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Abstract 

A range of visually guided, spatial goal directed tasks are investigated, using a computational 

neuroethology approach. Animats are embedded within a bounded, 2-D environment, and map 

a 1-D visual array, through a convolution network, to a topography preserving motor array that 

stochastically determines the direction of movement. Temporal difference reinforcement learning 

modifies the convolution network in response to a reinforcement signal received only at the goal 

location. 

Three forms of visual coding are compared: multiscale coding, where the visual array is con- 

volved by Laplacian of Gaussian filters at a range of spatial scales before convolution to determine 

the motor array; rectified multiscale coding, where the multiscale array is split into positive and 

negative components; and intensity coding, where the unfiltered visual array is convolved to deter- 

mine the motor array. After learning, animats are examined in terms of performance, behaviour 

and internal structure. 

When animats learn to approach a solitary circle, of randomly varying contrast, rectified 

multiscale coding animats learn to outperform multiscale and intensity coding animats in both 

independent and coarse scale noise conditions. Analysis of the learned internal structure shows 

that rectified multiscale filtering facilitates learning by enabling detection of the circle at scales 

least affected by noise. 

Cartwright and Collett (1983) showed that honeybees learn the angle subtended by a feature- 

less landmark to guide movement to a food source at a fixed distance from the landmark, and 

furthermore, when tested with only the edges of the landmark, still search in the same location. In 

a simulation of this experiment, animats are reinforced for moving to where the angle subtended by 

a solitary circle falls within a certain range. Rectified multiscale filtering leads to better perform- 
ing animats, with fewer hidden units, in both independent and coarse scale visual noise conditions, 

though for different reasons in each case. Only those animats with rectified multiscale filtering, 

that learn in the presence of coarse scale noise, show similar generalisation to the honeybees. 

Collett, Cartwright and Smith (1986) trained gerbils to search at locations relative to arrangem- 

ments of landmarks and tested their search patterns in modifications of the training arrangements. 
These experiments are simulated with landmark distance coded as either a 1-D intensity array, 

or a 2-D vector array, plus a simple compass sense. Vector coding animats significantly outper- 
form those using intensity coding and do so with fewer hidden units. Furthermore, vector coding 

animats show a close match to gerbil behaviour in tests with modified landmark arrangements. 
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Chapter 1 

Introduction 

Few animals are fortunate enough to live within easy reach of all their physical requirements for 

successful life. Each animal has a unique location in physical space, and its resources, such as 

food, a mate, or its home, which the animal must move in order to exploit the resource. Guiding 

such directed movement is a major use of animal senses and nervous systems (Dusenbery, 1992). 

This thesis investigates a range of visually guided, spatial goal directed tasks using simulated 

animats embedded within a 2-D environment. The animats are equipped with a 1-D visual ar- 

ray and stochastic control of their direction of movement. Neural computations within animats 

reactively transform the visual array to a topography preserving motor array that stochastically 

determines the direction of movement. An individual animats' internal neural network is initially 

random and hence so is the animats behaviour. Over time, the network, and hence the animat's 

behaviour adapts in response to a reinforcement signal received only within the spatial goal region. 

Firstly, some illustrations of animal spatial goal directed movement are described. These 

provide evidence of the ubiquity of such behaviour, and motivate the specific tasks simulated later 

in the thesis. Next, the consequences of embedding animats within environments are discussed, 

and the particular methodology used in this thesis outlined. Having established the tasks to be 

studied and the method of study, the biological and computational motivations for convolution as 

a basis for animat processing are outlined. Finally, the specific aims of the research are outlined. 

1.1 Spatial goal directed movement in animals 

Mobility frees an organism from the vicissitudes of a sedentary life-a non-moving organism is 

dead if the resources it requires for life do not happen to be located within reach. Mobility allows 

an organism the possibility of moving to where its resources are, rather than passively waiting for 

the resources to come to it. Unguided movement, however, is little better than sitting still, with 
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the difference decreasing as the resource becomes more sparsely distributed. Therefore, organisms 

that can move more efficiently than their competitors to an essential resource will have a selective 

advantage. 
Without prior knowledge of the location of the goal, the organism can only sample the spa- 

tiotemporal energy pattern of the various physical particles impinging upon its spatial location 

in order to gain information to guide movement. The selective advantage of an animal that can 

steer more efficiently than its competitors to a shared but sparse resource led Walter (1953) and 

Moravec (1988), amongst many others, to argue that the evolutionary pressure this applies has 

been a primary factor in the evolution of both animal sense organs, and the nervous systems re- 

quired to extract from them information about distal stimuli required for the animal to efficiently 

steer toward its spatial goals. A supportive example of this argument is provided by the phylum 

mollusca. The 50,000 known species of this phylum include snails, slugs, clams, oysters and mus- 

sels; sluggish or sedentary invertebrates with primitive sense organs and simple nervous systems. 

In contrast, one class, the cephalopods, are predators, and have evolved a complex single lens eyes, 

convergent with the vertebrate eye in many respects, and a complex nervous system capable of 

advanced learning, and controlling the fast and accurate movement required for success at their 

predatory lifestyle (Wells, 1962; Campbell, 1993). 

The following subsections describe some particular spatial goal directed animal movements. 

The movement of bacteria is outlined because, simple as they are, they illustrate the essential 

aspects of spatial goal directed movement that are elaborated by more complex organisms. Limulus 

is an ancient animal that uses vision to guide a very specific goal directed movement. Insects use 

their vision for a range of tasks and are able to learn to move to particular spatial locations. 

1.1.1 Simple steering 

Bacteria are amongst the simplest and oldest of known natural life and are ancestral to all multi- 

cellular organisms. Single celled and asexually reproducing, they absorb nutrients through their 

cell wall. In an environment in which nutrients are unevenly distributed, any bacteria that can 

move up nutrient concentration gradients will typically intake more nutrients than fellow bacteria 

that either stay still or just move randomly. Nutrients enhance reproduction and hence those 

bacteria that can move to where they are concentrated will typically have a selective advantage. 

About half of all bacterial species are capable of directed movement, the most common mecha- 

nism of which is by means of rotating flagella. When the flagella are rotated in one direction, 

they spiral round one another, propelling the bacterium forward in a roughly straight path called 

a run. When the flagella are rotated in the opposite direction, the flagella separate, causing an 

uncoordinated movement, called tumbling, that randomly alters the orientation of the bacterium 

(Campbell, 1993). 
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Specific chemical receptor molecules on the cell wall are modified when they come into contact 

with their target chemical. Either the receptor molecule, or molecules within the bacteria, are 

sensitive to the change in chemical concentration over short intervals of time. If the chemical 

is an attractant, and the concentration change positive, then the relative number of tumbles is 

reduced, leading to runs in the direction of positive gradient. If the concentration change of the 

attractant is negative, then the relative frequency of tumbles is increased, resulting in random 

re-orientations until a direction in which the change is positive is found. The net result of this 

mechanism is a stochastic spatial movement toward higher concentrations of nutrients. In the case 

of repellent chemicals, the behavioural responses are reversed with respect to the temporal change 

in the concentration of the chemical. Similar mechanisms underlie the positive phototropism of 

those mobile bacteria that photosynthesize sunlight (Berg, 1993; Campbell, 1993). 

Computationally, this is an ingenious strategy given just one sensor. The temporal derivative 

of concentration is the same as the spatial derivative in the direction in which the bacteria are 

heading, by virtue of the fact that bacteria translatory movement is in roughly straight lines. 

The spatial goal directed movement of bacteria, though effective in the microscopic world at 

getting them to their goals, is of very limited general usefulness. For example, a predatory animal 

whose spatial goal is bacteria, would not be able to locate them by using the same strategy as 

bacteria use to steer toward their spatial goals. Chemical concentrations are too specific, too short 

range, and because of diffusion, have little spatial structure at the scale of bacteria. 

1.1.2 Basic visually guided steering 

In contrast to chemical concentration, light provides an energy source with many useful properties 

as a sensory messenger. The earth is continually bathed in light, which is both fast, far travelling, 

and is strongly influenced in spatial and spectral structure by interaction with matter. Most 

importantly it retains its spatial structure through space: light impinging the sensory surface 

from neighbouring directions will typically have come from neighbouring points. This enables 

sensitivity to more subtle variation than just the intensity of light impinging upon the animals 

body. 

The Limulus (horseshoe crab) is a very ancient animal which has remained virtually unchanged 
for 350 million years. Its eyes comprise about 1000 ommatidia, which vary considerably in sen- 

sitivity in a circadian rhythm. Limuli do not use their visual system for food location, or to 

facilitate any general tasks. Rather it exists to serve just two purposes. Firstly, for predator 

evasion: limulus's move away in response to large objects looming above them. This is a vestigial 

behaviour as their predators are long extinct. The only other use of the visual system is to guide 

movement towards mates (Barlow et al, 1985, Barlow, 1990). This involves detecting, amongst the 

other elements in the visual environment, the particular spatiotemporal pattern that corresponds 
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to another Limulus, orienting and then moving toward it (Barlow et al, 1985, Barlow, 1990). 

Barlow et al (1985) ethologically investigated this behaviour by examining the tendency of Limuli 

to move toward objects deviating from other Limuli in form and contrast, and by forced choice 

comparison of Limulus preferences. Their results showed that Limuli approach objects of widely 

varying form with a preference for negative contrast (Limuli are darker than the sand they reside 

in); finer discrimination depends upon the tactile sense. Barlow et al (1985) conclude that Limuli 

move toward bounded patches of negative contrast moving across their ommatidia array. 

In chapter 4, a simplified analogy to the task facing Limuli is simulated, with animats learning 

to approach a solitary circle in an otherwise empty arena. The contrast of the image of the circle 

varies randomly, and noise is added to the visual array. In order to efficiently perform this task, 

animats must learn to behaviourally distinguish between variation in the visual array due to the 

image of the circle, and variation due to visual noise. 

1.1.3 Adaptive visually guided steering 

The Limulus has a genetically pre-specified behavioural response to its environment, which is 

sufficient for its lifestyle. Many animals however, including insects and mammals, are able to 

learn to move to where their resources happen to be. For example, honeybees learn where in their 

environment flowers are, and use their vision to guide their return to these locations. 

Srinivasan (1994) reviews the capacity of honeybees to learn to discriminate between visual 

patterns. In the typical experimental setup, bees move freely within aY shaped room in which 

a spatial pattern is fixed to each of the two arms of the Y. Between trials, the two patterns are 

randomly swapped between the arms, but food is placed near one of the patterns regardless of 

which side it is on. Over time, bees learn to discriminate between patterns based purely upon 

visual cues. The most important information is acquired after learning, when bees are tested 

on variations of the patterns in order to discriminate between models of what the animals have 

learned. Bees are able to learn to discriminate between horizontal and vertical stripes; between 

stripes oriented at -45 degrees and 45 degrees to the vertical (Srinivasan et al, 1993); between 

patterns differing in either local or global cues (Zhang et al, 1992); and between symmetric and 

asymmetric patterns (Giurfa et al, 1996). 

Cartwright and Collett (1983) showed that honeybees, and Collett, Cartwright and Smith (1986) 

showed that gerbils are able to learn to move to a spatial location defined only in terms of the 

visual appearance of an array of landmarks from that position. Having learned to get to the goal, 

the landmark arrangement is then varied These experiments are discussed in detail and analogous 

tasks simulated in chapters 4-7. 
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1.2 Embedment within an environment 

A clear prerequisite for spatial goal directed movement is a spatial environment within which the 

agent has a location. The environment together with the agents sensory equipment determines 

the sensory state at that location. The sensory state is processed within the agent, resulting 

in modulation of the agents steering. Any movement leads to a new location, and hence a new 

sensory state which modulates the movement, which leads to a new location and a new sensory 

state and so on. Movement depends on sensation and sensation depends on movement. The closed 

loop nature of such sensorimotor processing characterises the situation in the animal spatial goal 

directed movement outlined above. 

In terms of modeling animals, embedment increases the ecologically validity of the model. 

Animals have evolved as species, and learn as individuals, to perform their everyday tasks within 

their environment as well as, or better than, the competition. These form whole behaviours, and 

their computational basis is the object of computational neuroethological study. 

Embedded models can be judged directly, according to how well their behaviour matches that 

of the animal they model. Embedment removes the interpretive step between the model's input 

and output and its translation into sensation and behaviour. This behavioural approach to the 

study of embedded agents frees the research from having to make assumptions about the goal of 

agent computation between sensation and action. Without embedment, it must be assumed that 

computation aims to maximise information transfer, or make some feature explicit, or minimize 

an error function across the stimuli set, or some other non-behavioural criteria. The relation 

between computation and the behaviour it facilitates is via unimplemented assumption. With 

autonomous adaptation, the goal of agent computation is solely to produce behaviour suited 

to the current location given the current task. The computational input is sensation, and the 

computational output is behaviour. Animats can thus be judged, as animals are, purely in terms 

of the effectiveness of their behaviour. 

From an engineering perspective, the research goal is the development of autonomous robots 

that can survive in the hurly-burly of the real world. Such robots, like animals and thermostats, 

must compute robustly in order to behave appropriately over a wide range of conditions. Thus, 

Brooks (1986) argues that robots are most effectively developed and studied whilst embedded in 

the environment in which they must survive. 

Given an animat embedded within an environment, the problem becomes finding the compu- 

tations intervening between sensory input and motor output in order that the resultant animat's 

behaviour competently performs some task. The approach used in this thesis is to embed adaptive 

animats within environments and let them autonomously find a computational solution through 

incremental adaptation. Before discussing this and its implications, the alternative of principled 
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human design, is discussed. 

1.3 Computational analysis 

Computational analysis (Marr, 1977) of an isolated task involves determining the computational 

demands of a task, and from consideration of these, the development of a specification of "what 

is computed and why" for an agent to perform the task at some level of competence. The result 

of computational analysis is called the computational theory of the task and, in the best scenario, 

is a deep understanding of the necessary and sufficient computations underlying competence at 

the task. Particulars can be deduced from the general computational theory and implemented in 

an animat. This allows behavioural tests of the computational theory in the extent to which the 

performance and behaviour of the animat matches that predicted by the computational theory. 

When the method works, in the sense of delivering a simply formulated, but general computa- 

tional theory of a task, computational analysis leads to both an understanding of the task, and a 

set of machines able to solve it. In this happy case, the task is labeled type 1 by Marr, referring 

to one end of a continuum of tasks, ordered according to the simplicity of the computational 

theory that solves them. Computational theories are assessed by two criteria: the simplicity of 

their formulation - of two computational theories of a task, the simpler (more type 1) is to be 

preferred; and the generality of their explanatory power - the greater the range of tasks a compu- 

tational theory can account for (in terms of implementations that behave so as to solve the task), 

the more useful the theory. Moving along from the type 1 to type 2 end of the continuum, the 

computational theories increase in complexity, and hence in the number of parameters required to 

specify them, but decrease in generality in that the size of the set of possible implementations of 

the computational theory decreases. 

Marr (1977) cites the principal difficulty with computational analysis as occurring when a type 

1 theory cannot be found for a task. In this case, it is not in general possible to decide if this is a 

true reflection of a type 2 task, or if the task has a type 1 solution but it just hasn't been found 

yet. This problem emphasises the human design element of computational analysis - progress 

awaits the inventiveness of human analysts. Of course, this is somewhat of a caricature of what 

really happens for the sake of formality. In practice, in all but the simplest of tasks, there will 

be a more iterative approach to the generation of the computational theory, with examination 

of the behaviour of implementations of draft theories leading to greater understanding of the 

computational demands of the task and hence a more accurate computational theory. 

Computational analysis has proved very difficult, and this is compounded when the task to 

be analysed involves an agent embedded within an environment. This is chiefly due to the very 

wide range of possible computational solutions in all but the simplest of tasks. There is also 
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no guarantee that a solution proposed via computational analysis is incrementally acquirable, an 

essential requirement of animal solutions whether through evolution or individual learning. It may 

be the case that the computational strategy adopted by an animal to solve a task is not the most 

elegant or theoretically complete, but the most easily evolved or learned. 

The most important problem for computational analysis is that each task must be analysed 

individually, and solution depends upon the ingenuity of human analysers. Autonomous adapta- 

tion, in contrast, promises the automatic generation of animat behaviour by general systems that 

become specific through autonomous adaptation in response to the demands of particular tasks. 

1.4 Autonomous adaption 

An alternative approach to generating animats that can competently perform a task is to specify 

an environment and embed adaptive autonomous agents within it. Animats are controlled by 

parameterised computations that modulate behaviour in response to sensory input. The parame- 

ters of these computations originally have random values, but are modified over time in response 

to non-specific feedback evaluating the animats behaviour. For example, in this thesis, the only 

non-sensory, evaluatory feedback from the environment to the animat is a binary reinforcement 

signal, which equals 1 if the animat is within the goal region and zero everywhere else. Like much 

current work, animats here are controlled by neural networks with adaptive weights. Two types 

of algorithms have emerged for modifying the weights in response to non-specific evaluation of 

behaviour: genetic algorithms, and reinforcement learning. 

Genetic Algorithms 

Genetic algorithms (Holland, 1975; Goldberg, 1989) are based on Darwinian principles of evolution 

by selection of heritable variation. A population of random animats is generated, and the behaviour 

of each is evaluated on the task with a non-specific fitness measure. A new generation of animats 

is then generated from the first using genetic operators such as mutation and crossover, with 

selection biased according to the fitness of each individual. Over a number of generations animats 

evolve to higher fitness scores, and hence behaviour better suited to the task. The utility of genetic 

algorithms for evolving successful animat behaviour has been shown by a number of researchers, 

including Floreano and Mondada (1994). 

Reinforcement learning 

Reinforcement learning algorithms (eg. Sutton, 1988) modify the weights of neural networks con- 

trolling individual animats in response to a delayed, non-specific scalar reinforcement signal. In the 

temporal difference algorithm used in this thesis, developed by Sutton (1988) and Watkins (1989), 
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networks learn to map their sensory array to an estimate of how far from the spatial goal they are 

located given that sensory array. These estimates are utilised for behaviour, as animats should 

move in the direction leading to sensory states with higher estimates than the current one (and 

hence nearer to the goal). Learning involves updating the estimates in response to experience 

of sensory states and actions, and their effectiveness in leading to rapid movement to the goal 

location. Learning is on-going and depends upon the difference between temporally successive es- 

timates. The temporal difference algorithm used in this thesis is explained in detail in chapter 3. 

The end result, after evolution, or reinforcement learning, is an animat that performs the task 

at some level of competence. If the adapted animat performs well at the task, then the method 

results in a non-designed machine that behaves competently within its environment. Whatever 

solution it has developed, it must be incrementally acquirable. 

The next step is to try, if possible, to understand the learned computations underlying the 

animats behaviour. Working out what the animats have learned to do involves examination of 

both behaviour, and the internal structure of the animat after learning. If animats prove com- 

prehensible then the approach has led to the automatic generation of an incrementally acquirable 

computational model of the behaviour. If an animat proves incomprehensible, then this is prob- 

lematic. 

1.4.1 Comprehensibility 

If an animat is comprehensible, then this means that it is possible to abstract what it is doing 

in more general computational terms than by specifying the particular animat. For example, 

in chapter 4, animats learn to approach an object by convolving the sensory array with a step 

shaped filter. Describing the shape of the learned weight structure is a great deal simpler and 

more general than a description in terms of the value of each weight. It also implies a more general 

understanding of what animats have learned in which a range of particular animats can be seen 

as learned implementations of more general computations. Comparison of animats, in terms of 

the computations they have learned to implement becomes possible, and hence evaluation of the 

consistency of computational solutions to a task. 

The general computations are abstracted from particular animats, but their accuracy can be 

determined deductively by implementing particular animats that fall within the set of computa- 

tions they specify. In the simple case above, step filter animats are hand constructed by setting 

particular values for the parameters that the abstraction leaves free. The performance and be- 

haviour of the implementation, together with its variation can be empirically compared with those 

predicted by the computational abstraction. The computational analysis is shifted from the task 

itself to animats that have learned to efficiently perform the task. Computational analysis of 

learned animats is analogous to the task facing neuroethologists in computational principles of 
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animal behaviour. It is at this level of computations underlying the 

When an animat proves incomprehensible, this is both uninformative and problematic. As 

discussed above, Marr (1977) argues that when the computational analysis does not lead to a 

computational theory, it is problematic because this may be inherent in the task, or due to the 

poverty of the analysis, and it is not typically possible to decide which. The situation is worse 

when the analysis is of particular learned animats. Incomprehensibility in this case may be due 

to the nature of the task, the human analysis of the animats, or due to the algorithm used to 

generate the animat. 

1.4.2 Relationship to animal research 

The relation of animats to animals is through comparison of behaviour. In the behavioural exper- 

iments examined in this thesis, animals learn, over a number of trials, to locate a food source, by 

using their vision to guide movement. The most informative aspects of such experiments are trials, 

after successful learning, in which the environment is modified in some way from the environment 

during learning. The search pattern in such generalisation trials provides information about what 

the animals have learned that enables them to perform competently at the learned task, as well 

as enabling models of the behaviour to be distinguished. 

Animats that learn to perform the same tasks as the animals can be posited as models of 

the behaviour. The test of such an animat model is the extent to which its behaviour matches 

the behaviour of the animal when tested on modifications of the learning environment. Thus, 

animats learn within one environment, but are evaluated as models of the animals behaviour in 

a modified environment, that they have never experienced, and are not permitted to learn from. 

This is equivalent to human constructed models being only considered worthwhile if they are able 

to predict more than the data that they were explicitly constructed to model. 

1.5 Visual environments 

The visual sense of animals is highly complex, reflecting the complexity of the spatiotemporal 

patterns of light they must extract information from, and involves considerable processing even at 

the level of photoreceptors. In this thesis, a great many simplifications are made and so the term 

"simple visual sense" is used to emphasise the gulf between the simulations here and real animal 

vision, both in terms of the physical properties of light and its sensory reception. 

The intensity of light impinging upon a particular photoreceptor of an animal is determined 

by many factors. These include the position and output of light sources, both primary and 

secondary; the distance, orientation and reflectance of the surfaces imaged by the receptor, with 

respect to both the receptor and light sources; and other factors, such as properties of the eye, 
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and intrinsic and external noise. The resultant activation of the receptor is often itself a complex 

function of the intensity of light impinging upon it and other variables, such as the activity of 

neighbouring receptors and variables internal to the animal. Eyes are not merely passive recipients 

of information, but are dynamically controlled in order to increase the information received. An 

example is provided by the Limulus, which varies the sensitivity of its ommatidia by a factor of 

one million in a circadian rhythm, in order to compensate for the daily variation of light in its 

environment (Barlow, 1990). 

In contrast to the 3 dimensional and cluttered world that most animals inhabit, the environ- 

ments of these simulations are two dimensional and sparse. Surfaces have a scalar reflectance 

between 0 and 1. There are no light sources, just an ambient illumination that randomly varies 

between trials. The intensity of simulated light impinging upon a particular receptor depends only 

on the reflectance of the surfaces it is imaging, and the level of ambient illumination. Neither the 

orientation nor distance of the surface affect this intensity. One important aspect of the real visual 

world carried over to the simulation is the variation in mean illumination. Due to the rotation of 

the earth, the light falling on a location varies by a huge amount on a daily basis. The result is 

that the absolute level of light intensity falling on a photoreceptor tends to be uninformative, it 

is the spatial variation in contrast that carries the information. A successful visual system must 

be able to cope with this variation, and that of most animals does (Barlow and Mollon, 1982). 

The simulations in this thesis reflect this aspect of the world by randomly varying the simulated 

ambient illumination, so that only intensity differences, and not absolute intensities, carry any 

useful information. A further aspect carried over from the real visual world to the simulations in 

this thesis is visual noise, both independent and coarse scale. 

1.6 Convolution 

Convolution is a standard mathematical operation for transforming one array to another of the 

same dimensionality and size (Bracewell, 1965). A linear filter is independently centered at each 

position in the input array, and the value of the corresponding position in the output array 

determined as the sum of input array values around that position, weighted by the filter. Hence, 

the pattern of values in the output array depends upon both the pattern of input array values and 

the shape of the filter. More generally, and in this thesis, convolution may be with a non-linear 

filter, and employ subsampling. The essential idea remains the same: repeated application of an 

identical filter for a topography preserving transformation from one array to another. Convolution 

has found very widespread application in many areas of science (Bracewell, 1965), and characterises 

some of the processing in the early stages of much animal vision. 

The compound eye of an insect such as a honey bee or housefly consists of around 3,000 facet 
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lenses, each focusing on a set of eight or nine photoreceptors. The early visual system of insects 

consists of three successive ganglia: the lamina, medulla, and lobula. Connections between these 

ganglia are highly ordered and genetically prespecified with great precision (Osorio et al 1994). 

Photoreceptor output projects in an orderly one to one mapping to large monopolar cells 

(LMC) in the lamina, which transform the receptor array so as to use the coding range of neurons 

as efficiently as possible (Laughlin, 1987). In the projection from lamina to medulla, topography 

is again preserved. Medulla neurons are organised into orderly columns, with one column corre- 

sponding to each LMC in the lamina and each column containing around 50 neurons. Unlike the 

receptor array to lamina projection, where each LMC receives input form a single receptor neuron, 

medulla neurons typically integrate over a localised region of activity centered on the LMC in the 

topographically equivalent position to the medulla neuron (Strausfeld, 1976). Medulla neurons 

are precisely ordered: within each column, the 50 neurons have a wide range of receptive field 

structures, with neurons sensitive to both spatial and temporal aspects of stimuli falling within 

their receptive field. In contrast to the diversity within each column, across columns the response 

properties of each neuron are highly consistent. For each receptive field location, there is a neuron 

with the same receptive field structure in each column across the medulla, and hence the eye of 

the insect. Furthermore, across individuals, medullas are highly consistent, with the same set of 

50 receptive field structures in each column (Osorio et al, 1994). 

Thee lamina to medulla transformation in insects can be characterised as convolution of the 

lamina array by 50 filters of diverse spatiotemporal shape. The result of this is 50 arrays of the 

same size as the laminal array -a hugely expansive recoding of the sensory array. 

The same principle of convolution by a range of filters holds in the transformation from medulla 

to lobula, this time with subsampling (one lobula column for every 4 medulla columns), but in- 

volving a similar number of filters (Osorio et al, 1994). However, in the medulla to lobula trans- 

formation, convolution is not over a single 2-dimensional array (as in the receptor to lamina and 

lamina to medulla transformation), but over 50 2-dimensional arrays, each having spatiotemporal 

patterns of activity reflecting different aspects of the visual array. 

The early visual system of mammals embodies similar computational principles. Retinal gan- 

glion cells convolve the retinal array with filters having center surround structure, and filters with 

a spatiotemporal structure (Bruce and Green, 1985). As first discovered by Hubel and Wiesel 

(1968), the early areas of visual cortex convolve the array of LGN activations by a diverse range 

of orientation, scale, colour, and movement sensitive filters (Bruce and Green, 1985). Like the 

insect optic lobe, mammalian early visual cortex is highly ordered, with neurons organised into 

columns, and later area filters convolving over the many arrays resulting from earlier convolutions. 

Additionally like insects, the transformations are hugely expansive with many filters in each layer. 

Tanaka et al (1996) argue, from neuropsychological study, that the convolution architecture 

16 



extends at least as far as inferotemporal cortex, with neurons there able to respond to very complex 

aspects of the visual array by convolving across the arrays resulting from numerous previous layers 

of convolution. 

The similarity in the processing performed by the medulla and lobula of insects, and the early 

areas of visual cortex in mammals has been noted by a number of researchers (eg. Srinvivasan, 

1994; O'Carroll, 1993; Srinivasan et al, 1993). Similar, convolution based architectures are also 

found in the retina and optic tectum of amphibians (Ewert, 1984; Ewert, 1987; Young, 1989). 

It must be emphasised that in addition to the feedforward, convolution architecture emphasised 

here, the early visual systems of animals involve extensive feedback and lateral connections. 

Convolution of the visual receptor array by a number of filters of diverse spatiotemporal struc- 

ture, followed by further convolution of the arrays of filter output, is a partial characterisation of 

the early visual systems of animals as diverse as insects and mammals. The shape of the filter 

may be determined mostly genetically, as in insects, or be strongly modulated by learning within 

the individual, as in mammal cortex. Early auditory processing is also based on convolution of a 

sensory surface consisting of an ordered array of frequency receptors (Gallistel, 1990). In contrast, 

the early olfactory areas of both insects and mammals do not utilise convolution, which Osorio et 

al (1994) argue reflects the lack of spatial structure in the olfactory receptor array. 

1.6.1 Convolution networks 

Convolution by adaptive, non-linear filters, implemented as neural networks with a single output 

unit, is the computation of animats within this thesis. One, or more, convolution layers transform 

the 1-D visual array into a 1-D, topography preserving motor array that stochastically determines 

direction. 

The architecture is prespecified in the sense that the receptor array, and the convolution 

architecture is fixed. The number and size of filters is prespecified, as is the degree of subsampling 

and the nature of the non-linear integration. Reinforcement learning modifies the weights of the 

adaptive filter networks. 

The supervised learning of convolution networks weights was developed by Rumelhart et 

al (1986) and involves straightforward modifications of the standard back-propagation algorithm. 

They have been used for handwritten character recognition, though here the convolution tends to 

be by very small filters responding to the minutiae of the input images. A review of the appli- 

cation of supervised convolution networks is provided by LeCun and Bengio (1995). Fukushima 

(1989) uses an unsupervised learning convolution network for handwritten character recognition, 

but as in Le Cun's architecture, the first stage filters are very small compared to the size of image 

features such as letters or words. 

In addition to the biological motivation for using convolution networks, there are a number 
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of computational advantages of this architecture. Translation invariance is built in, rather than 

having to be learned. It is presumably the lack of a preferred horizontal orientation for animals 

that elicits convolution by the same filter across the visual field. In the vertical plane, for insects, 

there is a preferred orientation, and this is reflected in the differences in filter shape in the vertical 

plane. Just as for animals, there is no bearing preference for the animats in this research and so 

building in translation invariance by using a convolution architecture might be supposed useful in 

that it builds a computational property into the architecture, rather than it having to be learned. 

For animals, the bearing of images in the horizontal plane tends to be unconstrained, and so 

it would seem useful to be able to respond identically. In the case of the image of an object, 

the pattern of activation specifies aspects of the object, and the relative location of the pattern 

specifies the objects bearing. 

The genetically prespecified convolutions of the early visual system of insects reflects this 

fact about images. In addition to the computational utility of convolution, the repetition of the 

same structure allows a more efficient genetic encoding and hence more rapid adaption through 

natural selection. For mammals, the convolutions in the early visual areas of the cortex are largely 

learned, suggesting that mammals individually come to reflect this computational demand through 

individual plasticity, for the same reasons as insects have evolved the structure. 

The computational utility of convolution networks is achieved with a computational economy 

in that, because of the repetition of the weights, they have far less parameters than fully connected 

networks of the same size. Additionally, it can be expected that with fewer weights, learning is 

faster (Haykin, 1994). As will be demonstrated in later chapters, this also makes analysing what 

the animats have learned easier because behaviour can often be inferred from the response profile 

of individual learned filters. 

1.6.2 Multiscale filtering 

As described above, the early visual system of diverse animals can be partially characterised 

as an implementation of repeated convolution by a range of filters; the animats in this thesis 

share this structure. However, in addition to sharing the computation of convolution, evidence is 

accumulating that diverse animals are convolving with the same shaped filters. In particular, a 

subset of filters in the medulla and lobula of insects have both a scale and orientation selectivity, 

a feature of filters in the mammalian cortex. 

The existence of multiple scale and orientation sensitive filters has been suggested in insects 

by both behavioural (eg. Zhang et al, 1992; Srinivasan et al, 1993; Srinvivasan, 1994), and 

neurophysiological methods (eg. O'Carroll, 1993). Srinivasan et al (1993) found that insects could 

learn to discriminate between patterns of random stripes differing only in orientation. Zhang et 

al (1992) found that insects can learn to discriminate between patterns differing only in local or 

18 



global cues independently and make use of whichever is available and useful in a particular task. 

