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Abstract

In this article we utilize the time respondents require to answer a self-administered online stated preference
survey. While the effects of response time have been previously explored, this article proposes a different approach
that explicitly recognizes the highly equivocal relationship between response time and respondents’ choices. In
particular, we attempt to disentangle preference, variance and processing heterogeneity and explore whether
response time helps to explain these three types of heterogeneity. For this, we divide the data (ordered by response
time) into approximately equal-sized subsets, and then derive different class membership probabilities for each
subset. We estimate a large number of candidate models and subsequently conduct a frequentist-based model
averaging approach using information criteria to derive weights of evidence for each model. Our findings show a
clear link between response time and utility coefficients, error variance and processing strategies. Our results thus
emphasize the importance of considering response time when modeling stated choice data.

Keywords: choice experiments, response time, preference heterogeneity, scale-adjusted latent class, independent
availability logit, processing strategies, multimodel inferences, frequentist-based model averaging, willingness to
pay

1. Introduction

When collecting stated preference data, online surveys have become more and more important and widespread.
One reason for this is due to improvements in computer technology, but also the increased availability of the
internet. Yet another reason for this increasing popularity stems from the fact that online surveys have a number of
advantages over more traditional survey modes, such as mail-out paper-and-pen questionnaires, personal interviews
and telephone interviews. Advantages typically mentioned in the resource economics literature (cf. Lindhjem and
Navrud, 2011a,b; Fleming and Bowden, 2009; Olsen, 2009) are reduced costs, increased speed of data collection,
less item non-responses, ability to adjust questionnaires according to respondent answers on-the-fly, potential for
broader stimuli in terms of graphics and sound, and avoidance of manual data entry mistakes. While advantages are
many, this literature has also highlighted a few important potential disadvantages, which raise concerns regarding
data quality and their suitability in non-market valuation (Lindhjem and Navrud, 2011a,b). In particular, these
disadvantages relate to problems concerning sample coverage and representativeness and self-selection bias. While
not unique to online surveys, there can be so-called “pure survey mode effects”, whereby a respondent provides
different answers to otherwise identical questions only because it is administered through different survey modes.

This article focuses on one aspect of online surveys—the length of time respondents take to complete the
choice experiment. The concern is that, notwithstanding the fact, as pointed out by Cook et al. (2012), that
online surveys allow respondents “time to think” and reflect, an interviewer is not present to pace the respondent.
For this reason, some respondents may not exert the level of cognitive effort needed to answer the questions
in any meaningful way. While this concern also applies to other self-administered methods of data collection,
understanding the role of response time in online surveys is especially important because of the incentives that
respondents often obtain for their continued participation in such surveys. Furthermore, as respondents within
pre-recruited online panels gain experience, the tendency to answer quickly may actually increase (Malhotra,
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2008). Consequently, with online surveys we may in fact increase the risks of panel attrition effects and surveying
of experienced respondents—whose primary motivation for participating stems from the reward (either monetary
or non-monetary) they receive—who answer so quickly that their choices do not reflect their actual preferences for
the good in question. If this is indeed the case, there are obvious implications since it challenges the validity of any
inferences made from the observed choices. Therefore, there may be reasons to be skeptical of “quick-and-dirty”
responses, as coined by Schwappach and Strasmann (2006) and Olsen (2009), collected from online surveys in
which participants are recruited and motivated by an incentive for completing the survey (Bonsall and Lythgoe,
2009). Similarly, concerns of reliability may be warranted for respondents who require significantly more time than
would be reasonably expected. This could signal that these respondents faced distractions or were multitasking
and, thus, did not give the choice decisions their utmost attention. In spite of these issues, this subject has yet to
receive much attention, which gives rise to the present study.

Although the importance of response time has received considerable attention within experimental psychology,
consumer research and marketing research (e.g., see Haaijer, Kamakura, and Wedel, 2000; Luce, 1986; Rubinstein,
2007), there are relatively few investigations within the stated preference literature (see Holmes et al., 1998;
Haaijer, Kamakura, and Wedel, 2000; Rose and Black, 2006; Otter, Allenby, and van Zandt, 2008; Brown et al.,
2008; Bonsall and Lythgoe, 2009; Vista, Rosenberger, and Collins, 2009; Hess and Stathopoulos, 2013; Börger,
2015; Börjesson and Fosgerau, 2015; Campbell, Mørkbak, and Olsen, 2016, for applications). Though, as can be
seen from the above references, interest in this topic has clearly increased recently, and Bonsall and Lythgoe (2009)
note that there is considerable scope for more research. Our article is intended to contribute to this area and provide
a robust modeling framework for practitioners engaged in analyzing stated choice experiments. Unlike the articles
mentioned above, which have established that response time has a significant bearing on the estimates of utility
coefficients, error variance, model fit and predictions, we are interested in identifying the link between the length of
time respondents require to answer the choice experiment and their preferences, variances and processing strategies
(specifically, choice set generation) in a simultaneous estimation. While establishing the link between response
time and any one of these types of heterogeneity is relatively straightforward, tackling all three simultaneously
poses a challenge. Nevertheless, when only one type of heterogeneity is accounted for, there is a potential risk that
the actual heterogeneity among respondents is only partially explained and, in fact, may actually be an artifact
of another (unmodeled) type. For this reason, attempts to accommodate more than one type of heterogeneity at
the same time would seem justified. In Campbell, Mørkbak, and Olsen (2016) we accommodate two types of
heterogeneity, namely preference and variance heterogeneity, while leaving out any heterogeneity in the processing
strategies adopted. With respect to response time, this latter type of heterogeneity seems highly relevant, in the
sense that response time may be highly correlated with the use of any decision heuristic. Thus, in this article,
while acknowledging the difficulty in separating the three types of heterogeneity simultaneously, we use latent
class modeling to separately identify the different types of heterogeneity within the sample of respondents and to
explore whether the class memberships differ by response time. This represents a step forward in the analysis of
heterogeneity. This is the first article to explore the link between response time and processing strategies in the
form of consideration set formation. Moreover, unlike Thiene, Scarpa and Louviere (2015), who also disentangle
three different types of heterogeneity, this is the first attempt to investigate the connection between each type of
heterogeneity and response time.

In our earlier study (Campbell, Mørkbak, and Olsen, 2016), which was based on a survey investigating
recreational anglers’ preferences for fishing sites, we set out to identify fast and slow respondents, but ended up
concluding that identifying the thresholds is fraught with difficulty and, therefore, found no justification to drop
respondents from the analysis on the basis of response time. In the present paper, we reiterate this conclusion
but suggest a potential solution by approaching the issue from a different perspective. Rather than identify
response time thresholds, this paper focuses on the differences between the respondents and we address the issue
by not settling on an unique ‘best’ model, but instead ‘averaging’ over a bunch of models through the use of a
multimodel inference approach. Our analysis is based on the division of the data (ordered by response time) into
approximately equal-sized subsets. Crucially, for each subset we retrieve separate class sizes, which is fundamental
for a meaningful investigation of response time. Under this framework, we are in a better position to distinguish
the respondents who answered quickly and relatively inconsistently from those who also answered quickly but in a
more consistent manner and, in the same vein, between respondents who took longer because they did not give the
survey their full attention and those who took longer because they more fully evaluated the information presented
to them. This is an important contribution of our work.

Our analysis considers 90 candidate model specifications to test for the number of preference classes, error
variance classes, processing strategies and the number of different subsets based on response time. With so many
competing model specifications, there is an inherent uncertainty of the true model. Given this uncertainty, and the
fact that each of our different models provide different relative statistical fits, it does not seem sensible to ultimately
select only one model. Instead, when considering the range of models we can use their relative statistical fits
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to form weights, so that weighted average estimates can be derived. For this, we conduct a frequentist-based
(as opposed to Bayesian) model averaging approach (Buckland, Burnham, and Augustin, 1997; Layton and Lee,
2006). The motivation behind this multimodel inference is that it allows judgments to be made regarding the
relative suitability of each of our models. This proves to be a useful exercise, since it resolves the usual uncertainty
by averaging over the set of candidate models.

