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Abstract Background. Neural Networks (NN) have achieved great suc-
cesses in pattern recognition and machine learning. However, the success of
a NN usually relies on the provision of a sufficiently large number of data
samples as training data. When fed with a limited data set, a NN’s perfor-
mance may be degraded significantly.

Methods. In this paper, a novel NN structure is proposed called a Memory
Network. It is inspired by the cognitive mechanism of human beings, which can
learn effectively, even from limited data. Taking advantage of the memory from
previous samples, the new model achieves a remarkable improvement in perfor-
mance when trained using limited data. The memory network is demonstrated
here using the Multi-Layer Perceptron (MLP) as a base model. However, it
would be straightforward to extend the idea to other neural networks, e.g.,
Convolutional Neural Networks (CNN).

Results and Conclusions. In this paper the memory network structure is
detailed, the training algorithm is presented and a series of experiments are
conducted to validate the proposed framework. Experimental results show
that the proposed model outperforms traditional MLP based models as well
as other competitive algorithms in response to two real benchmark data sets.
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1 Introduction

Neural Networks (NN), for example the Multi-Layer Perceptron (MLP) [1] [2],
are widely used in pattern recognition, computer vision, and machine learn-
ing. Deep Neural Networks or deep learning models, are recently the most
popular models used for many perceptron tasks including: listening (speech
recognition), seeing (visual object recognition) and text understanding (nat-
ural language processing) [3] [4] [5] [6] [7] [8] [9]. To succeed, NNs and deep
learning models usually require a sufficiently large training set in order to
avoid overfitting [10]. When little training data is available, a NN’s perfor-
mance may be significantly limited. Moreover, to facilitate the training of a
NN, input samples are usually assumed to be identically and independently
distributed (i.i.d.) [11] [12] [13]. With the i.i.d. assumption, samples can be
fed to a NN sequentially; this enables a stochastic gradient descent algorithm
to be used for the training of the NN, which is both convenient and effi-
cient [14] [15] [16]. In practice however, the assumption of an i.i.d data set
may often be violated. The learning process followed by humans is not inde-
pendent, rather it relies on previous knowledge. For example, if a child would
like to learn how to run, the previous experience of walking provides some
relevant knowledge, which can aid in learning to run more easily. Another
more cognitive example would be where a native speaker of one language e.g.
English tries to learn to speak another language e.g. French. Memory relating
to the learning process of the first language would greatly aid in the learning
of the second language. Both of these examples indicate that memory and
previous knowledge are very important and could be used to improve learning
practices.

Motivated by these examples, a novel neural network framework is pro-
posed termed a Memory Network (MN). Employing a similar structure to a
traditional NN (including input, hidden, and output layers), the MN intro-
duces additional memory structures that can appropriately take advantages
of previous knowledge learned from previous data sets in a new learning task.
When only limited data are available, previous learned knowledge (stored in
the memory network) could significantly benefit the training process for the
present learning task. More specifically, memory of the network structures for
the previous N training samples will be maintained. Depending on whether
the present training sample shares the same category (true class label) or not,
different constraints are enforced on the activations in each layer of the present
network as were in the previous network. For example, if the previous sample
shares the same true class label with the present sample, then similar activa-
tions of the same layers between the present network and previous network
will be forced; otherwise, an attempt is made to enlarge the activations of the
same layers between the present and previous network. One appealing feature
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of the proposed MN is that, despite a seemingly complicated network, an effi-
cient stochastic gradient descent algorithm can be readily applied to make the
network easily optimized.

We list the main contributions as follows. 1) We build a novel model by
adding the memory mechanism to the NN. 2) We study how the memory block
can help learning: the memory block is able to encourage intra-class compact-
ness and inter-class separability for latent features. 3) Our proposed model
achieves a much better performance than other models on limited amount of
data.

The rest of this paper is organized as follows. In Section 2, the notation
used in the paper is presented together with an introduction of some neces-
sary background knowledge. In Section 3, the Memory Network including its
structure, model definition and detailed optimization are proposed. In Section
4, several experiments are formulated to test the performance of the proposed
model and the results are discussed. Finally concluding remarks are made in
Section 5.