They suggest that this behaviour is mediated by channels sensitive to different ranges of spatial 

frequency. O'Carroll (1993) mapped the receptive field of orientation and scale sensitive filters 

within the lobula of dragonflies. 

Psychophysical evidence for the existence of multiple scale and orientation sensitive filtering 

within the early cortical areas of the mammalian visual system is widespread and reviewed by 

Bruce and Green (1985) and Watt (1988). Physiological evidence was provided by Hubel and 

Wiesel (1968). 

The question therefore is what is the computational utility of such filtering? The computational 

analysis approach to answering the question of why animals have particular shaped filters is based 

upon consideration of the properties of the filter and supposition of what their role may be in 

behaviour (eg Marr, 1982; Watt 1988). Autonomous adaption allows a different approach to this 

problem based upon assessing a particular set of filters according to how well animats, having 

their visual array convolved by such filters, can learn to perform a task. Thus, the utility of 

particular filters is first established behaviourally. Their computational role can then be assessed 

by examining the behaviour and internal structure of animats using them. 

In this thesis, the visual array is 1-D and so orientation is not an issue; the utility of multi- 

scale filtering of the visual array is examined by comparing the performance of animats having a 

multiscale filtered visual array, with animats having an unfiltered array. If those with multiscale 

filtered visual arrays learn to perform at a higher level than those without, this suggests that such 

filtering facilitates learning. By comparing over a range of tasks, it becomes possible to specify the 

conditions in which filtering facilitates learning and by analysing animats after learning examine 

why. 

1.7 Reactive agents 

A reactive agent is one whose behaviour at any time depends solely upon its sensory input at that 

time. It has no information about the temporal variation in either sensory state or its internal 

variables. A reactive task is one solvable by a reactive agent. 

The animats in this thesis are reactive. The visual array is transformed by a feedforward neural 

network to the motor array, used to stochastically determine the direction of movement. Animats 

have no direct memory of either the visual array or their movements on previous time steps. Nor 

do these animats have internal variables that depend on recent behaviour as provided by recurrent 

networks (eg Cliff et al, 1997). 

Reactive animats were chosen for simplicity of processing and to facilitate analysis of behaviour 

and internal structure after learning. With reactive animats, a single motor array is associated 
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with each location in the environment. With non-reactive animats behaviour depends on both 

where the animat is, and where it has come from. 

Whilst there is a great deal of evidence of non-reactive processing in animals, they is also a 

reactive component to their processing. Bees can learn to differentiate between stationary patterns: 

Srinivasan et al (1993) found bees in aY shape environment could learn to distinguish between 

horizontal and vertical stripes presented for only 0.2ms every 0.5 sec; too quickly for motion cues. 

Cartwright and Collett (1983) found bees learned the visual angle subtended by a featureless 

landmark to guide search; this is a reactive cue available in stationary images. 

Thus, animals are sensitive to both stationary retinal images and temporal variation in the 

images. The reactive animats of this thesis demonstrate what can be done in these tasks with just 

spatial filters. Sensitivity to image motion seems partially meditated by filters with a temporal as 

well as spatial structure within a convolution architecture. Extension of the work to non-reactive 

animats with such filters is discussed in chapter 8. 

1.7.1 Why not just do supervised learning? 

Given the reactive nature of the animats, this raises the objection, why not just do supervised 

learning of the required input-output mapping? The animat could be placed at a random location 

in the environment, and the sensory input at that location mapped via supervised learning to 

the direction that leads the animat nearest to the goal. This method should result in animats 

that move efficiently to the goal, since the required function is likely to be learnable given enough 

hidden units. 

There are two major reasons why this method is not good. Firstly, animats must learn to 

move to the goal based upon the reinforcement signal received only once at the goal. Clearly this 

is, in general, a much harder task than learning the supervised mapping. Animals do not have an 

external teacher pointing to the goal at each time step; they must work out for themselves how to 

get there from personal experience. Reinforcement learning animats face the same problem and 

so reinforcement learning of the movement has an ecological validity that supervised learning does 

not. 

The second reason why the supervised learning of these tasks is not useful is that it is not 

possible in general to uniquely specify what the input-output mapping is. In all but the most 

trivial of tasks, there are a range of different strategies for effectively moving to the goal. Animats 

develop particular routes and strategies for goal finding which depend upon factors like network 

size, sensory coding, and noise. The animats in this thesis, like animals, tend not to learn the most 

efficient routes to the goal, but the easiest learned routes given their situation. Animats because 

they are embedded able to some extent control their sensory input. Actions in some regions of 

the environment may not be learned at all, but because these regions are rarely visited given the 
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animats goal finding strategy, this has little effect upon overall performance. These effects are not 

available for disembodied mapping. 
To give a concrete example of this, the simplest task in this thesis is in chapter 4, where the 

environment is empty except for a solitary circle which animats must learn to approach. Even in 

this simplest case, it is found that some animats approach the edge of the circle and some approach 

it head on. Which of these strategies is learned depends on the animats sensory coding. In the case 

of landmark learning (chapter 7), where the environment contains numerous landmarks, there are 

many different strategies for getting to the goal and animats will be shown to often find ingenious 

strategies for getting there with the minimum of computational effort. 

1.8 Aims of the research in this thesis 

Throughout the thesis, animats with the same convolution based internal structure learn to per- 

form a range of visually guided, spatial goal directed tasks in simulated 2-D environments. A 1-D 

visual array is reactively mapped, through convolution, to a topography preserving motor array 

that stochastically determines the direction of movement. The higher the value of a motor array 

element, the higher the probability that the animat will move in the corresponding direction. 

The same reinforcement learning algorithm modifies the filter networks controlling animat 

behaviour based upon a binary reinforcement received only at the goal. Thus, the first question 

is the extent to which this animat design and adaption algorithm can generate animats able to 

efficiently learn to move to the spatial goal in the particular task. 

In chapters 4-6 two forms of coding the visual array are compared: either the visual array itself 

is convolved by an adaptive filter network to generate the motor array; or the visual is convolved 

by multiscale filters to yield a 2-D multiscale array which is convolved by the filter network to 

determine the motor array. The question here is whether multiscale filtering of the visual array 

leads to animats that learn to perform more efficiently than those convolving the raw visual array, 

and how this is affected by visual noise and task. The overall goal is to determine, in behavioural 

terms, the computational utility of multiscale filtering: under what circumstances, and why, does 

this computation yield better behaviour. 

In chapter 4, animats learn to approach a solitary circle in an otherwise empty arena; the 

contrast between landmark and wall luminance varies randomly between trials, both in sign and 

magnitude. With no visual noise, animats learn to efficiently approach the circle whether or 

not their visual array is multiscale filtered. However, when visual noise is present, animats with 

multiscale filtering outperform those without, and this performance difference increases with noise. 

Hence it is concluded in this case that multiscale filtering can lessen the deterioration due to 

visual noise. Analysis of the learned computations reveals the mechanisms underlying this noise 
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resistance. 

Chapter 5 usues the same environment as above, but instead of the goal region being around 

the circle, it is where the visual angle subtended by the circle falls within a particular range. 

Even without visual noise, multiscale filtering leads to significantly superior performance. This 

difference increases in the presence of noise. 

In chapter 7, the sensory array codes landmark distance, which is coded either as a 1-D 

intensity array or expanded to a 2-D vector coded array. Once again, the computational utility of 

these forms of coding is compared through the behaviour of animats that learn to use them. The 

behaviour of animats is compared to that of gerbils in Collett et al's (1986) landmark learning 

experiment. These tasks involve a few landmarks in fixed relation to each other and to an invisible 

goal region. Analogously to the finding that multiscale filtering facilitates learning the visual 

tasks of chapters 4 to 6, local coding of the distance array facilitates the learning of these spatial 

navigation tasks. Further simulations compare the search behaviour of animats to the animals 

when the landmark arrangement is modified; it is found that vector coding animats behave closer 

to the gerbils than intensity coding animats. 

In all cases, animats that have learned to efficiently move to the spatial goal are animats are 

examined after learning in terms of performance, behaviour and internal structure. The goal of 

this analysis is determine what computations the animats have learned that underlies their efficient 

behaviour. 

22 



Chapter 2 

Literature review 

This chapter reviews some of the computational psychology research most relevant to the research 

presented in this thesis. The focus is upon animats, whether real or simulated, that use visual 

information to guide movement. At the end of the chapter, the relationship between the research 

in this thesis and the reviewed literature is discussed. 

Beer (1995,1996) focuses mostly upon animat locomotion, rather than the visual processing 

studied here. Arbib (1987) focuses mostly upon high-level visual schemas, rather than the low 

level vision studied here. Hence, the work of these researchers will not be discussed further. 

2.1 Walter's tortoise 

W. Grey Walter (1953), designed and built a simple electromechanical animat that he called 

Machina Speculatrix. This had a single photoelectric sensor, and a touch sensor. Speed and 

direction of movement were controlled by the animat, which resembled a tortoise. Rather than 

being a computer program running on a general purpose computer, as is generally the case today, 

animat control was by a small circuit of thermionic valves, relays and condensers. 

Machina Speculatrix was wired so that the photosensor constantly rotated through 360 degrees, 

until activated by a light source, in which case it stopped rotating. The machine steered towards 

moderate intensity light, but avoided very bright light. This was implemented via an ingenious 

design in which the front wheel, which controls the direction of movement, was directly connected 

to, and pointed in the same direction as the rotating photoreceptor. In darkness the photoreceptor 

and front wheel rotate continuously, resulting in roughly straight movement. When activated by a 

light source, the photoreceptor stops rotating, and so does the front wheel, and the animat moves 

toward the light. 

If placed equidistant from two equal light sources, the animat does not move between them; 
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instead the photosensor will become active in response to one of the lights, stop rotating and steer 

toward the light. As the machine moves closer to the light, the activation of the photoreceptor 

will increase, until, if the light is bright enough, the avoidance mechanism will be activated. 

This behaviour, like the steering toward mechanism, emerges from Walter's physical design. The 

photoreceptor rotates away from bright light, which also causes the front wheel to rotate in the 

same direction, which causes movement away from the bright light. As the photoreceptor continues 

rotating, it will fix upon the less intense other light source and steer toward this. Left alone in 

this situation, machina speculatrix will continue to move to and fro between the two light sources. 

A touch receptor was wired into circuits so that upon hitting an object, the animat would 

reverse a small distance, rotate the front wheel somewhat, and then move forward. The result is 

simple but effective and robust obstacle avoidance. 

Walter attached lightbulbs to animats, with the result that they became attracted to each 

other. If the lightbulbs are bright enough, the bright light avoidance behaviour will be activated, 

and they will only move to within a certain distance of each other, but no closer. If the lightbulbs 

are not bright enough to elicit the bright light avoidance behaviour, animats will move toward 

each other until they meet, which activates the touch sensitive obstacle avoidance behaviour, so 

they back off, become attracted again and so on. 

Simple reinforcement learning was also implemented by Walter. An auditory receptor was 

added to Machina Speculatrix, together with circuitry to keep a slowly decaying trace of the 

derivative of the activity of the light and sound receptors. Given a binary signal, the derivative of 

activity is highest at stimulus onset. The animat was prewired to move toward moderate light, and 

hence Walter regarded this as an unconditioned reflex. If a whistle is blown, followed some time 

later by the turning on of light, then the animat moves toward the light. If the trace of activity 

in the sound receptor decays slowly enough, then it will overlap with the trace of activity in the 

photoreceptor. Given such as overlap, the circuitry of Machina Speculatrix increased the weight 

between the two activity traces, so that activity of the sound receptor would lead to increase in 

activity of the valve responding to the photoreceptor. Over time, with repeated pairing of sound 

and swiftly following light, the weight becomes large enough so that activity of the sound receptor 

elicits behaviour without the light. 

Walter's work demonstrates the relative complexity, and surprisingly animal-like behaviour 

that can emerge from very simple receptor and internal processing mechanisms. It also illustrates 

how the constraints of actually building a physical machine, in contrast to the freedom of general 

purpose computation, may lead to ingeniously simple mechanisms underlying seemingly complex 

behaviour. Phototaxis is built into, and inseparable from, the actual mechanical structure of the 

animat. The extent to which the same may be true of animals is an important question. 
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2.2 Braitenberg's vehicles 

Braitenberg (1984) published a series of thought experiments with simple hand-designed animats 

that he called vehicles. They are simple enough for their general behaviour to be imagined, and 

were neither simulated or implemented on a real machine. Vehicles with two light sensors at 

their front end and two wheels at their rear end to control the direction of movement, exhibit 

a variety of behaviours depending upon the pattern of connection between the sensors and the 

wheels. When each of the sensors is connected to the wheel on the opposite side of the vehicle, it, 

will move toward a light source. When the sensors are connected to the wheel on the same side of 

the vehicle, the vehicle moves away from light sources. Like Walter (1953), Braitenberg examines 

the behaviour of multiple vehicles with lights attached to them and explores the ensuing dances 

of attraction and repulsion. 

Braitenberg progresses through more complex vehicles within the same framework to explore 

behaviours involving primitive learning, simple pattern detection and movement detection. 

In contrast to the specific physical mechanisms that underlie the behaviour of Walter's animat, 

Braitenberg's work abstracts the essence of sensorimotor problems, and develops very general 

strategies for solving them. 

2.3 Brooks' subsumption architecture 

Brooks (1986,1991) has been highly influential in the development of this field, which he emphasises 

as a behaviour based approach in contrast to the knowledge and representation based approach 

of traditional artificial intelligence research. 

Brooks's work has focused mostly upon architectures for control of robots. Rather than have a 

central and general behavioral controller, Brooks decomposes complex behaviour into a collection 

of simple and specific task achieving behaviours. Each of these is performed by an autonomous 

behavioural module dedicated to a particular task. Higher levels of control are achieved by modules 

which process the output of lower level modules, and can suppress, or subsume, them. The result 

is a robust and flexible robot control system. 

2.4 Modelling insect visuomotor control 

Fransceschini, Pichon and Blanes (1992) develop a robot visual system explicitly modelled on 

aspects of the visual system of houseflies. The system was implemented on a real robot using 

purpose built parallel circuitry. The robot had 100 photoreceptors, arranged in a horizontal 

plane, nonlinearly covering 360 degrees. The number and arrangement of receptors is close to 

that for a horizontal slice through the receptor array of a housefly. This 1-dimensional array of 
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intensity values is convolved by an array of elementary movement detectors (EMD) modelling 

the computations of neurons identified in the lobula of houseflies. EMD's compute the difference 

between the activity in one region of an array, and the activity in a neighbouring region after a 

short temporal delay. They respond most strongly to contours moving at a preferred speed in a 

preferred direction, and can be thought of as filters with temporal as well as spatial structure. 

Covering the whole visual field, EMD's transform the receptor array to an array in which high 

activity at a point signals movement in the direction, and at the velocity at which the EMD's 

are sensitive. By convolving the image with a number of EMD's, each with a different preferred 

direction, sensitivity to all directions can be obtained. In this case, the image is transformed into a 

set of images, one for each direction, and the evidence suggests that this is the sort of organisation 

employed by many species of both vertebrates and invertebrates (reviewed by Franscechini et 

al, 1992). 

Franscechini et al's (1992) animat convolves with two sets EMD's, one for each direction in the 

1-D visual array. The task for the animat is to move to a goal location, the bearing of which is 

provided as additional input to the animat, while avoiding obstacles. The obstacles cause points of 

high contrast in the 1-dimensional visual array; movement of the animat results in movement of the 

contrast points, and this elicits activity in the EMD layer. Because the image is one dimensional, 

movement can only be in one of two directions and hence two sets of EMD's are needed, with 

opposite preferred directions. By the simple principle of motion parallax, a moving agent can 

compute the relative distance of a contrast point from its angular speed as it moves across the 

visual field due to the agents movement (Whiteside and Samuel, 1970). Franscechini et al (1992), 

use the activity in the prewired, EMD layer as input to a motion parallax calculation that outputs 

the relative distance of contrast points and hence obstacles. This together with the bearing of the 

goal is used to steer the animat so that it moves toward the goal whilst avoiding obstacles. The 

animat performed well at the task, being able to slalom through a cluttered environment toward 

the goal at speeds of around 50 cm per second. 

2.5 Reinforcement learning animats 

Prescott and Mayhew (1992) report a neural network controlled, simulated animat, that learned 

to avoid obstacles. The sensory input to their animat is provided by three range finder sensors. 

This three dimensional state-space of possible sensory values is split into non-overlapping boxes 

to produce a locally coded sensory array. 

The animat moved around in a cluttered environment and received a negative reinforcement 

signal upon bumping into an obstacle. Obstacle avoidance alone is not, in general, a well formed 

task, because animats can just stay still, or move in a tight circle, and they will avoid obstacles. 
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Animats whose goal is solely obstacle avoidance do indeed learn such strategies. In order to 

avoid such trivial, but effective, strategies, Prescott and Mayhew (1992) introduced the further 

constraint that the animat, whose speed was constant, should make as few turns as possible. 

This was incorporated in the reinforcement regime and resulted in animats that both competently 

avoided obstacles, and covered a lot of ground. 

2.6 Evolving animat controllers 

As discussed in chapter 1, genetic algorithms, based on Darwin's theory of biological evolution 

by the selection of heritable variation, provide a method of autonomously generating animat 

behaviours in response to non-specific feedback evaluating those behaviours. Genetic algorithms 

have proved highly effective in evolving behaviours of neural network controlled animats. 

Floreano and Mondada (1994) evolved neural networks for a mobile robots having a 1-D, 8 

element, sensory array of proximity detectors. Animats were evaluated according to how well 

they avoided obstacles whilst maximising forward velocity in a simple maze-like environment. A 

population of 80 animats evolved effective solutions to this problem within 100 generations; the 

best evolved animats were shown to be considerably more efficient than hand-wired animats based 

on Braitenberg's (1984) vehicles. 

Floreano and Mondada (1996a) used the same mobile robots and environment to explore 

emergent homing behaviours. Animats were equipped with a short-life simulated battery, and a 

location in the environment, specified by visual cues, was designated the battery recharge area. 

The fitness function used to evaluate animats was a simplified version of that used by Floreano 

and Mondada (1994) and did not contain any explicit terms for driving the animat toward the 

recharging area or for processing the sensory cues associated with it. Animats that lived longer 

however were able to score higher evaluations and this implicit pressure led to complex and highly 

interesting emergent behaviours. Animats would efficiently move around the environment when 

their battery levels were high, thus scoring high evaluations. When their batteries were low, 

however, they would engage in the completely different behaviour of detecting and steering toward 

the battery recharge area. Recharging their batteries enabled them to continue with the efficient 

movement behaviour and thus further increase their evaluation. Floreano and Mondada (1996a) 

emphasise that evaluation functions should be as general and simple as possible, and like the 

situation with animals, only implicitly pressure animats to engage in particular behaviours. 

In an extension of this work, Floreano and Mondada (1996b) evolve the weight change rules 

determining the learning of neural networks controlling the animats. Individual synapses between 

units in the network had a genetically coded weight change rule. Animats then learned to perform 

the "go fast whilst avoiding obstacles task" of Floreano and Mondada (1994), starting from random 
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weights. Evolution provided the animats with learning rules leading to rapid development of 

efficient behaviour. 

Cliff, Harvey and Husbands use genetic algorithms to adapt the parameters of neural network 

controlled animats in order to evolve a range of visually guided behaviours (Cliff et al, 1993; 

Harvey et al, 1994; Cliff et al, 1997). The animats are implemented both in a real robot, with a 2- 

dimensional camera, and in an accurate simulation of the robot. The research goal is the evolution 

of animats that can competently perform tasks of incrementally increasing complexity. They use 

a very general animat design based upon variable size, continuous time recurrent neural networks 

controlling animats whose visual systems are also parameterised and subject to evolution. Their 

design explicitly builds in as little structure as possible. A genetic algorithm, developed by Harvey 

(Harvey, 1991,1993), modifies all these parameters in response to the selection pressure of task 

competence. The size of the networks, weights between units, and visual receptor arrangement are 

all modified by this algorithm. Thus, very general animats become specialised though evolution 

to solve particular tasks. 

Cliff et al (1997) argue that animals, and hence the animats that model them, are most usefully 

viewed as continuous dynamical systems. Within this perspective, sensory or other input to the 

system acts to perturb the trajectory of the dynamic system in state space. The perturbation may 

lead to changes in the variables determining motor control, and hence to a change in behaviour. 

A perturbation, however, may not directly influence behaviour, but instead lead to changes in 

internal variables which may indirectly alter behaviour at a later time. The most important point 

is that Cliff et al explicitly reject a view of sensorimotor processing as a reactive transformation 

from a visual array to a motor array. Cliff et al's animat design reflects their dynamical system 

view of behaviour, by being controlled by a recurrent neural network. 

The parameters defining the photoreceptors are themselves under genetic control and evolve 

concurrently with the neural network they provide input to. The simulated, or real, camera 

provides a 2-dimensional, high resolution visual image which is sampled by photoreceptors, defined 

by two parameters, a center, and radius of their receptive fields. Each photoreceptor averages the 

activity within its receptive field, and this provides the visual input to the animats. 

In one of their simplest tasks (reviewed in Cliff et al, 1997), animats are placed in random 

locations within an empty circular arena and must move to the center of the arena as quickly as 

possible, and stay there. The evaluation function that selects for competence at this task sums the 

distance of the animat from the center of the arena over time. Thus, the more time a particular 

animat spends at the center of the arena, the lower its evaluation function. The genes defining 

animats with the lowest evaluations in a generation have the greatest probability of being retained 

to define animats of the next generation. Over 100 generations, with a population of 60 animats, 

the genetic algorithm evolves animats that perform very well at this task. The best animats move 
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directly to the center of the arena from any start position and then rotate in a tight circle around 

the center. 

Analysing animats that have evolved to perform a task efficiently forms a major part of Cliff et 

al's research, and involves identifying attractors in the state space of animat-environment interac- 

tion. These attractors correspond to stable relationships between the animat and its environment, 

such as the animat being in the center of the arena. In this task, two photoreceptors were used in 

the evolved solutions, and two different solutions to the task were evolved which, though leading 

to similar behaviour, involve different internal structures and positions of the two photoreceptors. 

Harvey et al (1994) report the evolution of animats able to discriminate between a circle and 

square within the environment by using an evaluation function which over time sums the animats 

distance to one and subtracts the distance from the other. Efficient solutions were evolved that 

used two photoreceptors and a comprehensible internal structure. 

2.7 Relation of the research of this thesis to the literature 

This section attempts to place the present research in the context of the work outlined above, and 

to justify the various decisions made here concerning animat design and research focus. 

2.7.1 Processing 

Like much current research, this research uses adaptive neural networks to control animats. Cliff et 

al (1997) use a very general, recurrent network architecture, in which both the network structure, 

and the weights evolve in response to the selection pressure of the evaluation function. In the 

present research, the network architecture is fixed in that the only computation is convolution. 

In the multiscale coding condition, the visual array is convolved by a number of filters with fixed 

structure; in all conditions the visual array, or the multiscale filtered array, is convolved by a 

neural network whose weights change over time, in accordance with the reinforcement learning 

algorithm. 

As explained in chapter 1, animat processing here is based on the computation of convolution, 

because this is widely found in the early stages of both vertebrate and invertebrate vision. This 

approach follows Francesini et al (1992), who as outlined above, take convolution as the basic 

computational building block of their insect modelling animat design. Francesini et al convolve 

with hand wired filters in order to perform a particular set of behaviours. In the present research, 

the convolution is by an adaptive neural network which learns a structure in response to the 

computational demands of the task. 
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2.7.2 Adaptation 

Of the research discussed above, Walters (1953), Braitenberg (1984), and Francescini et al (1992) 

used predominantly hard wired networks. Cliff et al, and Floreano et al, and much of the current 

research in autonomous agents use genetic algorithms to evolve populations of animats in response 

to the selection pressure of evaluation functions. 

Here, reinforcement learning is used to adapt the weights of individual learning animats. The 

reinforcement regime is the same throughout this research: animats receive zero reinforcement on 

each time step except when they move within the goal region, when a reinforcement signal of 1.0 is 

received. This setup is close to the animal behaviour experiments (such as Cartwright and Collett, 

1983; Collett and Cartwright, 1986) that are the focus of the present research, in which individual 

animals are let loose in an environment containing an invisible food source. The animals begin 

having no knowledge as to where the food is, and are only rewarded with food when they get 

to the right location. In such situations, animals are effective at individually learning to visually 

guide their movement to the location of the food. 

2.7.3 Multiple task learning 

This research uses the same animat design for a range of tasks in which only environment and 

goal location differ. General animats learn to become specialised in response to the particular 

environment and spatial goal that define a particular task. 

2.7.4 Comprehensibility 

Following work above such as Floreano and Mondada (1994,1996a, 1996b), a major focus of this 

research is on analysing the behaviour and learned internal structure of animats that have learned 

to perform a task competently. 

The convolution based animat design used here facilitates analysis in a number of ways. Be- 

cause the processing is reactive and feedforward, behaviour at a location in the environment is 

determined stochastically by the visual input at that location, and is unaffected by the route the 

animat took to get there. Furthermore, because animats have 360 degree field of view, and the 

behaviour at each time step is to choose a direction rather than alter the direction of movement, 

there is no orientation parameter. At each location, a single sensory array is transformed into a 

single motor array, which specifies the probability that the animat will move in each direction. 

Although clearly straying from the situation with animals, these simplifications greatly facili- 

tate analysis of what animats have learned to compute. 
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2.7.5 Relation to animal behaviour research 

This type of work yields computations that produce behaviours. These computations have not 

been hand-designed by a human programmer, but have been autonomously generated adaptation 

of individual animats in response to the demands of the task. 

In the case of this thesis, in chapters 5 and 7, animats learn tasks that are analogous to 

those that animals have been experimentally shown to be capable of learning. In chapter 5, the 

analogous animal behaviour experiments involve honeybees learning to move to a goal location at 

a fixed distance from a single cylindrical landmark (Cartwright and Collett, 1983). In chapter 7, 

the experiments involve gerbils learning to move to a goal location defined relative to a number 

of cylindrical landmarks (Collett et al, 1986). These two sets of animal experiments are ideal 

material for the present thesis for a number of reasons. 

In both sets of experiments after learning the task, animals were tested in a variety of mod- 

ifications of the environment during learning. It is these generalisation tests that are crucial in 

discriminating between models. Two animats that differ in some way may both learn to both 

competently perform a particular task, but if the difference between them is significant, then they 

will behave differently in some modified environment. This situation is found repeatedly in later 

chapters, where it is shown that although animats behave identically when tested with the envi- 

ronment they learned in, they behave differently, but consistently, when tested with modifications 

of the learning environment. Thus, behavioural experiments of this kind provide computational 

psychologists with both a behaviour to model, and a clear means for assessing the accuracy, and 

hence refuting, proposed models. 

These tasks are good for the present purposes because there are no explicit models of the 

behaviour, in the sense of a well defined set of computations that, when implemented, result in 

behaviour matching the animal's in the learned environment and in the range of modified envi- 

ronments tested by the experimenter. The method of computational analysis has (to date) failed 

to yield models of these behaviours and so they are prime targets for modelling by incremental 

adaptation. 
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Chapter 3 

Reinforcement learning 

In reinforcement learning tasks, a learning agent produces a sequence of actions and receives a 

delayed scalar reinforcement signal which indicates the effectiveness of the actions. However, the 

reinforcement received does not indicate which actions were responsible for its value, nor is it 

informative about the way actions should be modified to increase reinforcement. For example, in 

Oils thesis, reinforcement is zero at all spatial locations except within the goal region, where a 

reinforcement signal of one is received. Having randomly stumbled upon the goal region, how can 

the aiiimat use the non-specific reinforcement signal, received only having arrived at the goal, to 

modify its actions so as to steer more efficiently toward it in the following trials? 

Temporal difference learning (Sutton, 1988) is a method for solving this credit assignment 

problem. Firstly, the basic temporal difference learning algorithm is explained. This provably 

sokvrs the reinforcement learning problem if it can be framed as a Nlarkov decision problem. Next, 

the extension of this algorithm to less restrictive and more general cases using neural networks as 

adaptive function approximators is discussed. Finally, the application of the temporal difference 

algorithm, Q learning (\Vat, kins, 1989), to the convolution animats used here is explained. This 

section specifies the learning algorithm used throughout this thesis. 

3.1 Temporal difference learning 

Consider an agent, which at each time step is in one of a finite set of states K, and does one 

action from a finite set of actions, A. At time t (t = 0,1,2 
... 

), the agent is in state a"t EX 

and performs action at E A. The result is that the agent deterministically transitions ti state 

xt+1 E K, independently of its {gast history. When the state transition occurs, the agent receives 

reinforcement, rt, a funct ion of rt and at. The choice of action in each `t ate i., known as the policy 

of the agent 
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The goal of the agent is to maximise the cumulative reinforcement received over time, which 

amounts to moving, as soon as possible, to those states where reinforcement is high, whilst avoiding 

states where reinforcement is low. However, reinforcement may be sparse, and states of low 

reinforcement may be the only route to higher reinforcement, and so it is not generally optimal to 

just move to the state with highest immediate reinforcement. 

Firstly, suppose the agent has a policy for determining which actions to perform in each state, 

and consider the problem of estimating the expected cumulative reinforcement to be received in 

the future given the current policy. Define the evaluation of state Xt, as the discounted cumulutive 

reinforcement to be received in the future, starting from time t: 

00 
V(xt)_Eykrt+k 

k-0 

(3.1) 

0< ^y <1 is a discount factor which weights reinforcement according to how far in the future 

it is received. If y=0, then V(xt) = rt and is maximised by performing the action that will lead 

to the highest immediate reinforcement. As y gets closer to 1, longer term reinforcement becomes 

more important. In the single goal case of this thesis, where rt =0 except when the agent moves 

to the goal state, where rt = 1, V (xt) reduces to y\ , where A is the number of steps between state 

xt and the goal state. Thus, the evaluation of a state is a measure of how far away it is from the 

goal state, given the current policy. 

Temporal difference algorithms rely on a recursive rewriting of the above evaluation function 

that is made possible by the exponential definition of discounted reinforcement 

00 

V(xt) _E ykrt+k 

k-0 

co 
= rt +E 7k rt+k 

k-1 

00 

= rt +yE lykrt+l+k 

k-0 

= rt + 7V (X t+l) (3.2) 

That is, the evaluation of the current state equals the immediate reinforcement plus the eval- 

uation of the next state, discounted by "y. It is this recursive definition of state evaluation that 

provides the key to temporal difference learning algorithms. In each state, the agent estimates 

V(xt), by a function, V'(x). V'(x), will be an accurate estimate of V(xt) when two temporally 

succesive estimates V'(xt) and V'(x +l) satisy equation 3.2. Hence the estimates can be adjusted 

by using the difference between the two sides of the equation as an error on the estimate of the 

evaluation of state xt 
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error(V'(xt)) = rt + -yV'(xt+l) - V'(xt) 

V'(xt) can then be incrementally updated in the direction that reduces this error. Barto et 

al (1989) show that this algorithm converges to an accurate estimate of the evaluation of each 

state. That is, V'(x) =V (x) for all xEX. 

Given a policy, the above algorithm provides a way of iterating toward an accurate evaluation 

of that policy. The next step is to see the link between an estimate of the evaluation of each 

state, and a policy for action selection. Given an evaluation function, the best policy is to do the 

action, at each time step, leading to the state with the highest evaluation. Thus, given a policy, an 

accurate evaluation function can be incrementally learned, and given an evaluation of each state, 

optimal actions can be generated. 

