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ABSTRACT 

For reasoning under uncertainty the Bayesian network has become the representation of choice. 

However, except where models are considered 'simple' the task of construction and inference are 

provably NP-hard. For modelling larger 'real' world problems this computational complexity has 

been addressed by methods that approximate the model. The Naive Bayes classifier, which has 

strong assumptions of independence among features, is a common approach, whilst the class of trees 

is another less extreme example. In this thesis we propose the use of an information theory based 

technique as a mechanism for inference in Singly Connected Networks. We call this a Mutual 

Information Measure classifier, as it corresponds to the restricted class of trees built from mutual 

information. We show that the new approach provides for both an efficient and localised method of 

classification, with performance accuracies comparable with the less restricted general Bayesian 

networks. To improve the performance of the classifier, we additionally investigate the possibility of 

expanding the class Markov blanket by use of a Wrapper approach and further show that the 

performance can be improved by focusing on the class Markov blanket and that the improvement is 

not at the expense of increased complexity. 

Finally, the two methods are applied to the task of diagnosing the 'real' world medical domain, 

Acute Abdominal Pain. Known to be both a different and challenging domain to classify, the 

objective was to investigate the optiniality claims, in respect of the Naive Bayes classifier, that some 

researchers have argued, for classifying in this domain. Despite some loss of representation 

capabilities we show that the Mutual Information Measure classifier can be effectively applied to the 

domain and also provides a recognisable qualitative structure without violating 'real' world 

assertions. In respect of its 'selective' variant we further show that the improvement achieves a 

comparable predictive accuracy to the Naive Bayes classifier and that the Naive Bayes classifier's 

'overall' performance is largely due the contribution of the majority group Non-Specific Abdominal 

Pain, a group of exclusion. 
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Chapter I 

Introduction 

Bayesian Networks (BN) [Pea88, Nea90] have become the representation of choice for reasoning 

under uncertainty. Not only do BNs provide a compact graphical way to express complex 

probabilistic relationships among several random variables, but also tender attractive features not 

offered in other approaches. One advantage is their ease of comprehensibility to humans as many 

relationships between domain variables can be easily interpreted directly from the structure. 

Extracting knowledge from experts in complex domains to solve 'real' world problems is however, 

arising as a major obstacle in constructing BNs [DGOO]. The alternative is to learn directly from data, 

examples adopting this strategy can be found in [CMNOO, CGK02, SV95, KSOO, and Lar02], but 

except where models are considered 'simple' the task of construction and inference is in general 

provably NP-hard [Coo90, CLR90]. Chickering [Chi96] also found this to be the case when learning 

the structure of a general directed probabilistic network, even if each node is constrained to have at 

most two parents. For modelling larger 'real' world problems this computational complexity has 

been addressed by methods that approximate the model. The Naive Bayes classifier (NB) which has 

strong assumptions of independence among features is a common approach whilst the class of trees 

another less extreme example. 

This thesis explores a new direction of applying information theory based methods for inducing a 

Classifier from a BN in the form of a 'tree' structure. The study examines the possibility of 

extending the use of 'mutual information' to the task of classification outside, but complementary to, 

the traditional roles of structure learning and the identification of relevant features. 

Its purpose is to avoid the dependence upon prior node ordering and the subsequent inference 

complexity when the network topology leads to large Conditional Probability Tables (CPT). 

it is hoped that the results presented in this thesis will encourage the use of this new classifier to 

assist in classifying in 'real' world applications particularly, where prior node ordering is not 

1 



Chapter I: Introduction 2 

generally available and in domains which can extend to hundreds, sometimes thousands of random 

variables. 

1.1 Thesis Statement 
As indicated previously, learning BNs from data is a rapidly growing field of research, with the 

specialist task of classification considered a very important undertaking in many data analysis 

activities [FGG97, DH01]. Typical areas of application are speech recognition, image understanding, 

sparn filters and medical diagnosis. 

Characteristic of a BN and key to defining its representation, in respect of the domain it models, is 

the determination of edge directionality of the graph. Where possible a domain expert can specify the 

node/vertices' ordering, that is, the domain knowledge used to specify a causal order of nodes or 

variables of the domain. However, where expertise is scarce, finding a node ordering by alternative 

means that will represent a useful BN can be a difficult task. 

Whilst it is possible to find a BN for any given ordering (as the Joint Probability Distribution can be 

written by successive applications of the chain rule) it is clearly not practical to search among all 

possible orderings of nodes. Moreover, if we choose a poor order we may get a more complicated 

network. As the topology changes more tenuous relationships can occur, which may in turn require 

unnatural and problematic probability judgements. 

The dependence BNs have on node ordering has led to researchers actively developing algorithms to 

efficiently determine edge directionality. One approach uses a search and scoring method to find the 

correct directions of the edges [LB94, FG96] but this was found to be slow as the search space can 

be large if prior node ordering is not supplied. Another more common approach uses Conditional 

Independence (CI) tests and has been used in many edge orientation algorithms [RP87, SGS90, 

VP92 and SGS91]. These methods are generally exponential in complexity. Singh [SV93] proposed 

a variant on the Cl tests generating a "good" node ordering from data. Although offering an 

improvement in complexity, it was noted that the quality of the recovered network structure was very 

sensitive to the node ordering determined by their algorithm. Further strategies can be found in 

[Pan02, CGOI, ACHOI, LK+96 and GP+02]. 

' These terms are used interchangeably throughout the thesis. 
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Singly Connected Networks (SCN or 'polytree') are a restricted class of networks that can efficiently 

be solved in time linear in the number of nodes. However, despite this reduction in complexity the 

task of finding edge directionality on a skeleton tree structure, thus completing the 'polytree', is still 

as complicated [Cam96] to resolve. 'Polytree' recovery techniques have been proposed [RP87, 

Carn96 and Das99] based on CI tests, but in some situations full recovery was not always possible, 

leaving some edges undirected. When directionality was fully recovered it was found that even with 

a small number of parents, a node's CPT still required an unrealistic number of values to complete its 

description. Since each variable state must be specified in a CPT, there will be an exponential growth 

corresponding to the number of parents associated with the child node. 

One of the main objectives of the research is to investigate the use of an inforniation theory based 

technique as a mechanism for efficient inference in BNs. The aim is to avoid the issues concerning 

large CPTs and the dependence upon prior node ordering. This is tackled by taking advantage of the 

existing tree structuring algoriffims. The concept proposed builds on the efficient Singly Connected 

Network (SCN) or 'polytree' as described by Pearl [Pea88], using the orientation of the tree edges, 

with respect to the class node, as a heuristic for assigning edge directionality. We call this SCN 

variant a Mutual Inforniation Measure (MIM) Classifier as it corresponds to the restricted class of 

trees built from mutual information. 

To demonstrate the validity and effectiveness of the classifier it has been applied to several 

benchmark problems taken from the UCI repositorY2 [MA95, BMOO]. The MIM classifiers learned 

are shown to perform significantly better than the NB classifier, one of the most widely studied 

methods, as well as displaying accuracy comparable to a general Bayesian network (GBN) and SCN 

learned classifiers. In addition, properties of the kinds of problems are identified where the MIM tree 

based classifiers will be most useful as opposed to the alternative representations. 

Network topology and the number of variables govern the complexity of probabilistic inference in 

practice. As a consequence the application of BNs is often dismissed as unfit for 'real' world 

domains. A common approach to dealing with this is to learn selective networks using only 

crelevant' attributes. The idea is to use only a subset of the available attributes to model the domain 

and thus make them computationally simpler to evaluate. 

I UCI - University of California, Irvine's repository of machine leaming databases. 
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Our second aim is to investigate the possibility of expanding the class Markov blanket (MB) and thus 

optimise the MIM classifier's predictive performance. In this thesis we consider the initial tree 

structure learned to represent a 'lower bound' or implied feature sub-section focusing attention on 

the class node. 

Experiments carried out using the UCI repository database show that in general the 'overall' 

perfon-nance of the MIM classifier can be improved by expanding the class Markov blanket, with 

predictive accuracies found to be significantly better than those obtained for the NB classifier. In 

addition, when compared to the results obtained using a selective NB (SNB) classifier [LS94], the 

number of relevant (with respect to the class node) features required was, in many of the data sets 

used, found to be similar in size as those selected and utilised by the SNB models. 

Finally, the algorithms for inducing the MIM classifier and its optimised variant from data, are 

applied to the task of diagnosing a medical database concerning Acute Abdominal Pain (AAP). This 

domain is well known to be difficult with diagnosis complicated by other diagnoses, which often 

present similar signs and symptoms. In fact despite being a high dimensional problem with several 

variables, the NB classifier is considered optimal for classifying this domain [TS94]. Our 

experiments show that the MIM classifier achieves a comparable predictive performance to that of 

the NB classifier when evaluated with 'external' data of the domain and in general is further 

improved in performance by expanding the class MB. We ftu-ther show that the approach provides a 

recognisable (by the doctors) qualitative structure without violating 'real' world assertions. 

1.2 Summary of Contributions 

The following sections list the main contributions of the thesis. 

Mutual Information Measure (MIM) classifier. Node ordering choice and subsequent CPT 

dimensionality are known to impact on a BN's ability to perform well as a classifier. A bad choice 

may not only result in a topology which leads to an intractable solution but also to the possibility that 

CPTs will require an unrealistic number of probabilities to both estimate and subsequently update in 

respect of new evidence being presented. Moreover, in situations where domain feature 

dimensionality is high and data sets sparse, these probabilities may even be unreliable. 
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To address these issues we have derived a new classifier based on inforniation theory techniques. 

Initially by application of the Chow & Liu [CL68] (CL) algorithm an efficient 'tree' based BN 

classifier is constructed then by using the notion of branch 'weights' we derive a method to 

discriminate between class-states (i. e. classify new evidence of the domain). 

Specifically: 

Empirical studies show that neither the restriction to 'tree' topology nor CPT dimensionality 

affected the performance accuracy when compared to the less restricted GBN models. 

We show the technique adopted is independent of node ordering choices by employing a 

heuristic which identifies the class MB consistently. 

For large sample sizes and medium dimensionality of features (14+) we show the MIM 

classifier performs better than the NB. 

For high feature dimensional domains with 'multi' parented class nodes, the MIM classifier 

is shown to perform better than the GBN- 3 

Selective MIM classifier (SMIM). Feature selection is an approach used to overcome the 

complexity of BNs by attempting to identify and remove irrelevant features of a domain to be 

modelled and thus improve the 'overall' performance. 

To improve the performance of the MIM classifier we derive a 'Wrapper' type selective variant of 

the MIM classifier and show that the same efficient 'tree' based classifier (MIM) can also be used as 

the Wrapper evaluation function. 

Specifically: 

Empirical studies show the class MB derived via the CL algorithm represents a satisfactory 

'initial' class MB for large data sets (i. e. those that contain sufficient data to fully 

characterise the individual class-states). 

For small data sets, the performance of the corresponding MIM classifier can be improved 

by a focused expansion of the 'initial' class MB. 

' In respect of the UCI data sets studied in this thesis. 
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Empirical studies confirm the classification technique is not restricted to 'tree' based 

structures (with respect to the class MB) and is thus independent of the underlying topology 

of the domain being modelled. 

In general only a marginal number of features are required to be added to the 'initial' class 

MB in order to improve performance. 

Case Study -AAP. The domain of AAP is known to be difficult and challenging to classify. Many 

researchers [ED84, Dom9l and TS94] have argued that the NB classifier is 'optimal' for this domain 

despite the fact it violates 'real' world assertions. We investigate this claim by carrying out detailed 

experiments comparing the performance accuracy of the MIM and SMIM classifiers with that of the 

NIB classifier. 

Specifically: 

We show the MIM classifier and its selective variant (SMIM) can be efficiently applied to 

the domain without making the assumption of extreme CI given the class. In the case of the 

MIM classifier we additionally show the qualitative structure constructed is recognisable by 

domain experts in contrast to the trivial structure of the NIB classifier. 

Empirical studies confirm that the NB classifier is probably 'optimal' for the domain, 

however it is only in respect of its overall performance accuracy. 

The overall performance of the NB classifier is due to the contribution of the majority group 

Non-Specific Abdominal Pain (NSAP) (a group of exclusion). When this influence is 

removed we further show that the SMIM's overall performance matches that achieved by 

NB. 

Empirical studies show that the MIM classifier identifies with greater predictive accuracy, 

more individual disease groups than NB. This is important as each group has a different 

level of significance. For example the group appendicitis can be fatal if not identified 

quickly. 
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1.3 Thesis Organisation 

9 Chapter 2- provides an overview of the methods that will be used to make comparisons 

against the MIM classifier (described in Chapter 3), in particular, the representation, 

inference and induction of the General Bayesian Network, 'polytree' and NB classifiers. 

0 Chapter 3- describes a new technique for inducing a 'tree' based classifier from a BN 

[THS05a]. The approach is based upon the well known Chow and Liu algoritlun [CL68] to 

both construct a tree structure and subsequently classify unseen observations of the problem 

domain. 

0 Chapter 4- demonstrates the validity and effectiveness of the MIM classifier by carrying out 

detailed experimental studies on a number of benchmark databases selected from the UCI 

repository of Machine Learning databases [MA95, BMOO]. The results and subsequent 

comparisons against the methods described in Chapter 2 are discussed. 

0 Chapter 5- in this chapter the MIM classifier is considered as representing an implied 

feature selector and therefore the use of the Chow and Liu algorithm can be considered as a 

mechanism for deriving an 'initial' Markov blanket. This chapter thus discusses the 

possibility of improving the performance of the MIM classifier by expanding the 'initial' 

class Markov blanket, whilst maintaining the MIM classifier classification efficiency as 

described in Chapter 3. 

* Chapter 6- provides the evaluation of the performance of the 'selective' variant of the MIM 

classifier. As in Chapter 4, the same UCI databases are again utilised for carrying out a 

series of experiments on these methods. The resulting performance is compared to the 

previous 'non-selective' variants (evaluated in Chapter 4), together with a 'selective' variant 

of the NB classifier [LS94]. 

0 Chapter 7- describes a case study where the two techniques, proposed in Chapter 3 and 

Chapter 5, are applied to a medical domain. The domain of Acute Abdominal Pain (AAP) 

represents a 'real' world problem and is known for its difficulty in respect of the task of 

classification. Two data sets of the domain are utilised and the results obtained from all 

methods studied in this thesis compared, along with those of the experts' own diagnosis. 
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0 Chapter 8- represents the final chapter and reviews the main contributions of the thesis and 

provides some suggestions for fin-ther work. 

o Appendix 

A- CADA database contents used in the experimental studies. 

B- Responses from the Doctor's questionnaires. 

C- Questionnaire template. 

D- Patient Record Sheet used by St. John's Hospital A&E Department. 

E- Acronyms and notation used in the thesis. 

F- Publications. 



Chapter 2 

Bayesian Networks as Classifiers 

Probabilistic graphical models or Bayesian networks offer a unified qualitative and quantitative 

framework for representing and reasoning with probabilities and independencies. In a BN vertices 

represent propositional variables in a domain, and edges between vertices represent the dependency 

relationships among the variables. By taking advantage of the independencies existing between 

subsets of variables in the domain, they model the joint densities that limit the problems of 

dimensionality, namely parameter space. Of particular interest is the use of BNs to characterise the 

specialist application as a classifier. Essentially, the BN represents a : ftmction that assigns a class 

label to an instance described by a set of features. Despite the obvious disadvantage in restricting a 

BN to only answering specific queries, the attractive features BNs offer have lead to several 

examples of 'real' world applications. The diversity ranges from medical [MC+01, BL+01], Web 

intelligence [JL+04] to waste water treatment [SBOO]. Further examples can be found in [FF95, 

SP+02, CS+03 and EN95]. 

Introductory Bayesian network theory can be found in [Jen96, SteOO, and Jen0l], whilst a review of 

the algorithms and literature on learning BNs in [Hec98, Bun96, CGO I, HGC95, Pan02, and FG96]. 

The purpose of this chapter is to provide an overview of the methods that will be used to make 

comparisons against the MIM classifier (Chapter 3). In section 2.1, the representations and 

corresponding techniques for inference concerning a General Bayesian Network (GBN), a Naive 

Bayes network and a Singly Connected Network or 'Polytree' are reviewed. In section 2.2, the 

methods for inducing Bayesian Networks from data are briefly discussed, with secion 2.3 providing a 

surnmay of the chapter. 

9 



an Networks as Classiflers 10 

2.1 Representation / Inference 

2.1.1 General Bayesian Networks (GBN) 

Modelling a Bayesian Network consists of determining the qualitative graph structure G and the 

quantitative parameter 0. The qualitative network structure G(N, A) is a directed acyclic graph 

(DAG). Each of the vertices n E=- N represents a domain variable, and each edge aEA between 

vertices represents a probabilistic dependency [Pea88]. 

Figure 2.1. A General Bayesian Belief Network Example. 

Edges in the Bayesian Network (Figure 2.1) represent the dependencies among the variableS4 

z= fzl,..., Z, I with the parents of Zi, pa(Zi) the direct predecessors of Z, in G. An absence of 

edges indicates that there is conditional independence. The quantitative parameter 0 consists of the 

joint probability distribution (JPD) P(Z, ý ... 9 
Zn)' 

This is the general product and can be written: 

n 
P(z 

1'... 
Zn)= flP(Zi I pa(Zi)) where pa(Zi) is designated as the parent of Z,. 

i=l 

The resulting DAG encodes a group of conditional independence relationships among the vertices, 

according to the concept of d-separation [Pea88]. 

Deflnition 1: Two sets of variables X and Y in a network are d-separated by a third set of 

variables Z if and only if all paths that connect any vertex in X and any other vertex in Y have the 

following property: 

There is a vertex V in the path such that either: 

The class varaiable C, shown in Figure 2.1, is included within the feature set depicted by Z. 
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v (=- Z and the arrows along the path do not converge at v. 

v0Z, any descendent of V is not in Z, and the arrows along the path converge at V. 

By using this definition conditional independence can be identified. That is, a group of variables X 

is conditionally independent of another group of variables Y given a third group of variables Z if 

the set Z d-separates X from Y [Jen96]. 

If the network is built in collaboration with domain experts, the determination of the structure is 

often a relatively easy task, since this task usually fits well with knowledge that for example, medical 

experts often have about causal relationships between variables. In an automated approach a data set 

can be utilised but this task in general is considered to be difficult [Coo90, CLR90] as reviewed in 

section 2.2. For the quantitative part (that is quantifying the conditional probability tables in the 

network) this aspect is often considered by medical experts as a much harder or even impossible 

task. The reason is that medical domain experts themselves often have no idea about these 

probabilities. When available a domain data set can provide estimates of the probabilities more 

readily than the experts. 

The classification process involves a class variable C that can take on values C,,..., C., and a 

feature vector Z of n features that can take on a tuple of values denoted by IZI,..., Z,, 1. Given a 

case Z represented by an instantiation fZ,,..., Z,, I of feature values, the classification task is to 

determine the class value C, to which Z belongS5 . Reviews of commonly used techniques 

concerning GBN inference can be found in [Pea88, Nea90]. When using a GBN classifier on 

complete data, the Markov blanket (MB) of the classification node forms a natural feature selection, 

as all features outside the MB can be safely ignored. Thus prediction using a GBN classifier 

examines only the relevant features [Pea88] defined by the MB of the class variable. Figure 2.2 

illustrates a possible class MB. 

Definition 2: For a node n in a GBN the Markov blanket is the union of n's parents, n's children, 

and the parents of n's children. 

5 In this thesis we restrict our discussions to domains with only discrete variables. 
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-00. 

Figure 2.2. The Markov boundary of a node n is a BN, where n's Markov boundary is a subset of nodes that 
'shields' n from being affected by any node outside the boundary. One of n's Markov boundaries is its 
Markov blanket. In thisfigure the Markov blanket of the Class variable C is defined. 

For BNs there are essentially two types of inference, exact and approximate. Exact procedures are 

useful when networks are not too complex (in the general case inference is NP-hard). The most 

popular method is the junction tree algorithm [Jen96], this can however be exponential in the size of 

the cliques, thus restricting its use to low complexity applications. Other methods are arc reversals 

[Sha88], trees of cliques [LS88, JL90], symbolic manipulations of sums and products [DAm9l] and 

Pearl's message passing algorithm [Pea86]. 

However, as shown by Cooper [Coo90] exact probabilistic inference is NP-hard. As the network size 

increases in magnitude, exact inference times grow and relatively small changes In the network 

topology can inevitably transform a simple problem into an intractable one. Approximate inference 

procedures are used when clique state space size is too large. Of the various approaches the more 

recent are Monte Carlo sampling methods [Mac981 and mean field and variational techniques [SJJ96, 

JJ98]. Other methods of approximate inference are discussed in [Dra95] concerning localised partial 

evaluation, [Kja94] weak arc removal, [Hen88, DAA94] using logic sampling, and [SP89, CC90 and 

Pea87] via stochastic simulation techniques. As is the case for exact inference, approximate inference 

has also been shown to be NP-hard [DL93]. 

/ 
/ 
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2.1.2 Naive Bayes Network (NB) 

The most straightforward and widely tested classifier is the Naive Bayes classifier [DHOI, LIT921. 

As Figure 2.3 shows, the network structure is static, which means there is no need to perform any 

structural learning. Essentially, this classifier assumes that the features are conditionally independent 

given the class variable. 

n 
The joint distribution is given by: P(CI ZI 

I 
Z2 

5 ... "Zn P(C)fJ P(Z, I C) where C is the class 
i=1 

variable and Zl,..., Zn are the other domain variables. 

Figure 2.3. A Naive Bayesian Network Example 

In this case inference is straightforward. To perform this task, we assume that we have the prior 

probabilities, P(c, ), for each value ci of the class variable. Further, we assume that we have the 

conditional probability distribution for each feature value zj given the class value Ci . 
P(zj I ci 

)- 

Using Bayes' rule, a new case, Z= Ajzj (A denotes conjunction), can then be classified as: 

P(ci i Z) - 
P(ci)P(z 1 ci) 

- 
P(c, )P(Ajzj 1 c, ) 

P(Z) lk P(Ai Zi 1 Ck 
)P(Ck ) 

Despite the controversial assumption of independence, this classifier has outperformed many state- 

of-the-art classifiers [LIT92, DP97 and HJROO]. Further analysis of the Naive Bayes classifier can be 

found in [EN95, LIT92, Ped98, RisO I a, CP+03 and RisO 1 b]. 
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2.1.3 Singly Connected Networks or 'Polytrees' 

A Bayesian network where a vertex may have multiple parents, and which is singly connected (that 

is, no more than one undirected path exists between any two parents vertices), is called a causal 

6polytree' or Singly Connected Network, Figure 2.4. In using SCNs we gain in efficiency in 

procedures for learning the networks [AC+91, HC93 and Cam96] and in performing exact evaluation 

or propagation [Pea88]. 

Figure 2.4. 'Polytree'Example 

n 

In a tree p, (Z) p(Z, I Zj(, )) where Zj(, ) represents the parent of Zi . the root vertex (selected 

n 

arbitrarily) has no parents. In the case of the 'polytree' P(Z) = F1 p(Z, I Zj(, ),..., Zj. (, )) where 
i=1 

Zj(, ),..., Zj,, (, ) represents the parents of Zi. The parents in a 'polytree' are identified by 

determining, via some algorithni, directionality of the tree edges or alternatively supplied by a 

domain expert. 

'Polytrees' represent much richer dependency models than trees, as they support products of higher- 

order distributions. Moreover, they admit tractable inference and can be identified by a Maximum 

Weight Spanning Tree (MWST) algorithm [DL93, Pea88] to find the structure and thus only require 

second-order statistics to establish the branch weights. Further details for constructing a 'polytree' 

will be covered in Chapter 4, in particular the specific implementation that will be used to evaluate 

the MIM classifier. 

A brief overview of propagation in a 'polytrees' follows with [Pea88] providing a more detailed 

description. Essentially, when diagnostic evidence (that is, evidence from the children vertices) 

arrives at a vertex the prior belief undergoes a revision. This is achieved by using 'local' calculations 
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to send messages to neighbouring vertices which effectively then propagate around the whole tree 

structure. Consider the representation depicted by Figure 2.5, the vertex Vj blocks the path between 

the parent vertices and child vertices. That is, Vj 's parent vertices are conditionally independent of 

Vi ,s child vertices given a known Vi. 

E+ 

Parent 

+ Child 

Figure 2.5. 'Polytree' (subset) 

This property is useful for calculating posterior probabilities. For a variable Vj 
, the posterior 

probability of Vj given some evidence E can be represented by P(Vj I E). The evidence E is a 

set of vertices instantiated so that E can be divided into two parts: EV' and E; which represent the 
i Vi 

subset of evidence E. 

From Bayes rule: P(V I E)= P(Vj I E' 5E- i Vi Vi 

P (Vj, E +)E- 
vj ýj 

P(E + 
IE- Vi Vi 

P(Ev'j ý(Vj E+ ý(Ev-. I Vj, Ev' Vi 
PýE+ E- Vi Vi 

..................... 
(1) 

Due to conditional independence in the structure, Figure 2.5, P(Ev- I Vj, Ev' P(Ev- I Vj ) so 
iii 

by substitution in (1) we get: 

(E + 
P(Vj I E) -pv, P(Vj I E+ ý(E- I Vj) 

+ Vi Vi P(Evj 9E Vi 
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where 
P(Ev' 

i is a normalising constant called a P(Ev', Iv- 

By defining two messages for Vj: 7r(Vj) = P(Vj I E') and A(Vj) = P(E- I Vj) we get the 

expression: P(V I E) = air(Vj)A(Vj) i 

With this expression we can thus calculate the posterior probability of V given evidence E by only i 

using two messages 7r and A, where 7T(Vj) represents the causal support from the parents and 

A(Vj ) 
represents the diagnostic support from Vj 's children. Since only the parent and child vertices 

are involved the compilation of the posterior probability is local. Based on these observations Pearls' 

[Pea88] algorithm enables propagation in a 'polytree'. 

2.2 Induction of Bayesian Networks 
Learning methods and performance of BNs as classifiers are studied in Friedman [FGG97] and 

Cheng [CG99]. Further details of learning Bayesian networks can be found in [KS04, KaS04, PD03, 

GD04, GM04, Nea03, ZL02, SteOO, and Hec99]. 

The process of learning a Bayesian Network is defined by two activities: learning the graphical 

structure, and then learning the parameters for the structure [Pea88]. 

For learning the parameters the empirical conditional frequencies from the data can be used [CH921. 

In the case of the structure, there are in essence two popular approaches used to learn a BN topology. 

The first is a scoring-based learning algorithm that searches for a structure that maximises a scoring 

function. Typically, this function can be a Bayesian method [CH92, HGC94, Yor92, and MR94], a 

minimum description length (MDL) score [Suz96, LB94, KSOO] or an entropy based measure 

[Her9 I]. Score based approaches exhibit less time complexity for densely connected DAGs, however 

they may not find the best solution due to their heuristic nature. 

The second approach is a constraint-based or Cl-based algorithm. Learning the structure in this 

approach requires the identification of the conditional independence relationships among the 

vertices. Conditional independence tests are carried out to assess the dependency relationships 

among vertices and then used to constrain the building process. Various Cl algorithms are described 
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in [SGS96, SRA90, CBL97, SGSOO, and ShiOO]. This approach generally needs large quantities of 

data and is cornputationally more expensive than the score based approaches. 

2.3 Summary 
In this chapter, a variety of techniques for learning a BN from data and subsequent inference has 

been reviewed. We began with the unrestricted GBN which represents a compact encoding of the 

JPD by means of an underlying graphical structure. This is an attractive feature as it enhances the 

understanding of the model, since relationships between the domain attributes can be simply read off 

the structure. Unfortunately generating a network from data is considered a difficult task, as is 

subsequent inference both being in general NP-hard [Coo90, CLR90]. Tolytrees' or Singly 

Connected Networks represent a much richer dependency model than trees and as a restricted 

representation can be derived efficiently, however even though it offers tractable inference, full 

recovery of the 'domain' is not always achievable [Pea88]. NB on the other hand offers a 

straightforward approach and has been demonstrated as a very efficient classifier [LIT92, DP97 and 

HJROO]. Despite this achievement it provides no qualitative aspect and violates 'real' world 

assertions by making strong assumptions of conditional independence given the class. 

In the chapter that follows we introduce a new classifier derived from an information theory based 

technique [THS05]. The approach is based upon the class of 'trees' [CL68, Gei92 and Pea88] which 

have been shown to be efficiently learnt, with particular reference to the MWST as derived via the 

CL algorithm [CL68]. By using tree based dependency approaches, we avoid the assumptions 

underlying the NB classifier whilst enabling a qualitative representation to be retained. In contrast to 

the BN's approach to inference, the new classifier further utilises and extends the concept of Mutual 

Information (MI), providing for efficient inference based upon pair-wise marginals rather than CPT 

probability estimates. 
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Tree Structures and Classification 

A Tree, like any graphical model, has the ability to express the dependencies between variables 

separately from the detailed forms of these dependencies, contained in the parameters. In doing so it 

provides a property that offers excellent support for human intuition and allows for the design of 

inference and learning algorithms. 

Trees are simple models: this is especially evident when examining the algorithms that fit a tree to a 

given distribution. All the information about the target distribution that a tree can capture is 

contained within a small number, at most (n 
- 1), pair-wise marginals. Simplicity leads to 

computational efficiency, where efficient inference is a direct consequence of the fact that trees are 

decomposable models with a small clique size. Trees have a probability distribution that can be 

mapped perfectly as both a Bayes net and Markov net, where a Markov net is defined by a structure, 

which is an undirected graph with an arbitrary topology. 

Tree structures require that exactly one variable be considered as a cause of another given variable. 

Although this restriction simplifies computations, its representational power as a consequence is 

reduced, since it forces a single vertex from all causes sharing a common consequence. For example, 

when a doctor discovers evidence in favour of one disease, it reduces the likelihood of other diseases 

that could explain the patient's symptoms. However, despite this representational loss we will show 

in Chapter 4 that 'tree' based BN structures can be just as effective as less restricted models. In the 

following section we describe a technique for inducing 'tree' structures with section 3.2 introducing 

the MIM classifier. In section 3.3, we review some related work concerning the use of the Chow and 

Liu algoritbrn. Section 3.4 describes how we use the 'tree' structure and corresponding branch 

weights to classifY new evidence, with section 3.5 reviewing related work in respect of other 'arc 

weight' concepts. Finally, in section 3.6 we sununarise the chapter. 

18 
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3.1 Induction of Tree Structures 
Learning algorithms essentially measure the volume of the information flow between two nodes and 

this in turn is used to guide the construction of the Bayesian network from a given data set. A 

common technique for measuring this flow of information is by use of Mutual Information (MI). In 

information theory, mutual information is used to represent the expected information gained on 

sending a symbol and receiving another. In Bayesian networks, if two nodes are dependent, knowing 

the value of one node will give us some information about the value of the other node. This 

information gain can be measured using mutual information. Therefore, the mutual information I 

between two nodes can tell us if two nodes are dependent and how close their relationship is. 

An algorithm that has the characteristics of graphical learning approaches is that proposed by Chow 

and Liu [CL68]. This algorithm adopts a search and scoring based method and views the learning 

problem as a search for the structure that can best fit the data. The algorithm starts with a graph 

without any edges and uses a search method to add on edges to the graph. Once found a scoring 

method is used to see if the new structure is better than the old one. If it is, the newly added edge is 

retained and the algorithm continues by trying to add another one. This is essentially repeated until 

no further new structure is better than the previous one. In the case of the Chow and Liu algorithm, 

the Kullback-Liebler [Ku168, KL5 I] (K-L) cross entropy is used as the measure of best score. 

3.1.1 The Chow and Liu Algorithm 

The Chow and Liu algorithm takes a probability distribution P as its input and constructs a Bayesian 

network in the form of a Tree as its output. This is achieved in only O(N') pair-wise dependency 

calculations with each calculation using only second-order statistics, where N is the number of 

nodes. 
The concept uses a notation of tree dependence to approximate the underlying probability 

distribution data. In particular, the algorithm allows us to find the best approximation of an n-order 

distribution by a product of (n 
- 1) second order distributions. The main result can be formulated as 

follows. 

A probability distribution is called a distribution of the tree dependence if it has the following form: 

n 

PI I IP(Zi I Zj) j E=- (0,1,..., n) and i (ZI 
ý 

Z2 Zn)' 
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Where P(Zj ZO) is by definition equal to P(Zj). A probability distribution of a tree dependence 

Pt (ZI 
I 
Z2 

9**Z, 
) is an optimum approximation to the "real" distribution P(ZI 

3Z2 -. 5Zj 
if and 

only if its dependence tree t has maximum weight, where the weight is determined by the mutual 

information I(Z, 
9 
Zj ) between two variables Zi and Zj : 

I(zi, zi) =I P(zi, Zj)log 
P(zi, Zj) 

>0 
zj, zi P(zi)P(Z-j) 

It has been proved by Chow and Liu that, maximising the total branch weight is equivalent to 

minimising the Kullback-Liebler measure: 

D(P, P') = .., z, )log 
P(ZI 

1 
Z2 

,»* *3 
ZJ 1p(ZI9Z2e* 

pt (ZI3Z2"**ez") 

This measure can be interpreted as the difference between two distributions. It is always positive 

when the distributions are different and is zero when they are identical. 

Procedure 1 (Restricted network) [CL68] 

The procedure of Chow and Liu can be surnmarised as follows. 

1. Compute the Mutual Information 

A 

I(zi, zj)= P^, (Zi, zj)log 
P, (zi) Zi) between each pair of variables i AA 

zj, zi PD(Zi)P Z D( j)) 

2. Build a complete undirected graph in which the vertices are the variables in Z. 

Annotate the weight of an edge connecting Z, to Zj by I(Z, 
5 
Zj ). 

3. Build a maximum weighted spanning tree of the graph [CLR90, Pea88]. 

A 

Here Z= JZI,... Z, I is the feature set of discrete variables and PD is the measure defined by the 

frequencies of events in the data 

Figure 3.1. Chow Liu Tree Algorithm Procedure. 
C7 
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3.2 The Mutual Information Measure Classifier 
The task of classification is an important activity as it represents the foundations on which we make 

future decisions. It seems logical therefore to want to demonstrate the feasibility and usefulness of a 

new classifying algorithm on problems taken from the 'real' world in order to facilitate its validation. 

The approach most commonly adopted by other researchers for assessing these types of algorithms 

utilises the UCI repositorY6 to test the new algorithm and subsequently makes comparisons with 

other competing methods, typically the NB classifier. Examples illustrating this approach can be 

found in [KSOO, Paz96, CG99, CGOI, Sin98, FGL98, FGG97 and LKM01]. In this thesis, we also 

adopt this methodology, however for our experimental work the use of the UCI repository is 

complimented by a 'real' data set describing the medical domain Acute Abdominal Pain (Refer to 

case study in Chapter 7 for more details). 

In our investigation the objective is to produce a new classifier that takes advantage of the topology 

of a 'polytree' or Singly Connected Network (SCN), that is, modelling a restricted qualitative 

structure induced by a BN. We consider this particular aspect significant as it provides a valuable 

insight into the domain under study, which in turn leads to a mechanism for knowledge discovery. 

The approach does however have a drawback. In order to apply the proposed learning algorithm we 

have to assume that all the domains can be approximated by an underlying 'tree' based distribution. 

Simplified models, such as Singly Connected Networks, have been shown to represent good 

approaches to automatic classifier construction [Cam96] alleviating the time consuming processes of 

learning and inference compared to that required for GBNs. Despite their loss of representation 

capabilities, SCNs gain in efficiency and simplicity as they can be built from data using only pair- 

wise marginals. That is, simplification is achieved by selecting a topology that allows efficient 

propagation, for example a SCN or 'polytree' [Das99, Cam96, RP87]. In taking this approach, in 

respect of the development of the technique, we are adopting a theoretical method, however in the 

same way as those cited previously, the actual assessment/evaluation of the new technique is 

experimental. The precise details of the statistical tests employed for analysing the generated 

A collection of benchmark data sets 
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quantitative data are in Chapters 4 and 6, in respect of the UCI data, and Chapter 7 for the AAP data 

set7. 

In the sections that follow, we propose a new inference technique based upon the well-known mutual 

information between two random variables. We call this a Mutual Information Measure (MIM) 

classifier as it corresponds to the restricted class of trees built from mutual information. This is an 

extension to Pearl's 'polytree' construction utilising the Chow and Liu (CL) tree building algorithm. 

Moreover, rather than use the inference method traditionally employed by BNs, we consider the 

mutual information or 'branch weight' as a measure of strength for an edge linking multi-state 

vertices and further demonstrate that this branch weight representation can be used to classify 

locally, new evidence presented to a SCN. The advantage this approach offers is that the qualitative 

aspect can be satisfied by employing the efficient CL algorithm, whilst the complimentary use of 

pair-wise marginals for branch weights, ensures the new method is not influenced by unreliable CPT 

probability estimates. The concept of information 'weight' has been researched and used in many 

other approaches [Boe95, Dra95, JN97] together with applications that have utilised the mutual 

infon-nation measure [YZO 1, NJ98, Bat94, KJ96, LTDO I and CGK 02]. 

Prior to inference we first construct a SCN based upon an information theory based technique. We 

achieve this by building the Mutual Information Measure (MIM) classifier structure in two stages. In 

the first, we use the Chow and Liu tree building algorithm to build the skeleton structure as described 

in Procedure 1, Figure 3.1. Once constructed, stage two transforms the structure to a singly 

connected network. In stage two we determine the node ordering from the orientation of the tree 

edges with respect to the class node. 

The formal algorithm for constructing the Maximum Weight Spanning Tree (MWST) can be 

described by the pseudo code shown in the Figure 3.2. 

The algorithm results in n(n - 1) /2 pairs of I(Zi 
I 
Zj ) being generated with the algorithm 

terminating when (n 
- 1) branches have been selected, at which point the dependency tree has been 

constructed. Essentially, by looking at the association of all variables in terms of couples, an (n 

undirected branched tree can be constructed, where n is the number of variables. 

Under the section heading 'Experimental Design' 
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FOR i=l to N-1 DO 
BEGIN 

FORj=i+ I to N DO 
BEGIN 

Find all second-order probability distributions P(Zi 
I Zj ) 

(A) From the given (observed) distribution P(Z), compute the joint 
distribution P(Z,, Zj ) for all variable pairs. 

Calculate mutual information measures I(Z, 
5 Zj ) 

(B) Using the pair-wise distributions (A), compute all n(n - 1)/ 2 branch 
weights and order them by magnitude. 

END 
END 
Branches No=O 
WHILE (Branches No < (N-1)) 

0 (comment) Repeat (C) until (n 
- 1) branches have been selected. 

BEGIN 
Select two variables Zi. Zj that have largest I(Z, 5 Zj 

0 (C) Assign the largest two branches to the tree to be constructed. 
Add the branch (Z,, Zj ) to the tree 
IF (there is a loop In the tree) 

Delete the branch (Z,, Zj ) 

ELSE 
Branches No = Branches No +I 

END IF 
0 (comment) now Examine the next-largest branch, and add it to this tree. 

END 

Note: for those branches having equal weight, the first largest branch found will be 
selected to define the structure of the MWST. 

Fi-aUre 3.2. Maximum Weight Spanning Tree Algorithm. 

Figure 3.3 (a-c) illustrates the stepd taken in constructing the MIM classifier for the domain 'Flare' 

using the MWST algorithm of Figure 3.2 and the procedure detailed in Figure 3.4. The 'initial' 

process uses the CL algorithm as defined by equation (1) (Procedure 1, Figure 3.1) to calculate the 

n(n - 1) /2 mutual information measure values for every feature pair over the V features of the 

domain. Figure 3.3(a) shows a subset of the sorted values arranged in descending order by MI size 

along with their corresponding edges. 
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Key 

Class 
I Flare code 
2 Size 
3 Distribution 
4 Activity 
5 Evolution 
6 Activity - previous 24 hrs 
7 Complexity - past 
8 Complexity - present 
9 Area 
10: Largest Spot Area 

Ordered MI Edges 
Item Edge 
1 1-3 Highest MI 
2 1-2 
3 2-3 
4 1-8 
5 3-8 
6 2-7 
7 1-7 

13 class-I 
14 4-6 

n(n - 1)/ 2 Lowest MI 

Figure 3.3(a). MI values - 'Flare'Data Set 

The first phase (step 1) for constructing the classifier is depicted by Figure 3.3(b). Starting with the 

highest MI valued edge, here item 1, edge 1-3 8, a tree structure is built by selecting additional edges 

by the MI order from the sorted list. In the event a loop occurs, the edge is discarded and the next 

valid one considered. The process is repeated until a (n - 1) branched tree is constructed which 

represents the completed MWST. 

Step 1: Start with item (1) and build a (n-1) edge tree structure. No loops are permitted. 

(iv) 

2 

Invalid 

(v) 

238 
Invalid 

Final MWST 

Class 23875 

10 
9 

6 

Figure 3.3(b). MWST Learning Procedure. 

8 For simplicity feature names are coded as shown in the 'key' shown in Figure 3.3(a). 
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Figure 3.3(c) illustrates the final phase (step 2) by identifying the class variable and orientating the 

tree structure such that the class becomes the root of the tree9. Directionality for the edges is then 

taken outwards from the class, completing the qualitative representation of the classifier. In respect 

of the quantitative aspect, MI values are assigned to the corresponding edges as calculated by 

equation (1) (procedure 1, Figure 3.1), essentially those shown in the list of Figure 3.3(a). 

Step 2: Set Class variable as root of the tree and assign directionality outwards from the root. 

Figure 3.3(c). MIM Classifier - 'Flare'. 

The procedure for learning the MIM Classifier can be further sununansed as detailed in Figure 3.4. 

1. Input Training Data of the domain JC, Z Z,, 1. 

2. Build the undirected tree structure using the Chow and Liu algorithm. 

3. Select the domain 'Class' variable as the root of the undirected graph. 

4. Transform the graph from (3) into a directed (SCN) by setting the direction of 
all edges to be outwards from the class vertex. 

5. Output SCN (MIM Classifier structure) G(N, A) 

Figure 3.4. MIM Classifier Learning Procedure. 

9 Feature names are included for completion. 
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Consider the structure in Figure 3.5, which represents a subset of a MIM classifier structure as 

generated from the procedure detailed in Figure 3.2. 

In this example the class vertex C has C1,..., Cm multi-state values and the attribute Z, 

V-1 
5 
ZI-2 I multi-state values. The mutual information measure I(C, Z, ) as defined by equation 

(1) (Procedure 1, Figure 3.1) is a measure of the dependence between the two variables C and Z, 
* 

The value I(C, Z, ) represents the surnmation of the 'individual' mutual information that is 

associated with each pair of class-attribute state values, that rnake up the overall 'branch weight' 

I(C, Z, ). We call these 'individual' values mutual information elements and denote them by I'( ). 

C- Class 
Class Value 

cl 

C2 

c", 

I(C, Z2) 
I(c, ZI) 

Z2 

-------------- M--u -It T S- Ja 
t-e I Value It 

10 

Zi - Attribute L -------- L ---------- 161 Multi State 
Value 

10 

C 1. ZI 

CI, ZI-21 
C2, ZI-I 

Cm, ZI-2 

S.. 
SI 
r ----------- I 

------------ 

------------ 

Figure 3.5. MIM Classifier Tree Structure (subset). 

The plots in Figure 3.6, using the UCI 'DNA' database, illustrate the distribution of calculated I'( 
) 

values with respect to the three class labels describing the primate splice-junction gene sequences 

(DNA). 

For each class 
C=jCj, 

--C31 the distribution of I'( ) values reveals that there is a 

characterisation 'profile', which is distinctly different for each class label. 

During the process of classification we 'introduce' evidence in the form of a feature vector 

lZI 
ý ... 9 

Z, I for n=60 attribute instantiations. To propagate this inforniation or evidence in our SCN 
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we update the 'branch weight' elements I'( ) in respect of each class C= ICI,..., C, I where 

m=3, representing the class-states Neither, IE and El. 

NETHER IE 

11) 

0 40 80 120 i6o 

'hftd Featse Vakies 

200 240 0 40 80 120 160 200 240 

lidWuar Feature Values 

8 

0 40 80 120 160 200 240 

, hcwduar Feature VAN 

(a) Neither ý) IE (c) El 

Figure 3.6. DNA Class Distributions of I'( ) values for each of the three Class-attribute measures 
of dependence. Where (a) represents the class 'Neither'. (b) the class 'IntronlExon' boundary or 
donors and (c) the class 'ExonlIntron boundary or acceptors. Each of the 60 attributes has four 

states (A, C, G, T) resulting in a total of 240 'individual'feature values. We omit values from the I'( 

axis as only the ýprqfiile'characterising each class is relevant. 

3.3 Related Work 

The Chow/Liu (CL) tree structuring algorithm has been the comer stone for many approaches since 

the introduction of several probabilistic proposals that have extended the spanning tree model. 

One prominent example is TAN or Tree Augmented Naive Bayes [Gei92], which maintains the 

computational simplicity of N-B but allows additional edges between features. It is well know that 

N'B performs well even against state of the art classifiers such as C4.5 [Qui93]. What TAN attempts 

to do is capture correlations among the features by adopting less restrictive assumptions than NB, but 

without loss to its prediction capability. In the augmented structure, Figure 3.7, an edge from Z, to 

Z2 implies that the two attributes are no longer independent given the class variable 

Figure 3.7. A simplified TAN structure example. 
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From Figure 3.7, a TAN is defined as a NB with augmenting edges between features with the class 

variable C having no parents. Attributes have as parents the class and at most one other attribute. 

The algorithm for learning TAN classifiers [FGG97] learns a tree structure over Z\ fCj, using 

mutual information tests conditioned on C. Where Z= IZ,,..., Zn 
I 
C1 are the features of the data 

with C representing the class variable. Procedure 2, Figure 3.8, describes the TAN learning 

algorithm. 

Procedure 2: 

I- Input learn partition Z\ fCj 

2. Carry out conditional MI test I(Zi, Zi I M) between each pair of attributes i# 

Assign weights to edges I(Z, 
9 
Zj I JCJ) 

4. Build MWST 

5. Select a root variable and set directions of all edges to be outward from it. 

6. Attach C as a parent of every Z, 
, where 1 :! ý i :! ý 

7. Learn parameters of TAN 

8. Output TAN 

Figure 3.8. TAN Learning Algorithm Procedure. 

The TAN learning algorithm extends the CL algorithm requiring O(N2) conditional MI tests and 

assigning 'weights' I(Z,, Zj I JCJ) to only the Z-Z'O edges. In the MIM classifier the edges are 

unconditional MI and assigned to all pairs which includes the C-Z edges. Unlike the MIM classifier, 

TAN builds a MWST, which excludes the class variable adding it once the structure (tree) is 

complete and then attaches edges from the class variable to all features fZ,, 
---, 

Z, I- In contrast, the 

MIM classifier tree structure is derived using all the data features including the class variable. In the 

10 Z-Z denotes feature-feature association, C-Z class-feature association. 



29 

first stage of construction the class variable is treated as an ordinary feature and only selected as the 

root, after the MWST is completed, which includes the class variable. 

By the use of the CL algorithm, TAN imposes a tree-based topology that restricts a node to have at 

most two parents. Whilst this does reduce the search space and enable the CPT size to be more 

manageable, the approach however, does not avoid the possibility of intractability. 

The BAN, BN Augmented Naive-Bayes [CG99] further extends TAN by allowing the features to 

form an arbitrary graph, rather than just a tree, Figure 3.9. 

Figure 3.9. Simplified BAN structure examp7_o 

The algorithm for learning BAN also extends the CL algorithm and is defined by a three phase BN 

leaming algorithm. 

Phase 1, 'drafting', computes mutual information of each pair of attributes as a measure of closeness, 

and creates a draft based on this inforniation (a SCN). In phase II, 'thickening', edges are added 

when pairs of attributes cannot be d-separated, with phase III, 'thinning', verifying the necessity of 

each edge. In this last phase, each edge is examined using CI tests and removed if the two attributes 

of the edge can be d-separated. The CI tests utilise conditional mutual information tests, as used for 

TAN construction. Cheng's algorithm [CG99] also adds an edge orientation procedure to phase III to 

determine directionality on the structure. When prior node ordering is supplied the complexity is 

O(N2) otherwise it rises to O(N4). 

As was the case for learning TAN, the class node is not included as part of the initial construction but 

added after completion of the structure (in this model a network), with edges from the class variable 

being attached to all features. Since BAN still represents an unrestricted BN learning algoridm-4 the 

issues of inference complexity will nevertheless be present. As Chickering [Chi96] pointed out even 

restricting the structure to have only two parents, does not prevent the inference from becoming NP- 
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hard. Where poor prior node ordering is supplied, as for any GBN, the constructed BANs can still 

potentially represent an intractable solution. 

A conunon feature of TAN, BAN and the MIM classifier is the assigmnent of the class variable as 

the root of the derived structure. This is in contrast to the GBN which treats the class variable as an 

ordinary node. Although this does permit an even more flexible structure, some researchers [CG99, 

FGG97] have argued that the former approach can improve classifier performance. Whilst, by 

design, this is the same structurally for the NB classifier, TAN, BAN and the MIM classifier offer a 

more expressive representation than NB. 

Cheng [CG99] concluded from his experiments that methods based on CI tests, such a mutual 

information tests, are more suitable for BN classifier learning than the more standard scoring 

methods. In the case of the MIM classifier, the use of Chow/Liu's algorithm means it characterises 

both a constraint (CI) and score based learning approach. The CL algorithm finds a structure with the 

best score (cross-entropy K-L) but does so by analysing the pair-wise dependencies. Heckerman 

[HMC97] compared score and Cl learning approaches and found score based were better than Cl for 

modelling a distribution, whilst Friedman [FGG97] on the other hand found that using general 

scoring methods may result in poor classifiers, a conclusion also arrived at by Greiner [GGS97]. 