To test our approach we use a stated choice experiment dataset that was collected via an online survey. This
was administered to a pre-recruited panel of Danes and had the aim of establishing their willingness to pay (WTP)
for different product attributes of honey. We do, however, emphasize that even though our analysis is based on a
food application, the impact of response time and the modeling framework introduced should be of wider interest
to other fields using choice experiments. Results from our analysis provide further evidence that preferences and
the variance of the observed factors are sensitive to response time. We find that for some attributes, marginal
WTP estimates are smaller among respondents with a longer response time, while for other attributes we find
the reverse. Opposite to what might be expected, we show that the average level of measurement error actually
increases with response time. Importantly, we shed light on the fact that the processing strategies adopted by
respondents in different response time quantiles are not the same, with respondents who answer quickest most
likely to consider the deterministic choice set. Our analysis highlights the relevance of accommodating for the
three types of heterogeneity concurrently. We especially find that the confidence set of models (i.e., the subset of
models that represent the majority of evidence) include three latent segments of preferences. Nevertheless, our
analysis provides strong evidence for the need to address all three types of heterogeneity simultaneously, as this
leads to higher average weights of evidence.

The remainder of the article is structured as follows. In the next section, the modeling approach to investigate
the role of response time on preferences, variance and processing strategies is developed. Following that, an
outline of our empirical case-study is provided. In the subsequent sections we present, results from the analysis
and a general discussion, and an overall conclusion.

2. Modeling approach

The point of departure is the conventional utility specification, where respondents are indexed by n, chosen
alternatives by i, choice occasions by t and the attributes by x:

Unit = βxnit + ηi + εnit, (1)

where β are estimated marginal utility parameters for the attributes, η are alternative specific constants (subject to
at least one being fixed), ε is an iid type I extreme value (EV1) distributed error term with variance π2/6λ2, and
where λ is a scale parameter. Under these conditions the probability of respondent n’s sequence of choices is given
by the standard multinomial logit (MNL) model:

Pr (yn) =

Tn∏
t=1

exp (λ (βxnit + ηi))
J∑

j=1
exp

(
λ
(
βxn jt + η j

)) , (2)

where yn is the sequence of choices for respondent n, one for each choice occasion, in =
[
in1, in2, . . . , inTn

]
.1

The major advantage of the specification outlined in Eq. 2 is its simple form for choice probabilities. However,
this is based on the well known assumption of preference homogeneity between respondents, which by now is
widely acknowledged to be inferior to those that facilitate heterogeneity in preferences. Another issue is, for
identification purposes, that the value of λ is generally set to unity meaning that it drops out of the probability
calculation. But, in cases where it is believed that there is heterogeneity in the variance of the unobserved factors
among respondents, this is obviously inappropriate. The estimation of separate scale parameters may, therefore,
also be warranted. Finally, the above model also assumes deterministic choice sets, meaning that it is expected
that all consumers consider all options presented to them. Resent evidence, however, has revealed that some
respondents adopt processing strategies and other simplifying heuristics when making their choices—including
considering only a subset of the available options (cf. Campbell, Hensher, and Scarpa, 2014; Thiene, Swait and
Scarpa, 2016)—meaning that the deterministic assumption may also not be justified. Accommodating this type

1We note that accommodating the panel effect is not necessary for the MNL model, since the choice probabilities are independent. We feel that
by presenting the MNL model in this manner we introduce as many of the necessary terms as early on as possible, which makes it easier to
see the differences introduced in subsequent models.
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of heterogeneity is also likely to be beneficial as it should help ensure that the choice models are not biased by
aspects that had no bearing on respondents’ choices (Campbell and Erdem, 2015). This type of heterogeneity is
also very likely to be driven/associated with response time, which makes it even more important to accommodate
in light of the objective of the present paper.

For these reasons, we move to specifications that accommodate heterogeneity. In this article, however, we
provide the first study to explore these three specific types of heterogeneity concurrently. As a further advancement,
we also explore this in the context of response time. Our rationale for this is the fact that response time may give
an indication of random decision-making and/or the adoption of simplifying heuristics. The argument here is that
this is likely to be exhibited in the preference structures, error variance and/or processing strategies. This motivates
the present study on how to appropriately identify and accommodate these issues. In this article, we use the latent
class modeling approach, which we outline below.

2.1. Preference heterogeneity

We are interested in explaining the heterogeneous nature of preferences for attributes among the sample of
respondents. Such (unobserved) preference heterogeneity can be accommodated by assuming random distributions.
Rather than a continuous random distribution, we opt for a finite one. The advantage of this non-parametric
approach is that, compared to the commonly used continuous distributions, they are not constrained by distributional
assumptions (Train, 2009). In non-parametric estimation, an approximating family of distributions is used, where
the family has the property that the accuracy of the approximation rises with the number of parameters. By
allowing the number of parameters to rise with sample size, nonparametric estimators are consistent for any true
distribution. Finite distributions can not only provide greater flexibility but also have practical appeal as the results
typically have a more intuitive meaning than the parameters and moments of the distributions retrieved from
continuous parametric distributions.2 We specify such a latent class model, as follows:

Pr (yn) =

A∑
a=1

πan

Tn∏
t=1

exp
(
λ
(
βaxnit + ηai

))
J∑

j=1
exp

(
λ
(
βaxn jt + ηa j

)) , (3a)

where it is assumed that respondents can be identified as belonging to a specific latent class, a, each of which
differs with respect to the β and η parameters, hence, denoted by βa and ηa, and where λ is, again, constrained to
unity for identification purposes.

Given our interest in response time, we also wish to explore whether the unconditional class membership
probabilities differ according to response time. For this, we divide the data (ordered by total response time) into
approximately equal-sized subsets.3 Each subset is associated with different class membership parameters, thus
enabling the class sizes to be different. Specifically, we define the unconditional probability of a respondent
belonging to class a conditional on their response time falling within the kth q-quantile as a constant only MNL
model:

πan |k =
exp

(
ωak

)
A∑

a=1
exp

(
ωak

) , (3b)

where ωak denotes the constant corresponding to latent class a conditional on the kth q-quantile, and where at least
one constant within each k q-quantiles is constrained to be zero for identification purposes. The attraction of this
specification is that, in addition to identifying latent classes of respondents based on their preferences, we can
assess the influence of response time on membership to the latent segments.4

2We do note, however, that a continuous representation could have been used. However, we favor the appeal of finite distribution, but suggest
that this is potentially an interesting future extension to this modeling approach.

3We note that we use paradata relating to the total response time of the panel of choice tasks. Of course, the time associated with each choice
task could instead be used, but in our latent class models we are interested in explaining class membership at the panel (i.e., individual) level
rather than cross section (i.e., observation) level. We also note that the total response time averages out idiosyncrasies unique to each task and
is, arguably, a better construct of overall attention (cf. Malhotra, 2008). Since the time respondents spend on making their choices generally
drops as they progress through the experiment (cf. Haaijer, Kamakura, and Wedel, 2000; Rose and Black, 2006), this also helps to disentangle
the issue from the potential effects of learning and fatigue discussed in Campbell et al. (2015).

4We are mindful that our deterministic inclusion of response time in the class membership functions may be considered as a limitation
compared to a latent variable approach. However, in this paper we are specifically interested in the link between response time (as opposed to
a latent variable of survey engagement) and heterogeneity. For this reason, we choose to include response time in a deterministic fashion.
Readers interested in a latent variable application of response time are directed to Hess and Stathopoulos (2013).
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2.2. Variance heterogeneity
Despite the attraction of assessing the influence of response time on preferences, choices made very quickly may
have a higher variance compared to those that were deliberated over a longer period, hence the potential label
“quick-and-dirty” for the faster responses. In this article, we explore a specification where a distribution in the scale
parameter is facilitated. Following our findings in Campbell, Mørkbak, and Olsen (2016), we recognize that the
length of time required by respondents to make a well-balanced choice varies across individuals. For this reason,
there are likely to be instances where the variances of the unobserved factors are not associated with response time.
Therefore, a probabilistic approach for identifying heterogeneity in variances would seem justified. This is likely
to offer a more flexible solution as the differences in variance for a specific response time are associated with a
probability.