Q learning, developed by Watkins (1989), exploits this close relationship between evaluation 

and policy. Instead of estimating the evaluation of states, the utility of state/action pairs is 

estimated. Define the utility of doing action at when in state xj, Q(xt, at), as the immediate 

reinforcement plus the discounted evaluation of the next state 

Q(xt, at) = rt + 7V (xt+i ) (3.3) 

Assuming that the policy of the agent in each state is to do the action leading to the state 

with highest Q value, then (Watkins, 1989) 

Q(xt, at) = rt +7a (Q(xt+i, at+i)) 
aEA 

(3.4) 

This link between temporally succesive Q values allows an incremental algorithm for their 

estimation to be developed. Let Q'(xt, at) be the agents estimate of the utility of doing action at 

in state xt. In each state, the agent does one of the actions, leading to a new state, xt+l. Then, 

the difference between estimates of the utility of actions in the new state, and the preditions from 

the previous state provide an error on that estimate 

error(Q'(xt, at)) = rt +7 ax(Q'(xt+l, at+l)) - Q'(xt, at) (3.5) 

Q'(xt, at) can then be incrementally updated in the direction that reduces this error. Note 

that only the estimate for the action actually perfermed in state xt is updated, since from the 

single experience nothing is known of the utilities of other actions. A consequence of this is that 

although the best action in each state is the one with highest Q value, other actions should be 

tried in order to converge upon accurate estimates for all actions in each state. Stochastic action 

selection, whereby actions are chosen randomly, but with a higher probability according to their 
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Q values, is thus required. This is refered to as exploration, as opposed to the exploitation of 

doing the action in each state with the highest Q value (Thrun, 1991). Watkins (1989) shows that 

this algorithm converges, so that given enough time for learning, Q'(x) = Q(x) for all xEX and 

aEA. 

3.2 Q learning with neural networks 

The above algorithm can be mathematically shown to converge in the highly restrictive conditions 

whereby the agent is moving amongst a finite number of distinguishable states. In this case, 

estimates are single numbers associated with each state. In the more general case, as in this 

thesis, agents have a sensory array which is a symptom of their state rather than the state itself. 

Sensory arrays may be continuous, and need not all be distinguishable. Neural networks provide a 

way of mapping such arrays to utility estimates by virtue of their general function approximation 

properties. The sensory array is mapped by a neural network to a set of Q value estimates, the 

errror term calculated as above, and the neural network updated to to reduce the error (Barto, 

Sutton and Watkins, 1989; Lin, 1992). Whilst this permits reinforcement learning in more general 

situations than the Markov decision problems discussed above, mathematical proofs of convergence 

are not avalable. Thus, whether learning in a particular case is possible becomes an empirical 

question. Lin (1992) and Tesauro (1992), amongst others, have demonstrated the utility of Q 

learning with neural networks in this more geneal case. 

3.3 Q learning for convolution animats 

Here, the standard Q learning algorithm described above, is used to update filter network weights 

in the convolution animat architecture (see fig. 3.1). This section descibes the algorithm, which 

remains the same throughout the thesis. 

3.3.1 Filter networks 

Sensory input to the animats is provided by a 1-D visual array. In this thesis, the array evenly 

covers 360 degrees, though this is not essential to the algorithm. The sole internal processing 

component of animats is a filter network, a standard feedforward network with a single output 

unit (fig. 3.1a) with activation between 0 and 1. Direct filter networks have a single layer of weights 

mediating between the input units and the single output unit, in which case, the activation of the 

output unit is simply the weighted sum of the input unit activities put through a sigmoid function 

o= f ýwix; 
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(a) (h) 

Its 

(c) 

Motor Array 
0 24 48 72 96 120 144 168 192 216 240 264 288 312 336 360 

Figure 3.1: Animal, sensorimotor system. Filter networks: (a) Direct. (b) with hidden units. 
(c) The 1-D visual array is convolved with the adaptive filter network to produce a 1-D motor 
array which stochastically determines the direction of movement. 

where o is the output, unit, activation, xi is the activity of the ith input unit and wi the weight to 

it. The sigmoid function is given by 

1 
f ýx) 

-1+ e-x 

If the filter network has hidden units, each of these has an activation given by the sigmoid 

of the weighted sum of input, activity. The output unit activity is then given by the sigmoid of 

weighted sum of hidden unit, activation. 

3.3.2 Mapping from visual array to motor array 

Sensory input to the animats is provided by a 1-D visual array, x covering 360 degrees, a function 

of the aninuats location within a 2-D environment. This array is convolved with a filter network 

to produce a 1-1) motor array (fig. 3.1). 
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To implement convolution, identical copies of the filter network are centered at each position 

in the visual array, corresponding to a direction, B, and in parallel, they each map the region of 

the visual array to an activation of the output unit. The result is a number for each direction, 

q(x, B), together forming the motor array. The network is the same at each position; variation in 

output is due to variation in the input array. 

To save computational time on the serial computers in which this work was simulated, convo- 

lution was implemented with a subsampling so that although covering 360 degrees, like the visual 

array, the motor array has less elements. 

3.3.3 Selecting direction of movement from the motor array 

The motor array stochastically determines the direction in which the animat moves a fixed 

distance. ' The selection algorithm to implement this is taken from Lin (1992). Each element 

of the array, qi, is converted into a probability of movement in the corresponding direction, B; 

prob(O) = 
e9: 

/T 

Ek eqk/T 
(3.6) 

where 0<T<1 is a temperature parameter controlling the randomness of the action selection. 

With T near 0, the probability of selecting the direction with highest q is near 1, and the animats 

movements are near deterministic. With higher T, the direction favoured by the network has a 

lower probability of being selected, and the movement of the animat is more stochastic. In this 

thesis, and following Lin (1992), the same value of T is used throughout learning and testing of 

all animats. 

A movement direction 9,,, is randomly selected given these probabilities, and the animat moves 

a fixed distance' in this direction. 

3.3.4 Updating the weights of the filter network 

The new location yields a new visual array, x' which is mapped by the unchanged filter network 

to a new array of values q; = F(x', Os). The Q learning temporal difference algorithm outlined 

above is used to generate the error signal with respect to the direction actually moved, °m 

1-q,,, if the current location is within the goal region 
error = (3.7) 

-ymax(gk) - qm otherwise 

This error is then backpropagated through the filter network so that weights are changed with 

respect to the input to the network in the direction in which the animat moved, 9m 
. 

Standard 

I Throughout this thesis, the step size is 10. 

2Throughout this thesis, the step size is 10. 
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backpropagation (Rumelhart et al, 1986) with momentum is used throughout this thesis. 

If the current location is not within the goal region, the visual array is then convolved with the 

updated filter network to produce the q values for the current location, and the cycle repeated. 

3.3.5 Parameters 

Throughout the thesis, the reinforcement learning paramaters are kept constant and follow Lin 

(1992). Temperature, T (in the stochastic action selection) = 0.02; Discount, y=0.95; backprop- 

agation learning rate = 0.2; backpropagation momentum = 0.9. 
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Chapter 4 

Learning to approach a solitary 

circle guided by a simple visual 

sense 

4.1 Introduction 

In this, and the following two chapters, the environment is a 2-D circular arena, eiIIE)ty except 

for ai solitary circle (see fig. 4.1). In this chapter, the circle is of fixed radius, and the task of 

the animats is to move, in as few steps as possible, to within a short distance of the circle from 

any starting location in the arena. For each trial, the simulated illuminance due to the circle and 

the arena wall are chosen randomly from the range zero to one. These will be referred to as the 

circle and wall intensities. Animats have evenly spaced photoreceptors, the activity of which is 

calculated gis the mean intensity of surfaces within its response region. 

Animal visual input is a 120 element, 1-D visual array of continuous values, evenly covering 360 

degrees. Animat motor output is a 1-D array of continuous values, which codes the probability of 

moving a fixed distaiicei in each of 15 evenly spaced directions. The internal structure of animats 

consists of a. topography preserving mapping between these two arrays involving convolution by 

fixed and adaptive filters. 

Three forms of coding of the visual array are compared: intensity, multiscale, and rectified 

multlscale coding. With intensity coding, the raw visual array is convolved with a filter network 

with a single output unit to produce the motor array. With multiscale coding, the visual array is 

convolved with a number of Laplacian of Gaussian (LoG) filters at a range of scales to produce a 

Throughout this thesis, the c(cl) siie is 10. 
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Figure 4.1: (a) The environment is a circular arena of radius 128, empty except for a solitary 
circle of radius 10. The invisible goal region, shown in gray, is a circle of radius 20, centered on 
the circle. 
(b) Animats have a 1-D visual array, evenly covering 360 degrees. This is mapped to a 1-D motor 
array that stochastically determines the direction of movement at each time step. 

2-D, multiscale array. This 2-D array is then convolved by a filter network to produce the motor 

array. With rectified multiscale coding, the multiscale array is split into two arrays; one containing 

the positive elements and the other the negative. These two, 2-D arrays are then convolved with 

a filter network to produce the motor array. 

With the exception of chapter 7, where the visual input is modified, identical animats and 

coding conditions are used throughout this thesis. The following two sections provide a more 

detailed account, of the visual input, visual coding, and internal processing of animats. 

4.1.1 The visual array 

In an environment consisting of a solitary featureless circle in a featureless arena and no sensory 

noise, each element of the visual array has one of two values: either the wall or circle intensity. 

These are chosen randomly and independently from between 0 and 1 on each trial; the contrast 

therefore may be either positive or negative and has a magnitude between 0 and 1. The visual 

array consists of a compact. region of elements at. the circle intensity, with all other elements at 

the wall intensity, as shown in fig. 4.3a. The position of the image of the circle within the visual 

array is a. function of its bearing with respect to the animat; the visual angle subtended by the 

circle is a function of its radius and distance from the animat. 

Independent. visual noise is simulated by adding a random Gaussian value of mean 0.0 to each 

clement. in the visual array. Figs. 4.3b and c show examples for the two independent noise levels 

used in this chapter: standard deviations of 0.05 and 0.1. Details and figures of coarse scale visual 

noise are in section 4.7. 
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Figure 4.2: Laplacian of Gaussian filter of scale f. 

4.2 Visual Coding 

4.2.1 Intensity Coding 

In the intensity coding condition, the raw visual array is itself convolved with a filter network to 

determine the motor array. 

4.2.2 Multiscale coding 

With multiscale coding, the 1-D visual array is convolved with Laplacian of Gaussian (LoG) filters 

at a range of spatial scales, resulting in a 2-D array. The 1-D LoG function is derived as the negated 

second differential of a standard Gaussian function with standard deviation, f. The LoG of spatial 

scale parameter, f, is given by (see fig. 4.2): - 

L(r, f) = (1 - f2 )e-r2/ 2f 2 

This function has two important mathematical properties. Firstly, the function is balanced: its 

integral is equal to zero. Hence, when a single valued array is convolved with a LoG the response 

is zero regardless of that value. LoGs are only sensitive to contrast, rather than the absolute 

value of spatial patterns. Secondly, they are sensitive to the spatial scale of a pattern, responding 

maximally to image variation at a particular scale, defined by their parameter, f. Variation at a 

scale much smaller, or larger, than this produces a near zero response. The LoG function is a 1-D 

approximation to early visual filters found in a wide range of animals (Marr, 1982; Watt, 1988; 

Young, 1989). 

The integral of LoG(r, f) equals zero. However, the integral in the positive, or negative regions 

equals 2f/J, a function of f. This means that the filter response to a pattern is scaled by a 

factor dependent on f, whereas the important aspect is the relation between the filter scale and 

the spatial input pattern. Hence, normalised LoGs are used in this thesis, obtained by dividing 

L(r, f) by 2f//. In this case, the positive and negative integral of the LoG equals 1 regardless 
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of scale, and the function obtained by convolving it with a spatial pattern depends only on the 

relative scale of the LoG and the pattern. 

Convolving at a number of scales results in a 2-D, multiscale array, with each row being the 

convolution at a particular scale, as shown in fig. 4.3. The convolution is linear and without 

subsampling so each row of the multiscale array is the same size as the visual array. Throughout 

this thesis, the same 6, exponentially increasing, scales are used. For clarity, they are numbered 0 

to 5, and the following table lists the corresponding f parameters in terms of elements of the visual 

array and degrees of visual angle (each element in the visual array has a resolution of 3 degrees): 

Scale 
Number 

Visual array 
units 

Degrees of 
subtended angle 

0 1.0 3.0 
1 1.6 4.9 
2 2.7 8.1 
3 4.4 13.3 
4 7.3 21.9 
5 12.0 36.0 

Fig. 4.3 shows the multiscale convolutions of three example visual arrays. The multiscale array 

is of size 6x 120. In the noiseless case (fig. 4.3a), most elements in the multiscale array are zero. 

Maximum response occurs at a scale dependent on the angle subtended by the circle. Independent 

noise (fig. 4.3b and c) causes most activity at the finest spatial scales, with activity due to noise 

decreasing as the scale increases. As can be seen in fig. 4.3b, negative contrast results in a negation 

of the multiscale array. 

4.2.3 Rectified multiscale coding 

For rectified multiscale coding, the multiscale array is split into two arrays of the same size as the 

multiscale array. The positive array is obtained by setting all negative elements of the multiscale 

array to zero. The negative array is obtained by setting all positive elements to zero, and reversing 

the sign of the negative elements. The result is two, 2-D arrays of size 6x 120 containing values 

greater than or equal to zero. 
Fig. 4.4 shows the three coding schemes for a typical visual array. 

4.3 Animat internal processing 

As described above, in the three different visual coding conditions, the visual array is coded as 

either: a 1-D, 120 element array (intensity coding); a 2-D array of size 6x 120 (multiscale coding), 

or 2 2-D arrays of size 6x120 (rectified multiscale coding). 

In all cases, the array is then convolved with a filter network; a standard feedforward neural 

42 



(a) Distance = 120. Circle intensity = 0.7. Wall intensity = 0.2. Noise = 0.00 
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(b) Distance = 60. Circle intensity = 0.4. Wall intensity = 0.6. Noise = 0.05 
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(c) Distance = 20. Circle intensity = 0.8. Wall intensity = 0.4. Noise = 0.10 
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Figure 4.3: Example visual arrays for the current. task, and their multiscale convolutions. The 1-D 
visual arrays (continuous values between 0 and 1) are possible filter network input in the intensity 

coding condition. The multiscale convolution arrays (positive and negative values) are possible 
filter network input in the multiscale coding condition. 
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(a) Intensity Coding. (Circle intensity = 0.7. Wall intensity = 0.4. Noise = 0.10) 
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(b) Multiscale Coding 
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(c) Rectified multiscale Coding 
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Figure 4.4: The three anima. t, visual coding schemes that are compared in the simulations in this 
thesis. In each case, the coded array is then convolved with a filter network having a single output 
twit, to yield the 1-D motor array. 
(a) Intensity coding : the raw, 1-D visual array of elements between 0 and 1. 
(b) Multiscale coding : the visual array convolved by 6 LoG filters of exponentially increasing 

scale to yield a 2-D array of positive and negative values. 
(c) Rectified niultiscale coding : the multiscale array is split into two, 2-D arrays of the same size 
by taking just the positive elements in one array (negative elements set to zero), and just the sign 
changed negative elements in the other (positive elements set to zero). Yields 2 arrays of positive 
or zero values. 
In each case, the array is then convolved with a filter network having a single output unit to yield 
the 1-1) motor array. 
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(a) (b) 
Output unit 

Hidden units 

Input units 

Figure 4.5: Filter networks: (a) Direct. (b) with hidden units. 

network with a single output unit. As described in chapter 3, direct filter networks (fig. 4.5a) have 

a single layer of weights between the input layer and output units. Alternatively, a layer of hidden 

units may mediate between the input layer and output unit (fig. 4.5b). 

The fan-in of the filter network is fixed at 31 receptors, corresponding to 93 degrees, for all 

animats in this and the next two chapters. In the intensity coding case, the filter network's input 

layer of weights is a 1-D array of size 31. In the multiscale coding case it is 2-D of size, 6x 31, 

and in the rectified multiscale case it consists of 2,2-D arrays of size 6x 31. 

In all coding cases, the convolution network consists of 15 identical copies of the filter network, 

centered at evenly spaced positions on the input array. This subsampling is only to save serial 

computation time, and would not be necessary if the animats were implemented on a parallel 

machine. The scalar output of the filter network in each position becomes an element in the motor 

array. Thus, the 1-D visual array is mapped into a 1-D, topography preserving, motor array. The 

motor array is used to stochastically determine the direction in which the animat moves a fixed 

distance of 10 on each time step as explained in chapter 3. The higher the value of a motor array 

element, the higher the probability that the animat will move in the corresponding direction. 

Figs. 4.6,4.7 and 4.8 show the internal structure of animats in the three coding conditions. 

4.4 Simulation method 

The simulated circular arena had radius 128, and contained a circle of radius 10, surrounded by 

a goal region of radius 20 (fig. 4.1a). Because of the simplicity of the setup, nothing is gained 

by moving the circle between trials and so it remained in the center of the arena. In each trial, 

animats started at a random location. At each time step, the visual array was generated, and 

this was processed by the animat to produce the 15 element motor array. Based upon this, the 
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Motor Array 
0 24 48 72 96 120 144 168 192 216 240 264 288 312 336 360 

Figure 4.6: Animat sensorimotor system: intensity coding. 
The 1-1) visual array is convolved with the adaptive filter network to produce the 1-D motor array. 

Motor Array 
0 24 48 72 96 120 144 168 192 216 240 264 288 312 336 360 

Figure 17: Animat, sensorimotor system: multiscale coding. 
The 1-1) visual array is convolved by 6 LoG filters of different scale to produce a 2-D multiscale 
array. This is then convolved with the adaptive filter network to produce the 1-D motor array. 
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Convolution with multiscale LoG 
followed by rectification 

\/\/\/\ 

O 24 48 72 96 120 144 168 192 216 240 264 288 312 336 360 
Visual Array 

Figure 4.8: Animal, sensorimotor system: rectified multiscale coding. 
The l-D visual array is convolved by 6 LoG filters of different scale to produce a 2-D multiscale 
array. Rectification produces two, 2-D arrays. These are then convolved with the adaptive filter 

network to produce the 1-D motor array. 

47 

Motor Array 

0 24 48 72 96 120 144 168 192 216 240 264 288 312 336 360 



direction of movement was stochastically determined as described in chapter 3, and animats moved 

a distance of 10 in that direction. A reinforcement signal of 0.0 was received on each time step, 

except when the animat entered the goal region, when a signal of 1.0 was received and a new trial 

begun. After each movement, filter network weights were modified according to the Q learning 

reinforcement algorithm as described in chapter 3. If animats had not reached the goal by 500 

time steps, a new trial was begun. 

In each coding and noise condition, animats with a range of filter network sizes were simulated. 

In each condition three animats were simulated with different random initial weights. 

Three batches of simulations are reported: 

" Intensity, multiscale, and rectified multiscale coding animats learning with zero visual noise, 

or with independent Gaussian noise added to each element in the visual array. 

" Animats learning from a single scale of the rectified multiscale array, either with zero or 

independent noise. 

" Intensity and rectified multiscale animats learning with coarse scale noise added to the visual 

array. 

After learning, animats are examined in terms of performance, behaviour and internal struc- 

ture. 

4.5 Zero and independent visual noise 

4.5.1 Method 

Animats were simulated with either intensity, multiscale, or rectified multiscale coding, and filter 

networks with no hidden units (direct), or 2,4, or 8 hidden units. Animats learned with no visual 

noise, or with Independent Gaussian noise with mean 0.0 and standard deviation (sd) 0.05, or 

0.10 added to each element in the visual array. 

4.5.2 Performance 

The performance (between 0 and 1) of an animat in a particular trial is measured as the minimum 

number of steps required to get from the start location to the goal, divided by the actual number 

of steps taken by the animat. The mean performance of an animat is obtained by testing over 

1,000 (1k) trials in which the animat starts in random locations and wall and circle intensities are 

chosen randomly; the same conditions as during learning. Performance is between 0 and 1.0, with 

1.0 corresponding to an animat taking the shortest route to the goal from any start location and 
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Figure 4.9: Learning curves for direct animats, learning with independent visual noise of sd 0.05. 
Three animats in each coding condition. Each data point is the mean performance of the animat 
over the preceding 1000 trials. 

with any contrast. A performance of 0.5 means that the animat took, on average, twice as many 

steps to get to the goal as the shortest route. 

Randomly behaving animats have a mean performance of 0.08±0.01. This figure was obtained 

by testing, over 1,000 (1k) trials with random start locations, an animat that randomly chooses 

one of the 15 directions in which to move on each time step. As with the learning animats, the 

maximum trial length was set at 500 steps. 

Fig. 4.10 shows the performance of animats after 10K learning trials, by which time animats 

in all conditions - except the two discussed below - had converged, and showed no signs of further 

improvement. Fig. 4.9 shows the learning curves of direct animats in the 0.05 noise condition. 

After learning, each of the three animats was tested over 1,000 (1k) trials without learning, and the 

mean performance over the three taken to provide the data point for each condition. Fig. 4.10a-c 

show performance as a function of noise and number of hidden units, for each of the three coding 

conditions (direct animats are plotted as zero hidden units). Note that a performance of 1.0 is 

not possible because the random choice of wall and circle intensities will on occasion lead to their 

difference being close to zero. 

Direct animats with intensity coding perform at 0.85,0.71 and 0.51 at noise sd 0.0,0.05 and 

0.1 respectively. With two hidden units, when noise sd is 0.05, performance is at the same level 

as for direct animats. However, at zero and 0.1 noise levels, learning is unstable with performance 

wildly oscillating over time. With 4 or more hidden units, performance is stable and at the same 

level as for direct animats. It is the only case of unstable learning in these simulations. This is a 

puzzling result and therefore deserves further attention. Replication of animats in these conditions 

led to the same result, and performance did not settle down when learning was extended to 50k 

trials. Given that direct animats perform as well as any other intensity coding animats, the 2 

hidden unit results are not crucial to the comparison of performance across coding scheme that is 
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(a) Intensity coding. 
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(b) Multiscale coding. 

1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 
02468 

Hidden Units 

Noise = 0.00 
Noise = 0.05 
Noise = 0.10 

(d) Comparison across coding. 
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Figure 4.10: Mean performance of animats on the circle approaching task. (a)-(c) plot performance 
as a function of noise and filter network size in each of the three coding conditions. Direct networks 
are plotted as 0 hidden units. (d) Plots the performance of the highest performing animats in 
(a)-(c) as a function of noise. Each data point is the mean of three animats. Animats tested at 
the same level as during learning. All standard error<0.04 for intensity coding, and <0.03 for 

multiscale and rectified multiscale coding. 
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the main focus of this work. Therefore, these isolated instabilities are not examined further. 

Direct multiscale coding animats perform as well as those with hidden units at noise levels of 

0.0, where they achieve 0.84 performance, and at noise 0.05, where they achieve 0.68 performance. 

With noise at 0.1,4 hidden units are required to achieve a performance of 0.62, which is not 

exceeded with 8 hidden units. 

With rectified multiscale coding, direct animats perform at least as well as those with hidden 

units at all noise levels, achieving performances of 0.83,0.81 and 0.73 at noise levels 0.0,0.05 and 

0.1 respectively. 

Fig 4.10d compares performance of animats with the different coding conditions as a function 

of noise level. Here, in each noise and coding condition the highest performing animats are plotted, 

regardless of the number of hidden units. This is justified because the different coding schemes 

may impose different computational demands and so require different sizes of network for optimal 

performance. Except for multiscale coding animats at noise level 0.1, the highest performing 

animats in each condition are direct. 

At zero noise, there is no difference in performance between any of the coding schemes. At 

noise = 0.05, rectified multiscale animats perform significantly better than intensity or multiscale 

animats (t test: t= 16.959, p<0.001), between which there is no difference. When noise = 0.1, 

rectified multiscale again significantly outperforms the others (t=10.855, p<0.001), between which 

multiscale coding significantly outperforms intensity (t=7.750, p<0.01). 

These results indicate that regardless of coding, animats are able to learn to perform at a 

level far above chance. Rectified multiscale coding leads to significantly better performance when 

independent visual noise is present than either intensity or multiscale coding. At the highest noise 

level, intensity coding is significantly worse than both multiscale and rectified multiscale coding. 

Contrast 

Fig. 4.11 plots performance as a function of the magnitude of contrast for direct animats learning 

(and tested) with zero noise and independent noise of sd 0.1. Without noise, animats perform 

well at all contrast levels except the lowest and there is no difference between coding. However, 

with noise, rectified multiscale coding animats are far less degraded as contrast decreases than 

intensity or multiscale coding animats. Thus, rectified multiscale coding facilitates performance 

in situations of noise and low contrast. 

Having examined the performance differences across the various conditions, the learned com- 

putations underlying these performances are now examined. There are two aspects to this: the 

behaviour of the animats in the environment, and the learned weights and biases of the network 

underlying their behaviour. 
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Figure 4.11: Performance as a function of contrast for direct animats. Animats tested at the same 
noise level as during learning (a) zero noise, (b) Independent noise of sd 0.1 
Over 3000 test trials, animat performance was split into twenty groups according to the magnitude 
of the difference between circle and wall intensities (in 0.05 steps). 

4.5.3 Behaviour 

Fig 4.12a shows typical paths of an animat before learning. Animats behave like the random 

animat before learning, although the initial random weights tend to instill a slight behavioural 

bias. Because the initial weights are small, the stochastic aspect of movement direction choice 

outweighs that due to the network. 

Fig 4.12b and c show typical paths for direct intensity coding animats after learning without 

noise and with independent visual noise of sd 0.10. Animats are tested under the same noise 

conditions as during learning, and the contrast is at the low level of 0.2. In the noiseless case, 

animats move in a curve toward the goal region and approach the edge of the circle. Animats that 

learned with noise show similar behaviour although the paths are much less efficient; hence the 

0.34 difference in performance. Similar behavioural strategies of curving toward the edge of the 

circle are shown by all the intensity coding animats. 

Fig 4.12d and e show typical paths for direct rectified multiscale animats. In the noiseless con- 

dition, animats behave like the intensity coding animats, though their paths tend to be somewhat 

less curved. With noise, rectified multiscale animats move toward the center, rather than the 

edge of the circle. Clearly rectified multiscale animats are less affected by the noise than intensity 

coding animats. As may be expected, movement is less efficient with increasing distance from the 

circle. 

The behaviour of animats tested in a larger arena and with two circles of the same contrast is 

shown in fig. 4.13, which clearly shows the different behavioural strategies of intensity and rectified 

multiscale coding animats. The intensity coding animat shows a stereotyped path curving toward 

the circles edge whereas the rectified multiscale coding animat more directly moves toward the 

center of the circle. As expected, increasing the radius of the circle makes it more attractive. In 

(b) Noise sd 0.1 
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environment containing circles of fixed radius and contrast, animats typically move toward the 

nearest, since this will elicit the higher output. More generally, in multi-circle environments, the 

relative distance, radius, and contrast of the circles will determine which one the animat tends to 

steer toward. 

4.5.4 Internal Structure 

Intensity Coding 

Turning now to the learned internal structures underlying these behaviours, the left hand column 

of fig. 4.14 shows the weights of filter networks controlling direct intensity coding animats at the 

three noise levels. The output unit sums over these, adds the bias, and puts the result through 

a sigmoid function to determine output activation. Figs. 4.14a and c are for the animats whose 

behaviour was shown and discussed above. The weights are positive on one side of the axis and 

negative in the other, summing to around zero, and the output units have a small negative bias. 

As the noise levels increases, the magnitude of the weights decreases, whilst keeping the same 

structure; this same weight structure was learned by all direct intensity coding animats. Because 

the weights are roughly balanced, the output unit does not respond when the visual input has the 

same intensity across the array, regardless of its absolute value. The negative bias ensures that 

slight deviations from a flat input, due to noise, still result in a null response. However, when 

there is a difference in intensity between the two sides, the network produces a non null response. 

The right hand column of fig. 4.14 plots the output of the filter networks in response to the 

circle centered at the distance and bearing given by the axes. The bearing of the circle is relative 

to the center of the filter networks receptive field, and so at zero bearing the circle is directly 

facing the filter network. White corresponds to output of 1.0, black to output of 0.0; gray levels 

are comparable across plots. When the circle directly faces the filter network, the balanced weight 

structure results in a null output. When the circle is off-center, the summed intensity will be 

greater on one side of the filter axis than the other and as a result, the output unit will have a 

non-null response. When located at the other side of the filter axis, the circle at the same contrast 

produces an output response in the opposite direction. As can be seen in figs. 4.14b and c, the 

smaller magnitude weights produced by learning with noise result in a weaker form of the same 

response pattern. 

These filters have learned a differential like shape that is insensitive to absolute intensity level, 

but is most sensitive to the spatial change in intensity around the edge of the circle's image. Such 

step shaped filters respond most strongly when the image of the circle covers one half of their 

receptive field, and produce a null response when the circle is in the center of the receptive field, 

hence the tendency for these animats to steer the curved path toward the circle edges shown in 
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(d) Rectified multiscale coding. Noise = 0.0 (e) Rectified multiscale coding. Noise = 0.1 
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Figure 4.12: Typical individual animat paths, tested at the same noise level as during learning. 
The invisible goal region is shown in gray. Performance is of the individual animat rather than 
the mean performance for aninmats in the condition. 
(a) Before learning (ie approx. random animat. ). 

(b) and (c) after learning: Direct. intensity coded animat at independent noise levels 0.0 and 0.1. 
(d) and (e) after learning: Direct rectified multiscale coding aniniat at independent noise levels 
0.0 and 0.1. 
(For these plots: circle intensity = 0.4, wall intensity = 0.2. (a) 4 paths. (b)-(e) 20 paths). 
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(a) Direct intensity coding animat. 
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Figure 4.13: Typical paths of single animats animats tested in larger arena containing more than 
one circle (both circles at the same contrast). Animats learned and tested at independent noise 
level 0.05. Circle intensity = 0.7, Wall intensity = 0.2. 
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fig. 4.12b and c. 
Greater understanding of learned animats can be obtained by comparing their performance 

with that of hand-wired animats. The latter will provide a set of performance scores that can 

provide a comparative context for the scores of learned animats. In addition, animats can be hand- 

wired so that they capture the important aspects of the computation learned by the reinforcement 

animats. In test, these should perform at least as well as their learned counterparts. If this is not 

the case, then it indicates that the important computations have not been captured by the hand- 

wired animat. Thus, the hand-wired animats provide a useful empirical check on explanations of 

what animats have learned to compute. 

Fig. 4.15a shows the weights of two direct, hand-wired animats. On the left, the filter is 

balanced, with positive weights on one side of the axis, and negative weights on the other. This 

is the weight structure learned by direct, intensity coded animats. The network on the right is 

also balanced, but has no coherence in the arrangement of weights, with each one randomly either 

positive or negative. Thus, like the learned animats, they are insensitive to absolute intensity, but 

are not particularly structured to respond to the coherent patches of contrast corresponding to 

the image of the circle in the present task. 

Fig. 4.15a plots the performance of the hand-wired animats as a function of noise, together 

with the performance of direct intensity coded animats after learning (as fig. 4.10). With no noise, 

and at noise = 0.05, step nets and the learned nets perform at about the same level, reflecting 

their similar structure. At noise = 0.1 however, the learned animats perform more than 0.1 lower 

than step networks. At all noise levels, the random balanced network performs substantially worse 

than the others. As noise increases, the difference between this net's performance, and the step 

animats increases. The difference between the learned animats performance and that of the step 

net at noise = 0.10 presumably arises because the learned weights have such low magnitude (see 

fig. 4.14). Thus, reinforcement learning has led to a less than optimal animat in the high noise 

condition. However, the performance of the step net at both noise conditions is substantially lower 

than that of direct rectified multiscale animats. 

Rectified multiscale coding 

Fig. 4.16 shows the learned filter network weights and corresponding output activation patterns of 

direct rectified multiscale coding animats. Figs. 4.16a and c are for the animats whose behaviour is 

shown in figs. 4.12d and e and discussed above. The left column plots the filter network weights: a 

2-D array of weights for both the positive and negative components of the multiscale filtered visual 

array. The network output unit sums over these, the bias is added and the result put through a 

sigmoid function to determine output activation. The right column displays output activation in 

response to the circle. White corresponds to output of 1.0, black to output of 0.0; gray levels are 
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(h) Noise = 0.05. Output unit bias = -0.21. Animat performance = 0.71. 
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(c) Noise = 0.10. Output unit bias = -0.52. Animat performance = 0.51. 

