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ABSTRACT 

Satelite images have been used as a complementary 
information for geological studies. In order to realise the maximum 
potential of satillite imagery, then improvements are needed, both 
in the visual presentation of such images, and in their automatic 
classification , in order to reveal the rock differences. Methods of 
processing imagery, were evaluated (band ratio, principal 
components, decorrelated stretch and maximum likelihood) and 
new (canonical regression, hue-saturation-intensity HSI transform, 
with modified manipulation, and watershed) were evaluated with 
respect to their ability to reveal rock differences. 

It was found that the HSI method gave the best results, both 
for visual presentation and automatic classifcation. This method has 
the ability to enhance both spectral and spatial information 
simultaneously without any data loss which is not the case in the 
other image enhancement methods (band ratio, principal 
components or decorrelation stretch). For automatic classification, 
the 'hue' images produced by the HSI transformation typically gave 
accurate (91%) classification of all the major rock types. Further, it 

was shown that the watershed method of classification was superior 
error rate= 9% to the maximum likelihood method (error rate 14%) 
for the same inputs. The new method of canonical regression was 
evaluated and although it was not very successful, the results were 
encouraging and it was concluded that this method may enable the 
estimation of the chemical composition of exposed rocks directly 
from satellite imagery. 

xx 
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1.1 Development of remote sensing 

The collection of information about an object using a device some 

distance away from it is the simple and broad means of remote sensing. 

The remote sensing devices can be grouped according to the type of sensed 

force field (e. g., static or dynamic) and their modes of operation (Ulaby and 

Goetz, 1987). Due to the small amplitude of variation in the static field (e. g., 

gravity, magnetic), the effective altitudinal ranges of sensors measuring 

such variation usually do not exceed a few hundred meters; therefore they 

are mounted on low flying aircraft. Sonic sensors, such as those used to 

measure the depth of the ocean floor, cannot propagate in a vacuum; 

therefore they cannot be used from a satellite or high-flying aircraft. These 

restrictions make the electromagnetic sensors the only ones used for 

monitoring the earth from orbital altitudes. Therefore, a definition of 

modem remote sensing is restricted to the use of reflected and emitted 

electromagnetic energy (Goetz et al., 1983). 

Electromagnetic sensors are grouped according to their wavelength 

range (see Chapter 3 for electromagnetic spectrum division) and their mode 

of operation. A passive sensor detects reflected sunlight or energy emitted 
from an object, whereas an active sensor supplies its own source of energy, 
directing it at an object and measuring the reflected energy. RADAR 

(RAdio Detection And Ranging) is an example of an active sensor, whereas 

the Thematic Mapper (TM) sensor, used in this study, is an example of the 

passive remote sensor. Since radar data was not used, the discussion will be 

confined to passive systems. 
Remote sensing has mainly developed from aerial photography. 

Balloons at an altitude of about 80 meters were used, more than a century 

ago, to acquire photographs of large areas for topographic (geographic) 
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mapping. In the succeeding years a number of developments were made in 

photographic technology and in methods of acquiring these photographs. 

The advent of airplanes, in the very early years of this century, made aerial 

photography a very useful tool by providing a more stable and adaptable 

platform (Estes, 1978). The use of remote sensing techniques, at that time, 

was mainly limited to the analysis and interpretation of standard black and 

white aerial photographs (Holz, 1985). Remote sensing from space initially 

started during the period between 1946 and 1950, when small cameras were 

carried by captured V-2 rockets to a very high altitude (100 to 320 km). Since 

then numerous flights involving photography have been made by rockets, 

ballistic missiles, satellites and manned spacecraft. This has opened another 

dimension, and concept for remote sensing, by giving the opportunity to 

observe the earth from a high altitude, with very large areas included in 

this observation. 

Earth observation by satellite-bome sensors initially started in 1%0 

(Ulaby and Goetz, 1987). The first space photograph of the earth's surface 

was transmitted by Explorer-6, followed by the Mercury program (1961) 

which provided a number of excellent photographs (70mm colour) from an 

automatic camera. Also during the 1960s a further development occurred, 

with the launch of the first meteorological satellite MROS-1) in 1960. 

The successful results provided by the early unmanned 

meteorological satellites (TIROS/NOAA series), and the experiments of the 

manned spacecraft missions of Mercury, Gemini and Apollo, provided 

regional views, not easily gained through field or aerial photographic 

observations. This was accompanied by revolutionary developments in 

electronics and computers, which made digital image processing a real 

possibility. 
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NASA, with the cooperation of the U. S. government, initiated a 

program of launching a series of Earth Resource Technology satellites 
(ERTS). This resulted in a series of six orbiting satellites, the first of which 

was launched July 25,1972 and renamed in 1975 Landsat-1. This series of 

satellites marked a new era in space applications that focused on the earth 

itself (Short, 1982). Landsat-1 represented the first unmanned satellite, 

specifically designed to collect data about the earth on a systematic, 

repetitive basis, with medium resolution and multispectral coverage. This 

satellite proved to be of great importance, as it gave remote sensing world 

wide recognition, through the "open skies" principle, without any political 

or copyright restriction. In addition, the cost was low compared to that of 

aerial photography for the same area. Since 1972, five Landsat satellites 
have been launched. The data used in this study were collected by the TM 

sensor on board the current Landsat-5 launched into orbit in March 1984. 

More discussion about this series of satellites and their on board sensors 

will be provided later in Chapter 4. 

Between 1981 and the present, many short term space experiments 

have been conducted with, the re-usable space shuttle and aircraft. These 

experiments have investigated the use of many different sensor systems 

such as the Shuttle Imaging Radar (SIR-A and SIR-B), imaging 

s -trometers such as Airborn Imaging Spectrometer (AIS), and solid state 

electronic scanners such as Modular Optoelectronic Multispectral Scanner 

(MOMS). MOMS, was the first push-broom scanner system to be tested 

from space and was flown on space shuttle missions in 1983 and 1984 

(Rothery and Francis, 1987). A similar scanner is also found in the French 

satellite, System Probatoire de l'Observation de la Terre (SPOT), launched 

into orbit in February 1986. 
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Digital image processing is concerned with the computer processing 

of images that are recorded in numerical form. Its general purpose is to 

enhance the visual appearance of the image, and extract some useful 
information from it, using mathematical equations in the form of 

computer programmes. The use of computers to process the image brings 

the advantage of computer flexibility and precision. 
The advent of urumanned satellites, particularly the Landsat series of 

satellites in 1972, which provided repeatable world wide coverage of the 

earth's surface in digital format, and the rapid rise of electronics and 

computers, are regarded as the most important factors in developing remote 

sensing, and digital image processing technology. This technology permits 

the processing, analysis and display of huge amounts of information, 

recorded in different bands, and processes them simultaneously and in a 

short period of time (Schwengredt, 1983; Gonzales and Wintz, 1987; Sabin, 

1987). 

1.2 Develoyment in Geological Remote SenaWS 

Geological use of remotely sensed data, in general, and in and areas 
in particular, as a complementary technique for different geological studies, 

started with the use of bladc and white aerial photographs; stereo air photos 

in particular have been used since the 1930s (Goetz, 1989a). This concept 

extended to the use of space photographs, such as those provided from hand 

held cameras on Gemini and Apollo spacecraft in 1961. Mission GT4 of the 

Mercury program in 1961, provided the first formal photographic 

experiment from space targeting geology. 

Although the spectral bands of the MSS sensor on board Landsat-1 

were designed primarily for agricultural studies, its data have 
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revolutionised the application of imagery to geological studies, by providing 

synoptic views of the earth's surface, in regions of the electromagnetic 

spectrum beyond, the aerial photographic film's sensitivity. The study and 
investigation of the early data of the Landsat series relied mainly on visual 
interpretation of their images. The rapid development of digital image 

processing enabled the use of computer and multispectral reflectance 

analysis, and much lithological and structural information was derived 

from the data collected by the Landsat series (e. g., Rowan et al., 1974,1977; 

Rothery and Milton, 1981; Adams et al., 1982; Podwysocid et al., 1983; Kruse 

and Rains, 1984; Rothery, 1985; Bodechtel and Frei, 1992). 

The possibility, offered by such systems, of providing spectral 
information beyond the visible part of the spectrum, required an 

understanding of the way that different objects (e. g, rocks and minerals) 

respond to, and interact in such spectral regions. Therefore extensive 

laboratory studies of reflectance spectra for different rocks and minerals, 

were carried out, mainly by Hunt and co-workers, starting in the early 1970s. 

Their studies and explanations were of value, and have been used since 

then, as a basis for discriminating between different minerals in the visible 

and infrared regions of the electromagnetic spectrum. 

The launch of Landsat-4 in July 1982, brought into operation a more 

advanced sensor, the thematic mapper (TM), in which the geological 

community had specifically demanded the use of the seventh spectral band, 

centered at 2.2 gm wavelength (Chavez et al., 1983). A new decade of 

extensive remote sensing geological studies had started (Henderson and 

Rock, 1983) and since then, a number of geological studies have been 

conducted, using the IM sensor on board Landsats-4 and -5. Results, from 

laboratory and field spectra, indicate the importance of using high spectral 
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resolution sensors in the 0.4-2.5 gm bands. Therefore, several studies have 

used the data from finer spectral and spatial resolution sensors such as (AIS) 

to identify specific alteration mineral assemblages (e. g., Hutsinpiller and 

Taranik, 1986; Kruse., 1988). 

Other sensors such as Shuttle Imaging Radar (SIR) have produced 

very good results where, for example, the paleostream channels were 
located in the extremely dry western desert of Egypt (McCauley et al., 1982). 

However, sensors other than those on board orbiting satellites (MSS and 

TM), operated, only during short periods of time, the extent of the areas that 

they covered, and accessibility to their data are very limited. 

1.3 Study objectives 

There are mainly two basic approaches to geological remote sensing 
(Rothery, 1987). One is to produce a high quality image, that can be used by 

geologists to make important decisions about the available lithologies, their 

distribution and boundaries. The other approach is to give to the computer 

the task of dividing the image into areas of different spectral responses, 

which may be related to the lithology. This study explores both approaches 

with the aim of improving both of them; more precisely, this thesis was 

designed to tackle the following aims: 

a) To test the different image enhancement techniques that are 

largely used in geological remote sensing (band ratio and principal 

component transformation) and the relatively new techniques that do not 

have the same popularity (decorrelation stretch and Hue-Saturation- 

Intensity or HSI transformation). The objective of such testing was to 

evaluate the best means of producing a hard copy image, that could present 

the information available, in a highly enhanced way, in terms of its spectral, 
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and spatial information, so that discrimination between different 

lithologies is optimal. 
b) To test the canonical regression analysis technique, which is a new 

concept and strategy here aimed at relating, directly, the major chemical 

components of different lithologies, to their spectral signatures. After 

establishing a relation between the imagery and chemicals, for small 

training areas, the results could be generalised to large unknown areas. 

c) To evaluate a new technique for the automatic and quantitative 

analysis of imagery. This technique is known as the 'watershed' algorithm 

(Watson, 1987). The first attempt to apply such an algorithm to a geological 

scene, is made in this thesis, and the degree of accuracy, will be compared 

with that achieved using what is, probably, the most widely used 

classification algorithm, the maximum likelihood algorithm. Furthermore, 

the effect of using pre-classification processing, as opposed to the original 

bands, will be tested. In particular, hue components will be investigated. 

These are produced by transforming the original data, from red-green-blue 

coordinates, to the hue-saturation-intensity coordinates. The objective was 

to increase the agreement between reference data and the classified image 

(classification accuracy). 

1.4 Test area selection 

Four test areas were selected in the arid, north eastern Arabian Shield 

as targets for this research. The selection of four test areas was made to 

show a more critical test for such techniques. The reasons for selecting such 

areas were: a) these test areas are well exposed and almost free of vegetation, 

and the soil is at a minimum, which enables the maximum use of spectral 

information as a means for lithologic discrimination and classification; b) 
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the excellent diversity and preservation of the lithology exposed in these 

areas; 0 these areas are accessible for any field check needed; and d) the good 

amount of pre-existing geological information available for these areas, 

contained in previous geological reports and maps of DGMMR (Deputy 

Nfinistry for h4ineral Resources, Saudi Arabia), provides a critical 'test bed' 

for the new techniques. 

These four test areas were selected from two Landsat-5 TM quadrants 

acquired by the ground receiving station of the Remote Sensing Center, in 

Riyadh, Saudi Arabia, on 5 March 1990. Test areas 1 and 2 (Silsilah ring 

complex and Jabal ar Raha) are contained within Quadrant 1 of Landsat-5 

TM scene of Path 168 and Row 042, whereas the other two test areas, Aban 

Ahmar and Aban Asmar, and a small part of test area 1, are contained in 

Quadrant 3 of the previous scene. 

The size of each of the test areas 1 and 2 is 512 pixels by 512 lines. 

However, a small part of test area 1 is located in Quadrant 3; this test area 

was mosaiced to form one 512 x 512 pixel image. 

The size of each of the test areas 3 and 4 is 1024 pixels by 1024 lines. 

The areas, that are of interest, in each of these two areas, are smaller than 

this size. However, this size has been chosen, since the digital image 

processing system used here can only display a full resolution of 512 pixels 
by 512 lines, whereas the areas of interest, the rocky parts of these two test 

areas, were about 750 x 750 pixels. Therefore it was decided to make the i 

of these areas 1024 x 1024 pixels and ignore the areas which are not of 

interest. 
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1.5 Structure of the thesis 

This thesis is divided into eight chapters. The first chapter gives an 

introduction to the thesis. Chapter 2 gives a brief review of the 

physiography and general geology of the four test areas chosen for this 

research, in order to make the reader familiar with the location and types of 

rocks present, and their distribution throughout the test areas. 

To use effectively and to understand the images obtained from a 

satellite sensor, that collects reflected electromagnetic radiation data in 

multispectral mode, an understanding of the nature and properties of this 

radiation, its division (electromagnetic spectrum), and the way that this 

radiation interacts with matter, is fundamental. Therefore, a brief review of 

such information is given in Chapter 3. However, this review is restricted 

to information related to this research. 

Chapter 4 discusses briefly the Landsat series of satellites and its 

sensois. It also gives a brief description of the types of format, usually found, 

in the computer compatible tapes, that form the media for the satellite data 

used in this study, and also the image processing systems that were used in 

this study, and were available in the Remote Sensing Laboratory, Stirling 

University. 

Chapter 5 contains a simple description of digital image pre- 

processing (haze correction), and processing techniques; in this study these 

processing techniques include different methods for image enhancement, 

e. g. contrast enhancement and spatial filtering. The more complex 

operations of image transformation of multi-band image sets such as 

principal component analysis, image ratio, canonical analysis, decorrelation 

stretch and hue-saturation-intensity transformation are also discussed. 
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Chapter 6 is divided into two main sections. The first section 

describes the general methodology, that was followed in applying the image 

enhancement techniques, whereas the second main section discusses the 

results that were obtained from such techniques in each of the four selected 

test areas. 

Chapter 7 gives a brief description of the digital classification 

algorithms, followed by an evaluation of the results from applying such 

techniques, and an assessment of their relative accuracy. Chapter 8 contains 

the conclusions and recommendations for future work. 
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CHAPTER TWO 

TEST AREAS LOCATION AND GENERAL GEOLOGY 

2.1 Introduction 

2.2 Geological setting 
2.3 Test areas 

2.3.1 Silsilah ring complex (test area 
2.3.2 Jabal ar Raha (test area 2) 
2.3.3 Aban Ahmar (test area 3) 
2.3.4 Aban Asmar (test area 4) 



2.1 Introduction 

The Precambrian rock units of the Arabian Shield (where the four 

test areas of this work were located), consist predominantly of late 

Proterozoic rocks, exposed in the western and southern parts of the Arabian 

Peninsula (Figure 2.1). Approximately 727,000 square kilometres of this 

basement is located in Saudi Arabia. Of this, 117,000 square kilometres, is 

wholly or partly obscured by Cenozoic (Tertiary and Quaternary) basaltic 

lava fields that resulted from volcanism associated with the axial rifting of 

the Arabian-Nubian shield and the Cenozoic opening of the Red Sea axis 

(Drysdall et al., 1986). The north, east and southeast sides of the 

Precambrian basement, are unconformably covered by Phanerozoic 

Sedimentary successions, and the southwest side is bounded by the 

Cenozoic formations exposed in the coastal plain of the Red Sea. 

Very little was known about the geology of Saudi Arabia before the 

start of the search for oil in the early 19Ws, when a comprehensive geologic 

exploration activity took place in the east of the country, where the first test 

to yield off was made on March 4,1938 (Power et al., 1966). In 1954, the 

Saudi government, U. S. Department of State and the Arabian-American Oil 

Company (ARAMCO) came to a cooperative agreement which culminated 

in the publication of a series of 21 geologic and geographic maps with a scale 

of 1: 500,000. Each of these maps cover an area of 3* longitude and VI latitude 

(quadrangles). The first of these quadrangles was published in July 1956. 

The agreement was completed in 1963 with the publication of 1: 500,000-scale 

geologic and geographic maps of the Arabian Peninsula. 

The economic interest of the igneous and metamorphic rocks of the 

Arabian Shield lies in their mineral content, where the history of mining 

and prospecting dates back some 3,000 years (Smith et al., 1984). The 
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numerous and widespread ancient workings, found throughout the shield, 

document the widespread and intensive prospecting for gold and copper 

minerals. Geologic mapping of the igneous and metamorphic rocks of the 

Arabian Shield in the western part of the country did not have the same 

attention as did the eastern sedimentary basin. Geologic research began in 

the mid 1940's with localized studies by G. F. Brown between 1944 and 1946. 

A broad reconnaissance mapping and photo interpretation at 1: 500,000 scale 

was made by the early 1960's. Systematic reconnaissance mapping and 

mineral occurrence studies began in the Arabian Shield by the mid 1970's, 

on behalf of the Ministry of Petroleum and Mineral Resources, at a scale of 

1: 100,000. These maps were then compiled in the 1980's to produce 1: 250,000 

scale geologic and geographic maps. 

The test areas in this research were first mapped as part of the 

1: 500,000-scale geologic map of Wadi ar Rimah quadrangle (Brarnkamp, et 

al., 1963). A detail mapping with a scale of 1: 100,000 was not completed 

until 1985 (Muller, 1975; Du Bray, 1983,1984,1986,1988; Cole, 1981,1985; 

Cole and Bohannon, 1985) and these were then compiled by Williams et al. 

(1986) and Cole (1988) to produce 1: 250,000 scale geologic maps. Ihese maps 

and accompanying reports were the main geologic references in this study. 

However, a detailed geologic description of the test areas is beyond the scope 

of this study. This chapter aims to give a brief description of the location 

and general geology of the selected test areas, which is summarLsed from the 

geological reports (above) published by the Directorate General of Mineral 

Resources, Saudi Arabia, and listed in the reference section at the end of the 

thesis. 
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2.2 Geoloirical settinir 

The part of the Arabian Shield, located in Saudi Arabia Figure (2.2), 

consists of a volcano-sedimentary succession and associated plutonic 

complexes, that have been deformed, metamorphosed and intruded by 

numerous, predominantly granitic plutons (Drysdall et al., 1986). The four 

test areas selected for this research are located at the eastern margin of the 

north-eastern Arabian Shield (Figure 2.3), which is underlain by late 

Proterozoic rocks, except for small relicts of the once-continuous cover of 

Cambrian-lower Ordovician Saq sandstone. Quaternary deposits of 

colluvial gravel and talus alluvial gravel and sand, eolian sand, and rare 

lacustrine silt are widespread, but are typically thin and discontinuous. 

The Proterozoic rocks of the northern Arabian Shield are among the 

youngest in the Arabian-Nubian Craton and formed during the interval 700 

to 570 Ma (Cole and Hedge, 1986). Chemical and isotopic evidence (Cole and 

Bohannon, 1985) indicate that no significant quantity of continental or 

evolved crust existed in this region prior to 700 Ma. The oldest rocks 

probably formed at about 700 Ma, and the youngest proterozoic rocks 

formed about 570 million years ago. The geologic and tectonic process, that 

formed the northeastern Arabian Shield, include four major rock-forming 

events (Cole, 1985; Cole and Hedge, 1986), which provide the skeleton for 

describing and interpreting the stratigraphy and structure of the region 
(Figure 2.4), and can be summarised as follows: 

1. The oldest layered and intrusive rocks formed by a partial melting 

of subducted oceanic lithosphere, with a southwest dipping convergent 

plate tectonic boundary, active from about 700 to 670 Ma (Cole, 1984 This 

produced the new continental crust. This subduction ceased at about 670 

Ma and was followed by regional orogenic deformation and erosion, and 
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this crust was regionally folded, thickened and metamorphosed (Cole, 1988). 

These rocks are unconformably overlain by thick clastic deposits of the 

Murdama Group, which were derived from erosion of the orogenic uplift, 

and were deposited in several marine basins (Cole, 1988). Final deposition 

of the Murdama Group was marked by regional folding prior to about 655 

Ma. 

2. The second event took place between 655 and 645 Ma, where this 

neocrust was intruded and stabilised by batholith bodies of leucocratic 

granite, and formed the Khishaybi suite, which is exposed through 

thousands of square kilometres in this part of the shield. As a result of this 

emplacement the crust became more rigid and subsequent regional 
deformation took place. 

I At about 640 Ma, a period of widespread erosion and regional 

extension, produced epicontinental, shallow marine and suberial basins. 

These basins filled with calc-alkaline volcanic and intrusive materials of the 

jurdhawiyah Group, which were deposited unconformably above the folded 

beds of the Murdama Group. Between about 620 and 615 Ma, both the 

Jurdhawiyah and Khishibi were widely intruded by numerous elliptical 

bodies of calc-alkaline granodiorite, and related diorite and granite of the 

Idah Suite. The Jurdhawiah Group is preserved in Aban Ahmar and Aban 

Asmar test areas, as volcanoclastic conglomerate and sandstone, that were 

eroded from contemporary volcanic centres, and rapidly deposited in 

epicontinental basins. The Jurdhawiah Group is preserved also in Aban 

Asmar test area, as dikes and small plugs of mafic to intermediate rocks. 

The Idah Suite is preserved in Jabal ar Raha test area as small hills and nobs 

of meta-gabbro and carbonate rocks. No layered or intrusive rocks are 
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known to have formed between 615 Ma and 585 Ma, and this period was 

marked by considerable uplift and erosion. 

4. Beginning at about 585 Ma, widespread minor bodies of evolved 

granite rocks of the Abanat suite intruded to a higher level in the crust and 

many of them produced coeval deposits of leucocritic and differentiation 

granitic rocks. This event is pervasive in all the test areas, and marked the 

end of the crust-forming process in the region. The sequence of sedimentary 

rocks exposed northeast, east and southeast of the Arabian Shield indicates 

that the craton was stable platform throughout most of the Phanerozoic, 

which marks a prolonged shallow marine sedimentation with no major 

disturbance. The only Palaeozoic rocks preserved in the test area are in Jabal 

ar Raha test area. These are remnants of the once continuous blanket of 

Cambrian and lower Ordovician Saq sandstone. The beginning of the Red 

Sea spreading axis in the Nflocene epoch, and the associated drift of the 

Arabian peninsula away from Africa, led to the erosion and exposure of the 

present Arabian Shield (Cole, 1990). The stage of maximum advance of the 

continental ice in the northern hemisphere, is correlated with a very and 

and windy period in Arabia, which formed the great dune fields and was 

followed by successive and less extreme periods of dry and wet seasons. 

During the current and cycle the sand dunes are largely inactive. At 

present, erosion is approximately balanced by depostion in the northeastern 

part of the shield (Cole, 1990). 

2.3 

The four test areas, selected for this research, are located at the eastem 

edge of the northeastern Arabian Shield (Figure 2.3). The climate of this 

part of Saudi Arabia is described by Mashhady et al. (1986) as aridic 
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hyperthermic. It is characterised by hot summers, with maximum 

temperatures of about 45*C and minimum temperatures of about 2V'C, and 

by cool winters with maximum temperatures of about W'C and minimum 

temperatures of about OOC. Marked diurnal temperature variations occur 

during most of the year. In general, there is no precipitation from June to 

September, and the highest precipitation occurs between January and 

March. The mean annual precipitation in the past ten years (Mashhady et 

al., 1986) is 110 mm with irregular distribution both in quantity and 

frequency. The four areas lie in a zone of weak weathering intensity. The 

physical weathering is the dominant type due to the high temperature and 

the lack of soil moisture . 

2.3.1 Silsilah ring comRlex (test area 1) 

This test area is located between latitude 261103' and 26"l 1' North, and 
longitude 4Z'37' and 42*4T East (Figure 2.3). This test area is about 150 

kilometres west southwest of Buraidah, near the northeastern limit of the 

exposed Arabian Shield. The area is about 16 x 16 square kilometres. It is 

composed of a prominent, circular ring-shaped topographic feature of about 

12 kilometres in diameter (Figure 2.5) with an altitude range betwen 10 and 

300 meteres above the surrounding pediment suraface, and with an average 

relief along the ring of about 100 metres. The drainage system traversing 

the area is a dendritic net, draining south to Wadi Ar Rimah. The principle 

settlement in this area is the village of al Fawwarah to the south, with about 

1500 persons. The only paved road across this test area is the Qassim-Hail 

road. However, several desert tracks cut the area. 
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General &ffllogy 

The following description of the geology (figure 2.5) is summarised 

from Du Bray (1983,1984,1988) and Williams et al. (1986). The oldest rock 

in this test area is a massively bedded, immature sandstone with minor 

interbedded siltstone, named in this area as Maraghan lithic greywacke 
(Mlg), which represents a major depositional basin (Murdama Group) in 

the northern Arabian shield (Du Bray, 1983). This rock was regionally 

metamorphosed to a lower green schist facies. The matrix is silt size 

intergrowths of clay minerals. The lithic fragments are felsite, grains of 

argillite, and fine grain volcanic clasts. The (Mlg) unit is intruded by (hence 

is older than) the igneous rocks that form the ring's structural feature. Du 

Bray (1988) states that the size and shape of the ring complx suggests that it 

represents a fraction of magma tapped from a large, subjacent magma 

chamber, through a set of closely spaced ring-shaped fractures. Four main 

rock units form this ring; they are (starting with the oldest) alkaline dacite 

(ad), commendite (com), Silsilah alkali granite (Sag), Hadhir aplite (Ha) and 

Fawwarah alkali-feldspar granite (Fag), of the Abanat Suite. 

The alkaline dacite (ad) is a greyish black, very fine grained, 

subalkaline volcanic rock, which outcrops in the east and northeast of the 

ring complex (Figure 2.5) as dike-like bodies, and forms strongly weathered 

elongated bodies. This rock is composed of an intergranular to weakly 

trachytic intergrowth of plagioclase and opaque oxides (Du Bray, 1988). The 

(ad) is intruded by a fine grained porphyritic commendite (com) which 

contains abundant phenocrysts, up to 4mm Iong, of alkali-feldspar (60%) 

and outcrops at the eastern part of the ring in a dike-like form. Both (ad) 

and (com) units account for about 30% of the ring. 
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The Silsilah alkali granite (Sag) outcrops in the northwest and 

southeast of the ring, at Jabal as Silsilah and Jabal al Hadhir respectively, as 

greyish-red, medium grained alkali granite. In its contact with the Hadhir 

aplite (Ha), the (Sag) unit is weakly recrystallized and denterically altered for 

several hundred metres from its contact. The rock exposed at Jabal as 

Silsilah and Jabal al Hadhir is unaltered (Du Bray, 1988). The Hadhir aplite 

(Ha) is light grey, equigranular, and fine grained, and outcrops in the 

southwestern part of the ring as a nearly flat-lying sheet, less than 50 metres 

thick (Figure 2.6), on top of the Fawwarah alkali-feldspar granite (Fag), and 

also as slabs inside the southwestern limit of the ring. The (Ha) unit is 

covered by a dusky-brown weathering surface. The (Ha) weathers 

recessively and forms a minor component of the ring compix. Biotite and 

Fe-Li mica form scarce crystals as much as I mm Iong, and partly altered to 

opaque oxides from light tan to dark reddish brown. 

The Fawwarah alkali-feldspar granite outcrops in the southwestern 

part of the ring as very light grey and medium grained rock. It is also 

exposed in two small isolated hills, located three and four kilometres inside 

the southwestern margin of the ring, where the granite intrudes (Mg) unit 

inside the ring and is the youngest intrusive component of the ring 

complex. Fe-Li mica and rare light brown biotite are constituents of the 

Fawwarah alkali-feldspar granite. The proto Fawwarah alkali-feldspar 

granite (pFag) is lithologically identical to (Fag), and was initially mapped 

with that unit. 

Bodies of massive milky-white quartz (qz) are exposed in a low hill 

within the ring structure, near its southwestern side. Quartz veins, ranging 

in width from 2 to 50 cm, penetrate all the units in this test area, particularly 

(Mg), (Ha) and (Sag). 
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SuRarificial dMosits 

A moderately well sorted, sand size alluvium material (Qal) is 

presented in active Wadi channels, and also includes silt, pebbles and fine 

windblown materials. The areas around the high relief (inside and outside 

the ring) are characterised by deposits of alluvial fans (Qf) which are poorly 

sorted, angular materials ranging from silt to boulder size. The Eolian sand 

deposits Qs) are found as two inactive sand bodies inside the ring north of 

Jabal al Hadhir and east of Jabal As Silsilah. 

2.3.2 Tabal ar Raha (test area 

This test area is located northeast of test area 1 and covers an area of 

about 16 x 16 square kilometres between latitude 26*15' and 261124' North 

and longitude 42*43' and 421152' East (Figure 2.3) . There is no settlement in 

this area, either town or village,, the nearest settlement is Buqayah village, 7 

kilometres; to the east with no more than a few hundred persons, and al 

Fawwarah about 30 kilometres southwest of the test area with about 1500 

persons. The population in this area is very sparse and includes only two 

Bedouin encampments, whose economy is based on the raising of goats, 

sheep and camels. There is no paved road across this area, and the principal 

paved road is about 30 kilometres to the south (Qassim Hail road). The area 

can be reached from the Qassim Hail road near al Fawwarah by driving 

north for about one and half hours on desert tracks which turn sandy just 

south of the test area. 

General gmlogy 
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The rocks of the Jabal ar Raha can be divided into three groups: 

meta-sedimentary layered rocks, metavolcanic layered rocks, and mafic 
intrusive rocks. The geologic description of this test area is summarised 
from the reports by Du Bray (1983), Williams (1986) (Figure 2.7). The 

metasedimentary rocks (Murdama Group) consist of two units: the Qarnayn 

formation which crops out in the north-eastern part of the area as poorly 

sorted and extensively cleaved conglomerate (cg). It has a nearly 
homogenous population of sedimentary rock, much like that of sandstone 

matrix, but contains a few clasts of limestone, and fine grained volcanic rock 

and mafic plutonic rock. The matrix contains andesite, quartz, epidote, with 

mafic plutonic clast, particularly common in the upper layers of the 

conglomerate. This conglomerate is drained by well developed trellis 

drainage. 

In the western and north-western part of the area, and also west of 

the conglomerate, the Qarnayn formation crops out as volcanoclastic 

greywacke, named by Du Bray (1983) as Qamayn Lithic Greywacke (Qlg). 

This unit appears massive in outcrop and is poorly sorted, well-indurated, 
immature sandstone of volcanic province, characterised by well rounded 

and widely distributed pebbles (2 to 5 centimetres in diameter) of felsic to 

intermediate volcanic material. These pebbles are locally so numerous that 

the unit is weakly conglomeritic. Fine-grained and finally laminated felsic 

and pyratic volcanic ash is locally presented. 
The second unit of the metasedimentary group is the Maraghan 

Lithic greywacke, which is very poorly exposed in the south-eastem comer 

of the area. 

The carbonate (cr) rocks in this area are located, just north of Jabal ar 

Raha's north-eastem limit, as small pods and discontinuous podin4ike 
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masses of marble, associated with meta-gabbro east of Jabal ar Raha. The 

marble is exposed as completely crystallised, bluish-grey, relatively pure 

carbonate rock. It is composed of calcite and trace amounts of hematite and 

quartz, or as structureless tan coloured material, that is distinctly vuggy, less 

pure, and contains trace amounts of sericite and possibly chlorite. These 

carbonate rocks are thought to be alteration product of plutonic rocks. 

The mafic plutonic rocks in this area are divided into metagabbro and 

quartz monzodiorite. The metagabbro (mgb) crops out 2 kilometres east of 

Jabal ar Raha, as an isolated dark weathering hill of fine grained metagabbro 

at the eastern margin of the area, whereas the quartz monzodiorite, named 

as Shaila quartz monzodionite (Sqm), crops out as irregular shaped bodies 

of dark to medium grey, recessively weathered quartz monzodiorite in the 

central northern part of the area. 

The meta-volcanic layered rocks exposed in the mid-southern half of 

the area are complexly interbedded, weakly metamorphosed volcanic rock 

of meta-rhyolite, meta-rhyolite tuff and meta-andesite which are 

approximately coeval. These meta-volcanic layered rocks are coeval to the 

rocks of Abanat suit. 

