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Abstract 

With the coastal environment likely to be affected by climate change induced 

modifications to storminess (both frequency and intensity), sea level rise and increased 

precipitation in the near future, changes in sediment dynamics in terms of erosion, 

accretion and movement is expected. Given the important role coastal sediments play 

as sinks for environmental contaminants, understanding the fate and behaviour of 

these sediments is crucial in determining any potential impacts on humans and wildlife. 

This project investigates long-term trends in sediment movement in the Ribble estuary 

and how disturbance events might affect these trends. 

The rate of erosion of sediment within the coastal environment is a concern as the 

diverse array of sediment deposits in the coastal margins are vital habitat for a range of 

wildlife. They also act as a substantial sink of radioactive contaminants from current 

and past discharge practices. Remobilisation and any consequent changes in 

bioavailability of these contaminants is of potential concern and a key reason for this 

research. There is an emerging view that the reworking of sediment bound 

contaminants either already is or will soon become the dominant factor in the extent of 

inter-annual variation in estuarine contamination.  

Within the Ribble estuary NW, England, the physical, spatial and temporal 

characteristics of the exchange of contaminated sediment between different sediment 

deposits was investigated at the micro and macro scale. Monthly observations of 

changes in the sediment physical properties and contaminant concentration were 

conducted. These observations determined that contaminants remained strongly 

associated with fine grained sediments, though this association varied temporally and 

spatially and could become decoupled in response to a substantial siltation event.  

Analysis of historic data for the Ribble estuary revealed that the nature of the 

relationship the radiogenic contaminants 137Cs and 241Am had with the fine-grained 

sediments differed between the contaminants over time. For example, the activity 

concentration of 137Cs in the fine-grained sediments was found to decline between 

1995 and 2014 and has been put down to radioactive decay and reduced inputs of 

137Cs into the estuary from the Irish Sea. In contrast, 241Am activity concentrations did 

not show a statistically significant decline over the same time period. This was 

interpreted as being a function of the longer half-life of 241Am, its ingrowth from 241Pu 

and a reduced rate of re-dissolution.  
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A time series statistical analysis was used to determine if storminess and high riverine 

discharge events could explain variation in sediment properties. The analysis showed 

that riverine discharge was the dominant factor. Storminess was still a statistically 

significant driver of change in sediments but was less so in comparison to riverine 

discharge. These results confirm that discreet high impact disturbance events are 

substantial factors in the reworking of estuarine sediments.   

A three-dimensional spatial analysis of the sediment movements within the Ribble 

estuary was conducted from 1999 – 2015 through a novel LiDAR geostatistical 

methodology, with the purpose of determining the nature of sediment movements 

within the Ribble estuary. The Ribble was confirmed to be a very dynamic estuary and 

exhibited substantial morphological change that was interpreted as large-scale 

sediment remobilisations. The geostatistical analysis of the Ribble Interestingly showed 

that the estuary fluctuated between erosion and accretion. The saltmarshes where 

observed within the 16-year study period to be more significant than the mudflats in 

terms of sediment erosion and accretion which is of interest given that saltmarshes are 

concentrated in radiogenic contaminants.   

Natural disturbance events are very difficult to study given the uncertainty of when they 

may occur, the resources and time needed to sample before and after the event. In 

contrast planned anthropogenic disturbance can be easier to study and can still allow 

conclusions to be drawn on the impacts of largescale disturbance events. To this end, 

the disturbance effects of a managed realignment scheme were investigated 

specifically the modification of saltmarsh creek hydrodynamics. The managed 

realignment scheme was implemented in 2009 at the Hesketh Outmarsh in the Ribble 

estuary. Over the following years, the scheme has been shown to promote localised 

erosion within the larger creeks inside the breached area. A novel geostatistical 

methodology was used to estimate the quantity of radiogenic contaminants (137Cs and 

241Am) remobilised from the breached area. This research estimates that, from a 

baseline in 2007, some 52 GBq of 137Cs and 20.9 GBq of 241Am were remobilised – up 

to 2015.   

The Ribble Estuary is dynamic at the micro and macro scale and under current 

circumstance the contaminant enriched saltmarshes are functioning as a diffuse source 

of radiogenic contaminants to the wider estuary and potentially beyond. Sediment 

remobilisations are believed to be responsible for significant variation in contaminant 

sediment matrix relationships. Where climate change will see an increase in 

disturbance events there will also be an enhanced rate of contaminant redistribution.  
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1. Introduction 

Estuaries are a complex exchange environment where the marine and terrestrial 

environment interface to form a distinct system of sediment deposits with a range of 

biological and physical properties (Jickells and Rae, 1997). The unique physical 

properties of these sediments create a unique habitat that is of great importance to a 

range of biota such as resident and migratory bird species (Still et al., 2014). The 

historic, economic and social value of estuaries to humanity has often resulted in 

conflicts of use, traditionally with the importance of natural habitat provision being a 

secondary concern. The recognition of the socioeconomic value that ecosystem 

services form these habitats can provide however has resulted in changing attitudes in 

how estuaries should be managed (Boerema and Meire, 2017).  