As we shall show in Chapter 5, whilst we initially define our MIM classifier model via a search and 

score approach, we can in some cases improve classification performance using a form of 

4 constraint' edge addition. 

In Cheng's approach, when the underlying structure is a 'tree' the drafting phase essentially defaults 

to that of the MIM classifier's structure. The difference lies only in the choice of node ordering, 

although as a classifier, the class variable will in both approaches, be assigned as the root. Phase 11 

and III in this situation will not make any additional changes to the model. 

Pearl [Pea88] and Rebane [RP87] further extended the CL algorithm to recover an undirected 

Markov tree from a given discrete JPD using a MWST algorithm. They show the same algorithm 

also recovers the undirected skeleton (topology) of a 'polytree'. Structurally, this is the exact 

topology of the MIM classifier. Pearl and Rebane further developed an algorithm to recover the 

causal directionality of the edges, but as reported by Pearl, full recovery was not always possible 

requiring completion by an expert of the domain. In the MIM classifier node ordering is orientated in 
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conjunction with the class variable assigned as the root. As we shall demonstrate in Chapter 4, a poor 

choice of node ordering does have an impact on the 'polytree's' predictive performance as a 

classifier. As this choice defines the edge directionality, the dimensions of the corresponding CPTs 

may be large resulting in a model that is intractable. This may be more apparent especially in cases 

where an attribute has 'multi' parents. Since the MIM classifier in contrast uses branch 'weights', 

which are already available from the MWST branch list, directionality and CPT size do not impact 

on its inference complexity in respect CPTs. 

A novel application of the CL algorithm is the CL multinet classifier [FGG97, HKL03]. This 

classifier allows different attribute dependencies for different class-states. In this approach a different 

network is learned per class-state, with each network, a tree, constructed using the CL algorithm By 

constructing trees the complexity of the network is constrained [FGG97]. In contrast, a TAN forces 

relations among features to be the same for all the different instances of the class variable. This is 

essentially the case, structurally, for the MIM classifier. However, when used as a classifier there is 

an implied 'multinet' by use of the class 'profiles' which defirie each class-state characterisation. 

Unlike the MIM classifier, CL multinets are expensive to learn [FGG97]. Learning a CL multinet 

involves the application of the CL algorithm, but in this approach it is in respect of each class-state 

data partition, that is, its' equivalent JPD. For those edges relating to C-Z there will be a 

correspondence to those of the MIM classifier (although as a single tree structure not as separate 

trees for each class-state). By partitioning the data by class-state the multinet takes care of the C-Z 

associations. In the case of the Z-Z relationships, the CL multinet will use subsets, corresponding to 

a class-state, of the 'learn' data partition, whilst the MIM classifier uses the entire 'learn' data 

partition. This means the branch weights for Z-Z edges reflect strengths from the entire data set, 

whilst for the CL multinet it is only with respect to the corresponding class variable state. 

Another network structure derived from the underlying tree structure of the CL algorithm is proposed 

by Sucar [SP+971. This approach begins by constructing a skeleton tree structure using the CL 

algorithm, then determines a node ordering on the undirected graph in accordance with the size of 

the MI edge 'weights'. New edges are then added to the tree, again by the same edge 'weight' size, 

and are controlled by the assigned node ordering to avoid producing cycles. As the objective is to 

predict a specific hypothesis node (set as the root) termination of the algorithm is determined when 
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the desired performance level is reached. Classification using the completed structure, further 

requires the parameters to be estimated (CPTs) from the available data. This approach however, can 

lead to dense and possibly intractable solutions. Since edge additions are governed by the size of MI, 

this can result in having to add several irrelevant (with respect to the chosen hypothesis node) edges 

to the structure to obtain the desire level of performance accuracy. In Chapter 5, we will show that 

the MIM classifier can be enhanced by the addition of edges to the initial CL tree structure just as 

Sucar proposed. By focusing on the class variable (as root) performance can, in some domains, be 

improved, but in the case of the MIM classifier it is not at the expense of inference complexity. 

Further applications that use the CL tree structuring algorithm as their underlying structure are 

described in [Mei99], who proposes a mixture of trees together with two accelerated CL algorithms 

and in [FZOO], which extends TAN to a credal classifier (TANC). A credal classifier is a function 

that maps instances of the features to a set of class-states. That is, when the available knowledge is 

insufficient to isolate a single class-state, a set of alternatives is presented. Despite being modelled 

on the efficient tree-based classifiers, TANC is reported to suffer from overfitting [ZF031 with 

feature selection and model pruning proposed in order to overcome this problem, characteristic to 

networks. The use of the CL algorithm for constructing a tree-based model has been shown to offer a 

competitive approach in many classification problems. However, in doing so, these applications 

make the assumption that the underlying structure of the training dataset is a 'tree'. Work carried out 

by Huang [HKL02] proposed a procedure to avoid violating this assumption. By considering nodes 

as a 'large node', networks can be transformed to represent a tree whilst maintaining their original 

conditional independence relationships. This is achieved by firstly constructing a tree in which the 

nodes are a subset of the features of the data set. First they create a CL tree as a draft approximation 

over the data set, and then they refine the tree into a 'large node' structure. The construction is 

guided by the frequent 'itemsets' which are essentially subsets of features which come out together 

with each other frequently. 

Since the MIM classifier is based upon the use of the CL algorithm for defining its class MB, it too 

makes the same assumption, that is, the underlying structure is tree-based. Despite this, as shown in 

Chapter 4, the predictive accuracy of the MIM classifier remains competitive with the unrestricted 

GBN for many of the datasets studied. 
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Common to the approaches reviewed is the underlying assumption that the domain can be 

represented by a tree and that the structures can be derived by an application of the CL algorithm. 
However, despite the use of this efficient algorithm, node ordering and subsequent CPT 

dimensionality still present a problem. The approach taken by the MIM classifier is to adopt a 
heuristic for node ordering which orientates the structure such that the class node is configured as the 

root of the tree. This placement enables the classifier to be independent of any node ordering choice 

whilst defining a class MB consistently. Both BAN and 'polytree' are influenced by the final 

topology and may perform as a classifier badly as a result of poor node ordering choices. For BAN 

where no prior node ordering is provided the complexity is O(N4), whereas for the 'polytree' full 

recovery is not always even possible without expert guidance. In the case of TAN this problem is 

contained but at the cost of representational constraint by restricting nodes to have at most only two 

parents. 

With regards to the task of classification the use of branch weights by the MIM classifier enables 

new evidence to be classified without the concerns associated with CPTs. This approach effectively 

avoids the issues relating to large numbers of probabilities to be estimated, particularly in 

circumstances when nodes have 'multi' parents. Moreover, when the dimensionality of the domain is 

high and the data set sparse, populating the CPTs may result in estimating unreliable probabilities. In 

contrast, the MIM classifier's approach calculates branch weights using the pair-wise marginals and 

only these (focused on the class MB) are required to be updated when presented with new evidence 

to be classified. This technique avoids the problems of having to update a potentially unrealistic 

number of probabilities associated with the CPTs that the other approaches need to deal with. 

Multinet construction uses a subset of the domain data as defined by the class-states. As a 

consequence when there are class-state imbalances, typical in 'real' world domains, the selection of 

Z-Z feature associations may not adequately model the domain and subsequently be reflected in the 

reliability of the corresponding CPTs. The approach adopted by the MIM classifier however uses the 

entire data set to calculate Z-Z feature associations and thus its edges will have a 'stronger' measure 

of association between features than those of the multinet. The resulting MIM tree structure, directed 

by the magnitude or strength of the Z-Z and C-Z edges, will better model the domain and in turn 

define a more representative topology for the class MB. For the MIM classifier, there is only one tree 
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structure which is common for all class-states, and thus it is not as computationally expensive to 

construct as the multinet, which requires one structure (tree) for each class-state. In addition, as we 

will demonstrate in Chapter 5, the MIM classifier is not constrained by topology in order to manage 

model complexity or the task of classification. 

3.4 Classification - MINI Classifier 

Let Tm represent a MWST for a tree dependent probability distribution Pt 
, where Pt is a Markov 

field relative to a tree [Pearl 88]. If a feature vector Z= JZ1,..., Zn I describes a new observation 

of the domain then the probability distribution P, will be updated to Pt'. For Z belonging to a 

particular class value Ci 
5 where i= (1,2,..., m), the new MWST for P, 'can be represented by 

Tma 
, If we repeat this for each possible value of Ci then m MWSTs will be constructed. In order 

to assign a feature vector Z to a classification value of class Ci 
9 we need only find the maximum 

from the M MWSTs. As was shown by Chow and Liu [CL68] this is equivalent to finding the 

maximum total branch weight for T,,,, thus minimising the K-L measure. In other words we are 

calculating the relative difference between each P in respect of the m probability distributions 
t 

represented by T. 
0 

for i =(1,2,..., m). Identifying the specific class value i to which the new 

observation Z belongs, requires finding the MWST (T 
.. C, 

) that has the greatest total branch weight. 

The winning class value i= (1,2,..., m) will thus identify one of the mutually exclusive classes Ci 

that corresponds to the maximum T,,,,,, 

For the representation of Figure 3.5, considering the subset only, the joint probability distribution 

P(C AA) can be written as P(C)P(Z1 I C)P(Z2 I C) by the chain rule. If we ignore the edges 

C-Z, andC- Z2 then the three vertices can be considered independent giving: 

P, (C, zý, Z, ) = P(C)P(Z, )P(Z, ) 
and from equation (1) (Procedure 1, Figure 3.1) . 
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P(CDZIýZ2) 
I(C, Z�Z2)«"': lp(C1Z15Z2)109 

(C, Zý, Z c, zI, z, P 2) 

= 
AC5 ZI) + 

AC5 Z2) 

This is the sum of the individual branch mutual information measure values between pairs of 

neighbours. More generally in terms of mutual information measure 'branch weights' 

-": WI (ZO) Z. ) 
+ Wt (ZI 

5 
Z2)' So if we sum over all these branch weights W, we Wt VO 

ý 
ZI 

5 
Z2) 

" 

will have a combined measure of their effect. Since mutual information is symmetric then C -> Z, 

is the same as C +-- ZI, so that directionality in our representation will not alter the value of the 

branch weight I(C, Z, ). 

If we now consider a representation of the donlain data set as depicted in Figure 3.10 we can see that 

an instantiation of an evidence vector Z= IZI,..., Z, I can be classified as belonging to one of the 

mutually exclusive class labels C= fC,,..., C. I by local computation. 

In Figure 3.10, the training sample of the domain can be viewed as a series of class partitions 

characterising samples belonging to a particular class. 

Each partition is described by a vector of class features Z= JZI 
5 ... 5 

Z, I and this will be the case 

for each class label where C= ICI,..., C. 1. The actual dimensions of the partitions may or may not 

be the same for each class and will correspond to the specifics of the domain data set. 

C, 

C2 

Crn 

Instantiation position C, 

Instantiation position C2 

Figure 3.10. Domain Data set Representation example. 

ZI 
3, 

Z25 
,**- 

Zn 
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An instantiation of an evidence vector ZII in position C, will increase the marginal P(C, ) 
and 

update the joint probabilities P(C,, Z) in respect of the evidence vector Z= IZI,..., Z, I and 

their values. Similarly, for an instantiation in positions- C2 
5' **5 

Cm 
. Since the evidence vector ZII 

will be common for all C1 I instantiation positions, the marginal probabilities P(Z) for each value 

of Z, due to the evidence, will be updated, but remain at a constant value for each instantiation 

position. 

In terms of our MIM structure this implies that any changes of information, branch weights, due to 

observing an evidence vector Zf 1, 
will only be measurable on edges that are directly associated 

with the class vertex. The corresponding information on edges not associated with the class will 

remain at a constant value, for each instantiation position tC,,..., C,, 1. Thus, the classification can 

be achieved locally using a subset of the domain features as defined by the SCN. In situations where 

the structure corresponds to that of Naive Bayes, the feature size will be n. However, unlike Naive 

Bayes the same extreme assumption of conditional independence for all features given the class is 

not made. 

3.5 Related Work 

The idea of branch weights, sometimes referred to as arc weights, in BNs is a versatile concept. The 

notion of connection strength was first proposed by Boerlag [Boe95], who used arc weights to draw 

contour maps of a BN as well as evaluation. This particular application however was limited to only 

binary nodes. Based on the idea of connection strength Jitnah [JN97] proposed a framework for 

implementing incremental evaluation of BNs called treeNet. The procedure, which is limited to 

4polytree structures', first transforms a BN into a tree structure and then applies anytime inference. 

Anytime algorithms are concerned with the improvement of the quality of a result with computation 

time. This is particularly useful for real-time decision systems such as medical diagnosis. The 

transformation is guided by setting the query node (as selected) to be the root of the treeNet. A 

similar approach is taken to define the topology of the MIM classifier which is also guided by the 

placement of the class node as its root. Unlike treeNet however, the class node is identified after 

construction of the tree and edge directionality assigned as described previously in Figure 3.4. When 
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new evidence is presented to treeNet the posterior probability of the query node is re-calculated using 

a modification of the 'polytree' message-passing algorithm [Pea88]. This modification essentially 

restricts the messages to be passed in one direction only, that is, towards the query node. 

Arc weights are used as a measure of strength to provide an estimate of how much a node can be 

affected by each neighbour. The neighbour at the arc with the heaviest weight will have the greatest 

influence on the node of interest. In contrast, the branch weights of the MIM classifier collectively 

provide a measure of change, in respect of the child nodes, that affects the class or parent node. 

Unlike treeNet it is the relative difference in MI weights summed over the class MB that identify a 

target class-state, rather than combining incorning messages from child nodes to compute the query 

node belief In the case of the MIM classifier, the branch weights themselves are updated in support 

of new evidence and in the worse case will be, for m class states, m(n - 1) where the topology 

configures as that depicted by NB. In treeNet arc weights are used to traverse the structure and are 

computed locally at each arc using only the values stored in the associated CPT. However, with 

4polytrees', just as for GBNs, the possibility of ' multi' parented nodes and the corresponding 

exponential rise in size of the CPTs means estimating reliable weights may be difficult in some 

domains. Even with a modest complexity, updates to node beliefs may be intractable. The MIM 

classifier on the other hand avoids this by calculating branch weights based upon pair-wise marginals 

and is not affected by the CPT dimensionality and to some extent, the scarceness of the domain data 

set. 

Although arc weights provide a flexible way of evaluating the treeNet the limitation to 'polytree 

structure' application discounts its use for some 'real' world problems". Despite being derived as a 

'tree' based structure, this limitation is not true for the MIM classifier. As section 3.3 pointed out, the 

task of classification is focused on the class MB and is therefore independent of the 'overall' domain 

representation whether portrayed as a tree or a network. 

Draper [Dra95] proposed a propagation algorithm called Localized Partial Evaluation (LPE) which 

computes interval bounds on the marginal probability of a specific query node. Arc weights are used 

to search for the best vertices to include in an 'active set', a subset of the entire network, and then a 

standard message-propagation [Pea88] is used over this set. In Drapers' approach interval-valued 

11 Extensions to treeNet are proposed as 'further work' in order to deal with networks [JN97]. 
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messages are used instead of the normal point-valued messages and as for treeNet message passing is 

in the one direction towards the query node. Unlike treeNet, LPE is not limited to 'polytree 

structures' and can be applied to multiply connected networks. This is achieved by converting the 

network into a tree structure using typically the technique proposed by Lauritzen and Spiegelhalter 

[LS88]. 

In the MIM classifier the CL algorithm acts as an implied feature subset selector and so the 

equivalent 'active set' is defined by the class MB. Since classification focuses on the MB, as Chapter 

5 will show, the technique is not limited to tree structures but can potentially be applied to networks. 

Unlike Drapers' approach the 'active set' in the MIM classifier may not be the best set of vertices. 

This is due to the use of the CL algorithm which is prone to either missing out relevant features or 

adding irrelevant features. 

A further use of arc weights was proposed by Thomas [Tho96]. MI arc weights defined by the 

branches of a MWST structure were considered as 'weights' of a feed forward Neural Network 

Expert Systen-4 a model similar to Gallents' MACIE [Ga194]. The substitution of MI 'weight values' 

into Gallents' linear discriminant function implied an overall strength or ordering with respect to 

each class state instantiation. Classification of new evidence presented to the neural network is easily 

detern-iined by selecting the highest resulting function value. Unfortunately, the approach is limited 

to topologies restricted to models that assumed extreme Cl. 

Whilst MI can be considered 'local', that is between neighbours, Nicholson [NJ98] considered the 

information content of a set of vertices, forming a connected region. The approach taken is similar to 

that adopted by the MIM classifier. MI is used to measure branch relevance during the construction 

of the MWST and then the 'connected region' identified by the class and its associated child vertices. 

Nicholson also proposed the idea of a path weight in relation to a query vertex. The approach 

assesses the relative impact of selected vertices on the posterior belief of a query vertex even when 

the vertices are not necessarily neighbours. For the MIM classifier however, the path weight is trivial 

as the region of the structure with respect to the class vertex, has a similar topology as that of NB. A 

problem with the approach of Nicholson is the focus on the most informative set of vertices with 

respect to the query (class). The use of MI does not guarantee the path or region selected will exclude 

irrelevant edges/vertices to provide for efficient classification. Strong MI associations between nodes 
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can be due to a 'commonality' and not true relevance. Although selected for the path they may not be 

a useful contributing factor in respect of the query vertex. The MIM classifier on the other hand, 

defines the connected region within the MWST with respect to the class vertex. Despite the fact that 

all associations will correspond directly to the class, the set is still not guaranteed to be optimal. In 

Chapter 5 we show that in fact they may not be optimal and that the set can in some cases be 

expanded, potentially improving performance. 

[JN99] further extended the basic framework of BN evaluation by introducing a temporal aspect into 

the graphical representation. The Dynamic BN assigns a series of instances of variable state changes 

to specific time-slices. Edges connecting vertices across time-slices represent the dynamic behaviour 

of the domain. The principle idea is to selectively remove edges by use of an arc weight measure 

based on MI. Essentially at each time-slice edges are deleted from past slices if their weight is less 

than a pre-selected threshold parameter. Since edges of smaller weights are deleted first, information 

most relevant to the current belief state is retained. The threshold is generally set by the desired level 

of accuracy enabling a variation in information amount. 

in general arc weights are used to either guide belief update or focus on an area of relevance. 

Common to all these approaches is the heavy dependency of a pre-defined graph, fully structured and 

with manageable CPT sizes. For the MIM classifier, arc weights are derived as part of the build 

process and via the MWST together with the class variable, a specific region of relevance is defined, 

that is, the class MB. Unlike the reviewed approaches however, the MIM classifier additionally 

expands the concept of arc weights to actually classify new evidence and has the benefit of avoiding 

the issues associated with CPT dimensionality and the corresponding reliability of its populated 

probabilities. 

3.6 Summary 
In this chapter, we introduced the MIM classifier and described a method for inducing a 'tree' and 

subsequently, a new technique to classify unseen evidence of the domain using mutual information. 

By use of the CL algorithm an efficient approach for learning and classifying new observations of 

the domain has been shown. However, the same algorithm is prone to generating structures that have 

either missing relevant features or adding irrelevant features. Moreover, it assumes that the 
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underlying structure is a 'tree' which for some domains may be violated. As a consequence, the MB 

utilised by the MIM classifier may not be optimal and impact on its predictive accuracy. 

In the following chapter we evaluate the MIM classifier on several different data sets and compare 

'tree' based methods to networks (GBN). In addition, the performance of the MIM classifier is 

compared to that of the NB which represents a 'tree' model that assumes extreme Cl given the class 

variable. 
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Chapter 4 

Evaluation - MIM Classirier 

In Chapter 3, we introduced the MIM classifier, described by a 'tree' structure representation of a 

BN derived from an information theory based approach. In this Chapter, we demonstrate the validity 

and effectiveness of the classifier by carrying out detailed experimental studies on a number of 

benchmark databases selected from the University of California, Irvine (UCI), repository of machine 

learning databases. In the section that follows we begin by describing our main objectives of the 

experiments, with section 4.2 detailing the various data sets used in the evaluation. The experimental 

methodology and design are discussed in section 4.3 and section 4.4 respectively, whilst the results 

of comparing the MIM classifier to a NB, GBN and a 'polytree' are described in section 4.5. In 

section 4.6, we consider the implementations of the results, identifying some drawbacks in section 

4.7 and consider learn rates in section 4.8. Section 4.9 provides a summary of the contributions and 

finally, in section 4.10 we summarise the chapter. 

4.1 Objectives 

Learning and inference in representations depicted by 'tree' structures have been shown to be 

computationally feasible [Pea88] in comparison to those of GBNs. However, the restrictions imposed 

by 'tree' structures results in some loss of representation capabilities, as pointed out in Chapter 3. 

One of the main objectives of the experiments was to measure the predictive performance to ensure 

the restriction in topology was not at the expense of predictive accuracy. Comparisons were made 

specifically against those of the GBN and the MIM classifier. 

Another aspect of learning and inference in BNs is the dependency on node ordering. Whether given 

prior to construction or derived via some algorithm, this aspect impacts heavily on the model 

complexity. Although comparisons with the GBN would provide some measure of this issue, we 

further selected a model that has the same representational topology. To evaluate the effect of node 

ordering dependence and predictive performance, we constructed a 6polytree' using the 

implementation proposed by Rebane and Pearl [RP87]. Since the MIM classifier is structurally 

41 
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(skeleton) the same, as both are derived from the CL algorithrn, the only difference lies in the edge 
directionality of the 'polytree'. As such we compared the MIM classifier to the 'polytree' to evaluate 

the effect of the node ordering (derived by Rebane's algorithm) on its predictive accuracy. 

As reviewed in Chapter 2, an option to reduce inference complexity of BNs is to restrict the network 

topology, for example to tree structures. Taking this approach to its extreme, making strong 

independence assumptions about the domain features, is the NB classifier. Experimental studies 

[LS94] showed that this simple classifier could outperform state of the art classifiers, such as C4.5 

[Qui93] in many 'real' world domains. Another objective of these experiments is to compare the 

performance of the MIM classifier with that achieved by NB, but in the case of the MIM classifier, 

without violating 'real' world assertions. 

Since 'tree' based classifiers must estimate on a much smaller set of parameters than the 

corresponding GBN, they should learn at a faster rate and asymptote faster. In addition, as learning 

tur ma fi mate requirements increase exponentially with the number of fea es, it y be dif icult to esti 

adequate conditional probabilities for large networks, especially when data is sparse. With this in 

mind, we are interested in comparing the performance of the 'tree' based classifiers (in particular 

MIM) against networks (GBN) as a function of the number of cases used for learning the model. 

Finally, if we consider the MIM classifier as a middle ground between the GBN and NB classifiers, 

and given that each representation will have its advantages and disadvantages, our last objective is to 

categorise the types of data sets most suitable for each approach, especially those where most benefit 

is obtained by using the MIM approach. 

4.2 Description of Data Sets 

For our experiments, we used twenty benchmark problems taken from the UCI repository [MA95, 

BMOO]. The data sets selected 12 are sunimarised in Table 4.1. The choice of data sets listed in Table 

4.1 was motivated by two factors. In the first instance, we want to compare the performance of the 

algorithm for constructing the MIM classifier with other BN approaches. However, we also want to 

try to categorise the type of problems where the MIM classifier may offer the greatest benefit to the 

alternative approaches. 

12 Further information regarding these data sets can be obtained from the UCI repository [MA95, BMOO]. 
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Table 4.1: Data sets used in the experiments 
Database Name Attribute Class size Sample size Train size Test size 

size 

Vehicle 18 4 846 Cv5 
DNA 60 3 3186 2000 1186 
Car 

- 
Evaluation 6 4 1728 Cv5 - Flare 10 2 1066 Cv5 - Chess 36 2 3196 2130 1066 

Vote* 16 2 435 Cv5 - Mushroom 22 2 8124 5416 2708 
Letter 16 26 20000 14000 6000 
Hepatitis 19 2 155 Cv5 - Nursery 8 5 12960 8640 4320 
CRX * 15 2 690 Cv5 - Soybean_Large 35 19 683 Cv5 - Segment 19 7 2310 1540 770 
Votel 15 2 435 Cv5 - Cars 8 3 392 Cv5 - 
Austria 14 2 690 Cv5 - 
Heart 4 13 2 270 Cv5 - 
Promoter 57 2 106 Cv5 - 
Glass " 9 7 214 Cv5 - 
Ann-Thyroid 21 3 7200 3772 3428 

Key: * Indicates data sets with 'missing' attribute value. # Indicates continuous valued attributes. 
Cv5 indicates 5 fold Cross Validation. 

A diversity of data sets has been selected with varying numbers of features, classes and sample sizes. 

For example, Promoter represents a high dimensionality, small data set, whilst 'Nursery' and 

'Car_Evaluation' characterise a low dimensionality, large data set. 

4.3 Experimental Methodology 

The MIM classifiers were constructed using the process introduced in Chapter 3 and additionally 

described in Thomas [THS05a]. The NB classifier was implemented using the method suggested in 

Gu [GG901. For the purposes of this investigation, we used PowerConstructor [Che98] to both learn 

and test the GBN classifier. In the case of the 'polytree' classifier we implemented a version based 

on the Rebane, & Pearl [RP87] model as described by the pseudo code detailed in Figure 3.2, Chapter 

13 

Once the skeleton tree structure has been constructed, subsequent directionality discovery can be 

established. The initial process first identifies an internal vertex, that is, a vertex that has more than 

13 This procedure only constructs an undirected tree structure. 
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one neighbour, and then applies a dependency test. Essentially, if, say, Z3 is an internal vertex and 

has at least two neighbours Z, and Z2 
, then the objective is to try to establish whether Z, and Z2 

are marginally independent. If they are, then we assign directions from Z, to Z3 and from Z2 to 

Z31 
as shown in Figure 4.1. 

Figure 4.1. Directionality: Case when found marginally independent 

If, however, Z, and Z2 are not marginally independent then we assign the opposite directions: 

from Z3 to Z, and 
Z2 jigure 4.2. 

Figure 4.2. Directionality Case when notfound marginally independent 

This is effectively repeated for every combination of pairs in respect of each internal vertex, and 

directions assigned as appropriate. Some assignments, however, may be inconsistent with the arrows 

associated with an edge going in both directions. This occurrence is not uncommon as [Pea88] noted 

that only one type of dependency can be uniquely identified, and therefore only "partial" recovery 

rrjay be possible. 
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For the independency test, we used the mutual information measure. This allows us to exploit the 

fact that, if Z, and Z2 are independent then the measure is asymptotically distributed as non- 

central x2 with (r 
- 1Xc - 1) degrees of freedorn, where r and C are the number of values of 

variables Z, and Z2 respectively [Kul68]. Refer to Section 4.10 for more detail on this aspect. The 

implementation used in our experiments is described by the pseudo code detailed in Figure 4.3. 

FOR i= I to N DO 
BEGIN 
IF Zi has more than one neighbour 

THEN put Zi in Multiple_Set 
END 
FOR each Zi in Multiple_Set 

BEGIN 
FOR any pair of neighbours Zj 

5 
Zk of Zi DO 

BEGIN 
IF ( Zj and Zk are independent) 

2 THEN 21 is distributed as X with (r-1)(c- I) degrees of freedom 

(Where I is the mutual information measure) 
z Zi 

5 
Zk -> zi 

ELSE 
Z ->Z Zi --> Zk 

END 
END 

Figure4.3. 'Polytree' Construction Algorithm for Directionality Discovery. 

In the event that edges remained undirected after applying this algorithm we applied two 'rules' in 

order to allow the conditional probability tables to be calculated. The first rule was taken from 

Verma & Pearl [VP92], whilst the second, a heuristic derived from the partially completed 

4polytrees'. Directionality was essentially assigned to the undirected edges in conjunction with those 

edges that had already been successfully recovered. 
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The two rules applied were as follows: 

Rule 1: If a -+ b and a is not adjacent to c then direct b -+ 

Rule 2: if a -* b -> c and d -> b then direct d -> e that is as shown in Figure 4.4. 

adN 

+ 
Figure 4.4. Rule 2- Directionality. 

As we are using the Chow and Liu algorithn-4 we have restricted our investigations to discrete data 

sets. All continuous features were therefore made discrete prior to application. This was achieved by 

use of the utility provided by MLC++ [KJ+94] on the default setting. 

The simplest way to handle missing data is to merely drop cases for which the values of all variables 

were not observed. Whilst this approach may be fairly straightforward to implement for small 

amounts of missing data, the loss in sample size can be considerable in domains where the number of 

variables is large. According to Friedman [Fri981 the learning procedure should use 'missing' values 

in order to maximise the probability of the 'actual observations'. As such, all data sets used in our 

experimental studies that contained 'missing' feature values were dealt with by treating them as an 

additional element of that feature. Although this approach has the disadvantage of adding an 

additional parameter to each attribute and thus more to estimate, we consider the increase 

advantageous in meeting our experimental objectives, particularly since one of our aims is concerned 

with the complexity associated with 'multi' state attributes and the actual number of states that 

defines an attribute and its corresponding CPT. 
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4.4 Experimental Design 
Residual evaluations do not provide an indication of how well the classifier will perform when 

required to make a prediction for data it has not already observed. This problem can be avoided by 

not using the entire data set when constructing each classifier structure. For the larger data sets 14 
, we 

randomly partitioned each data set into two parts. The first part comprised 2/3 of the entire sample 

and was used for training/construction of the four classifier structures. The second part, the 

remaining 1/3, was subsequently used for evaluating the predictive accuracy of each of the classifiers 

constructed (this represents the simplest kind of cross validation or hold-out technique). 

Unfortunately, with the hold-out technique there is a possibility of obtaining an over-represented 

class in one partition and an under-represented one in another. To overcome this, we applied a 

stratified distribution for each of the large data sets, which was maintained in respect of the two 

partitions. For those data sets that were small, the hold-out technique was not applied but a 5-fold 

cross validation as indicated in Table 4.1. Our choice of folds (k = 5) is based on the 

recommendations of Kohavi [Koh95]. As for the hold-out technique, stratification was also 

employed for the small data sets, with the folds containing approximately the same proportions of 

class labels as the original data set. According to Kohavi [Koh95] stratification is generally a better 

scheme, both in ten-ns, of bias and variance, when compared to regular cross-validation. 

For each of the four classifiers, the structure was learned/constructed using the training data set and 

the classifier accuracy determined on the test data set. The classification accuracy was determined as 

a percentage of the test cases that identified the correct class. 

This process was repeated over a series of runs in order to gain a sample average together with the 

standard deviation for the predictive accuracy using the test partition. Most researchers appear to use 

about 25-30 trial runs for each data set. However, in our preliminary studies we found that a 

difference that was significant over 25 trials was often found not to be significant for trials under 10, 

demonstrating that small sample size can miss small differences. Since the number of trials seems 

fairly arbitrary, we selected 25 for our experimental work in order to align with our preliminary 

findings. Within the Machine Learning (ML) community, the paired t-test has been used to 

14 We considered 2000 items as a lower limit for application of the hold-out technique based on the 

recommendations of [MST94] 
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determine the significance of any differences between algorithms. However, this technique only 

compares two groups and we wanted to test the statistical significance of the differences among all 

the classifiers studied. As such the statistical significance of the differences in classification accuracy 

was measured using an Analysis of Variance (one-way ANOVA). To further determine all pair-wise 

differences, that is, the magnitude and direction between each pair of methods being compared, we 

followed ANOVA by Post Hoc Tukey comparisons with an overall confidence level 95%. 

Prior to applying ANOVA on each data set we first established the validity of the assumptions, 

although in the case of the normality assumption ANOVA is quite robust to any violations of normal 

distribution. 

To measure the rate of improvement of the various classifiers, the accuracy was measured for 

different quantities of the learning cases. More specifically experiments were carried out using 20%, 

40%, 60%, 80% and 100% of the cases in the learn partition for constructing the classifiers. Once 

induced the corresponding predictive accuracies were then measured using the entire test partition, 

repeating for each of the training sub-partitions. 

4.5 Experimental Results 

4.5.1 Computational Complexity 

Where the GBN model was provided with the prior node ordering the algorithm carried out O(N2) 

CI tests to learn an N-node network. This same time complexity applies to the Chow and Liu 

algorithm (calculating the N(N - 1) /2 mutual information values) which is utilised for learning both 

our 'polytree' implementation and the MIM classifier. In contrast the NB classifier's time 

complexity is O(N), being proportional to the time required to read all of the training data. When 

the GBN model was not provided with prior node ordering, the time complexity increased to O(N4). 

Here the algorithm had the additional overhead of examining N' node pairs in order to determine 

the network edge orientations. In this thesis, both options were explored and the results in Table 4.2 

reflect the best predictive values achieved for the GBN. 

Of the four algorithms the GBN was noticeably slower to learn the network structure than the tree 

based algorithms, even when prior node ordering was provided, with relative times corresponding 

linearly with training sample sizes. 
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In respect of classification, testing was linear in the representation size of the structures, that is, in the 

number of features defining the class Markov blanket (MB). 

4.5.2 Trees Opposed to Networks 

As discussed in section 4.1, there were several objectives in experimentally comparing 'tree' type 

classifiers to network type classifiers. 

First we wanted to gauge the degree to which 'tree' representation affects the inference complexity 

of the resultant structure by measuring the effect of node ordering and the restriction to 'tree' 

topology. Moreover, we wanted to compare the classification accuracy of the MIM classifiers and 

the GBN classifiers. 

This was considered important for two reasons, a) we wanted to ensure that adopting a 'tree' 

structure did not result in a high loss of perforniance and b) the use of MI 'weighted' edges was not 

limited by the data set size or dimensionality. 

In the following sections, we first describe the results of comparing 'trees' in general with the GBN, 

followed by the experimental results specifically involving the MIM classifier. 

* Comparison of 'tree' based classifiers with 'network' based classifiers 

In general the Markov blanket for the 'tree' classifiers is smaller than those of the networks 

(excluding NB whose MB uses all features), this maybe due to fact that most of the features were 

either irrelevant or redundant, as there was no impact on the overall accuracy. Examples of this are 

'DNA' 15(60), 'Promoter' 4(57) and 'Cars' 1(8) where 'trees' actually outperformed the GBN. 

Although both the MIM classifier and 'polytree' performed better than the GBN for these particular 

data sets, differences that were found to be statistically significant were only observed for the data set 

'DNA' (p-value <0.05 for both models). Thus, parameters for networks will be greater for data sets 

that have many features. Networks for 'Promoter' and 'Chess' for example, have a greater 

complexity that impacts on their inference. However, some data sets resulted in learning a 'tree' 

whose MB comprised of nearly all the domain features. [i. e. Car_Evaluation 5(6), Letter 11(16), 

Nursery 8(8), Soybean_Large 33(35) and Glass 7(9)]. 
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Table 4.2. - Average Predictive Accuracy 

DB Name MIM NB GBN Polytree Default 
(overall' 

Vehicle 55.66 ± 1.51 58.28 ± 1.79 61.00 ± 2.02 56.85 ± 1.77 25.8 
DNA 95.58 ± 0.42 94.97 ± 0.29 89.90 ± 5.61 95.62 ± 0.35 51.9 
Car Evaluation 86.11 ± 0.74 86.58 ± 1.78 86.11 ± 1.46 78.81 ± 8.25 70.0 
Flare 82.93 ± 1.26 80.99 ± 1.28 82.27 ± 1.45 82.66 ± 0.79 79.2 
Chess 96.27 ± 3.56 87.34 ± 1.02 94.65 ± 0.69 90.14 ± 1.86 52.0 
Vote 95.40 ± 2.41 89.89 ± 5.29 95.17 ± 1.89 94.94 ± 3.69 54.8 
Mushroom 98.56 ± 1.06 95.79 0.39 99.30 ± 0.16 98.56 ± 1.06 51.8 
Letter 80.26 ± 0.37 74.96 1.10 75.02 ± 0.61 79.86 ± 0.80 4.07 
Hepatitis 84.00 ± 7.22 81.20 3.70 83.22 ± 1.52 82.47 ± 1.44 79.4 
Nursery 95.78 ± 0.30 94.76 0.45 89.72 ± 0.46 94.85 ± 0.27 33.3 
CRX 85.00 ± 0.52 86.60 0.71 82.40 ± 1.30 84.70 ± 0.30 55.5 
Soybean_Large 91.29 ± 0.10 90.78 0.72 89.28 ± 0.42 88.51 ± 0.11 13.5 
Segment 94.49 ± 0.64 91.95 1.10 94.10 ± 0.83 91.76 ± 0.10 4.80 
Vote 1 88.51 ± 1.90 87.60 ± 2.10 87.10 ± 3.00 88.28 ± 2.70 61.4 
Cars 99.23 ± 0.70 98.98 ± 0.47 98.97 ± 0.81 98.97 ± 0.81 62.5 
Austria 85.07 ± 0.91 86.38 ± 1.10 84.35 ± 1.80 84.93 ± 0.66 55.5 
Heart 85.83 ± Z10 85.00 ± 1.13 82.78 ± 3.60 85.83 ± 1.41 55.6 
Promoter 87.97 ± 1.31 82.00 ± 2.02 84.25 ± 1.61 87.04 ± 1.97 50.0 
Glass 69.37 ± 2.08 68.31 ± 1.98 70.42 ± 1.40 69.95 ± 1.60 35.5 
Ann-Thyroid 97.17 ± 0.08 99.11 ± 0.31 96.28 ± 0.10 97.64 ± 0.57 92.6 

Key: MIM - Mutual Information Measure Classifier, NB - Naive Bayes Classifier, GBN - General Bayesian 

Network Classifier, Polytree - Pearl's SCN Model. 

Values in bold type indicate the highest model performance achieved by the classifier in respect of each 

database. Bold italic values highlight performance levels that are close to the highest level achieved. 

The average predictive accuracies, taken over 25 runs, of the classifiers generated for each of the 

four methods are shown in Table 4.2. Each entry describes the average accuracy along with the 

sample standard deviation illustrating variations in the predictive accuracy from sample to sample. 

The default value in Table 4.2 represents the majority classifiers' predictive accuracy. This is 

equivalent to assigning all new evidence to the class-state that has the greatest frequency of observed 

samples corresponding to the particular database under investigation. 'Overall' means that the value 

is measured in respect to the 'entire' dataset and not for the test partition. 

Figure 4.5 and Figure 4.6 show the error rates of NB compared to GBN and 'polytree' compared to 

GBN on the various data sets. In these plots, a point above the diagonal line (representing equality) 

indicates that the 'network' learned for that particular data set has a higher error rate, and thus was 

worse, than the corresponding 'tree' based classifier induced from that data set. In Figure 4.5, the NB 
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has a cluster below the diagonal line otherwise both methods have similar error rates. In the case of 

Figure 4.6, similar error rates are observed for both methods with respect to the 20 data sets studied. 
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Figure 4.5. Scatter Plots Comparing Error Rates of GBN with NB 
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Figure 4.6. Scatter Plots Comparing Error Rates of GBN with Polytree 

Figure 4.7 and Figure 4.8 show the difference in accuracies between NB and GBN together with the 

4polytree' and GBN respectively for each of the data sets. Each bar shows the average difference in 

predictive accuracy. A positive value for an algorithm indicates that the N-B or 'polytree' performed 

better on the data set under consideration. The error bars represent the Post Hoc Tukey comparisons 

with overall 95% confidence for the relative differences. If the confidence interval for a given data 

set crosses the 'zero' line then the two methods are not statistically different. On the other hand, if 
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the confidence interval is wholly above, or below, the 'zero' line, then the methods are in fact 

statistically different. 
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Figure 4.7. Predictive Accuracy relative to NB Classifier. 
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Figure 4.8. Predictive Accuracy relative to Polytree Classifier. 

As can be seen from Figure 4.7, NB is better for nine data sets compared to that achieved by the 

GBN classifier. The NB has three data sets, 'ANN' (p-value = 0.001), 'CRX' (p-value = 0.007) and 

'DNA' (p-value = 0.001) for which the differences are statistically significant with GBN having two, 

'Chess' (p-value <0.05) and 'Mushroom' (p-value = 0.002). From Figure 4.8, the 'polytree' is better 

than GBN for ten data sets. In the case of the 'polytree' there are four data sets, 'ANN' (p-value = 
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0.032), 'DNA' (p-value <0.05), 'Letter' (p-value = 0.001), and 'Nursery' (p-value <0.05) for which 

the differences are statistically significant compared to those found in respect of the GBN, namely 

'Chess' (p-value = 0.022) and 'Vehicle' (p-value = 0.03 1). 

0 Comparison of MIM classifiers with Network classifiers 

Of the three 'tree' based models, the MIM classifier performed the best against the networks (GBN). 

Figure 4.9 shows the error rates for the MIM classifier compared to the GBN and Figure 4.10 the 

corresponding differences in accuracies. From Figure 4.9 the GBN has the highest error rates for 

several of the data sets studied. The MIM classifier was better than the GBN for sixteen data sets 

plus one equal, Table 4.2. For the MIM classifier, three data sets, 'DNA' (p-value <0.05), 'Letter' (p- 

value = 0.002), and 'Nursery' (p-value <0.05) had differences that were statistically significant 

compared to 'Vehicle' (p-value = 0.003) for GBN. 

0.5 

0.4 - 

0.3 - 

CO 0.2 - 

0.1 

0 
0 0.1 0.2 0.3 0.4 0.5 

MIM Error 

Figure 4.9. Scatter Plots Comparing Error Rates of GBN with MIM Classifier 

The GBN performed consistently better for the data sets 'Mushroom', 'Glass' and 'Vehicle' in 

comparison to all the 'tree' based models. However, when compared to the MIM classifier, only 

'Vehicle' (p-value = 0.003) had differences that were found statistically significant. When GBN was 

compared to NB, it was the data sets 'Chess' (p-value <0.05) and 'Mushroom' (p-value = 0.002) that 

had differences that were statistically significant, with similar comparisons to the 'polytree' resulting 

in significance found for the 'Chess' (p-value = 0.022) and 'Vehicle' (p-value = 0.03 1) data sets. 
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Langley [LS94] reported NB had a poor performance for the databases 'Mushroom' and 'Chess' as 

they were highly correlated data sets. In comparisons of the MIM classifier with the GBN this was 

also observed, however, the data set 'Chess' was actually predicted better by the MIM classifier than 

by the GBN model. In the case of NB and 'polytree' comparisons with the GBN, the data set 'Chess' 

was predicted better by GBN as Langley [LS94] observed. 
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Figure 4.10. Predictive Accuracy relative to MIM Classifier. 

Friedman [FGG97] observed that unrestricted networks (GBN) perform worse when the number of 

relevant features influencing the classification (MB) is small. For example in 'Soybean_Large' the 

MB in GBN is 5(35) whilst the MIM classifier uses 33(35). From Table 4.2, the MIM classifier 

topology did not appear to have any major effects on performance of the MIM classifier compared to 

the unrestricted GBN. The inference approach based on MI 'weighted' edges, as can be seen in Table 

4.2, demonstrate that it is an efficient technique in respect of the scope of data sets studied. We 

observed that when forced to represent a NB type structure, the GBN had a reduction in predictive 

perfon-nance as observed in data sets 'Nursery' and 'Car_Evaluation'. This however was not the case 

for the MIM classifier, where it predicted an average 6% better than the GBN on the 'Nursery' data 

set. 

4.5.3 Dependence 'tree' models Opposed to Independence models (NB) 

Although as shown in the previous section, 'tree' structures have a much lower complexity and 

efficient inference than networks, whilst maintaining and sometimes improving the accuracy, it is 
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important to compare dependency tree models (in general trees: 'polytree', MIM) to Naive Bayes 

classifiers due to their simplicity and polynomial-time inference complexity. In the following 

sections we first compare NB to 'polytree' induced networks followed specifically by a comparison 

to the MIM classifiers. 
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Figure 4.11. Scatter Plots Comparing Error Rates ofPolytree with NB Classifier 

Comparison of 'Polytree' (SCN) classifiers with Naive Bayes classifiers 

The difference in accuracies for the NB and 'polytree' classifiers are shown in Table 4.2. Figure 4.11 

shows the error rates for NB compared to the 'polytree'. In Figure 4.11 the NB has the highest error 

rate for most of the data sets studied. The actual differences between accuracies of the various data 

sets along with 95% confidence intervals are shown in Figure 4.12 comparing NB with the 

'polytree'. The 'polytree' identified twelve data sets better than NB for which three, 'Letter' (p-value 

= 0.003), 'Mushroom' (p-value = 0.021), and 'Nursery' (p-value <0.05) had differences that were 

found statistically significant compared to NB which had two, namely 'ANN' (p-value = 0.022) and 

'Car_Evaluation' (p-value = 0.0 14). 
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Figure 4.12. Predictive Accuracy relative to 'Polytree' Classifier. 

0 Comparison of MIM classifiers with Naive Bayes classifiers 

The results of comparison between the MIM classifier and NB were even better than those of the 

4polytree' as shown in Table 4.2. Figure 4.13 compares the error rates between the MIM classifier 

and NB on the 20 data sets used in the experiments. As can be seen from the results, NB has the 

highest error rates for the majority of the data sets studied with most above the diagonal line. The 

difference in accuracies on the various data sets are shown in Figure 4.14. The MIN4 classifier 

performance was better on fifteen data sets compared to NB with four having differences that were 

statistically significant, namely 'Chess' (p-value <0.05), 'Mushroom' (p-value = 0.021), 'Letter' (p- 

value = 0.002), and 'Nursery' (p-value <0.05), in comparison to NB with only 'ANN' (p-value = 

0.006). Although the NIB performed well on the data sets, 'ANN', 'Austria', 'Car_Evaluation', 

'CRX', and 'Vehicle', the MIM classifier achieved a comparable performance with its MB in general 

only 50% of the features used by NB. The exception being 'Car_Evaluation', which despite NB 

performing better was not statistically significant (p-value = 0.986) with NB achieving on average a 

0.5% better predictive level than the MIM classifier. In this particular data set, the MB for the MIM 

classifier was almost the same as that of NB. In fact except for 'Vehicle', NB performed overall 

better on the remaining four data sets than the other three BN approaches. 
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Figure 4.13. Scatter Plots Comparing Error Rates ofNB with MIM Classifier 

For the data sets 'Nursery' and 'Car_Evaluation', there was an indication that the features of these 

two databases are almost independent of each other. It was thus no surprise to observe the NB 

performing well on these two data sets. In the case of the MIM classifier, the predictive performance 

was comparable to that achieved by the NB. 
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Figure 4.14. Predictive Accuracy relative to MIM Classifier. 

4.5.4 MIM classirier Opposed to 'Polytree' classifler (SCN) 

The objective specified in section 4.1 justified the rational for this particular experimental study. Our 

aim was to measure the effect of node ordering on the predictive performance of the resulting 

networks, learned from the data sets selected from the UCI repository. In section 4.3, we described 
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our implementation of the 'polytree' that we used to gauge the effects of the choice of node ordering 

and corresponding CPT parameter estimation. 
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Figure 4.15. Scatter Plots Comparing Error Rates ofPolytree with MIM Classifier 

As pointed out the skeleton structure for the 'polytree' is exactly the same as the MIM classifier. The 

difference in the models lies in the selection of directionality for the edges. In the 'polytree' 

implementation, we use the algorithm of Rebane [RP87] along with some heuristics to complete the 

model in the absence of domain experts. In contrast, the MIM classifier takes a different approach 

focused on the class variable to guide the orientation of edge directionality. As such the NIB for each 

will vary depending on the final edge orientation determined, which in turn will reflect the size of the 

CPT in the case of the 'polytree'. Figure 4.15 shows the error rates for the MIM classifier compared 

to the 'polytree'. As most values are below the diagonal line, it is clear that the 'polytree' has the 

highest error rates for the majority of the data sets studied. Figure 4.16 ftn-ther displays the 

differences in accuracies of the 'polytree' compared to the MIM classifier. The MIM classifier 

achieved fourteen data sets better than the 'polytree'. Three of these had differences that were 

statistically significant, namely 'Chess' (p-value = 0.001), 'Car_Evaluation' (p-value = 0.022), and 

'Nursery' (p-value = 0.037), whereas there were none for the 'polytree'. From those predicted by the 

MIM classifier that were better than the 'polytree' two data sets were very close in predictive levels 

to the 'polytree' [Flare, Vote I] whilst two of the 'polytree' predictive wins were close to that 

achieved by the MIM classifier [DNA, Glass]. 
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Figure 4.16. Predictive Accuracy relative to MIM Classifier. 

The MB for the 'polytree' and thus CPT parameters estimated will be governed by the node 

ordering. In contrast, the MIM classifier will only require MI 'weights' to be calculated for the MB, 

which may be the same as that of the 'polytree' for some data sets. In general the predictive 

accuracies, Table 4.2, show that both the MIM classifier and 'polytree' are comparable throughout, 

with six data sets either equal or very close in predictive levels [DNA, Flare, Glass, Heart, 

Mushroon-4 Vote 1]. It would appear however, that the topology has had an effect on the predictive 

perfonnance of the 'polytree', observed in data sets 'Chess', 'Car_Evaluation' and 'Soybean_Large', 

however only for 'Chess' (p-value = 0.001) and 'Car_Evaluation' (p-value = 0.002) were the 

differences found to be statistically significant. 

4.6 Discussion 
The results shown in Table 4.2 indicate there are some high values of sample standard deviation. 

This is especially evident for the data sets 'Hepatitis', 'DNA', 'Vote' and 'Car_Evaluation'. In 

respect of these particular data sets, the values correspond to the MIM classifier, GBN, NB and 

4poltytree' respectively. As standard deviation represents a measure of spread, the interpretation of 

their magnitude translates into structural variations that occurred during the 25 experimental trials. 