The meta-r hyolite crops out as a "V" shape in the southern part of 

the area, and named as Raha meta-rhyolite (Rmr). This unit has a brick red 

weathering surface and contains salmon colour phenocrysts of microcline 

(as much as 5 millimetres long) partially altered to sericite at the northern 

edge of Jabal ar Raha. The meta-rhyolite tuff (mrt), is located near the centre 

of Jabal Ar Raha in an assemblage of felsic extrusive rocks. The biotite 

minerals in this unit are altered to chlorite. Glass structure and the remains 

of collapsed pumice blocks, are locally preserved. Much of this unit is 

stained reddish orange due to deuteric alteration. 
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Figure 2.7. Geologic map of Jabal ar Raha, test area 2 (adapted from Du Bray, 
1983). 



The meta-andesite (ma) crops out at Jabal ar Raha as dark grey, small, 

isolated and flat-lying bodies of massive meta-andesite porphyry, which 

may represent flow rernnant. This unit is characterised by 1-2 millimetre 

long phenocrysts of white plagiodase, visible in hand specimens, which are 

locally sericitized, also phenocrysts of homblende (0.5-1.5 millimetres long) 

altered to d-dorite. 

The Palaeozoic rock of the Sag sandstone (OC s) crops out in two very 

small and very recessive weathering areas at the top of the Qarnayn 

greywacke (Qlg) and the quartz monzodiorite (Sqm). This sandstone 

represents the only sedimentary rock in all the four test areas of a 

Cambrian/Ordovician age. 

Quatemazy d=sits 

Moderately well sorted, sand size alluvium materials (Qal) are 

presented in active Wadi channels which include silt, pebbles and fine 

windblown materials. The alluvial fans (Qf) are restricted to aprons around 

Jabal Ar Raha which are poorly sorted, angular materials ranging from silt 

to boulder size. 

2.3.3 Aban Ahmar (test 
-ama 

4) 

This area is located between latitude 25* 22' and 25* 37 and longitude 

4r 39' and 42" 57' appro)dmately (Figures 2.3 and 2.8), which covers an area 

of about 32 x 32 square kilometres. The area is relatively well populated 

with four villages (Figure 2.8) east of Aban al Ahmar mountain; Dulay 

Rashed, Jarrar, al Marmuthah and Mihayyidah and one village to the west 

of the mountain; Fayyadah with about 200 persons each. In addition to 

these villages there is a scattered Bedouin encampment around the Aban al 
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Ahmar mountain. The only paved road that cuts the test area is shown in 

Figure (2.8), with desert tracks circling the mountainous area. 
The topography of the test area is characterised by a relatively flat 

peneplain covered by thin surfacial deposits of alluvium and eolian 

materials (Figure 2.9). The average altitude of the surface of the peneplain 
is about 700 metres and is sloping north and east and drained via drainage 

channels mainly to the mobile eolian sand fields (Nafud al Urayq west of 

the test area and Nafud al Maysariyah about two kilometres, to the north of 

the test area) with a few channels drained directly to Wadi ar Rimah (to the 

north of this area). This peneplain surrounds the massive elongated 

mountainous terrain of Aban al Ahmar striking east-north-east direction 

whose summit is about 500 metres higher than the surrounding peneplain 
(1310 metres above sea level) and the ring shaped hills to the south-east of 
Aban al Ahmar. 

General geglogy 

The following description of the geology of the test area is 

summarised from the geologic reports by Muller (1975), Cole and Hedge 

(1986) and Cole (1985,1988) (Figure 2.8). The area can be divided into four 

lithologic groups: the mafic metavolcanic rocks, mafic and intermediate 

plutonic rocks, calc-alkaline volcanic and contemporary volcanoclastic 

rocks, and peralkaline granitic rocks of Ahmar complex. The oldest rock in 

the area (pre-Suwaj Suite) is the mafic metavolcanic rocks of Dhiran-meta- 

andesite (Da). These rocks are poorly exposed as small eroded hills of dark 

green fractured and weakly schistose metavolcanic rocks west of jibal 

Kihlah- This rock is recrystallised and rich in secondary quartz, chlorite, 
hornblende, calcite and sericite minerals. 
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The mafic and intermediate plutonic rocks include three types: the 

Khaytan quartz diorite (sqd), granodiorite (sgd) and granodiorite granophyre 
(sgg). just south of Sinaf Aba-al Haddar, the Khaytan quartz diorite exposed 

as grey green, cataclastically foliated small and isolated knobs. Some 

minerals of this unit are altered to sericite, calcite and chlorite. The 

granodiorite is exposed as low hills of light grey rocks with variable 

composition that ranges from granodiorite to quartz monzodiorite with 

about 21% mafic minerals and moderate alteration. The granophyre 

outcrops as dark grey, heavily altered (chlorite, sericite and epidote) 

granodiorite porphyry, at jibal Kihlah, west of Aban Ahmar mountain. 

The calc-alkaline volcanic and contemporaneous volcanoclastic rocks 

include the layered rocks of the Jurdhawiyah group, which crop out along 

the east side of Aban al Ahmar as clastic and volcanic deposits, and as plugs 

and short dikes of dominantly andesitic rock. Isharat porphyry (pp) north of 

Mihayyidah, and also, as gabbro-norite north of the circular valley, west of 

jarrar. The Jurdhawiyah Group includes Muqawqi andesite (ja) which 

outcrops, mainly around the southern part of the Aban Ahmar, as dark 

green structureless; to amygdaloidal flow rock and flow breccia. 

The second unit of the Jurdhawiyah Group is the conglomerate (1c) 

member, which consists of poorly sorted clasts of Muqawqi andesite, dacite 

and tuffacious materials (lapilli tuff), which crops out as ridges in the 

northeastern boundary of Aban al Ahmar. The alteration is variable and 

consists of chlorite, epidote and calcite. 

The third unit is the sandstone member, which crops out as coarse 

grained, pebbly lenses of volcanic sandstone (js), and forms the upper part of 

jarrar formation east of Aban al Ahmar (Figure 2.8). This sandstone is 

composed mainly of andesite, similar to that in the conglomerate members. 
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The sandstone is cemented by chlorite, epidote and carbonates (calcite). 

Lapilli tuff (jt) beds are also present as thick wedge-shaped deposits north of 
Jarrar, which consists of rhyodacite tuff breccia with pyroclasts of 10-40 

centimetres in diameter. Lapilli tuff is variably altered by post depositional 

chlorite and clay minerals. Small plugs of Isharat porphyry and gabbro- 

norite intrude the rocks of the jurdhawiah Group north-west and south- 

west of jarrar. The gabbro-norite is exposed as dark bluish-grey, medium 

grained pyroxene gabbronorite and olivine gabbronorite southwest of jarrar 

within the circular eroded valley (south of Mihayyidah). The Isharat 

porphyry (pp) is exposed as a small plug of andesite and minor dacite 

northwest of jarrar, and was mapped by Cole (1985) as andesitic plugs and 

short dikes. 

The Ahmar Complex crops out as an elongated zoned pluton (Abant 

Suit) striking east-north-east direction (Figure 2.8) which intrudes the 

previously described Jurdhawiyah Group, and the Dhiran meta-andesite. 

The core of the pluton consists of brick red, coarse to medium grained 
blotite perthit granite (apg) that has about 7% biotite. The grain size of the 

(apg) unit decreases to fine grain at the contact with the arfvedsonite- 

perthite granite (aag), and along the roof axis and is, in general, coloured by 

hematite. The outer carapace of the Ahmar complex consists of very coarse 

grained, tan to pale brown arfvedsonite-perthite granite (aag). This granite is 

discontinuous along the western margin. At Sinaf Aba al Haddar the 

arfvedsonite granite member is intruded by the rhyolite porphyry member 
(arp) which consists of brick red, sparsely porphyritic peralkaline rhyolite, 

and forms a thick discontinuous elliptical ring dike. Farther west (outside 

the test area) it is mostly buried under Nafud al 'Urayq sand body, and then 
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Figure 2.8. Geologic map of Aban Ahmar, test area 3 (adapted from Cole, 
1988). 
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intrudes the granophyri rocks south-west of Jabal al Hannawiyah. It has a 

uniform composition of quartz, sanidine-orthoclase. Mafic minerals are 

rare and include arfvedsonite, reibeckite, zircon (locally very abundant), 

flourite, magnetite, and some brown biotite and disseminated hematite. 

Superficial deposits 

The peneplain that surrounds the mountainous area is covered by 

deposits of gravel, sand and boulders. The surfaces of other deposits are 

covered with coarse, poorly sorted angular fragments, that are coated with 

desert varnish. In the south-western corner of the area a small area of 

bedded saline silt deposite and saline encrustations (sabkha deposits "Qs") 

are present (Figure 2.10). It consists of carbonate and sulfate minerals that 

loosely cement silt-size eolian and ditrital materials. A very small part of 

the dune field of Nafud al Urayq presented in the western part of the area 

Qs), consists mostly of a fine sand. 

2.3.4 Aban Asmar (test area 4) 

This test area is located between latitude 25' 40', 25' 55' N and 

longitude 42' 47' and 43' 04' E, and covers an area of about 32 x 32 square 

kilometres (Figure 2.3). Several roads cut this area and desert tracks circle 

the mountainous area. The area is relatively well populated with three 

small towns, An Nabhanyah, Albatra and Rawdat Qiradan, and also by 

scattered Bedouin encampments. 

The topography of this area is characterised by a relatively flat 

peneplain, south-sloping surface, that drains to Wadi ar Rumah in the 

southern part, via the well developed dendiritic channels of Wadi Thadij 

and Wadi al Abaytir in the eastern part of the area, Shaib al Metla al 
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Ayman, which cuts the mountain of Aban al Asmar, and drains into a man 

made dam at the eastern margin of the mountainous area and Shaib al 

Metla al Alysar. The average altitude of this peneplain is about 750 metres 

above sea level, and it is widely covered by alluvium and eolian materials. 

This peneplain surrounds a mountainous terrain of Aban Alasmar where 

the altitude reaches 1243 metres above sea level. 

General geology 

The geologic description of this test area is summarised from the 

geologic reports by Cole and Bohannon (1985), Cole and Hedge (1986) and 

Cole (1988). The Proterozoic rocks of this area are divided into three groups. 

The oldest are the layered sedimentary and volcanic rocks of the Murdama 

and Jurdhawyah groups (Figure 2.4), which dominate the western part of 

the area, (Figure 2.11), and form a planar, south-sloping peneplain, cut by 

dendiritic channels east and west of Wadi Thadij, and form hills to the west 

of Aban al Asmar mountain. 

The second group is the monzogranite of the Khishaybi suit 

(extensively weathered) and Samra rhyolite which forms the highest peak 

of Aban al Asmar, and is found to be younger than the Khishaybi and 

Jurdhawyah. The last group, is the intrusive units of the Asmar complex, 

which intrudes the Samra rhyolite, and outcrops in the north, south, and in 

an elongated body in the west side of the Samra rhyolite. Both the Samra 

rhyolite and Asmar complex belong to the Abanat Suite (Cole, 1985), and 

they are interpreted to be co-magmatic and coeval. 
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Figure 2.9. Field photograph showing the relatively flat peneplain and the 
sand dune field that are exposed west of Aban Ahmar test area. 

Figure 2.10. Field photograph showing the saline encrustations (Sabkha 
deposits). 



The Maraghan sandstone (Ms), equivalent to (Mlg) in the Silsilah 

ring complex, is the oldest rock in this area, and belongs to Murdama group. 

This unit is poorly exposed, easily eroded by a well developed dendiritic 

drainage system. The sandstone is pale green to brown green on fresh and 

weathered surfaces. It is composed of a mixture of fine to medium grained 

meta-andesite, felsic volcanic rock fragments, broken plagioclase grains, and 

quartz and granitic rock fragments, which make up 45,35,10 and 10 per cent 

of the rock, respectively. The alteration is widespread, with the calcite as the 

most common alteration products, and replaces the matrix and the clasts, 

and locally makes up as much as 50 per cent of the rock. The monzogranite 

(Kmg) of the Khishaybi, is almost invisible in this area (as an out crop). 

The Jurdhawiyah group exposed to the east of the Maraghan 

sandstone, west of Aban al Asmar, are defined in this area by the jarrar 

Formation, which is a texturally heterogeneous assemblage of volcanic 

clastic rocks, derived from erosion of primary jurdhawiyah volcanic 

deposits. It consists of a conglomeritic member (jc) and a sandstone 

member (js). The conglomerate clasts consist of fresh andesite, dacite and 

tuff. The conglomerate is variably cemented by calcite and local chalcedony 

and post depositional growth of chlorite, actinolite, sphene and epidote. 

The sandstone member is pale green to pale brown, of volcanic rock 

fragments similar to that of the conglomerate member. Fresh hornblende, 

augite and magnetite are also common. Clasts of Maraghan sandstone are 

less common. The matrix is moderately cemented by chlorite, sparse calcite 

and minor epidote. The sandstone is exposed in this area as an elongated 

body striking north-west inside the conglomerate. 
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Figure 2.11. Geologic map of Aban Asmar, test area 4 (adapted from Cole, 
1988). 



Recrystallised rhyolite volcanic rocks are exposed in the central, 

highest parts of the Aban al Asmar mountain and defined by Cole (1985) as 

Samra rhyolite (Sry). This unit forms blocky, fractured, dark-brown 

outcrops. South and west of Mazari al Asafir, a singular detached block of 

Samra rhyolite, and some of the large inclusions, within the intrusion 

breccia member (sbr), contain metre-thick quatz veins. The Samra rhyolite 

is intruded by Aban Asmar complex, which consists of six lithologically 

distinct members, that make up the composite pluton of Aban al Asmar, 

which may represent the root zone of a volcano that erupted the Samra 

rhyolite. These six members are biotite perthite granite, hornblende 

perthite granite, intrusion breccia, rhyolite porphyry, quartz syenite and 

granite porphyry. The perthite granite member (spg), exposed in an arcuate 

mass at the northern end of the Asmar complex, is equigranular, coarse 

grained, tan to pale pink biotite perthite granite. It is very well exposed, and 

its contact with the Samra rhyolite is sharp, generally planar. 

The hornblende perthite granite (shpg), exposed at the southern end of 

the Aban al Asmar, is very coarse-grained, equigranular, tan to pale pink, 

and orange biotite-hornblende perthite granite. It is mineralogically and 

texturally similar to the (spg) member, but contains minor amounts of dark 

green hornblende. The hornblende perthite granite is intruded by flat-lying 

sheets of the granite porphyries (sgp) and quatz syenite (ssy) west and north 

of jibal umm Burayqi. 

The intrusion breccia (sbr) member, exposed between the (shpg) and 
(sry). The (Sbr) consists of blocky slabs of Samra rhyolite (sry), enclosed by 

sub-horizontal sheets of the Hornblend Perthit granite member. The 

rhyolite porphyry member (srp) is exposed as irregular plugs of subvertical 

dikes of bright red, fine grained, moderately porphyritic rhyolite, that 
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intrudes country rocks along the western margin of the composite pluton at 

Aban al Asmar, and also intrudes the Samra rhyolite north of Mitla fault. 

Rhyolite porphyry is intruded by the quartz syenite member (ssy), but is not 

in contact with the granite members. The quartz syenite member (ssy), 

exposed as grey, richly porphyritic, medium grained biotite hornblende 

quartz syenite, forms a steep-sided stock in the wetern part of Aban al 

Asmar, and a gently dipping sheet north of jibal umm Buraygi. This 

member intrudes (Sry), (shpg) and (srp) and is inferred to be younger than 

(spg). It is not in contact with (spg), but both were probably emplaced at the 

same time around the outer margins of the composite pluton at Aban al 

Asmar (Cole and Bohannon, 1985). 

The granite porphyry member (sgp) is exposed as pale grey to pale 

pink, and is distinctively lighter in colour than other members of the 

complex. Leucocratic, sub-porphyritic to inequigranular biotite orthoclase 

granite and biotite syenogranite form a small north trending stock, and 

several thick dikes at the north-east corner of Aban al Asmar, and a 

northward dipping sheet three kilometres west of Jabal umm Buraygi. 

These various bodies intrude all other members of the Asmar complex 

except the quartz syenite (ssy), which is nowhere in contact. 

Supgrfidal dWgsits 

Thin surfacial deposits of gravel, sand and boulders (Qf) are 

widespread in the plain areas and form fans and aprons around all the high 

peaks. The surface of the alluvial fans and apron deposits are covered with 

a large gravel derived from Jurdhawiyah group, Samra rhyolite and Abanat 

suite. 
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3.1 Introduction 

In remote sensing, the electromagnetic radiation (EMR) acts as a 

communication link between the sensor and the remotely located objects. 

The satellite sensor measures the amount of energy reflected from, or 

emitted by, the earth's surface that has passed through the earth's 

atmosphere. Hence, to effectively use such radiation and understand the 

results these sensors produce, an understanding of the nature, behaviour 

and the way this radiation interacts with matter (both earth's surface and 

atmosphere) is needed (Hunt, 1980; Hardy, 1981; Rees, 1990). In principle, 

remote sensing sensors could measure energy reflected or emitted from the 

earth's surface in any range of wavelength. However, the selective filtering 

of the earth's atmosphere (scattering and absorbtion by the atmospheric 

particulates), that lies between the sensor and the earth's surface, excludes 

certain wavelengths, and therefore limits the ability of the sensor to record 

information in these wavelengths. 

This chapter presents some basic information about the properties of 

EMR and the way it interacts with matter. The discussion will be confined 

to those aspects of EMR relevant to this thesis. 

3.2 Electromagnetic radiation and sRectrum 

The understanding of the physical basis of remote sensing begins with 

a study of electromagnetic radiation (EMR), which serves as a 

communication link between the satellite sensor, and the earth's surface. 

The EMR is a force field with electric and magnetic properties (orthogonal to 

each other) that ranges from metres; to nanometers in its wavelength and 

travels in a sinusoidal fashion at the speed of light (Figure 3.1). 
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There are three basic attributes which define the electromagnetic 

radiation: wavelength (A. ), distance from one crest of a wave to the next, 

wave frequency M, number of wave crests passing a fixed point in a specific 

period of time; and wave velocity (c), which is constant. The relation 

between these three measurements is: 

C= vX 

in which wavelength and frequency have an inverse relation. Planck 

describes the electromagnetic radiation as a numerous tiny descrete packet 

of energy called a photon or quanta whose energy is given by 

hv 

where E is the photon energy (Jouls) 

h is Planck's constant (6.626 x 10-34 js) 

v is the frequency 

In remote sensin& electromagnetic radiation is usually defined by its 

wavelength (Figure 3.2), which ranges from the very short wavelength of 
the gamma ray region, to the long wavelength of the radio wave region. 

The wavelength regions which are of interest to remote sensing are 
the visible, near and mid infrared regions between 0.4 gm to 3 gm, 

thermal Infrared region 3-14 gm and microwave region 1mm-1m. The 

regions in the EMS with wavelength shorter than the visible regions 

are not used in satellite remote sensing owing to the effect of scattering and 
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absorption by the earth's atmosphere, and this will be discussed in later 

sections. Although the electromagnetic spectrum is divided into a number 

of regions, there are no sharp breaks between them. 

3.2.1 The visible region 

It constitutes a very small portion of the EMS with wavelength 

ranging between 0.4 pm to 0.7 gm. This region is defined by the sensitivity 

of the human visual system and that makes it the only well-defined region 
in the EMS (Campbell, 1987). This region is subdivided into three areas, 

blue, green and red, which correspond to the wavelengths 0.4 - 0.5gm, 0.5 - 
0.6gm, and 0.6 to 0.7gm respectively. These three colours are named 

primary colours because no single one of them can be formed by mixing the 

other two, and all other colours can be formed by mixing them in 

appropriate portions (as will be described in Section 5.5). 

In this region of the spectrum, the degree of sensitivity of the human 

eve to these three parts is not uniform, and has its peak of sensitivity at 

0.55gm in the green (Mather, 1987). How the human eye detects these 

colours will be discussed in Section 5.5; however, an object's colour is 

defined by the interaction of this object with the incidence light. So if it, for 

instance, reflects the red light and absorbs the other two then we will see it 

as a red object and so on (Figure 3.3). 

3.2.2 The infrared (IR) region 

This region of the spectrum is very large relative to the visible region 

and divided into several parts. The part of the IR which is closest to the 

visible range and extends between 0.7 gm to 3 gm is divided into two 

sections, the near infrared (0-7 - 1.0 gm) and the mid infrared (1-0 - 3-Ogm). 

45 



The part of the IR region that extends from 3.0 gm to 15 gm is called the 

Thermal IR region. In this region, radiation is emitted by the earth's surface 

and can be sensed by special sensors called Thermal Sensors. Much of the 

radiation in this area is absorbed by the atmosphere with principle windows 

at 3-5 gm and 8- 14 ýun wavelength (Figure 3.4) 

How electromagnetic radiation generates and fluctuates is beyond the 

scope of this study. Useful reviews about the nature and physical principles 

of the EMR are given by for example Barret and Courtis (1982), Suits (1983), 

Elachi (1987) and Rees (1990). However, all matter above absolute zero (- 

273-15"C) will emit some form of radiation. The quantity of this radiation 

and its wavelength range is a complex function of the temperation of the 

body and its nature (Drury, 1987). The field of remote sensing is more 

concerned with how this radiation can be detected, reflected, or emitted. 

The source of the reflected radiation is invariably the sun and this radiation 

can be detected by systems, called "passive" systems, that sense the naturally 

available energy, whereas the systems that have their own source of energy 

to illuminate features of interest are termed "active" systems, such as 

RAdio Detection And Ranging systems (RADAR). This study will be 

concerned with the first type of system. 

3.3 Interaction of electromagnetic radiation with matte 

This section gives a simple review of the interaction mechanism of 

the EMR with matter, more detailed information can be found in Hunt 

(1980), Drury (1987), Elachi (1987) and Goetz (1989a). The interaction 

between EMR and the observed object is a very important factor in 

understanding and interpreting remotely sensed data. 
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When electromagnetic radiation is incident on an object, some of this 

energy will be reflected, some will be transmitted, and some will be 

absorbed. The conservation energy law states that: 

Ei(X) = Er(Ä) 

where 

+ Ea(X) + Et(X) 

Er(%) = 
Ea(X) = 
Et(X) = 

incident energy 

reflected energy 

absorbed energy 

transmitted energy 

The reflected, transmitted, and absorbed components vary from one object 

to another and from one wavelength to another. These differences form 

the main skeleton for spectral remote sensing in multi-spectral 

measurements. The colour of any object we see when it is lit by the sun is 

the result of absorption or reflection of this continuous range (Figure 3.4). 

The same object may behave very differently if exposed to radiation of a 

different wavelength. For example, a glass might be transparent in one 

wavelength (visible) whereas in another wavelength (infrared) it appears 

opaque. 

Roughness and orientation of the object also play an important role 

in the reflection process. Specular reflectors (Figure 3.5) are smooth surfaces 

that express a mirror like reflection, in which incident and reflection angles 

are equal. This happens when surface irregularities are smaller than the 

incident wavelength. Diffuse (or lambertian) surfaces are, on the other 

hand, rough surfaces which reflect uniformly in all directions. However, 

most of the earth surface is in between these two extremes. Whether a 
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surface behaves as a smooth or rough surface depends on the wavelength 
involved. For example, a fine sand behaves like a rough surface in the 

visible range, whereas a very rough rock surface behaves like a smooth 

surface for radio waves. In satellite remote sensing we are more concerned 

with the diffuse reflectance since it contains spectral information about the 

colour of the reflecting surface (Lillisand and Kiefer, 1987). A useful 

expression of reflectivity of different surfaces is the reflection coefficient or 

albedo. Albedo is the ratio of energy reflected to energy incident on the 

surface. Dark and bright surfaces have low and high albedo, respectively. In 

the visible region of EMS the wavelengths are very short, which leads to a 
diffuse reflection of most surfaces regardless of the incident angles (Barret 

and Curtis, 1982). 

The part of the incident energy that is absorbed by the object elements 

causes an interaction between this incident energy (EMR) and the object's 

constituents. The energy state of an object is a function of the relative 

position and state of the cosntitutent particles at a given time. The total 

energy of an atomic molecular system is made up of the sum of three 

distinct types of energy states: electronic, vibrational and rotational (Hunt, 

1980). Each of these states requires a different amount of energy for 

transition from one energy level to another (Gupta, 1991). Therefore, these 

mechanisms manifest themselves in different parts of the EMS (Figure 3.2). 

The electronic and vibrational transition processes create absorbtion bands 

in the visible, near and mid infrared regions, whereas the rotational 

processes occur at longer wavelengths (far infrared and microwave), and are 

restricted to gasses; therefore they will not be discussed further. 
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3.3.1 Electron transition 

Electrons in an atom can only occupy a specific quantized orbit with a 

specific energy. The process associated with the transition of the electron 
from one energy level to another is called electron transition (Hunt, 1980). 

The most important electron transitions for remote sensing are associated 

with charge transfer, conduction band, and crystal field effects, which are 

observed predominantly in the short wavelength -- ultraviolet, visible, and 

near infrared regions of EMS due to the high energy required for their 

excitation. 

The part of the energy that is absorbed will raise the energy level of 

electrons, causing migration from one atom to another. This process is 

known as charge transfer. The charge transfer between Fe and 02 is the 

most commonly observed feature in the spectra of terrestrial minerals 
(Hunt, 1980). This feature is responsible for the steep increase in absorption 

towards the blue in the visible region, especially in the spectra of many 

weathered minerals (Figure 3.6). 

In some semi-conductors (e. g., sulphides), almost all the photons 

with energy equivalent to the width of the forbeddin gab are absorbed 

(Gupta 1991). This gives rise to a sharp absorption edge in the visible or 

near infrared region of the EMS. This type of process is called conduction 
band process (examples of such'absorption are given in Figure 3.7). 

In molecules and many solids, the valence electrons of adjacent 

atoms form pairs, and these are the chemical bonds that hold atoms 

together. In the case of transition metal elements such as copper, 

chromium, cobalt, manganese and iron in particular, the partially filled 

inner shells in the atom hold unpaired electrons with excited states. These 
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excited states allow transitions, and consequently absorption, to take place. 

The energy associated with the transition lies in the visible region of the 

EM spectrum. However, the transitions, here are strongly affected by the 

electrostatic fields, that surround the atom, and which in turn are 

determined by the crystalline structure. As a result, different arrangements 

of energy levels for different crystals will produce different spectral effects 

for the same ion. This is called the crystal field effect; for example, ferrous 

ions will display absorption peaks at different wavelengths when located in 

different crystal fields (Figure 3.8). 

3.3.2 Vibration 12rocess 

This process is the result of bending and stretching of the chemical 

bonds. Spectral features for the vibration transition in geology occur in the 

mid and thermal IR parts of the EMS. In the mid infrared range the 

vibrational transitions are caused by overtone and combinations tones of 

the fundamental modes. The most common mineral group that provides 

absorption features in this region is the hydroxyle (OW group. 

The OH ion has one stretching fundamental which occurs near 2.77 

gm, the exact location being dependent on the site in which the OH ions are 

located and the atom attached tD it. In some cases the spectral features are 

doubled, indicating that the OH is in two slightly different locations or 

attached to two different minerals. For example, Al-OH and Mg-OH 

bending modes have fundamental wavelengths at 2.2 and 2.3 ILm, 

respectively. 
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The carbonate minerals display similar features between 1.6 - 2.5 Am, 

and these are due to combinations and overtones of the fundamental 

vibrations of the C03 ion. Figure (3.9) shows the effect of the vibration 

process in different hydroxyles, and carbonates. 

Photons with just the right energy to excite one of the transition 

processes will be absorbed and so the light of the corresponding wavelength 

is not reflected. The absorption feature caused by a vibrational transition is 

relatively sharper than that caused by an electronic process (Rothery, 1987). 

In this study both the interaction of the EMR with the atmosphere 

and with the earth's surface will be discussed; however, the discussion 

concerning the latter will be limited to minerals and rocks. 

3.4 Interaction of electromasmetic radiation with the earth! 

Sensors that detect in the visible, near and mid infrared part of the 

spectrum are used to measure the radiation reflected by the earth's surface, 

and this radiation must pass through the atmosphere. The path length 

involved can vary according to the platform and the type of sensor used. 

For example, the radiation received by the six reflection bands of TM sensor, 

passes through the full thickness of the earth atmosphere twice on its 

journey from source to sensor, whereas a thermal aerial image senses 

energy emitted directly from the earth's surface and passes a single time 

through a relatively short atmospheric path. The interaction of EMR with 

the earth's atmosphere involves two processes, absorption and scattering; 

they both vary in their effect, according to wavelength (Anderson, 1985). 
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3.4.1 Scattering 

Scattering can be defined as "multiple reflections of electromagnetic 

waves by particles or surfaces" (Sabins, 1987) which modify the direction 

and intensity of electromagnetic radiation. According to the size of the 

particles in the atmosphere, the scattering can be divided into three types: 

Rayleigh scattering, Nfie scatterin& and non selective scattering. 

Rayleigh scattering occurs when the size of the effective atmospheric 

particles is smaller than the wavelength of radiation. The degree of 

scattering is inversely proportional to the fourth power of the wavelength, 

hence the shorter wave lengths are scattered more strongly by this scattering 

mechanism than the longer wavelengths (Drury, 1987; Mather, 1987). 

Rayleigh scattering is the main cause of haze in imagery, which reduces the 

contrast of the image. 

In Mie scattering the size of effective atmospheric particles is 

approximately equal to the wavelength of radiation, water vapour and dust 

are the major causes of this type of scattering. It affects longer wavelengths 

compared to Rayleigh scattering. 

Non selective scattering occurs when the size of the particles are 

much larger than the sensed wavelength radiation. Water droplets and 

dust cause this type of scattering, which affects all wavelengths equally, 

resulting in white fog or cloud. 

3.4.2 AbsojRtion 

Unlike scattering, atmospheric absorption results in the effective loss 

of energy to the atmospheric constituents such as water vapour, carbon 

dioxide, ozone,, nitrogen and oxygen. These constituents interact with the 

electromagnetic radiation by vibration and rotation transitions which cause 
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absorption of energy in specific wavelength regions. As shown in Figure 

3.4, these regions appear narrow at the short wavelengths but increase in 

width toward the infrared and microwave regions. The regions of the 

electromagnetic spectrum, in which atmospheric absorption is low, are 

called atmospheric windows, and these are used to acquire remote sensing 
data. 

From the above, it is clear that EMR is affected unavoidably, in many 

ways, by the atmosphere. The other components that affect electromagnetic 

radiation are the various types of feature that cover the earth's surface and 

cause radiation to be differentially reflected. 

3.5 Interaction of EMR with rocks aatmilinda 

Rocks are natural aggregates of one or more minerals. The study of 

rocks is based on methods drawn from mineralogy, geology, chemistry and 

physics, and the first step in their study requires an identification of the 

minerals present in them. The reflection and absorption spectra of rocks are 

a composite of the individual spectra of its constituent minerals. The 

spectra of minerals and rocks are dominated by either electronic or 

vibrational transition processes, since the rotation transition processes are 

restricted to gasses (Section 3.3). Laboratory studies of the visible, near and 

mid infrared spectra for minerals and rocks have received widespread 

attention in the literature (Hunt and Salisbury, 1970,1971 and 1976 a and b; 

Hunt et al., 1971,1974 ; Blom et al., 1980; Adams et al., 1982, Segal et al., 1986; 

Krohn, 1986; Whitney et al., 1983; Ross et al., 1989) where they have 

published visible, near and mid infrared spectra of a large number of 

minerals and rocks. These spectra are used as a guide by most geological 

remote sensing studies. 
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3.5.1 Visible and NIR s2ectra (0.4 - 1.0 MM) ran ge 

The spectra of geologic materials, in the visible and near infrared 

region of the electromagnetic spectrum, are dominated by the electronic 

transition process that were described earlier (Section 3-3). However, 

silicon, aluminiurn and oxygen, which are the major constituents of crustal 

rocks, do not have any electronic energy levels that show features in the 

visible and near infrared region of the spectruzn. On the other hand, the 

less abundant transition elements of iron, copper, nickel, chromium, cobalt, 

manganese, vanadium, titanium and scandium have many excited states 

within this region of the electromagnetic spectrum (Elachi, 1987). 

In the visible region the colour of an object could be a result of, either 

a specific absorption in this region, or an intense absorption in the adjacent 

wavelength region (near infrared or ultraviolet), where the absorption wing 

extends forward or backward into the visible. An example of this is olivine 

which has a green colour due to a major absorption band at 1.1 gm WIR) 

and 0.4 M (LTV) (Hunt, 1980). 

Electronic transitions within atoms usually require more energy than 

vibration transition within molecules, therefore the electronic transitions 

are characterised by short wavelength - visible and near infrared absorption 

bands (0.4 - 1.1 gm) -- whereas the vibration transitions dominate the 

longer wavelength, mid and thermal infrared, regions (Podwysodd et al., 

1986). 

In the visible part of the EM spectrum, iron is the most important 

constituent and its effect is pervasive (Drury, 1987). Iron occurs widely on 

the earth's surface as a principal constituent of many materials; sometimes 

it partly replaces some of the elements, such as aluminium, magnesium 
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and silicon. Furthermore, iron ions can easily dissolve in water, which 
leads to an increase in their distribution in terristerial materials. The last 

two factors make iron a widespread element in most geological materials 
(Hunt, 1980). 