Anthropogenic modifications to estuaries occur at many spatial scales the most evident 

example is the physical modification of the estuaries morphology through heavy 

engineering works. Channel straightening through the emplacement of training walls 

and repeated dredging substantially increases river discharge velocities. The 

emplacement of sea walls for the purpose of historic land reclamations affect estuaries 

by reducing the extent of the intertidal zone. Such modifications greatly affect the 

estuary hydrodynamics, which in turn modifies how sediments are transported within 

the estuary and the spatial pattern of sediment deposits, at a longer time scale this will 

impact how the estuaries morphology will evolve (e.g. Azevedo et al., 2010; Browne, 

2017; Wolanski et al., 2001).  

As a sediment deposition environment an exchange of marine and terrestrial sediments 

occurs to form the estuarine sediment deposits such as the mudflats and saltmarshes 

(Pye and Blott, 2014). This estuarine sediment is the result of extensive mixing via 

sediment resuspension and transport with these sediments being deposited according 

to the particle size of the sediment and the energy of the flood and ebb flows (e.g. 

Azhikodan and Yokoyama, 2015). The water current velocities of the flood and ebb 

flows of the tides, the shape of the tidal frame as well as the disruptive effect of the tidal 

bore combine to dictate how sediments are remobilised at a daily rate (Choi and Kim, 

2016; Gleizon et al., 2003; Pieterse et al., 2017; Stark et al., 2017). These factors can 

be generalised as the hydrodynamics of the system which in its simplest definition is 

how a fluid body such as the tidal water will interact with the estuarine sediment 

deposits (Merriam-Webster, 2017). The hydrodynamics will have feed back to the 

estuary surface morphology and influence over time where different sediment deposits 
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are formed e.g. sandbanks, mudflats saltmarshes (Choi and Kim, 2016; Luo et al., 

2013). 

Therefore, changes in the amount of hydrodynamic energy in the system effects the 

estuary, resulting in a modified sediment spatial distribution. Whether modifications to 

the hydrodynamics are through natural or anthropogenic circumstances the result will 

likely be the same, which is changes to how sediments are remobilised within the 

estuary. Furthermore, there are new potential stressors, such as the long-term effects 

of climate change that are predicted to see rates of sea level rise and storminess 

increase in coming years (Barker, 2007). Given the important role coastal sediments 

play as sinks for environmental contaminants, understanding the fate and behaviour of 

these sediments is crucial in determining any potential impacts on humans and wildlife. 

Estuarine and marine sediments can act as sinks for contaminants, with industrial 

discharges of metals and radiogenic contaminants being concentrated within clay and 

silt deposits within estuaries as well as within the marine environment (Brown, 1997; 

Brown et al., 1999; Clifton et al., 1999; Mackenzie and Scott, 1993; Rainey et al., 

1999). Saltmarshes in particular by virtue of their formation processes act as a stratified 

environmental store of radiogenic contaminants such as 241Am and 137Cs (Assinder et 

al., 1997; Brown et al., 1999). It is the sediment stores of contaminants that create 

interest in better understanding the nature of sediment morphological change and 

sediment movement. Changing concentrations of radiogenic contaminants will affect 

radiological risk for human and non-human biota which is in part a function of the 

activity concentration of radioactive contaminants (Hunt, 1997; Rahman et al., 2013). 

Anthropogenic modifications and climate change have the potential to alter the amount 

of energy within the estuary and its hydrodynamics which in turn will impact how 

sediments are remobilised and cycled within and out with the estuary (e.g. Brown et al., 

2016; Azevedo et al., 2010; Browne, 2017; Wolanski et al., 2001). The question that is 

of interest is what do these sediment movements mean in terms of radiogenic 

contaminant remobilisation and what is the radiological significance of these 

remobilisations? 
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1.1. The ARCoES Project 

The research described here is linked to the Engineering and Physical Sciences 

Research Council (EPSRC) funded Adaptation and Resilience of Costal Energy Supply 

(ARCoES) project (https://www.liverpool.ac.uk/geography-and-

planning/research/adaptation-and-resilience-of-coastal-energy-supply/), which aims to 

identify the challenges facing the future security of the UK nuclear energy sector and 

coastal energy supply as a result of changing patterns of temperature and rainfall, sea-

level rise and storms. In particular, it aims to determine threats posed to future energy 

generation and the distribution network, as well as the surrounding coastline and 

coastal waters, by flooding, erosion, changing patterns of sedimentation, water 

temperature and the distribution of flora and fauna in the coastal zone. This is being 

achieved through modelling of coastal processes (e.g. coastal hydrodynamics) to 

predict likely changes to estuaries, beaches, dunes and cliffs in terms of future 

flooding, erosion, sedimentation, water quality and habitats. There is a focus on the 

North West of England as a test case and this is one of the reasons why the work 

conducted here was focused on the Ribble estuary and its sediment. 