For the dependency models this relates to an inability to establish a 'stable' class MB, whilst for the 

NB classifier, as its structure is trivial, inconsistency in the estimation of its domain probabilities. 
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Class MB instability occurs due to the various anomalies characterised by the domain data set. For 

the N-B classifier, this maybe due to the presence of highly correlated features, known to affect its 

performance [Paz96], whilst for the 'polytree' and GBN, a high dimensional, sparse sample set 

together with the consequential unreliable CPT probability estimations. In the case of the MIM 

classifier, instability may occur due to a poorly characterised data set (ftirther discussed in section 

4-7) in conjunction with a small sample set. 

In order to apply ANOVA, the assumption of equal variance are required to be satisfied and for 

differing standard deviations this maybe dealt with by carrying out some form of transformation. 

The penalty however, for methods with high standard deviation values it to affect a reduction in the 

'power' of analysis to find a specified effect. Power in this context is defined as the probability of 

finding a difference (if one exists), and is influenced by the variability in the data. 

In the case of the data sets above, none of the methods with high standard deviations were actually 

found to have differences that were statistically significant. The implication is that for the methods 

with high standard deviations, the 'differences' would need to be large in order to be measurable (i. e. 

found to be statistically significant) and so for these particular methods, small 'differences' could 

potentially go undetected. 

In the sections that follow we discusses some implications of the experimental results. In particular, 

the various properties and assumptions of the different induction methods studied, and identifying 

characteristics of problems for which each method would be best suited. 

4.6.1 Trees Opposed to Networks (GBN) 

By examining Figures 4.5 - 4.16 more closely, it is possible to identify the characteristics of data sets 

on which 'tree' based models may be most beneficial (especially the MIM classifier) over the 

network approaches. 

in general where the database had strong feature independence characteristics the 'tree' based 

classifiers performed well. However, when the structure was forced to reduce to that of NB type 

structure, the GBN had a slight degradation in performance. For domain modelling where the class - 

attribute correspondence was sparse, the MIM classifier appeared to require more samples to 

adequately learn a model than the GBN. This was evident for the 'Mushroom' database. 
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The experimental results demonstrate 'tree' based methods (excluding NB) generally induce MBs 

using only a small fraction of the available domain features. This means, as expected, they will have 

a lower inference complexity compared to that of the networks. Despite this restriction in topology, 

performance was not reduced and in some cases found to be better than that achieved by GBN. 

The high dimensional problems such as 'DNA' 15(60) and 'Promoter' 4(57) had the greatest 

reduction in MB size. This implies that data sets with large numbers of features are more likely to 

have several redundant or irrelevant features, with respect to the class variable, which are not 

selected by the learning algorithm. In respect of the CL algorithm these features will be low values of 

MI and thus less likely to be considered during the 'tree' edge selection process. 

From the experimental results both the MIM classifier and 'polytree' performed better than GBN on 

high dimensional domains, especially if the number of cases is small. This was observed for the data 

sets 'Promoter' and 'DNA'. The reason for this may be due to inadequate modelling. For those 

domains that resulted in large networks, and were sample sizes were sparse, GBNs may have had 

difficulties in estimating reliable model parameters. Since the MB for the 'polytree' and MIM 

classifier are somewhat constrained by having their MB defined by the CL algorithm, the small 

sample sizes do not appear to have had the same impact as for the GBN. In the case of the 'polytree' 

the MB will be defined by the recovered directionality and may be larger than that of the MIM 

classifier. 

In general, 'trees' only use a subset of the domain features which leads to better parameter estimates 

when relatively little data is available. In contrast, overfitting is common for networks which may 

lead to them picking up spurious dependencies in this situation. 

In conclusion, the MIM classifier will generally be more beneficial than GBN for all types of data 

sets. The benefit will be more so for data sets that are of a high dimensionality with potentially a 

6multi' parented class variable, and less for data sets with only a few features, especially if the size of 

the data sets is large. 

4.6.2 Dependence models Opposed to Independence models (NB) 

In general, the methods that did not assume extreme conditional independence performed better than 

the NB classifier as shown in Table 4.2. The experimental results show that this was especially so for 

the MIM classifier, demonstrating that the extra modelling power (taking dependencies into 
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consideration) over NB approaches actually makes a difference in practice. Table 4.2, shows that NB 

was only better for 4/20 data sets over the other dependency models. Specific details concerning 

dependency 'tree' models and NB were discussed in section 4.5.2 and will not therefore be repeated 

in this section. 

The improved performance is due to the difference in Cl assumptions that dependency/independence 

approaches make. The NB assumes that the features are independent of each other given the class 

variable. However, this assumption is not normally valid in the 'real' world. Most domains have 

extensive correlations between the features and the independence assumptions often leads to a 

degradation in accuracy of the NB classifier. This is supported by Langley [LIT92] and ftirther by 

Freidman [FGG971, who proposed the NB performance could be improved by relaxing independence 

assumptions. Our experimental results confirm this and show that more accurate modelling of the 

dependencies among features does lead to improved classification. Since the 'tree' models are 

cornputationally easier to manage than the ftill unrestricted networks, they may offer a robust middle 

ground solution between networks and the NB classifiers. 

The advantage NB does have however, is its ease of induction and efficient inference. In contrast, 

dependency models need to be learned and may have intractable inference as a consequence of the 

final topology recovered. Although 'tree' structures overcome this, 'polytrees' still have issues 

regarding node ordering and the possibly of large CPTs. The disadvantage of NB is that it violates 

6real' world assertions and offers no qualitative information of the domain. From the results shown in 

Table 4.2, the MIM classifier represents a good middle ground model overcoming the issues that 

limit the 'polytree' and GBN classifier. Whilst performing better than NB it also offers a qualitative 

structure and can be both learned and perform subsequent inference efficiently. Like NB it is fairly 

robust and performs well even for small sample sizes and high dimensional problems. 

Despite NBs ease of construction, if the task is to build a classifier, then the performance gained by 

modelling all features dependencies (even if restricted) has to be weighed against the possible 

increase in induction and inference costs. For networks without prior node ordering the complexity 

will be O(N4) in comparison to 'trees' ('polytree' and MIM classifier) O(N 2). In contrast the 

complexity for the NB classifier is O(N). However, once constructed, the MIM classifier inference 

complexity is comparable with NB. Moreover, since inference is reflected by its MB, the MIM 
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classifier will be potentially less, as only a subset of the features will actually require updating, that 
is, in respect of the branch weight changes. 

To categorise the types of problems where it is worthwhile to use the MIM classifier and when it is 

more effective to use NB, we consider Figure 4.14. The data sets on which the MIM classifiers are 

significantly better than NB are those that have large sample sizes. For example data sets, 'Chess', 

'Letter', 'Mushroom' and 'Nursery'. This is the case even if the problems have a medium 
dimensionality such as 'Chess, 'Mushroom' and 'Letter' (around 14 features). On the other hand the 

MIM classifier was worse generally on those data sets that have small data sets and medium 

dimensionality (14+ features) such as, 'CRX', 'Austria' and 'Vehicle'. For the latter data sets the NB 

classifier will be better suited. 

4.6.3 MIM classifier Opposed to 'Polytree' classifier (SCN) 

For the majority of the databases the MIM classifier was comparable in terms of 'overall' 

perforniance with the 'polytree'. This was expected since structurally they are very similar with the 

only difference being attributed to node ordering defining the final topology. In some cases, the node 

ordering for the 'polytree' modified the topology sufficiently to reduce its performance, but this was 

not seen to be significant. Despite the reduction in complexity the 'tree' methods not assuming 

extreme conditional independence performed comparably with that achieved by the unrestricted 

GBN on the selected databases. 

From our results the 'polytree' performed adequately with high dimensional, low sample problems. 

However, for domains with multi-parented class variables, especially if the number of attribute states 

is high, the large CPTs (and thus the considerable number of parameters to be estimated) could lead 

to an intractable inference problem. For these domains the MIM classifier would be better suited. 

4.7 Drawbacks 

During the process of experimentation we identified several drawbacks both in design and 

assumptions in respect of the MIM classifier. The following raises the issues with some initial 

approaches to dealing with them. 

0 The use of the CL algorithm, whilst efficient, can have disadvantages, as raised in section 3.6, 

Chapter 3, as it is prone to generating trees that have mAssing relevant features or adding 

irrelevant features to the class MB. In general, our results did not confirm this in practice, except 
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perhaps for the 'Mushroom' data set, where the MIM classifier's MB was defined by only 1(22) 

features. This was a highly correlated feature with respect to the class variable, however, the 

GBN which outperformed the MIM classifier, actually considered more features relevant 

resulting in a larger and more informative MB. By adopting the approach suggested by Cheng 

[CG99], as discussed in Chapter 3, the initial CL algorithm used by the MIM classifier could 

actually be used to construct a network, using only the class MB to perform classification. 

Essentially, using Cheng's thickening and thinning phases a Wrapper type refinement could be 

applied to the initial CL algorithm generated MB. In this case the MIM classifier itself would 

provide the evaluation function in order to determine the optimum classification measure. 

In using the CL algorithm and orienting the tree structure with the class variable as its root, we 

can consider the algorithm is an implied feature selector. However, due to the issues concerning 

the CL algorithm discussed previously, the class MB may not represent the optimal for the 

specific task of classification. Whilst the proposed use of Chengs' approach to discover both an 

improved qualitative structure and class MB would potentially over come this, it is a 

computationally expensive solution. This is especially true if no prior node ordering is supplied 

before hand. In the next chapter, we propose an alternative approach to improving the MIM 

classifier to potentially enhance its predictive capability and hence reduce the effects of this 

drawback. 

in order to classify new evidence of the domain the MIM classifier assumes that each class-state 

is uniquely characterised by a feature 'profile'. For the specific task of classification this will be 

defined and bounded by the class MB, which is derived via the CL algorithm. If the domain is 

poorly characterised the class MB will not contain sufficient class-state identifying attributes to 

enable the MIM classifier to discriminate between some class-states. This will be particularly 

evident when feature 'profiles' of observed samples within one class-state are very similar to 

those of other class-states. A good example of a poor characterisation is illustrated in Figure 

4.17. The figure represents a random selection of observed samples taken from the 'Vehicle' 

database. Each individual sample is a plot of the values for the 18 features that make up its 

description. If we consider sample number 3 and sample number 16 we can see that these 

particular cases 'profile' very closely to class-state Bus and Van respectively. 
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Figure 4.17. 'Vehicle' Database: Sample 'profiles' 

However, within the database they have both been assigned as belonging to the class-state Opel. This 

lack of class-state distinction will impact on the MIM classifiers' predictive capability as the results 

indicate in Table 4.2. The GBN and N-B on the other hand appear to be able to handle this domain a 

little better, presumably due to having larger and more informative class MBs. In Chapter 6 we will 

demonstrate that by expanding the class MB the performance of the MIM classifier can actually be 

improved for this domain. Overall however, all methods studied found this data set challenging and 

as it may well be a characterisation within the data set itself likely to be difficult to overcome. For 

the MIM classifier an alternative approach is to learn a model with a view towards maximising the 

classification measure. The concept of Joint Mutual Infori-nation [TF+01] is a possible approach and 

is reviewed in more detail in future work, Chapter 8. 
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4.8 Learn Rates 
From a learning perspective we are interested not only in asymptotic accuracy but also in the rate of 

improvement. In order to measure the effect of 'tree' representation (specifically the MIM classifier) 

on the induction rates of the learned structures compared to networks, learning curves were also 

generated for some of the databases. From the curves, it is clear that in general the dependency tree 

methods achieved their asymptote accuracy at a faster rate than the GBN as well as the NB classifier. 

This is to be expected since 'trees' are generally smaller, and thus need fewer cases to learn their 

parameter sets compared to the GBN. 
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Figure 4.18. Learning Plot: Mushroom 

Figure 4.18 - Figure 4.24 illustrate the learning curves for the databases: 'Mushroom', 'Chess', 

'DNA', 'Nursery', 'Letter', 'ANN' and 'Segment', based on an average of 25 runs. Only the larger 

databases, as shown in Table 4.1, were investigated, that is, those using a hold-out approach, as the 

smaller databases were evaluated by a 5-fold cross-validation approach. 

Langley [LIT921 showed that the NB classification performance was poor for databases 'Mushroom' 

and 'Chess' but good for 'DNA'. In our investigations this was also evident. The MIM classifier and 

4polytree' classifiers performed comparably for the 'Mushroom' database and stabilised at 60% of 

the sample size with both having differences that were statistically significant (p-value = 0.021 for 
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the MIM classifier compared to NB and p-value = 0.02 for 'polytree' compared to NB). The GBN in 

contrast was stable throughout the sample sizes performing slightly better and also had differences 

that were statistically significant (p-value = 0.002 compared to NB). We observed that the 

'Mushroom' database did not require many features to classify the majority of the test samples and it 

was evident that both the MIM classifier and 'polytree' methods did not have sufficient class - 

attributes in their model representations. 
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Figure 4.19. Learning Plot: Chess. 

For the 'Chess' database, Figure 4.19, both the MIM classifier and the GBN methods improved 

performance as the sample size increased. However, the 'polytree', although structurally similar to 

the MIM classifier, performed poorly compared with the MIM classifier which had differences that 

were found to be statistically significant (p-value = 0.001 compared to 'polytree' and p-value <0.05 

compared to NB). This may indicate a poor topology and corresponding bad choice of branch 

directionality, as determined by the node ordering algorithm, for a more complex structure necessary 

to model the 'Chess' database. 
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Figure 4.20. Learning Plot: DNA. 

In the case of the 'DNA' database, Figure 4.20, NB, perforined well, outperforming the GBN. Both 

the MIM classifier and 'polytree' methods were comparable in performance remaining stable 

throughout all sample sizes and had differences that were statistically significant along with NB (p- 

value <0.05 for MIM classifier compared to GBN, p-value <0.05 for 'polytree' compared to GBN, 

and p-value = 0.001 for NB compared to GBN). The 'DNA' database structure has a strong class - 

attribute association which clearly favours the NB classifier. As the GBN was reduced to this NB 

representation a degraded performance was observed. This was not the case for the MIM classifier or 

4polytree' methods. As the 'Nursery' database, Figure 4.2 1, also characterised strong feature 

independence, it was not unexpected that the resulting plot was similar to that of the 'DNA' 

database. However, unlike for the 'DNA' database, only the MIM classifier and 'polytree' at 60% 

sample size had differences that were statistically significant (p-value = 0.045 for MIM classifier, 

and p-value = 0.046 for 4polytree' compared to GBN), which was not the case for NB with a p-value 

= 0.587 compared to GBN. 
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Figure 4.21. Learning Plot: Nursery. 
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Figure 4.22. Learning Plot: Letter. 

In respect of the 'Letter' database, Figure 4.22, all four methods achieved stable performance levels 

at 60% of the sample size. The GBN and NB classifiers aligned at a lower level of performance 

I iers, with the latter maintaining similar accuracy than both the MIM classifier and 'polytree' classif 

profiles in terms of performance accuracy and differences that were found to have statistical 

significance (P-value = 0.002 for MIM classifier compared to NB, p-value = 0.002 for MIM 
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classifier compared to GBN, p-value = 0.003 for 'polytree' compared to NB, and p-value = 0.004 for 

4 polytree' compared to GBN). 

For the 'Segment' database, Figure 4.23, as previously observed, all methods stabilised at 60% of the 

sample size. As for 'ANN', the GBN required more samples to learn and matched performance 

levels with the MIM classifier at the 60% sample size. Similarly, the NB required additional cases to 

learn the domain, aligning with 'polytree' at a lower predictive level than the MIM classifier and 

GBN. Of the four methods, the NB classifier had the steepest learning rate before stabilising at the 

60% of the sample size. 

Segment 

100 - 

- -+ - -MM =3 90 - NB 

Poly 
80 - ... ... GBN 

F= 
0 

70 - 
0 20 40 60 80 100 

Training Data (% of max 1540) 

Figure 4.23. Learning Plot: Segment. 

In the 'ANN' database, Figure 4.24, all four methods stabilised at the 60% sample size, with NB 

'overall' better than the dependency models with differences that were statistically significant for all 

models (p-value = 0.022 compared to 'polytree', p-value = 0.006 compared to MIM classifier, and p- 

value = 0.001 compared to GBN). Whilst the MIM classifier and 'polytree' performed virtually the 

same, the worse was GBN. After an initial steep climb, it too stabilised at 60% of the sample size but 

achieved a lower predictive level than the 'tree' models. Presumably, there were initially insufficient 

samples for GBN to learn the domain than required for the 'tree' based approaches. 
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Figure 4.24. Learning Plot: ANN. 

4.9 Conclusion 
The main contribution of this section lies in showing the feasibility, advantages and effectiveness of 

the MIM classifier. By overcoming the issues that limit the 'polytree' and GBN models, the MIM 

classifier represents a good middle ground model. In using pair-wise marginals to calculate branch 

weights, it avoids the issues associated with CPT dimensionality and by application of a node 

ordering heuristic, avoids the consequences of making a bad choice. Like NB it has been shown to be 

fairly robust and demonstrates a comparable performance despite restricting the structure to the 

topology of a 'tree'. Unlike NB however, the MIM classifier also offers a qualitative structure, which 

can be efficiently learned by applying the CL algorithm. For small sample sizes and high 

dimensional problems, particularly where there maybe 'multi' parented nodes, the experimental 

results show that the MIM classifier performs well compared to unrestricted GBNs. In respect of its 

learn rate however, more samples are in general required for the MIM classifier to adequately model 

the domain than the GBN. 

The empirical studies show the MIM classifier performed better than NB for many of the larger UCI 

data sets with a comparable inference complexity. For many of the data sets studied, the class MB 

for the MIM classifier was defined by a subset of the domain features and thus required only a few 

branch weights to be updated in order to classify new evidence of the domain. Since the complexity 
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is reflected by the size of the class MB, potentially the MIM classifier may, for some domains, 

actually be less than that of the NB classifier. 

4.10 Summary 
This chapter evaluated a new MIM approach to inference in Singly Connected Networks. In the main 

part of our experiments we compared the MIM classifier with two other 'tree' modelling approaches, 

namely the Naive Bayes and a 'polytree' as defined by Pearl & Rebane [RP87], along with a general 

Bayesian network approach. More importantly, we identified salient characteristics of the types of 

problems for which the MIM classifier will be most beneficial compared to other representations. 

The experimental results on the various data sets show that the MIM classifier generally outperforms 

GBN, NB and 'polytree' for thirteen of the twenty databases studied. Where the 'trees' demonstrated 

a low performance, we conclude that the specific data set could not be appropriately approximated 

by a dependency tree. That is, the assumption that the underlying distribution is tree-based is 

probably violated. 

The 'polytree' and MIM classifier, induced by use of the CL algorithm, were less complex and 

provided efficient inference for new observations of the domain. Although they had a restricted 

topology (tree based) they both still demonstrated comparable, sometimes better, predictive accuracy 

to the unrestricted GBN approach. The MIM classifier outperformed the NB, one of the most widely 

studied BNs within the ML community, in fifteen of the twenty databases used in the study. 

The MIM classifier had differences that were statistically significantly better than NB on four of the 

twenty databases used. For 'Car-Evaluation', although the N-B did perform better the differences 

were not statistically significant at less than 0.5% performance improvement. In respect of the GBN 

there were three databases in which it performed better than the MIM classifier, however, in general 

the overall performance of the MIM classifier matched that achieved by the GBN. The MIM 

classifier performed better on seventeen of the twenty databases with three of these improvements 

having differences that were statistically significant. This result was similar in respect of the 

6polytree', with the MIM classifier performing better on fourteen of the twenty databases. 

The proposed use of mutual information measure 'branch weights' as a mechanism for classifying 

new unseen evidence has been demonstrated as feasible. The approach taken provides for both an 
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efficient and localised method of inference in singly connected networks with comparable 

performance levels of less restricted methods. 

By modelling the domain using efficient 'tree' structuring algorithms we have avoided the issues of 

complexity and overfitting prone to networks. Moreover, the utilisation of Chow and Liu's algorithm 

allows for tree construction to be achieved using only pair-wise marginals, and although a 

'restricted' model, has not required us to make extreme conditional independence assumptions. 

Our experimental results on the selected databases have demonstrated that the MIM classifier's 

performance was not affected by our node ordering approach and did not show any dependence or 

consequences of making a bad choice as observed in the 'polytree' representation. In addition, for 

databases that were known to have strong feature independence properties, the reduction of the 

structure to that of a 'NB' representation appeared not to degrade the perfon-nance of the MIM 

classifier as it did for the GBN. Table 4.3 illustrates a summary of the results in respect of the four 

methods investigated. Each entry describes a property that is characteristic of a method along with 

the most appropriate domain for its application. 

As pointed out in section 4.7, there are however, a number of ways in which the performance of the 

MIM classifier can potentially be improved. In the next chapter we consider the possibility of 

improving the MIM classifier's predictive performance by expanding the class MB. 
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Table 4.3: Summary of Results 

MIM classifier 

Structure BN dependency 
Format Tree 

Method 

NB 

BN model of 
independence 

'Polytreel/SCN 

BN dependency 
Tree 

GBN 

BN dependency 
Network 

Strengths Does not require Ease of induction Reduced Good for dealing with 
prior node ordering. (trivial structure - no parameterisation - highly correlated 
Uses pair-wise teaming required). inference featured data sets (over 
marginals not CPT Robust model. complexity NB). 
for inference. Efficient inference. reduced. Does not make strong 
Not influenced by Better over GBN for Does not make assumptions of Cl. 
large CPTs. strong feature strong assumptions Offers good human 
Asymptote rate independence of Cl. interpretation of 
generally faster than characterised data Asymptotes at a complex domains. Best 
GBN- sets. faster rate than representation for 
Generally has smaller Not influenced by GBN and NB in dealing with 
class MBs than NB issues of large CPTs. general. uncertainty. 
and GBN. Does not require Avoids overfitting. Richer class MB than 
Works well with prior node ordering. Exact inference dependency trees. 
strong feature Better than GBN (propagation). Compact representation 
independence when there is Requires fewer of the JPD. 
characterised data. relatively little data samples to learn 
Does not make strong available. than GBN. 
assumptions of Cl. In general, has 

smaller class MB 
than GBN. 

Weaknesses Model influenced by Violates 'real' world Issues with large Prone to overfitting. 
the 'characteristics' assertions (strong CPTs - unreliable Issues with large CPTs 
of the CL algorithm - assumptions of CI). probability - unreliable probability 
may miss relevant Affected by presence estimates, 'multi' estimates, 'multi' 
and/or add irrelevant of highly correlated parented nodes. parented nodes. 
features. features. Model not always Dependency on prior 
May not represent an Asymptote rate lower fully recoverable node ordering. 
optimal class M13. than dependency (without 'expert' In general, asymptotes 
Class-states need to trees. help). at a slower rate than the 
be well characterised Uses all domain Dependency on dependency trees. 
within data set. features (large class prior node Learn/inference - in 

MB). ordering. general case NP-hard. 

Model Build 0 (n 2 0 (n 0 (n 2 0 (n 2 )with prior node 
Complexity ordering else 0 (n 4) 

Suitable High/medium Medium dimensional, High dimensional, Small/medium 
Domains for dimensional, small small sample size small sample size dimensional, large 
Approach sample size (over (over MIM). (over GBN). sample size (over 

GBN). High/medium Medium MIM/polytree). 
Medium dimensional, dimensional, small dimensional, large Small/medium 
large sample size sample size (over sample size (over dimensional, small 
(over NB). GBN)- NB). sample size - general. 

Qualitative Yes - Restricted 
Structure 

inference MI edge 'weights' 
Method 

No Yes - Restricted Yes - Unrestricted 

p (c )and CPT probability CPT probability 
P(z, I C) estimates estimates 

Key: In the context of the data sets studied in the thesis. High dimensional -= 35+ features, Medium 

dimensional -= 14+ (max 34), Small dimensional -= under 14 features. 
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4.11 Appendix 
Studies and applications utilising contingency tables have long been a part of statistical analysis. 

Kullback [KL51] in conjunction with the concepts of communication theory proposed that the 

A 

significance 2 [Mor974] could be approximated by the independence component I(HI : H2) 

multiplied by 2. H is the null hypothesis and H the alternative. That is: H: P=PP and 212Ui. j 

the altemative H P. # PI P .. li 1. j 

If we consider a two-way table then we have for (r 
- 1XC - 1) degrees of freedom (df): 

2 

rcxj N ýI(Hj: H ; r2 
2) X. X 

i=l J=l 1. j 

N 

Where for N independent observations xij is the frequency in the ig' row and jflcolunm and: 

rc 

X=xx. =lx� andN=2: Yxi 
i. 

1 

ii i -, 1.., y 
j=I i=I i=I j=I 

Denoting probability by P with the corresponding subscripts that is: 

P. = -ý-j- Pi. = 
X- 

and P- 
X*j 

'j NN *j N 

The equation (1) can be written as: 

Arcp 

2 J(HI : 
H2 )= 21] 1 NP ij 

ij log 
1=1 J=I PI. Pi 

which is : 

rc Nx 
21 112 ) li 2 

22: (H, 
-, 

Z 
Xij log- ýe x 

1=i j=I XI. X. i 

Using (3) and equation from equation I (Procedure 1, Figure 3.1) this can be rewritten as: 

j) 
P(xi, xj)log - 

P(Xi 31 Xi) 
I(xiýx P(X, )P(xj) 

XIXJ 

and so.. 21N,, z: ý X2 for df (r - lXc - 1) 

..... 
0) 

..... (2) 

..... (3) 

..... (4) 



Chapter 5 

Selective MIM Classifier 

In Chapter 4, we demonstrated that the performance of the MIM classifier was competitive compared 

to both NB and the more complex representations of GBNs. However, in section 4.7, we identified a 

drawback concerning the class MB defined by the CL algorithm. Whilst the 'tree' based structure 

constructed may offer a satisfactory qualitative representation of the domain, it may not, in respect of 

the task of classification, offer the best solution. This aspect was previously discussed in Chapter 3, 

section 3.3. Since the relevant area of features for classification is identified by the MB [Pea88], the 

quality of the subset, defining the MIM classifier class MB, will accordingly influence its 

performance. In this chapter, we propose a method for improvement of performance by focusing on 

the MIM classifier's class MB. Targeting the MB has been studied by other researches such as 

Tsamardinos [TA03] who showed that the MB corresponds to the strongly relevant features as 

defined by Kohavi [KJ97] and ftirther by Margaritis [MTOO] whose efficient algorithm identified the 

MBs of domain nodes for subsequent learning of BNs. Madden [Mad02] on the other hand 

demonstrated that by focusing on the MB alone, an efficient classifier could be constructed, whilst 

Cheng [CH+02] similarly identified the MB during network construction and showed that in respect 

of the task of classification, all features outside the MB could be safely deleted. More recent 

approaches concerning the MB can be found in [BCS04] for Bayesian networks and [FF03] which 

identifies the MB with decision tree induction. In the case of the MIM classifier, if we consider the 

class MB, defined by the CL algorithm, as representing an 'initial MB', then the task of improving 

performance can be considered as a 'feature selection' problem. Essentially, the CL algorithm, in 

respect of the class variable, acts as an implied feature selector which in general selects a subset of 

the domain features. 

In the following section we review the main approaches to feature selection with sections 5.2 and 5.3 

describing a technique for inducing and classifying with, a selective variant of the MIM classifier 
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respectively. In section 5.4, we discuss some related work concerning the MIM proposed technique, 

and in section 5.5, we summarise the chapter. 

5.1 Introduction to Feature Selection Approaches 
Feature selection (FS) is fundamental to a number of different tasks such as data mining, image 

processing and classification. The main usage is in dimensionality reduction where algorithms are 

required to identify and select the best subset of the input feature set with respect to some target. 

Typically this is classification accuracy. Clearly, the examination of all possible candidate subsets 

via an exhaustive search is unfeasible and impractical even for a moderate number of domain 

features. In fact Cover [CVC77] showed that no non-exhaustive sequential feature selection 

procedure could be guaranteed in general to produce the optimal subset. However, a number of 

suboptimal feature selection techniques have been developed and they essentially trade-off the 

optiniality of the selected subset for the computational efficiency [JZ97]. Nevertheless, there have 

been some impressive performance gains in attacking large dimensionality with many irrelevant 

features, examples of which can be found in [DBOO, Kah94, TC+03 and Ng98]. 

There are two modes of selection. Forward selection, where a growing set of features are evaluated 

to maximize some criterion function, and Backward selection where a shrinking set of features are 

evaluated. The strategies that have been generally used to evaluate alternative subsets of features fall 

into two main classes, Wrapper and Filter. 

Wrapper strategies imply that the selection algorithm searches for a good subset of features using the 

induction algorithm itself as a part of the evaluation function. Examples can be found in [JKP94, 

KJ97, KS95, Hsu04, ZW+03 and IL+00]. Filter strategies on the other hand do not use the learning 

algorithm in the evaluation function but use the intrinsic properties of the data to asses the goodness 

of the feature subset. Kira [KR92] for example developed a system called RELIEF which uses a 

statistical method to select relevant features, however its application was limited to binary classes. 

Witten [WFOO] overcame this limitation with an updated version, REIEF-F. Other examples of Filter 

approaches can be found in [BWOO, KS96 and DK03]. A comprehensive overview of many methods 

can be found in [DL97] with specific feature selection approaches studied within the machine 

learning (ML) literature in [Lan94]. 
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Blum [BL971 argues that any feature selection method (Wrapper or Filter) must take into 

consideration four basic issues that determine the nature of the search process. 

The four issues are : 

0 The starting point in space. 

This determines the direction of the search. Options available are to start with no features and 

successive yad them or to start with all features and successively remove them. The alternative is a 

variant of both, starting in the middle. 

0 Organisation of the search. 

This is the strategy of the search, for example sequential forward or backward selections. 

0 The evaluation function. 

The evaluation fimction is a measure of the effectiveness of a particular subset of features after the 

search algorithm has made its selection. This could be based on information in respect of that gained 

from adding a feature or in the case of a Wrapper, perhaps the classifier error rate. 

0 And lastly the Criterionfor halting the search. 

This determines when to stop the search process. A typical criterion is when no further improvement 

of the evaluation function value of the alternative subsets is obtained. 

5.2 'Selective' MIM Classifier- Selecting Features for the Class MB 

In the previous section we identified two of the most widely used strategies for evaluation of the 

alternative subsets of features, namely Wrapper and Filter. For the MIM classifier enhancement we 

propose a 'Wrapper' type method and as Blum [BL97] suggests, start by considering the four issues 

in respect of this approach, essentially, our preliminary design considerations. 

9 The starting point in space. 

In the introductory paragraphs to this chapter we suggested that the class MB defined by the CL 

algorithm could be considered as an 'initial MB'. Since the algorithm is effectively working as an 

implied feature selector, we can take this subset as representing a reasonable starting point in 

constructing the 'Selective' MIM classifier (SMIM). As we are only interested in improving 

classification performance here, the class MB is the only area of interest and thus the focus of 

expansion. 
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0 Organisation of the search. 

With the 'initial MB' representing the starting point we will expand the class MB by adopting a 

sequential forward selection process. In order to determine which edge to add to the 'initial MB' 

feature subset, the edge MI value or branch weight will be first ordered by size and then assessed. 

Other examples that have utilised information based algorithms for feature selection are Zaffolon 

[FZOO] where MI was used in a Filter approach to select features, Kleiter [KJ96] who used MI to 

learn BNs from data and Last [LKMO I] where an information-fuzzy neural network was proposed 

for feature selection. 

Since we are only interested in the class MB expansion, only those edges corresponding to the class 

variable C-Z and not Z-Z will be considered. As we are assuming that the starting point class MB is 

a good representation (confirmed by the results obtained in Chapter 4) we will not remove any 

features from the 'initial MB'. The limitation of this approach is that we will not be able to achieve 

an 'optimal' solution. 

9 The evaluation function. 

The strategy to be adopted is a Wrapper type, and in this implementation the MIM classifier will be 

used as the evaluation function. Since the classifier is a 'tree' based representation and will be 

transformed into a network as new edges are added, the classifier will require modification in order 

to deal with the expanded MB. We will consider this in more detail in the following sections. 

9 Criterion for halting the search. 

In respect of the Wrapper approach and the use of the MIM classifier as the evaluation function, the 

halting criterion will be when the addition of features offers no further improvement to the 

evaluation function value. 

From the results of Chapter 4, we demonstrated the comparable performance of the MIM classifier 

against the NB classifier and in some cases showed it to be better. By design the NB uses all the 

domain features to define the class MB. In general, the MIM classifier required only a subset, 

therefore we expect most of the relevant features to have already been selected by the CL algorithm. 

Thus our choice of the Wrapper strategy should in general not be constrained by the consequential 

computational expense. Despite the need to call the induction algorithm (here the MIM classifier) for 

each feature set considered, it will only be in respect of the remaining subset, excluding the 'initial' 
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MB, which in the case of most data sets will be of a manageable size. Moreover, as a result of the 

work carried out by other researchers previously cited, when the size of the problem allows the use 

of the Wrapper approach, in terms of predictive accuracy, the Wrapper approach has been shown to 

have superiority over the Filter approaches. 

Construction of the 'Selective' MIM classifier (SMIM) consists of two phases. First we will define 

the process for determining the 'optirnised' 16 subset selection, then we will discuss the modifications 

to the MIM classifier in finalising the SMIM. As the classifier will also be used as the (Wrapper) 

evaluation function, the modifications will apply to both the resulting SMIM and the evaluation 

function as the selection process progresses. 

For class labels in C namely C, 
ý ... 9 

Cm and features Z= tZ, 
5 ... ) 

Z, I where C0Z, consider a 

subset of features defined by an application of the CL algorithm. This subset, the class MB, will 

represent the lower bound ZCL and comprise the class variable related feature associations. Let MpO 

represent the measure of performance for this lower bound, this value being essentially the optimum 

error rate of the MfM classifier prior to any modifications (as defined in Chapter 3 and evaluated in 

Chapter 4). The feature selection process begins by evaluating each feature, not in ZCL 
, and its 

corresponding contribution to the new subset. 

If we denote a specific feature by Zi which implies that Zi (=- Z\ ZCL and let k be a subset of 

features, then initialisation of the lower bound will be k +- JZCL I and Mp(k) <- Mp, 

Each Zi will be selected on the basis of the maximal I(C, Z). 

Step 1: Compute k <- fZi II added a feature to the lower bound. 

Step 2: Compute g(k) I intermediate measure of performance of subset using MIM classifier. 

Step 3: IF g(k) > Mp(k) 

THEN 

Mp(k) <- g(k) I update current optimum of network. 

r". .< A. U 
Jkl I update upper bound Ku subset. 

16 Only Optimised' as we cannot guarantee that the final subset will be optimal. 
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Repeat for all Zi steps 1-3. 

IF Ku = 
JZcL I 

at the end of the process 

THEN 

There is no improvement in performance and the upper bound = lower bound. (Essentially, 

the original MIM classifier performance and feature subset ('initial MB'). I 

ELSE 

Kuf I will contain the new subset of features. 

This approach unfortunately assumes that the selection of features results in a monotonic 

performance that improves or degrades in correspondence with the additions. However, both local 

minima and maxima are possible and if they occur would halt the selection process prematurely. For 

this reason it is necessary to evaluate all Zi sequential additions. This could easily be considered a 

drawback, particularly if a domain has a large number of features and the 'initial MB' is small. 

However, our assumption, which is supported by the results achieved in Chapter 4, is that the 'initial' 

class MB is a good subset which already contains the most relevant features for classification (or at 

least the majority). Nevertheless to avoid the possibility of carrying out an exhaustive search in the 

case of large featured domains, two heuristic halting criterions are proposed. 

*A reduction in the feature subset space can be achieved by applying a Kullback threshold 

to remove low values of branch MI (refer Appendix, Chapter 4, section 4.10), thus 

terminating the overall search earlier. In this approach we are not removing any edges or 

vertices but excluding potential features C-Z from being added to the class MB. 

0 Halting the search earlier can also be achieved when the measure of performance is found 

to have a succession of degradation as features are added to the subset. In this case the 

possibility of finding a local minima or maxima needs to be considered and the precise 

number of measurement assessments will be based upon an arbitrary choice. 
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5.3 Classification - SMIM Class ifier/Evalu ation Function 
In the previous section, we proposed a Wrapper approach for selecting a subset of features, thereby 

expanding the MIM classifier class MB. In this section, we will show that the MIM classifier can 

still be used as the evaluation function, as defined in Chapter 3, even though the structure will 

change from a 'tree' based one into a network. 

Consider the 'tree' structure shown in Figure 5.1, which represents a MWST for some domain 

consisting of a class C= ICI,..., C. I and a set of features Z= fZ,,..., Z5 1. The structure can be 

defined by two components, ZCL which represents the class MB and ZR the remaining edges. If we 

now consider the MWST in terms of its Mutual Information, then the 'overall' MI for the structure 

can be similarly represented by these two components. That is: 
ACI ZI )+ ACI Z2 ) defining ZCL 

and I(ZI 
5 

ZJ + I(Z2) ZJ + 
AZI 

I 
ZJ defining ZR' 

I(C, Z, ) c I(C, Z, ) 
ZCL 

Z, -1 
Z2 

"0 
" ZR 

I(C, Z, ) c 

I(z, Z') Z4 ( Z3 
I(Z2 

5 
Z4 D (D 

I 
(z, 

, 
Z, 

) 

Figure 5.1. MIM 'tree' based Representation. 

For the SMIM classifier the class MB is expanded by adding edges directed by the maximal MI 

values. For Figure 5.1, the possible considerations for inclusion will be the edges: C -> Z3, 

Z4 and C --> Z,. Figure 5.2, represents the SMIM with a new edge, C -+ Z5 
. added to the 

existing class MB. ZCL in terrns of the 'overall' MI will now be: I(Cý ZI) + 
AC5 Z2) + 

AC3, ZS) 

whilst ZR will remain unchanged. Since we have added the edge C -> Z, to the class MB, the 

structure has now changed from the 'tree' based one defined by the CL algorithm, to one of a 
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'network'. In the previous section however, the Wrapper approach proposed for the SMIM classifier 

used the MIM classifier as its evaluation function, which now needs to be able to handle a network 
rather than a tree structure. 

Figure 5.2. SMIM 'network' Representation. 

If we consider an observation defined by a feature vector tC, Zý,... 
I 
Z5 I and a class label with 

assignment C, 
, then the 'overall' MI will be updated to reflect this observation. In the case of Figure 

5.2, where the feature Z5 has been selected for illustration purposes, 

ACI ZI) + 
ACI Z2) + 

ACI Z5) will be updated, corresponding to ZcL and similarly 

A4 
I 

ZI) + 
*2 

5 
ZJ + I(Z,, Z, ) 

corresponding to ZR, 
as we described in Chapter 3. Now 

consider the same observation but now with a class label C2 assigned. Since only ZCL has class 

variable associations, then the update will only be evident for ZcL 
* The component ZR will remain 

unchanged from the previous 'update' corresponding to class label C, 
. This is to be expected as the 

ZCL component represents the class MB and will be the only area that has an influence on the 

classification of the observation. As we described in Chapter 3, the MIM classifier discriminates 

between class labels by measuring the change in 'overall' MI in correspondence with the class MB. 

For the SMIM variant, instead of evaluating the information change for each of the possible 'trees' 

corresponding to the class label instantiations, the SMIM classifier does the same but for 'networks'. 

Moreover, in both cases we focus only on the class MB, and this will be applicable no matter what 

the topolOgY. 
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The following example demonstrates that edges can be added to expand the class MB and that the 

same classification technique, as we proposed for the MIM classifier, can also be applied for the 

SMIM variant. 

As was shown in Chapter 3, the training sample of the domain can be viewed as a series of class 

partitions characterising samples belonging to a particular class, as in Figure 5.3. 

Each partition is described by a vector of class attributes Z= JZI 
ý ... ) 

Z3 I and this will be the case 

for each class label where C= ICI, C, I. An instantiation of an evidence vector 

ýZl 
= 01 Z2 = 01 Z3 = 11 in position C, will increase the marginal P(CI) and update the joint 

probabilities P(CI, Z) in respect of the evidence vector Z= JZI 
) ... 9 

Z3 I and their values, 

similarly, for an instantiation in position C2 
* 

ZbZ21 
----, 

Z3 

cl 

Changing (updated) MI 
With respect to Instantiation 

C2 

Instantiation at position C, 

Instantiation at position C2 

Figure 5.3. Domain Data set Representation example. 

Since the evidence vector corresponding to tZ, = 01 Z2 = Oý Z3 = 11 will be common for the C2 

instantiation position, the marginal probabilities P(Z) for each value of Z, due to the evidence, will 

be updated but remain at a constant value. 

y 

Constant (updated) MI 
With respect to Instantiation 
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In terms of our SMIM structure, depicted in Figure 5.4, this implies that any changes of information, 

that is the branch weights, due to observing an evidence vector 
fZ, 

= 01 Z2 = 01 Z3 =1 
)1 

will only 

be measurable on edges that are directly associated with the class vertex. 

[C], CZ/ 

101 10111 

, k, 
i(C, Zj z3 10,11 

n 

Figure 5.4. SMIM Structure Example. 

ZCL 

ZR 

The corresponding information on edges not associated with the class will remain at a constant value, 

for each instantiation position C= JCI, C2 1. Figure 5.5 shows the corresponding updates in respect 

to the two observations, shown as case (i) and case (ii). 
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FigUre 5.5. SMIM Classifier Working Example. 
C, 



86 

Thus, the classification can be achieved locally using a subset of the domain features, defined by the 

class MB, as was the case for the MIM classifier. 

5.4 Related Work 
Mutual Information has played an important role in the selection of relevant features from a domain, 

particularly one in which there is a high feature dimensionality. Examples can be found in [YG04, 

BS96, SS94, LWY04, AD02, SR+04 and KC02]. 

In Cheng's [CH+02] work a Filter approach discards irrelevant features on the basis of low values of 

MI in respect of the class variable associations, whilst, in Ganimerman [GL91] structures are pruned 

removing irrelevant features using a Kullback thresholding technique. The method similarly targets 

low values of MI but unlike Cheng's approach, does not just involve the class variable associations 

but any feature associations. Both approaches use the CL algorithm for determining the underlying 

domain structure as does the MIM classifier. The problem with these approaches is that they assume 

the removal of features, in respect of irrelevancy, is valid for all class-states. However, for some 

domains this assumption may not be correct with, as Chapter 7 will show, irrelevancy only 

applicable for a subset of the class-states. In respect of the 'selective' MIM classifier variant, the 

SMIM approach in contrast does not actually remove any features but merely excludes additional 

class variable associations from contributing to the class MB. In general the SMIM expands the 

'initial MB' or lower bound, with irrelevant features outside the MB being rejected. Unlike Cheng 

and Gammerman's approaches the SMIM selects features with the highest information (MI value) 

from the features that are not already part of the class MB. 

Sucar [SP'97] like the MIM classifier, also utilises the CL algorithm to discover the domain 

structure, which similarly represents an 'initial MB' with respect to the task of classification. 

However, as a BN the selection choice of node ordering defining the class MB means the actual class 

MB may not be the same as that of the MIM classifier. Sucar selects candidate features with respect 

to their MI value in the same way as the selective variant of the MIM classifier, but here their 

inclusion is controlled by the existing branch directionality in order to maintain the DAG. The use of 

node ordering to control edge addition, together with a stopping criteria based on performance 

accuracy can however, lead to the construction of dense structures. As many branches will be 

introduced outside the class MB, the resulting topology may be fairly complex with large CTPs and 
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the consequential problems associated with the estimation of probabilities, especially where data sets 

are sparse. By focusing on the class MB, the SMIM's alternative approach leads to a less complex 

structure. Driven by the magnitude of the MI values and not node ordering the 'initial' class MB is 

potentially enhanced and in general will require only a marginal number of additional edges. For the 

task of classification, instead of updating a possible unrealistic and conceivably unreliable number of 

probabilities, the SMIM requires to update at most m(n - 1) branch weights for m class-states. 

Although both Sucar's approach and that of the SMIM classifier use the measure of performance as a 

halting criterion, the latter does not result in a possible intractable solution. 

Whilst MI has been used to select edges for removal or inclusion, some researchers have considered 

the 'subset' of features as representing a distribution of information. 

Koller [KS96] demonstrates a cross-entropy Filter approach. Essentially the cross-entropy between 

two distributions measures the extent of error if one distribution is substituted by another. In the case 

of the SMIM classifier, the 'overall' MI distribution of the 'initial MB' is compared to that of the 

newly increased subset (class MB + feature), with the differences implied by a performance 

improvement or degradation. The subset which essentially leads to the 'optimised' classifier defines 

the new subset or upper bound. For Koller's approach, the original feature set is compared to the 

reduced set, but here in terms of the class-entropy associated with the two feature sets. 

Al-Ani [ADC03] not only showed that MI could be used in feature selection but that it performs best 

(for classification) when represented as a 4subset' of features. An evaluation function is used to 

measure how well the feature subset distinguishes between class labels by looking at the amount of 

information in the subset. The SMIM classifier's 'initial MB' represents a similar feature subset and 

by use of the MIM classifier, distinguishes between class labels by measuring the 'overall' MI 

content with respect to the class MB, as new features are added. Al-Ani's approach represents a 

Filter which only selects features. The MI is used to determine how much discriminating power 

exists in the choice of subset for distinguishing between class labels. The actual task of classification 

is performed by use of an Artificial Neural Network (ANN). In contrast the SMIM not only assesses 

the discrimination power but also represents the actual evaluation function. By using the branch 

weights in respect of the class MB, discrimination between class labels can be achieved for each 

sequential addition of features. Battiti [Bat94] also used MI to evaluate a set of features and thus 
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select the most informative subset for use as input data for a Neural Network classifier. This 

approach is similar to that of Al-Ani but in Battiti's implementation, just as for the SMIM, the 

maximal MI for only class variable associations are added, whereas Al-Ani found subsets by features 

that combined, looking at the amount of collective information that was contained within the subset. 

Whilst the notion of feature 'subset' can be demonstrated to be a viable approach to improved 

classification, the dependency on MI to define the subset may have a misleading effect. As we 

discussed in Section 3.3, feature associations may actually be due to 'commonality' rather than 

domain specific characterisation. As a consequence, some Z-Z branch associations may appear to 

have strong relationship measures, but in fact offer a poor contribution to the feature 'subset'. 

Although the approach taken by the SMIM classifier does alleviate this problem, by only targeting 

the CýZ branch associations for its equivalent feature subset (the class MB), it has the unfortunate 

drawback of not being able to guarantee to find the 'optimal' subset. 

5.5 Summary 
In this chapter, we proposed a 'selective' MIM classifier (SMIM) based on the expansion of the class 

MB. We suggested that the 'initial MB' derived from the CL algorithm represented a lower bound 

and thus could potentially be modified for improved performance. In section 5.3, we showed that the 

MIM classifier could be used as the evaluation function in a Wrapper strategy without modification 

to the original algorithm defined in Chapter 3. Despite the computational expense of this approach 

and its difficulty in determining an 'optimal' solution, it does have the advantage of being able to 

incorporate any potential bias associated with the MIM classifier during feature selection, and thus 

offer an improvement to the classifier. In the next chapter, we evaluate the SMIM classifier using the 

UCI benchmark databases previously studied in Chapter 4, and demonstrate that in some cases, 

performance of the MIM classifier can be improved. 



Chapter 6 

Evaluation - Selective MIM Classifier 

Chapter 4, section 4.4, identified some drawbacks concerning the class MB and the qualitative 

measure of the CL algorithm derived 'tree' structure. In Chapter 5, we proposed a 'selective' variant 

of the MIM classifier which focussed on the expansion of the class MB in order to address these 

drawbacks. In this chapter, we evaluate the performance of the selective MIM classifier (SMIM) by 

carrying out a series of experiments on the same benchmark databases as detailed in Chapter 4, 

section 4.2. In the next section, we describe our main objectives and aims with section 6.2 and 

section 6.3, describing the experimental methodology and design respectively. In section 6.4, the 

results of comparing the SMIM classifier to a selective variant of NB (SNB), together with the 

previously generated models described in Chapter 4, are reviewed. In section 6.5, we consider some 

implementations of the results with section 6.5 reviewing the contributions and section 6.6 

summarising the chapter. 

6.1 Objectives 
Feature selection has been widely used to deal with domain complexity, with many approaches 

achieving performance levels that even exceed non-selective methods, as discussed in section 5.1. In 

Chapter 4, section 4.7, we considered the possibility that the implied feature selection of the 'initial' 

MB, derived by use of the CL algorithrn, may not be the best for the task of classification, thus 

limiting its performance capability. Our first experimental objective was therefore to determine 

whether the expansion of the class MB, using a Wrapper approach, could improve the performance 

of the MIM classifier. Moreover, we are interested in determining whether the initial MB 

assumptions discussed in Chapter 5, section 5.2 are correct. With the advent of more features 

defining the MB, our second objective was to assess the consequential cost for any performance 

gain, in terrns of model complexity. 

From the results obtained in Chapter 4, we observed the effect of high dimensional domains on small 

data sets. For the SMIM classifier this issue is of particular importance. Since the MIM classifier 

89 
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class MB is to be expanded, it will characterise high dimensionality and may have problems dealing 

with small data sets, for which the previous MIM classifier did not. To investigate this aspect we 

carried out comparisons of the selective and non-selective variants performance as a function of the 

sample size for learning the classifiers. As the SMIM transforms the 'tree' into a 'network', our 

comparisons also include the GBN. 

