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Abstract 

This study investigated the use of non-specific immunostimulants to alleviate stress

mediated suppression of defence mechanisms and subsequent susceptibility to bacterial 

pathogens in rainbow trout (Oncorhynchus mykiss). 

One yeast (1~3),(1~6)-~-glucan and a bacterial peptidoglycan were selected as 

immunostimulants from a panel of test substances on the basis of enhanced intracellular 

superoxide generation by kidney macrophages stimulated in vitro. Kidney macrophage 

effector activity was not affected after 1, 2, 3 or 4 weeks of in-feed treatment with 0.05 % 

or 5 % of glucan or peptidoglycan. However, production of bactericidal superoxide by 

inflammatory peritoneal macrophages did increase significantly after four weeks of oral 

treatment with 0.05 % peptidoglycan. 

Although a single confinement of fish (93 % reduction of water volume for five 

minutes) caused a physiological stress response, as indicated by hyperglycaemia in 

plasma, kidney and inflammatory macrophage activities were only affected after six 

daily confinements. Phagocytosis, intracellular superoxide production and killing of 

Aeromonas salmonicida in vitro by kidney macrophages were significantly reduced. 

Conversely, production of extracellular superoxide, which may be associated with 

damage to self, was enhanced. Peritoneal macrophages displayed a similar but less 

marked respiratory burst response after repeated confinement. 

Some of the alterations in macrophage function caused by daily confinement were 

prevented by feeding 0.05 % peptidoglycan four weeks before the first confinement. The 

increase in kidney macrophage extracellular superoxide production caused by repeated 

confinement was significantly alleviated by in-feed peptidoglycan. Similarly, the 

decrease in intracellular production by peritoneal macrophages caused by repeated 

confinement was prevented by in-feed treatment with peptidoglycan. Neither 

peptidoglycan nor repetitive confinement had any effect on complement lytic activity. 

These results indicate that dietary peptidoglycan was able to reduce, by regulating 

macrophage function, the impact of stress on certain bactericidal defences and potential 

damage to self. However, there was no significant difference in the persistence of viable 

A. salmonicida in the spleen or blood of infected fish in any of the experimental 

treatments. 

xi 



1.1 General introduction 

1.1.1 Natural environment of fish 

Fish are dependent on water as a medium in which to live. Vital functions, such as 

respiration, homeostasis, feeding, growth, reproduction, immune function and responses 

to stimuli, are closely associated with the characteristics of the surrounding aquatic 

environment (Wedemeyer, 1996). Water quality variation is common in limited water 

bodies such as estuarine and coastal marine areas as well as smaller fresh water lakes, 

channels and rivers. Temperature, salinity, dissolved oxygen and chemical run-off 

derived from agricultural, industrial and urban activities are amongst frequent 

fluctuations in water quality. Fish are highly adapted to their environment and can 

tolerate a wide range of variation, although adaptation has an energy cost (Pankhurst 

and van der Kraak, 1997). However, should tolerance limits be reached or exceeded, the 

animal's ability to adapt is significantly reduced with subsequent risk of reduced 

growth, reproduction and even survival (Wedemeyer, 1997) 

1.1.2 Farming of Fish 

Aquatic animals have been cultured for human consumption for centuries. Fish were 

initially reared under extensive conditions, where animals are kept at low stocking 

densities and grown in an environment similar to their natural habitat, such as large 

enclosed areas, without much husbandry input. Such farming conditions usually impose 

less strain on the physiological system than intensive farming practices (Wedemeyer, 

1996). 

In most countries, aquaculture procedures have become increasingly sophisticated 

leading to intensive aquaculture as economic pressures to improve production have 

grown. Total fish production can be increased by several thousand-fold through 

intensification (Shepherd and Bromage, 1988). If the water body is no longer able to meet 

the biological demands of the fish, such as increased food and oxygen consumption and 
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metabolic waste dispersal, artificially formulated diets and engineered holding facilities 

become necessary. Intensive aquaculture is a complex process where fish are grown in 

conditions far removed from their natural environment. Production costs are raised, and 

economic success is closely dependent on growth optimisation and minimisation of 

losses due to infectious and non-infectious agents. 

In intensive salmonid aquaculture (for a review on intensive aquaculture, see 

Shepherd and Bromage, 1988), fish are reared through a farming cycle consisting of 

hatchery, on-growing and, in some cases, broodstock facilities. In the hatchery, eggs 

derived usually from captive broodstock are artificially fertilised and incubated in fresh 

water trays until they hatch. Larvae are then moved to bigger tanks or raceways and 

feed on nutritional reserves present in the yolk sac for several weeks depending on the 

species and temperature, after which, fry are weaned onto commercial feed. Once fish 

reach a certain size, they are moved to on-growing facilities and grown to the marketable 

size. On-growing of rainbow trout (Oncorhynchus mykiss) and other salmonids takes 

place in freshwater tanks, raceways or ponds as well as in cages in lakes. The on

growing phase of anadromous salmonids, such as Atlantic salmon (SaZmo saZar), is 

carried out in sea water, usually in marine cages. In this case, fish are transferred from 

the hatchery to the sea once signs of physiological change (smoltification) are observed. 

Animals should be cultured in a stable environment with few disturbances to 

optimise growth and survival during the farming cycle. However, potentially 

detrimental changes in the normal day-to-day farming environment are unavoidable at 

times and they may be natural or artificial in origin. The former include daily or seasonal 

changes in water quality, physiological changes like smoltification, and interactions 

between fish, with microorganisms and with predators such as birds and seals. Artificial 

disturbances are usually associated with fish farming procedures and low water quality 

as a result of pollution (Wedemeyer, 1996). There are several potential disturbances in 

the fish environment due to farming practices and they are usually multifactorial. 
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Hatchery fish are often transported over long distances by road, sea or air to on-growing 

facilities. On-growing fish are regularly size-graded and redistributed to lessen social 

confrontation and to obtain similar size classes for marketing purposes. Similarly, 

prophylactic and therapeutic treatments such as vaccination and drug baths are also 

carried out during the farming cycle. For most of these procedures, fish are confined in a 

reduced space and often handled. Low water quality, reduced dissolved oxygen and 

social aggressiveness also are common consequences of farming procedures. 

Furthermore, commercial pressures impose high stocking densities. Farmed fish which 

are subjected to these experiences usually have only been domesticated for a relatively 

small number of generations. 

Such natural or artificial adverse conditions, trigger one of the animal's most 

important physiological processes, the stress response, characterised by the activation of 

a cascade of metabolic and hormonal events well described in teleost literature 

(Pickering, 1981; Sumpter, 1997; Wendelaar Bonga, 1997). These include mobilisation of 

energy substrates and alterations in the respiratory and cardiovascular systems intended 

to prepare the animal to avoid, escape, acclimatise to or tolerate the adverse condition 

(Wendelaar Bonga, 1997). However, many adverse conditions are often chronic because 

farmed fish cannot escape from the culture environment. Stress-mediated physiological 

changes may be of little value in evading the stressor and the tolerance limit for 

acclimatisation may be approached or exceeded with negative consequences on the 

animal's performance, immune system and consequently survival (Wedemeyer, 1996). 

Although inappropriate husbandry may result in high mortalities caused by non

infectious agents, it has been suggested that most losses in intensive salmonid farming 

have an infectious aetiology (Roberts and Shepherd, 1986). Fish microbial pathogens 

include viruses, bacteria, fungi and protozoan parasites (Roberts, 1989a) and stress

associated increased susceptibility to infectious diseases has been recognised as an 

important element of fish losses in aquaculture for several decades (Snieszko 1954; 
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Schreck, 1982; Wedemeyer and Goodyear, 1984; Peters et al., 1988; Maule et al., 1989; 

Wise et al., 1993). In salmonid aquaculture, infections caused by ubiquitous 

microorganisms such as bacteria (e.g., motile aeromonads, pseudomonads and Vibrio 

spp.) and fungi (Saprolegnia spp.) may become a source of significant morbidity and 

losses in the fish stock (Inglis et al., 1993; Wedemeyer, 1997). Obligate pathogens such as 

viruses (infectious pancreas necrosis virus, viral haemorrhagic septicaemia virus, 

infectious haemorrhagic necrosis virus), some bacteria (Aeromonas salmonicida, 

Renibacterium salmoninarum, Yersinia ruckeri) and several protozoan parasites are also 

responsible for significant disease outbreaks in salmonid aquaculture (Inglis et al., 1993; 

Wedemeyer, 1997). In the farm aquatic environment, some microorganisms live 

suspended in the water, in sediments or attached to surfaces at concentrations greater 

than in open and cleaner waters (Enger, 1992) and, therefore, more frequent interactions 

between fish and opportunistic pathogens may occur. Only a small number of 

interactions with microorganisms result in disease, partly due to the highly adapted 

immune system. However, facultative as well as obligate pathogens may establish severe 

infections by taking advantage of immunosuppression associated with disturbances of 

the normal farming environment. 

1.2 Host defence against infection 

As in other animals, teleost defence mechanisms include external barriers to 

environmental microorganisms and a highly adapted immune system providing 

effective protection against invading microorganisms. 

1.2.1 Physical barriers 

The exposed surfaces of fish provide the first defence against potentially invasive 

microorganisms. Mucus is found covering skin, gills and the gastrointestinal (GI) tract. 

Besides trapping microorganisms and reducing their invasiveness, it contains important 

antibacterial enzymes such as lysozyme, complement and possibly antibacterial 
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glycoproteins (Lie et al., 1989; Oohara et al., 1991; Magarifios et al., 1995). The skin 

epidermis and the epithelium layering the GI tract and gills provide simple barriers to 

the entry and establishment of infections. Although great variation occurs in the normal 

structure and function of these surfaces among fish species, their anti-microbial 

mechanisms are fundamentally similar and include increased production of mucus and 

accelerated epidermal or epithelial sloughing in response to irritants like invasive 

microorganisms (Ferguson, 1989; Roberts, 1989b). As in higher vertebrates, a range of 

lactic acid producing bacteria are part of the normal microbiota of the GI tract of fish 

(Ring0 and Gatesoupe, 1998), providing a hostile environment for invading 

microorganisms (B0gwald et al., 1994). 

Most opportunistic pathogens are not able to establish infection on these intact 

surfaces, and only a small number of obligate pathogens are able to do so. However, 

injuries on skin and gills caused by water-borne irritants, aggressive behaviour or 

farming procedures become a portal of entry for opportunistic pathogens present in the 

aquatic environment and may allow initiation of infection (Evelyn, 1996). 

1.2.2 Nonspecific Humoral factors 

Once microorganisms enter the host, spread occurs mainly through the blood or direct 

cell-cell transmission. Although the lymphatic system is an important vehicle for certain 

infectious agents in higher vertebrates, very little is known about this route in fish. As in 

other animals, several substances which can kill bacteria or prevent them growing are 

found in the sera of non-immune fish. Some of these substances act as opsonins in 

concert with cellular defences to potentiate the microbiocidal effect. Innate humoral 

factors include complement, lysozyme, C-reactive proteins, interferon, transferrin, 

ceruloplasmin, lectins, haemolysins, proteinases, chitinases, a2-macroglobulins and 

others (reviewed by Ingram, 1980; Dash et al., 1993; Yano, 1996). Of these, complement 

and lysozyme are amongst the most important and most investigated and special 

attention is dedicated to them in this review. 
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Complement 

The mammalian complement is an enzymatic cascade system that plays a pleiotropic 

role in defence against infection and inflammation (Tizard, 1995). In protecting against 

invasive microorganisms, a key event is the formation of active C3b and C3a 

components. Depending on the stimuli triggering their synthesis, the mammalian 

complement system is organised in three different and independent activation systems, 

designated classical, alternative and lectin pathways (Muller-Eberhard, 1988; Sato et al., 

1994; Janeway and Travers, 1997). Once formed, C3b covalently opsonises the 

microorganism surface enhancing their uptake by phagocytes. Furthermore, C3b 

initiates a cascade reaction which leads to development of the complement membrane 

attack complex (MAC), a pore-like structure, on the surface of microorganisms and 

consequent lysis (Muller-Eberhard, 1986; Lim, 1990; Tizard, 1995). C3a and some by

products originated during the activation cascade play an important role in the 

inflammatory process (Marceau et al., 1987; Hugli, 1990). 

Functional classical and alternative pathways of complement activation resulting 

in target opsonisation and/ or lysis are present in the sera of all major vertebrate groups 

(Pastoret et al., 1998) including teleost fish (Sakai, 1981; Iida and Wakabayashi, 1983; 

Sakai, 1983; Ingram, 1987; Yano, 1988; Sakai, 1992; Press, 1998). Evidence suggesting a 

lectin pathway in the sera of a urochordate, the eminent predecessor of vertebrates, has 

been published Gi et al., 1997). However, teleost complement molecular organisation and 

function are poorly characterised to date. Progress is being made, however, as different 

proteins are being purified or their genes sequenced in several species (Lambris et al., 

1993; Tomlinson et al., 1993; Yano, 1996; Lambris et al., 1997; Nakao et al., 1997; Sunyer et 

al., 1997; Fujii and Kunisada, 1998). 
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Lysozyme 

Lysozyme is a hydrolytic enzyme with antibacterial properties Golles, 1969). It is widely 

distributed throughout different taxa, from plants and invertebrates to all major 

vertebrate groups. Lysozyme digests the cell wall of bacteria by attacking P-1-4linked N

acetylmuramamines and N-acetylglucosamines, the major components of peptidoglycan, 

present in the bacterial cell wall. The lytic activity of lysozyme is enhanced by previous 

exposure to complement MAC and this is necessary for the lysis of Gram-negative 

bacteria Golles and Iolles, 1984). Lysozyme has been shown to be bactericidal to 

important fish microbial pathogens (Grinde, 1989; Yousif et al., 1994) and is found in 

most tissues and secretions of fish, especially those regularly exposed to 

microorganisms, such as haemopoietic organs, plasma, GI tract, gills and mucus (Grinde 

et al., 1988; Lie et al., 1989; Oohara, 1991). However, considerable variation in both 

activity and organ distribution exists between different species of teleost fish and even 

within individuals of the same species (Alexander and Ingram, 1992; Yano,1996). 

1.2.3 Phagocyte microbiocidal mechanisms 

While internalising invading microorganisms, phagocytes in the blood and tissues 

switch on potent oxygen dependent and independent microbiocidal mechanisms which, 

in most cases, lead to the destruction of phagocytosed material. 

Phagocytosis 

Engulfment of microorganisms by host cells, first discovered by Metchnikoff (1887), is a 

basic defence mechanism against invading pathogens. Since then, it has been 

demonstrated across all animal taxa (Horton and Ratcliffe, 1998). 

Among mammals, the cell types displaying phagocytic activity are well 

characterised. They comprise the so-called professional phagocytes (neutrophils, 

monocytes and macrophages in blood and other tissues), non-professional phagocytes 
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(epithelial cells, endothelial cells and fibroblasts) and para-professional phagocytes 

(dendritic cells and retinal epithelial cells) (Rabinovitch, 1995). In teleost fish, phagocyte 

cell types are less well characterised, although it is known that macrophages, monocytes 

and neutrophils (PMNs) in blood, tissues and inflammatory exudates are aVidly 

phagocytic (McKinney et al., 1977; Braun-Nesje et al., 1981; Thuvander et al., 1987; 

Secombes and Fletcher, 1992; Pedrera et al., 1993; Lamas and Ellis, 1994a,b; Brattgjerd et 

al., 1996; Dalmo et al., 1997). Granulocytes other than PMNs are not common in the 

peripheral circulation of most teleosts investigated (Hine, 1992). Inflammatory basophils 

have been shown to be phagocytic to a lesser extent than inflammatory macrophages 

(Suzuki, 1986), and basophils and eosinophils in intestinal tissues of carp have been 

reported to be phagocytic in vivo (Steinhagen and Jendrysek, 1994). Far less information 

is available on the phagocytic ability of cells other than leukocytes, although epithelial 

and endothelial cells in the head kidney of rainbow trout have been shown to 

phagocytose in vivo (Dannevig et al., 1994; Peters et al., 1991). 

Microbial internalisation is initiated by the interaction of receptors on the surface 

of the phagocyte with ligands present on the target cell. Different opsonin receptors have 

been identified in mammalian species, including those for complement fraction C3b 

(CDllb/CD18) and various immunoglobulins (FcRs), which promote the phagocytosis 

of complement or immunoglobulin opsonised microorganisms respectively (Brown, 

1994a; Swanson and Baer, 1995). Certain receptors have been shown to bind directly to 

microbial structures, such as lipopolysaccharide-binding CD14 (Wurfel et al., 1995), 

glucan- and LPS- binding CDllb/CD18 (Ross et al., 1987; Rosen and Law, 1990; Ross and 

Vetvicka, 1993), carbohydrate-binding lectin receptors (Ofek, 1989) and macrophage 

multiligand scavenger receptors (Krieger et al., 1993; Dunne et al., 1994). Phagocytosis of 

microorganisms in vivo is usually mediated by the activation of different receptors (Ofek 

et al., 1995; Ernst, 1998). 
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There is considerable indirect evidence that phagocytosis by teleosts cells is 

mediated by receptors. Fish phagocytes are able to discriminate between targets 

(Ainsworth, 1990) and pre-treatment of macrophages with trypsin greatly reduces the 

uptake of opsonised particles (Matsuyama et al., 1992b). Opsonisation with non-immune 

or immune sera as well as with C3 usually increases phagocytic activity (Honda et al., 

1986; Sakai, 1984; Michel et al., 1990; Matsuyama et al., 1992b; Rose and Levine, 1992; 

Chen et al., 1998), suggesting the existence of complement and immunoglobulin 

receptors on the phagocyte surface. Although FcR for IgM has been demonstrated in 

more primitive cartilaginous fish (Haynes et al., 1988), neither FcR nor complement 

receptors have been identified, isolated or the relevant gene cloned from teleost fish. 

Very little is known about non-opsonic phagocytosis in fish. In the tilapia (Oreochromis 

spilurus), macrophage lectin-type surface receptors have been suggested to mediate 

phagocytosis of non-opsonised bacteria (Saggers and Gould, 1989). As in mammals, it 

has been shown that glucans bind specifically to a surface receptor on the teleost 

phagocyte (Engstad and Robertsen, 1993; Engstad and Robertsen, 1994) and, therefore, it 

has been suggested that a Mac-1 (or CDllb/CD18)- like receptor is present on catfish 

neutrophils (Ainsworth, 1994). 

Recognition of foreign particles by phagocyte receptor(s) progresses, via an actin 

based mechanism, to internalisation of the particle within a phagosome (Kodama et al., 

1994b; AlIen and Aderem, 1996). This process is coupled with initiation of potent intra

and extra-cellular microbiocidal mechanisms by the phagocyte. Bactericidal capacity of 

fish macrophages and PMNs in vitro is well documented (Graham et al., 1988; Whyte et 

al., 1989; Daly et al., 1994; Espelid and J0rgensen, 1992; Iida et al., 1993; J0rgensen et al., 

1993b; Lamas and Ellis, 1994b; Leung et al., 1995; Hardie et al., 1996; Itou et al., 1997). As 

in mammals, microbiocidal mechanisms include (i) production of reactive oxygen- and, 

less conclusively, nitrogen- intermediates, (ii) release of a variety of enzymes into the 

phagosome (phagolysosome) and (iii) phagolysosome acidification. 
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Respiratory burst 

The respiratory burst is a distinguishing property of all mammalian phagocytes and it is 

characterised by activation of plasma membrane-bound nicotinamide adenine 

dinucleotide phosphate (NADPH) oxidase resulting in the formation of superoxide 

anion (0
2
-) (reviewed by Seifert and Gunter, 1991; Henderson and Chappell, 1996). 

NADPH oxidase is inactive in resting cells and is turned on rapidly and momentarily by 

particulate (zymosan, latex beads, bacteria, fungus etc.) and soluble (phorbol myristate 

acetate (PMA), f-Met-Leu-Phe (fMLP), etc.) stimuli. As illustrated in figure 1.1, activated 

NADPH oxidase catalyses the production of superoxide anion, and other reactive 

oxygen intermediates (ROls) are rapidly formed from this precursor by spontaneous or 

enzymatic catalysis. The microbiocidal effect of ROls is mostly mediated through protein 

oxidation, lipid peroxidation and deoxyribonucleic acid (DNA) damage to target cells 

(Gille and Sigler, 1995; Burch, 1989; Babior, 1984). 

The respiratory burst is a process believed to be phylogenetically conserved, 

occurring across plant and animal taxa (Dikkebboom et al., 1985; Nakamura et al., 1985; 

Larson et al., 1989; Bachere et al., 1991; Le Gall et al., 1991; Anderson et al., 1992b; Oda et 

al., 1992; Pipe, 1992; Kumazawa et al., 1993; Song and Hsieh, 1994; Stabler et al., 1994; 

Austin and Paynter, 1995; Lamb and Dixon, 1997). Teleost phagocytes in blood, 

haemopoietic organs and the peritoneal cavity have been reported to synthesise a variety 

of ROls upon stimulation with different particulate and soluble stimulants (Scott and 

Klessius, 1981; Higson and Jones, 1984; Chung and Secombes, 1988; Secombes et al., 1988; 

Zelikoff et al., 1991; Anderson et al., 1992a). Rainbow trout macrophages have been 

shown to posses a membrane bound NADPH oxidase-like enzyme (Secombes et al., 

1992), and the kinetics of oxygen consumption by Japanese eel (Anguilla japonica) PMNs 

during the respiratory burst was similar to the pattern observed by mammalian PMNs 

(Itou et al., 1996). 
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Figure 1.1 Reactive oxygen intermediates produced during the respiratory burst in MPO

positive phagocytes. 

Stimulation of the plasma or phagosome membrane activates the NADPH oxidase with the 

subsequent release of O2' and other microbiocidal ROls (in bold). In this illustration, NADPH 

oxidase is activated by contact with a microorganism. N, nucleus; NO, nitric oxide; OONO', 

peroxinitrite; SOD, superoxide dismutase; MPO, myeloperoxidase. R-NH2, free amines; R

NHCI, chloramines. Mammalian macrophages contain low levels of MPO, though they may 

increase its concentration by binding PMN-derived MPO via the mannose receptor (Leung 

and Goren, 1989). Information collated from Klebanoff and Hamon (1972); Zgliczynski and 

Stelmaszynska (1975); Thomas (1979)); Gabig and Babior (1981); Babior (1984); Burch 

(1989); Lincoln et al. (1995); Marcinkiewicz (1997); MacMicking et al. (1997). 
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Several bacterial species have been shown to trigger the respiratory burst of fish 

phagocytes (Stave et al., 1983; Morimoto et al., 1988; Lamas and Ellis, 1994a; Leung et al., 

1995; Skarmeta et al., 1995) and the bactericidal/bacteriostatic activity of phagocytes in 

vitro has been attributed, at least partly, to the generation of ROIs (Skarmeta et al., 1995; 

Sharp and Secombes, 1993; Daly et al., 1994; Hardie et al., 1996; !tou et al., 1997). This has 

been supported by the finding that ROIs produced at physiological concentrations in 

cell-free systems have been shown to kill various bacteria pathogenic to fish in a dose

dependent fashion (Karczewski et al., 1991; Skarmeta et al., 1995; !tou et al., 1997). 

Interestingly, poor bactericidal activity of channel catfish (lctalurus punctatus) 

neutrophils against EdwardsieIla ictaluri was associated with low rates of ROIs 

production by neutrophils following stimulation with different respiratory burst 

activators (Dexiang and Ainsworth, 1991; Waterstrat et al., 1991). 

As with phagocytosis, opsonisation of bacteria with non-immune or immune sera 

has been shown to augment the respiratory burst activity of fish phagocytes (Morimoto 

et al., 1988; Lamas and Ellis, 1994a; Waterstrat et al., 1991; Campos-Perez et al., 1997a). 

Reactive nitrogen intermediates (RNls) 

Nitric oxide (NO) has been shown to be an important mediator of many biological and 

immune functions, including inflammation and cytotoxicity to invading organisms and 

tumor cells (James, 1995; MacMicking et al., 1997; Nathan, 1997). NO is an intermediate 

product generated by the activation of cytosolic nitric oxide synthase (NOS), which 

catalyses the oxidation of L-arginine into L-citrulline (Hibbs et al., 1988; Marletta et al., 

1988) (figure 1.2). In mammalian species, three isoforms of NOS have been identified in 

most cell types (MacMicking et al., 1997). Activation of the Ca2+-independent inducible 

isoform of NOS (iNOS or NOS2), mostly present in macrophages, results in high-output 

cytotoxic NO production (Nathan, 1992; Xie et al., 1992; Fang, 1997; MacMicking et al., 

1997). Full activation of NOS2 usually requires a combination of cytokine(s) and 

microbial products such as bacterial LPS (Nathan and Xie, 1994). 
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Figure 1.2 Reactive nitrogen intermediates formed during the activation of NOS2. 

Nitric oxide (NO) is formed by catalytic activation of cytosolic NOS2 in stimulated 

phagocytes. Other RNls are produced through subsequent oxidation and reduction. RNls in 

bold are known mediators of cytotoxicity or inflammation. Information collated from Beckman 

et al. (1990); Nathan (1992); Klebanoff (1993); MacMicking et al. (1997); Michel and Feron 

(1997); Eiserich et al. (1998). 
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NO is a lipid- and water-soluble biologically active free radical gas which, in 

physiological milieu, is rapidly oxidised or reduced into other reactive nitrogen 

compounds collectively termed RNIs (figure 1.2). The molecular targets of RNls in 

microorganisms and other cells are diverse and their effects include DNA damage, 

impairment of FeS-containing enzymes and interference with signal transduction (Kolb 

and Kolb-Bachofen, 1992; Nathan, 1992; Eiserich et al., 1998). 

Nitric oxide has been shown to be produced by phagocytes from a number of 

invertebrate and vertebrate species upon immune activation (MacMicking et al., 1997). In 

recent years, increasing evidence has emerged indicating that teleost fish are able to 

synthesise nitric oxide as an inducible response. Schoor and Plumb (1994) were first to 

suggest iNOS activity in the head kidney of a teleost species, channel catfish, following 

injection of live E. ictaluri. Macrophages isolated from goldfish (Carassius auratus), catfish 

(Clarias gariepinus) and gilthead sea bream (Sparus aurata) have since been shown to 

synthesise NO in vitro upon stimulation with LPS and/or macrophage activating factor 

(MAF) (Wang et al., 1995; Neumann et al., 1995; Neumann and Belosevic, 1996; Neumann 

and Belosevic, 1997; Yin et al., 1997; Mulero and Meseguer, 1998). Similarly, iNOS 

activity has been demonstrated in rainbow trout mixed leukocytes cultures stimulated 

with muramyl dipeptide (Zunic and Licek, 1997). Low concentrations of nitrite in serum 

have been observed in rainbow trout injected with R. salmoninarum, although the 

production pathway was not identified (Campos-Perez et al., 1997b). Molecular 

demonstration of teleost iNOS also has been provided. iNOS messenger ribonucleic acid 

(mRNA) has recently been sequenced from rainbow trout and goldfish macrophages 

(Grabowski et al., 1996; Laing et al., 1996). 

Very few reports have been published on the role of RNIs in the immune response 

of fish. Physiological concentrations of nitric oxide and/or other RNls produced in cell

free systems are known to be toxic to several fish pathogens (Campos-Perez et al., 1997b), 

and the bactericidal capacity of catfish activated macrophages against Aeromonas 
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hydrophila in vitro was partially arrested by blocking NO synthesis (Yin et al., 1997). 

However, Hardie et al. (1996) showed that killing of the intracellular pathogen R. 

salmoninarum by rainbow trout activated macrophages was associated with a NOS 

independent process. 

Oxygen-independent microbiocidal mechanisms 

Besides ROIs and RNIs, phagocytes posses a range of enzymes and peptides displaying 

oxygen-independent microbiocidal capacity (Boman, 1991). Amongst them, lysosomal 

acid and alkaline phosphatases, lysozyme, defensins and lactoferrin are particularly 

important (Elsbach and Weiss, 1988; Lehrer et al., 1989; Lehrer and Gantz, 1990; Lehrer et 

al., 1993). 

Very little is known about oxygen-independent killing by teleost phagocytes. 

Although the production of some of these substances is enhanced following activation of 

macrophages (Chung and Secombes, 1987; Secombes, 1988; Sveinbj0msson and Seljelid, 

1994; Dalmo and Seljelid, 1995; B0gwald et al., 1996; Dalmo et al., 1996a), their role in 

phagocyte killing is poorly understood (Secombes, 1996). 

1.2.4 Cell mediated cytotoxicity 

In mammals, certain cytotoxic lymphocytes are able to target infected, tumor and non

self cells effectively. Cytotoxicity is mediated by direct recognition of target cells and 

extracellular release of enzymes (perforins and granzymes), which are toxic and/or 

induce lysis of targets (Tizard, 1995). Two different lymphocyte sub-populations are 

cytotoxic: natural killer (NI<) cells and cytotoxic T lymphocytes (CTLs). CTLs direct their 

cytotoxicity against specific targets in a major histocompatibility complex (MHC) class I 

restricted fashion (Rook and Balkwill, 1998). On the other hand, NI< cell activation is not 

MHC restricted since they target infected or tumor cells which do not express MHC class 

I molecules but several other ligands (Ljunggren and Karre, 1990; Moretta et al., 1992; 

Moretta et al., 1996; Lanier, 1998). In addition, NK cells can also direct cytotoxicity 
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against targets opsonised with IgG antibodies, a process called antibody dependent 

cellular cytotoxicity (ADCC) (Perussia et al., 1984; Lanier, 1998). 

Evidence of cell mediated cytotoxicity by teleost leukocytes other than phagocytes 

has been accumulating in recent years. Several reports have shown that lymphocyte-rich 

fractions isolated from blood, lymphoid organs and the peritoneal cavity of several 

teleost fish species mediate spontaneous cytotoxicity against a variety of xenogeneic and 

allogeneic cells, virus-infected autologous and allogeneic cells, and protozoan parasites 

without need of previous exposure (Evans et al., 1984; Graves et al., 1985; Moody et al., 

1985; Faisal et al., 1989a; Greenlee et al., 1991; Hogan et al., 1996; Seeley and Weeks

Perkins, 1997; Stuge et al., 1997). Teleost spontaneous cytotoxic cells appear to be the 

functional equivalent of mammalian NK cells and are referred to as NK-like or natural 

cytotoxic cells (NCC) (Evans and Jaso-Friedman, 1992). However, very little is know 

about the NCC mechanism of action. As in higher vertebrates, cytotoxicity has been 

shown to be initiated by direct contact with the target cell and possible enzyme release 

(Bielek, 1988; Evans and Jaso-Friedman, 1992; Carlson et al., 1985), which results in target 

apoptosis (Greenlee et al., 1991). Activatory!inhibitory NCC receptors have not yet been 

identified, although there is some evidence indicating their presence (Evans et al., 1990; 

Yamaguchi et al., 1996). 