0.4 Output Unit 

0 
s 

3 ýý 

-0. 

120 
100 U 

U 

80 

-0. 

-45 -30 -15 015 30 45 

Bearing 

60 

40 
20 

Figure . 1.14: The learned weight. structure and response patterns of direct intensity coding filter 

networks. (a) Noise = 0.0 (b) Noise = 0.05 (c) Noise = 0.10. 
The left-hand columns show the learned weights and output unit, bias. 
The right-hand column shows the activation of the output unit in response to the circle as a 
function of its distance and bearing relative to the center of the filter network's receptive field. 
(For these plots: circle intensity = 0.7, wall intensity = 0.2, noise = 0.0) 
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(a) Step filter network. 
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(b) Random balanced filter network. 
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(b) Comparison of hand generated and learned, direct intensity coding animats. 
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Figure 4.15: (a) Hand wired, intensity coding filter networks for comparison with learned ones. The 
direct network on the left has balanced weights: positive on one side of the axis, and negative on 
the other. The network on the right has balanced weights, like the step network, but no coherence 
in the arrangement of positive and negative weights (these are chosen randomly). (b) Comparison 

of performance of animats made up of the above networks with learned, direct intensity coding 
animats. Direct rectified multiscale coding performance also shown. 
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comparable across plots. 

With zero sensory noise, large weights are concentrated at the coarsest scales in both the 

positive and negative arrays (figs. 4.16a). With noise at 0.05, large weights are concentrated at 

the coarsest 2 scales, and around the central region. At the highest noise level, large weights 

are almost exclusively at the coarsest scale, again around the central region. Very similar weight 

structures were learned by all direct rectified mulitscale animats learning with independent noise. 
As was shown in fig. 4.3, the coarse scales are maximally active when the circle is nearby and 

hence subtends a large angle; when the circle is far away, and hence subtends a small angle, it 

elicits coarse scale activity of a smaller amplitude, but over a wider region. Thus within the range 

of subtended angles and filter scales used here, the circle elicits coarse scale activity regardless 

of distance. The independent noise, in contrast, causes most activity at the finest scale, and less 

activity with increasing scale. The rectified multiscale filter networks have learnt to exploit this 

by using the coarsest scale to detect the circle, since this is the scale least affected by noise. Hence 

the much smaller decrease in performance of rectified multiscale coding animats as the noise level 

increases compared with intensity coding animats. 

4.6 Rectified single scale coding 

Examination of the learned internal structure of rectified multiscale coding animats has suggested 

that their robustness when learning in the presence of independent noise occurs because they learn 

to detect the circle using the output of coarse scale LoG filters, which are relatively unaffected by 

independent noise, whilst still responding to the circle. If this is the case, then animats having 

only the coarse scales as input should learn to perform as well as those with multiple scales, and 
better than animats having only fine scale input. The following simulations test this hypothesis. 

4.6.1 Method 

Direct animats were simulated with rectified single scale LoG filters, each one corresponding to 

one of the scales in the rectified multiscale case. The sensory coded array of each single scale 

animat is identical to one of the rows of the 2-D, multiscale array. Rectification of the single scale 

filtered array yields two, 1-D arrays. Thus, rectified single scale coding animats have a subset of 

the input of rectified multiscale animats. Three animats were simulated in each scale and noise 

condition. Learning continued for 10k trials, by which time all had converged. 
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(a) Noise = 0.0. Output unit bias = -0.09. Animat performance = 0.82. 
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(b) Noise = 0.05. Output unit bias = -0.45. 
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Figure 4.16: The learned weights and response patterns of direct rectified multiscale coding filter 

networks. Left, column: `''"eights to the positive and negative multiscale filtered visual arrays. 
Right column: Activation of the output unit. to the circle as a function of its distance and bearing 

relative to the center of the filter network's receptive field. 

(For these plots: circle intensity = 0.7, wall intensity = 0.2. ) 
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4.6.2 Results 

Fig. 4.17 shows the performance after learning, together with the performance of the direct rectified 

multiscale coding animats from above. Without visual noise (fig. 4.17a), performance does not 

vary greatly with scale, although the medium scales do slightly outperform the finest and coarsest, 

and the rectified multiscale animats (note the different y-axis scale in fig. 4.17a). As explained 

above, direct rectified multiscale animats have positive weights concentrated at the coarsest 2 

scales. Fig. 4.17a suggests that this may not be the optimal arrangement, though the difference 

is only around 0.03. 

With independent sensory noise, there is a clear effect of scale (fig. 4.17b and c): up to scale 

4, the coarser the LoG filter scale, the higher the performance of animats; and this effect is 

more pronounced at the 0.1 noise level. The two coarsest scales (4 and 5) lead to about the 

same performance in each noise condition, and this matches the performance of direct rectified 

multiscale coding animats. 

4.6.3 Conclusion 

These results support the hypothesis that with independent noise, the superior performance of 

rectified multiscale animats is due to the coarse scale LoG filter output, which enables adequate 

detection of the circle, whilst being relatively unaffected by independent noise. 

4.7 Coarse scale noise 

Given that rectified multiscale coding animats outperform those using intensity coding in the 

presence of independent noise because they learn to detect the circle at scales unaffected by noise, 

this suggests an analogous result would occur if the noise is coarse scale. In this case, it would 

be expected that rectified multiscale coding animats would again outperform intensity coding 

ones, this time by detecting the circle at fine scales. This hypothesis was tested by the following 

simulations with coarse scale noise added to the visual array. 

4.7.1 Method 

Animats were simulated with intensity coding and filter networks with no hidden units (direct), 

2 or 4 hidden units, and rectified multiscale coding and direct filter networks. Coarse scale visual 

noise was generated by filling an array with independent Gaussian noise of mean 0.0 and sd 0.33, 

and then convolving it with a Gaussian of standard deviation 3.0. This results in a coarse scale 

noise with standard deviation 0.1. 

61 



(a) Noise = 0.00. 

0.9 

0.8 

c cd 
0.7 

CL 0.6 

0.5 

0.4 
0123 

Scale 

(b) Noise = 0.05. 

0.8 

0.6 

0.4 

0.2 

n 
0123 

Scale 

(c) Noise = 0.10. 
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Figure 4.17: Mean performance of direct rectified single scale coding animats as a function of 
independent visual noise and scale. Scale 0 is the finest of the multiscales and scale 5 the coarsest. 
(a) Zero sensory noise. (b) Independent sensor noise of sd 0.05. (c) Independent sensor noise of 
sd 0.10. Each data point is the mean of three animats. Animats tested at the same noise level 

as during learning. For (a) and (b), all standard errors<0.01. For (c), all standard errors<0.02. 
Horizontal lines mark the performance level of direct rectified multiscale animats at the same noise 
level. 
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(a) Visual array with coarse scale noise. (Circle distance = 60) 
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Figure 4.18: (a) Example visual array with coarse scale noise added. 
(h) Multiscale convolution of the visual array. In contrast to the activity at the fine scales caused 
by independent noise, coarse scale noise causes activity at mostly the coarse spatial scales. 
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Figure 4.19: Performance of intensity and rectified multiscale coding animats after learning with 
coarse scale visual noise. Each data point is the mean of 3 simulations. 
Standard error of direct rectified multiscale = 0.01; standard errors for intensity coding<0.04 for 
0 and 2 hidden units, and 0.08 for 4 hidden units. 

Fig. 4.18 shows a visual array with coarse scale noise added, and the result of multiscale 

filtering. Note that, most of the activity due to the noise is confined to the coarse scales. 

4.7.2 Performance 

Fig. X1.19 shows the performance after 10k learning trials. Direct. rectified multiscale coding animats 

perform at. 0.64+0.01; direct intensity coding animat-s perform at 0.20, and this only increases to 

0.34 with 4 hidden units. The difference between 4 hidden unit intensity coding and direct rectified 

niiiltiscale coding is significant, (t-t-est: t. = 4.014, p<0.02). Not only does rectified multiscale 

filtering lead to significantly bet-ter perfornmance, as was the case with independent noise, it is 

achieved with a smaller filter network. 
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(a) 4 hidden unit intensity coding. (b) Direct rectified multiscale coding. 
Anirnat Performance = 0.44 Animat Performance = 0.64 
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Figure 4.20: Typical paths of a4 hidden unit, intensity coding animat, and a direct rectified 
rnultiscale coding animats learned (and tested) with coarse scale visual noise. 
(For these plots: Circle intensity = 0.5, wall intensity = 0.2) 

4.7.3 Behaviour 

The behaviour of 4 hidden unit, intensity coding, and direct rectified multiscale coding animats 

after learning is shown in fig. 4.20. Clearly the rectified multiscale anirnat is more efficient at 

approaching the goal despite its smaller filter network. 

4.7.4 Internal structure 

Fig 4.21 shows the weights and response pattern of the direct rectified inultiscale animal «pose 

behaviour was shown above. The weights have a very different structure to that seen when 

learning with independent noise (fig. 4.21). Apart from a small patch in the center of the second 

from coarsest scale, large weights are concentrated in two patches at the fine scales. Each of these 

responds individually to the circle at far distance, giving rise to the two prongs of high output 

at distances greater than 60 shown in the right column. When the circle is closer, the weights 

respond to the activity caused by the two edges of the circle; individually to produce the outlying 

legs of high output and both together to produce the central region of high output when the circle 

is close. 

Vs liereas in the independent, noise case, rectified multiscale filter networks learn to detect the 

circle using the coarse scales, when the noise is coarse scale, the networks learn to detect the circle 

at. the fine scales. 
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Figure 4.21: The weights and response profile of a direct, rectified multiscale coding animat after 
learning with coarse scale visual noise. The weights to the positive and negative multiscale filtered 

array are shown in the left 2 columns. Note how different these weights are to those after learning 

with independent noise. The right hand column shows the response of the unit to the circle at the 
distance and bearings given by the axes. 
(For this plot: circle intensity = 0.7, wall intensity = 0.2, noise = 0.0. 

4.7.5 Conclusion 

't'hese simulations have shown that with coarse scale noise, rectified multiscale coding anirnats 

learn to significantly outperform those with intensity coding because the fine scale LoG filter 

output, enables adequate detection of the circle whilst being relatively unaffected by the noise. 

Direct rectified multiscale a. nimats learn to exploit this to achieve efficient performance. Intensity 

coding anitua. ts with up to 4 hidden units are unable to learn to distinguish between the coarse 

scale noise and the image of the circle in the raw visual array. 

4.8 Discussion 

Aniniats in this chapter have learned to approach a solitary circle whose contrast varied randomly 

in sign and magnitude between trials. With the exception of the two unstable conditions, all 

animals learned to perform at, a level far above chance. Without noise, direct animats learn to 

perform at. the same level, regardless of coding. With independent visual noise, rectified multiscale 

coding animals significantly outperform intensity coding aniniats at both noise levels, and multi- 

scale coding at the highest, noise level. Ný'ith coarse scale visual noise, direct rectified inultiscale 

aanimats again significantly outperform intensity coding animats. 

Because the task is to approach the circle, filter networks have to learn to produce a higher 
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output when the circle is in view than when not. Simple detection of the circle is sufficient to 

underlie efficient performance, and the learning problem can be viewed as discriminating between 

variation in the visual array due to the circle and irrelevant variation. Without noise, a source 

of irrelevant visual variation is the background wall intensity, which varies randomly from trial to 

trial, but provides no useful information. As with most animal vision, only intensity differences 

and not absolute intensity carry any information. Intensity coding animats become insensitive 

to this by learning a balanced weight structure which does not respond to a single valued image, 

regardless of its absolute intensity. In addition to being balanced, the learned weights of intensity 

coding filter networks have a coherent structure of positive weights on one side, and negative on 

the other, which responds maximally to the intensity step caused by the edge of the image of the 

circle. 

Because the LoG filter is itself balanced, the multiscale array is only sensitive to contrast, and 

thus builds in a computation that intensity coding animats have to learn. As with most animal 

vision, only intensity differences and not absolute intensity carry any information. Intensity coding 

animats must learn the irrelevance of absolute intensity from experience with the visual array; 

multiscale coding animats have this built in. 

With visual noise, the learning problem becomes discriminating variation in the visual array 

due to the circle from variation due to the noise. Multiscale filtering of the visual array facilitates 

this computation because the image of the circle causes activity at all the LoG scales used here, 

whereas independent noise causes activity at only the finer scales. Thus, multiscale filtering 

separates the circle and noise signals and the filter networks have only to learn to exploit this 

separation. Rectification of the multiscale array ensures that positive network weights can only 

add to output activation. So, positive weights can be concentrated on the coarse scales and activity 

at the fine scales ignored. Examination of the internal weight structure shows that direct rectified 

multiscale networks do learn this simple computation. 

The finding that rectified single scale coding animats, with coarse scale input, learn to perform 

as well as the multiscale ones, whereas those with fine scale input perform poorly, further supports 

the case. With intensity coding, the circle and noise signals are not separated and so this computa- 

tion must be performed by the filter network itself. This proved too hard a computational problem 

for them to learn to solve, even with 8 hidden units, and hence the relatively poor performance of 

intensity coding animats. 

With coarse scale visual noise, the opposite situation occurs. The noise causes activity at 

mostly the coarse scales, whereas the circle can be detected at all scales. Direct rectified multiscale 

animats exploit this to achieve high performance by detecting the circle at the fine scales. Although 

it has not been simulated, it would be expected that with coarse scale visual noise, single scale 

animats with a fine scale filter would perform as well as those with multiscale filtering, whereas 
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those with a coarse scale filter would perform poorly. 
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Chapter 5 

Learning visual subtended angle 

5.1 Introduction 

The environment of this chapter is the same as in the previous chapter: a solitary circle within 

an otherwise empty arena. In this chapter, the radius of t lie circle varies randomly bet weep t rials, 

and as in the last chapter, contrast varies randomly between trials. In the previous chapter, 

animals received reinforcement when they moved close to the circle. Here, animats of the same 

design receive reinforcement when they move to where the visual angle subtended by the circle 

falls within a goal range. 

These simulations are motivated by Cartwright and Collett's (1 9t, 3) behavioural experiments 

of insect learning which are described first. 

5.1.1 Insect learning of subtended angle 

Cartwright and Collett (1983) trained bees to locate a food source at a fixed distance and direction 

from a, single featureless cylinder, in an otherwise empty arena. The bee's environment «"aý, 

impoverished so that as far as possible, the visual appearance of the featureless cylinder was the 

only sensory information available to guide the bees toward the goal. Between trials, the landmark 

and food were translated (but, not rotated), to further ensure that the insects could only rely on 

their vision, rather than path integration. Using vision to learn to move to the location of a food 

source is part of the everyday life of honeybees, and this is reflected in their successful learning 

of Cartwright and Collett's (1983) task. After a number of trials, bees fly directly to the food 

source. The bees are tested by recording where they search in trials with no food source, under 

the assumption that this reflects where they expect to find the food. In such test trials, ý,,, pecially 

with environments modified from that experienced during learning, the pattern and location of 

search can provide information about the computations underlying the bee's behaviour. 
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Learning a goal direction from a featureless cylinder implies the use of a non-visual direction 

sense, and further experiments have demonstrated the use of a magnetic sense in honeybees (Collett 

and Baron, 1994). The simulations in this chapter focus upon the purely visual input, and following 

Cartwright and Collett (1983), concentrate upon how the animats learn to move to the correct 

distance. In chapter 7, a simple compass sense is added to the animats, which allows simulation 

of goals defined by both distance and direction. This incremental approach permits a clearer and 

more detailed understanding of animats and is usual within computational neuroethology (eg Cliff 

et al, 1996). 

To learn a goal distance from the cylinder requires that the bees can compute some relevant 

information from its image. Even in this relatively simple case, the spatiotemporal image of the 

featureless cylinder contains a number of different cues that could be used to guide movement. 

Testing the bee with cylinders of a different radius to that used during learning, and recording 

their search distribution as a function of distance permits further specification of what the bees 

are computing. When tested with a cylinder of half the radius, bees search closer to the cylinder, 

and when tested with a cylinder of twice the radius they search further away. Cartwright and 

Collett (1983), compared the bee's search distributions in the test trials with those predicted by 

assuming that the bee computes one of the following three quantities, all of which would enable 

the bee to locate the goal, but predict different search distributions in the altered radius test trials. 

Firstly, bee's could compute and store the retinal angle subtended by the cylinder as seen from 

the goal. To locate the goal, the bee then flies to where the subtended angle of the cylinder matches 

the stored subtended angle. Secondly, bees could compute the velocity at which the image of the 

cylinder translates across the retina and store the retinal velocity at the goal (motion parallax). 

Given a known or constant flying velocity, the bee then fly to where the retinal velocity matched 

that stored. Thirdly, bee's could compute the rate of change of the angle subtended by the image 

of the cylinder as it approached the goal (looming). Each of the three alternatives predicts different 

search distributions for the tests with different sized cylinders to those experienced during learning. 

Subtended angle closely matched the bee's search distribution, with the alternative hypotheses 

producing discountable distributions. Thus Cartwright and Collett (1983, p 527) conclude "that 

bees learn the angular size of the landmark when viewed from the position of the food source and 

use this to guide their return. " 

Other experiments such as Cheng et al (1987) and Srinivasan et al (1989) have shown that bees 

are able to use other cues such as motion parallax and texture to estimate distance in different 

situations. Subtended angle is one of a number of cues that bees use to estimate distance. It 

forms the basis for the simulations in this chapter, where convolution animats learn to move to 

locations where the angle subtended by a solitary circle falls within a certain range. 

Cartwright and Collett (1983) then changed the cylindrical landmark for a large black, filled-in 
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square. Again bees learned the angle subtended by the square to guide search. When tested with 

just the frames of the square, bees show a very similar search distribution to that with the solid 

square. However, Cartwright and Collett (1983) note that: "Although the [search] distributions 

were unchanged, it was nonetheless clear that the bee had noticed the difference between the solid 

board and the frames. It was much less eager to fly and search when tested with frames than it 

was when the landmark was solid. " (p 528). This is an important result in terms of differentiating 

models of the computations underlying the bee's behaviour. Not only must a candidate model be 

able to learn to search where the angle subtended matches, but it must generalise like the bees, 

and be relatively unaffected by replacing a solid subtended angle by just its edges. 

5.2 Simulations 

Convolution animats, identical in both processing and learning to those of the last chapter, here 

learn to move to regions where the angle subtended by a circle falls within a goal range. The 

simulations in this chapter will show that subtended angle can be reactively learned both with, 

and without, the bee-like generalisation to edges only. Because the animats are reactive, and 

the circle featureless, subtended angle is the only cue available to the animats to judge distance. 

Therefore, finding that animats learn this cue is not very interesting, except from a computational 

point of view. That bees learn subtended angle to estimate distance is an interesting result because, 

as explained above, there are many cues they could use. The interesting question for animats is 

whether, after leaning solid subtended angle, they generalise like the bees when tested with the 

edges-only circle. 

The simulated environment is a circular arena of radius 128, containing a solitary circle whose 

radius varied randomly between 10 and 30 between trials (fig. 5.1). As in the last chapter, the 

circle and wall intensities are chosen randomly and independently from between 0.0 and 1.0 for 

each trial. Animats receive reinforcement of 1.0 when they move to where the angle subtended by 

the circle subtends between 15 and 21 degrees, and 0.0 reinforcement elsewhere. 

In order to approach the circle, as in the previous chapter, animats only have to learn to detect 

it; the network must learn a filter shape that outputs a higher value when the circle is in view than 

when not. The present task is more difficult because it requires the network to learn to produce 

different outputs depending upon the angle subtended by the circle. If the angle subtended by the 

circle is too small, animats must move toward it; if it is too large, they must move away. 

Varying the circle's radius between trials results in the number of steps to goal being unpre- 

dictable from the visual input. Hence a stable utility function does not exist. This may be expected 

to make the reinforcement learning of a utility function more difficult, but it is not particularly 

focussed upon in the rest of this chapter. 
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Figure 5.1: The environment is a circular arena of radius 128, empty, except for a solitary circle 
of radius varying between 10 and 30. The invisible goal region, shown in gray, is where the angle 
subtended by the circle is between 15 and 21 degrees. Animats receive reinforcement of 1.0 when 
entering this zone, and zero reinforcement elsewhere. 

5.2.1 Visual array 

The 120 element, 1-dimensional visual array is a rough approximation to a horizontal slice through 

the bee's 2-dimensional visual image of a featureless cylinder in a featureless room. Though the 

number of elements is about the same, a major difference is that the bee's receptors are not 

uniformly spaced across the retina (Fransechini et al, 1992). Fig. 5.2 shows example visual arrays 

from outside, within, and inside the goal ring, together with their multiscale convolutions. As the 

angle subtended by the circle increases, the row of maximum activation alters within the multiscale 

array. When the circle subtends around the goal angle, activity is maximal at scales 3 and 4; when 

the circle subtends a larger angle, activity is maximal at coarser scales; when the circle subtends a 

smaller angle, activity is maximal at the finer scales. The maximally active row is independent of 

contrast. Thus multisc. ale filtering makes visual subtended angle more explicit in that subtended 

angle, regardless of contrast, is transformed into an ordered position within the multiscale array. 

Iii order to simulate the edge-only tests, all elements within the solid patch of circle intensity 

are set to the background, wall intensity, level. Fig. 5.3 shows the edge only visual array for the 

circle at. the same distances as in fig. 5.3. Except at far distance, activation in the multiscale 

array is confined to the fine scales. Unlike the solid case, with edges-only, the scale of maximal 

act, ivat-ion does not, vary regularly with subtended angle. 

5.3 Simulation method 

Except for the change of goal region, and the varying circle radius, the environment, and aniº>>ats 

remain the same as in the previous chapter. 

The 120 clement visual array is coded as either a1 dimensional intensity array, or convolved 
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(c) Distance = 40. Inside the goal ring. 
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Figure 5.2: The visual image of the solid circle, intensity coded and after multiscale convolution. 
(Circle radius = 20, circle intensity = 0.7, wall intensity = 0.2, noise = 0.0) 
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(a) Distance = 125. Outside the goal ring. 
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(h) Distance = 67. Within the goal ring. 
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(c) Distance = 40. Inside the goal ring. 
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Figure 5.3: The visual image of the edge-only circle, intensity coded and after multiscale convo- 
lution. All elements within the image of the solid circle are set to the wall intensity level. (Circle 

radius = 20, circle intensity = 0.7, wall intensity = 0.2, noise = 0.0) 

73 

270 315 360 

Direction 

Direction 



with 6 LoG filters (of the same scales as in the previous chapter), to produce a6x 120,2-dimensional 

array (fig. 5.2). The 2-dimensional multiscale filtered array then becomes input to the animat as it 

is, the multiscale coding case; or, is split into two separate arrays, one containing only the positive 

elements in the multiscale array (negative elements turned to zero), and the other containing only 

the negative elements, with the sign changed. This is the rectified multiscale coding case. 

Three batches of simulations are reported: 

" Intensity, multiscale, and rectified multiscale coding animats learning with zero visual noise, 

or with independent Gaussian noise added to each element in the visual array. 

" Animats learning from a single scale of the rectified multiscale array with zero noise. 

" Intensity and rectified multiscale animats learning with coarse scale noise added to the visual 

array. 

After learning, animats are examined in terms of performance, behaviour when tested with 

the solid circle, and when tested with the edges-only circle, and in terms of the internal structure 

underlying their behaviour. 

5.4 Zero and independent visual noise 

5.4.1 Method 

Animats were simulated with either intensity, multiscale, or rectified multiscale coding, and filter 

networks with no hidden units (direct), or 2,4,8,, or 12 hidden units. Animats learned with no 

visual noise, or with Independent Gaussian noise with mean 0.0 and standard deviation (sd) 0.10 

added to each element in the visual array. 

5.4.2 Performance 

A randomly behaving animat, tested in the same conditions as learning animats (1000 trials of a 

maximum of 500 steps, starting from random locations), has a mean performance of 0.23±0.01. 

Zero visual noise 

Learning proceeded for 50K trials for multiscale and rectified multiscale coding animats; 50k 

for direct and 2 hidden unit intensity coding animats, and 100k trials for 4 to 12 hidden unit, 

intensity coding animats. These learning times were sufficient for convergence in each condition. 

No stability problems were found in any condition. Learning curves for the 2 hidden unit condition 

are shown in fig. 5.4; these are typical. 
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Figure 5.4: Learning curves for 2 hidden unit, zero sensory noise, condition in intensity, multiscale 
and rectified multiscale coding conditions. In each condition, 3 learning curves are shown. Each 
data point is the mean performance for the animat over the previous 1000 trials. 

Fig. 5.5 plots the performance of the animats after learning. Each animat was tested over 

1000 trials without learning. Also shown for comparison is the performance level of the randomly 

behaving animat. 

Direct intensity coding animats perform little better than the random animat. With two 

hidden units, this rises to 0.4; performance then increases with hidden unit size up to 8 hidden 

units which perform at 0.75. No further performance increase is found with 12 hidden units. 

Direct, multiscale coding animats perform at 0.43, and this increases to 0.65 with two hidden 

units. Performance then increases slightly with size. With 8 hidden units, multiscale coding 

animats perform at around the same level as those with intensity coding. 

Direct, rectified multiscale coding animats, perform at 0.73, matching the best of the animats 

with intensity and mulitscale coding. With two hidden units this increases to 0.82, a significant 

increase (t-test: t=4.53, p<0.02), reflecting differences in what the two sizes of network have 

learned that are examined in section 5.4.4. This performance is not exceeded with more hidden 

units. 

The performance of 2 hidden unit, rectified multiscale animats is significantly better than the 

best of intensity coding (t-test: 12 hidden unit intensity vs 2 hidden unit rectified multiscale: 

t=3.34, p<0.05). With multiscale coding, the difference approaches significance (t-test: 8 hidden 

unit multiscale vs 2 hidden unit rectified multiscale: t=2.76; for p<0.05 at of greater than or 

equal to 2.78 is required). Hence, a further learning run of 3 animats was simulated in both 

conditions. The resulting animats performed at similar levels to the original ones (see appendix). 

Combining the scores, rectified multiscale coding leads to significantly better performance than 

multiscale coding (t-test: 8 hidden unit multiscale vs 2 hidden unit rectified multiscale, n=6: 

t=5.23, p<0.01), while requiring fewer units. 
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Figure 5.5: Performance as a function of network size for intensity, multiscale and rectified mul- 
tiscale coding learning with zero noise. Each data point is the mean performance of 3 animats. 
All standard errors <_0.05 for intensity coding, and <0.02 for multiscale and rectified multiscale 
coding. 

Independent visual noise 

Fig. 5.6 shows the performance after convergence of animats learning with independent Gaussian 

noise of mean 0.0 and sd of 0.1 independently added to each visual array element. Learning 

proceeded for 50K trials for rectified multiscale coding animats and 100k for intensity coding 

animats. Multiscale coding animats were not simulated in this condition. 

Intensity coding animats with 4, or less, hidden units perform near randomly. With 8 or 12 

hidden units, performance is around 0.57, a 0.2 drop on their noiseless performance above. Direct 

rectified multiscale coding animats also perform at 0.56. With 2 hidden units, performance rises 

to 0.68, a significant increase (t-test: Direct vs 2 hidden unit rectified multiscale coding: t=13.23, 

p<0.001), and this is not exceeded with more hidden units. The difference between rectified 

multiscale and intensity coding is significant (t-test: 2 hidden unit rectified multiscale vs 8 hidden 

unit intensity coding: t=3.45, p<0.05). As in the noiseless case, the superior performance of 

rectified multiscale filtering animats is achieved with fewer units. 

5.4.3 Behaviour 

Intensity coding 

Fig. 5.7 shows example paths for intensity coding animats of increasing network size in the zero 

noise condition. Direct animats drift toward the circle when outside the goal ring; when inside 

it, animats just bounce around the circle. With 2 hidden units, animats move rapidly to the 

goal from outside the ring, but have not learned to move outward when within the ring. With 

4 hidden units, the situation is improved somewhat, and with eight hidden units, animats drift 
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Figure 5.6: Performance as a function of network size for intensity, multiscale and rectified mul- 
tiscale coding learning with independent sensory noise. Each data point is the mean performance 
of 3 animats. All standard errors < 0.03. 

outward from within the goal ring. Thus, although intensity coding animats can easily learn to 

move directly toward the circle, they require 8 hidden units to learn the behaviour of moving away 

from the circle when the subtended angle is too large. 

Rectified multiscale coding 

Fig. 5.8 shows typical paths for direct, and 2 hidden unit, rectified multiscale coding animats. 

Both animats move efficiently toward the goal region from all starting locations; however with 

two hidden units, the paths from within the goal ring are more direct. This is responsible for the 

significant differences in performance noted above. The behaviour of the 2 hidden unit animat is 

clearly more efficient at moving away from the circle when within the goal ring than that of either 

the direct rectified multiscale coding animat, or, any of the intensity coding animats of fig. 5.7. 

Fig. 5.9a shows the behaviour of the 2 hidden unit animat when tested in a larger arena with a 

circle of radius 30, and without a goal region. The animats behaviour is unaffected by the switch 

to a larger arena, and it continues to search where the angle subtended by the circle is within 

the goal range of angles. Fig. 5.9b shows this animat's behaviour when tested with two circles of 

radius 20 and equal contrast. When the angles subtended by the circles are smaller than the goal 

range, animats move toward the nearest. When the angle subtended by one of the circles is larger 

than the goal range, the animats tends to be pulled toward the other, leading to more search at 

the correct distance from one of the circles, but in the direction facing the other circle. 
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(a) Direct. (b) 2 hidden units. 
Performance = 0.31. Performance = 0.44. 
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(c) 4 hidden units. (d) 8 hidden units. 
Performance = 0.60. Performance = 0.75. 
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Figure 5.7: Typical paths for intensity coding animats. The invisible goal region is shown in gray. 
Vaacli plot, shows the behaviour of a single anima. t, from different starting locations: half within, 
and half outside the goal ring. Animat, s vary according to filter network size. 
(For these plots : Circle radius = 20, circle intensity = 0.7, wall intensity = 0.2. ) 
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(a) Direct. 
Performance = 0.75. 
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Figure 5.8: Typical paths for rectified-multiscale coding animats. The invisible goal region is 
shown in gray. Each plot shows the behaviour of a single animal., from different starting locations: 
half within, and half outside the goal ring. (a) Direct, (b) 2 hidden units. 
For these plots : Circle radius = 20, circle intensity = 0.7, wall intensity = 0.2. 
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Figure 5.9: Paths of a2 hidden unit, rectified multiscale coding animat tested in modified envi- 
ronn ent, s. (a) In larger arena than during learning (paths start at the arena edge and near the 
circle). (b) With two circles of equal contrast.. Each path is 30 time steps long. 
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(a) 8 hidden unit, intensity coding animat. (b) 2 hidden, rectified multiscale coding animat. 
Performance = 0.62. Performance = 0.69. 
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Figure 5.10: Typical paths for animats learning (and tested) with independent visual noise. An- 
imats are from the best performing intensity (8 hidden units) and rectified multiscale (2 hidden 

units) coding conditions. 
For these plots : Circle radius = 20, circle intensity = 0.7, wall intensity = 0.2. 

Independent sensory noise 

Fig. 5.10 shows typical paths for 2 hidden unit, rectified multiscale coding, and 8 hidden unit, 

intensity coding animats that learned in the presence of independent sensory noise. As in the 

noiseless case, the rectified multiscale coding aniinat is able to move away from the circle, when 

required, more efficiently than the intensity coding animat despite having fewer hidden units. 

