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Abstract. Local optima networks are a valuable tool used to analyse
and visualise the global structure of combinatorial search spaces; in par-
ticular, the existence and distribution of multiple funnels in the land-
scape. We extract and analyse the networks induced by Chained-LK, a
powerful iterated local search for the TSP, on a large set of randomly
generated (Uniform and Clustered) instances. Results indicate that in-
creasing the perturbation strength employed by Chained-LK modifies the
landscape’s global structure, with the effect being markedly different for
the two classes of instances. Our quantitative analysis shows that several
funnel metrics have stronger correlations with Chained-LK success rate
than the number of local optima, indicating that global structure clearly
impacts search performance.

Keywords: Local Optima Network, Travelling Salesman Problem, Chained-
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1 Introduction

Characterising the global structure of combinatorial search spaces remains a
challenge, partly due to the lack of tools to study their complexity. Local optima
networks (LONs) [1, 2] help to fill this gap by providing a modelling tool that
compresses the fitness landscape into a network, where nodes are local optima
and edges are possible search transitions between the local optima. Thus, LONs
model the distribution and connectivity pattern of local optima. They help to
characterise the underlying global landscape structure with a new set of metrics
and visualisation tools [3].

Recent results using LONs challenge the existence of a ‘big-valley’ global
structure on travelling salesman landscapes induced by iterated local search
(ILS). Compelling evidence suggests instead that the big-valley decomposes into
multiple valleys (or funnels) [4, 5]. This multi-funnel structure helps to explain
why ILS can quickly find high-quality solutions, but fails to consistently reach
the global optimum.

The notion of a funnel was introduced within the protein folding community
to describe “a region of configuration space that can be described in terms of



a set of downhill pathways that converge on a single low-energy structure or
a set of closely-related low-energy structures” [6]. It has been suggested that
the energy landscape of proteins is characterised by a single deep funnel, a fea-
ture that underpins their ability to fold to their native state. In contrast, some
shorter polymer chains (e.g., polypeptides) that misfold are expected to have
other funnels that can act as traps. Similarly, recent studies on TSP [4, 5] show
that landscapes with more than one funnel, where the global optimum is located
in a deep, narrow funnel, are significantly harder to solve for ILS.

Iterated local search is a simple yet powerful search strategy. It works by
alternating an intensification stage (local search) with a diversification stage
(perturbation). Chained Lin-Kernighan (Chained-LK) [7] is an effective ILS for
TSP, combining the powerful Lin-Kernighan local search [8] with a type of 4-
exchange perturbation (double-bridge, depicted in Fig. 1b). A key factor in any
ILS implementation is the strength of the perturbation, which is related to the
number of solution components that are modified simultaneously [9]. A recent
study based on local optima networks from NK fitness landscapes shows that
a properly selected perturbation strength can help overcome the effect of ILS
becoming trapped in clusters of local optima (which are related to funnel struc-
tures) [10]. This has implications for the design of effective ILS approaches,
where normally only small perturbations or complete restarts are applied, with
the middle ground of intermediate perturbation strengths largely unexplored.

The main goal of this study is to model the LONs induced by Chained-LK
on two classes of randomly generated TSP instances (Uniform and Clustered
cities) for increasing perturbation strengths. More specifically, the contributions
are:

1. A rigorous, empirical characterisation and comparison of the global structure
of TSP instances with increasing perturbation strength.

2. Identification of the most effective perturbation strength for different TSP
instance classes and sizes.

3. A correlation study identifying connections between empirical search perfor-
mance and the global structure of TSP instances with increasing perturba-
tion strength.

2 Definitions and Algorithms

The search space for a TSP instance with m cities is the set of permutations of
legitimate Hamiltonian tours of these m cities; the number of tours is factorial
in m. The fitness function f is given by the length of the tour, which is to be
minimised for optimality.

The Lin-Kernighan (LK) heuristic is a powerful local search algorithm, one
which is based on the idea of k-exchange moves: take the current tour and remove
k different links; these are then reconnected in a new way to achieve a legal tour.
A tour is considered to be ‘k-opt’ if no k-exchange exists which decreases its
fitness value. LK applies 2, 3 and higher-order k-exchanges: Fig. 1a illustrates
a 2-exchange move. The order of an exchange is not predetermined, rather k is



increased until a stopping criterion is met. Thus many kinds of k-exchanges and
all 3-exchanges are included.