1.2. Climate change implications for sediment remobilisation 

At present there is a consensus found within the literature that the North Atlantic region 

surrounding the British Isles and parts of western Europe will experience an increase in 

storm frequency and intensity in coming years (Mölter et al., 2016). Such findings are 

partially based on studies of the North Atlantic Oscillation (NAO), which is an index of 

the local climate that has been linked to storminess (Bader et al., 2011; Bengtsson et 

al., 2006; Greeves et al., 2007; Keim et al., 2004) and in some cases variation in 

erosion and accretion rates (Esteves et al., 2011). 

Put simply sea level rise and storminess are the two mechanisms through which 

climate change is likely to impact the estuarine environment. Sea level rise, which is 

more widely studied, will impact erosion and accretion, tidal surge frequency and 

intensity and shore line retreat (Allen and Pye, 1992). Individual extreme storm events 

are known to cause significant estuary wide changes to sediment deposits, though their 

significance relative to the long term narrative of estuarine sediment movement 

remains uncertain (Blott et al., 2006). 

Classic beach theory tells us that an intertidal profile will flatten in response to 

increased storminess and otherwise steepen during low energy seasons, though 

engineered defences can prevent an overall expansion of the intertidal profile resulting 
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in saltmarsh edge erosion (e.g. Allen and Pye, 1992). This idealised transfer of material 

in response to storminess may be complicated by sea level rise as an enhanced tidal 

frame or storm surge will see hydrodynamic energy increased, which may result in 

increased sediment being ejected from the estuary during the ebb tide (van der Wal et 

al., 2002). 

The way in which an estuarine environment will respond to climate change enhanced 

sea level rise and storminess is determined by a range of factors such as; local wind 

climate, local sediment transport, sediment supply, estuary morphology and extent of 

anthropogenic modification (Brown et al., 2016; Adams et al., 2011; Esteves et al., 

2011; Luo et al., 2015). Storminess has been linked to erosion in the short to medium 

term at a number of sites (Adams et al., 2011; Esteves et al., 2011; Gutiérrez et al., 

2016). At a longer time scale storminess has been linked to increases in the rate of 

saltmarsh critical sea level rise rate, in effect given an adequate supply of fine grained 

material, saltmarshes in some cases may be able to keep pace with sea level rise 

(Schuerch et al., 2013). However, potential modifications to wave climate; wave height 

(H0), wave period (T) and wave direction (Ɵ0) will result in significant modification to 

sediment supply via longshore sediment transport and sediment erosion rates via 

cross-shore sediment transport (Sierra and Casas-Prat, 2014). 

Understanding how storminess will impact estuaries is an active area of research and 

there is great uncertainty in generalising the effects of sporadic high impact disturbance 

events. Despite the uncertainty of where this sediment will be (re)mobilised to, it is 

commonly agreed that in the short (years) to medium term (decades) storminess will 

result in an enhanced rate of sediment remobilisation. 

1.3. Environmental contaminants 

The changes in estuarine sediment deposit spatial distribution is of great importance to 

a multitude of research strands, such as the study of how coastal processes evolve. 

However, within this project, it is the fate of historic stores of anthropogenic 

contaminants within the marine environment that is of primary interest. The predicted 

increase in sediment disturbance and remobilisation means that historically deposited 

contaminants will also be remobilised and moved within and out with the estuary 

(Aldridge et al., 2003; Gleizon and McDonald, 2010; Hunt et al., 2013; Marsden et al., 

2006). This raises questions about what the environmental and health risks might be of 

these remobilisations and that of a general trend of enhanced remobilisation (Rahman 

et al., 2013).  
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The time integrated discharges of contaminants that are present within sediment 

deposits such as the clay and silt dominated saltmarshes represent substantial coastal 

contaminant sinks (Gleizon and McDonald, 2010; Rainey, 1999; Wakefield, 2005). 

These contaminant sinks are often referred to as being part of the environmental store 

of radioactivity and are thought to be stored within sediments.(Rahman et al., 2013). It 

is possible to subdivide the sediment deposits of the estuary based on the sediment 

properties and contaminant concentration. We would expect sandbanks, mudflats and 

saltmarshes to have distinct sediment properties and contaminant concentrations as a 

result of sediment particle size (MacKenzie et al., 1999; Rainey et al., 1999). These 

contaminant sinks also have varying residency periods governed by the frequency of 

disturbance, this can range from days (low lying mudflats), months (high tidal frame 

mudflats) and years (saltmarshes) (van der Wal et al., 2002). 