Edges only test 

When tested with the image of the circle replaced by just its edges, the performance of all the above 

animats deteriorates greatly. Fig 5.11 shows typical behaviour of animats with the normal visual 

array (left column), and with edges-only (right column). The 2 hidden unit, rectified multiscale 

coding animat that moves directly to the goal when tested with the solid circle (fig. 5.11 left), is 

reduced to randomness when tested with only the edges (fig. 5.11 right). The intensity coding 

; uiinnat is somewhat, less effected by the change to edges-only when outside the goal ring. However, 

within the goal ring, behaviour is totally altered; the animat just sticks close to the circle. Similar 

extreme behavioural degradation is found with all the above animats, regardless of coding, noise 

and filter network size, when tested with just edges. 
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(a) Zero visual noise. 2 hidden unit, rectified multiscale coding. 
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(b) Zero visual noise. 8 hidden unit, intensity coding. 
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(c) Independent visual noise, 2 hidden unit, rectified multiscale. 
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Figure 5.11: Typical paths of 3 animats in response to solid circle (left column), and edges-only 
circle (right. column). Aniniat. s plotted here are from the best performing network size for each 

of the coding conditions. Behaviour of all animats is highly degraded by replacement of the solid 

angle with just, its edges. 
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5.4.4 Internal structure 

Direct rectified multiscale animats 

Fig. 5.12 shows the learned weight structure and response pattern of the filter network controlling 

the direct rectified multiscale animat whose behaviour is shown in fig. 5.8a (performance = 0.75) 

and discussed above. These arrays of weights are convolved across the rectified multiscale arrays 

to determine output activation. The only strongly positive weights are on the third from coarsest 

scale. The other weights are mostly small valued and negative, but sum to slightly outweigh the 

positive weights. By having positive, concentrated weights on this scale, surrounded by many 

small negative weights, the output unit responds when activity on this scale exceeds activity on 

the other scales. The positive weights are all on scale number 3, corresponding to a LoG filter 

of spatial scale 13.3 degrees. As shown in fig. 5.2, scale 3 has the most activity when the circle 

subtends the goal range of angles. 

Fig. 5.12b plots the output of the direct filter network in response to a circle, of radius 20, as 

a function of its distance and bearing relative to the filter. The left column plots the output unit 

activation between 0.0 (black) and 1.0 (white). The highest activity occurs in the region of zero 

bearing, around distance 50-120, and fades away with increasing distance. This is the expected 

response pattern given the weights of fig. 5.12a. 

Without noise, because the LoG filter is insensitive to the absolute visual intensity, the ac- 

tivation of the filter network when the circle is not in view, is a single number irrespective of 

visual intensity; the null activation. The null activation links the network output to the animats 

behaviour. When the output activity in response to the circle is higher than the null activation, 

the animat stochastically moves toward the circle. When the output activity is lower than the null 

activation, the animat stochastically moves away from the circle. Hence, the null activation en- 

ables output activation plots, such as the left column of fig. 5.12b, to be understood in behavioural 

terms. The right column shows the output activation, thresholded so that all those below the null 

activation are set to zero. Hence, it is a plot of the distances and bearings of the circle with respect 

to a filter network which lead to the animat moving in the direction of that filter network. For a 

circle of radius 20, the distance range corresponding to the goal subtended angle range is 55-77. It 

can be seen that this filter network does not respond when the circle is closer than about 60, and 

so the animat is unlikely to move toward a circle closer than this. Response, and hence probability 

of moving toward the circle, peaks at around distance 80, fading away with increasing distance. 

The relationship between network output and behaviour is made clearer in fig. 5.12c, which 

plots the response of the network to a centered circle, as a function of distance. When distance 

is large, and hence subtended angle small, output activation is greater than the null response 

and so the animat moves toward the circle. As distance decreases, activation gradually increases, 
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reflecting the decreasing expected number of steps to the goal. When subtended angle exceeds the 

goal region, output is lower than the null response, and so the animat is most likely to move away 

from the circle. Notice that in the region just closer to the circle than the goal region, output is 

still higher than the null response and so the animat will tend to move toward instead of away 

from the circle. Approximately the same learned weight structure and response profile were shown 

by all direct animats using rectified multiscale coding. 

Individual filter networks have overlapping receptive fields within the convolution architecture 

that determines animat behaviour. In order to see how individual response fits in with the rest, 

fig. 5.13 plots the motor array activity (thresholded at the null activation) in the direction nearest 

to the circle placed at all distance and directions from the animat. Although most of the space is 

covered, there are clearly holes, especially between the distances of 60 and 100, and at far distance. 

2 hidden unit rectified multiscale animats 

Fig. 5.14 shows the learned weights and response profile for the 2 hidden unit, rectified multi- 

scale animat, whose highly efficient behaviour was shown in fig. 5.8b. The behaviour leads to 

performance significantly better than that of the direct, rectified multiscale animats discussed 

above. 

Fig. 5.14a and b, show the weight structure learned by the filter network. Each hidden unit has 

2, two-dimensional arrays of weights; for the positive and negative components of the multiscale 

filtered visual array. For both hidden units, weights for the positive and negative parts of the 

filtered image are very similar. This pattern is seen in most rectified multiscale animats in both 

this and the last chapter, and is due to the symmetry about zero of the filtered sensory array, given 

the visual conditions imposed by the solitary circle environment. The circle intensity is equally 

likely to be higher or lower than the wall intensity, and so, for a unit to respond to a feature, such 

as subtended angle, irrespective of contrast, the same weight structure must be learned for both 

the negative and positive filtered arrays. 

Hidden unit 1 (fig. 5.14a, left column), has positive weights concentrated on the 2 coarsest 

scales, and negative weights concentrated around the center of the finer scales. The result of 

this structure is that when the circle is far away, and hence causing activity at the finest scales, 

this hidden unit is suppressed. When the circle is nearby, and hence subtends a large angle, the 

activity on the coarse scales outweighs the activity at the the fine scales and so the unit becomes 

active. This pattern is shown in fig. 5.14a (right column), which plots the activity of the unit 

in response to a circle, radius 20. Around the center of the unit's receptive field, the unit only 

becomes active when the circle's distance is less than about 60. The unit is also active when the 

bearing of the circle is more than 30 degrees; diminishing with distance. This is due to the more 

extended pattern of activity at the coarse scales compared with the fine scales. 
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a) Filter network weights. Output unit bias = 0.62. 
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Figure 5.12: Learned weight. structure and response pattern of a direct rectified multiscale coding 
filter network (animat performance = 0.75). a) The direct filter network consists of 2, two- 
dimensional arrays of weights to the single output unit. b) The activation of the output unit in 

response to the circle, of radius 20, as a, function of its distance and bearing relative to the filter. 
The left. column shows the unit activation, between 0 (black) and 1 (white). The right column 
displays this in more behaviourally relevant terms by thresholding at the null activation level. c) 
The response of the output unit. to the centered circle as a function of distance (ie. the central 
column of left, image in b)). The vertical lines mark where the angle subtended by the circle is 

within goal range. Null marks the output of the filter network when the circle is out of view. 
Where the output is greater than null, the animat moves toward the circle; where the output, is 
less than null, the animat, moves away from the circle. 
(For these plot-s: Circle radius = 20, circle intensity = 0.7, wall intensity = 0.2. ) 
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Figure 5.13: Response of the direct rectified multiscale animat to the circle at all distance and 
directions. Response is plotted irrespective of filter network direction and thresholded at the null 
activation. 

Hidden unit 2 (fig. 5.14b, left column) has positive weights concentrated at the center of the 

finest scales, with negative weights at the coarse scales. The result of this structure is that the 

unit is active when the circle subtends a small angle. As the subtended angle increases, positive 

activity at the fine scales becomes by outweighed by negative activity at, the coarse scales. Because 

the positive, fine scale weights, are concentrated at the center, the unit does not respond when 

the circle subtends a large angle and elicits the two humps of fine scale edge response shown in 

fig. 5.2. However, when just. one of the circle's edges is at the center of this units receptive field, 

the positive activity is not outweighed. This is responsible for the two "legs" seen in fig. 5.14b 

(right column). The response to the circle is as expected from the weights; the unit becomes active 

when the circle is at a far distance, and hence subtends a small angle. 

Fig. 5.14c shows the output unit response to the circle. On the left is the raw activation of 

the output unit. Both hidden units have negative weights to the output unit, with hidden unit 

I having the higher magnitude. Below distance 120, the output activation profile is essentially 

the negative of hidden unit 1's profile. At. distances of greater than 120, hidden unit 2 inhibits 

the output, unit activity by an a. mount, increasing with distance. A more behaviourally relevant 

rendering of the output activity is shown in the left. column, where it is thresholded at the null 

activation level (the response of the filter network to a flat visual input), to indicate where the 

aninia. t, is more likely to move toward the circle. The region of high response is restricted to 

within 30 degrees of the center of the filter networks receptive field, with activity rising sharply 

at around distance 60, and then decreasing slowly with increasing distance. Comparing this plot 

with the corresponding one for the direct. rectified multiscale animat (fig. 5.12b), it is clear that 

with 2 hidden units a more compact. and accurate region of high activity is learned. 

The relationship between stimulus, hidden unit., and output activity is made clearer in fig. 5.15, 
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which plots activity in response to the circle centered within the networks receptive field. Also 

shown is the null activity level. Where the output is greater than null, the animat tends to move 

toward the circle. Where the output is lower than null, the animat tends to move away. At far 

distance, output is higher than null and increases as the distance to the goal decreases. Output 

activity in this region is determined by hidden unit 2. Output drops to well below the null level 

within the goal region, and remains very low at short distance. Output activity in this region is 

determined by hidden unit 1. 

This learned weight structure is interesting because the network has learned to partition the 

response to sensory stimuli amongst the two hidden units, so that one responds to the circle at 

a far distance, and the other at near distance. The output unit can then combine the hidden 

unit responses to produce the output leading to most effective behaviour. The other 2 animats 

simulated in this condition learned a similar stimuli decomposition. This computational strategy 

is not available to direct filter networks; hence their significantly poorer performance. That this 

learned stimuli partition is sufficient for the task is indicated by animats with more hidden units 

doing no better than those with 2 hidden units. 

Fig. 5.16 shows the combined response of this animat to the circle at all distance and direc- 

tions. The response of individual filter networks overlap to provide total coverage of the space. 

Comparing this with the same plot for the direct rectified multiscale animat (fig. 5.16) indicates 

why this animat performs significantly better. 

5.4.5 Response to edges-only circle 

In section 5.4.3 it was shown that when the solid circle image is replaced with the edges-only circle, 

the performance of all animats, unlike honeybees, is extremely degraded. Now, having understood 

what the rectified multiscale animats have learned to compute that enables them to perform so 

efficiently, it is possible to understand why they are so degraded by the edges-only test. 

As explained in section 5.4.4, the direct rectified multiscale animats learn to concentrate pos- 

itive weights on a single, relatively coarse scale, with other weights small and negative. The 

positive weighted scale roughly matches the angle subtended by the circle from within the goal 

ring. When the solid circle image is replaced by just its edges, maximal activity is only elicited 

at the fine scales, regardless of distance. Hence, the direct filter network's coarse scale strategy is 

strongly affected by replacement of the solid circle with its edges. Fig. 5.17 shows the response of 

the network filter to the edges only image, and this is clearly very different to the response to the 

solid circle shown in fig. 5.12. Hence the massive performance degradation shown by the animats 

in the edge only test. Only at far distance are the response patterns similar; this is because the 

difference between the solid and edge only images is small at far distance, and both images will 

match when the circle subtends 2, or less, receptors. 
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a) Hidden unit 1: Weights (bias = -2.44, weight to output = -4.50) and response to a circle. 
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c) The response of the output unit to a circle: Raw and thresholded at null activation 
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Figure 5.111: Learned weight structure and response pattern of a2 hidden unit rectified niultiscale 

coding filter network (animat performance = 0.85). a) and b) Each hidden unit has 2, two- 

dint nsional arrays of weights one for the positive and one for the negative multiscale arrays (left 

column). The right, column plots the activation of the hidden unit, in response to a circle, radius 
20. c) The output activation in response to the circle (left column), and thresholded at the null 

activation level (right. column). 
(For these plots: Circle radius = 20, circle intensity = 0.7, wall intensity = 0.2. ) 
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Figure 5.15: The activation of the output unit of a2 hidden unit animat using rectified-multiscale 
coding, to the circle placed at the center of its receptive field. Hidden unit 1 responds to large 

subtended angle, hidden unit 2 to small subtended angle. The output unit, combines these into a 
utility function, suitable for the task. The vertical lines mark where the angle subtended by the 
circle is within goal range. 
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Figure 5.16: Response of the 2 hidden unit. rectified mult. iscale animat to the circle at, all distance 

and directions. Response is plotted irrespective of filter network direction and thresholded at the 

mill activation. 
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Output unit response, raw and thresholded at null activation, to edges-only circle. 
Output Unit Output Unit 

y 
U 

V 

180 

160 

140 

120 

100 

80 

60 

40 

20 

I 

ýyt 

H 

-75 -60-45 -30 -15 0 15 30 45 60 75 

Bearing 

180 

160 

140 

120 

100 
CD 

80 

60 

40 

20 

Figure 5.17: Response of the direct, rectified multiscale coding filter network to edges-only circle. 
This filter network is the same as in the earlier figure and discussed in the text. The large difference 
in response pattern, compared with the earlier figure, is due to the stimuli difference. 

With 2 hidden units, the situation is similar. Fig. 5.18 shows the response pattern of the 2 

hidden unit filter network of fig. 5.14 to the edges-only circle, and again there is a large difference. 

As explained in section 5.4.4, hidden unit 1 has learned to respond to the coarse scale activity 

elicited when the solid circle is nearby. Hence, as edges only elicit fine scale activity, it. does not 

get active at all in response to the edges only circle. Hidden unit 2 has the opposite problem; it 

responds when activity at the fine scale outweighs activity at the coarse. Hence, it responds to 

the edges only circle regardless of distance. The output unit activity only exceeds the null level 

when the circle subtends a very small or a very large angle totally inappropriate for efficient 

performance of the task. 

The performance degradation shown when the solid circle is replaced by just its edges occurs 

because rectified mult, iscale animats consistently use activity at the coarse spatial scales as part of 

their learned computational strategy. The edges-only circle elicits strong activity at only the fine 

spatial scales. Hence the behavioural sensitivity of the animats to the replacement of the solid 

circle by just its edges. Rectified multiscale animats that learn in the presence of independent 

sensory noise rely at least as much on the coarse scales, and so the same computational argument 

underlies their performance degradation in the edges only test. 

5.4.6 Conclusion 

Without noise, 2 hidden unit., rectified multiscale animats perform significantly better than direct 

rectified molt iscale animats, and this performance is not improved upon with more hidden units. 

Their performance of 0.82 is significantly better than intensity and multiscale coding animats, 

regardless of network size. Examination of behaviour shows that these animats can efficiently move 
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(a) Hidden unit response to edges only circle. 
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(b) Output tunic response, raw and thresholded at null activation, to edges only circle. 
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Figure 5.18: Response of the 2 hidden unit, rectified multiscale coding filter network to edges only 
circle. This filter network is the same as in the earlier figure and discussed in the text. The large 
difference in response pattern, compared with the earlier figure, is due to the stimuli difference. 
(aa) Hidden unit, activation. (b) Output unit. activation. 
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to the goal ring from both inside and outside it. With independent noise, a similar situation holds 

with 2 hidden unit, rectified multiscale animats again outperforming direct, rectified multiscale 

and all intensity coding animats. 

The computations learned by the rectified multiscale animats, that result in efficient perfor- 

mance with the solid circle, are highly sensitive to replacement of the solid region with only its 

edges. This is different from the behaviour shown by bees in Cartwright and Collett's (1983) 

experiment, and so all the above animats must be rejected as possible models of the computations 

underlying the insect's behaviour. Analysis of the learned internal structure of the animats in 

section 5.4.4 reveals the computational mechanisms underlying their behaviour, and explains the 

large deterioration of performance in the edges-only condition. 

5.5 Rectified single scale coding 

Having established above that rectified multiscale coding animats significantly outperform those 

with either intensity, or multiscale coding, the next step is to determine whether their superior 

performance is critically dependent upon the multiscale aspect of the filtering, or whether filtering 

with a LoG at a single scale is just as effective. A further question is whether single scale coding 

leads to animats whose performance is less degraded in the edges-only condition than those with 

mulitscale coding. 

5.5.1 Method 

Animats were simulated with rectified single scale LoG filters, and zero visual noise. 6 single 

scales numbered (0-5), each corresponding to one of the scales in the rectified multiscale case were 

simulated. Rectification of the single scale filtered array yields 2,1-dimensional arrays, each a row 

of the corresponding rectified multiscale array. Thus, rectified single scale coding animats have 

subset of the input of rectified multiscale animats. 

5.5.2 Performance 

Fig. 5.19 shows the performance after 50k learning trials for less than 8 hidden units, and 100k 

learning trials for 8 hidden units, by which time all had converged. Also shown in fig. 5.19, for 

comparison, is the mean performance of direct, and 2 hidden unit, rectified multiscale coding 

animats. 

Scale 0 corresponds to the finest of the rectified multiscales, and scale 5 to the coarsest. With 

the coarsest filter (scale 5), performance is very low regardless of network size. At the next from 

coarsest scale (4), performance is low for direct or 2 hidden unit filter networks, but increases to 
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Figure 5.19: Performance as a function of network size for animats with rectified single scale 
coding. Each scale is one of those used in the multiscale coding condition (scale 0 is the finest; 

scale 5 the coarsest). Also shown for comparison are the performance of the random animat and 
rectified multiscale coding animats. Each data point is the mean performance of 3 animats. All 

standard errors <0.04, except for scale 4, where standard errors <0.06. 

around the level of the direct rectified multiscale animat with 4 or 8 hidden units. The 4 finest scales 

(0-3) all show very similar performance, achieving near the level of the direct rectified multiscale 

animat with 4 hidden units, and a slight increase with 8 hidden units. The best performance 

of 0.77, by 8 hidden unit animats at scale 0, is significantly lower than the 0.82 performance 

of the 2 hidden unit, rectified multiscale animats (t-test: t=2.496, p<0.05). However, since the 

performance of the finer scale animats increases somewhat from 4 to 8 hidden units, it may be 

that with more hidden units their performance could match that of the 2 hidden unit rectified 

multiscale coding animats. This could be easily tested with further simulations. 

It requires 4 hidden units for rectified single scale animats to achieve the same performance 

level as direct, rectified multiscale animats; and 8 hidden units for scale 0 animats to perform 

near the level of 2 hidden unit, rectified multiscale animats. Thus, rectified multiscale coding of 

the visual array facilitates subsequent computation in that smaller filter networks are required to 

learn the mapping to useful output than when the visual array is coded at any single scale. 

5.5.3 Behaviour 

Examination of typical paths show that the animats with single scale 0 to 4, and 4 hidden units, 

have learned to move quite efficiently toward the circle from outside the goal ring, but have 

problems moving away from the circle from within the goal ring. The best of these animats (4 

hidden unit, scale 4), show behaviour similar to that of the direct, rectified multiscale animat. 

Fig. 5.20 shows typical paths of 8 hidden unit, rectified single scale animats at scales 0 (fine) 

and 4 (coarse), when tested with the solid circle, and the edge only circle. With the solid circle, 
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(a) 8 hidden unit, rectified single scale 0 (fine scale). 
Solid circle: Performance = 0.77. Edges-only circle: Performance = 0.61. 
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(b) 8 hidden unit, rectified single scale 4 (coarse scale). 
Solid circle: Performance = 0.70. Edges only circle: Performance = 0.42. 
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Figure 5.20: Typical paths of 8 hidden unit, rectified single scale animats, tested with the solid 
circle (as during learning), and the edges only circle. (a) Fine scale. (b) Coarse scale. 

the fine scale animat behaves somewhat more efficiently than the coarse scale one. When the 

solid circle is replaced by just. its edges, the performance of the coarse scale animat deteriorates 

greatly; it just bounces around the circle when inside the goal ring. The fine scale animat is far 

less sensitive to the replacement, still moving to the goal from both inside and outside the goal 

ring. 

5.5.4 Conclusion 

That it requires 8 hidden units for rectified single scale animats to perform as well as direct 

rectified multiscale animats is an interesting result.. It, implies that, the rectified rnultiscale code 

permits a simpler mapping to the required output function than is available at any single scale. 
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This is supported by the internal structure analysis (fig. 5.12) which showed that direct rectified 

multiscale animats do use the relation between scales rather than just the pattern of activity at any 

one in their learned computations. This finding is a further example of rectified multiscale coding 

facilitating subsequent computation; in this case by making the required computation simpler, 

and hence learnable with a smaller filter network. 

Excepting the coarsest scale, no difference is found in the performance of 8 hidden unit animats 

as a function of scale when tested with the solid circle image. However, when tested with the 

edge-only circle, the performance of coarse scale animats is considerably more degraded than the 

performance of fine scale animats. This implies that different computations underlie the coarse 

and fine scale animat's behaviour, despite their similar performance with the solid circle. 

The difference between the pattern of activity caused by the solid and the edges-only image is 

small at the fine spatial scales, whereas at coarser spatial scales, the difference is more pronounced, 

with the difference increasing with spatial scale. So the animats that have learned to efficiently 

perform the task using fine scales will be processing similar arrays to those experienced during 

learning when the circle is replaced with just its edges. Hence their output and behaviour will 

be relatively unaffected. Animats that have learned to use coarse scales will be processing very 

different arrays from those experienced during learning. Hence their output and behaviour will 

typically be more affected. This is the pattern of results seen here: animats using fine scales to 

guide movement are less affected by the replacement of a solid subtended angle by just its edges 

than those using coarse scales. 

5.6 Coarse Scale noise 

It has been established above that when learning with zero, or independent visual noise, rectified 

multiscale animats learn to use the relative activity at the coarse and fine spatial scales of the 

mulitscale array to guide their efficient movement to the goal. Replacing the solid circle with the 

edge-only circle disrupts the coarse scales of the multiscale array and so considerably degrades the 

behaviour of these animats; and rectified single scale animats using the coarser scales. Switching 

to edge-only hardly affects the fine scales of the multiscale array and this is reflected in the finding 

that rectified single scale animats that use the fine spatial scales are far less affected by the switch. 

In the circle approach task of the last chapter, it was shown that when learning with visual 

noise, animats learn computational solutions involving the scales least affected by noise. In the 

present case, this suggests that when the noise is coarse scale, and hence rectified multiscale 

animats are forced to use the fine scales, their performance will be less degraded in the edges-only 

test than with zero or independent noise. The following simulations test this hypothesis. 
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(a) Visual array with coarse scale noise. (Circle distance = 60) 
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14'igure 5.21: (a) Example visual array with coarse scale noise added. 
(h) Multiscale convolution of the visual array. In contrast to the activity at the fine scales caused 
by independent noise, coarse scale noise causes activity at mostly the coarse spatial scales. 

5.6.1 Method 

Intensity and rectified multiscale coding animats of exactly the same design and parameters as 

above were simulated with coarse scale noise added to the visual array. The noise has the same 

statistics as in the previous chapter: independent noise with standard deviation of 0.33 is convolved 

with a Gaussian of spatial scale 3.0 units to yield coarse scale noise with a standard deviation of 

0.1.3 aiiimats were simulated in each condition, and learning proceeded for 50k trials for anirnats 

with 2 or less hidden units, and 150k trials for those with more than 2 hidden units. The extra 

learning time reflects the finding that with coarse scale visual noise, animats typically took longer 

to converge than in the noiseless, and independent visual noise cases. 

5.6.2 Performance 

Fig. 5.22 shows the performance after learning. Intensity coding animats with 2 or less hidden 

units perform near random, and performance does not. get above 0.5 with 12 hidden units. Direct, 

rectified multiscale coding animats perform at 0.54 and this increases to 0.66 with 4 hidden units. 

This performance level is not bettered with 8 hidden units. 

5.6.3 Behaviour 

Fig. 5.23 shows the behaviour of a4 hidden unit, rectified multiscale coding animat, after learning 

with coarse scale noise. NN hen tested with the solid circle, behaviour is less efficient, than that 

of a. nimats that learned without. noise, but the animat has clearly learned to move both away 

from the circle when inside the goal ring, and toward the circle when outside of the goal ring. 

\Vlhen tested with just the edges of the circle, the animats behaviour is far less degraded than 
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Figure 5.22: Performance as a function of network size for intensity, and rectified multiscale coding 
learning with coarse scale sensory noise. Each data point is the mean performance of 3 animats. 
All standard errors<0.03. 

rectified multiscale animats that learned with zero, or independent noise, and this is reflected in 

the performance scores. Similar behaviour was shown by the other two animats with 4 hidden 

units, with a mean performance of 0.68, when tested with edges-only and zero noise. This value 

is significantly higher than the best (fine) single scale animat tested in the same conditions. 

5.6.4 Internal structure 

Figs. 5.24 and 5.25 show the weights and response profiles of the 4 hidden unit filter network 

controlling the animat whose behaviour was shown and discussed above. Comparing this with the 

corresponding figure for rectified multiscale coding animats in the noiseless case (fig. 5.14), it is 

clear that the coarse scale noise has led to a very different computational solution. Weights to the 

3 coarsest scales are all near zero, implying that animats have learned to use activity at the fine 

scales to guide movement. 

The coarse scale noise has forced the filter network to use the fine scales to compute subtended 

angle, and this involves estimating the retinal distance between the two localised patches of fine 

scale activity caused by the circle's edges. In fig. 5.24, hidden units 1 to 3 each respond to 

a range of subtended angles at localised regions of the receptive field, and between them they 

approximately tile the central 30 degrees of the networks receptive field. Hidden unit 4 seems to 

have a complementary function and is active when the circle is out of view, but not when it is 

around the center of the receptive field. 

Because the fine scale activity pattern is less modified by the edges-only replacement, there is 

less impact on these computations than is the case with animats that rely on coarse scale filter 

activity. This is confirmed by fig. 5.27 which shows the hidden and output unit response patterns 
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(a) Solid circle, coarse scale noise. (b) Edges only, coarse scale noise. 
Performance - 0.65. Performance = 0.64. 

Z-j0 LJb 

192 /// 192 

128 -'" "" 128 

64 64 

0 0 

0 64 128 192 256 0 64 128 192 256 

(c) Solid circle, zero noise. (d) Edges only, zero noise. 
Perforniance = 0.67. Performance = 0.68. 
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Figure 5.23: Typical paths of a4 hidden unit, rectified multiscale animat that learned with coarse 
scale visual noise. 
(a) and (b) Behaviour when tested with coarse scale noise at the same level as during learning. 
(c) and (d) Behaviour when tested with zero visual noise. 
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to the edge-only circle. There is less difference between these responses and those to the solid 

circle than was the case with rectified multiscale animats that learn with zero, or independent 

visual noise. Hence these animats are far less affected behaviourally by replacing the solid circle 

with the edge-only circle and behave lake Cartwright and Collett's (1983) honeybees. 

5.6.5 Conclusion 

Rectified multiscale coding animats considerably outperform intensity coding animats when learn- 

ing with coarse scale visual noise, though it requires 4 hidden units to achieve peak performance 

rather than the 2 required with zero or independent noise. Coarse scale noise causes rectified 

multiscale animats to focus on fine scale activity in order to achieve their efficient performance. A 

consequence of this is that they are far less affected by replacing the solid circle with the edge-only 

circle than those that learned with zero and independent noise. 

5.7 Discussion 

Animats in this chapter have learned to move to where the solid visual angle subtended by a 

circle falls within a goal range, irrespective of the sign and magnitude of image contrast. Intensity, 

multiscale and rectified coding lead to animats behaving at a level much better than chance, 

given enough hidden units. Learning with zero visual noise, both multiscale and intensity coding 

animats require 8 hidden units to achieve an asymptotic level of performance that that is matched 

by direct animats using rectified multiscale coding. With 2 hidden units, performance of rectified 

multiscale coding animats improves further. This finding supports the case of the previous chapter 

that rectified multiscale coding makes it easier for the filter network to learn the required mapping 

to the motor array. In the task of the previous chapter, this facilitation occurred only with 

noise, because rectified multiscale filtering separated activity due to noise from activity due to 

the circle. Here, the facilitation occurs because rectified multiscale filtering makes the subsequent 

computations simpler, rather than because it enables multiple computational routes to the output 

function. 

The computational problem that filter networks have to learn to solve in order to efficiently 

perform the present task is sensitivity to subtended angle, irrespective of the randomly varying 

contrast. At minimum, they must output a large value when the circle subtends an angle smaller 

than the goal angle, and a low value when it subtends an angle larger than the goal angle. From 

the raw visual array, responding to subtended angle, irrespective of contrast, is computationally 

difficult. This is reflected in the finding that 8 hidden units are required for intensity coding 

animats to perform efficiently, though at a lower level to rectified mulitscale coding animats. 

Rectified multiscale filtering of the visual array makes the subtended angle much more explicit 
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(a) The response of the output unit to a circle: Raw and thresholded at null activation 
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(b) Hidden unit 1: Weights (bias = -3.08, weight to output = -2.72) and response to a circle. 
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(c) Hidden unit 2: Weights (bias = -3.23, weight to output. = -2.73) and response to a circle. 
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Figure 5.24: Learned weight, structure and response pattern of a rectified multiscale coding, 4 
hidden unit, filter network that, learned with coarse scale sensory noise (animat performance = 
0.65). (a) Response of output unit,. (b) and (c) Hidden units 1 and 2: Weights (left column), and 
response to circle, radius 20. 
(For these plots : Circle intensity = 0.7, wall intensity = 0.2. ) 
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(d) Hidden unit 3: Weights (bias = -3.29, weight to output = -2.56) and response to a circle. 
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(e) Hidden unit 4: Weights (bias = 3.50, weight to output = -2.32) and response to a circle. 
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Figure 5.25: (continuation of previous figure) Weights and response to circle of hidden units 3 and 
4 of the filter network from the previous figure. 
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Figure 5.26: Response of the 4 hidden unit rectified multiscale animat that learned with coarse 
scale noise to the circle at. all distance and directions. Response is plotted irrespective of filter 

network direction and thresholded at, the null activation. 
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a) The response of the output unit to a edge only circle: 
Raw activation thresholded at null activation. 
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h) Response of hidden units to edge only circle. 
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Figure 5.27: Response of the 4 hidden unit, rectified rnultiscale coding filter network of the previous 
figure to the edge only circle. 
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because each filter, through its scale parameter, responds most strongly to a particular range of 

solid subtended angles. Hence, as the angle subtended by the circle changes, the row of the rectified 

multiscale array with maximum activity changes. In order to be sensitive to a particular subtended 

angle, direct filter networks have only to place large positive weights on the row corresponding 

to the scale nearest the goal subtended angle, and balancing, negative weights on neighbouring 

rows. The result of this arrangement is that the output unit will respond when activity on the 

positive row exceeds activity on the neighbouring rows; ie when the subtended angle is close 

to the desired subtended angle. This arrangement of weights is structurally simple, and direct 

rectified multiscale coding have been shown to learn an approximation of it. With 2 hidden units, 

more subtle discriminations can be made based upon the relative activity at different scales. The 

important point is that rectified multiscale filtering transforms the visual array to an expanded 

code which is itself sensitive to subtended angle. Hence, the computation required to map this 

code to the desired output function is far simpler than the computation required to map from the 

raw visual array to the desired output function. 

The simple computational strategy of comparing activity at different scales results in efficient 

performance when the circle subtends a solid angle. However, in the edges-only test, the circle 

causes activity at just the fine scales. This severely impairs the above animats because their 

strategy is based on activity at the coarse scales responsive to the solid subtended angle. Thus, 

unlike Cartwright and Collett's (1983) bees, the behaviour of rectified multiscale animats is highly 

degraded by replacement of the solid subtended angle by just its edges. 