Chained Lin-Kernighan (Chained-LK) is an iterated local search where the
current solution obtained by LK is perturbed (or kicked) and LK is reapplied. If
the new local optimum solution is an improvement, the old solution is discarded
and the new one retained; otherwise, the search continues with the old tour
and ‘kicks’ it again. The kick or escape operator in Chained-LK is a type of
4-exchange (depicted in Fig. 1b), named double-bridge by Martin et al. [11].
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Fig. 1: Illustration of tours obtained after 2-exchange and double-bridge moves.

Fitness Landscape. A landscape [12] is a triplet (S,N, f) where S is a set
of potential solutions, i.e., a search space; N is a neighbourhood structure, N :
S −→ 2S , a function that assigns to every s ∈ S a set of neighbours N(s);
f : S −→ R is a fitness function.

Local Optima. A local optimum is a solution s∗ such that ∀s ∈ N(s∗), f(s∗) 6
f(s). The set of local optima, which corresponds to the set of nodes in the
network model, is denoted by L. Since the whole set of local optima cannot be
determined in realistic search spaces, such as those considered here, a process of
sampling is required to estimate L.

Escape Edges. These are directed edges, where there exists an escape edge
from local optimum x to local optimum y, only if y can be obtained after a
double-bridge move applied to x and is then followed by LK. The type of edge is
dependent on the algorithm used to sample the landscape. While escape edges
are natural edges for ILS algorithms, other edge types may be used such as
crossover and mutation edges in the case of an evolutionary algorithm [13]. The
set of escape edges obtained is denoted by E. Note that during the sampling
process only edges that correspond to monotonically improving transitions are
stored (see Algorithm 1).



Local Optima Network (LON). This is the graph LON = (L,E) where all
nodes are the local optima L, and edges E are the directed escape edges.

In some cases, neutrality may be observed at the LON level, i.e., there exists
connected nodes that share the same fitness. This leads to an even coarser model
of the landscape [14], where these LON plateaus are compressed into single nodes.

The set of LON plateaus, CLp = {clp1, clp2, . . . , clpn} corresponds to the
node set of a compressed local optima network. A node without neighbours that
share the same fitness is also considered a LON plateau.

Compressed Local Optima Network (CLON). The weighted, oriented
local optima network CLON = (CLp,E ) is the graph where the nodes clpi ∈ CLp
are the LON plateaus. Weighted edges correspond to the aggregation of the
multiple edges from nodes in a plateau to single edges in the compressed network.

Sink. A sink is a CLON node without outgoing edges.

Funnel. The funnel of some sink is empirically defined as the set of nodes for
which there exists a path of monotonically decreasing fitness between the nodes
and the sink.

Data: I, TSP instance; z, the kick strength
Result: L, set of local optima; E, set of escape edges
L← {}; E ← {}
for i← 1 to 1000 do /* loop across 1000 runs */

sstart ← LK(initialFeasibleSolution(I))
L← L ∪ {sstart}; j ← 0
while j < 10000 do /* termination criterion of run */

send ← applyKick(sstart, z) /* apply kick of strength z */

send ← LK(send)
j ← j + 1
if Objective(send) ≤ Objective(sstart) then

L← L ∪ {send} /* aggregate the nodes */

E ← E ∪ {(sstart, send)} /* aggregate the edges */

sstart ← send

j ← 0

end

end

end
Algorithm 1: LON sampling aggregating 1 000 runs of Chained-LK.

3 Empirical Methodology

We empirically examine the global structure of two classes of synthetic instances
by considering a sample of the search space. Clearly, exhaustive enumeration of



the search space is not possible when instances of non-trivial sizes are consid-
ered. We therefore choose to sample high quality local optima obtained. Local
optima networks were constructed using the Chained Lin-Kernighan heuristic as
described above, and implemented with the Concorde TSP solver [15, 16].