Genetic restricted cytotoxicity in fish, the functional equivalent to mammalian 

CTL-mediated cytotoxicity, has been suggested in few reports (Hashimoto and Ikeda, 

1987; Verlhac and Deschaux, 1987; Yoshida et al., 1995; Fisher et al., 1998; Mckinney and 

Schmale, 1997), and elegantly confirmed in ginbuna crucian carp (Carassiu5 allratu5 

langsdorfii) by using different isogeneic fish lines and cell lines originating from them as 

targets (Hasegawa et al., 1998). 

1.2.5 Antibody production 

The adaptive immune response (AIR) is characterised by the display of diverse antigen

specific surface receptors (T cell receptor and immunoglobulin receptor), diverse class II 
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proteins encoded by the MHC, and cytokines regulating immune responses Ganeway 

and Travers, 1997). In mammalian immunology, the antibody response to many antigens 

is T cell-dependent (TO). In this response, complex MHC-T cell receptor (TCR) restricted 

interactions involving antigen presenting cells (APC), CD4+ T helper (Th) cells and B 

cells are required for antibody production (Rook and Balkwill, 1998). Fish above agnatha 

(jawless fish) in the evolutionary scale have been shown to possess the basic mechanisms 

required for an adaptive immune response (Flajnik, 1996; Klein, 1997; Warr, 1997; Press, 

1998). As a result of functional AIR, fish are able to produce antibodies against specific 

microbial antigens both by artificial (Ellis, 1988; Kaattari and Piganelli, 1996; Gudding et 

al., 1997) and natural (Robohm et al., 1979; Evans et al., 1997) immunisation. Thus, 

invasive pathogens and their exotoxins for which an AIR has been produced will face, 

besides the innate microbiocidal mechanisms described earlier, the direct effects of the 

antibody molecule. The in vitro effects of the immunoglobulin molecule in mammalian 

species include antigen agglutination, precipitation and neutralisation, while the in vivo 

effects in healthy patients are immune complex formation, solubilisation by complement 

binding and removal Ganeway and Travers, 1997). Similar in vitro effects of the 

immunoglobulin molecule have been observed in different species of teleosts (Kaattari 

and Piganelli, 1996). Furthermore, antibody-opsonised microorganisms are usually more 

susceptible to killing by fish innate defence mechanisms (Lamas and Ellis, 1994a; Chen et 

al., 1998). 

The phenomena which characterise mammalian immunological memory 

(logarithmic increases in monomeric immunoglobulin (Ig) production, isotype switching 

to high affinity IgG, and enhanced clonal proliferation) have not been observed, at least 

to the same extent, in fish (reviewed by Kaattari and Piganelli, 1996). Only one Ig isotype 

with functional relevance, IgM, has been found in fish sera to date. However, increases 

in IgM production and binding affinity as well as enhanced sensitivity to antigen have 

all been reported, indicating that fish are able to display a differentiated response to 
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secondary immunisation (Arkoosh and Kaattari, 1991; Kaattari and Piganelli, 1996; 

Zhang et al., 1997). 

1.2.6 Regulation of immune response: the role of cytokines 

In mammalian species, it is well known that phagocyte microbiocidal activity, 

lymphocyte helper function, cytotoxicity and antibody production, amongst other 

immune functions, are processes closely orchestrated by a range of cytokines, such as 

diverse interleukins, gamma interferon (IFN-y) and tumor necrosis factor alpha (TNF-a). 

As illustrated in figure 1.3, they are secreted by phagocytes, Th cells and NK cells 

amongst others, and provide a link between innate and adaptive immune responses 

directed towards the effective clearance of invading microorganisms (Fearon and 

Locksley, 1996; Boehm et al., 1997; Medzhitov and Janeway, 1997; Unanue, 1997b). 

Although several lines of evidence indicate the existence of leukocyte-derived 

cytokines in fish, their diversity and regulatory role are largely unknown (Secombes et 

al., 1996; Press, 1998). Mixed peripheral blood leukocytes from several teleost species 

stimulated in vitro with concavalin A (ConA), a potent T-cell stimulator, have been 

shown to secrete cytokine(s) (macrophage activating factor, MAF) which upregulate 

macrophage microbiocidal mechanisms (Graham and Secombes, 1990a,b; Neumann et 

al., 1995; Mulero and Meseguer, 1998). In rainbow trout, it has been demonstrated that 

surface IgM negative (sIgM") cells are responsible for MAF production, suggesting a T 

cell origin (Graham and Secombes, 1990a). Although IFN-yor genes encoding for it have 

not been identified in fish (see below), it has been suggested that rainbow trout MAF 

might be the equivalent to mammalian IFN-y (Graham and Secombes, 1990b), based on 

similarities with that cytokine (Nathan et al., 1983). Further research has strengthened 

this hypothesis. sIgM"lymphocytes from rainbow trout primed in vivo with a TO-antigen 

and re-stimulated in vitro with the same antigen produced a MAF which increased 

phagocyte respiratory burst (Piganelli et al., 1994). Increased phagocyte nitrite 

production and microbiocidal activity were observed in similar experiments using mixed 

leukocyte cultures as secretors of MAF in catfish (Yin et al., 1997). 
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Figure 1.3 Regulation of multiple immune functions by cytokines in mice. 

Resident phagocytes having ingested microorganisms are activated to a more microbiocidal 
state able to kill pathogens and present antigens plus MHC class 11 molecules (.) more 
efficiently. T helper cells (ThO) recognise specific presented antigen through surface TCR 
(e). Depending on co·stimulatory signals between the phagocyte and ThO and cytokines 
present in the surrounding milieu, ThO mature into Th1 or Th2 Iymphocytes. The former 
secrete a pool of cytokines which enhance cell mediated responses such as phagocyte and 
NK cell activities (type 1 response). As infection progresses, phagocytes secrete IL·10 and 
IL·1 which inhibit type 1 responses and stimulate the differentiation of ThO into Th2 cells, 
which further inhibit type 1 response and stimulate antigen presenting B cells to differentiate 
into plasma cells and produce antibodies (Abs) against that particular antigen. Cells and 
cytokines in bold, or their functional equivalents, have been identified in teleost fish. Inhibition 
is represented by dotted lines and '. '; stimulation is represented by full lines and '+'. The 
purpose of this figure is to illustrate an example of how cytokines modulate immune function. 
Many other cytokines are involved in immune responses and those here mentioned display 
other functions not illustrated. Information collated from Cleveland et al. (1996); Fearon and 
Locksley (1996); Chambers and Allison (1997); Fresno et al. (1997); Medzhitov and Janeway 
(1997) ; Trinchieri (1997) ; Unanue (1997a); Unanue (1997b). 

Chapter 1: Introduction 20 



Likewise, indirect evidence for TNF-a-like, transforming growth factor PI (TGFP)

like and IL-1-like factors in rainbow trout have been provided by biological and 

anti genic cross reactivity. Respiratory burst activity of rainbow trout macrophages has 

been shown to be increased by previous incubation with supernatants derived from 

activated macrophages Oang et al., 1995b}, suggesting the presence of a TNF-a-like factor 

in those supernatants. In other experiments, Jang et al. (1995a) showed that macrophage 

respiratory burst, mitogen-induced lymphoproliferation and neutrophil migration were 

exarcebated by previous incubation with human (h) TNF-a, and all activities were 

reduced by either co-incubation with antibodies against hTNF-a or previous incubation 

of cells with antibodies against hTNF receptor 1. Similar studies have been carried out 

with hTGFPI, showing a dual effect on respiratory burst activity depending on the 

concentration employed Oang et al., 1994}. Indirect evidence also suggests inducible 

production of an IL-l-like factor by common carp (Cyprinus carpio) macrophages and 

neutrophils in vitro since supernatants from these cells induced proliferation of an IL-1-

dependent mammalian T-cell line, which was suppressed by co-incubation with 

antibodies against hIL-1a and hIL-1P (Verburg van Kemenade et al., 1995; Weyts et al., 

1997b). In addition, macrophages/monocytes are required as accessory cells for the 

antibody response in vitro (Miller et al., 1985) and two different monocyte-derived IL-1-

like proteins been identified in channel catfish (Ellsaesser and Clem, 1994). 

To date, biological and anti genic studies of cytokine-like factors in fish have not 

been extensively followed by DNA sequence analysis (Secombes et al., 1996). The gene 

encoding for an IFN-y-like product in flatfish (Paralichthys olivaceus) has been sequenced 

(Tamai et al., 1993), although the low homology to the mammalian IFN-y gene and lack 

of clear IFN-y amino acid motifs suggest it is not an interferon (Secombes et al., 1996). 

More recently, genes encoding for fish TGF~I-like, IL-l~-like, IL-8-like and IL8R-like 

products in fish species have been sequenced (Harms et al., 1997; Secombes, 1997; Zou et 

al., 1997; Fujiki et al., 1998). 
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1.2.7 Inflammatory processes in fish 

Fish, ranging from Antarctic to tropical species, are able to display an inflammatory 

reaction against a variety of irritants or invading microorganisms (Zelikoff et al., 1991; 

Endo et al., 1995; Silva et al., 1996; Sharifpour, 1997), although the response is not as 

pronounced as in mammalian species (Ferguson, 1989; Roberts, 1989b). While some 

information is available on cells and soluble mediators involved in the inflammatory 

process in fish (Ellis, 1986; Suzuki and Iida, 1992; Rowley, 1996), this is very scant 

compared with that in higher vertebrates. 

1.2.8 Evasion of killing by microorganisms, particularly bacteria 

Certain microorganisms affecting mammals have successfully developed strategies to 

reduce or escape killing by humoral and cellular components of the host defence 

mechanisms (Kaufmann, 1993; Finlay and Cossart, 1997). There is no reason why such 

mechanisms should not exist amongst microorganisms pathogenic for fish. 

Some microorganisms have been shown to attach to skin, gills or GI tract surfaces 

from where they are able to cause systemic infections (reviewed by Evelyn, 1996). 

Flexibacter maritimus, a bacterium which primarily attaches to the skin and gills of fish 

(Wakabayashi, 1993), has developed mechanisms to help attachment to mucus and 

reduce its bactericidal effect (Magarinos et al., 1995). Virulent strains of A. salrnonicida 

expressing an outer protein (A) layer have been reported to resist the lytic activity of 

complement to a greater extent than avirulent strains (A layer negative) (Sakai, 1992). 

Another important evasion strategy of some pathogens is avoidance of 

internalisation by phagocytes. Channel catfish neutrophils have been reported to 

actively internalise low virulence A. hydrophila and Micrococcus luteus cells while higher 

virulence E. ictaluri and Edwardsiella tarda were phagocytosed much less readily 

(Ainsworth and Dexiang, 1990). The capsule of Photobacterium darnsela (previously 

known as Pasteurella piscicida) has been reported to confer increased resistance to 

phagocytosis by sea bream macrophages, although no correlation between capsulation 
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and killing by phagocytes was observed (Arijo et al., 1998). Once phagocytosed, certain 

microorganisms have different strategies to avoid being killed by the host. Certain 

mammalian intracellular pathogens such as Chlamydia spp., Legionella pneumophila, 

Mycobacterium spp., and Toxoplasma gondii are able to inhibit phagosome maturation 

and/ or escape into the cytoplasmic space, or else resist the microbiocidal environment in 

mature phagolysosomes (Sinai and Joiner, 1997). However, very little is known about the 

interactions between pathogens and phagosomes in fish. It has been shown that 

Mycobacterium spp. are able to resist degradation in lysosomes of rainbow trout 

macrophages, although opsonisation with non-immune or immune sera greatly 

increased the bactericidal capacity (Chen, 1996). Using gene-disrupted bacterial strains, 

superoxide dismutase (SOD) or catalase enzymes in Salmonella spp. and Candida spp. 

cells have been demonstrated to increase resistance to phagocyte killing by blocking the 

production of peroxinitrite and ROIs (De Groote et al., 1997; Wysong et al., 1998). These 

two enzymes have been proposed as virulence factors for the fish pathogenic bacterium 

A. salmonicida in studies involving cell-free generated oxygen and nitrogen radicals 

(Karczewski et al., 1991; Garduno et al., 1997). Furthermore, a virulent strain of A. 

salmonicida normally resistant to trout macrophage respiratory burst was more efficiently 

killed through incubation with a SOD inhibitor (Sharp and Secombes, 1993). Opsonised 

and non-opsonised strains of E. tarda have been associated with low respiratory burst 

activity of Japanese eel neutrophils (Iida and Wakabayashi, 1993), although whether this 

effect was due to reduced uptake by neutrophils or inhibition of the respiratory burst 

itself was not investigated. 

Bacterial cells display an adaptive physiological change depending on the 

environmental conditions in which they grow and these changes may influence killing 

by the host immune response (Byrne and Swanson, 1998). Incubation of the fish 

pathogen R. salmoninarum with non-immune or immune sera for long periods of time (16 

h) enabled the bacteria to grow conSiderably faster inside trout macrophages than non-
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opsonised bacteria or those opsonised for shorter periods of time (3 h), suggesting that 

an adaptive change in bacterial physiology rather than opsonisation was the mechanism 

conferring increased resistance (Bandin et al., 1995). 

Finally, certain bacteria pathogenic to mammalian hosts have been shown to avoid 

effective killing mechanisms by altering the cytokine profile to which immune cells 

respond for effective bacterial clearance. The mechanisms by which bacteria are able to 

do so include alteration of cytokine synthesis, proteolytic degradation of cytokines and 

proteolytic cleavage of cytokine receptors on the immune cell surface (Wilson et al., 

1998). Although similar mechanisms may be used by fish pathogenic bacteria, more 

research is needed to elucidate the role of cytokines in fish immune regulation. 

1.3 Stress response and modulation of immune defence mechanisms 

1.3.1 Immunomodulation by aquaculture-associated stressors 

Stressors related to aquaculture practices have been shown to modulate most immune 

functions investigated, usually causing suppression, depending on the quality and 

extent of the stressor and the immune parameter assayed. 

Rainbow trout serum lysozyme activity has been reported to be modified by 

handling, transport and water quality. Short term handling induced a variable 

modulation of activity, while longer exposure to a stressor, such as transport or poor 

water quality, induced a significant decrease in lysozyme activity (Mock and Peters, 

1990). A similar variable modulation of complement-mediated haemolytic and 

agglutinating activities as well as C3 concentration in the serum of gilthead sea bream 

has been observed by chasing the fish once or on a daily basis (Sunyer et al., 1995; Tort et 

al., 1996). The bactericidal capacity of rainbow trout serum was, however, enhanced after 

a 2 h confinement stressor, although no mechanisms involved were identified 

(Thompson et al., 1993). 
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Short term stressors such as injection or noise in combination with confinement 

were shown to reduce macrophage phagocytosis significantly, although the effect was 

diminished following six daily injections (Narnaware et al., 1994), suggesting a possible 

adaptation to the stressor. Production of microbiocidal substances by phagocytes is also 

influenced by stress. Short or long term confinement induced a decrease in respiratory 

burst activity in rainbow trout (Angelidis et al., 1987) and common carp (Yin et al., 1995). 

However, repeated confinement was not associated with significant modulation of the 

respiratory burst (Angelidis et al., 1987). A. salmonicida killing by macrophages from 

rainbow trout confined during a 2 h period was significantly decreased, pOSSibly as 

consequence of reduced macrophage respiratory burst activity (Thompson et al., 1993). 

Stressors associated with aquaculture practices have often been identified as 

possible causes for vaccine failure in the field. In mammals, proliferation of T and B cells 

is an important step in the production of antibodies. Peripherallymphocytes of channel 

catfish exposed to handling and transport did not undergo either proliferation when 

incubated with mitogens or antibody responses to T-dependent and T-independent 

antigens (Ellsaesser and Clem, 1986). Likewise, long term crowding of rainbow trout 

induced a decline in numbers of antibody producing plaque forming cells isolated from 

the head kidney (Mazur and Iwama, 1993). Although the mechanisms involved were not 

investigated, serum levels of specific antibodies against A. salmonicida were depressed in 

acutely stressed rainbow trout (Thompson et al., 1993). However, contradictory results 

are available since A. salmonicida antibody levels have been reported to remain stable in 

sera from Atlantic salmon exposed to repetitive handling (Espelid et al., 1996). 

Certain behavioural conduct has been shown to trigger a stress response in tilapia 

(Oreochromis aureus) and rainbow trout. In contrast to physical aquaculture-related 

stressors, behaviour-induced stress response is not only mediated by physical but also by 

psychological mechanisms (Peters et al., 1991). Social interaction may result in 

hierarchical ranks with dominant and subordinate fish, the latter undergoing a stress 
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response leading to disruption of the immune homeostasis. Tilapia natural cytotoxic cell 

activity against YAC-1 target cells was depressed (Ghoneum et al., 1988), while both 

phagocytosis of yeast particles and autophagocytosis of red blood cells were enhanced in 

subordinated rainbow trout (Peters et al., 1991). As a consequence of social stress, 

subordinate rainbow trout possessed structural alterations in the haemopoietic organs 

(Peters et al., 1991) and displayed increased susceptibility to A. hydrophila infection 

(Peters et al., 1988). Farming practices, such as space enclosure and high stocking 

densities, may affect the behaviour of fish and be associated with increased social 

aggressiveness. 

1.3.2 Neuroendocrine framework of the stress response 

Cognitive stimuli, such as crowding, handling, transport and social interactions, are 

perceived in specific brain centres and translated by the neural and endocrine systems 

resulting in the secretion of a wide range of factors and hormones which mediate the 

stress response. Fish are equipped with the equivalent of all organs, tissues and main 

mediators shown to contribute to the stress response in mammals (Ottaviani and 

Franceschi, 1996; Wendelaar Bonga, 1997). Activation of the neuroendocrine system as 

part of the stress response is known to modulate the immune function through at least 

three different pathways: (i) release of hypothalarnic, pituitary and adrenal cortex 

(interrenal tissue in fish) hormones during the activation of the hypothalamic-pituitary

adrenal (interrenal) axis (figure 1.4); (ii) release of catecholamines by the autonomic 

nervous system and adrenal medulla (figure 1.4) (renal chromaffin cells in fish), and (iii) 

release of neuropeptides (MacLean and Reichlin, 1981; Wendelaar Bonga, 1997). 
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Figure 1.4 Integrated diagram of the main neuroendocrine mediators of the stress response 

in fish. 

The consequences of activation of the hypothalamic-sympathetic-chromaffin and 

hypothalamic-pituitary-interrenal axes on several metabolic and immune functions are 

summarised. '+' indicates stimulation; '-' indicates inhibition; '?' indicates unknown. ACTH, 

adrenocorticotropin hormone; FFA, free fatty acids; aMSH, alpha-melanophore-stimulating 

hormone. Redrawn with modifications from Wendelaar Bonga (1997). 
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Hypothalamic-pituitary-interrenal axis (HPI) 

As in higher vertebrates, activation of the HPI in fish leads to the release of many 

hormones and factors into the circulation which are responsible, in part, for the stress 

response (figure 1.4). From an immunological point of view, adrenocorticotropin 

hormone (ACTH) and glucocorticoids are amongst the most important mediators of the 

stress response. As reviewed by Brown (1994b), they have multiple effects on all aspects 

of the immune function (recognition, proliferation, effector and regulatory mechanisms), 

usually associated with suppressive actions. Other pituitary hormones, such as growth 

hormone (GH) and prolactin, have been shown, however, to enhance T cell proliferation 

and differentiation. 

In fish, research on immune modulation by HPI-derived hormones has shown 

similarities to mammalian results. Cortisol is the main glucocorticoid in fish and its 

concentration in plasma has been demonstrated to peak rapidly after an acute stressor or 

be increased for a sustained period of time during exposure to a chronic stressor 

(Carragher and Sumpter, 1990; Wendelaar Bonga, 1997). Administration of 

physiologically high concentrations of cortisol in vivo has been shown to induce 

depression of many immune aspects, including peripheral lymphocytopenia (Pickering, 

1984; Ellsaesser and Clem, 1987; Maule and Schreck, 1990a), lymphoproliferation 

(Ellsaesser and Clem, 1987; Carlson et al., 1993a; Espelid et al., 1996), plasma IgM 

concentration (Nagae et al., 1994), complement lytic activity (Carlson et al., 1993b), 

neutrophil and macrophage phagocytosis (Ainsworth et al., 1991; Namaware et al., 1994) 

and the inflammatory response (Ellis, 1986; Suzuki and lid a, 1992). High affinity surface 

receptors for the glucocorticoids cortisol and cortisone have been demonstrated on tissue 

leukocytes (Maule and Schreck, 1990b), indicating a direct effect of these hormones. 

Suppressive effects of cortisol on lymphoproliferation and different aspects of 

macrophage function have also been shown in vitro (Tripp et al., 1987; Pulsford et al., 

1995; Wang and Belosevic, 1995; Espelid et al., 1996; Weyts et al., 1997a). Therefore, 
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exogenous cortisol has been associated with decreased immune function, and it is 

generally agreed that, as in mammals, stress-related immunosuppression in fish is 

mainly mediated by high concentration of cortisol (Wendelaar Bonga, 1997). 

However, cortisol is not the only HPI-derived hormone mediating immune 

modulation during the stress response and, although considerably fewer reports are 

available on pituitary hormones, some others are known to stimulate teleost immune 

function. ACTH has been shown to enhance macrophage respiratory burst in rainbow 

trout (Bayne and Levy, 1991a; Bayne and Levy, 1991b). GH plays an important role in the 

stress response of Nile tilapia (Oreochromis niloticus) (Auperin et al., 1997) and has been 

shown to increase different immune functions in several fish species (Kajita et al., 1992; 

Sakai et al., 1995a; Sakai et al., 1997; Munoz et al., 1998), possibly through high affinity cell 

surface receptors (Calduch-Giner et al., 1997). 

Hypothalamic-sympathetic-chromaffin axis 

This axis is the teleost equivalent to the hypothalamic-sympathetic-adrenal medulla axis 

in mammalian species and its activation leads to the secretion of various adrenergiC 

agents or catecholamines by renal chromaffin cells (Wendelaar Bonga, 1997) (figure 1.4). 

Catecholamines (adrenaline, noradrenaline and dopamine) are present in all vertebrates 

(Ottaviani and Franceschi, 1996) and it is well documented that in teleost fish a wide 

range of stressful events induce increased adrenaline and noradrenaline concentrations 

in plasma (Sumpter, 1997; Wendelaar Bonga, 1997). 

In mammals, modulation of the immune response by adrenergic agents is complex 

and variable since they induce both stimulation and inhibition depending on immune 

parameter measured and cell type assayed (Reviewed by Brown, 1994b; Madden et al., 

1995). Reports on teleost immune function and catecholamines are scarce, and variable 

modulation has been observed. Administration of adrenaline in vivo or in vitro lowered 

rainbow trout macrophage phagocytic ability and this effect was neutralised by co

administration of an adrenergic blocking agent (Namaware et al., 1994; Namaware and 
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Baker, 1996). However, the respiratory burst activity of rainbow trout kidney 

macrophages as well as lymphoproliferation were decreased or enhanced by ~- or (X.

adrenergic analogues, respectively (Bayne and Levy, 1991b; Flory and Bayne, 1991). 

Furthermore, it has been reported that cortisol and adrenergic agents interact to 

modulate immune function in rainbow trout. Using blocking agents, endogenous 

noradrenaline was shown to mediate stress-associated decrease in phagocytic activity, 

and exogenous cortisol administration neutralised this effect by inhibiting noradrenaline 

release during the stress response (Namaware and Baker, 1996). 

Neuropeptides 

Several neuropeptides, such as substance P, somatostatin and endogenous opioid 

peptides have been shown to be released during the stress response and to regulate 

variably certain aspects of the mammalian immune response (Brown, 1994b; Chancellor

Freeland et al., 1995). 

Although some of these neuropeptides have been identified in teleost fish, their 

role in the stress response and immune function is unclear. As in mammals, substance P 

stimulates lymphoproliferation while somatostatin inhibits this response in rainbow 

trout (Ndoye et al., 1992). Opioid peptides in fish may also contribute to the stress

mediated suppression of lymphoproliferation and NCC activity associated with stress, 

since the opioid antagonist naltrexone partially reversed the suppressive effects 

observed in socially subordinate Mozambique tilapia (Oreochromis mossambicus) and in 

lymphocytes incubated with the opioid ~-endorphin in vitro (Faisal et al., 1989b). 

1.3.3 Immune framework of the stress response 

The immune system has been thought traditionally to be a target of hormones and 

mediators released by the neuroendocrine system during the stress response. However, 

recent research in mammals has demonstrated that the immune system actively 

communicates with the brain and neuroendocrine system, and they all act in concert 

shaping the quality and extent of the stress response. Communication from the immune 
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to the neuroendocrine system is mediated, at least, at two different levels (reviewed by 

Brown, 1994b; Ottaviani and Franceschi, 1996; Dantzer, 1997). Firstly, cytokines secreted 

by different leukocytes in response to non-cognitive stimuli (such as microbial 

infections) are actively transported across the blood-brain barrier. In addition, certain 

cytokines are produced by neural and non-neural cells in the brain. Receptors for 

cytokines have been found throughout the brain, and have been shown to modulate the 

neuronal firing rate and subsequent secretion of stress hormones (corticotrophin 

releasing hormone, ACTH, ~-endorphins, uMSH, prolactin, glucocorticoids, and 

catecholamines). Secondly, different cells of the immune system, mostly phagocytes, are 

known to secrete stress mediators like ACTH, ~-endorphins, growth hormone and 

prolactin, in response to microbial infections as well as stress hormones. Besides 

modulating the immune response in an auto- and para-crine (local) fashion, these 

leukocyte-derived peptides modify the production of neuroendocrine-derived stress 

hormones by targeting the hypothalamus and pituitary gland. 

Very few reports about the effect of cytokines or microbial antigens on the 

neuroendocrine system of fish have been published, although evidence is emerging that 

bi-directional communication between the immune and neuroendocrine systems is a 

process developed early in evolution and present in teleosts (Ottaviani and Franceschi, 

1996; Balm, 1997). Some microbial infections as well as bacterial LPS are known to 

activate the stress response in fish (Donaldson, 1981). LPS has been demonstrated to 

induce increased head kidney cortisol production in Mozambique tilapia and LPS 

recognition by immune cells plays a central role in the response (Balm et al., 1995). In 

another experiment, ACTH and cortisol production in vitro were inhibited by incubation 

of coho salmon (Oncorhynchus kisutch) pituitary gland or kidney tissue, respectively, with 

leukocyte-conditioned medium supposed to contain cytokines (Schreck and Bradford, 

1990). Macrophage-derived supematant, possibly containing an IL-l-like factor, has been 

suggested as the means of overcoming suppression of antibody producing cells in 
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salmon associated with cortisol treatment (Kaattari and Tripp, 1987; Tripp et al., 1987). 

Further research with purified or engineered teleost cytokines is needed to elucidate 

further the communication between the immune and neuroendocrine systems during the 

stress response. 

Finally, it is important to underline that since the stress response is an intricate 

process involving different systems and an ever increasing list of mediators with 

different and sometimes pleiotropic functions, the immunological outcome is far more 

complex than simple suppression (Ottaviani and Franceschi, 1996; Dantzer, 1997). 

However, since intensive farming is an artificial and stressful experience per se, 

additional environmental or husbandry challenges may compound the effect of existing 

stressors leading to immunosuppression of the fish stock and infectious outbreaks 

(Wedemeyer, 1997). 

1.4 Prophylactic modulation of the immune response 

One of the most efficient prophylactic measures against pathogens in general is adequate 

husbandry, where fish are grown under conditions which impose only a minimal 

additional strain on the host defence system. However, more virulent pathogens may be 

able to initiate infectious processes even in immunocompetent animals. Similarly, 

facultative pathogens may take advantage of lowered immune response resulting from 

farming practices and cause disease. Therefore, other disease controlling strategies have 

been sought. Antibiotic prophylaxis is used before or during animal handling, 

transportation of livestock, physiological alterations such as smoltification and 

spawning, or at times when previous clinical history of the farm has shown increased 

incidence in bacterial infections. Prophylactic antibiotic treatment does, however, pre

dispose to emergence of drug resistant strains with serious implications for the bacterial 

disease management on farm and possible risk to human health. Its prophylactic use 

should therefore be restricted. Furthermore, antibiotics at levels below the minimum 
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inhibitory concentrations have been shown to increase virulence of certain bacteria 

(Morris and Brown, 1988; McKenney et al., 1994). 

Other more attractive preventive methods are based on artificial modulation of the 

immune response. The immune system is a dynamic network of cells and soluble factors 

able to adapt and respond to endogenous stimuli such as infections or microbial 

components. Appreciation of this dynamism has led to the use of artificial 

immunomodulation for prophylactic purposes. In general, this has been achieved by 

vaccines to induce a strong and effective protective response against specific pathogens. 

Teleost fish are amongst the first animals in evolution to develop an adaptive immune 

response (Klein, 1997; Warr, 1997). Although they do not display such a potent memory 

response as higher vertebrates, the farming life cycle is short and commercial vaccines 

are used against a few bacterial and viral pathogens (Gudding et al., 1997). However, 

they are not available for some common and significant pathogens. In addition, natural 

or husbandry-associated immunosuppression may render vaccines less effective and the 

stress imposed on the fish during vaccination may lead, in some cases, to morbidity and 

mortality. Certain drugs and substances able to increase immune response have been 

suggested as a complementary strategy to vaccination against opportunistic pathogens 

prior to increased risk of disease outbreaks (Raa, 1996). 

Precedents for this exist in human and domestic animal research. A range of 

vitamins and minerals administered at higher than the RDA have been shown to 

ameliorate immunosuppressive effects of stress in higher vertebrates (Moonsieshageer 

and Mowat, 1993; Nockels, 1996; Tamayo et al., 1996; Wellinghausen et al., 1997). 

Likewise, p-glucans have been applied clinically to accelerate recovery of the immune 

function (reviewed by Stone and Clarke, 1992). It is well established that trauma patients 

have increased susceptibility to infection and glucan prophylaxis in these patients 

increased immune competence and reduced septic morbidity (reviewed in Williams et 

al., 1996). 
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Most non-specific immune mechanisms can be artificially enhanced for 

prophylactic and therapeutic purposes through administration of a wide range of 

chemically diverse compounds. These include bacterial cell wall products, (1~3)~

glucans, peptides, synthetic products, vitamins and minerals (Blazer, 1991; Secombes 

and Fletcher, 1992; Raa, 1996; Anderson et al., 1997). Bacterial cell wall products and 

fungal ~-glucans have aroused most interest in aquaculture and are already used as 

adjuvants in vaccines and additives in commercial feeds. Glucans have also been used 

together with antibiotics to prevent suppression of some immune parameters associated 

with antibiotic treatment (Thompson et al., 1995). 

