the packets will be dropped before reaching

their destination.

• 3% Packet Drops: Here, 3% of the packets will be dropped before reaching

their destination.

• 4% Packet Drops: Here, 4% of the packets will be dropped before reaching

their destination.

Each simulation run was repeated 10 times and the results are depicted in Figure

4.28.

In Figure 4.28 subfigure a), the number of unneeded takeovers are depicted

with respect to different values of drop rate and heartbeat timeout multiplier N.

The probability that consecutive heartbeats will be dropped can be calculated

using the following equation:

PN_consecutive_drops = (Pdrop)
N (4.7)

106

Table 4.6: The chance of unneeded takeovers for different values of N and Packet Drops

Multiplier N

Packet Drops 1 2 3 4

0% 0 0 0 0

1% 0.01 0.0001 0.000001 0.00000001

2% 0.02 0.0004 0.000008 0.00000016

3% 0.03 0.0009 0.000027 0.00000081

4% 0.04 0.0016 0.000064 0.00000256

2 3 4 5 6 7 8 9

0

50

100

150

Heartbeat timeout multiplier

N
um

be
r

of
un

ne
ed

ed
ta

ke
ov

er
s

(a) Unneeded Takeovers

2 3 4 5 6 7 8 9

60

80

100

Heartbeat timeout multiplier

Su
cc

es
s

R
at

e

No Drops

1% Drops

2% Drops

3% Drops

4% Drops

(b) Drop Rate

Figure 4.28: The effect of heartbeat timeout value

In Equation 4.7, Pdrop is the probability of dropping a particular packets. Also,

PN_consecutive_drops is the chance that a N consecutive packets will be dropped.

As can be seen in Figure 4.28, using 4 for N will result in hardly any unneeded

takeovers. Equation 4.7 can be used to calculate the chances of unneeded takeovers

and the results are provided in Table 4.6. Similarly, in Figure 4.28 subfigure b),

it can be seen that the success rate starts reaches it maximum from N = 4. This

indicates that there is no advantage to be gained of having values of N to be

larger than 4.

107

30 40 50 60

80

90

100

Number of Nodes

M
es

sa
ge

s
D

el
iv

er
ed

(%
)

ONM
DIM
CIM

(a) Success Rate

30 40 50 60

102

103

104

Number of Nodes

C
on

tr
ol

M
es

sa
ge

s/
Se

co
nd

(b) Overhead

Figure 4.29: Comparing Island Multicast (IM) with Opportunistic Native Multicast (ONM)

4.10 comparing onm with im

Similar to Opportunistic Native Multicast (ONM), IM uses unicast to connects

islands while utilise Native Multicast (NM) to deliver data the island. As discussed

in Section 2.1.4.2, IM can be implemented either as Centralised Island Multicast

(CIM) or Distributed Island Multicast (DIM). Since CIM requires setting a central

nodes manually, DIM is the one that is comparable to Opportunistic Native

Multicast (ONM). The advantages of using Opportunistic Native Multicast (ONM)

over Island Multicast (IM) were discussed in Section 3.1.3.

4.10.1 Performance Analysis

Figure 4.29 shows the difference between Opportunistic Native Multicast (ONM)

and the two types of IM: CIM and DIM. Subfigure a) depicts the performance

of the three approaches with respect to message delivery. It can be seen that

ONM significantly outperforms both CIM and DIM. The difference is especially

pronounced with the larger network sizes. The results published for CIM and

DIM only cover network sizes up to 60 nodes, at which point their performances

deteriorate sharply. ONM was tested with considerably larger networks. As for

108

the overhead, Opportunistic Native Multicast (ONM) requires significantly less

network traffic than the other two approaches. In fact the difference is more than

an order of magnitude. Overall, in can be concluded that ONM outperforms both

CIM and DIM on both, the message delivery and the incurred overhead.

4.11 summary and conclusion

This chapter has evaluated the operation of ONM under different scenarios and

parameters. First, the testing environment was discussed and a simulator was

selected. Also, the needed changes were discussed. After that, a basic implementa-

tion was planned and analysed. This chapter discussed three different approaches

when selecting the Primary Nodes of the islands: Manual, Passive and Age-based.

Moreover, the chapter evaluated how ONM will be able to detect the stability of

the network and will relax the frequency of the heartbeats messages accordingly

which was shown to reduce the control overhead significantly. Two approaches

were analysed and tested: Probation-time and Graduate Trust. In ONM, failure

of the Primary Node is detected by missing a number of subsequent heartbeat

messages. When a threshold is reached, the Primary Node is declared dead and

the Secondary Node will take over. If no secondary Node exist, a reelection is

triggered. A range of values for this threshold was studied and analysed under

different churn rates and packet drops probabilities. The chapter also tried to find

the optimal value that will not declare a Primary Node dead too soon risking

unnecessary take over nor take a long time to react to the failure of the Primary

Node. From the different simulations in this chapter, Tables 4.7, 4.8, 4.9, 4.10, 4.11

and 4.12 summarise the results got from simulating different ways to select the

Primary Node (PN) under different configurations. Table 4.7 shows the success

rate of different approaches by taking the average number of delivered messages.

Table 4.8 shows the cost in overhead for each protocol. This cost is calculated by

the average number of control messages per second. Table 4.9 shows the average

time taken by messages to reach their destination. Table 4.10 shows the number

of messages present inside the island. Table 4.11 shows the stress on the backbone

109

link connecting different islands. The stress is measured by the number of copies

of a message crossing the same link or node. Table 4.12 shows average stretch

which is the length of the path taken compared to the path taken using unicast.

110

Heartbeats

Interval

Number of

Secondaries

Average

Lifetime

Method of Selecting the PN

Age Manual Passive

10 0 1800 34.35362011 42.76446197 34.35362011

10 0 3600 38.86016931 60.03750251 36.73770672

10 0 5400 51.49887989 66.26803414 46.98806018

10 0 7200 53.67884411 70.31703481 48.73963851

1 0 1800 94.66887625 97.63945153 93.911531

1 0 3600 95.33641902 96.77989771 91.4686085

1 0 5400 95.601892 97.06165166 92.27032047

1 0 7200 95.29747918 97.46859089 93.15260085

10 1 1800 37.75979373 42.90866952 37.94683838

10 1 3600 54.5500593 67.0655779 57.24941523

10 1 5400 67.10899509 77.6245473 65.78806208

10 1 7200 75.12997763 82.83228123 73.86443233

1 1 1800 98.43596918 99.29802376 98.90739958

1 1 3600 98.83510352 99.27730578 99.04805285

1 1 5400 98.89221374 99.24080928 99.14988825

1 1 7200 99.00279273 99.27880235 99.0513579

10 2 1800 37.77130778 46.40896702 37.93658411

10 2 3600 61.9725013 68.95577659 58.13087394

10 2 5400 73.85618597 76.43351446 70.73614223

10 2 7200 80.1213336 81.91667814 77.8518676

1 2 1800 98.77151717 99.36239079 98.76371693

1 2 3600 99.02975603 99.38823854 98.85182422

1 2 5400 99.06397 99.30058267 99.00974222

1 2 7200 99.14427551 99.34615242 99.04857361

Table 4.7: Success Rate of different configurations of Lifetime, Number of Secondaries