In an attempt to uncover and explain heterogeneity in variances, we again make use of the latent class modeling
framework. Specifically, we implement a variant of the scale-adjusted latent class modeling approach outlined in
Magidson and Vermunt (2008) and executed in Campbell, Hensher, and Scarpa (2011) and Campbell et al. (2015),
whereby each latent class is described by a class-specific representation of scale:

Pr (yn) =

B∑
b=1

πbn

Tn∏
t=1

exp (λb (βxnit + ηi))
J∑

j=1
exp

(
λb

(
βxn jt + η j

)) , (4a)

where it is now assumed that respondents belong to different latent classes, b, that differ with respect to the λ
parameters. We note that, for identification purposes, we set λb=1 = 1. Since class membership is latent, the
unconditional probability of membership associated with class b, is given by:

πbn |k =
exp

(
ωbk

)
B∑

b=1
exp

(
ωbk

) , (4b)

where again, ωbk are constants estimated for each of the k q-quantiles. Again, at least one constant within each
k q-quantiles is subject to the same zero constraint, meaning that probabilistic estimates of the differences in
variances can be uncovered for each of the k q-quantiles of response time.

2.3. Processing heterogeneity
While it is possible that respondents who answered relatively quickly processed all of the information in the choice
tasks, it is also conceivable that at least some of them adopted some form of decision-making heuristic. Failing
to account for this is likely to be suboptimal, and perhaps lead to misguided inferences, as the model does not
reflect actual choice behavior. For this reason we extend our investigation to incorporate the heterogeneity in the
processing strategies adopted by respondents. We recognize that there are many types of processing strategies,
attribute non-attendance and attribute aggregation where they share a common metric (e.g., see Hensher, 2010, for
a comprehensive overview), however, we choose to focus on the processing of alternatives since it is arguably the
most convenient heuristic for respondents to adapt in order to eliminate or reduce cognitive burden. Specifically,
rather than rely on the assumption that respondents considered all alternatives, we acknowledge that they may
have considered only a subset of alternatives.

Following Manski (1977), a probabilistic model can be formulated to model this type of behavior to help
distinguish between the deterministic choice set, as generated by the experimental design, and the respondent’s
actual consideration set. For this type of analysis we extend the independent availability logit (cf. Swait and
Ben-Akiva, 1987; Swait, 2001; Frejinger, Bierlaire, and Ben-Akiva, 2009; Kaplan, Shiftan, and Bekhor, 2012;
Richardson, 1982; Ben-Akiva and Boccara, 1995; Chang, Lusk, and Norwood, 2009, for examples). The probability
of choice in the independent availability logit model is given by:

Pr (yn) =

C∑
c=1

πcn

Tn∏
t=1

Pr (yn|S c) , (5a)

where Pr (yn|S c) is the conditional probability of the sequence of choices given the choice set is S c ⊆ C, C is the
set of subsets, πc is the probability that S c is the ‘true’ choice set. Since a respondent’s true consideration set
cannot be known with certainty, this model assumes that choice sets are latent, and the conditional choice model is
MNL:

Pr (yn|S c) =
exp (λ (βxnit + ηi))∑

j∈S c

exp
(
λ
(
βxn jt + η j

)) . (5b)
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We note that the size of C grows exponentially as a function of the number of alternatives (e.g., for a universal set
with J alternatives, 2J possible choice sets need to be taken into account (including the situation where none of the
alternatives were taken into account, as would be the case under random decision-making)). As noted above, the
alternatives taken into account by a respondent cannot be known with certainty. However, their observed choice
behavior helps make probabilistic statements about the likelihood (i.e., πcn ) of competing consideration sets being
their true choice set. Moreover, since respondents who answered very quickly are unlikely to have attended to all
alternatives when making their choice, response time is also likely to help identify the consideration sets. For this
reason, we again retrieve class membership probabilities conditional on the kth q-quantiles of response time:

πcn |k =
exp

(
ωck

)
C∑

c=1
exp

(
ωck

) . (5c)

2.4. Accounting for more than one type of heterogeneity

The above specifications provide a first step at looking towards the three types of heterogeneity as well as the
role that response time plays. However, each assumes that only one type of heterogeneity is at play. This may
be considered as a somewhat stringent assumption, since it is conceivable that the variations across respondents
are not confined to one type. Despite this, the majority of discrete choice analysis addresses only one aspect of
heterogeneity, and relatively few studies explore two concurrently. To the best of our knowledge, no article has
yet addressed preference heterogeneity, variance heterogeneity and choice set formation simultaneously.5 In this
article we attempt to tackle this. To do this we expand the previous latent class models, as follows:

Pr (yn) =

Z∑
z=1

πzn

Tn∏
t=1

exp
(
λz

(
βzxnit + ηzi

))∑
j∈S c

exp
(
λz

(
βzxn jt + ηz j

)) , (6a)

where each of the z classes now describes a particular structure of preferences, variances and processing strategy.
We are cognizant of issues of confounding between the different types of heterogeneity, which makes it difficult

to separately identify each type (Hess and Rose, 2012; Hess and Train, 2017). In this article we circumvent this by
setting Z = A× B×C, using equality constraints (cf. Scarpa et al., 2009, for further details) on the class parameters
and specifying the unconditional class probability for a specific combination as the product of the associated
preferences, scale parameter and processing strategy unconditional probabilities obtained for each k q-quantiles of
response time:6

πzn |k = πan |kπbn |kπcn |k. (6b)

As an example, with A = 2, B = 2 and C = 2, we would have Z = 8, and the parameters within each class
would be restricted as follows:

Z =



class z1 relates to the case βa1 , ηa1 , λb1 and S c1 ;
class z2 relates to the case βa1 , ηa1 , λb1 and S c2 ;
class z3 relates to the case βa1 , ηa1 , λb2 and S c1 ;
class z4 relates to the case βa1 , ηa1 , λb2 and S c2 ;
class z5 relates to the case βa2 , ηa2 , λb1 and S c1 ;
class z6 relates to the case βa2 , ηa2 , λb1 and S c2 ;
class z7 relates to the case βa2 , ηa2 , λb2 and S c1 ;
class z8 relates to the case βa2 , ηa2 , λb2 and S c2 .7

(7)

Note that the model outlined in Eq. 6 is a fully general model for examining heterogeneity. For instance, no
heterogeneity is accommodated, as in the MNL model when A, B and C are equal to 1; one type can be uncovered

5We recognize the work of Thiene, Scarpa and Louviere (2015), who also accounted for three types of heterogeneity. However, their study
explored attribute non-attendance rather than choice set formation. We also acknowledge the potential identification issues associated with
explaining the three types of heterogeneity simultaneously.

6While it is convenient to interpret any differences in the class-specific marginal utilities uncovered from a standard latent class model as
preference heterogeneity, some of the differences may be induced by random scale. Similarly, when interpreting the within class scale
heterogeneity uncovered from a scale adjusted latent class model, it is important to recognize that the estimated scale parameter incorporates
not just differences in variance but also other sources of within-class correlation that might exist. See Hess and Train (2017) for a thorough
discussion. However, the use of equality constraints means that we can distinguish between the different types of heterogeneity assumming all
else remains constant.
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in isolation when either A, B or C is greater than 1; two types can be retrieved when either A, B or C is equal to 1
and the remaining two are greater than 1; and, finally, the case where all three types of heterogeneity are tackled
simultaneously is when A, B and C are all greater than 1. Therefore, for this example, given the correct equality
constraints across specific classes it is possible to come up with eight model forms, depending on the assumptions
of heterogeneity in respondent’s preferences, or tastes, variances and processing strategies.

2.5. Model estimation and multimodel inference

All models are coded and estimated using the maxlik library in R (see Henningsen and Toome (2011) and R
Core Team (2014) for further details) using maximum likelihood estimation. Since our models retrieve class
probabilities, we are mindful of their vulnerability to local maxima of the simulated sample-likelihood function.
Thus, in an attempt to reduce the possibility of reaching a local rather than a global maximum, we started the
estimation iterations from a variety of random starting points. Specifically, we achieved this by estimating these
models many times, but each time using a different vector of starting values, which are chosen randomly.

An important consideration relates to the number of classes to accommodate for preferences (i.e., A), variance
(i.e., B) and processing strategies (i.e., C) as well as the number of q separate class membership probabilities
to retrieve. Of course, this remains an empirical decision and should be considered on a case-by-case basis,
requiring discretion and objective judgment on behalf of the analyst. Choosing a model with too few classes and/or
q-quantiles of response time may involve making unrealistically simple assumptions and lead to considerable
bias, poor prediction, and missed opportunities for insight. The concern is that such models may not be flexible
enough to describe the sample or the population well. Yet, any increase in the number of classes and/or q-quantiles
leads to a proliferation of parameters and, therefore, loss of parsimony. While this will better ensure the observed
data is fitted well, it comes at the risk of being tailored too closely to the data, which compromises the ability to
generalize the model beyond the existing dataset.