As in mammals (reviewed by Stone and Clarke, 1992), intraperitoneal (ip) 

administration of soluble or particulate (1~3)-~-glucans from different origins has been 

shown to exert enhancement of innate and adaptive immune mechanisms of fish, 

leading, in some cases, to increased resistance to viral (LaPatra, 1998) and a number of 

bacterial pathogens (Chen and Ainsworth, 1992; Engstad et al., 1992; J0rgensen et al., 

1993a,b; R0rstad et al., 1993; Robertsen et al., 1994; Thompson et al., 1995; Dalmo et al., 

1996a; Santarem et al., 1997). However, some reports have demonstrated that protection 

against the challenge pathogen depended on the bacterium tested and the ~-glucan or 

immunostimulant used (Robertsen et al., 1990; Nikl et al., 1991; Yano et al., 1991; Nikl et 

aI, 1992; Matsuyama et al., 1992a; Wang and Wang, 1997). 

Similar results have been observed after ip administration of a wide range of 

products such as Freund's complete adjuvant (Kajita et al., 1990), chicken egg fermented 

products (Sakai et al., 1995b), muscle hydrolysate (B0gwald et al., 1996), algae 

polysaccharide (Fujiki and Yano, 1997) as well as synthetic compounds like muramyl 

dipeptide (Kodama et al., 1993; Kodama et al., 1994a) and levamisole (Kajita et al., 1990). 

Enhancement of defence mechanisms by ip administration of immunostimulants 

is, however, not a viable option in aquaculture on either economic or husbandry 

grounds, unless as adjuvants in conjunction with vaccination (Anderson et al., 1997). 
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Literature on more practical delivery strategies, such as oral and bath routes, is very 

scarce and there is considerable scepticism in the aquaculture industry towards their 

prophylactic use (Raa, 1996). 

Short immersion of rainbow trout in baths containing levamisole, a quaternary 

ammonium compound or a short-chain polypeptide enhanced innate defences and 

antibody response as well as survival in an A. salmonicida challenge Qeney and 

Anderson, 1993a). Oral administration of several substances has been shown to increase 

fish immune activity and, in some cases, resistance to bacterial challenges. Intubation of 

Atlantic salmon with a single dose of soluble ~-glucan induced increased superoxide 

production and acid phosphatase activity of macrophages (Dalmo et al., 1996a). In 

rainbow trout, peripheral blood phagocyte activity was enhanced after in-feed 

particulate yeast ~-glucan treatment, leading to increased resistance to A. salmonicida 

(Siwicki et al., 1994) and Flexibacter columnaris Qeney et al., 1997). Similarly, ~-glucan in 

combination with vitamin C has been shown to induce a significant increase in several 

innate and adaptive responses in rainbow trout (Verlhac et al., 1998). Enhanced survival 

in the face of bacterial pathogens has also been reported in coho salmon treated with 

soluble ~-glucan (Nikl et al., 1992) and in rainbow trout and yellowtail (Seriola 

quinqueradiata) fed on peptidoglycan-containing diets (Itami et al., 1996; Matsuo and 

Miyazono, 1993). In other studies, however, dietary ~-glucan has been shown not to be 

successful in enhancing turbot (Scophthalmus maxim us) macrophage activity and survival 

against Vibrio anguillarum (Debaulny et al., 1996) or in conferring resistance to E. tarda in 

channel catfish (Ainsworth et al., 1994). In-feed administration of the blue-green algae 

Spirulina platensis also failed to induce protection of channel catfish against E. tarda, even 

though peritoneal macrophage activity and antibody response to a thymus-dependent 

antigen were enhanced (Duncan and Klesius, 1996). These results altogether suggest 

that, at least in some circumstances, stimulation of fish immune activity and enhanced 

resistance to pathogens are achievable by bath or oral route, although further studies are 
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needed to optimise dosing and timing regimes and to elucidate the mechanisms 

involved in stimulation. 

No literature was available on the prophylactic use of in-feed ~-glucans or 

peptidoglycan to alleviate the effects of stress on the immune system of fish at the 

beginning of this thesis. One report has since been published (Jeney et al., 1997), using 

yeast ~-glucans in an approach complementary to the present study. In that study, in

feed glucan had a variable effect on preventing reduction of rainbow trout phagocyte 

activities caused by 2 h transportation. However, mortalities caused by F. columnaris 

after transportation were significantly lower in the group fed immunostimulant than in 

the control diet group. 

1.5 Aims, rationale and structure of thesis 

The aim of this study was to evaluate the potential of orally administered 

immunostimulants in counteracting the effects on innate defence mechanisms of 

husbandry-associated stress. Various opportunistic pathogens are associated with 

disease outbreaks at times when farming procedures induce immunosuppression in the 

fish stock. Conditioning the fish immune system prior to such stressful events may 

prepare the animals to resist challenges from pathogenic bacteria more efficiently. 

Several innate defence mechanisms, considered to be the first line of defence against 

infection, were investigated as targets of stress and immunostimulatory agents. 

Persistence of viable A. salmonicida, a pathogen causing mortalities associated with 

immunosuppression, in spleen and blood was quantified in vivo to investigate the 

integrated innate immune response follOWing confinement and/ or oral 

immunostimulation. 

Confinement of fish in a reduced water volume was selected as stressor since it is a 

common practice during a variety of farming procedures such as transportation, 

vaccination, grading and chemotherapeutic bath treatments. Confinement is a 
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multifactorial stressor, where fish are exposed to different variables including hypoxia, 

physically reduced space and possibly social aggressive behaviour. A range of different 

substances were selected as immunostimulants based on published reports. These 

substances included a bacterial peptidoglycan and several /3-glucans. 

The thesis is presented in different experimental chapters leading to the main aim 

of the research: 

1. Candidate substances were screened in vitro for their capacity to increase macrophage 

microbiocidal mechanisms and substances for further experiments chosen from the 

results (chapter 3). 

2. Oral regimes with the immunostimulatory substances were investigated and designed 

to induce enhancement of innate defence mechanisms (chapter 4). 

3. Aquaculture-associated stressful regimes leading to disruption of innate immune 

homeostasis were investigated (chapter 5). 

4. The prophylactic potential of oral immunostimulation to revert immunomodulation 

by an aquaculture-associated stressful regime was investigated (chapter 6). 

For simplicity, methods and protocols used in more than one experimental chapter 

are described in chapter 2. 
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2.1 Chemicals and reagents 

All chemicals and reagents were purchased from Sigma Chemicals, England, unless 

otherwise indicated. 

2.2 Maintenance of fish in aquarium facilities 

Rainbow trout were purchased from local farms and transported by road to the 

freshwater aquarium facilities at the Institute of Aquaculture, University of Stirling, and 

maintained there under established procedures. Upon arrival, fish were quickly 

distributed into disinfected aerated holding tanks (370 1) in a flow-through dechlorinated 

water system at ambient temperature. During an acclimatisation period of 3 or more 

weeks, fish were fed once daily with commercial pelleted trout feed (Trouw 

Aquaculture, Scotland) to the manufacturer's recommended daily allowance (RDA) 

based on body weight and water temperature. After acclimatisation, fish were 

anaesthetised with benzocaine, weight-graded and distributed into disinfected flow

through dechlorinated water experimental tanks (same volume and colour as holding 

tanks). When required, water temperature was progressively raised, and fish were fed 

twice daily at the manufacturer's RDA for two or more weeks before the experiments 

were begun. Mortalities, feeding behaviour, water temperature and experimental 

procedures were recorded daily throughout the acclimatisation and experimental 

periods. 

Fish outside the required weight range or with any signs of disease and 

experimentalleft-overs were humanely euthanised by benzocaine overdose and severing 

the anterior spine. 

During the experiments, a higher number of fish than that required for sampling 

was allocated into the tanks so as not to modify considerably the stocking density after 

sampling and to resemble more closely the farm environment. 

Chapter 2: General materials and methods 39 



2.3 Peripheral blood cell counts 

2.3.1 Extraction of blood 

Fish were lightly anaesthetised with benzocaine and bled by caudal venepuncture using 

1 or 2 rnl syringes and a 25G needle (Terumo, Belgium). Approximately 0.5 rnl of blood 

from each fish was dispensed into dried, individual Eppendorfs previously treated with 

5 ~l of a 0.4 M disodium ethylenediaminetetraacetic acid (EDTA) solution in distilled 

water (dH
2
0). Extraction and handling of blood were kept constant during experiments. 

Depending on the specific needs, fish were then either humanely killed by 

severing the anterior spine or allowed to recover in aerated water and returned to their 

tanks. 

2.3.2 Haematocrit 

Heparinised microhaematocrit tubes were filled with blood, sealed and spun in a 

Hawksley haematocrit centrifuge (Hawksley & son, England) for one minute. The 

percentage of packed cell volume (haematocrit) was calculated using a Hawksley reader 

(Hawksley & son, England). 

2.3.3 Total peripheral blood leukocyte counts 

EDTA-treated blood was immediately diluted 1:50 in 4 mM EDTA in incomplete Hank's 

balanced salt solution (iHBSS) and kept on ice until counts were made 2-3 h later. An 

aliquot of diluted blood was placed on a Neubauer haemocytometer (Hawksley, 

England) and cells were allowed to sediment. Peripheral blood leukocytes (PBLs) were 

discriminated from red blood cells since the former are rounded and refractile. The 

average number of PBLs per large square of the haemocytometer (each being formed of 

16 smaller squares) was estimated under a phase contrast microscope at 100x 

magnification, and the number of PBLs rnl-t calculated with the following equation: 
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PBLs rnr' = PBL counts x df x 1cf 

Where df is the dilution factor (in this case, 50) and 104 is a factor to adjust for the 

volume between the coverslip and haemocytometer. 

2.3.4 Differential peripheral blood leukocyte counts 

A small drop of EDTA-treated blood was immediately smeared on an ethanol-cleaned 

glass slide and allowed to air dry. Blood smears were fixed and stained in Rapi-Diff 

(Lamb, England), a Romanowsky-based staining kit, following the manufacturer's 

instructions. Two hundred or more leukocytes per smear were counted using an 

Olympus BX50 microscope at 400x magnification and differentiated into lymphocytes, 

thrombocytes, neutrophils or monocytes based on morphological and staining 

characteristics (figure 2.1) (Rowley, 1990). No basophils or eosinophils were observed in 

any of the blood smears analysed. The percentage of each cell type was transformed into 

number of cells ml-I with the total number of PBLs for each fish. 

2.4 Extraction of plasma and serum from blood 

Fish were anaesthetised and bled as described in section 2.3.1. For extraction of serum, 

0.5-1 ml of blood was placed in sterile clean glass tubes and allowed to clot at 19°C for 

approximately 3 h. Tubes were then centrifuged at 1400 xg for 5 minutes (Mistral 3000i, 

MSE, England) and serum extracted. If not used fresh, serum from each fish was 

individually aliquoted and stored at -70°C until required. For plasma extraction, 0.5-1ml 

of blood was placed in dried Eppendorf tubes previously treated with 10 U ml-I of 

heparin in Leibovitz-15 (L-15) medium, and centrifuged at 1400 xg for 5 minutes. Plasma 

was extracted and individual samples aliquoted and stored at -70°C. 
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Figure 2.1 Peripheral blood cells of rainbow trout. 

Smears were prepared and stained with Rapi-Diff as described in text. Photographs were 

taken with an Olympus BXSO microscope. R, erythrocytes; L, Iymphocytes (La, putative 

activated Iymphocyte); T, thrombocytes; N, neutrophils; M, monocytes. Scale bar, 10 Ilm. 
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2.5 Plasma glucose concentration 

Plasma glucose concentration was quantified spectrophotometrically by the Trinder 

enzymatic reaction (Sigma kit No. 315). This kit is designed for measuring glucose 

concentration in plasma or serum by mixing a 5 Jll sample with 1 m1 of Trinder reagent 

in a cuvette and quantifying the optical density (OD) of the reaction mixture. In order to 

quantify multiple samples more rapidly, a modification of the method was made using 

96-well microtiter plates (Nunc, UK). Heparinised plasma was extracted approximately 

30 minutes after bleeding, as described in section 2.4. Five microliters of plasma were 

mixed with 300 Jll of Trinder reagent in triplicate wells and, after 18 minutes at room 

temperature, the OD of the samples was read at 550 nm in a multiscan 

spectrophotometer (MR5000, Dynatech, UK). The concentration of glucose in each 

sample (mmol rl) was then calculated as described in the kit instructions. 

An experiment was performed to validate the modification described above. A 

16.65 mmol rl glucose standard solution was serially diluted in dH
2
0. Glucose 

concentration in each solution was quantified by both methods and results plotted 

against the known glucose concentration of each solution (figure 2.2). Values obtained 

from the linear regression equation of the two methods at each known glucose 

concentration were analysed by student's Hest and no statistical differences (p<O.05) 

were observed. 
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Figure 2.2 Linear regression between expected and observed glucose concentration 

obtained by two methods. 

Glucose concentration in known dilutions was quantified by two methods as described in 

text. The best fits for the values obtained with the Multiscan spectrophotometer are 

represented by a broken line (y = 1.491 x - 0.7136; f = 0.989) and those obtained with a 

single-cuvette spectrophotometer by a full line (y = 1.379x - 0.0983; f = 0.973). 

2.6 Serum haemolytic complement activity 

Spontaneous haemolytic activity of serum, an indicator of alternative complement lytic 

activity, was quantified by a method described in Yano (1992). This protocol is based in 

the change of absorbance at 414 nm following incubation of serum with target rabbit red 

blood cells (RRBC). Optical density readings were then transformed to obtain the activity 

of the alternative haemolytic pathway (ACHso)' One unit ml'l of ACHso is defined as the 

amount of serum sufficient to lyse 50 % of 4x10
7 RRBC in a total volume of 0.7 ml (Yano, 

1992). The original protocol was described for large volumes and use of a 

spectrophotometer. In order to allow multiple samples to be processed simultaneously, 

the assay was adapted for use in 96-well microtiter plates by reducing proportionally the 
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volume of serum and RRBC suspension. The absorbance of the samples was then 

determined in a multiscan spectrophotometer. 

Serum was extracted as described in section 2.4, aliquoted and stored at -70 DC for 

less than six weeks. Rainbow trout serum haemolytic activity is stable for at least 2 

months when stored at -80 DC (Sakai, 1981). For haemolysis analysis, serum was thaw 

and each sample diluted 1:40 in gelatin veronal buffer (GVB, pH=7.5). This dilution was 

observed to be optimal in previous experiments. RRBC (Scottish Antibody Production 

Unit, Scotland) were washed in saline by centrifugation at 500 xg for 10 minutes several 

times until supematant was clear. The RRBC suspension was adjusted to a concentration 

of 2x10s cells rnI-1 in GVB with the aid of a haemocytometer as described in section 2.3.3. 

125, 93.7, 62.5, 46.9, 31.2, 23.4, 15.6, 11.7, 7.8 and 5.8 ,,11 of diluted serum were added to 

triplicate wells of a "U-bottom" 96-well plate (Irnrnulon, Dynatech, UK) and the volume 

made up to 125 J..lI with GVB. Serum samples in the wells were mixed with 50 J..lI of the 

RRBC suspension and incubated at 19°C with regular shaking. 0 % and 100 % lysis were 

obtained in triplicate wells each by mixing 50 J..lI of the RRBC suspension with 125 J..lI of 

GVB or 0.05 % saponin in dH20, respectively. After 90 minutes, plates were centrifuged 

at 150 xg for 5 minutes and 100 J..ll of cell-free supematant from each well placed in 

another 96-well plate. Sample absorbance at 405 run was quantified in a multi scan 

spectrophotometer using 0 % lysis supematants as blank. 

Calculation of ACHso value (Vano, 1992) 

The degree of haemolysis at each serum dilution (Y) was calculated as follows: 

y=ODA 

ODs 

Where ODA is the optical density of the sample and aDs is the optical density of 

100% haemolysis. 
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Values of Yin the range of 0.1 to 0.9 were disregarded and Y/(l-Y) values plotted 

in the y axis against /-LI of serum in the sample (x axis) on a log-log scale. The best line to 

the experimental points was fitted and the ACHso value obtained as follows: 

ACH ( 
't 1-1) _ {serum dilution t 1 1 • 

50 umsm - x-
k 4 

Where, (serum dilutionyt = 40; k = x when y = 0.5 (or yl(l-y) = 1) from the linear 

regression equation; • is the correction factor since this protocol was performed on a 1/4 

scale of the original method. 

2.7 Isolation and culture of rainbow trout macrophages 

2.7.1 Head kidney macrophages 

Macrophages from the head kidney were isolated and cultured as originally described 

by Braun-Nesje et al. (1981) and modified by Secombes (1990). In this technique, a cell 

suspension enriched in macrophages is obtained by density gradient centrifugation and 

further purified by exploiting their ability to adhere to plastic or glass surfaces. Isolation 

of macrophages was conducted under sterile conditions. 

Fish were anaesthetised, bled and sacrificed as described in section 2.3.1. Tail and 

gills were cut off to allow further bleeding. The body surface was sprayed with 70 % 

ethanol and fish were placed on ice. Using aseptic technique throughout, the head 

kidney was dissected and a single cell suspension produced by pushing the kidney 

sample through a 100 /-Lm nylon mesh into 10 ml ice-cold homogenising medium (L-15 

containing 10 U ml-I heparin, and 100 U ml-I of penicillin and 0.1 mg ml-I of streptomycin 

solution, abbreviated PIS). The homogenised cell suspension from each fish was 

carefully layered onto two ice-cold Percoll density gradients (5 ml on each) previously 

prepared as described below. Density gradients were then centrifuged at 400 xg for 25 
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minutes at 4°C and the band of cells at the interface between the two Percoll densities 

collected and transferred to 30 ml Universal containers. Cells from the same fish were 

pooled in one Universal and washed twice in 10 ml ice-cold L-15 plus P /5 by 

centrifugation at 260 xg for 10 minutes at 4 cc. The final pellet was resuspended in ice

cold L-15 plus P /5 and adjusted to 2x107 viable cells ml-1 with the same medium. For this 

purpose, an aliquot of the cell suspension was diluted in trypan blue (final concentration 

0.1 % w Iv) and viable cells counted using a Neubauer haemocytometer as described in 

section 2.3.3 with a phase contrast microscope at 100x magnification. 100 f.-11 of the cell 

suspension were then added to wells of a sterile flat bottom 96-well microtiter plate 

(Nunc, UK). Alternatively, suspensions were adjusted to 5x106 cells ml-1 and 0.4 ml 

placed in wells of a sterile 8-well glass slide (Lab-Tek(l, Nunc, UK). 

Cells were allowed to adhere for 2 or 3 h at 19°C (microtiter plates or glass slides 

respectively) and washed six times with complete Hank's balanced salt solution (cHBSS) 

or until a cell monolayer was observed and no cells were left suspended. cHBSS was 

then replaced by 100 J.11 of culture medium (L-15 containing 5 % heat inactivated foetal 

calf serum and P /5) and monolayers incubated at 19°C until use. Figure 2.3 shows a 

head kidney macrophage monolayer 24 h after preparation. 

Each Percoll density gradient consisted of two layers with different densities. The 

bottom layer (51% Percoll solution; 1.080 g rl) was made of 5.1 ml Percoll, 1 ml 10x 

minimum essential medium (MEM) and 3.9 ml dH20, whereas the top layer (34 % 

Percoll solution; 1.070 g rl) contained 3.4 ml Percoll, 1 m110x MEM medium and 5.6 ml 

dH
2
0. Density gradients were prepared by pipetting the 51 % Percoll solution under the 

34 % Percoll solution in a plastic Universal. This process was carried out carefully so that 

a clear-cut interface between the two solutions was seen. Gradients were formed before 

sacrificing the fish, kept on ice and used within 3 h of preparation. 
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2.7.2 Inflammatory peritoneal macrophages 

Induction of an inflammatory response in the peritoneal cavity 

Casein was used as irritant to induce an inflammatory response (Fernandez-Botrand and 

Vetvicka, 1995). Casein was solubilised at 8 % (w Iv) in distilled water by raising the pH 

to approximately 8.5. Once casein was solubilised, the pH was adjusted to 7.5 

approximately and NaCl was added to make a final concentration of 0.5 % (w Iv). The 

casein solution was filter-sterilised (0.45 Jlm Ministart filter, Sartorius, England) and 

stored at 4 °C overnight. Fish were lightly anaesthetised with benzocaine, injected 

intraperitoneally with 2 ml of casein solution, allowed to recover in aerated water, and 

returned to their tanks. 

Isolation and culture of peritoneal macrophages 

High yields of peritoneal macrophages can be harvested from three days after injection 

of inflammatory agents (Secombes, 1990; Olivier et al., 1992). Six days after injection of 

casein, fish were anaesthetised, bled and sacrificed as described in section 2.3.2. Tail and 

gills were cut off in order to reduce blood cell contamination in the peritoneal cavity 

during dissection. Each fish was then injected intraperitoneally with 3 ml of ice-cold 

iHBSS containing 10 U ml"l heparin,S % heat inactivated foetal calf serum (FCS) and 

P IS. After massaging the abdomen 4-5 times, fish were transferred to a laminar flow 

cabinet and the skin sprayed with 70 % ethanol. Using aseptic technique throughout, a 

lateral incision was made and the inflammatory exudate collected by washing the 

peritoneal cavity thoroughly several times with 15 ml of ice-cold iHBSS containing 

heparin, FCS and PIS. The cell suspension from each fish was centrifuged at 500 xg for 

10 minutes at 4 °C and the pellet resuspended in 5 ml of ice-cold iHBSS plus heparin, 

FCS and PIS. Each sample was layered onto a Percoll density gradient and macrophage

enriched suspensions obtained as described in section 2.7.1. Since inflammatory 

macrophages are particularly adherent, ice-cold iHBSS and 5 % FCS were used 

throughout the isolation procedure. Cell suspensions were finally adjusted to 5x106 
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viable cells ml'\ in L-15 containing P /S without FCS as described in section 2.7.1, and 100 

~l added to wells of a sterile flat bottom 96-well microtiter plate. After 2 h, wells were 

thoroughly washed six times with cHBSS and incubated in 100 ~ of L-15 containing 5 % 

FCS and P /5 until required. Figure 2.3 shows a peritoneal macrophage monolayer 24 h 

after preparation. 

A 

8 

Figure 2.3 Representative head kidney and peritoneal macrophage monolayers isolated 

from the same individual rainbow trout. 

Macrophages were isolated and cultured for 24 h as described in text. A, head kidney 

macrophages; 8, peritoneal exudate macrophages. Note differences in cell spreading. 

Photographs of unstained samples were taken with an Olympus CK2 inverted microscope 

using phase contrast light. Scale bar, 100 Ilm. 

Chapter 2: General materials and methods 49 



2.7.3 Estimation 01 adhered macrophage cell numbers 

Before use, macrophages adherent on the microtiter plate or slide wells were counted as 

described by Secombes (1990). The culture medium in some of the wells was replaced 

with 200 ~l of ice-cold 0.2 ~m-filtered lysis buffer consisting of 0.1 M citric acid, 1 % 

Tween 20 and 0.05 % crystal violet in dH20. After 5-10 minutes, nuclei in an aliquot were 

counted using a Neubauer haemocytometer at 200x magnification as described in section 

2.3.3 (dilution factor = 2). 

2.8 Phagocytosis 

2.8.1 Phagocytosis assay 

Macrophage monolayers in 8-well glass slides were washed twice with L-15 and 

adherent macrophages in one well for each fish estimated as described in section 2.7.3. 

Macrophages were then incubated with target cells at a macrophage:target cell ratio of 

1:5 and phagocytosis allowed to proceed for 60 minutes at 19°C. Target cells were either 

A. salmonicida or sheep red blood cells (SRBC) prepared and opsonised as described 

below. After phagocytosis, monolayers were washed four times with saline, and fixed 

and stained with Rapi-Diff (30 seconds, fixing solution; 30 seconds, acid dye; 15 seconds, 

basic dye). Coverslips were mounted with Pertex mounting media (Cellpath, England) 

and slides stored until examined. Figure 2.4 shows phagocytosis of SRBC and A. 

salmonicida by head kidney macrophages. 

Chapter 2: General materials and methods 50 



A 

B 

Figure 2.4 Phagocytosis of Aeromonas salmonicida and sheep red blood cells by head 

kidney macrophages. 

Samples were prepared and stained with Rapi-Diff as described in text. A, macrophages with 

A. salmonicida cells internalised (arrows) ; B, macrophages with SRBC internalised (arrows). 

Scale bar, 10 Ilm in length. 
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The number of bacteria or SRBC internalised in 300 macrophages per sample was 

counted under an Olympus BX50 microscope at 1000x magnification. Phagocytic index 

(PI) and phagocytosis ratio (PR) for each fish were calculated as follows: 

PI = Number of ingested target cells in 300 macrophages 
300 

PR = Number of macrophages with one or more target cells ingested x100 
300 

2.8.2 Preparation and opsonisation of target cells 

Pooled sera from non-immune rainbow trout were used as opsonising agent for the 

phagocytosis test. Sera from 3 or 4 donor, non-experimental, fish were extracted as 

described in section 2.4 and pooled. In experiments that required assessment of 

phagocytosis on different days, pooled sera was aliquoted and stored at -70°C to ensure 

reproducibility of opsonisation. 

Sheep red blood cells (Scottish Antibody Production Unit, Scotland) and viable 

cells of A. salmonicida were used as target particles for phagocytosis in different 

experiments. Aeromonas salmonicida B95179 was isolated from a furunculosis outbreak in 

Atlantic salmon (Institute of Aquaculture) and stored in cryopreservative at -70°C until 

required for use. An aliquot was resuscitated and a single colony of A. salmonicida taken 

from tryptone soya agar (TSA, Oxoid, England) and incubated in tryptone soya broth 

(TSB, Oxoid, England) overnight at 22°C with mild shaking. The bacterial suspension 

was then washed in saline with centrifugation at 1400 xg for ten minutes, and the pellet 

resuspended in saline to give an absorbance 1.5 at 610 nm (OD610). Cells were opsonised 

by incubating the bacterial suspension with an equal volume of 20 % serum in saline for 

30 minutes. Bacteria were then washed in saline and the OD610 adjusted to 1.24 

(corresponding to 3.20x108 colony forming units per ml). This suspension was then 

serially diluted in L-15 + 5 % FCS to obtain a macrophage: viable bacteria ratio of 1:5. 
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The number of bacterial colony forming units (CFU) per ml-t was confirmed by viable 

counts on TSA. 

SRBC (Scottish Antibody Production Unit, Scotland) were washed five times in 

saline with centrifugation at 500 xg for five minutes and fixed in 2.5 % 

paraformaldehyde in saline (w Iv) for five minutes. Fixed red cells were washed five 

times in saline, counted as described in section 2.3.3, the density adjusted to 1x10' cells 

ml-t, and used within 10 days. Before a phagocytosis assay, macrophages adherent to one 

well per fish were counted as described in section 2.7.3. SRBC were opsonised with 

rainbow trout serum as described above, washed twice in saline and the concentration 

adjusted in L-15 plus 5 % FCS so that the ratio macrophage:SRBC was 1:5. 

2.9 Respiratory burst activity of rainbow trout macrophages 

2.9.1 Extracellular superoxide anion 

Extracellular generation of superoxide anion by trout macrophages was quantified 

spectrophotometrically in 96-well microtiter plates by the reduction of cytochrome c 

using phorbol myristate acetate (PMA) to trigger the respiratory burst (Pick and Mizel, 

1981, Secombes et al., 1988). 

Horse heart cytochrome c was solubilised in phenol red-free cHBSS at a 

concentration of 4 mg ml"t, filter-sterilised, aliquoted and stored at -70°C until required 

for use. PMA was dissolved in ethanol to a final concentration of 1 mg ml-t and stored at 

-70°C. Superoxide dismutase (SOD) inhibits the reduction of cytochrome c by 

superoxide anion and, therefore, it was used to confirm specificity of the reaction. SOD 

was dissolved in phenol red-free cHBBS at a concentration of 3000 U ml-t, aliquoted and 

stored at -70°C. Sodium azide (NaAz), a cytochrome c oxidase inhibitor, prevents 

oxidation of reduced cytochrome c and its use is recommended to detect the maximum 

response (Doyle et al., 1995). A solution of 4 mM NaAz in phenol red-free cHBSS was 

prepared and stored at 4 °C for up to seven days before use. 
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Macrophage monolayers, prepared as described in section 2.7, were washed twice 

in sterile phenol red-free cHBSS and some wells were covered with 100 J.lI of a 2 mg ml-1 

cytochrome solution containing 2 mM NaAz and 1 J.lg ml-1 PMA. As a negative control, 

some wells were treated with cytochrome solution containing NaAz, PMA, and 50 U 

SOD per well. All reactions were performed in triplicate or quadruplicate wells per fish 

as stated in each experimental chapter. The reaction was allowed to proceed at 19°C 

and the OD of the wells read on a multiscan spectrophotometer at 550 nm at different 

times, usually 1, 2.5, 5, 10, 15, 30, 45, 60, 90, 120 and 240 minutes after addition of 

reagents. 

OD results were adjusted to 2x105 cells by estimating the number of adherent 

macrophages in duplicate wells per fish as described in section 2.7.3 using the values 

obtained with SOD in the reaction mixture as blanks. The nmol of O2- produced per 2xl05 

cells was calculated by multiplying the OD reading adjusted to 2x105 cells by a factor of 

15.87 (Pick and Mizel, 1981). This factor derives from the extinction coefficient for the 

absorption at 550 nm of reduced minus oxidised cytochrome c in a 96-well microtiter 

plate. 

2.9.2 Intracellular superoxide anion 

Intracellular production of superoxide anion by trout macrophages was quantified 

spectrophotometrically in 96-well microtiter plates by the reduction of nitroblue 

tetrazolium (NBT) to formazan using PMA to trigger the respiratory burst (Pick et al., 

1981; Rook et al., 1985; Chung and Secombes, 1988). 

A fresh solution of NBT was prepared before the assay by dissolving 1mg ml-1 in 

cHBSS and then filter-sterilising. 