3.1 Instances

The instances considered here are generated using the DIMACS TSP instance
generator1. Two classes of synthetic instances were generated: ones where the
cities are uniformly distributed (prefixed by ‘E’) and ones where the cities are
clustered (prefixed by ‘C’). These two classes are further subdivided into three
non-trivial instance sizes: 506, 755 and 1010 cities [4]. For each class-size combi-
nation, thirty different instances are generated; therefore a total of 180 instances
is considered. A subset of these instances, and their associated networks, was
created in the context of our previous work [4].

3.2 Sampling Method

The algorithm used to sample the search space is an instrumented version of the
Chained-LK implementation found in Concorde [15, 16]. Concorde is currently
the state-of-the-art in exact TSP solvers and uses the Chained-LK heuristic to
generate a good upper bound for its branch-and-bound process. In addition, we
used Concorde to compute a global optimum (and its associated fitness value)
for each instance.

The Chained-LK implementation is modified [4] to record all the local op-
tima found during a run (set L), as well as the order in which the local optima
were generated (set E), i.e., which local optimum was obtained after some other
local optimum was perturbed and then improved through LK. The termination
criterion of the algorithm is 10 000 consecutive non-improving moves. The infor-
mation for a total of 1 000 runs is subsequently aggregated in order to generate
the corresponding LON. The pseudocode is given in Algorithm 1.

For each instance, we separately sample the landscapes for ten perturba-
tion strengths (z ∈ {1, 2, . . . , 10}). The value of z is the number of consecutive
double-bridge kicks that are applied in order to perturb a local optimum. The
perturbations are therefore fairly disruptive, even at low strength. The total sam-
pling process was relatively computationally expensive, requiring approximately
50 000 hours of computation time on Intel Xeon X5650 2.66 GHz processors.

3.3 Performance and Network Metrics

There are multiple performance and network metrics that can be computed and
used to understand search difficulty and landscape structure; however, not all of
them are relevant. We explored a number of metrics and selected a subset that
allows us to meaningfully describe the relationship between search difficulty and

1 dimacs.rutgers.edu/Challenges/TSP/download.html



landscape structure. Table 1 summarises each of these metrics, and which are
described in some additional detail below.

Table 1: Definitions of performance and network metrics

performance
metrics

success Success rate of finding the a priori global optimum

iters Mean no. of Chained-LK iterations to find global optimum

network
metrics

n Number of local optima within the LON

nsinks Number of sinks within the LON

d Relative in-strength of the globally optimal sinks

fun Proportion of nodes comprising the globally optimal funnels

ufit Proportion of local optima with unique fitness values

Algorithmic performance is measured through its success rate; i.e., the pro-
portion of runs that reached a global optimum, and through the mean number
of iterations (iters) required to reach a global optimum.

The structure of a LON is assessed using five characteristics. The number of
local optima (n), or nodes, within the LON describes its size. A sink describes
a solution in which the search becomes trapped at the end of a funnel; the
corresponding metric we record is nsinks, the number of sinks.

In addition, the weighted incoming degree, or in-strength, of each sink is com-
puted and the relative in-strength of the globally optimal sinks (d) is reported.
This corresponds to the ratio of the sum of the in-strengths of the globally
optimal sinks to the sum of the in-strengths for all sinks.

The nodes in a funnel, in the uncompressed LON, are identified by selecting
one of the nodes that constitutes a sink and performing a breadth-first search.
We thus define fun as the proportion of nodes of the LON within funnels that
lead to a global optimum.

Finally, ufit is the proportion of local optima with unique fitness values, i.e.,
the number of unique fitness values divided by the total number of unique local
optima.

4 Results and Analysis

In this section, we examine the structure of the sampled LONs and the inter-
play with search difficulty. This is initially achieved through visualisation, to
intuitively reveal structural differences; and then through a more traditional
analysis of the performance and network metrics.



4.1 Visualisation

One advantage of modelling fitness landscape as LONs is the possibility of net-
work visualisation, a valuable first approach in exploring and understanding
their structure. Figure 2 illustrates LONs for two representative instances with
755 cites. Specifically, we considered one Uniform (E755.81) and one Clustered
(C755.81) instance, and visualise the networks for three different perturbation
strengths, z ∈ {1, 5, 10}. Each node corresponds to an LK optimum, and edges
represent search transitions with the corresponding perturbation strength. Note
that other instances were examined, and produced similar results.