Coastal contaminant sinks are known to be acting as sources to other near shore 

environments within the Irish sea (Hunt et al., 2013). At the saltmarsh scale, 

remobilisation within the estuary and saltmarsh itself is also known to be occurring 

(Lindahl et al., 2011; Morris et al., 2000; Oh et al., 2009). With authorised discharges 

from nuclear facilities being much reduced compared to historic levels, remobilisation 

of radioactive contaminants from coastal contaminant sinks will, and in some cases 

already has, emerged as the dominant source of radionuclides to the environment 

(Aldridge et al., 2003; Goshawk et al., 2003; Hunt et al., 2013; Leonard et al., 1999; 

Lindahl et al., 2011; Mackenzie and Scott, 1993). 

Given that the nature of estuarine remobilisation is principally a morphological process, 

which is likely to be highly spatially variable then an integrated spatial solution is 

required to determine the extent of remobilisation of contaminated sediments. 

Combining this with an evaluation of the risks from the contaminants will allow the long-

term consequences of large scale sediment remobilisation to be determined. 

 

 

 

 



6 
 

1.4. Thesis rationale and Aims 

Understanding how the environmental store of radioactivity will be impacted by the 

effects of climate change is a substantial challenge, in part due to the complexity of the 

environmental store of radioactivity. This complexity is emphasised by the range of 

constituents, such as the wide range of radiogenic contaminants that compose this 

store. These radionuclides will not react uniformly to remobilisation from disturbance 

due to radionuclide specific chemical properties (Mackenzie and Scott, 1993; 

McDonald et al., 2001). Studying the environmental store of radioactivity is a trade-off 

between scale and depth of study. The particle reactive radionuclides 241Am and 137Cs 

are studied in this work, which explores their remobilisation and concentrations within 

the sediments of an estuary on the North-west coast of England.   

 

Figure 1.1  Composite satellite image of the Ribble estuary, Northwest England. Map 

produced in Google Earth pro using composite Landsat data across 2017. 

At the Ribble estuary (figure 1.1) this work explores sediment remobilisation and 

associated contaminant redistribution in a focused way that should allow the findings to 

be relevant not just to the wider Irish Sea but estuaries in general.  

The Ribble estuary was selected because it is an expansive, highly modified, high 

energy system (van der Wal et al., 2002). Through studying the Ribble, an insight into 

changes at the extremes of estuary scale, geomorphological diversity and extent of 

anthropogenic modification will be gained. The Ribble estuary has also been surveyed 
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a number of times since 1995 by the University of Stirling. Remote sensing techniques 

were developed here to estimate mudflat (Rainey et al., 2003) and suspended 

sediment bound (Atkin, 2000) contaminant inventory for 1995 (Rainey, 1999) and 2003 

(Wakefield, 2005). The Ribble estuary is included in the Radioactivity in Food and the 

Environment (RIFE) (Cefas, 2005) and the Environment Agency’s UK Mapping 

program. This also means that there is an extensive volume of historic data for the 

Ribble available through open data commitments, published reports and the literature. 

Therefore, a multidecadal analysis of radiogenic contaminant interaction with the 

sediment matrix is possible at this site.  

There are five main questions that this research will answer that are important to 

understand the past, present and likely future nature of sediment bound radiogenic 

contaminant redistribution. These questions are the focus of my four research data 

chapters. 

 Are the relationships between estuarine radiogenic contaminants and the 

sediment matrix temporally and spatially stable in the short to medium term? 

 Are mechanisms of disturbance significantly correlated with changes in the 

sediment matrix and radiogenic contaminant concentration? 

 What is the nature of sediment movement within the Ribble Estuary? 

 How do saltmarshes respond to the emplacement of a manged realignment 

scheme within their locality? 

 How much contamination is remobilised from saltmarshes in response to an 

analogue for disturbance? 

The relationships between the radiogenic contaminant and the sediment matrix was 

studied extensively in the 1990s (MacKenzie et al., 1999; Rainey, 1999; Rainey et al., 

1999) and most recently in the early 2000s (Atkin, 2000; Wakefield, 2005; Wakefield et 

al., 2011). Particle reactive radionuclides bind to sediments and predominantly remain 

there with only a small fraction being vulnerable to redissolution, though this fraction is 

often resorbed by sediment within the water column (McDonald et al., 2001). The work 

of Wakefield (2005) on radiogenic contaminant association with fine sediment fractions 

at the Ribble however challenged this view, showing that such relationships could be 

temporally variable and even unstable in certain circumstances. It is unknown if this 

variability is a function of disturbance or a result of Irish sea sediments with time 

moving away from historically high sediment radiogenic contaminant activity 

concentrations. I investigate the physical, spatial and temporal properties of the 
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sediment matrix, to resolve the current status of the estuarine radiogenic contaminant 

interaction with the sediment.  