1.1 Notation and Background

In this section, the basic principles of the conventional NN and the Back Prop-
agation (BP) algorithm are reviewed and the notation to be used throughout
the paper is also provided. Essentially, a NN is a stack of parametric non-linear
and linear transformations [17]. Suppose a NN (with L − 1 hidden layers) is
trained to perform prediction in the scenario of classification. A NN will map
a d-dimensional vector to a D-dimensional class space. The matrix X0 denotes
the input data matrix where each row of X0 represents a sample vector (X0,i

is the ith sample vector with d dimensions). Xl indicates the activation of the
lth layer of the NN (where l = 1, 2, ..., L − 1) and XL denotes the output of
the NN. Y is the vector containing the true class labels, each element of which
is the true class label for a corresponding sample with D dimensions. The
problem of the NN can be formulated as the following optimization problem:

min
W1:L,b1:L

1

2
∥XL − Y ∥2 s. t.

Xl = σ(Xl−1Wl + bl), l = 1, ..., L− 1 (1)

XL = XL−1WL + bL

where σ(.) is the element-wise sigmoid function for a matrix. For each element
x of a matrix, the sigmoid function is defined as:

σ(x) =
1

1 + exp(−x)
(2)

In a NN, the sigmoid function is used to perform non-linear transforma-
tions; other functions can also be used for this such as max(0, x) or tanh(x).
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Fig. 1 The structure of conventional Neural Network

An illustrative example of a typical L-layer NN is shown in Figure 1,
where Xl (l = 1, 2, . . . , L − 1) represents the hidden layers. X0 denotes the
input to the NN, and XL indicates the output of the NN. The aim is to learn
the optimum parameters for W1:L and b1:L. The common approach for this is
to use BP with a stochastic gradient decent (SGD).

BP is an abbreviation for “backward propagation” of errors which is a
common approach for training NNs with an optimization method such as
gradient descent. The method calculates the gradient of a loss function with
respect to all of the parameters of the network. The gradient is used in the
optimization method which in turn uses it to update the parameters in order
to minimize the loss function.

BP requires inputs with corresponding true class labels in order to calculate
the loss function gradient. Therefore, it is considered as a supervised learning
method, although it is also used in some unsupervised models such as auto-
encoders. It is a generalization of the delta rule for multi-layered feed-forward
networks, made possible by using the chain rule to iteratively calculate the
gradients for each layer. Assuming that the activation function is differentiable,
the gradients of parameters are shown below:

dE

dXL
= 2(XL − Y )

dE

dXl
= (

dE

dXl+1
◦Xl+1 ◦ (1−Xl+1))Wl+1 (3)

dE

dWl
= XT

l−1(
dE

dXl
◦Xl ◦ (1−Xl))

dE

dbl
= mean(

dE

dXl
◦Xl ◦ (1−Xl), 1)

where E is the value of the loss function and the gradients can be computed
using the chain rule above. The element-wise product is represented by ◦ and
l = 1, 2, ...L. In addition, mean(., 1) denotes the average operation on the
matrices.
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2 Methods

This section introduces the proposed novel Memory Network in detail. First
the structure of the MN is presented followed by discussion of the correspond-
ing optimization algorithm.

2.1 Network Structure

The structure of the MN is plotted in Figure 2 and Figure 3. As can be seen, the
structure of the MN consists of three parts: the present network, the memory
block, and the square error operator, each of these will now be defined in
detail.

Fig. 2 Structure of memory

Fig. 3 Structure of memory network
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Present Network The structure of the present network is the same as that
of the traditional NN (consisting of an input layer, hidden layers and an output
layer).

Memory Block The memory block in Figure 2 is divided into two sectors,
one is used to store the outputs of layer L which share the same true class labels
as the present output. The other is to store the outputs of layer L which have
different true class labels to the present output. During the training procedure,
the weighted sum is calculated, which is used to formulate the regularization
term of each layer.

The purpose of the memory block is to exploit past knowledge (obtained
from past samples) to help in the present learning process (of the present
sample). There are two different cases: (1) if the present sample has the same
true class label as the past sample, then the activations of the same layers in
the present and past samples are made more similar; (2) if the present sample
shares a different true class label from the past one, the activations of the top
two layers for the present and past samples are made more different.