and Primary Selection Method

111

Heartbeats

Interval

Number of

Secondaries

Average

Lifetime

Method of Selecting the PN

Age Manual Passive

10 0 1800 2.525944444 2.251444444 2.534888889

10 0 3600 4.923944444 3.277194444 5.023277778

10 0 5400 5.47337037 3.599611111 5.719240741

10 0 7200 5.709027778 3.817722222 6.138347222

1 0 1800 30.57733333 26.21961111 33.88577778

1 0 3600 29.68358333 26.44244444 33.35347222

1 0 5400 29.65298148 26.4497963 33.10268519

1 0 7200 29.53183333 26.51515278 32.48245833

10 1 1800 3.443222222 3.777555556 3.504111111

10 1 3600 4.94 4.412722222 4.79875

10 1 5400 4.932055556 4.623259259 4.897018519

10 1 7200 4.897013889 4.65425 4.984125

1 1 1800 45.35111111 45.161 45.75272222

1 1 3600 45.16066667 45.11816667 45.76558333

1 1 5400 45.08222222 45.14057407 45.73211111

1 1 7200 44.99398611 45.17697222 45.67966667

10 2 1800 3.863166667 4.124555556 3.938388889

10 2 3600 5.526277778 5.162777778 5.505305556

10 2 5400 5.674444444 5.476425926 5.715981481

10 2 7200 5.719069444 5.626930556 5.792652778

1 2 1800 47.35005556 47.32655556 47.59627778

1 2 3600 47.20180556 47.16016667 47.38158333

1 2 5400 47.13261111 47.15783333 47.40859259

1 2 7200 47.11420833 47.16411111 47.37758333

Table 4.8: Average overhead of different configurations of Lifetime, Number of Secondar-

ies and Primary Selection Method

112

Number

of Islands

Multicasting Technology

ALM ONM NM

1 21.46383451 6.84649357 2.280723666

10 21.96618269 8.03415829 3.935657726

20 24.7402539 9.74770814 3.266022472

30 22.64443392 11.17036953 2.982579716

40 24.13815344 12.15810212 2.57746619

50 27.54920938 11.90544394 2.631426154

60 26.91733086 11.69436534 3.151963385

70 27.79306894 11.56843528 2.32947738

80 26.26756105 13.42580369 3.836421126

90 28.23834577 13.79877455 3.38180122

100 29.58797139 13.41935483 3.981139163

Table 4.9: The Average delay of the multicasted messages

Number

of Islands

Multicasting Technology

ALM ONM NM

10 232338115.2 2943908.9 122092

25 135570951.2 3089931.5 48343

50 84229704.2 3380920.3 24125

75 64081765.9 3721394.6 16054

100 52619581.7 4095289.6 12177

150 42560863.6 5142930.1 8009

Table 4.10: Average Number of messages in the island

113

Number

of Islands

Multicasting Technology

ALM ONM NM

10 726.5583171 1 10.79934783

25 1066.396257 1 25.89858696

50 1116.967909 1 51.29413043

75 1111.108614 1 76.39858696

100 1052.658583 1 101.1879348

150 1006.515662 1 149.3146739

Table 4.11: Average stress on the backbone

Number

of Islands

Multicasting Technology

ALM ONM NM

1 8.022049128 2.460548928 1

10 7.905024619 3.417358352 1

20 7.980704276 3.961982012 1

30 8.141042514 4.277412383 1

40 8.139815375 4.449511377 1

50 8.128674458 4.598524242 1

60 8.07945546 4.710337911 1

70 8.079224642 4.819346505 1

80 8.045887372 4.988823953 1

90 8.136124328 5.002588781 1

100 8.0591473 4.925337349 1

Table 4.12: Average stretch of the multicasted message

114

5
C O N C L U S I O N A N D F U T U R E W O R K

5.1 introduction

Currently, the Internet is fragmented into many multicast islands due to the lack of

support of native multicast in the backbone and because different types/protocols

for native multicast are deployed. This is a major issue for content distribution as

multicast is not usable if nodes in multiple islands are involved in a transmission.

In this paper, we have addressed this problem by proposing Opportunistic

Native Multicast (ONM) which is a novel approach that joins together islands of

native multicast capable region of the Internet. ONM uses a P2P overlay network to

discover and connect islands. In doing so, it uses Automatic Multicast Tunnelling

(AMT), which was standardised in IETF RFC 7450, to forward data between

these islands. ONM combines network resources, employs native multicast where

possible and falls back to Application Layer operations where needed.

The proposed approach Opportunistic Native Multicast (ONM) was compared

against of the existing solutions, Island Multicast (IM). The thesis compared the

two approaches and identified multiple areas where ONM is better. Also, we

compared the performance of ONM with the IM where ONM provided better

success rate and lower control overhead.

We tested our approach under a number of different realistic network configur-

ations and churn settings, together with different algorithms to select primary and

secondary nodes in the islands. Our experimentation suggest that ONM should

be implemented with a Multi-Hop Overlay which supports an Application Layer

Multicast approach such as Pastry and Scribe. We further recommend the use of

node age as the factor to select primary and secondary nodes. Results suggest

that the use of a single secondary node is desirable and additional backup nodes

115

do not yield a significant performance gain. According to our testing the multi-

plier value N should be set to a value of 4. Higher values do not result in better

performance.

5.2 contributions

This thesis was able to produce multiple significant contributions that are dis-

cussed in this section. These contributions were the objectives of our research and

were discussed in Chapter 1.

5.2.1 Review of current literature

For the gap to be identified, we reviewed related technical subjects in Chapter 2.

The chapter reviewed the issue of multicast islands and the related technologies:

Peer To Peer (P2P), Multicasting and Automatic Multicast Tunnelling (AMT).

Moreover, the existing proposed hybrid multicast techniques where analysed and

discussed and shortcomings identified.