The ferric ion displays a strong absorption band starting at the ultra- 

violet-blue region, due to charge transfer effect (Figure 3.6), and decreasing 

in absorption gradually toward the longer wavelength within the visible 

range. Iron ions also display absorption features at different wavelengths 

caused by the crystal field effect (Figure 3.8). Manganese also displays a 

strong absorption in the blue part of the spectrum. Examples of minerals 

that display absorption in the visible and near infrared region are iron 

minerals such as hematite, goethite and jarosite (Figure 3.6). Amphiboles 

and micas display absorption at about 1.0 Pm caused by the presence of iron. 

Olivine displays a broad band in this region (Figure 3.10). Pyroxene 

minerals such as augite display an absorption feature at about 1.1 gm and 
0.77 gm due to ferrous and ferric ions respectively (Hunt and Salisbury, 

1970). 

3.5.2 Nfid infrared regiQn (1-0 - 3.0 pml 

The absorption and reflection spectra within the region 1.0 - 3.0 gm is 

dominated by vibrational processes (Section 3.2.2). The most common 

active constituent is the hydroxyl ion (Hunt and Salisbury, 1971). The 

hydroxyl ion has a band near 2.7 gm, but its exact location depends on the 

site and the nature of the atom attached to it. Hydroxyl ions are commonly 

present in combination with aluminium and magnesium, e. g. Al-OH and 
Mg-OH in days and hydrated silicates which cause a number of absorption 
features between 2.1 - 2.4 pm region. The Al-OH vibration band occurs at 2.2 
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gm, whereas the Mg-OH is at 2.3 gm. If both were present, such as in the 

case of kaolinite, then a double spectral feature would be noticed. The 

strongest absorption would occur at 2.3 gm. and a weaker one at 2.2 gm. 

Figure 3.9a and b illustrates the different spectral features for different 

hydroxyle minerals. Areas that have been hydrothermally altered, usually 

contain clay (hydroxyl) minerals such as kaolinite, montmorillonite, 

muscovite and alunite. These minerals display strong absorption in the 

region between 2.1 - 2.4 gm (TM band 7), and have their peak reflectance at 

about 1.6 gm (TM band 5). Therefore these regions provide valuable 

information about the abundance of these minerals (Hunt, 1980). 

Carbonates display similar absorption features between 1.6 and 2.5 ýun 

due to overtones and combinations of the fundamental vibrations (Hunt, 

1980). Carbonate minerals such as calcite, dolomite, magnesite and siderite 

display an absorption feature at 2.35 W, which can be sensed by 7M band 7. 

Siderite has an extra strong absorption feature at 1.1 gm caused by electronic 

transition in iron (Figure 3.9c). 

From the above discussion, it can be summarised that the spectrum 

of a mineral is the result of the interaction between its constituent elements 

and the crystal field structure. Rocks are natural aggregates of different 

minerals. Therefore, the spectra of rocks depends on the spectra of the 

constituent minerals, their grain size and mixing, hence the interpretation 

of the spectra is very complicated. An example is shown in Figure 3.10, in 

which the addition of a small amount of an opaque or dark mineral 

(magnetite) to a reflecting mineral (olivine) reduces the overall reflectivity 

sharply. Representative laboratory spectra of some igneous rocks are shown 

in (Figure 3.11). 
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In addition, the curves, that show the spectral behaviour of the 

different minerals and rocks described earlier, were measured under 
laboratory conditions, and this reduces the complication caused by 

environmental factors such as atmospheric absorption and scattering. 
Another factor, is the breadth of the spectral bands detected by the satellite 

multispectral sensors, in which one band may cover the reflection by many 

different groups of minerals. For example, although TM band-7 is the best 

contributor to rock discrimination, its spectral breadth (2.0 - 2.35 Am) covers 

all carbonates and the hydroxyl minerals' spectral features (Figure 3.9a) and 

therefore prevents their precise identification. Another factor is the effect of 

weathering, which also presents a major problem in identifying rocks and 

minerals, from their spectral features (Watson, 1972; Settle, 1984). In 

particular, in desert areas a thin surface of manganese and iron oxides 
known as desert varnish frequently coats the rock surfaces (Adams et al., 

1982). When the thickness of such a coat exceeds the maximum penetration 

of the radiation, 50 gm (Buckingham and Summer, 1983; Spatz et al., 1987 a 

and b), then, irrespective of its composition, it appears dark in the visible, 

near and mid infrared images. The effect and origin of this desert varnish 

are discussed in greater detail by Buckingham and Summer (1983) and Spatz 

et al. (1987b), (1989). 

Because of the difficulties stated above, laboratory spectra should only 
be used as a guide in interpreting the spectral information acquired by the 

satellite systems and not as a definitive tool (Siegal and Gillespie, 1980). 

Despite all of the difficulties just stated, satellite images do provide a great 

amount of geological information (Siegel and Gillespie, 1980; Podwysocki et 

al., 1986; Drury, 1987; Rothery, 1987; Gupta, 1991). Pontual (1987) suggests 
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that the average weathering effects may be negligible over the 30 x 30 M2 

pixel area of the TM data because the rocks in and areas, especially, weather 

to characteristic mineral assemblages which combine to give a distinctive 

spectrum. 

3.6 Summary 

In the first section of this chapter the basic information about the 

electromagnetic radiation was described. The information about the 

division of the electromagnetic spectrum that is related to this study, the 

visible, near and mid IR, were also described. This was followed by a 

description of the way in which electromagnetic radiation interacts with 

matter, and how it plays a major part in revealing information about an 

object. It has been demonstrated that, although the atmosphere plays a 

major role in restricting our ability to exploit and use the visible, near and 

mid-IR, we can still gather valuable information about these objects using 

the remaining windows. 

The variation of reflected, transmitted and absorbed energy from one 

wavelength to another forms a valuable base for discriminating between 

different minerals and therefore different rock types. However, when 

dealing with real spectral features, that are derived from a satellite, 

additional complicating factors may intrude, which may change the 

apparent spectral reflectance of such minerals. When dealing with rocks, 

which are a natural aggregate of minerals, the situation becomes more 

complicated, and the net reflectance spectrum may be quite different from 

its constituents. However, as different mineral groups are present in 

different rock types, it is possible to describe broadly the spectral 

characteristics of rocks based on the spectra of their constituent minerals. 
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Hence, remote sensing data collected over and and semi-arid areas, can 

provide a valuable amount of geological information. 
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4.1 Introduction 

Up until 1960, remote sensing data were mainly acquired from 

balloons, rockets or aeroplanes. By April 1960 a systematic orbital 

observation of the earth began by the launch of the first Television and 

Infrared Observation Satellite (TIROS-1), the first meteorological satellite. 

Since then a number of remote sensing satellites were launched. A detailed 

description of them can be found in Freden and Gordon (1983), Curran 

(1985), Jensen (1986), Richard (1986), Drury (1987), Liffisand and Kiefer 

(1987), Sabins (1987), Cracknel and Hayes (1991), Morelli (1992) and Morgan 

and Szejwach (1992). 

One of the major developments in the field of earth's surface remote 

sensing was the launch in July 1972 of the first Earth Resource Technology 

Satellite (ERTS-1) which later was named Landsat-1. It and its successors 

have been widely used by geologists and geographers (Short, 1982; Drury, 

1987; Sabins, 1987; Gupta 1991) and because of that, the Landsat series of 

satellites will be described in this chapter. In addition, the image processing 

systems used in this study will be briefly described. 

4.2 Landsat satellite Rrag= 

After about 10 years of planning and study by NASA, the first Landsat 

satellite, then called ERTS-1 (Earth Resource Technology Satellite-1) was 

launched on July 23,1972 using a Thorn-Delta rocket. It was the first 

unmanned satellite system designed and operated solely for the study of 

land resources on a systematic, repetitive, medium resolution and 

multispectral basis (Mather, 1987). Landsat series operated under NASA up 

to 1983 when NOAA took that responsibility and in 1985 became under 

EOSAT Company. Five Landsat satellites have been launched since 1972; 
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they belong to two generations of technology with different platforms and 

orbital characteristics. Table (4.1) summarises these characteristics. One of 

the most significant features of this Landsat satellite programme was the 

decision to make all the data available to any one interested in it, at a 

reasonable price, and this has led to the establishment of a world-wide 

network of nationally and jointly-owned and operated receiving stations 

(Figure 4.1). 

The first generation (Landsats-1 to -3) had identical orbit 

characteristics as summarised in Table (4.2). Their orbits were near polar, 

circular, repetitive, and sun synchronous. They covered most of the earth's 

surface (between 821N and 82"S), and the circular orbit provided a relatively 

constant imagery scale. The sun synchronous orbit meant that it crossed the 

equator at approximately the same local sun time of about 9: 30 a. m. The 

satellite altitude was about 918 kilometres (varying between 880 and %0 

kilometres); they completed each orbit around the earth in about 103 

minutes, resulting in 14 orbits a day, with a ground track speed of about 6.46 

km/sec. Figure 4.2 shows the N to S ground traces for the satellite orbits for 

a single day. They cross the equator at 9* from normal. 

Two image sensors were carried in this series (RBV and MSS). The 

Return Beam Vidicone (RBV) camera system on board Landsats-1 and -2 

consists of three television-like cameras, that frame the same 185 x 185 km 

ground area simultaneously, with a nominal ground resolution of 80 m 

and spectral sensitivity of three bands: green (0.475 to 0.575 Wn); red (0-58 to 

0.68 gm); and near-infrared (0.69 to 0.83 gm) and named Bands 1,2 and 3 

respectively. The RBV cameras operate without the need for film; their 

images are exposed by a shutter device and stored on a photosensitive 
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surface which is then scanned by an electron beam to produce a video signal 

just like the television camera. The RBV system on board Landsat-3 

provided much improved ground resolution of 30 m, using just one 

spectral band range between 0.5 to 0.75 gm, with two cameras aligned to 

view adjacent ground areas with 14 kilometres overlap, giving 183 x 93 krn 

image. 

The second generation of Landsat Series consists of two satellites, 
launched in July 16,1982 and March 1,1984 and named Landsat-4 and -5 

respectively. They differ in their orbital characteristics in that, they have a 

lower altitude of 705 km (Table 4.1 and Figure 4.2), in order to achieve both 

higher resolution and shuttle recovery for refurbishing. The number of 

orbits per day was increased to 14.56, which gave a repeat cycle of 16 days, 

and crossed the equator at 9: 45 a. m. local time. The imaging sensors carried 

on these satellites are MSS and Thematic Mapper (TM) (Table 4.2) and will 

be discussed in greater detail in sections 4.2.1 and 4.2.2. 

Although it is TM data which has been used in this study, both the 

MSS and TM sensors will be described here, to show the improvement of 

TM compared to MSS both spectrally and spatially, which justifies using it 

in this study. 

4.2.1 Landsat MSS 

The MSS system is the only sensor which was available in the five 

Landsat satellites, it was the first satellite sensor in producing data in a 

digital format which made it possible to process the imagery using a 

computer, thus leading to their widespread use. From a geological point of 

view, the MSS system has revolutionised the geologist's view of the earth, 

in terms of synoptic views, and more importantly, by giving the 
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opportunity to observe the earth at wavelengths outside the range of 

human eye's sensitivity (Goetz, 1989a). 

The MSS is a mechanical scanner that sweeps the ground below (185 

km swath width) normal to satellite motion in four wave lengths, two in 

the visible range at 0.5 - 0.6 gm (green) and 0.6 - 0.7 pm (red), and two in the 

Near IR at 0.7 - 0.8 gm and 0.8 - 1.1 gm. These four bands were named 

Bands 4,5,6 and 7 respectively in Landsat-1 to -3. However, these bands 

were renamed as Bands 1,2,3 and 4 in Landsat-4 and -5. The MSS on board 

Landsat-3 has an extra band named Band 8 in the thermal region (10.4 - 12.6 

gm) but failed shortly after launch due to operating problems. 

The total field of view is approximately 11.560; this has been increased 

in Landsat-4 and -5 to 14.9211 to maintain the 185 km swath at the lower 

altitude of 705 km (Figure 4.2). The instantaneous field of view (IFOV) is 

about 79 m, which has also been modified in Landsat4 and -5 to 82 m due 

also to the change in the satellite's altitude (Lillisand and Kiefer 1987). 

The reflected light from the earth's surface is directed by an 

oscillating mirror (Figure 4.3), with an active scan line (during the west to 

east phase) every 33 msec, which continuously focuses the ground image 

into a series of fibre optics arrays (24 light pipes). Each light pipe leads to a 

filter/detector arrangement. This arrangement produces a6 line, 4 band 

image. Each line is over sampled to give 23 m overlap. The IFOV is 79 x 79 

m and the radiometric range, after conversion to digital form, is 64 bits. 

4.2.2 Landsat (TM) 

Since it was carried out on board Landsat-4 (16 July 1982), the data 

collected by the TM sensor have gradually shifted the attention of the 

geological remote sensing community away from Landsat MSS data 
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(Rothery, 1987). The high spatial resolution capability of TM (30m for 

reflected bands) brings space-born remote sensing into the category similar 

to high altitude aerial photography (Haydn, 1983). The diversity of spectral 
bands on TM, which include part of the infrared, have proved to be more 

suitable than the MSS for lithological. studies and offers a new capability for 

discriminating different objects (Abrams et al., 1983; Goetz et al., 1983; 

Haydn, 1983; Williams et al., 1983; Bernstein et al., 1984; Townsend, 1986; 

Rowan et al., 1987; Haack and Jampolar, 1987, Rothery, 1987, Abrams et al, 

1988; Crosta and Moor, 1989). 

The TM sensor carried by Landsat-4 and -5 is a highly advanced 

multispectral scanner that has new and more optimally placed spectral 

bands, finer spatial resolution and geometric design improvements relative 

to MSS (Williams et al., 1983). The TM has seven spectral bands covering 

the spectral region from 0.45 to 12.5 gm (Table 4.2). Three of them are in the 

spectral range of the MSS (green, red and reflected infrared) but with a 

narrower band width, which improves the spectral sensitivity, and four 

new spectral ranges. These include a 'blue' band, which makes it possible to 

produce natural colour images using the three bands in the visible region, 

and two bands in the infrared region. In fact Band-7 (2.08 to 2.35 gm) was 

added after the initial planning phase, at the request of the geological 

community (Richards, 1986). The fourth 'new band' was in the thermal 

infrared region. The wavelength and location of the TM bands were chosen 

to enhance the spectral differences of major earth's surface features. 

Unlike the MSS, the TM scanning mirror collects data in both 

directions, with a sweep rate of 6.99 Hz (13.67 Hz in MSS) which gives a 

higher affective scan time for a given spot on the ground which, in turn, 

73 



Relay 
folding 
mirror 

Focal 

/0 

plane 

Scan 
line 

corrector 
PI. 

Silicon detectors 

01 and filters 
bands 4 

3 
2 

Bands 
5 
6 
7 

Cooled 
detectors 
and filters 

Relay 
sphere 

Figure 4.4. Thematic Mapper optical system (from Elachi, 1987). 

Earth mirror 
direction 



improves the signal to noise performance, and makes it possible to achieve 

a higher spatial resolution of 30 m. 
The TM sensor (Figure 4.4) has a scan line corrector, placed between 

the scan mirror and the detector, which rotates the TM line of sight 

backwards along the satellite direction in order to correct for the forward 

motion of space craft, and this produces a straight scan line perpendicular to 

the satellite motion. 

The number of detectors was increased to 16 detectors for each of the 

6 reflected bands and 4 detectors for the thermal band, and that implies that 

16 lines for each reflected band and 4 lines for the thermal band are collected 

simultaneously with each sweep of the mirror. Instead of using fibre optics 

to transfer radiation to the detectors, the detectors are placed at the focal 

planes of the optical system. The detectors for bands 1 to 4 are located in the 

primary focal plane assembly whereas the detectors for bands 5 to 7 are 

located in the second focal plane assembly. 
The radiometric quantisation level for the TM is improved from 64 

to 256 which means small differences in reflection between objects can be 

measured. The data from the Landsat sensors is relayed, either directly, or 

over the Tracking and Data relay satellite (TDRS), to the ground receiving 

station. On the ground, the data are recorded temporarily on a High Density 

Digital Tape (HDDT), then the data are partially corrected, preprocessed and 

reformatted for supply to users in different forms; the most widely used is 

the computer compatible tape (CCT). 

C3 Computer Compatible Tage and Data Formal 

The medium used for the data in this study was the computer 

compatible tape (CCT). The CCT is a sequential storage medium. Nine 
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tracks parallel to the tape length are used to record the data. On the CCT, 

the data are organised into a number of files, e. g. header, which contain 

information about location, date, type and condition of sensor elevation, 

sun angle, etc. The image file contains the spectral data. Within the image 

file, the data for each pixel are stored as a byte across the tape in binary mode 

(8 bits, with a DN range 0-255), keeping the ninth bit free for parity 

checking. The density of bits along the tape can be 800,1600, or 6250 bit per 

inch (bpi). 

Due to the fact that no world-wide standard format has been agreed 

upon, the format of the tape needs to be known in order for the computer to 

read it. Once known, a suitable algorithm can be used to read the data to a 

computer disc. The most widely used formats are the Band Sequential 

(BSQ) format, and the band interleaved by line format (BIL). 

In the BSQ format each band is written as one file, and the user can 

read each band separately and skip the unwanted bands. The structure of 

the data in a BSQ format is summarised, in Figure 4.5a. In the (BIL) format 

the data for the bands are written line by line onto the tape as "Line 1 Band 

1, Line lBand 2" and so on (Figure 4.5b), which means that all the bands 

have to be read simultaneously or serially, which is useful if all the bands 

are to be used (Jensen, 1986). The format of the tapes used in this study was 

BSQ, with a data density of 6250 bpi. 

4.4 DWtal Processing Syltgms 

Digital remote sensing data can be analysed using a digital image 

processing system. Many software and hardware image processing systems 

are available in the market starting from a very simple image processing 

software, which costs no more than a hundred pounds and can be run on a 
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personal computer, to a mainframe system with built-in software, which 

could cost hundreds of thousands of pounds. The choice of which to use 

depends on the scope, nature and volume of work and also the level of 

financial support available. 

Several image processing software and hardware were either listed or 

described by Freden and Gordon (1983), Nicholas (1983), Jensen (1986), 

Mather (1987) and Harris (1987). A typical image processing system consists 

of four main components (Harris 1987): a magnetic tape drive to read the 

CCTs, a disk storage of data for fast access, a processing software and a colour 

monitor for display. 

The remote sensing laboratory used at Stirling University consisted 

of a magnetic tape drive, a Nficrovax 1[[ on which there was software for data 

reading and processing, a personal computer with R-CHIPS software and a 

high resolution colour monitor which was connected to the Microvax- 

IDRISI software was available on another PC but not connected to the 

Nficrovax, and the data was transferred to a floppy disk in order to process 

them using IDRISI software. In addition to that, a digitising camera is 

available, and a Laserscan system. 

4.4.1 Microvax H 

The hlicrovax had a storage capacity of 380 megabytes for images and 

was connected by serial lines to three terminals, a 1600 bpi tape drive, PC 

computer and a digitisation camera. It had an image processing menu 

system which consisted of a list of program options designed and written by 

A. I. Watson. The reading of the digital data from the CCT tape drive and 

most of the image preparation and processing techniques used in this study, 

were made through this system. 
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4.4.2 R-CMPS Software 

R-CHIPS is an image processing software system. It combines a 

graphic display card with a user friendly menu system that enables the user 

to control and manipulate images on a high resolution graphic screen. The 

R-CHEFS menu interface was structured so that programs with similar 

functions were grouped together into thematic menus which are accessed 

from a main menu (i. e., a tree menu system). The image inspect menu was 

available from all the five thematic menus as the top option. Each of these 

options contained a series of sub menu systems. More information can be 

found in the R-CHIPS manual, Version 3.0. 

4.4.3 IDRISI Software 

y, is system that was designed to IDRISI is a grid-based geographic anal s 

provide inexpensive access to computer-assisted geographic analysis 

technology and digital image processing. 

IDRISI is a collection of almost 100 program modules that are linked 

by a unified menu system. These modules fall into three groups: 

1. Core modules which provide utility of entry, storage, 

management, display and analysis of the data. 

2. Ring module which provides extension of GIS or image processing 

modules. 

3. Peripheral modules associated with data conversion utilities 

between IDRISI and other data formats. 

The non standardised. principal components analysis, found in the 

image processing ring module was used in this study. 
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4.5 &Waration of the data 

The general procedures followed in order to get digital data as an 

image display on the colour monitor are as follows: 

1. The computer compatible tapes (CCT), which contain the TM data 

used in this study, were brought from the Saudi Remote Sensing Center in 

Riyadh. They have a TM data density of 6250 BPI. However, the tape drive 

in the remote sensing lab in Stirling University could only read tapes with 
data density of 1600 BPI. Hence, the data was first taken to the computer 

centre in the University and copied to the main frame disc storage, and then 

two lots of three bands were transferred to two 1600 bpi CCT. (The thermal 

band was excluded because of its serious distortion. ) 

2. The 1600 (BPI) magnetic tapes were loaded in the remote sensing 
lab tape drive and the data was transferred to the Microvax disk storage 

using the program "ETAPE"avaflable on the Microvax 

3. A quick look of 512 x 512 pixels was then produced for the whole 
image using the option '"IM QUICK LOOK" in the Microvax menu system. 

This program would display the whole quad by taking a sample of every 

eighth pixel and line. This image was then transferred to the R-CHIPS 

system for the selection of the test area. 

4. The X and Y co-ordinates for the top left comer of the test area can 

then be taken to specify its location in the tape, using the Zoom and Roam 

options in the R-CHEFS menu system. 
5. Using the option (Image Cut) from the Nficrovax image processing 

menu system, a sub scene of any size would be cut with full resolution, and 

stored on the storage disk. It could also be transferred to the R-CHIPS 

system for display or image manipulation. The image processing programs 

were run on both the Microvax and the R-CHEPS. IDRISI software was used 
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only to run the principal component analysis. A brief description of how 

each processing step was done will be given in later chapters. Once 

processed, the data was transferred to R-CHEPS system for image display on 

the colour monitor. 

4.6 Summa 

Landsat satellites have changed the view of many scientists 
(especially geographers and geologists) of the earth's surface in two ways: a) 
by providing synoptic views, and b) by providing a wider range of 

wavelengths. From the discussion in Section 4.2.2 it is obvious that the 

Landsat thematic mapper (TM) sensor is far superior to the Landsat 

multispectral scanner (MSS) in terms of its spectral, spatial and radiometric 

resolution, and therefore would provide more detailed information about 

objects on the earth's surface. Compared to other current satellite sensors, it 

may represent the best candidate to provide lithological information about 

the earth's surface. 
jaskolla and Henkel (1988) have demonstrated that, although 

multispectral SPOT data may have better spatial resolution (20m) than the 

TM data, the limited number of bands (three band only) and the high 

correlation of the spectral bands S1 and S2 (green and blue) of the 

multispectral SPOT data decrease strongly its usefulness in geological 

applications. This chapter has also reviewed the characteristics of the 

computer compatible tapes and the image processing systems used in this 

study, as well as the general procedures followed in the preparation of the 

data. 
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5.1 Introduction 

As discussed earlier (Chapter 4) the satellite sensor produces data in a 
digital form. In general, one may define a digital image as a two 

dimensional array of n-tuples; each of these n-tuples; represents the amount 

of light reflected in each band (n) from an area on the ground (IFOV, 

instantaneous field of view) (Schowengerdt, 1983). Manipulation of such 

images using a computer is called Digital Image Processing (Gillespie, 1980). 

In general, multispectral information can best be accessed and 

analysed through digital and interactive processing techniques (Haydn, 

1983). The use of digital format allows the user to transmit, store, retrieve 

and use the satellite image in a highly flexible way. Furthermore, unlike 

photographic images, digital images do not deteriorate with age. Applying 

the same processing program to the same image will produce exactly the 

same result, regardless of the number of times, or type of machine used, 

which is not always true of photographic products. 
It is probably useful to mention that digital image processing did not 

originate with satellite remote sensing, and is not restricted to its data. 

Many other medically oriented applications, for example, were developed 

previously. However, the successful launch of Landsat-1 in 1972 marked 

the approximate start of increased interest in developing and using 

computer processing of digital images (Campbell, 1987). 

Digital image processing is a very broad subject, and involves 

complex mathematical operations, which may include an equation or series 

of equations, written as computer programs, to be applied to the input 

images, when needed. The result of such operations, produces a new digital 

image, which may form the end product, or an intermediate product for 

further processing. 
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In this chapter, a simple description will be given for a number of 

digital image processing techniques, that were used in this study, a detailed 

mathematical description of such techniques is beyond the scope of this 

work. The end of this section contains a list of some of the references in 

this field to be referred to for detailed information. This chapter starts with 

the pre-processing operation, used to minimise the haze component 

produced in the satellite images by the atmosphere, as described previously 

(Section 3.4); it also describes the methodology and results of such 

operations. This is followed by a description of the different techniques for 

image enhancement, which include a) contrast enhancement -- different 

types of histogram stretching; b) selective enhancement of spatial 

information in the image (spatial filtering); and c) the more complex 

operations of image transformation on multi-band image sets such as the 

principal component analysis, image ratios, canonical analysis, 

decorrelation stretch and hue saturation-intensity transform 

The equally important subject of image classification will be discussed 

in (chapter 7). A useful review of digital image processing can be found, for 

example, in Bernstein (1976), Mulder (1980), Estes et al (1983), Schowengerdt 

(1983), Bernstein et al (1984), Ekstrom (1984), Jensen (1986), Niblack (1986), 

Richards (1986), Lillisand and Kiefer (1987), Mather (1987), Gonzalez and 

Wintz (1987), Campbell (1987), Muller (1988), with discussion related to 

geological application in Gillespie et al. (1986), Drury (1987), Sabins (1987), 

Goetz (1989a), and Gupta (1991). 
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5.2.1 AtmosRheric correction 

As discussed in section 3.4.1, atmospheric gases and particles scatter 

the shorter wavelengths of light more strongly (Drury, 1987, Mather, 1987). 

This scattering produces haze that has an additive effect on image 

brightness, and results in low image contrast. For Landsat TM data, Band 1 

(0-45 - 0.52 gm, blue) has the highest scattering effect whereas Band 7 (2.8 - 
2.35 pm, infra-red) has the least. If, for example, a band ratio technique 

(section 5-6) is performed to produce a ratio image, of band 7 over band 1 or 

vice versa, the value of the output ratio will not represent the true ratio. 

This is due to the fact that these two bands are not equally affected by 

scattering and therefore an atmospheric correction is needed to eliminate, 

or at least minimise, this effect. 
Processing operations to correct for atmospheric scattering vary from 

1) highly sophisticated techniques, such as a) using methods based upon 

efforts to model the physical behaviour of the radiation as it passes through 

the atmosphere, e. g. by modeling the physical process of scattering at the 

level of individual particles and molecules (Campbell, 1987); or b) 

procedures based on in situ field information, which enables the analyst to 

assess the atmospheric component, to 2) a more simple procedure such as 
identifying a dark object in the scene such as shadow caused by topographic 

variation (Berlin and Chavez, 1986). In a clear atmosphere, the reflection 
from such 'dark! objects should be very low, near zero reflectance, and the 

only source of energy directed from such areas is atmospheric scattering. 
Normally, the data collected in the visible region (TM 1-3) have 

higher minimum values, caused by the high atmospheric scattering taking 

place in these wavelengths. By examining the histogram of such images the 
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lowest value in each band can be set to zero. Another procedure involves 

the application of regression methods of plotting pixel values for the least 

affected band, such as Landsat TM B7 against the values in the other bands 

(Crippen, 1986; Sabin, 1987). 

Each of the previously described methods have their advantages and 
limitations. The first method (which uses the physical models or in situ 

field information) is more accurate, and could adjust to approximate true 

values observed under clear atmosphere. However, the physical modeling 

is very complex and requires detailed meteorological information, such as 

atmospheric humidity and concentration of atmospheric particles, which 

may be difficult to obtain in the necessary detail. Furthermore, the 

condition of the atmospheric change with the altitude, and the radiosound 

data that record changes with altitude, are routinely collected at only a few 

locations (Campbell, 1987). More important is that these methods cannot be 

applied to already collected data, where no information other than the 

digital data itself is available. With such conditions the dark obejct method 

may be the only option available. 

However, Chavez (1988) pointed out that, in using the dark object 

method described above, difficulties may be encountered. The data may be 

over corrected in some or all bands due to the fact that haze values for each 

band are selected independently. To overcome this problem, he described a 

method called "improved dark object subtraction technique", which allows 

the user to select a relative scattering model, to predict the haze values for 

the spectral bands; hence the haze values will be wavelength-dependent 

and correlated with each other. This technique was used in this study. The 

basic steps of correcting the scattering effect on this data, using the improved 

dark object subtraction techniques, are as follows: 
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A frequency histogram print was generated using a large portion of 

the raw data (2048 pixel x 2048 line) for TM bands 1,2,3 using IDRISI 

software package. The histogram of these raw bands were found to be offset 

toward higher values, by some amount, due to scattering. The histogram 

print of band 1 was then checked to locate the starting haze value, where a 

relatively abrupt increase occurs in the number of pixels at a given grey 

level. The amplitude of the starting haze values was used to select a 

relative scattering model, which best represents the atmospheric conditions 

at the time of data collection, e. g. very clear, clear, moderate, hazy or very 

hazy. 

The two well known relative scattering models are the Rayleigh and 
Nfie models. As described in section (3.4.1) the Rayleigh models states that 

the degree of scattering is inversely proportional to the fourth power of the 

wavelength (0), therefore the shorter wavelength Will be scattered more 

strongly than the longer wavelength. The Mie scattering model states that 

the relation between wavelength and relative scattering varies from X* to 

X-4, where X" describes total scattering such as complete cloud cover. 

Chavez (1988) states that relative scattering occurs in clear atmosphere and 

seems to follow X-2 to X-0.7 and not Rayleigh or INfle scattering, and in a hazy 

condition is approximately ; L-0.7 to ; L-0.5 and he supplied a relative scattering 

model as follows: 

Atm. Condition 

very clear 
clear 
moderate 
hazy 
very hazy 

Relative Scattering Model 

)L4 

X-2 

X-1 

)L-0.7 

; L-0.5 

86 



The relative scattering model for this area was found to be very dear 

(see Table 5 in previous refemue), and dds model was then used to predict 

the haze values for the other spectral bands, using the following equation 

(Chavez, 1988), and consulting the tables given by him. 

DNO - BI Fl 0 Ni + Si 

whereas DNO = output DN for band i 

BI starting haze value for band I 

Fi m 

Ni 

si 

relative scattering model multiplication factor for 
bond I (see Table 2 in previow refenme) 

Norm for band i (See Table 3 in 
previous reference) 

ottm 'et of band i (see Table 3 in previous 
reference) 

Using the above equation and the tables supplied by Chavez (1988), 

haze value for band 2 was calculated as follows: 

DN2 w 56 0.51 + Z" 

M or 11 

I'he sanw procedures were used for bands 3 and 4 for the four tat area, and 
the stuft haze values for these two bands were found to be 12 and 6 

respec! M 
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A piogianurte called ADDSUB, available in the MicroVAX, was then 

used to subtract the haze values from each pixel of the TM bands-1, -2, -3 

and 4. The ankount of atmospheric scattering that occurs at TM bands -5 

and -7 is very small, except for very hazy atmosphere, and can be considered 

negligible, and a haze DN value of zero can be used for bands -5 and -7 
(Chavez, 1968). 

5.3 Cnntm . nhaiwtmenf 

The lAndsat satellite sensors were designed to be capable of detecting 

a wide range of terrain brightness, from oceans or bladc basalt plateau, to 

snow or desert area A very few individual scenes have brightness ranges 

that utilise the full sensitivity range of the sensor. Therefore, pixel values 

in Landsat scene commonly occupy a relatively small part of the possible 

range of image values (Figure 5.1a). The examination of the image 

histogram (Figure 5-1b) is a useful and necessary preliminary step for 

successful of image contrast The image histogram describes 

the frequency of occurrerwe (along the vertical axis) of the grey levels (along 

the horizontal axis) in an image. Ron the previous figure, it can be seen 

that the pixel values occupy only a small area of the available range. This 

limited range causes the low contrast of the original image. Therefore the 

contrast tediniques were used to stretch the data to occupy 

the full range of the grey levels available; this produced an image with 

greater range and shows greater contrasL Of the many methods available 
for contrast stretching the two most popular are the simple linear stretch, 

and the histogram equallsation stretch. A new method will also be 

descr&W here, which was developed by Guo and Moore (1909). 
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Figure 5.1: TM band-1 image of Silsilah ring complex: (a) is the original 
image with its corresponding histogram (b). 



5.3.1 Linear contrast stretch 

In this type, the range of input image values is expanded uniformly 

to fill the full dynamic range of the display device. This can be 

accomplished by assigning the low end of the original histogram to extreme 

black (zero DN value), and the value at the high end to extreme white (255 

DN value). The remaining pixels are distributed linearly between these two 

extremes as shown in Figure (5.2). This leads to an image with greater 

contrast. 

The linear stretch is applied to each pixel in the image using the 

equation: 

DNout (DNin - MEN / MAX - M]DJ) DNr 
where: 

DNout output image digital number 

DNin input image digital number 

AEN minimum value of input image 

MAX maximum value of input image 

DNr the range of DN values that can be 
displayed (eg 255) 

To achieve a greater contrast increase, some saturation at one or both 

extremes of the output range could be specified by the analysts, using a MIN 

and a MAX, that lies a certain percentage of pixels into the tails of the 
histogram. 