For our analysis we consider models that include up to three latent classes for preferences (i.e., 1 ≤ A ≤ 3)
and scale (i.e., 1 ≤ B ≤ 3). For processing heterogeneity we consider models that accommodate up to two
consideration sets (i.e., 1 ≤ C ≤ 2), including: (i) all alternatives are considered; and, (ii) only non-status-
quo options are considered.8 Therefore, our models accommodate up to 18 latent classes of respondents (i.e.,
Z = A × B ×C = 3 × 3 × 2 = 18), which we found to be sufficient whilst ensuring model tractability. Finally, we
estimate these latent class membership probabilities for up to five equal-sized data subsets sorted by response time
(i.e., 1 ≤ q ≤ 5). Ultimately, we consider all 90 candidate models (i.e., 18 × 5) to accommodate different numbers
of preference classes, error variance classes, processing strategies and response time quantiles.

With the estimation of such a large number of candidate models, model selection uncertainty becomes a
concern. Each model is likely to produce information that is not captured by the best model. Given this uncertainty,
and the fact that each of our different models provide different relative statistical fits, it does not seem sensible
to ultimately select only one model. Indeed, as demonstrated in Layton and Lee (2006) in a stated preference
study, basing inference only on the model estimated to be the best could be considered as poor practice. In this
regard, penalized-likelihood information criteria, such as the Akaike information criterion (AIC) or the Bayesian
information criterion (BIC), may serve as a useful guide for model selection. In this paper, we consider the
adjusted sample size corrected BIC (BIC∗), which we estimate for each respondent:

BIC∗n = −2LL
(
β̂
)

n
+ (ln (Tn + 2) − ln (24)) K (8)

where LL
(
β̂
)

n
is respondent n’s contribution to the log-likelihood of the estimated model, K is the number of

estimated parameters and Tn is the number of choice observations completed by respondent n. Note that the
sample-size correction serves to reduce the sample size penalty, which should lead to better performance in our
case since the number of parameters is large relative to the number of choice observations per respondent. For
further background on this information criterion see Yang and Yang (2007).

When considering our range of models, many of which may fit equally well, it is arguably more appropriate to
derive weights of evidence for each model (which can be considered as analogous to the probability that a given
model is the best approximating model, given the data and set of candidate models). This can be accomplished for
each respondent by calculating the difference (∆mn ) between the information criterion value of the best model and

8Other consideration sets were tested, but were not found to be relevant for our empirical case-study. We are also mindful that accommodating
all 2J possible choice sets would include the situation where none of the alternatives are taken into account, which would make it impossible
to distinguish between the variance and processing heterogeneity classes. For this reason, a normalisation factor is commonly included in the
class membership function of an independent availability logit model to account for this (see Swait, 2001, for details). Similarly, in our paper,
we do not include the situation where all alternatives are ignored, which avoids this confounding.
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the information criterion value for model m:

∆mn = BIC∗mn
− BIC∗minn

, (9)

where m = 1, 2, . . . ,m, with M being the number of models (i.e., M = 90 in our case), and BIC∗minn
is the smallest

value of BIC∗n in the model set, M. The term ∆mn is a calibration of model fit, using the best fitting model as the
standard. The best fitting model has ∆mn = 0, and all other models have ∆mn > 0. Importantly, ∆mn can be used to
calculate two additional measures to assess the relative strengths of each candidate model. The first of these is the
evidence ratio, ERmn :

ERmn =
exp

(
−0.5∆minn

)
exp

(
−0.5∆mn

) . (10)

This provides a measure of how much more likely the best model is compared to model m. The best fitting model
has ERmn = 1, and all other models have ERmn > 1. As ERmn increases, the less confidence we have that the mth

model for respondent n is the best approximating model for this respondent.
The second more useful and wider use of ∆mn is the weight of evidence, WEmn , which is a probability scaling

of ∆mn :

WEmn =
exp

(
−0.5∆mn

)
M∑

m=1
exp

(
−0.5∆mn

) , (11)

where the sum is over all models in the set. The scaling is convenient, as the weights range between 0 and 1 and
their sum across all models in the candidate set is equal to 1. These can, therefore, be considered as analogous to
the probability that a given model is the best approximating model, given the data and set of candidate models.
In this paper we use these weights as the basis of frequentist-based (as opposed to Bayesian) model averaging.
Specifically, we use them to derive an expected marginal WTP estimate for each respondent, E

(
¯WTPn

)
:

E
(

¯WTPn

)
=

M∑
m=1

WEmn
¯WTPmn , (12a)

where ¯WTPmn is the mean of the conditional (individual-specific) marginal WTP distribution for respondent n
retrieved from model m. Similarly, we use these weights to derive an expected probabilistic estimate for a range of
latent class membership probabilities, E

(
π̄zn

)
:

E
(
π̄zn

)
=

M∑
m=1

WEmn π̄mzn
, (12b)

where π̄mzn
is the mean of respondent n’s conditional class membership distribution for latent class z attained from

model m.
The motivation behind this multimodel inference is that it allows judgments to be made regarding the relative

suitability of each of our models. Consequently, by regarding various models used in the analysis, we are in a
better position to identify appropriate assumptions for accommodating heterogeneity in preferences, variance
and processing strategies as well as response time conditional on the data, the set of considered models, and
the inability to know the true model. For further details on multimodel inference see, for example, Buckland,
Burnham, and Augustin (1997), Layton and Lee (2006) and Symonds and Moussalli (2011).

3. Case-study: willingness to pay for attributes of honey

Data for the present study were gathered using an online stated choice experiment focusing on Danish consumers’
preferences and WTP for honey. The method was found to be particularly suitable because of its ability to uncover
the relative weighting of the various characteristics of honey, which was confirmed during a series of focus group
discussions. The attributes of honey deemed to be of greatest relevance to Danish consumers were identified as
‘origin’, ‘method of production’ and ‘type of honey’. Furthermore, a cost attribute, with eight different levels, was
included to denote the price increase over standard honey. An overview of all attributes and levels are presented in
Table 1.

Using a D-efficiency criterion for evaluation, a Bayesian updated experimental design was employed using
priors from a pilot study with 104 respondents. The final main effects experimental design consisted of 12 choice
tasks, each of which comprised of two generic alternatives, labeled Option A and Option B respectively. A baseline
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Table 1. Attributes and levels used in the choice experiment

Attributes Levels

Origin

Local
Denmark
European
Outside Europe

Method of production Organically produced
Not organically produced

Type of honey Heather
Clover
Rape
Mixture

Price increase per 450 g jar (DKK) 0, 3, 8, 15, 23, 30, 40 and 55

alternative, labeled as the Status-quo, was also included in the choice tasks which was described as a 450 g jar of
conventional mix honey produced outside Europe and priced at DKK 25.

Respondents were sampled from a pre-recruited internet panel between June and August 2010. The sample on
which the analysis in this article is based consists of a total of 592 respondents, thus leading to 7,104 observations
for model estimation.

4. Results and discussion

We begin this section with summary results of response time. Following this, we present estimation results from
our 90 candidate models and our multimodel inference approach.

4.1. Response time

In Table 2, we report summary statistics of response time broken down by quantiles. We find quite a range in
response times. As noted by Bonsall and Lythgoe (2009), such a range can be expected since response time varies
between individuals, depending on their personal decision-making styles, and is likely to reflect circumstances,
such as the extent of any distraction, the time pressure they are under and their current mental and motivational
state. The mean response time associated with completing all 12 choice tasks is 5 minutes (i.e., almost an average
of 25 seconds per choice task). While around 80 percent of respondents completed the sequence of choice tasks
within 6 minutes, a few spent nearly 30 minutes (i.e., almost an average of 2.5 minutes per choice task). While this
could, of course, be interpreted as respondents spending a huge effort on answering the choice sets, we cannot rule
out that this is due to measurement error in terms of respondents not focusing only on the choice experiment during
that period. As response time is measured solely on a click-by-click basis, we have no way of telling whether
the respondents faced any distractions or were multitasking when they were completing the choice experiment.
At the other end of the spectrum almost 20 percent of respondents completed the 12 choice tasks in less than 3
minutes (which is equivalent to an average of 15 seconds per task). As we corroborate in Campbell, Mørkbak, and
Olsen (2016), it is clearly not trivial to determine exactly what the minimum required response time would be in
order for respondents to fully evaluate all of the information contained within the choice task. However, there is a
concern that the quickest responses may, at best, provide nothing but noise to our survey or, at worst, bias our
results in the case where they have not properly considered the information provided when making their choices.