Macrophage monolayers, prepared as described in section 2.7, were washed twice 

in sterile phenol red-free cHBSS and some wells covered with 100 J.1l of NBT solution 

containing 1 J.lg ml-1 PMA (prepared as described in section 2.9.1). Other wells were 

treated with NBT solution without PMA. Finally, some wells were incubated with NBT 
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solution plus PMA and 300 U SOD per well. All treatments were carried out in triplicate 

wells per fish unless otherwise stated in the experimental chapters. After 30 minutes at 

19 cC, reactions were stopped and the formazan within macrophages solubilised. To do 

this, the supematants were removed and cells fixed in absolute methanol for five 

minutes. Subsequently, wells were washed with 70% methanol to remove any trace of 

non-reduced NBT. Wells were air dried, and the formazan solubilised by adding 120 III 

of 2 M KOH and 140 III of dimethyl sulfoxide (DMSO) to each well. The OD of the well 

mixtures was then read at 610 nrn in a multi scan spectrophotometer using KOH/DMSO 

as blank. A negative control consisting of wells without cells and treated similarly to 

those containing macrophages was included to confirm that all non-reduced NBT was 

removed before adding KOH/DMSO. The use of this negative control is recommended 

since non-reduced NBT turns into a blue solution with KOH/DMSO that is 

indistinguishable from solubilised formazan. 

OD results were adjusted to 2x105 cells by estimating the number of adherent 

macrophages in duplicate wells per fish as described in section 2.7.3. 

In contrast to the cytochrome c assay, SOD is able to inhibit the PMA-triggered 

reduction of NBT by 40-60 % only. This is mainly due to its large molecular weight, 

which makes it difficult to access intracellular sites where formazan is being produced. 

Although NBT reduction by dehydrogenase enzymes in mitochondria may also occur, it 

has been shown that NBT reduction by trout macrophages stimulated with PMA truly 

reflects super oxide anion production (Secombes et al., 1988). 

2.10 Inducible nitric oxide synthase (iNOS) activity 

2.10.1 Nitrite production 

Activation of iNOS results in the production of large amounts of nitric oxide, a highly 

reactive molecule that spontaneously dismutates to nitrite, a major end product. Nitrite 

Chapter 2: General materials and methods 55 



is commonly quantified by the Griess reaction to give indirect measurement of iNOS 

activity and the assay was carried out as described by Wang et al., 1995). 

Head kidney macrophage monolayers were cultured in 96-well microtiter plates as 

described in section 2.7. Macrophages in triplicate wells were incubated with L-15 

containing macrophage activating factor (MAF, obtained as described in section 2.10.2), 5 

% FCS and PIS at 19°C. MAF and bacterial LPS have been shown to synergise the 

production of nitrite by teleost macrophages (Neumann et al., 1995; Mulero and 

Meseguer, 1998) and therefore 40 Ilg ml-1 of E. coli LPS (serotype 026:B6) were added to 

the MAF-containing medium. To confirm specificity of the reaction, ~-monomethyl-L

arginine (Calbiochem, England), an inhibitor of NO production, was added to triplicate 

wells per fish to a final molarity of 1000 J.1M. After 96 h incubation, 50 III of the culture 

supematants were mixed in another 96-well microtiter plate with 100 III of fresh Griess 

reagent, consisting of 1 % (w Iv) sulfanilamide and 0.15 % (w Iv) N-(l-naphthyl)ethyl

enediamine in 2.5 % (v Iv) H)PO. in dH20. After ten minutes at room temperature, the 

OD of the samples was read at 550 nm. A negative control consisting of wells without 

cells was included. Positive controls consisted of serial dilutions of a sodium nitrite 

solution ranging from 2 to 100 J.1M. 

2.10.2 Production of macrophage activating factor (MAF) 

MAF was obtained from mixed leukocyte cultures as described by Graham and 

Secombes (1988). Head kidneys of five rainbow trout were homogenised as described in 

section 2.7.1. The resulting cell suspensions were pooled and layered over a 51 % Percoll 

density suspension prepared as described in section 2.7.1 (no 34 % Percoll solution 

added in order to obtain a mixed cell suspension). After centrifugation at 400 xg for 25 

minutes at 4 cC, the band of cells at the Percolll sample interface was collected, washed 

and adjusted to 1x101 viable cells ml-1 in ice-cold L-15 containing PIS as described in 

section 2.7.1. Cells were diluted 1:2 with pulse medium consisting of L-15 plus PIS, 10-.4 

M 2-mercaptoethanol (2ME), 10 ng ml-1 PMA and 20 Ilg ml-1 of concavalin A (ConA). 5 ml 
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of this suspension were placed in 25 cm2 cell culture flasks (Nunc, UK). After 3 h 

incubation at 19 °C, plates were washed very carefully with L-15 six times. ConA 

induces slight adherence of lymphocytes allowing careful washing without removing 

these cells (Graham and Secombes, 1988). Cells were then cultured with L-15 containing 

10 % FCS and P /5 at 19 0c. After 72 h, MAF-containing supernatants were collected and 

cells/debris removed by centrifugation at 260 xg for 10 minutes and filtration through a 

0.2 flm Ministart filter. Supernatants were then aliquoted and stored at -70 °C for a 

maximum of four months (Secombes, 1990). 

To confirm the presence of MAF in the samples, head kidney macrophages from 4 

fish were individually cultured in 96-well plates as described in section 2.7.1 and 

incubated with 1:2 serial dilutions of MAF-containing supematants at 19 0c. After 48 h, 

production of extracellular superoxide anion was quantified as described in section 2.9.1 

and the dilution eliciting maximum response chosen to stimulate macrophages in vitro. 

2.11 Bacterial killing in vitro 

Bacterial killing by head kidney macrophages in vitro was calculated 

spectrophotometrically based on mitochondrial activity as described in Stevens et al. 

(1991) with some modifications. The procedure was conducted aseptically. 

Head kidney macrophage monolayers were prepared in 96-well microtiter plates 

and the number of adherent cells calculated as described in section 2.7. A. salmonicida 

was grown and serum-opsonised as described in section 2.8.2. The concentration of 

opsonised bacteria was adjusted in L-15 plus 5 % FCS to give a ratio of one macrophage 

to 20 CPU, which was confirmed by viable counts on TSA. Macrophages in 

quadruplicate wells per fish were washed with L-15 without antibiotics and the 

supernatants replaced with 100 fll of the bacterial suspension. Plates were centrifuged at 

150 xg for 5 minutes to bring the bacterial cells into contact with the macrophages and 

then incubated for 5 h at 19 0c. A standard curve of bacterial concentration was prepared 
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using known inocula of bacteria in wells of a sterile flat bottom 96-well plate with no 

macrophages. The bacterial suspension was diluted in L-15 plus 5 % FCS to obtain 0,25, 

50, and 75 % reduction in bacterial cell numbers. 100 J.11 of each suspension were added 

to quadruplicate wells and the plate handled exactly in the same way as that containing 

macrophages and bacteria. After 5 h incubation, 50 J.11 of ice-cold sterile 0.8 % Tween 20 

(v Iv) was added to all wells to kill macrophages. Ten minutes later, all wells received 50 

J.11 of 2 mg mr! of the tetrazolium compound 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) in dH20. Plates were incubated at 22°C for 30 

minutes to allow reduction of MTT to insoluble blue formazan by mitochondrial 

dehydrogenases of viable bacteria. Bacteria were then pelleted by centrifugation at 1300 

xg for ten minutes and 150 J.11 of supematant free of blue-coloured bacteria carefully 

removed. Formazan was solubilised by addition of 150 J.11 0.1 N HCl in anhydrous 

isopropanol and thorough mixing. The OD of the reaction mixtures was quantified at 

550nm on a multiscan spectrophotometer using reagents as blank. Negative controls 

with macrophages incubated with no bacteria were included. 

The percentage of bacteria killed by macrophages was determined using the 

following equation: 

1 x75 (
OD sample - OD 75% J 

OD 0% -OD75% 

The OD corresponding to 0 and 75 % killing of bacteria (OD(J'j(, and OD75'K,I 

respectively) were determined from the standard curve of bacterial concentration by 

linear regression analysis (in all cases, r2>0.96). An example of one of the standard curves 

is illustrated in figure 2.5. 
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Figure 2.5 Example of one linear regression between bacterial concentration and MTT 

reduction. 

Serial dilutions of an A. salmonicida suspension used to challenge macrophages in vitro 

were carried out to obtain 0, 25, 50 and 75 % reduction in bacterial cell numbers. 100 III of 

each dilution were placed in quadruplicate wells and treated similarly to those containing 

macrophages plus bacteria. Values in parentheses indicate number of viable bacteria added 

per well. 

2.12 Bacterial killing in vivo 

Fish bactericidal capacity was assessed by quantifying the number of bacterial CFU 

present in the spleen and blood after a bacterial challenge. The spleen was chosen as 

target organ since it is one of the main haemopoietic and immunologically competent 

organs involved in antigen clearance (Zapata et al., 1996) and, unlike the head kidney, is 

a well defined organ easily dissected. 

Aeromonas salmonicida was grown as described in section 2.8.2 and washed twice in 

saline with centrifugation at 1400 xg for 10 minutes. The concentration of bacteria was 
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adjusted spectrophotometrically in saline to that required and this was confirmed by 

viable counts on TSA plates. 

Fish were lightly anaesthetised in benzocaine and a volume of the bacterial 

suspension injected intraperitoneally into each. After this, they were allowed to recover 

in aerated water and returned to their tanks. 

At given periods of time after challenge, injected fish were anaesthetised, bled, 

sacrificed and placed on ice. Spleens were removed immediately, weighed and 

individually homogenised in ice-cold saline containing 40 U ml°\ heparin. Serial 1:10 

dilutions of the spleen homogenates and blood were carried out in saline plus heparin 

and viable A. salmonicida in the samples quantified by plating three 20 J.1l aliquots of each 

dilution on TSA. After 48 h at 19°C, CPU were counted and CPU gO\ of spleen or ml°\ of 

blood calculated. 

2.13 Statistical analysis 

Results were analysed by Student's t-test, analysis of variance (ANOVA) and multiple 

comparison tests unless otherwise stated. Further description of statistical analysis of 

results is given in each experimental chapter under the section 'Materials and methods'. 
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3.1. Introduction 

Phagocytic cells play a fundamental role in the well-being of both the immune and 

neuroendocrine systems. This role has been observed in many different taxa across the 

animal kingdom (Ottaviani et al., 1993). They are important effector cells mediating 

microbiocidal and tumoricidal functions. Microbial killing by phagocytes is initiated by 

their ingestion. Phagocytosis is followed by production of microbiocidal molecules such 

as oxygen- and nitrogen- reactive species. In addition, phagocytes secrete an enormous 

range of chemical substances with different targets and functions. These products 

include, amongst others, cytokines, enzymes and mediators of the stress response 

(Langermans et al., 1994; Ottaviani et al., 1996). In vertebrates, the macrophage is 

probably the most important effector and secretor of all phagocytic cells. Some cytokines 

secreted by macrophages play an important role in the fine-tuning of immune processes 

such as T cell differentiation and the switch between cell- and humoral- mediated 

immunity (Trinchieri, 1997). Furthermore, the vertebrate macrophage processes and 

presents antigens to certain T cell subpopulations through MHC and TCR 

communication (Klein, 1997; Medzhitov and ]aneway, 1997; Warr, 1997). Thus, the 

macrophage is not only an essential component of the innate immune system but also 

forms an essential bridge between this and the acquired component of the immune 

system. 

A similarly wide range of factors regulates the function of macrophages. Different 

substances have been shown to have a modulatory activity on macrophages (Lopez

Berestein and Klostergaard, 1993; Secombes, 1994; Hauschildt and Kleine, 1995). These 

molecules might be synthesised by host cells themselves or produced by microorganisms 

inside the host animal. Exogenous modulators are, mostly, structural components of 

microorganisms. Endotoxin (LPS), peptidoglycans, teichoic acids and glucans are some 

of the molecules that fall into this category. Furthermore, secreted proteases and 
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exotoxins from pathogenic bacteria may also induce modulation of the macrophage 

activity by affecting cytokine release or recognition (Hauschildt and Kleine 1995; 

Henderson et al., 1996; Wilson et al., 1998). 

Different structural components of microorganisms have been used to induce 

modulation of macrophage activity (Secombes, 1994; Hauschildt and Kleine, 1995). Beta 

glucans are the products most investigated for this purpose. Several components of the 

immune system are targeted by (1-+3)-~-glucans. The macrophage is considered to be an 

important mediator of the immunostimulatory action of these molecules (Robertsen, 

1994; Williams et al. 1996), with the response initiated through recognition by receptors 

on the immune cell targeted as discussed in section 1.2.3. (1-+3)-~-D-glucans having ~-D

glucopyranosil units attached by (1~6) linkages as single unit branches are called 

(1-+3),(1~6)-~-D-glucans, hereafter referred to as (1~3)-~-glucans. They are widely 

distributed in microorganisms, mostly yeasts, and their occurrence in animals is 

restricted to a few invertebrates (Stone and Clarke, 1992). (1-+3)-~-glucans enhance the 

immune system systemically, increasing tumoricidal, antibacterial, antiviral and 

anticoagulatory effects (reviewed by Stone and Clarke, 1992). Peptidoglycan is a major 

component of the cell wall of Gram-positive bacteria and it has been shown to mediate 

potent immunomodulatory actions on macrophages and systemically (reviewed by 

Schwab, 1993; Hauschildt and Kleine, 1995). 

The aim of the present study was to carry out a comparative screening of rainbow 

trout macrophage activity enhancement by different substances. After stimulation in 

vitro, macrophage microbiocidal mechanisms were investigated to elucidate differences 

in the response to the different test substances. These included three (1~3),(1~6)-~

glucans, a (1~3),(1~4)-~-glucan and a peptidoglycan. The microbiocidal mechanisms 

investigated were production of superoxide anion and hydrogen peroxide, since they are 

major players of the respiratory burst. Two substances, depending on their stimulatory 

Chapter 3: Immunostimulation in vitro 63 



capacity, were chosen for further experiments in vivo involving administration through 

the oral route. 

3.2. Materials and methods 

Animals 

All-female rainbow trout were obtained from Trossachs Trout Farm (Scotland) and 

acclimatised to aquarium conditions at 5.5 ± 0.5 QC for a period of 8 weeks as described 

in section 2.2. Water temperature was raised gradually over 11 days and fish were kept 

at 13.5 ± 1 QC for further 4 weeks before the experiment commenced. The weight of the 

fish was 123 ± 9.5 g at the beginning of the experiment. 

Immunostimulants 

Different microparticulated substances were screened to assess their macrophage 

stimulatory capacity in vitro. The test substances were three (1~3),(1~6)-~-glucans 

isolated from the yeast Saccharomyces cerevisae cell wall (Macrogard~, KS Biotec 

Mackzymal, Norway; Vetregard®, Vetrepharm, UK; Vetregard®, Red Star Bioproducts, 

USA), one barley (Hordeum vulgare) (1~3),(1~4)-~-glucan (Alpha Omega glucan, Alpha 

Omega Nutrition, USA) and one peptidoglycan extracted from the cell wall of Gram 

positive Lactobacillus thermophilus (Ajinomoto PG®, Ajinomoto, Japan). For simplicity, the 

test substances will be referred to hereafter as Macrogard, Vetregard Cl, Vetregard ~, AO 

glucan and peptidoglycan, respectively. 

Stock suspensions of 1 mg ml-1 of the test substances were prepared in cHBSS 

containing P /S and then sonicated three times for 30 seconds at an amplitude of 14 

microns using an internal probe sonicator (MSE, UK). The size distribution of each test 

substance was analysed in a Coulter® Multisizer (Coulter, UK) eqUipped with Coulter® 

Multisizer accuComp software v. 1.19. For this purpose, stock suspensions were diluted 

1:100 in Isoton I1® (Coulter, UK) to give a concentration level of 3-10 % before they were 
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analysed. Each suspension was analysed three times and the average numbers defining 

the size distribution for each particle recorded. 

All substances were sterilised by y-radiation by Isotron plc, (UK) before the 

beginning of experiments. Sterility of stock suspensions was confirmed by culturing in 

TSB and plating onto TSA. 

Isolation and culture of head kidney macro phages 

Macrophages were isolated from the head kidney of rainbow trout and monolayers 

cultured in 96-well plates as described in section 2.7.1. Monolayers were incubated with 

the test substances within 6 h of preparation. 

Respiratory burst activity 

Production of extracellular superoxide anion by macrophages was monitored in 

quadruplicate wells by the reduction of cytochrome c triggered by PMA as described in 

section 2.9.1. SOD was added to quadruplicate wells for each treatment to confirm 

specificity of the reaction. 

Macrophage intracellular superoxide anion generation was quantified in 

quadruplicate wells by reduction of NBT in the presence or absence of PMA as described 

in section 2.9.2 

Hydrogen peroxide production by macrophages was quantified by the peroxidase

dependent oxidation of phenol red by H 20 2 (Pick and Keisari, 1981) in 96-well microtiter 

plates (Secombes, 1990). Macrophage monolayers were incubated with 100 JlI of a phenol 

red solution (PRS) containing 0.02 % phenol red (Sigma, UK) and 0.01 % horseradish 

peroxidase (Sigma, UK) in phenol red-free cHBSS (final pH 7.0). The respiratory burst 

was triggered by the addition of 1 Jlg ml-1 PMA to the reaction mixture. After 60 minutes, 

the reaction was stopped by adding 10 JlI of 1 N NaOH to each well and the 00610 was 

determined in a multiscan spectrophotometer (Dynatech, UK) using PRS plus NaOH 

only as blank. The specificity of the reaction was demonstrated by the addition of 1 mM 
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sodium nitroprusside (Sigma, UK), an inhibitor of SOD, to some of the wells. The 

reaction was conducted in quadruplicate wells for each treatment. 

In all cases, duplicate wells for each treatment were used to determine the number 

of macrophages per well as described in section 2.7.3. Results were expressed as 00610 

per 2xl05 cells for the intracellular 0z" and HzOz production tests and as nmol 0z" per 

2x105 cells for the extracellular release of superoxide anion, as described in section 2.9. 

Nitric oxide production 

Production of nitric oxide by macrophages was determined by quantification of nitrite in 

culture supernatants, as described in section 2.10.1. Serial dilutions of a NaN02 solution 

were used as positive controls. 

Macrophage stimulation 

Working suspensions of each test substance were obtained by diluting stock suspensions 

in L-15 containing 5 % FeS and P IS. The concentration of each substance in the working 

suspension was adjusted to 0, 0.1, 0.5, 1,5, 10 and 50 Ilg ml"t. 

Macrophage cells from 4 individual fish were used to test each substance. 

Monolayers were incubated with the working suspensions for 72 h at 19°C. Monolayers 

were then washed three times with cHBSS prior to quantification of the intracellular 

respiratory burst activity and supernatants assayed for nitrite concentration as described 

above. The dose of each substance which elicited the maximum NBT reduction by 

macrophages following stimulation with PMA (see results) was chosen for further 

experiments. For simplicity, this dose will be referred to as optimum dose hereafter. 

Macrophage monolayers from 8 individual fish were incubated with the optimum 

dose of each test substance for 72 h at 19°C. Monolayers were then washed three times 

with cHBSS and the production of 0; (intra- and extra-cellular) and hydrogen peroxide 

quantified as described above. 
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Statistical analysis 

The results from the experiment conducted to assess NBT reduction by macrophages 

incubated with different doses of the test substances were analysed by regression models 

and by two way ANOVA and Tukey's multiple comparisons tests. The following 

transformation was carried out for the regression analysis: 

y = log([A] + 1) where [A] is the concentration of the test substance. 

The software Curve Expert 1.3® was used to obtain the best regression fits. When 

polynomial regressions were considered, the maximum power at which the regression 

had statistical significance was determined by the Student Hest (Zar, 1984). Two 

variables were considered related when p<O.OS. 

Two way ANOV A was performed with one variable fixed (substance 

concentration) and the other randomised (fish) as described in Zar (1984). Type II two 

way ANOVA was chosen since all concentrations of each substance were tested on cells 

isolated from the same animal. Differences between treatments were considered 

statistically significant if p<O.OS. 

Results obtained from the NBT, cytochrome c and phenol red reduction tests when 

comparing the optimum dose for each substance were analysed by type II two way 

ANOVA and Tukey's tests as described above. 
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3.3. Results 

Immunostimulants 

The number of particles, particle mean size and the coefficient of variation (CV) of the 

particle size for each of the test substances were calculated from a suspension containing 

10 J.lg ml-I of the test substance (table 3.1). All yeast glucans and peptidoglycan 

suspensions showed a similar mean size and coefficient of variation. AO glucan 

suspension contained the lowest number of particles and highest CV of the particle size. 

No bacterial or fungal growth was observed in TSB or TSA with any of the test 

substances after y-irradiation. 

Table 3.1 Number of particles, mean size (J.lm) and coefficient of variation of the particle size 

obtained from suspensions containing 10 J.lg mrl of each test substance. 

Substance No. of particles Mean size ± sd CV(%) 

Peptidoglycan 1.68x106 2.87 ± 0.63 21.90 

Vetregard (l 1.40x106 3.99 ± 0.83 20.78 

Vetregard P 1.32x106 3.82 ± 0.66 17.31 

Macrogard 3.28x106 2.90 ± 0.33 11.23 

AO glucan 4.00x105 3.55 ± 1.89 53.19 

CV, coefficient of variation; sd, standard deviation 
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Respiratory burst activity 

Internalisation of Vetregard ex and Aa glucan was demonstrated as shown in figure 3.1. 

All yeast glucans induced a significant dose-dependent modulation of NET reduction by 

macrophages (table 3.2). The best fit (as defined by significantly higher r2) for the test 

substance dose versus PMA-triggered NET reduction activity was the quadratic or cubic 

polynomial regression in all yeast glucans (figures 3.2, 3.3 and 3.4). These polynomial 

regressions indicated that there was a dose-related increase in activity at lower 

concentrations which decreased progressively with higher doses. Macrogard elicited a 

maximum response at a lower dose than either of the two Vetregard substances (1 ~g mr l 

vs. 5 Jlg ml-I respectively, table 3.2). 

The bacterial peptidoglycan also induced a significant dose-dependent modulation 

of intracellular O
2
- production by macrophages. However the best fit for ~his substance 

was the logistic model. This model indicated that lower doses induced an increase of 

activity reaching a maximum which was maintained over a wide range of concentrations 

(figure 3.5). The peptidoglycan concentrations which elicited the maximum response 

following stimulation with PMA were 0.5, 1,5 and 10 Jlg ml-I as shown in table 3.2. 

The dose of Aa glucan and macrophage NET reduction activity were significantly 

related and the best fit was the polynomial regression (figure 3.6). However, there was 

not a significant increase of activity at any of the concentrations tested (table 3.2). 
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A 

8 

Figure 3.1 Glucan particles ingested by head kidney macrophages. 

Macrophages from rainbow trout were incubated with 10 Ilg mrl of Vetregard IX (A) or AO 

glucan (8). After 30 minutes slides were fixed and stained with Rapi-Diff as described 

elsewhere. Some internalised glucans are shown by arrows. Photographs were taken with 

an Olympus BX50 microscope. Bar is 20 Ilm in length. 

Chapter 3: Immunostimulation in vitro 70 



Table 3.2 Effect of different doses of ~-glucans and peptidoglycan on production of 

intracellular O2• by head kidney macrophages. 

A 

~g mrl Vetregard a Vetregard P Macrogard AO glucan Peptidoglycan 

0 0.109±0.016 1 0.1 09±0.016 1 0.103±0.008 ' 0.112±0.025
,

,2 0.112±0.025 1 

0.1 0.138tO.016
,

,2 0.128tO.024 ' ,2 0.109±0.019 ' 0.098±0.024 1 0.165±0.024 1,2 

0.5 0.212tO.017 3,4 0.168tO.025 2,3 0.154±0.030 1 0.111±0.020 1,2 0,227±0.035 2 

1 0.230tO.041 3,4 0.188tO.035 3,4 0.237tO.077 2 0.123±0.030 1,2 0.223±0.041 2 

5 0.261tO.037 3 0.252±0.284 5 0.156tO.036 1 0.132tO.028 ' ,2 0,227±0.042 2 

10 0.214tO.037 3
,4 0.234±0.016 4,5 0.122±0.031 ' 0.160±0.017 2 0.224±0.042 2 

50 0.190tO.325 2,4 0.195±0.013 4 0.1 02±0.016 1 0.135±0.030 1,2 0.188±0.046
,

,2 

B 

I1g mrl Vetregard a Vetregard P Macrogard AO glucan Peptidoglycan 

0 0.055tO.013 1 0.055tO.013 1 0.053tO.018 1 0.031±0.012 1 0.031±0.012 1 

0.1 0.066tO.015 ' ,2 0.007tO.016 1,2 0.053±0.006 1 0.030tO.004 1 0.046±0.014 1 

0.5 0.077tO.013' ,2,3 0.094±O.005' ,2,3 0.069tO.01O 1,2 0.026tO.014 1 0.066±0,026 1 

0.091tO.009 2
,3 0.108±O.0092,3,4 0.083±0.015 2 0.029tO.012 1 0.073±0.032 1 

5 0.119±O.016 4 0.143±0.034 4 0.066±O.009 1 0.032tO.007 1 0.072±O.027 1 

10 0.098±O.015 3,4 0.129±O.029 4 0.064±0.010 1 0.041tO.012 1 0.075±0,030 1 

50 0.085±O.009 2,3 0.103±O.019 2
,4 0.059±0.011 ' 0.044tO.007 1 0.063±0,017 1 

Results are expressed as arithmetic mean ± standard deviation. Different concentrations of 

each test substance were tested on cells from the same animal (repeated on four animals). 

Significant differences within each column are shown by different superscript numbers 

(p<0.05). A, NBT reduction activity triggered by PMA; e, without PMA. 

Therefore, the dose for each substance inducing maximum NBT reduction activity 

were as follows: 5 ~g ml'! for the two Vetregard glucans, l~g ml'! for Macrogard and 0.5, 

1, 5 and 10 ~g ml'l for the peptidoglycan (table 3.2). The dose of l~g mr! peptidoglycan 

was chosen for further experiments. Although AO glucan did not induce any significant 

increase of NBT reduction, the dose of 10 ~g ml'! was chosen for further experiments 

since it elicited a non-significant increase of NBT reduction activity following 

stimulation with PMA. 
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Figure 3.2 Effect of varying doses of Vetregard ex on the production of intracellular 

superoxide anion by head kidney macrophages. 

Respiratory burst was triggered by PMA (.) or without (x). The solid line indicates the 

regression between the concentration of the test substance and NBT reduction activity after 

PMA stimulation (y::O.111+0.635x-O.756;+O.241;; ~=O.719; p<O.001). The broken line 

indicates the regression between the concentration of the test substance and NBT reduction 

activity without PMA stimulation (y = O.055+0.179x-0.180K +0.049;; ~=0 .624; p<0.001) . 
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Figure 3.3 Effect of varying doses of Vetregard ~ on the production of intracellular 

superoxide anion by head kidney macrophages. 

Respiratory burst was triggered by PMA (.) or without (x). The solid line indicates the 

regression between the concentration of the test substance and NBT reduction activity after 

PMA stimulation ('y=O.118+0.242x-O.11SK; f=O.770; p<O.001). The broken line indicates the 

regression between the concentration of the test substance and NBT reduction activity 

without PMA stimulation ('y=O.083+0.1 05x-O.OSSK; f=O.331; p<O.001). 
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Figure 3.4 Effect of varying doses of Macrogard on the production of intracellular superoxide 

anion by head kidney macrophages. 

Respiratory burst was triggered by PMA (e) or without (x). The solid line indicates the 

regression between the concentration of the test substance and NBT reduction activity after 

PMA stimulation (y=0.093+0.623x-O.922.x2+0.327x'l; ~=0.548; p-<O.001). The broken line 

indicates the regression between the concentration of the test substance and NBT reduction 

activity without PMA stimulation (y:0.051 +O.146x-O.212.x2 +0.076x'l; ~=0.290; p-<0.001). 
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Figure 3.5 Effect of varying doses of peptidoglycan on the production of intracellular 

superoxide anion by head kidney macrophages. 

Respiratory burst was triggered by PMA (e) or without (x). The solid line indicates the 

regression between the concentration of the test substance and NBT reduction activity after 

PMA stimulation (y 0.219
274 

; r=0.450; p<O.001). The broken line indicates the 
1 + 0.928e ' . x 

regression between the concentration of the test substance and NBT reduction activity 

without PMA stimulation (y = 0059+ 0.036x - 0.020x2; r=O.048; p>O.05). 
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Figure 3.6 Effect of varying doses of AO glucan on the production of intracellular superoxide 

anion by head kidney macrophages. 

Respiratory burst was triggered by PMA (.) or without (x). The solid line indicates the 

regression between the concentration of the test substance and NBT reduction activity after 

PMA stimulation ('y=0.1 07+0.005x+0.087';-0.048~; (=0.239; p<0.001). The broken line 

indicates the regression between the concentration of the test substance and NBT reduction 

activity without PMA stimulation ('y=0.032-0.041 x+O.077'; -0 .029~; (=0.288; p<0.001). 
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When the optimum dose of each test substance were compared on cells from the 

same individuals, all substances except AO glucan were able to induce a significant 

increase in NBT reduction by macrophages (figure 3.7). Although the three yeast glucans 

and the peptidoglycan induced a similar response, the latter caused a non-significant 

stronger reduction of NBT by macrophages. 
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Figure 3.7 Effect of the optimum dose of each test substance on the production of 

intracellular superoxide anion by head kidney macrophages. 

Respiratory burst was triggered by PMA (empty bars) or without (solid bars). Results are 

expressed as arithmetic mean ± standard deviation (n=8). Different numbers on sd bars 

indicate significant differences between different test substances following stimulation with 

PMA (p<O.05). Different letters on sd bars indicate significant differences between different 

test substances without stimulation with PMA (p<O.05). 
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However, the optimum doses of all test substances did not induce any significant 

difference in the production of extracellular superoxide anion as quantified by the 

reduction of cytochrome c (figure 3.8). 
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Figure 3.8 Effect of the test substances on the production of extracellular superoxide anion 

by head kidney macrophages. 

Respiratory burst was triggered by PMA. Results are expressed as arithmetic mean ± 

standard deviation (n=8). 

Chapter 3: Immunostimulation in vitro 78 



Production of hydrogen peroxide by macrophages was increased only by Illg m1-1 

peptidoglycan and this increase was significant with or without stimulation with PMA 

(figure 3.9). 
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Figure 3.9 Effect of the test substances on the production of hydrogen peroxide by head 

kidney macrophages. 

Respiratory burst was triggered by PMA (empty bars) or without (solid bars). Results are 

expressed as arithmetic mean ± standard deviation (n=8). Different numbers on sd bars 

indicate significant differences between different test substances following stimulation with 

PMA (p<O.05). Different letters on sd bars indicate significant differences between different 

test substances without stimulation with PMA (p<O.05). 