This type of contrast stretch is found in most of the image processing 

systems. It was applied in the initial stages of this study for quick check of 

study areas and the "quick look" images using either the "MANUAL 

CONTRAST STRETCH" option on CHIPS to identify the minimum and 
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maximum values to be assigned, or by directly using the option 
"AUTOMATIC CONTRAST STRETCH", which stretched the data 

automatically with 2.5% saturation in both ends of the histogram. 

5.3.2 Histogjam equalise stretch 

This is a more sophisticated method of contrast enhancement. The 

principle of this type of stretching, is that each histogram class (0-255) in the 

displayed image must contain an approximately equal number of DN 

values, and hence, after transformation, an almost uniform histogram 

results. Therefore, the high frequency DN values become more spaced, 

whereas the low frequency ones are amalgamated. The procedures for this 

type of stretching are described in great detail by Mather (1987) and Richards 

(1986). Histogram equalise stretch tends to reduce the contrast in both the 

very light and very dark areas in the image (Figure 5.3), and expands the 

middle grey level toward both ends of the output histogram. This is due to 

the gaussian (normal distribution) shape of most of the image histograms. 

This type of stretching was performed in this study, using the option 
"HISTOGRAM EQUALISED STRETCH" in CHIPS software menu system, 

which applied this type of stretching, automatically, without any input from 

the analyst. 

5.3.3 Balance contrast enhancement technique (BCET) 

The previously described linear contrast stretch, can stretch an image 

to a defined minimum and maximum, but may result in a colour bias if the 

average brightness in one band is significantly higher or lower than the 

other two bands of the colour composite image. The histogram equalize 
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Figure 5.2: A simple linear contrast stretch of histogram in Figure 5.1(b). 

Figure 5-3: Histogram equalize stretch of Figure 5.1(b). 
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stretch could cause a change in the shape of the histogram which may cause 

loss of some information (Guo and Moore, 1989 and Guo 1991). 

The previous references described a stretching technique called 

Balance Contrast Enhancement Technique (BCET). This is particularly 

useful for performing a stretch for a colour composite display, and can 

stretch the data, without causing colour bias, by stretching (or compressing) 

each band to a user defined maximum, minimum and mean. Thus the 

three bands used for colour composite can be transformed to have the same 

range and average brightness, which may not be the case for the ordinary 

linear contrast stretch. The BCET transformation increases monotonically 

the contrast within the value range used, therefore, unlike the histogram 

equalized stretch, it preserves the shape of the original histogram and 

maintains the structure of the image information. 

The method is described in greater detail by the above reference. Two 

functions can be used to perform this technique, the parabola and the cubic 

functions. However, in this study the parabolic function is the only one 

that was used. In BCET, using parabolic function, a segment of the parabola 

curve derived from the original image is used as the point operation 

function which will stretch (compress) the data to a user defined value 

range and means, under the control of the monotonically increasing branch 

of the parabolic curve used fDr stretching. For more information about the 

mathematical equations and derivations, see Guo (1991). The program that 

performs this type of opeation was written (written comm. L. Guo, and pers. 

. comm. A. L Watson) for any PC. 
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5.4 batial filteriner 

The previously described enhancement methods enhance all the 

features in the image equally, using just independent pixel values. In 

spatial filtering, the enhancement of the pixel is made on the basis of grey 

levels in surrounding pixels. Therefore, spatial filtering is an area 

operation rather than point operation (Schowengerdt, 1983; Avery and 

Berlin, 1985). This allows the user to extract useful spatial frequency 

information from the imagery, by emphasising or de-emphasising 

information of various spatial frequencies (Curran, 1985). 

Digital images normally contain low frequency as well as high 

frequency spatial information. The sum of these two make up the original 

image. The low frequency represents smooth areas of an image, such as 

open desert plain or water body, where grey level varies gradually over 

relatively larger numbers of pixels (low brightness variation). The high 

frequency is the opposite in which the brightness changes abruptly over 

relatively small areas (large brightness variation). These represent rough 

areas or the small details in the image, such as edges or boundaries between 

two lithologies with different compositions, or surfaces of different 

illumination due to topography effect, etc. Algorithms that perform spatial 

frequency enhancement are called filters, because they pass, or emphasis 

certain spatial frequencies and supress others. 

Spatial filters, which are designed to pass high frequency 

information, enhancing the detail of an image, are called high pass filters or 

edge enhancers (Davis, 1975). Low pass filters are the opposite, in that they 

produce a smooth image, by suppressing the high spatial frequencies 

(Jensen, 1986). Spatial filtering is usually applied to an image by a sub array 

(box or window) of N by N pixels of odd dimensions centred on each pixel 
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in turn. The size of this window can be 3x3,5 x 5,7 x 7, or 9x9 etc. To 

perform a spatial filtering of any size or value, the 3x3 window or box filter 

is placed over the top left comer of the original image. Each pixel is then 

multiplied by the corresponding value in the window. The nine resulting 

values for the filter are summed, and then combined with the central pixel 

of the window, which then replaces the original value of the central pixel. 

Once the output value for the filter has been calculated, the window moves 

one column (pixel) to the right and the operation is repeated until the 

window reaches the right margin of the image, where it win shift down one 

row, and back to the left margin of the image, and continue the same 

process, until all the image is processed. 
As mentioned earlier, the filter can enhance the low frequency 

information or the high frequency information. However, linear features 

in the image form an important subject for a number of analysts such as 

geographers (man made linear features, e. g. roads and canals) and geologists 
(large and small scale lineament features). Such features can be enhanced 

using a high pass filter. The simplest means of high pass filtering is to 

subtract a low pass filtered image from the original image. The high pass 

filtering using a window can be designed as a non directional or directional 

filter. The non directional (Laplacian) filters are generally useful in edge and 
boundary detection in all directions, whereas the directional filters are used 

to detect lines with preferred orientation (Drury, 1987). The most comonly 

used high pass non directional filter is the Laplacian filter (Jensen, 1986; 

Mather, 1987; McCabe and Collins, 1985). Several Laplacian filters were 
described by many authors (Jensen, 1986; Drury, 1987; Sabins, 1987; Mather, 

1987; Gupta 1991). The following filters (a-d) are shown here as an example. 
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-1 -1 -1 -1 

filter -a -1 8 -1 filter -b 

-1 -1 -1 

1 -2 1 -1 

ffiter -c -2 4 -2 ffiter -d 
1 -2 1 

Jensen (1987) found the Laplacian add-back window (filter -d) 

produced the best enhancement of high frequency detail for wetland and 

urban areas. In this study, this filter (Laplacian add-back) produced the best 

result as it sharpens the image to its limit without making it very noisy. 

Figure 5-4(b) shows the advantage of such a filter. It shows the first 

principal component of Ahmar test area, in which the spatial features 

(structural and textural) were greatly enhanced in addition to sharpening 

the rock boundary, when compared to the original image as shown in 

Figure SAW. 

5.5 Colour compgaite nd display 

The human eye-brain system can only distinguish up to 30 grey 
levels in black and white images. On the other hand, it can easily 
distinguish over a million different colours (Gillespie, 1989); the limit is 

about 7 million (Drury, 1987). Therefore, the colour display is a more 

effective and practical way of presenting multispectral data (Gillespie, 1980). 

The detailed mechanisms by which we see colour are still not fully 

understood (Lillisand and lGefer, 1987). 
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Figure 5.4: The effect of (laplacian add back) edge enhancement technique 
(b) on the first principal component image of Aban Ahmar 
study area (a). 



The retina contains two types of photoreceptor cells; the rod-shaped 

cells respond to the intensity of light at low illumination, whereas the 

colour or hue and its degree of purity, is a product of cone-shaped receptor 

cells. There are three types of cones, each responding to one of the primary 

colours; (red, green and blue). 

The primary colours; can be added to produce the secondary colours of 

magenta (red plus blue), cyan (green plus blue) and yellow (red plus green). 
Figure 5.5 shows the interrelation among the three primary colours (RGB 

Colour Cube). A typical colour display device uses this model of colour 

mixing. For an 8 bits per pixel display device, the range of DNs for each 

primary colour components is 0 to 255 (or 2563 possible combinations of the 

R, G, B DNs). Every pixel in such a device may be represented by a three 

dimensional co-ordinate position, somewhere in the colour cube. 
Colour displays give the opportunity of examining simultaneously 

the behaviour of different objects available in up to three images, e. g. 

different wave length image bands, ratio images or principal component 

images. In displaying colour composite TM data, a natural colour could be 

displayed by assigning band 1 to blue, band 2 to green and band 3 to red. A 

false colour composite could be displayed by assigning band 2, band 3 and 

band 4 to blue, green and red respectively. Further detail about this section 

can be found, for example, in Schowengerdt (1983), Drury (1987), Mather 

(1987) and Lillisand and Kiefer (1987). 

Since the data can only be displayed using just three bands as red, 

green and blue the question arises concerning which three bands should be 

displayed from the six reflected TM bands, to produce the best colour 

composite. This can be achieved either by using visual selection of all the 

band combinations which can be created for six TM bands or by using image 
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statistics such as image covariance, standard deviation and the correlation 

between images. Chavez, et al. (1982,1984) devised a statistic method called 

Optimum Index Factor (OIF) to rank the best three ratio combinations for 

MSS, and the best three band combinations for 1M. The OEF is based on the 

variance and the correlation among different bands and ratios. The index is 

calculated for each three band combination, by dividing the sum of the 

standard deviation of each combination by the sum of absolute value of the 

correlation coefficient: 

33 
OIF =ES Di EI ccj 

i=l j=1 

where SDi = standard deviation of band i 

Iccj I absolute value of the correlation 
coefficient between any two of the three 
bands (ratios) 

Based on these statistics, the three band (ratio) combination that has the 

largest OIF value, has the most information with the least amount of 

duplication (as measured by correlation). Although ON (as other statistical 

methods, Sheffield et al., 1985; Crippen, 1989) appears to be convenient and 

easily computed, and may provide useful band combination in a short time, 

the results do not always indicate precisely the geological information 

contained in an image (Greenbaum, 1987; Crosta and Moore, 1989) and 
frequently a visually selected set of bands is more useful (Hunt et al, 1986). 

In general, the best three band combinations include one from the visible 

bands (IM 1,2 or 3) and one of the longer-wavelength, mid infrared bands 

(5 or 6) together with TM band 4 (Chavez et al., 1984; Jensen, 1986). 

Afterwards a decision has to be made for the colour of each band . The 
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strategies which were followed in this study to select the best bands will be 

described in chapter 6. 

5.6 Band ratio 

The division of one band by another is commonly known as band 

ratioing. This can be done by dividing each pixel in one of the bands by the 

corresponding pixel in the other band. 

This type of enhancement was the first widely used technique in 

geological application of remote sensing data, (Rowan et al., 1974,1977; 
Lyon, 1975), due to its ability of reducing the topographic effect, and 

enhancement of spectral differences. 

The mathematical equation of the ratio function is: 

Bvi, j, r BVij, k / BVij. 1 

whereas, 

BVi, j, r the output ratio value for pixel at 
row i column j 

BVi, ýk the brightness value at the same 
location in band k 

BVi, p the brightness at the same location 
in band I 

Due to the fact that some input pixels can have brightness values of zero, 

therefore ratio values can then be equal to infinity. Furthermore, an integer 

value of less than 1 is common in the output ratio values, using the 

previous equation, which will compress much of the output ratio values 
between 0 and 1. Therefore, scaling of the output ratio values is needed in 
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order to relate them to the display device used, which ranges from 0 to 255. 

One way of doing this is by applying this equation: 

BVi, ýr K arctan ( BVij, k / BVip ) 

where K is the scaling factor that scales the ratio data to an appropriate 

integer range. If K is set to equal 162.34, the output ratio can then take any 

value between 0 and 255. 

The number of ratio combinations available varies according to the 

source of digital data. The number of possible ratios that can be developed 

from N bands of data is N (N-1). Thus for Landsat TM data 6 (6-1) = 30 

possible combinations. 

The most common spectral ratio used in application of Landsat TM 

to geology is the ratio 5/7. This enhanced areas of hydrothermal alteration, 

whereas TM band ratios 5/4,4/1,5/1,3/2,3/1,4/2 have been used for 

enhancing areas of Fe bearing minerals and Fe staining (Podwysocki et al., 

1983; Laughlin and Taufiq, 1985; Brickey, 1986; Huckerby et al., 1986; Magee 

et al., 1986; Sultan et al., 1986; Kepper et al., 1986; Feldman and Taranik, 

1986; Kruse, 1986; Elvidge, 1986; Spatz et al., 1987,1989; Kaufman, 1988; and 

Amos and Greenbaum, 1989; ). 

Any three grey level ratio images can be combined to produce a colour 

ratio composite image, which further enhances the spectral reflectance 
difference. Ratio images also reduce differences in illumination conditions, 

which in turn minimise the topographic effect, so that ratio values for the 

same materials may be the same regardless of their topographical position 

(Rowan et al., 1974,1977; Drury, 1987; Sabins, 1987; Lillisand and Kiefer, 

1987; Mather, 1987). 
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Certain caution should be taken when generating and interpreting 

ratio images (Drury, 1987), such as removing haze effect (Segal, 1982), and 

also the fact that the ratio images are intensity blind. For example, basalt 

and marl have similar reflectance spectra, but basalt have low reflectivity 

and appear dark in all grey level images, whereas marl appears light. But in 

ratio images the two are often indistinguishable. In addition, Ratio images 

usually display a low contrast, and a low signal to noise ratio due to the 

removal of most of the original image variance (Goetz, 1989). 

Ift this study, the ratio method was performed using CHIPS software, 

by choosing the option "RAnO TWO MAGES", and then stating scaling 

factor so that the resultant grey scale ratio image can be displayed in the 8 bit 

screen. Choosing the best 3-colour composite ratios for display was done by 

visual examination of the grey scale ratio images, bearing in mind the 

previous studies using ratio techniques in and areas (see Chapter 6 for 

further discussion). 

5.7 I! dndRal COmRonent analysis (PCA) 

Colour images can be constructed by selecting three of the available 

six TM bands as red-green-blue in a colour screen. Even if the best three 

bands are chosen, either by visual inspection, or by statistical methods 

described in section 5.5, choosing only three bands out of six reflected IM 

bands might result in information contained in the remaining bands being 

overlooked. 
Data compression, known as principal component analysis (PCA) 

(Jenson and Waltz, 1979; Canas and Barnett, 1985), also referred to as 

Karhunen-Loeve transformation, Eigenvector transformation and 

Hotelling transformation (Singh and Harrison, 1985), is a widely used 
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technique to accomplish dimensionality reduction of the data. This 

technique is based on the assumption, that the image varience may be used 

as a measurement of the information content of that data (Jenson and 
Waltz, 1979). It is a linear transformation which rotates and translates the 

original n-dimensional image vector (e. g. 6 TM bands) to a co-ordinate space 

with uncorrelated axes called principal components axis (image). Each of 

these components can be displayed, either as grey scale images or as a colour 

composite of red-green-blue. 

The purpose of PC transformation is to define the dimensionality of 

the data, and to identify the principal axes of variability within the data, 

based on the variance and covariance of the data set. The variance is the 

measure of the scatter within one variable, whereas the covariance is the 

measure of the scatter between two variables. A detailed description of the 

statistical procedures used to derive PC transformation is beyond the scope 

of this work, and can be found in Jenson and Waltz (1979), Short (1982), 

Canas and Barnett (1985), Gillespie et al (1986), Richard (1986), Jensen (1986) 

or Mather (1987). Therefore, only a basic description of the technique will be 

given here. 

The PC transformation (Figure 5.6a) started by shifting the original 

co-ordinates (x and y) by shifting (subtracting) the mean of the data ( mx, 

my) to zero. The next step is the rotation of the original co-ordinates axes to 

coincide with the direction of maximum and minimum variance in the 

data (Schowengerdt 1983). This new rotated axis is the first PC (Figure 5.6c). 

The second PC is the one at right angles to it. If the distribution is 

multidimensional (e. g., six IM bands) this operation continues to define 

orthogonal axes sequentially until all the variations are consumed. In other 

words, the total variance of the image consisting of the six bands is divided 
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in a way that the first component has the largest possible amount of the 

total variance; the second component has the next largest possible amount 

of the remaining variance and so on. For each pixel, new digital numbers 

are determined relative to each of the new co-ordinate axes (Jenson and 

Waltz, 1979; Drury, 1987). Thus it is expected that the first, second and third 

principal component images would contain more information than any 

three of the raw bands (Canas and Barnett, 1985). The PCA were performed 
in this study using the IDRIS software to produce six PC images for each test 

area. 
PCA technique has been widely used in the geological application of 

remotely sensed data, to reduce dimensionality by, for example, Blodget et 

al. (1975), Settle (1984), Spatz et al. (1987), Amos and Greenbaum (1989), 

Chavez and Kwarteng (1989), Fraser (1990). However, caution must be 

taken in interpreting the results due to the fact that this transformation is 

scene dependent (Drury, 1987). 

5.8 Decorrelation stretch 

The decorrelation stretch technique has been introduced by Soha and 

Schwartz (1978). It is based on principal components analysis (Soha and 
Schwartz, 1978; Gillespie et al., 1986; Rothery, 1987,1990). The steps of this 

method begin by applying principal component transformation to the 

original data, and then the components are stretched linearly to equalise 

their variance. These stretched PCs are then transformed back to the 

original co-ordinates, using the inverse of the PC transformation. 

The reason for the second step was to exaggerate colour saturation 

and reduce the correlation between bands, whereas the last step has the 

advantage that the colour can be related to the spectral characteristics of the 
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materials in the images. This transformation has been described in great 

detail by the previously mentioned authors. This technique has been 

applied to rock discrimination (Abrams, 1986, et al., 1988; Gillespie et al., 

1986; Rothery 1987; Drury and Hunt, 1989; Al-Sari, 1990; Rothery and Hunt, 

1990; and Puntual, 1990). The program for this technique (written comm. D. 

Rothery, and pers. comm. A. 1. Watson), available in the MicroVAX menu 

system and called "DECORRELATION STRETCH", was based on Rothery 

(1987) and Rothery and Hunt (1990). 

5.9 Canonical transformation 

The principal components method of transformation produces an 

output that is not related (except accidentally) to the information of the 

input images. In the canonical transformation method, the transformation 

is related to the objectives of the study. In this study the TM bands are 

transformed to yield (in principal) the chemical composition of the rock. In 

general, canonical analysis enables a set of dependent variables to be related 

to a set of independent variables with the effect of maximising the 

correlation between certain linear combinations of the dependent and 

independent variables while minimising the correlation between these 

combinations. 

Let us suppose that we have a set of variables x, (chemical 

composition of the rocks) and a set of values X2 (raw DNs value). The 

variables (columns) of the data matrix are divided into sets, with r and q 

variables in each set; so that p, the total number of variables, equals r+q. 

The data matrix is then written as: 
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X 1XI 
, )(21 

nxp nxr nxq 
in which x, = chemical percentage 

x2 = raw DN value 

The variance-covariance matrix is written in partitioned form (hugget 1985) 

as: 
Arr 

, 
Crq 

Co qr , Bqq 

whereas Arr covariance matrix between the x, 
variables (r) or "chemical percentage" 

Bqq covariance matrix between x2 variables (q) 
or "DN values" 

Qq covariance matrix between x, (r) 
variables or "chemical V and x2 (q) 
variables or "DN values" 

C rq transpose Of Crq 

From this matrix, V linear combinations of the form: 

r 
Uk I Iki x1i 

i=l 

Vk Mki X21 

where I and m are weighting factors, k=1,2 

are sought, such that they have the property that the correlation between U, 

and V, is greatest, the correlation of U2 and V2 is next, and so on for all 
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possible pairs. In addition, each pair is independent of all others (i. e., 

orthogonal). 

On performing the analysis, the number of independent linear 

combinations between the x, and x2 is computed and tested statistically. 

Thus the number of significant components can be found, unlike the 

principal component method, where the number has to be guessed at. 

Further, if the number of independent combinations is greater than or 

equal to the number of x, variables, then it is possible to solve the set of 

simultaneous equations to yield direct estimates of the x, values from the x2 

values. 
e. g., III X11 + 112 X12 + 113 X13 + M11 X21 + M12 X22 + 

121 X11 + 122 X12 + 123 X13 + M21 X21 + M22 X22 + 

Since the x2 values are known (in this case they are the DN values of a 

pixel) then the equations become: 

Ill Xll + 112 X12 + Ilr Xlr - a, 

121 Xll + 122 X12 + 12r Xlr ý al 

41 Xll + 42 X12 + --- 
In Xlr w- ar 

[a, = mil x2i + M12 X22 + ---I 

These equations can be solved for the xj's. Thus, it is possible to predict the 

chemical composition of rocks, given imagery of the right quality. 

The only application of this type of analysis in remote sensin& was to 

the problem of estimating the sediments and the chlorophyl concentration 

from SPOT imagery for a lake in Me)dco (Chacon-Torres et al., 1992). 
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In this thesis the aim of using this transformation was to relate the 

DN values recorded by the reflected TM bands to the chemical composition 

of the rocks. The steps used to perform this analysis will be described in 

Section 6.2.2. 

UO Hue-S&t=tion-IntensijX (HSI -a 

Digital images are usually displayed as an additive colour composite 

using the RGB colour space (section 5.5). An alternative method is the use 

of Hue-Saturation-Intensity (HSI) model (Haydn, 1982, Gillespie et al., 1986), 

which refers to the parameter of human colour perception (Lillisand and 

Kiefer, 1987). An observer viewing a spot of colour can describe it relative 

to these three independent parameters (Buchanan and Pendegrass, 1980). 

The "hue" is the dominant wavelength of the colour (e. g., red, green or blue 

and their intermediate mixtures); "saturation" is the relative purity of the 

colour, or the amount of white light mixed with the hue; and "intensity" is 

the relative brightness. Any RGB image can be represented by three 

independent parameters which describe colour in terms of its hue (H), 

saturation (S) and intensity W. These parameters will be perceived 

independently by the human eye, and can be individually manipulated 

(Haydn, 1982, Schowengerdt, 1983). Many algorithms have been developed 

for converting RGB tristimulus values to HSI and vice versa (e. g., Haydn et 

al., 1982; Siegal and Gillespie, 1980,1986; Niblack, 1986; Mather, 1987). These 

methods differ mainly in the speed in calculating the intensity component 

of the transformation; in general they produce similar values for hue and 

saturation (Carper et al., 1990). The hexacon model (Figure 5.7) is one of 

these methods in which the hue is defined by the top edge with red at 0*, 

green at 120* and blue at 24&'. Saturation is defined by the distance from the 
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vertical axes at the centre of the hexacon, and intensity is defined by the 

distance above the apex of the hexacon (Mather, 1987). Any point lying in 

the vertical axes will have no colour and a0 saturation, the eye will 

perceive it as shades of grey that range from white to black, depending on 

the intensity. 

The RGB-HSI transformation is useful as an intermediate step in 

digital image enhancement. For example, the intensity of an image can be 

stretched without causing any change to the hue and saturation images, or 

in merging data from different platforms with different spatial resolution 

(e. g., Landsat TM and AVHRR data). In this study the advantages of this 

technique will be discussed in greater detail in Chapters 6 and 7. This 

technique was used as an intermediate enhancement step for rock 
discrimination (Chapter 6) and the hue images were used in (Chapter 7) as 

an input for lithology classification. Detailed description of the relation 
between HSI and RGB colour space can be found in Buchanan and 

Pendegrass (1980). 

The development and application of various HSI transformation and 

enhancement are under continuing research (Haydn, 1982, et al., 1982,1983; 

Drury, 1987; Sabins, 1987; Goetz 1989a; Carper et al., 1990). Several authors 
have used it as an intermediate stage to enhance the visual interpretability 

of satellite data, that have the same spatial resolution (Haydn et al., 1982; 

Haydn, 1983; Curlis et al., 1986; Gillespie et al., 1986; Kaufmann and Pfeifer, 

1986; Kaufmann, 1988) whereas others have used it for merging data that 

have different spatial resolutions (Haydn et al., 1982; Haydn, 1983; 

Kaufmann, 1984; Volk et al, 1986; Rothery and Francis, 1987; Carper et al., 

1990). In this study the program which transforms the RGB image to HSI 
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images and vice versa (written comm. P. Mather, and pers. comm. A. I. 

Watson) was based on the subroutine that was discussed by Mather (1987). 

5.11 Summaa 

Different methods of pre-processing and processing techniques were 

described in this chapter. These methods include the correction for the 

effect of atmospheric scattering based on approximate, dark object, methods. 

This was followed by a description of a number of contrast enhancement 

techniques, which are performed on a single band image or individual 

bands of multispectral image sets, to increase the contrast between different 

objects (lithologies). The methods of emphasising or de-emphasising 

certain frequency components (spatial filtering) of an image were also 

introduced. Operation on multiband images was also described. Two of 

these enhancement methods (ratio and principal component analysis) have 

been used extensively in geological studies, and provide valuable 

information that may not be found by using the original images. However, 

these methods have their limitations that may cause some loss of 

important information (e. g., textural information in ratio and spectral 

relation in principal component analysis). The HSI transformation was 
discussed and this method may reduce the two previously mentioned 

problems of both the ratio and PC transformation, and produce an optimal 

enhancement, when used as an intermediate step (section 6.2.4), or by 

directly using the hue component as classification inputs (chapter 7). 

The canonical transformation has never been previously used to 

relate the pixel values of the satellite images to the chemical composition of 

various rock types. In principal, it may provide, from the imagery, a 

chemical description of the exposed lithology. 
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Digital image processing, however, is not limited to the methods 

described briefly in this chapter. The content of this chapter is restricted to 

the digital processing techniques that were required and performed in this 

study. The equally important subject of image classification will be 

described and applied in chapter 7. 
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6.1 Introduction 

One of the principal needs of remote sensing in geological studies is 

in discriminating different lithological units. In this chapter the results of 

applying the techniques described in the previous chapter to the problem of 

discrimination will be discussed. The techniques were applied to four test 

areas (described in Chapter 2) which have an excellent aggregate of different 

lithologies exposed in relatively small areas, and therefore provide an 

excellent area to test the various image processing techniques. 

It is the aim of this chapter to evaluate the different techniques that 

have been used frequently for digital image enhancement (band ratio and 

principal component analysis), and compare them with the relatively new 

techniques that, as yet, do not have the same popularity (decorrelation 

stretch and HSI transformation). The Canonical regression analysis is also 

tested, with the aim of relating directly the major element chemical 

composition of the different lithologies, to their spectral signature. 

Although the aim of this chapter is to evaluate techniques, rather than carry 

out geologic investigation, it was decided to make a quick field check of the 

test areas, in order to ensure ground truth accuracy. Field check was carried 

out in November 1991, and several rock thin sections were made by the 

Geology Department, King Saud University, and were checked by J. Al- 

Alawi in the same department. 

This chapter is divided into two main sections. The first section 
describes the methodology that was followed in applying the techniques, 

until an optimum result was reached. The second main section describes 

the results that were obtained in each area from the application of each 

technique. The results of techniques that did not produce an optimum 

discrimination in any of the test areas are not discussed. 
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6.2 Methodoloo 

6.2.1 PrinciRal component (PCA) and band ratio analy§is 

The PCA was performed in this study, with the IDRISI software 

package, using all the 6 reflected TM bands for each of the test areas. The 

program produced 6 principal component images. Because of the shift of 

the original coordinates caused by subtracting the means of the data, and the 

simple axis rotation used for transformation as described in section 5.7, 

some of the PC pixel values were negative. An option called "STRETCH" 

was used to project the image to 0-255 scale. 

Tables 6.1,6.5 and 6.7 describe the statistics involved in the 

production of PC images for three of the four test areas. The principal 

component results for the fourth test area (Aban Asmar) will not be 

discussed due to the low degree of discrimination achieved. The high 

degree of correlation found between the 6 TM bands in all the test areas, 

caused most of the information to be mapped in the first PCs. This can be 

seen, either from the percentage of variance accounted for by each 

component, or from the component loading summary table, that describes 

the amount of information mapped in each component from each band. 

Ratio processing was performed on the CHIPS software by choosing 

the option "RATIO TWO WAGES". The number of ratios that can be made 
from six reflected TM bands is somewhat large (30 ratios). Furthermore, to 

display these ratio images as ratio colour composites by combining three 

ratio images the number of combinations will be high. 
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The 'best' three-colour composite ratios for display were chosen by 

visual examination, bearing in mind the previous studies using ratio 

techniques in and regions (section 5.4), and the spectral sensitivity of the 

various TM bands. Both the principal component and ratio images were 

stretched using the BCET stretch method. This step was taken to increase 

the contrast and minimised the noise, which both images suffer from, 

especially the ratio images. 

6.2.2 Canonical regression 

The main aim of using the canonical regression processing in this 

study (section 5-9) was to from a linear relation between the chemical 

composition of the various rock types and the digital number recorded in 

each of the six reflected bands of the TM data. This linear relation could 

then be stored in a canonical coefficient file and used to predict the chemical 

composition of unknown areas acquired by the TM sensor. 

The processing of data by this technique includes various pre- 

processing stages. The following is a brief description of the steps that were 

followed (Figure 6-1). The first step was to locate the image coordinates of 

areas that had been chemically sampled and analysed by previous studies 

(Du Bray, 1983,1988; Williams et al., 1986; Cole, 1988). Information for 210 

samples was extracted from the published sources. Having identified the 

sites on the geological map. The next step was to extract the areas that cover 

those sites from the scene, in which 11 extracts (images) of 512 pixels by 512 

lines were used. The corresponding x and y image coordinate was then 

found (visually). The average of nine pixels was taken for each site in each 

area, including the sample site pixel and its immediate surroundings, in 

order to ensure that representative values were obtained. Next, a VAX file 
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Figure 6.1. Flow diagram of the processing steps used for canonical analYsis- 



was constructed that contained these image coordinates and major chemical 

components of the samples (SiO2, AL203, Fe203, FeO, MgO, CaO, Na20, 

K20, TiO2, P205, and MnO). 

The DN values of the six reflected TM bands for each 'sample' site 

were then extracted using one of the listed programmes made especially for 

the data used in this study. Therefore, for each of the areas (11 in all), a file 

was constructed that contained the chemicals as "x, variables" and the DN 

values for the six TM bands as "x2 variables". These 11 files were then 

grouped into one VAX file. 

A canonical regression analysis was then applied to the composite 
file. The program examines the linear relation between x, and x2 variables 

and produce a canonical regression file that contains the number of 

components that are statistically significant and a canonical coefficient file 

that contains the coefficient matrix. The latter file was then applied to the 

six TM imges in order to transform the original data to the significant 

canonical component axes. This was done by choosing the option 

"CONSTRUCT THE CANONICAL DAAGE" from the canonical transform 

submenu in the MicroVAX These canonical components could then be 

used in an attempt to predict the chemical composition of the rocks. 

6.2.3 Colour com2gsite 

In this study six reflecting TM bands are available. The thermal band 

(Band 6) was excluded owing to its high degree of distortion. A decision has 

thus to be made about which three bands represent optimum spectral 

information to display. 

The disadvantages of using a purely statistical method (section 5-5) to 

define the best three bands for colour display in geological studies are, that 
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these methods do not take into account the distinction between geologically 

significant variation, and the variations due to non geological factors 

(Rothery, 1987, Drury and Hunt, 1989). In this study selection was made 

using a combination of statistical investigation and visual inspection. The 

statistical investigation was made by examining the correlation matrix 
between TM bands to define the least correlated three bands that would 
display the most information (Hunt et al., 1986). The visual inspection was 

made by comparing each of the stretched TM band images, first as grey level 

images, and then as colour composites of three bands. The factor governing 

this assessment was the ability of individual bands to distinguish between 

different lithologies shown on the geologic maps (1: 100,000 and 1: 250,000) of 

the four test areas, bearing in mind the spectral reflectance characteristics of 
diferent minerals and rocks (section 3-5). 

Using the latter procedure, it was found that the best three band 

colour composite that offered the best discrimination between various 
lithologies for the four test areas was as follows: TM band 7 displayed as red; 

TM band 4 displayed as green; and TM band 1 displayed as blue. 

Statistically these three bands have the least correlation between 

them (Tables 6.4a, 6-6a, 6.8a and 6-10a). TM band 7 (2.8-2.35 ILm) contains 

important information about hydroxyl minerals (Hunt et al., 1971; Goetz, 

1989a). TM band 4 (0.76 - 0.90 gm) contains information on iron minerals 

(the Fe crystal field absorption) (Hunt, 1980) and has unique high reflectance 

of green vegetation. The presence of ferrous ions is best detected by a sharp 

absorption in TM band 1 (0.45 - 0.52 pm) (Drury 1987). Although this 

combination is placed tenth (by the OEF method) out of the 20 possible 3- 

band combinations from the six reflected TM bands, the combination of 
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these bands produces a better overall rock discrimination, than any of the 

combinations ranked better by OIF method. 

This combination was different from the combinations of bands that 

other authors used (such as Sheffield, 1985; Rothery, 1987; Spatz et al., 1987). 

However, (Fielding, 1985; Kaufmann and Pfeiffer, 1986; Kaufmann, 1988; 

Davis and Berlin, 1989; Crippen, 1989; and Ferrari, 1992) found the same 

combination as the best for rock discrimination. Also Laughlin and Taufiq 

(1985) and Hunt et al. (1986) found a similar combination (displaying IM 

band 2 as blue instead of IM band 1). 