In order to produce images of manageable size, each plot represents a sub-
network of the sampled network. Nodes were kept whose fitness was within 5%
of the evaluation of the global optimum. This visualises the connectivity pattern
of solutions nearby the global optimum, which is arguably the most interesting
part of the search space, and any competent heuristic method should attain this
portion of the landscape.

Network plots were produced using the R statistical language together with
the igraph package [17]. Graph layouts employ force-directed methods, and resul-
tant visualisations are decorated to reflect features relevant to search dynamic.
It is important to remember that a LON can be seen as a representation of the
stochastic process of a search algorithm for a particular problem instance. In Fig.
2, red nodes correspond to local optima belonging to the funnel containing the
global optimum, whereas blue nodes indicate optima belonging to suboptimal
funnels. The bottom of the funnels (sinks) are highlighted with a black outline
and a node size proportional to their incoming strength (weighted degree). Nodes
which are not sinks are visualised with a grey outline and fixed size.

A visual inspection of the LONs in Fig. 2 reveals clear structural differences
between the global shape of the studied landscapes, as well as the perturba-
tion strengths. For the Uniform instances (left plots), the global structure and
overall success rate of Chained-LK seems very robust to increasing perturba-
tion strength. Interestingly, the success rate achieved with the standard single
double-bridge kick (z = 1) is significantly lower than that achieved when z = 5.
This can be explained by the existence of a suboptimal funnel seen in blue
(Fig. 2(a)) which is disjoint from the global sink in red, and whose sink in blue
has incoming strength of similar magnitude (visualised as the size of the node).
Therefore this suboptimal funnel acts as a trap for the search process. Once
the algorithm reaches the blue sink, it cannot escape using a single kick and
thus fails to locate the global optimum. The intermediate kick strength (z = 5)
shown in Fig. 2(c) provides the best success rate for this instance, supported
by the single funnel observed. Thus the z = 5 perturbation seems to fuse the
previous two funnels into one. However, too strong a perturbation deteriorates
performance (Fig. 2(f)), which can be explained by the appearance of several
suboptimal sinks (blue nodes), albeit each of small incoming strength.
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(a) Uniform, z = 1, success = 34%
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(b) Clustered, z = 1, success = 43%
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(c) Uniform, z = 5, success = 54%
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(d) Clustered, z = 5, success = 32%
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(e) Uniform, z = 10, success = 29%
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(f) Clustered, z = 10, success = 3%

Fig. 2: LONs for two representative TSP instances, E755.81 (Uniform, left) and
C755.81 (Clustered, right), and three perturbation strengths z ∈ {1, 5, 10}.
success percentages of Chained-LK are indicated. Nodes are LK local optima
and edges are transitions using the respective perturbation strength. Red nodes
belong to the global optimal funnel, while blue nodes to suboptimal funnels. The
size of sink nodes is proportional to their incoming strength.



4.2 Performance & Network Metrics Results

The metrics previously defined in Table 1 are now examined in detail. Figure 3
provides boxplots of the metric values for the six TSP class-size instances. The
metrics are shown grouped by class and are vertically descending by size (506,
755, 1010). Results for each metric presented in Fig. 3 are discussed hereafter:

success A significant difference is observed between the distributions of success
for each class-size combination. The success rates of Uniform instances for each of
the three sizes can be approximately characterised as concave, that is they follow
an increasing then decreasing behaviour as z increases. However, the Clustered
results all decay from maximum values of success when z is low, diminishing
towards zero as z → 10. The variability of success results also narrow as instance
size increases for both instance classes.

iters For each class-size combination, an approximately monotonic increase in
the iterations of Chained-LK is observed as the strength of z increases. However,
the Clustered 1010 results peak when z = 7; the iters begin to decrease when
z > 8. This is a consequence of the very low success rate for these instances,
which is close to zero for these values of z. When Chained-LK does obtain the
global optimum for these instances, it does so quickly due to the small size of the
globally optimal funnel (c.f. Fig. 2(f)). The Uniform classes all exhibit lower iters
values almost without exception when compared with the Clustered classes; only
when z is low is there any overlap in the Uniform and Clustered interquartile
boxes between comparable results.