A changing climate is expected to increase the amount of disturbance sediment bound 

contaminants are exposed to through an increase in storminess (Brown et al., 2016; 

Luo et al., 2015), this will likely accelerate the rate at which sediment bound 

contaminants are remobilised (Hunt et al., 2013). This is an important mechanism of 

my research which forms part of the wider rationale for pursuing this work as well as 

interproject links with the ARCoES project. Addressing the question of what is the 

significance of single high impact disturbance events or the long-term pattern of 

disturbance is therefore key. To do this, a time series analysis was conducted using 

modelled storminess data and repeated measurements of sediment property data.  

The Ribble estuary is a deposition environment and is reported within the literature to 

be accreting sediments (van der Wal et al., 2002). However, estuaries are exchange 

environments and it is possible that although the long-term trend is that of accretion 

there may be variability over shorter time scales with differing patterns of accretion and 

erosion. The macrotidal status, funnel shape and linear channel of the Ribble estuary 

result in a pronounced tidal pumping cycle that results in substantial transfers of 

sediments within and out with the estuary on the ebb and flood tide (Wakefield et al., 

2011). These sediment movements will translate to sediment bound contaminant 

movement, therefore to better understand the spatio-temporal properties of radiogenic 

contaminants a deeper understanding is required of sediment movements within the 

Ribble estuary. Using a novel geostatistical analysis of LiDAR data, a hind cast from 

1999 – 2015 was used to answer the question, what is the nature of sediment 

morphological change and movement within the Ribble estuary? 

The Hesketh Outmarsh managed realignment scheme represents a substantial 

anthropogenic modification to the saltmarshes and their adjoining creeks as a single 

major disturbance event. The realignment expanded the tidal frame into the new marsh 

site, this resulted in increased water velocities within the main saltmarsh creeks during 

the ebb tide, this is a modification to the site hydrodynamics and is a longer-term effect 

of this singular disturbance event (Stark et al., 2017). Both the initial disturbance and 

the modification to the hydrodynamics are viewed as an analogue for disturbance, 

specifically a high impact event that could be caused by storminess and which will be 

more common under current climate change expectations (Mölter et al., 2016). This 

analogue for a disturbance event is used to determine how much sediment and 

radiogenic contamination is remobilised from the Hesketh Outmarsh saltmarshes as a 
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result of a singular disturbance event. In effect, this represents a hind cast of 

radiogenic contaminant remobilisation in response to a single disturbance event.  

1.5. Summary 

Given the established view that climate change will enhance the frequency of high 

impact disturbance events, this work agrees that the rate at which sediment deposits 

are remobilised within and out with estuarine and marine environments will be 

accelerated. Therefore, using historic data, a hind-cast of past sediment morphological 

change and inferred sediment movement from 1999- 2015 is conducted. This hind-cast 

uses fine resolution spatial data and accounts for lateral and vertical changes within the 

estuary sediment system. 

The questions this research will answer are stated here, the accompanying chapter in 

brackets denotes where this research is contained; 

 Are the relationships between estuarine radiogenic contaminants and the 

sediment matrix temporally and spatially stable in the short to medium term? 

(Chapter 3) 

 Are mechanisms of disturbance significantly correlated with changes in the 

sediment matrix and radiogenic contaminant concentration? (Chapter 4) 

 What is the nature of sediment movement within the Ribble Estuary? (Chapter 

5) 

 How do saltmarshes respond to the emplacement of a manged realignment 

scheme within their locality? (Chapter 5) 

 How much contamination is remobilised from saltmarshes in response to an 

analogue for disturbance? (Chapter 6) 
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2. Literature review of estuarine sediment movement and associated 

radioactive contaminants 

BNFL Sellafield (NW, England), which incorporates the legacy sites of Windscale and 

Calder Hall, began making authorised radioactive discharges to the marine and 

terrestrial environments in the 1950s, with authorised discharges peaking around 1975 

for most nuclides (e.g. 137Cs and 241Am) (Cefas, 2005). In addition, there have been 

past accidental releases such as those resulting from the 1957 Windscale pile fire. 