6.2A Decorrelation stre 

The decorrelation stretch was applied in this study to the best three 

bands colour composite, (M bands -7,4 and -1), using a programme called 

DECORRELATION STRETCH (written comm. D. A. Rothery, and pers. 

comm. A. 1. Watson) that was available on the Microvax. The programme 

transformed these three bands to three principal components. This step was 

followed by stretching these three components to fill, the 8 bits range, and 

then transform them back to the original coordinates, using the inverse of 

PC transformation. However, the results of these techniques did not 

provide any significant improvement over the band colour composite, 

therefore its results will not be discussed. 

6.23 Hue-Saturation-Intensity (HSI) transformation 

A high degree of correlation that exists between different IM bands 

reduces the range of colour displayed. This is almost atypical behaviour for 

most geological scenes, owing to the relatively broad band width of the TM 

sensor (Drury, 1987), and the ladc of strong absorption bands associated with 
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most rock surfaces (Kaufmann, 1988). Contrast stretching of the individual 

bands in the RGB coordinates by spreading out the histogram along the 

achromatic axis, while satisfactory in some cases, often fails to reduce this 

correlation and to fully utilise the available colour range (Soha and 

Schwartz, 1978). In addition, most of the rock types exhibit low intensity 

(dark appearance) in the image, which also tends to reduce colour 

variations. 

Section 5.10 described the basic concept of the hue-saturation- 

intensity (HSI) transformation. In this section a description win be given to 

the transformation as an intermediate stage to reduce the correlation and 

improve the visual interpretability of atmospherically corrected TM 

images. 

As discussed in section 5.10, any three-colour composite image in the 

red, green and blue (RGB) coordinates can be transformed into three 

independent parameters, which describe colour in terms of its hue (H), its 

saturation (S) and its intensity (I). These parameters are perceived 

independently by the human eye, and therefore each one of them can be 

manipulated without causing any interfering effects to any of the other two 

components. However, Gillespie et al. (1986) mentions that the stretching 

of the hue component in the HSI coordinates may cause hue distortion. He 

suggests that such distortion may be eliminated or effectively reduced by 

equalising the mean values of the original data before transformation to 

HSI coordinates. Kaufmann (1988) applied histogram equalised stretch to 

the original bands before transforming to HSI coordinates. 

In this study the following strategies were employed to achieve the 

best results in reducing the two, previously mentioned problems which are 

widespread in most geological scenes, and also to produce a sharper image. 
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A balance contrast stretch (section 5.3.3) was applied to the best three-band 

colour composite. This implies that the three stretched images will have an 

equal range and means and hence should avoid any colour bias of one band 

over the others, and secure the equal contribution to the hues by the RGB 

components. The next step was to transform the data from RGB 

coordinates to HSI coordinates 

In the HSI coordinates, saturation usually has a low value for TM 

data which implies a low degree of colour purity. This may due primarily 

to the high correlation between the bands (Gillespie et al., 1986). By 

increasing the saturation component, by shifting its histogram to a higher 

value within the 0-255 scale, a more saturated hue was achieved. The 

histogram shift was simply made by adding a visually estimated constant to 

each saturation value. 

Since the intensity component is independent from both the hue and 

saturation, it was decided to replace it by the first prindpal component of 

the six reflected IM bands that were produced earlier (section 6.2.1). This 

first PC has the greatest contrast and reveals the albedo, and topographic 

detail. Therefore, by using an edge enhanced filter (Laplacian add back, see 

section 5.4), it was anticipated that this would produce an image with high, 

sharp quality. As the (1) component is independent from the other two 

components, there will be no loss of spectral information, which may occur 

if the addback filter were applied to the RGB image. 

Before transforming the data back to the RGB coordinate an increase 

to the intensity was made by shifting its histogram to a higher value, using 

the same procedures described earlier to shift the saturation component. 

This step was taken to enhance the hues in areas of low brightness (Haydn, 
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1982). The data were then transformed back to the RGB coordinates, and 

then transferred to the CFHPS system for display and evaluation. 

6.3 Results 

Four test areas selected for this study included the Silsilah ring 

complex, Jabal ar Raha, Aban Ahmar and Aban Asmar, with a size of 512 

rows by 512 columns for the first two areas, and 1024 rows by 1024 columns 

for the other two areas. The location and geology of each of these test areas 

was briefly discussed earlier in chapter 2. In this section, the discussion will 

be confined to the results of applying image processing techniques described 

earlier in chapter 5. 

The discussion of the results of the canonical images will be Confined 

to the Silsilah ring complex test area, due to the confusing results of this 

technique. The principal component results for the fourth test area (Aban 

Asmar) will not be discussed due to the low degree of discrimination 

compared to the ratio image. For information about the location of the 

different lithologies, see the geologic maps for the corresponding test area in 

chapter 2. A copy of these maps were put in a pocket at the end of this thesis 

for easy consultation. 

6.3.1 Silsflah ring complex (test am 1) 

6.3.1.1 Pring: gal ggM; gnent GICA) and band ratio analylis 

The TM data show a high degree of correlation between different 

bands (six reflected bands) for this area (Table 6.1a). For example, the 

correlation of band 1 to band 2 and band 3 is 0.96 and 0.92 respectively. With 

this high degree of correlation, this area might be ideal for performing the 

PC analysis to produce a fewer uncorrelated set of components. 
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COR MATRIX Bl B2 B3 B4 B5 B7 

Bi 1.00 

B2 0.96 1.00 

B3 0.92 0.98 1.00 

B4 0.79 0.88 0.90 1.00 

B5 0.87 0.93 0.95 0.90 1.00 

B7 0.82 0.89 0.92 0.82 0.95 1.00 

(a) 

COMPONENT Cl C2 C3 C4 C5 C6 

% var. 93.21 2.98 2.46 0.78 0.47 0.09 

eigenval. 1254.44 40.12 33-10 10.51 6.39 1.20 

Bl 0.261 -0.228 -0.681 -0.219 0.537 -0-277 
B2 0.229 -0.156 -0.305 0.063 -0.072 0.905 

B3 0.425 -0-230 -0.277 0.363 -0.673 -0-320 
B4 0.355 -0.620 0.542 0.260 0.355 -0.004 
B5 0.628 0.215 0.264 -0.681 -0.155 0.002 

B6 0.420 0.662 0.018 0.531 0.317 0.002 

(b) 

Table 6.1. See next page. 



LOADING cl C2 C3 C4 C5 C6 

Bl 0.907 -0.141 -0.383 -0.069 0.132 -0.029 

B2 0.958 -0.116 -0.207 0.024 -0-021 0.117 

B3 0.978 -0.094 -0-103 0.076 -0.110 -0.022 

B4 0.924 -0.288 0.229 0.062 0.065 -0.000 

B5 0.991 0.060 0.067 -0.098 -0.017 0.000 

B7 0.956 0.269 0.006 0.110 0.051 0.000 

(C) 

Table 6.1. Statistics of Silsilah ring complex area where table (a) describes the 

correlation matrix between the six TM reflected bands. Table (b) describes 

the variance, eigenvalues; and eigenvectors for each principal component 

denoted here as (Cl to C6) in which the percentage variance indicates the 

amount of variance that was picked by each component which is also 

expressed by the eigenvalue. The relative loading of each band for each 

component is shown. Table (c) gives the component loading summary. 



After performing the principal component analysis using the IDRISI 

software package, as was described earlier in section 6.2-1, six principal 

component images were produced. By examining the statistical tables that 

were produced (Table 6.1b) it was found that 93.21% of the total variance in 

the six reflected TM bands lay in the direction defined by the first PC only, 

and the rest of the variance (6.79%) was mapped for the other five PC 

images with each one having lower variance than its successor. 
To display PC images as principal component colour composites 

which will enable the display of most of the information (98.65% of the 

variance if the first three components are used) in a single presentation. As 

each component contains information from all original bands, statistically it 

was obvious that the first three PC images will provide the best principal 

component colour composite (PCQ. In addition, it has the best signal to 

noise ratio of all the PC images. 

The eigenvalues and eigenvectors are shown in Table (6.1b). The 

eigenvalues give the length of the principal a)ds which is measured in 

terms of units of variance. The eigenvector describes the direction of the 

principal axis. For each of these eigenvectors a loading factor for the 

contribution of each band to each of the components is given. The previous 

table shows that PC1 has positive loading for all bands which presents it as 

almost an average of all of the bands. 

PC2 contains high positive loading for band 7 (0.66) and smaller 

positive loading from band 5, with the rest of the bands having negative 
loading; therefore materials having greater contrast at bands 5 and 7 on one 
hand and bands 1 to 4 on the other hand will show opposite relations. This 

may suggest discrimination between iron rich material and hydroxyl rich 

material, as negative and positive contributions respectively. 
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Figure 6.2: Principal component colour composite (PCC) image resulting 
from the principal component transformation of the six reflected 
TM bands of Silsilah ring complex, in which PC3, PC2 and PO 
were displayed as red, green and blue respectively. 

Figure 6.3: Colour ratio composite (CRC) image of Silsilah ring complex in 
which TM 5/4, TM 5/1 and TM 5/7 band ratios were displayed 
as red, green and blue respectively. 



Vegetation, which has its highest reflectance in band 4, has 

intermediate and high positive eigenvector values in PO and PO 

respectively and high negative eigenvector values in PC2. This may suggest 
intermediate, low and high pixel values in PC1, PC2 and PC3 respectively. 
However, because of the very low variance associated with the lower order 

PCs (PC4, PCS and PC6), they generally do not show much contrast and did 

not provide any additional information. However, these components 

sometimes show some distinction between certain materials, and it is 

sometimes necessary to check these images visually rather than relying on 

pure statistical information. 

By examining each principal component image individually and as 

colour composites, it was found that the best three principal component 
images, that can be displayed as principal component colour composites 
(PCQ (Figure 6., 2) were PC3, displayed as red, PC2, displayed as green, and 
PC1, displayed as blue. 

For the band ratio technique only six of all the possible ratio images 

of the six reflected TM bands of this area were found to have good variation. 
These ratio images include IM band ratios 5/4,5/3,5/7,5/1,4/7 and 3/1. 

Like other processed images, three ratio images can be assigned to different 

colours and displayed as colour ratio composites (CRQ to combine the 

responses of each of these ratio in one colour image. 

From the above ratio, various colour ratio composites (CRQ were 

produced in order to evaluate the optimal one that provides the best 

discrimination of the various lithologies. These ratios were stretched using 
BUT stretch technique, which enabled the reduction to some extent of the 

noise usually associated with ratio images. Ratio images that were chosen 

as the best were: 
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TM 5/1 This band ratio displays rocks having a higher amount 

of iron oxides as bright areas. However, vegetation areas 

are also bright in this band ratio. Areas that have high 

amounts of opaque minerals (e. g., magnetite) will have 

low values in band 5; therefore they will be displayed in 

this band ratio image as dark tone. This band ratio was 

also described by others, such as Huckerby et al. (1986), 

Magee et al. (1986), Sultan et al. (1986), and Kaufmann 

(1988), as the most reliable band ratio for enhancing iron 

oxides (e. g., limonite). Others such as Brickey (1986) and 

Kruse (1986) have used 3/1 band ratio for the same 

reason. However, Kaufmann (1988) mentioned that the 

3/1 band ratio often fails due to the correlation between 

the two bands. In this study, it was found that the 5/1 

band ratio looks better than 3/1 band ratio. 

TM 5/4 Unlike the previous ratio, the vegetation and iron rich 

areas are inversely related. The rocks rich in iron 

bearing aluminosilicates (such as biotite) are displayed as 

bright areas, due to 0.85 pm (TM band 4) absorption, 

whereas the vegetation has high values in both I'M 

band 4 and TM band 5 and appears dark. This ratio has 

also been used by other authors such as Magee et al. 

(1986), Brickey (1986), and Huckerby et al. (1986) for the 

same reasons. 
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TM 5/7 Hydroxyl and carbonate bearing minerals are affected by 

absorption in TM band 7 with respect to TM band 5 

(Hunt and Salisbury, 1970,1971; and Whitney et al., 

1983). Therefore hydroxyl and carbonates show a high 

TM 5/7 band ratio value. This band ratio is widely used 

to enhance hydroxyls (Gupta, 1991; Goetz, 1989a), and 

was used previously by many authors to detect 

hydrothermally altered areas (Abrams et al., 1977,1983; 

Podwysoki et al., 1983; Magee et al., 1986, Brickey, 1986; 

Amos and Greenbaum, 1989; Kruse, 1986; Fieldman and 

Taranick, 1986; Huckerby et al., 1986; Keeper et al., 1986; 

Sultan et al., 1986; Sabins, 1987; Drury, 1986; Elvidge, 

1986). 

Using the previously described ratio a colour ratio composite (CRQ 

was produced in which TM 5/4 band ratio images was displayed as red, TM 

5/1 band ratio images was displayed as green and TM 5/7 band ratio images 

was displayed as blue. 

Table (6.2) shows the colours associated with different lithologies on 

the colour ratio composite of Figure 6-3. In this (CRQ image, the main 

source of confusion was between parts of the alluvial deposition south and 

south west of the ring and the alkaline dacite (ad) (see Figure 2.5 for specific 
locations) in the eastern and northern parts of the ring structure, which 

both appear as blue colour, and cannot be distinguished. The reason for the 

confusion was described by Drury (1987); he mentioned that band ratioing 

suppressed differences in albedo in which lithology of low albedo, that 

appeared dark on all bands, and lithologies that have high albedo in all 

bands, often are indistinguishable in the ratio images. This has happened 
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Figure 6.2: Principal component colour composite (PCC) image resulting 
from the principal component transformation of the six reflected 
TM bands of Silsilah ring complex, in which PC3, PC2 and PC 1 
were displayed as red, green and blue respectively. 

Figure 63: Colour ratio composite (CRC) image of Silsilah ring complex in 
which TM 5/4, TM 5/1 and TM 5/7 band ratios were displayed 
as red, green and blue respectively. 



in this study, where the alkaline dacite have a low albedo and the alluvial 

deposits have a high albedo. However, this was not the case in the principal 

component colour composite (PCQ (Figure 6.2) where the alkaline dacite 

can be clearly discriminated by its dark brown colour, compared to the 

alluvial deposits which have a blue colour. 

In contrast to the alkaline dacite, the Silsilah alkali granite (Sag) has 

the opposite composition, therefore it has the opposite band ratio values, 

which give it the yellow colour (high in red and green band ratios), 

especially in the outcrop in the south eastern part of the ring, whereas in 

the PCC image it appears as a yellowish green colour. However, for this 

rock type both images have more detail than the geologic maps; for 

example, in the CRC image the bright cyan colour in the centre of Jabal al 

Hadhir corresponds to an area, noted during the field trip as being less 

resistant and weathered more strongly, such that most of the rock surface 

was covered by weathering products (and soil) which gave it a different 

colour in the CRC image. In the middle of Jabal as Silsilah (north west of 

the ring) this rock appears as blueish green. These variations in colour that 

were noticed in the two locations within the Silsilah alkali granite can also 

be noticed in the PCC image. 

The strongly weathered, low relief lithology Maraghan lithic 

greywacke (Nfig) that fills the inside of the ring, and also to the west, appears 
in the CRC as magenta colour (higher values in both the TM 5/4 and TM 

5/7 band ratio images). This may be caused by the presence of clay minerals, 

and biotite in its matrix (which was repoirted by Du Bray, 1988). In the PCC 

image this unit appears as a dark green colour. The part of this unit, that 

was exposed inside the ring was not uniform, and was cut by dendritic, 

lightly vegetated channels that have cyan colour in the CRC image. These 
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TM5/4band TMS/lband TM5/7band Colourratio 
ratio image ratio image ratio image composite 
(red) (green) (blue) (CRQ 

Alkaline dark dark moderate blue 
dacite 

Silsilah alkali 
granite and bright moderate- dark yellow 
hadhir aplite right 

Maraghan 
lithic bright dark moderate magenta 
graywacke 

Commendite moderate- bright moderate bright white 
bright 

Fawwarah bright moderate- dark pale pink 
alkali bright 
feldspar 
granite 

Vegetation dark bright bright cyan 

Table 6.2. Summary of colour associated with main lithologies in the 
colour ratio composite of Silsilah ring complex (Figure 6.3). 



channels have light magenta colour in the PCC image, and also can be 

dearly discriminated. This unit was also cut by a number of small quartz 

veins which are shown as a yellow colour in the CRC. These were noticed 

during the field visit and were also reported by Du Bray (1983). These quartz 

veins are less noticeable in the PCC image compared to the CRC image. 

The Maraghan lithic greywacke has also been cut by a NE-SW striking 

commendite dike, which also appears in another location as part of the ring 

structure (north east). This commendite (com) unit can be distinguished 

clearly in the CRC image by its bright colour, due to its high values in all 

three ratio images. This may be caused by the presence of iron as well as 
hydroxyl minerals. This unit also can be distinguished in the PCC image 

where its intensity and its yellow colour are evident. The Fawwarah alkali 

feldspar granite (Fag) appears as bright pink colour, which may be due to the 

presence of biotite, in small amounts, in its matrix, whereas in the PCC 

image it appears as a cyan colour. The sparsely vegetated (Veg) areas, inside 

and outside the ring structure, have a cyan colour in the CRC image, 

whereas in the PCC image they have a more discrin-dnable red colour. 

Sediments scattered around the high ground consist mainly of rock 

fragments that have fallen from these high areas (hence compositionally 

they are similar to these sources). However, due to the loss of textural 

information and the suppression of topography information, it was not easy 

to define the boundary of the rock area and separate it from the fragments 

surrounding it. 

6.3.1.2 Canonical LeSmsion 
The results of applying the canonical regression using the 

methodology described earlier in section 6.2.2 produced six components, 
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after the regression table produced was examined. The first three of these 

components were found to be highly significant; the following two 

components were within acceptable significant limits, whereas the sixth one 

was insignificant, and therefore it was rejected. The relation between the 

chemical composition percentage for the various rock types available, on 

one hand, and the canonical component images, on the other hand, was 

evaluated. This was made by submitting the chemical composition for each 

rock type, and its average DN value in the canonical images, to a statistics 

(correlation) package which would enable one to observe the effect of each 

chemical on the canonical images. (Table 6.3). 

In the first canonical component, Si02 has the highest positive 

correlation values (Table 6.3) closely followed by the K20. This implies that 

for the first canonical component image the increase of these two chemical 

components leads to an increase in the DN values. Whereas the FOO, MgO 

and CaO have completely the opposite relationship with a high negative 

correlation followed by the MnO, P205, and TiO2. This implies that the 

increase of these chemical component percentages in the rock leads to a 

decrease in the DN values of the first canonical image. This is also 

demonstrated in Figure 6.4a, which is the grey level image of the first 

canonical component. 
From Table 6.4, the rock units that have high Si02 and K20 

percentages can be identified. Fawwarah alkali feldspar granite, Hadhir 

aplite, commendite and Silsilah alkali granite, (see figure 2.5 for the rock 

units locations), with compositions ranging from 74.7% Si02 and 5.14% K20 

for the Fawwarah alkali feldspar granite to 73.24% SiO2 and 5.19 K20 for 

Silsilah alkali granite are predicted to be bright, whereas the darkest rock 

unit in this image is predicted to be the alkaline dacite which has 53.2% 
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SiO2 and 2.65% K20. This rock and the Maraghan lithic greywacke has also 

the highest values of MgO, FeO, CaO, TiO2 and P205, chemical elements 

percentage which have a high negative correlation with this canonical 
image. 

In the second canonical component a moderate positive correlation 

was recorded for the following elements: TiO2, P205, MnO, Fe203 and CaO, 

which means that the increase of these components leads to an increase in 

the DN values for this canonical image. Whereas the Si02, K20 have 

completely the opposite correlation, which suggests that the increase of 

these two chemical elements will lead to a decrease in the DN values. 

Therefore, the information that can be drawn regarding the chemical 

composition from the second canonical image (Figure 6.4b) is that the light 

areas are the ones that have high TiO2, P205, MInO, Fe203 and CaO such as 

the alkaline dacite, whereas the darker areas are the areas that have high 

SiO2 and K20 percentages, such as the Fawwarah alkali-feldspar granite and 

the Silsilah alkali granite. The Maraghan lithic greywacke has almost the 

same values in both the first and the second canonical images which may be 

due to its intermediate composition. 

In the third canonical component (Figure 6.4c), the correlation matrix 

shows a high positive correlation with the F6203, P205 and TiO2 chemical 

elements, and high negative correlation with the SiO2 and a moderate one 

with the K20. The positively correlated elements show their highest 

percentage in the alkaline dacite which also shows the lowest percentage 

regarding the SiO2 element (53.2%). The low signal to noise ratio in this 

image reduces its usefulness. The amount of information that could be 

extracted from the fourth canonical image was again rather low but it did 

show the rock areas as dark and the sediments and vegetation as very bright 
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(Figure 6.4d). The fifth canonical image is visually degraded with low signal 

to noise ratio which looks as the negative of the fourth canonical image 

except for the vegetation which shows high values (Figure 6.4e). 

A colour composite from the first three canonical images was made 

(Figure 6-5), where the first canonical image was displayed as red, the second 

as green, and the third as blue. From this colour composite image areas that 

are high in SiO2 and K20 are shown as red whereas areas that are high in 

the Fe203, M90, CaO, M02 and P205 are shown as cyan and blue. 

Although this canonical transformation was applied to different 

areas to test its capability, only one test area showed interpretable results. 
However, it can be concluded that results obtained from this study are 

encouraging and the application of canonical regression with the 

methodology described here have some potential in combining Landsat 

TM-data with geochemical data. 

Experience gained from the present study shows that the 

combination of data of widely different origin was a cumbersome and 

lengthy procedure, but by using the right data, it may turn out to be very 

useful in geochemical studies and mineral exploration. Therefore, further 

study needs to be made to fully justify the applicability of this technique by 

using, for example, data that are acquired by a higher spectral resolution 

system where there will be more spectral bands with a narrower band 

width, such as the Airborn, Imaging Spectrometer (AIS). The AIS records 
data in 128 spectral bands with spectral resolution of 9.3 run, and spectral 

coverage of 1.2-2.4 I= Another system is the Airbom Visible and Infrared 

Imaging Spectrometer (AVIRIS) that collects data in 210 spectral bands in 

the spectral regions 0.4-2.4 ýun with spectral resolution 9.8 ran, IFOV of 20m 

and swathe width of 11 km (Kingston and Crowley, 1989). Another 
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possibility is the High Resolution Imaging Spectrometer (HIRIS) which has 

a similar capability to "ERIS, but covers three times larger swathe, and has 

2-5 times greater radiometric sensitivity, with 129 channels covering the 

spectral range between 0.4 gm to 2.5 ttm (Goetz, 1989). With the extra 

spectral information provided by these systems, it may be possible to create a 

data set that does contain enough components to reveal the chemistry of 

the rocks directly. 

6.3-1.3 Band colour comRosite and HSI transformation enhancement 

Figure (6-6) shows a colour composite of TM band-7 displayed as red, 

TM band-4 displayed as green, and IM band-1 displayed as blue. These 

three bands were stretched using a BUT technique (described earlier in 

section 5.3-3). Although this colour composite displays reasonable 
discrimination between different lithologies available in this test area, this 

enhanced image did not exploit fully the RGB colour space, due to the high 

degree of correlation that exists between thefM bands (Table 6.1a). 

By transforming the image in Figure (6.6) from the RGB to the HSI 

coordinates and then using the manipulation, described earlier in section 

6.2-5, for the saturation and intensity components, and then transforming 

the image back to RGB components, the end product was the image shown 
in Figure (6.7). It can be seen that the new image (Figure 6.7) has been 

enhanced spectrally as well as spatially. Lithological units having similar 

colour and texture can be clearly recognised, and dicriminated over the 

whole image. By comparing this image with the detailed geologic map that 

was produced by Du Bray (1988) as reference, the excellent degree of 

separability between rock types is obvious, and almost identical to the 

detailed geological map. Furthermore, the increase of intensity enhances 
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(a) First canonical component 

(b) Second canonical component 

Figure 6.4: Images (a) - (e) represent the gray level images of the individual 
canonical components of Silsilah ring complex. 



(c) Third canonical component 

(d) Fourth canonical component 

Figure 6.4: (Continued) 



(e) Fifth canonical component 

Figure 6.4: (Continued) 

I 

Figure 6.5: Canonical component colour composite of Silsilah ring complex 
in which canonical components 1,2 and 3 were displayed as 
red, green and blue respectively. 



the colour for the areas of low albedo (e. g., alkaline dacite). In addition, the 

sharpening filter that was used, has enhanced the rock texture, the drainage 

structure and the sharp contact between rock types. This image displays all 

the geologically relevant information in greater detail than any other 

composite. 

The alkaline dacite, (see Figure 2.5 for rock unit locations) like all the 

ultramafic rocks, has a very low reflectance in the IR (TM band-7 and TM 

band-4) and slightly higher reflectance in the visible region (TM band-1) and 

therefore it appears as a blue colour. The lithic greywacke, in the area inside 

the ring complex, can be easily discriminated by its structure (where it has 

been cut by well developed dendritic drainage) or by its bluish magenta 

colour, caused by the abundance of clay minerals that cause absorption in 

the infrared band (TM band-7). The presence of ferruginous materials, in 

some areas, is indicated by the magenta colour, due to absorption by TM 

band-4. However, this unit appears more bluish in the northwest and 

southwest corners of the image, where there may be more clay minerals. 

Fawwarah alkali feldspar granite can be discriminated by its slightly 

pinkish white colour, caused by high reflectivity of all TM bands, and this 

can be attributed to the fact that felsic rocks are highly reflective in all TM 

bands, exactly the opposite of mafic rocks (alkaline dacite). The presence of 

trace amounts of a very light brown Fe-Li mica (Du Bray, 1988) in this unit 

may have caused the slightly pinkish white colour. 

The Silsilah alkali granite (Sag) can be divided into three types 

according to its appearance in this image: a) the highly jointed alkali granite 

at Jabal al Hadhir; b) recrystallised, fine grained and altered alkali granite at 
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Figure 6.6: Band colour composite (BCC) image of Silsilah ring complex in 
which TM band-7, TM band-4 and TM band-I were displayed 
as red, green and blue respectively. 

Figure 6-7: The Colour composite image of Figure 6.6 after hue-saturation- 
intensity enhancement. 



the contact with Fawwarah feldspar granite, in the southern part of the 

ring; and 0a smooth alkali granite in the north western part of the ring. 

The highly jointed areas of Jabal al Hadhir are bluish red in colour 
due to the fall off in reflectance in IM bands 4 and 1 compared to TM band 

7, which may be caused by the presence of iron oxides. The second type of 

the alkali granite (recrystallised) appears as a small unit at the contact with 

the Fawwarah alkali feldspar granite (Fag), with a degree of brightness in 

between the (Fag) and (Sag). The reduction in the amount of Fe oxides, and 

the increase of quartz content, may cause this type to have a brighter colour. 

The third type which has a smooth appearance in the north western part of 

the ring varied from bluish red to bluish green colour, possibly attributable 

to the presence of hydroxyl bearing minerals which cause a reduction in 

reflectivity of TM band-7. 

For the commendite, unit, the alteration of anorthoclase to sericite 

causes an absorption to band 7, which gives this rock the bluish green 

appearance in the slightly weathered areas. The commendite dike, inside 

the ring complex, has a reddish yellow colour, caused mainly by iron 

staining that reduces the reflectivity sharply in TM band-1, and also in TM 

band4. The Hadhir aplite appears as light brown cap rock over the 

Fawwarah alkali feldspar granite. Vegetation has a green colour due to its 

distinct high reflectivity in the near infrared (TM band4). 

The edge enhancement of the intensity, made prior to 

transformation back to RGB coordinates, enhances the dendritic drainage 

structure which cuts the Maraghan lithic greywacke and also enhances the 

joints that are cutting the Silsilah alkali granite at Jabal al Hadhir. 

145 



6.3.2 Tabal ar Raha (test area 2) 

6.3.2.1 Princigal com2onent and band ratio analysis 

The TM bands in this test area exhibit a higher degree of correlation 

compared to the previous test area (Silsilah ring complex) as can be 

recognised in Table 6.5a. After applying the PC transformation for this area, 

as was expected from such a high degree of correlation, the first principal 

component axis mapped more variance than in the previous test area 

(Table 6.5b) and accounted for 97.03% of the total variance in the six 

reflected TM bands. The rest of the variance (2.97%) was mapped in the 

other five PC images. The loading factor for the contribution of each band 

to a component (eigenvector) is shown in Table (6.5b) and is very similar to 

the previous test area. 

By examining each of the principal component images individually 

and as colour composites it was found that the best three PC images that can 
be displayed as PCC image was PC3 displayed as red, PC2 displayed as green, 

and PO displayed as blue (Figure 6.8). This is the same as was found for the 

first test area. These three components account for 99.41% of the total 

variance available in the six reflected TM bands acquired for this test area. 

For the band ratio colour composite, the same procedure as described 

earlier led to the selection of TM 5/4 band ratio image to be displayed as red, 

TM 5/1 band ratio image to be displayed as green, and TM 5/7 band ratio 
image to be displayed as blue. 

Table (6.6) shows the different colours associated with different 

lithologies found for this test area. In the colour ratio composite (Figure 

6.9). 
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COR MATRIX Bl B2 B3 B4 B5 B7 

Bl 1.00 

B2 0.97 1.00 

B3 0.94 0.99 1.00 

B4 0.93 0.97 0.99 1.00 

B5 0.90 0.95 0.97 0.98 1.00 

B7 0.88 0.94 0. % 0.96 0.98 1.00 

(a) 

COMPONENT Cl C2 C3 C4 C5 C6 

% var. 97.03 1.83 0.55 0.28 0.26 0.06 

eigenval. 1977.07 37.24 11.25 5.62 5.28 1.16 

Bl 0.264 -0.702 0.054 0.568 -0.188 -0.272 
B2 0.227 -0.301 0.051 -0-096 -0.143 0.908 

B3 0.424 -0.261 0.084 -0.763 -0.246 -0.318 
B4 0.388 -0-139 -0.120 -0.041 0.901 0.001 

B5 0.616 0.433 -0-562 0.215 -0.263 0.002 

B6 0.409 0.373 0.809 0.191 -0.001 -0.004 

(b) 

Table 6.5. See next page. 



LOADING cl C2 C3 C4 C5 C6 

Bl 0.929 -0.338 0.014 0.106 -0.034 -0.023 
B2 0.978 -0-177 0.016 -0.022 -0.031 0.094 

B3 0.994 -0.084 0.014 -0.095 -0.029 -0.018 
B4 0.990 -0.048 -0.023 -0.005 0.118 0.000 

B5 0.991 0.095 -0-068 0.018 -0.021 0.000 

B7 0.983 0.123 0.146 0.024 -0.000 -0-000 

(c) 

Table 6.5. Statistics of Jabal ar Raha test area where table (a) describes the 

correlation coefficient between the 6 TM reflected bands. Table (b) describes 

the variance, eigenvalues and eigenvectors for each principal component in 

which the percentage variance indicates the amount of variance that was 

picked by each component, and the table gives the relative loading of each 

band in each component. Table (c) gives the component loading summary. 



The meta-andesite (ma) at location (A) in this figure appears as a dark 

blue colour (low values in TM 5/1 and TM 5/4 band ratios). This may be 

due to the presence of opaque oxides as accessory minerals and the low 

amount of iron oxides, or the presence of sericite and chlorite as alteration 

products, that cause a higher value in the TM 5/7 band. This unit appears 

in the PCC image as reddish brown. The units, that were mapped as meta- 

andesite at (B), are slightly different in the CRC image, which may be due to 

the presence of a number of rhyolite dikes that cut this unit, and were 

observed during the field visit to this area. 

A similar colour was also found inside the conglomerate (cg) unit, 

which was not mapped previously, and could be of an andesitic 

composition. The conglomerate unit, that appears in the CRC image as 

magenta colour (mixture of red and blue), has a mixed composition (as 

described in chapter 2) of andesite as well as argillite and metamorphic 

epidote, which may account for its colour. This unit can be discriminated by 

its light brown colour in the POC image. 

The conglomerate is bounded to the west by the Qarnayn lithic 

greywacke which appears as an orange colour (mixture of red and green, 

with higher values in the red). The contact between these two units is 

gradational and complex as can be seen dearly in the colour ratio composite 

and was described in chapter 2. In the PCC image the Qarnayn lithic 

greywacke appears as greenish yellow and its gradational contact with the 

conglomerate can also be noticed. 
South of this unit (in the southern half of the image) is aV shape 

unit of Raha meta-rhyolite that has bright colour in the CRC image (high 

values in both IM 5/4 and IM 5/1 band ratios), which may be due to the 

presence of Fe bearing minerals, whereas in the PCC image this unit has a 
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Figure 6.8: Principal component colour composite (PCC) image resulting 
from the principal component transformation of the six reflected 
TM bands of Jubal ar Raha in which PC3, PC2 and PC 1 were 
displayed as red, green and blue respectively. 

Figure 6.9: Colour ratio composite (CRC) image of Jabal ar Raha in which 
TM 5/4, TM 5/1 and TM 5/7 band ratios were displayed as red, 
green and blue respectively. 