In Chapter 4, we compared the MIM classifier performance with the simple and efficient NB 

classifier. However, NB's assumption of extreme Cl is known to be influenced by features that are 

highly correlated [Paz96]. Langley [LS94] proposed a selective variant of the NB to deal with this by 

trymg to improve the NB performance by removing the highly correlated edges from the class MB. 

This approach (SNB), in contrast to the SMIM, reduces the features in the class MB and therefore 

represents a even simpler and potentially 'optimised' model of the domain. Our final objective was 

thus to compare the performance of the selective MIM classifier to that of the selective NB, and to 

additionally determine if they portray any 'similar' characteristics. 

6.2 Experimental Methodology 

For these experiments we used the same UCI benchmark databases [MA95, BMOO] as detailed in 

Chapter 4, Table 4.1. Missing and continuous features were dealt with in the same way as described 

in section 4.3, that is, during the evaluation of the non-selective variants. 

The SMIM classifiers were constructed as defined in Chapter 5, section 5.2 and 5.3. In the case of 

the SNB, we used the implementation provided by the utility MLC++ [KJ94]. 

6.3 Experimental Design 

For the experiments described in section 4.4, we evaluated the larger datasets by applying a hold-out 

technique, whilst for the smaller ones a cross-validation with 5-folds. In order to construct the 

'selective' MIM classifier we adopted a similar method to that used in Chapter 4, but for these 

experiments we made a slight modification. In the case of the larger data sets we further divided the 

2/3 'learn' partition into two sub-partitions. A sub-learn comprising 2/3 of the learn partition and a 

1/3 sub-test partition similar to the original hold-out approach, but in this instance, an 'internal' 

partitioning as depicted by Figure 6.1. 

The procedure initially applies the SMIM algorithm to the two sub-partitions (sub-learn, sub-test) to 

discover the 'oPtimised' SMIM feature subset. Once established the new structure, along with its 
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corresponding branch 'weight' assignment, is evaluated to determine its performance accuracy by 

use of the original 'test' partition. Branch 'weights were calculated using the whole 'learn' partition, 
that is, the combination of the two sub-partitions, once the final feature subset had been identified. 

Learn Partition 

Sub-leam Sub-Test 

Test Partition 

Figure 6.1. Data set partitioning technique - Hold-out example. 

For each of the two selective classifiers, the structure was learned/constructed using the training data 

set (learn partition) and the classifier accuracy determined on the test data set. 

Just as we carried out in section 4.4, this process was repeated over a series of 25 trial runs in order 

to gain a sample average together with the standard deviation for the predictive accuracy using the 

test partition. The statistical significance of the differences in classification accuracy was measured 

using an Analysis of Variance (one-way ANOVA). To further determine all pair-wise differences, 

that is, the magnitude and direction between each pair of methods being compared, we followed 

ANOVA by Post Hoc Tukey comparisons with an overall confidence level 95%. As for Chapter 4, 

prior to applying ANOVA we first established the validity of the assumptions. 

The classification accuracy was determined as a percentage of the test cases that identified the 

correct class. For the smaller data sets we used cross-validation with 5-folds instead of the hold-out 

technique and similarly repeated the process for 25 trial runs. For each data set studied we applied a 

stratified distribution as we did in Chapter 4, to minimise bias due to the effects of differing class 

sample sizes. 

To measure the rate of improvement of the two classifiers, we conducted experiments similar to 

those defined in Chapter 4, concerning the accuracy measurement for different quantities of the 

learning cases. In order to evaluate the effect of consequential MB expansion and thus 



92 

dimensionality, we compared the results of the selective models to the learn rates of the previous 

non-selective models, including the GBN and 4polytree'. 

In Chapter 5, section 5.2, we hypothesised the possibility of local minima occurring during the 

feature subset selection process. During our preliminary experimental work we observed this to be a 

real anomaly. Figure 6.2 shows the performance accuracy measured against the number of features 

within the class MB for the data set 'Vehicle'. The initial performance level is the lower bound and 

is defined by the CL 'tree' MB. Subsequent performance is in respect of the addition of features to 

the lower bound class MB, as described in Chapter 5, section 5.2. 
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59 ----------- --------- I --------- J, --------- J, ---------- --------- i- 
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56--- -------- ----------- I -------- I ------------------- --------- I: --------- 

55 - ------------------- --------- ---------- : ------ --- ------- Local Minima 

54 - --------- ----------- :-J,: ------ --------- i --------- 11 ----- --- I --------- 

53 
02468 10 12 14 16 18 20 

Number of Class Related Features 

Figure 6.2. SMIM 'Local'Minimumsfor data set 'Vehicle'. 

Figure 6.2 displays two local minima with a steep improvement of performance observed once the 

class MB contains eleven features, whereby the 'optimised' level is attained. Also shown are local 

maxima occurring with feature additions eight and nine. As this characteristic is possible to occur for 

all data sets under investigation, the examination in respect of all feature additions (outside the class 

MB) implies a potentially intractable exhaustive search. However, as defined in section 5.2, we 

applied the two heuristic 'stopping criteria' for each data sets studied in order to avoid this scenario. 
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6.4 Experimental Results 
The average predictive accuracies taken over 25 runs for the two 'selective' classifiers are shown in 

Table 6.1. Each entry describes the average accuracy along with the sample standard deviation for 

predictive accuracy variations from sample to sample. 

Table 6.1: Average Predictive Accuracy 

DB Name MIM NB SMIM SNB Default (overall) 

Vehicle 55.66 ± 1.51 58.28 ± 1.79 61.53 ±0.91 61.36 ± 2.96 25.8 
3(18) 14(18) 10(18) 

DNA 95.58 ± 0.42 94.97 ± 0.29 95.80 ± 0.36 93.59 ± 0.71 51.9 
15(60) 19(60) 23(60) 

Car_Evaluation 86.11 ± 0.74 86.58 ±1.78 86.43 ± 0.85 85.01 ± 0.83 70.0 
5(6) 6(6) 6(6) 

Flare 82.93 ± 1.26 80.99 ± 1.28 - 83.40 ± 1.67 79.2 
2(10) - 3(10) 

Chess 96.27 ± 3.56 87.34 ± 1.02 - 94.28 ± 0.71 52.0 
6(36) - 9(36) 

Vote 95.40 ± 2.41 89.89 ± 5.29 - 94.71 ± 1.63 54.8 
2(16) - 3(16) 

Mushroom 98.56 ± 1.06 95.79 ± 0.39 - 99.96 ± 0.04 51.8 
1(22) - 8(22) 

Letter 80.26 ± 0.37 74.96 ± 1.10 - 78.82 ± 0.52 4.07 
11(16) - 12(16) 

Hepatitis 84.00 ± 7.22 81.20 ± 3.70 85.76 ± 7.14 82.69 ± 5.29 79.4 
3(19) 5(19) 9(19) 

Nursery 95.78 ± 0.30 94.76 ± 0.45 - 96.33 ± 0.27 33.3 
8(8) 8(8) 

CRX 85.00 ± 0.52 86.60 ± 0.71 87.90 0.90 85.22 ± 1.10 55.5 
6(15) 12(15) 8(15) 

Soybean_Large 91.29 ± 0.10 90.78 ± 0.72 91.54 ± 0.10 92.08 ± 2.01 13.5 
33(35) 34(35) 24(35) 

Segment 94.49 ± 0.64 91.95 ± 1.10 - 93.25 ± 0.82 4.80 
5(19) 7(19) 

Votel 88.51 ± 1.90 87.60 ± 2.10 90.15 1.53 89.34 ± 2.70 61.4 
4(15) 5(15) 5(15) 

Cars 99.23 ± 0.70 98.98 ± 0.47 - 99.17 ± 1.08 62.5 
1(8) 1(8) 

Austria 85.07 ± 0.91 86.38 ± 1.10 87.10 1.65 86.52 ± 2.17 55.5 
6(14) 11(14) 7(14) 

Heart 85.83 ± 2.10 85.00 ± 1.13 86.39 ± 0.89 85.28± 2.50 55.6 
6(13) 10(13) 7(13) 

Promoter 87.97 ± 1.31 82.00 ± 2.02 - 86.89 ± 1.30 50.0 
4(57) - 3(57) 

Glass 69.37 ± 2.08 68.31 ± 1.98 - 66.20 ± 1.99 35.5 
7(9) - 6(9) 

Ann-Thyroid 97.17 ± 0.08 99.11 ± 0.31 98.27 ± 0.26 99.30 ± 0.25 92.6 
2(21) 16(21) 11(21) 

Key: MIM - Mutual Information Measure Classifier, NB - Naive Bayes Classifier, SNB - selective Naive 

Bayes Classifier, SMIM - Selective Mutual Information Measure Classifier. 

Values in bold type indicate the highest model performance achieved by the classifier in respect of each 

database. Bold italic values highlight performance levels that are close to the highest level achieved. 
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For the purpose of comparison the corresponding results for the previous non-selective variants, 

namely the MIM classifier and NB, have also been included (previously recorded in Table 4.2, 

Chapter 4) along with the data sets 'overall' default values. 

Table 6.1 also includes the number of relevant features, which are those defined by the class MB, for 

each classifier's 'optimised' MB. These are shown as items under the perfon-nance levels i. e. 3(18) 

depicts 3 features in the class MB from a maximum of 18 domain features, shown in brackets. The 

items marked with (-) indicate that there was no performance improvement for the MIM classifier 

and thus the performance for the SMIM corresponds to the lower bound. 

In the following sections, we review the results obtained from classifying the samples taken from the 

databases studied using the SMIM classifier and the SNB. For completeness comparisons have been 

made between 'selective' and 'non-selective' variants, as recoded in Chapter 4, as well as the 

selective variants themselves. 

The objectives of our experiments, discussed in section 6.1, focus on the structure's class MB. We 

consider this important because classification of a domain is related to this feature subset and the 

selective variants modify it either by expansion or reduction. 

0 Comparison of Selective and Non-selective 'tree' based classifiers 

From the results shown in Table 6.1, we observed that the SNB improved the performance of NB for 

all high dimensional domains with features greater than fifteen, presumably due to the removal of 

those that were highly correlated. This was demonstrated by the data sets 'Mushroom', 'Chess', 

'Hepatitis', 'DNA', 'Vehicle', 'Soybean_Large', 'Segment', 'Promoter', and 'ANN'. This 

observation was also apparent for the SMIM which improved the MIM classifier by expanding the 

class MB, and observed for the data sets 'CRX', 'Hepatitis', 'DNA', 'Vehicle', 'Soybean_Large', 

'Vote F, and 'ANN'. 

Figure 6.3 and Figure 6.4 show the error rates of the SMIM compared to the MIM and SNB 

compared to NB for the 20 data sets studied. 
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Figure 6.3. Scatter Plots Comparing Error Rates of SMIM with MIM 

Note: As some of the data sets resulted in no change from applying the SMIM 

algorithm to the MIM classifier, error points will thus appear on the 

diagonal line. 
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Figure 6.4. Scatter Plots Comparing Error Rates ofSNB with NB 

In both cases the selective variant improved performance, with SMIM and SNB having error rates 

less than MIM and NB. Figure 6.5 and Figure 6.6 display the corresponding differences in 

accuracies. 
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Figure 6.5. Predictive Accuracy relative to SMIM Classifier (MIM) 

Note: As some of the data sets resulted in no change from applying SMIM 

algorithm to the MIM classifier no differences will be illustrated. 
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Figure 6.6. Predictive Accuracy relative to SNB Classifier (NB). 

As was the case in Chapter 4, a positive value for an algorithm indicates the SMIM or SNB 

performed better for that particular data set, with the error bars representing the Post Hoc Tukey 

comparisons with overall 95% confidence for the relative differences. From Table 6.1 SMIM 

improved the performance of the MIM classifier for ten data sets with differences found to be 

statistically significant for 'Vehicle' (p-value = 0.005) and 'ANN' (p-value = 0.007). In contrast, 

SNB improved the performance of NB for sixteen data sets with differences that were statistically 
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significant for 'Flare' (p-value = 0.022), 'Chess' (p-value <0.05), 'Mushroom' (p-value <0.05), 

'Letter' (p-value = 0.012), 'Nursery' (p-value <0.05), and 'Promoter' (p-value = 0.041). The NB 

found differences that were statistically significant for only one data set, namely, 'DNA' (p-value 

0.017). 
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FigUre 6.7. Scatter Plots Comparing Error Rates ofSMIM with NB 
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In comparison to the non-selective variants, MIM and NB, Figure 6.7 and Figure 6.8 illustrate the 

error rates of the SMIM compared to NB and SNB compared to MIM for the same 20 data sets. 
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Figure 6 8. Scatter Plots Comparing Error Rates ofSNB with MIM 



98 

The SMIM shows an error rate less than that of NB, whilst the error rate for the SNB compared to 

the MIM classifier are similar, with clustering on the diagonal line evident. The corresponding 

differences in accuracies are displayed in Figure 6.9 and Figure 6.10. 
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Figure 6.9. Predictive Accuracy relative to SMIM Classifier (NB). 
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Figure 6.10. Predictive Accuracy relative to SNB Classifier (MIM). 

For the SMIM compared to NB, differences found to be statistically significant were observed in 

data sets 'Chess' (p-value <0.05), 'Mushroom' (p-value = 0.021), 'Letter' (p-value = 0.002), 

'Nursery' (p-value <0.05), and 'Promoter' (p-value = 0.018), whilst for SNB compared to MIM only 

'Vehicle' (p-value = 0.002) and 'ANN' (p-value = 0.003) were found to have differences that were 
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statistically significant. In the case of the MIM classifier there was only one data set that had 

differences that were found to be statistically significant, namely, 'DNA' (p-value = 0.026). 

In general, we observed that the SMIM not only improved the performance of the MIM classifier but 

also was better than that previously achieved by NB. Where the addition of features to the MIM class 
MB did not result in a performance increase, Table 6.1, the number of features comprising the MB 

was found to be of a comparable size to that of the SNB. 

As was the case for the SMIM classifier, the SNB also demonstrated a general improvement of 

performance of the NB classifier. Moreover, we observed that when NB already had a good 

performance level, SNIB improvements to NB were small. Langley [LS94] also observed this for the 

data set 'DNA', whilst from Table 6.1 'Car_Evaluation' and 'CRX' were observed to also fall into 

this category. Jain [JZ97] reported ".. the quality of selectedjeature subsets for small training sets is 

poor, but improves as training set size increases ...... In respect of the class MB, as we are only 

interested in the task of classification here, we observed a similar trend. For the SMIM, we observed 

from the results in Table 6.1, that there were generally no improvements in performance for the MIM 

classifier for the larger data sets. In particular 'Mushroom', 'Nursery', 'Chess', 'Letter', and 

'Segment'. Since the CL algorithm defines the class MB, this implies for these data sets, the MB 

actually represents the 'optimised' class MB and thus the original performance levels as defined by 

the MIM classifier's lower bound. In the case of the smaller data sets, there was evidence of 

improvement for the SMIM in respect of the MIM classifier, Table 6.1. Although not in all data sets, 

we did observe improvements for 'Votel', 'Vehicle', 'Hepatitis', 'Heart', 'Soybean_Large', 'CRX', 

'Car_Evaluation', and 'Austria'. This was in contrast to the only two large data sets, 'ANN' and 

'DNA', which did show some improvement. Moreover, these particular smaller data sets showed the 

greatest gain in perfon-nance accuracy. Expanding the class MB for smaller data sets implies that the 

issues stated by Jain [JZ97] are being addressed by a form of compensation. Since the class MB is 

defined by the CL algorithm, any constraints due to the domain characteristics have been overcome 

by the addition of more relevant features to the MB, leading to an improved performance. 

For completeness, Figure 6.11 and Figure 6.12 illustrate the error rates of the SMIM compared to the 

4polytree' and the SNB compared to the 'polytree'. The SMIM has error rates less than those of the 

6polytree' which is similar to that observed for the MIM classifier in Chapter 4. 
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Figure 6.11. Scatter Plots Comparing Error Rates ofSMIM with Polytree 

In the case of the SNB, the error rate is generally lower than that of the 'polytree', however 

compared to the previous results of Chapter 4, there is an improvement. In Chapter 4, Figure 4.11, 

the NB shows a higher error rate than 'polytree', whereas SNIB demonstrates an improved 

perfon-nance previously achieved by NB, which effectively reverses this result. 
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Figure 6.12. Scatter Plots Comparing Error Rates ofSNB with Polytree 
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Figure 6.13. Predictive Accuracy relative to SMIM Classifier (poly). 
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Figure 6.14. Predictive Accuracy relative to SNB Classifier (poly). 

The differences in accuracies are shown in Figure 6.13 and Figure 6.14. For the SMIM there were 

differences that were found to be statistically significant compared to 'polytree' for 'Vehicle' (p- 

value = 0.036), 'Car_Evaluation' (p-value = 0.022), 'Chess' (p-value = 0.001), 'Nursery' (p-value = 

0.037), with 'Vehicle' a new addition compared to the previous MIM and 'polytree' comparisons, as 

illustrated in Figure 4.16. In the case of SNB compared to 'polytree', differences were found to be 

statistically significant for data sets 'Vehicle' (p-value = 0.017), 'Nursery' (p-value = 0.001), and 

'ANN' (p-value = 0.012), with 'Vehicle', as for the MIM classifier, also a new addition compared to 

the previous NB and 'polytree' comparisons, as show in Figure 4.12. 
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0 Comparison of Selective classifiers and Non-selective 'Network' classifiers 
Figure 6.15 and Figure 6.16 display the error rates for the SMIM compared to the GBN and SNB 

compared to the GBN respectively. The error rate for the SMIM is lower than that for the GBN 

whilst for the SNB, error rates are generally less than the GBN. The corresponding differences in 

accuracy are shown in Figure 6.17 for the SMIM and in Figure 6.18 for the SNB compared to the 

GBN. 
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Figure 6.15. Scatter Plots Comparing Error Rates ofSMIM with GBN Classifier 
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Figure 6.16 Scatter Plots Comparing Error Rates ofSNB with GBN Classifier 

In comparison to the previous results observed in Figure 4.5 and Figure 4.7, the performance of the 

SNB has improved compared to that achieved by the NB classifier against the GBN. For the SMIM 
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classifier, Figure 4.9 and Figure 4.10 previous results illustrate that although there is still an 
improvement in performance, it is not as significant as that demonstrated by the SNB. However, 

unlike SNB's improvement, the MIM classifier was already observed to outperform the GBN, thus 

the SMIM classifier's result further supports the performance achieved by the MIM classifier. 
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Figure 6.17. Predictive Accuracy relative to SMIM Classifier (GBN) 
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Figure 6.18. Predictive Accuracy relative to SNB Classifier (GBN) 

The SMIM compared to the GBN found differences that were statistically significant for the data sets 

'DNA' (p-value = 0.045), 'Letter' (p-value = 0.002), 'Nursery' (p-value <0.05), 'CRX' (p-value = 

0.018), and 'ANN' (p-value = 0.005) with 'CRX' and 'ANN' new additions to those found 
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previously for the MIM/GBN comparisons. In the case of the SNB compared to GBN, differences 

were found to be statistically significant for data sets 'DNA' (p-value = 0.026), 'Letter' (p-value = 

0.013), 'Nursery' (p-value <0.05), and'ANN'(p-value = 0.001) with 'Letter' and'Nursery' added to 

those found with differences that were statistically significant from the previous NB/GBN 

comparisons. As illustrated in Table 6.1, GBN has only one 'overall' winner (in ternis of 

performance accuracy) compared to the other methods, namely, 'Glass'. 

Comparison of Selective Dependence models Opposed to Selective Independence 

models 

As demonstrated by the results in Table 6.1, the SMIM classifier achieved seven 'overall' 

performance levels compared to the SNB's five. 
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Figure 6 19. Scatter Plots Comparing Error Rates of SMIM with SNB Classifier 

Figure 6.19 shows the error rate for the SMIM compared to SNB. The SMIM error rate is less than 

SNB with most points being above the diagonal line. The corresponding differences in accuracies are 

displayed in Figure 6.20 with differences found to be statistically significant in one data set, namely, 

'DNA' (p-value = 0.045). In the case of SNB only data set 'ANN' (p-value = 0.009) was found to 

have differences that were statistically significant. 
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Figure 6.20. Predictive Accuracy relative to SMIM Classifier (SNB) 

In general, the predictive levels for the SMIM and SNB were comparable for most data sets studied. 

From Table 6.1 the SMIM improved performance was better than the SNIB for eight data sets with 

perfon-nance accuracy differences ranging from 0.17% to 3.07%, whilst the SNB, in contrast, 

achieved only two better than the SMIM classifier, namely 'Soybean_Large' and 'ANN'. 
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Figure 6.21. Class MB Feature Size For Each Data Set. 
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Figure 6.21 shows the number of features contained in the class MB for each of the 20 UCI 

benchmark data sets. In the majority of cases the number of features required by the SMIM class MB 

was found to be comparable to that of the SNIB. This was similar in respect of their respective 

performance levels, as indicated in Table 6.1. This implies that in order for the SMIM classifier to 

better the SNIB performance, the MIM class MB needs to generally have more features than the MB 

of the SNIB. 

0 Comparison of Selective Classifier Learn Rates 

For the larger data sets, only 'ANN' and 'DNA' showed improvements in performance. Figure 6.22 

and Figure 6.23 display the learning curves for the data sets 'ANN' and 'DNA' respectively, 

averaged over 25 trial runs. Included for comparison are the results of the non-selective methods 

which were previously investigated in Chapter 4. 
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FigUre 6.22. Learning Plot: ANN 
C7 

In the case of 'ANN' the SNB has a better learn rate for the lower sample sizes than previously 

achieved by the NB classifier, due to the reduction of features in the class MB. The SMIM in 

contrast, shows a much steeper learn rate at the lower sample size than the MIM classifier, however, 

the performance levels for the SMIM are better after 40% sample size. This result was not 

unexpected, as we observed similar trends in Chapter 4. The large number of features and 
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corresponding small sample size does appear to have had an impact on performance levels. Here the 

SMIM expands the class MB and so the learn rate becomes steeper, whilst SNB reduces the class 

MB and improves the learn rate. 

Both the SMIM and SNB reach stable performance levels at the 60% sample size. Figure 6.23 

illustrates similar characteristics for the 'DNA' data set, with both SNB and SMIM learn rates as 

observed in Figure 6.22. However, unlike the learn rates observed for data set 'ANN', the SMIM 

maintains a performance level greater than the MIM classifier for all sample sizes. From Figure 6.23, 

the SNB and SMIM classifiers reach stable performance levels at a lower 40% sample size unlike 

their non-selective variants at 60%. 

Whilst for both data sets SMIM performance levels are better than those of the MIM classifier, this 

was not observed for SN13. For the 'DNA' data set, NB maintained a higher performance level than 

SNB. The reduction in features defming the class MB for this high dimensional domain has clearly 

effected the performance of SNB, as illustrated in Table 6.1, and as can be seen in Figure 6.23, even 

begins to fall as the sample siZe increases to 100%. 
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Figure 623. Learning Plot: DNA 
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6.5 Discussion 
In general SMIM did improve perfon-nance of the MIM classifier with ten data sets demonstrated as 

improving with performance increases ranging from 0.22% to 5.87%. 'Overall' SMIM achieved 

seven data sets, and an additional one close to NB, better than all the other models investigated, as 

shown in Table 6.2. 

Figure 6.21 demonstrates that the performance increases achieved by SMIM do not, for the majority 

of data sets, come at a price. 'Votel' for example only required one feature to be added to the class 

MB to improve the performance of the MIM classifier by 1.64%, whilst 'Hepatitis' required two 

features to be added to the MB to gain an improvement of 1.76%. In the case of the data set 

'Vehicle', which required the class MB to be expanded by eleven features, the improvement in 

performance not only increased by 5.87% but resulted in the SMIM classifier becoming the 'overall' 

winner ( in terms of performance accuracy) compared to the performance of the other classifiers, as 

Table 6.2 shows. Previously, GBN was the 'overall' winner for this data set. 

Our assumption, discussed in section 5.2, that the 'initial' class MB would represent a good start has 

been shown to be viable. We observed data sets 'Segment', 'Vote', 'Letter', 'Promoter', 'Chess', 

'Glass' and 'Cars' did not improve by adding features to the class MB, however as shown in Table 

6.2, remained as 'overall' winners compared to the other models. Further support can be 

demonstrated by the low number of features actually required to be added for some of the data sets, 

in order to gain in performance. 

As indicated in Table 6.2, SNB did in general improve the performance of the NB classifier. SNB 

claimed three data sets 'Nursery', 'Flare' and 'Soybean_Large' that the MIM classifier previously 

won 'overall', along with data sets 'Mushroom' form previous winner GBN and 'ANN' from 

previous winner NB. 

Figure 6.2 illustrated that there were occurrences of local minima and maxima for the data set 

'Vehicle'. This justified the need to process all features (outside the class MB) that would be added 

to the class MB. In the majority of data sets that actually saw improvement by adding edges (SMIM), 

we observed there was a slight degradation in performance prior to any subsequent improvements. 

This was more apparent where a high value MI edge was introduced to the class MB and less for the 

small MI valued edges. 
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DB Name 

Vehicle 

DNA 

Table 6.2: 'Overall' Classifier Predictive Accuracies 

Average Classifier Default (overall) 

Car_Evaluation 

Flare 

Chess 

Vote 

Mushroom 

Letter 

Hepatitis 

Nursery 

CRX 

Soybean_Large 

Segment 

Vote 1 

Cars 

Austria 

Heart 

Promoter 

Glass 

Ann-Tbyroid 

Performance (% 

61.53 ± 0.91 
14(18) 

95.58 ± 0.42 
15(60) 

95.80 ± 0.36 
19(60) 

86.43 ± 0.85 
6(6) 

86.58 ± 1.78 
6(6) 

83.40 ± 1.67 
3(10) 

96.27 ± 3.56 
6(36) 

95.40 ± 2.41 
2(16) 

99.96 ± 0.04 
8(22) 

80.26 ± 0.37 
11(16) 

85.76 ± 7.14 
5(19) 

96.33 ± 0.27 
8(8) 

87.90 ± 0.90 
12(15) 

92.08 ± 2.01 
24(35) 

94.49 ± 0.64 
5(19) 

90.15 ± 1.53 
5(15) 

99.23 ± 0.70 
1(8) 

99.17± 1.08 
1(8) 

87-10 ± 1.65 
11(14) 

86.39 ± 0.89 
10(13) 

87.97 ± 1.31 
4(57) 

69.37 ± 2.08 
7(9) 

99.30 ± 0.25 
11(21) 

smim 

mim 

smim 

smim 

NB 

SNB 

mim 

mim 

SNB 

mim 

smim 

SNB 

smim 

SNIB 

mim 

smim 

mim 

SNB 

smim 

smim 

mim 

mim 

SNB 

25.8 

51.9 

70.0 

79.2 

52.0 

54.8 

51.8 

4.07 

79.4 

33.3 

55.5 

13.5 

4.80 

61.4 

62.5 

55.5 

55.6 

50.0 

35.5 

92.6 

Key: 'Overall' winning (in terms of performance accuracy) classifier is denoted by Bold type face, where italic 

Bold indicates similar performance accuracies between classifiers, as shown above for data sets: DNA, 

Car_Evaluation and Cars. 
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This implies that the initial addition as a single feature was not able to maintain the discrimative 

power of the lower bound and needed support from further feature additions. This is an issue that is 

further discussed in Chapter 8. 

SMIM and SNIB classifiers have been demonstrated as offering a benefit in the improvement of 

performance for the MIM and NB classifiers. In the case of SNB, this was achieved by the removal 

of the highly correlated features, whilst for SMIM the addition of relevant features to the class MB, 

particularly evident for the small data sets. Despite the MIM classifiers' class MB expansion, the 

classification complexity remains at O(N) as for the NB classifier. SNB's model construction is 

however more complex and slower than NBs' as a forward process, with a greedy method to traverse 

the space, has at worst case time complexity O(N 

Our use of the two heuristic 'stopping criteria', particularly in relation to performance degradation, 

did prevent an 'exhaustive' search from being carried out, especially for the high dimensional 

domains like TNA'. 

The addition of features to the 'initial' class MB has been shown to improve performance, 

particularly in some of the small data sets, Table 6.1. This may have been as a consequence of the 

use of the CL algorithm (previously discussed in Chapter 4 as a drawback). In this approach 

however, the removal of irrelevant features is not permitted and is probably a drawback to achieving 

an 'optimal' solution in terms of performance. 

Expanding the class MB by adding features transforms the 'tree' structure into a network. This is 

essentially what Sucar [SP+97] wanted to achieve, but just as for the SMIM, in respect of 

classification, the proposal does not provide an 'optimal' solution. A better approach is to derive the 

network in a similar fashion to that proposed by Cheng [CBL97]. This would offer a method of 

constructing the 'optimal' class MB as removal and additions of features are allowed by use of the 

'thinning' and 'thickening' phases. Unfortunately there is a complexity issue associated with 

Cheng's approach of O(N4), as no node ordering would be supplied prior to construction. The 

question here is do we need to consider 'optimality' ? Since the MIM 'tree' structure demonstrates 

its ability to provide a viable 'initial' class MB and has the efficiency associated with CL algorithm 

for its derivation, the demonstrated performance shown in Table 6.1 implies that striving for further 

improvement might be too costly with very little to be gained. 
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6.6 Conclusion 
In general, the SMIM did improve the performance of the MIM classifier with the greatest benefit 

observed for the smaller data sets studied. The empirical studies showed that this improvement was 

not at the price of increased complexity as in most cases only a marginal number of features were 

actually required to be added to the 'initial' class MB. For the larger data sets, the experimental 

results show that in the majority of cases no improvement was possible implying that the class MB 

derived via the CL algorithm was already a satisfactory representation. 

Overall the empirical studies confirm the classification technique is not restricted to 'tree' based 

structures (with respect to the class MB) and is thus independent of the underlying topology of the 

domain being modelled. However, whilst focusing on the class MB does allow improvement in some 

domains without creating potentially dense networks, the technique has a drawback in that it does not 

guarantee to find an 'optimal' solution. 

6.7 Summary 
Chapter 5 proposed a method for improving the performance of the MIM classifier. In this chapter 

we evaluated a 'selective' variant of the MIM classifier which focussed on the expansion of the class 

MB. Our experimental results demonstrate that the approach taken can improve the perfon-nance of 

the MIM classifier and when there was improvement it only required, in general, a few additional 

features to be added to the class MB. 'Overall' the SMIM was better for seven data sets compared to 

the other methods, with two direct improvements to the MIM classifier and the remaining five 

sufficiently high to better the previous winning performance of NB 'polytree' and GBN. The 

combined 'overall' winning performance (in terms of performance accuracy) for the SMIM and 

MIM classifier was thirteen data sets compared to SNB and NB's six. 

Our initial assumption, discussed in section 5.2, regarding the class MB with respect to the Mim 

classifier, appears to be viable. The results indicate that for the majority of the data sets studied, the 

SMIM either required a few features to be added to the class MB or that no further improvements in 

performance were possible. This implies that the class MB, as derived from the use of the CL 

algorithm, was indeed a good initial representation. Where improvements were observed the data 

sets were generally the smaller ones, with the majority of the larger data sets remaining at the MIM 

classifier's lower bound. 
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The expansion of the class MB did highlight issues in respect of the increase in MB and the learning 

rates. As expected we observed the SMIM having a steeper learning rate for the small sample size 

and a less steep one for the SNB having reduced its MB feature size. In comparison with the non- 

selective variants however, the performance levels of the selective models was shown to be greater 

for these sample sizes than achieved by their corresponding non-selective variants, namely the MIM 

and NIB classifier. 

In Chapter 4, we discussed the issues relating to the use of the CL algorithm and that it was prone to 

generating 'trees' that have irrelevant features added to the class MB. This could be construed as a 

disadvantage or even a limitation as the SMIM's lower bound is defined by the CL algorithm. Since 

we expand the class MB to improve performance, any irrelevant features already contained within 

the initial class MB would not be removed. Our experimental results however, did not confirm this, 

with the SMIM and MIM classifier performing better than the other methods for the majority of the 

data sets studied. Nevertheless removal of irrelevant features would potentially offer a better 

classifier, and in the case of the MIM classifier, would be most efficiently addressed during the 'tree' 

construction phase. The main issue however, lies in the actual identification of 'irrelevance'. In 

Chapter 7 we discuss this aspect ftirther and show for the domain of AAP, that the removal of what 

are considered 'irrelevant' features can sometimes be inappropriate. 

Evaluation of the MIM classifier, Chapter 4, and the 'selective' variant within this chapter have 

utilised the UCI benchmark database for our experimental studies. In the next chapter, we investigate 

the robustness of these classifiers on a 'real' data set and evaluate their performance in respect of the 

task of diagnosing a medical domain, Acute Abdominal Pain. 
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Diagnosing Acute Abdominal Pain - Case Study 

In this chapter we apply the techniques developed in Chapter 3 and Chapter 5 to a 'real' world 

domain, namely the diagnosis of Acute Abdominal Pain (AAP). This domain is renowned for its 

difficulty [TS94, OM+96] for both doctors and many Machine Learning (ML) approaches. In the 

next section, we review some of the current research findings which provide the motivation for our 

investigation, followed by our specific objectives and aims. In section 7.3, we describe the two data 

sets that will be used in the study and how we deal with anomalies. Section 7.4 and 7.5 define the 

experimental methodology and design respectively, with section 7.6, reviewing the experimental 

results. In section 7.7, we discuss the results and implications and finally in section 7.8, summarise 

the chapter. 

7.1 Introduction 
Acute Abdominal Pain (AAP) is the commonest surgical emergency in Europe and in most other 

parts of the World [Don193]. Although some causes of AAP don't require admittance to hospital, 

other conditions such as appendicitis require urgent surgical treatment. An inflamed appendix may 

perforate raising the risk of death and with one in every sixteen people expected to suffer from it at 

some point in life [PH88] it is thus a relatively important disease group to identify. Clearly, early and 

accurate diagnosis is essential, but few doctors and even fewer patients realise just how difficult such 

early diagnosis can be. The domain of AAP is well known to be both difficult and challenging 

[LE93] with the diagnosis of appendicitis complicated by other diagnoses like Non-Specific 

Abdominal Pain (NSAP) which often presents similar signs and symptoms. 

Tackling 'real' world problems in complex domains such as AAP has resulted in the development of 

more and more decision analytic models. Extracting knowledge from experts however, is arising as a 

major obstacle in model building. Adopting automated / semi-automated techniques, deriving the 

model directly from the data, can overcome some of these obstacles. In fact [TS94] AAP is one of 

113 
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the most widely studied applications of computer aided diagnostics examples of which are [OY+95, 

PEJ98, Kur87, AC'86, WK01, EZ+01, OM+96, TC+03, EOL97, and WK01]. 

According to Provan and Clarke [PC93] probabilistic reasoning is crucial for diagnosing AAP, as the 

uncertainties involved cannot be adequately captured given that two patients with the same 

symptoms may have different diseases. Examples of approaches taking up this challenging domain 

can be found in [NJ75, Fry78, Ser86, GT91, and Sin98]. However, despite these models attempts to 

capture the domain dependencies, the empirical evidence in support of diagnostic accuracy and the 

capturing of dependencies in Bayesian models remains inconclusive. 

During comparisons made by Todd and Stamper [TS94] of an 'expert, built GBN and the Naive 

Bayes, the results suggested that there were no significant improvements in accuracy by taking 

interactions into account. Work carried out by researchers [ED84, Dom9 1, and TS94] even suggested 

from their results that Naive Bayes was probably optimal. The research that followed de Dombal's et 

al [DL+72] successful application of Naive Bayes led to many approaches, which attempted to avoid 

making this violation of conditional independence. Here the classifier assumes that the attributes are 

conditionally independent given the class variable (each attribute has only the class node as a parent). 

One such example was the G&T system [GT90] that applies Bayes rule strictly. However, this too 

found Naive Bayes to outperform their dependency model. Ohman [OM+96] even compared Naive 

Bayes to more complex representations such as rule-based systems and found here too that there was 

no major 'overall' difference. Further support for Naive Bayes success and its performance in respect 

of AAP can be found in [PS96, HYO 1, GG90, and Tho99], 

In consideration of these studies and in particular the optimality claim, the following section outlines 

our investigation aims which we address by applying the MIM classifier and its optimised variant to 

the AAP domain. 

7.2 Objectives 

As highlighted in the previous section, several researchers have argued that the NB classifier is the 

optimal model for this domain. However, experts have identified strong dependencies between 

symptoms and therefore NB should not be so efficient. As we demonstrated in Chapter 4, models 

that capture dependencies such as GBN and the 'tree' based dependency models outperform NB in 

many of the data sets studied and thus should provide a more accurate diagnosis of AAP than NB. 
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Despite this supporting evidence, as discussed in section 7.1, there appear to be no empirical studies 

that substantiate this view. 

From the review in section 4.6.1, we observed that the poor performance of the GBN was due to 

problems in modelling high dimensional and small sample set domains. As such, GBN models may 

have problems with the AAP database as there are class-state imbalances with some states having 

small sample sizes. However, as we demonstrated in Chapter 4, the MIM classifier was not effected 

by this domain characteristic and was found to have a comparable performance with that achieved by 

the NB classifier. Since the MIM classifier does model dependencies between features, although 

with some loss of representation, it should perform better than the NB in this domain. In addition, as 

the experimental results showed in Chapter 6, the 'optimised' variant (SMIM) may be able to 

overcome any modelling constraints and potentially offer further performance improvements. 

The first objective of the study was to investigate the optimality claim of NB for classifying in the 

medical domain of AAP, against three models, which do not assume extreme conditional 

independence. These are the GBN, 'polytree' and the MIM classifier along with NB's and the MIM 

classifier's optimised 'selective' variants. In particular we wanted to address three questions: 

For AAP does the Naive Bayes classifier really perform better than the dependency models? 

0 Is Naive Bayes (as considered by other researchers) really optinial for AAP or is it just good 

17,? 
at identifying NSAP . 

0 Do the dependency models offer more than the Naive Bayes irrespective of its overall 

accuracy perfom-iance? 

Our second objective was to investigate the effect of modifying the class MB of the NB and MIM 

classifier. Ohmann [OM+95] noted from their study that the high dimensionality of AAP was a major 

problem when attempting to improve the predictive accuracy. The approach taken was to find a 

feature subset with the best predictive accuracy for a certain classifier. Our aim was to optimise the 

perfon-nance of the two classifiers (NB and MIM) and determine if NB's use of all the features of the 

domain is a contributory factor to its claimed optimal success. Since NB uses all features by design 

the SNB variant attempts to optirrAse the classifier by reducing its MB. In contrast the MIM classifier 

17 NSAP is defined bY the Doctors as "a miscellaneous set of non-significant pathologies and thus a group of 

exclusion ". 
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starts with an MB defined by the CL algorithm and thus SMIM expands the MB. We are therefore 

interested in determining how many features each model requires in order to achieve an optimal 

performance and whether the performance of the NB, in this particular domain, can be matched or 

even bettered by the SMIM variant. 

7.3 Description of the data sets (AAP) used 
Two data sets were used in this study, defined in Table 7.2. The first consists of 9867 patient records 

comprising 33 features, covering 135 feature states, and a class variable having 9 possible states or 

diseases. The data was originally collected and maintained by Mr AA Gunn [Gun76] at Bangour 

General Hospital and is currently retained by staff at St John's Hospital in Livingston, Edinburgh. 18 

The resulting database addresses the domain of Acute Abdominal Pain (AAP) recording information 

gathered both during the examination and subsequent audit administration. The structure is based 

upon a patient's examination on arrival to the Accident and Emergency (A&E) department. Each 

completed record stores the doctor's 'initial' diagnosis and the 'actual' diagnosis group a patient was 

subsequently determined as really belonging to, on their discharge from hospital. The full contents of 

the database far exceed our requirements and mainly provide infon-nation necessary for hospital 

audits. The precise format relevant to our study is defined in Appendix A, with Table 7.1 detailing 

the AAP diagnostic groups and corresponding abbreviations that will be used throughout this thesis. 

Table 7.1. - Diagnostic Groups and Codes 

Diagnostic Groups 

Value Disease Code 

Appendicitis APP 
Diverticulitis DrV 
Perforated Peptic Ulcer PPU 
Non Specific Abdominal Pain NSAP 
Cholecystitis CHO 
Intestinal Obstruction INO 
Pancreatitis PAN 
Renal Colic RCO 
Dyspepsia DYS 

The second data set comprises 5373 case samples again describing exarrAnation records of patients 

suffering from acute abdominal pain. In this case however, the data has been collected at a different 

18 CADA (Computer Assisted Diagnostic and Audit) data base which is considered the largest database of AAP 

in Europe. Courtesy of St John's Hospital, Livingston, Edinburgh. 
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geographical location, namely Leeds. 19 This data was gathered over a period of 30 years concerning 

the diagnosis of AAP and is currently retained at the Professorial Surgical Unit and Accident and 

Emergency Department, at the General Infirmary. We will label the first data set TADA' and the 

second one 'LEEDS' in order to distinguish between them. 

Table 7.2: AAP Data sets used in the experiments 

Dbase Name Attribute size Class size Sample size Train size Test size 
CADA 33 9 9867 6959 2908 

LEEDS 33 9 5373 5373 

Both data sets have been standardised by collaboration between the two hospitals under the direction 

of Professor Tim de Dombal. In the following sections, we describe the experimental work and 

present the corresponding results. 

7.4 Experimental Methodology 

With the exception of one of the features namely 'AGE', which is strictly a continuous variable, all 

of the other 32 features represent discrete variables. In this data set the doctors themselves have 

provided the discretisation for the feature 'AGE' based upon their own judgements. The group Non- 

Specific Abdominal Pain (NSAP) is not actually a diagnostic group rather a 'catch all' category into 

which the doctors assign a patient whom they cannot fit into one of the other 'true' eight diagnostic 

groups. In a sense this can be considered as a 'don't know' category, but only in respect to the 'true' 

eight known categories. For this study we employed the hold-out approach partitioning the data base 

into a 'learn' and test sample set, as defined in Table 7.2. The training partition was approximately 

2/3 of the database whilst the test partition the remaining 1/3 of the sample set. Both partitions are 

the result of performing a 'random' but stratified split, in order to compensate for the imbalances in 

respect of the nine class-state distributions. 

On examination of the database, records were found to have multiple or composite parameter values 

stored in respect of some of the symptoms and in other cases none of the symptom parameters were 

recorded (missing). To deal with these two anomalies we have introduced two additional parameter 

values, which are appended to each symptom. For example Symptom 21 : MOOD will be described 

19 Courtesy of General Infirmary, Leeds, UK. 
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by parameters : normal (2 1/1)20 , distressed (21/2), anxious (21/3) plus composite 21 (88) and missing 
(99). This approach ensures that the Naive Bayes model does not have an advantage over the 

Bayesian models (as complete data sets are required) with the AAP data set effectively standardised 

for all models under study. 

For the two data sets 'selective' and 'non-selective' networks were constructed. 'Non-selective' 

experiments were performed using the methods described in Chapter 4, section 4.3 for constructing 

the MIM classifier, NB, 'polytree' and GBN applications also in Thomas [THS05b]. To learn the 

4selective' variants we applied the methods defined in Chapter 5, section 5.2 and Section 5.3, for 

constructing the SMIM and SNB classifiers. 

In order to obtain an expert comparison of performance accuracy, we further extracted from the two 

data sets the doctors 'Initial' diagnosis, as described in section 7.3. 

7.5 Experimental Design 
For each of the six classifiers, the structure was leamed/constructed using the 2/3 training partition 

and each classifier's accuracy determined on the 1/3 test partition. The main performance measure 

used was the classification accuracy of a model on the test data, the classification accuracy being the 

percentage of test cases that were diagnosed correctly (identified in the data sets as 'actual' 

diagnosis). 

This process was repeated over a series of runs in order to obtain a sample average together with the 

standard deviation for the predictive accuracy using the test partition. The statistical significance of 

the differences in classification accuracy was measured using a Analysis of Variance (one-way 

ANOVA) followed by Post Hoc Tukey comparisons with overall confidence level 95%. Prior to 

applying ANOVA, as was the case for Chapter 4 and Chapter 6, we first established the validity of 

the assumptions. 

In the domain of AAP, where there are numerous class-states, the comparison of the six methods 

does not provide an accurate measure using only the classification accuracy. To address this we have 

20 (21/1) represents symptom number 21 and corresponding symptom parameter number 1, as defined in 

Appendix A, Table A- I- 

21 Some composites have been 'grouped' and added to symptoms as new parameter values. Where the frequency 

of occurrence for combinations was below a set threshold (arbitrarily set) these were assigned to the default 

composite value '88' 



119 

computed additional statistics, which are generally used for comparing 'alternative' tests with respect 
to medical diagnosis [CH90]. In this thesis we utilise this approach to make comparisons of our 
'alternative' classifiers and thus access their ability to effectively discriminate between the individual 

class-states or diseases. Assuming the positive/negative value for a disease to represent its 

presence/absence, the different statistics we computed can be described, adopting the notation taken 

from Singh [Sin98], as follows. 

Sensitivity: This is the ability of a classifier to correctly predict the presence of a disease in a patient 

with that disease. Also know as the True Positive Rate, it is defined as: 
TP 

where TP is the 
TP + FN 

number of true positives while FN represents the number of false negatives. 

Specificity: This is the ability of a model to correctly identify patients that do not have a given 

disease. Thus, it is the proportion of people who do not have a given disease, and correctly predicted 

so by the classifier. As such: 
TN 

where TN represents the number of true negatives and TN + FP 

FP represent the number of false positives. 

Likelihood Ratio: This measures the ability of a classifier to discriminate between alternative 

diseases. 

The higher the value, the greater is the discriminating ability of the method. It is defined as follows: 

TP(FP + TN) sensitivity 
FP (TP + FN) 1- specificity 

Predictive Value: This measures the accuracy of a classifier on a given disease, and is the probability 

that a patient actually has the certain disease, given that the classifier has so predicted. It is defined 

TP 
as: TP + FP 

In addition, we also computed the discriminant matrices, for each method, describing the 

perfon-nance of each technique with respect to the individual diseases. This provides a mechanism 

for us to compare different approaches with respect to their ability to correctly identify the individual 

class-states (diseases). 

In this investigation, the 'CADA' database was used to both construct and test the six methods, 

whilst the 'LEEDS' data set was only used for testing the six methods. This latter data set represents 
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a truly 'external' sample set as its data distribution, thus its characteristics, do not have an influence 

on the classifier's structure as it has been independently gathered from the 'CADA' data set. 

7.6 Experimental Results 

7.6.1 Results 'Non-selective' Experiments 

The average predictive accuracies, taken over 10 runs, of the classifiers generated for each of the 

four 'non-selective' methods are shown in Table 7.3 and Table 7.4. In Chapter 4, we ran 25 trials to 

provide sufficient coverage of the diversity of the 20 UCI benchmark data sets studied. Since the 

AAP domain essentially comprises only one data set, our preliminary studies found in this case, 10 to 

be adequate. Each entry in the tables describes the average accuracy along with the sample standard 

deviation illustrating variations in the predictive accuracy from sample to sample. For completeness 

the doctor's predictions are also included 22. The default value represents the majority classifiers' 

predictive accuracy. For the AAP data bases this is the error rate associated with the diagnostic group 

NSAP. As was the case in Chapter 4, Table 4.2, the 'overall' value is in respect of the 'entire' 

datasets (CADA/LEEDS) and not the individual test partitions. 

Table 7.3. - Average Predictive Accuracy 'CADA'- error rates 

Doctor MILM NB GBN Polytree Default (overall) 

0.2834±0.28 0.3349±0.82 0.2617±1.16 0.3583±1.56 0.3566±0.66 0.5495 

Key: MIM - Mutual Information Measure Classifier, NB - Naive Bayes Classifier, GBN - General Bayesian 

Network Classifier, Polytree - Pearl's Model. Values in bold type indicate the highest model performance 

achieved by the classifier in respect of the CADA database. 

Table 7.3 and Table 7.4 display the 'overall' predictive values for the CADA and LEEDS databases 

respectively. In general the NB outperforms the BN models and in the case of the CADA database, 

even performs better than the doctors. 

22 These are already recorded within the two data sets in respect of each test case used in the study. 



121 

Table 7.4: Average Predictive Accuracy 'LEEDS'- error rates 
Doctor mim NB GBN Polytree Default (overall) 

0.3413±0.0 0.4569±0.52 0.4489±0.53 0.4882±0.44 0.4770±0.15 0.6382 

Key: MIM - Mutual Information Measure Classifier, NB - Naive Bayes Classifier, GBN - General Bayesian 
Network Classifier, Polytree - Pearl's Model. Values in bold type indicate the highest model performance 

achieved by the classifier in respect of the LEEDS database. 

The GBN, Figure 7.1, 'polytree' (SCN), Figure 7.2, and the MIM, Figure 7.3, models provide a 

qualitative structure as shown, in contrast to the NB model, which offers only a trivial representation. 

In the case of the GBN the structure is a more complex DAG, whilst the SCN and MIM structures 

correspond to a less complex 'tree' representation. The 'tree' structures of SCN and MIM are 

essentially the same with the interpretation governed by edge directionality. For the SCN, Figure 7.2, 

there is a 'multi parented class node, whereas for MIM classifier, Figure 7.3, the class node 

represents the root vertex and thus acts as a lone parent. In correspondence with NB the MIM 

structure represents a subset of the NB. That is, the implied feature selection of MIM in respect to the 

class's children. However, MIM unlike NB does not make the same extreme assumptions of 

conditional independence. 