Rectified single scale animats using the coarsest spatial scale perform poorly regardless of filter 

network size, suggesting that filtering at this scale removes all useful information. Rectified single 

scale animats using other scales require 8 hidden units to perform at the same level as direct 

rectified coding animats. This is because with a single scale, the filter network obviously cannot 

utilise the relative activity at different scales like the rectified multiscale filter network can. Details 

of the single scale activation pattern must be used and this greatly increases the complexity of 

the computation. Replacement of the solid subtended angle by just its edges affects coarse scale 

animats far more than those using the fine scale, though both are degraded. This is expected 

because the solid and edges-only circle produce similar arrays after fine scale filtering: fine scale 

LoGs only respond to edges in either case. Coarse scale LoGs in contrast only respond to the solid 

subtended angle and hence produce a very different array in the two cases. 

When learning with coarse scale noise, 4 hidden units are required for rectified multiscale 

animats to acheive a peak performance which is considerably better than that of intensity coding. 

As in the previous chapter, coarse scale visual noise causes more problems for intensity coding than 

independent noise. Examination of the internal structure of rectified multiscale coding animats 

shows that they learn to respond to the circle using the fine scales, because they are the least 
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effected by noise. A consequence of this is that, like honeybees, their behaviour is relatively 

unaffected by replacement of the solid subtended angle by just it's edges. 
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Chapter 6 

Learning multiple subtended 

angles 

6.1 Introduction 

In the previous chapters of this thesis, there was a single spatial goal within the environment. 

Hence, in order to successfully perform the task, animats had to learn to map the visual array at 

ea. cli location within the environment, to a motor array coding for movement leading the anismal 

nearer to that goal. At each location there is a unique direction pointing toward the goal, and 

animals must learn what. it is. Animals, in contrast, can not only learn to steer toward one spatial 

goal at a. time, but concurrently learn to steer to each of a number of spatial goals; switching 

between them as the occasion demands. For example, honeybees can learn to steer toward several 

foraging sites at the same time (Collett, 1992). This chapter addresses this issue by extending the 

simulations of the last chapter so that the task becomes concurrently learning to move to each of 

a number of spatial goals. 

In the last chapter, the task for the animats was to move to a location where the angle subtended 

by t lie image of a circle fell between a certain range. Animats were shown to be able to learn 

the task, with rectified multiscale coding leading to superior performance than intensity coding. 

Ilere, instead of a single goal range of subtended angle, animats must, learn to move to each of a 

number of goal ranges of subtended angle. On any particular trial, one of this number is randomly 

chosen as the current goal. Animats are informed as to which is the current goal by means of 

an additional input, and they receive positive reinforcement only when entering the current goal 

region. 

In the simulations reported here, with a circle of radius 20 and an arena of radius 192. t here 

are four, non-overlapping goal regions as shown in fig. 6.1. During learning, one of the four goal 
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regions is chosen at random on each trial. This is input to animats by setting one of four extra 

input units to 1 and the rest to zero. Note that one of the four goal regions (number 2 in fig. 6.1) 

is same as the single goal region of the previous chapter. Hence, the task in the previous chapter 

is a behavioural subtask of this chapters task in that competence at moving to any of a number 

of goal regions implies competence at moving to any individual one. 

The difficulty for reinforcement learning in this task is that for a large region of the environment 

(from distances of between 56 and 128 from the circle), the animat must move toward or away 

from the circle depending upon the current goal. Two opposite behaviours are required for each 

of these locations; which of the two behaviours should be acted is determined by which is the 

current goal. Hence, there is not a single utility function that will lead to competent behaviour. 

The utility function learned by an animat competent at this task will itself be a function of the 

current goal. This is shown to be the case in section 6.5, where the response of an animat after 

successful learning is analysed in detail. 

In chapter 4, rectified multiscale coding was shown to lead to superior performance than 

intensity coding in the presence of noise. The performance of multiscale coding (without the 

rectification step) animats was shown to fall between these two. In chapter 5, rectified multiscale 

coding was again shown to lead to superior performance, with a smaller number of hidden units, 

than intensity coding. Again, the performance of multiscale coding fell between these two. Given 

these results, and the similarity in the environment of the present and previous tasks, only intensity 

and rectified multiscale coding animats are compared here. Based upon the previous results, it is 

assumed that multiscale coding animats would learn to perform at a level above that of intensity 

coding animats, but below that of rectified multiscale coding animats. 

6.2 Processing 

Processing is as in the last two chapters, except that in addition to the weights to the sensory 

input, each hidden unit has a weighted connection to the four additional units that specify which 

is the current goal (see figs. 6.2). In the case of a direct network, the output unit has weights 

to these four units. They are processed exactly as sensory input units. As in the previous two 

chapters, the visual array, or the rectified multiscale array, is then convolved by the filter network 

to yield a 15 element motor array. The goal units have the same activation levels for each filter 

network (see fig. 6.3 and fig. 6.3). 
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Figure 6.1: The environment is a circular arena of radius 192, empty except for a solitary circle, of 
radius 20. The invisible goal region on each trial is chosen randomly from one of 4 non-overlapping 
regions, each specified by a range of subtended angle. 
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Figure 6.2: Filter networks. In addition to the sensory input, hidden units (or the output unit in 
the case of direct networks) have weighted connection to four binary goal units. 
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Figure 6.3: Animat sensorimotor control in the intensity coding condition. The visual array is 
convolved by the filter network which also has input from the goal units. Black dots mark undrawn 
filter networks. 
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Figure 6.4: Animat, sensoriinot. or control in the rectified multiscale coding condition. The visual 
array is convolved with mult. iscale LoGs and then rectified as per the previous chapters. The 

rectified multiscale array is then convolved by the filter network which also has input from the 

goal units. Black dots mark undrawn filter networks. 
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6.3 Simulation Method 

The circular arena is of radius 192, empty except for a circle of radius 20 in the center. As in the 

previous two chapters, the wall and circle intensities are randomly chosen from between 0 and 1 

on each trial. One of the four goal regions is randomly chosen on each trial, the corresponding 

unit in the animats input layer goal units set to activation 1, and the other three goal units set 

to activation 0. A reinforcement signal of 0 is received on all time steps except when the animat 

enters the goal region for that trial. In this case, a reinforcement signal of 1.0 is received, and a 

new trial begun. Trials last a maximum of 500 time steps. Animats start each trial at a random 

location within the arena, and move a distance of 10 in one of 15 evenly spaced directions on each 

time step. 

The following table lists the subtended angle range for each of the four possible goals. Also 

listed are the distances from the circle, radius 20, corresponding to these subtended angle ranges; 

and the number of receptors activated by an image subtending the angles (the 120 sensors each 

have a resolution of 3 degrees). 

Goal Subtended Angle range Num receptors Distance 
(Degrees) activated 

1 6-+18 2-º6 128,192 
2 18->30 6-10 77-º128 
3 30-+42 10 14 56-77 
4 42-+54 14-+18 44-56 

Animats are simulated with neural network controllers with either a single layer of weights 

(direct), or with 2,4,8 or 12 hidden units. All networks have a fan in of 31 receptor units, corre- 

sponding to 93 degrees. The receptor array is either intensity, or rectified multiscale coded, using 

6 LoG filters with the same scales as in the previous two chapters. The learning algorithm, and 

parameter settings of learning rate and momentum, are exactly as in the previous two chapters. 

6.4 Performance and behaviour 

Fig. 6.5 shows the performance of the animats after 100K learning trials, by which time all animats 

had converged and showed no sign of increasing performance. A randomly behaving animat in 

the same conditions has a mean performance of 0.16±0.01. All animats were tested over 1000 

trials without learning, with randomly chosen starting positions and goal regions on each trial, 

and a, maximum trial length of 500 steps. The performance level of the random animat is shown 

in fig. 6.5 for comparison with the performance of animats after learning the present task. 
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Figure 6.5: Performance as a function of filter network size for intensity and rectified multiscale 
coding animats learning multiple subtended angles. Each data point is the mean performance of 
three animats. All standard errors<0.06 for intensity coding. Standard errors<0.04 for rectified 
multiscale coding, except for direct, rectified multiscale where standard error=0.07. 

6.4.1 Intensity coding 

Animats using intensity coding perform poorly. With 4 or less hidden units, performance is little 

better than that of the random animat. With 8 hidden units, performance rises to 0.4. While this 

is better than chance, these animats have not learned very much. With 12 hidden units, one of 

the animats performed at around 0.4 (the same level as with 8 hidden units), and the other 2 at 

about 0.2, resulting in an average performance of less than 0.3. 

Fig. 6.6 shows the behaviour of an intensity coding animat with 8 hidden units, in each of 

the four goal conditions. For goal 1 (fig. 6.6a), the animat just wanders randomly. For goals 2,3 

and 4 (fig. 6.6b-d), the animat is competent at moving toward the circle when outside the goal 

ring, but is completely unable to move away from the circle when located within the goal ring. 

Hence, despite 100k learning trials and 8 hidden units, this animat has only learned to approach 

the circle. 

Other intensity coding animats that achieve a better than random performance also only learn 

to approach the circle. It should be noted that intensity coding animats have not even learned 

particularly efficient approach form outside the goal ring. As was shown in the previous chapter, in 

the noiseless case, intensity coding animats with 4, or more, hidden units are able to learn efficient 

approach from outside a single goal ring. This implies that the extra computational demands of 

learning multiple subtended angles seriously degrades their performance on any of the individual 

tasks. 
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Figure 6.6: Paths of a single intensity coding animat with 8 hidden units. a)-d) show paths from 
different. start, locations for each of the four invisible goal regions (shown in gray). The overall 
performance of this animat is 0.48. In a), animats start near the circle. In b)-d), animats start 
near the circle for half the trials and at, the arena edge for the other half. 
For these plots : Circle intensity = 0.7, wall intensity = 0.2. 
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6.4.2 Rectified multiscale coding 

Direct, rectified multiscale coding animats perform at 0.36, considerably better than the random 

animat, and at around the same level as the best of intensity coding animats. With 2 hidden 

units, performance rises to 0.68, and this increases to 0.72 with 4 hidden units, and further to 

around 0.77 with 8 or 12 hidden units. With 2 or more hidden units, rectified multiscale coding 

animats perform at a level well above that of intensity coding animats. They have learned both 

to approach, and to move away from the circle, when the occasion demands. 

Fig 6.7 shows the behaviour of a rectified multiscale coding animat with 4 hidden units. In 

contrast to the intensity coding animat, this one is able to efficiently move toward the goal ring from 

any area of the arena, whether this requires moving toward, or away from the circle. Performance 

is best for this animat for goal 2, and worst for goal 1. 

As noted in the introduction, goal 3 (fig. 6.7c), is the same as the single goal of the previous 

chapter. There, the best performance was 0.82, by rectified multiscale coding animats with 2 

hidden units. Further increasing the number of hidden units did not lead to an increase in per- 
formance. When the animat in Fig. 6.7 is tested on the single goal region task of the previous 

chapter', it performs at a level of 0.80, comparable with that of the best of the animats learning 

the single goal region. The mean performance of the three rectified multiscale coding animats with 

4 hidden units, when tested on the single goal task is 0.84. With 8 hidden units, the mean perfor- 

mance is 0.83. These animats achieve comparably high performances in the other goal conditions. 

Thus, rectified mulitscale animats that have learned multiple subtended angle are able to perform 

as well on a single one of them as animats learning just that subtended angle. Furthermore, the 

performance over multiple goals is achieved with a computational economy in that, whilst two 

hidden units are required to learn a single goal, only four are required to learn to perform as well 

over four goals. 

6.5 Output activation profile 

Figure 6.8 shows the output activation of the filter network of the 4 hidden unit, rectified multiscale 

coding animat whose behaviour is shown in fig. 6.7. The activation is in response to the circle 

placed at the center of the networks receptive field. Fig. 6.8 shows this activation for each of the 

4 goal conditions as a, function of the distance of the center of the circle from the animat. This 

animat has learned to perform well at this task, and this is reflected in the structure of the learned 

output profile as shown in fig. 6.8 and detailed below. 

The horizontal line in each graph of fig. 6.8 mark the filter network's null activation level : the 

1 Done by testing it only in goal condition 3, and with the reduced arena size of the previous chapter 
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Figure 6.7: Typical paths of a single 4 hidden unit, rectified multiscale coding animat. a)-d) show 
paths from different, start. locations for each of the four invisible goal regions (shown in gray). The 

overall performance of this animat- is 0.78. In a), animats start near the circle. In b)-d), animats 
start near the circle for half the trials and at. the arena edge for the other half. 
For these plots : Circle intensity = 0.7, wall intensity = 0.2. 
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output in response to a single valued visual array (ie the circle is not within the network's receptive 

field). Because of the balanced LoG filtering, the null activation is independent of the single value 

of the flat visual activation. The null response does however vary with the goal, because this 

changes the goal unit input to the network. In fig. 6.8, the animat will tend to move toward the 

circle at those places where the output in response to the circle is greater than the null response, 

since this implies that the output of the network facing the circle is greater than the output of 

the networks facing away. Where the output in fig. 6.8 is lower than the null response, output 

activation in the direction facing the circle will be lower than in directions facing away and so the 

animat will tend to move away from the circle. All of the directions in which the network does 

not view the circle will have equal, null responses, and hence are equally likely to be chosen as the 

movement direction. Thus the movement away from the circle toward the goal region is stochastic 

rather than direct. 

The vertical lines in fig. 6.8 show the goal regions. For goal 1 (fig. 6.8a), the goal region is 

any distance greater than 128 from the circle. Output activation is lower than null activation for 

all distances smaller than the minimum goal distance. Hence, output activation is lower for the 

direction facing the circle, than for those facing away, and so the animat moves stochastically away 

from the circle as seen in fig. 6.7a. 

For goal 2 (fig. 6.8b), the goal region is distances between 77 and 128. At distances greater 

than this, output activation is greater than the null response, and hence the animat will tend 

to move toward the circle. Activation increases somewhat with decreasing distance to the goal 

region, reflecting the decreasing number of steps to positive reinforcement. At distances closer to 

the circle than the goal region (ie less than 77), output activation is much lower than the null 

response, and so the animat stochastically moves away from the circle, and hence toward the goal. 

For goal 3 (fig. 6.8c), the goal region is distances between 56 and 77. The output activation 

profile is of similar form 
, 

but more sharply defined, than for goal 2. At distances further from the 

circle than the goal region, activation is greater than the null response. At distances closer to the 

goal region it is much less. 

Goal 4 (fig. 6.8d), at distances between 44 and 56, elicits the sharpest output profile. The 

form, and hence the corresponding behaviour, is similar to goals 2 and 3. 

Within the constraints of the stochastic aspects of animat control, the above output profiles 

entirely determine behaviour. The considerable differences between output profiles for the four 

goals are due to the response of the network's hidden units to'the activation of the four goal units 

added to the input layer. 
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Figure 6.8: The activation of the output unit of the filter network controlling the 4 hidden unit, 
rectified multiscale coding animat whose behaviour was shown in the previous figure. The activa- 
tion is in response to the circle at the center of the filter networks receptive field, at the distance 

given by the horizontal axis. Activation is plotted for each of the four goal conditions. The hor- 
izontal line in each figure marks the unit's null response - the output unit activation when the 

circle is not within the network's receptive field. The vertical lines in each plot mark the distances 
between which the circle subtends the goal range of angles. 
For these plots : Circle intensity = 0.7, wall intensity = 0.2. 

114 



6.6 Internal structure 

The behaviour and output activation profile of a4 hidden unit, rectified multiscale coding animat 

has been examined in the previous two sections. This animat has learned to perform well at the 

current task, and its behaviour can easily, and accurately, be inferred from the response of the 

output unit of the network controlling the animat. The next stage in analysis is to determine 

how the output function arises as a combination of the activation of the 4 hidden units. The two 

aspects of what hidden units have learned are the weight structure and the response profiles. 

Figs. 6.9 and 6.10 show the learned weights of each of the hidden units of the animat whose 

behaviour and output unit response was examined above. Each hidden unit has weights to both 

the positive and negative multiscale filtered arrays. As seen in previous chapters, the weights 

to the positive and negative arrays tend to be very similar, reflecting the symmetry about zero 

contrast of the visual diet. In addition to the two arrays of weights to the sensory input, each 

hidden unit has weights to each of the 4 goal units. Only one of the goal units has activation 

1 on each trial, the rest have activation 0. The effect on each hidden unit is to add the weight 

corresponding to the goal to the sensory input. Thus, these weights can be thought of as four 

separate, goal dependent, biases. Where the weight to a goal unit is positive, the activation of 

the hidden unit will be increased, regardless of sensory input, and where it is negative, the unit's 

activation will be decreased. The other two parameters associated with each hidden unit are its 

bias and weight to the output unit, also shown in the figures. The only learned parameter of this 

network not shown in figs. 6.9 and 6.10 is the bias of the output unit, which in this case is 0.20. 

In addition to the learned network parameters, figs. 6.9 and 6.10 show the activation of each 

hidden unit in response to the circle placed at the center of the networks receptive field. The 

activation is plotted as a function of goal number and distance, in the same manner as for the 

output unit activation in fig. 6.8. In the following, the learned weight structures and activation 

profiles for each hidden unit in turn are examined. 

Hidden unit 1 (fig. 6.9a), has large positive weights concentrated on the 2 coarsest scales, 

with large negative weights concentrated on the central region of the 3 finest scales. Hence, this 

unit will tend to be active when the circle subtends a large angle. Unit 1 has a large positive weight 

to the third goal unit, a large negative weight to the fourth goal unit and near zero weights to 

goal units 1 and 2. The unit has a negative bias, and so requires sensory plus goal input of greater 

than this to achieve an activation of greater than 0.5. The unit has an inhibitory connection to 

the output unit. The result of this unit's weight structure is that the unit has activation of 1.0 in 

goal condition 3, regardless of the circles distance; high activation when the circle is closer than 

50 in goal condition 4; and similar activation profiles for goal conditions 1 and 2, of activation 

decreasing from 1.0 to 0.0 as the circle's distance increases from about 80 to 130. The response 
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in goal conditions 1 and 2 reflect the learned sensory weights, since in these conditions the input 

from goal units is smallest. The responses in goal conditions 3 and 4 are highly affected by the 

goal units. 

Hidden unit 2 (fig. 6.9b), has large positive weights concentrated on the coarsest scale, 

with positive weights of lesser magnitude on the next from coarsest scale. Negative weights are 

concentrated in the central region of the three finest scales. With regard to the goal unit weights, 

unit 2 has negative weights to goal units 1 and 4, a positive weight to goal unit 2, and a near 

zero weight to goal unit 3. However, the magnitude of these goal unit weights are much less than 

for unit 1, whereas the sensory weights have about the same magnitude. Hence, the goal does 

not affect activation as strongly for this unit as it did for unit 1. Goal conditions 1 and 4 lead to 

identical responses, with activity decreasing from 1.0 to 0.0 as the circle's distance increases from 

about 40 to 60. In goal conditions 3 and 4, the activity falls away more slowly with increasing 

distance. 

Hidden unit 3 (fig. 6.10), in contrast to hidden units 1 and 2, has positive weights at the 

finest spatial scales and negative weights at the coarsest scale. Weights get increasingly larger 

as the sale decreases, suggesting that this unit responds when the circle subtends a small angle, 

and hence is at a large distance. The weights of this hidden unit to the goal units are positive 

to goal unit 4, and negative to the other goal units. Looking at the activation plot, it can be 

seen that this unit does not respond to the circle at any distance, regardless of the goal. This 

is due to the large negative bias; sensory input cannot overcome this bias, and so the unit does 

not become active. Hidden unit 3 has a large inhibitory weight to the output unit, but seemingly 

never becomes active enough to influence it. The unit must have had an effect during learning at 

some stage, or else the weights would not have become structured, as they clearly are in fig. 6.10. 

Over the course of learning, the influence of the unit must have gradually been diminished by an 

increasingly negative bias, until, as seen here, the unit has no influence at all. Presumably the 

unit became active when the circle was at a far distance. Since, as seen in the previous section, 

the output unit responds usefully in these conditions, one of the other hidden units must have 

taken over the function of this hidden unit. 

An intriguing finding is that the other two simulations of animats in this condition (rectified 

multiscale with 4 hidden units), also have a hidden unit with a similar weight structure to hidden 

unit 3 in this network. Furthermore, these units, like the one in this network, have such strongly 

negative biases that their response is small or zero in all conditions. This supports the above 

argument that such units may function usefully during early stages of learning, but become faded 

out of the final network function. A more detailed analysis of the formation, and development over 

time, of hidden unit weight structure could be undertaken to investigate these issues. Here however, 

the consistency of the weight structure, and its puzzling lack of involvement after extended learning 
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are merely noted. 

Hidden unit 4 (fig. 6.10), has positive weight concentrated on the second and third from 

coarsest scales. Goal unit weights are negative for goal 1, positive for goals 2 and 3, and near zero 

for goal 4. Unlike the other three hidden units, hidden unit 4 has an excitatory weight to the 

output unit. The unit has a zero response in goal condition 1, for all distances. For goals 4,3 and 

2, activity peaks at around distance 50, and decreases with increasing distance. Because of the 

positive goal unit input, activity decreases less rapidly for goal numbers 2 and 3. 

The weighted combination of the activation functions plotted in figs. 6.9 and 6.10 determine 

the output activation function shown in fig. 6.8. The output unit function, in turn, stochastically 

determines the behaviour shown in fig. 6.7. 

6.7 Discussion 

The task studied in this chapter is a more complex extension of that of the previous chapters. In the 

previous two chapters, the network controlling the animats had to learn a single mapping from the 

visual array to a particular output. Each location within the arena demanded a unique behaviour, 

either to move toward, or away from the circle, and the correct behaviour was determined solely 

by the visual array. In this chapter, the task demands that animats learn behaviours depending 

upon both the visual array, and the activation of auxiliary units coding the current goal. 

Animats using intensity coding were found to be unable to learn this multiple subtended angle 

task, even though no sensory noise is present. Rectified multiscale coding animats, in contrast, 

with 2 or more hidden units perform well at the task, with some increase in performance with 

more hidden units. Examination of the behaviour of these animats shows that they have learned 

to both approach, and move away from the circle, in the correct situations. The difference between 

intensity coding and rectified multiscale coding in this task is the largest seen so far in this thesis 

without noise. Given that this chapter's task differs from previous ones in terms of complexity, it 

can be suggested that the advantage of rectified multiscale coding becomes more apparent as the 

visual task becomes more complex. 

When tested on the goal range corresponding to the task of the previous chapter, rectified 

multiscale animats were shown to achieve a level of performance matching that of animats that 

had learned this single goal range. Good performance over all four goals ranges can be learned by 

animats with 4 hidden units, whereas it required 2 hidden units to learn the single goal range of 

the previous chapter. This suggests that animats have learned to decompose the stimuli set in a 

computationally more economical manner than would be expected from the results with a single 

goal range. 

A rectified multiscale coding animat with 4 hidden units has been examined in detail. The 
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Figure 6.9: The learned weight structure and response profile of hidden units 1 and 2 of the 4 
hidden unit, rectified multiscale coding filter network controlling the animat whose behaviour and 

output. unit response profile were shown in the previous two figures. The first row shows the 
learned weights: the second row shows the activation of this unit in response to the circle for each 

of the four goal conditions. (continued in next, figure) 
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relationship between the output unit activation profile, and the behaviour of the animat, was 

shown to be both well suited to the task and comprehensible. Analysis of the learned weight 

structures, and functions computed by the hidden units, revealed a finer partition of the stimuli 

set than for the single subtended angle task, though not qualitatively different. These results 

add further weight to the argument that rectified multiscale filtering of the visual array leads to 

superior performance because it makes simpler the subsequent computations required to map to an 

effective output function. The subtle learned responses of the hidden units of rectified multiscale 

animats are just too complex to be learned from the raw visual array. The expanded coding 

of multiscale filtering does much of the computational work, thus taking the load off the filter 

network. 

Convolution animats have been shown to be able to concurrently learn to move to each of 

a number of spatial goals within an environment. Gallistel (1990) and Collett (1992), amongst 

others, have emphasised that learning to move to several foraging sites at the same time is part 

of the everyday life of many insects. In this chapter, the current goal is externally decided, and 

locally coded by which of the binary goal units is active. Over many trials, animats learn to move 

to the spatial location where reinforcement is received given the current state of the goal units. 

Presumably, any distinguishable set of binary patterns could act to code the different goals. This 

suggests interesting extensions of the work in this chapter. 

Gallistel (1990) reviews the evidence that insects, including honeybees, can learn to move to 

particular spatial goals at particular times. Gallistel (1990) further suggests that many animals, 

including insects, code time by means of a string of binary units each of which automatically 

switches state with a different temporal frequency. The smallest temporal interval that such a 

code is sensitive to is given by the frequency of the fastest switching unit; the longest interval by 

the frequency of the slowest. All times within this range are uniquely coded. If the externally set, 

auxiliary goal units of this chapter were replaced by such an automatically changing code, and the 

spatial goal where reinforcement is received varied regularly with time, then the animats could 

be expected to learn to move to different spatial goals depending upon the time, as coded by the 

auxiliary units. This would clearly happen in the simplest case where the task of this chapter was 

modified so that which goal unit was on varied automatically and regularly with time. In this 

case, the animats of this chapter would move to the different subtended angle ranges as a function 

of time, as coded by the auxiliary units. As well as offering the possibility of modeling a range 

of animal behaviours, such a scheme would remove the computationally unsatisfactory need for 

externally provided specification of which is the current goal. 
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Chapter 7 

Reinforcement Landmark 

Learning 

7.1 Introduction 

7.1.1 Gerbil Landmark Learning 

Collett, Cartwright and Smith (1986) trained gerbils to find a food reward at a fixed location rela- 

tive to an arrangement of identical cylindrical landmarks. 'l he environment for t liese experiments 

was a circular arena painted black, and lit by a single bulb, illuminating a central region and leav- 

ing the walls in darkness. The floor was covered in wood chips and as far as possible, all sensory 

cues to the food location were removed, except for the -visual stimuli provided by an arrangement 

of white cylinders acting as landmarks. The food location itself was invisible. Between trials, the 

array of landmarks and relative food location was translated, but not rotated, and gerbils were 

released from random start locations within the arena. This ensures that the animals learn paths 

relative only to the landmarks and not other visual cues. 

Wit hin about, 150 trials, gerbils had learned to run to the food location from any start location. 

Once t lie gerbils were trained to criteria, they were tested by occasional probe trials in which food 

was ahseiit. A histogram of search frequency at, each location was obtained to deter nine where 

the animal searches during these trials. This is assumed to be a measure of where it exj)(, (-t 

the food to be. Hore importantly, test trials were conducted with the arrangement of landmark, 

modified from that during learning. The distribution of search effort in the modified em-ironment, 

provides crucial evidence about the computations underlying the animals behaviour by enabling 

models of the behaviour to be separated. Candidate model., will learn to search in the goal 

location when tested with the environment the same as during learning. However, when te., ted 
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(a) (b) 

"" 

Figure 7.1: Task 1. (Highly schematic from Collett et al (1986)) (a) Learning situation : The 

cylindrical landmark is shown as a black circle and the (invisible) food source as a triangle. (b) 2 
dimensional gray scale search histogram, with higher search frequency locations darker. The dark 

patch shows where gerbils, after learning, spent most time searching on the test trials where no 
food was present. 

with modified landmark arrangements, models that differ significantly will tend to predict, different. 

search locations. The predictions can then be compared with the gerbils behaviour and the model 

rejected if they do not match. 

7.1.2 Task 1 

In the simplest environment used by Collett et al (1986), the arena contained a solitary cylinder 

and food was located at a fixed distance and direction from this single landmark (fig. 7.1a). 

Animals learn to move to the food location upon release from the start box, as shown by their 

search histogram (fig. 7.1b). That the gerbils can learn a bearing from a featureless cylinder 

implies the use of a non-visual direction sense, most probably either from a magnetic compass 

sense (evidence for mammals reviewed by Gallistel, 1990, Baker, 1980; shown in insects by Collett 

and Baron, 1994), or from integration of head rotation as specified by the vestibular system 

(McNaugton et al, 1995). 

Collett et al (1986) manipulated the radius of the cylinder in order to determine what visual 

cues are used to compute distance. Cartwright and Collett (1983) did the same experiment with 

bees and found that, the visual angle subtended by the image of the cylinder specified how far 

away they searched. Thus, when tested with a cylinder of twice the training radius, bees searched 

at, twice the distance. With a cylinder half the training radius, they searched at half the distance. 

With gerbils the situation is not. so clear; with a landmark half the training size, gerbils searched 

at. half the distance as predicted by the subtended angle hypothesis. However, when tested with 

a cylinder bigger than in training, their search position was unaffected. 
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(a) Learning arrangement. (b) 

(c) (d) 

Figure 7.2: Task 2. (Highly schematic from Collett et al (1986)) (a) Learning situation : The 
2 cylindrical landmarks are shown as black circle's and the (invisible) food source as a triangle. 
(b)-(d) Search histograms. The dark patches show where gerbils, after learning, spent most time 
searching on the test trials where no food was present. (b) Search when tested with the same 
array as during learning. (c) Search when tested with a single landmark. (d) Search when the 
distance between the landmarks is doubled. 

7.1.3 Task 2 

With the goal and two landmarks arranged as shown in fig. 7.2a, gerbils learnt tl1c food location aý 

shown by their search pattern when tested with the training arrangement of landmarks (fig. 7.2b). 

When tested with only one cylinder, gerbils spent most time searching in the two locations 

shown in fig. 7.2c. Note that this is the same environment as in fig. 7.1; differences in prior learning 

cause the very different search behaviours. Here, each of the two search locations is at the same 

bearing and distance from one of the landmarks as was the goal during learning. This, and the 

results for task 1, lead Collett et al (1986) to suggest that gerbils learn to move to the location 

where the bearing and distance of individual landmarks matches their bearing and distance from 

the goal. However, when tested the distance between the landmarks is doubled, gerbils searched 

in just two of the four locations suggested by this hypothesis (fig. 7.2d). 

7.1.4 Task 3 

Here, the food is located at the center of an equilateral triangle as shown in fig. 7.3a. Gerbils Iearn 

to go to the goal location as shown in fig. 7.3b. 

When tested with the distance of one of the landmarks from the center doubled, gerbils still 

searched in the same location as the goal during learning (fig. 7.3d). This suggests that when 

two out of three landmarks are in the normal position, gerbils ignore the outlier. When tested 

with a single landmark, gerbils searched at three locations, each of which is at the same hearing 

and distance with respect, to one of the landmarks as was the goal during learning (fig. 7.3c). 

Testing with the triangle of landmarks rotated leads to the search behaviour shown in fig. 7.3e. 
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Figure 7.3: Task 3. (Highly schematic from Collett et al (1986)) (a) Learning situation : The 
3 cylindrical landmark are shown as black circle's and the (invisible) food source as a triangle. 
(b)-(e) Search histograms. The dark patches show where gerbils, after learning, spent most, time 
searching on the test trials where no food was present. (b) Search when tested with the same 
array as during learning. (c) Search when the distance between 1 of the landmarks and the rest. 
is doubled. (d) Search when tested with a single landmark. (e) Search when the landmark array 
is rotated through 60 degrees. (f) Search with extra landmark. 

The gerbils direct most of their search to the center of the rotated array, suggesting a knowledge 

of the relation between the three landmarks. In addition, they searched to a lesser extent, in 

three locations outside of the landmark triangle. Each of these locations is at the same distance 

and bearing to two of the landmarks as was the goal in the training array. In fig. 7.3f, an extra 

landmark gives the gerbils a choice between landmarks in the training arrangement and their 

rotation. In this case, the animals search where the arrangement matches that experienced during 

learning. 

Collett et al (1986) tested the gerbils behaviour when the light was turned off a short time after 

release and found that the animals were still able to search in the goal location. Furthermore, the 

pattern of search in tests with the modified landmark arrangements remained largely the same as 

that, shown when the light. was on. This indicates that the gerbils plan trajectories to the goal 

rather than reactively responding to their current visual input. 