Square Error Operator The Square Error Operator is used to formulate
the error between the present activation and previous one. Motivated by these
processes, the training of the MN is described in the following subsections.

2.2 Model Formulation

In order to exploit past knowledge (obtained from previous examples) for
present learning, the model of our proposed MN is designed as follows:

min
W1:L,b1:L

1

2
∥Xt

L − Y t∥2 + 1

2

p∑
j=1

N∑
i=1

kij∥Xt
L−j+1 −Xt−i

L−j+1∥
2 s. t. (4)

Xt
l = σ(Xt

l−1Wl + bl), l = 1, ..., L− 1,

Xt
L = Xt

L−1WL + bL

where Xt
l represents the activation of layer l for the present sample at time

t, and Y t is its corresponding true class label; Xt−i
l represents the activation

of the previous ith sample in layer l at time t − i, while Y t−i describes the
corresponding true class label for this specific sample. The matrix k (of size
p×N ) is a coefficient matrix. Each element kij is defined as a positive value, if

Y t = Y t−i (i.e., the previous ith sample Xt−i
0 shares the same true class label

as the present sample Xt
0 ); otherwise it is a negative value. In other words, a

positive kij encourages more similarity between activations (in the L − j + 1
layer) of the present learning (at t time) and the previous learning (at t − i
time); this is reasonable, since the present sample, Xt

0 shares the same true
class label as the previous sample Xt−i

0 . Similarly, a negative kij would enlarge
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the difference between the activations of the current learning and the previous
learning, since the present sample and the previous sample have a different
true class label. It is also possible to adapt the value of kij , depending on how
deep the layer L − j + 1 is. Usually, a deeper or upper layer (i.e., smaller j )
is more important, suggesting that kij should be set to a bigger value.

In short, on one hand, the optimization problem (4) attempts to minimize
the loss at the current time t (when a sample Xt

0 is input), i.e., the first term
in (4); on the other hand, the proposed MN also tries to reduce (or enlarge) the
difference in activations in the last p layers between the present network and
previous networks, i.e., the memory loss in the second term of (4), depending on
whether the present sample shares the same class label as the previous sample.
Through this process, knowledge gained from previous training samples can
be transferred to the present learning process, potentially leading to a network
able to achieve a remarkable level of performance despite the limited number
of training samples available.

2.3 Optimization

To solve the modified optimization problem above, it is still possible to rely on
the BP algorithm, since the gradients with respect to the parameters can be
easily computed from Eq. (4). For example, when p is set to 2, the gradients
for output layer L could be calculated using:

dE

dXL
= (Xt

L − Y t) +
N∑
i=1

ki1(X
t
L −Xt−i

L )

dE

dXL−1
= (

dE

dXL
◦XL ◦ (1−XL))WL +

N∑
i=1

ki2(X
t
L−1 −Xt−i

L−1)

dE

dXl
= (

dE

dXl+1
◦Xl+1 ◦ (1−Xl+1))Wl+1 (5)

dE

dWl
= XT

l−1(
dE

dXl
◦Xl ◦ (1−Xl))

dE

dbl
= mean(

dE

dXl
◦Xl ◦ (1−Xl), 1)

It is straightforward to extend the above cases to larger p’s. With the above
gradients, a BP can easily be conducted so that a local minimum can eventually
be obtained for the memory network. The reason for setting p to 2 is to trade
off space complexity and performance. The top 2 layers are chosen for the
addition of memory since the top layers are more stable than the lower layers.
In comparison to the traditional MLP, the proposed MN has memory blocks for
the top the two layers, which can force the latent features to demonstrate intra-
class compactness and inter-class separability (this is demonstrated through
relevant experiments in the next section). For more general perspective, similar
to [18], we assume that the latent features of different classes of penultimate
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layer are sampled from the Gaussian distributions with different means and
the same identical covariances. Our aim is to maximizes the arithmetic mean
value of the Kullback-Leibler (KL) divergences between the different pairs
of distributions and minimize the covariances while minimizing classification
loss. Compared with p-laplacian regularized sparse coding method in [19],
the regularization term in our proposed method is equivalent to p-laplacian
regularization term when p = 2 and the weight function w = 1 for the same
class, w = −1 for different classes.