While it may have been possible that respondents who answered relatively quickly processed all of the
information in the choice tasks and made a utility maximizing choice, it is also conceivable that they adopted
some form of decision-making heuristic, or even made completely random choices. Similarly for respondents
who required a relatively long time, their choices may reflect informed decision-making or be due to the fact
that they encountered a distraction or were multitasking. These findings motivate our search for flexible latent
class models capable of comparing the breakdown of respondents—in terms of their preferences, error variances
and processing strategies—across different response times. Ultimately, this should help us distinguish between
relatively well informed and reliable choices from those that are less so and, importantly, how the likelihood of
these differ according to response time.
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Table 2. Response time quantiles (in minutes)

N Minimum Maximum Mean

Total 592 1.38 28.40 5.00

q = 2
1st 295 1.38 4.22 3.20
2nd 297 4.23 28.40 6.78

q = 3
1st 196 1.38 3.57 2.85
2nd 198 3.58 5.07 4.27
3rd 198 5.08 28.40 7.85

q = 4
1st 148 1.38 3.27 2.66
2nd 147 3.28 4.22 3.75
3rd 148 4.23 5.53 4.85
4th 149 5.55 28.40 8.70

q = 5
1st 119 1.38 3.08 2.53
2nd 113 3.10 3.85 3.45
3rd 122 3.87 4.68 4.24
4th 119 4.72 6.02 5.27
5th 119 6.03 28.40 9.43

4.2. Estimation results

As a point of reference, in Table 3 we present the MNL model (i.e., where A = B = C = 1) along with more
recognizable heterogeneity models (i.e., where one type of heterogeneity is explored in isolation). From the
MNL model we see, as expected, that the cost coefficient is negative and significant, indicating that, all else
held constant, respondents are more likely to choose a cheaper honey product compared to one that is more
expensive. The marginal utility parameters for the three origin levels are positive and significant, implying that this
sample of Danish consumers, on average, prefer honey that originates in Denmark (both locally and nationally)
or elsewhere in Europe compared to honey produced outside of Europe. Similarly, the marginal utilities for
honey produced organically and from heather are found to be positive and significant. The status-quo alternative
specific constant—whose coefficient can be interpreted as the marginal (dis-)utilities relative to the experimentally
designed alternatives in the choice task—is negative and significant revealing that, on average, this sample of
consumers dislike the baseline honey product.

Moving to the results obtained for Models 2 and 3, which are familiar latent class models where the latent
segments are characterized only in terms of preference differences (i.e., where A > 1 and B = C = 1), we draw
attention to the huge improvements in model fit. However, we do acknowledge that this improvement is partly
due to the fact that the panel nature of the data is being accounted for, making it difficult to truly corroborate
this. In both models, we see that the signs and significance of the marginal utility parameters in the modal class
are relatively similar to those retrieved under the MNL model. In the two preference class model (i.e., where
A = 2) we highlight the differences in sign of the local and heather marginal utilities in the second latent class.
For the three preference class model (i.e., where A = 3) we observe that the region of origin is of relatively lesser
importance to the second latent class compared to the third latent class. In Models 4 and 7 the latent classes
are differentiated only on the basis of the scale (i.e., where B > 1 and A = C = 1). Importantly, both models
reveal a share of respondents (in the region of 25–30 percent) with relative scale parameters indistinguishable
from zero, which essentially implies random decision-making. Accounting for this leads to improvements in
model fit. The final model in Table 3 is an independent availability logit (i.e., where C > 1 and A = B = 1) that
shows that perhaps over one-quarter of respondents excluded the status-quo alternative from their consideration
set. Comparing across all models that address one type of heterogeneity, we can see that, other things being
held constant, higher improvements are attained when preference heterogeneity is accommodated, followed by
processing heterogeneity.

Model fit summary results for the 90 candidate models are presented in Table 4. This includes models that
accommodate up to three latent classes for preferences and scale as well as specifications that allow for not only
the deterministic choice set but also the consideration set that includes only the non-status-quo alternatives. Each
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Table 3. Estimation results for benchmark heterogeneity models (whole sample)

Model 1 Model 2 Model 3 Model 4 Model 7 Model 10

A 1 2 3 1 1 1
B 1 1 1 2 3 1
C 1 1 1 1 1 2
LL

(
β̂
)

-6,483.35 -5,205.68 -4,857.80 -6,163.53 -6,150.34 -6,110.42
BIC∗ 13,017.91 10,519.48 9,880.63 12,389.66 12,374.65 12,277.75

Preference class 1
Price -0.05∗∗ (0.00) -0.06∗∗ (0.00) -0.08∗∗ (0.00) -0.07∗∗ (0.00) -0.22∗∗ (0.06) -0.06∗∗ (0.00)
Origin: Local 1.08∗∗ (0.06) 2.24∗∗ (0.11) 1.63∗∗ (0.14) 1.97∗∗ (0.13) 5.74∗∗ (1.73) 1.28∗∗ (0.08)
Origin: Denmark 1.39∗∗ (0.06) 2.53∗∗ (0.12) 1.90∗∗ (0.13) 2.45∗∗ (0.14) 7.30∗∗ (2.20) 1.62∗∗ (0.08)
Origin: European 0.58∗∗ (0.05) 0.75∗∗ (0.09) 0.90∗∗ (0.10) 0.92∗∗ (0.07) 2.69∗∗ (0.93) 0.63∗∗ (0.06)
Organic 0.49∗∗ (0.04) 0.58∗∗ (0.07) 0.79∗∗ (0.08) 0.54∗∗ (0.06) 1.42∗∗ (0.34) 0.47∗∗ (0.04)
Type: Heather 0.24∗∗ (0.05) 0.14∗ (0.08) -0.01 (0.11) 0.38∗∗ (0.07) 1.05∗∗ (0.39) 0.26∗∗ (0.05)
Type: Clover -0.22∗∗ (0.05) -0.05 (0.06) -0.22∗∗ (0.08) -0.13∗ (0.06) -0.55∗∗ (0.27) -0.19∗∗ (0.04)
Type: Rape -0.09∗∗ (0.05) -0.30∗∗ (0.06) -0.34∗∗ (0.08) -0.16∗∗ (0.05) -0.56∗∗ (0.19) -0.12∗∗ (0.04)
SQ ASC -0.52∗∗ (0.07) -1.63∗∗ (0.10) -1.74∗∗ (0.13) -1.38∗∗ (0.10) -4.38∗∗ (0.98) -0.10 (0.08)

Preference class 2
Price -0.16∗∗ (0.01) -0.16∗∗ (0.02)
Origin: Local -0.15 (0.27) -0.71∗ (0.43)
Origin: Denmark 0.78∗∗ (0.23) 0.22 (0.39)
Origin: European 0.12 (0.12) -0.13 (0.18)
Organic 0.40∗∗ (0.11) 0.26∗ (0.15)
Type: Heather -0.12 (0.12) -0.04 (0.18)
Type: Clover -0.51∗∗ (0.12) -0.58∗∗ (0.15)
Type: Rape -0.19∗ (0.12) -0.26 (0.17)
SQ ASC -1.01∗∗ (0.15) -0.97∗∗ (0.21)

Preference class 3
Price -0.04∗∗ (0.01)
Origin: Local 3.52∗∗ (0.45)
Origin: Denmark 3.64∗∗ (0.52)
Origin: European 0.46∗ (0.22)
Organic 0.42∗ (0.20)
Type: Heather 0.20 (0.21)
Type: Clover 0.37 (0.27)
Type: Rape -0.33 (0.23)
SQ ASC -2.00∗∗ (0.37)

Scale parameters
λ2 0.00 (0.07) 0.31∗∗ (0.08)
λ3 0.00 (0.00)