Nitric oxide production 

Although nitrite was measured in serial dilutions of sodium nitrite, it was not detected 

in the macrophage supematants under any of the treatments applied. 
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3.4. Discussion 

In this study, three yeast (1~3),(1~6)-~-glucans, one barley (1~2)/(1~6)-~-glucan and a 

bacterial peptidoglycan were screened in vitro for their activity on macrophage 

respiratory burst and production of nitric oxide. Studies to compare the 

immunopharmacological activities of different substances are often carried out using in 

vitro systems (e.g., Gallin et al., 1992; Ohno et al., 1995). These systems offer the 

advantage of investigating the effects of the test substance on a particular component of 

the immune system and allow the screening of different treatments more easily than 

could be achieved in vivo. They present, however, some important disadvantages due to 

the complex network through which different components of the immune system 

interact to produce an integrated response. Studying the action of immunostimulants on 

macrophages in vitro limits the investigation to direct effects on the macrophage cells 

themselves. The situation in vivo may well be more complex since activation of 

macrophages could be due to the immunostimulant-induced alteration of the cytokine 

profile. Although macrophages play a fundamental role in the synthesis and 

maintenance of physiological cytokine profiles, these are only achieved as a result of 

complex interactions involving most of the components of the immune system. As 

reviewed by Bohn and Bemiller (1995), the mode of immunopotentiation by (1~3)-~

glucans in mammalian species is likely to involve not only activation of macrophages 

but also neutrophils, helper T cells, NI< cells and promotion of T cell differentiation. 

Therefore, interpretation of results of immunopharmacological studies on macrophage 

activation in vitro should take account of this immune network. 

It has been shown that glucans are able to induce an elevated expression of the 

iNOS gene in murine macrophages in vitro (Hashimoto et al., 1997). The iNOS gene has 

been identified in goldfish (Laing et al., 1996) and rainbow trout (Grabowski et al., 1996) 

and published works indicate the production of inducible nitric oxide by different fish 

species (Schoor and Plumb, 1994; Neumann et al., 1995; Mulero and Meseguer, 1998). In 
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the present study nitrite was not detected in the supernatants of macrophages stimulated 

with the glucans or peptidoglycan at different doses. The detection limit for nitrite was 3 

nmol per well as determined by serial dilutions of sodium nitrite. Contradictory results 

exist as to whether rainbow trout macrophages are able to synthesise nitric oxide. While 

NO has been shown to be produced by head kidney mixed leukocyte cultures in vitro 

(Zunic and Licek, 1997), other studies have failed to demonstrate NO synthesis by 

macrophage cultures (Campos-Perez et al., 1997b; results here presented and in chapters 

4,5 and 6 of this thesis). 

PMA-independent production of intracellular superoxide anion was significantly 

enhanced only by yeast glucans. Single microbial components may trigger the phagocyte 

respiratory burst. However, full activation of the NADPH enzyme system in vivo 

requires activation of various receptors by microorganisms and host-derived stimuli 

(Seifert and Gunter, 1991). Soluble molecules such as PMA are strong inducers of the 

respiratory burst and are generally used to assay full activation of this pathway (Seifert 

and Gunter, 1991). All yeast glucans and the bacterial peptidoglycan tested in the 

present study induced a significant modulation of intracellular superoxide anion 

production by head kidney macrophages after PMA stimulation. Peptidoglycan induced, 

however, a significant increase of intracellular 02' production that was maintained over a 

significantly wider range of concentrations. This was reflected both in the regression 

analysis and the Tukey's multiple comparison test. Previous reports also indicate that 

(143),(146)-~-glucans induce maximum production of 02' by fish macrophages over a 

narrow range of concentrations U0rgensen, 1994; Tahir and Secombes, 1996). All yeast ~

glucans induced a similar pattern of modulation of macrophage activity, however, 

Macrogard was able to induce a maximum production of intracellular superoxide anion 

at a lower dose. Linear (143)-~-glucans possessing (146)-linked ~-glucosyl side 

branches ((143),(146)-~-glucans) are generally considered to be the most effective ~

glucan immunostimulants (Bohn and Bemiller, 1995). In this study, barley (1~2),(1~6)-
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~-glucan did not induce any significant increase in the production of intracellular 

superoxide anion, unlike results with the substances containing (1~3),(1~6)-linked 

moiety. It should be noted that regression analyses are only valid for the range of 

concentrations applied. If higher concentrations of the test substances had been used, the 

model lines for the PMA+ response in figures 3.2, 3.3 and 3.4 might have shown a 

decrease of activity at the highest concentrations. 

Extracellular superoxide anion production is important in killing microorganisms 

as well as in immunomodulation (Koner, 1997) but due to its high reactivity it may cause 

damage to self if not properly regulated (Gille and Sigler, 1995). In all cases, it was 

demonstrated that the test substance dose which induced maximum production of 

intracellular superoxide anion did not significantly modulate the production of 

extracellular superoxide anion. Enhancement of respiratory burst activity has been 

shown to be mediated by synthesis de novo of at least some cytosolic and membrane 

components of the NADPH oxidase (Tennenberg et al., 1993). NADPH oxidase 

components synthesised de novo after incubation with immunostimulants might be 

preferentially translocated to the immunostimulant-containing phagosome membrane 

rather than to the plasma membrane. This would result in increased 0; generation 

predominantly in the intracellular compartment. In this study, the substances tested 

were quickly phagocytosed by most macrophages and induced the maximum NBT 

reduction activity at a similar number of particles per well (1 macrophage:1-4 particles 

approximately). Although low doses of particulate ~-glucans have been shown to 

enhance production of extracellular 0; by teleost fish, higher doses such as used in this 

study did not induce any significant change (Tahir and Secombes, 1996). 

The production of hydrogen peroxide by macrophages is a result of dismutation of 

superoxide anion following initiation of the respiratory burst. Hydrogen peroxide 

synthesis is an important moiety in the killing of pathogens by phagocytes and, in 

myeloperoxidase (MPO) - positive phagocytes, it is catalysed by MPO to yield highly 

Chapter 3: Immunostimulation in vitro 82 



reactive HelO (Gabig and Babior, 1981). High doses (25-100 Jlg ml"l) of particulate yeast 

~-glucans have been shown to induce a rapid increase in hydrogen peroxide production 

by murine macrophages (Okazaki et al., 1996). In this study, only peptidoglycan was able 

to induce a significant increase in the production of H20 2, although macrophages were 

incubated with lower doses over longer periods of time than in the murine experiment. 

Finally, incubation of macrophages with latex particles of different sizes may 

provide information on the effect of the particle size of the immunostimulants used. The 

use of latex beads in experiments to investigate the effect of particulate test substances 

on macrophages is therefore recommended. 

Thus, a different modulation of the respiratory burst was observed amongst the 

different groups of test substances. Yeast ~-glucans and bacterial peptidoglycan were 

able to induce an increased production of intracellular superoxide anion. This increase 

was greater and sustained over a wider range of concentrations in the case of the 

peptidoglycan. The wide dose tolerance eliciting maximum production of intracellular 

0; by peptidoglycan may have important practical consequences in the field. A key 

factor in the success of pharmacological treatment is the accuracy in the dose delivered 

to individual animals. In aquaculture, treatment of animals is usually carried out orally 

in combination with the feed. It is well known that feed uptake, and consequently the 

treatment associated with it, is very variable amongst a population of farmed fish. This 

variability may result from differences in the physical, social, immune, etc. status of the 

animal. The use of the peptidoglycan in vivo may, therefore, have certain advantages 

over the other substances tested. Peptidoglycan and Vetregard Cl were chosen for further 

experiments in vivo. 
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4.1 Introduction 

Since prophylactic use of antibiotics is associated with undesired emergence of resistant 

bacterial strains, other methods to reduce the impact of infectious diseases become more 

important. A wide range of chemically diverse compounds has been shown to increase 

fish immune performance and resistance to infectious challenges (reviewed in Raa, 

1996). These include bacterial cell wall products, (1~3)-13-glucans, peptides and 

synthetic compounds. Current knowledge of the effects of immunostimulants on fish 

defence mechanisms and resistance to bacterial infections is summarised in section1.4. 

The aim of this study was to investigate the use of bacterial peptidoglycan in feed 

to enhance innate defence mechanisms of rainbow trout and to compare efficacy with 

similar application of yeast (1~3),(1~6)-13-glucan. Peptidoglycan and Vetregard a (yeast 

13-g1ucan) were selected as potential immunostimulants since they induced the highest 

stimulation of macrophages in vitro (chapter 3). Initial experiments were conducted to 

confirm their stimulatory capacity in vivo. For this purpose, the test substances were 

administered intraperitoneally and peritoneal macrophage activity assayed. Further 

experiments involved the assessment of immunostimulation by in-feed administration of 

the test substances. Different treatment regimes were applied and serum haemolytic 

activity as well as function of resident and inflammatory macrophages investigated. In 

addition, A. salmonicida killing in vivo was assessed in animals orally treated with 

peptidoglycan and in controls. 
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4.2. Materials and methods 

Animals and bacterial strain 

All-female rainbow trout were obtained from Almond Bank Trout Farm (Scotland) and 

acclimatised to flow-through aquarium conditions at 6 ± 2°C for a minimum of 4 weeks 

as described in section 2.2 before experiments began. Animals from this stock were used 

for all experiments described in this chapter. 

Aeromonas salmonicida isolate B95179 (isolate details are given in section 2.8.2) was 

used in phagocytosis and bacterial killing experiments in this chapter. 

Intraperitoneal administration of Immunostimulants 

After acclimatisation, groups of 12 fish weighing 133.2 ± 6.6 g were allocated to two 

similar 370 1 aerated tanks with a flow-through water supply. Fish were fed twice daily 

with commercial trout pellets to the manufacturer's RDA (Trouw Select No. 40; 1.84% of 

body weight, bw). Water temperature was raised gradually over a period of 14 days and 

kept constant at 14.5 ± 0.5 °C during the experiment. Six fish in each tank were then 

anaesthetised with benzocaine and injected intraperitoneally with 2 ml of a filter

sterilised 8 % casein solution in saline containing either 0.25 mg ml-t peptidoglycan or p

glucan. The remaining 6 fish in each tank were handled similarly and injected with 2 ml 

of a sterile 8 % casein solution only. 

Fish were sacrificed 6 days after injection and peritoneal macrophages harvested 

and assayed for intra- and extra-cellular respiratory burst activity and nitric oxide 

production. 

In-feed administration of Immunostimulants 

Commercial trout pellets were thoroughly mixed with p-glucan or peptidoglycan at the 

desired concentration and surface-coated with 2 % (v /w) fresh cod liver oil. Control feed 

was prepared by mixing pellets with 2 % cod liver oil only. Experimental feed was kept 

in the fridge and used within 30 days of preparation to avoid rancidity developing. 
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Groups of 35 fish, individual average weight 140.6 ± 14.7 g, were distributed into 

three similar flow-through 370 I aerated tanks. Water temperature was gradually raised 

over a period of 13 days and kept constant at 14 ± 0.5 °C throughout the experiment. Fish 

were fed twice daily to the manufacturer's RDA (Ewos Select No. 40; 1.84 % bw). One 

group of fish was fed with control feed while the other two groups of fish were fed on a 

diet containing ~-glucan at 0.05 % and 5 % of feed weight respectively. Six fish per 

treatment were sacrificed after I, 2, 3 and 4 weeks on the experimental or control diets 

and sampled for haematological parameters (serum haemolytic activity, haematocrit, 

PBL counts) and head kidney macrophage activity (phagocytosis, intra- and extra

cellular respiratory burst, nitric oxide production and killing of A. salmonicida). 

The experiment described above was repeated using peptidoglycan instead of ~

glucan as immunostimulant. The average fish weight was 172.4 ± 19.2 g and water 

temperature was kept constant at 14 ± 0.5 °C during the experiment. 

Since peptidoglycan showed some advantages over yeast glucans in enhancing 

macrophage activity in vitro, a final experiment was carried out with this compound. 

Groups of 35 fish individually weighing 241.9 ± 11.7 g were put in four 370 I aerated 

tanks with flow-through water supply. Water temperature was raised progressively over 

a period of 14 days and then kept constant at 13.5 ± O.5°C. Fish in two tanks were fed 

twice daily to the RDA (Trouw Select No. 50; 1.62 % bw) on control feed while those 

from the other two tanks were fed on peptidoglycan-containing feed (0.05% of feed 

weight). Four weeks after the beginning of treatment, six fish from one control tank and 

six fish from one treatment tank were sacrificed and sampled for serum haemolytic 

activity and head kidney macrophage activity (phagocytosis, respiratory burst, nitric 

oxide production and A. salmonicida killing). The remaining fish in those two tanks were 

injected intraperitoneally with A. salmonicida to monitor bacterial clearance from the 

spleen. Fish in the other two tanks were used to elicit an inflammatory peritoneal 

exudate. For this purpose, 10 fish from each of the two tanks were injected 

Chapter 4: lmmunostimuiation in vivo 87 



intraperitoneally with 2 ml of a filter-sterilised 8 % casein solution in saline four weeks 

after the beginning of treatment. Six fish from each tank were sacrificed six days after 

casein injection to assess peritoneal macrophage respiratory burst. After A. salmonicida or 

casein injection, fish in all groups were fed on control diet. 

Haematology 

Haematocrit and PBL counts were determined in EDTA-treated blood from individual 

fish as described in section 2.3 

Serum from individual fish was isolated, stored and assayed for lytic activity 

against rabbit red blood cells as detailed in section 2.6. 

Isolation and culture of macrophages 

Head kidney and peritoneal macrophages were enriched in suspension and monolayers 

prepared on 96-well microtiter plates and 8-well glass slides as described in section 2.7.1. 

Macrophages were then cultured at 19°C in L-15 containing 5 % FCS and P /5. No 

antibiotics were added to monolayers prepared to study killing of A. salmonicida. 

Monolayers were used within 5 h of preparation after three washes with cHBSS. 

PhagocytOSiS 

A. salmonicida was grown overnight in TSB at 22°C with continuous shaking. Bacterial 

cells were opsonised with fresh pooled sera from five trout donors and adjusted to a 

concentration of 3.2x108 CPU ml-
t as described in section 2.8.2. The number of adherent 

macrophages per well was calculated as described in section 2.7.3. Head kidney 

macrophage monolayers were incubated at 19°C with 0.4 m1 of a diluted A. salmonicida 

suspension to give a ratio of 1 macrophage to 5 bacterial cells. After 60 minutes, 

monolayers were washed three times with cHBSS and stained with Rapi-Diff. Phagocytic 

index and phagocytosis ratio were estimated, as described in section 2.8.1, by examining 

300 macrophages per fish under an Olympus optical microscope at 1000x magnification. 
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Respiratory burst 

The production of extracellular superoxide anion by macrophages was quantified in 

triplicate wells by the PMA-triggered reduction of cytochrome c as described in section 

2.9.1. Superoxide dismutase was added to triplicate wells per fish to confirm specificity 

of the reaction. 

Macrophage intracellular respiratory burst activity was measured in triplicate 

wells by the reduction of NBT in the presence or absence of PMA for 30 minutes as 

described in section 2.9.2 

In both assays, duplicate wells were used to estimate the number of macrophages 

per well and results were adjusted to OD610 or nmol 0; produced per 2x105 cells for the 

NBT and cytochrome c assays respectively. 

Nitric oxide 

Inducible nitric oxide synthase activity was measured as described in section 2.10. 

Macrophage monolayers were stimulated with MAF and 40 Ilg mr1 of E. coli LPS 

(serotype 026:B6, Sigma, UK) in L-15 containing 5 % FCS and P /S for 96 h at 19°C. 

Supematants were then assayed for nitrite by the Griess reaction. Serial dilutions of 

sodium nitrite were used as positive controls. 

A. salmonicida killing in vitro 

A. salmonicida was grown overnight in TSB at 22°C with continuous shaking. Bacteria 

were washed three times in PBS, opsonised with the same pooled sera as that used in the 

phagocytosis assay, and adjusted to 3.2x10B CFU ml·1 as described in section 2.8.2. Head 

kidney macrophage monolayers were incubated with serum opsonised A. salmonicida at 

a ratio of 1 macrophage to 20 bacterial cells for 5 h at 19°C. Viable bacteria in the mixture 

wells were then quantified by the reduction of MlT and the percentage of bacteria killed 

obtained as described in section 2.11. 

Chapter 4: Immunostimulation in vivo 89 



A. salmonicida clearance in vivo 

A. salmonicida was grown overnight in TSB at 22°C with continuous shaking. The 

bacterial suspension was washed twice in saline and adjusted spectrophotometrically to 

a concentration of 3.2xl0B CFU ml-\ (ODo\O= 1.24 in TSB). A suspension containing lxl05 

CFU ml-\ in saline was prepared as challenge dose and the concentration confirmed by 

viable counts. Each fish received an intraperitoneal dose of 200 JlI of 1. Ix 105 A. 

salmonicida CFU ml-\. Six fish per treatment were sacrificed and spleens and blood 

sampled for viable bacteria 6, 12, 24, 48, 72 and 96 h after challenge as described in 

section 2.12. 

Statistical analysis 

Comparisons between the results of intraperitoneally administered immunostimulant 

samples and controls were carried out by the Student t-test. 

Results from the experiments on oral administration were analysed by repetitive 

measurements one-way ANOVA and Newman-Keuls test when three doses were 

compared or by t-test when only two doses were investigated. After confirming by t-test 

that no differences were found within the same treatment group throughout the 

different sampling times, samples from the same treatment were pooled together and 

compared by one-way ANOVA and Newman-Keuls test. 

Normality and homogeneity of variance was confirmed before any parametric test 

was applied. When normality failed, the logarithmic transformation was applied. All 

percentage values were made normal by the square root arcsin transformation. One way 

ANOVA on ranks was used when transformed data were still not normal. Statistical 

tests were carried out with SigmaStat~ Oandel Scientific) and, in all cases, p<O.OS was the 

accepted significant level. Regression analyses were used to confirm linearity between 

number of viable A. salmonicida and MTT reduction in the bacterial killing in vitro assay. 
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The relative risk of A. salmonicida being recovered from the spleen was investigated 

using the software EPI-INFO 6.04 (Centre for Disease Control and Prevention, USA, and 

World Health Organisation, Switzerland). 

4.3 Results 

Intraperitoneal administration of Immunostimulants 

Production of intra- and extra-cellular superoxide anion by peritoneal macrophages was 

significantly enhanced following administration of either ~-glucan or peptidoglycan 

(figures 4.1 and 4.2). No significant differences were found between the respiratory burst 

activity of macrophages from fish treated with ~-glucan or peptidoglycan. 

Nitrite, a major product of nitric oxide spontaneous turnover, was not detected in 

any culture supernatants of peritoneal macrophages incubated with or without MAF 

plus LPS. The lowest detection of nitrite using several dilutions of NaN02 was 3.5 nmol 

per well. 
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Figure 4.1 Reduction of NBT by peritoneal macrophages. 

Results are expressed as arithmetic mean ± sd (n=6). Different numbers or letters on sd 

bars indicate significant modulation of activity stimulated with or without PMA respectively. 
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Figure 4.2 Production of extracellular O2' by peritoneal macrophages. 

Results are expressed as arithmetic mean ± sd (n=6). * indicates significant difference 

between the two treatments and control. 

In-feed administration of immunostimulants 

In-feed administration of p-glucan or peptidoglycan did not have a significant effect on 

serum haemolytic activity or PBL counts at any of the sampling times compared with 

controls (table 4.1). Serum haemolytic activity differed markedly between animals within 

the same treatment group. 
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Table 4.1 Haematological parameters of in-feed ~-glucan and peptidoglycan treated fish. 

A PCV ACHso PBl l T N M 

GO 38.2±3.2 239.2±127.5 1.40±O.71 0.79±0.40 4.03±2.24 1.66±O.75 2.09±1.27 
~ 
Q) 
Q) GO.05 42.0±3.0 335.1 ±215.4 1.94±1.73 1.09±O.98 5.66±5.24 2.15±1.54 2.68±1.99 
~ 
.-

G5 37.1±3.5 356.2±185.7 1.50±0.92 0.8S±O.S2 4.29±2.91 1.73±O.72 2.09±1.07 

!/) GO 41.2±5.5 195.9±254.2 1.30±0.72 0.73±0.40 3.71±2.16 1.57±0.92 2.00±1.50 
~ 
Q) 

GO.05 39.2±3.4 250.3±124.0 1.19±O.47 0.67±0.26 3.39±1.53 1.44±0.55 1.79±1.02 Q) 

~ 
C\I G5 45.3±5.6 219.2±167.9 1.85±1.52 1.04±O.84 5.21±4.29 2.32±2.16 3.02±3.32 

!/) GO 48.3±6.5 189.2±152.1 2.31±1.90 1.30±1.06 6.65±5.47 2.75±2.42 3.60±3.60 
~ 
Q) 

GO.05 37.2±3.1 259.3±145.7 2.34±1.36 1.32±O.76 6.70±4.07 2.82±1.67 3.57±2.70 Q) 

~ 
Cl) G5 42.6±4.8 384.7±287.9 2.34±0.42 1.24±O.26 7.48±1.62 2.78±0.30 3.97±O.91 

GO 42.1±3.4 322.8±154.7 
!/) 
~ 
Q) 

GO.05 40.2±2.1 350.7±124.6 Q) 

~ G5 50.4±2.6 225.8±154.6 

B PCV ACHso PBl l T N M 

PgO 51.2±5.1 225.6±154.9 3.06±0.86 2.35±0.64 5.81±2.44 1.43±O.84 1.92±2.01 
~ 
Q) 

199.4±235.1 3.30±1.25 2.55±O.98 Q) Pg 0.05 5S.4±6.2 6.27±2.82 1.43±O.71 1.90±1.93 
~ 
.-

Pg 5 49.1±5.3 189.6±154.3 3.33±O.94 2.55±O.68 6.24±2.29 2.08±1.94 2.60±3.70 

!/) PgO 49.2±4.S 335.9±124.3 3.29±1.10 2.5S±O.88 5.96±2.09 1.89±1.85 2.76±3.45 
~ 
Q) 

Pg 0.05 47.3±3.2 189.4±174.8 2.61±1.42 2.07±1.17 4.39±2.03 1.52±2.01 2.89±3.53 Q) 

~ 
C\I Pg 5 52.7±4.6 215.6±195.3 2.91±1.0S 2.28±0.92 5.11±0.98 1.67±1.91 2.92±3.S6 

!/) PgO 4S.3±2.6 185.9±266.3 2.57±1.67 2.05±1.36 4.53±2.87 0.S6±0.54 1.68±2.01 
~ 
Q) 

Pg O.OS 46.8±2.3 335.4±223.7 3.33±2.37 2.6S±1.96 5.48±3.42 1.87±2.66 3.98±4.73 Q) 

== Cl) Pg5 51.3±4.1 175.9±198.6 2.16±0.31 1.69±O.22 3.85±O.82 1.22±1.19 1.78±2.21 

!/) Pg 0 52.4±4.1 228.5±147.9 
~ 
Q) 

Pg 0.05 51.9±4.8 175.9±199.8 Q) 

== qo 
Pg S 5S.4±S.7 32S.9±129.7 

Samples were taken for haematological assessment 1, 2, 3 and 4 weeks after the onset of 

treatments. Results are expressed as mean value ± sd. n= 6. A, ~-glucan treatment; B, 

peptidoglycan treatment. Treatments were as follows: G 0, 0% glucan; G 0.05, 0.05% 

glucan; G 5, 5% glucan. Pg 0, 0% peptidoglycan; Pg 0.05, 0.05% peptidoglycan; Pg 5, 5% 

peptidoglycan. ACHso, serum alternative complement units per ml; PCV, haematocrit (%); L, 

Iymphocytes mr1 (x10\ T, thrombocytes mr1 (X10B); N, neutrophils mr1 (X10B); M, 

monocytes mr1 (x10
5
). 
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Head kidney macrophages were able to phagocytose A. salmonicida (table 4.2) and 

generate intra- and extra-cellular superoxide anion in response to PMA (table 4.3). The 

metabolic activity of A. salmonicida was slightly reduced as indicated by decreased MTT 

reduction after 5 h incubation with renal macrophages (table 4.4). However, no 

significant differences were observed in head kidney macrophage activity from p-glucan 

or peptidoglycan treated fish compared with control animals (table 4.2 to 4.4, 

respectively). Likewise, no significant differences were found even when pooled 

haematological and cellular results for each treatment were compared with their 

respective pooled controls. Nitrite was not detected in the supernatants of head kidney 

macrophages stimulated with MAF and LPS under any conditions tested. The lower 

detection limit was 3.5 nmol nitrite per well. 

Table 4.2 Phagocytosis of A. salmonicida by macrophages from fish orally treated with ~-

glucan or peptidoglycan. 

A B 

PR PI PR PI 

GO 35.4± 11.2 0.56 ±0.22 Pg 0 37.9 ± 9.8 0.37 ± 0.08 
~ 
Q) 

42.6 ± 16.7 0.72 ±0.36 Pg 0.05 32.1 ± 8.7 0.29 ± 0.11 Q) G 0.05 
~ 

G5 28.9 ± 14.5 0.55 ± 0.27 Pg 5 27.4 ± 10.4 0.31 ±0.15 

GO 27.9± 9.8 0.48 ± 0.18 
~ 

Pg 0 25.4 ±7.9 0.21 ± 0.09 
Q) 

35.4 ± 9.7 0.56 ± 0.21 Pg 0.05 35.9 ± 10.5 0.28 ± 0.08 Q) G 0.05 
~ 

C\I G5 29.7 ± 10.2 0.39 ± 0.18 Pg 5 29.7 ±4.6 0.32 ±0.09 

GO 33.4± 7.8 0.55 ± 0.18 PgO 35.7 ±4.6 0.38 ± 0.11 
~ 
Q) 

35.7±4.7 0.49 ± 0.21 Pg 0.05 29.7 ± 9.7 0.35 ±0.09 Q) GO.05 
~ 

C') 
G5 29.7± 5.4 0.53 ± 0.19 Pg 5 22.9 ± 10.7 0.42 ± 0.15 

~ 
GO 42.8 ± 0.4 0.39 ± 0.21 Pg 0 25.6 ± 12.4 0.28 ± 0.08 

Q) 
39.7±11.8 0.29 ±0.09 Pg 0.05 37.9 ± 5.6 0.25 ± 0.12 Q) G 0.05 

~ 
~ G5 32.7 ± 15.7 0.27 ± 0.11 Pg 5 29.4 ± 9.8 0.29 ± 0.11 

A, ~-glucan treatment; e, peptidoglycan treatment. Results are expressed as mean values ± 

sd (n=6). Treatment abbreviations as for table 4.1. PR, phagocytosis ratio; PI, phagocytic 

index. 
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Table 4.3 Respiratory burst activity by head kidney macrophages from fish treated with in-

feed ~-glucan or peptidoglycan. 

A e 
PMA+ PMA- PMA+ PMA-

GO 0.144 ± 0.028 0.053 ± 0.007 PgO 0.114±0.019 0.073 ± 0.010 
~ 
Q) 

GO.05 0.157 ± 0.053 0.062 ± 0.025 Pg 0.05 0.137 ± 0.032 0.072 ± 0.029 Q) 

== - G5 0.179 ± 0.049 0.060 ± 0.030 Pg 5 0.135 ± 0.017 0.085 ± 0.021 

GO 0.170 ± 0.041 0.076 ± 0.022 Pg 0 0.155 ± 0.057 0.075 ± 0.019 
~ 
Q) 

GO.05 0.162 ± 0.046 0.055 ± 0.028 Pg 0.05 0.153 ±a.035 0.043 ± 0.027 Q) 

3: 
C\I G5 0.174±0.046 0.039 ± 0.032 Pg 5 0.195 ± 0.072 0.055 ± 0.011 

GO 0.179 ± 0.045 0.044 ± 0.D18 PgO 0.157 ± 0.022 0.075 ± 0.043 
~ 
Q) 

GO.05 0.187 ± 0.022 0.060 ± 0.022 Pg 0.05 0.123 ± 0.036 0.090 ± 0.026 Q) 

== C') G5 0.177 ± 0.071 0.091 ± 0.019 Pg5 0.198 ± 0.048 0.099 ± 0.059 

GO 0.153 ± 0.061 0.055 t 0.018 PgO 0.156 t 0.026 0.042 ± 0.017 
~ 
Q) 

GO.05 0.145 ± 0.035 0.062 t 0.026 Pg 0.05 0.178 ± 0.024 0.049 ± 0.036 Q) 

== ~ G5 0.159 ± 0.052 0.053 ± 0.032 Pg5 0.135 ± 0.040 0.081 t 0.020 

C 0 

GO 3.3 t 0.4 PgO 3.3 to.9 
~ 

3.4 t 1.0 Pg 0.05 3.5 to.7 Q) GO.05 Q) 

== 3.7±0.4 Pg5 3.5 to.1 G5 

GO 3.8tO.6 PgO 3.6 ±0.9 
~ 

4.1 to.7 Pg 0.05 3.5 ± 0.1 Q) G 0.05 Q) 

3: 
C\I G5 3.6tO.6 Pg 5 3.8 ± 1.0 

GO 3.5tO.7 Pg 0 3.6 to.4 
~ 

3.5±0.7 Pg 0.05 3.B ±0.3 Q) GO.05 Q) 

== C') G5 3.9 ± 1.4 Pg5 3.6 ±0.5 

GO 3.2±0.8 PgO 3.S ±0.7 
~ 

3.7 t 0.7 Pg 0.05 3.7 to.8 Q) GO.05 Q) 

== ~ GS 3.3tO.9 Pg 5 3.7 ± 1.4 

A and e, reduction of NBT after 30 min of reaction; C and 0, nmol of extracellular O2' 

produced 60 min after addition of PMA. Results are expressed as mean values ± sd (n= 6). 

Treatment abbreviations as for table 4.1. 
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Table 4.4 Killing of A. salmonicida by head kidney macrophages from fish treated with in-

feed p-glucan or peptidoglycan. 

A B 

.::.: GO 2.9 ± 1.9 Pg 0 3.7±1.4 
Q) 
Q) G 0.05 3.8 ±0.8 Pg 0.05 4.3 ± 1.2 ;: 
.... 

G5 2.5 ± 1.6 Pg 5 3.9±1.1 

GO 3.9 ±2.0 Pg 0 4.S ± 1.9 .::.: 
Q) 
Q) GO.OS 4.S ± 1.3 Pg O.OS 3.8 ± 1.1 ;: 

C\I 
GS 3.8 ± 2.1 Pg S 4.2 ±0.9 

GO S.l ±2.S .::.: Pg 0 4.9 ± 2.1 
Q) 
Q) GO.OS 4.9 ± 1.6 Pg 0.05 3.6 ± 1.9 ;: 

C') 

GS 4.2 ± 1.S Pg 5 4.0 ± 1.1 

GO 3.8 ± 1.7 PgO S.2 ± 1.5 .::.: 
Q) 
Q) GO.OS 4.S±1.7 Pg O.OS 4.9 ± 1.8 ;: 
~ 

GS 5.5 ± 2.1 Pg 5 5.4 ±2.4 

A, Glucan treatment; B, Peptidoglycan treatment. Results are expressed as mean % of 

bacteria killed (as indicated by decreased MTT reduction) ± sd after 5 h incubation at a ratio 

of 1 effector:20 target cells (n=6). Treatment abbreviations as for table 4.1 
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In the last experiment, fish were fed on a 0.05% peptidoglycan-containing diet for 

four weeks and head kidney and peritoneal macrophage activity as well as persistence of 

A. salmonicida in spleen and blood were investigated. The activity of head kidney 

macrophages was similar to the previous experiment (data not shown). However, the 

treatment induced a significant increase in PMA-triggered extracellular production of 

superoxide by casein-elicited peritoneal macrophages (figure 4.3). 
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Time after PMA (min) 

Figure 4.3 Production of extracellular O2' by peritoneal macrophages. 