Figure 7.1. General Bayesian Network (GBN) Structure 



122 

Figure 7.2. Singly Connected Network 'polytree' (SCN) Structure 

Fig, ure 7.3. Mutual Information Measure (MIM) Structure 
C. 7 

The plots shown in Figure 7.4 and Figure 7.5 represent the results relative to the MIM classifier and 

the NB classifier respectively. Each bar shows the average difference in predictive accuracy. A 

positive value for an algorithm indicates that the MIM or NB classifier performed better on the 

CADA and LEEDS data sets. 
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Figure 7.4. Predictive Accuracy relative to MIM Classifier. 

The error bars represent the Post Hoc Tukey comparisons with overall 95% confidence for the 

relative differences. 

For the CADA database, Table 7.3, the NB classifier has the best predictive accuracy of the four 

4non-selective' models used in the study. This includes the 'overall' performance achieved by the 

doctors, and has statistically significant differences in all applications (p-value <0.05 compared to 

the MIM classifier, p-value <0.05 compared to 'polytree', and p-value <0.05 compared to GBN) 

except in the case of the doctors with a p-value = 0.137. 
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The doctors achieved the greatest predictive accuracy compared to all the BN models, and also has 

statistically significant differences (p-value <0.05 for all BNs). In the case of the MIM classifier the 

predictive levels exceeded the other two BN models and was found to have differences that were 

statistically significant compared to the SCN (p-value <0.05) but not the GBN with a p-value 

0.164. 

As indicated in Table 7.4, the result in respect of the LEEDS database show the doctors performing 

(as expected) better than all statistical approaches and was found to have statistically significant 

differences for all methods (p-value <0.05 for all models). In the case of the MIM and NB models 

the predictive accuracy was found to be comparable, with the NB having differences that were 

statistically significant in respect of the GBN model (p-value <0.05) and the MIM classifier 

statistically significant differences for the GBN (p-value = 0.006) but not the SCN with a p-value 

0.105. 

In deriving the structures of the BN models, Figure 7.1, Figure 7.2, and Figure 7.3, we identified 

some symptom-symptom relationships, which appeared meaningless probably due to some 

6commonality' or 'correspondence' rather than causal interpretation. Examples are : Pain-site present 

/ Pain-site Onset / Site of Tenderness, Vomiting / Nausea, and Previous Surgery / Abdominal Scar. 

Garnmerman and Luo [GL91] also observed this commonality. Whilst these were identified by all 

the BN models the NB model lost these relationships due to the assumptions of conditional 

independence. 

Table 7.5 and Table 7.6, shows the resulting individual disease group predictive values for the 

CADA database. Although NB achieves the greatest 'overall' predictive value, it is based largely 

upon the performance of the majority group NSAP. This group is defined by the doctors as a 'group 

of exclusion'. The same majority group predictive levels are apparent for the SCN and GBN models. 

The MIM Classifier including the doctors on the other hand does not portray this characteristic. In 

fact there is a relative alignment of MIM predictive scores to those of the doctors for all the 

individual class-states. 
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Table 7.5a: CADA Predictive Values 

Final 

Diagnosis 
# 

Cases 

% 

Cases 

mim 

Predictive 

Value % 

Doc 

Predictive 

Value % 

NB 

Predictive 

Value % 

GBN 

Predictive 

Value % 

Poly 

Predictive 

Value % 
APP 385 13.239 77.468 79.870 76.234 59.156 51.688 
DIV 92 3.1637 68.750 48.913 53.261 15.489 26.902 
PPU 56 1.9257 76.786 67.857 66.071 57.143 10.714 

NSAP 1100 37.827 62.386 66.273 80.136 82.159 84.818 
CHO 235 8.0812 62.340 68.936 59.1489 53.192 48.830 
INO 228 7.8404 56.908 76.864 64.474 54.167 45.833 
PAN 72 2.4759 42.014 62.500 31.944 12.153 2.7778 
RCO 287 9.8693 81.969 84.321 81.446 63.415 62.108 

DYS 453 15.578 66.391 75.055 75.994 54.415 67.881 

Table 7.5b: CADA Likelihood Ratios 

Final 

Diagnosis 

# 

Cases 

% 

Cases 

mim 

Likelihood 

Ratio 

Doc 

Likelihood 

Ratio 

NB 

Likelihood 

Ratio 

GBN 

Likelihood 

Ratio 

Poly 

Likelihood 

Ratio 

APP 385 13.239 19.612 15.359 23.424 12.614 11.681 

DIV 92 3.1637 30.777 38.396 28.849 14.830 17.469 

PPU 56 1.9257 63.606 92.337 67.537 79.444 18.008 

NSAP 1100 37.827 4.4545 3.9183 7.0518 4.7352 5.7289 

CHO 235 8.0812 19.229 28.078 20.034 16.325 13.925 

INO 228 7.8404 14.849 37.877 18.861 14.529 8.7469 

PAN 72 2.4759 12.980 55.521 11.746 9.8565 6.3626 

RCO 287 9.8693 33.920 51.697 41.236 19.313 18.709 

DYS 453 15.578 12.660 18.989 17.033 7.4093 11.283 

Table 7.6a: CADA Specificity value 

Final 

Diagnosis 

# 

Cases 

% 

Cases 

mim 

Specificity 

Doc 

Specificity 

NB 

Specificity 

GBN 

Specificity 

Poly 

Specificity 

APP 385 13.239 0.9649 0.9697 0.9642 0.9397 0.930 

DIV 92 3.1637 0.9894 0.9832 0.9846 0.9729 0.9764 

PPU 56 1.9257 0.9953 0.993 0.9933 0.9916 0.9827 

NSAP 1100 37.827 0.8047 0.7994 0.8820 0.8669 0.8866 

CHO 235 8.0812 0.9670 0.9749 0.9646 0.9595 0.9558 

INO 228 7.8404 0.9632 0.9801 0.9695 0.9611 0.9534 

PAN 72 2.4759 0.9848 0.9903 0.9825 0.9779 0.9758 

RCO 287 9.8693 0.9793 0.9828 0.9802 0.9607 0.9593 

DYS 453 15.578 0.9395 0.9539 0.9557 0.9175 0.9406 
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Table 7.6b. - CADA Sensitivity values 
Final 

Diagnosis 

# 

Cases 

% 

Cases 

MINI 

Sensitivity 

Doc 

Sensitivity 

NB 

Sensitivity 

GBN 

Sensitivity 

Poly 

Sensitivity 
APP 385 13.239 0.6876 0.5151 0.8380 0.7604 0.8156 
DIV 92 3.1637 0.3260 0.6360 0.4434 0.4014 0.4125 
PPU 56 1.9257 0.299 0.5846 0.4540 0.6667 0.3117 

NSAP 1100 37.827 0.8698 0.7506 0.8330 0.630 0.6499 
CHO 235 8.0812 0.6356 0.7606 0.7092 0.6605 0.6153 
INO 228 7.8404 0.5463 0.7473 0.5759 0.5646 0.4074 
PAN 72 2.4759 0.1967 0.5310 0.2058 0.2174 0.1539 
RCO 287 9.8693 0.7014 0.8381 0.8147 0.7599 0.7609 
DYS 453 15.578 0.7662 0.7460 0.7553 0.6109 0.6703 

Clearly, the doctors are reluctant to assign a patient to a class-state which essentially represents 

'don't know'. This reduced level of predictive value for NSAP was also observed in the G&T system 

[GG90] where it too had difficulty in identifying the majority group NSAP. One explanation of this 

may be due to the technique used by the G&T and MIM models to classify new observations. In the 

NB model only features presented as 'present' are used to obtain appropriate probabilities for the 

calculation of each class probability. For the G&T and the MIM classifier the 'absent' feature values 

are also used. Although not explicitly observed within the feature vector itself, they contribute to the 

overall calculation of the final probabilities in respect of the possible class outcomes. The G&T 

model uses both symptom (present) and - symptom (absent) in determining relevant combinations, 

whilst the MIM model branch weights I(X,, X, ), relate to all X, and X2 (present) parameter 

values which includes the --, Xl and-'X2 (absent) values. For NSAP the distribution of features is 

more generalised as it does not actually characterise a 'real' disease (or at least a single group). This 

means for NSAP identification, both the MIM and G&T models use of the 'absent' feature values 

will have the effect of reducing the calculated individual class probabilities used to discriminate 

between the disease groups. This in turn will increase the possibility of misclassification. Since NB 

only uses the 'present' feature values there is less or no reduction in this class probability and as 

NSAP is a generalised characterisation, this means it will capture a significant number of the 

observations more readily. 
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From Table 7.5 and Table 7.6, the doctor's individual group predictive values are 6/9 better than NB. 

The MIM classifier (best of BN models) similarly achieves 6/9 groups better than NB. For the 

LEEDS database Table 7.7 and Table 7.8, the doctor's performance is optimal at 9/9 compared to 

NB, with the MIM classifier achieving 5/9 group predictive values better than NB. 

In addition, from Table 7.5 and Table 7.6, despite NB's 'overall' performance in respect of the 

CADA database exceeding that of the doctors, the Likelihood Ratio is in general lower for NB than 

the doctors. This indicates that the doctors have a greater ability to discriminate between the disease 

groups. The Likelihood Ratio for the LEEDS database, Table 7.7 and Table 7.8, shows a similar 

result, however for this particular data set the doctors are already overall winners. 

Table 7.7a. - LEEDS Predictive Value 

Final 

Diagnosis 

# 

Cases 

% 

Cases 

MINI 

Predictive 

Value % 

Doc 

Predictive 

Value % 

NB 

Predictive 

Value % 

GBN 

Predictive 

Value % 

Poly 

Predictive 

Value % 

APP 1213 22.58 65.95 78.07 62.86 46.74 39.28 

DIV 222 4.130 59.91 54.05 45.72 17.57 30.63 

PPU 150 2.790 68.67 75.33 58 47.33 16.00 

NSAP 1944 36.18 42.77 52.67 52.67 64.12 70.63 

CHO 555 10.33 60.09 73.15 51.89 51.17 58.83 

INO 338 6.290 54.59 75.15 60.65 50.00 42.31 

PAN 224 4.170 32.14 56.25 28.57 12.50 4.910 

RCO 377 7.020 67.37 79.84 70.69 44.30 48.54 

DYS 350 6.510 58.86 70.86 62.86 51.14 58.29 

Table 7.7b: LEEDS Likelihood Ratios 

Final 

Diagnosis 

# 

Cases 

% 

Cases 

MINI 

Likelihood 

Ratio 

Doc 

Likelihood 

Ratio 

NB 

Likelihood 

Ratio 

GBN 

Likelihood 

Ratio 

Poly 

Likelihood 

Ratio 

APP 1213 22.58 7.360 8.720 6.830 4.980 4.750 

DIV 222 4.130 16.15 36.90 17.05 9.570 16.88 

PPU 150 2.790 23.74 86.61 12.71 10.05 10.53 

NSAP 1944 36.18 2.980 2.830 2.920 2.580 2.460 

CHO 555 10.33 16.22 23.80 13.78 11.88 16.36 

WO 338 6.290 11.04 38.74 13.57 11.11 6.840 

PAN 224 4.170 5.670 30.400 7.520 5.630 4.090 

RCO 377 7.020 22.81 49.640 29.23 13.91 15.38 

DYS 350 6.510 16.70 30.810 19.85 9.950 13.27 
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One reason why NB may outperform BN models is the possibility of high problem dimensionality. 

In both the CADA and LEEDS databases the number of domain variables is high, however for some 

of the disease groups there is very little data in order to adequately learn the model. As a 

consequence overfitting may occur due to spurious dependencies and unreliable probability 

estimates. The use of 'tree' structures may alleviate this problem as they offer less complex 

structures. This is demonstrated by the results shown in Table 7.3 and Table 7.4 where the MIM 

classifier performs better than the GBN model. In respect of the SCN, although a 'tree' structure, it is 

dependent upon edge directionality and full recovery from data alone is not always possible [Pea88]. 

From the results obtained node ordering seems to have had an effect on its final predictive 

perfon-nance. 

Table 7.8a: LEEDS Sensitivity values 

Final 

Diagnosis 

# 

Cases 

% 

Cases 

mim 

Sensitivity 

Doc 

Sensitivity 

NB 

Sensitivity 

GBN 

Sensitivity 

Poly 

Sensitivity 

APP 1213 22.58 0.7149 0.6078 0.7146 0.7048 0.7399 

DIV 222 4.130 0.2923 0.7229 0.4012 0.3333 0.4964 

PPU 150 2.790 0.2269 0.6175 0.1652 0.1610 0.2513 

NSAP 1944 36.18 0.7721 0.6750 0.6910 0.5675 0.5170 

CHO 555 10.33 0.7306 0.7355 0.7385 0.6521 0.7567 

INO 338 6.290 0.3498 0.6530 0.3741 0.3811 0.2750 

PAN 224 4.170 0.1739 0.5780 0.2357 0.2106 0.1642 

RCO 377 7.020 0.5695 0.7582 0.6481 0.5749 0.5894 

DYS 350 6.510 0.4859 0.6310 0.5213 0.3499 0.3985 

Table 7.8b: LEEDS Specificity values 

Final 

Diagnosis 

# 

Cases 

% 

Cases 

mim 

Specificity 

Doc 

Specificity 

NB 

Specificity 

GBN 

Specificity 

Poly 

Specificity 

APP 1213 22.58 0.9029 0.9303 0.8954 0.8586 0.8443 

DIV 222 4.130 0.9819 0.9804 0.9765 0.9652 0.9706 

PPU 150 2.790 0.9905 0.9929 0.9870 0.9840 0.9761 

NSAP 1944 36.18 0.7410 0.7614 0.7636 0.7804 0.7899 

CHO 555 10.33 0.9550 0.9691 0.9464 0.9451 0.9538 

INO 338 6.290 0.9683 0.9831 0.9724 0.9657 0.9598 

PAN 224 4.170 0.9694 0.9810 0.9686 0.9626 0.9599 

RCO 377 7.020 0.9750 0.9847 0.9778 0.9587 0.9617 

DYS 350 6.510 0.9709 0.9795 0.9737 0.9648 0.9699 
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Since the MIM model is not constrained by node ordering it provides an ideal middle ground 

between the N13 and BN approaches. 

As demonstrated by the use of the LEEDS database, which represents a truly 'external' test sample, 

the NIB and the MIM classifier 'overall' predictive performance was comparable. Individually the 

MIM classifier performed better in identifying disease groups compared to the NB. For the CADA 

database 67% of the disease groups were identified by the MIM classifier compared to NB with 

NB's 'overall' predictive performance reflected by the majority group NSAP. In the case of the 

LEEDS database this was not the case. 

The group NSAP is not a 'real' group and its sample distribution is thus a generalisation that 

represents several sub-groups. For the CADA and LEEDS data sets this 'characterisation' may differ 

due to geographical population anomalies. As the classifier models are derived from the CADA 

sample set, the corresponding CADA test samples will be classified better because they have a 

similar 'characterisation' and sample distribution. However, for the LEEDS test samples NSAP will 

have, in general terms, some similar aspects but on the whole be sufficiently different to make 

classification of NSAP samples harder to identify using the CADA generated models. Clearly from 

the results, the remaining eight 'real' disease groups have a 'common' and well characterised 

description and so their predictive performance, in the case of the CADA and LEEDS databases, 

align relatively well. 

Table 7.9 details the symptom parameters that the experts look for when deciding to assign a patient 

to NSA_p23 . Those marked by a (x) are new items not recorded within the existing 135 points defining 

the CADA database. These additional NSAP identifying group characteristics provide the doctors 

with an advantage that the statistical Classifiers do not have and perhaps explains the doctor's 

performance. As a general point, doctors found that patients, on most occasions, who were assigned 

to NSAP got better within 24 hours. 

23 No information was supplied for the groups DIV, PAN and RCO 
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Table 7.9. - 'NSA P' Identification Parameters - Suggested by the Experts 

Diagnostic Group Symptom Parameters 

Very High temperature (x) 

No increase in pulse rate (x) 

History of viral illness (x) 

Normal Urine 

APP Normal white cell count (x) 

Absence of rebound tenderness 

Absence of anorexia 
Symptoms spontaneously reoccur over 24-48 hours 

Changing Pain site 
Patient looks well 
Pain not progressively worsening 
No rigidity 

PPU Pain reducing 

CHO Other pathology ruled out 

Normal blood level white cell count (x) 

Normal biochemistry (x) 

Non-nal X-ray abdomen 

INO No guarding 

No rigidity 
No mass 
All investigations normal, no associated symptoms 

Normal Urine 

Abdomen pain settles within 24 hours 

DYS Signs and symptoms don't fit any of the other groups 

From the discriminant matrices, Tables 7.10 to 7.14, in conjunction with, Table 7.7 and Table 7.8. 

The following are observed in respect of the LEEDS database. 

In general, the high frequency group misclassifications are lost to other high frequency groups 

(similarly observed in CADA). Low frequency group misclassifications for the SCN and GBN are 

lost to high frequency groups, however for MIM and NB these are generally lost to low frequency 

groups. The exception is the disease group diverticulitis (DIV) whose misclassification is directed to 

a high frequency group. 
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The predictive value for MIM is generally higher than those of NB, GBN and SCN for the high 

frequency groups with the exception of NSAP (similarly observed in CADA). In the case of the low 

frequency groups the MIM predictive values are greater than those obtained by NB, GBN and SCN. 

From Table 7.7 and Table 7.8, the sensitivity values for disease groups perforated peptic ulcer (PPU) 

and pancreatitis (PAN) are lower than those of the doctors for CADA, Table 7.5 and Table 7.6. 

Clearly, the doctors have used some heuristics to diagnose groups perforated peptic ulcer and 

pancreatitis as it is known that the group pancreatitis in particular has a very poor data definition 

stored within the database. 

From the CADA discriminant matrices, Tables 7.15 to 7.19, in conjunction with Table 7.5 and Table 

7.6. The following are observed in respect of the CADA database. 

The predictive value for MIM is greater than that of the NB for low frequency groups. In most cases, 

MIM and N113 values are higher than those of GBN and SCN. For high frequency groups the 

predictive value for NB and MIM are similar, with the exception of NSAP, where the MIM and 

doctors levels fall below those of the SCN, GBN and NB. 

On the whole, high frequency groups misclassify into other high frequency groups for the NB, SCN 

and GBN, whereas for the MIM, this model misclassifies into low frequency groups. From Table 7.5 

and Table 7.6, the sensitivity values for disease groups perforated peptic ulcer and pancreatitis are 

lower compared to those of the doctors, again illustrating the doctor's use of heuristics. 

Table 7.10: Doctors Discriminant Matrix (LEEDS) 

APP Div PFU NSAF CHO INO PAN RCO DYS TOTAL 
APP 947 9 5 229 5 6 1 5 6 1213 
Div 23 120 5 41 3 23 1 4 2 222 
Ppu 6 0 113 15 6 1 6 0 3 150 

NSAP 539 23 16 1024 76 64 36 77 89 1944 
CHO 10 3 10 52 406 23 23 5 23 555 
INO 14 6 6 46 2 254 3 3 4 338 
PAN 3 2 20 17 26 10 126 2 18 224 
ROD 12 2 0 53 7 1 1 301 0 377 
DYS 4 1 8 40 21 7 21 0 248 350 

TOTAL 1558 166 183 1517 552 389 218 397 393 5373 

Table 7.11. - MIM Classifier Dsicriminant Matrix (LEEDS) 

APP DIV Ppu NSAP CHO INO PAN RCO DYS TOTAL 

APP 800 60 85 150 8 61 20 19 10 1213 

DIV 8 133 18 9 3 32 5 11 3 222 
Ppu 3 5 103 3 7 9 16 - 4 150 

NSAP 267 154 87 831 55 155 122 130 143 1944 

CHO 3 26 49 13 334 21 72 9 28 555 

INO 16 45 29 11 6 185 26 6 14 338 

PAN 5 8 48 6 28 37 72 6 14 224 

RCO 15 16 21 34 6 10 18 254 3 377 

DYS 3 8 14 20 10 17 62 10 206 350 

TOTAL 1120 455 454 1077 457 527 413 445 425 5373 
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Table 7.12: NB Classifier Discriminant Matrix (LEEDS) 

App Div Ppu NSAP CHO INO PAN RCO DYS TOTAL 
APP 763 18 162 226 3 26 4 6 5 1213 
Div 9 102 18 55 2 27 2 4 3 222 
Ppu 13 7 87 4 9 7 21 - 2 150 

NSAP 240 79 108 1024 46 178 60 109 100 1944 
CHO 6 7 46 31 288 35 75 12 55 555 
INO 16 24 28 32 3 205 13 8 9 338 
PAN 5 2 47 18 26 31 64 6 25 224 
RCO 14 12 8 56 3 10 4 267 3 377 
Dys 1 3 23 36 11 28 28 - 220 350 

TOTAL 1067 254 527 1482 391 547 271 412 422 5373 

Table 7.13: GBN Classifier Discriminant Matrix (LEEDS) 

App Div Ppu NSAP CHO [NO PAN RCO DYS TOTAL 
APP 567 20 159 391 21 23 6 9 17 1213 
Div 13 39 12 92 6 43 5 5 7 222 
Ppu 25 2 71 15 13 7 8 1 8 150 

NsAp 145 29 77 1246 52 126 22 78 169 1944 
CHO 7 6 34 102 284 27 26 13 56 555 
INO 19 10 16 80 10 169 11 5 18 338 

PAN 15 5 31 50 34 18 28 3 40 224 

RCO 10 4 26 125 6 12 8 167 19 377 

DYS 4 2 14 97 9 18 18 9 179 350 

TOTAL 805 117 440 2198 435 443 132 290 513 5373 

Table 7.14. - SCN - ýpolytree' Classifier Discriminant Matrix (LEEDS) 

APP Div Ppu NSAP CHO INO PAN RCO DYS TOTAL 

App 477 7 8 680 2 28 2 3 6 1213 

Div 5 68 6 81 2 43 - I1 6 222 

Ppu 11 2 24 43 12 28 13 2 15 150 

NsAp 123 32 9 1373 41 141 14 79 132 1944 

CHO 4 3 14 74 327 46 9 13 65 555 

INO 11 18 11 112 6 143 6 8 23 338 

PAN 3 - 17 50 29 50 11 5 59 224 

RCO 7 4 3 156 2 15 4 183 3 377 

Dys 3 2 4 85 11 26 8 7 204 350 

TOTAL 644 136 96 2654 432 520 67 311 513 5373 

Table 7.15: MIM Classifier Discriminant Matrix (CADA) 

"p Dfv Ppu NSAP CHO INO PAN RCO DYS TOTAL 

APP 298 7 13 46 3 5 4 7 2 385 

Div 2 63 5 1 3 13 1 2 2 92 

Ppu - - 43 1 3 3 5 - 1 56 

NsAp 60 16 687 27 47 30 75 47 1100 

CHO 9 13 6 147 16 17 7 19 235 

INO 25 13 16 4 130 18 3 8 228 

PAN 6 12 2 3 5 30 1 12 72 

ROO 7 6 6 11 7 5 9 235 1 287 

DYS 3 17 23 19 34 13 40 3 301 453 

TOTAL 434 193 144 789 231 237 154 333 393 2908 

Table 7.16: NB Classifier Discriminant Matrix (CADA) 

APP L)Iv rpu NSAP CHO INO PAN RCO Dys TOTAL 

--7 pp 294 ý 2 5 73 2 2 2 
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8 14 6 22 6 147 15 - 10 228 

INO 
2 3 9 1 7 7 23 2 18 72 

PAN 
7 4 1 25 6 6 2 234 2 287 

RCO 
3 9 8 27 20 17 23 2 344 453 

DYS 
TOTAL 351 110 82 1058 197 256 111 289 454 2908 
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Table 7.17: GBN Classifier Discriminant Matrix (CADA) 

App Div Ppu NSAP CHO INO PAN Rco Dys TOTAL 
App 228 2 3 133 3 7 1 2 6 385 
Div 4 15 1 42 2 20 1 3 4 92 
Ppu 7 - 32 3 6 2 2 - 4 56 

NSAP 37 6 4 904 13 34 7 37 58 1100 
CHO 1 2 3 42 125 7 10 3 42 235 
INO 6 4 2 66 5 124 5 3 13 228 
PAN 5 1 2 22 10 7 9 - 16 72 
Roo 6 1 1 69 8 5 1 182 14 287 
Dys 6 4 1 153 17 14 2 9 247 453 

TOTAL 300 35 49 1434 189 220 38 239 404 2908 

Table 7.18: Doctors Discriminant Matrix (CADA) 

App Div Ppu NsAp CHO INO PAN Rco DYS TOTAL 
App 308 2 1 66 1 1 3 2 1 385 
Div 1 45 6 23 3 12 - 1 1 92 
Ppu I - 38 5 5 2 1 - 4 56 

NsAp 271 13 1 729 12 26 4 24 20 1100 
CHO 1 2 4 24 162 7 13 2 20 235 
INO 5 3 3 26 1 179 3 1 7 228 
PAN - 2 3 to 4 4 45 1 3 72 
RCO 6 - - 27 4 1 1 247 1 287 
Dys 3 3 9 58 19 5 Is 1 340 453 

TOTAL 596 70 65 968 211 237 85 279 397 2908 

Table 7.19: SCN - 'polytree' Classifier Dsicriminant Matrix (CADA) 

APP Div Ppu NSAP CHO INO PAN Rco DYS TOTAL 
APP 199 1 1 172 2 4 2 - 4 385 
Div 1 25 2 31 3 25 - 3 2 92 
Ppu 1 2 6 9 7 17 1 - 13 56 

NsAp 30 11 1 933 16 35 1 33 40 1100 
CHO I - 4 34 115 27 1 11 42 235 
INO 4 13 2 68 6 105 3 5 22 228 
PAN 2 1 3 20 9 8 2 - 27 72 
ROD 3 4 - 85 7 6 1 178 3 287 

Dys 2 3 1 82 22 29 2 4 308 453 
TOTAL 243 60 20 1434 187 256 13 234 461 2908 

7.6.2 Results 'Selective' Experiments 

Table 7.20 and Table 7.21 show the average prediction accuracies for the selective MIM and 

selective NB classifiers, for the CADA and LEEDS data sets respectively. As was the case in section 

7.6.1, each table entry describes the average accuracy along with the sample deviation. For 

comparison, the resulting accuracies for the MIM classifier, NIB and doctors have also been included. 

Table 7.20. - Average Predictive Accuracy 'CADA Y- error rates 

smim SNB Default (overall) Doctor mim NB 

0.2937±1.04 0.2906±1.49 0.5495 0.2834±0.28 0.3349±0.82 0.2617d: 1.16 

Key: MIM -Mutual Information Measure Classifier, NB - Naive Bayes Classifier, SMIM - Selective MIM 

Classifier, SNB Selective NB Classifier. Values in bold type indicate the highest model performance achieved 

by the classifier in respect of the CADA database. 
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Table 7.21: Average Predictive Accuracy 'LEEDS'- error rates 
smim SNB Default (overall) Doctor mim NB 

0.4336±0.11 0.4395±1.32 0.6382 0.3413±0.0 0.4569±0.52 0.4489±0.53 

Key: MIM -Mutual Information Measure Classifier, NB - Naive Bayes Classifier, SMIM - Selective MIM 
Classifier, SNB Selective NB Classifier. Values in bold type indicate the highest model performance achieved 
by the classifier in respect of the LEEDS database. 

The plots In Figure 7.6 and Figure 7.7 represent the performance results relative to the MIM 

classifier and the NB classifier for the two selective variants. Whilst Figure 7.8. shows the predictive 

accuracy of the SNB relative to the SMIM classifier. The error bars are the Post Hoc Tukey 

comparisons with overall 95% confidence for the relative differences. 

The SMIM performed better than the MIM classifier in both the CADA and LEEDS data set with the 

differences found to be statistically significant in both. (CADA p-value = 0.014, LEEDS p-value = 

0.001). The NB classifier did not have differences that were statistically significant in respect of the 

LEEDS data set compared to the MIM classifier with a p-value = 0.28, and this was also the case 

when compared to the SMIM classifier with a p-value = 0.965, however unlike the MIM classifier 

the SMIM was marginally better in predictive performance than NB. 
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Figure 7.6. Predictive Accuracy relative to MIM Classifier (SMIM). 
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Figure 7.7. Predictive Accuracy relative to NB Classifier (SNB). 
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For the CADA data set although NB has a better predictive accuracy to that of the doctors, it did not 

have differences that were statistically significant, with p-value = 0.221. As previously observed in 

section 7.6.1 when compared to the MIM classifier, the NB maintained its predictive performance 

outperforining the SMIM with differences found to be statistically significant with a p-value < 0.05. 

Despite the increase in predictive accuracy of the SMIM, overall it did not exceed that achieved by 

NB. However, in respect of the SNB, its performance was found to be almost equal. During our 

investigation we observed that the optimised SNB required 20 features of the 33 that NB used, but 

this reduction in class MB also reduced its predictive accuracy from that achieved by the NB. In 

contrast, the SMIM expanded the CL algorithm class MB from 15 to 30 features, matching SNB's 

performance. In the LEEDS data set there were no obvious changes in performance for the NIB/SNB 

with the SMIM classifier performance found to be marginally better than both NB and SNB. 

However, there were no differences found to be statistically significant (p-value = 0.727 for the SNIB 

and p-value = 0.965 for NB). 

Figure 7.9 and Figure 7.10 show the features selected by the two selective variants in respect of the 

CADA training partition. Just as for the 'non-selective' experiments we also calculated additional 

statistics as shown in Table 7.22 and 7.23. 
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Figure 7.8. Predictive Accuracy relative to SMIM Classifier (SNB). 
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For the individual diseases the SMIM identified 7/9 better than the SNB. This was two groups better 

(INO/RCO) than that achieved by the MIM classifier compared to the NB when tested with the 

LEEDS data set. 

Figure 7.9. Selective Naive Bayes (SNB) Structure 
C, 

For the CADA data set, this remained at 6/9 as previously achieved by the MIM classifier when 

compared to NB. From the Tables 7.22 and 7.23 and Tables 7.24 to 7.27, the discrirninant matrices, 

the SMIM rrusclassifies high frequency diseases to other high frequency diseases. This was the same 
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for the SNB, and observed for both CADA and LEEDS data sets. Since this was also observed for 

the MIM classifier and NB, the 'selective' variants appear to have had no additional influences. 

Figure 7.10. Selective Mutual Information Measure (dashed lines) Structure 

The individual disease predictive values for the SMIM, Tables 7.22 and 7.23, are generally higher 

than those of the SNB in respect of the low frequency diseases, whereas for high frequency diseases, 

predictive values are comparable with SNB except for the disease group NSAP. This was observed 

for both the CADA and LEEDS data sets. When SMIM was compared to the results achieved by the 

doctors, the predictive levels for all diseases were found comparable except for PAN and internal 

obstruction (INO), with SMIM achieving a better appendicitis (APP) value for the CADA data set. In 

respect of the LEEDS data set, the doctors performed generally better for all diseases compared to 

smim. 

The expansion of the MIM classifier class MB (SMIM) appears to have improved the predictive 

performance in both data sets. In the case of the SNB, although its performance was reduced for 

CADA there were no 'real' changes in performance for LEEDS. The NBs use of all features is 

supported by SMIM and probably implies the CL algorithm defined class MB was not the best for 

classifying this domain. As previously observed, the majority group NSAP contributed heavily to 

both the 'overall' predictive accuracy of NB and SNB. However, with respect to the individual 
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diseases, the MIM and SMIM classifiers identified more than both NB and SNB on the LEEDS 

4extemal' test samples. 

The improvement in performance of the MIM classifier, that is SMIM, is probably due to better 

modelling of the domain, resulting in an improvement in predicative accuracy for both low and high 

frequency diseases, whilst maintaining a comparable accuracy to NB. This was not observed for the 

SNB which resulted in a degradation of performance compared to NB. 

Table 7.22: CADA Statistical values 

Final 

Diagnosis # Cases % Cases 

Smim 

Predictive 

Value % 

SNUM 

Likelihood 

Ratio 

Smim 

Sensitivity 

Smim 

Specificity 

SNB 

Predictive 

Value % 

SNB 

Likelihood 

Ratio 

SNB 

Sensitivity 

SNB 

Specificity 

APP 385 13.24 82.251 25.9589 0.7189 0.9723 62.078 13.797 0.7749 0.9438 

DfV 92 3.160 67.754 26.921 0.2961 0.9890 46.424 22.811 0.4013 0.9824 

PPU 56 1.930 79.464 93.556 0.3853 0.9959 57.643 50.418 0.4224 0.9916 

NSAP 1100 37.83 64.803 4.9076 0.8985 0.8169 81.506 6.4344 0.758 0.8821 

CHO 235 8.080 61.135 21.110 0.7124 0.9663 61.702 20.579 0.6868 0.9666 

INO 228 7.840 57.237 15.733 0.5724 0.9636 57.140 15.471 0.5647 0.9635 

PAN 72 2.480 47.917 13.699 0.1885 0.9863 21.028 12.338 0.2465 0.9800 

RCO 287 9.870 86.121 48.040 0.7429 0.9845 82.878 42.945 0.8075 0.9812 

DYS 453 15.58 69.978 14.496 0.7869 0.9457 70.294 13.334 0.7265 0.9455 

Table 7.23. - LEEDS Statistical values 

Final 

Diagnosis # Cases % Cases 

SMIM 

Predictive 

Value % 

SMIM 

Likelihood 

Ratio 

Smim 

Sensitivity 

SMIM 

Specificity 

SNB 

Predictive 

Value % 

SNB 

Likelihood 

Ratio 

SNB 

Sensitivity 

SNB 

Specificity 

APP 1213 22.58 67.752 7.8085 0.7214 0.9076 49.793 5.6221 0.7497 0.8667 

DIV 222 4.130 65.165 21.477 0.3360 0.9844 38.288 15.094 0.4007 0.9735 

PPU 150 2.790 75.222 26.118 0.2017 0.9923 61.427 13.905 0.1669 0.9880 

NSAP 1944 36.18 44.865 3.1116 0.7830 0.7484 57.657 2.4368 0.5819 0.7612 

CHO 555 10.33 62.913 18.219 0.7629 0.9581 60.386 16.459 0.7359 0.9553 

INO 338 6.290 56.016 13.209 0.4007 0.9697 55.749 13.029 0.3978 0.9695 

PAN 224 4.170 49.256 9.9785 0.2316 0.9768 20.027 6.7888 0.2347 0.9655 

RCO 377 7.020 68.789 28.343 0.6689 0.9764 64.836 26.694 0.7041 0.9736 

DYS 350 6.510 53.238 17.077 0.5549 0.9675 56.203 15.475 0.4781 0.9691 

Table 7.24 : SMIM Classifier Discriminant Matrix (CADA) 

APP DIV Ppu NsAp CHO INO PAN RCO Dys TOTAL 

APP 317 4 12 41 1 2 6 1 1 385 

DIV 1 62 5 3 2 13 2 3 1 92 

Ppu 0 1 45 0 3 1 5 0 1 56 

NSAP 100 77 11 711 16 50 22 69 44 1100 

CHO 3 4 8 4 144 12 32 4 24 235 

INO 9 37 10 11 2 131 18 5 5 228 

PAN 1 4 11 1 5 4 35 2 9 72 

RCO 8 9 2 8 5 5 3 247 0 287 

DYS 3 10 11 14 25 12 59 2 317 453 

TOTAL 442 208 115 793 203 230 182 333 402 2908 
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Table 7.25 .- SNB Classifier Discriminant Matrix (CADA) 
App Div Ppu NSAP CHO INO PAN RCO DYS TOTAL 

App 239 2 7 122 2 6 1 1 5 385 
Div 2 43 2 20 3 16 1 3 2 92 
Ppu 1 5 32 2 4 3 5 1 3 56 

NsAp 46 20 3 897 16 31 4 40 43 1100 
CHO 1 3 6 13 145 16 12 4 35 235 
INO 9 20 5 37 5 130 8 3 11 228 
PAN 1 6 12 2 3 5 30 1 12 72 
Reo 5 3 1 30 4 4 1 238 1 287 
Dys 4 5 9 55 27 17 15 3 318 453 

TOTAL 308 107 77 1178 209 228 77 294 430 2908 

Table 7.26: SMIM Classifier Discriminant Matrix (LEEDS) 
App DIV Ppu NSAP CHO INO PAN RCO Dys TOTAL 

App 822 35 168 128 2 40 10 5 3 1213 
DIV 11 145 18 15 3 20 5 3 2 222 
Ppu 7 4 113 2 7 2 13 0 2 150 

NsAp 265 158 98 872 59 157 125 100 ]to 1944 
CHO 5 8 43 11 349 23 91 8 17 555 
INO 13 49 30 17 3 189 24 8 5 338 
PAN 4 4 49 9 15 19 110 3 11 224 
RCO 13 22 20 37 2 8 15 259 1 377 
DYS 0 5 19 23 18 15 83 1 186 350 

TOTAL 1140 430 558 1114 458 473 476 387 337 5373 

Table 7.2 7. - SNB Classifier Discriminant Matrix (LEEDS) 

APP DIV Ppu NSAP CHO INO PAN RCO DYS TOTAL 
APP 604 16 174 369 6 24 10 4 6 1213 
DIV 7 85 19 64 3 36 2 4 2 222 
Ppu 12 2 92 5 10 9 16 0 4 150 

NsAp 143 65 113 1221 47 126 38 73 118 1944 
CHO 4 8 42 38 335 32 47 8 41 555 

[NO 14 19 26 56 7 188 to 7 11 338 
PAN 7 3 47 25 32 33 45 5 27 224 

RCO 13 9 12 82 3 6 4 244 4 377 

DYS 2 4 25 67 14 19 20 2 197 350 

TOTAL 806 211 550 1927 457 473 192 347 410 5373 

7.6.2.1 Related Work -I Selective' 

Applying feature selection to reduce model dimensionality not only promotes a rise in 

interpretability and comprehensibility, but as these models require less input they can easily be used 

by clinicians. From our experimental results, Figure 7.2, we observed that the class variable had 

several parent nodes leading to a large number of probabilities to be both estimated and updated. 

This was also found to be the case by Luo [GL9 1] who constructed a SCN employing the same CL 

algorithm as used for building the MIM classifier. The approach taken to reduce dimensionality and 

thus make the class MB more tractable was to apply a Kullback ;r2 equivalent threshold to identify 

and remove symptoms found to be statistically irrelevant. Their experimental results suggested that 

there was no loss of performance, although when compared to NB it was out performed despite 

modelling domain dependencies. In contrast, the SMIM classifier adopts an expansion of the class 

MB and is not influenced by 'multi' parented class nodes. As demonstrated by the results shown in 
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Table 7.20 and Table 7.2 1, the increase in features with respect to the class MB actually results in an 
increase of performance. The Tables Bl-B8, Appendix B, however indicate that the approach taken 

by Luo may not be valid. Whilst statistically symptoms may appear to be irrelevant, their removal 

from the class MB for all diseases is not appropriate. From the Tables BI-B8, Appendix B, the 

distribution of symptom values differs from disease to disease. This is further supported by the 

questionnaire responses supplied by experts identifying 'key' symptoms in respect of each disease. 

The removal from the class MB implying that a particular symptom is irrelevant for all nine diseases 

is clearly wrong. 

To illustrate the effect of this approach we applied a similar Kullback threshold (Z 2 with a level of 

confidence set to 0.99) to the CADA data set. Table 7.28, shows the symptoms that were found to be 

statistically irrelevant. If we include in this table those symptoms that the experts have specified as 

important in assigning a disease to a patient, then it is easy to see that many 'key' items will be 

removed. 

Table 7.28. - Kullback Thresholding - SymptomlDisease Removal 

Symptoms identified as Doctors 'key' symptoms taken Diseases most appropriately 
statistically 'irrelevant' from Questionnaires associated with the symptom 

Progress of Pain N/A 

Duration of Pain Duration of Pain APP (12-24 Hours), DIV (>48 
Hours), PPU (12-24 Hours), 
CHO (>48 Hours). 

Severity of Pain N/A 

Nausea ------------------------------------ N/A -------------------------------------- 

Vomiting Vomiting CHO (present), INO (present), 
PAN (present), DYS (present) 

Vomiting DIV (No Vomiting) 

Anorexia N/A 

Colour Jaundice CHO (Jaundice) 

Bowel Habit Bowel Habit INO (Constipated), 
DIV(Diarrhoea) 

Micturition Micturition RCO (Haematuria) 

Previous Pain Previous Pain DIV (Similar Pain Before), PPU 
(No Similar Pain Before) 

Drugs N/A 

Rigidity ------------------------------------ N/A -------------------------------------- 

Abdominal Masses Abdominal Masses INO (present), DIV (present) 
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The approach taken by Luo represents a 'top-down' optimisation. Singh's Selective BN [Sin98] and 

Gu's G&T [GG90] system on the other hand adopt a 'bottom-up' selective approach. In these two 

methods symptoms are incrementally added to the model until the design criteria is satisfied. 

Unlike Luo's approach, symptoms deemed 'irrelevant' are excluded. In the case of the G&T system 

combinations of symptoms are determined for each disease and assigned a probability value for the 

corresponding grouping using Bayes theory. As was previously shown, each disease is represented 

by a varying 'set' of symptoms (values), which for the G&T represents a combination of symptom 

values. Essentially new evidence is matched to a particular 'combination' and its probability read- 

off. With nine possible values, one for each disease, the highest probability is used to classify a 

patient's symptoms into one of the mutually exclusive diseases. Like the MIMJSMIM classifier, both 

the observed and unobserved symptom values are used to evaluate a patient's illness. In the case of 

the G&T, unobserved symptom values are considered during the selection of symptom combinations, 

just as those actually recorded in the database. This is not to be confused by 'missing' which 

represents symptom values that have not been recorded at all, but the compliment of the recorded 

symptom value. For example, if an observed symptom has a value 'present' the unobserved value 

would be 'absent'. For the MINVSMIM classifier, these values form part of the calculation of MI 

branch weights. As we discussed in section 7.6.1, this approach highlighted a limitation for both the 

MEWSMIM classifier and the G&T system in classifying samples of NSAP. 

In the G&T system the setting of the X2 threshold level determines the cut-off for 'combination 

size'. That is, the numbers of symptom values that will be considered statistically relevant that 

constitute a 4set' or group of symptoms with respect to a disease. This allows the system to optimise 

its 'selective' process and potentially increase its performance accuracy. Unlike the SMIM classifier, 

which can only expand its class MB, the G&T has some flexibility to both expand and reduce its 

symptom combination size. Despite the additional modelling of dependencies and flexibility, the NB 

classifier was found to outperform the G&T system. As was also reported by Singh [Sin98] the NB 

classifiers 'overall' performance was largely influenced by the performance of the majority group 

NSAP. 
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7.7 Discussion 
Two of the key findings of this study are the effect of feature selection in this domain, and the use of 

restricted 'tree' based classifiers. The results show that 'trees' which use only a small fraction of the 

features (class MB specific), selected by using the CL algorithm, display a much higher accuracy 

compared to GBNs unrestricted modelling of all the features. This is more evident for the SMIM 

classifier which expands the class MB whilst maintaining the efficiency of the 'tree' based MIM 

classifier. Although not so obvious perhaps in performance levels, the 'polytree' also outperformed 

the GBN. In the case of the 'Polytree', despite being computationally simpler than the GNB, it is 

sensitive to the choice of node ordering, which in terms of branch directionality means potentially 

large CPTs, and is still difficult to fully recover. As demonstrated by the results, the performance of 

the SCN seems to have been influenced by this choice, just as was observed for other datasets, used 

in Chapter 4. 

For the high frequency diseases the GBN performed comparably to NB/SNB at identifying them 

correctly and for some diseases marginally better. In the case of the low frequency diseases the GBN 

was poorer, with the NB and SNB (although SNB was slightly less than NB) much better. This was 

also observed for the 'polytree' which aligned with that of the GBN. This could possibly be 

attributed to the lack of sufficient data in this high dimensional domain. 

For the diseases that occurred more frequently (NSAP, DYS, CHO) GBN/SCNs are able to easily 

detect the appropriate relationships and get accurate estimates of the parameters, thus yielding higher 

accuracies from these diseases. For the low frequency diseases GBNs in particular, pick up spurious 

dependencies with inaccurate parameter estimates, which in turn leads to a poor performance on 

these diseases (PAN, DIV, PPU). For the SCN, the 'tree' based approach should alleviate the 

problem however, the class MB will be dependant upon the node ordering and thus as the results 

indicate, only marginally outperforms the GBN. 

The implication is that the performance of complex representations such as the GBN will probably 

improve in domains were there is sufficient available data. Nevertheless, for even the small amount 

of data, the experimental results show that the MIMJSMIM classifiers are viable alternatives to the 

extremely simple NB classifiers as well as the more complex GBNs. The results indicate that the 

SMIM classifier was comparable to the NB at correctly identifying low frequency diseases and to the 
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GBN for correctly identifying high frequency diseases. For the LEEDS (external) data set the SMIM 

classifier identified correctly 7/9 diseases compared to the SNB. 

Supported by the results we observed that our approach to treating missing values as an extra value 

of the domain symptoms was probably appropriate for this domain. As stated by Friedman [Fri98], in 

some cases it is the very absence of a value that is informative, and not the actual missing value. This 

appears to be the case for AAP, which has many classes and even more features. As we have shown, 

several features are relevant only for certain diseases (Tables BI -B8, Appendix B) and, thus, their 

values may not be recorded in circumstances in which the examining doctor has considered them to 

be irrelevant or redundant in respect of the current known inforniation. In this scenario, the particular 

value is no longer important. The implication is that the absence of a value for a particular feature 

should increase the likelihood of diseases for which that feature is not relevant (similarly decrease for 

which it is). Only by treating missing values as an extra value, can this relationship be readily 

modelled [Sin98]. Undoubtedly, the best way to deal with missing items is to use domain knowledge. 

In the objectives, section 7.2, we stated some aims of the study we wanted to specifically investigate. 

From our experimental results it seems likely that the NB classifier is 'optimal' for this domain. 

However, this is only in respect of the 'overall' performance accuracy which in turn is due to the 

majority group NSAP (for CADA). When evaluated with 'truly' external data (LEEDS) the NB 

classifier still performed well, but was matched by the SMIM classifier which did not have an 

'overall' performance influenced by NSAP. What was evident was the need to expand the class MB 

to virtually include all 33 features just as NB's default feature set. The degraded result achieved by 

the SNB, which reduced the class MB, further supported the apparent need to include the fall 33 

features. 

The advantage offered by the dependency models over the NB is the qualitative structure, providing 

a recognisable representation of the domain. Moreover, the MIM classifier not only compares 

favourably with the NB but demonstrates a viable alternative without making extreme CI 

assumptions. In respect of the effect of modification to the class MB, the results indicate that the 

'initial' CL algorithm derived class MB was probably not 'optimised'. Although due to exponential 

constraints it was not possible to find the optimal solution, the expansion of the class MB (SMIM) 
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did increase performance accuracies of the MIM classifier which closed the gap on the NB classifiers 

performance. 

In general, the experts viewed the MIM classifier's diagnostic proposition, as a prompt to carry out 

further investigations or to serve to enforce what they already believed. They did however, confirm 

many of the statistically derived symptoms (in terms of parameter values as listed in Appendix B) 

aligned with their own perceptions. From the questionnaire, (specifically Q2, Appendix Q there was 

evidence that provided support for this view with an indication that additional analysis was almost a 

necessity. n one hand, their responses related to the use of some heuristics. For example, sweating, 

smoking and a high alcohol intake pointed towards PPU whilst observing a patient getting on/off a 

trolley towards APP. On the other hand, their responses indicated the need to carry out further 

investigations and/or tests such as White Blood Cell (WBS) counts, X-rays and temperature 

measurements. This may be an indication as to the reason for achieving an 'overall' 70% predictive 

accuracy, with both the experts and the statistical methods having to make a decision based purely on 

the analysis of the 'initial' patient observation record (Appendix D). 

The MIM classifier's qualitative representation, along with the symptom parameters, not only 

provides an insight to the domain but also offers a mechanism for knowledge discovery. The experts 

regarded this aspect as a very effective aid for visualising the domain of AAP and in turn, considered 

this knowledge representation a benefit to casualty officers and junior house officers. What they also 

found interesting was the symptom-symptom 'commonality' aspect. Whilst the initial fon-nat of the 

data set was originally considered adequate for this domain, this characteristic may well have 

identified some redundancy in the data defmition and perhaps a need to re-defme the dormin 

variables. Despite this anomaly, the use of the class MB does enable the experts to 'focus' on the 

specific questions that need to be asked in respect of a suspected disease, rather than routinely going 

through all. Since recording patient details is considered a labour intense activity, particularly for a 

busy A&E department, any reduction offered was viewed as beneficial. 
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7.8 Summary 
In this chapter, we investigated the claims that the NB classifier was optimal in respect of the 

medical domain AAP. The main contribution of the study lies in showing that, with respect to the 

dependency model representations, the MIM classifier and its selective variant SMIM, can be 

effectively applied to the domain of AAP. Unlike NB the MIM classifier does so without making the 

assumption of extreme conditional independence providing a qualitative structure of the domain 

recognisable by the doctors. In the main part of our study we compared the Naive Bayes with two 

other 'tree' modelling approaches, namely the MIM classifier and a 'polytree' (SCN) as defined by 

Rebane and Pearl [RP87], along with a general Bayesian network approach. 

The MIM classifier performed 'overall' better than the 'polytree' and GBN. When evaluated with a 

truly 'external' database of the domain, the MIM classifier's 'overall' predictive performance was 

found to be comparable to that achieved by the NB classifier. Moreover, we observed that the 

apparent 'optimality' of the NIB classifier's success, particularly in the CADA data set, was largely 

due to its ability to successfully identify the majority group NSAP. This observation was confirmed 

in respect of the domain individual disease groups with the MIM classifier identifying 5/9 class 

values better than that achieved by NB for the LEEDS data set and 6/9 class values for the CADA 

data set. 