Unconditional preference class probabilities
Pr (β = β1) 0.61∗∗ (0.03) 0.52∗∗ (0.03)
Pr (β = β2) 0.39∗∗ (0.03) 0.30∗∗ (0.03)
Pr (β = β3) 0.18∗∗ (0.02)

Unconditional variance class probabilities
Pr (λ = 1) 0.73∗∗ (0.02) 0.08∗∗ (0.02)
Pr (λ = λ2) 0.27∗∗ (0.02) 0.67∗∗ (0.03)
Pr (λ = λ3) 0.25∗∗ (0.02)

Unconditional processing class probabilities
Pr (S c = A,B,SQ) 0.74∗∗ (0.02)
Pr (S c = A,B) 0.26∗∗ (0.02)
Notes: All estimated standard errors (in parentheses) are robust and clustered at the respondent level. ∗ and ∗∗ indicate statistical significance at the 5 and 1 percent
level respectively using the p-value of a one-sided test. The associated p-values for the estimated scale parameters test: H0 : λ̂b = 1. The estimated parameter
and its standard error for λ3 in Model 7 are both positive but are less than 1 × 10−2.
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Table 4. Model fit summary results

Model A B C q = 1 q = 2 q = 3 q = 4 q = 5

1 1 1 1
LL

(
β̂
)

-6,483.35 -6,483.35 -6,483.35 -6,483.35 -6,483.35
BIC∗ 13,017.91 13,017.91 13,017.91 13,017.91 13,017.91

2 2 1 1
LL

(
β̂
)

-5,205.67 -5,204.91 -5,204.15 -5,204.20 -5,203.37
BIC∗ 10,519.46 10,523.63 10,527.80 10,533.59 10,537.63

3 3 1 1
LL

(
β̂
)

-4,857.80 -4,847.75 -4,839.54 -4,836.26 -4,836.43
BIC∗ 9,880.63 9,871.91 9,866.87 9,871.69 9,883.42

4 1 2 1
LL

(
β̂
)

-6,163.53 -6,158.89 -6,158.83 -6,155.46 -6,155.63
BIC∗ 12,389.66 12,386.07 12,391.64 12,390.60 12,396.62

5 2 2 1
LL

(
β̂
)

-5,166.19 -5,165.42 -5,166.09 -5,163.83 -5,166.10
BIC∗ 10,451.89 10,461.72 10,474.45 10,481.30 10,497.23

6 3 2 1
LL

(
β̂
)

-4,820.68 -4,802.95 -4,789.88 -4,788.10 -4,788.70
BIC∗ 9,817.77 9,799.38 9,790.31 9,803.83 9,822.11

7 1 3 1
LL

(
β̂
)

-6,150.34 -6,145.24 -6,144.51 -6,140.73 -6,139.87
BIC∗ 12,374.65 12,375.85 12,385.77 12,389.58 12,399.24

8 2 3 1
LL

(
β̂
)

-5,166.19 -5,165.19 -5,166.04 -5,163.77 -5,162.28
BIC∗ 10,463.27 10,478.33 10,497.11 10,509.64 10,523.73

9 3 3 1
LL

(
β̂
)

-4,777.29 -4,775.02 -4,770.79 -4,766.18 -4,763.41
BIC∗ 9,742.37 9,760.60 9,774.90 9,788.43 9,805.66

10 1 1 2
LL

(
β̂
)

-6,110.42 -6,109.36 -6,107.31 -6,107.64 -6,106.66
BIC∗ 12,277.75 12,281.32 12,282.92 12,289.26 12,292.99

11 2 1 2
LL

(
β̂
)

-5,178.87 -5,177.70 -5,176.18 -5,174.84 -5,174.41
BIC∗ 10,471.55 10,480.59 10,488.93 10,497.63 10,508.15

12 3 1 2
LL

(
β̂
)

-4,825.23 -4,816.37 -4,806.42 -4,799.76 -4,798.76
BIC∗ 9,821.18 9,820.52 9,817.69 9,821.46 9,836.52

13 1 2 2
LL

(
β̂
)

-5,950.07 -5,930.23 -5,924.35 -5,917.21 -5,916.87
BIC∗ 11,968.42 11,940.14 11,939.74 11,936.84 11,947.55

14 2 2 2
LL

(
β̂
)

-5,138.34 -5,138.29 -5,138.18 -5,138.12 -5,138.16
BIC∗ 10,401.86 10,418.84 10,435.69 10,452.65 10,469.80

15 3 2 2
LL

(
β̂
)

-4,786.31 -4,767.98 -4,758.97 -4,756.24 -4,770.46
BIC∗ 9,754.72 9,740.83 9,745.57 9,762.86 9,814.06

16 1 3 2
LL

(
β̂
)

-5,949.33 -5,927.11 -5,920.19 -5,916.18 -5,909.53
BIC∗ 11,978.33 11,950.96 11,954.20 11,963.25 11,967.01

17 2 3 2
LL

(
β̂
)

-5,137.23 -5,136.12 -5,133.57 -5,131.29 -5,133.85
BIC∗ 10,411.04 10,431.59 10,449.25 10,467.44 10,495.32

18 3 3 2
LL

(
β̂
)

-4,748.73 -4,720.09 -4,715.97 -4,711.11 -4,720.46
BIC∗ 9,690.94 9,662.12 9,682.32 9,701.06 9,748.21

of the 18 combinations of preference, scale and processing class structures are evaluated for cases where separate
latent class membership probabilities are attained for up to five equal-sized data subsets sorted by response time,
leading to M = 18 × 5 = 90 candidate models.

The column headed by q = 1 is the entire sample and, thus, does not retrieve separate latent class probabilities
on the basis of response time. We can see from this column that compared to the MNL model (the first model
listed), all other models, which account for at least one type of heterogeneity, offer an improvement in model
fit. As expected, we also find that higher log-likelihoods are obtained under more flexible specifications, which
accommodate more heterogeneity. This is also supported by the BIC∗ values, which account for the increase in
estimated parameters.

When different class membership probabilities are permitted for respondents who are below and above the
median response time we witness improvements in model fit. This is an important finding since it supports our
conjecture that preference structures, scale and/or processing strategies may be different among ‘fast’ and ‘slow’
respondents, thus motivating this line of inquiry. For instance, we find an increase of over 10 log-likelihood
units for model 3, implying, all else held constant, that the quickest and slowest respondents most likely have
different preferences. A difference in log-likelihood is also found for model 7, which, again, suggests that different
proportions of respondents below and above the median response time are associated with the latent classes used to
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explain differences in scale. Interestingly, there is only a modest increase in log-likelihood for model 10, indicating
that the processing strategies adopted by the relatively fast respondents are unlikely to differ from those used by
the respondents who took relatively more time.

While further improvements in model fit are achieved when the respondents are grouped into tertiles, quartiles
and quintiles, we remark that the magnitude of the improvements diminish. Moreover, on the basis of the BIC∗

values, which penalizes for the proliferation of parameters needed to obtain separate class probabilities for each
kth q-quantile, there is generally little support to move beyond segmenting into tertiles. Notwithstanding this,
all models considered, the model associated with the highest log-likelihood value is model 18 on the basis that
respondents are separated into quartiles, whereas the model with the lowest BIC∗ value is the equivalent model
where respondents are split by the median response time.

Table 5 presents a more detailed overview of the estimation results. To begin with, the mean of the model
weights for the k q-quantiles (i.e.,

∑Nk
nk
E

(
π̄znk

)
/Nk) are given. These can be interpreted as the average probability

that each model is the best approximating model (given the data, the set of models, and the unknowable true model)
for respondents within each quantile. The larger the value, the more confidence we have that the model is the best
approximating model. From the table, the confidence set of models (i.e., the subset that represent the majority of
evidence) comprises of models 9, 12, 15 and 18. Interestingly, these models all allow for three latent segments
of preferences, which implies that we can be fairly confident that a model accommodating for this is the best
approximating model. Irrespective of response time quantile, model 12, which concurrently permits three classes
of preferences and two consideration sets, is generally found to have the highest average weight of evidence. This
bolsters the status of model 12 in terms of its candidacy as the best approximating model. Therefore, there is
a relatively high confidence that if a different sample was drawn from the population, model 12 will, again, be
judged, on average, as the best fitting. We also draw attention to the fact that the average weight of evidence for
model 12 appears to be higher among faster respondents.