Results are expressed as arithmetic mean ± sd (n=6). * indicates significant difference 

between treatment and control groups. 
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The number of viable A. salmonicida in the spleen of challenged fish increased with 

time (figure 4.4). There were, however, very large individual variations in the number of 

bacterial CFU g-! of spleen within the two treatment groups (average CV= 252.6%) and 

no significant differences were found between control and peptidoglycan treatments. 

There were no differences between the two treatments in the relative risk to viable A. 

salmonicida cells persistence in the spleen of infected fish either (results shown in 

appendix 1). No viable bacteria were recovered from the blood of infected fish at any 

sampling time. 
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Figure 4.4 Persistence of A. salmonicida CFU in spleens of control and in-feed 

peptidoglycan treated fish. 

Results are expressed as mean values ± sd (n=6). Each fish received an ip dose of 2.2x104 

CFU. 
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4.4. Discussion 

Chapter 3 described the immunostimulatory activities of (1~3)-~-glucans and 

peptidoglycan in vitro. In the present study, enhancement of innate immune mechanisms 

in vivo, both by intraperitoneal and in-feed administration, was investigated. 

Enhancement of peritoneal macrophage activity following ip administration of ~

glucans has been demonstrated by several authors. Derivatives of ~-glucan administered 

intraperitoneally into mice have been reported to increase superoxide anion and nitric 

oxide formation as well as acid phosphatase activity of peritoneal macrophages (Yoshida 

et al., 1996). Furthermore, mice peritoneal macrophages were able to produce nitric oxide 

after administration of soluble or particulate ~-glucans in vivo without need for a second 

stimulus, whereas control macrophages required stimulation with IFNy in vitro (Ohno et 

al., 1996). Results from this study indicated that ip injection of ~-glucan or peptidoglycan 

significantly enhanced both intra- and extra-cellular production of superoxide in 

peritoneal macrophages compared with controls. However, these macrophages were 

unable to synthesise detectable amounts of NO even when given a second stimulus in 

vitro consisting of MAF plus LPS. It has been previously shown that intraperitoneally 

administrated ~-glucan elicits migration of neutrophils and macrophages to the 

peritoneal cavity in fish (Ainsworth et al., 1994; J0rgensen et al., 1993a), but these studies 

did not include measurement of functional activity of peritoneal macrophages. The 

results given here present data on levels of activity in stimulated and control peritoneal 

macrophages. 

Rainbow trout haematological parameters such as haematocrit and PBL counts 

were not affected by in-feed administration of either ~-glucan or peptidoglycan after 1, 2, 

3 or 4 weeks of treatment and these results are similar to those previously reported by 

Siwicki et al. (1994). No significant differences in haemolytic activity were observed 

between the sera of control and treated animals. Due to the high variation in haemolytic 
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activity observed within animals in the same group, larger numbers of fish would be 

needed to investigate this further. Similarly, head kidney macrophage activity was not 

modulated by administration of different doses of ~-glucan or peptidoglycan in the feed 

for periods of up to 4 weeks. Kidney macrophages from control animals were able to 

produce superoxide anion and to phagocytose and kill A. salrnonicida to the same extent 

as macrophages from treated fish, although the degree of killing was very limited in all 

groups. Strain pathogenicity of A. salrnonicida and A. hydrophila has been shown to be an 

important factor in determining the outcome of interaction between macrophages and 

bacteria (Sharp and Secombes, 1993; Leung et al., 1995). No detailed information on the 

pathogenicity of the challenge strain used in the present study is available, however, in 

the experiments on bacterial killing in vivo, numbers of viable A. salmonicida in the spleen 

of challenged fish increased with time. 

An interesting finding was that casein-elicited peritoneal macrophages showed 

significantly increased superoxide production following 4 weeks of in-feed 

peptidoglycan treatment. Duncan and Klesius (1996) observed increased phagocytosis 

and chemotaxis of peritoneal macrophages in channel catfish orally treated with the 

immunostimulant Spirulina platensis. Unfortunately, activity of kidney macrophages was 

not assessed in that study and, therefore, comparison of this aspect with the results 

described here is not possible. In mice, several studies have also demonstrated enhanced 

local immune activity after oral administration of immunostimulants. For instance, 

intestinal lymphocytes have been shown to be primed for proliferation by orally 

administered MDP (Zunic, 1996) and peritoneal and alveolar macrophages were 

activated by oral ~-glucan treatment (Suzuki et al., 1990; Sakurai et al., 1992). 

Thus, results from the present study show that although peptidoglycan and ~

glucan exerted immunostimulatory activity in vivo after ip injection, oral administration 

was unable to elicit a systemic immune response as indicated by enhanced serum 

complement and head kidney resident macrophage activities. Haemopoietic organs such 
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as spleen and head kidney have been shown to be the main centres for the clearance of 

blood-borne antigens in rainbow trout (Alexander et al., 1983; Marsden et al., 1996; 

Zapata et al., 1996). Peptidoglycan was, however, effective in enhancing the activity of 

inflammatory macrophages, which play a fundamental role in combating persistent 

infection foci in different organs. The fate of orally administered immunostimulants and 

their mode of action may be of importance in explaining this variable modulation. 

Laminarin, a soluble p-glucan, has been demonstrated to be absorbed in the gut and 

readily cleared from the circulation by reticuloendothelial cells of haemopoietic organs 

of fish (Dalmo et al., 1994; Sveinbj0rnsson et al., 1995; Dalmo et al., 1996a,b). There are no 

similar studies on peptidoglycan in fish. The fate of peptidoglycan in mice is very 

different to that of soluble glucan in fish. Peptidoglycan is poorly absorbed in the gut 

and quickly excreted in the urine (Parant et al., 1979; Tomasic et aI, 1980; Ladesic et al., 

1993). The mechanisms of action of these two substances may be, therefore, different. 

While peptidoglycan may not be found in haemopoietic organs after administration, 

orally administered soluble glucan in fish interacts directly with kidney macrophages 

(Dalmo et al., 1996a,b) through ligation with specific surface receptors (Engstad and 

Robertsen, 1994). Nevertheless, no reports are available on the fate of orally administered 

particulate p-glucan in fish or other animals. A few studies have observed potentiation 

of head kidney macrophage activity after oral administration of particulate p-glucan (see 

section 4.1), although no such activation was found by Debaulny et al. (1996) in turbot, 

nor in the present study in rainbow trout. A possible explanation for these contradictory 

results is that head kidney of teleost fish is a highly haemopoietic organ (Zapata et al., 

1996), thus, actively generating and exporting leukocytes depending on the requirements 

to maintain an adequate immune function and surveillance. 

Beta-glucans have been shown to enhance mice splenic haemopoiesis in vivo 

(Patchen and MacVittie, 1985; Patchen and MacVittie, 1986) and to increase the 

proportion of precursor cells differentiating into macrophages and granulocytes 
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(Burgaleta and Golde, 1977). In addition, ~-glucan administration into mice induces 

mobilisation of bone marrow cells into the peripheral circulation (Patchen and MacVittie, 

1986). Thus, increased haemopoiesis and leukocyte trafficking are induced by ~-glucans 

in murine models. Although similar studies are not available in fish literature, sera from 

fish treated with MDP and Freund's complete adjuvant, of which MOP is the main 

immunoactive molecule, possessed enhanced macrophage colony formation activity in 

vitro (Kodama et al., 1994a), suggesting that haemopoiesis in fish also could be enhanced 

by immunostimulants. 

Enhanced haemopoiesis and/or leukocyte trafficking may induce changes in 

macrophage sub-population structure of fish head kidney as cells at certain stages of 

maturation leave the organ to become resident in other tissues. Therefore, the functional 

activity of the macrophage population in the head kidney as a whole may not be 

modulated by in-feed administration of small doses of immunostimulant. However, 

further studies on leukocyte trafficking and haemopoiesis in fish are required to 

investigate this hypothesis. 

Finally, clearance of pathogenic or opportunistic bacteria from different organs and 

blood has been used successfully to monitor susceptibility to bacterial infection after 

different interferences with the immune system of fish (Marsden et aI, 1996; Sakai et aI, 

1989) or mammalian species (MacMiking et aI, 1997). In this study, higher numbers of 

viable A. salmonicida were found in spleen with time after ip injection into rainbow trout, 

although no significant differences were observed in persistence of viable A. salmonicida 

cells in spleen between treatments. Other studies have also reported stimulation of fish 

immune components by in-feed administration of glucans which have not led to 

increased survival in bacterial challenges (Ainsworth et al., 1994; Debaulny et al., 1996). 

In summary, peptidoglycan and ~-glucan induced a similar increase of peritoneal 

macrophage activity when administered intraperitoneally. Oral treatment did not, 

however, modify kidney macrophage effector or serum haemolytic activities. On the 
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other hand, the respiratory burst response of inflammatory peritoneal macrophages was 

significantly augmented after oral treatment with peptidoglycan. This increase in 

activity was not reflected in the clearance of viable A. salmonicida from spleen in vivo. 

Therefore, a regime whereby stimulation of macrophage activity is achieved following 

in-feed peptidoglycan was identified. Further experiments will involve investigation of 

immunomodulation mediated by an aquaculture-associated stressor and the 

prophylactic use of peptidoglycan to compensate possible suppressive effects. 
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5.1 Introduction 

Successful intensive farming of aquatic animals is based on minimising disease incidence 

and optimising growth and reproduction. All these aspects depend on husbandry of 

animal stocks under low stress conditions. However, certain stressful events are inherent 

to intensive farming. High stocking density, low water quality, handling, transportation 

of live stock and elevated microbial load in water are considered to be amongst the most 

important stressors faced by farmed aquatic animals (Wedemeyer, 1996). 

Increased susceptibility to infectious disease following stressful events is thought 

to be, in part, a consequence of immunomodulation mediated in most cases by the 

immune and neuroendocrine mediators of the stress response (summarised in section 

1.3). Serum complement, lysozyme, phagocyte activity, cell-mediated natural 

cytotoxicity and specific antibody production are amongst important defence 

mechanisms of fish against invading microorganisms (Iwama and Nakanishi, 1996). 

Aquaculture-associated stressful events have been shown to induce a variable 

modulation of all these immune parameters depending on the quality and extent of the 

stressor and the immune parameter investigated (summarised in section 1.3.1). 

The aim of this study was to identify a stressful regime inherent in the practice of 

aquaculture that induced depression of innate immune activity and reduced resistance 

to bacterial challenge. Confinement was selected as stressor and, for this purpose, 

rainbow trout were subjected to single or repeated daily confinement and several innate 

immune parameters investigated. The ability of confined fish to respond to an LPS 

challenge in vivo also was assessed. Finally, persistence of viable A. salmonicida cells in 

the spleen and blood of control and repeatedly confined animals was quantified after ip 

injection of A. salmonicida. 
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5.2 Materials and Methods 

Animals and bacterial strain 

All-female rainbow trout were obtained from Almond Bank Trout Farm and 

acclimatised to aquarium conditions at 6 ± 2 °C for at least three weeks as described in 

section 2.2. Fish from this stock were used for all experiments described in this chapter. 

Fish were fed on expanded (floating) pellet feed to monitor feeding behaviour. 

A. salmonicida B95179 (isolate details given in section 2.8.2) was used to assess 

bacterial killing in vitro and in vivo. 

Experimental design 

Immunomodulation by confinement 

After acclimatisation, groups of 62 fish individually weighing 45.2 ± 3.2 g were allocated 

to four similar 370 I aerated tanks receiving a flow-through water input. Water 

temperature was raised progressively over a period of ten days and kept constant at 12.5 

± 0.5 °C throughout the experiment. Fish from two tanks were subjected to severe 

confinement by reducing the water depth to 7 cm for five minutes before returning it to 

the original depth of 104 cm. The complete procedure lasted 25 minutes and water flow 

was kept constant during this operation. Fish from the other two tanks were left 

undisturbed. Animals were fed twice daily with a commercial trout pellet to the 

manufacturer's RDA (Ewos Select No. 40; 1.70 % bw). On the day confinement was 

applied, animals were fed only once, 6h after the water level was lowered. 

Blood samples for measurement of plasma glucose concentration were taken 4 h 

after the onset of confinement from three fish from each tank, totalling six control and six 

confined fish. 

Four individuals from each tank, totalling eight control and eight confined 

animals, were sampled for assessment of haematological and immunological parameters 

at several sampling points. Sampling took place 24 h before confinement and 24 h, 2, 4, 8 
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and 16 days after confinement. Parameters assayed were haematocrit, PBL counts, serum 

haemolytic activity, head kidney macrophage phagocytosis, respiratory burst 

(unstimulated and MAF plus LPS stimulated) and production of nitric oxide. 

Immunomodulation by LPS challenge In confined animals 

Groups of 25 fish with an average weight of 52.1 ± 2.6 g were placed in two similar 370 I 

flow-through aerated tanks. Water temperature was raised gradually over a period of 12 

days and kept constant at 14.0 ± 0.5 °C during the experiment. Fish in one tank were 

subjected to a single severe confinement experience as described above while those in 

the other tank were left undisturbed. 

Twelve hours after the onset of confinement, blood samples for measurement of 

glucose concentration were taken from five fish from each tank and were then sacrificed. 

At this time, ten control and ten confined fish were lightly anaesthetised with 2.5 % 

benzocaine, then injected intraperitoneally with 100 ~l of 10 mg ml-1 of E. coli LPS 

(serotype 026:B6, Sigma, UK) in saline, marked and returned to their respective tanks. 

Five control and five confined individuals were sampled 2.5 days after injection of LPS 

to assess macrophage activity (superoxide and nitric oxide production). 

Immunomodulation by repeated confinement 

Groups of 28 fish weighing 110 ± 6.5 g were distributed in eight similar 370 I aerated 

flow-through tanks. Water temperature was elevated gradually over a period of ten days 

and kept constant at 12.3 ± 0.5 °C throughout the experiment. Four tanks were used to 

assess the effects of repeated confinement on haematological and immunological 

parameters (two control and two confinement tanks) while killing of A. salmonicida in 

vivo after ip challenge was monitored in the other four tanks (two control and two 

confinement tanks). Fish from confinement tanks were subjected to a severe confinement 

as described above, while control fish were left undisturbed. This procedure was 

repeated on six consecutive days before fish were sampled to assess their haematological 

and immunological condition, or challenged with A. salmonicida. Trout were fed twice 
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daily to the manufacturer's RDA (Ewos Select No. 40; 1.62 % bw) during the experiment. 

On the days that confinement was applied, they were fed only once 5-7 h after the onset 

of confinement. 

Samples for measurement of plasma glucose concentration were taken from three 

fish from each tank, totalling six control and six confined animals. Blood was withdrawn 

4 h post confinement on the first and last day of confinement to examine changes in 

plasma glucose concentration. 

Sampling for haematological and immunological condition of the fish took place 30 

minutes after the last confinement and it consisted of four individuals from each tank, 

totalling eight control and eight confined fish. Parameters assayed were haematocrit, 

PBL counts, serum haemolytic activity, head kidney macrophage phagocytosis, 

respiratory burst (unstimulated and MAF plus LPS stimulated), production of nitric 

oxide and killing of A. salmonicida in vitro. 

All fish in the tanks used to study bacterial killing in vivo were injected ip with A. 

salmonicida and samples were taken at different times, up to 72 h after injection, for 

quantification of viable A. salmonicida in spleen and blood. Confinement was applied as 

described above until the last sampling. Therefore, these fish were subjected to repeated 

confinement for nine consecutive days. 

Haematology 

Plasma glucose concentrations were measured as described in section 2.5. 

Haematocrit and PBL counts were quantified in EDTA-treated blood as described in 

section 2.3. Serum was extracted from blood and the spontaneous haemolytic activity 

against rabbit red blood cells determined in accordance with section 2.6. 

Isolation and culture of macrophages 

Macrophages were isolated from the head kidney and monolayers cultured in 96-well 

microtiter plates or in 8-well glass slides at 19°C for 12 h as described in section 2.7. 

Chapter 5: Immunomodulation by confinement 108 



Monolayers were washed three times with cHBSS before use. Macrophages monolayers 

assessed for killing of A. salmonicida were incubated without P IS. 

Phagocytosis 

Opsonised sheep red blood cells were prepared and adjusted to the desired 

concentration as described in section 2.8.2. 

The number of adherent macrophages from each fish was estimated in spare wells 

as described in section 2.7.3. Macrophage monolayers in 8-well slides were incubated 

with 0.4 ml of opsonised SRBC suspension to a ratio of 1 macrophage to 5 SRBC at 19°C. 

After 60 minutes, monolayers were washed three times and stained with Rapi-Diff. 

Phagocytic ratio and phagocytic index were obtained as described in section 2.8.1. 

Respiratory burst 

The production of extracellular superoxide anion by macrophages was quantified in 

triplicate wells by the reduction of cytochrome c triggered by PMA as described in 

section 2.9.1. Superoxide dismutase was added in triplicate wells per fish to confirm 

specificity of the reaction. 

Macrophage intracellular respiratory burst activity was measured in triplicate 

wells by the reduction of NBT in the presence or absence of PMA as described in section 

2.9.2. 

Duplicate wells were used to count the number of macrophages per well and 

results adjusted to 00610 per 2x1Q5 cells or nmol 0; produced per 2x105 cells for the NBT 

and cytochrome c assays respectively. 

Some of the monolayers were incubated with culture medium containing MAF 

plus 40 ~g ml-t E. coli LPS (serotype 026:B6) at 19°C for 72 hand intra- and extra-cellular 

superoxide production quantified as described above. 
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Nitric oxide 

The supematants of macrophages incubated with MAF plus LPS were assayed for 

nitrite, a major end product of nitric oxide, by the Griess reaction as described in section 

2.10. Serial dilutions of sodium nitrite were used as positive controls. 

A. salmonicida killing in vitro 

A. salmonicida was grown in TSB at 22°C for 12 h with continuous shaking. The bacterial 

suspension was washed three times, opsonised with trout serum and adjusted to the 

desired concentration in L-15 plus 5% FCS as described in section 2.8.2. Macrophage 

monolayers were exposed to a ratio of 1 macrophage to 20 bacterial cells at 19°C. After 5 

h, percentage of bacteria killed was quantified as described in section 2.11. 

A. salmonicida clearance in vivo 

A. salmonicida was grown in TSB at 22°C overnight and adjusted spectrophotometrically 

to a concentration of 3.2x108 CPU rnl-I (OD610= 1.24 in TSB). This bacterial suspension was 

diluted in saline to obtain a suspension of 1.0x10s CPU rnl-t
, as challenge dose, and the 

concentration confirmed by viable plate counts .. 

Fish were lightly anaesthetised with 2.5 % benzocaine and 200 III of 1.5x10~ CFU 

rnl-I were injected intra peritoneally into each fish. After 6, 12, 24, 48 and 72 h, samples 

consisting of spleens and blood from four fish per tank, totalling eight control and eight 

confined fish, were taken and processed to quantify viable A. salmonicida cells as 

described in section 2.12. 

Statistical analysis 

Comparison between mean values was conducted by the Student t-test unless otherwise 

stated. After confirming that mean values from duplicate tanks of the same treatment 

were not significantly different, they were pooled into one group for comparison 

between control and confinement treatments. Statistical differences within control and 

confinement groups during the time-course study following confinement were 
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investigated by the repetitive measurements one-way analysis of variance and Student

Newman-Keuls multiple comparison test. Normality and homogeneity of variance were 

confirmed before any parametric test was applied. When normality failed, the 

logarithmic transformation was performed. All percentage values were normalised by 

square root arcsine transformation. When transformed data were still not normal, 

ANOVA on ranks was applied. Statistical tests were performed with SigmaStat™ 1.0 

aandel Scientific) and in all cases p<0.05 was the accepted significance level. Regression 

was also used to analyse bactericidal capacity of macrophages in vitro. 

Differences in the relative risk of viable A. salmonicida persistence in the spleen of 

infected fish were investigated using the software EPI-INFO 6.04. 
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5.3 Results 

Feeding behaviour and mortalities 

In all experiments, fish accepted the RDA and no morbidity or mortalities were observed 

throughout the experiments. Trout injected ip with LPS accepted the RDA 6h after 

injection and continued to do so for 15 days, when all fish were sacrificed. 

Haematology 

Single confinement induced a significant increase in plasma glucose concentration as 

compared with control animals in all experiments. However, glucose concentration in 

the plasma of fish subjected to repeated confinement for six consecutive days was not 

significantly different from control fish (Table 5.1) 

Table 5.1 Plasma glucose concentration in confinement experiments 

Control Stress 

· Single confinement 4.40 ± 0.67 8.49 ± 1.43 

Single confinement + LPS 4.42 ± 0.72 6.05± 1.14 · 
Repetitive confinement (1 st day) 4.71 ± 1.36 · 9.05 ± 2.59 

Repetitive confinement (last day) 5.15 ± 1.20 6.76± 3.22 

Data are expressed as mean nmol glucose r1 ± sd .• indicates significant difference respect 

to control (p<0.05). n=6 (n=5 in single confinement + LPS experiment). 
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A significant increase in neutrophil numbers in fish confined for six consecutive days 

was observed. No other haematological parameter was significantly altered by 

confinement (table 5.2). 

Table 5.2 Haematological parameters in control and confined fish 

A ACHso PCV PBL L T N M 

Day-1 

Control 1.13±O.12 4l.6±6.62 1.66±O.45 9.31±.3.20 5.41±1.32 2.10±O.7l 1.85±1.Sl 

Confined 2.25±1.15 44.2±6.0S 1.39±O.40 7.42±2.61 4.71±O.11 1.61±O.64 1.88±1.46 

Day+1 

Control 3.25±O.72 43.7±6.95 1.46±O.43 7.82±2.61 5.l0±1.60 1.45±O.57 2.03±1.40 

Confined 3.l2±O.55 46.4±6.36 1.37±O.43 6.30±1.21 5.81±1.89 1.52±O.47 2.80±O.87 

Day +2 

Control O.6S±O.11 51.1±7.00 1.45±O.39 7.62±2.69 5.l2±1.80 1.64±O.77 1.66±1.58 

Confined O.68±O.O7 48.0±7.60 1.60±O.52 8.71±3.20 5.30±1.99 1.72±O.86 1.70±1.58 

Day +4 

Control 5.35±O.57 42.0±8.ll 1.48±O.46 8.60±3.0l 4.3l±2.20 1.65±O.98 1.94±1.57 

Confined 5.91±1.06 44.8±7.79 1.57±O.61 8.60±3.03 5.13±3.10 1.80±1.15 1.71±1.87 

Day +8 

Control 9.92±3.41 45.6±7.82 1.69±O.57 8.92±2.80 6.09±3.82 1.72±O.69 2.14±1.S1 

Confined 9.02±1.34 43.6±6.18 1.53±O.46 8.11±3.20 5.00±1.91 2.01±1.09 2.l9±1.68 

Day +16 

Control 3.23±1.53 44.8±6.36 1.56±O.52 8.51±2.84 5.61±2.50 1.33±O.26 1.32±1.23 

Confined 4.56±2.13 44.8±6.18 1.73±O.67 9.32±4.30 6.51±2.40 1.28±O.57 1.92±1.67 

8 ACHso PCV PBl l T N M 

Control 5.65±2.37 33.3±2.75 2.57±O.99 19.4±O.61 4.76±2.l0 1.33±O.99 4.40±2.20 

Confined 4.64±1.24 35.6±5.41 4.37±1.50 26.5±O.46 4.03±1.74 4.15±1.96* 6.08±3.61 

A, after single confinement; confinement took place at day O. B, after repeated confinement. 

Results are expressed as mean ± sd (n= 8). ACHso, units of alternative complement 

haemolysis mrl (X102); PCV, haematocrit; PBl, leukocytes mrl (x10\ l, Iymphocytes mrl 

(x106
); T, thrombocytes mrl (X106); N, neutrophils mrl (x106

); M, monocytes mrl (x105). No 

significant differences (p<O.OS) were found between control and confined animals at any 

sampling time, except for neutrophil counts in repeatedly confined animals C). 
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Head kidney macrophage activity 

Single confinement did not significantly modulate macrophage phagocytic activity (table 

5.3), even when results obtained at different times after confinement were pooled and 

compared. 

Table 5.3 Phagocytosis of A. salmonicida by head kidney macrophages from control and 

confined fish 

Phagocytic index Phagocytosis ratio 

Control Confined Control Confined 

Day -1 0.804 ± 0.225 0.633 ± 0.193 51.28 ± 15.29 45.34 ± 16.79 

Day+1 0.711 ± 0.146 0.594 ± 0.169 46.39 ± 13.66 39.06 ± 11 .36 

Day +2 0.828 ± 0.187 0.646 ± 0.175 42.40 ± 12.77 34.75 ± 15.97 

Day +4 0.810 ± 0.177 0.634 ± 0.182 40.71 ± 12.17 32.66 ± 15.01 

Day +8 0.786 ± 0.207 0.788 ± 0.210 48.87 ±14.53 49.20 ± 9.02 

Day +16 0.741 ±0.315 0.716 ± 0.280 41 .87 ± 11 .87 45.74 ± 13.47 

Confinement took place at day O. Results are expressed as mean ± sd (n= 8) . No significant 

changes were observed between control and confined animals at any sampling time. 

Phagocytosis of SRBC by macrophages was significantly lower after repeated 

confinement as compared with control fish (figure 5.1). 

Figure 5.1 Phagocytosis of SRBC by head kidney macrophages from control and repeatedly 

confined animals 

A, phagocytosis index; B, phagocytosis ratio (%). Results are expressed as mean value ± sd 

(n=8). * indicates significant difference (p<O.05). 
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Production of intra- or extra-cellular superoxide anion triggered by PMA was not 

significantly modulated by single confinement. Furthermore, no significant differences 

were observed when the activity of macrophages stimulated with MAF plus LPS in vitro 

was compared between single confined and control fish. Even when results from 

samples taken at 24 h, 4, 8 and 16 days were pooled, no significant differences were 

observed between confined and control animals. There was, however, a non-significant 

increase in extracellular superoxide production and an initial decrease of PMA-triggered 

NBT reduction after confinement (table 5.4). 

Table 5.4 Respiratory burst by head kidney macrophages from control and confined fish 

PMA+ PMA· 

A Control Confined Control Confined B Control 

Day -1 0.067±O.035 0.060±0.O13 O.017±O.OOS 0.020±O.006 Day -1 2.S2±0.49 

Day +1 0.045±O.024 0.029±O.008 0.014±0.005 0.016±O.005 Day +1 2.76±0.51 

Day +2 0.062±O.035 0.052±O.023 0.011±O.007 0.Q17±0.009 Day +2 1.14±0.48 

Day +4 0.044±O.029 0.053±O.023 0.Q19±O.012 0.022±O.010 Day +4 1.79±0.52 

Day +8 0.O47±O.027 0.057±O.025 0.O11±O.007 0.O16±O.006 Day +8 2.73±O.79 

Day +16 0.O57±0.032 0.074±O.033 0.O16±O.010 O.024±O.013 Day +16 2.00±0.84 

PMA+ PMA· 

C Control Confined Control Confined 0 Control 

Day -1 0.167±O.079 0.132±O.029 0.O33±0.012 0.045±O.009 Day -1 6.92±1.28 

Day +1 0.130±O.068 0.084±O.024 0.025±O.009 0.033±O.007 Day +1 7.08±0.98 

Day +2 0.136±O.O30 0.104±O.023 0.070±O.021 0.058±O.013 Oay+2 2.81±0.48 

Day +4 0.128±O.045 0.116±O.026 0.044±O.016 0.032±O.011 Oay+4 4.06±1.17 

Day +8 0.143±O.061 O.173±O.076 0.055±O.034 0.074±O.036 Oay+8 7.03±2.03 

Day +16 0.170±O.096 O.212±O.094 0.082±O.051 0.107±0.056 Day +16 6.09±2.55 

A and C, reduction of NBT; Band 0, production of extracellular superoxide by macrophages 

from control and confined trout. A and B, unstimulated macrophages; C and 0, 

macrophages stimulated with MAF + LPS. Confinement took place at day O. Results are 

expressed as mean values ± sd (n= 8). Data on extracellular superoxide is 60 minutes after 

addition of PMA. No significant differences were found between control and confined fish. 
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Similarly, LPS challenge after confinement did not induce any significant 

difference in the respiratory burst activity between experimental and control animals 

(table 5.5). A trend in decreased PMA-triggered intracellular 0; production and 

increased extracellular O2" generation was, however, observed in macrophages from 

single confined animals. 

A 

B 

Table 5.5 Respiratory burst by head kidney macrophages from control and confined fish 

challenged with LPS 

PMA+ PMA· 

Control Confined Control Confined 

0.188 ± 0.106 0.160 ± 0.070 0.028 ± 0.018 0.041 ± 0.022 

Control Confined 

3.35 ± 0.81 4.22 ± 0.76 

A, reduction of NBT; B, production of extracellular superoxide, by macrophages from control 

and confined trout challenged with LPS in vivo. Results are expressed as mean ± sd (n= 5). 

Data on extracellular superoxide is 60 minutes after addition of PMA. No significant 

differences were found between control and confined fish. 
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In contrast, this pattern of respiratory burst modulation was observed to be 

statistically significant in macrophages from repeatedly confined animals (figure 5.2). 

Macrophages isolated from repeatedly confined fish had a significantly increased 

extracellular superoxide and decreased intracellular superoxide productions. The same 

pattern was observed when macrophages were stimulated in vitro with MAF plus LPS 

before assaying for respiratory burst. 

A 

!!2 6 - A- control 
Q) 

-0- confined u 5 
'" 0 - A- control (MAF+LPS) x 4 
C\J _ - confined (MAF+LPS) r .... 3 Q) 
c. I N 2 
0 1-=----1-'0 
E -- - ----A----
c: 0 

0 5 10 15 30 60 90 
Time after PMA (min) 

B 

!!2 0.5 
Q) O PMA+ 
u 0.4 

'" PMA-0 .- 0.3 x 
C\J .... 