TM 5/4 band TM 5/1 band TM 5/7 band Colour 
ratio image ratio image ratio image Composite 

(red) (blue) (green) 

Conglomte. moderate- dark moderate magenta 
bright 

Carbonates dark dark moderate blue 

Andisitic dark dark moderate blue 
rocks 

Meta-andesite dark dark moderate blue 

Raha bright- bright dark yellow 
meta-rhyolite moderate 

Qarnayn bright moderate dark orange 
lithic 
graywacke 

Meta gabbro bright moderate dark orange 

Meta-rhyolite moderate- bright bright cyan white 
tuff bright 

Table 6.6. Summary of colour associated with main lithologies; in the CRC 
image of Jabal ar Raha (Figure 6.9). 



yellowish green colour that looks slightly similar to Qarnayn lithic 

greywacke. Bounded to this unit is the metarhyolite tuff that can be 

distinguished by its bluish bright colour in the CRC image. Also the contact 

between this unit and the meta-andesite is clearly seen in the image. In the 

PCC image, this unit is more dearly observed by its green colour, and its 

contact with the meta-andesite can also be observed, but not as sharp as in 

the CRC. 

The small carbonate unit to the north cannot be easily distinguished 

from the meta-andesite in both the PCC and CRC images. Also the meta 

gabbro cannot be discriminated from the Qarnayn lithic greywacke (qlg) 

which has the same orange colour; also the Shaila quartz monzodiorite 

cannot be discriminated from part of the (qlg), which has the same colour in 

both images. 

6.3.3 Band colour coml2osite and HSI transformation enhancement 

Figure 6.10 shows a TM colour composite of band 7 displayed as red, 

band 4 displayed as green, and band 1 displayed as blue. These bands were 

stretched using a balance contrast enhancement technique. In this colour 

composite, although there is a reasonable discrimination between different 

lithologies, this image did not use the full RGB colour space, due to the 

reasons described earlier in section 6.2.5. By transforming these data from 

RGB coordinates to HSI coordinates, and using the manipulations that were 

described earlier in section 6.2-5, and then transforming the data back to the 

RGB coordinates for display, the colour composite image of Figure 6.11 was 

produced. 

In this figure the improvement in the spectral as well as textural and 

structural information is very obvious, and the image becomes much easier 
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to interpret. The degree of colour separability between rock types has 

improved sharply, with more saturated colours, and shows more 

differentiation than can be predicted from the geologic map that was made 
by Du Bray (1983), and used here as reference. The sharp contact between 

some rock types is shown in greater detail, due to the replacement of the 

intensity by an edge-enhanced (sharpened) first principal component. An 

enlarged area of this image is shown in Figure 6.12 to demonstrate the HSI 

transform effect more clearly. For information about the location of 

various lithological units, consult the Geologic map in Figure (2-7). 

In Figure 6.11, the Raha meta-rhyolite appears orange and this is 

caused by absorption, due to the presence of iron oxides in this unit. The 

meta-rhyolite tuff appears as green and this may be due to the presence of 

hydroxyl minerals, caused by hydrothermal. alteration, and also due to the 

presence of iron oxides, that cause an absorption in the visible range of the 

electromagnetic spectrum (TM band 1). The variation in colour to the 

western part of this unit may be due to the presence of rhyolite dikes cutting 

this area. 

The meta-andesite unit north of the meta-rhyolite tuff can be 

distinguished by its blue colour, indicating lower reflectance in TM band-7, 

that may be due to the presence of hydroxyl, caused by sericitisation of 

plagioclose, and also by some alteration of the hornblende to chlorite 
(Chapter 2), which leads to absorption of band-7, whereas absorption of 

band4 may be due to the presence of hornblende (Hunt et al., 1973). 

In the conglomerate (Cg) unit, the absorption in band-7 caused by the 

presence of argillite (mixture of clay minerals) as an alteration product and 

the absorption in band-4 caused by the presence of epidote (Hunt, 1973), 

gives this unit a dark blue appearance. The stretched pebble conglomerate 
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(sPO that appears as a blue lens inside the qIg unit was described by Du Bray 

(1983) as lithologically similar to the conglomerate east of the test area 
(Chapter 2), and it has also the same colour in Figure 6.11. The meta- 

andesite at (A) appear as bluish green. This may be due to the absorption in 

band-7 by hydroxyls formed during alteration, combined with a slight fall 

off to the blue (band-1), due possibly to ferric oxides; similar samples were 
described by Hunt et al. (1973). The meta-andesite unit at (B) was cut by a 

number of rhyolite dikes and numerous small quartz veins. These were 

observed during the field visit. The Qarnayn lithic greywacke unit appeared 

as red colour due to absorption in bands-1 and -4 which may be caused by 

the presence of iron o)ddes from the alteration of magnetite, which accounts 
for 5% of this unit (Du Bray, 1982). 

The Shaila quartz monzodiorite (Sqm), although similar in colour to 

the conglomerate (Cg), could be discriminated by its more grayish blue 

colour and its textural differences, whereas the meta-andesite is more blue 

in colour than this unit. The flat area around the (Sqm) unit is distinctly 

different in its appearance in Landsat TM bands; it appears as bright in band- 

1 and decreases in its reflectivity gradually and reaches its minimum in 

Landsat TM infrared bands-5, -7. In the colour composite of Figure (6.11), it 

appears as blue which is probably due to the presence of hydroxyls. The 

strong red colour of the meta-gabbro exhibits some spectral features, 

described by Hunt et al. (1974) for Gabbro samples, in which the presence of 
iron oxides produced a strong fall in reflectance in both TM band-1 and TM 

band-4, and this may have caused its strong red colour. However, this rock 

cannot be discriminated in this area from Qarnayn lithic greywacke. The 

massive marble could be discriminated by its cyan colour (C) (absorption of 
band-7) caused by the carbonate minerals. 
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Figure 6.10: Colour composite image of Jabal ar Raha in which TM band-7, 
TM band-4 and TM band-1 were displayed as red, green and 
blue respectively. 

Figure6.11: The colour composite image of Figure 6.10 after hue-saturation- 
intensity enhancement. 



e 
LI 

. v1 

Figure 6.12: An enlarged (zoom in) part of image in Figure 6.11. 



6.3.3 Aban Ahmar 

6.3.3.1 PrindRal CgMponent and band ratio analysis 
The degree of correlation between the reflected IM bands in this area 

(Table 6-7a) is again high (as in the previous test area). Table (6.7b) shows 

the percentage distribution of the total variance as mapped (after the PC 

transformation) for the six principal components in which 97.27% of the 

total variance was mapped by the first principal component axis, and 

progressively lower variance was mapped by each higher order principal 

component which also progressively had a higher noise component. The 

eigenvectors are shown in Table 6.7b, which also shows a similar response 

as in the previous two areas, especially the first three PCs in test area two. 

The three best PC bands were displayed as before: PO as red, PC2 as 

green and PC1 as blue. These account for 99.43% of the total variance 

available in the six reflected TM bands acquired for this test area (Figure 

6.13). 

By applying the ratio enhancement to this test area, only six of the 

possible ratio images of the six reflected IM bands show a good variation 
betwen rock types. This include TM band ratio images 5/7,5/1,4/1,4/2,3/1 

and 5/4. From these ratios, various colour ratio composites were produced. 
The colour ratio composite, which were chosen as the best to provide 
discrimination between the available lithologies, were the IM band 5/4 

ratio image displayed as red, IM band 5/1 ratio image displayed as green, 

and TM band 5/7 ratio image displayed as blue (Figure 6.14 and Table 6-8). 

In this image various lithologies can be discriminated (consult Figure 

2.8 for their location), such as the perthite granite member (apg) which 

appears a yellowish green colour. This may be due to the relatively higher 

percentage of iron bearing aluminosilicate in this rock, such as biotite, 
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which accounts for up to 7% of the rock (Cole, 1988), and also the presence 

of iron oxides. These constituents may be responsible for its moderate 

value in TM 5/4 band ratio, and higher values in TM 5/1 band ratio that 

were displayed as red and green respectively, compared to the low values in 

TM 5/7 band ratio that was displayed as blue. This unit becomes more 

greenish toward the south, which may be due to the increase of the amount 

of the iron bearing aluminosilicate that increases the TM 5/4 ratio values 
displayed as green. In the PCC image, this unit has almost the same colour 

as in the CRC, but becomes more yellow towards the south. 

In the arfvedsonite granite (aag) the presence of iron bearing 

aluminosilicate in its constituent (arfvedsonite) could be responsible for the 

moderate values of this rock in TM 5/4 band ratio (red) TM 5/1 band ratios 
(green). The very low values of 5/7 ratio displayed here as blue may be due 

to the fact that it is almost free of alteration. Therefore, this rock appears as 

orange colour. In the PCC image it appears as bright yellow. The other part 

of the (aag) unit to the west has more alteration minerals such as sericite 

and kaolinite, and possibly lesser amounts of arfvedsonite (confirmed by 

examining a thin section collected during the field visit). This may account 
for its greenish blue in the CRC image. In the PCC image this small unit 

appears more reddish. 

The rhyolite porphyry (arp), exposed at Sinaf abal Haddar, appears in 

the CRC image as cyan colour (high in blue and green). This may be due to 

its high degree of alteration, and the presence of iron oxides 
(hematite), whereas the southern unit appears bright yellow colour. In the 

PCC image the (arp) unit at Sinaf abal Haddar has a green colour, whereas 

the southern unit has a yellowish colour. 
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COR MATRIX Bl B2 B3 B4 B5 B7 

Bi 1.00 

B2 0.97 1.00 

B3 0.94 0.99 1.00 

B4 0.91 0.97 0.99 1.00 

B5 0.89 0.95 0.98 0.98 1.00 

B7 0.87 0.94 0.97 0.97 0.99 1.00 

(a) 

COMPONENT Cl C2 0 C4 C5 C6 

% var. 97.27 1.85 0.31 0.26 0.23 0.09 

eigenval. 3028.02 57.69 9.53 7.98 7.13 2.74 

Bl 0.251 -0.692 0.085 0.3% -0.168 -0.513 
B2 0.221 -0327 0.070 0.320 -0.123 0.849 

B3 0.424 -0.284 0.137 -0.821 -0.207 0.048 

B4 0.364 -0-124 -0.134 -0.021 0.912 0.008 

B5 0.614 0.358 -0.619 0.157 -0.283 -0.071 
B6 0.443 0.433 0.753 0.200 -0.001 -0.086 

(b) 

Table 6.7. See next page. 



LOADING cl C2 C3 C4 C5 C6 

Bl 0.924 0.351 0.017 0.074 0.030 0.056 

B2 0.985 0.200 0.017 0.073 0.026 0.113 

B3 0.997 0.092 0.018 0.099 0.023 0.003 

B4 0.991 0.046 0.020 0.002 0.120 0.000 

B5 0.990 0.079 0.055 0.013 0.022 0.003 

B7 0.986 0.133 0.093 0.022 0.000 0.005 

(c) 

Table 6.7. Statistics of Aban Ahmar test area where table (a) describes the 

correlation coefficient between the 6 IM reflected bands. Table (b) describes 

the variance, eigenvalues and eigenvectors for each principal component in 

which the percentage variance indicates the amount of variance that was 

picked by each component which is also expressed by the eigenvalue. The 

eigenvector indicates the relative loading of each band in each component. 

Table (c) gives the component loading summary. 
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Figure 6.13: Principal component colour composite (PCC) image resulting 
from principal component transformation of the six reflected 
TM bands of Aban Ahmar, in which PC3, PC2 and PO were 
displayed as red, green and blue respectively. 

Figure 6.14: Colour ratio composite (CRC) image of Aban Ahmar in which 
TM 5/4, TM 5/1 and TM 5/7 band ratios were displayed as red, 
green and blue respectively. 



TM 5/4 band TM 5/1 band TM 5/7 band Colour 
ratio image ratio image ratio image Composite 

(red) (blue) (green) 
Perthite _ yellowish 
granite moderate bright dark green 

Arfvedsonite moderate moderate dark yellow 
granite 

I 

Rhyolite moderate bright moderate cyan 
porphyry 

Granophyre bright moderate- moderate reddish bright 
bright 

Khaytan bright moderate moderate reddish bright 
quartz diorite I 

jSabkha 1 dark I dark bright 
I 
dark blue 

Table 6.8. Summary of colour associated with main lithologies in the 
colour ratio composite of Figure 6.14. 



In the granophyre (sgg) unit the high percentage of iron oxides and 

iron bearing aluminosilicate (biotite), as well as the presence of alteration 

minerals (sericite), has given this unit a yellowish bright colour. In the PCC 

image it has a green colour. 

The andesitic flow rock, flow breccia, and conglomerate units Qa, jc, js 

and JO were mapped according to their stratigraphic positions and also by 

the clasts' size and microscopic texture. These differences cannot be traced 

by satellite sensor, such as the one used here; therefore the discrimination 

between these units was not possible. 

The Sabkha area (evaporites) appears similar to part of the andesitic 

unit, due to the reasons that were described in section 6.3.1.1, with regard to 

the albedo differences. This is not the case, however, in the PCC image and 

the Sabkha deposits can be discriminated dearly by their dark blue colour. 

633.2 Band colour 2gp jýosite and HSI transformation enhancement 

A colour composite of TM band-7 displayed as red, TM band-4 

displayed as green, and TM band-1 displayed as blue is shown in Figure 6.15. 

These bands were stretched using a BCET technique to enhance 
discrimination between different lithologies. Various rock types exhibit 

some degree of colour variation in this figure, but the intensity of these 

colours, is somewhat degraded, and does not show the detailed variation 

that was described by the geologic map (Figure Z8) made by Cole (1988). The 

degree of saturation in these colours is low due to the reasons described 

earlier in section 6.2-5. The data in Figure 6.15 were transferred from RGB 

to HSI coordinates after being manipulated as described previously in 

section 6.2.5 and then transformed back to the RGB coordinates for visual 

inspection. To display the detailed texture and structural information, and 
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the sharp boundary and contact between various units, that was enhanced 
by this transformation and manipulation, the image of this test area (1024 x 
1024 pixels) was divided into four 512 x 512 pixel subscenes. This was made 

to enable a full resolution display (Figure 6.16). This step was not taken for 

the other images (PCC and CRC images) since they did not show any 

significant details. 

In this image, the improvement in the spatial as well as spectral 

information is self-evident The image becomes easier to interpret in terms 

of its rock variation, rock boundary and rock texture. The degree of 

similarity between the image and geological map used by Cole (1988), and 

used here as reference, is convincing (for comparison and rock units 
location see the geologic map, Figure 2.8). 

For example, the perthite granite member can be discriminated by its 

very rough texture and structure, and its reddish yellow colour (absorption 

in band-1), which suggests the presence of iron oxides. The higher amount 

of iron minerals in the arfvedsonite granite (apg) gives this unit a pink 

colour, due to absorption in both bands 1 and 4, that were displayed as blue 

and green respectively; also this unit is slightly less rough in its texture. 

However, the (apg) unit appears as greenish colour, west of the perthite 

granite, in the southern half of the image. By examining a thin section that 

was made during the field visit in November 1991, it was found that the 

main difference was the presence of day minerals (kaolinite and sericite), as 

an alteration product, in addition to hematite, which is present in both 

areas. This leads to more absorption for band-7and band-1. 
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Figure 6.15: Colour composite image of Aban Ahmar, in which TM band-7, 
TM band-4 and TM band-1 were displayed as red, green and 
blue respectively. 



The units mapped in the geologic map as rhyolite porphyry (arp) can 

be divided into two units in terms of the degree of alteration. The one at 

north west of Fayyadah can be discriminated by its green colour (absorption 

of bands-7 and -1 and slightly higher reflectance in band-4), that may be due 

to a combination of hydroxyl minerals formed by alteration, and the 

presence of hematite, which caused a sharp decrease in band 1 (confirmed by 

field observations). The small yellow area within this unit was observed in 

the field as an eolian sand dune that covers this area. The southern unit 

(west of Jibal al Hannawiyah) appears to have less hydroxyl minerals, which 

causes this unit to have deep orange red colour. 

The granophyric unit (sgg) at jibal Kihlah appear as deep red 
(absorption of bands-1 and -4). A similar sample was described by Hunt et 

al. (1973), where the high percentage of biotite caused absorption in bands I 

and 4, also the presence of augit caused absorption in band4. Although 

Cole (1981) mentioned some alteration in this unit, it does not seem to 

show a high absorption in band-7. As in the CRC and PCC images, the 

andesitic flow rock, andesitic flow breccia, and the dacite units, cannot be 

separated easfly in Chis briage. 

According to the enhanced TM shown in Figure 6.16, the unit that 

was inapped as a conglomerate can be separated into two, the red and the 

blue units. During the field trip a thin section was made for three samples, 

one from the blue and two from the red units. After examining the thin 

sections it was found that the main difference is the intense sericitization 

and in the plagioclase of the sample taken from the blue area, 

plus the presence of some iron oxides, that cause more absorption in band 4 

relative to band 1. The red unit is almost free of alteration and contains 
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Figure 6.16: The colour composite image of Figure 6.15 after hue-saturation- 
intensity enhancement. 



some magnetite and pyrite, that were altered to limonite, which caused the 

high absorption in bands 1 and 4. The unit mapped as andesite can be 

divided into two units, a blue and a red unit. A thin section, from the red 

unit, was made for one of the samples collected during the field visit. It 

showed that the epidote mineral forms a considerable amount of this unit, 

and hence reduced reflectivity in TM band-4. Also, a thick desert varnish 

covered the rock, and this caused a reduction in reflectance (absorption) in 

all the TM bands, but its effect in the IR bands, especially TM band-7, is less 

than the shorter wavelength bands. These two components may cause the 

red colour. 

The area mapped as conglomerate unit north of Mihayyidah village, 

which apperas as orange colour, was checked in the field. The difference in 

its colour from the rest of the conglomerate may be due to a high amount of 

granite and rhyolite fragments as described by Cole (1981), and also the 

presence of small rhyolite dikes. The area mapped as Gabbronorite cannot 

be easily discriminated from others nearby. 

Some of the rhyolite dikes, that intrude the andesitic flow rock and 

flow breccia, appear as yellow orange to orange colour west and north west 

of hGhayyidah. The Sabkha, (evaporites) deposits can be recognised by their 

homogeneous cyan colour due to absorption of TM band 7 by carbonates. 

6.3.4 Aban Asmar (test area 4) 

63.4.1 Band ratio Ylis 

In this test area only six band ratios show a good variation between 

rock types. These are TM 5/1 5/3 5/4 5/7 4/1 and 4/7. As for previous 

test areas, a variety of ratio colour composites were made using the above 

ratios, in order to choose the best one that provides discrimination between 
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different lithologies. It was found that the best colour ratio composite was 

TM 5/4 band ratio image displayed as red, TM band 5/1 ratio image 

displayed as green, and TM band 5/7 ratio image displayed as blue, Figure 

(6.17). Table (6.10) summarises the different colours associated with 

different lithologies found in this test area (consult the geologic map in 

Figure (2.11) for rock units locations). 

In this colour ratio composite the presence of iron oxides (e. g., 

hematite), and iron bearing alun-dnosilicates (biotite and homblende), and 

the lack of alteration in both the biotite perthite granite (spg) and 

hornblende perthite granite (shpg) lithology units, may be responsible for 

the higher values in TM 5/4 band ratio, displayed as red and also in TM 5/1 

band ratio, displayed as green, and low values in IM 5/7 band ratio, which 

gave these two units the yellow colour (n-dxture of red and green). 

In the Samra. rhyolite (Sry) unit the white areas are probably a sign of 

hydrothermal alteration. Whereas the bright cyan areas are the areas that 

have a relatively low 5/4 ratio, owing to a lower content of iron bearing 

aluminosilicates (such as biotite and hornblende), the darker cyan areas are 

caused by slightly lower value in ratio 5/1 than the bright cyan areas. T'his 

may be attributed to a lower content of iron oxides. The intrusion breccia 

(sbr) unit which is a mixture of both sry and shpg shows a mixture of blue, 

cyan and yellow. The quartz syenite (ssy) can be discriminated by its reddish 

yellow colour (low in IM 5/7 band ratio). 

The conglomerate Qc) east of the complex can be discriminated by its 

dark blue colour (low reflectance in TM 5/4 and 5/1 band ratio and high in 

TM 5/6 band ratio), which may be due to the presence of hydroxyl bearing 

minerals. The CRC also shows a magenta colour in the southern part of 

this unit, that may be caused by the abundance of rhyolite porphyry dikes 
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that cut this area (noticed during the field visit and also reported by Cole, 

1988). The granite porphyry member (sgp) appears as a cyan colour and 

cannot be discriminated from some part of the rhyolite to the south of this 

unit. The dike of this unit, that cuts the conglomerate, appears as yellowish 

colour, and can be easily discriminated. The rhyolite porphyry (srp) unit 

appears as dark cyan colour and cannot be discriminated from the jc unit. 

6.3A. 2 False colour gpmMsite and HSI transformation enhancement 

Figure (6-18) shows a false colour composite of TM band-7 displayed 

as red, TM band4 displayed as green, and IM band-1 displayed as blue. 

These three bands were stretched using BUT stretch to enhance the visual 

appearance of the image. Due to the sharp differences in brightness between 

some lithologies (such as the granite and the Samra rhyolite), they can be 

discriminated in this image; however, rocks that have lower brightness 

have poor visual appearance in the image. The colour variation is poor, 

and the units that can be discriminated in the image are fewer than those 

found in the geologic map (Figure 2.11). By transforming the data in Figure 

(6.18) from the RGB to the HSI coordinates and then using the steps 

described earlier in section 6.2.5, and then transforming the data back to the 

RGB coordinate (Figure 6.19), the improvement in the data was obvious. 

The increase in saturation and intensity enables the variation in the 

previously dark areas, especially the Asmar rhyolite unit, to be clearly seen 

(consult Figure 2.11 for rock units location). Some of these variations were 

not mapped in the geologic map used here as reference. For example, both 

biotite perthite granite (spg) and the homblende perthite granite (shpg) 

appears as light red colour. This may be due to the fact that both rock units 

are compositionally and texturally the same (both are perthite granite), 
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COR MATRIX Bl B2 B3 B4 B5 B7 

Bi 1.00 

B2 0.98 1.00 

B3 0.97 0.98 1.00 

B4 0.94 0.96 0.97 1.00 

B5 0.94 0.95 0. % 0. % 1.00 

B7 0.92 0.94 0.95 0.94 0.98 1.00 

Table 6-9. Correlation coefficient matrix between the six TM reflected bands 
of Aban Asmar test area. 

TM5/4band TM5/1band IM5/7band Colour 
ratio image ratio image ratio image Composite 

(red) (blue) (green) 

Quartz moderate- dark moderate magenta 
Syenite brigh 

Samra moderate bright moderate- white - bright 
rhy, olite bright to dark cyan 

spg & shpg bright bright dark vellow 

Intrusion moderate nwderate moderate- mixture of 
breccia bright yellow, cyan 

and blue 

Conglomerat dark dark bright blue 
e 
Granite 
porphyry moderate bright moderate- cyan-blue 

I I I I bright 

Table 6.10. Summary of colour associated with main lithologies in the 
colour ratio composite (Figure 6.17). 



Figure 6.17: 

Figure 6.18: 
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Colour ratio composite (CRC) image of Aban Asmar in which 
TM 5/4, TM 5/1 and TM 5/7 band ratios were displayed as red, 
green and blue respectively. 
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Colour composite image of Aban Asmar, in which TM band-7, 
TM band-4 and TM band-1 were displayed as red, green and 
blue respectively. 



-Ae 

Figure 6.19: The colour composite image of Figure 6.18 after hue-saturation- 
intensity enhancement. 
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except that the hornblende unit contains minor and sparse dark green 

amphibole, and brown rather than green biotite (Cole, 1985). Its similarities 

were also confirmed in the field. The intrusion breccia units (sbr), which 
bound the shpg unit to the north and south were described by Cole (1985) as 

a mixutre of the hornblende perthite granite and the Samra rhyolite 
(section 2.3.4). Its colour in the HSI enhanced image appears also as a 

mixture of the colour of both units. 

In the Samra rhyolite unit (sry) at the centre of Asmar complex, 

although it has been mapped as one unit, the image varies in its colour (red, 

green and blue) which suggests some differentiation. To check the source of 

this colour variation, a thin section were made for some of the rock 

samples, taken from the area that bounds Shaib al Nfitla al Aysar, since 

other areas are almost impossible to reach. It was found that the sample 

taken from the green area has a high kaolinization (6% kaolinite and 1% 

sericite). It also has 3% of iron o)dde as hematite staining. These two factors 

may cause the reduction in reflectivity in both TM band-1 which is 

displayed as blue and TM band-7 displayed as red and gives this unit its 

green colour in the image. Samples taken from the blue area have a more 

clay mineral content . The red areas were the least altered. 
The quartz syenite, member (ssy) can be discriminated from the 

granite units by its magenta colour, which may be due to the presence of 

augite and biotite, which reduce the reflectivity in band-4. Davis and Berlin 

(1989) conclude from their study of an area of the Arabian shield, that the 

granite and syenite could not be discriminated using TM data, whereas this 

test area proves otherwise. The andesitic conglomerate unit (JQ to the west 

of the complex has blue colour; the southern part of this unit shows more 

variation of red colour. This may be caused by the abundance of rhyolite 
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porphyry dikes that cut this area, which was reported by Cole (1988) and was 

also noticed during the field visit. 

6.4 Summ= and condUaM 

In this chapter the results that were obtained by applying different 

image processing techniques to the images of four test areas were reviewed. 

These test areas were selected due to their excellent exposure and lack of 

vegetation, in addition to the diversity of rock types available. The purpose 

of this study was mainly to assess enhancement techniques (rather than a 

geologic investigation), and these techniques were applied to an area already 

studied geologically, so that the accuracy of interpretation can be assessed. 
In addition, where necessary and possible, field samples were taken to 

confirm the interpretations. 

Results obtained from applying canonical regression analysis, 

although somewhat confusing, showed that this regression method has the 

potential for combining Landsat data with geochemical data. Experience 

gained from this study showed that it is to some extent a lengthy process, 
but the result May turn out to be very useful for various other studies, such 

" geochemical studies or mineral exploration. Owing to the limited 

number of spectral bands for Landsat TM, its full potential cannot be 

realised. This may produce more success by using remote sensing data with 

a higher spectral resolution and a higher number of spectral bands. 

The results from the techniques that were used to produce a highly 

enhanced single image product for rock discrimination, show that from the 

six principal components, the best three for display were PC3, PC2 and PC1 

displayed as red, green and blue respectively, whereas the best three TM- 

band ratios for display were band ratios 5/4,5/1 and 5/7 displayed as red, 
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green and blue respectively. However, although the results of both ratio 

and principal component techniques, which are the most frequently used 

processing techniques for geological images, show some degree of 

discrimination between different lithologies, they are by no means the best. 

The ratio technique does enhance the appearance of rocks containing the 

hydroxyle and iron minerals. However, the ratio technique suffers from 

the disadvantage of suppressing of albedo, and topographic relief. The 

suppression of topographic relief increases the difficulty of transferring the 

information from the CRC image to a topographic base map, or to locate the 

exact spatial distribution of the lithological units, since most of the surface 

expressions are lost. Furthermore, the theoretical basis of band ratio 

technique for eliminating shadow is made under the assumption that the 

objects have a Lambartian surface (reflect radiation equally in all directions).. 

which is uncommon in nature (Drury, 1987; Liu and Moore, 1990). The 

high amount of noise is also a disadvantage in the CRC image. 

In the case of principal component technique, despite the colourful 

results in some of the test areas, these colours are intractable and it is 

difficult to relate them to the spectral properties of the different lithologies 

available in the scene. This is mainly due to the fact that the different 

principal component images (PC a)ds) are created by weighted arithmetic 

combination of all the bands rather than for one band, which may increase 

the interpreter's confusion. In addition this technique uses the covariance 

matrix derived from the scene, which may lead to different colours of the 

same lithologies available in the different scenes, with increased confusion 

over topographically rugged areas (Drury, 1987; Rothery, 1987). In addition, 

most of the textural information is lost and the degree of signal to noise 
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ratio is low, and this degrades to some extent the interpretability of some of 

the images. 

A simpler and more understandable way of interpreting the TM data 

Is to choose three of the reflected TM bands for display as a colour 

composite, the choise being determined by the way the different target 

lithologies affect the chosen bands. This approach is certain to be superior 

to the statistical method of choosing the bands, for these ignore the 

significance of variations in lithological features, and therefore can only 

accidentally arrive at a 'good' choice. It was found, using such an approach, 

that the display of TM band-7, TM band4 and TM band-I as red, green and 

blue respectively gives the best band combination for overall lithological. 

discrimination in the four test areas. However, the use of such colour 

composites is somewhat limited by the low degree of colour variation, 

which can be attributed to the high degree of correlation that generally e)dsts 

between different (reflected) IM bands. Stretching of the original three 

band colour composite to fill the 8-bit range available for IM data, may 

increase the contrast slightly, but would not reduce the degree of correlation 

as was demonstrated earlier, and also discussed by other authors such as 

Soha and Schwartz (1978), Drury (1986), Gillespie et al. (1986), and Rothery 

(1987). 

In contrast to some authors, e. g. Rothery (1987), who obtained good 

results using the decorrelation stretch, in this study the results of applying 

such techniques did not produce any significant results. Others, such as 

Davis and Berlin (1989), have used it as well for an area in the Arabian 

shield without any significant results. This may be due to the fact that the 

decorrelation stretch is based on principal component transform which, as 

described earlier, is based on the variance of the data, with less variance and 
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more noise distributed to the sucessively higher components. Stretching 

the principal components before transforming them back to the original 

coordinates (which is the basis of decorrelation stretch technique) will 

selectively enhance the noise. Ferrari (1992) suggests the use of a low pass 
filter to reduce the noise effect. However, this procedure does not guarantee 

the removal of such a component, and will negatively affect the spatial 
information. 

As shown earlier, however, HSI transformation does provide a 
highly flexible and simple means of producing an excellent result based 

upon the original bands. The use of an alternative colour space (HSI colour 

space) to reduce the correlation, and enhance, simultaneously the spectral 

and spatial information in the scene, is an excellent, simple method, as 

clearly demonstrated by the results obtained in this study. The variation 

and purity of the colour were strongly enhanced, without any distortion to 

the original; in addition, the quality of spatial information was sharpened. 
This was made possible by transforming the RGB band colour composite 

(after equalizing the means using BUT stretch) into HSI colour space, 

which produced three new components that can be manipulated 

independently. In this study the saturation and intensity components were 

altered, whereas the hue was optimised by stretching the three original 
bands, so that they had equal means and ranges The saturation was altered 
by simple addition to higher values, to increase the colour purity. The 

intensity was controlled by an edge-enhanced first principal component, 

and also shifted to a higher range to provide a sharper image, and to 

enhance areas of low albedo. After these manipulations, in the HSI colour 

space, the data was transformed back to the RGB colour coordinates for 

display. From the results, it is clear that the ]HSI transform provides a 

178 



powerful technique in terms of its flexibility and quality of its product. It 

creates a superb output of an RGB band colour composite, without 

sacrificing any image content. Further, the results can be easily interpreted 

and provide the geologist, hydrologist or photogeologist, in a single colour 

image product with the lithological, structural as well as textural 

(topography and drainage) information, dearly displayed. The HSI method 

with the methodology discussed in this chapter can also be used to enhance 

any other type of image to provide an enhanced colour product. 
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7.1 i duction 

In Chapters 5 and 6, the image processing techniques, that help the 

analyst in the qualitative, or visual interpretation of images, were described 

and evaluated. In this chapter, the techniques that help in the quantitative 

interpretation of the multispectral images, and the automatic classification 

of the pixels, will be described and tested. The main difference between the 

enhancement techniques, and the classification procedures, is that the 

enhancement techniques are designed by the analyst to enhance the visual 

Interpretability of the data. Production of a map from these data is the duty 

of the analyst. Image classification, on the other hand, transfers this duty to 

the computer. This step is made to replace the uncertain interpretation of 

the analyst by a more quantitative and repeatable process. 

Digital classification of images is the process that assigns each 

individual pixel in a digital image to a label or class based on its spectral 

properties. The logic is that in multispectral data, each pixel has a grey level 

in several spectral bands of the electromagnetic spectrum. Different 

categories will have different patterns that are unique enough to enable 

these categories to be distinguished from one another. Therefore, statistical 

techniques may be used to digitally classify the data based on these spectral 

features (Hutchinson, 1982). This process is carried out for all pixels in the 

image, dividing it into several homogeneous regions. The classified image, 

resulting from such a process, is presented as a thematic map, which can be 

density sliced to different colours, to show the geographical distribution of 

each class in the image. Once the classification procedure has been 

conducted, the final step is to check the degree of accuracy in the classified 
image compared to reference data. 
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Digital image classification is one of the most important image 

processing tasks in remote sensing. It could be used, either as a final 

product, or as one of several analytical procedures used to derive 

information from an image. 

Two aims were set for this chapter. The first aim was to evaluate the 

degree of accuracy of a new unsupervised classification algorithm, named 

watershed algorithm. This algorithm was used for the first time by A. I. 

Watson (1987) for classification of agricultural scenes acquired by satellite 

sensor (see also Al-Dail, 1989). These studies revealed that the watershed 

algorithm is a better algorithm, in the degree of its accuracy, than any 

comparable method available. However, since this study is the first attempt 

at applying the watershed method to a geological scene, its accuracy will be 

compared to the maximum likelihood classifier, which is, probably, the 

most widely used method to classify multispectral images (Niblack, 1986), 

and which in many ways proves to be the best statistical algorithm (Short, 

1984; Watson, 1987,1992; Al-Dail, 1989; Booth and Oldfield, 1989). There are, 

of course, many other approaches and these can be found in Swain (1978), 

Short (1982), Schowengerdt (1983), Niblack (1986), Richards (1986), CampbeU 

(19MJensen (1987), Mather (1987) and LiUisand and Kiefer (1987). 