7.2 Models of the gerbil's behaviour 

7.2.1 Vector voting 

Collett, et, al (1986) propose vector vot-ing, a. simple model of what gerbils learn, which makes 

concrete and falsifiable predictions of where they will search after learning with a particular land- 

m ark arrangement,. Vector voting captures much of the search behaviour described above, but as 

emphasised by Collett, et. al (1986), it is limited in that some of its predictions with multiple land- 
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(a) (h) 

CG 

C-G 

Figure 7.4: Vector voting: (a) At each location, the vector linking the current location to each 
landmark, C, is computed, and the vector linking the goal location to each landmark, G, is stored. 
Subtracting G from C results in the vector linking the current location to the goal location. 
(h) In task 1, vector voting predicts search at the location (shown in gray) where the vector to 
the landmark is the same as during learning. 

marks do not replicate gerbil search behaviour. Vector voting forms the basis of current models of 

the search behaviour, including Touretzky and Redish (1995), Redish and Touretzky (1997) and 

McNaughton et al (1995), which are, in behavioural terms, implementations and elaborations of 

the basic computational hypothesis. 

Vector voting assumes that the gerbil uses allocentric direction information to compute the 

distance and allocentric bearing of each landmark independently, resulting in a vector linking the 

current location to each landmark. At the goal location, the set of vectors, one for each landmark, 

linking the goal location to each landmark is stored. As shown in fig. 7.4a, at any location, 

subtracting the goa. 1 vector from the current landmark vector results in the vector linking the 

current location to the goal location. This specifies the trajectory for movement to the goal. In 

task 1, vector voting predicts search at the correct distance and direction from the single landmark, 

and thus matches the gerbil's behaviour (fig. 7.4b). 

With multiple landmarks, each landmark independently specifies search locations, and so in 

tests with rearranged landmarks, multiple goal locations will be specified. When each location is 

specified by the same number of landmarks, gerbils are assumed to search in each. When some 

locations are specified by more landmarks than others, the gerbil is assumed to search at the 

location consistent with the largest number of landmarks. 

In task 2, two landmarks each specify the goal and so two goal vectors of distance and allocentric 

bearing are stored (fig. ?? a). When tested with a single landmark, two locations match the goal 

distance and allocent-ric direction and so vector voting predicts search at both of these, which 

replicates the gerbil behaviour (fig. ?? b). However, when the distance between the two arrays is 

doubled, vector voting specifies search in four locations (fig. ?? c), whereas gerbils only search at 

the inner two locations. Since the landmarks are identical, the gerbils behaviour implies that in 

addition to the independent landmark vectors, they can also use the relation between landmarks 

to guide movement,. This is not. possible with vector voting because trajectories are computed 

125 



from each landmark independently. 

In task 3, the goal location is independently specified by 3 vectors (fig. 7.5a). Therefore, when 

tested with a single landmark, vector voting predicts search at the three locations where the vector 

to the landmark matches one of these (fig. 7.5b). This replicates the gerbils behaviour. With one 

landmark moved away from the others, eight locations have the stored vector to a landmark, but 

one location has two vectors supporting it, and so vector voting predicts search there (fig. 7.5c). 

Again this replicates the gerbils behaviour. With the rotated triangle of landmarks, three locations 

have 2 vector votes, as shown in fig. 7.5d; gerbils search in these locations but also search at the 

center of the rotated triangle. This is not predicted by vector voting, since at the center of the 

rotated triangle, none of the landmarks have the same allocentric bearing as during learning. As 

Collett et al (1986) point out, only sensitivity to the relative bearing between landmarks would 

lead to search in the center of the rotated triangle. With an extra landmark (fig. 7.5e), vector 

voting predicts search at the center of the unrotated triangle, since this receives three votes as 

during learning. This matches the gerbils behaviour. 

Of the gerbil search patterns with modified landmark arrangements outlined in section 7.1.1, 

vector voting correctly predicts all but two: the split landmarks in task 2 (fig. 7.2d), and the 

rotated landmarks in task 3 (fig. 7.3e). Collett et al (1986) suggest that these failures are due 

to the assumption that landmarks are treated independently, and the model is sensitive only to 

allocentric rather than relative bearings. Gerbils appear to be sensitive to both the allocentric 

bearing of individual landmarks, and the relative bearings between multiple landmarks. Collett 

et al (1986) further supported this by showing that gerbils can learn a goal location specified by 

multiple landmarks that are rotated, as well as translated, between trials. 

7.2.2 Current models of rodent navigation 

Touretzky, Redish and Wan, develop a model of rodent navigation, simultaneously modeling both 

animal behaviour, and neurophysiological data on hippocampal place cells and cells sensitive to 

head direction (Reddish and Touretzky, 1997; Touretzky and Redish, 1995; Touretzky, Wan, and 

Redish, 1994; Wan, Touretzky, and Redish, 1994a, 1994b). The model specifies the interaction 

between simulated place units, head direction units, and a path integrator, and predicts search 

patterns in the Collett et al (1986) tasks as well as a number of other experiments. 

Input to the model is a list of the distance and egocentric bearing of each currently visible 

landmark, together with the change in head direction, used to update the model's current estimate 

of head direction. Allocentric bearings of the landmarks are computed from egocentric bearing 

and head direction, and the path integrator, an estimate of the current Cartesian position with 

respect to a reference point, is updated from the new estimate of head direction (Touretzky and 

Redish, 1995). Unlike vector voting, in which the trajectory is computed as a simple function of 
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(a) (b) (c) 

ý}ý (d) (e) 

ý} }ý}ý 
ýýý Figure 7.5: Vector voting for task 3: (a) During learning, the goal is independently specified by 

three vectors to landmarks. (b) This leads to the three location search when tested with one 
la. ndma. rk. (c) With one landmark moved away, the learned goal location still has two vectors 
supporting it, and so outvotes other locations. (d) with the rotated triangle of landmarks, three 
locations have two vectors. (e) with both unchanged and rotated triangles, one location has three 
vectors. (b), (c) and (e) match the gerbils behaviour, in (d), gerbils also search in the center of 
the rotated landmark arrangement. 
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the input, Touretzky et al's model requires a large number of place units, each of which coarse 

codes for a particular Cartesian allocentric location within the environment. The system uses the 

place units to estimate where it is in allocentric coordinates, and then, like vector voting, uses 

explicit vector subtraction to compute a trajectory to the goal location. 

Learning in the model involves place units learning the correlation between current landmark 

cues and the path integrator's current estimate of allocentric position. Each place unit is a 

Gaussian radial basis function broadly tuned to the independent dimensions of the distance and 

allocentric bearing of two randomly selected landmarks, the angle between a randomly selected 

pair of landmarks, and a Cartesian location as specified by the path integration system. During 

learning, at any location in the environment, place units become active according to how well the 

current parameter values match the stored values; if no place units become sufficiently activated, 

then a new one is recruited. Over time, the environment becomes covered with place units that 

become active in overlapping locations, each of which is sensitive to a subset of the cues at a 

particular location. Moving in the environment is guided by first determining which place units 

are most active, which specifies the current estimate of location. Subtracting this location from 

the goal location, as in vector voting, results in the vector linking the current location to the goal. 

To simulate Collett et al (1986) task 2, this model requires 3,000 place units to cover the 

environment (Touretzky and Redish, 1995); simulating task 3 requires 10,000 place units (Wan et 

al, 1994). The authors argue that their model is "a distributed implementation of the vector voting 

hypothesis" (Touretzky and Redish, 1995), "producing behaviour equivalent to vector voting" 

(Wan et al, 1994), and as such, mostly predicts the same search patterns as vector voting in the 

test trials. As shown above, vector voting fails to account for two gerbil search behaviours in tasks 

2 and 3, and so Tourestzky et al's model can only replicate these results by elaborating on the 

basic system. 

In the task 2, split landmarks test (fig. 7.2d), Touretzky and Redish (1995) show that their 

model, like the gerbils, search mostly at the two locations within the landmarks out of the four 

predicted by vector voting (fig. ?? b). This result occurs because place units are sensitive to 

the relative bearing of pairs of landmarks, in addition to the distance and allocentric bearing 

of individual landmarks. However, the comparative weighting of relative bearing and individual 

landmark vectors to determine place unit activity is an externally set parameter and hence so is 

the systems likelihood to search at the outer two locations. 

In task 3, when tested with the rotated landmark array, the system searches in the same three 

locations as vector voting (fig. 7.5c), but not in the center of the rotated triangle of landmarks like 

gerbils do. In order to account for this result, Redish and Toutetzky (1997) propose that the model 

resets its head direction units based upon a complicated and explicitly specified comparison of the 

difference between each stored allocentric landmark bearing and its current egocentric bearing. A 
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consistent difference results in resetting of the head direction units and hence the reference bearing 

from which allocentric bearings are computed. 

McNaughton et al (1995) develop a model of rodent navigation, that, like Touretzky et al's, 

models both behavioural and neurophysiological data. In this system, head direction is used to 

compute a vector coding of landmark distance and allocentric bearing. This is then subtracted from 

the vector linking the goal location to the landmark to provide the trajectory, as in vector voting 

and Touretzky and Redish's (1995) model. Vector operations are implemented in McNaughton et 

al's (1995) model by feedforward neural networks. The model is an implementation of Collett et 

al's (1986) vector voting, and as such, predicts search in the same locations, and fails to account 

for the same gerbil test results as vector voting. 

7.3 Simulations 

7.3.1 Sensory coding 

In the previous chapters of this thesis, sensory input consisted of a visual array of intensity values. 

This was processed by the adaptive convolution network either raw or after convolution with 

multiscale filters. Given the impoverished visual environment of featureless cylinders within a 

featureless arena, and the reactiveness of animat processing, subtended angle is the only cue in 

the visual array (or multiscale filtered array) available to the animats to judge distance. Chapter 5 

showed that animats can learn to use visual subtended angle to guide search around a solitary 

circle, and hence search at different distances when tested with circles of different radius. In 

this the animats behaviour matches that of honeybees (Collett and Cartwright, 1983). Gerbils 

however do not exclusively use the visual angle subtended by the cylinder to guide search, since 

replacement of the cylinder with one of twice the radius does not affect search location. 

It would therefore it be pointless to use the same visual array and reactive filtering and pro- 

cessing as in the previous chapters to try and model the gerbils behaviour. Francesini et al (1992) 

show how convolution by filters with a simple spatiotemporal structure yields distance informa- 

tion. In the simulations of this chapter, a computation such as this is assumed in a schematic 

form and sensory input to animats consists of an array of landmark distances. 

Animats have a 360 degree view provided by 60, evenly spaced receptor units with non- 

overlapping receptive fields, each coding the distance of any landmark falling within its receptive 

field. Landmarks only cause activity in the single receptor whose bearing they are closest to, and 

the activity of all other receptors is set to zero. 

Two methods of coding distance are compared through simulation: intensity coding, in which 

a. single, continuous valued unit at each bearing codes distance, and vector coding, in which a 
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number of binary units at each bearing code distance between them. 

Landmark distance in each direction is first converted to a receptor activity between 0 and 1 

by the function f(d) = 2sin-1(10/d), capped at 1. This function is the angle in radians subtended 

by a circle of fixed radius 10, it is monotonic with distance and falls exponentially from 1 to 0 as 

distance increases, as shown in fig. 7.6a. 

Intensity Coding 

With intensity coding, a single continuous valued unit for each direction codes the receptor activity, 

resulting in a 1-D sensory array. In these simulations, the 1-D intensity coded sensory array has 

60 elements (fig. 7.6c, left column). 

Vector coding 

With vector coding, instead of having a single, continuous valued unit coding distance in each 

direction, a number of binary units are used, each coding for a non-overlapping range of receptor 

activations. Hence, the 1-D receptor array is expanded to a 2-D array. At each landmark distance, 

a single one of these units will be on and the rest off. A vector code is an array in which the relative 

position of a unit, as well as its activation, carries information (Gallistel (1990)). In a vector code, 

each element in the array can be regarded as a vector, and the whole array as an ordered set of 

vectors. Binary units provide the most extreme example of a vector code because information is 

carried entirely by which unit is on rather than by unit activation levels. McNaugton et al (1995) 

propose a vector coding of landmark distance and allocentric bearing. Here, the vector coding is 

of distance and egocentric bearing. 

In these simulations, receptor activity (between 0 and 1) is split into 6 equally sized regions, 

corresponding to increasingly large distance ranges. Hence the 2-D vector coded sensory array is 

of size 6x 60 (fig. 7.6c, left column). Because only six binary units are used, vector coding of 

distance is a great deal coarser than the continuous valued intensity coding. 

7.3.2 Animat processing 

The intensity, or vector coded array is convolved with a filter network in the same way as in 

the previous chapters to produce a 15 element, 1-D motor array. The motor array stochastically 

determines the direction in which the animat moves a fixed distance; the higher the value of a 

motor array element, the higher the probability that the animat will move in the corresponding 

direction. Filter networks are standard feedforward networks with a single output unit, and either 

a single layer of weights (direct) or hidden units and two layers of weights (fig. 7.7). 

In addition to the sensory input, filter networks also have a layer of auxiliary input units to 
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Figure 7.6: Sensory Coding. (a) Landmark distance in each direction is converted to a receptor 
activity between 0 and 1. With intensity coding, this value is coded by a single unit in each direc- 
tion. With vector coding, each receptor activity is coded by 6 binary units with non-overlapping 
ranges. The vertical lines plot the boundaries between these ranges. 
(c) plots the 1-D intensity coded sensory array (left column) and the 2-D vector coded array (right 

column) for each location a-d in (b). 
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Figure 7.7: Filter networks: (a) direct, (b) with hidden units. In addition to the sensory input, 
hidden units also have weighted connections to binary compass units. In the case of direct filter 

networks, the output unit is connected to the compass units. The input layer is 1-D in the intensity 
coding condition and 2-D in the vector coding condition. 

provide allocentric orientation information. In these simulations, 15 binary compass units are used 

giving a resolution of 24 degrees. The compass unit values are processed in the same way as the 

sensory input, so each hidden unit (or the output unit for direct filter networks) has weights to 

both sensory and compass units and activity is determined as the weighted sum across both sets of 

units. Compass units are binary with only one on and the rest off for each filter network position 

around the 360 degrees. Which compass unit is on depends upon the direction in which the filter 

network is pointing, as shown in fig. 7.8, with a different compass unit coding for each direction. 

7.3.3 Simulation Method 

Animats with various numbers of hidden units were simulated for the three tasks above, in a 

circular arena of radius 128 spatial units. Animats could not move outside this. Because the 

sensory array is zero when a landmark is not present, they are unable to detect the arena walls, 

and so there is no point in translating the landmarks between trials. 

Landmarks had a radius of 10 spatial units, as did the circular goal region. Animats were placed 

at a random location at the start of each trial, and moved 10 spatial units in one of 15 evenly 

spaced directions on each time step, until either they landed in the goal region. Reinforcement was 

zero on all time steps, except when the animat moved into the goal region, when reinforcement of 

1.0 was received, and a new trial begun. If animats did not get to the goal within the maximum 

time of 500 steps a new trial was begun. 

All simulations were replicated three times with different random initial weights and random 

numbers. Reinforcement learning followed exactly the same algorithm as in previous chapters and 

outlined in chapter 3. 
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(b) Vector coding 
Motor Array 

0 24 48 72 96 120 144 168 192 216 240 264 288 312 336 360 

Figure 7.8: Animat sensorimotor system. The filter network is convolved (with subsampling) with 
the sensory array to produce a 15 element motor array. The sensory and motor arrays covers 360 
degrees. A different binary compass unit. is on for each direction in the convolution (dots mark 
undrawn filter network positions) 
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All animats were tested over 1000 trials without learning, with randomly chosen starting loca- 

tions on each trial. Performance is measured as the minimum path length divided by the actual 

path length. Thus, performance is between 0 and 1.0; with 1.0 corresponding to an animat taking 

the shortest route to the goal. A performance of 0.5 means that the animat took, on average, 

twice as many steps to get to the goal as the shortest route. 

7.4 Task 1 

A solitary circle of radius 10 was placed at the center of the simulated arena (radius 128); the 

invisible goal region was a circle of radius 10, located at a distance of 30 to the south of the 

landmark (see fig. 7.10). Filter network fan-in was set at 31 units, corresponding to 93 degrees. 

7.4.1 Performance 

Fig. 7.9a shows learning curves for three animats with four hidden units, in both intensity and 

vector coding conditions. Performance improves until an asymptote is reached, well within 50K 

trials, beyond which performance remains about constant. Animats with vector coding learn in 

less trials and achieve higher performance than intensity coding animats, a pattern repeated with 

two and eight hidden unit animats. 

Fig 7.9b shows performance after 50k learning trials, by which time all animats had converged, 

as a function of filter network size and sensory coding. Each data point is the mean of three 

animats starting with different initial random weights. A random animat, tested in the same 

conditions as those after learning (1000 trials with maximum of 500 steps per trial) has a mean 

performance of 0.06 

Direct animats (without hidden units), perform little better than the random animat, regardless 

of coding. Intensity coding animats with 2 hidden units perform at around 0.4, and this does not 

increase with more hidden units. Vector coding animats with two hidden units perform at 0.5; 

this increases further to around 0.66 with four hidden units, but shows no further increase with 

eight hidden units. Four hidden unit, vector coding animats significantly outperform four hidden 

unit intensity coding animats (t-test : t=6.426, p<0.01). 

7.4.2 Behaviour 

Intensity coding 

Fig. 7.10 shows the behaviour of a4 hidden unit animat in the intensity coding case; this animat 

performs at 0.33. In fig. 7.10a, 20 example trials are shown, with the animat starting from equally 

spaced locations around the arena edge. The animat stochastically drifts south when north of 
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the landmark, moves more directly toward the goal bearing when somewhat to the south of the 

landmark, but has particular difficulty when located due south of the circle and goal (co-ordinates 

of about (128,0)). 

Fig. 7.10b shows the animat's behaviour as a function of location. To generate this plot, the 

motor vector, which determines the probability of movement in each direction, was computed for 

each location in the environment. The largest of these probabilities, and hence the direction in 

which the animat is most likely to move is plotted as an arrow in fig. 7.10b. The darker the arrow, 

the higher probability that the animat will move in the direction of the arrow. The top half of 

fig. 7.10b has light arrows, generally pointing downward. This indicates that the aniinat has a 

somewhat higher than chance probability of moving downward, and leads to the stochastic drift 

south seen in fig. 7.10a. When the animat is located south of the circle (y coordinate of less than 

128), the response is stronger near the goal, but the arrows point quite widely along a line to the 

south of the circle, and are not focussed upon the goal region. At the extreme south (y coordinate 

of near zero), the response is highly confused, leading to the random behaviour in this region seen 

in fig. 7.10a. 

Fig. 7.10c shows the search histogram for this animat, in an analogous form to the search 

histograms obtained from animals by Collett et al (1986), and schematised in figs. 7.1-7.3. To 

generate the histograms, animats are placed in random locations within a goal-less arena and move 

for fifty time steps. This is repeated 100 times. Fig. 7.10c plots the proportion of time spent in 

each location, which reflects where the animat searches, and hence where the animat supposes the 

goal to be. The four hidden unit, intensity coding animat under analysis here spends most of its 

time searching close to the circle at roughly the correct bearing. 

These results suggest that this intensity coding animat, whilst able to learn to move to where 

the bearing of landmark matches the bearing from the goal, is unable to move to the goal distance. 

Similar considerations consistently lead to the same conclusion for intensity coding animats on 

task 1. 

Vector coding 

Fig. 7.11 shows the behaviour of a vector coding animat with four hidden units. This animat 

performs at 0.69. The example paths of fig. 7.11a show that this animat moves stochastically 

southward when north of the circle, and fairly directly toward the goal when south of the circle. 

Fig. 7.11b) makes this behaviour clearer: north of the circle, the arrows are light and mostly 

point southward. South of the circle the arrows are darker, reflecting the stronger output in these 

locations and hence the greater probability of moving in the arrow's direction. In addition to 

having more accurate directions to the goal than the intensity coding animat of fig. 7.10, the 

vector coding animat has higher probability of moving in its preferred directions (reflected in the 
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(a) Learning Curves of Animats with 4 Hidden Units on task 1. 
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(b) Performance as a function of network size for task 1. 
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Figure 7.9: (a) The learning curves of 3 animats with 4 hidden units, learning task 1, with either 
intensity or vector coded sensory input. In each coding condition, curves for 3 animats are shown, 
with the mean performance over the previous 1000 trials plotted every 1000 learning trials. 
(b) Mean performance after 50K learning trials, as a function of hidden unit size for task 1. In 

each condition, the mean performance of each animat over 1000 test trials without learning is 

averaged over 3 animats. All standard errors<0.06. 

darker arrows of fig. 7.11b compared with fig. 7.10b). 

When tested without a goal, this vector coding animat confines its search to the correct bearing 

and distance from the circle (fig. 7.11c), matching the gerbil search behaviour in this task. The 

same pattern of search in the goal location was found with all vector coding animats with four or 

more hidden units. 

7.5 Task 2 

The environment for task 2 consisted of two circles of radius 10, located at (-30,0) and (30,0), 

together with an invisible goal circle of radius 10 located at (0, -52) in coordinates relative to 
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(a) Example Paths. 
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Figure 7.10: The behaviour and search pattern of a4 hidden unit, intensity coding animat on task 
1 after learning. 
(a) 30 example paths of the a. nimat to the goal, starting from locations around the arena edge. 
The invisible goal region is shown in gray. 
(b) The animat's behaviour as a, function of location. For each location in the arena, an arrow 
points in the direction in which the animat is most likely to move. The darker the arrow, the 
higher the probability that the animat, will move in the arrow's direction when in that location. 
(c) Search histogram. Animats were placed in the goal-less arena in a random location and moved 
for 50 time steps. This was repeated 100 times. The proportion of time spent in each location is 
plotted; the darker the pixel, the more time spent in that location. 
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(a) Example Paths. (b) Behaviour. 

(c) Search Histogram. 
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Figure 7.11: The behaviour and search pattern of a4 hidden unit, vector coding animat on task 
1 after learning. 
(a) 30 example paths of the animat to the goal, starting from locations around the arena edge. 
The invisible goal region is shown in gray. 
(b) The a. nima. t's behaviour as a function of location. For each location in the arena, an arrow 
points in the direction in which the anima. t is most likely to move. The darker the arrow, the 
higher the probability that, the a. nimat will move in the arrow's direction when in that location. 

(c) Search histogram. Animats were placed in the goal-less arena in a random location and moved 
for 50 time steps. This was repeated 100 times. The proportion of time spent, in each location is 

plotted; the darker the pixel, the more time spent in that, location. 

138 

0 64 128 192 256 



center of the arena. Animats were simulated with a fan in of 59 units, corresponding to 354 

degrees. 

7.5.1 Performance 

Fig. 7.12a shows the learning curves of animats with 4 hidden units. Vector coding animats 

considerably outperform intensity coding animats, and converge to their higher performance faster. 

Fig. 7.12b show the performance, after 50k learning trials, as a function of filter network size. 

Animats were tested in the same manner as for task 1. Intensity coding animats with 2 or less 

hidden units perform at random levels. With 4 or 8 hidden units, intensity coding animats perform 

at about 0.5. This is an improvement on the best task 1 intensity coding performance of 0.4. 

Direct vector coding animats perform at random levels, but with 2 hidden units perform at 

0.69, and this does not increase with 4, or more, hidden units. 0.69 is around the same level as 

the performance of 4 or more hidden unit, vector coding animats on task 1. The performance 

difference between 2 hidden unit, intensity coding animats and 2 hidden unit, vector coding 

animats is significant (t-test: t=4.033, p< 0.02). In task 2, not only do vector coding animats 

significantly outperform intensity coding animats, they do so with fewer hidden units. 

7.5.2 Behaviour 

Intensity coding 

Fig. 7.13 shows the behaviour and search histograms for a4 hidden unit, intensity coding animat 

that has a performance of 0.47. From most regions in the arena, this animat moves stochastically 

toward the nearest circle. Having arrived at the circle, the animat then moves in a straight path 

from the circle to the goal (fig. 7.13a). This two stage strategy for getting to the goal is exhibited 

even in some locations where a direct route to the goal would be quicker. For example, where the 

animat starts in the southwestern quadrant, it moves past the goal to get to the western landmark, 

only then to turn around and follow the straight path from the landmark to the goal. The tangle 

of paths around the right-hand landmark in fig. 7.13a suggests that the transition in behaviour 

from approaching the landmark to finding the path from landmark to goal is less well learned for 

the western landmark than for the eastern landmark. Animats move around the eastern landmark 

quite smoothly, until following the straight path from circle to goal. These behaviours can be seen 

more clearly in fig. 7.13b. 

Figs. 7.13c)-d) show search histograms for this animat when tested with both the arrangement 

of landmarks experienced during learning, and modifications of this arrangement. In contrast to 

the situation in task 1, when tested with the learning arrangement, the animat searches at the 

goal location. Since all the intensity coding animats with 4, or more, hidden units search at the 
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goal location, it can be suggested that although a single landmark can only specify the bearing of 

a goal, two landmarks are sufficient for intensity coding animats to learn a location. The straight 

paths between the landmarks and the goal are also darkened in fig. 7.13c), reflecting the high 

proportion of time spent on these paths due to the behavioural strategy outlined above. 

Testing this animat with a single circle (fig. 7.13c)) leads to unfocussed search close to, and 

more to the south of, the circle. This may have been expected from task 1 search behaviour, and 

implies that this animat uses both circles to guide the behaviour in the rest of fig. 7.13. When 

tested with the distance between the landmarks doubled, animats search at the location where the 

bearings of the landmarks are the same as during training (fig. 7.13d). Approximately the same 

search pattern was shown by all intensity coding animats with four or eight hidden units, and it is 

very different from that shown by gerbils (fig. 7.2). These results further support the suggestion 

that with intensity coding, animats learn only about the bearing of the landmarks and not about 

distance. They therefore search where the bearings match in fig. 7.13d), disregarding distance. 

Vector coding 

With vector coding, animats show a wider range of search behaviours than those with intensity 

coding. Fig. 7.14 shows the behaviour and search histograms of a two hidden unit, vector coding 

animat that has a performance of 0.70. This animat moves fairly directly toward the goal from 

anywhere in the arena except for the extreme northwestern region. The behaviour as a function 

of location plot (fig. 7.14b) supports this conclusion, with dark arrows covering most of the arena. 

Fig. 7.14c shows that this animat searches at the goal location when tested with the two circles 

arranged as per learning, as do all vector coding animats with 2 or more hidden units. When tested 

with a single circle (fig. 7.14d), the animat searches mostly at the location with the same distance 

and bearing from the circle as was the goal from the western circle in the learning arrangement; 

suggesting that the animat learnt to move to the goal based solely upon this single landmark. 

When tested with the distance between the landmarks doubled (fig. 7.14e), the animat searches 

at the same location relative to the leftmost landmark. Though the leftmost landmark is the 

principal guide of the animat's search, the other landmark must have some influence, or else, in 

fig. 7.14e, there would be as much search at the corresponding distance and direction from the 

landmark on the right. 

Fig. 7.14 shows the behaviour and search histograms of a four hidden unit, vector coding animat 

that has a performance of 0.73. Like the gerbils of fig. 7.2, it searches mostly in two locations when 

faced with a single landmark (fig. 7.14d). From each of these locations, the landmark has the same 

distance and bearing as did one of the landmarks from the goal during learning. This animat also 

searches in an arc between these two locations at a constant distance from the landmark. 

When the distance between the landmarks is double that during learning (fig. 7.15e), search 
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Figure 7.12: (a) The learning curves of animats with 4 hidden units, learning task 2, with either 
intensity or vector coded sensory input. In each coding condition, curves for 3 animats are shown, 
with the mean performance over the previous 1000 trials plotted every 1000 learning trials. 
(b) Mean performance after 40K or 50K learning trials as a function of hidden unit size for task 
2. Each data point is the mean for 3 animats. Standard error for all data points is less than 0.03. 

is mainly at a single location, which seems to be the one that best satisfies both the bearing and 

distance constraints from learning. In addition, some search time is spent at two outlier locations, 

both at the same distance and bearing as the goal from one of the landmarks during learning. 

This search pattern is different from that shown by the gerbils in Collett et al's (1986) study 

(fig. 7.2). Gerbils search at two discrete locations, rather than the single one of this animat. With 

one exception, all of the vector coded animats with 4 or 8 hidden units show roughly the same 

search behaviour. The exception is a4 hidden unit animat that shows the same search behaviour 

as the two unit animat described above. The main source of variation amongst these animats is 

the relative amount of time spent searching at the single central location compared with the time 

spent at the 2 outlier locations, though in all, more time is spent searching within the landmarks. 

Fig. 7.15f shows the search behaviour when the landmark array is rotated. Animats search in 

two locations each at the same distance and direction from the uppermost landmark as were the 

landmarks from the goal during learning. This arrangement was not tested with gerbils and so 

the search pattern of the animat is a prediction, and one that differs from the prediction of vector 

voting which predicts search in four locations. 
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(a) Example Paths. (b) Behaviour. 
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Figure 7.13: The behaviour and search patt-erns of a4 hidden unit, intensity coding animat on 
task 2 after learning. Details as in previous figures. 
(c) Shows the search histogram when tested with the environment the same as during learning. 
(d) and (e) show search histograms in modified environments. 
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(a) Example Paths. (b) Behaviour. 
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Figure 7.14: The behaviour and search patterns of a2 hidden unit, vector coding aniniat on task 
2 after learning. Details as in previous figures. 
(c) Shows the search histogram when tested with the environment the same as during learning. 

(d)-(e) show search histograms in modified environments. 
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(a) Example Paths. (b) Behaviour. 
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Figure 7.15: The behaviour and search patterns of a4 hidden unit, vector coding animat on task 
2 after learning. Details as in previous figures. 

(c) Shows the search histogram when tested with the environment the same as during learning. 

(d) and (e) show search histograms in modified environments. 
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7.6 Task 3 

Three landmarks are located at (34,20), (-34,20) and (0, -40), and the goal is located at (0,0) in 

coordinates relative to center of the arena As with task 2, animats were simulated with a fan in 

of 59 receptors, corresponding to 354 degrees. 

7.6.1 Performance 

Fig. 7.16 shows the mean performance after 50k learning trials. The performance of intensity cod- 
ing animats increases with network size up to 4 hidden units, which perform at 0.50. Performance 

does not increase with 8 hidden units, and is about the same as for intensity coding animats in 

task 2. Direct, vector coding animats have a mean performance of 0.78; animats with hidden units 
do not better this performance, and it somewhat higher than the vector coding performance in 

task 2. Direct intensity coding animats significantly outperform 4 hidden unit, intensity coding 

animats (t-test: t=8.251, p<0.01). 

7.6.2 Behaviour 

Intensity coding 

Figs. 7.17 shows the behaviour and search histograms of an intensity coding animat with four 

hidden units and a mean performance of 0.56. The animat moves stochastically toward the goal 

from anywhere in the arena (fig. 7.17a). For some regions of the arena, this animat appears to make 

use of the same strategy as the intensity coding animat examined for task 2 above; movement first 

to the nearest landmark, then following a straight path to the goal from the landmark. Fig. 7.17b 

supports this conclusion. 

When tested with a single landmark, this animat engages in a very unfocussed search close to 

the landmark, and spends much time just wandering around the arena (fig. 7.17d). There appears 

to be no direction preference in the search. 

When a single landmark is displaced, the search pattern is unaffected (fig. 7.17e). This matches 

the behaviour of gerbils in the same situation (fig. 7.3). It is an expected behaviour, assuming 

that for intensity coding animats, the bearing of the landmarks is far more important than their 

distances. Here, the bearings of the landmarks from where the animat is searching are the same as 

they were from the goal during learning. Fig. 7.17f shows search when the triangle of landmarks 

is rotated. In the center of the rotated triangle, the relative bearing of the landmarks matches 

that during learning, but their absolute bearings (with respect to the compass), have changed. 