5.2.2 Connecting Multicast Islands using AMT and ALM

The proposed framework introduces the use of Automatic Multicast Tunnelling

(AMT) built using an Application Layer Multicast (ALM) overlay to connects

islands and peers in a unicast only network. The resulting tree of AMT tunnels

is maintained by the protocol using the Peer To Peer (P2P) overlay in the ALM.

While some approaches were introduced to solve the issue of Multicast Islands,

they can be improved by introducing AMT tunnelling. However, AMT on its own

does not offer the needed capability to let multiple AMT nodes negotiate and

elect one of them to act as Automatic Multicast Tunnelling (AMT) gateways and

relays. The election algorithms and the integration of AMT with ALM allow for

the automatic discovery of islands and the selection of nodes as gateways and

116

relays. The proposed Opportunistic Native Multicast (ONM) has one elected node

at each island that acts as a Primary Node (PN). This node is part of the ALM

tree and it also terminates the AMT tunnel. The Primary Node (PN) is responsible

for bridging the local Native Multicast (NM) tree with the inter-islands overlay

tree. Also, peers that are in an unicast only network are able to connect to the

multicast tree by considering them self an island of one.

5.2.3 Detect Nodes Failure

The thesis propose a process for a failure to be detected. The ONM uses frequent

and periodic hello messages to allow other nodes to declare other node to be

dead when multiple subsequent hello messages was detected.

The number of missed heartbeats needed to declare a node dead N is important

parameters as it controls the trade-off between faster detection of dead node

and falsely declaring a node dead and taking over its responsibility by another

node. So, by reacting faster to failures, the island minimises the down time of

waiting for the another node to resumes the responsibility of the failed node.

Alternatively, falsely declaring a node dead unnecessarily makes a backup node

takes over or, in the worst case, trigger a reelection. During the election period,

the island is considered down until another node takes over. According to the

simulation results, a value of 4 is good balance for the value of N.

5.2.4 Availability and resilience

Since the Primary Node (PN) is susceptible to failure and churn, the thesis

discussed efficient mechanisms of how a failure is detected in the island and for

the process to elect the new PN to take place. Also, to allow for faster recovery

time after Primary Node (PN) failure, the concept of Secondary Node (SN) was

introduced. SN acts as a backup node that helps in localising the control traffic

as shown in Chapter 4. Also, the thesis discussed the use of multiple SNs. It was

117

found that while using a Secondary Node (SN) improves the stability and the

success rate, using additional SN do not noticeably improve the results.

5.2.5 Distinguishing between low and high churn nodes in a heterogeneous network

Realistically, nodes in the islands have different churn rate and stability probabil-

ities. So, it is better for the stability of the network to select low churn nodes to

act as PN or SN. The thesis suggests the use and taking advantage of the age of the

node to determine the likelihood that the node has a stable churn to be suitable

to act as Primary or Secondary Nodes. To determine the improvements achieved

by factoring the age of the node, it was compared against two other approaches:

Manual and Random. It was found that factoring age improves performance over

randomly selecting nodes.

5.2.6 Dynamically Optimising control traffic

Since the stability of the newly elected Primary Node (PN) can vary across

the lifetime of the network as nodes get elected to be PN or SN. This helps in

reducing the control traffic produced in the island without sacrificing the fast

recovery time of the islands in the case of high churn networks. So, the thesis

discussed two approaches for an island to dynamically tune down the frequently

of control messages when a stable network is detected: Probation Time and

Gradual Trust. It was found that dynamical optimising the control traffic reduces

the overhead without affecting the success rate. Also, using Graduate Trust has a

better performance in term of overhead.

5.2.7 Performance of ONM

Island Multicast (IM) is one the main implementations of Hybrid Multicast (HM) as

discussed in Section 2.1.4.2. It was chosen as a benchmark for ONM to be compared

118

to. In Section 3.1.3, the main advantages offered by ONM was reviewed. Moreover,

in Section 4.10, the performance of these two approaches were compared. It can

be noticed that ONM offers better performance and many more advantages than

IM

5.2.8 The simulator

First of all, the thesis investigated the use of the current testing frameworks

and simulators environments. Due to the lack of support for Hybrid Multicast

(HM) and Automatic Multicast Tunnelling (AMT), a simulator was modified to

be able to accomplish these tasks. The simulator module was integrated with

multiple statistics collections signals that are used to measure and compare the

performance of our approach. Due to its modularity and extensibility, OMNeT++

was selected as the simulator.

5.3 limitations and future work

While this theses was able to achieve the contributions listed in Section 5.2, some

limitations were faced in the research. These limitations are identified in this

section and the potential future work are reviewed.

The theses identified the following limitations:

real world deployment This thesis has implemented and tested the pro-

posed framework using a simulator due to reasons discussed in Section 4.2.

While the individual parts that comprise ONM are already implemented (See

FreePastry [11] for Pastry, JANUS [12] which implements SCRIBE, AMT

is implemented in some routers [98]), they have not been integrated into

a single operational system to date. A real world implementation of Op-

portunistic Native Multicast (ONM) will provide better evaluation of more

aspects than the simulation. Some factors, such as: network topology, traffic

pattern and user behaviour, can affect the results in a way different than

119

the simulation can capture [94]. Other approaches of Hybrid Multicast (HM)

used testbeds and simulations instead of using a real world implementation,

such as Island Multicast (IM) [99] and [100].

security As discussed in Section 2.1.4.5, security is identified as one the main

issues facing deploying Hybrid Multicast. While Security is too big of a

subject to be include as part of this thesis, and duo its importance, it is

beyond the scope of this thesis. Nonetheless, two main components that are

part of the implementation of Opportunistic Native Multicast (ONM) can

improve security:

1. The security of Pastry can be improved by Security Enhanced Pastry

(SEPastry) [101].

2. AMT can use hashes and Message Authentication Code (MAC) to secure

the tunnels.

Besides these points, the overall system needs to be looked at separately.

different overlay While Pastry was recommended and choose for this im-

plementation of Opportunistic Native Multicast (ONM), other overlays can

be used instead. Moreover, different types of Peer To Peer (P2P) systems

such as a single hop systems can be used as they have faster time is locating

resources in the overlay. However, multihop overlays were chosen for their

scalability.

consider other factors for selecting primary nodes This thesis has

considered multiple mechanisms for selecting a Primary Node (PN). How-

ever, it will be worthwhile to consider other factors such as the location of

the node in the islands and the available resources.

multiple native multicast protocols The design of Opportunistic Nat-

ive Multicast (ONM) does not impose any restriction on the type of the

Native Multicast (NM) protocol. So, different approaches can be used. While

this was not tested at this stage, it is very helpful to implement it and study

120

its effects as it is one of the main reasons multicast islands exists in the first

place.

mobility In real life, and with the wide spread of mobile nodes, mobility is an

issue that should be given more emphases when designing new systems.