Those radionuclides discharged to the marine environment, can travel with ocean 

currents in the dissolved phase or attached to suspended matter, they may either fall 

out of the water column or travel as part of the Irish Sea's sediment transport systems 

(Gleizon and McDonald, 2010). Radionuclides that enter the sediment transport system 

can be deposited within marine sediment beds or transported to coastal contaminant 

sinks such as saltmarshes (Hunt et al., 2013; Lansard et al., 2005; Leonard et al., 

1999). 

Despite being a relatively scarce habitat in the UK (~450km2 around the UK coastline), 

saltmarshes are of global importance as a coastal contaminant sink of heavy metals 

(Ridgway, 2001) and radionuclides (e.g. Horrill 1983). This scarce habitat is also vital 

for supporting an important assemblage of biota, which makes saltmarshes nationally 

and internationally important for conservation (Habitats Directive 92/43/ EEC). 

UK saltmarsh extent is estimated to be declining by around 2.2% per year (Beaumont 

et al., 2014) due to a combination of factors including; sea-level rise, regional 

postglacial rebound, modifications to sediment supply, emplacement of engineered sea 

wall defences and high impact storm events (e.g. Allen & Pye 1992). The loss of 

mature saltmarsh to erosion will result in the remobilisation and resuspension of 

sediment bound radiogenic contaminants (Rahman et al., 2013b), which up until that 

point had been stored and buried at depth within the saltmarsh sediment matrix (Brown 

et al., 1999).  

Contaminants such as 137Cs, 241Am and 239+240Pu are typically bound to the clay fraction 

of the saltmarsh (Oh et al., 2009). The vertical distribution of these sediment bound 

contaminates within the marsh is described as the activity depth profile, which typically 

takes the form of a gaussian distribution, with the contaminant concentration exhibiting 

a rise, peak and decline (Brown et al., 1999). The peak is the depth at which 

contaminant concentration is highest and is referred to as the subsurface maxima and 

it is the remobilisation of this part of the saltmarsh that would represent the highest 
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radiological risk (Marsden et al., 2006; Rahman et al., 2013b). This activity depth profile 

can deviate from the above definition and this is often the result of disturbance during 

marsh formation or post deposition remobilisation either within the saltmarsh or out with 

the saltmarsh (Harvey et al., 2007). The remobilisation of off-shore marine sediment 

bound radionuclides and estuarine sediment bound radionuclides within the Irish Sea 

by physical and biogeochemical processes (Leonard et al., 1999; McDonald et al., 

2001; Oh et al., 2009) can result in a more complex vertical and horizontal distribution 

of radionuclides within estuaries and specifically saltmarshes (Morris et al., 2000: 

Finegan et al., 2009). 

At the landscape scale, coastal contaminant sinks found in estuaries near the Sellafield 

complex are currently acting as sources to other nearshore environments within the 

Irish sea (Hunt et al., 2013). At the saltmarsh scale, remobilisation within the estuary 

and saltmarsh itself is occurring (e.g. Morris et al., 2000; Oh et al., 2009; Lindahl et al., 

2011). With authorised discharges from nuclear facilities being much reduced 

compared to historic levels, remobilisation of contaminants from coastal sinks will, and 

in some cases already has, emerged as the dominant source of radionuclides to the 

environment (Mackenzie & Scott 1993; Leonard et al., 1999; Aldridge et al., 2003; 

Goshawk et al., 2003; Lindahl et al., 2011; Hunt et al., 2013). 

The OSPAR Convention (1998) advocates that radionuclide discharges to the North 

East Atlantic Ocean should "…maintain background levels...” or “…be close to zero…" 

for naturally occurring radionuclides and those released via anthropogenic activities 

respectively. While these requirements are for current discharges, the role of coastal 

contaminant sinks in inter-annual variability of estuarine contaminant concentration will 

be of increasing interest and importance as routine discharges decline further. 

The implications for humans of future remobilisation of saltmarsh sediment and its 

associated store of environmental contaminants within these exchange environments is 

dependent on the extent of sediment reworking under natural and anthropogenic 

induced disturbance (Rahman et al., 2013b). At present, there is a paucity of literature 

investigating the same issue for non-human biota, which given the global significance 

of the biologically diverse communities that depend on saltmarshes (Still et al., 2014), 

does give cause for a need for further information. 

The Ribble Estuary 

The Ribble estuary is situated 70km south of the Sellafield complex and contains a 

discharge point for the nuclear licensed site at Springfields, the estuary has long 
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served as a store for radioactive contaminants (Assinder et al., 1997). Furthermore, the 

area of the Ribble catchment results in terrestrial inputs of heavy metals from a range 

of historic mining sites and agricultural practices (Ridgway, 2001). Hydrological 

processes have also resulted in nuclear weapons testing derived contaminants from 

upland environments being transported to river systems and then estuaries such as the 

Ribble estuary (Tyler and Heal, 2000). 