In the second part of the study we expanded the class MB of the MIM classifier and compared it to 

the performance of the SN-B. Our experimental results indicated that the 'initial' class MB, defined 

by the CL algorithm, was probably not optimised for this domain and more features were required. 

The loss of performance shown by the SNB in reducing the class MB further supported the need to 

include more, rather than less, domain features. 

By modelling the domain using an efficient 'tree' structuring algorithm we have avoided the issues 

of complexity and overfitting to which networks are prone. 

Our experimental results on the two AAP databases have demonstrated that the MMVSMIM 

classifier's performance was comparable to that of the NB classifier when evaluated with 4external' 

data of the domain, namely the LEEDS database, and provides an ideal middle ground between the 

N-B and GBN approaches. 
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Conclusion 

In Chapter 1, we discussed two main objectives of this research. Our motivation was to better 

support the acceptance of BNs, specifically in the task of classification. First, we wanted to 

overcome some of the issues that limit the GBN/SCN by exploring the application of an information 

theory based method for inducing a Classifier from a BN. Second, we wanted to demonstrate the 

feasibility and effectiveness of the proposed approach by applying it to a selection of difficult 

benchmark domains. Since previous chapters provided individual summaries, this final chapter 

reviews in the sections that follow, the main contributions of the thesis, with a discussion of some 

proposals for ftirther research in section 8.2. 

8.1 Summary of Contributions 
The main issue addressed in this thesis is the inference complexity due to large CPTs and the 

corresponding probability estimations, often associated with high dimensional 'real' world domains. 

In section 8.1.1, we summarise a new method to deal with this problem, while in section 8.1.2, we 

further explore a solution to improve and overcome the drawbacks of the proposed method. Section 

8.1.3, briefly discusses the application of the two approaches to the 'real' world domain of Acute 

Abdominal Pain, with section 8.1.4 providing a sununary of the section. 

8.1.1 The Mutual Information Measure (MIM) Classifier 

To address inference complexity in BNs, we proposed a new classifier, described in Chapter 3, 

which explored a new direction of applying information theory based methods to induce a Classifier 

from a BN in the form of a 'tree' structure. Our aim was to avoid the dependence upon prior node 

ordering and the consequential inference complexity associated with the estimation of probabilities 

in large CPTs. In addition, we wanted to maintain as accurate qualitative representation of the 

domain as possible by modelling all the feature associations. Specifically, our intention was to avoid 

making strong conditional independence assumptions as adopted by the NB classifier. 
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In this thesis, we have developed a method for inducing a classifier from data and carried out 

extensive experiments to demonstrate that the new classifier generally performs better than the 

unrestricted GBN, 'polytree' and NB methods. We also show the method can learn a BN classifier 

(as a 'tree') that is smaller and more computationally efficient for inference, thus making the 

proposed approach more feasible for 'real' world applications that might have otherwise been 

avoided. The method, called the MIM classifier, as it corresponds to the restricted class of trees built 

from MI, uses the efficient CL algorithm [CL68] for constructing an undirected 'tree' structure. 

Since node ordering choice and subsequent CPT dimensionality are known to impact on a BN's 

ability to perform well as a classifier, the new method applies a node ordering heuristic in order to 

complete the qualitative aspect of the method. This circumvents the possibility of making a bad 

choice as doing so may not only result in a topology which leads to an intractable solution but also to 

the possibility that CPTs will require an unrealistic number of probabilities to both estimate and 

subsequently update on receipt of new evidence. By adopting this heuristic, we ensure directionality 

is assigned outwards from the root vertex to all other domain features of the tree structure. Moreover, 

by configuring the class variable to be the root of the tree, the CL algorithm can additionally be used 

to define the classifier's class MB with consistency. 

In order to classify new evidence from the domain, the MI values are considered as branch 'weights', 

representing a measure of strength, which are then used in conjunction with the class MB to 'profile' 

the characteristics of the individual class-states and thus provide a mechanism for discriminating 

between them. Classification in BNs makes use of the CPT estimated probabilities, however, in 

situations where domain feature dimensionality is high and data sets sparse, these probability 

estimates may be unreliable. In contrast, by using only pair-wise marginals to calculate 'weights', the 

MIM classifier requires, at most, (n 
- 1) MI values to be updated in order to classify new evidence 

and therefore overcomes the issues of CPT dimensionality that lirnit the 'polytree' and GBN models. 

Relative to the methods that depend upon CPTs to classify (GBN and 'polytree') the MIM classifier 

was shown in Chapter 4 to perform comparably, confirniing that neither the restricted topology, that 

is the assumption that the underlying structure was a 'tree', nor the node ordering heuristic, affected 

its performance. Moreover, the results further demonstrated that the MIM classifier outperformed 

significantly the NB classifier, one of the most widely studied methods. 
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In general, when compared to the dependency methods, the MIM classifier was better than the GBN 

and SCN for 13/20 data sets, whilst compared to the NB classifier, 15/20. In respect of the GBN, the 

'tree' based structure of the MIM classifier meant that there would be a reduction in parameterisation 

and thus lead to a model with less complexity than the unrestricted BN. Our expectation was that as a 

'tree' structure, the class MB would comprise only a subset of the available domain features and 

therefore perform better, especially in the high dimensional, small sample sized domains. From the 

results in Chapter 4, this was confirmed, with the MIM classifier achieving 16/20 data sets better 

than the GBN with, in general, a smaller class MB. 

In the case of the SCN, our implementation meant that structurally (skeleton) the 'polytree' would 

have essentially the same topology as the MIM classifier, with the only potential difference being its 

class MB. As this is determined by the resulting directionality assignment the class MB for the 

'polytree' could be (as it will potentially include child nodes with parents) more complex than that of 

the MIM classifier. This latter aspect represents a form of node ordering and as we stated earlier, a 

bad choice could easily impact on its performance as a classifier. For the MIM classifier however, 

the MI branch value is independent of the actual directionality assigned to a branch, and therefore the 

node ordering heuristic was not expected to impact on its classification performance, other than in 

deriving its class MB. The experimental results, Chapter 4, bear this out. In comparison with the 

ýpolytree' the node ordering choice did appear to have an influence, with the 'polytree' only 

achieving 6/20 in direct comparison to that achieved by the MIM classifier. 

During the process of investigation we also discovered some properties of the data sets for which the 

classifier is best suited, along with some limitations that can be used to assist in the design of 

improved methods (these are ftirther discussed in section 8.2). Moreover, from the results shown in 

Chapter 4, several important ramifications have also emerged. 

Firstly, there is an indication that the MIM classifier provides a way to apply BNs to problems 

where previously it was not possible due to large CPT size and poor probability estimates. This is 

particularly evident for high dimensional, small sample sized domains. 

Secondly, in overcoming the issues that limit the 'polytree' and GBN models, the MIM classifier 

represents a good middle ground model (lying between the NB and GBN). Essentially, by using 

pair-wise marginals to calculate branch 'weights' we avoid the issues associated with CPT 
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dimensionality and by application of a node ordering heuristic, we ftirther avoid the consequences of 

making a poor choice. By using an efficient 'tree' structuring algorithm we also avoid making strong 

CI assumptions, thus maintaining a qualitative representation of the domain (even if restricted). 

Thirdly, by identifying various properties of a particular data set, the results provide an aid to the 

determination of whether the MIM classifier approach is best suited for a specific domain and 

whether it offers any significant benefits in comparison to the other competitive methods. In Table 

8.1 we provide a summary guide, in respect of each non-selective approach, indicating what domain 

properties best suit a particular method. In the case of the MIM classifier and in the context of the 

databases studied, we observed that it was generally more beneficial than the GBN for all types of 

data sets, especially those with high dimensionality and 'multi' parented class variables. In contrast, 

where data sets have only a few features and the sample size is large, the GBN is a preferable option. 

For domains that have large sample sizes and a medium dimensionality (14-34 features), the MIM 

classifier is better suited, however for smaller sample sizes the NB should be selected. 

8.1.2 The 'Selective' MIN4 Classifier 

A drawback, identified in Chapter 4, section 4.7, highlighted an issue concerning the induction of the 

MIM classifier. Since the CL algorithm is prone to generating 'trees' with missing relevant features 

or adding irrelevant features to the structure, the MIM classifier's derived class MB optimality is 

uncertain. In order to investigate this we considered the issue as a feature selection problem and 

derived a 'Wrapper' type selective variant of the MIM classifier, described in Chapter 5. Our aim 

was to determine whether the CL algorithm could be considered a viable approach for determining 

the class MB and as an 'initial' MB, whether it could be improved. 

Since high dimensional domains represent exponential feature selection search problems, our 

approach considered the 'initial' MB as a lower bound. Taking this view we used the 'Wrapper' to 

expand the class MB, selecting candidate edges having a maximal MI value in respect of their 

C-Z branch associations. As edges were added, the 'selective' variant was evaluated by 

measuring its performance accuracy. For the evaluation function we used the same efficient 'tree' 

based classifier (namely the MIM classifier), which has the advantage of incorporating any potential 

bias associated with the classifier during feature selection. Although using the 'initial' MB does 

provide a good starting point, for the high dimensional domains the approach proposed still requires 
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a potentially unrealistic number of edges to be considered in order to reach an 'optimised' 

performance. Whilst we could select a limiting criteria to circumvent this possibility, the occurrence 

of local maxima/minima as shown in Chapter 6, forces the approach to consider all C-Z 

associations. To deal with this, we introduced two heuristics which enabled the algorithm to 

terminate safely and alleviate the inevitable computational expense. 

To evaluate the 'selective' MIM classifier, presented in Chapter 5, we performed several experiments 

using the same data sets as for the MIM classifier and demonstrated that the approach in general did 

improve its performance. The results showed that the combined 'overall' performance of the 

SMIM/MIM classifiers was 13/20 data sets better than all other methods studied. During our 

evaluation several specific aims were addressed. First, we wanted to detenTiine whether the 

expansion of the class MB improved the MIM performance accuracy. The results demonstrate that 

by focusing on the class MB there is improvement in performance for domains with greater than 15 

features. The most prominent of enhancements was observed for the smaller data sets in contrast to 

the larger ones where, in general, no improvements were observed. Second, the CL algorithm is an 

implied feature selector and as such we were interested in whether the class MB or lower bound 

represented an 'optimised' MB, and if not, was it a good starting point for expansion. The results of 

Chapter 6, indicate that this was the case in both instances. Firstly, for the larger data sets where 

there was very little improvement in performance accuracy and thus the lower bound, the MIM 

classifier maintained superior performance levels over the other methods for many of the data sets 

studied. This implies that the MB could not be further improved upon. In the second instance, where 

there was evidence of improvement by MB expansion for some of the smaller data sets, performance 

of the SMIM classifier was again found to be superior to the other approaches. The drawback 

however, is that whilst focusing on the class MB does allow improvement in some domains, the 

'Wrapper' approach does not guarantee to find an 'optimal' solution. 

Our third and fourth aims were concerned with the consequences of the MB expansions. As the 

SMIM classifier expands the class MB, we wanted to evaluate the cost in terms of model complexity 

and the effect on learn rates. The results of Chapter 6 indicate that where perfom-iance accuracies 

were enhanced, it was not at the price of increased complexity as in most cases only a marginal 

number of features actually required to be added to the 'initial' class MB. Thus the complexity of 
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the SMIM classifier was not much more than that of the MIM classifier. As expected there was an 

impact on the learn rates, particularly evident for small sample sizes. However, the 'overall' 

performance levels achieved were generally found to be better than the non-selective variant with 

performance levels stabilising at the same 60% sample size after an initial steep climb at 20% of the 

sample size. 

The implication of these results is that the classification technique, proposed in section 8.1.1, is not 

restricted to 'tree' based structures (with respect to the class MB) and is thus independent of the 

underlying topology of the domain being modelled. 

At first glance this may appear to offer a step closer to achieving a GBN representation, that is, use a 

network rather than a 'tree' as the underlying structure. However, as stated in Chapter 1, deriving 

networks is, in the general case, NP-hard. In making a decision as to what the underlying topology 

should be, we need to consider first what the overall goals are. If the objective is to retain a 

qualitative aspect, then as demonstrated in Chapter 4, the 'tree' based algorithms are far more viable 

and efficient. On the other hand, if classification performance alone is the goal, then deriving a class 

MB with minimal irrelevance is a better approach. 

Clearly, the tree based CL algorithin offers a good comprornise, however as pointed out in the 

beginning of this section, using it places an uncertainty in the 'optimality' of the derived class MB, 

particularly if the sample set is small. In section 8.2.2, we explore this issue ftirther and discuss 

possible ways to overcome the limitations of the CL algorithm. 

8.1.3 Case Study - Diagnosing Acute Abdominal Pain (AAP) 

The investigations concerning the MIM classifier (Chapter 4) and its 'selective' variant (Chapter 6) 

utilise the benchmark data sets of the UCI repository. However, one of our motivations was to 

demonstrate a viable solution for BN classification to 'real' world domains. As described in Chapter 

7, we applied both methods to the task of diagnosing Acute Abdominal Pain. This is known to be a 

very difficult and challenging domain [LE93] because it is a high dimensional problem characterised 

by sparse data, several features, many class-states and for our data sets comprises samples with 

missing and composite feature states. 

We have carried out detailed experiments on two data sets of the domain and compared the 

performance of the MIM classifier along with its 'selective' variant to that of the GBN, 'polytree' 
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NB and SNB. As a measure of confidence in the levels of performance achieved, the classifiers were 

additionally compared to results obtained from the experts, both contained within the data sets and 

qualitatively from questionnaires completed by the A&E Doctors at St John's Hospital, Edinburgh, 

as shown in Appendix B. Our aim was to investigate the optimality claim of researchers in respect of 

the NB for this domain, with the expectation, supported by the empirical evidence described in 

Chapter 4, that since the experts have identified strong dependencies between symptoms that the 

dependency models should outperform the NB classifier. 

The experiments showed that for the dependency models, the MIM and SMIM classifiers were found 

to be the most effective of the BN models. Unlike the NB, this was achieved without making the 

extreme assumption of conditional independence given the class variable. The qualitative structure in 

respect of the MIM classifier, as the SMIM focuses on performance accuracy improvements, was 

recognisable by the experts who also confirmed many of the class - symptom associations aligned 

with their own beliefs. Our investigation into the specific optimality claim of N-B in this domain did 

not quite meet with our expectations. The results indicate that the NB did appear to be 'optimal' for 

the domain. However, this was only in respect to its 'overall' winning performance accuracy. This 

result was largely due to the performance and contribution of the majority class-state NSAP, which 

the experts define as a group of exclusion. Moreover, when evaluated with a 'truly external' test data 

set, the removal of the influence of NSAP showed that the 'overall' performance achieved by 

MIM/SMIM classifier was able to match that of the NB classifier. 

Although classification accuracy gives an 'overall' measure of the performance of each method, we 

considered it important, as discussed in Chapter 7, to evaluate the performance of the various 

algorithms on each individual disease. For example, the class-state appendicitis can be life 

threatening and needs to be diagnosed quickly and correctly, whereas the class-state NSAP is not, 

with patients usually showing signs of improvement within 24 hours. The results demonstrate that 

the MIM classifier and the experts are able to discriminate between individual class-states more 

readily than the NB classifier. The MIM classifier identified 6/9 for CADA and 5/9 for LEEDS 

better than NB, whilst the experts identified 6/9 for CADA and 9/9 for LEEDS. 

The ramifications of the resulting investigation where numerous. Firstly, for class-states that were 

poorly characterised such as pancreatitis, there was evidence (via questionnaires) that the experts 
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used 'heuristics' to overcome anomalies in the database. Secondly, many of the features that were 

recorded in the database were found to have a low frequency of occurrence. Whilst this implies these 

are irrelevant and can be discarded, our experimental investigations show that although these could 

indeed be statistically removed, the questionnaires from the experts indicate that many of these 

features are in fact considered 'key' in identifying a specific class-state and therefore should not be 

removed. Thirdly, the symptom-symptom relationships identified in the qualitative structure imply 

that the database definition may require modification as these infer 'commonality' rather than true 

symptom associations, and thus a source of redundancy. Fourthly, experiments in respect of the 

4selective' variant of the MIM classifier showed that the expansion of the class MB required nearly 

as many features as that of the NB MB. This might suggest that the domain is better suited to the 

assumption of independency despite the rationale for clear dependency amongst features. This is 

ftu-ther supported by the way experts view this domain, which maybe attributed to the fact that 

doctors gather as many different independent bits of relevant information as possible and do not 

include two features where one would suffice. 

Whilst this observation might imply we should be modelling the classifier in a similar way to that of 

NB, the expert's questionnaires and resulting qualitative representation of the MIM classifier infer 

otherwise. Essentially, each class-state appears to have its own characterisation with associations 

between specific symptom parameters distinctly different for each state. This suggests that we should 

in fact be individually modelling the class-states. A drawback of the MIM classifier however, is that 

its structure is constrained by its underlying MWST, and as a consequence this aspect cannot be fully 

realised. In section 8.2, we pursue this matter further and suggest a method that can provide a more 

representative solution to that of the experts, whilst still retaining the benefits of the 'tree' based 

approaches. 

8.1.4 Summary 

In summary, this thesis has proposed a MIM classifier based on the efficient tree structuring CL 

algorithm. By overcoming the issues that limit the 'polytree' and GBN models, the MIM classifier 

represents a good middle ground model. In using pair-wise marginals to calculate branch 'weights', 
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it avoids the issues associated with CPT dimensionality and by application of a node ordering 

heuristic, avoids the consequences of making a poor choice. The classifier has been demonstrated as 

performing better than the unrestricted models such as the GBN and the controversial but simple NB 

classifier. Compared to NB, the MIM classifier performed significantly better on of the data sets 

studied, even with a class MB at 50% of that used by the NB classifier. Where the NB did perform 

well due to known independence in the data set under test, the MIM classifier perfonned 

comparably. 

The advantages of the classifier is that it provides a way to classify with BNs on domains previously 

not possible due to dependence upon prior node ordering and the subsequent inference complexity 

when the network topology leads to large conditional probability tables. It has further been shown 

that the MIM classifier and its 'selective' variant can effectively be applied to a difficult 'real' world 

domain. In Table 8.1, we provide a summary of the thesis findings along with a guide for suitability 

of methods, in respect of domain application, in the context of the data sets studied in this thesis. 
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Table 8.1. - Summary of Findings 

MIM Classiflerl 

For large sample sized domains, the CL algorithm can be used to derive a satisfactory 
class MB. This class MB may however not be 'optimal'. 

Classification based on MI edge 'weights' does not require prior node ordering or 
CPT probability estimates. 

For small sample sized domains, the derived class MB is unlikely to be 'optimal'. 

The MIM classifier technique (Chapter 3) is independent of the underlying topology 
and can be applied (via class MB) to 'trees' and networks. 

Classification of new evidence of the domain requires no more than a maximum of 
(n-1) edge 'weights'. 

Focusing on expanding the class MB can improve performance accuracy. In general, 
only a marginal number of features are required to be added. Domains of greater than 
15 features will gain the most benefit, as will small sample sized domains. 

Case Study - APP2 

NB is arguably optimal for this domain, but only in respect of its 'overall' 
performance accuracy. 

The 'overall' performance is due to the contribution of majority class-state NSAP, 
which the experts define as a group of exclusion. 

Experts use 'heuristics' to overcome anomalies in database. 

The MIM classifier/Experts are able to discriminate between individual class-states 
more readily than NB. 

BNs using the majority of domain features (with respect to the class MB) perform 
best. This implies AAP is better modelled by an assumption of independence, despite 
the rationale for dependence. 

Method MIM classifier NB 'Polytree'/SCN GBN 

High/medium Medium High dimensional, Small/medium 
dimensional, small sample dimensional, small small sample size dimensional, large 

Suitable size (over GBN)- sample sizes (over (over GBN). sample sizes (over 
Domains' Medium dimensional, MIM). Medium MIM/polytree). 

large sample size (over High/medium dimensional, large Small/medium 
NB). dimensional, small sample size (over dimensional, small 

sample size (over NB). samples size - 
GBN). general. 

Key: In the context of the data sets studied in this thesis. High dimensional -= 35+ features, Medium 

dimensional -= 14+ features (max 34), Small dimensional -= under 14 features. 

Notes: 'With respect to the UCI data sets studied. 
2 In respect of the CADA and LEEDS databases. 
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8.2 Further work 
Despite the favourable results demonstrated by of the MIM classifier, in comparison to the other 

methods, there are a number of options that can be considered to improve it further. In the previous 

sections, we highlighted some of the limitations in taking the approach proposed within this thesis. In 

the sections that follow, we review these in more detail and suggest further investigations to address 

them. 

Section 8.2.1 begins by considering how continuous features may be supported in the MIM 

classifier along side the discrete features. In section 8.2.2, we focus our attention to inducing an 

coptimal' class MB, with section 8.2.3 considering how the experts view of the domain can be 

utilised to better model the data set, leading to improved classification. 

8.2.1 Dealing with Continuous Features 

The approach adopted in constructing the MIM classifier benefits from using the CL algorithm to 

derive its underlying structure as it can be achieved efficiently in polynomial time. The empirical 

studies show that for larger data sets the resulting induced 'tree' structure not only derives a 

satisfactory representation of the domain class MB, but also provide a qualitative structure 

recognisable by domain experts. However, a limitation in employing the CL algorithm is its 

requirement to have purely discrete data. In the case of many 'real' world domains this unfortunately 

is not the norm with many features being continuous. Although discretisation works well for the task 

of classification, as demonstrated by the empirical results, there are some detrimental consequences 

in taking this approach. Apart from the obvious loss of information, not only is the qualitative 

representation of the domain it models constrained, but also the continuous feature parameter space 

expanded. 

A natural enhancement to consider, is the extension to the distribution that can be represented by the 

MIM classifier, and more specifically, the ability to be able to deal with a combination of discrete 

and continuous features and model the interactions between them. Indeed, work carried out by 

Friedman et al [FGL98] shows that modelling both discrete and continuous features together offers 

the best model for classification performance. 
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In considering this technique however, we are faced with the problem of trying to decide which 

domain features to discretise or leave as continuous. Unfortunately, this task requires an exponential 

space of options to make a selection. Friedman's Hybrid-TAN offers a solution to the problem by 

representing both the continuous feature and its discretised counterpart within the same TAN model. 

As reviewed in Chapter 3, section 3.3, TAN addresses the controversial issues associated with the 

NB classifier by modelling some of the feature dependencies. 

The approach taken in the Hybrid-TAN uses a dual representation for each continuous feature with 

one discretised and the other based on fitting a parametric distribution. By taking advantage of the 

modelling language of the BN, interactions between the discrete and continuous versions of the 

feature are represented simultaneously. This has the advantage of maintaining a qualitative, though 

restricted, network structure of the domain. In addition, since the structure includes a mixture of 

discrete and continuous features the resulting structures induced are directed trees thus 

circumventing the requirements for prior node ordering. 

In the Hybrid-TAN, the edges of the model are assigned 'weights' based upon a score. This score is 

calculated in respect of the conditional probability distribution of the feature and depends upon its 

representation. In the case of a discrete feature, these are tables using empirical frequency of events 

in the training data, whilst for continuous features, these are Gaussian distributions. This suggests 

that in order to enhance the capability of the MIM classifier to better support 'real' world domains, 

these scores require to be translated into equivalent MI representations. For discrete features, scores 

relate to the conditional mutual information between two features given the class. In the case of the 

continuous features, the scores will require a similar information theoretic interpretation and it is this 

aspect that represents the main focus of activities for future work. 

8.2.2 Optin-dsing the Class MB 

The key to constructing an 'optimal' MIM classifier lies in determining the most representative class 

MB of the domain, prior to performing any classification. Despite being able to demonstrate that the 

CL algorithm can be used to derive a satisfactory 'initial' MB, the empirical evidence was only in 

support of the larger data sets, with the smaller ones requiring some MB modification. This latter 

situation was addressed by a 'selective' variant of the MIM classifier, which applied a Wrapper type 

feature selection process to expand the class MB. Whilst the technique does allow improvement in 
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some domains, the approach has a drawback in that it does not guarantee to find an 'optimal' 

solution. As discussed in Chapter 4, section 4.7, the CL algorithm is prone to adding irrelevant 

features which means that since, in the Wrapper approach, no irrelevant features are identified and 

subsequently removed, the 'initial' class MB may already contain some of these features. The 

occurrence of too many of these features will not only complicate the model but be detrimental to its 

perfon-nance. 

For high dimensional domains there will undoubtedly be a measure of dependence between some of 

the features. Although in using the CL algoritlun some of these dependencies will be captured, the 

approach adopted for the 'selective' MIM classifier on the other hand may not, especially for small 

sample sets. Whilst the selection of features based on their individual magnitude of MI (C-Z) may 

produce 'overall' a class MB that enhances performance, some of these features may actually be 

redundant. Unfortunately as the halting criteria is not based on 'single' edge additions but on 

perforniance accuracy, the influences of these individual additions (good or bad) can easily be lost 

whilst focussing on achieving the target objective. 

One way to overcome this limitation is to consider the technique proposed by Cheng [CG01]. As we 

reviewed in Chapter 3, section 3.3, the objective of Cheng's work was to construct a BN. After 

deriving an 'initial' tree structure, using the CL algorithm, Cheng's procedure transforms the 'tree' 

into a network via a series of phases which either adds or deletes edges. In doing so, the 

modifications to the structure also lead to the derivation of a near 'optimal' class MB. This same 

approach could equally be utilised to not only allow classification, using the MIM classifier 

technique in networks, but also to aid in determining a better class MB representation. 

Unfortunately whilst providing a possible enhancement, without prior node ordering the complexity 

of Cheng's algorithm is O(N4). An alternative approach is to use the joint mutual information 

(JMI). In the MIM classifier, the branch 'weights' are derived as pair-wise marginals, however the 

concept of MI can be further extended to include more than two random variables. By use of the 

chain rule, the JMl between a set of features 
(ZI)Z25- 

5 Z, ) and the outcome C (i. e. the desired 

n 

class) is I(ZI 
ý 

Z2 Z,,; C) I(Zi; CI Zi-I 
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According to Tourassi et al [TF+O II the JMI is more appropriate for feature selection because it can 

produce an optimal subset that contains the most relevant features with a minimum amount of feature 

redundancy. 

The Wrapper approach discussed in Chapter 5, incrementally adds 'single' edges to the 'initial' class 

MB as derived by the CL algorithm. However by applying the JMI, a subset of the most relevant 

features to add can be identified. For the larger data sets, as indicated by the results of Chapter 6, the 

performance in general does not benefit from class MB expansion. However, for the smaller data 

sets the JMl can be used to find the most appropriate subset to add to the 'initial' class MB rather 

than 'single' edges. Although for the large data sets the induced class MB is a satisfactory 

representation of the domain, the JMl could still be used in order to determine a 'measure' of quality 

of the 'initial' class MB. This has the benefit of offering a way to potentially identify irrelevant 

features for subsequent removal. 

Whilst this approach can be used to effectively counter the issues associated with the CL algorithm, 

the focus of the fature work lies in the determination of a suitable terminating criteria, particularly 

for large dimensional domains. In the case of these data sets, finding an 'optimal' subset (constrained 

to the class MB) may require an exponential number of feature subsets to measure against before 

identifying the maximal JMl output. 

8.2.3 Modelling Individual Class-States 

From the completed Doctor's questionnaires, Appendix B, there is an indication that AAP class- 

states have characterisations that are distinctly different involving a diverse combination of symptom 

parameters. This implies that perhaps we should be modelling the domain more accurately by 

considering individual class-states having their own representative class MB. Whilst the MIM 

classifier does this via 'profiling', it is somewhat constrained by its 'overall' underlying topology. In 

this approach, we assign different configurations of symptom parameters to a particular class-state 

however, it is in respect of the fixed MWST derived by the CL algorithm (which is essentially the 

class MB for the MIM classifier). In Chapter 3, section 3.3 we reviewed work of Friedman [FGG97] 

concerning the 'multinet' which does construct individual class-state related structures. Whilst it is 

possible for these sub-structures to be networks, in doing so means dealing with the difficulties of 

learning a general graphical structure. The approach taken by Friedman overcomes this by using 
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'tree' structures, however as reviewed in Chapter 3, section 3.3 the technique has the disadvantage in 

that it derives class-state representations using the individual class data partitions. As well as being 

cornputationally expensive to learn, 'real' world class-state imbalances can also lead to a biased 

classification performance. 

As demonstrated by the MIM classifier and supported by the empirical results, classification using 

'trees' provides for an efficient and viable approach in comparison to networks. In modelling acyclic 

pair-wise dependencies, the representational power of 'tree' is somewhat limited, however this is 

overcome by combining them into mixtures. A generalisation of tree distributions is offered by work 

carried out by Mella [Mei99] called mixture of trees. This is basically a probabilistic mixture of a set 

of graphical components, each of which is a tree. Essentially the JPD is represented by a finite 

mixture of tree distributions, each modelling the class-conditional density of one of the class-sates. 

In Meila's approach the mixture of trees provides a reasonable compromise between the simplicity of 

tree distributions and expressive power of the Bayesian 'multinet'. Unlike 'multinet' as proposed by 

Friedman, Meila's mixture of trees treats the class variable as another input feature which allows the 

classifier to utilise all the training data in order to train/learn the model as does the MIM classifier. 

The difference between the latter two approaches however, is that Meila's approach yields a mixture 

model for each class-state and not a fixed MWST as represented by the MIM classifier. 

In the same way the MIM classifier derives its underlying structure, the mixture of trees also uses the 

CL algorithm over discrete variables to construct trees, controlling the complexity by the number of 

trees in the mixture. In the case of the mixture of trees, an accelerated CL algorithm is employed 

which has the additional benefit of offering a partial solution to the consequential computational 

expense of this approach. 

An interesting proposition to investigate further is whether the MIM classifier's technique for using 

MI branch 'weights' can be similarly applied to the class-state specific trees. In doing so it will 

possible to determine if the modelling of the individual class-state MBs provides any further 

improvements to the MIM classifier's fixed class MB performance. Moreover, although for 

classification the class MB is the only area of interest the advantage the MIM classifier offers over 

the NTB classifier is the qualitative representation (even if restricted) of the domain. From the 

questionnaires, the experts confirm many symptom parameters align with those identified by the 
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algorithm for each class-state. However, the experts do not provide sufficiently detailed qualitative 

information in respect of the symptom inter-relationships. Since each class-state will now be 

characterised by its own structure (tree based) a ftirther consideration will be to also investigate what 

qualitative aspects can be additionally discovered. 
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APPENDIX A- Diagnostic and Symptom Codes AAP 

Table A I- I. - Symptom Parameters and Codes 

Symptom Value 
SEX male(1/1), female(1/2) 

AGE 0-9(2/1), 10-19(2/2), 20-29(2/3), 30-39(2/4), 40-49(2/5), 50-59(2/6), 60-69(2/7), 70 +(2/8) 
Pain-site Onset right upper quadrant(3/1), left upper quadrant(3/2), right lower quadrant(3/3), left lower quadrant(3/4), 

upper half(3/5), lower half(3/6), right half(3/7), left half(3/8), central(3/9), genera](3/1 0), right loin(3/1 1), 
left loin(3/12), epigastric(3/13), right upper quadrant + epipstric(3/14), right lower quadrant + left lower 
quadrant(3/15), fight lower quadrant + right loin(3/16) 

Pain-site Present right upper quadrant(4/1), left upper quadrant(4/2), right lower quadrant(4/3), left lower quadrant(4/4), 
upper half(4/5), lower half(4/6), fight half(4/7), left half(4/8), centra](4/9), general(4/1 0), right loin(4/1 1), 
left loin(4/12), epigastric(4/13), pain settled(4/14), right upper quadrant + epigastric(4/15), right lower 
quadrant + centra](4/16), right lower quadrant + right loin(4/17), left lower quadrant + left loin(4/18), right half + right loin(4/19), left half + left loin(4/20), central + epigastric(4/21) 

Aggravating Factors movement(5/1), coughing(5/2), inspiration(5/3), food(5/4), other(5/5), nil(5/6), movement + coughing(5/7), 
movement + inspiration(5/8), movement + food(5/9), movement + other(IO), movement + coughing + 
inspiration(5/1 1), coughing + inspiration(5/12) 

Relieving Factors lying stil](6/1), vomiting(6/2), antacids(6/3), milk/food(6/4), other(6/5), ni](6/6), lying still + vomiting(6n), 
lying still + other(6/8) 

Progress of Pain getting better(7/1), no change(7/2), getting worse(7/3) 
Duration of Pain under 12 hours(8/1), 12-24 hours(8/2), 24-48 hours(8/3), over 48 hours(8/4) 
Type of Pain steady(9/1), intermittent(9/2), colicky(9/3), sharp(9/4), steady + intermittent(9/5), steady + colicky(9/6), 

steady + sharp(9/7), steady + colicky + sharp(9/8), intermittent + colicky(9/9), Intermittent + sharp(9/10), 
intermittent + colicky + sharp(9/1 1), colicky + sharp(9/12) 

Severity of Pain moderate(IO/1), severe(IO/2) 
Nausea nausea present(I 1/1), no nausea(I 1/2) 

Vomiting present(I 2/1 no vomiting(I 2/2) 

Anorexia present(I 3/1 non-nal appetite(I 3/2) 

Indigestion history of dyspepsia(14/1), no history of dyspepsia(14/2) 

Jaundice history of jaundice(I 5/1), no history of jaundice(I 5/2) 

Bowel habit no change(16/1), constipated(16/2), diarrhoea(16/3), blood(16/4), mucus(16/5), constipated + 
diarrhoea(I 6/6), diarrhoea + blood(I 6/7) 

Micturition norma](17/1), frequent(17/2), dysuria(17/3), haematuria(17/4), dark urine(17/5), frequent+ dysuria(17/6) 

Previous Pain similar pain before(I 8/1), no similar pain before(I 8/2) 

Previous surgery yes(I 9/1 ), none(I 9/2) 

Drugs being taken(20/1), not being taken(20/2) 

Mood norma](21/1), distressed(21/2), anxious(21/3), distressed + anxious(21/4) 

Colour non-nal(22/1), pale(22/2), flushed(22/3), jaundiced(22/4), cyanosed(22/5) 

Abdominal normal(23/1), poor/nil(23/2), visible peristalsis(23/3) 
Movement 
Abdominal scar present(24/1), absent(24/2) 

Abdominal present(25/1), absent(25/2) 
Distension 
Site of Tenderness right upper quadrant(26/1), left upper quadrant(26/2), right lower quadrant(26/3), left lower quadrant(26/4), 

upper half(26/5), lower half(26/6), right half(26/7), left half(26/8), central(26/9), general(26/10), right 
loin(26/1 1), left loin(26/12), epigastric(26/13), none(26/14), right upper quadrant + epigastric(26/15), right 
lower quadrant + left lower quadrant (26/16), right lower quadrant + right half(26/17), right lower quadrant 
+ centra](26/18), right lower quadrant + right loin(26/19), right lower quadrant + epigastric(26/20), left 
lower quadrant + left loin(26/21), left half + left loin(26/22) 

Rebound present(27/1), absent(27/2) 

Guarding present(28/1), absent(28/2) 

Rigidity present(29/1), absent(29/2) 

Abdominal Masses present(30/1), absent(30/2) 

Murphy's test positive(3 Ifl), negative(31/2) 

Bowel sounds norma](32/1), decreased/absent(32/2), increased(32/3) 

Rectal Examination tender left side(33/1), tender right side(33/2), generally tendeT(33/3), mass felt(33/4), normal(33/5) 
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APPENDIX B- Doctors' Suggested Symptoms (Taken from 
Questionnaires) 

Table BI-P Symptom Parametersfor APP (Age: Generally Young) 

Symptom name Symptom Parameter 
Name/Group APP 

Parameter 
(code) 

MIM 
Tree 

Sex 1 (1) 
Age Age 0-9 2(l) 2(2) 

Pain-site Onset Right Lower Quadrant 3(9) 3(3) 
Pain-site Present Right Lower Quadrant 4(3) 4(3) 

Aggravating Factors Movement 5(l) - 
Aggravating Factors Coughing 5(2) 5(2) 

Relieving Factors Lying Still 6(l) 6(l) 
Progress of Pain Getting worse 7(3) 7(3) 
Duration of Pain 12-24 hours 8(2) 8(2) 

Type of Pain Steady 9(1) 9 1) 
Type of Pain Sharp 9(4) - 

Severity of Pain Moderate 10(1) 10(2) 
Nausea Nausea Present 11(l) 11 1 

Vomiting Present 12(l) 12(l) 
Anorexia Present 13(l) 13(l) 

Indigestion No History of Dyspepsia 14(2) 14(2) 
Jaundice No Histo; y- of Jaundice 15(2) 15(2) 

Bowel Habit Diarrhoea 16(3) 16(3) 
Micturition Non-nal 17(1) 17(l) 

Previous Pain No Similar Pain Before 18(2) 18(2) 
Previous Surgery No 19(2) 19(2) 

Drugs Not Being Taken 20(2) 20(2) 
Mood Distressed 21(2) - 
Mood Anxious 21(3) 21(3) 
Colour Flushed 22(3) 22(3) 

Abdominal Movements Poor/nil 23(2) 23(2) 
Abdominal Scar Absent 24(2) 24(2) 

Abdominal Distension Absent 25(2) 25(2) 

Site of Tenderness Right Lower Quadrant 26(3) 26(3) 
Rebound Present 27(l) 27(l) 

Guarding Present 28(l) 28(l) 

Rigidity Absent 29(2) 29(l) 

Abdominal Masses Absent 30(2) 30(2) 

Murphy's Test Negative 31(2) 31(1) 

Bowel Sounds Normal 32(l) 32(2) 

Rectal Examination Tender Right Side 33(2) 33(2) 

Notes: 4-15% over 55,5% under 55. Patient generally looks ill, Fever. 

Key: Field 'MIM Tree' represents the MIM classifier structure symptom values with respect to the 

disease APP. 
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Table B2- I. - Symptom Parametersfor DIV (Age: Generally Old) 

Symptom name Symptom Parameter 
Name/Group DIV 

Parameter 
(code 

MIM 
Tree 

Sex - - 1(2) 
Age Age 60-69 2(7) 2(8) 

Pain-site Onset Left Lower Quadrant 3(4) 3(3) 
Pain-site Present - 4(4) 

Aggravating Factors Movement 5(l) - 
Aggravating Factors Coughing 5(2) 5(2) 

Relieving Factors Lying Still 6(l) 6(l) 
Progress of Pain Getting worse 7(3) 7(3) 
Duration of Pain Over 48 hours 8(3) 8(4) 

Type of Pain Steady g(l) 9(1) 
Severity of Pain 10(i) 

Nausea Nausea Present 11(i) 
Vomiting No Vomiting 12(2) 12(2) 
Anorexia - 13(l) 

Indigestion No History of Dyspepsia 14(2) 14(l) 
Jaundice No History of Jaundice 15(2 15(2) 

Bowel Habit Constipated 16(2) 16(2) 
Bowel Habit Diarrhoea 16(3) - 
Micturition Normal 17(l) 17(2) 

Previous Pain Similar Pain Before 18(l) 18(2) 
Previous Surgery None 19(2) 19(l) 

Drugs Not Being Taken 20(2) 20(l) 
Mood Distressed 21(2) 21(2) 
Colour Flushed 22(3) 22(2) 

Abdominal Movements Normal 23(l) 23(2) 
Abdominal Scar Absent 24(2) 24(2) 

Abdominal Distension Absent 25(2) 25( 1) 
Site of Tenderness Left Lower Quadrant 26(4)_ 26(4) 

Rebound Present 27(l) 27(l) 
Guarding Present 28(l) 28(l) 
Rigidity 29(l) 

Abdominal Masses Present 30(l) 30(l) 
Murphy's Test N gative 31(2) 31(2) 
Bowel Sounds Normal 32(l) 32(3) 

Rectal Examination Generally Tender 33(2) 33(3) 

Notes: Uncommon before 40.50% - over 80,6% over 55, <I% under 55. Fever. 
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Table B3- I. - Symptom Parametersfor PPU (Age: Generally Old) 

Symptom name Symptom Parameter 
Name/Group PPU 

Parameter 
(code 

MIM 
Tree 

Sex Male l(l) l(l) 
Age Age 50-59 2(6) 2(8) 

Pain-site Onset Upper Half 3(5) 3(5) 
Pain-site Present Lower Half 4(5) 4(10) 

Aggravating Factors Movement 5(l) 5(l) 
Aggravating Factors Coughing 5(2) - 

Relieving Factors Lying Still 6(l) 64) 
Progress of Pain Getting worse 7(3) 7(3) 
Duration of Pain 12-24 hours 8(2) 8(l) 

Type of Pain Steady g(l) g(l) 
Severity of Pain Severe 10(2) 10(2) 

Nausea - 11(i) 
Vomiting No Vomiting 12(2) 12(l) 
Anorexia Present 13(l) 13(l) 

Indigestion History of Dyspepsia 14(l) 14(l) 
Jaundice No History of Jaundice 15(2) 15(2) 

Bowel Habit No Change 16(l) 16(2) 
Micturition Normal 17(l) 17(99) 

Previous Pain No Similar Pain Before 18(2) 18(2) 
Previous Surgery Yes 19(1) 19(1) 

Drugs Being Taken 20(l) 20(l) 
Mood Distressed 21(2) 21(2) 
Colour Pale 22(2) 22(2) 

Abdominal Movements Poor/nil 23(2) 23(2) 
Abdominal Scar Absent 24(2) 24(2) 

Abdominal Distension Absent 25(2) 25(99) 
Site of Tenderness Upper Half 26(5) 26(10) 

Rebound Present 27(l) 27(l) 
Guarding Present 28(l) 28(l) 
Rigidity Present 29(l) 29(l) 

Abdominal Masses Absent 30(2) 30(2) 
Murphy's Test Negative 31(2) 31(2) 
Bowel Sounds Decreased/Absent 32(2) 32(2) 

Rectal Examination Normal 33(5) 33(5) 
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Table B4-1: Symptom Parametersfor CHO (Age: Generally Old) 

Symptom name Symptom Parameter 
Name/Group CHO 

Parameter 
(code) 

mim 
Tree 

Sex Male 1 (1) 1(2) 

Age Age 60-69 2(7) 2(8) 
Pain-site Onset Right Upper Quadrant 3(l) 3(l) 

Pain-Site Present Right Upper Quadrant 4(l) 4(l) 

Aggravating Factors Coughing 5(2) 5(4) 

Relieving Factors - 6(6) 

Progress of Pain Getting worse 7(3) 7(3) 

Duration of Pain Over 48 hours 8(3) 8(l) 

Type of Pain Sharp 9(4) 9(1) 

Type of Pain Severe 10(2) 10(2) 

Nausea Nausea Present 11(l) 11(l) 

Vomiting Present 12(l) 12(l) 

Anorexia Present 13(l) 13(l) 

Indigestion No History of Dyspepsia 14(2) 14(l) 

Jaundice - 15(l) 

Bowel Habit No change 16(l) 16(2) 

Micturition Non-nal 17(l) 17(5) 

Previous Pain Similar Pain Before 18(l) 18(l) 

Previous Surgery None 19(2) 19(l) 

Drugs Not Being Taken 20(2) 20(2) 

Mood Distressed 21(2) 21(2) 

Colour Jaundiced 22(4) 22(4) 

Abdominal Movements - 23(2) 

Abdominal Scar - 24(l) 

Abdominal Distension Absent 25(2) 25(2) 

Site of Tenderness Right Upper Quadrant 26(l) 26(l) 

Rebound 27(2) 

Guarding Present 28(l) 28(l) 

Rigidity - 29(l) 

Abdominal Masses Absent 30(2) 30(l) 

Murphy's Test Positive 31(l) 31(l) 

Bowel Sounds Normal 32(l) 32(2) 

Rectal Examination Normal 33(5) 33(5) 

Notes: Over 55 12-20%, under 55 5Yo, Fever. Severity ofPain helps distinguish CHOfrom PPU. 
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Table B5-1: Symptom Parametersfor INO (Age: Generally Old) 

Symptom name Symptom Parameter 
Name/Group INO 

Parameter 
(key) 

mim 
Tree 

Sex - 1(2) 
Age Age 70+ 2(8) 2(8) 

Pain-site Onset Lower Half 3(6) - 
Pain-site Onset Central 3(9) 3(9) 

Pain-site Present Lower Half 4(6) 4(9) 
Pain-site Present Central 4(9) - 

Aggravating Factors - 5(6) 
Relieving Factors Vomiting 6(2) 6(2) 
Progress of Pain Getting worse 7(3) 7(3) 
Duration of Pain - 8(4) 

Type of Pain Colicky 9(3) 9(3) 

Severity of Pain Moderate 10(l) 10(l) 

Nausea Nausea present 11(l) 11(l) 

Vomiting Present 12(l) 12(l) 

Anorexia Present 13(l) 13(l) 

Indigestion No History of Dyspepsia 14(2) 14(2) 

Jaundice No History of Jaundice 15(2) 15(2) 

Bowel Habit Constipated 16(2) 16(2) 

Micturition Normal 17(l) 17(l) 

Previous Pain Similar pain before 18(l) 18(l) 

Previous Surgery Yes 19(l) 19(l) 

Drugs 20(l) 

Mood - 21(2) 

Colour Pale 22(2) 22(2) 

Abdominal Movements Poor/nil 23(2) 23(2) 

Abdominal Scar Normal 24(l) 24(l) 

Abdominal Distension Present 25(l) 25(l) 

Site of Tenderness Lower Half 26(6) 26(9) 

Rebound Absent 27(2) 27(2) 

Guarding - 28(2) 

Rigidity Absent 29(2) 29(2) 

Abdominal Masses Present 30(l) 30(l) 

Murphy's Test Negative 31(2) 31(2) 

Bowel Sounds Increased 32(3) 32(3) 

Rectal Examination Mass felt 33(4) 33(4) 

Notes: Over 55 12%, under 55 <]%. 
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Table B6-J. - Symptom Parametersfor PAN (Age .- Generally Young/Old) 

Symptom name Symptom Parameter 
Name/Group PAN 

Parameter mim 
Tree 

Sex I(l) - 

Age - 2(5) 

Site of Tenderness Upper Half 3(5) 3(5) 
Site of Tenderness Central 3(9) - 
Pain-site Present - 4(13) 

Aggravating Factors Food 5(4) 5(2) 

Relieving Factors Lying still 6(1) 6(1) 

Progress of Pain Getting worse 7(3) 7(3) 

Duration of Pain 12-24 hours 8(2) 8(2) 

Type of Pain Steady 9(1) 9(1) 

Severity of Pain Severe 10(2) 10(2) 

Nausea Nausea present 11(l) II(I) 

Vomiting Present 12(l) 12(l) 

Anorexia Present 13(l) 13(l) 

Indigestion History of Dyspepsia 14(2) 14(l) 

Jaundice History of Jaundice 15(l) 15(l) 

Bowel Habit No change 16(l) 16(3) 

Micturition Dark Urine 17(4) 17(5) 

Previous Pain Similar pain before 18(l) 18(l) 

Previous Surgery None 19(2) 19(2) 

Drugs Being Taken 20(l) 20(l) 

Mood 21(2) 

Colour - 22(2) 

Abdominal Movements Poor/nil 23(2) 23(2) 

Abdominal Scar Absent 24(2) 24(2) 

Abdominal Distension Absent 25(2) 25(l) 

Site of Tenderness - 26(13) 

Rebound Present 27(l) 27(l) 

Guarding Present 28(l) 28(l) 

Rigidity - 29(l) 

Abdominal Masses Absent 30(2) 30(l) 

Murphy's Test - 31(2) 

Bowel Sounds Decreased/absent 32(2) 32(2) 

Rectal Examination Normal 33(5) 33(5) 

Notes: Most often alcohol abuse - blood test, temp increases, fever, and patient looks ill. 
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Table B7-1: Symptom Parametersfor RCO (Age. - Generally YounglOld) 

Symptom name Symptom Parameter 
Name/Group RCO 

Parameter 
(code) 

MIN[ 
Tree 

Sex - - 1 (1) 

Age Age 30-39 2(4) 2(5) 

Pain-site Onset Right Loin 3(11) 3(11) 

Pain-site Present Right Loin 4(11) 4(11) 
Aggravating Factors Nil 5(6) 5(6) 

Relieving Factors - 6(6) 
Progress of Pain Getting worse 7(3) 7(3) 
Duration of Pain Under 12 hours 8(l) 8(l) 

Type of Pain - - 9(3) 

Severity of Pain Severe 10(2) 10(2) 

Nausea Nausea present II(I) II(I) 

Vomiting No vomiting 12(2) 12(l) 

Anorexia Normal appetite 13(2) 13(2) 

Indigestion No history of dyspepsia 14(2) 14(2) 

Jaundice No history of jaundice 15(2) 15(2) 

Bowel Habit No change 16(l) 16(l) 

Micturition Haernaturia 17(4) 17(4) 

Previous Pain Similar pain before 18(2) 18(l) 

Previous Surgery None 19(2) 19(2) 

Drugs Not being taken 20(2) 20(2) 

Mood Anxious 21(2) 21(2) 

Colour Normal 22(l) 22(2) 

Abdominal Movements Normal 23(l) 23(l) 

Abdominal Scar Absent 24(2) 24(2) 

Abdominal Distension Absent 25(2) 25(2) 

Site of Tenderness - 26(11) 

Rebound Absent 27(2) 27(2) 

Guarding - 28(2) 

Rigidity Absent 29(2) 29(2) 

Abdominal Masses Absent 30(2) 30(2) 

Murphy's Test Negative 31(2) 31(2) 

Bowel Sounds Normal 32(l) 32(l) 

Rectal Examination Normal 33(5) 33(5) 

Notes: >55 4%, Nofever. 
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Table B8-1: Symptom Parametersfor DYS (Age. - Generally YounglOld) 

Symptom name Symptom Parameter 
Name/Group DYS 

Parameter 
(code) 

MIM 
Tree 

Sex Male 1 (1) 1 (1) 

Age - 2(4) 
Pain-site Onset Epigastric 3(13) 3(13) 

Pain-site Present Epigastric 4(13) 4(13) 
Aggravating Factor Food 5(4) 5(4) 

Relieving Factor Antacids 6(3) 6(3) 
Progress of Pain Getting better 7(l) 7(l) 
Duration of Pain 12-24 hours 8(2) 8(4) 

Type of Pain Steady 9(1) 9(1) 
Severity of Pain Moderate 10(l) 10(l) 

Nausea Nausea present 11(l) 11(l) 

Vomiting Present 12(l) 12(l) 

Anorexia Normal appetite 13(2) 13(2) 

Indigestion History of dyspepsia 14(l) 14(l) 

Jaundice No History of jaundice 15(2) 15(2) 

Bowel Habit No change 16(l) 16(4) 

Micturition Normal 17(l) 17(l) 

Previous Pain Similar pain before 18(l) 18(l) 

Previous Surgery None 19(2) 19(2) 

Drugs Being taken 20(l) 20(l) 

Mood Normal 21(l) 21(l) 

Colour Normal 22(l) 22(l) 

Abdominal Movements Non-nal 23(l) 23(l) 

Abdominal Scar Absent 24(2) 24(2) 

Abdominal Distension Absent 25(2) 25(2) 

Site of Tenderness Epigastric 26(13) 26(13) 

Rebound Absent 27(2) 27(2) 

Guarding - 28(2) 

Rigidity Absent 29(2) 29(2) 

Abdominal Masses Absent 30(2) 30(2) 

Murphy's Test Negative 31(2) 31(2) 

Bowel Sounds Normal 32(l) 32(l) 

Rectal Examination Normal 33(5) 33(5) 
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APPENDIX C- Questionnaire Template 
For the Diagnostic Group --------- tick (V) the symptom parameters that you consider 
are most closcly associated \vith this Group. 