However, Peer To Peer (P2P) can handle the movement of nodes which could

be used to improve detecting and handling the mobility of nodes [102].

5.4 summary

This chapter highlights the contributions of this thesis. Firstly, the achieved

objectives of the thesis were listed. Secondly, based on the experimental results

presented in Chapter 4, some of the major findings and recommendations were

discussed. After simulating Opportunistic Native Multicast (ONM) under different

configurations, it is possible to draw the following quantitative conclusions:

• ONM has lower stretch compared to ALM. Figure 4.10 shows a configuration

were ONM’s stretch was less than half of ALM’s.

• Using ONM has reduced the stress on the backbone. In some cases, such

as in Figure 4.11, the stress was around 10 and 1000 for ONM and ALM

respectively.

• Using ONM has reduced the number of packets crossing the backbone

exponentially. When compare to Application Layer Multicast (ALM) as in

Figure 4.13, reduction by two orders of magnitude can be achieved.

• Using ONM has lower delay in distributing the Multicast messages. For

example, the delay was reduced by more 50% as seen in Figure 4.14

• It was found that while using a Secondary Node (SN) improves the stability

and the success rate, using additional SN do not noticeably improve the

results. So, a single SN is enough.

121

• Increasing the frequency of heartbeats improves the operation of ONM

to a point. After that, it will increase the control traffic without much

improvements in operation.

• The number of missed heartbeats needed to declare a node dead N is im-

portant parameters as it controls the trade-off between faster detection of

dead node and falsely declaring a node dead and taking over its responsib-

ility by another node. It was found in the simulation, see Figure 4.28, that

using a value of 4 provides a good balance.

• Factoring the age of the node in selecting Primary and Secondary Nodes

will improve the results as seen in Figure 4.25.

• It was found that dynamical optimising the control traffic reduces the

overhead without affecting the success rate.

• Also, using Graduate Trust has a better performance in term of overhead.

• Compared to Island Multicast (IM), Opportunistic Native Multicast (ONM)

offers better performance and many more advantages.

Finally, the limitations facing the body of work reported in this thesis were

listed. These limitations serve as a base for the future work that should be further

investigated.

122

B I B L I O G R A P H Y

[1] M. Kolberg, “Employing Multicast in P2P Overlay Networks,” pp. 1–17.

[2] M. Kolberg and J. Buford, “Application Layer Multicast extensions

to RELOAD,” 2011 IEEE Consumer Communications and Networking

Conference (CCNC), pp. 1083–1087, 1 2011. [Online]. Available: http:

//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5766334

[3] CISCO, “Cisco Visual Networking Index : Forecast and Methodology , 2012

- 2017,” White Paper, pp. 1–10, 2013.

[4] D. Alwadani, M. Kolberg, and J. Buford, “A Simulation Model for Hybrid

Multicast,” 2014 Eighth International Conference on Next Generation Mobile

Apps, Services and Technologies, pp. 112–116, 2014. [Online]. Available: http:

//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6982901

[5] M. Kobayashi, H. Nakayama, N. Ansari, and N. Kato, “Robust and effi-

cient stream delivery for application layer multicasting in heterogeneous

networks,” IEEE Transactions on Multimedia, vol. 11, no. 1, pp. 166–176, 2009.

[6] C. Diot, B. Levine, and B. Lyles, “Deployment issues for the IP multicast

service and architecture,” Network, . . . , pp. 1–18, 2000. [Online]. Available:

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=819174

[7] R. Boivie, N. Feldman, Y. Imai, W. Livens, and D. Ooms, “Explicit multicast

(Xcast) concepts and options,” Tech. Rep., 2007.

[8] X. Jin, T. Ho-Shing, S. Chan, and K.-L. Cheng, “Deployment issues in

scalable island multicast for peer-to-peer streaming,” IEEE multimedia, pp.

72–80, 2009. [Online]. Available: http://repository.ust.hk/dspace/handle/

1783.1/6581

i

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5766334
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5766334
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6982901
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6982901
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=819174
http://repository.ust.hk/dspace/handle/1783.1/6581
http://repository.ust.hk/dspace/handle/1783.1/6581

[9] H. ERIKSSON, “MBone: the multicast backbone,” Communications of the

ACM, vol. 37, pp. 54–60, 1994.

[10] M. Wählisch, S. Venaas, and T. Schmidt, “A common API for

transparent hybrid multicast,” pp. 1–42, 2012. [Online]. Available:

http://tools.ietf.org/html/irtf-samrg-common-api-07.txt

[11] P. Druschel, E. Engineer, R. Gil, Y. C. Hu, S. Iyer, A. Ladd, and others,

“FreePastry,” Software available at http://www. cs. rice. edu/CS/Systems/Pastry/-

FreePastry, 2001.

[12] R. Riggio, N. Scalabrino, D. Miorandi, and I. Chlamtac, “Janus: A framework

for distributed management of wireless mesh networks,” in Testbeds and

Research Infrastructure for the Development of Networks and Communities, 2007.

TridentCom 2007. 3rd International Conference on. IEEE, 2007, pp. 1–7.

[13] C. Westphal, “Challenges in Networking to Support Augmented Reality

and Virtual Reality,” ICNC 2017, 2017.

[14] A. Ali, J. Qadir, A. Sathiaseelan, K.-L. A. Yau, and J. Crowcroft, “MP-ALM:

Exploring Reliable Multipath Multicast Streaming with Multipath TCP,”

in Local Computer Networks (LCN), 2016 IEEE 41st Conference on, 2016, pp.

138–146.

[15] J. Huang, Q. Duan, Y. Zhao, Z. Zheng, and W. Wang, “Multicast Routing

for Multimedia Communications in the Internet of Things,” IEEE Internet of

Things Journal, vol. 4, no. 1, pp. 215–224, 2 2017.

[16] T. Ruso, C. Chellappan, and P. Sivasankar, “Ppssm:push/pull smooth video

streaming multicast protocol design and implementation for an overlay

network ,” Multimedia Tools and Applications, vol. 75, no. 24, pp. 17 097–17 119,

12 2016. [Online]. Available: https://doi.org/10.1007/s11042-015-2979-5

[17] V. Rabarijaona, F. Kojima, H. Harada, and C. Powell, “Enabling Layer 2

Routing in IEEE std 802.15.4 Networks with IEEE std 802.15.10,” IEEE

Communications Standards Magazine, vol. 1, no. 1, pp. 44–49, 3 2017.

ii

http://tools.ietf.org/html/irtf-samrg-common-api-07.txt
https://doi.org/10.1007/s11042-015-2979-5

[18] T. A. Le, H. Nguyen, and M. C. Nguyen, “Application-network cross

layer multi-variable cost function for application layer multicast of

multimedia delivery over convergent networks,” Wireless Networks,

vol. 21, no. 8, pp. 2677–2692, 11 2015. [Online]. Available: https:

//doi.org/10.1007/s11276-015-0940-1

[19] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, Scalable application layer

multicast. ACM, 2002, vol. 32, no. 4.