The Ribble estuary is highly relevant to the current issues facing coastal contaminant 

sinks, it is a highly modified estuary that is being allowed to return to a natural state in 

line with the current policy of adaption to coastal change (DEFRA, 2012). The Ribble’s 

main channel has been allowed to re-establish itself within its delta by the decision to 

abandon maintenance of the Victorian training walls which have maintained the 

straightened river channel for the past 150 years. The former sea defences have been 

breached as part of managed realignment scheme, to promote new saltmarsh 

formation (discussed further in chapters 5 and 6). These changes have in effect 

resulted in disturbance to the estuaries hydrodynamics by modifying the morphology of 

the tidal frame. The result is that sediment distribution within the estuary is altered so 

that previously stable areas are now acting as sources of sediment to the wider 

estuary. These events provide the opportunity to use anthropogenic disturbance within 

the Ribble as an analogue for disturbance mechanisms that may be associated with 

climate change induced modifications to the coastal system such as altered patterns of 

storminess and sea level rise. 

2.1. Sediment 

The remobilisation of marine and estuarine sediments as well as the nature of spatio-

temporal variation of these sediment deposits has substantial implications for 

radiogenic contaminant remobilisation. The nature of sediment types, their definitions 

and the issues affecting sediment remobilisations, both internationally and at the Ribble 

estuary level are discussed here.  

2.1.1. Sediment types 

Estuaries are exchange environments where the terrestrial and marine environment 

interface resulting in substantial mixing and deposition. In these environments 

catchment-derived, marine-derived sediments and estuarine sediments are mixed and 

either deposited within the estuary or transported out with to the Irish Sea through 

sediment transfer mechanisms. The morphology of estuaries is characterised by 

deposition features (e.g. sandbanks, mudflats and saltmarshes), with their formation 
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being determined by the sediment grain size and the available at the time of formation. 

Sediment grain size is a vital measurement when it comes to defining how sediments 

behave and is defined throughout this thesis in accordance with ISO 14688 -1:2002 

(2013); clay < 2 μm, silt 2 μm – 63 μm, sand 63 μm – 2000 μm. In this thesis (and 

particularly in chapter 3) sand is referred to as sand or fine sand. Fine sand is a fraction 

which has a particle size range of 63 μm – 200 μm. 

The marine environment is the primary source of the Ribble estuary sediments, with 

landward migration of marine sediments and partial littoral migration of reworked 

estuarine sediments south of the estuary being the main sediment sources for the 

Ribble estuary (Holden et al., 2011). Sources of marine sediments occur across the 

bottom of the Irish Sea and consist of a mix of sands (> 63 μm) (Wright et al., 1971) 

and muds (< 2 μm) deposits that are derived originally from glacial processes (van der 

Wal et al., 2002). These sediments are transported to the estuarine environment where 

they undergo size specific sorting based on their respective grain sizes and the energy 

available to transport those sediments, the result is the formation of deposition features 

such as sandbanks, mudflats and saltmarshes. 

 

Figure 2.1 Map of the Ribble estuary with digitised overlays highlighting the three 

main sediment deposit types; Sandbanks, Mudflats and Saltmarsh.  
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The funnel shaped Ribble estuary exhibits clear longitudinal stratification of the three 

main sediment deposit types as demonstrated by figure 2.1, this stratification occurs 

along the length of the Ribble main channel as well as with the elevation within the tidal 

frame. At the mouth of the Ribble estuary there are expansive sets of sand banks 

which exhibit dynamic sand wave features (Rainford, 1997) that have the visual 

appearance of ripples in the surface. It has been suggested that these sand deposits 

are under a constant state of reworking towards the estuary channel and substantial 

sediment movements occur here ( van der Wal et al., 2002). These sand dominated 

sediment deposits are therefore subject to substantial spatio-temporal variability, 

however this variability likely translates to a marginal radiological impact (Rainey et al., 

1999). 

The mudflats and saltmarshes are the two sediment deposit types that are 

radiologically significant due to their sediment bound radiogenic contaminants (Clifton 

et al., 1999). In the Ribble mudflats are found in the high tidal frame above the main 

channel where energy conditions are lower, and are distributed from the mouth of the 

estuary near Lytham up to Preston docks, they are the dominant surface type in the 

mid estuary (figure 2.1). Mudflats are formed by the process of flocculation which is 

where marine and catchment derived mineral material such as clays and organic 

matter in various stages of decomposition join to form a cohesive sediment (Manning et 

al., 2011). Mudflats are dynamic in that the process of flocculation is a mix of 

aggregation of flocs, which causes accretion and the breakup of flocs which causes 

erosion. The clay and organic fractions of the sediment during erosion are released 

back into the estuaries water column, this process is called remobilisation and 

represents the physical transport of sediments (Lee et al., 2011). Once these 

remobilised clays are returned to the water column they are available to the flocculation 

process again and can become incorporated back in the sediment deposit in a cyclic 

process mediated by any disturbance that might have occurred within the estuary. 