Table 5 also compares the mean of the expected marginal WTP estimate for each respondent (Eq. 12a) against
response time quantile. This reveals that this sample of respondents are, on average, willing to pay extra for honey
that originates in Denmark (both locally and nationally) or elsewhere in Europe as well as for honey organically
produced. Of the different types of honey, on average they are willing to pay most for honey produced from heather
and mixed vegetation. Importantly, in the context of this paper, an investigation of the marginal WTP estimates
reveals that they are notably different by quantile. On average, respondents who took a longer time to complete
the choice experiment had lower marginal WTP estimates for local and Danish honey (relative to non-European
honey) and also for honey originating from heather and clover vegetation (relative to mixed vegetation). In fact, if
we compare the fastest and slowest quintiles, the average marginal WTP estimates for a jar of Danish honey drops
from over DKK 30 to below DKK 20. In contrast, the marginal WTP for honey produced elsewhere in Europe
(with respect to non-European honey) for the slowest quintile is over 30 percent higher than the respective value
for the fastest quintile. Marginal WTP for organically produced honey does not appear to relate to response time.

To further assess marginal WTP, in Fig. 1 we plot their distributions by response time quintile. Note that the
distributions are not conditional on a single model but on the whole model set. For each respondent, the mean of
the conditional distribution is retrieved from every model and then weighted using its weight of evidence for that
respondent. These more clearly illustrate the differences in the average marginal WTP estimates discussed above.
However, in addition, they highlight that there is a higher degree of heterogeneity among quicker respondents
compared to slower respondents. Whereas there is considerable variability in the values estimated for respondents
in the first and second quintiles, the distributions for the fourth and fifth quintiles generally exhibit a more
pronounced peak and, therefore, less variability.

This article employed a probabilistic approach for identifying heterogeneity in scales. To facilitate interpreta-
tion, in Table 5 we report the mean of the expected class memberships (Eq. 12b) for classes where λ < 1, λ = 1 and
λ > 1 against response time quantile. While we recognize the difficultly involved with comparing (and, therefore,
weighting) the scale parameters across the 18 candidate models, this does not prevent us from drawing some
conclusions regarding how the average scale differs depending on the length of time respondents take to answer the
choice experiment. Opposite to what might be expected, we find that the average share of respondents belonging
in classes where the scale parameter is estimated to be above 1 decreases with response time. Recall that the scale
parameter is inversely proportional to the variance of the error term, meaning that, on average, the level of noise
actually increases with response time. While this alleviates our concern that the relatively quick responses provide
nothing but noise, it does seem somewhat counterintuitive—respondents who spent more time deliberating and
processing the information did not, on average, eventually make more consistent choices. One explanation for this
could be that the long response times may be an artifact of respondents not focusing solely on the task at hand,
perhaps because they faced distractions or were multitasking. If so, it is plausible that their choices are associated
with a higher degree of variability.
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Table 5. Main model results compared against response latency quantiles

q = 1 q = 2 q = 3 q = 4 q = 5
Total 1st 2nd Total 1st 2nd 3rd Total 1st 2nd 3rd 4th Total 1st 2nd 3rd 4th 5th Total

Mean of model weights
Model 1 0.03 0.04 0.03 0.04 0.03 0.03 0.04 0.03 0.02 0.05 0.02 0.04 0.03 0.03 0.03 0.04 0.04 0.03 0.03
Model 2 0.05 0.05 0.05 0.05 0.06 0.06 0.04 0.05 0.04 0.07 0.05 0.04 0.05 0.07 0.04 0.05 0.04 0.05 0.05
Model 3 0.06 0.07 0.05 0.06 0.07 0.06 0.07 0.06 0.07 0.07 0.07 0.05 0.06 0.07 0.05 0.04 0.07 0.06 0.06
Model 4 0.03 0.03 0.05 0.04 0.04 0.03 0.05 0.04 0.02 0.04 0.03 0.05 0.04 0.02 0.05 0.03 0.05 0.04 0.04
Model 5 0.05 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.07 0.04 0.06 0.04 0.05 0.03 0.05 0.07 0.04 0.05 0.05
Model 6 0.06 0.05 0.06 0.06 0.06 0.06 0.07 0.06 0.07 0.04 0.06 0.07 0.06 0.07 0.06 0.06 0.07 0.07 0.07
Model 7 0.05 0.05 0.04 0.04 0.03 0.04 0.04 0.04 0.04 0.05 0.03 0.05 0.04 0.01 0.03 0.04 0.04 0.04 0.03
Model 8 0.05 0.06 0.06 0.06 0.07 0.04 0.05 0.06 0.05 0.05 0.06 0.06 0.05 0.07 0.07 0.05 0.06 0.06 0.06
Model 9 0.07 0.08 0.06 0.07 0.10 0.08 0.04 0.07 0.10 0.05 0.07 0.08 0.08 0.10 0.08 0.06 0.06 0.04 0.07
Model 10 0.05 0.04 0.05 0.04 0.02 0.05 0.06 0.04 0.03 0.05 0.04 0.06 0.05 0.03 0.05 0.05 0.04 0.06 0.05
Model 11 0.06 0.07 0.06 0.06 0.06 0.09 0.05 0.07 0.06 0.08 0.06 0.05 0.06 0.06 0.07 0.10 0.05 0.05 0.06
Model 12 0.08 0.07 0.08 0.08 0.10 0.06 0.06 0.07 0.09 0.07 0.07 0.07 0.08 0.09 0.08 0.06 0.09 0.07 0.08
Model 13 0.05 0.04 0.06 0.05 0.04 0.05 0.06 0.05 0.02 0.05 0.07 0.05 0.05 0.04 0.06 0.04 0.07 0.07 0.05
Model 14 0.06 0.06 0.06 0.06 0.05 0.06 0.05 0.06 0.05 0.06 0.07 0.06 0.06 0.04 0.05 0.06 0.08 0.05 0.06
Model 15 0.07 0.07 0.08 0.08 0.07 0.05 0.08 0.07 0.08 0.05 0.07 0.06 0.07 0.08 0.05 0.07 0.09 0.08 0.07
Model 16 0.05 0.04 0.06 0.05 0.03 0.06 0.07 0.05 0.03 0.05 0.05 0.05 0.04 0.03 0.05 0.05 0.04 0.08 0.05
Model 17 0.05 0.07 0.05 0.06 0.05 0.05 0.06 0.05 0.06 0.06 0.06 0.05 0.06 0.05 0.10 0.04 0.04 0.06 0.06
Model 18 0.08 0.08 0.05 0.07 0.09 0.06 0.06 0.07 0.10 0.06 0.05 0.05 0.07 0.12 0.06 0.08 0.05 0.05 0.07

Mean of weighted conditional means of marginal WTP estimates (DKK per jar)
Origin: Local 24.05 25.10 20.67 22.90 27.24 21.43 21.00 23.25 26.82 24.05 22.23 20.32 23.37 27.20 26.61 21.18 22.92 18.83 23.37
Origin: Denmark 28.52 29.25 25.21 27.24 31.35 26.03 25.63 27.70 30.87 28.57 26.72 24.92 27.78 31.01 30.74 25.79 27.35 23.54 27.71
Origin: European 7.88 7.51 8.12 7.82 6.67 7.79 8.03 7.49 6.34 8.02 7.93 7.86 7.54 6.04 7.94 7.96 8.03 7.90 7.57
Organic 7.40 7.82 7.51 7.67 7.71 7.46 7.51 7.56 7.32 7.83 7.59 7.27 7.50 7.73 8.32 7.49 7.80 7.24 7.72
Type: Heather 1.50 1.42 1.15 1.29 1.39 1.34 1.33 1.35 1.39 1.57 1.32 1.32 1.40 1.55 1.65 1.28 1.45 1.07 1.40
Type: Clover -1.61 -1.77 -2.39 -2.08 -1.33 -2.20 -2.34 -1.95 -1.18 -1.96 -2.10 -2.29 -1.88 -1.07 -1.58 -2.24 -2.01 -2.48 -1.87
Type: Rape -3.81 -4.09 -3.63 -3.86 -4.52 -3.69 -3.60 -3.94 -4.42 -3.86 -3.74 -3.44 -3.86 -4.71 -4.31 -3.68 -3.93 -3.50 -4.03