d The relative in-strengths of the funnels leading to the global optima exhibit
similar behaviours to that of the corresponding success rates for both Uniform
and Clustered classes. This is particularly apparent when comparing the boxplots
of success and d for instance size 1010. Note that the magnitude of d decreases
as instance size increases.

n All plots in Fig. 3 exhibit values of local optima that decrease as kick strength
increases. As detailed in the sampling method (Section 3.2), a perturbation away
from the current local optimum employs z double-bridge moves; as z increases,
this process becomes increasingly destructive of the TSP tour relevant to the
current local optimum. This results in the perturbation stage relocating the
search to a location on the fitness landscape that is increasingly distant from
the current solution. This results in Chained-LK becoming less likely to discover
a non-deteriorating solution after each iteration. Thus, the number of new local
optima generated would reduce as z increased. Note that the Clustered instances
again return greater numbers of local optima when compared to the Uniform
results.

fun As with d , the proportional size of a funnel containing the global optimum
follows a similar decay pattern to success as z increases.



●

●
●

●

success

1 2 3 4 5 6 7 8 9 10

0.00

0.25

0.50

0.75

1.00

●

●
●

●

●
●●

●
●

i ters

1 2 3 4 5 6 7 8 9 10

102.5

103

103.5

104

104.5
n

1 2 3 4 5 6 7 8 9 10

104

104.1

104.2

104.3

104.4

●●● ● ● ●●● ●●● ●● ●● ●● ●

●

●●●

●

●● ●● ● ●●

●

●

●

●●●

nsinks

1 2 3 4 5 6 7 8 9 10

100

100.5

101

101.5

102

102.5

●

●

●

●

●●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

d

1 2 3 4 5 6 7 8 9 10

0.00

0.25

0.50

0.75

1.00

double−bridge kicks (z)

●

●
●

●

●

●

● ●

●

● ●

● ●

●

●
●
●
●

●

●

●

●

●

●

●

●●●●●
●●

●
● ●

●

●

●●●

●

●● ●●
●
●●

●

●

●

●

●

●

●

fun

1 2 3 4 5 6 7 8 9 10

0.00

0.25

0.50

0.75

1.00

506

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

success

1 2 3 4 5 6 7 8 9 10

0.00

0.25

0.50

0.75

1.00

●
●

●

●

●●●

●

●●
●

●

●●
●

●
●
●

●
●
●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

i ters

1 2 3 4 5 6 7 8 9 10
103

103.5

104

104.5

●
●

●

●

●

n

1 2 3 4 5 6 7 8 9 10

104.2

104.3

104.4

104.5

104.6

●
● ●

●

●
●

●●●● ●●● ●●●●

●

●

●

●●
●

●

●

●

●●

nsinks

1 2 3 4 5 6 7 8 9 10

100

100.5

101

101.5

102

102.5

103

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

d

1 2 3 4 5 6 7 8 9 10

0.00

0.25

0.50

0.75

1.00

double−bridge kicks (z)

● ●

●
●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●●

●● ●

●

●●

fun
1 2 3 4 5 6 7 8 9 10

0.00

0.25

0.50

0.75

1.00

755

●

●

●

●● ●

●●
●
●●● ●●

success

1 2 3 4 5 6 7 8 9 10

0.00

0.25

0.50

0.75

1.00

● ●

●

●●

●●

●

●

●

●
●

●

●

●
● ●

●

●
●

●●

i ters

1 2 3 4 5 6 7 8 9 10

103.5

104

104.5

●
●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●
●

●●
●

n

1 2 3 4 5 6 7 8 9 10

104.3

104.4

104.5

104.6

104.7

104.8

●

●

●

●

●

●

●

●

●●●●

●

●

●●

●

●

●

●
●

●● ●●
●●●●

nsinks

1 2 3 4 5 6 7 8 9 10

100

100.5

101

101.5

102

102.5

103

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

● ●
● ●●

d

1 2 3 4 5 6 7 8 9 10

0.00

0.25

0.50

0.75

1.00

double−bridge kicks (z)