3 Results

In this section, a series of experiments is conducted on two benchmark small-
size data sets containing face and handwriting data.

3.1 Experimental Setup

The face data set contains 120 training samples [20] and the handwriting data
set is a small portion of the MNIST data set [21]. The face data training
and test sets are provided by [22]. Each model has been trained based on the
same training data set; their respective performance in relation to the test
set is then evaluated. Variable length handwriting data sets were produced
by randomly selecting 50, 100, and 500 digits from the MNIST training set.
Again, each model was trained based on the same training data set and their
respective performance evaluated using the same test set. Five random training
sets are formed for each set length. Each of the five is used to train each of
the different models, which is then tested using the same test set. To compare
the performance of the models the average classification accuracy over the
five training sets is found. The performance of the proposed Memory Network
is evaluated in comparison to; a conventional MLP, a Linear Support Vector
Machine (linear-SVM) and its nonlinear version with the radial basis function
(rbf) as the kernel (in short rbf-SVM).

The structure and parameters of the proposed models are set up differently
for each data set. All of the models share the same depth with a total of 5 layers,
i.e., 1 input layer, 3 hidden layers, and 1 output layer. The deep structure is
exploited since deep networks are more flexible. For the face data set, the
input-hidden-output units are respectively set to 100-300-100-40-15, and for
the handwriting data set, the input-hidden-output units are 100-200-300-100-
10. Both structures are tuned during the experiments. The value of p is set
to 2, since the top layers are usually the most stable. The memory weights kij
are tuned from the set {0.0001, 0.001, 0.01, 0.1}. For the SVM, the trade-off
parameter C and the width γ is tuned via cross validation.
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3.2 Face Recognition with Different Pose

The face data set contains a total of 195 images of 15 persons [20]. Each person
has 13 horizontal poses taken from −90 to 90 degrees at intervals of 15 degrees.
The images were preprocessed by resizing them to 48 × 36 and redcuing the
dimensions to 100 using Principal Component Analysis (PCA) [23]. Data set
numbers 1− 8 are used as the training data sets and numbers 9− 13 are used
as the test set.

Classifier Accuracy (%)

Bilinear (Field) [24] 60.00
Style mixture (Singlet) [25] 70.00
Style mixture (Field) [25] 73.33
Nearest class mean [22] 60.00
FDA [22] 69.33
FBM [22] 74.67

linear-SVM 84.00
rbf-SVM 85.33
MLP 81.33
Memory Network 85.33

Table 1 Recognition rates of different models on face data. The proposed Memory Net-
work and RBF-SVM significantly outperforms the other models. The other results (except
Memory Network and conventional Neural Network) were copied from the associated papers
due to the same setting.

Table 1 reports the performance (recognition rate) of different models. It
can be noted that the test set shares very different poses from the training
set which makes the problem very challenging. As observed, the novel Mem-
ory Network and rbf-SVM jointly achieve the best performances with 85.33%.
More specifically, the proposed MN significantly improves on the performance
of the MLP model by 4%. On the other hand, Fisher Discriminant Analy-
sis (FDA) which is recognised as a state-of-the-art algorithm for face recogni-
tion, only achieved an error rate of 69.33% [22]. Moreover, other approaches
such as the bilinear model, the style mixture model, the Field Bayesian Model
and conventional NN all show significantly worse performance than the pro-
posed Memory Network.

3.3 Handwriting Classification

Testing of the proposed MN model has also been performed using the digits
section, MNIST, of the very famous handwriting data set, NIST [26], which
has 60, 000 training samples and 10, 000 test samples. The samples chosen have
all been size-normalized and centered in a fixed-size image (28 × 28). This
experiment focuses on small sample sets from MNIST. Specifically, sets of 50,
100 and 500 samples are chosen randomly from the 60000 available samples.
To increase training speed, the dimensions of the samples have been reduced
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from 28×28 to 10×10. For testing, all test samples from the MNIST database
are used (10, 000 samples). The experiments were performed five times for each
model and the average performance used to compare their relative accuracy.