The second aim was to test the effect of using hue images as a 

classification input compared to the original bands. These hue images are 

produced by transforming the original data from RGB coordinates to hue- 

saturation-intensity coordinates 

This chapter begins with a brief review of classification in geology, 

followed by classification strategies and a brief description of the 

classification algorithms used in this study and the method of assessing 
diessification accuracy. 7bkis theoretical review is followed by an acoDunt of 
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the method of investigation used to perform the classification and its 

accuracy asessment, which is followed by the results that were obtained; the 

chapter ends with a summary and concluding remarks. 

7.2 % ado fication in ggglon 

Unlike in agricultural applications, where the digital classification 

techniques of remotely sensed data are common, in geology, digital 

classification of remotely sensed data is not a favoured technique (Siegal 

and Abrams, 1976; Abrams and Siegal, 1980; Goetz, 1989a) and has found a 
limited application in geological-lithological studies (Gupta, 1991). The 

limitation of the success of digital classification in geology is generally due 

to a number of factors (Siegal and Abrams, 1976; Abrams and Siegal, 1980), 

such as the heterogenity of geological units; the shadow effect, where large 

differences in the radiance values are caused by topographic variation in a 

terrain of a high relief; the presence of soil and eolian materials; and the 

vegetation cover. 
Despite these obvious drawbacks, several studies have been reported 

regarding digital classification in geology using remote sensing data, such as 

Rothery and Melton (1981), Hutchinson (1982), Short (1984), Kaufman and 
Pfeifer (1986), Brickey (1986), McBird et al. (1986), Rowan et al. (1987), and 
Guo and Haigh (1990). These studies have used different strategies of pre 

classification processing and different statistical classification algorithms 
(eg, minimum distance, parallel piped and maximum likelihood classfiers). 
However, apart from Short (1984) and Oldfield (1988), and to some extent 
Kaufinann and Pfeifer (1986), all the previously mentioned studies did not 

consider the accuracy of classification. Rather, they concentrated attention 

on the varying degrees of usefulness of such methods, which cannot be 
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seriously judged without considering the degree of agreement with the 

reference data. Therefore, this study will consider the assessment of the 

accuracy in more detail and with the objective of improving it. Short (1984) 

and Oldfield (1988), however, mention that the accuracy of Landsat MSS 

falls in the 40-60% accuracy range, relative to the maps made by traditional 

field and aerial studies, with about 10% improvement when using the TM 

data. 

7.3 Classification stra Wpm- 
In general, there are two strategies in performing the classification on 

remotely sensed data: a) the supervised strategy and b) the unsupervised 

strategy. The supervised approach requires the analyst to define a 
homogenous area in the image that is known to have a specific identity, in 

other words to define a certain objects in the image. These areas are called 

training areas. The analyst then supervises the classification process, by 

supplying to the computer algorithm the statistical identity of these areas.. 

which will then guide the classifier in the labelling procedures, where it 

will compare the statistical identity of each pboel with each training area in 

the image set Therefore, the selection of these areas forms the key step in 

the supervised strategies. 
The unsupervised classification, on the other hand, does not require 

any assistance from the analyst and its algorithm can be applied directly to 

the data set. The data is first plotted in a feature space, which in effect is an 

n-dimensional histogram, where n is the number of bands. The algorithms 
divide the feature space into a natural grouping (cluster) in order to classify 

the images. The analyst then compares the classified image wiffi refezence 

data, in order to identify the nature of each duster. 
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7.4 ssification ajgQjfth= 

As mentioned earlier, this study is concerned with the unsupervised 

classification strategies. Two methods were used for classification: the 

maximum likelihood and the watershed. 

7.4.1 The unsuRgrvised maximum likelihood 

The unsupervised maximum likelihood method used in this study 

started by applying clustering algorithm to produce a natural grouping 
(clusters) in the feature space, so that the mean and variance for each cluster 

can be found and used by the maximum likelihood to classify the data. 

Therefore, the following section will contain a brief description of the 

clustering and the maximum likelihood algorithm. 

7.4.1.1 Clustering 

Clustering within feature space, whose dimensionality depends on 

the numbers of bands, can produce better discrimination of features than 

the one-dimensional histogram taken separately. Figures 7-1(a) and (b) show 

a one dimensional histogram of two rock types (granite and basalt). These 

two rock types are found to be overlapped in both bands A and B, - thus the 

rock types cannot be identified without error. In Figure 71(c), the feature 

space of a two dimensional histogram formed by bands A and B, in which 

one cluster represents granite and the other basalt. From this feature space, 
it is obvious that a simple decision boundary can be constructed that will 

allow reliable classification. However, this figure represents the ideal 

condition. In nature, the position of the objects in the feature space tends to 
be scattered, rather than form tight clusters. In these cases, the decision 
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boundaries are difficult to define directly, and different methods are 

employed to determine class inclusion. 

In most clustering algorithms the number of clusters must be 

submitted to the algorithm. The method starts by 1) guessing the initial 

duster centres (means); these centres could be specified by the analyst. 2) 

The algorithm will then examine each pixel, one at a time, and assign it to 

the nearest cluster mean, usually using Euclidean distance measurement, 

until all pixels are assigned. This assignment will define the initial set of 

class boundaries (Figure 7.2b). 

3) In the next step, the algorithms regenerate a new mean for each 

cluster, from the results of the previous clustering, and the pixels are 

reassigned to their nearest clusters. The cycle is repeated until there is no 

significant change detected in location of cluster means (Figure 7.2c). 

However, in the final iteration (Figure 7.2d) the algorithm may not 

converge to the 'true' class mean. This is because the estimated cluster 

means are calculated from distribution that is truncated by the class 

partition (Schowengerdt, 1983), and an extra iteration may be required for 

convergence, if the estimated means are close to a decision boundary (see 

the previous references for more detail). In this study, the means and the 

covariance matrices of the clusters were used to classify the entire image, 

using the maximum likelihood algorithm, which will be described briefly 

in the following section. 

7.4.1.2 Maximum likelihood alggýdthm 

This type of classification assumes that the distributions within a 

feature space have a well defined shape (usuaUy Gaussian). By using this 
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assumption, the distribution of a duster in a feature space can be described 

by the mean vector and the covariance matrix. 

Figure 7.3 shows a feature space of bands A and B with three clusters. 

Cluster 1 in the feature space shows a negative covariance. This means that 

high values in band B are associated with low values in band A, whereas 
duster 2 shows a positive covariance, in which high values in band B are 

associated with high values in band A. Cluster 3 shows a near circular 

shape in which the band values are uncorrelated. The maximum 

likelihood algorithm uses the probability concept to assign pixels to classes. 

The algorithm calculates the probability of a pixel, represented by a point 

such as "M" in Figure (7.3), belonging to duster 1, duster 2 and so on, and 

then assigns the pixel "M" to the cluster with the highest probability and to 

which it 'most likely' belongs. These probability values are shown in 

Figure (7-3) as elliptical contours in clusters 1 and 2 and as concentric circles 

in duster I These contours show the sensitivity of the likelihood classifier 

to covariance. 

Watson (1987), Mather (1987) and Benic and Thomson (1992) pointed 

out that the concepts of the maximum likelihood method, are valid only 

under the assumption of the multi-variate normal distribution, which is 

not always true, since the intensity distribution to the classes to be merged 

are not necessarily Gaussian (normal distribution). 

7.42 The watershed method 
Unlike the traditionally used classification algorithms such as the 

maximum likelihood algorithm, the watershed method does not assume 

that the centre, size or shape of the grouping within the histogram is 

known in advance (Watson, 1987). The method is basically an image 



segmentation algorithm that divides up an image, or feature space, on the 

basis of connectivity, into separate groups. The segmentation by the 

watershed was described by Beucher (1982) and Serra (1982). Its basic idea is 

to consider how water might flow over a complex surface, and thus provide 

an analogue to the problem of partitioning the feature space. The problem 

to be solved is to find the'hills'on the two-dimensional histogram. These 

'hills' correspond to the Gaussian probability distribution, but their shape 

and size is not predicted or assumed a priori. If the histogram is turned 

upside down, using the water flow analogue, then the new 'sinks' would 

correspond to the maximum, and the 'watershed' of each sink would be an 

estimate of the decision boundary between dusters. Hence, finding these 

'watersheds' corresponds to the fundamental problems of finding proper 

positions of the feature space. 

The process of finding the watershed involves the tracing 

'backwards' or 'uphill' the flow of water reaching a 'sink'. Starting from a 

'sink' (which is a maximum in the feature space), the adjacent points in the 

feature space are connected to the sink, provided that water would flow 

uniquely from these points to the sink. Having enlarged each sink, the 

process is repeated until points are reached, which would drain to two or 

more sinks. These by definition are the points that form a watershed. 

Provided that the process of 'connecting in' satisfles some strict topological 

requirements, it can be proved that if -there are n sinks (or maxima) to be 

located, the watershed algorithm will find these n sinks automatically 

(Watson et al., 1992). Hence, one of the main problems of guessing the 

number of clusters is removed. In addition, the decision boundaries are 

found with a reasonable degree of accuracy. 
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The structuring element that is used to 'gmw' each sink is the Golay 

L (Watson, 1987). It is applied repeatedly according to the rule that if, for 

example, (see Figure 7.4) points 3 and 4 belong to group X, and points 6 and 
1 do not belong to any already defined group, then point 7 can be connected 

to group X, provided that point 7 has a height equal to or less than group X, 

otherwise it cannot be connected to group X. The groups grow around each 

sink until the whole two-dimensional histogram is scanned and labelled. 

The watershed method is illustrated in Figure 7.5. Figure 7.5(a) 

shows the bivariate histogram of two bands, A and B, constructed on an 
hexagonal grid (on an hexagonal grid all the nearest neighbours are 

symmetrical and therefore connectivity is well defined, unlike a square grid 
for which the nearest neighbours are ambiguous and connectivity is not 

well defined) Watson (1992). Going 'up' or 'down' is equivalent, therefore 

the algorithm proceeds as follows. First the maximum points in the 

histogram (the sinks in the upside-down histogram) are located (Figure 

7.5b). Then, reiteratively, points are added to a sink provided they satisfy the 

L, structuring element rule (Fgure 7.5c, d, e). Once all the points are 

processed, then the groups can be uniquely labelled (Figure 7.5f). Thus, any 

pixel, having a particular combination of band values, can be labelled. The 

two band values are the two coordinates of the feature space; hence, 

knowing these values enables the postion within the feature space to be 

located. The final matrix (Figure 7.5f) can then be used as a look-up table to 

classify the original two-band image. 

The watershed method was performed in this study using a series of 

programs available in the Microvax II and were applied successively to the 
data by choosing the option "WATERSHED CLASSIFICATION": 
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a) A program called SAM constructed a bivariate histogram by 

sampling each combination of the two of the multibands data together. 

b) The HEX program (median filter) was then applied to remove 

isolated single points from the bivariate histogram to avoid trivial classes. 

C) Then a program called MORPH divided up the smoothed 

histograms using the watershed algorithms as described earlier. 

d) A program called LOOKUP took each two-band value for each 

pixel, and found the label in the MORPH table and put that label into the 

output image. The result will be a classified image (grey level) for each pair 

of bands. Figure (7.6) shows the flow diagram of the procedures used for 

this classfication algorithm. 
The only drawback, to the use of this tedmique, in the classification 

of multispectral satellite images, is its restriction to two-dimensional 
histograms. If the number of bands exceeds two dimensions, then it will 

produce more than one classified image. For example, if the number of 

bands is three, the algorithm will look at each two of these three bands' 

histograms separately. It will then produce three look up tables, which can 

then be used to produce three classified images for bands 1 and 2, bands I 

and 3 and bands 2 and 3. So if the number of bands is six (as in the reflected 

TM bands) the algorithm will produce 15 look up tables. These can be used 

to produce 15 grey level classified images, whereas the maximum 
likelihood algorithm is capable of dealing with a multidimensional data, 

where it produces only one grey level image out of, for example, six TM 

bands. 

In Watson (1987), several methods were proposed to reduce the 

dimensionality of the data. However, in this study a new and effective 
technique was tested, which reduces the dimensionality of the data, and at 
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two separate peaks (sinks). 
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0 the '2's are next connected to the '3's. 

Figure 7.5 (a-f) Theoretical description of the watershed method (modified 
from Watson et al, 1992). 
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the same time improves the classification accuracy. In this study the 

reduction was achieved by transforming the RGB image (after BCET stretch) 

to an HSI image (as described in Sections 5.10 and 6.2.5) and selecting only 

the hue image as an input to the classification algorithm. The hue is 

independent from the brightness changes (or the intensity component) 

caused by shadowin& and seasonal solar elevation and azimuth variations 
Magee et al., 1986). Therefore, it should not be affected by the shadow, and 

is only dependent on the three-band spectral signature of a pixel on the 

image (Liu and Moore, 1990). The second important advantage is that, 

computationally, it is more convenient to deal with a single hue value than 

the three RGB values. The concept of using hue images as an input for 

classification was previously applied by Liu and Haigh (1990) for a semi-arid 

area. They concluded that by using three hue images of each three of the 

adJacent seven TM bands (IM bands 7-6-5,5-4-3 and 3-2-1) the shadow effect 

can be removed, whilst still preserving the relevant spectral information. In 

this study the idea was extended, and three hue components were extracted 

from three processed colour composite (best three band ratio images and 

three principal component images). As will be demonstrated in the results 

section, this development did improve the accuracy. 

7.5 Accuracv 

After the classification had been performed, the agreement between 

the classified image and the reference data (classification accuracy) could be 

assessed. A complete accuracy check of a classification map has been 

described by Schwengredt (1983) and Lillisand and Kiefer (1987) as an 

unrealistic task that defeats the purpose of image classification in the first 

place. Rather, a representative test area should be used to assess the 
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classification accuracy. Lillisand and Kiefer (1987) have suggested using 

random sampling strategies, whereas Schowengerdt (1983) has proposed 

two strategies: 1) selection of homogeneous test areas specified by the 

analyst, or 2) selection of randomly located pixels or sites. In this study the 

first suggestion of Schowengerdt was adopted, and test areas were selected to 

include as many classes (rock types) as possible over as wide an area as 

possible. 

These areas were selected using the option OVERLAY on the CIUPS 

software. This enables the user to draw filled polygons over the areas that 

are considered to be representative of class. Each of these overlays is 

associated with a number. At the end of this operation, an overlay image 

with different colour filled polygons is generated, which defines the test 

areas to be used in assessing the accuracy of classification. 

The standard form of representing the degree of accuracy for the 

classification is the confusion (error) matrix, which is essential for any 

serious study of accuracy (Campbell, 1987; Mather, 1987; Dymond, 1992). 

The matrix consists of a KxK array where K is the number of classes 

(Table 7.1b). The elements of this matrix refer to number of pixels, which 

the operator identifies from the reference data (ground truth) to be a 

member of class i, that were allocated to class j by the classifier. The values 

along the diagonal represent the number of correctly classified pixels, and 

their percentage is shown for each class in column 00. The total number of 

correctly labelled pixels is the sum of the diagonal entries. The other 

elements of row i and column j show the number and distribution of 

Incorrectly labelled pixels. 
The errors of omission and commission are represented in columns 

(Iii) and Uv) respectively. The error of omission results from a pixel, that is 
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of class i in reality, but was labelled by the classifier as members of some 

other classes. The error of commission results when a pixel that in reality is 

a member of some other class is assigned to class i by the classifier. The 

mean class accuracy was calculated by dividing the sum of the percentage for 

all the classes by the number of classes; in other words, it is the average of 

individual class accuracy. Whereas, the overall classification accuracy was 

calculated by dividing the total number of correctly classified pixels for all 

the classes by the total number of pixels that were defined by the operator 

(Mather, 1987). In this study, however, another matrix (Figure 7.1a) was 

used. This matrix contains the percentage that may show the variation in 

individual class accuracy more directly. 

For more reliable estimates of the accuracy measurement, Jensen 

(1986) describes an equation for the calculation of the confidence limit (CL) 

in the classification accuracy. A similar equation has been proposed by 

Mather (1987). INs equation is: 

Confidence Limit (CL) P- [1.645 (PQ/N) + (501N) I 

whereas P number of "N correct x 100 
total number of test pixels 

the overall accuracy 

the failure percentage 100 -P 

total number of test pixels 

This equation was used to calculate the C. L for the data in Tables 7.1 to 7.14. 

For example, if 

P= 90.8 Q= 100 - 90.8 - 9.2 and N= 3448 
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C-L = 90.8 -[1.645 4 (90.8 x 9.2/3448) +( 50/3448) ] 

= 90% 

This is the lower bound of the accuracy. The number of test pixels affects 

positively the confidence level; the larger the number of test pixels the 

greater the degree of confidence. 

7.6 Methods of investigation 

TM data of Silsilah ring complex and Jabal ar Raha test areas were 

selected to evaluate the classification algorithms described earlier in section 
(7.4). These two sites contain a wide variety of rocks; at the same time, 

geological maps and reports are available to define the ground truth. 

All the six reflected TM bands were used. The classifications were 

performed into two sets of data: 

1) The six reflected TM bands (original bands) 

2) The processed bands, where a number of pre-classification 

manipulations and transformations were made to extract the greatest 

amount of information, reduce the data dimensionality as well as the 

shadow effect. Three hue components were extracted from the following-. 

The best combination of TM bands 7(R), 4(G) and l(B). In addition, 

the hue component of the band combinations 7-5-4,5-3-2, and 3-2-1 were 

also extracted. 

The first three principal component images of the six reflected TM 

bands. 

The best ratio colour composites (TM band ratios 5/4,5/1,5/7). 

The images in sets 1 and 2 were used both to (i) test the accuracy of 

the two classification algorithms; the traditionally used maximum 
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likelihood algorithm and the watershed algorithm.; (ii) at the same time, to 

test the results of using hue components as a classification input. 

For each test area the following images were produced and will be 

designated hereafter by the symbols between brackets associated with each 

one. 

six original IM band images 

hue image for IM bands 

of of it 

of of of 

of of It 

hue image for best ratio colc 
hue image for the first 3 PC 

7-4-1 

7-5-4 

5-3-2 

3-2-1 

our composite 

(B 1-6) 

(HB 7-4-1) 

(HB 7-5-4) 

(HB 5-3-2) 

(HB 3-2-1) 

(HR5/4-5/1-5/7) 

(HP 3-2-1) 

The classification procedures (the nuvdmum likelihood and the watershed 

classification algorithms) were applied to the following: 

the six reflected TM bands (original) 

the two hue images 

#I to 
to It 

of to 

of to 

the three hue unages 

of it 

it to 

to it 
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BI-6 

HP 3-2-1 and HR 5/4-5/1-5/7 

HP 3-2-1 and HB 7-4-1 

HR 5/4-5/1-5/7 and HB 7-4-1 

IHB 7-4-1 and HB 5-3-2 

HB 7-5-4 and HB 3-2-1 

IHP 3-2-1, IHR 5/4-5/1-5/7, and 

IHB 7-4-1 

liB 7-4-1,14B 7-5-4,14B 5-3-2 

iHB 7-4.1, HB 6-5.4, HB 3-2-1 

IiB 7-5-4, HB 5-3-2,14B 3-2-1 



The watershed algorithm (as discussed in section 7.4.2) analyses only 

two bands at a time, and if the input has more than two bands, it produces 

more than one classified image. To overcome this problem a program called 

HASHLIST (pers. com. A. I. Watson) was used. This program combined the 

classification labels from each of the input pairs, and produced a unique 

label. The maximum likelihood is a multi-dimensional classification 

algorithm, and produces only one label. These two classification 

techniques are available on the MicroVAX-II menu system in Stirling 

University's remote sensing laboratory. 

7.7 Results 

The accuracy of the algorithms (maximum likelihood and watershed) 

was tested using the methodology described earlier. Two test areas (Silsilah 

ring complx and Jabal ar Raha) were used to ensure a reasonable degree of 

representation. A total of 56 confusion matrices were constructed. 

Fourteen representative confusion matrices are shown in Tables 7.1 to 7.14. 

Each table contains two matrices. The rows in each of these matrices 

represent the classes in the classified image, whereas the columns represent 

the classes in the reference data. The values in the diagonal elements of 

matrix (a) are the percentage of correctly classified pixels, whereas in the 

second matrix M are the number of correctly classified pixels. The off 

diagonal elements are the error of commission or omission in percentage in 

matrix (a) and as number of pixels in matrix (b), (see section 7.5 for more 

details). 
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7.7.1 Silsilah ring coml2lex 

The rock units on this area were defined from reference data that 

include: a) the published geologic reports and maps (Du Bray, 1983,1986 and 

1988), and b) observation made during a field visit to the sites in November 

1991. The classes are designated in the confusion matrix by the numbers as 

follows: eolian sand (1), Silsilah alkali granite (2), alkaline dacite (3), Hadhir 

aplite (4), Fawwarah alkali feldspar granite (5), Maraghan lithic graywack (6), 

vegetation (7), commendite (8), Proto-Fawwarah alkali-feldspar granite (9) 

and quartz (10). All the classification procedures described in the previous 

section were performed for this test area and evaluated. The following is a 

discussion of the results presented in Tables 7.1 to 7.8. 

Using the original bands as an input for the maximum likelihood 

algorithm produced an overall accuracy of 66.1% with 64.78% confidence 

limit (Table 7.1). Only five out of ten classes were recognised by the 

algorithm. A recognisable class is defined, in this study, as the one that has 

a percentage of accuracy that equals or exceeds SO%. The accuracy range of 

these five classes starts from 60% for the alkali granite (2) to 98% for the 

alkali feldspar granite (5), with a mean class accuracy of 84% (for these five 

classes only). The mean class accuracy for all the classes is 45.2%. However, 

there are three classes that have been misclassified completely, which 

include the aplite (4), commendite (8) and quartz (10). 
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Reference Classifier Label 
Data Label 

1 2 3 4 5 6 7 8 9 10 

1 27 0 0 0 73 0 0 0 0 0 

2 0 60 0 0 0 40 0 0 0 0 

3 0 0 89 0 0 2 9 0 0 0 

4 0 44 3 0 0 52 0 0 1 0 

5 2 0 0 0 98 0 0 0 0 0 

6 0 4 0 0 0 96 0 0 0 0 

7 0 0 22 0 0 2 77 0 0 0 

8 0 1 34 0 0 57 8 0 0 0 

9 2 28 7 0 0 58 1 0 5 0 

10 0 0 0 0 100 0 0 0 0 0 

1 2 3 4 5 6 7 8 9 10 M (ii) (iii) Ov) 

1 65 0 0 0 177 0 0 0 0 0 242 27 177 7 

2 0 312 0 0 0 210 0 0 2 0 524 60 212 115 

3 0 0 475 0 0 9 47 0 0 0 531 89 56 180 

4 0 46 3 0 0 54 0 0 1 0 104 0 104 0 

5 5 0 0 0 269 0 0 0 0 0 274 98 5 326 

6 0 34 0 0 0 816 0 0 0 0 850 96 34 473 

7 0 0 94 0 0 7 336 0 0 0 437 77 101 65 

8 0 2 75 0 0 125 17 0 0 0 219 0 219 0 

9 2 33 8 0 0 68 1 0 6 0 118 5 112 3 

10 
10 

0 0 0 149 0 0 0 0 0 149 0 149 0 
. 

3448 1169 1169 

(i) Number of pixels in class from 
ground reference data Mean class accuracy MCA =50.2% 

Overall accuracy OA =66.1 % 
60 Estimated class accuracy M Confidence limit CL =64.78% 
(iii) Errors of omission 
(iV) Errors of commission 

Table 7.1(a and b) Confusion matrix produced using the original six reflected 
TM bands (Bl-6) as an input for the maximum likelihood algorithm. 
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Since the watershed method produced 15 classified images, for six 

input images (section 7.4-2), the best three classified images were chosen and 

gave, when combined, an overall accuracy of 74.7% with 73.5% confidence 

limit (Table 7.2). Five out of the ten classes were recognised with mean class 

accuracy of 90.8% and the accuracy range from 72% for the lithic greywacke 

class (6) to 100% for the vegetation class (7). Unlike the previous table, there 

is no complete misclassified class. The total errors of omission and 

commission were reduced from 1169 pixels to 871 pixels, and the mean class 

accuracy for the ten classes was 59.6%, compared with 45.2%. 

Using the hue images, derived from different combinations of the 

original bands, as an input for the maximum likelihood algorithm 

increased the overall accuracy to 69.8% with 68.52% confidence limit (table 

7.3). Six out of the ten classes were recognised with mean class accuracy of 

82.5% (for these six classes) and the accuracy ranged from 51% for the 

commendite (8) to 99% for vegetation (7). One class was completely 

misclassified (quartz, 10) where 80% was confused with sand class (1). The 

mean class accuracy for the ten classes was 51.7% with total error of 

omission or commission of 1043 pixels. 

By applying the watershed method for the previous set of images the 

overall accuracy increased sharply to 81.4% with 80.33% confidence limit 

(table 7.4). Seven classes were recognised, with a mean class accuracy (for 

these seven classes) of 83.9% and accuracy range from 57% for alkali feldspar 

granite (5) to 100% for vegetation (7), with no misclassified classes (the 

poorest was the quartz class (10) at 9%). The mean class accuracy was 65.2% 

and a total error of commission or omission of 640 pixels. 

Using the combination of hue images derived from the best three 

bands, the best principal component images, and the best three band ratio 
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Classifier Label 

Data Label 

1 2 3 4 5 6 7 8 9 10 

1 48 0 0 0 52 0 0 0 0 0 

2 0 91 0 0 0 9 0 0 0 0 

3 0 0 99 0 0 0 0 1 0 0 

4 0 70 1 10 0 18 0 1 0 0 

5 6 0 0 0 92 0 0 0 0 2 

6 0 28 0 0 0 72 0 0 0 0 

7 0 0 0 0 0 0 100 0 0 0 

8 0 7 37 1 0 15 0 39 1 0 

9 0 57 6 2 0 22 0 3 11 0 

10 0 0 0 0 66 0 0 0 0 34 

1 10 (i) (i 0 (iii) 0 V) 

1 117 0 0 0 125 0 0 0 0 0 242 48 125 17 

2 0 478 0 0 0 45 0 0 1 0 524 91 46 397 

3 0 0 527 0 0 1 0 3 0 0 531 99 4 90 

4 0 73 1 10 0 19 0 1 0 0 104 10 94 4 

5 17 0 0 0 252 0 0 0 0 5 274 92 22 224 

6 0 242 0 0 0 608 0 0 0 0 850 72 242 123 

7 0 0 0 0 0 0 437 0 0 0 437 100 0 0 

8 0 15 82 2 0 32 0 85 3 0 219 39 134 7 

9 0 67 7 2 0 26 0 3 13 0 118 11 105 4 

10 0 0 0 0 99 0 0 0 0 50 149 34 99 5 

3448 871 871 

MCA - 59.6% 
OA - 74.7% 
CL 73.5% 

Table 7.2(a and b) Confusion matrix of the watershed classification using the best 
three classified images produced from the original six reflected TM bands 

(Bl-6); see text for explanation. 



Classifier Label 

Data Label 

1 2 3 4 5 6 7 8 9 10 

1 93 1 0 0 6 0 0 0 0 0 

2 8 86 0 1 0 4 0 0 1 0 

3 0 1 87 0 0 1 0 10 0 0 

4 25 61 0 8 0 3 0 2 2 0 

5 47 39 0 0 11 3 0 0 0 0 

6 0 19 1 0 0 79 0 1 0 0 

7 0 0 1 0 0 0 99 0 0 0 

8 16 5 16 0 1 7 3 51 1 0 

9 10 28 2 2 3 30 0 14 13 0 

10 80 12 1 0 0 0 4 3 0 0 

1 2 3 4 5 6 7 8 9 10 (i) (ii) (iii) (i V) 

1 226 2 0 0 14 0 0 0 0 0 242 93 16 364 

2 43 451 0 5 0 19 0 2 4 0 524 86 73 400 

3 0 5 463 2 1 5 0 55 0 0 531 87 68 50 

4 26 63 0 8 0 3 0 2 2 0 104 8 % 9 

5 129 106 0 0 29 9 0 0 1 0 274 11 245 22 

6 0 163 8 0 2 668 1 8 0 0 850 79 182 87 

7 0 0 3 0 0 0 434 0 0 0 437 99 3 13 

8 35 10 36 0 2 16 6 111 3 0 219 51 108 88 

9 12 33 2 2 3 35 0 16 15 0 118 13 103 10 

10 119 18 1 0 0 0 6 5 0 0 149 0 149 0 

3448 1043 1043 

MCA - 51.17% 
OA 69.8% 
CL 68.52% 

Table 7.3(a and b) Confusion matrix produced using three hue images originated 
from each three adjacent bands of the reflected TM data as an input for the 
maximum likelihood classifier. 
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images, the accuracy increased sharply. For example, by using just the hue 

images for the principal component and ratio images (two input hue 

images only) the overall accuracy for the maximum likelihood was 79.8% 

with 78.69% confidence limit (table 7.5). Seven classes were recognised, 

with an accuracy ranging from 63% for commendite (8) to 100% for the 

Silsilah alkali granite (2), and mean class accuracy (for the seven classes) of 

85.42%. Two classes were completely misclassified, which are the Hadhir 

aplite class (4), where 98% of it was confused with the alkali granite class (2), 

and the proto-Fawwarah alkali-feldspar granite (9), where 77% and 22% of it 

was confused with the sand and quartz classes, (1,10) respectively. The 

mean class accuracy for the ten classes was 64.6%, with a total error of 

omission or commission of 697 pixels. 

When the watershed method was applied to the same set, the overall 

accuracy was 80.8% with 79.72% confidence limit (table 7.6). Eight classes 

were recognised, with an accuracy ranging from 63% for alkali granite (2) to 

100% for the lithic greywacke (6) and vegetation (7). One class was 

completely misclassified (class 9), where 82% and 15% were confused with 

the quartz and sand classes (10,1) respectively. The mean class accuracy for 

the ten classes was 68.9%, with total error of omission and commission of 

662 pixels. 

When combining three hue images from the best three bands colour 

composite, band ratios, and principal component images, the maximum 

likelihood method produced its best results with an overall accuracy of 

86.1% with 85.15% confidence limit (Table 7.7). Eight classes were 

recognised, with an accuracy ranging from 64% for commendite (8) to 99% 

for the lithic greywacke (6) and vegetation (7) and a mean class accuracy of 

87.75% (for these eight classes). One class (apHte, 4) was misclassifled 
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Classifier Label 
Reference 
Data Label 

1123456789 
10 

1 80 1 0 0 2 0 14 2 0 0 

2 3 92 1 0 1 2 0 1 1 0 

3 0 0 91 0 0 2 1 5 1 0 

4 6 55 0 25 4 3 0 1 7 0 

5 4 5 0 0 57 2 28 0 1 2 

6 0 0 2 0 0 97 0 0 0 0 

7 0 0 0 0 0 0 100 0 0 0 

8 7 3 12 0 0 3 1 70 2 0 

9 3 22 17 2 3 14 0 8 31 1 

10 2 1 1 0 4 0 82 1 0 9 

1 10 (1) (10 (111) 0 V) 

1 193 2 0 0 6 0 35 6 0 0 242 80 49 57 

2 18 480 3 1 3 9 2 3 5 0 524 92 44 108 

3 0 0 485 0 0 10 5 26 3 2 531 91 46 67 

4 6 57 0 26 4 3 0 1 7 0 104 25 78 5 

5 11 15 0 1 157 6 77 0 2 5 274 57 117 27 

6 0 0 15 0 3 828 0 1 3 0 &50 97 22 so 

7 0 0 0 0 0 0 435 2 0 0 437 100 2 244 

8 15 7 27 1 1 6 3 154 4 1 219 70 65 49 

9 4 26 20 2 4 16 0 9 36 1 118 31 82 24 

_10 
3 1 2 0 6 0 122 1 0 14 149 9 135 9 

3448 640 640 

MCA = 65.2% 
OA U 81.4% 
CL a 80.33% 

Table 7.4(a and b) Confusion matrix produced using the same combination in 
table (7-3) as an input for the watershed classifier. 