●

●

●

●
●

●
●

●

●

●
●

●
●
●

●

● ●

●

●

●

●

● ●

●

●

●●●

●

●

●

●

●

● ●

fun

1 2 3 4 5 6 7 8 9 10

0.00

0.25

0.50

0.75

1.00

1010

Fig. 3: Metrics of TSP Uniform and Clustered instances, of size 506, 755 and
1010, with increasing double-bridge kicks (z). Note the log10 vertical scale on
some of the plots.



nsinks We first consider the number of sinks for the Uniform class as z increases.
When instance size is 506, only a small number of sinks are observed; however,
as instance size increases to 755 and 1010, the value of nsinks also increases. In
actuality, the number of sinks decreases from z = 1 to z = 3, and then begins
to increase as z → 10. These results are in accordance with the visualisations
in Fig. 2, which also demonstrate that small perturbation strengths could meld
together large but few sinks. The number of sinks within the Clustered instances
all follow a logistic growth pattern as perturbation strength z increases. Both
instance classes approximate reciprocal nsinks behaviours to that of the perfor-
mance metric success; therefore it is expected that there would exist a strong,
negative correlation between these metrics.

4.3 Impact of Perturbation Strength on Success Rate

Considered together, the three upper left plots for each size shown in Fig. 3
provide indicators as to how the success rates alter as TSP instance size in-
creases. The median values from the distributions of success are reproduced in
Fig. 4; graphed by type (Uniform and Clustered), and then as connected lines
by instance size (506, 755, 1010).

It is apparent from Fig. 4 that, as instance size increases, the rate of success
decreases for all class types and all double-bridge kick strengths. The E506 (Uni-
form) median success rates all exhibit relatively large values, ranging from a high
of 89.5% for kick strength z = 5 to a lowest rate of 62.9% when z = 1. This
could be a consequence of using too low a perturbation z, one that is not strong
enough to kick sufficiently ‘far’ away from the current optimum and so failing to
escape to a new, non-deteriorating local optimum, even if the current optimum is
in a relatively shallow funnel. Thus, for low values of z, the perturbation stage of
Chained-LK is not destructive enough of the current solution to escape shallow
traps, and continue on to find the global optimum.

A marked decrease in the median success values are observed for Uniform
TSP instance sizes increasing from 755 to 1010. This increase is primarily a
consequence of the increased magnitude of the solution space. The maximum
median success for each of E506, E755, E1010 occur when double-bridge kick
strengths are at z = 5 (median = 0.895), z = 5 (median = 0.410) and z = 3
(median = 0.190) respectively.

Similar analysis of the Clustered TSP instances shows notably different be-
haviour in the values of median success values for z ∈ {1, 2, . . . , 10}. Where the
Uniform TSP instances’ median success values exhibit an approximately concave
shape, the Clustered median success values conform to a complemented sigmoid
pattern. This locates each Clustered instance’s maximum, median value when
z = 1; the median success values then decay towards zero as z → 10.
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Fig. 4: Success rates by TSP instance class for increasing instance sizes. Points
shown are medians of success for each class-kick combination.

As TSP instance size increases, both Uniform and Clustered classes experi-
ence a significant reduction in the median success rates, as well as a phase shift
of their patterns towards the vertical axis. Extrapolating from these behaviours
we would reasonably expect that, as TSP instance size increases beyond 1010,
success rates would continue to degrade; maximum, median success would thus
occur for lower values of z. Conversely, for smaller TSP instance sizes, success
rates would logically approach 100%, with close to 100% success rates expected
for reasonable values of z as TSP size decreased.

4.4 Correlation Analysis

Analysis of correlations between the performance metric success and the other
metrics iters, n, nsinks , d , fun and ufit was undertaken. Figure 5 shows the cor-
relation matrix for these metrics (for C755, or Clustered TSP instances of size
755, only), with the upper triangle of the matrix providing Spearman correlation
coefficients for each metric pair combination. Asterisks next to each correlation
coefficient denote the p-value significance, where *** indicates a p-value < 0.001,
** a p-value < 0.01, and a single * denotes p-value < 0.05. The lower triangle of
Fig. 5 shows pairwise scatter plots of each metric-metric combination. Pairwise
scatter points shown are aggregated together from each instance and kick. Cor-
relations matrices for all 6 type-size combinations were produced but not shown;
however, the correlations for C755 are indicative of all instances, and so is the
only matrix shown here for brevity.
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Fig. 5: Correlation matrix for combined Clustered instances C755.