[20] J.-M. Vella and S. Zammit, “A survey of multicasting over wireless access

networks,” IEEE Communications Surveys & Tutorials, vol. 15, no. 2, pp.

718–753, 2013.

[21] P. Paul and S. V. Raghavan, “Survey of multicast routing algorithms and

protocols,” in Proceedings of the international conference on computer communic-

ation, vol. 15, no. 3, 2002, p. 902.

[22] L. Wei and D. Estrin, “A comparison of multicast trees and algorithms,”

Submitted to INFOCOM, vol. 94, 1993.

[23] J. Moy, “Multicast routing extensions for OSPF,” Communications of the ACM,

vol. 37, no. 8, pp. 61–67, 1994.

[24] S. Bhattacharyya, “An overview of source-specific multicast (SSM),” 2003.

[25] N. Mir, S. Musa, R. Torresand, and S. Swamy, “Evaluation of PIM and CBT

multicast protocols on fault-tolerance,” International Journal of Computing

and Networking Technology, vol. 2, no. 2, pp. 59–64, 2014.

[26] M. Castro and P. Druschel, “SCRIBE: A large-scale and decentralized

application-level multicast infrastructure,” Selected Areas in . . . , vol. 20,

no. 8, 2002. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs_all.

jsp?arnumber=1038579

[27] A. Adams, J. Nicholas, and W. Siadak, “Protocol independent multicast-

dense mode (PIM-DM): Protocol specification (revised),” Tech. Rep., 2004.

iii

https://doi.org/10.1007/s11276-015-0940-1
https://doi.org/10.1007/s11276-015-0940-1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1038579
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1038579

[28] V. P. Kompella, J. C. Pasquale, and G. C. Polyzos, “Multicast routing for

multimedia communication,” IEEE/ACM Transactions on Networking (TON),

vol. 1, no. 3, pp. 286–292, 1993.

[29] L. Kou, G. Markowsky, and L. Berman, “A fast algorithm for Steiner trees,”

Acta informatica, vol. 15, no. 2, pp. 141–145, 1981.

[30] B. Waxman, “Delay-bounded Steiner Tree Algorithm for Performance-

Driven Layout,” Journal on Selected Areas in Communications, vol. 6, pp.

1617–1622, 1988.

[31] J.-J. Pansiot and D. Grad, “On routes and multicast trees in the Internet,”

ACM SIGCOMM Computer Communication Review, vol. 28, no. 1, pp. 41–50,

1998.

[32] Y. H. Tsin, “Incremental distributed asynchronous algorithm for minimum

spanning trees,” Computer networks and ISDN systems, vol. 26, no. 2, pp.

227–232, 1993.

[33] Q. Zhu, M. Parsa, and J. J. Garcia-Luna-Aceves, “A source-based algorithm

for delay-constrained minimum-cost multicasting,” in INFOCOM’95. Four-

teenth Annual Joint Conference of the IEEE Computer and Communications

Societies. Bringing Information to People. Proceedings. IEEE, vol. 1, 1995, pp.

377–385.

[34] F. Bauer and A. Varma, “Distributed algorithms for multicast path setup in

data networks,” IEEE/ACM Transactions on Networking (TON), vol. 4, no. 2,

pp. 181–191, 1996.

[35] G. N. Rouskas and I. Baldine, “Multicast routing with end-to-end delay and

delay variation constraints,” IEEE Journal on Selected Areas in communications,

vol. 15, no. 3, pp. 346–356, 1997.

[36] F. Bauer and A. Varma, “ARIES: A rearrangeable inexpensive edge-based

on-line Steiner algorithm,” IEEE Journal on Selected Areas in Communications,

vol. 15, no. 3, pp. 382–397, 1997.

iv

[37] J. Westbrook and D. C. K. Yan, “Greedy algorithms for the on-line Steiner

tree and generalized Steiner problems,” in Workshop on Algorithms and Data

Structures, 1993, pp. 622–633.

[38] T. Alrabiah and T. F. Znati, “Delay-bounded Online Multicasting,” in High

Performance Networking: IFIP TC-6 Eighth International Conference on High

Performance Networking (HPN â98) Vienna, Austria, September 21â25, 1998,

vol. 8, 2013, p. 95.

[39] L. Aguilar, “Datagram routing for internet multicasting,” in ACM SIG-

COMM Computer Communication Review, vol. 14, no. 2. ACM, 1984, pp.

58–63.

[40] M. Brogle, D. Milic, L. Bettosini, and T. Braun, “A performance

comparison of native IP Multicast and IP Multicast tunneled through a

Peer-to-Peer overlay network,” 2009 International Conference on Ultra Modern

Telecommunications & Workshops, pp. 1–6, 10 2009. [Online]. Available: http:

//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5345658

[41] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker,

“A scalable content-addressable network,” ACM SIGCOMM Computer

Communication Review, vol. 31, no. 4, pp. 161–172, 10 2001. [Online].

Available: http://portal.acm.org/citation.cfm?doid=964723.383072

[42] S. Ratnasamy and M. Handley, “Application-level multicast using content-

addressable networks,” Networked Group . . . , pp. 14–29, 2001. [Online].

Available: http://link.springer.com/chapter/10.1007/3-540-45546-9_2

[43] B. Zhang, S. Jamin, and L. Zhang, “Universal IP multicast delivery,” Inter-

national Workshop on Networked Group Communication, 2002.

[44] G. Bumgardner, “Automatic Multicast Tunneling,” pp. 1–82, 2 2015.

[Online]. Available: https://www.rfc-editor.org/info/rfc7450

v

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5345658
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5345658
http://portal.acm.org/citation.cfm?doid=964723.383072
http://link.springer.com/chapter/10.1007/3-540-45546-9_2
https://www.rfc-editor.org/info/rfc7450

[45] A. Sethi, S. Suthar, V. Yadav, and A. Kumar, “A Survey of QoS Multicast

Protocols for MANETs,” Journal of Network Communications and Emerging

Technologies (JNCET) www. jncet. org, vol. 6, no. 3, 2016.