# Training Samples 50 100 500
MLP 56.04± 1.60 67.76± 2.76 88.79± 0.87
linear-SVM 63.10± 0.45 71.41± 2.96 86.69± 0.54
rbf-SVM 64.56± 2.30 73.78± 1.78 89.20± 0.84
Memory Network 75.65± 1.02 81.60± 1.92 91.35± 0.78

Table 2 Recognition rates (%) of different models on hand-writing data.

Comparing the performance of the proposed MN model with the conven-
tional MLP, linear-SVM, and rbf-SVM models, Table 2 shows their perfor-
mances (recognition rate). The proposed MN demonstrates a distinct relative
improvement in performance as the number of training samples decreases. In
particular, it can be noted that the proposed model achieves much better
performance than the conventional MLP model on the 50-sample set (from
56.04% to 75.65%) and on the 100-sample set (from 67.76% to 81.60%). How-
ever, only marginal improvement is seen for the 500-sample set (from 88.79%
to 91.35%). The proposed MN also outperforms both linear-SVM and rbf-SVM
significantly. This experiment further validates the advantages of the proposed
MN, especially when the training samples are limited.

3.4 Visualization

To obtain further insight into the proposed model MN, the latent features of
the second top layer for the MNIST test set can be visualized. The traditional
MLP is used as a baseline model. Figure 4 shows the feature visualizations
of the trained MN and traditional MLP models based on the same face data.
Figure 2 illustrates the latent features for the MN and traditional MLP models
based on the same MNIST test set. It can clearly be seen that the memory
blocks, i.e. the learned features of MN have better intra-class compactness
and inter-class separability. This is the reason why the performance of the
MN model is seen to be significantly better than that of the traditional MLP
model.

3.5 Complexity Analysis

The complexity analysis is presented in this section. The results are described
in Table 3, given that both the MLP and MN models are trained by the
BP algorithm. With traditional MLP, the time complexity to calculate the
gradients can be easily checked as O(nd + nD) during the training phase.
For the proposed MN model, the time complexity is also O(nd + nD), the
same as that for the traditional MLP. Here, n denotes the total number of
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Fig. 4 t-SNE embeddings of latent features for face dataset. Different colors indicate dif-
ferent classes of data. The graphs are better viewed in color.
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Fig. 5 t-SNE embeddings of latent features for MNIST dataset. Different colors indicate
different classes of data. The graphs are better viewed in color.
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training data, d and D represents the dimensions of the input and the output
respectively. However, the space complexity of the proposed MN model is given
as O(M + LN), larger than that of the traditional MLP, i.e., O(M). This is
understandable, since the MN needs to memorize the previous outputs, where,
M is total number of parameters stored temporarily for one batch, L and N
represents the memory length and dimension of the latent output respectively.
The number of parameters of the proposed MN and traditional MLP are the
same for both tasks. Specifically, they are 64, 955 and 111, 600 respectively
for both of the models in both the face and MNIST experiments. Overall,
compared with MLP, the drawback of MN is its additional space complexity
needed to store the previous latent outputs. Investigating this problem remains
for future work.

Models Time Complexity Space Complexity
MLP O(nd+ nD) O(M)
MN O(nd+ nD) O(M + LN)

Table 3 Complexity analysis on MLP and MN

4 Conclusion

In this paper, a novel Memory Network which can appropriately take ad-
vantage of past knowledge is proposed. Specifically, a novel network with two
parts: a memory block and a present part, both of which share the same struc-
ture have been constructed. The top p layers of the memory block and present
part are connected and exploited to deliver the past knowledge to the present
process. A modified stochastic optimization algorithm has been developed,
which can efficiently optimize the proposed MN model. Experiments have been
conducted using two small-size databases derived from face and handwriting
data. Experimental results showed that the proposed model achieves the best
performance in relation to both types of data set when compared to other
competitive models. Our proposed model works in static situations and ex-
ploits the square error operator in memory block, in future, we will consider
to modify it in dynamic situations with other kinds of error operators.
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