0.2 Q) 
c. 
0 
;;; 0.1 

0 
0 0.0 

control confined control confined 
(MAF+LPS) (MAF+LPS) 

Figure 5.2 Respiratory burst of head kidney macrophages from control and repeatedly 

confined animals. 

A, production of extracellular superoxide (n=8). Results are expressed as mean values ± sd. 

Significant differences between control and confined animals were observed from 15 

minutes after addition of PMA (p<O.05). B, reduction of NBT (n=8). Results are expressed as 

mean values ± sd. In graph B, indicates significant differences between control and 

confined groups (p<O.05). In all cases, MAF+LPS induced a significantly higher amount of 

superoxide. 
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Nitrite was not detected in any of the supematants assayed. The lowest 

concentration of nitrite detected in the serial dilutions of NaN02 was 2.5 nmol/well. 

Incubation of macrophages from repeatedly confined animals with serum-opsonised 

A. salmonicida for 5 h resulted in killing of bacterial cells. Macrophages from confined 

animals showed a significantly decreased capacity to kill A. salmonicida compared with 

control macrophages (Figure 5.3). Conversion of MTT to formazan by suspensions 

containing 25 %, 50 % and 90 % of the bacterial challenge dose was directly related to 

CFU ml-1 (r2= 0.979; p<0.05). 

25 

20 T 
Cl 

:§ 15 T :i: 10 
~ I I 
0 

5 

0 
Control Stress 

Figure 5.3 Killing of A. salmonicida by head kidney macrophages from control and 

repeatedly confined animals. 

Results are expressed as mean values ± sd (n=8). • indicates significant differences 

(p<O.05). 
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A. salmonicida clearance in vivo 

Viable A. salmonicida were recovered from the spleen from 6 h after ip injection in both 

control and confined groups. Bacteria were entrapped and/ or multiplied quickly in this 

organ in both groups as shown in figure 5.4. There was a high variation in A. salmonicida 

CFU g-l spleen within groups at all sampling times (coefficient of variation ranged from 

84.5% to 156%) and the increase in CFU in spleens from confined fish was found not to 

be statistically significant. Confinement did not induce increased relative risk of viable 

A. salmonicida persistence in the spleen compared to control fish either (results shown in 

appendix 2). No viable bacteria were recovered from the blood of infected fish at any 

sampling time. 

1e+7 
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Ql 
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-;- 1e+3 
Cl 
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(.) 

1e+1 
6 12 24 48 72 

Time after challenge (h) 

Figure 5.4 Clearance of A. salmonicida by spleens of control and repeatedly confined 

animals. 

Results are expressed as mean values ± sd (n=8). Fish were intraperitoneally challenged 

with 2x10
4 

CFU. 

Chapter 5: Immunomodulation by confinement 119 



5.4. Discussion 

Elevated plasma glucose concentration in response to aquaculture-associated stressors 

has been extensively reported (example, Iwama et al., 1995). This elevation has been 

shown to be mediated by glycolysis and/or glycogenolysis due, at least in part, to 

catecholamine and possibly cortisol release during the stress response (Pankhurst and 

Sumpter, 1997). In this study, plasma glucose concentration was significantly increased 

by single confinement in all experiments. However, a non-significant elevated glucose 

concentration was observed in plasma of animals subjected to repeated daily 

confinement. This trend in plasma glucose concentration has also been reported in sea 

bream following a 16-day period of repeated acute stressor, although plasma cortisol 

concentration was significantly increased in fish subjected to the stressor throughout the 

experimental period (Sunyer et aI, 1995), suggesting that no physiological adaptation 

took place. Although confinement induced a stress response in the present study, it was 

not known whether physiological adaptation to repeated confinement occurred since no 

plasma cortisol or other plasma indicators of stress were measured. The inability to 

maintain significantly higher plasma glucose concentrations during extended periods of 

confinement might be due, at least in part, to the animal switching from glycogenolysis 

to gluconeogenesis when hepatic glycogen reserves are depleted (Vijayan et al., 1997; 

Wendelaar Bonga, 1997). However, the plasma glucose of carp remained significantly 

higher in animals subjected to a crowding stress for 30 days (Yin et al., 1995). 

It has been reported that acute physical stressors induce several cellular and 

immunological changes in peripheral blood of fish. Amongst these, neutrophilia and 

lymphocytopenia have been most extensively reported (example, Ellsaesser and Clem, 

1986). Reduced serum complement haemolytic and bactericidal activity also have been 

demonstrated following confinement (Yin et al., 1995) and handling (Sunyer et al., 1995). 
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In this study, however, only neutrophilia, amongst all haematological parameters tested, 

was observed to be significant following repeated daily confinement. 

Results obtained in the present experiments showed that modulation of head 

kidney macrophage antimicrobial mechanisms depended on the frequency of 

confinement. Nitrite, the main product of nitric oxide spontaneous turnover, was not 

detected in any of the macrophage supernatants under any conditions tested. These 

results are similar to previous observations on nitric oxide production (chapters 3 and 4), 

where different strategies of macrophage stimulation in vitro or in vivo did not yield 

detectable nitrite production. In contrast to mouse macrophages, human macrophages 

require a previous infectious, inflammatory or autoimmune disease process in vivo to 

switch on NO production in vitro (reviewed by MacMicking et al., 1997), and this may 

also be the case of rainbow trout macrophages. 

Phagocytosis of foreign particles by fish macrophages has been reported to be both 

increased (Peters et al., 1991) and suppressed (Narnaware et al., 1994) by aquaculture

associated stressors. In this study, significant modulation of phagocytic activity 

depended on the frequency of confinement. SRBC engulfment by head kidney 

macrophages was not significantly modulated by single confinement of fish at any 

sampling time, not even when results from all control and all confined animals were 

pooled into two groups and compared. A non-significant depression in both phagocytic 

index and phagocytosis rate was observed, however, following a single confinement. 

This depression was statistically significant when fish were subjected to repeated 

confinement for six consecutive days. 

Likewise, head kidney macrophage respiratory burst activity was significantly 

modulated by repetitive confinement but not by single confinement at any sampling 

time. However, in the single confinement experiments, the production of PMA-triggered 

extra- and intra-cellular superoxide anion was significantly decreased two days after 

confinement. This effect was not due to confinement since it was observed in both 
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control and experimental animals and differences between the two groups were not 

found to be significant. Although the cause was not determined, J0rgensen et al. (1993b) 

also observed significant modulation of extracellular production of superoxide within 

the control group in a time-course study. Since, in our study, significant differences 

within groups occurred at one sampling time only, technical error on that sample may be 

the most likely cause. Significant differences between control and confined animals were 

not observed even when results from samplings at I, 4, 8 and 16 days after confinement 

were pooled in one control and one confined group and compared. However, a tendency 

of increase in extracellular superoxide and decrease in intracellular superoxide 

production triggered by PMA was observed. This trend, as in results from phagocytosis, 

was found to be statistically significant when fish were exposed to daily repeated 

confinement. 

Results from studies on stimulation of macrophages with MAF plus LPS in vitro 

showed that macrophages from single confined animals were able to produce 

superoxide anion to the same extent as control macrophages. This response was also 

observed in macrophages from confined animals and subsequently challenged with LPS 

in vivo. LPS challenge in vivo has been shown to exert multiple immunological (Ingram 

and Alexander, 1980) and physiological (Balm et al., 1995) effects on teleost fish. 

However, unlike mammalian species, where even low doses of LPS are associated with 

fatal septic shock (Easmon, 1990), challenge of brown trout with high doses of bacterial 

LPS did not induce mortality or loss of appetite (Ingram and Alexander, 1980; Balm et al., 

1995). In this study, although direct comparisons are not possible, trout injected with 

LPS showed a significant increase in respiratory burst activity compared with non

injected animals from the same fish stock. Therefore, present results on 

immunostimulation, survival and feeding behaviour after high LPS dose injection are 

similar to those reported in the literature (Ingram and Alexander, 1980; Balm et al., 1995). 

These results altogether underline the ability of rainbow trout to mount an adequate 
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respiratory burst process following a single stressor not only under resting conditions 

but also after a considerable challenge with LPS in vivo, or stimulation in vitro. 

As in the studies on modulation of macrophage activity by confinement, the 

percentage of A. salmonicida killed in vitro was affected by the extent of confinement. 

Phagocytosis and respiratory burst were not significantly modulated by single 

confinement and neither was A. salmonicida killing. However, repetitive confinement 

induced significant reduction of killing capacity by macrophages in vitro, and this was 

correlated with decreased phagocytic and intracellular respiratory burst activities 

observed in those cells. 

Increased production of extracellular superoxide and other reactive oxygen 

intermediates in vivo have been associated with a range of physiopathological and tissue 

injuries (reviewed by Gille and Sigler, 1995) as well as alteration of immune competence 

(Koner et al., 1997) in mammalian species. Therefore, assuming similarities between 

mammalian species and rainbow trout, increased extracellular superoxide anion 

production caused by repeated confinement in this study, may play an important role in 

the pathological and immunological consequences associated with stress. 

In this study, viable A. salmonicida were intraperitoneally injected into fish and 

CFU were recovered from the spleen from 6h after injection (first sampling time). As in 

experiments described in chapter 4, numbers of A. salmonicida CFU g-! spleen increased 

with time, indicating growth of A. salmonicida in spleen and/ or effective clearance from 

the circulatory system. Increased CFU numbers in spleens from repeatedly confined 

animals were observed from 24 h after infection, suggesting an impaired 

killing/clearance capacity as compared with control animals. However, these differences 

were not statistically significant. Similarly, the relative risk of viable bacterial persistence 

in spleen was not modified by repetitive confinement. The variation in recovered 

numbers of CFU from spleen amongst individuals from the same experimental group 

was very high at all sampling times (mean coefficient of variation was 125.41 %) and 
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viable bacteria were not recovered from all animals. Therefore, significant differences 

would be very difficult to demonstrate. This high variation in the bacterial clearance 

from spleens might be also part of the reason for the high variation found in challenge 

trials where mortalities are quantified (Nordmo, 1995). 

In conclusion, results from this study indicate that rainbow trout were able to 

mount an adaptive stress response following confinement since plasma glucose 

concentration was elevated. However, no loss of appetite or morbidity was observed 

throughout the experiment. The immune response differed depending on the extent of 

confinement. Innate immune mechanisms assayed were only significantly altered after 

repetitive confinement, indicating that the adaptive response following single 

confinement did not adversely affect the immune parameters tested, while that to 

repeated confinement did have a detrimental effect. Certain stressful events may render 

animals more susceptible to opportunistic infections not only through 

immunosuppression but also by self-damage induced by increased production of 

extracellular reactive oxygen intermediates. 

Finally, having identified a confinement strategy inducing immunomodulation, 

and an immunostimulation regime through the use of peptidoglycan in-feed (see chapter 

4), further experiments focused on the prophylactic use of peptidoglycan to ameliorate 

the impact of confinement on rainbow trout innate immune condition (see chapter 6). 
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6.1 Introduction 

Reducing the impact of infectious diseases is central to successful aquaculture. As in 

farming of other animals, strategies of livestock husbandry and disease treatment have 

been designed for this purpose. Vaccines have been developed against some fish 

pathogens. However, they are not available for many opportunistic bacteria present in 

the water such as motile aeromonads, pseudomonads and some Vibrio spp. 

Opportunistic pathogens can cause substantial losses in fish populations when animals 

become immunocompromised due to environmental stress or at times of physiological 

change or alterations in farming practice (Wedemeyer and Goodyear, 1984; Wedemeyer, 

1996). In such situations, attempts are usually made to improve holding conditions and, 

in addition, oral antibiotic treatment may be applied. However, antibiotic prophylaxis is 

strongly contra-indicated in aquaculture to help control emergence of drug resistant 

strains and, moreover, the range of antibiotics licensed for therapeutic use is limited. 

Strategies based on genetic selection are being investigated to select stocks more 

able to resist stress-associated bacterial diseases. Selection of salmonids for high or low 

stress response has not been very successful in improving survival in face of a range of 

pathogens. In fact, some pathogens induced higher mortalities in low stress responders 

(Fevolden et al., 1992; Fevolden et al., 1994). There is still scope for improvement using 

genetic selection, but other strategies based on stimulation of host immune response 

have been proposed as a means to counteract stress-mediated immunosuppression in 

aquaculture. 

Although different substances including microbial components, vitamins and 

minerals have been shown to enhance fish immune response (reviewed in Blazer, 1991; 

Secombes and Fletcher, 1992; Raa, 1996), their potential to compensate for or prevent 

immunosuppression due to stress has been less extensively studied. High levels of 

dietary vitamin C have been shown to enhance immune function in salmonids (Verlhac 
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and Gaboudan, 1994) and it has been suggested that feeding vitamin C to fish larvae 

increased survival to bacterial challenges after stress (Merchie et al., 1997). However, 

conflicting evidence has also been produced since suppression of rainbow trout kidney 

macrophage activity (Thompson et al., 1993) and diminished resistance of channel catfish 

to E. ictaluri (Li et al., 1998) associated with confinement were independent of the vitamin 

C status of the fish. Prophylactic use of oral ~-glucan has been successful in improving 

recovery of peripheral phagocyte function after transportation of rainbow trout, which 

then showed increased survival against a spontaneous, uncontrolled, infection with F. 

columnaris Geney et al., 1997). 

Chapters 4 and 5 identified dietary peptidoglycan and confinement as factors that 

induced modulation of macrophage function. The present study was carried out to 

investigate whether the alteration of macrophage function associated with confinement 

could be limited or prevented through prophylactic peptidoglycan administration. The 

ability of fish to coordinate innate defence system to kill challenge bacteria also was 

investigated by injecting A. salmonicida into treated fish and measuring bacterial 

clearance from the spleen. 

6.2 Materials and methods 

Animals and bacterial strain 

All-female rainbow trout were purchased from Trossachs Trout Farm and acclimatised 

to aquarium conditions at 11.5 ± 0.5 °C for a period of 6 weeks as described in section 2.2 

before experiments begun. 

Aeromonas salmonicida strain FCS (details given in Inglis et al., 1991) was used in all 

experiments in this study. Preliminary studies on viable bacterial persistence in the 

spleen and blood of fish involved the use of A. salmonicida B95179, Vibrio anguillarum 

NCIMB 6 and A. hydrophila NCIMB 1134 as challenge organisms. 
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Experimental design 

After acclimatisation, groups of 50 fish individually weighing 175 ± 9.3 g were placed in 

six similar 370 I fresh water flow-through tanks with aeration. Water temperature was 

kept constant at 11.5 ± 0.5 °c throughout the experiment. 

In order to investigate the potential prophylactic use of peptidoglycan in feed prior 

to stressful situations, four different treatments were applied: (1) fish in one tank were 

subjected to 'control treatment', which involved feeding on the control diet with no 

disturbance of the animals; (2) fish in another tank were fed on the peptidoglycan diet 

and left undisturbed ('peptidoglycan' treatment); (3) fish in another two tanks were fed 

on the control diet and subjected to repeated confinement ('confinement' treatment); (4) 

finally, fish in the remaining two tanks were fed on the diet containing peptidoglycan 

and subjected to repeated confinement (,peptidoglycan plus confinement' treatment). 

Diets were prepared and stored as described in section 4.2. Floating pellets were 

chosen to allow feeding to be more easily monitored. The experimental diet contained 

0.05 % peptidoglycan (w /w). Fish were fed daily to the manufacturer's RDA (Ewos 

Select No. 40; 1.44 % bw) on experimental or control diets. On the days that confinement 

was applied fish were fed only once daily 5-7 h after confinement. As it can be seen in 

figure 6.1, four weeks after the beginning of feeding treatments, trout were sampled to 

quantify PBLs and assess head kidney and peritoneal macrophage activity. In order to 

elicit migration of macrophages to the peritoneal cavity, 2 m1 of filter-sterilised 8 % 

casein solution in saline were injected intraperitoneally into 12 fish per tank six days 

before sampling. Injected fish were then marked and returned to their tanks. After this, 

animals in the 'confinement' and 'peptidoglycan plus confinement' treatment tanks were 

subjected to a confinement stressor, which was repeated daily for six days, as described 

in section 5.2. 
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Days after beginning of in-feed treatment 
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Figure 6.1 Experimental design to investigate potential prophylactic use of peptidoglycan in 

feed prior to stressful events. 

A, 'control ' treatment; B, 'peptidoglycan' treatment; C, 'confinement' treatment; 0 , 

'peptidoglycan plus confinement' treatment. • indicates days when confinement was applied. 
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Samples for measurement of plasma glucose concentration were taken 5 h after the 

onset of the first and sixth confinements from four fish in each tank, totalling four fish 

from 'control' treatment, four fish from 'peptidoglycan' treatment, eight fish from 

'confinement' treatment and eight fish from 'peptidoglycan plus confinement' treatment. 

Sampling for quantification of PBL cell types and head kidney macrophage activity 

took place on the 28th day after the beginning of experiments, and 30 minutes after the 

last confinement exposure where applicable. Samples consisted of eight fish per 

treatment; samples from treatments carried out in duplicate tanks consisted of 4 fish per 

tank. Samples for the assessment of peritoneal macrophage function were taken 4 h after 

and consisted of the same number of fish. 

Head kidney macrophages were assayed for their capacity to phagocytose, 

generate superoxide anion and kill A. salmonicida in vitro. Peritoneal exudate 

macrophages were assessed for superoxide anion production. 

As illustrated in figure 6.1, experiments were carried out sequentially so that all 

animals underwent treatment for the same period of time until sampling for 

haematology and macrophage activity. Following each sampling, the number of trout 

per tank was adjusted by removing fish from some of the tanks so that the number of 

trout in all tanks remained the same. 

The remaining fish which had not been previously injected with casein were used 

to investigate bacterial killing in vivo. Fish were injected with viable A. salmonicida 

intra peritoneally and six fish per treatment were sampled 5, 12, 24 and 48 h after 

injection; fish were bled, sacrificed and the spleens collected. Samples from treatments 

carried out in duplicate tanks consisted of 3 fish per tank. Fish were subjected to their 

respective treatment until A. salmonicida challenge, after which they were fed on 

commercial trout pellets at the RDA until the end of the experiment. 
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Haematology 

Haematocrit and PBL counts were determined in EDTA-treated blood as described in 

section 2.3. 

Quantification of plasma glucose concentration was performed as detailed in 

section 2.5. 

Isolation and culture of macrophages 

Macrophages from the head kidney and peritoneal cavity were enriched in suspension 

and monolayers on 96-well microtiter plates or 8-well glass slides prepared as described 

in section 2.7. Monolayers were then cultured at 19 cC in L-15 containing 5 % FCS and 

P /S and used within 12-18 h of preparation. P /S was not added in the culture medium 

for macrophage monolayers prepared to assess A. salmonicida killing in vitro. 

Macrophage monolayers were washed 3 times with cHBSS before use. 

Phagocytosis 

Opsonised sheep red blood cells were prepared and adjusted to the desired 

concentration as described in section 2.8.2. Freshly opsonised SRBC were used each time. 

The number of adherent macrophages from each fish was estimated in spare wells as 

described in section 2.7.3. Monolayers in 8-well glass slides were then incubated with 0.4 

m1 of diluted SRBC suspension in L-15 plus 5 % FCS to obtain an average ratio of 1 

macrophage to 5 SRBC. After 60 minutes at 19 cC, phagocytic index and phagocytosis 

ratio were calculated as described in section 2.8.1. 

Respiratory burst 

PMA-triggered reduction of cytochrome c was assessed to quantify generation of 

extracellular superoxide anion in 96-well microtiter plates as described in section 2.9.1. 

Superoxide dismutase was added to some of the wells to confirm specificity of the 

reaction. 
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Intracellular superoxide anion production was measured in 96-well microtiter 

plates as the reduction of NBT in the presence or absence of PMA as described in section 

2.9.2. 

All reactions were carried out in triplicate wells. Duplicate wells per fish and assay 

were used to count the number of macrophages per well and results adjusted to OD61o 

per 2xlOs cells or nmol 02' produced per 2xl05 cells for the NBT and cytochrome c assays, 

respectively. 

A. salmonicida killing in vitro 

A. salmonicida was grown in TSB overnight at 22 QC with mild continuous shaking. 

Bacteria were then washed three times in PBS and opsonised as described in section 2.8.2 

with the same serum stock as that used for opsonising SRBC. Bacteria then were washed 

three times in PBS and the concentration adjusted spectrophotometrically to lxl09 CFU 

ml·1 (OD
610

= 1.24). The bacterial suspension was diluted in L-15 containing 5% FCS to 

give a ratio of 1 macrophage to 20 A. salmonicida CPU, later confirmed by viable plate 

counts. Head kidney macrophage monolayers were then incubated with the bacterial 

suspension at 19°C. Five hours later, viable bacteria in the wells were quantified by the 

reduction of MTT and the percentage of bacteria killed calculated as described in section 

2.11. 

Detection of specific antibodies to A. salmonicida in serum 

The titre of antibodies specific to A. salmonicida in sera of rainbow trout was assessed by 

enzyme-linked immunosorbent assay (ELISA). Sera from six donor fish were extracted as 

described in section 2.4 and store frozen at -20 QC until analysed. Donor fish had not 

been previously exposed to A. salmonicida experimental infection or vaccination. A. 

salmonicida was grown in TSB and adjusted to a concentration of lxl0
9 

CPU ml'! in saline 

as described above. 96-well microtiter plates were coated with 50 J.ll of 0.05 % (w Iv) 

poly-L-Iysine in 0.05 M carbonate-bicarbonate buffer (pH 9.6). After 60 minutes, plates 
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were washed twice with low salt wash buffer (0.020 M Trizma base, 0.38 M NaCI, 0.05 % 

(v Iv) Tween 20 and 0.01 % (w Iv) Merthiolate in distilled water; pH 7.3). Supernatants 

were replaced with 100 ~l of 1x108 A. salmonicida CFU ml-1 in saline and plates incubated 

overnight in a humid chamber at 4 cc. Bacterial cells were then fixed by adding 50 III per 

well of 0.05% (v Iv) glutaraldehyde in PBS (0.02 M NaH2P04.2H20, 0.02 M 

Na2HP04.2~O, 0.15 M NaCI in distilled water; pH 7.2). After 20 minutes incubation at 

room temperature, plates were washed three times with low salt wash buffer and non

specific binding sites blocked with H20 2 and bovine serum albumin (BSA). For this 

purpose, each well was treated with 100 III of 10 % (v Iv) H20 2 in PBS for 1 h and washed 

three times with low salt wash buffer. Supernatants were then replaced with 250 III of 1 

% (w Iv) BSA and plates incubated for 2 h at room temperature before washing three 

times with low salt wash buffer. Wells were incubated with 100 ~l of serially diluted fish 

serum in PBS for 2 h at room temperature and washed 5 times with high salt wash buffer 

(0.02 M trizma base, 0.50 M NaCl, 0.1 % (v Iv) Tween 20 and 0.01 % (w Iv) Merthiolate in 

distilled water; pH 7.7), incubating for five minutes on last wash. Supernatants were 

then replaced with 100 III of first antibody (mouse IgG antibody specific to Atlantic 

salmon IgM; diluted 1/1000 in 1 % (w Iv) BSA in PBS) for 60 minutes at room 

temperature. Plates were washed five times with high salt wash buffer and supernatants 

replaced with 100 III of second antibody (rabbit antibody specific to mouse IgG labelled 

with horseradish peroxidase; diluted 1/1000 in 1 % (w Iv) BSA in PBS). After 60 minutes 

incubation at room temperature, plates were washed five times with high salt wash 

buffer, incubating five minutes on last wash. Supernatants were replaced with 100 III of 

chromogen solution (prepared by mixing 150 ~l of 42 mM 3'3'5'5'-tetramethylbenidine 

dihydrochloride in acetic acid diluted 1/2 with distilled H20 and 15 ml of 0.1 M citric 

acid, 0.1 M sodium acetate, 0.03 % (v Iv) H20 2 in distilled Hp; pH 5.4). After 10 minutes 

at room temperature, 50 ~l of 2 M H2S04 were added to each well to stop the reaction and 

the optical density of the reaction mixtures was read at 450 nm in a multiscan 
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spectrophotometer. ELISA was performed in triplicate wells for each test serum dilution. 

Negative controls consisted of wells with no bacteria, wells with bacteria and no first 

antibody, and wells with bacteria and no second antibody. All readings were blanked 

against wells treated with chromogen and stop solutions only. 

A. salmonicida clearance in vivo 

A. salmonicida was grown as described above and the bacterial suspension adjusted to 

give a concentration of 1x109 CFU ml-1 in TSB (00610= 1.24). This was diluted in saline to 

obtain a challenge suspension and the concentration confirmed by viable counts. Each 

fish received an ip dose consisting of 400 III of 2.3x105 A. salmonicida CFU ml-1
• Four fish 

per tank were sacrificed and spleens and blood sampled for viable bacteria 5, 12, 24,48 

and 72 h after injection as described in section 2.12. 

Statistical analysis 

Differences in individual mean values between different treatments were investigated by 

one way ANOV A and the Student-Newman-Keuls multiple comparison test. After 

confirming by the Student t-test that individual mean values from duplicate tanks of the 

same treatment were not significantly different, they were pooled into one group for 

analysis. Normality and homogeneity of variance were confirmed before any parametric 

tests were applied. Non-normal data underwent logarithmic transformation except 

percentage data which was transformed by the square root arcs in. When transformed 

data were still non-normal, one way ANOVA on ranks was applied. Statistical tests were 

performed with SigmaStat™ 1.0 and in all cases p<0.05 was the accepted level of 

significance. Regression analysis were also used to confirm linearity between A. 

salmonicida CFU and reduction of MTT. Differences in the relative risk of persistence of 

viable A. salmonicida in the spleen and blood were investigated using the software EPI

INF06.04. 
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6.3 Results 

Feeding behaviour and mortalities 

Trout in all tanks fed actively throughout the experiment and no pellets were observed 

floating on the water surface immediately after feeding. During dissection of fish, feed 

was observed in the guts of all sampled fish. No morbidity or mortality was observed 

during the experiment. 

Haematology 

Confinement of fish caused plasma hyperglycaemia compared with control treatment. 

However, differences were only statistically significant after the first confinement. 

Peptidoglycan in feed did not affect plasma glucose concentration (figure 6.2). 
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Figure 6.2 Plasma glucose concentration. 

Treatments were as for figure 6.1. Results are expressed as mean values + sd (n=6). Empty 

bars show plasma glucose concentration 5 h after first confinement or at the equivalent time 

for control and peptidoglycan treatments; solid bars, 5 h after sixth confinement or equivalent 

time. Different numbers or letters on bars indicate significant differences between treatments 

(p<O.05) 
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None of the treatments induced a significant effect on total or differential PBL 

counts. However, neutrophilia was observed in trout subjected to confinement or 

peptidoglycan plus confinement treatments and, to a lesser extent, in fish fed 

peptidoglycan (table 6.1). 

Table 6.1 Total and differential PBl counts. 

Treatment PBL L T N M 

Control 32.2 ± 11.1 24.3 ± 8.1 5.95 ± 2.92 1.66 ± 0.99 0.55 ±0.22 

Peptidoglycan 38.9 ± 17.1 29.2 ±15.1 7.05±3.84 2.52 ±1.70 0.25 ±a.07 

Confinement 41.7 ± 5.4 32.5 ±3.8 4.48 ± 1.93 4.61 ± 2.20 0.33 ± 0.19 

Peptidoglycan + 40.3 ±6.5 28.1 ± 2.0 6.97 ± 2.76 5.06 ± 5.70 0.29 ±0.23 confinement 

Treatments were as for figure 6.1. Data are expressed as mean values (X106
) mr1 ± sd 

(n=8). No significant differences were found between any treatment. PBl, total peripheral 

blood leukocyte counts; L, Iymphocytes; T, thrombocytes; N, neutrophils: M, monocytes. 

Head kidney macrophage activity 

Dietary peptidoglycan did not significantly modulate macrophage function, although 

the phagocytosis ratio was slightly increased after treatment. Confinement of rainbow 

trout induced a significant decrease in phagocytic activity, intracellular generation of 

superoxide anion and killing of A. salmonicida in vitro by kidney macrophages as well as 

enhanced production of extracellular superoxide. Prophylactic use of peptidoglycan 

treatment had a variable influence in compensating for the effects of repeated 

confinement on macrophage activity. Peptidoglycan did not significantly compensate for 

decreased phagocytic activity, intracellular production of superoxide anion and killing of 

A. salmonicida in vitro, although all these parameters were increased compared with 

confined fish held without peptidoglycan supplement (figures 6.3, 6.4A and 6.5 

respectively). The significant enhancement of extracellular superoxide anion production 
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by kidney macrophages from confined animals was significantly neutralised by feeding 

fish on the diet containing peptidoglycan, although, as it can be seen in figure 6.4B, it 

was still enhanced compared with macrophages from control animals. 
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Figure 6.3 Phagocytosis of SRBC by head kidney macrophages. 

Treatments were as for figure 6.1. A. phagocytic index; B. phagocytosis ratio (%). Results 

are expressed as mean values ± sd (n=8). Different numbers on sd bars indicate significant 

differences between treatments (p<O.05). 
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Figure 6.4 Respiratory burst activity of head kidney macrophages. 

Treatments are as for figure 6.1. A, reduction of NBT; results are expressed as mean values 

± sd (n=8). Different numeric or alphabetic characters on sd bars indicate significant 

differences between treatments (p<0.05). B, production of extracellular superoxide anion; 

results are expressed as mean values ± sd (n=8); significant differences were found from 60 

minutes after addition of PMA between confinement treatment and control, peptidoglycan 

and peptidoglycan plus confinement treatments only (p<0.05). 
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Figure 6.5 Killing of A. salmonicida by head kidney macrophages. 

Treatments are as for figure 6.1. Results are expressed as percentage of A. salmonicida 

killed ± sd after 5 h incubation at a ratio of 1 macrophage:20 bacterial cells (n=8). Different 

numbers on sd bars indicate significant differences between treatments (p<O.05). 

Peritoneal inflammatory macrophage activity 

In-feed administration of peptidoglycan induced significant enhancement of PMA-

triggered respiratory burst by inflammatory macrophages (figure 6.6). 

Confinement of rainbow trout resulted in variable modulation of inflammatory 

macrophage respiratory burst. NBT reduction was significantly depressed while 

production of extracellular superoxide anion was significantly increased (figure 6.6). 

Although the use of peptidoglycan in feed did not have any regulatory effect on 

the confinement-mediated increase in extracellular production of superoxide anion, it 

compensated the suppressive effect of confinement on NBT reduction by macrophages 

(figure 6.6). 
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Figure 6.6 Respiratory burst activity of inflammatory peritoneal macrophages. 