[46] Y. Gu, L. Breslau, N. Duffield, and S. Sen, “GRE Encapsulated

Multicast Probing: A Scalable Technique for Measuring One-Way

Loss,” in 2008 IEEE INFOCOM - The 27th Conference on Com-

puter Communications. IEEE, 4 2008, pp. 1651–1659. [Online]. Avail-

able: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4509821http:

//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4509821

[47] X.-j. Liu, H.-r. Zhong, C.-q. Yie, and S.-y. Jin, “A Hybrid IP Multicast

Based Data Dissemination Allocation Strategy in Large Scale Distributed

Simulations,” Acta Electronica Sinica, vol. 31, no. 11, pp. 1678–1681, 2003.

[48] K. Tan, Y.-c. SHI, C.-y. LIAO, and G.-y. XU, “An Application-level Semantic

Reliable Multicast Architecture For the Internet,” Journal of Software, vol. 4,

p. 11, 2002.

[49] B. Zhang, W. Wang, S. Jamin, D. Massey, and L. Zhang, “Universal

IP multicast delivery,” Computer Networks, vol. 50, no. 6, pp. 781–806,

4 2006. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/

S1389128605002410

[50] X. Jin, K. Cheng, and S. Chan, “Island multicast: combining IP

multicast with overlay data distribution,” Multimedia, IEEE Transactions

. . . , vol. 11, no. 5, pp. 1024–1036, 2009. [Online]. Available: http:

//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4907113

[51] S. Jamin, L. Zhang, and B. Zhang, “Host multicast: a framework for

delivering multicast to end users,” Proceedings.Twenty-First Annual Joint

Conference of the IEEE Computer and Communications Societies, vol. 3, pp.

1366–1375, 2002. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/

epic03/wrapper.htm?arnumber=1019387

vi

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4509821 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4509821
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4509821 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4509821
http://linkinghub.elsevier.com/retrieve/pii/S1389128605002410
http://linkinghub.elsevier.com/retrieve/pii/S1389128605002410
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4907113
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4907113
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1019387
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1019387

[52] S. Cho and M.-S. Park, “FJM: fast join mechanism for overlay multicast,” in

Control Applications, 2003. CCA 2003. Proceedings of 2003 IEEE Conference on,

vol. 2. IEEE, 2003, pp. 1333–1338.

[53] J. Park, D. Y. Kim, S. G. Kang, and S. J. Koh, “Multicast

delivery based on unicast and subnet multicast,” IEEE Communications

Letters, vol. 5, no. 4, pp. 181–183, 4 2001. [Online]. Available: http:

//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=917107

[54] A. Wacker, G. Schiele, S. Holzapfel, and T. Weis, “A NAT Traversal

Mechanism for Peer-To-Peer Networks,” in 2008 Eighth International

Conference on Peer-to-Peer Computing. IEEE, 9 2008, pp. 81–83.

[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=4627263

[55] Y. Wang, Z. Lu, and J. Gu, “Research on Symmetric NAT Traversal in

P2P applications,” in 2006 International Multi-Conference on Computing in

the Global Information Technology - (ICCGI’06). IEEE, 2006, pp. 59–59.

[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=4124078

[56] M. Cinque, D. Cotroneo, and M. Fiorentino, “Facing reliability requirements

for timely information sharing in future crisis management systems,” in Fast

Abstract in the 46th Annual IEEE/IFIP International Conference on Dependable

Systems and Networks, 2016.

[57] M. Cai, X. Wen, W. Zheng, Y. Cheng, and Y. Sun, “Different-Strategy

Management of Malicious Nodes in the Peer-to-Peer Network,” in

2009 International Conference on Environmental Science and Information

Application Technology. IEEE, 7 2009, pp. 575–578. [Online]. Available: http:

//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5199759

[58] Y. I. Loubna Mekouar, “Detecting malicious peers in a reputation-

based peer-to-peer system,” in Second IEEE Consumer Communications

vii

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=917107
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=917107
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4627263
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4627263
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4124078
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4124078
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5199759
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5199759

and Networking Conference, 2005. CCNC. 2005. IEEE, pp. 37–42.

[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=1405140

[59] Q. H. Vu, M. Lupu, and B. C. Ooi, Peer-to-peer computing: Principles

and applications. Berlin, Heidelberg: Springer Berlin Heidelberg,

2010. [Online]. Available: http://www.springerlink.com/index/10.1007/

978-3-642-03514-2

[60] J. F. Buford and H. Yu, “Peer-to-Peer Networking and Applications: Syn-

opsis and Research Directions,” in Handbook of Peer-to-Peer Networking.

Springer US, 2010, pp. 3–45.

[61] J. F. Buford, H. Yu, and E. K. Lua, P2P Networking and Applications. Burl-

ington, USA: Morgan Kaufmann, Elsevier, 2009.

[62] “OpenNap: Open Source Napster Server,” 2001. [Online]. Available:

http://opennap.sourceforge.net/

[63] T. Klingberg and R. Manfredi, “Gnutella 0.6,” 2002. [Online]. Available:

http://rfc-gnutella.sourceforge.net/src/rfc-0_6-draft.html

[64] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker, “Mak-

ing gnutella-like p2p systems scalable,” in Proceedings of the 2003 conference

on Applications, technologies, architectures, and protocols for computer communic-

ations. ACM, 2003, pp. 407–418.

[65] M. Duigou, “JXTA Protocol,” 2002. [Online]. Available: http://tools.ietf.

org/pdf/draft-duigou-jxta-protocols-00

[66] M. Castro, M. Costa, and A. Rowstron, “Peer-to-peer overlays: structured,

unstructured, or both?” Technical Report, 2004. [Online]. Available: http:

//research.microsoft.com/en-us/um/people/antr/ms/structella-tr.pdf

[67] D. Korzun and A. Gurtov, Structured Peer-to-Peer Systems : Fundamentals of

Hierarchical Organization, Routing, Scaling, and Security. New York: Springer

Science + Business Media, 2013.

viii

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1405140
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1405140
http://www.springerlink.com/index/10.1007/978-3-642-03514-2
http://www.springerlink.com/index/10.1007/978-3-642-03514-2
http://opennap.sourceforge.net/
http://rfc-gnutella.sourceforge.net/src/rfc-0_6-draft.html
http://tools.ietf.org/pdf/draft-duigou-jxta-protocols-00
http://tools.ietf.org/pdf/draft-duigou-jxta-protocols-00
http://research.microsoft.com/en-us/um/people/antr/ms/structella-tr.pdf
http://research.microsoft.com/en-us/um/people/antr/ms/structella-tr.pdf

[68] K. Dhara, Y. Guo, M. Kolberg, and X. Wu, “Overview of Structured Peer-

to-Peer Overlay Algorithms,” in Handbook of Peer-to-Peer Networking. US:

Springer, 2010, pp. 223–256.