Mean of weighted conditional means of λ class memberships
Pr (λ < 1) 0.13 0.18 0.17 0.17 0.15 0.20 0.17 0.17 0.18 0.16 0.20 0.24 0.19 0.19 0.24 0.19 0.23 0.28 0.23
Pr (λ = 1) 0.75 0.71 0.73 0.72 0.74 0.70 0.74 0.73 0.74 0.77 0.70 0.69 0.73 0.71 0.71 0.76 0.69 0.68 0.71
Pr (λ > 1) 0.12 0.12 0.10 0.11 0.11 0.10 0.09 0.10 0.08 0.08 0.10 0.07 0.08 0.10 0.04 0.05 0.08 0.04 0.06

Mean of weighted conditional means of processing strategy class memberships
Pr (S c = A,B,SQ) 0.93 0.94 0.91 0.93 0.93 0.92 0.93 0.93 0.92 0.95 0.92 0.92 0.93 0.94 0.92 0.94 0.94 0.92 0.93
Pr (S c = A,B) 0.07 0.06 0.09 0.07 0.07 0.08 0.07 0.07 0.08 0.05 0.08 0.08 0.07 0.06 0.08 0.06 0.06 0.08 0.07
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Figure 1. Distributions of the weighted conditional means (over all models) of estimated marginal WTP (DKK per jar) by response time quintile
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The final set of results listed in Table 5 refers to the mean weighted average class memberships for the
two processing strategies considered in our models. Reassuringly, we find strong evidence that the majority of
respondents comply with the standard assumption of considering all alternatives within the deterministic choice set.
Of especial relevance in this article is the noticeable link between the processing strategies adopted and response
time. For instance, while, on average, only 6 percent of respondents in the first quintile excluded the status-quo
alternative from their consideration set, the respective figure for the fifth quintile is 8 percent. Again, the direction
of change is not as anticipated—even though an elimination-by-aspects decision-making mechanism is adopted
(which simplifies the choice) response time is not reduced on average. Nevertheless, it does explain some of the
increase in choice variability and further supports the concern that respondents who required a longer time faced
distractions and did not treat the exercise as serious as others.

5. Conclusions

While the relationship between the length of time that respondents take to answer stated preference questions and
the reliability of their choices might seem obvious, in a previous paper (Campbell, Mørkbak, and Olsen, 2016) we
show that the relationship between response time and data quality is ambiguous. In this follow up paper based on a
new dataset, we contribute further evidence to underpin the need to appreciate the differences inherent in ‘fast’ and
‘slow’ choices. Here we propose a novel approach to assess the effects of response time on the estimates of utility
coefficients, scale and processing strategies. While it is relatively straightforward to establish each of these in turn,
this article sets out to address them simultaneously, which, as discussed in Hess and Train (2017), is considerably
more challenging. Our motivation stems from a concern that accommodating only one type of heterogeneity may
provide an incomplete picture and may even be distorted by the other (unmodeled) types. Our analysis is based
on the latent class modeling framework and is aimed at separately identifying the heterogeneity in preferences,
scale and the processing strategies across respondents. We estimate separate class membership probabilities for
different subsets of respondents, classified on the basis of how long they required to complete the survey. Our
analysis considers 90 candidate model specifications and uses multimodel inference to form weights of evidence.
Specifically, we use these weights to rank models in this candidate set, and to derive weighted average results
so that they are not conditional on a single model but on the entire model set. We test our approach through an
empirical dataset collected via an online survey to establish the value that Danes are willing to pay for various
attributes associated with honey.

Our article raises a number of methodological issues. Importantly, in accordance with earlier studies (e.g.,
Haaijer, Kamakura, and Wedel, 2000; Rose and Black, 2006; Otter, Allenby, and van Zandt, 2008; Vista, Rosen-
berger, and Collins, 2009; Haaijer, Kamakura, and Wedel, 2000) and our preceding study (Campbell, Mørkbak,
and Olsen, 2016), we show that response time is an important consideration when modeling discrete choice data.
We find that while marginal WTP estimates for some attributes are higher among respondents with long response
times, for other attributes it is the reverse. Opposite to what might be expected, we find that measurement error is
highest among those who took the longest time to complete the choice experiment. Importantly, we also shed light
on the fact that the processing strategies adopted also differ by response time quantile. Furthermore, our model
inference analysis gives a strong signal that models that address different types of heterogeneity simultaneously
are leading candidates for the best approximating model (given the data, the set of models, and the unknowable
true model).

From data quality and, as we have seen, from welfare analysis standpoints, it may be tempting to ‘clean’
datasets from respondents below or above a certain response time as suggested by Bonsall and Lythgoe (2009).
However, unlike our earlier paper (Campbell, Mørkbak, and Olsen, 2016), we stress that the analytical framework
proposed in the present paper does not, and was not intended to, identify what these thresholds might be. Instead,
our analysis is intended to provide analysts with a modeling framework to assess the link between survey results
and response time. We have striven for a model that recognizes the highly equivocal link between response time
and data quality without the need to ‘clean’ out any of the data.

With respect to our findings, these are most likely not isolated to online surveys alone, meaning that there is
scope for further research in uncovering the role of response time in other modes—especially given the evidence
that response time also is likely to vary across modes (e.g., Börjesson and Algers, 2011). This would provide us
with additional criteria that we can evaluate when designing stated choice surveys. Even though our analysis is
based on a food application, the impact of response time and the modeling framework introduced should be of
interest to a broader audience—especially in settings where the choice is even more abstract or difficult than what
is the case in the present situation. Thus, we encourage ongoing research and applications within our proposed
modeling framework. Another string of future research lies in how the paradata is measured. In specific relation to
response time, as also suggested by Lindhjem and Navrud (2011b), the development of more stringent measures
could be beneficial—for instance, accounting for webpage load times as well as respondent multitasking would
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seem appropriate. With regard to the modeling framework presented here, there is also scope for further research
in terms of developing even more flexible models. Even though we have done far more than what is usually done
with respect to heterogeneity (where only one type is taken into account at a time), one could easily imagine an
extension of even more latent classes within all three different kinds of heterogeneity. In the current analysis,
we have limited the number of classes, due to computational and sample size issues, but we acknowledge that
our classes may not provide sufficient flexibility to fully accommodate the heterogeneity in preferences, error
variance and processing strategies. Moreover, the econometric model could be extended to accommodate other
decision heuristics such as attribute non-attendance or other simplifying heuristic decision rules not captured in our
specification. Thus, as with other research focusing on heterogeneity, the reader has to bear in mind that the results
regarding heterogeneity are still at risk of being confounded with other unmodeled types of heterogeneity. However,
there may be limits on how much heterogeneity can be accounted for due to potential increasing problems of
identification and convergence. Indeed, the ability to correctly identify more than one type of heterogeneity at the
same time is complicated by the fact that scale heterogeneity is not identified separately from other sources of
heterogeneity (e.g., see Hess and Train, 2017). The issue of utilizing choice task time rather than choice sequence
time could be a further interesting issue to examine, in terms of both measurement-wise as well as econometrically
(although one would have to deal with the risk of this being confounded with learning or fatigue effects, as
addressed in Campbell et al. (2015), and consider the potential implications it may pose for the maintenance of the
panel structure). Finally, while model comparison and averaging are routinely performed when analyzing stated
preference data within the Bayesian framework (e.g., Leon-Gonzalez and Scarpa, 2008; Balcombe, Chalak and
Fraser, 2009), with the notable exception of Layton and Lee (2006), the practice appears to be seldom considered
within the classical framework. Analysts engaged in estimating stated choice experiments using classical models
should benefit from using such an approach when comparing and ranking multiple competing models. Indeed, this
should become a recommended course of action in practice.

In conclusion, irrespective of response time, our article clearly demonstrates the need for researchers to
consider the variations among respondents. Despite the significant gains that have been made in this regard,
there is a need for models that are better equipped to accommodate this variation. We should recognize that
heterogeneity is not restricted to preferences, nor is it limited to either variances or processing strategies. The
factors influencing choice outcomes are complex, so it should not come as a surprise that accommodating as many
types of heterogeneity as possible will lead to better choice models.
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