Please c,,, irry out this cxercisc for three age ranges. (Indicate in the appropriate box your 
chosen age groups) 

Symptom Parameters Young Young/Old Old 

AGE 

0-9 
10-19 
20-29 
30-39 
40-49 
50-59 
60-69 
70+ 

SEX 

Male 
Female 
Either 

PAIN-SITE-ONSET 

Right Upper Quadrant 
Left Upper Quadrant 
Right Lower Quadrant 
Left Lower Quadrant 
Upper Half 
Lower Half 
Right Half 
Left Half 
Central 
General 
Right Lion 
Left Lion 
Epigastic 
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SYMPtom Parameters Young Young/Old Old 

AGGRAVATING 
FACTORS 

Movement 
Coughing 
Inspiration 
Food 
Other 
Nil 

PAIN-SITE-PRESENT 

Right Upper Quadrant 
Left Upper Quadrant 
Right Lower Quadrant 
Left Lower Quadrant 
Upper Half 
Lower Half 
Right Half 
Left Half 
Central 
General 
Right Lion 
Left Lion 
Epigastic 
Pain Settled 

RELIEVING 
FACTORS 

Lying Still 
Vorniting 
Antacids 
Milk/Food 
Other 
Nil 

PROGRESS OF 
PAIN 

Getting Better 
No Change 
Getting Worse 
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SYmPtOm Parameters Young Young/Old Old 

DURATION OF 
PAIN 

Under 12 hours 
12 - 24 hours 
24 - 48 hours 
Over 48 hours 

SEVERITY OF PAIN 

Moderate 
Severe 

TYPE OF PAIN 

Steady 
Intermittent 
Colicky 
Sharp 

NAUSEA 

Nausea Present 
No Nausea 

VOMITING 

Present 
No Vomiting 

ANOREXIA 

Present 
Nonnal Appetite 

JAUNDICE 

History of Jaundice 
No history of Jaundice 
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SYMPtom Parameters Young Young/Old Old 

INDIGESTION 

History of Dyspepsia 
No history of Dyspepsia 

BOWEL HABIT 

No Change 
Constipated 
Diarrhea 
Blood 
Mucus 

MICTURITION 

Normal 
Frequent 
Dysuria 
Haernaturia 
Dark Urine 

PREVIOUS PAIN 

Similar Pain before 
No similar Pain before 

PREVIOUS 
SURGERY 

Yes 
None 

DRUGS 

Being taken 
Not being taken 

MOOD 

Normal 
Distressed 
Anxious 
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Symptom Parameters Young Young/Old Old 

COLOUR 

Normal 
Pale 
Flushed 
Jaundiced 
Cyanosed 

ABDOMINAL 
MOVEMENTS 

Normal 
Poor/nil 
Visible peristalsis 

ABDOMINAL SCAR 

Present 
Absent 

ABDOMINAL 
DISTENSION 

Present 
Absent 

REBOUND 

Present 
Absent 

GUARDING 

Present 
Absent 

RIGIDITY 

Present 
Absent 
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Symptom Parameters Young Young/Old Old 

SITE-OF-TENDERNESS 

Right Upper Quadrant 
Left Upper Quadrant 
Right Lower Quadrant 
Left Lower Quadrant 
Upper Half 
Lower Half 
Right Half 
Left Half 
Central 
General 
Right Lion 
Left Lion 
Epigastic 
None 

ABDOMINAL 
MASSES 

Present 
Absent 

MURPHY'S TEST 

Positive 
Negative 

BOWEL SOUNDS 

Normal 
Decreased/Increased 
Increased 

RECTAL 
EXAMINATION 

Tender Left side 
Tender Right side 
Generally tender 
Mass felt 
Nonnal 
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Please list am,, additional symptom pai'arneters or tests t'61- tile DIa&mostIc Group --------- that you consider or feel are iiriportant in helping you make a correct diagnostic 
decision. 

3. Under what conditions do you decide that a diagnostic decision should be NSAP? 

Thank you for your valuable assistance and time. 
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Notes for Questionnaires 

The questionnaire represents a 'generic' document containing three questions. For each of the eight 

(true) diagnostic groups, the experts were asked to anonymously complete the fields using their own 

knowledge. The hospital administrator was additionally requested to distribute the questionnaire to 

both senior and junior doctors in order to obtain a good cross-section of expertise. 

The rationale of each of the questions is as follows: 

Question 1: This question is designed to record the expert's list of pertinent symptom parameters 

with respect to each of the individual diagnostic groups. In order to assess the relationship of the 

diagnostic groups and patient age, three colunms headed Young, Young/Old, and Old are asked to be 

completed. 

Since the options are bounded by the CADA database symptom parameter list, the choices made by 

the experts will represent a subjective selection. 

Question 2: For this question, the experts are asked to suggest additional symptoms or tests that are 

not included within the CADA database. The objective of this question is to determine what 

heuristics they applied and potentially what might constitute a useful addition to the existing CADA 

database definition. Again as for question 1, this is in respect of the eight diagnostic groups. 

Question 3: The objective of this question is to determine under what circumstances a patient is 

assigned to the group NSAP 

As this question is not limited by the particulars of the CADA database, the output will be both 

subjective and heuristic in content. 
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APPENDIX D- St. John's A&E Patient Record Sheet 

Abdominal Pain Chart 
NAME REG NUMBER (Patient ID) 

MALE !2 FEMALE AGE - 9,3 1 Os, ' 20s, ' 30s, ' 40s, ' 50s, 8 60s. 9 70 + FORM FILLEQ BY (Username) 

PRESENTATION (999, GP, etc) DATE TIME 

SITE 15 AGGRAVATING FACTORS PROGRESS 
37 

movement 49better 
11 12 38 

coughing 
50 

same 1 ONSET 21 17 Is 18 2 

0 

8 39 respiration 51 Worse 
13 14 40fo 

od DURATION 
16 

41 
other -12,52 12-23 '53 24-48,54 

Z 0 
23 20 

ne2: Genno 42 
none 2-7 dayS15 

28 CL RELIEVING FACTORS 
TYPE 

"intermittent 24 25 431ying still 60 steady 
34,30 32 31 35 

PRESENT 
44 vomiting 61 colicky 

26 27 45 antacids 62 46food SEVERITY 
Gen33 none36 47 other 63 moderate 

RADIATION 48none 64 Severe 

NAUSEA BOWELS PREV SIMILAR PAIN 
66yes no 66 75 normal 85 yes no 86 

76 constipation 
VOMITIING 77 diarrhoea PREV ABDO SURGERY 

67 yes no 68 78blood 87 yes no" 
79 mucus 

Cr 
0 ANOREXIA DRUGS FOR ABDO PAIN 
P_ 69 yes no 70 '9yes no9O 
U) MICTURITION 

PREV INDIGESTION 
80normal 
"fre uenc 

LMP 
71 72 yes no q y 

82dysuria pragnOnt 

JAUNDICE 
83 dark 
84haematuria 

Vag. discharge 
73 

yes no 74 
dizzy/faint 

MOOD TENDERNESS INITIAL DIAGNOSIS & PLAN 
91 normal 

110 

92 distressed REBOUND 107 1D6 
93 anxious 

119 yes 

) 

no 120 
1 11: 2 114 113 1 

SHOCKED GUARDING 108 109 1() 

yes no 121 yes no 
122 RESULTS 

COLOUR Gen115 none"a amylase 
94 

95 
normal 

RIGIDITY 
123 yes no 

124 blood count (WBQ 
- pale 
96flushed computer 0 P 97 jaundiced 

MASS 
125 

yes no' 
26 urine it 98 

cyanosed Z X-ray 
TEMP PULSE MURPHY'S 

127 
- + 

128 other X ve ve LU BP DIAG & PLAN AFTER INVE$T 
BOWELSOUNDS 

ABDO MOVEMENT 129normal 130absent 131 ... 
99 

normal 
100poor/nil RECTAL - VAGINAL TENDERNESS (time 101peristalsis 132left 

SCAR 
133 

right 
134 DISCHARGE DIAGNOSIS 

102 103 yes no 
general 

135 mass 

DISTENSION 
136none 

104yes no'05 

Hiqtnrv and examination of oth er systems on separate case notes 
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APPENDIX E- Notation and Acronyms 

Notation Meaning 

T0 Mutual Information Element (subset of MI). 
G Qualitative Graph structure (DAG). 
A Number of edges in graph. 
0 Quantitative parameter. 
N Number of vertices in graph (or nodes). 
C Class variable. 
pa (Zi The parent of Z,, 
jzý Z" I Instantiation vector of feature values. 
A Denotes conjunction. 
gk Causal support from parents. 
A(VJ Diagnostic support from Vi's children. 
I(zi) zj) Mutual Information Measure for association of Z, and Z 

D Main data set 
z\ ýcj Feature set excluding class variable C 

C-Z Class to feature association (undirected). 

Z_Z Feature to feature association (undirected). 

Wt Branch Weight value. 

TM Maximum Weight Spanning Tree (MWST). 

TM MWST for class-state C, 
, ,i 

cv5 Cross-validation, 5-folds. 

a -* b Feature to feature association (directed). 

X(Y) X relevant features with respect to class MB from a maximum of (Y) features. 

ZCL Subset of the class MB or lower bound (of edges). 
ZR Remaining edges not in class MB but within structure. 

X'Y'Z One-dimensional variables. 
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A&E: Accident and Emergency. 

AAP: Acute Abdominal Pain. 

ANN: Artificial Neural Network. 

ANOVA: Analysis of Variance. 

BAN: BN Augmented Naive Bayes. 

BN: Bayesian Network. 

CADA: Computer Assisted Diagnostic & Audit. 

Cl: Conditional Independence. 

CL: Chow and Liu. 

CPT: Conditional Probability Table. 

DAG: Directed Acyclic Graph. 

FN: False Negative. 

FP: False Positive. 

FS: Feature Selection. 

GBN: General Bayesian Network. 

imi Joint Mutual Information. 

JPD: Joint Probability Distribution. 

K-L: Kullback and Leibler. 

LPE: Localised Partial Evaluation. 

MACIE: MAtrix Controlled Inference Engine. 

MB: Markov Blanket. 

MI: Mutual Information. 

MIM: Mutual Information Measure classifier. 

ML: Machine Learning. 

MWST: Maximum Weight Spanning Tree. 

NB: Naive Bayes classifier. 

SCN: Singly Connected Network. 

SMIM: Selective variant of MIM classifier. 

SNB: Selective Naive Bayes. 

TAN: Tree Augmented Naive Bayes. 

TANC: Credal TAN. 

TN: True Negative. 

TP: True Positive. 

UCI: University of California Irvine. 
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Abstract. For reasoning under uncertainty the Bayesian Network has become the representation of choice. 
However, except where models are considered 'simple' the tasks of construction and inference are provably 
NP hard. For modelling larger real-world problems this computational complexity has been addressed by 
methods that approximate the model. The Naive Bayes (NB) Classifier which has strong assumptions of 
independence among features is a common approach whilst the class of trees another less extreme example. 
The aim of this paper is to investigate the use of an information theory based technique as a mechanism for 
inference in Singly Connected Networks (SCN) or 'polytrees'. We call this variant a Mutual Information 
Measure (MIM) Classifier. We experimentally evaluate this new approach and compare the resulting 
classification performance of the MIM Classifier against (a) a Naive Bayes Classifier, (b) a General 
Bayesian Network (GBN) Classifier and (c) a Singly Connected Network, using benchmark problems taken 
from the UCI repository. With respect to (a) we show that the MIM Classifier generally performs better 
than the NB Classifier. For (b) and (c) we show that the MIM Classifier is comparable with both the GBN 
and SCN Classifiers and in most data sets used performs marginally better. 

1. Introduction 

The process of learning a Bayesian Belief Network (BBN) is defined by two activities: 
learning the graphical structure, and then learning the parameters for the structure [43]. 
Characteristic of a BBN and key to defining its representation, in respect of the domain it 

models, is the determination of edge directionality of the graph. Where possible a domain 

expert can specify the node/vertices ordering, that is, the domain knowledge used to 

specify a causal order of nodes or variables of the domain. However, where expertise is 

scarce, finding a node ordering by alternative means that will represent a useful BBN can 
be a difficult task. 

Whilst it is possible to find a BBN for any given ordering (as the Joint Probability 
Distribution can be written by successive applications of the chain rule) it is clearly not 
practical to search among all possible orderings of nodes. Moreover, if we choose a poor 
order we get a more complicated network. As the topology changes more tenuous 

relationships can occur, which may in turn require unnatural and problematic probability 
judgements. 

The dependence BBNs have on node ordering has led to researchers actively 
developing algorithms to efficiently determine edge directionality. One approach uses a 

search and scoring method to find the correct directions of the edges [20,34] but this was 
found to be slow as the search space can be large if prior node ordering is not supplied. 

1 Corresponding author: Clifford S Thomas, Tel.: + 44 (0) 131 343 4827; Fax: + 44 (0) 1786 464551; E-mail: cst(a-)cs. stir. ac. uk 
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Another more common approach uses Conditional Independence (CI) tests and have 
been used in many edge orientation algorithms [45,51-53]. These methods are generally 
exponential in complexity. Singh [49] proposed a variant on the Cl tests generating a "good" node ordering from data. Although offering an improvement in complexity, it was 
noted that the quality of the recovered network structure was very sensitive to the node 
ordering determined by their algorithm. Further strategies can be found in [ 1,9,37,42]. 

Singly Connected Networks (SCN or polytrees) are a restricted class of networks that 
can efficiently be solved in time linear in the number of nodes. However, despite this 
reduction in complexity the task of finding edge directionality on a skeleton tree structure, 
thus completing the polytree, is still as complicated [7] to resolve. Polytree recovery 
techniques have been proposed [7,14,45] based on CI tests, but in some situations full 
recovery was not always possible, leaving some edges undirected. When directionality 
was fully recovered it was found that even with a small number of parents, a node's 
conditional probability table still required an unrealistic number of values to complete its 
description. 

The aim of this paper is to investigate the use of an information theory based technique 
for constructing a BBN and as a mechanism for subsequent inference. Our objective is to 
avoid the issues of model complexity and overfitting, together with the dependence upon 
prior node ordering, by taking advantage of the existing tree structuring algorithms. Our 
concept builds on the efficient SCN or polytree construction as proposed by Pearl [43], 
using the orientation of the tree edges, with respect to the class node, as a heuristic for 
assigning edge directionality. We call this SCN variant a Mutual Information Measure 
(MIM) Classifier as it corresponds to the restricted class of trees built from mutual 
information. Once constructed we experimentally evaluate this new approach and 
compare the resulting classification performance against three well known classifiers. 
These are a Naive Bayes classifier, a general Bayesian network and an implementation of 
a polytree [45]. 

The remainder of this paper is organised as follows. In the next section we review the 
background of modelling BBNs and in particular BBNs in the fon-n of 'trees'. In §3 we 
consider the use of mutual information as a mechanism for inference in SCNs. In §4 we 
review the experimental work with §5 discussing the results. Finally, in §6 we 
summarise our work and consider some possible improvements. 

2. Bayesian Belief Networks as Classifiers 

Probabilistic graphical models or Bayesian Belief Networks [43] offer a unified 
qualitative and quantitative framework for representing and reasoning with probabilities 
and independencies. One advantage is their comprehensibility. Due to their attractive 
features they are often used in real-world applications [3,18,21,39]. In a Bayesian Belief 
Network, Fig. la, vertices represent propositional variables in a domain, and edges 
between vertices represent the dependency relationships among the variables. By taking 
advantage of the independencies existing between subsets of variables in the domain, they 
model the joint densities that limit the problems of dimensionality, namely parameter 
space. 

Modelling a Bayesian Belief Network consists of determining the qualitative graph 

structure G and the quantitative parameter 0. The qualitative network structure G(N, A) 

is a directed acyclic graph (DAG). Each of the vertices nEN represents a domain 

variable, and each edge a E=- A between vertices represents a probabilistic dependency 

[43]. 
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Edges in the Bayesian Network represent the dependencies among the variables 
z= tz"... Z,, I with the parents of Zi 9 pa(Zi ) the direct predecessors of Zi in G. An 
absence of edges indicates that there is conditional independence. The qualitative 
parameter 0 consists of the joint probability distribution P(Z, 9, - zn) * 

(b) Naive Bayes Network 

Fig. 1. Network Examples. 

(c) Singly Connected Network 

This is the general product and can be written: 
n 

P(ZI) Zn fj P(Zj I pa(Zi)) where pa(Zi) is designated as the parent of Zi. 
i=1 

If the network is built in collaboration with domain experts, the detennination of the 
structure is often a relatively easy task, since this task usually fits well with knowledge 
that for example, medical experts often have about causal relationships between variables. 
In an automated approach a data set can be utilised but this task in general is considered 
to be difficult [11,13]. For the quantitative part (that is quantifying the conditional 
probability tables in the network) this aspect is often considered by medical experts as a 
much harder or even impossible task. The reason is that medical domain experts 
themselves often have no idea about these probabilities. When available a domain data set 
can provide estimates of the probabilities more readily than the experts. The reader is 
directed to [5,8,20,23,24,26,27,42] for further details of Bayesian Belief Networks. 

Leaming a Belief network structure from data is hard in general [23]. However, there 
are classes of structures for which both learning the structures and the parameters can be 
done efficiently. This is the class of 'Trees' [ 10,22,43 ]. 

A Tree, like any graphical model, has the ability to express the dependencies between 
variables separately from the detailed forms of these dependencies, contained in the 
parameters. In doing so it provides a property that offers excellent support for human 
intuition and allows for the design of inference and learning algorithms. 

Trees are simple models: this is especially evident when one examines the algorithms 
that fit a tree to a given distribution. All the information about the target distribution that a 
tree can capture is contained within a small number, at most (n - 1), pair-wise marginals. 
Simplicity leads to computational efficiency where efficient inference is a direct 
consequence of the fact that trees are decomposable models with small clique size. Trees 
have a probability distribution that can be mapped perfectly as both a Bayes net and 
Markov net, where a Markov net is defined by a structure, which is an undirected graph 
with an arbitrary topology. 

Tree structures require that exactly one variable be considered as a cause of another 
given variable. This restriction simplifies computations, but its representational power is 

rather limited, since it forces us to form a single vertex from all causes sharing a common 
consequence. For example, when a Doctor discovers evidence in favour of one disease, it 

reduces the likelihood of other diseases that could explain the patient's symptoms. 

(a) General Bayesian Network 
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A Bayesian network (where a vertex may have multiple parents) in which no more 
than one undirected path existing between any two parents vertices, is called a causal 
4polytree' or Singly Connected Network, Fig. Ic. Polytrees represent much richer 
dependency models than trees, as they support products of higher-order distributions. 
Moreover, they can be identified by a Maximum Weight Spanning Tree (MWST) 
algorithm, as used by Chow and Liu [10], to find the structure and thus only require 
second-order statistics to establish the branch weights. 

Chow & Liu's algorithm [10] takes a probability distributionPas its input and 
constructs a Bayesian network in the form of a tree as its output. This is achieved in only 
O(N') pair-wise dependency calculations with each calculation using only second-order 
statistics, where N is the number of nodes. 

The procedure can be summarised as follows. 
1. Compute the Mutual Information IV 9 Zi ) between each pair of variables ij 

A 

I(Zi, Zj)= 
A 

lpý, (Zi, Zj)JOg 
P"(Zi, zj) 

A 
(Zi) 

PA zj, zi PD D 
(Zj), 

) 

(1) 

A 

where Z= fZj 
.... Z,, I feature set of discrete variables and PDthe measure defined by the 

frequencies of events in the data D. 
2. Build a complete undirected graph in which the vertices are the variables in Z. 

Annotate the weight of an edge connecting Zi to Zj by I(Zi, Zj ). 

3. Build a maximum weighted spanning tree of the graph [ 12,43]. 
The algorithm starts with a graph without any edges and uses a search method to add 

on edges to the graph. Once found a scoring method is used to see if the new structure is 
better than the old one. If it is, the newly added edge is retained and the algorithm 
continues by trying to add another one. This is essentially repeated until no further new 
structure is better than the previous one. In the case of the Chow and Liu algorithm, the 
Kullback-Liebler [32,33] (K-L) cross entropy is used as the measure of best score. 

Of special interest is the use of the Bayesian network as a classifier where the focus of 
interest is in predictions about a special target variable, the class variable. The 

classification process involves a class variable C that can take on values C1,... C, and a 
feature vector Z of n features that can take on a tuple of values denoted by JZ,.. Zn I* 

Given a case Z represented by an instantiation IZ,,... Zn I of feature values, the 

classification task is to determine the class value Ci for Z. For simplicity, we restrict our 
discussion to domains with only discrete variables. 

The performance of the network is measured on some set of test cases in terms of the 
classification accuracy, that is, the percentage of test cases for which it predicts the class 
correctly. Classification is very important in most data analysis tasks and has been widely 
studied in the Machine Learning community. Pearl [43] reviews techniques for BBN 
inference. 

The most straightforward and widely tested classifier is the Naive Bayes Classifier. As 
Fig. lb shows, the network structure is static which means there is no need to perform any 
structural learning. Essentially, this classifier assumes that the attributes are conditionally 
independent given the class variable. The technical details are not essential for this paper 
and the reader is directed to [ 17] for further information. 
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Despite the controversial assumption of independence this classifier has however, 
outperformed many state of the art classifiers [15,25,35]. Further analysis of the Naive 
Bayes Classifier can be found in [6,18,35,449 469 47]. 

The Mutual Information Measure Classifier 

Simplified models, such as Singly Connected Networks (SCN), have been shown to 
represent good approaches to automatic classifier construction [7] alleviating the time 
consuming processes of learning and propagation compared to that required for GBNs. 
Despite their loss of representation capabilities SCNs gain in efficiency and simplicity as 
they can be built from data using only pair-wise marginals. That is, simplification is 
achieved by selecting a topology that allows efficient propagation, for example a SCN or 
4polytree' [7,14,45]. 

In this section we propose a propagation technique based upon the well-known mutual 
information between two random variables. This is an extension to Pearl's polytree 
construction utilising the Chow and Liu tree building algorithm. We consider the mutual 
information or 'branch weight' as a measure of strength for an edge linking multi-state 
vertices and further demonstrate that this branch weight representation can be used to 
classify locally new evidence presented to the SCN. The concept of information 'weight' 
has been researched and used in many other approaches [4,16,28] together with 
applications that have utilised the mutual information measure [2,29,41,54]. 

Prior to propagation we first construct a SCN based upon an information theory based 
technique. We achieve this by building the Mutual Information Measure (MIM) classifier 
structure in two stages. In the first, we use the Chow and Liu tree building algorithm to 
build the skeleton structure. Once constructed, stage two transforms the structure to a 
singly connected network. In stage two we determine the node ordering from the 
orientation of the tree edges with respect to the class node. 

The formal algorithm for constructing the Maximum Weight Spanning Tree (MWST) 
can be described by the pseudo code shown in the Fig. 2. 

The algorithm results in n(n-1)12 pairs of I(Zi, Zj) being generated with the 

algorithm terminating when (n-1) branches have been selected, at which point the 
dependency tree has been constructed. Essentially, by looking at the association of all 
variables in terms of couples, an (n - 1) undirected branched tree can be constructed, 
where n is the number of variables. The procedure for learning the MIM Classifier can be 
further summarised as detailed in Fig. 3. 

Consider the structure in Fig. 4, which represents a subset of a MIM classifier structure 
as generated from the procedure detailed in Fig. 3. 

In this example the class vertex C has C,,... C. multi-state values and the attribute ZI 
VI-I 

ýz 1-21 multi-state values. The mutual information measure I(C, Zj as defined by 

equation (1) is a measure of the dependence between the two variables C and ZI. The 

value I(C, Z, ) represents the summation of the 'individual' mutual information that is 

associated with each pair of class-attribute state values, that make up the overall 'branch 

weight' I(C, Zj. We call these 'individual') values mutual information elements and 

denote them by I'( ). The plots in Fig. 5, using the UCI 'DNA' database, illustrate the 

distribution of calculated I'( ) values with respect to the three class labels describing the 

primate splice-junction gene sequences (DNA). For each class C= JC,,... C3J the 
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distribution of I'( ) values reveals that there is a characterisation 'profile', which is 
distinctly different for each class label. 

During the process of classification we 'introduce' evidence in the form of a feature 
vector IZ,,... Z, l for n=60 attribute instantiations. To propagate this infort-nation or 
evidence in our SCN we update the 'branch weight' elements I'( ) in respect of each 
class C= ýC,.. C.. I where m =3. 

3.1. Classification - MIM Classifier 

Let T.. represent a MWST for a tree dependent probability distributionP, where P, is a 
Markov field relative to a tree [43]. If a feature vector Z= fZl,... Z,, I describes a new 
observation of the domain then the probability distribution P, will be updated to P, '. 

FOR i= I to N-1 DO 
BEGIN 
FORj=i+ I to N DO 

BEGIN 
Find aR second-order probabifity distributions P(Z,, Z, 

0 (A) From the given (observed) distribution P(Z ), 
compute the joint dis tribution Pý, Z) 

for all variable pairs, 
Calculate mutual information measures Iý,, Zj 

0 (B) Using the pair-wise distributions (A), compute all n(n-1)12 branch weights and 
order them by magnitude. 

END 
END 
Branches No=O 
WHILE (Branches No < (N-1)) 

0 (comment) Repeat (C) until n-1 branches have been selected. 
BEGIN 
Select two variables Z,, Z 

i that have largest &, Zj 

(C) ign largest two branches to the tree to be constructed. 
Add the branch 

Vi, 
Zj to the tree 

IF (there is a loop in the tree) 
Delete the branch 

ý,, Zj 

ELSE 
Branches No = Branches No +I 

END IF 
0 (comment) now Examine the next-largest branch, and add it to this tree. 

END 
Note: for those branches having equal weight, the first largest branch found will be selected to define 

the structure of the MWST. 

Fig. 2. Maximum Weight Spanning Tree Algorithm. 

1. Input Training Data of the domain {C, Z 

2. Build the undirected tree structure using the Chow and Liu algorithm. 

3. Select the domain 'Class' variable as the root of the undirected graph. 

4. Transform the graph from (3) into a directed tree (SCN) by setting the 
direction of all edges to be outwards from the class vertex. 

5. Output SCN (MrM Classifier structure) G(N, 

Fig. 3. MIM Classifier Leaming Procedure. 
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For Z belonging to a particular class value Ci . where i= (1,2,..., m), the new MWST for 
P, 'can be represented by T 

.. 
If we repeat this for each possible value of Ci then m 

MWSTs will be constructed. 
In order to assign a feature vector Z to a classification value of class Ci, we need only 

find the maximum T,,, 
c, 

from the m MWSTs. As was shown by Chow and Liu this is 

equivalent to finding the maximum total branch weight for T,,,, thus minimizing the K-L 

measure. In other words we are calculating the relative difference between each P, in 
respect of the m probability distributions represented by T M) .. 

for i= (1, 

Identifying the specific class value i to which the new observation Z belongs, requires 
finding the MWST (T,,, 

Ci 
) that has the greatest total branch weight. The winning class 

value i= (1,2,..., m) will thus identify one of the mutually exclusive classes Ci that 

corresponds to the maximum T,,,,, . 

C- Class 
Class Value 

cl 

C2 

c", 

I(c, ZI) xr 

-------- 

Z-2 

'Multistate : ro 
Zi - Attribute , -Value --- 

i 
---------- 

Multi State 
Value 

1 10 

C I. ZI-I 
CLZI-2 

C2, ZI-I 

- 
C. 

--------------------- 

---------- 

----------- 

Fig. 4. MIM Classifier Tree Structure (subset). 

NErTHER 

ro 
ALIL 
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11 r 
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Wividuar Feature Vaives 
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IE 
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Individuar Feature Values 

(b) IE 

8 

1'0 
.-L. Aý.. & 

I 

0 40 go 120 160 200 240 

wioduar Feature Values 

(e) EI 

Fig. 5. DNA Class Distributions of I'( ) values for each of the three Class-attribute measures of 
dependence. Where (a) represents the class 'Neither', (b) the class 'Intron/Exon' boundary or donors and (c) 

the class 'Exon/Intron boundary or acceptors. Each of the 60 attributes has four states (A, C, G, T) resulting in 

a total of 240 'individual' feature values. We ornit values from the I'( ) axis as only the 'profile' 

characterising each class is relevant. 
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For the representation of Fig. 4, considering the subset only, the joint probability 
distributionp(Cl Z, I 

Z2) can be written asp(C)P(Z, I C)P(Z2 I C) by the chain rule. If we 
ignore the edges C-Z, andC- Z2 then the three vertices can be considered independent 
giving: 

P' W9 ZI 
ý 

Z2) = P(C)P(ZI)P(Z2) 

and from Theorem 1. 
AC5 ZI 

5 
Z2) =I P(C9 ZZ 

P(C5 ZI 
5 

Z2) 

.d 
19 2)109 , (c, ZI, z- 

I(Cl ZI) + ACI Z2) 
CIZI, Z2 p 

2) 

cl 

C2 

cm 

Instantiation position C, 

Instantiation position C2 

Fig. 6. Domain Data set Representation example. 

This is the sum of the individual branch mutual information measure values between 
pairs of neighbours. More generally in terms of mutual information measure 'branch 

-": w, Vo 
.Z So if we sum over all these branch weights' W, (ZO 

5 , *)Z2) " 1)+Wt(z1ýZ2)* 

weights W, () we will have a combined measure of their affect. Since mutual information 
is symmetric then C -> Z, is the same as C <- Z,, so that directionality in our 
representation will not alter the value of the branch weight I(C, Z, ). 

If we now consider a representation of the domain data set as depicted in Fig. 6 we can 
see that an instantiation of an evidence vector Z= fZ,,... Z., I can be classified as 
belonging to one of the mutually exclusive class labels C= IC, 

5 ... C. I by local 

computation. 
In Fig. 6, the training sample of the domain can be viewed as a series of class partitions 

characterising samples belonging to a particular class. Each partition is described by a 
vector of class attributes Z= ýZ,,... Z, I and this will be the case for each class label 

where C= ICI,... C,,, 1. The actual dimensions of the partitions may or may not be the 

same for each class and will correspond to the specifics of the domain data set. 
An instantiation of an evidence vector ZI I in position C, will increase the marginal 

P(C, ) and update the joint probabilities P(C,, Z) in respect of the evidence vector 

z= fz, 
'... 

Z, I and their values. Similarly, for an instantiation in positions C2 
I ... I 

CM. 

Since the evidence vectorZI I will be common for all CJ I instantiation positions, the 

marginal probabilities P(Z) for each value of Z, due to the evidence, will remain at a 

constant but updated value. 

Z19 Z2) 
*-9 

Zn 
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In tenns of our MIM structure this implies that any changes of information, branch 
weights, due to observing an evidence vector ZI 1, will only be measurable on edges that 
are directly associated with the class vertex. The corresponding information on edges not 
associated with the class will remain at a constant value, for each instantiation position 
jCj'... C. 1. Thus the classification can be achieved locally using a subset of the domain 
features as defined by the SCN. In situations where the structure corresponds to that of 
Naive Bayes, the feature size will ben. However, unlike Naive Bayes the same extreme 
assumption of conditional independence for all features given the class is not made. 

4. Experimental Work 

For our experiments we used ten benchmark problems taken from the UCI repository 
[40]. The data sets selected are summarised in Table 1. 

Table I 
Data sets used in the experiments 

Database Name Attribute size Class size Sample size Train size Test size 
Vehicle 18 4 846 CO - 
DNA 60 3 3186 2000 1186 
Car Eval 6 4 1728 Cv5 - 
Flare 10 3 1066 Cv5 - 
Chess 36 2 3196 2130 1066 
Vote* 16 2 435 CO - 
Mushroom 22 2 8124 5416 2708 
Letter 16 26 20000 14000 6000 
Hepatitis 19 2 155 Cv5 - 
Nurserv 8 5 12960 8640 4320 

Key: * Indicates data sets with 'missing' attribute value. # Indicates continuous valued attributes. 
Cv5 indicates 5 fold Cross Validation. 

As we are using the Chow and Liu algorithm we have restricted our investigations to 
discrete data sets. All continuous features were therefore made discrete prior to 

application. This was achieved by use of the utility provided by MLC++ [31] on the 
default setting. 

Residual evaluations do not provide an indication of how well the classifier will 
perform when required to make a prediction for data it has not already observed. This 

problem can be avoided by not using the entire data set when constructing each classifier 
structure. For the larger data sets we randomly partitioned each data set into two parts. 
The first part comprised 2/3 of the entire sample and was used for training/construction of 
the four classifier structures. The second part, the remaining 1/3, was subsequently used 
for evaluating the predictive accuracy of each of the classifiers constructed (this 

represents the simplest kind of cross validation or hold-out technique). In each case a 

stratified distribution was maintained in respect of the two partitions. For those data sets 
that were small, the hold-out technique was not applied but a 5-fold cross validation as 
indicated in Table 1. Our choice of folds (k = 5) is based on the recommendations of 
Kohavi [30]. Data sets that contained 'missing' feature values were dealt with by treating 

them as an additional element of that feature. 
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For each of the four classifiers, the structure was leamed/constructed using the training 
data set and the classifier accuracy detennined on the test data set. The classification 
accuracy was determined as a percentage of the test cases that identified the correct class. 

This process was repeated over a series of runs in order to gain a sample average 
together with the standard deviation for the predictive accuracy using the test partition. 
The statistical significance of the differences in classification accuracy was measured 
using an Analysis of variance followed by Post Hoc Tukey comparisons with overall 
confidence level 95%. 

For the purposes of this investigation we used PowerConstructor [9] to both learn and 
test the GBN classifier. In the case of the 'polytree' classifier we implemented a version 
based on the Rebane & Pearl [45] model as described by the pseudo code detailed in Fig. 
2 with subsequent directionality discovery detailed in Fig. 7. 

In the event that branches remained undirected after applying this algorithm we 
applied two 'rules' in order to allow the conditional probability tables to be calculated. 
The first rule was taken from Verma & Pearl [53] whilst the second was a heuristic 
derived from the partially completed polytrees. Directionality was essentially assigned to 
the undirected edges in conjunction to those edges that had already been successfully 
recovered. 

The two rules applied were as follows: 

FOR ý-- I to N DO 
BEGIN 

IF Z, has more than one neighbour 

THEN put Zi in Multiple_Set 
END 
FOR each Zi in Muhple_Set 
BEGIN 

FOR any pair of neighbours 
Zj 

5 
Zk 

of Zi DO 

BEGIN 
IF (Z and Zk are independent) 

.i 
THEN 21 is distributed as X2 with (r- 1)(c- 1) degrees of freedom 

(Where I is the mutual information measure) 
zi 0' Z 

OZk 1, Zi 

ELSE 
zi 0Zj5 Zi Zk 

END 
END 

Fig. 7. 'Polytree' Construction Algorithm for Directionality Discovery. 

a d", 

+ 
Fig. 8. Rule 2- Directionality. 
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Rule 1: If ab and a is not adjacent to c then direct b -> c 
Rule 2: If ab --> c and d -> b then direct d -> e that is as shown in Fig. 8. 

5. Results and Discussion 

The average predictive accuracies, taken over 25 runs, of the classifiers generated for 
each of the four methods are shown in Table 2. Each entry describes the average accuracy 
along with the sample standard deviation illustrating variations in the predictive accuracy 
from sample to sample. 

Where the GBN model was provided with the correct node ordering the algorithm 
carried out O(N 2) CI tests to learn an N-node network. This same time complexity 
applies to the Chow and Liu algorithm (calculating the N(N - 1) /2 mutual information 
values) which is utilised for learning both our Polytree implementation and the MIM 
Classifier. In contrast the NB classifier's time complexity is O(N), being proportional to 
the time required to read all of the training data. When the GBN model was not provided 
with correct node ordering, the time complexity increased to O(N4). 

Table 2 
Average Predictive Accuracy 

DB Name mim NB GBN Polytree Default 

Vehicle 55.66 ± 1.51 58.28 ± 1.79 61.0 2.02 56.85 ± 1.77 25.8 
DNA 95.58 ± 0.42 94.97 ± 0.29 89.90 5.61 95.62 ± 0.35 51.9 
Car Eval 86.11 ± 0.74 86.58 ± 1.78 86.11 1.46 78.81 ± 8.25 70.023 
Flare 82.93 ± 1.26 80.99 ± 1.28 82.27 1.45 82.66 ± 0.79 79.2 
Chess 96.27 ± 3.56 87.34 ± 1.02 94.65 0.69 90.14 ± 1.86 52 
Vote 95.40 ± 2.41 89.89 ± 5.29 95.17 1.89 94.94 ± 3.69 54.8 
Mushroom 98.56 ± 1.06 95.79 ± 0.39 99.30 0.16 98.56 ± 1.06 51.8 
Letter 80.26 ± 0.37 74.96 ± 1.10 75.02 0.61 79.86 ± 0.80 4.07 
Hepatitis 84.00 ± 7.22 81.20 ± 3.70 83.22 1.52 82.47 ± 1.44 79.35 
Nurserv 95.78 ± 0.30 94.76 ± 0.45 89.72 0.46 94.85 ± 0.27 33.3 

Key: MIM - Mutual Information Measure Classifier, NB - Naive Bayes Classifier, GBN 

- General Bayesian Network Classifier, Polytree - Pearl's SCN Model. 
Values in bold type indicate the highest model performance achieved by the classifier in 
respect of each database. Bold italic values highlight performance levels that are close 
to the highest level achieved. 

Here the algorithm had the additional overhead of examining N' node pairs in order to 
determine the network edge orientations. In this paper both options were explored and the 

results in Table 2 reflect the best predictive values achieved for the GBN. 
Of the four algorithms the GBN was noticeably slower to learn the network structure 

than the tree based algorithms, even when correct node ordering was provided, with 
relative times corresponding linearly with training sample sizes. 

in respect of classification, testing was linear in the representation size of the 

structures, that is, in the number of attributes defining the class Markov blanket. 

The plots shown in Fig. 9 and Fig. 10 represent the results relative to the MIM 
Classifier and Polytree Classifier respectively. Each bar shows the average difference in 

predictive accuracy. A positive value for an algorithm indicates that the MIM or Polytree 



C. S. Thomas et al /A New Singly Connected Network Classifier based on Mutual Information 12 

performed better on the data set under consideration. The error bars represent the Post 
Hoc Tukey comparisons with overall 95% confidence for the relative differences. 

The MIM Classifier performed better than NB on eight of the ten databases used. In 
respect of the databases 'Chess', 'Mushroom', 'Letter' and 'Nursery' the MIM classifier 
has significantly higher performance accuracy when compared to NB. For 'Car 

- eval', 
although the NB did perform better it was not statistically significant with NB achieving 
on average a 0.5% better predictive level than MIM. In the case of the GBN there were 
two databases in which it performed better than the MIM Classifier with only 'Vehicle' 
being statistically significant, however, in general the overall predictive performance of 
the MIM Classifier aligned with that achieved by the GBN. The MIM Classifier 
performed better on seven of the ten databases against the GBN with three of these 
statistically significant; 'Nursery', 'Letter' and 'DNA'. This result was similar in respect 
of the polytree however none were found to be statistically significant, with the MIM 
Classifier performing better on seven of the ten database. 

For the databases 'Nursery' and 'Car 
- 

eval' there was an indication that the features of 
these two databases are almost independent of each other. Since the NB Classifier makes 
the assumption that the features are independent, given the class variable, it was no 
surprise to see it perform better for these two particular domains. In modelling these 
databases the MIM, GBN and polytree classifiers effectively reduced to a NB structural 
representation. 

14 
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4 

-8 - 
ji 
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Fig. 9. Predictive Accuracy relative to MIM Classifier. 
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Fig. 10. Predictive Accuracy relative to 'Polytree' Classifier. 
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These latter however, do not make this normally invalid assumption of conditional 
independence. For 'Nursery', both the MIM and polytree classifiers aligned closely with 
the level achieved by the NB Classifier, outperforming the GBN by 5%-6% in accuracy 
(averaged). Neither of the 'tree' classifiers seemed to have been affected from the loss of 
representation even when reduced to a NB type structure. This was not as apparent for the 
'Car 

- 
eval' database in respect of the polytree classifier, possibly due to its final topology 

as determined by the node ordering algorithm. 
In general the methods that did not assume extreme conditional independence 

performed better than the NB classifier as shown in Table 2. This demonstrates that the 
additional modelling power of these methods does actually have an impact on 
performance. For the majority of the databases the MIM Classifier was aligned in terms 
of perfon-nance with the polytree. This was expected since structurally they are very 
similar with the only difference being attributed to node ordering defining the topology. 
In some cases the node ordering for the polytree modified the topology sufficiently to 
reduce its performance but this was not seen to be significant. Despite the reduction in 
complexity the 'tree' methods not assuming extreme conditional independence performed 
comparably with that achieved by the GBN on the selected databases. 

Mushroom 
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MIM 90 
-Poly 

-GBN 
NB 

80 
20 40 60 so 100 
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Fig. 11. Leaming Plots: (a) Mushroom, (b) Chess. 
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Fig. 12. Learning Plots (c) DNA, (d) Nursery and (e) Letter. 
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Figures II and 12 illustrate the learning curves for the databases: 'Mushroom'. 
'Chess', 'DNA% 'Nursery' and 'Letter', based on an average of 20 runs. Only the larger 
databases, as shown in Table 1, were investigated, that is, those using a hold-out 
approach, as the smaller databases were evaluated by a 5-fold cross-validation approach. 

Langley [35] showed that the NB classification perfonnance was poor for databases 
'Mushroom' and 'Chess' but good for 'DNA'. In our investigations this was also evident. 
The MIM and polytree classifiers performed comparably for the 'Mushroom' database 
and stabilised at the 60% of the sample size both statistically significant. The GBN in 
contrast was stable throughout the sample sizes performing slightly better and was also 
statistically significant. We observed that the 'Mushroom' database did not require many 
features to classify the majority of the test samples and it was evident that both the MIM 
and polytree methods did not have sufficient class - attributes in their model 
representations. 

For the 'Chess' database both the MIM and the GBN methods improved performance 
as the sample size increased. However, the polytree, although structurally similar to the 
MIM model performed poorly compared with the MUA which was statistically 
significant. This may indicate a poor topology and corresponding bad choice of branch 
directionality, as determined by the node ordering algorithm, for a more complex 
structure necessary to model the chess database. 

In the case of the 'DNA' database N-B performs well, outperforming the GBN. Both 
the MIM and polytree methods were aligned in performance remaining stable throughout 
all sample sizes and were statistically significant along with N-B. This database structure 
has a strong class - attribute representation which clearly favours the NB classifier. As 
the GBN was reduced to this NB representation a degraded performance was observed. 
This was not the case for the MIM or polytree methods. As the 'Nursery' database also 
characterised strong feature independence, it was not unexpected that the resulting plot 
was similar to that of the 'DNA' database. However, unlike 'DNA' only MIM and 
polytree at 60% sample size were statistically significant and not N-B. 

In respect of the 'Letter' database all four methods achieved stable performance levels 
at 60% of the sample size. The GBN and N-B classifiers aligned at a lower level of 
perfonnance accuracy than both the MIM and polytree classifiers, with the latter 
maintaining similar profiles in tenns of perfonnance accuracy and statistically significant. 

In general where the database had strong feature independence characteristics the NB 
and MIM Classifier performed well. Since the structure of the GBN was forced to reduce 
to that of a NB structure the GBN had a slight degradation in performance. For domain 
modelling where the class - attribute were sparse, the MIM model required more samples 
to learn a model, as was seen in the 'Mushroom' database, than the GBN. 

As the structure for the polytree is (the skeleton) exactly the same as that of the MIM 
method, its topology will only change as a consequence of node ordering applied. For 
most of the databases the MfM and polytree classifiers performed equally well, however 
on the occasions where the topology changed due to the polytrees' dependence on node 
ordering, performance degradation was observed. This was particularly apparent for the 
'Chess' and 'Car 

- eval' databases, however there was no statistical significance found for 

any of the ten databases. 
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Conclusion 

6.1. Summary of Contributions 

This paper introduced a MIM approach to inference in Singly Connected Networks. The 
main contribution of this paper lies in showing the feasibility, advantages and 
effectiveness of this approach. In the main part of our investigation we compared the 
MIM Classifier with two other 'tree' modelling approaches, namely the Naive Bayes and 
a 6polytree' as defined by Pearl & Rebane [45], along with a general Bayesian network 
approach. The MIM classifier was statistically significantly better than NIB on four of the 
ten databases used. For 'Car 

- 
eval', although the NB did perform better this was not 

statistically significant at less than 0.5% performance improvement. In respect of the 
GBN there were two databases in which it performed better than the MIM Classifier, 
however, in general the overall performance of the MIM Classifier aligned with that 
achieved by the GBN. The MIM Classifier performed better on seven of the ten databases 
with three of these improvements statistically significant. This result was similar in 
respect of the 'polytree', with the MIM Classifier performing better on seven of the ten 
databases. 

The proposed use of mutual information measure 'branch weights' as a mechanism for 
classifying new unseen evidence has been demonstrated as feasible. The approach taken 
provides for both an efficient and localised method of inference in singly connected 
networks with comparable performance levels of less restricted methods. 

By modelling the domain using efficient 'tree' structuring algorithms we have avoided 
the issues of complexity and overfitting prone to networks. Moreover, the utilisation of 
Chow and Liu's algorithm allows for tree construction to be achieved using only pair- 
wise marginals, and although a 'restricted' model, has not required us to make extreme 
conditional independence assumptions. 

Our experimental results on the selected databases have demonstrated that the MIN4 
Classifier's performance was not affected by our node ordering approach and did not 
show any dependence or consequences of making a bad choice as observed in the polytree 
representation. In addition for databases that was known to have strong feature 
independence properties, the reduction of the structure to that of a 'NIB' representation 
appeared not to degrade the performance of the MIM classifier as it did for the GBN. 

6.2. Future Work 

Despite our encouraging experimental results, we believe there are still ways in which we 

might further improve the performance of the MIM Classifier. 'Branch weights', as 
described in this paper, allow us to focus on the most relevant nodes, given a specific 

query, namely a class node. However, work carried out by L de Campos [7] concerning 
SCN, suggests that the removal of weak links might actually improve perfon-nance. In our 

current representation, the MIM model is defined by the configuration determined by the 

Chow and Liu algorithm for constructing the tree. However, this phase of construction 

alone does not provide a mechanism to effectively modify the class - attribute relationship 
in order to better model the domain. Feature selection has been shown to be a promising 

area of research [50] and this is an aspect we intend to investigate. 

One of the complexity issues common to BBNs relates to the number of parents a node 
has associated with it. In the UCI databases selected this was not an issue, however, this 

would not be the case for a real world problem domain which may exhibit properties such 
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as numerous parents. To investigate this and the effect on other methods such as the 
Naive Bayes, GBN and polytree, we intend to apply the MIM Classifier to the medical 
domain of Acute Abdominal Pain. This is well known to be a difficult domain to model 
due to many of the diagnostic categories having similar characterisations. 
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SUMMARY 

Acute Abdominal Pain (AAP) is the commonest surgical emergency in Europe, with conditions such as 
Appendicitis requiring urgent surgical treatment. In order to address the computational complexity of larger 
real-world problems methods that approximate the reality have been adopted. The Naive Bayes (N-13) 
Classifier which has strong assumptions of independence among features is a common approach, whilst the 
class of trees another less extreme example. The aim of this paper is to investigate the optimality claim of 
Naive Bayes, for classifying in the medical domain of AAP, against three models, which do not assume 
extreme conditional independence. These are, a general Bayesian network, an implementation of a Singly 
Connected Network or 'polytree', and a new model called a Mutual Information Measure (MIM) Classifier 
because it corresponds to the restricted class of trees built from an information theory based technique. We 
experimentally evaluate this claim and compare the resulting classification performance of the Naive Bayes 
Classifier (N-13) against these three Bayesian Belief Network (BBN) approaches using two datasets taken 
from the medical domain of Acute Abdominal Pain. Despite the loss of some representation capabilities we 
demonstrate that the MIM classifier can be effectively applied to the domain of AAP and that it achieves a 
comparable predictive performance to that of the NB classifier. We ftirther show that this 'tree' 
representation of the BBN not only achieves a favourable 'overall' predictive value compared to NB, but 
provides a recognisable qualitative structure without violating 'real' world assertions. 