[69] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object loc-

ation, and routing for large-scale peer-to-peer systems,” in IFIP/ACM In-

ternational Conference on Distributed Systems Platforms and Open Distributed

Processing. Springer, 2001, pp. 329–350.

[70] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord:

A scalable peer-to-peer lookup service for internet applications,” ACM

SIGCOMM Computer Communication Review, vol. 31, no. 4, pp. 149–160,

2001.

[71] P. Maymounkov and D. Mazieres, “Kademlia: A Peer-to-peer Information

System Based on the {XOR} Metric,” in Proc.\ 1st International Workshop on

Peer-to-Peer Systems (IPTPS ’02), F. Kaashoek and A. Rowstron, Eds., 3 2002.

[72] C. G. Plaxton, R. Rajaraman, and A. W. Richa, “Accessing nearby copies

of replicated objects in a distributed environment,” Theory of Computing

Systems, vol. 32, no. 3, pp. 241–280, 1999.

[73] M. Castro, P. Druschel, A.-M. Kermarrec, and A. I. T. Rowstron, “SCRIBE:

A large-scale and decentralized application-level multicast infrastructure,”

IEEE Journal on Selected Areas in communications, vol. 20, no. 8, pp. 1489–1499,

2002.

[74] B. Leong, B. Liskov, and E. Demaine, “EpiChord: parallelizing the

chord lookup algorithm with reactive routing state management,” in

Proceedings. 2004 12th IEEE International Conference on Networks (ICON

2004) (IEEE Cat. No.04EX955). IEEE, pp. 270–276. [Online]. Available:

http://ieeexplore.ieee.org/document/1409145/

[75] A. Gupta, B. Liskov, R. Rodrigues, and others, “One Hop Lookups for

Peer-to-Peer Overlays.” in HotOS, 2003, pp. 7–12.

ix

http://ieeexplore.ieee.org/document/1409145/

[76] L. R. Monnerat and C. L. Amorim, “D1HT : A Distributed One Hop Hash

Table,” in International Parallel and Distributed Processing Symposium (IPDPS),

Rhodes Island, 2006.

[77] F. Chowdhury and M. Kolberg, “Performance evaluation of structured

Peer-to-Peer Overlays for Use on Mobile Networks,” in 6th International

conference on Developments in eSystems Engineering (DESE). Abu Dhabi:

IEEE, 2013, pp. 57–62.

[78] J. Furness, F. Chowdhury, and M. Kolberg, “An Evaluation of EpiChord in

OverSim,” in the Fifth International Conference on Networks & Communications

(NetCom), ser. Lecture Notes in Electrical Engineering, vol. 284. Chennai,

India: Springer International Publishing, 2014, pp. 3–19.

[79] F. Chowdhury and M. Kolberg, “Performance Evaluation of EpiChord

under High Churn,” in the 8th ACM workshop on Performance monitoring

and measurement of heterogeneous wireless and wired networks (PM2HW2N),

Barcelona, Spain, 2013, pp. 29–36.

[80] J. Li, J. Stribling, R. Morris, and M. F. Kaashoek, “Bandwidth-efficient

management of DHT routing tables,” in Proceedings of the 2nd conference on

Symposium on Networked Systems Design & Implementation-Volume 2. USENIX

Association, 2005, pp. 99–114.

[81] A. Brown, M. Kolberg, and J. F. Buford, “Chameleon: an adaptable 2-

tier variable hop overlay,” in 2009 6th IEEE Consumer Communications and

Networking Conference. IEEE, 2009, pp. 1–6.

[82] I. Clarke, O. Sandberg, B. Wiley, and T. Hong, “Freenet: A distributed

anonymous information storage and retrieval system,” in Designing Privacy

Enhancing Technologies. Berlin Heidelberg: Springer, 2001, pp. 46–66.

[83] “The Annotated Gnutella Protocol Specification v0.4.” [Online]. Available:

http://rfc-gnutella.sourceforge.net/developer/stable/

x

http://rfc-gnutella.sourceforge.net/developer/stable/

[84] S. Androutsellis-Theotokis and D. Spinellis, “A survey of peer-

to-peer content distribution technologies,” ACM Computing Surveys,

vol. 36, no. 4, pp. 335–371, 12 2004. [Online]. Available: http:

//portal.acm.org/citation.cfm?doid=1041680.1041681

[85] G. Bumgardner, “Automatic Multicast Tunneling,” pp. 1–86, 2012. [Online].

Available: http://tools.ietf.org/html/ietf-mboned-auto-multicast-14

[86] T. Kernen and S. Simlo, “AMT - Automatic IP Multicast without explicit

Tunnels,” pp. 1–11, 2010.

[87] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “Application-level

multicast using content-addressable networks,” in International Workshop on

Networked Group Communication. Springer, 2001, pp. 14–29.

[88] I. Baumgart, B. Heep, and S. Krause, “OverSim: A Flexible Overlay

Network Simulation Framework,” 2007 IEEE Global Internet Symposium,

pp. 79–84, 5 2007. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/

epic03/wrapper.htm?arnumber=4301435

[89] J. Furness, M. Kolberg, and M. Fayed, “An evaluation of Chord and Pastry

models in OverSim,” in Modelling Symposium (EMS), 2013 European. IEEE,

2013, pp. 509–513.

[90] Z. Yao, X. Wang, D. Leonard, and D. Loguinov, “Node isolation model and

age-based neighbor selection in unstructured P2P networks,” IEEE/ACM

Transactions On Networking, vol. 17, no. 1, pp. 144–157, 2009.

[91] N. Kotilainen, M. Vapa, T. Keltanen, A. Auvinen, and J. Vuori, “P2PRealm

- Peer-to-Peer Network Simulator,” in 2006 11th Intenational Workshop

on Computer-Aided Modeling, Analysis and Design of Communication Links

and Networks, vol. 35. IEEE, 2006, pp. 93–99. [Online]. Available: http:

//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1649724

xi

http://portal.acm.org/citation.cfm?doid=1041680.1041681
http://portal.acm.org/citation.cfm?doid=1041680.1041681
http://tools.ietf.org/html/ietf-mboned-auto-multicast-14
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4301435
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4301435
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1649724
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1649724

[92] J. F. Buford and M. Kolberg, “Hybrid overlay multicast simulation and

evaluation,” in Consumer Communications and Networking Conference, 2009.

CCNC 2009. 6th IEEE, 2009, pp. 1–2.