Unlike gerbils, this animat does not search at the center of the rotated array, suggesting that the 

allocentric bearing of landmarks is more important to intensity coding animats than the relative 
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bearing between landmarks. At the three locations where this animat does focus it's search, two 

of the three landmarks in the rotated arrangement have about the same bearing as did two of the 

landmarks in the learning arrangement. 

Fig. 7.18 shows the search histograms when additional landmarks are added to the learning 

arrangement in order to give the animat a choice between the triangle of landmarks from learning, 

and their inversion.. As with the gerbils of fig. 7.3, search is relatively unaffected by the additional 

landmark. This is to be expected given the previous result that intensity coding animats do not 

search in the center of the rotated triangle when presented in isolation. 

Vector coding 

Figs. 7.19 shows the behaviour and search histograms of a direct, vector coding animat that has 

a mean performance of 0.78. This animat moves fairly directly to the goal from any location 

(fig. 7.19a). 

When tested with a single landmark, the animat searches mainly in 3 locations as shown in 

(fig. 7.19c). Each of these locations is at about the same bearing and distance from the landmark 

as was the goal from one of the landmarks in the learning arrangement. Approximately the same 

search pattern was shown by all vector coded animats. This pattern matches that shown by Collett 

et al's gerbils, as shown in fig. 7.3c. 

When the distance of one of the landmarks from the rest is doubled (fig. 7.19d), the search 

location is not substantially affected. Thus, like the gerbils, this animat ignores an outlying 

landmark when two out of the three are in the usual place. 

When the landmarks are rotated (fig. 7.19e), search is greatest at the center of the rotated 

array. In addition, this animat searches between the center, and three locations outside of the 

array, as did the gerbils in Collett et al's (1986) study. Each of these locations is at the same 

bearing and distance from 2 of the landmarks as was the goal during learning. The other direct, 

vector coding animats showed substantially the same behaviour, with the main variation being 

the extent of search in the 3 outlier locations when tested with the rotated arrangement. With 

hidden units, some of the animats search only at the center. 

Fig. 7.18 shows the search histograms when an additional landmark is added to the learning 

arrangement. As with the gerbils of fig. 7.3, the search pattern of the animat is relatively unaffected 

by the additional landmark. As with the rotated landmark arrangement, the additional landmark 

introduces a location where the relative bearings between the landmarks, but not the allocentric 

bearings, match those from the goal during learning. Despite their behaviour when presented with 

only an rotated triangle of landmarks, animats do not search at the center of the rotated triangle 

when given a choice between this and a location where both the relative and absolute bearings 

and distances match those experienced during learning. 
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3. In each condition, the mean performance of each animat over 1000 test trials without learning 
is averaged over 3 animats. Standard error for all data points is less than 0.05. 

The search behaviour of this direct, vector coding animat, matches that of the gerbils in Collett 

et al's (1986) study, for all the modified landmark arrangements (fig. 7.3). The same pattern of 

search, and hence close match to the animal behaviour was shown by all three direct, vector coding 

animats. 

Behavioural predictions 

Fig. 7.21 shows further search patterns for the direct vector coding animat found to replicate 

the gerbils search behaviour in task 3. With one landmark removed, the animat searches mostly 

where the goal was (Fig. 7.21a); this matches gerbil behaviour and is expected given the results 

with one landmark moved away as shown above. Figs. 7.21b-d are behavioural predictions from 

the animat, all of which differ from the predictions of vector voting. In fig. 7.21b, the landmark 

arrangement is both rotated and stretched; the animat searches at the center of this array. With 

the size of the triangle of landmarks doubled, animats search at the center (fig. 7.21c), with less 

search at three outlying locations. With the arrangement size doubled and rotated, animat search 

has an interesting pattern around the center of the of the landmarks and again search at three 

outlying locations (fig. 7.21d). 

7.7 Discussion 

This work shows that these simple and reactive convolution based animats, adapting by reinforce- 

ment learning, are capable of learning tasks analogous to those learnt by Collett et al's (1986) 

gerbils. Though the sensory array is modified from the visual array of previous chapters, animat's 

internal processing and learning parameters remained the same. Given enough hidden units, both 

intensity and vector coding leads to animats that perform at a level far above chance. These 

results are obtained with a relatively coarse coding of the sensory input: landmark bearing has a 

resolution of 6 degrees, the compass units of 24 degrees, and for vector coding, distance is split 

into one of just six bins. 
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(a) Example Paths. (b) Behaviour. 
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Figure 7.17: The behaviour and search patterns of a4 hidden unit, intensity coding animat on 
task 3 after learning. Details as in previous figures. 
(c) Shows the search histogram when tested with the environment. the same as during learning. 
(d)-(f) show search histograms in modified environments. 
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(g) Search histograms. 
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Figure 7.18: Further search histograms of the intensity coding animat, with 4 hidden units, from 
the previous figure. 

Vector coding the distance and bearing of landmarks, in comparison with intensity coding of 

distance and vector coding of bearing, has a number of effects. Vector coding results in significantly 

higher performance after learning than intensity coding in all three tasks. In tasks 2 and 3, vector 

coding aninnats achieve their higher performance with fewer hidden units than required for intensity 

coding, and in tasks 1 and 2, vector coding animats have considerably shorter learning times. The 

filter network size required for vector coding animats to achieve maximal performance decreased as 

the number of landmarks increased: 4 hidden units for task 1,2 hidden units for task 2, and direct 

filter networks for task 3. Intensity coding requires 4 hidden units to achieve maximal performance 

in all three tasks. This suggests that. as the number of landmarks increases, the mapping from 

vector coded sensory array to movement array becomes computationally simpler. 

Analysis of the learned internal structure underlying the animats behaviour is lacking in the 

work presented here. The consistency of the behaviour of vector coding animats, and the small 

size of the filter networks required for efficient. performance suggest that a detailed understanding 

of what these animats have learned to compute is possible. This remains a task for future research 

however. 

Intensity coding of distance leads to animats learning mostly about the angular relationships 

between landmarks, with little emphasis upon distance. Within the range of values reported here, 

neither an increase in network size, nor extended learning trials makes much difference to this. 

Nti'hen faced with single landmarks, intensity coding animats search directly around them. More 

evidence for their over emphasis on bearing information comes from task 2 with the distance 

between the landmarks doubled. In this situation, intensity coding animats search at the location 

in which the angle between the landmarks is the same as during learning. In task 3, intensity 
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(a) Example Paths. (b) Behaviour. 
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Figure 7.19: The behaviour and search patterns of a direct., vector coding animat on task 3 after 
learning. Details as in previous figures. 

(c) Shows the search histogram when tested with the environment the same as during learning. 

(d)- (f) show search histograms in modified environments. 
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e) Search histograms. 
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Figure 7.20: Further search histograms of the direct, vector coding animas from the previous 
figure. 

coding animats when tested with a single landmark, again search close to the landmark, and when 

tested with the rotated triangle of landmarks, search near each. All these behaviours are very 

different from those exhibited by gerbils. 

Vector coding, in contrast, leads to search behaviour close to the gerbil's when anitnats are 

tested with modified arrangements of landmarks. In task 1, animats search at the goal bearing and 

distance. In task 2, when tested with a single landmark, animats search in the two locations where 

the distance and bearing of the landmark match that of one of the landmarks during learning. This 

matches the gerbils behaviour and the prediction of vector voting. When tested with the distance 

between landmarks doubled, animats, searched mostly between the landmarks, like the gerbils and 

unlike vector voting. This implies they are sensitive to the relation between landmarks in addition 

to their individual locations. However, gerbils search at two discrete locations out of the four 

where both distance and bearing match; anima. ts search mostly at the single location between the 

laudnlarks that most nearly satisfies both these constraints. Because of this failure to replicate the 

gerbil's search behaviour, these animats can be rejected as models of the computations underlying 

them. 

In task 3, direct vector coding animats search in the same locations as the gerbils in all 

test arrangements of landmarks. Consequently, these animats can be posited as a model of the 

gerbils behaviour, and falsifiable predictions of search patterns in further modified arrangements 

have been produced to compare with those of gerbils. The close match to gerbil behaviour is 

surprising because of the coarseness of coding, and the simplicity and generality of the anirnats. 

The results seem to suggest that, Collet, et al's (1986) results do not necessarily reflect a specific 

spatial navigation system. 
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Figure 7.21: Further search patterns of the direct, vector coding animat of the previous figures. 
(a) matches the behaviour of gerbils, (b)-(d) are predictions. 
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Vector coding makes distance more explicit than does intensity coding, and this presumably 

underlies the superior performance of vector coding animats, and the smaller filter networks re- 

quired to achieve peak performance. To respond to a landmark at a particular distance and relative 

bearing with vector coding is simply a matter of increasing a particular weight. With intensity 

coding, responding to the landmark at a particular bearing is as simple, but responding to a par- 

ticular distance is a complex computation requiring, in general, two hidden units. Thus, in tasks 

2 and 3, intensity coding animats rely upon the relative bearing between landmarks since this is 

sufficient for competent performance and easily learned with intensity coding. Such a strategy is 

not an option for vector coding animats because each input unit codes both a relative bearing and 

a distance and so animats cannot help but become sensitive to both dimensions. 

There is a clear analogy between the utility of multiscale filtering for facilitating animat com- 

putation in visual tasks, as demonstrated in previous chapters, and the utility of vector coding in 

the current tasks. As shown in chapter 5, one of the properties of multiscale filtering is to make 

visual subtended angle explicit by converting it to a row within the multiscale array. Aniinats can 

then respond to a particular subtended angle by having large weights on a particular row within 

the array. Here, responding to landmark distance is similarly made easy by vector coding. 

An interesting, and as yet unclear question is the extent to which animat replication of gerbil 

search behaviour is crucially dependent upon vector coding, and, if it is crucial, whether this 

makes possible inferences about coding within the gerbil brains. Gallistel (1990) argues that 

vector coding is very widespread within animal brains; perhaps simulations such as these may 

offer computational reasons why. 

Touretzky et al model the Collett et al (1986) behaviours with a complicated and highly 

specific system involving an explicit internal representation of the spatial environment that models 

neurophysiological data on place cells within the rodent hippocampus. The simulations of this 

chapter show that such an explicit representation is not computationally necessary in order to 

replicate the gerbil's search behaviours in task 3, over the small set of test situations; a simple 

and more general system, closer to vision than navigation, can learn to behave in the same way. 

This finding raises the question of why do rodents have place cells if they are not computationally 

necessary? What computational and behavioural benefits do place cells give the gerbils? Insects 

can learn to move to a location specified by landmarks (eg Collett and Cartwright, 1983), and 

there is no evidence that they use the elaborate apparatus of place cells. 

Unlike the gerbils, and Touretzky et al's model, the animats of this chapter, being reactive, 

are unable to complete trajectories if visual input is removed. In this, they behave similarly to 

insects. 

Redish and Touretzky's (1997) model, because of it relation to vector voting, relies very heavily 

upon the allocentric bearing information provided by the head direction system. Regardless of 
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the number of landmarks, the only information from the visual array used to guide search is the 

allocentric vector to individual landmarks and the difference in bearing between them. In the 

animats here, egocentric visual information has priority, and is combined with allocentric compass 

information in a far more implicit way, in which animats learn to use whichever information 

enables them to successfully learn the task. Behavioural experiments in which animals learn goals 

defined by landmark arrangements which are rotated as well as translated between trials may 

allow separation of animal's use of visual and non-visual information in spatial navigation. 
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Chapter 8 

General Discussion 

Firstly, the main results of the thesis are reviewed, followed by consideration of some general issues 

raised by the research. Finally, some straightforward extensions of the research are outlined. 

8.1 Review of the main findings 

Repeated convolution by diverse filters partially characterises the early visual processing of ani- 

mals as seemingly different as insects and mammals. The research in this thesis has shown that 

convolution by adaptive filters, modified by reinforcement learning, results in animats that can 

efficiently perform a range of simple visually guided tasks. 

8.1.1 Approaching a solitary circle 

In chapter 4, the goal was the region neighbouring a solitary circle in an otherwise empty arena, 

and contrast varied randomly between trials. When learning without sensory noise, direct animats 

performed highly regardless of coding. With either independent or coarse scale noise, rectified 

multiscale coding animats outperformed both intensity and multiscale coding animats. For hth 

rectified multiscale and intensity coding animats, direct networks perform as well as t hose wit Ih 

hidden units in all noise conditions. 

Consistently, intensity coding animats learned a balanced, step shaped filter which re,, j)(, t ek 

most strongly to the edges of the image of the circle. 

The image of circle typically elicits activity at a range of spatial scales whereas noisy, causes 

activity at, only a subset of scales. Rectified multiscale coding animals learn to exploit this to 

achieve higher performance by detecting the circle at the scales least affected by noise. 
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8.1.2 Learning visual subtended angle 

In chapter 5, like chapter 4, the environment is empty except for a single circle. Here however, 

the goal region is where the angle subtended by the image of the circle falls within a particular 

range. Even without visual noise, rectified multiscale coding animats significantly outperform 

intensity and multiscale coding animats. Furthermore, rectified multiscale coding animats achieve 

peak performance with 2 hidden units compared with the 8 required for intensity coding. The 

difference between intensity and rectified multiscale coding animats increases in the presence of 

visual noise, regardless of its scale. 

One result of multiscale convolution is that differences in subtended angle are converted into 

differences in which filter outputs are most active. Rectified multiscale coding animats learn 

to exploit this to achieve their higher performance by becoming sensitive to the relation between 

activity at different scales. Consistently, one hidden unit learns to respond to large subtended angle 

and the other to small subtended angle, and the output unit combines these to efficiently guide 

movement. Rectified multiscale filtering leads to higher performance because it makes subtended 

angle explicit, and so makes the mapping to useful output easier. Extracting subtended angle 

from the raw visual array is computationally much more difficult as is shown by the comparatively 

inferior performance of intensity coding animats. Animats having only a rectified single scale 

require 8 hidden units to approach the performance of those having multiscales, thus showing that 

multiscale filtering makes the relevant information more explicit than it is in any single scale. 

Learning the same task in the presence of coarse scale visual noise drastically alters the com- 

putation learned by rectified multiscale coding animats. In this case, the same behavioural end, 

of moving to a goal subtended angle, are achieved by a different computational strategy involving 

the spatial pattern at fine scales. 

8.1.3 Learning multiple subtended angles 

Chapter 6 extends the results of chapter 5 by having a number of goal subtended angle ranges, 

one of which is chosen randomly on each trial. In addition to the heavier perceptual demands of 

this extension, it is a test of how well the learning algorithm is able to develop context dependent 

utility functions. The current goal is coded for animats by binary auxiliary units. Rectified 

multiscale coding animats greatly outperform intensity coding animats. With four hidden units 

performance approaches that of the 2 hidden unit best performing animats in the single goal task 

of chapter 5. Analysis of the animats after learning again demonstrates how multiscale convolution 

makes simpler the subsequent computations underlying efficient performance of the task. 
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8.1.4 Landmark learning 

Chapter 7 simulates the gerbil landmark learning of Collett et al (1986). Gerbils, unlike insects, do 

not learn the angle subtended by a single landmark in this situation to guide movement, and so the 

visual array of the previous chapters is inappropriate to this case. Instead, a more abstract sensory 

code within the same framework is simulated, whereby each landmark causes activity in single 

direction in the 1-dimensional sensory surface, by an amount monotonic with both distance. Two 

ways of coding activity at a direction were compared; intensity coding, where a single continuous 

unit codes the value, and vector coding, where the value is coded by a number of binary units each 

of which is tuned to a non-overlapping range of values. Vector coding here, like the multiscale 

convolution coding of the previous chapters involves a considerable expansion of the sensory array. 

Animats with vector coding learn to considerably outperform those with intensity coding on all 

three tasks simulated in this chapter. In the 2 and 3 landmark tasks, vector coding animats require 

fewer hidden units to achieve their best performance than intensity coding animats. With an 

equal number of hidden units, vector coding animats typically require considerably fewer learning 

trials to achieve asymptotic performance than intensity coding animats. Most importantly, the 

behaviour of vector coding animats, unlike that of intensity coding animats, closely matches the 

behaviour of gerbils when tested in a range of variations of the environment during learning. This 

is discussed more below. 

8.1.5 Relation to animal research 

As outlined in the introductory chapter, computational neuroethology allows a direct comparison 

between the behaviour of an animat and that of an animal. The closer the match between the 

environment and sensorimotor system of the animat and that of the animal it purports to model, 

the more weight can be placed upon any behavioural similarity. 

There are typically many computational strategies for efficiently performing a task. As a 

consequence, if an animat learns to efficiently perform some task like an animal, it does not 

necessarily imply any similarity between the animats computational solution and that of the 

animal. If however, in addition to mimicking the animal at the learned task, its behaviour matches 

the animals when tested (without learning) in a variation of the learning environment, then the 

animat can more confidently be proposed as a model of the computations underlying the animals 

behaviour. The animat can be rejected as such a model when an environmental variation is found 

in which the behaviour of animal and animat diverge. Indeed, such environmental variations 

should be sought, since they define the limits of the animat as a behavioural model. 

Animats modeling particular animal behaviours were simulated in chapters 5 and 7. In chap- 

ter 5, Cartwright and Collett's (1983) experiment showing that honeybees learn the angle sub- 

157 



tended by a landmark was simulated. Animats with both intensity and multiscale coding were 

shown to be able to learn to behave like the bees. This is not a very interesting result, because 

subtended angle is the only animat cue to distance, whereas for bees, it is one of a number of cues. 
Cartwright et al (1983), further show that after learning, bees move to the same distance when 

the landmark is replaced with only it's edges. When tested in this condition, all animats that had 

learned with either no sensory noise, or independent sensory noise, failed to generalise in this way, 

regardless of coding. However, rectified multiscale coding animats that learned in the presence of 

coarse scale sensory noise did generalise like the bees. Thus, all the other animats can be rejected 

as models of the computations underlying the honeybee's behaviour, even though they learned to 

perform the same behaviour. 

In chapter 7, Collett et al's (1986) landmark learning experiments with gerbils were simulated. 

These experiments are useful because of the range of results in modified environments. Intensity 

coding animats, though they learned to behave like the gerbils when tested in the same environment 

as during learning, failed to match the gerbils behaviour when tested in modified environments. 

Intensity coding seems to lead to excessive focus upon landmark bearing rather than landmark 

distance. With vector coding of distance, animats behaviour closely matched that of the gerbils, 

and with three landmarks replicated their behaviour in all cases. 

8.2 Multiscale filtering 

Convolving the visual array with Laplacian of Gaussian filters at a range of spatial scales, followed 

by rectification greatly facilitates learning of the tasks in this thesis. Rectified multiscale coding 

animats learn to outperform intensity coding animats, and typically require less hidden units to 

achieve best performance. Multiscale filtering expands the visual array, and in doing so makes 

aspects of it explicit, thus making easier the subsequent computation. This empirically supports 

the arguments of Marr (1982), and Clark and Thornton (1994) amongst others that processing 

can be viewed as transforming the input array to one in which the transformation to output is as 

computationally as simple as possible. 

8.2.1 Multiscale filtering in more general situations 

The utility of rectified multiscale filtering of the visual array has been shown in the context of 

reinforcement learning and these particular tasks. This raises the question of whether such the 

same holds in more general cases. 

A preliminary study compared intensity, multiscale and rectified multiscale coding in a su- 

pervised learning task using filter networks of the same structure as underlie the animats in this 

thesis. Instead of learning weights in response to the reinforcement signal, a pattern of activation 
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in the input array is presented together with a desired pattern of responses of the filter network 

output unit for each position. For the preliminary study, the filter network learned to detect a 

random target pattern embedded at a random position within a 1-D, randomly varying texture 

with the same statistics. Target and background patterns were obtained by convolving an array of 

uniformly distributed random numbers with a Gaussian. In support of the results above, rectified 

multiscale coding of the input array led to networks with far higher performance whilst requiring 
fewer hidden units. This preliminary study suggests that the area may be worth further research. 

8.2.2 Why Laplacian of Gaussian filters? 

In this thesis, Laplacian of Gaussian shaped filters have been assumed, based upon the animal 

research discussed in the introductory chapter. Although this shape is only an approximation of 
the shape of filters found within the early visual systems of animals, it is presumably close enough 
to make little difference given the simple images in this thesis. What has not been investigated 

is why this particular filter shape is so useful, and under what circumstances? To what extent do 

other filter shapes facilitate learning and in what contexts? 

The computational arguments used to support particular shaped filters are based upon consid- 

eration of the computational properties of the filter (eg Marr, 1982; Watt 1988). For example, LoG 

filters are balanced, and respond strongly to edges etc. As shown in this thesis, computational 

neuroethology allows a different approach to this problem based upon assessing a particular set 

of filters according to how well animats, having their visual array convolved by such filters, can 

learn to perform a task. Thus, the utility of particular filters is first established behaviourally. A 

particularly interesting extension of this approach is to evolve the shape of filters with a genetic 

algorithm, selecting filters according to how well animats using them learn to perform. Over a 

number of generations, the set of filter shapes most suited to the task, in terms of facilitating 

learning, should be evolved. Having automatically generating the filters, and established their 

behavioural utility, the filters can then be analysed to determine their computational properties. 

8.3 Learning time 

One problem with this research is the number of trials required for learning. Animals typically 

require tens of trials rather than tens of thousands of trials, like the animats here, to learn similar 

tasks. More specifically, for the landmark learning tasks of chapter 7, Collett et al (1986) note that 

gerbils would typically require about 150 trials, spread over about a month, before a gerbil would 

run to the correct spot on release. Bees, faced with similar tasks, require around 30 to 50 trials 

before they reliably search in the right location (Cartwright and Collett, 1983). Interestingly, bees 

require fewer trials for learning 3 landmark tasks, than for learning with 1 or 2 landmarks; the 
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same pattern is shown by the vector coding animats in chapter 7: with one landmark, convergence 

is achieved within 20,000 leaning trials, and with 2 or 3 landmarks, convergence is achieved within 

10,000. One relevant finding is that the expanded codings of rectified multiscale filtering in chapters 

4-6, and vector coding in chapter 7 typically lead to shorter learning times than intensity coding. 

As explained in chapter 3, the standard algorithms of Q learning and backprop were used. 

Many speedups and bells and whistles exist for these algorithms, especially for backprop, and 

they may be expected to significantly reduce the learning time. Speed of learning was not the 

focus of this research. At this stage in computational neuroethology, the most important thing 

is developing techniques for acquiring competent animats and examining their behaviour and 

computational structure. However, it must be said that there is no evidence that, even with the 

best of current algorithm speedups, animats learning time would decrease to anything like that of 

the animals. Furthermore, given the present learning algorithm, increasing the size of the arena 

(or decreasing animat step size), would be expected to lead to a disproportionate increase in time 

to converge. 

Unlike the animats of this thesis, animals do not start the tasks with a random internal 

structure and behaviour. They can already see, and coordinate their movement and have personal 

experience in using vision for similar tasks. Additionally, learning to learn seems to be an important 

aspect of animal computation and Collett et al (1986) exploit this by retraining the same gerbils 

to gain an "enormous saving of time. " (p. 836). Just as there is a selective advantage for 

animals that can move to their spatial goals more efficiently than their competitors, there will 

be a selective advantage for animals that can learn more efficiently than their fellows. The link 

between evolutionary adaptation of populations and individual learning has been explored by a 

number of researchers since Baldwin (1896) and Morgan (1896) initial hypotheses (eg Hinton and 

Nowlan, 1987; Parisi et al 1990; Acley and Littman, 1991; Floreano and Mondala, 1995). Hence, 

it seems reasonable to suppose that within the constraints imposed by the personal plasticity of 

particular animals, they will have evolved to efficiently exploit their potential for learning. 

The animats in this thesis only learn a single task; an extension would be to compare the 

learning times of these, with those of animats that had previously learned similar tasks. It is not 

clear what would be the expected result. 

8.4 Multi-purpose computations underlying learning? 

Gallistel (1990,1995) computationally analyses a range of learning behaviours including navigation 

experiments such as Collett et al (1986), examined in chapter 7 of this thesis. Based upon this 

computational analysis, Gallistel concludes that the specific computational demands of different 

tasks require task specific learning mechanisms. Thus, there is a specific computational learning 
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mechanism for learning navigation, a different one for learning temporal contingencies, and so 

on. Gallistel strongly argues that just as the kidney and liver are structurally different because 

they perform different functions, animals learning mechanisms are computationally specialised 
for solving particular kinds of problems. Gallistel sees no role for an underlying computational 

mechanism at a level higher than arithmetic and logic. 

Throughout this thesis, the same underlying computation of convolution by adaptive filters 

is used. A range of tasks, form very simple visual tasks, such as approaching a single landmark, 

to complex navigation problems, such as moving to a location defined by the position of three 

landmarks, have all been shown to be learnable by this general convolution architecture with 

weights modified by reinforcement learning. 

Before learning, animats are homogeneous. As a result of the different environments and goal 

regions, animats learn different weight structures within the general convolution framework. Anal- 

ysis of the learned structure has shown that animats can be viewed as learning to implement com- 

putations reflecting the particular computational demands of their particular task. Undoubtedly, 

after learning, these computations are task specific, and can only be understood with reference to 

the task. However this was due to learning within a more general framework applied to a specific 

task, and not due to specialised, task specific, learning mechanisms. These results therefore show 

that, although reinforcement learning and convolution networks may not be all-purpose, they are 

multi-purpose and can learn to become highly specialised processing systems. 

8.5 Further Work 

8.5.1 Genetic algorithms 

Genetic algorithms are a very general method of parameter modification based upon Darwin's 

principles of evolution by selection of heritable variation. These principles, and their application 

to neural network and animat research, were outlined in the introduction and literature review 

chapters. Genetic algorithms provide another way of adapting convolution network weights in 

tasks such as those of this thesis and would provide a very useful comparison to reinforcement 

learning. A population of animats with initially random filter network weights evolve under the 

pressure of an evaluation function defined simply in terms of how quickly animats move to the 

spatial goal. 

GA's solve tasks directly in that animats are selected only for how well they do the task, 

regardless of how. Reinforcement algorithms are less direct in that they learn a mapping from 

sensory input to an estimate of how many steps from the goal that input implies the animat is. 

Given this function, movement is directed to lead to states that are nearer to the goal. Thus there 
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is an intervening computational step between the task and the behaviour that performs it. 

This difference may lead to differences in computational strategy for solving the task. If both 

algorithms yield animats utilising a similar computational strategy, this would strongly suggest 

that the strategy reflects the computational demands of the task rather than the particular pa- 

rameter modification algorithm. Differences indicate computations reflecting the particular type 

of algorithm and the breadth of possible computation. 

8.5.2 Motor array coding 

Within the convolution network animat design developed in this thesis, the output array, which 

stochastically determines movement, consists of a scalar for each direction in which the animat 

can move. Each number is the activation of the output unit of the filter network in that direction. 

Given this array, the problem is to determine the direction in which to actually move. Here, the 

standard reinforcement learning solution is used: assigning probabilities to each direction according 

to how much the activation exceeds the mean activation. This method assigns probabilities only 

according to relative activations with no regard for the relative direction. 

An alternative is to regard the motor array as a vector code and each activation as the length 

of a vector pointing in the corresponding direction. A resultant vector can then be obtained as 

the sum of these vectors, each weighted according to its length. This computation makes use of 

the vectorial form of the motor array, and its comparative utility can be behaviourally assessed by 

comparing the performance of animats using this computation with those using the non-vectorial 

computation of this thesis. In addition to the computational motivations of this operation, Gallistel 

(1990) and Georgopoulos (1995) argue that vector coding of motor output arrays, and computation 

of the resultant vector is a widespread feature of diverse animal computation. 

8.5.3 Non-reactive agents through spatiotemporal filtering 

A wide diversity of animals convolve their visual arrays with multiple filters having a scale and 

orientation specivity. In parallel, and concurrently with this, animals including vertebrates and 

invertebrates convolve their early visual arrays with filters having a temporal as well as a spatial 

structure. Such filters have been reported in animals as diverse as insects (eg. Horridge et al 

(1995)) and mammals (reviewed by Bruce and Green, 1985). These filters are sensitive to the 

spatiotemporal pattern of intensities within a local region of the visual array and are generally 

referred to as elementary motion detectors (EMD's). They respond most strongly to movement 

of visual contrast in a particular direction and at a particular speed (Horridge et al, 1995). The 

structure and computational properties of such filters have been investigated by Snippe (1991) 

and Horridge et al (1995) amongst others. 

162 



Sensitivity to movement is a component of a wide range behaviours, including time to contact 
(Lee 1980) and motion parallax for guiding movement (eg. Srinivasan et al, 1996) and judging 

distance (Srinivasan et al, 1989). As in the case with multiscale filtering, the evidence suggests 

commonality between the structure and computation of insect and mammalian spatiotemporal 

processing. 

The utility of EMD's for animat behaviour has been shown by Francesinci et al (1992), who 

used the output of convolution of a visual array with EMD's to estimate distance and thus guide 

obstacle avoidance. 

Simulating animats, and learning with EMD filters is a natural extension of the research 

presented in this thesis. Animats with a layer of EMD's, both in addition to, and in place of the 

multiscale LoGs could be simulated and compared with the reactive animats. There are a few 

alternative network architectures; these could be behaviourally assessed and analysed in the usual 

fashion. With EMDs, the non-reactive component of animat computation is provided by the visual 

filter rather than changes to the adaptive convolution network. Thus, the computational load is 

placed upon the filter rather than subsequent processing. Adding EMD type non-reactivity to the 

animats brings their computation nearer to that of animals, and allows simulation of a wide range 

of tasks having a non-reactive component. 

A relevant first task for these non-reactive animats is to learn to move to a particular distance 

from a fixed radius circle. In chapter 5, reactive animats were shown to learn to use subtended 

angle to guide movement. With EMD and LoG filters, animats could either ignore the EMD array 

and just learn subtended angle (like the bees in Cartwright and Collett, 1983). Or, they could use 

the EMD array to learn a different strategy for estimating distance. In the latter case, the search 

distribution can be compared with that of the gerbils in the same task (Collett et al, 1986). In the 

happy case that they are similar, this opens the door to simulation of the multi-landmark gerbil 

experiments of Collett et al (1986) with a visual array rather than the distance sensitive sensory 

array of chapter 7. 

8.5.4 2-dimensional visual arrays 

The most interesting potential extension of this research is to 2-D visual arrays. This thesis 

has demonstrated the computational utility of expanding a 1-D visual array to a 2-D array by 

convolution with filters at multiple spatial scales. Animals have 2-D visual arrays, and, as outlined 

earlier, a wide range of evidence suggests that the early stages of both invertebrate and vertebrate 

vision involves convolution with filters having both a specific scale and orientation. In this case, the 

2-D visual array is expanded to a 4-D array because each filter is specified by both an orientation 

and a scale. Rectification yields two, 4-D arrays. Fig. 8.1 shows an example where an image of a 

flower is convolved with difference of Gaussian filters at 3 spatial scales (columns) and orientations 
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of 0,45,90 and 135 degrees (rows). Flowers are a particularly interesting example since their 

shape has presumably evolved to reflect the visual system of insects (and vice-versa) because of 

the evolutionary pressure for them to be as visible as possible to the insects that frequent them. 

The generalisation from the research of this thesis to the 2-D case is straightforward: the 

4-D multiscale and orientation array is convolved with a filter network to yield a 2-D motor 

array to stochastically determine the direction of movement. The computational neuroethology 

approach permits the behavioural assessment of the utility of such a scheme by comparing the 

performance and behaviour of animats learning (or evolving) with and without the filtered visual 

array. Furthermore, a wide range of experiments in which animals learn to discriminate between 

patterns and are then tested on their preferences with variations of these patterns would then 

become open for modeling (eg. Zhang et al, 1992; Srinivasan et al, 1993; Srinvivasan, 1994). 

164 



Figure 8.1: A 4-D array obtained by convolving the image at the top with scale and orientation 

specific filters. The scale of filters varies along the columns and the orientation varies down the 

rows (0,45,90 and 135 degrees). 
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