Some Key words: Acute Abdominal Pain; Bayesian Networks; Naive Bayes; Mutual Information Measure; 
Singly Connected Networks. 

1. INTRODUCTION 

Acute Abdominal Pain (AAP) is the commonest surgical emergency in Europe and in 

most other parts of the World [1]. Although some causes of AAP don't require admittance 
to hospital other conditions such as appendicitis require urgent surgical treatment. An 
inflamed appendix may perforate raising the risk of death and with one in every sixteen 
people expected to suffer from it at some point in life [2] it is thus a relatively important 
disease group to identify. Clearly, early and accurate diagnosis is essential, but few 
doctors and even fewer patients realise just how difficult such early diagnosis can be. The 
domain of AAP is well known to be both difficult and challenging [3] with the diagnosis 

of appendicitis complicated by other diagnoses like Non-Specific Abdominal Pain 
(NSAP) which often presents similar signs and symptoms. 

Tackling real world problems in complex domains such as AAP has resulted in the 
development of more and more decision analytic models. Extracting knowledge from 

experts however, is arising as a major obstacle in model building. Adopting automated / 

semi-automated techniques, deriving the model directly from the data, can overcome 

'Corresponding author: Clifford S Thomas, Tel.: + 44 (0) 131343 4827; Fax: + 44 (0) 1786 464551; E-mail: cst Dacs. stir. ac. uk 
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some of these obstacles. In fact [4] AAP is one of the most widely studied applications of 
computer aided diagnostics [ 5.6.7.8.9.10.11 ]. 

According to Provan & Clarke [12] probabilistic reasoning is crucial for diagnosing 
AAP, as the uncertainties involved cannot be adequately captured given that two patients 
with the same symptoms may have different diseases. Examples of approaches taking up 
this challenging domain can be found in [ 13.14.15.16.17]. However, despite these models 
attempts to capture the domain dependencies, the empirical evidence in support of 
diagnostic accuracy and the capturing of dependencies in Bayesian models is 
inconclusive. 

During comparisons made by Todd & Stamper [4] of an 'expert' built GBN and the 
Naive Bayes the results suggested that there were no significant improvements in 
accuracy by taking interactions into account. Work carried out by researchers [18.19.4] 
even suggested from their results that Naive Bayes was probably optimal. The research 
that followed de Dombel's et al [20] successful application of Naive Bayes led to many 
approaches, which attempted to avoid making this violation of conditional independence. 
Here the classifier assumes that the attributes are conditionally independent given the 
class variable (each attribute has only the class node as a parent). One such example was 
the G&T system [21] that applies Bayes rule strictly. However, this too found Naive 
Bayes to outperform their dependency model. Ohman [11 ] even compared Naive Bayes to 
more complex representations such as rule-based systems and found here too that there 
was no major 'overall' difference. Further support for Naive Bayes success and its 
performance in respect of AAP can be found in [22.23.24.25]. 

The aim of this paper is to investigate the optimality claim of Naive Bayes against 
three models, which do not assume extreme conditional independence. Namely, a general 
Bayesian network, an implementation of a Singly Connected Network (SCN) or 
6polytree' [26] as proposed by Pearl [27], and a new model called a Mutual Information 
Measure (MIM) Classifier [28] as it corresponds to the restricted class of trees built from 
an information theory based technique. 

In the following section we review the four classifier methods that will be used for this 
study, and further summarise their representations together with the classification task 
employed. The remainder of this paper is organised as follows. In Section 3 we describe 
the data sets used and how we deal with anomalies. In Section 4 we review the 
experimental work with Section 5 discussing the results. Finally, in Section 6 we 
summarise our work and consider some possible improvements. 

2. BACKGROUND - MODELS USED IN THE STUDY 

General Bayesian Networks (GBN) 

A Bayesian Belief Network consists of a qualitative network structure G and the 

quantitative parameter 0 over the network structure. The qualitative network structure 
G(N, A) is a directed acyclic graph (DAG). Each of the vertices n (=- N represents a 
domain variable, and each edge a (=- A between vertices represents a probabilistic 
dependency [27]. 
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Edges in the Bayesian Network represent the dependencies among the variables 
z= JZ1, 

---Z,, 
I with the parents of Zi . pa(Z, ) the direct predecessors of Zi in G. An 

absence of edges indicates that there is conditional independence. The qualitative 
parameter 0 consists of the joint probability distribution P(Z,,... Z,, ). This is the general 
product rule and can be written: 

n 
P(Z1 Zn P(Zi I pa (Zi)) where pa(Z, ) is the parent of Zi. 

The reader is directed to [29.30.31.32.33.34.35.36] for further details of Bayesian Belief 
Networks and [37.38-39.40] for various real-world applications. 

The classification process involves a class variable C that can take on values 
C1 

9 ... 
C., and a feature vector Z of n features that can take on a tuple of values denoted 

by tZl,... Zn 1. Given a case Z represented by an instantiation JZ1,... Zn I of feature 

values, the classification task is to determine the class value Ci to which Z belongs. In 

general inference is NP-hard [41]. Reviews of techniques concerning GBN inference can 
be found in Pearl [27], specific details are beyond the scope of this paper. Learning 
methods and perfon-nance of GBN for classifiers are studied in Friedman [42] and Cheng 
[43]. 

2.2. Naive Bayes Network (NB) 

The simplest form of classifier is the Naive Bayesian Classifier [44.45]. This classifier 
assumes that the attributes are conditionally independent given the class variable, that is, 
each attribute has only the class vertex as a parent, Fig. 1. 

Fig. 1. A Naive Bayesian Network Example 

n 

The joint distribution is given by: P(CI ZI 9 Z2 9 zn P(C)fJ P(Zi I C) where C is 
i=1 

the class variable and Z,,..., Zn are the other domain variables. 

In this case inference is straightforward. To perform this task, we assume that we have the 

prior probabilities, P(C, ), for each value c, of the class variable. Further, we assume that 

we have the conditional probability distribution for each feature value zj given the class 

value ci ý 
P(zj I c, )- 
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Using Bayes' rule, a new case, Z=Ajzj (A denotes conjunction), can then be classified 

as: P(ci I Z) P(cJp(z I c) P(c, )P(Ajzj I cJ 
P(Z) Ek P(AiZi I Ck)P(Ck) 

2.3. Singly Connected Networks or ýpolytrees' 

A Bayesian network where a vertex may have multiple parents, and which is a singly 
connected (that is, no more than one undirected path exists between any two parents 
vertices), is called a causal 'polytree' or Singly Connected Network, Fig. 2. 

Fig. 2. 'Polytree' Example 

'Polytrees' represent much richer dependency models than trees, as they support products 
of higher-order distributions. Moreover, they can be identified by a Maximum Weight 
Spanning Tree (MWST) algorithm, as described in procedure 1, to find the structure and 
thus only require second-order statistics to establish the branch weights. 
Procedure I (Restricted network) [46] 
The procedure of Chow and Liu can be summarised as follows. 

1. Compute the Mutual Information 
A 

j)= 

A P"' 
(zi, 

z 

I (zi, z PD 
(Zi, 

Zj between each pair of variables i j. 
)109 

A 
(Zi) 

PA zj, zi PD D 
(Zj 

2. Build a complete undirected graph in which the vertices are the variables in Z. 
Annotate the weight of an edge connecting Z, to Zj by I(Z,, Zj ). 

3. Build a maximum weighted spanning tree of the graph [47.27]. 

Here Z= IZI,... Z,, I is the feature set of discrete variables and is PADthe measure defined 

by the frequencies of events in the data D. 
Once a MWST has been constructed, edge directionality can be assigned thus completing 
the SCN. Procedure 2 describes the process we employed to determine directionality. 
Procedure 2 (SCN or 'Polytree') [26] 
1. Use Procedure 1 to build a MWST. 
2. Determine edge directionality for the skeleton tree structure using either rules proposed 

in Verma & Pearl [48] or Pearl's algorithm [27] summarised in Fig. 3. 
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FOR i-- I to N DO 
BEGIN 

IF Z, has more than one neighbour 
THEN put Z, in Multiple-Set 

END 
FOR each Z, in Muliple_Set 
BEGIN 
FOR any pair of neighbours ZJ)Zk of Zi DO 
BEGIN 
IF (Zi and Zk are independent) 

TREN 21 is distributed as ;r2 with (r-1)(c-1) degrees of freedom 
(Where I is the mutual information measure) 
zi ---- 0. ZO Zk b, Zi 

ELSE 

Zi - Zi 
ý 

Zi ---b. Zk 

END 

END 

Fig. 3. 'Polytree' Edge Directionality Discovery Algorithm. 

5 

Where I is the mutual information measure (Procedure I- 1) and N is the number of 
vertices. In this method the class variable is not distinguished as a separate variable from 
the other features. 
Any branches that remain undirected after applying the algorithm are completed by use of 
a domain expert. 
Propagation techniques in 'polytrees' are defined in Pearl [27]. 

A variant of the SCN is a new classifier called the MIM Classifier as it corresponds to 
the restricted class of trees built from an information theory based technique. This also 
uses the efficient Chow and Liu 'tree' structuring algorithm to construct a skeleton 
structure. Procedure 3 describes the construction technique and inference mechanism. 
Procedure 3 (MIM Classifier) [28] 

1. Apply Procedure I to construct a MWST skeleton tree structure. 
2. Transform into a directed tree by selecting the class node as the root variable and 

setting the direction of the remaining arcs from the class node. 
Once the structure has been fully constructed the task of classification is-performed as 
follows. 

3. Let T,,, represent the MWST for a tree dependent probability distribution P, If a 
feature vector Z= fZ,... Z,, I describes a new observation of the domain then the 
dependent probability distribution P, will be updated to P, '. For Z belonging to a 

particular class value C,, where i= (1,2,..., m), the new MWST for P, ' will be 

represented by T,,,,, - Repeating for each possible value of C, results in m MWSTs. 

4. Classification of class C, can be determined by finding a maximum Tci for the 

case Z represented by an instantiation JZ, 
ý ... Z,, I given class C, for i= (1,2,... 

1 M) - 
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3. DESCRIPTION OF THE DATA SETS (AAP) USED 

Two data sets were used in this study, defined in Table 1. The first consists of 9867 
patient records comprising 33 attributes, covering 135 features, and a class variable having 9 possible values or diseases. The data was originally collected and maintained by 
Mr AA Gunn [49] at Bangour General Hospital and is currently retained by staff at St 
John's Hospital in Edinburgh. ' The resulting database addresses the domain of 
Acute Abdominal Pain (AAP) recording information gathered both during the 
examination and subsequent audit administration. The structure is based upon a patient's 
examination on arrival to the Accident and Emergency (A&E) department. Each 
completed record stores the doctor's 'initial' diagnosis and the 'actual' diagnosis group a 
patient was subsequently determined as really belonging to, on their discharge from 
hospital. The full contents of the database far exceed our requirements and mainly provide 
information necessary for hospital audits. The precise format relevant to our study is 
defined in Appendix A. 

The second data set comprises of 5373 case samples again describing examination 
records of patients suffering from acute abdominal pain. In this case however, the data has 
been collected at a different geographical location, namely Leeds. 2 This data was gathered 
over a period of 30 years concerning the diagnosis of AAP and is currently retained at the 
Professorial Surgical Unit and Accident and Emergency Department, at the General 
Infirmary. Both data sets have been standardised by collaboration between the two 
hospitals under the direction of Professor Tim de Dombal. We will label the first data set 
'CADA' and the second one 'LEEDS' in order to distinguish between them. 

Table 1: AAP Data sets used in the experiments 

Dbase Name Attribute size Class size Sample size Train size Test size 

CADA 33 9 9867 6959 2908 

LEEDS 33 9 5373 - 5373 

4. EXPERIMENTAL WORK 

4.1. AAP Database 

With the exception of one of the features namely 'AGE', which is strictly a continuous 
variable, all of the other 32 features represent discrete variables. In this data set the 
doctors themselves have provided the discretisation for the feature 'AGE' based upon 

1 CADA (Computer Assisted Diagnostic and Audit) data base considered the largest database of AAP in 

Europe. Courtesy of St John's Hospital, Livingston, Edinburgh. 
2 Courtesy of General Infn-mary, Leeds, LTK. 
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their own judgements. The group Non-Specific Abdominal Pain (NSAP) is not actually a diagnostic group rather a 'catch all' category into which the doctors assign a patient 
whom they cannot fit into one of the other 'true' eight diagnostic groups. In a sense this 
can be considered as a 'don't know' category, but only in respect to the 'true' eight known categories. For this study we employed the hold-out approach partitioning the data 
base into a 'learn' and test sample set, as defined in Table 1. The training partition was 
approximately 2/3 of the database whilst the test partition the remaining 1/3 of the sample 
set. Both partitions are the result of performing a 'random' but stratified split, in order to 
compensate for the imbalances in respect of the nine class value distributions. 

On examination of the database, records were found to have multiple or composite 
parameter values stored in respect of some of the symptoms and in other cases none of the 
symptom parameters were recorded (missing). To deal with these two anomalies we have 
introduced two additional parameter values, which are appended to each symptom. For 
example Symptom 21 : MOOD will be described by parameters : normal (21/1), 
distressed (21/2), anxious (21/3) plus composite 3 (88) and missing (99). This approach 
ensures that the Naive Bayes model does not have an advantage over the Bayesian models 
(as complete data sets are required) with the AAP data set effectively standardised for all 
models under study. 

4.2. Methodology 

For each of the four classifiers, the structure was learned/constructed using the 2/3 
training partition and each classifier's accuracy determined on the 1/3 test partition. The 
main performance measure used was the classification accuracy of a model on the test 
data, the classification accuracy being the percentage of test cases that were diagnosed 
correctly. This process was repeated over a series of runs in order to obtain a sample 
average together with the standard deviation for the predictive accuracy using the test 
partition. The statistical significance of the differences in classification accuracy was 
measured using a Analysis of Variance (ANOVA) followed by Post Hoc Tukey 
comparisons with overall confidence level 95%. 

In the domain of AAP, where there are numerous class values, the comparison of the 
four methods does not provide an accurate measure using only the classification accuracy. 
To address this we have computed additional statistics, which are generally used for 
comparing 'alternative' tests with respect to medical diagnosis [50]. In this paper we 
utilise this approach to make comparisons of our 'alternative' classifiers and thus access 
their ability to effectively discriminate between the individual class values or diseases. 
Assuming the positive/negative value for a disease to represent its presence/absence, the 
different statistics we computed can be described as follows [ 17]. 

Sensitivity: This is the ability of a classifier to correctly predict the presence of a 
disease in a patient with that disease. Also know as the True Positive Rate, it is defined 

as: 
TP 

where TP is the number of true positives while FN represents the number of 
TP + FN 

false negatives. 

3 Some composites have been 'grouped' and added to symptoms as new parameter values. Where the 
frequency of occurrence for combinations was below a set threshold (arbitrarily set) these were assigned to 

the default composite value '88' 
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Specificity: This is the ability of a model to correctly identify patients that do not have 
a given disease. Thus, it is the proportion of people who do not have a given disease, and 

correctly predicted so by the classifier. As such: 
TN 

where TN represents the 
TN + FP 

number of true negatives and FP represent the number of false positives. 
Likelihood Ratio: This measures the ability of a classifier to discriminate between 

alternative diseases. The higher the value, the greater is the discriminating ability of the 

method. It is defined as follows: TP (FP + TN) sensitivity 
FP(TP + FN) I- specificity 

Predictive Value: This measures the accuracy of a classifier on a given disease, and is the 
probability that a patient actually has the certain disease, given that the classifier has so 

predicted. It is defined as: 
TP 

TP + FP 
In addition, we also computed the discriminant matrices, for each method, describing the 
performance of each technique with respect to the individual diseases. This provides a 
mechanism for us to compare different approaches with respect to their ability to correctly 
identify the individual class values (diseases). 

In this investigation, the 'CADA' database was used to both construct and test the four 
methods, whilst the 'LEEDS' data set was only used for testing the four methods. This 
latter data set represents a truly 'external' sample set as its data distribution, thus its 
characteristics, do not have an influence on the classifier's structure as it has been 
independently gathered from the 'CADA' data set. 

4.3. Experimental Design 

The objective of the study is to address three hypotheses. 
1. For AAP does the Naive Bayes classifier really perform better than the Bayesian 

network. 
2. Is Naive Bayes (as considered by other researchers) really optimal for AAP or is it 

just good at identifying NSAP. 
3. Does the Bayesian network approach offer more than the Naive Bayes irrespective 

of its overall accuracy performance. 
For the purposes of this investigation we used PowerConstructor [51] to both learn and 
test the GBN classifier. In the case of the 'polytree' classifier we implemented a version 
based on the Rebane & Pearl [26] approach. The specifics of the Naive Bayes and MIM 
Classifiers used for this study are as described in Section 2. 

5. RESULTS AND DISCUSSION 

The average predictive accuracies, taken over 10 runs, of the classifiers generated for 

each of the four methods are shown in Table 2 and Table 3. Each entry describes the 

average accuracy along with the sample standard deviation illustrating variations in the 
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predictive accuracy from sample to sample. For completeness the doctor's predictions are 
also included 4. 

Table 2: Average Predictive Accuracy 'CADA' - error rates 
Doctor MINI NB GBN Polytree Default (overall)' 

0.2834±0.28 0.3349±0.82 0.2617±1.16 0.3583±1.56 0.3566±0.66 0.5495 
Key: MIM - Mutual Information Measure Classifier, NB - Naive Bayes Classifier, GBN - General 
Bayesian Network Classifier, Polytree - Pearl's Model. Values in bold type indicate the highest model 
performance achieved by the classifier in respect of the CADA database. 

Table 3: Average Predictive Accuracy 'LEEDS' - error rates 
Doctor MIM NB GBN Polytree Default (overall) 

0.3413±0.0 0.4569±0.52 0.4489±0.53 0.4882±0.44 0.4770±0.15 0.6382 
Key: MIM - Mutual Information Measure Classifier, NB - Naive Bayes Classifier, GBN - General 
Bayesian Network Classifier, Polytree - Pearl's Model. Values in bold type indicate the highest model 
performance achieved by the classifier in respect of the LEEDS database. 

Table 2 and Table 3 display the 'overall' predictive values for the CADA and LEEDS 
databases respectively. In general the NB outperforms the BBN models and in the case of 
the CADA database, even performs better than the doctors. 

The GBN, 'ploytree' (SCN) and the MIM models provide a qualitative structure 
(Appendix D) in contrast to the NB model, which offers only a trivial representation. In 
the case of the GBN the structure is a more complex DAG, whilst the SCN and MIM 
structures correspond to a less complex 'tree' representation. The 'tree' structures of SCN 
and MIM are essentially the same with the interpretation governed by edge directionality. 
For the SCN there is a 'multi parented class node, whereas for MIM the class node 
represents the root vertex and thus acts as a lone parent. In correspondence with NB the 
MIM structure represents a subset of the N-B. That is, the implied feature selection of 
MIM in respect to the class's children. However, MM1 unlike NB does not make the same 
extreme assumptions of conditional independence. 

The plots shown in Fig 5 and Fig 6 represent the results relative to the MTM Classifier 
and the NB Classifier respectively. Each bar shows the average difference in predictive 
accuracy. A positive value for an algorithm indicates that the MW or NB performed 
better on the CADA and LEEDS data sets. The error bars represent the Post Hoc Tukey 
comparisons with overall 95% confidence for the relative differences. 
For the CADA database, Table 2, the NB Classifier has the best predictive accuracy of the 
four models used in the study. This includes the 'overall' performance achieved by the 
doctors, and was statistically significantly different in all applications except in the case 
of the doctors with a p-value = 0.137. The doctors achieved the greatest predictive 
accuracy compared to all the BBN models, and was also statistically significantly 
different. In the case of the MIM Classifier the predictive levels exceeded the other two 
BBN models and was found to be statistically significant compared to the SCN but not 
the GBN with a p-value = 0.164. 

These are already recorded within the two data sets in respect to each test case used in the study. 
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As indicated in Table 3, the result in respect of the LEEDS database show the doctors 
performing (as expected) better than all statistical approaches and was found to be 
statistically significantly different for all methods. In the case of the MIM and NB models 
the predictive accuracy was found to be comparable, with the NB statistically significant 
in respect of all the BBN models and the MIM statistically significantly different for both 
the SCN and GBN- 

In deriving the structures of the BBN models, Appendix D, we identified some 
symptom-symptom relationships, which appeared meaningless probably due to some 
ýcommonality' or 'correspondence' rather than causal interpretation. Examples are : Pain- 

site present / Pain-site Onset / Site of Tenderness, Vomiting / Nausea, and Previous 
Surgery / Abdominal Scar. Gammerman and Luo [52] also observed this commonality. 
Whilst these were identified by all the BBN models the NB model lost these relationships 
due to the assumptions of conditional independence. 
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Table C2, Appendix C, shows the resulting individual disease group predictive values for the CADA database. Although NB achieves the greatest 'overall' predictive value, it is based largely upon the perfannance of the majority group NSAP. This group is defined 
by the doctors as a 'group of exclusion'. The same majority group predictive levels are 
apparent for the SCN and GBN models. The MIM Classifier including the doctors on the 
other hand does not portray this characteristic. In fact there is a relative alignment of MIN4 
predictive scores to those of the doctors for all the individual class values. Clearly, the 
doctors are reluctant to assign a patient to a class value which essentially represents 'don't 
know'. This reduced level of predictive value for NSAP was also observed in the G&T 
system [24] were it too had difficulty in identifying the majority group NSAP. One 
explanation of this may be due to the way the G&T and MIM models deal with new 
observations. In the N-B model only features represented as 'present' are used to obtain 
appropriate probabilities for the calculation of each class probability. For the G&T and 
MIM the 'absent' feature values are also used. Although not explicitly observed within 
the feature vector itself, they contribute to the overall calculation of the final probabilities 
in respect of the possible class outcomes. The G&T model uses both symptom (present) 
and - symptom (absent) in determining relevant combinations, whilst the MIM model 
branch weights IK 9 X2) relate to all X, andX2 (present) parameter values which 
includes the -, X, and --lX2(absent) values. For NSAP the distribution of features is more 
generalized as it does not actually characterize a 'real' disease (or at least a single group). 
This means for NSAP identification, both the MIM and G&T models use of the 'absent' 
feature values will have the effect of reducing the calculated individual class probabilities 
used to discriminate between the disease groups. This in turn will increase the possibility 
of misclassification. Since NB only uses the 'present' feature values there is less or no 
reduction in this class probability and as NSAP is a generalized characterization, this 
means it will capture a significant number of the observations more readily. 

From Appendix C, Table C2, the doctors individual group predictive values are 6/9 
better than NIB. The MIM Classifier (best of BBN models) similarly achieves 6/9 groups 
better than NIB. For the LEEDS database Table Cl, the doctor's performance is optimal at 
9/9 compared to NIB, with the MU\4 Classifier achieving 5/9 group predictive values 
better than N113- 

In addition, from Table C2, Appendix C, despite NB's 'overall' perfonnance in respect 
of the CADA database exceeding that of the doctors, the Likelihood Ratio is in general 
lower for NIB than the doctors. This indicates that the doctors have a greater ability to 
discriminate between the disease groups. The Likelihood Ratio for the LEEDS database, 
Table Cl, shows a similar result, however for this particular data set the doctors are 
already overall winners. 

One reason why NB may outperform BBN models is the possibility of high problem 
dimensionality. In both the CADA and LEEDS databases the number of domain variables 
is high, however for some of the disease groups there is very little data in order to 
adequately learn the model. As a consequence overfitting may occur due to spurious 
dependencies and unreliable probability estimates. The use of 'tree' structures may 
alleviate this problem as they offer less complex structures. This is demonstrated by the 

results shown in Table 2 and Table 3 where the MIM Classifier performs better than the 
GBN model. in respect of the SCN, although a 'tree' structure, it is dependent upon edge 
directionality and full recovery from data alone is not always possible [27]. From the 

results obtained node ordering seems to have had an effect on its final predictive 
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performance. Since the MIM model is not constrained by node ordering it provides an ideal middle ground between the NB and GBN approaches. As demonstrated by the use of the LEEDS database, which represents a truly 'external' 
test sample, the NIB and MIM 'overall' predictive performance was comparable. Individually the MIM performed better on 5/9 disease groups compared to the NB- For 
the CADA database 6/9 disease groups were identified by MIM compared to NB with 
NB's 'overall' predictive performance reflected by the majority group NSAP. In the case 
of the LEEDS database this was not the case. The group NSAP is not a 'real' group and 
its sample distribution is thus a generalization that represents several sub-groups. For the 
CADA and LEEDS data sets this 'characterization' will differ due to geographical 
population anomalies. As the classifier models are derived from the CADA sample set, 
the corresponding CADA test samples will be classified better because they have a 
similar 'characterization' and sample distribution. However, for the LEEDS test samples 
NSAP will have, in general terms, some similar aspects but on the whole be sufficiently 
different to make classification of NSAP samples harder to identify using the CADA 
generated models. Clearly from the results, the remaining eight 'real' disease groups have 
a 'common' and well characterized description and so their predictive performance, in the 
case of the CADA and LEEDS databases, align relatively well. 

From the confusion matrixes, Appendix B, Table B2, in conjunction with Appendix C, 
Table C1. The following are observed in respect of the LEEDS database. 

In general, the high frequency group misclassifications are lost to other high frequency 
groups (similarly observed in CADA). Low frequency group misclassifications for the 
SCN and GBN are lost to high frequency groups, however for MIM and NB these are 
generally lost to low frequency groups. The exception is the disease group diverticulitis 
whose misclassification is directed to a high frequency group. 

The predictive value for MIM is generally higher than those of NB, GBN and SCN for 
the high frequency groups with the exception of NSAP (similarly observed in CADA). In 
the case of the low frequency groups the MIM predictive values are greater than those 
obtained by NB, GBN and SCN. 

From Table Cl, Appendix C, the sensitivity values for disease groups perforated peptic 
ulcer and pancreatitis are lower than those of the doctors for CADA, Table C2. Clearly, 
the doctors have used some heuristics to diagnose groups perforated peptic ulcer and 
pancreatitis as it is known that the group pancreatitis in particular has a very poor data 
definition stored within the database. 

From the CADA confusion matrixes, Appendix B, Table B1, in conjunction with 
Appendix C, Table C2. The following are observed in respect of the CADA database. 

The predictive value for MIM is greater than that of the NB for low frequency groups. 
In most cases, MIM and NB values are higher than those of GBN and SCN. For high 
frequency groups the predictive value for NIB and MIM are similar, with the exception of 
NSAP, where the MIM and doctors levels fall below those of the SCN, GBN and NB. 

On the whole, high frequency groups misclassify into other high frequency groups for 

the NB, SCN and GBN, whereas for the MIM, this model misclassifies into low 

frequency groups. From Table C2, Appendix C, the sensitivity values for disease groups 

perforated peptic ulcer and pancreatitis are lower compared to those of the doctors, again 
illustrating the doctors use of heuristics. 
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6. CONCLUSION 

6.1. Summary of Contributions 

In this paper we investigated the claims that the NIB Classifier was optimal in respect of 
the medical domain AAP. The main contribution of this paper lies in showing that, with 
respect to the BBN representations, the MIM Classifier can be effectively applied to the 
domain of AAP. Unlike NIE3 it does so without making the assumption of extreme 
conditional independence providing a qualitative structure of the domain recognisable by 
the doctors. In the main part of our study we compared the Naive Bayes with two other 
'tree' modelling approaches, namely the MIM Classifier and a 'polytree' (SCN) as 
defined by Rebane & Pearl [26], along with a General Bayesian network approach. 

The MIM Classifier performed 'overall' better than the 'polytree' and GBN. When 
evaluated with a truly 'external' database of the domain, the MIM Classifier's 'overall' 
predictive performance was found to be comparable to that achieved by the NB Classifier. 
Moreover, we observed that the apparent 'optimality' of the NB Classifier's success, 
particularly in the CADA data set, was largely due to its ability to successfully identify 
the majority group NSAP. This observation was confirmed in respect of the domain 
individual disease groups with the MIM Classifier identifying 5/9 class values better than 
that achieved by NIB for the LEEDS data set and 6/9 class values for the CADA data set. 

By modelling the domain using an efficient 'tree' structuring algorithm we have 
avoided the issues of complexity and overfitting to which networks are prone. 

Our experimental results on the two AAP databases have demonstrated that the MIM 
Classifier's performance was comparable to that of the NB Classifier when evaluated 
with 'external' data of the domain and provides an ideal middle ground between the NB 
and GBN approaches. 

62. Future Work 

Despite our encouraging experimental results, we believe there are still ways in which we 
might further improve the performance of the MIM Classifier. In our current 
representation, the MIN4 model is defined by the configuration determined by the Chow 
and Liu algorithm for constructing the tree. However, this phase of construction alone 
does not provide a mechanism to effectively modify the class - attribute relationship in 

order to better model the domain. Feature selection has been shown to be a promising 
area of research [17.53] and this is an aspect we intend to investigate. 
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APPENDIX A- Diagnostic and Symptom Codes AAP 

Symptom Value 
SEX male(1/1), female(1/2) 
AGE 0-9(2/1), 10-19(2/2), 20-29(2/3), 30-39(2/4), 4049(2/5), 50-59(2/6), 60-69(2/7), 70 +(2/8) 
Pain-site Onset right upper quadrant(3/1), left upper quadrant(3/2), right lower quadrant(3/3), left lower quadrant(3/4), upper half(3/5), lower half(3/6), right half(3/7), left half(3/8), centra](3/9), genera](3/10), right loin(3/1 1), left loin(3/12), epigastric(3/13), right upper quadrant + epigastric(3/14), right lower quadrant + left lower 

quadrant(3/15), right lower quadrant + right loin(3/16) 
Pain-site Present right upper quadrant(4/1), left upper quadrant(4/2), right lower quadrant(4/3), left lower quadrant(4/4), 

upper half(4/5), lower half(4/6), right half(4/7), left half(4/8), centra](4/9), genera](4/10), right loin(4/1 1), 
left loin(4/12), epigastric(4/13), pain settled(4/14), right upper quadrant + epigastric(4/15), right lower 
quadrant + centra](4/16), right lower quadrant + right loin(4/17), left lower quadrant + left loin(4/18), right half + right loin(4/19), left half + left loin(4/20), central + epigastric(4/21) 

Aggravating movement(5/1), coughing(5/2), inspiration(5/3), food(5/4), other(5/5), ni](5/6), movement + coughing(5/7), Factors movement + inspiration(5/8), movement + food(5/9), movement + other(IO), movement + coughing + 
inspiration(5/1 1), coughing + inspiration(5/12) 

Relieving Factors lying still(6/1), vomiting(6/2), antacids(6/3), milk/food(6/4), other(6/5), nil(6/6), lying still + vomiting(6/7), 
lying still + other(6/8) 

Progress of Pain getting better(7/1), no change(7/2), getting worse(7/3) 
Duration of Pain under 12 hours(8/1), 12-24 hours(8/2), 24-48 hours(8/3), over 48 hours(8/4) 
Type of Pain steady(9/1), intermittent(9/2), colicky(9/3), sharp(9/4), steady + intermittent(9/5), steady + colicky(9/6), 

steady + sharp(9/7), steady + colicky + sharp(9/8), intermittent + colicky(9/9), intermittent + sharp(9/10), 
intermittent + colicky + sharp(9/1 1), colicky + sharp(9/12) 

Severity of Pain moderate(I 0/ 1 ), severe(I 0/2) 

Nausea nausea present(I I /I ), no nausea(I 1/2) 

Vomiting present(12/1), no vomiting(12/2) 
Anorexia present(13/1), normal appetite(13/2) 
Indigestion history of dyspepsia(14/1), no history of dyspepsia(14/2) 

Jaundice history of jaundice(I 511), no history of jaundice(I 5/2) 

Bowel habit no change(16/1), constipated(16/2), diarrhoea(16/3), blood(16/4), mucus(16/5), constipated + 
diarrhoea(l 6/6), diarrhoea + blood(I 6/7) 

Micturition normal(I 7/1 ), fTequent(I 7/2), dysuria(l 7/3), haematuria(l 7/4), dark urine(] 7/5), frequent + dysuria(I 7/6) 

Previous Pain similar pain before(I 8/1), no similar pain before(I 8/2) 

Previous surgery yes(I 9/ 1 ), none(I 9/2) 

Drugs being taken(20/1), not being taken(20/2) 

Mood normal(2 I /I ), distressed(21/2), anxious(21/3), distressed + anxious(21/4) 

Colour norma](22/1), pale(22/2), flushed(22/3), jaundiced(22/4), cyanosed(22/5) 

Abdominal norma](23/1), poor/ni](23/2), visible peristalsis(23/3) 
Movement 
Abdominal scar present(24/1 ), absent(24/2) 

Abdominal present(25/1), absent(25/2) 
Distension 
Site of right upper quadrant(26/1 ), left upper quadrant(26/2), right lower quadrant(26/3), left lower quadrant(26/4), 
Tenderness upper half(26/5), lower half(26/6), right half(26/7), left half(26/8), centra](26/9), general(26/10), right 

loin(26/1 1), left loin(26/12), epigastric(26/13), none(26/14), right upper quadrant + epigastric(26/15), right 
lower quadrant + left lower quadrant (26/16), right lower quadrant + right half(26/17), right lower quadrant 
+ centra](26/18), right lower quadrant + right loin(26/19), right lower quadrant + epigastric(26/20), left 

lower quadrant + left loin(26/21), left half + left loin(26/22) 

Rebound present(27/1), absent(27/2) 

Guarding present(28/1), absent(28/2) 

Rigidity present(29/1), absent(29/2) 

Abdominal present(30/1), absent(30/2) 
Masses 
Murphy's test positive(3 1 /1), negative(31/2) 

Bowel sounds norma](32/1), decreased/absent(32/2), increased(32/3) 

Rectal tender left side(33/1), tender right side(33/2), generally tender(33/3), mass felt(33/4), norma](33/5) 

Examination 

Table AM Symptom Parameters and Codes 
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Diagnostic Groups 
Disease Value 

APP Appendicitis 
DIV Diverticulitis 
PPU Perforated Peptic Ulcer 

NSAP Non Specific Abdominal Pain 
CHO Cholecystitis 
INO Intestinal Obstruction 
PAN Pancreatitis 
RCO Renal Colic 
DYS Dyspepsia 

Table AI-2 Diagnostic Groups and Codes 

APPENDIX B- CADA/LEEDS Discriminant Matrices 

APP Div Ppu NSAP CHO INO PAN RCO DYS TOTAL 
APP 298 7 13 46 3 5 4 7 2 385 
Div 2 63 5 1 3 13 1 2 2 92 
Ppu - - 43 1 3 3 5 - 1 56 

NsAp 111 60 16 687 27 47 30 75 47 1100 
CHO 1 9 13 6 147 16 17 7 19 235 
INO 11 25 13 16 4 130 18 3 8 228 
PAN 1 6 12 2 3 5 30 1 12 72 
RCO 7 6 6 11 7 5 9 235 1 287 
Dys 3 17 23 19 34 13 40 3 301 453 

TOTAL 434 193 144 789 231 237 154 333 393 2908 

Table B1 -1 MIM Classifier (CADA) 

APP Div Ppu NsAp CHO INO PAN RCO DYS TOTAL 

APP 294 2 5 73 2 2 2 1 4 385 
Div - 49 5 19 1 12 1 2 3 92 
Ppu I - 37 - 4 2 11 - 1 56 

NsAp 36 28 5 880 12 47 8 45 39 1100 
CHO - 1 6 11 139 16 26 3 33 235 

INO 8 14 6 22 6 147 15 - 10 228 
PAN 2 3 9 1 7 7 23 2 18 72 

ROO 7 4 1 25 6 6 2 234 2 287 

DYS 3 9 8 27 20 17 23 2 344 453 

TOTAL 351 110 82 1058 197 256 111 289 454 2908 

Table B 1-2 NB Classifier (CADA) 

APP DIV Ppu NsAp CHO INO PAN RCO DYS TOTAL 

APP 228 2 3 133 3 7 1 2 6 385 

DIV 4 15 1 42 2 20 1 3 4 92 
Ppu 7 - 32 3 6 2 2 - 4 56 

NSAP 37 6 4 904 13 34 7 37 58 1100 

CHO 1 2 3 42 125 7 10 3 42 235 

INO 6 4 2 66 5 124 5 3 13 228 

PAN 5 1 2 22 10 7 9 - 16 72 

RCO 6 1 1 69 8 5 1 182 14 287 

DYS 6 4 1 153 17 14 2 9 247 453 

TOTAL 300 35 49 1434 189 220 38 239 404 2908 

Table B 1-3 GBN Classifier (CADA) 

APP Div Ppu NSAP CHO INO PAN RCO DYS TOTAL 

APP 308 2 1 66 1 1 3 2 1 385 

DIV 1 45 6 23 3 12 - 1 1 92 

Ppu I - 38 5 5 2 1 - 4 56 

NSAP 271 13 1 729 12 26 4 24 20 1100 

CHO 1 2 4 24 162 7 13 2 20 235 

INO 5 3 3 26 1 179 3 1 7 228 

PAN - 2 3 10 4 4 45 1 3 72 

RCO 6 - - 27 4 1 1 247 1 287 

DYS 3 3 9 58 19 5 15 1 340 453 

TOTAL 596 70 65 968 211 237 85 279 397 2908 
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Table B 1-4 Doctors (CADA) 
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APP DIV Ppu NsAp CHO INO PAN RCO DYS TOTAL 
App 199 1 1 172 2 4 2 - 4 385 
DIV 1 25 2 31 3 25 - 3 2 92 
PFU 1 2 6 9 7 17 1 - 13 56 

NSAP 30 11 1 933 16 35 1 33 40 1100 
CHO I - 4 34 115 27 1 11 42 235 
INO 4 13 2 68 6 105 3 5 22 228 
PAN 2 1 3 20 9 8 2 - 27 72 
RCO 3 4 - 85 7 6 1 178 3 287 
DYS 2 3 1 82 22 29 2 4 308 453 

TOTAL 243 60 20 1434 187 256 13 234 461 2908 

Table B 1-5 SCN - 'polytTee' Classifier (CADA) 

APP Div Ppu NsAp CHO INO PAN RCO DYS TOTAL 
APP 947 9 5 229 5 6 1 5 6 1213 
DIV 23 120 5 41 3 23 1 4 2 222 
Ppu 6 0 113 15 6 1 6 0 3 150 

NsAp 539 23 16 1024 76 64 36 77 89 1944 
CHO 10 3 10 52 406 23 23 5 23 555 
INO 14 6 6 46 2 254 3 3 4 338 
PAN 3 2 20 17 26 10 126 2 18 224 
RCO 12 2 0 53 7 1 1 301 0 377 
Dys 4 1 8 40 21 7 21 0 248 350 

TOTAL 1558 166 183 1517 552 389 218 397 393 5373 

Table B2-1 Doctors (LEEDS) 

APP Div Ppu NsAp CHO INO PAN Rco Dys TOTAL 
APP 800 60 85 150 8 61 20 19 10 1213 
DIV 8 133 18 9 3 32 5 11 3 222 
Ppu 3 5 103 3 7 9 16 - 4 150 

NSAP 267 154 87 831 55 155 122 130 143 1944 
CHO 3 26 49 13 334 21 72 9 28 555 
INO 16 45 29 11 6 185 26 6 14 338 
PAN 5 8 48 6 28 37 72 6 14 224 
RCO 15 16 21 34 6 10 18 254 3 377 
DYS 3 8 14 20 10 17 62 10 206 350 

TOTAL 1120 455 454 1077 457 527 413 445 425 5373 

Table B2- 2 MIM Classifier (LEEDS) 

APP DIV Ppu NsAp CHO INO PAN RCO DYS TOTAL 

APP 763 18 162 226 3 26 4 6 5 1213 
Div 9 102 18 55 2 27 2 4 3 222 
Ppu 13 7 87 4 9 7 21 - 2 150 

NSAP 240 79 108 1024 46 178 60 109 100 1944 
CHO 6 7 46 31 288 35 75 12 55 555 
INO 16 24 28 32 3 205 13 8 9 338 
PAN 5 2 47 18 26 31 64 6 25 224 
ROO 14 12 8 56 3 to 4 267 3 377 
DYS 1 3 23 36 11 28 28 - 220 350 

TOTAL 1067 254 527 1482 391 547 271 412 422 5373 

Table B2-3 NB Classifier (LEEDS) 

APP DIV PPU NSAP CHO INO PAN RCO DYS TOTAL 

APP 567 20 159 391 21 23 6 9 17 1213 

DIV 13 39 12 92 6 43 5 5 7 222 

PPU 25 2 71 15 13 7 8 1 8 150 

NSAP 145 29 77 1246 52 126 22 78 169 1944 

CHO 7 6 34 102 284 27 26 13 56 555 

INO 19 10 16 80 10 169 11 5 18 338 

P, kN is 5 31 50 34 18 28 3 40 224 

RCO 10 4 26 125 6 12 8 167 19 377 

DYS 4 2 14 97 9 18 18 9 179 350 

TOTAL 805 117 440 2198 435 443 132 290 513 5373 

Table B2-4 GBN Classifier (LEEDS) 

APP DIV Ppu NSAP CHO INO PAN KCO Uys IUIAL 

APP 477 7 8 680 2 28 2 3 6 1213 

DIV 5 68 6 81 2 43 - 11 6 222 

Ppu 11 2 24 43 12 28 13 2 15 150 

NsAp 123 32 9 1373 41 141 14 79 132 1944 

CHO 4 3 14 74 327 46 9 13 65 555 

INO 11 18 11 112 6 143 6 8 23 338 

PAN 3 - 17 50 29 50 11 5 59 224 

RCO 7 4 3 156 2 15 4 183 3 377 

DYS 3 2 4 85 11 26 8 7 204 350 

TOTAL 644 136 96 2654 432 520 67 311 513 5373 

19 

Table B2-5 SCN - 'polytree' Classifier (LEEDS) 
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APPENDIX C- LEEDS/CADA Statistical tables 

Final # MIM Doc NB GBN Poly mim Doc NB GBN Poly 
Diagnosi's Case 

% Predictive Predictive Predictive Predictive Predictive Likelihood Likelihood Likelihood Likelihood Likelihood s C 
Z-ý V alue % Value % Value % Value % Value % Ratio Ratio Ratio Ratio Ratio App 

Div 
1 
222 

22-58 65.95 78.07 62.86 46.74 39.28 7.36 8.72 6.83 4.98 4.75 
Ppu M 

4.13 59.91 54.05 45.72 17.57 30.63 16.15 36.90 17.05 9.57 16.88 
NsAp 1944 

2.79 68.67 75.33 58 47.33 16 23.74 86.61 12.71 M05 10.53 
CHO 555 

36,18 42.77 52.67 52.67 64.12 70.63 2.98 2.83 2.92 2.58 2.46 
INO 338 

10.33 60.09 73.15 51.89 51.17 58.83 16.22 23,80 13.78 11.88 16.36 
PAN 224 

6.29 54.59 75.15 60.65 50 42.31 11.04 38.74 13.57 11.11 6.84 
RCO 377 

4 17 32.14 56.25 28.57 12.5 4.91 5.67 30.40 7.52 5.63 4.09 
Dys 350 

7.02 67.37 79.84 70.69 44.30 48.54 22.81 49.64 29.23 13.91 15.38 6.51 58.86 70.86 62.86 51.14 58.29 16.70 30.81 19.85 9.95 13.27 

Table CI -I Statistical Table Predictive Values and Likelihood Ratios (LEEDS) 

Final # % MIM MIM Doc Doc NB NB GBN GBN Poly Poly Diagnosis Cascs Cases Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity specificit App 1213 22.57584 0.714924 0.902915 0.607831 0.930275 0.71462 0.895379 0.704786 0.858597 0.739907 
L- 

0 844259 Div 222 4.13177 0.292308 0.981903 0.722892 0.980411 0.401186 0.976465 0.333333 0.965183 0.49635 . 0 970588 Ppu 150 2.791736 0.226872 0.990445 0.617486 0.992871 0.165242 0.987001 0.160998 0.983982 0.251309 . 0.976125 NsAp 1944 36.1809 0.772052 0.741038 0.675016 0.761411 0.690958 0.763557 0.567494 0,780419 0.51704 0.78988 CHO 555 10.32942 0.730559 0.954948 0.735507 0.969094 0.738462 0.946418 0.652124 0,945114 0.756663 0 953759 INO 338 6,290713 0.349763 Oý968321 0.652956 0.983146 0.374088 0,972435 0.38106 0.965717 0.275 . 0.959819 PAN 224 4.168993 0.173913 0.969349 0.577982 0.980989 0.235727 0.968637 0.210526 0.962595 0.164179 0.959857 RCO 377 7.016564 0.569507 0.975036 0.758186 0,984727 0.648058 0.977827 0.574871 0.958682 0,589372 0.961679 DYS 350 6.514052 0.485849 0.970903 0.631043 0.979518 0.521327 0.973743 0.349951 0.964826 0.398438 0.969965 

Table C1 -2 Statistical Tables Sensitivity and Specificity values (LEEDS) 

Final 
Diagnosis 

# 
Cases 

% 
Cases 

MIM 
Predictive 
Value % 

Doc 
Predictive 
Value % 

NB 
Predictive 
Value % 

GBN 
Predictive 
Value % 

Poly 
Predictive 
Value % 

MIM 
Likelihood 

Ratio 

Doc 
Likelihood 

Ratio 

NB 
Likelihood 

Ratio 

GBN 
Likelihood 

Ratio 

Poly 
Likelihood 

Ratio 
APP 385 13.23934 77.46753 79.87013 76. 23377 59.15584 51.68831 19.61169 15.35922 23.42432 12.61426 11.68112 
Div 92 3.163686 68.75 48.91304 53. 26087 15.48913 26.90217 30.77732 38.39599 28.84931 14.83017 17.46914 
Ppu 56 1.925722 76.78571 67.85714 66. 07143 57.14286 10.71429 63.60548 92.33675 67.53665 79.44444 18.00779 

NsAp 1100 37.82669 62.38636 66.27273 80. 13636 82.15909 84.81818 4.454493 3.918286 7.051729 4.735178 5.728856 
CHO 235 &081155 6234043 68.93617 59. 14894 53.19149 48,82979 19.22883 28.07833 20.03444 16.32491 13.92506 
INO 228 7.84044 56M789 76.86404 64. 47368 54.16667 45.83333 14.84922 37.87677 18,86092 14.52894 8.746889 
PAN 72 2 475928 4101389 62.5 31. 94444 12.15278 2.777778 12.97948 55.52114 11.74519 9.856505 6.362637 
RCO 287 9.869326 81.96864 84.32056 81. 44599 63.41463 62.10801 33.9154 51.69732 41.23578 19.31273 18.70861 
Dys 453 15.57772 66.39073 75.05519 75. 99338 54.41501 67.88079 12.65998 18.98923 17.03267 7.409252 11.28338 

Table C2-1 Statistical Table Predictive Values and Likelihood Ratios (CADA) 

Final 
Diagnosis 

# 
Cases 

% 
Cases 

MIM 
Sensitivity 

MIM 
Specificity 

Doc 
Sensitivity 

Doc 
Specificity 

NB 
Sensitivity 

NB 
Specificity 

GBN 
Sensitivity 

GBN 
Specificity 

Poly 
Sensitivity 

Poly 
SpecificitL- 

APP 385 13.23934 0.687608 0.964939 0.515075 0.9697 0,837973 0.964226 0.760434 0.939716 0.815574 0.93018 
Div 92 3.163686 0,326031 0.989407 0.636042 0.983199 0,443439 0.984629 0.401408 0.972933 0.4125 0.976387 
Ppu 56 1.925722 0.29913 0.995297 0.584615 0.993632 0,453988 0.993278 0.666667 0.991608 0.311688 0.982691 

NSAP 1100 37.82669 0.869772 0.804743 0.750579 0.799432 0.832979 0.881876 0.63034 0.866881 0.649835 0.886568 
CHO 235 8.081155 0.635575 0.966947 0.760563 0.974926 0.709184 0.964602 0.660502 0.95954 0.615282 0.955815 
INO 228 7.84044 0.546316 0.963209 0.747335 0.980115 0.575906 0.969466 0.564571 0.961142 0.407407 0.953423 
PAN 72 2.475928 0.196748 0.984842 0.530973 0.990344 0.205817 0.982477 0.217391 0.977944 0.153846 0.97582 
RCO 287 9.869326 0.701425 0.979318 0.838095 0,98282 0.814719 0.980242 0.759916 0.960652 0.760939 0.959327 
Dys 453 15.57772 0.766242 0.939475 0.746023 0.95392 0.755348 0.955653 0.610905 0.917548 0.6703 0.940594 

Table C2-2 Statistical Tables Sensitivity and Specificity values (CADA) 
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APPENDIX D- AAP Network structures 

Fig D- 1 General Bayesian Network (GBN) Structure 

Fig D-2 Mutual Information Measure (MIM) Structure 
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Fig D-3 Singly Connected Network 'polytree' (SCN) Structure 