[93] D. Stutzbach and R. Rejaie, “Understanding churn in peer-to-peer networks,”

in Proceedings of the 6th ACM SIGCOMM conference on Internet measurement,

2006, pp. 189–202.

[94] M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, and L. P. Gaspary,

“How physical network topologies affect virtual network embedding quality:

A characterization study based on ISP and datacenter networks,” Journal of

Network and Computer Applications, vol. 70, pp. 1–16, 2016.

[95] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object loc-

ation, and routing for large-scale peer-to-peer systems,” in Middleware.

Berlin Heidelberg: Springer, 2001, vol. 2218, pp. 329–350.

[96] A. Varga and R. Hornig, “An overview of the OMNeT++ simulation

environment,” . . . of the 1st international conference on Simulation . . . , 2008.

[Online]. Available: http://dl.acm.org/citation.cfm?id=1416290

[97] D. Alwadani, M. Kolberg, and J. Buford, “An evaluation of Opportunistic

Native Multicast,” in Computer Aided Modelling and Design of Communication

Links and Networks (CAMAD), 2015 IEEE 20th International Workshop on.

IEEE, 2015, pp. 170–174.

[98] A. Headquarters, “Cisco IOS XR MPLS Configuration Guide for the Cisco

CRS-1 Router, Release 3.9,” 2009.

[99] K.-L. Cheng, K.-W. Cheuk, and S.-H. Chan, “Implementation and perform-

ance measurement of an island multicast protocol,” in Communications, 2005.

ICC 2005. 2005 IEEE International Conference on, vol. 2, 2005, pp. 1299–1303.

[100] M. Won and R. Stoleru, “A Hybrid Multicast Routing for Large Scale Sensor

Networks with Holes,” IEEE Transactions on Computers, vol. 64, no. 12, pp.

3362–3375, 12 2015.

xii

http://dl.acm.org/citation.cfm?id=1416290

[101] M. Mishra, S. Tripathy, and S. Peri, “SEPastry: Security Enhanced

Pastry,” in Advances in Computing and Information Technology: Proceedings

of the Second International Conference on Advances in Computing and

Information Technology (ACITY) July 13-15, 2012, Chennai, India - Volume 1,

N. Meghanathan, D. Nagamalai, and N. Chaki, Eds. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2012, pp. 789–795. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-31513-8_80

[102] L. Li, A. Gaddah, and T. Kunz, “Mobility support in a tactical P2P pub-

lish/subscribe overlay,” in Military Communications Conference, 2008. MIL-

COM 2008. IEEE, 2008, pp. 1–7.

xiii

http://dx.doi.org/10.1007/978-3-642-31513-8_80

	Declaration
	Abstract
	Acknowledgments
	Publications
	Contents
	List of Figures
	List of Tables

	1 Introduction
	1.1 Background
	1.2 Research Problem
	1.3 Thesis Statement
	1.4 Aims and Objectives
	1.5 Contributions
	1.6 Thesis Scope and Structure

	2 Background and Related Work
	2.1 Multicast
	2.1.1 Taxonomy
	2.1.2 Native Multicast
	2.1.2.1 Host Group Multicast
	2.1.2.2 Multi-Destination Routing

	2.1.3 Application Layer Multicast
	2.1.3.1 CAN-Multicast
	2.1.3.2 SCRIBE

	2.1.4 Hybrid Multicast
	2.1.4.1 Automatic Multicast Tunnelling AMT
	2.1.4.2 Island Multicast
	2.1.4.3 Universal Multicast
	2.1.4.4 Multicast Delivery Based on Unicast and Subnet Multicast
	2.1.4.5 Hybrid Multicast Issues

	2.2 Peer To Peer
	2.2.1 Taxonomy
	2.2.2 Structured Peer-to-Peer Overlay
	2.2.3 Types of Structured Overlays
	2.2.3.1 Multi-Hop
	2.2.3.2 One Hop
	2.2.3.3 Variable Hop

	2.2.4 Unstructured
	2.2.5 Differences between Structured and Unstructured Overlays

	2.3 Automatic Multicast tunnelling (AMT)
	2.3.1 AMT Operation
	2.3.2 Advantages of AMT

	2.4 Summary

	3 Opportunistic Native Multicast
	3.1 Introduction
	3.1.1 Joining ONM
	3.1.2 ONM Alternatives
	3.1.3 ONM Advantages

	3.2 ONM Operation
	3.3 Primary Election
	3.4 Secondary Selection
	3.5 Failure Recovery
	3.6 Summary

	4 Performance Evaluation of ONM
	4.1 Introduction
	4.2 Experimental Methodology
	4.2.1 Research Questions
	4.2.2 Benchmark Selection
	4.2.3 OMNet++ and INET Framework
	4.2.4 OverSim
	4.2.5 Simulation Setup
	4.2.6 Simulation Model

	4.3 AMT
	4.3.1 Changes to The Simulation Environment
	4.3.1.1 AMT Gateway
	4.3.1.2 AMT Relay
	4.3.1.3 Changes in OverSim
	4.3.1.4 Network Messages

	4.3.2 The Network Model

	4.4 Basic Implementation
	4.4.1 Overview
	4.4.2 Simulation Scenarios
	4.4.2.1 Small proof-of-concept network
	4.4.2.2 Applications

	4.5 ONM Vs ALM
	4.6 Number of Secondaries
	4.6.1 Introduction

	4.7 Approaches To Select Primary and Secondary Nodes
	4.7.1 Heterogeneity
	4.7.2 Distinguishing Low Churn Nodes
	4.7.3 Manual Priority
	4.7.4 Passive Priority
	4.7.5 Age-Based Priority
	4.7.6 Comparing Types of Priority

	4.8 Dynamic Heartbeat Intervals
	4.8.1 Dynamic Control Interval
	4.8.2 Probation Period
	4.8.3 Graduate Trust

	4.9 Detection of Node Failure
	4.9.1 Introduction
	4.9.2 Heartbeat Timeout Timer
	4.9.3 Selecting the value of N

	4.10 Comparing ONM with IM
	4.10.1 Performance Analysis

	4.11 Summary and Conclusion

	5 Conclusion and Future work
	5.1 Introduction
	5.2 Contributions
	5.2.1 Review of current literature
	5.2.2 Connecting Multicast Islands using AMT and ALM
	5.2.3 Detect Nodes Failure
	5.2.4 Availability and resilience
	5.2.5 Distinguishing between low and high churn nodes in a heterogeneous network
	5.2.6 Dynamically Optimising control traffic
	5.2.7 Performance of ONM
	5.2.8 The simulator

	5.3 Limitations and Future Work
	5.4 Summary