Treatments are as for figure 6.1. A, reduction of NBT; results are expressed as mean values 

± sd (n=8). Different numeric or alphabetic characters on sd bars indicate significant 

differences between treatments (p<0.05). B, production of extracellular superoxide anion; 

results are expressed as mean values ± sd (n=8); significant differences were found from 30 

minutes after addition of PMA between control treatment and peptidoglycan, confinement 

and interaction treatments only (p<O.05). 
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Bactericidal activity in vivo 

Preliminary experiments showed that no viable bacteria were recovered from spleen or 

blood 24 h after challenge with 104
, 105 or 106 CFU of A. salmonicida B95179, A. hydrophila 

NCIMB 1134 or V. anguillarum NCIMB 6. Viable A. salmonicida FCS strain cells were 

recovered from spleen after challenge and for this reason, it was chosen for this study. 

No specific antibodies to A. salmonicida in sera of donor fish were detected by ELISA. 

Viable A. salmonicida cells were recovered from spleens of most inoculated fish at 

all sampling times. Numbers of A. salmonicida CFU gol of spleen decreased rapidly with 

time suggesting that bacterial cells were effectively killed or rendered non-culturable 

(figure 6.7). Repeated confinement of the fish, peptidoglycan administration or 

combination of the two did not, however, alter bacterial CFU counts from spleens or the 

number of spleens which became infected (results shown in appendix 3). No CFU were 

recovered from blood of injected fish at any sampling time. 
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Figure 6.7 A. salmonicida CFU in the spleen of challenged fish. 

Results are expressed as mean values ± sd (n=6). Each fish received a dose of 9.2x104 

CFU. No significant differences were observed between any treatment. 
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6.4 Discussion 

The results here reported on immunomodulation by oral treatment with peptidoglycan 

for a 4-week period are similar to those reported in chapter 4. Total and differential PBL 

counts and head kidney macrophage activity were not significantly affected by oral 

peptidoglycan. However, inflammatory peritoneal macrophage activity, as indicated by 

extracellular superoxide anion generation, was significantly enhanced. Furthermore, 

results from this experiment showed that intracellular production of 0; by peritoneal 

macrophages was also augmented in response to dietary peptidoglycan. 

Likewise, results obtained on the modulation of plasma glucose concentration and 

innate immune activity by daily repeated confinement of rainbow trout were consistent 

with those of chapter 5. Confinement induced a stress response as indicated by plasma 

hyperglycaemia compared with control treatment. Head kidney macrophage activity 

was variably modulated by repetitive confinement. While phagocytosis of SRBC and 

production of intracellular 0; were depressed, generation of extracellular O2• was 

increased after repetitive confinement. The finding that phagocytosis and intracellular 

reactive oxygen species are important in macrophage killing of invading microorganisms 

(Secombes and Fletcher, 1992) was also observed in the present work through the 

significant reduction in killing of A. salmonicida in vitro by macrophages from confined 

fish. In addition to results in chapter 5, the experiments described here showed that 

modulation of 0; generation by peritoneal macrophages in response to repeated 

confinement followed a similar trend to that of kidney macrophages. These may have 

important consequences for oxygen dependent microbial killing and damage to self. 

Increased superoxide production is associated with phagocyte-mediated tissue damage 

in mammalian species (Baggiolini and Wymman, 1990). On the other hand, an increased 

neutrophil count was observed in the blood of confined animals, although, in contrast 

with that reported in chapter 5, it was not statistically significant. This may be explained 
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by the fact that the variation in neutrophil numbers within control and within confined 

animals in this experiment was greater than the observed in chapter 5. 

Since hyperglycaemia was recorded and no mortalities or loss of appetite seen, an 

adaptive stress response appears to have been elicited during the six days that fish were 

subjected to repetitive confinement. This response, however, resulted in impaired 

activity of macrophages from different sources, namely those resident in the head kidney 

and the inflammatory cells in the peritoneal cavity. 

The serum hyperglycaemic response to confinement was independent of 

peptidoglycan treatment, indicating that dietary peptidoglycan did not prevent the 

stress response elicited by confinement. This observation was consistent with similar 

studies on the use of glucan Oeney et al., 1997) and vitamin C (Thompson et al., 1993; Li et 

al., 1998) as feed additives in rainbow trout, Atlantic salmon and channel catfish. 

Compensatory effects of in-feed peptidoglycan on confinement-mediated 

immunomodulation were therefore more probably achieved at a tertiary level 

(immunological) rather than at a secondary (physiological) level of the stress response. 

Dietary peptidoglycan limited the effects on macrophage function associated with 

stress, but the magnitude of the effect recorded depended on both the activity measured 

and source of macrophages. The confinement-mediated suppression of phagocytosis, 

PMA-triggered production of intracellular superoxide anion and bacterial killing by 

head kidney macrophages was not Significantly modulated by in-feed peptidoglycan 

treatment. Nevertheless, in peptidoglycan plus confinement treated fish, all these 

activities were slightly increased compared with results from fish subjected to 

confinement only. The enhanced production of extracellular superoxide anion by head 

kidney macrophages in response to confinement was significantly reduced by feeding 

fish on the peptidoglycan diet prior to confinement of animals. However, as it can be 

seen in figure 6.4B, extracellular 0; generation was still considerably higher than that in 

control fish. Since in-feed peptidoglycan alone did not affect head kidney macrophage 
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activity, this finding may suggest that peptidoglycan administration caused limitation of 

confinement-mediated over-production of extracellular 0; through regulatory 

mechanisms. However, these mechanisms were not able to elicit a similar effect on the 

other activities of renal macrophages. 

The prophylactic activity of peptidoglycan on stress-induced changes in the 

respiratory burst of inflammatory peritoneal macrophages was different to that of 

resident head kidney macrophages. Dietary peptidoglycan was able to significantly 

restore the reduced generation of intracellular 0; caused by confinement, although the 

resultant level was still lower than in control fish. However, in contrast to head kidney 

macrophages, the over-production of extracellular superoxide caused by confinement 

was not modified when fish were fed on the peptidoglycan-containing diet. 

Viability of A. salmonicida cells in the spleen of challenged fish was independent of 

the treatment applied. Since confinement caused significant depression of important 

macrophage bactericidal functions, it seems likely that the activity at which 

macrophages are able to kill A. salmonicida was not affected by confinement. 

Alternatively, other immune parameters that were not assayed may be important in A. 

salmonicida clearance in the spleen. These results underline the difficulties encountered 

when comparing individual specific immune activities with susceptibility of fish to 

laboratory-induced infections (Anderson et al., 1997). 

Very few published reports are available on the use of feed additives to 

compensate immunomodulation caused by stressful events in fish. Although 

peptidoglycan has been used as feed additive to enhance immune performance of fish 

(Matsuo and Miyazono, 1993; Itami et al., 1996), there are no available reports on its 

prophylactic use prior to controlled stressful conditions to the author's knowledge. Some 

work is, however, available on use of dietary ~-glucan. It has been reported that 

peripheral blood leukocytes from rainbow trout fed on different doses of fungal ~-glucan 

showed increased phagocytosis as well as intra- and extra-cellular superoxide generation 
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compared with cells from control fish Geney et al., 1997}. Dietary glucan in that study did 

not restore the immunosuppression of those parameters observed 2 h after 

transportation of the fish. However, macrophage function from treated fish recovered to 

a greater extent than that of control fish one week after the stressor. 

Results from the experiments here described showed that dietary peptidoglycan 

was able to compensate for the impairment of some macrophage functions caused by a 

common aquaculture-related stressor. This prophylactic effect was observed to occur to a 

greater extent than previous reports on dietary j3-glucan and vitamin C (Thompson et al., 

1993). Inflammatory macrophages play a fundamental role in combating foci of infection 

in a variety of organs (Secombes, 1996), and dietary peptidoglycan was able to restore 

diminished intracellular production of microbiocidal 0; by these cells. However, 

peptidoglycan was not able to do so in head kidney macrophages. This may have 

important consequences for successful prophylactic use of the immunostimulant since 

haemopoietic organs such as spleen and head kidney have been shown to be the main 

centres for the clearance of blood-borne antigens in rainbow trout (Alexander et al., 1983; 

Marsden et al., 1996). 

Therefore, these results taken together with those observed by Jeney et al. (1997) 

should be viewed as encouraging, although further laboratory and field experiments are 

required to accurately establish the role of dietary immunostimulants in the 

management of infections in stressed fish stocks. 
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7.1 General discussion 

7.1.1 Haematologieal and immune parameters investigated 

Preliminary work involved the screening of different immune assays for application in 

this study. Some of the assays investigated showed large individual variation between 

replicate fish and it was decided not to use them for that reason. These included serum 

lysozyme activity (as described by Ellis, 1990 and Siwicki and Anderson, 1993), 

intracellular production of superoxide anion in whole blood samples (as described by 

Siwicki and Anderson, 1993) and luminol-enhanced chemiluminescence response of 

head kidney macrophages to PMA. 

Chemiluminescence is a very sensitive assay of respiratory burst activity by 

phagocytes (Dahlgren et al., 1991) but available equipment, a liquid scintillation counter 

(Packard, England), was able to analyse only one sample at a time. The use of a 

microplate luminometer might have reduced within-group variation since all samples 

are read at once and this should be pursued when access becomes available. 

Lysozyme is of considerable importance in defence against certain bacteria in 

vertebrate species. Application of specific antibodies to quantify titres in serum and 

organs would provide complementary data to the highly variable results obtained with 

classical functional assays. 

C-reactive protein (CRP) is an important component of the innate defences against 

infection (Roberts, 1989b). Its concentration in serum rises during inflammation (Fletcher 

and Baldo, 1974), infection (Ramos and Smith, 1978) and immunisation (Kodama et al., 

1989). However, CRP has received little attention and further work is needed to 

investigate its role as indicator of immune competence. 

Plasma glucose concentration 

There was a low variation in glucose concentration within groups in all experiments. As 

commonly stated in the literature, increased plasma glucose concentration is a reliable 
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indicator of stress in rainbow trout subjected to a single confinement. However, after fish 

were confronted by the stressor on a daily basis, no significant differences between 

confined and control groups were observed. Quantification of other indicators of stress 

such as plasma cortisol, catecholamine(s) and lactate concentration would be beneficial 

in further investigations of physiological adaptation to the stressor. 

Peripheralleukocyte counts 

Total and differential peripheral blood leukocytes can be readily quantified, and 

neutrophilia as well as lymphocytopenia have been reported in the blood of fish 

subjected to a variety of stressors. In the present study, there was a large variation in 

peripheralleukocyte counts, particularly those of neutrophils, and their values were not 

significantly altered by any experimental procedure. Only in one out of the two 

experiments involving repetitive confinement, was a significant neutrophilia observed in 

the blood of confined animals. 

As suggested by Borregaard (1996), quantification of cell types in the blood is often 

of little relevance to immune status and functional aspects should be investigated. 

Although more laborious, cellular function studies on head kidney and inflammatory 

macrophages were conducted in the present study. 

Serum haemolytic activity 

Serum complement-mediated lysis of xenogeneic red blood cells has been reported to be 

affected by stress in sea bream (Tort et al., 1996) or ip glucan treatment in yellowtail 

(Matsuyama et al., 1992a). The results presented here, however, showed no significant 

differences between experimental and control fish, possibly due to large variation in 

ACH
50 

values within groups. However, since the microassay for haemolytic activity 

reported here allows simultaneous processing of numerous samples, ACH50 

quantification in rainbow trout should be carried out with a still higher number of 

individuals (in this thesis n=6 or 8). 
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Macrophage activity 

Three different aspects of macrophage effector function were evaluated: ingestion of 

target cells, production of microbiocidal substances and actual killing of bacteria. Since 

alteration of one activity was not necessarily correlated with the others, it is suggested 

that a range of macrophage assays should be carried out to evaluate the response of 

macrophages to experimental conditions. This was particularly necessary in the case of 

superoxide anion production. In most occasions, extra- and intra-cellular superoxide 

were affected in opposite directions by the experimental conditions. 

Quantification of phagocytosis by optical microscopy is subjected to some degree 

of inaccuracy since relatively few macrophages are examined (300 per sample) and some 

target cells may be counted as internalised when they are only attached or associated 

with the phagocyte membrane. Nevertheless, phagocytosis is a key event in macrophage 

killing and the variation in activity was not large within the same experimental groups. 

Efforts to quantify phagocytosis automatically based on fluorimetry and flow cytometry 

were made, but the technique finally used in this study was preferable overall due to 

poor access to equipment. Automation of measuring phagocytic activity should remain a 

priority in further studies. 

Quantification of bacterial killing by macrophages in vitro by the method described 

here was found to be reproducible with no large within-group variation. However, 

interpretation of results was sometimes difficult due to the low percentage of bacteria 

usually killed. Opsonisation of bacterial cells with specific antibodies may usefully 

increase the percentage killed and should be explored. 

7.1.2Immunostimulation by glucans and peptidoglycan 

All yeast (1~3),(1~6)-p-glucans and the bacterial peptidoglycan induced a dose 

dependent effect on macrophage intracellular superoxide anion generation when 

applied in vitro and significant differences were observed between the two types of 

substances (chapter 3). Peptidoglycan induced a maximum response over a wider range 
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of concentrations and this suggested that it might be more suited for in-feed 

administration due to differential feeding rates by different animals. Furthermore, 

production of hydrogen peroxide by macrophages was enhanced only by peptidoglycan. 

Pharmacological studies in vitro are often carried out in order to screen different 

test substances and doses. They are also used to obtain data on the effects of the test 

substance on the specific immune target (examples, Jeney and Anderson, 1993b; 

J0rgensen, 1994). Results in this study showed that the stimulation of macrophage 

activity by in vitro treatment with glucan and peptidoglycan did not occur when the 

substances were administered in the feed. Resident macrophages isolated from the head 

kidney of fish fed on different doses of peptidoglycan and yeast glucan over various 

periods of time did not show any significant change in activity compared with fish fed 

on control diet (chapters 4 and 6). Neither was there any difference detected in the 

haematological parameters tested. Likewise, recovery of viable A. salmonicida cells from 

the spleen of challenged fish did not differ between peptidoglycan treated and untreated 

fish (chapters 4 and 6). Inflammatory peritoneal macrophages did, however, display an 

enhanced respiratory burst associated with the application of immunostimulants orally 

or intraperitoneally. A similar peritoneal macrophage response to the immunostimulant 

Spirulina platensis administered in-feed has been reported in channel catfish (Duncan and 

Klessius,1996). 

No reports have been published on the fate of dietary particulate (1~3),(1~6)-J3-

glucan or peptidoglycan. Furthermore, MDP (the immunologic ally active component of 

peptidoglycan) has been shown to be rapidly excreted into the urine of mice and not 

trapped in lymphoid organs (Ladesic et al., 1993). Since head kidney macrophage activity 

was not enhanced by dietary stimulants, this would suggest that the tests substances did 

not accumulate in the head kidney and that the stimulatory activity of peptidoglycan on 

peritoneal cells may have been mediated by gut mucosal immune cells. Teleosts fish 

posses a diffuse but functionally distinct gut mucosal immune system (Zapata et al., 
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1996; Press, 1998). GALT cells may respond to dietary peptidoglycan by secreting 

cytokines which could affect immune functions in other body compartments, for 

example the peritoneal cavity. Mice GALT lymphocytes have been shown to be activated 

following in-feed glucan administration (Zunic et al., 1996) and peritoneal as well as 

alveolar macrophages showed an increased activity after oral glucan treatment of mice 

(Suzuki et al., 1990; Sakurai et al., 1992). In this case, screening test substances in vitro to 

study their direct effect on macrophage function may have limited value since they may 

not have access to sites where macrophages are found. Instead, assessment of the effect 

on macrophages of supematants derived from GALT cells isolated from animals given 

immunostimulant in the feed or stimulated in vitro may yield more comprehensive data. 

7.1.3 Immune response to stress 

Rainbow trout produced an adaptive stress response to confinement indicated by plasma 

hyperglycaemia but with no loss of appetite and no morbidity or mortalities throughout 

the experiment. Modulation of the immune parameters investigated was dependent on 

repetition of confinement. Single confinement did not modify any of the immune 

functions measured. Furthermore, macrophage activity was not Significantly modified 

by single confinement even when confined fish, or macrophages isolated from them, 

were challenged with LPS injection or stimulated with MAF plus LPS, respectively. 

Therefore, single confinement did not affect the ability of macrophages to increase their 

function in response. 

The immune response to six daily confinements was different however and results 

from the two experiments assessing immune activity after repetitive confinement were 

similar (chapters 5 and 6). Although increased plasma glucose concentration was not 

significantly different from control animals, all head kidney macrophage functions were 

significantly affected. Phagocytosis, production of intracellular superoxide anion and, 

pOSSibly as a result, killing of A. salmonicida by head kidney macrophages were all 

depressed while generation of extracellular superoxide was increased by repetitive 
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confinement. Superoxide anion production by inflammatory peritoneal macrophages 

showed a similar response. As discussed by Ottaviani and Franceshi (1996) and Dantzer 

(1997), these findings indicate that the stress response does not necessarily imply 

immunosuppression. Unregulated activation of some functions such as superoxide anion 

production may result in damage to self (Gille and Sigler, 1995) and may contribute to 

disease associated with the stress response and opportunistic pathogens. Some studies in 

fish have also shown variable modulation of different immune functions after stressful 

events (example Thompson et al., 1993), although no differential induction of extra- and 

intra-cellular superoxide anion generation during stress have been reported. 

7.1.4 Immune response to dietary peptidoglycan and confinement 

Peptidoglycan administered orally was able to prevent some of the effects of repeated 

confinement on macrophage activity. Peptidoglycan significantly reduced some of the 

extracellular superoxide generation by head kidney macrophages from these confined 

fish. However, extracellular superoxide formation in the group fed peptidoglycan and 

exposed to repeated confinement was still considerably (but not significantly) higher 

than that of cells isolated from non-confined trout and there would still have been the 

potential for damage to self in these animals. The immunostimulant did not, however, 

lead to modulation of the confinement-associated suppressive effects on head kidney 

macrophage phagocytosis, namely production of intracellular superoxide and killing of 

A. salmonicida in vitro. It is, therefore, doubtful if peptidoglycan in-feed had any 

significant effect on restoring the bactericidal capacity of kidney macrophages from 

repeatedly confined fish. 

The response of inflammatory macrophages to dietary peptidoglycan was different 

to that of kidney macrophages since the stimulant reversed the suppressive effects of 

repeated confinement on intracellular superoxide production. Extracellular superoxide 

production remained significantly higher in inflammatory macrophages from confined 

animals fed on the immunostimulant. 
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7.1.5 Clearance of Aeromonas salmonicida in vivo 

The competence of an integrated immune response after in-feed immunostimulant 

treatment and/or repeated confinement was evaluated through the persistence of viable 

A. salmonicida in the spleen and blood of fish up to 96 h after ip injection. Challenge 

experiments where mortalities of infected fish are recorded over a defined period of time 

have certain advantages in that more natural routes of infection may be studied. 

However, results are expressed as mortality or survival indexes and do not provide 

information on morbidity amongst survivors. More accurate and precise information on 

the development of infection may be obtained by quantifying viable bacteria present in 

target organs, tissues or blood. As natural A. salmonicida infections develop, there is 

septicaemia and bacterial colonisation of visceral organs, muscle and gills (Munro and 

Hastings, 1993). The spleen was chosen as target organ to quantify viable A. salmonicida 

CFU because of its haemopoietic nature and the ease with which it can be dissected. 

Even though A. salmonicida infection is associated with stressful conditions (Munro 

and Hastings, 1993) and the treatments applied in this study affected the activity of 

important bactericidal macrophage functions, neither confinement nor in-feed 

peptidoglycan resulted in higher or lower bacterial recovery from the spleen. 

In the experiments described in chapters 4 and 5, numbers of viable A. salmonicida 

in the spleen increased with time after challenge, whereas in chapter 6, numbers 

dramatically decreased after challenge. No serum antibodies specific for A. salmonicida 

were found in the sera of non-challenged fish. Furthermore, no viable cells of injected A. 

salmonicida strain B95179, A. hydrophila NCIMB 1134 or V. anguillarum NCIMB 6 were 

recovered from spleens or blood of the stock fish used for the experiments in chapter 6. 

These results suggest that the fish used in chapter 6 were less susceptible to A. 

salmonicida persistence. Whether this was due to genotypic or phenotypic differences 

between the fish stocks remains unresolved. 
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In all the experiments, there was large variation in the recovery of A. salmonicida 

from the spleen (within groups), with no viable bacteria recovered from some of the fish. 

In spite of this variation, the mean CFU recovered per gram of spleen was very similar 

between the different treatments. The large variation observed may explain some 

difficulties in standardising and reproducing infectious challenges where only 

mortalities are recorded (Nordmo, 1995). 

It is important to note that the spleen surface was not sterilised before counting A. 

salmonicida CFU in the organ and, therefore, viable cells present on the spleen surface 

may have been counted. An improvement in this technique would be to sterilise the 

spleen surface with 70% ethanol after dissection and this is recommended for future 

work. 

7.1.6 Comparative microbiocidal activity of kidney and peritoneal macrophages 

Macrophages present in haemopoietic organs, such as kidney, play an important 

role in the clearance of blood-borne antigens (Zapata et al., 1996), while those migrating 

towards inflammatory stimuli are an important part of the defence against infectious 

agents in localised foci and, possibly, in the first stages of infection being established. 

Inflammatory macrophages can be obtained by injection of different inflammatory 

agents into the peritoneal cavity and the magnitude of their activity depends on the 

substance injected (Rowley, 1990; Secombes, 1990). 

Casein-elicited peritoneal macrophages consistently produced less superoxide 

anion than resident head kidney macrophages, although, taking all results together, they 

were more responsive to confinement and immunostimulation. Furthermore, in response 

to an A. salmonicida ip challenge, peritoneal macrophages showed a significantly higher 

superoxide production than renal macrophages, indicating that bacterial presence 

triggers a greater microbiocidal activity in inflammatory macrophages (results not 

included). 
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Inducible NOS has been identified in rainbow trout head kidney cells (Grabowski 

et al., 1996) and nitric oxide production by kidney mixed leukocyte cultures has been 

detected (Zunic and Ucek, 1997). In this study, kidney macrophages did not produce 

detectable amounts of nitric oxide following any of the treatments applied 

(immunostimulants in vitro and in vivo and confinement). The findings of Zunic and 

Licek (1997) suggest that trout macrophages may need cellular interactions to switch on 

production of NO. Further work would be pursued to confirm the results reported by 

Zunic and Licek (1997) and identify the cells producing NO. Also, investigation of the 

cellular/soluble requirements as well as immune status in vivo necessary to trigger NO 

synthesis are necessary to understand better the microbiocidal mechanisms of rainbow 

trout phagocytes. 

7.2 Summary of main conclusions 

The main conclusions of this thesis are as follows: 

i. Bacterial peptidoglycan in vitro induced a maximum kidney macrophage respiratory 

burst response over a wider range of concentrations than the yeast glucans. Although 

this observation was not found in the in-feed treatment experiments in this study, the 

use of peptidoglycan in vivo may have important advantages since feed uptake, and 

therefore that of associated treatment, varies considerably amongst individual fish in a 

farmed population. 

ii. Dietary peptidoglycan elicited a significant activation of inflammatory macrophages 

but did not affect the activity of resident macrophages in the head kidney. Bacterial 

killing by inflammatory phagocytes may therefore be enhanced in natural infections 

through oral treatment with peptidoglycan. However, since the activity of kidney 

macrophages was not affected, killing of pathogens once established in haemopoietic 
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organs may not necessarily be enhanced by peptidoglycan, unless they are then 

recognised as an inflammatory focus. Therefore peptidoglycan may be beneficial in the 

prophylaxis of infectious diseases or treatment early in the infection. 

iii. The stress response is not necessarily followed by changes in macrophage and 

complement activities. Single confinement produced a physiological stress response 

which was not reflected in disturbance of macrophage function even when confronted to 

an immunological challenge. However, repeatedly confined animals showed disturbed 

macrophage function, both in the head kidney and peritoneal cavity, with possible 

implications for pathogen killing and damage to self. 

iv. Dietary peptidoglycan limited some of the effects of confinement on macrophage 

function and this was more evident in cells isolated from the peritoneal cavity. Taken 

together, these results and those reported by Jeney et al. (1997) suggest that dietary 

immunostimulants may prove beneficial in increasing resistance of fish to bacterial 

pathogens after husbandry-related stressful events. Further work should be carried out 

to develop this hypothesis (see section 7.3). 

v. Even though confinement and dietary peptidoglycan treatments did induce changes 

in certain macrophage activities, the integrated innate immune response, as reflected by 

persistence of A. salmonicida in spleen and blood, was not affected by experimental 

conditions. There may have been several explanations for this observation. The 

macrophage activity observed following treatments may not have altered the effect on A. 

salmonicida viability. In addition, lytic complement activity, which was not affected by 

any treatment, or other parameters which were not measured may have a significant role 

in the control of A. salmonicida persistence. 
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7.3 Recommended future work 

Before oral immunostimulation can be confidently recommended for use in 

aquaculture, field studies on the effect of dosing and timing regimes should be 

undertaken. These studies could also be paired with assessment of immune parameters 

which are readily quantifiable on-farm, such as whole blood respiratory burst activity (as 

described by Siwicki and Anderson, 1993), on a large number of fish. 

There are no reports on the absorbance of particulate glucans and peptidoglycan 

from the digestive tract and their subsequent fate in fish. Such information is important 

to understand the mechanism of immunostimulation, since it may be mediated directly 

by the given substance and/or by immunostimulant-responsive GALT. Cytokine 

research is in its early stages in fish (Secombes, 1996) and little is known about teleost 

gut mucosal immunity (Press, 1998). Further knowledge of these aspects of immunity 

would be advantageous not only in elucidating the mechanisms behind oral 

immunostimulation, but also in developing oral vaccines against important fish 

pathogens. 

Development of a bacterial challenge more responsive to experimental treatments 

would offer advantages when interpreting data regarding the immune parameters 

investigated. In this study, several bacterial species pathogenic to rainbow trout were 

used for this purpose, but only A. salmonicida was recovered from injected fish 24 h after 

challenge. This highlights the complex nature of the interaction between animal and 

pathogen in the development of infection. However, infectious challenges are a 

fundamental tool for the investigation of prophylactic treatments. Much more effort is 

needed to develop a series of reproducible challenges by different routes, including bath 

and cohabitation, and able to give different levels of infection, so that the degree of 

protection or susceptibility given by the experimental treatment can be assessed. 

Studies involving assessment of cellular innate defence mechanisms in fish and 

other animals are usually carried out by isolating a particular cellular population and 
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assaying for their activity at a given period of time after treatment (e.g., 

immunostimulants). This implies that the treatment, if successful, induces activation of 

the parameter studied. However, it might well be that the treatment, rather than 

activation, induces priming of defence mechanisms and, therefore, no increase in activity 

would be observed. An alternative study may be the application of an immune 

challenge, such as an infection or LPS injection, after the experimental treatment has 

been completed and before the cells of interest are isolated. In this case, the immune 

challenge may activate primed immune cells for higher activity, and the performance of 

such cells when confronting a challenge would be investigated. This may also apply to 

the study of the immune response to stress, where the basal activity of immune cells may 

not necessarily be affected during the stress response, but their capacity to respond to an 

immune challenge could. 

It is well known that there are major differences in the susceptibility of different 

fish species to individual bacterial pathogens and also to the damaging effects of stress. 

Tilapia, carp and, to a lesser extent, rainbow trout and catfish are recognised as very 

resistant in this respect. Work now needs to be targeted on the more vulnerable species 

such as Atlantic salmon. However, their sensitivity to environmental changes makes 

them difficult to work with and is likely to result in even greater within-group variation 

than has been observed in this study. The present work provides a basis on which build. 

A method similar to that developed here should be applied to evaluate the use of 

immunostimulants in protecting such fish from the effects of husbandry related 

stressors. 
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Appendix 1: Aeromonas salmonicida CFU per gram of spleen of fish treated 

with peptidoglycan in feed and with control diet at different times after ip 

challenge. 

PG 0.05% 

Fish 6h 12 h 24 h 48 h 72 h 96 h 

1 58114 29556 210472 

2 44100 1005598 

3 175 11512 5900 626000 

4 18143 23479 32109 5912 

5 67234 64875 

6 26321 2416474 

Control 

Fish 6h 12 h 24 h 48 h 72 h 96 h 

1 54000 750148 

2 32198 23387 

3 76524 45198 76117 

4 820298 419834 

5 54812 15775 41043 10187 3100 34887 

6 649698 

- indicates no viable bacteria recovered from the sample. 

Appendices 160 



Appendix 2: Aeromonas salmonicida CFU in spleen of fish repeatedly confined 

for nine consecutive days and in controls at different times after ip challenge. 

Stress 

Fish 6h 12 h 24 h 48 h 72 h 

1 651 100235 

2 1052 563 10564 502162 

3 895 435 4521 

4 3521 

5 25648 

6 132 320 1520 

7 150 350 65498 

8 312 3698 

Control 

Fish 6h 12 h 24 h 48 h 72 h 

1 351 5216 639874 

2 465 2654 

3 523 14562 125469 

4 426 8564 569213 

5 146 5319 459867 

6 123 1260 10256 3264 

7 351 

8 236 456 995 9561 

- indicates no viable bacteria recovered from the sample. 
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Appendix 3: Aeromonas salmonicida CFU in spleen of fish treated with 

peptidoglycan and repeatedly confined, treated with peptidoglycan only, 

repetitively confined only and in controls at different times after ip challenge. 

PG 0.05 % plus confinement 
Fish 5h 12 h 24 h 48 h 72 h 
1 15673 222436 320513 7143 2143 
2 568902 704545 7576 16837 325 
3 394737 214189 11486 5804 
4 6336957 198333 5556 3017 3017 
5 895455 108333 99074 14493 
6 735714 163793 14024 
7 1163043 192708 74479 14375 256 
8 325397 145513 40385 6098 

Confinement 
Fish 5h 12 h 24 h 48 h 72 h 
1 804795 103788 7576 25014 
2 1644026 197023 63012 
3 1418787 70192 28846 22561 
4 170495 379375 12500 2431 
5 1215165 625410 117500 8500 3123 
6 1250000 189423 50962 13514 
7 155405 271667 183333 4730 
8 702381 60714 91667 27500 7512 

PG 0.05% 
Fish 5h 12 h 24 h 48 h 72 h 
1 640816 113889 4464 
2 594286 119231 237500 31625 10938 
3 973529 105882 30263 
4 1068519 332000 18548 54687 

Control 
Fish 5h 12 h 24 h 48 h 72 h 
1 664572 252679 38393 
2 1514317 74074 173148 4868 
3 1287879 250000 n.d. 24038 
4 526952 35463 37037 n.d. 

- indicates no viable bacteria recovered from the sample. n.d. indicates not determined. 
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