Classifier Label 
Reference 
Data label 

1123456789 
10 

1 93 0 0 0 5 0 0 2 0 0 

2 0 100 0 0 0 0 0 0 0 0 

3 0 1 95 0 0 0 2 2 0 1 

4 0 98 0 0 0 2 0 0 0 0 

5 18 1 0 0 71 7 0 0 0 3 

6 0 0 0 0 0 99 0 0 0 0 

7 0 0 51 0 0 0 48 0 0 0 

8 0 16 6 0 0 3 13 63 0 0 

9 1 69 0 0 8 18 1 3 0 1 

10 22 0 0 0 1 1 0 0 0 77 

1 2 3 4 5 6 7 8 9 10 M (ii) (M) 0 V) 

1 224 0 0 0 12 0 1 5 0 0 242 93 18 84 

2 0 523 0 0 0 0 0 1 0 0 524 100 1 224 

3 0 3 503 0 0 1 9 12 0 3 531 95 28 239 

4 0 102 0 0 0 2 0 0 0 0 104 0 104 0 

5 50 3 0 0 195 19 0 0 0 7 274 71 79 22 

6 0 0 1 0 0 844 0 3 0 2 850 99 6 so 

7 0 0 225 0 0 0 211 1 0 0 437 48 226 40 

8 0 34 13 0 0 6 29 137 0 0 219 63 82 25 

9 1 82 0 0 9 21 1 3 0 1 118 0 118 0 

10 33 0 0 0 1 1 0 0 0 114 149 77 35 13 

3448 697 697 

MCA - 64.6% 
OA - 79.8% 
CL w 78.69% 

Table 7.5(a and b) Confusion matrix produced using combinations developed by 
this study of two hue images originated from the best three principalcomponents 
and the best three band-ratios (BP 3-2-1) and OHR 5/4-5/1-5/7) as an input for the 
maximum likelihood classification algorithm. 



completely, 92% of it was confused with the alkali granite class. The mean 

class accuracy for the ten classes was 71.7%, with total error of omission or 

commission of 480 pixels. 

By applying the watershed method for the same set it produced the 

best result with an overall accuracy of 90.8% with 90% confidence limit 

(table 7.8). Eight classes were recognised with mean classes accuracy of 

91.9%. From Table 7.8 five of the ten classes were classified with a very high 

degree of accuracy (between 94% to 100%) which are the sand (1), alkali 

granite (2), alkaline dacite (3), lithic greywacke (6) and vegetation (7); 

whereas the commendite (8), quartz (10) and the alkali feldspar granite (5) 

have 83%, 83% and 78% respectively. The biggest misclassification was in 

the hadhir aplite class (4) where 84% of the class was confused with Silsilah 

alkali granite (2). However, although these two rocks were mapped as two 

different units, their surface appearances in the TM images are similar, 

which may be due to some extent to the weathering surface of these two 

rocks being similar (there is some iron oxide in both, that causes them to 

appear brown). The mean class accuracy for the ten classes was 78.6%, with 

total error of omission or commission of only 317 pixels. This set shows the 

highest accuracy, either in the confidence limit or as an overall or mean 

class accuracy, with the least error of commission or omission. A density 

sliced image "map" for the classified image is shown in Figure (7.8). 

Comparison of this figure with the published geologic map (Figure 2) 

indicates a very good agreement for most of the units. Greater 

disagreement occurs in the southwestern part of the ring, where there are 

greater amounts of misclassifications, in which most of the hadhir aplite 

unit for example was classified as alkali granite. The same thing occured to 

proto Fawwarah alkali feldspar granite unit but with slightly less severity. 
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Classifier Label 
RefeivxLe 
Data Label 

1123456789 
10 

1 90 0 0 0 5 0 5 0 0 0 

2 0 63 0 5 27 0 0 6 0 0 

3 0 0 84 0 0 4 9 2 0 1 

4 0 64 0 24 3 2 0 7 0 0 

5 18 0 0 0 72 8 0 0 0 2 

6 0 0 0 0 0 100 0 0 0 0 

7 0 0 0 0 0 0 100 0 0 0 

8 0 3 7 6 0 8 1 74 0 0 

9 1 41 0 10 15 18 0 14 0 1 

10 15 0 0 0 1 3 0 0 0 82 

1 2 3 4 5 6 7 8 9 10 M (ii) (iii) Ov) 

1 217 0 0 0 13 0 11 0 0 1 242 90 25 
- 

72 

2 0 332 0 24 139 0 0 29 0 0 524 63 192 121 

3 0 0 446 0 0 23 49 9 0 4 531 84 85 18 

4 0 67 0 25 3 2 0 7 0 0 104 24 79 49 

5 49 0 0 0 198 21 1 0 0 5 274 72 76 175 

6 0 0 1 0 0 848 0 0 0 1 850 100 2 89 

7 0 0 1 0 0 0 436 0 0 0 437 100 1 64 

8 0 6 16 13 1 18 3 162 0 0 219 74 57 62 

9 1 48 0 12 18 21 0 17 0 1 118 0 118 0 

10 
1 
22 0 0 0 1 4 0 0 0 122 149 82 27 12 

3448 662 662 

MCA 68.9% 
OA 80.8% 
CL 79.72% 

Table 7.6(a and b) Confusion matrix produced using the same combination as in 
table (7.5) as an input for the watershed classification. 



Classifier Label 
Reference 
Data label 

1123456789 
10 

1 93 0 0 0 2 0 0 2 0 3 

2 0 90 0 0 6 0 0 2 2 0 

3 0 0 95 0 0 1 1 3 0 0 

4 0 92 0 0 3 2 0 0 3 0 

5 22 0 0 0 71 0 0 0 0 7 

6 0 0 0 0 0 99 0 0 0 0 

7 0 0 1 0 0 0 99 0 0 0 

8 0 11 7 0 0 7 11 64 0 0 

9 0 39 1 0 14 17 0 14 15 1 

10 5 0 3 0 1 0 0 0 0 91 

1 2 3 4 5 6 7 8 9 10 M 00 (111) 0 v) 

1 225 0 0 0 4 0 0 5 0 8 242 93 17 
- 

67 

2 0 470 0 0 34 0 0 8 12 0 524 90 54 166 

3 0 1 507 0 0 5 3 15 0 0 531 95 24 26 

4 0 % 0 0 3 2 0 0 3 0 104 0 104 0 

5 59 0 0 0 1% 0 0 1 0 20 274 71 80 63 

6 0 0 2 0 4 8" 0 0 0 0 850 99 6 42 

7 0 0 3 0 0 0 434 0 0 0 437 99 3 26 

8 0 23 16 0 0 15 23 141 1 0 219 64 78 45 

9 0 46 1 0 16 20 0 16 IS 1 118 15 100 16 

10 
1 

8 0 4 0 2 0 0 0 0 135 149 91 14 29 

3448 480 480 

MCA a 71.7% 
OA - 86.1% 
CL M 85-15% 

Table 7.7(a and b) Confusion matrix produced using combinations developed by 
this study of three hue images originated from the best three bands (HB 7-4-1), 
the best three principal components (IH[P 3-2-1) and the best three band ratios (HR 
5/4-5/1-5/7) as an input for the maximum likelihood classifier. 



Classifier Label 
Reference 
Data Label 

1123456789 
10 

1 94 0 0 0 5 0 0 0 0 1 

2 0 99 0 0 0 0 0 0 0 0 

3 0 0 99 0 0 0 0 1 0 0 

4 0 84 0 15 0 0 0 0 1 0 

5 12 8 0 0 78 0 0 0 0 1 

6 0 0 0 0 0 100 0 0 0 0 

7 0 0 1 0 0 0 99 0 0 0 

8 0 4 9 0 0 1 1 83 2 0 

9 0 36 0 3 3 14 0 7 36 0 

10 13 0 0 0 3 1 0 0 0 83 

1 2 3 4 5 6 7 8 9 10 (1) (10 (iii) (I V) 

1 227 0 0 0 13 0 0 0 0 2 242 94 15 51 

2 0 519 0 2 0 0 0 1 2 0 524 99 5 162 

3 0 0 525 0 0 0 0 6 0 0 531 99 6 24 

4 0 87 0 16 0 0 0 0 1 0 104 15 88 7 

5 32 23 0 0 215 0 0 0 0 4 274 78 59 21 

6 0 0 0 0 0 848 0 1 1 0 Mo 100 2 20 

7 0 0 4 0 0 0 433 0 0 0 437 99 4 2 

8 0 9 20 1 0 2 2 181 4 0 219 83 38 16 

9 0 43 0 4 3 17 0 8 43 0 118 36 75 8 

10 19 0 0 0 5 1 0 0 0 124 149 83 25 6 

3448 317 317 

MCA - 78.6% 
OA 90.8% 
CL 90.0% 

Table 7.8(a and b) Confusion matrix produced using the same combination as in 
table (7.7) as an input for the watershed classification. 



Figure 7.7. Density sliced, digital classified image (map), produced by the 
watershed algorithm for Silsilah ring complex. 
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Maraghan lithic greywacke at the centre of the Ting complex was 

overmapped. Its area of occurrence increased to cover the paved road 

southwest of the ring complex, and part of the urban area. 

7.7.2 Tabal ar Raha (test area 2) 

The rocks available in this area are strongly weathered and separated 

into smaller areas filled by sediments and eolian sand. In order to eliminate 

the very small and insignificant areas, it was decided to mask these areas, by 

thresholding the intensity component image that was produced from RGB- 

HSI transformation, so that almost 95% of the sediment and insignificant 

rock areas were eliminated from the image. The masked areas were then 

saved as an overlay, and used to mask the images before applying the 

classification. 

The classes used for this area were defined from a) the published 

geologic reports and maps (Du Bray, 1984; Williams et al., 1986), and b) 

observations made during a few days visit, to the test areas covered by this 

thesis, in November 1991. These classes include the following: carbonate 

rocks (1), Raha meta-rhyolite (2), Qarnayn lithic graywack (3), conglomerate 

(4), andesitic conglomerate (5), metandesite (6), Shaila quartz monzodiorite 

(7) meta-rhyolite tuff (8) meta-gabbro (9) and are designated in the Tables 7.9 

to 7.14 by the numbers between brackets shown above. All the classification 

procedures described in section 7.5 were performed for this area. The results 

of applying both the maximum likelihood method and watershed method, 

to classify the nine categories by using original and processed images, are 

presented in Tables 7.9 to 7.14. 

For this test area the overall accuracy of applying the maximum 

likelihood classifcation method for six original bands was very low (38.1%), 
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whereas by choosing the best three outputs of the watershed the overall 

accuracy was 49.8%. These two confusion matrices are not shown here, due 

to their very low accuracy. 

By using the hue images for the different combinations of original 

bands, the overall accuracy of the maximum likelihood increased sharply to 

reach 70.7% with 69.31% confidence limit (Table 7.9). Five out of the nine 

classes were recognised with mean class accuracy of 85.8% (for the five 

classes) and an accuracy ranging from 68% for the conglomerate (4) to 98% 

for the meta-rhyolite class (2). Two of the nine classes were misclassified 

completely; these are the carbonates (1) and meta-gabbro (9). The mean 

class accuracy for the nine classes was 51.5% with total error of commission 

or omission of 860 pixels. 

Using the watershed method for the previous set, the overall 

accuracy reached 81.4% with 80.21% confidence limit (Table 7.10). Seven 

classes were recognised with mean class accuracy of 79.3% and an accuracy 

range (for the seven classes) from 53% for the quartz monzodiorite class (7) 

to 97% for the meta-rhyolite (2). The mean class accuracy for the nine 

classes was 66.8%, with total error of omision or commission of 546 pixels. 

By using the method introduced in this study, of combining the hue 

images of the best three bands with the hue images for principal 

component, and ratio images, the accuracy increases further. For example, 
by using two hue images only, as an input for the maximum likelihood 

algorithm (one principal component hue image, HP 3-2-1, and the hue 

image for the best three original bands, HB 7-4-1), the overall accuracy 

increased to 73.6% with 72.27% confidence limit (Table 7.11). In this table, 

six classes were recognised with mean class accuracy of 78%, with an 

accuracy that ranges from 53% for the meta-andesite class (6) to 93% for the 
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Classifier Label 
Reference 
Data Label 

1123456789 

1 0 8 0 0 69 22 0 0 0 

2 0 98 1 0 0 0 0 1 0 

3 0 17 81 2 0 0 0 0 0 

4 0 6 21 68 2 0 2 0 0 

5 0 0 0 2 93 4 0 0 0 

6 0 3 1 4 67 15 2 7 0 

7 0 12 13 25 27 3 19 1 0 

8 0 3 0 2 0 5 0 89 0 

9 0 30 70 0 0 0 0 0 0 

1 2 3 4 5 6 7 8 9 M (ii) (iii) OV) 

1 0 3 0 0 25 8 0 0 0 36 0 36 0 

2 0 864 5 3 0 0 0 9 0 881 98 17 220 

3 0 106 501 12 0 0 0 0 0 619 81 118 225 

4 0 28 95 302 9 2 9 1 0 446 68 144 103 

5 0 0 0 4 190 9 0 1 0 204 93 14 236 

6 0 6 1 8 122 28 4 13 0 182 15 154 37 

7 0 35 37 73 80 10 57 2 0 294 19 237 13 

8 0 5 0 3 0 8 0 133 0 149 89 16 26 

9 0 37 87 0 0 0 0 0 0 124 0 124 0 

2935 860 860 

MCA 57.9% 
OA 70.7% 
CL 69.31% 

Table 7.9(a and b) Confusion matrix produced using three hue images 
originated from each three adjacent bands of the reflected TM data 

as an input for the maximum likelihood classifier. 



Classifier Label 
Rdemxv 
Data I abel 

1123456789 

1 14 8 0 0 31 42 6 0 0 

2 0 97 2 0 0 0 0 2 0 

3 0 6 90 2 0 0 0 0 2 

4 0 1 9 85 1 0 4 0 0 

5 0 0 0 1 75 18 5 0 0 

6 1 1 0 4 19 64 9 1 0 

7 0 2 7 14 14 9 53 0 0 

8 0 3 0 0 0 6 0 91 0 

9 0 15 45 5 0 0 3 0 32 

1 2 3 4 5 6 7 8 9 M (ii) (iii) OV) 

1 5 3 0 0 11 15 2 0 0 36 14 31 4 

2 0 851 14 0 0 0 0 15 1 881 97 30 76 

3 0 38 555 12 0 0 1 1 12 619 90 64 131 

4 0 3 39 378 6 0 18 0 2 446 85 68 70 

5 1 0 0 3 153 36 11 0 0 204 75 51 93 

6 2 2 0 8 34 117 17 2 0 182 64 65 85 

7 1 7 22 41 42 25 155 0 1 294 53 139 53 

8 0 5 0 0 0 9 0 135 0 149 91 14 18 

9 0 18 56 6 0 0 4 0 40 124 32 84 16 

2935 546 546 

MCA 66.8% 
OA 81.4% 
CL 80.21% 

Table 7.10(a and b) Confusion matrix produced using the same combination 
as in table (7.9) as an input for the watershed classifier. 



meta-rhyolite class (2). Two of the nine classes were completely 

n-dsclassified, and these were the carbonates (1) and meta-gabbro (9). The 

mean class accuracy for the nine classes was 55% with total error of 

omission or commission of 776 pixels. 

When the watershed method was applied to the previous set (Table 

7.12) the overall accuracy was, surprisingly, 70.1%, with 68.71% confidence 

limit Five classes were recognised with mean class accuracy of 81.8%. Only 

one of the nine classes was completely misclassified (meta-gabbro, 9), which 

was confused with the meta-rhyolite (2), lithic greywacke (3) and andesite 

conglomerate (4) classes. The mean class accuracy for the nine classes was 

54% with total error of commission and omission of 877 pixels. 

By combining the hue images of the best three bands colour 

composite with the hue images of ratio and principal component (Table 

7.13), the overall accuracy for the maximum likelihood was 73.4% with 

72.06% confidence limit. Six classes were recognised, with mean class 

accuracy of 80.8% and accuracy ranging from 61% for the meta-andesite (6) 

to 93% for the meta-rhyolite (2). Two of the nine classes were completely 

misclassified: the carbonates (1) and meta-gabbro (9). The mean class 

accuracy for the nine classes was 55.6% with a total error of omission or 

commission of 781 pixels. 

By applying the watershed method for the previous set the overall 

accuracy increased sharply to 87.3% with 86.29% confidence limit (Table 

7.14). Seven classes were recognised with mean class accuracy of 86.6% and 

an accuracy ranging between 67% for quartz monzodionite (7) to 98% for 

meta-rhyolite (2). The mean class accuracy for the nine classes was 75.8% 

with total error of omission or commission of 373 pixels only. As in the 

previous area, this set produced the highest accuracy either as an overall or 
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Classifier Label 
Refeience 

Data Label 
11234 

1 0 8 0 0 42 44 6 0 0 

2 0 93 7 1 0 0 0 0 0 

3 0 9 84 7 0 0 0 0 0 

4 0 0 3 88 2 3 4 0 0 

5 0 0 0 0 70 14 16 0 0 

6 0 1 1 2 26 53 17 1 0 

7 0 0 8 47 19 3 22 0 0 

8 0 3 0 0 0 12 1 85 0 

9 0 2 74 23 0 0 0 0 0 

1 2 3 4 5 6 7 8 9 M 00 (iii) OV) 

1 0 3 0 0 15 16 2 0 0 36 0 36 0 

2 0 815 58 7 0 0 0 1 0 881 93 66 68 

3 0 56 522 41 0 0 0 0 0 619 84 97 190 

4 0 0 15 392 9 14 16 0 0 446 88 54 220 

5 0 0 0 1 142 28 33 0 0 204 70 62 128 

6 0 1 1 4 48 96 31 1 0 182 53 86 85 

7 0 1 24 138 56 9 66 0 0 294 22 228 83 

8 0 4 0 0 0 18 1 126 0 149 85 23 2 

9 0 3 92 29 0 0 0 0 0 124 0 124 0 

2935 776 776 

MCA 66.8% 
OA 81.4% 
CL 80.21% 

Table 7.11 (a and b) Confusion matrix produced using combinations developed 
by this study of two hue images originated from the best three principal 
components (HP 3-2-1) and the best three bands (HB 7-4-1) as an input 
for the maximum likelihood classifier. 



Classifier Label 
Reference 
Data Label 

1123456789 

1 8 0 0 0 42 50 0 0 0 

2 3 81 7 0 0 0 0 9 0 

3 2 7 90 1 0 0 0 0 0 

4 0 0 11 79 1 0 7 1 0 

5 0 0 0 0 65 18 14 3 0 

6 1 0 1 2 26 46 10 14 0 

7 0 1 15 38 12 9 25 1 0 

8 0 1 0 0 1 4 0 94 0 

9 0 2 % 2 0 0 0 0 0 

1 2 3 4 5 6 7 8 9 M (10 (M) (i V) 

1 3 0 0 0 15 18 0 0 0 36 8 33 38 

2 26 711 62 3 0 0 0 79 0 881 81 170 51 

3 11 45 559 4 0 0 0 0 0 619 90 60 273 

4 0 0 48 354 6 1 33 4 0 446 79 92 124 

5 0 0 0 0 133 37 28 6 0 204 65 71 107 

6 1 0 1 4 48 84 18 26 0 182 46 98 V 

7 0 2 43 111 36 25 74 3 0 2% 25 220 79 

8 0 1 0 0 2 6 0 140 0 149 94 9 118 

0 3 119 2 0 0 0 0 0 124 0 124 0 

2935 877 877 

MCA - 61% 
OA M 70.1% 
CL a 68.71% 

Table 7.12(a and b) Confusion matrix produced from the same combination 
as in table (7-11) as an input for the watershed classifier. 



Classifier Label 
Reference 
Data Label 

1123456789 

1 2 3 4 5 6 7 8 9 M (ii) (iii) (iv) 

1 0 3 0 0 18 15 0 0 0 36 0 36 0 

2 0 815 61 3 0 1 0 1 0 881 93 66 58 

3 0 48 568 3 0 0 0 0 0 619 92 51 326 

4 0 0 94 321 7 0 24 0 0 446 72 125 1% 

5 0 0 0 33 156 13 2 0 0 204 76 48 102 

6 0 0 2 14 36 111 7 12 0 182 61 71 52 

7 0 1 51 139 41 13 48 1 0 294 16 246 33 

8 0 3 0 1 0 10 0 135 0 149 91 14 14 

9 0 3 118 3 0 0 0 0 0 124 0 124 0 

1 0 8 0 0 50 42 0 0 0 

2 0 93 7 0 0 0 0 0 0 

3 0 8 92 0 0 0 0 0 0 

4 0 0 21 72 2 0 5 0 0 

5 0 0 0 16 76 6 1 0 0 

6 0 0 1 8 20 61 4 7 0 

7 0 0 17 47 14 4 16 0 0 

8 0 2 0 1 0 7 0 91 0 

9 0 2 95 2 0 0 0 0 0 

2935 781 781 

MCA 55.66% 
OA 73.4% 
CL 72.06% 

Table 7.13(a and b) Confusion matrix produced using combinations developed 
by this study of three hue images originated from the best three bands 
(HB 7-4-1), the best three principal components (HP 3-2-1) and the best 

three band ratios (HR 5/4-5/1-5/7) as an input for the maximum 
likelihood classifier. 



Reference 
Data Label 

1 2 3 

Classifier Label 

456 7 8 9 

1 47 8 0 0 28 17 0 0 0 

2 0 98 2 000 0 1 0 

3 0 3 95 000 0 0 1 

4 0 0 2 93 10 3 0 0 

5 1 0 0 1 91 3 3 0 0 

6 3 0 0 1 10 77 3 5 0 

7 1 1 3 16 93 67 0 1 

8 1 11 0 003 0 85 0 

9 0 4 65 200 1 0 29 

1 2 3 4 5 6 7 8 9 (i) (i 0 (iii) OV) 

1 17 3 0 0 10 6 0 0 0 36 47 19 12 

2 0 860 15 0 0 0 1 5 0 881 98 21 50 

3 0 21 586 2 0 0 2 0 8 619 95 33 114 

4 0 1 11 414 3 0 15 0 2 446 93 32 55 

5 3 0 0 3 185 7 6 0 0 204 91 19 59 

6 5 0 0 2 19 141 5 10 0 182 77 41 26 

7 3 4 8 46 27 8 196 0 2 294 67 98 30 

8 1 16 0 0 0 5 0 127 0 149 85 22 15 

9 0 5 80 2 0 0 1 0 36 124 29 88 12 

2935 373 373 

MCA 75.8% 
OA 87.3% 
CL 86.29% 

Table 7.14(a and b) Confusion matrix produced using the same combination as 
in table (7.13) as an input for the watershed classifier. 



Figure 7.8. Density sliced, digital classified image (map), produced by the watershed algorithm for Jabal al Raha. 
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mean class accuracy with the least error of omission or commission. A 

density sliced image "map" for the classified image produced by this set is 

shown in Figure (7.8). Comparison of this figure, with the published 

geologic map (Chapter 2), indicates a very good agreement, for most of the 

units, except for the meta-gabbro unit, in which 65% of it was confused with 

the Qarnayn lithic greywacke, and also for the Shaila quartz monzodionite, 

where it was largely misclassified to meta-andesite and andesitic 

conglomerate units. 

The low degree of accuracy associated with some rock units in both 

test areas is mainly due to their having very similar compositions. It was 
decided to leave such units in separate classes, to produce a more critical test 

for the strategies being evaluated in this chapter, but if such units were 

amalgamated with their spectrally and lithologically similar units, a greater 
degree of classification accuracy would have been achieved. It is 

unreasonable to expect objects too similar in the input data (such as classes 
(2), (4) and (9) in the Silsilah ring complex, and (1), (7) and (9) in the Jabal ar 
Raha test area) to be reasonably classified relying only on the pixel 
brightness recorded by the TM sensor. 

7.8 Summary and conclusion 

This study has explored methods of maximising the classification 

accuracy of digital images, by using pre-classification processing, and also by 

using a new method of classification. 

This chapter demonstrates that a better degree of agreement, and 
hence a higher degree of accuracy, can be achieved by transforming the data 

from the RGB colour coordinate to the HSI coordinate. Applying such a 

transformation means the separation of the hue component (image) from 
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the saturation and intensity. The hue component is free from the shadow 

effect (which is the main cause of low classification accuracy for geological 

scenes) and represents only the spectral information of the different objects. 

Another important advantage of such a step is the dimensionality 

reduction of the data by two-thirds, which enables the use of information 

from other sources of data (e. g. band ratio, principal components). 

This study has demonstrated that the combination of hue images of 

original bands with hue images of processed bands produced the most 

accurate classification. In addition, the watershed method gave the best 

accuracy of classification compared with the maximum likelihood method. 
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CHAPTER EIGHT 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 

8.1 Conclusions 

8.2 Suggestions for future work 



8.1 Conclusions 

Unlike the traditional photogeology techniques, which are well 

established in the geological community, digital image processing of 

satellite images is not as widespread as it should be. Haydn (1982) pointed 

out that the relatively limited use of the satellite images is mainly due to 

the badly processed images, that have been produced. Many of the hard 

copy products derived from satellite images can largely be regarded as the 

products of misunderstanding between the analysts on one hand, who 

rarely understand the geologists' needs (not application oriented), and the 

geologists (users) on the other hand, who are not experienced in remote 

sensing or digital image processing. The presentation of this satellite data in 

a highly enhanced product (hard copy) would give such a user the 

opportunity for efficiently directed field work. 

Part of this thesis was particularly addressed to find the best way of 

presenting such enhanced product. Several 'traditional' methods (band 

ratio, principal component analysis) and more advanced techniques 

(decorrelation stretch and hue-saturation-intensity) were assessed. These 

techniques were compared for their ability to routinely produce a colour 

composite image with minimal information loss, and the optimal 
discrimination between different lithologies. 

The results discussed in Chapter 6 showed that, although the results 

of both ratio and principal component techniques show some degree of 
discrimination between different lithologies, they have some 
disadvantages. For example, although ratio images do enhance the 

appearance of rocks containing the hydroxyls and iron bearing minerals 

(altered areas), they suffer from the suppression of albedo and topographic 

expression. The suppression of differences in albedo, can cause lithologies 
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that have low albedo and those that have high albedo to be confused in the 

ratio images (e. g., the alkaline dacite and the alluvial deposits in Silsilah 

ring complex) (Figure 6.3). The suppression of topographic expressions 

makes it difficult to for example, transfer the information from the colour 

ratio composite (CRQ image to a topographic base map, or to locate the 

exact spatial distribution of the lithological units. In addition, the supposed 

elimination of shadow effects, by the ratio technique, is based on a 

theoretical assumption, that the earth's surface is Lambartian, which is not 

always true. The high amount of noise associated with ratio images is also a 

major disadvantage. 

In the case of principal component technique, despite the colourful 

results in some of the test areas, these colours are difficult to interpret and 

are not dependent on the spectral variation. Furthermore, this technique 

uses the covariance matrix derived from the scene, and therefore the 

components, are scene dependent; thus the same rock type can (and usually 
does) appear with different colours in different images, making 
identification difficult. Textural information is also degraded with low 

signal to noise ratio, and this degrades to some extent the interpretability of 

the images. 

A simpler and more understandable way of interpreting the TM data 

is to select three bands for display, as a colour composite. The use of 

statistical methods (e. g., OIF) to choose the best three band colour composite, 

frequently gave misleading results, since these methods do not take into 

account the difference between geologically significant variance and others. 

The analyst's judgment should remain a major factor in choosing between 

bands for colour composite images. It was found, using knowledge about 

reflection spectra, and visual examination of the different combinations, 
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that the display of TM band-7, TM band-4 and TM band-1 as red, green and 

blue respectively, gave the best image for lithological discrimination in the 

test areas. 

The main criticism of the colour composite formed from these three 

bands (TM band-7, -4, -1 displayed as red, green and blue respectively), or in 

fact any three TM bands, was the restricted range of colours produced owing 

to the high degree of correlation between the bands. The decorrelation 

stretch technique was used to reduce this correlation. This technique did 

not produce any significantly better results. This may have been due to the 

fact that decorrelation stretch is based on a principal component 

transformation (which is dubious of itself) that selectively enhanced the 

noise. 

In this study it was found that, by using a hue-saturation-intensity 

transformation the best results were obtained. This technique reduced the 

correlation between the bands, and gave a single colour composite image 

with both the spectral as well as spatial information enhanced. Further, the 

variation and purity of the colour was strongly enhanced without any 

distortion to the original. 

This was made possible by transforming the RGB band colour 

composite, after equalising the means using BCET stretch, into HSI colour 

space. The saturation of the colours was increased by uniformly shifting the 

saturation to higher values. The intensity was controlled by an edge 

enhanced first principal component (Laplacian-addback) to provide a 

sharper image. This component was also shifted to a higher range, to 

enhance areas of low albedo. The transformation of these three 

components (HSI), after such manipulation, back to the RGB coordinate for 

display, produced an excellent output, which did not sacrifice any of the 
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information in the original data. Further, the colours can be related to the 

spectral reflectance curves, and remain stable from one image to another. 

This technique with the methodology described here can be applied 

to enhance any other highly correlated data to produce an enhanced single 

colour product. An alternative, simpler way of using the first principal 

component, as a substitute for the intensity component, is to take the 

average of the six reflected bands (the first PC is a weighted sum of the 

reflecting bands). 

This thesis also tested the canonical regression technique, with a new 

concept and strategy, that attempts to transform the imagery with respect to 

the major element chemical composition of the different lithologies. The 

method enables the construction of linear combinations of the bands, that 

are related to the chemical composition of the rocks. These canonical 

combinations can then be applied to unknown areas to predict their 

chemical composition. Results produced by this technique, although 

somewhat confusing, were regarded as encouraging. The application of 

such a technique using the methodology described here has some potential 

in combining Landsat TM-data with geochemical data. 

Besides the image enhancement techniques that were designed to 

help the analyst in the visual interpretation of digital images. The last part 

of this thesis evaluated the accuracy of a new digital classification technique 

(The watershed), by comparing it to the maximum likelihood classification 

technique. In addition, this part also tested the effect of using pre- 

classification processing, in particular the 'hue' images. The 'hue' images 

were produced by transforming the original data from RGB to HSI 

coordinates and selecting the hue component. The main objective of such 

part was to improve classification accuracy. 
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The results in Chapter 7 of this thesis demonstrate, that the 

combination of hue images produced better results than using the original 

bands in the RGB coordinates. Furthermore, the combination of hue 

images of unprocessed bands (original) with the hue image of processed 

bands (hue image of principal component and band ratios) proved to be a 

better strategy that produced a more accurate classification than using the 

hue images of the original bands only. The watershed method gave the best 

accuracy compared with the maximum likelihood. 

From the classification results, it was found that using original bands 

as an input for maximum likelihood classification produced an overall 

accuracy of 66.1% for the first test area, and 38.1% for the second test area. 

Using the same imagery as an input for the watershed, an overall accuracy 

of 74.7% for the first test area and 49.8% for the second test area was found. 

Using the hue images as an input for classification, an overall accuracy, for 

the maximum likelihood, of 86.1% in the first test area and 73.4% for the 

second area, was achieved. The watershed achieved an overall accuracy of 

90.8% for the first test area and 87.3% for the second test area. Thus in both 

cases the watershed algorithm was clearly superior, and produced an 

acceptable degree of accuracy. 

8.2 Suggestions for future work 

In the case of canonical regression analysis, to fully justify its 

applicability, it is suggested that data with a higher spectral resolution 

should be used, e. g., Airborn Visible and Infrared Imaging Spectrometer 

("IRIS), or the High Resolution Imaging Spectrometer (HIRIS) records 

data in 224 spectral bands with spectral coverage between 0.4 gm to 2.5 gm. 

The HIRIS covers three times larger swathe width than AVIRIS and 2-5 
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times greater radiometric sensitivity but with 129 spectral bands covering 

the spectral range 0.4 gm to 2.5 W. 

It would also be useful if sample sets within the area under 
investigation could be extensively studied regarding the geochemical and 

mineral composition of the rocks. The higher spectral resolution will 

ensure more spectral sensitivity to the different lithologies and the higher 

number of bands will increase the number of canonical components 

produced. If the number of canonical components is equal to the number of 

chemical components, then it would be possible to find a more direct 

relation between both components. Furthermore, the higher spatial 

resolution will reduce the variation within the instantaneous field of view 

or the pixel area in the image. 

In the field of visual enhancement or qualitative processing, high 

spatial resolution data, e. g. aerial photographs or SPOT panchromatic bands 

(10m), could be used to replace the intensity values in the hue-saturation- 

intensity colour space produced from a high spectral resolution, e. g TM 

data, provided careful registration between the images can be achieved. 

This step will (after transforming back to RGB coordinates) present an 

excellent product that shows the spectral advantages of the TM data with 

the textural advantages of the aerial photograph, or SPOT panchromatic. 
In lithological classification, the use of higher spatial and spectral 

resolution imagery than the TM used here may increase accuracy, especially 
by using hue images in combination with the watershed algorithm. 

The first Japanese Earth Resources Satellite (JERS-1), scheduled for 

launch in 1992, (Akiyama et al., 1989; Harding, 1989) carries an imaging 

sensor named Optical Sensor (OPS) that will collect information about the 

earth's surface in eight spectral bands (0.52-2.40gm) with 18 x 24 metre 
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ground resolution. From a geological point of view the availability of three 

bands in the range 2.0 to 2.4 gm, corresponding to the TM band-7, should 

improve the discrimination between differences associated with 

mineralization in alteration areas. Furthermore, this system also will have 

the advantage of simultaneous stereoscopic coverage (like SPOT 

stereoscopic coverage), provided by two bands located in the same spectral 

region (0.76-0.86 gm), one of which is nadir-viewing (band-3) and the other 

of which is forward-viewing. This system, therefore, will combine some of 

the advantages of both Landsat TM (spectral advantages) and SPOT 

(stereoscopic advantages). These advantages, and the uncertain future of 

the Landsat system, mean that the OPS could play an important role in the 

geological application of remote sensing. 

In this thesis, two objectives were achieved: a) the quality of imagery, 

suitable for visual interpretation, has been improved, and b) the accuracy of 

automatic classification has been considerably improved. With the 

development of better imagery, the methods demonstrated in this thesis 

will be able to provide real solutions to the problems of geological remote 

sensing. 
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