We are primarily interested in correlations between success and the other
metrics, and so need only consider coefficients shown in the first row of Fig. 5
and scatter plots within its first column. In the first row, we observe high positive
correlations between success and the network metrics d and fun: the relative
in-strength and funnel sizes of the global optima respectively. Strong negative
correlations with success are seen with iters (iterations to global optimum) and
nsinks (number of sinks). Only success correlations with number of local optima
(n) and the proportion of nodes with unique fitness (ufit) exhibit coefficient values
that could be described as being of moderate significance.

Note that all correlation coefficients provided here were calculated using
Spearman’s approach rather than Pearson’s; thus coefficients reflect correlations
based on monotonically increasing or decreasing relationships rather than lin-
ear interactions only. However, all correlations were recalculated using Pearson’s



methodology, and no significant differences can be reported except for an across-
the-board small reduction in the magnitudes of the coefficients.

4.5 Correlation Variance Between Instance Classes

Correlations of success rates in finding a global optimum (success) with the
other metrics are grouped by class (Uniform, Clustered) and by TSP size and
are shown as parallel plots in Fig. 6. This allows easy comparison of success cor-
relates between the TSP classes. For both Uniform and Clustered classes, similar
behaviours transpire for each of the metrics correlated to success. Increasing from
506 to 755 then to 1010 TSP sizes, we observe positive, strengthening success
correlations with d, fun; strengthening, negative correlations are observed with
iters and nsinks . Both the number of local optima (n) and neutrality at the local
optima level (ufit) undergo changes in the directions of their correlation as TSP
size increases, both transiting coefficient values of zero and thus emphasising
their weak correlation with success rate.
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Fig. 6: Spearman correlation coefficient values of success versus other metrics by
class.

Extrapolating these correlation behaviours beyond the TSP sizes we have
analysed here would be inappropriate. We observed an unexpected decrease in
the number of iterations for the C1010 instance (c.f. Fig. 3) as z → 10, something
that could not have been readily anticipated from the C506 and C755 results.
Therefore, making assumptions about trends from these results as TSP size
increases would not be advisable; studies of larger TSP sizes would be required
to further understand the relationships between algorithm performance and LON
structure.



5 Conclusions

We have extracted and analysed the local optima networks induced by Chained-
LK with increasing perturbation strengths on two classes of randomly generated
TSP instances, with Uniform and Clustered cities. Particularly, we characterised,
visualised and measured the multi-funnel global structure of the underlying fit-
ness landscapes. We have also measured the performance of Chained-LK on the
studied instances with increasing perturbation strengths. Our results reveal that
the landscape global structure (i.e., the funnel structure) changes with increas-
ing perturbation strength, and these changes are markedly different in the two
instance classes. For the Clustered instances, a smoother landscape (a single
or a low number of funnels) is achieved with a minimal perturbation, whereas
a strong perturbation is ineffective and breaks the landscape into a multitude
of suboptimal funnels. In contrast, for the Uniform instances, the lowest per-
turbation induces a multi-funnel landscape, while a moderate perturbation can
smooth the landscape and improve performance. This has implications for algo-
rithm design: the amount of perturbation for an effective search is related to the
instance class. However, we found that the standard perturbation strength of
Chained-LK (a single double-bridge move) is robust across the instance classes
and sizes studied.

Provided the most effective perturbation strength is selected for each instance
class, the Clustered instances are generally easier to solve (have a higher success
rate) across all instances sizes. However, the Clustered instances reveal a larger
number of local optima according to our sampling, as compared to the Uniform
instances across all sizes. If the number of local optima was an accurate predictor
of search difficulty, we would expect that the Clustered instances would be harder
to solve than the Uniform instances. The opposite is the case, which confirms that
the distribution of optima is more important than their number for explaining
search difficulty. Indeed, we found that the funnel metrics (the number of funnels,
the size and strength of the global optima funnel) have a stronger correlation
with search difficulty than the number of local optima. Global structure definitely
impacts search performance.

Future work will consider other classes of TSP instances including real-world
datasets. Additional problem domains will also be considered, as well as the
impact on global structure of alternative perturbation and recombination oper-
ators.
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