The Ribble estuary has a large collection of fringing saltmarshes, these are an 

evolution of mudflats in that this sediment deposition feature begins as a mudflat. 

Through physical sedimentation of an area high in the tidal frame, a mudflat with a 

higher elevation is formed that is above water for a sufficient length of time to promote 

cyanobacterial and microphytobenthos growth (Coles, 1979). Cyanobacteria are 

photosynthetic bacteria found in sediments that are exposed for prolonged periods of 

time during low tide (Friend et al., 2003). Microphytobenthos are algae that reside in 

the sediments and are responsible for the formation of biofilms, an important source of 
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organic matter for the sediment matrix (Santos et al., 1997). Cyanobacterial, as well as 

microphytobenthos, growth stabilises the mudflats and helps them resist erosion by 

increasing the cohesion of the sediment through the production of extracellular 

polymeric substances (Friend et al., 2003). The net effect is a positive feedback 

whereby physical sedimentation allows biological factors such as vegetation growth to 

promote increased sediment accumulation that in turn raises the height of the mudflat 

eventually forming a saltmarsh (Allen and Pye, 1992). 

The saltmarshes are halophytic and generally have a poor diversity of vegetation, the 

vegetation will exhibit zonation from the front to the back of the marsh caused by 

differences in frequency and intensity of inundation and salinity. These different zones 

also, in effect, reflect slight differences in the elevation gradient (Adam, 1993; Doody, 

2008). Within the marsh there are branching networks of tidal creeks that drain the 

marsh during the ebb tide and flood it during the flood tide. The saltmarsh creeks are in 

fact regarded as being part of the mudflat and emphasise the extent to which the 

mudflats and saltmarshes are interconnected. The saltmarsh and the fronting mudflats 

interact through hydrodynamics, when one of these sediment deposits is substantially 

modified by a disturbance event (e.g. storminess) sediment transfers will occur by 

erosion and deposition forces, as the hydrodynamics force a correction in the sediment 

deposits morphology (Pethick, 1992). 

2.1.2. Managed realignment 

The extent of saltmarsh within the UK is currently in decline, with erosion of mature 

saltmarsh outpacing the creation of new saltmarsh (e.g. Beaumont et al., 2014). 

Coastal squeeze the process in which saltmarshes are prevented from retreating inland 

by sea wall defences and human development, is considered as a present and future 

contributing factor to the problem of declining saltmarsh extent (Masselink and Russell, 

2013; Symonds, 2006). The increasing eutrophication in the estuaries globally is also 

considered a likely factor as it is leading to a population boom in the ragworm, Nereis 

Diversicolor; which is causing increased rates of bioturbation and herbivory of the 

saltmarsh vegetation roots. This enhanced rate of herbivory and bioturbation can cause 

vegetation diebacks which in turn destabilise the saltmarsh sediments thus making 

them vulnerable to erosion (Wolters et al., 2005a). The consequence of such 

vegetation loss will be the removal of the dampening effect of vegetation on the flood 

and ebb flows which will in turn increase water flow velocities and may cause 

enhanced saltmarsh erosion (Stark et al., 2017). 
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This erosion and loss of saltmarsh must be overcome to prevent a decline in overall 

saltmarsh area and associated habitat for wild birds and other wildlife (Speakman et 

al., 2013). The Hesketh Outmarsh site at the Ribble estuary is an example of a 

managed realignment scheme, which has reconnected a 1980’s land reclamation site 

to the Ribble estuary (Tovey et al., 2009). Such schemes aim to create new saltmarsh 

often by the removal of old sea walls and the reconnection of previously reclaimed 

saltmarshes to the estuary (Wolters et al., 2005b). While managed realignment 

addresses the issue of coastal squeeze there is some debate of the effectiveness of 

these schemes given the potential impact of the ragworm Nereis Diversicolor (Wolters 

et al., 2005a). 

Managed realignment schemes have been shown to trigger changes in sediment 

transport with localised erosion and accretion occurring at a non-spatially uniform 

pattern within the managed realignment, likely due to modifications to the site’s 

hydrodynamics (Symonds, 2006). Disturbance and the physical modification to 

saltmarsh morphology has been shown to promote erosion (Browne, 2017; Pieterse et 

al., 2017), though the full effects of managed realignment remain unknown. These 

localised erosion/accretion events and the overall loss of saltmarsh sediments are 

however radiologically important due to saltmarshes being a concentrated coastal 

contaminant sink.  

2.1.3. Sediment movement within the Ribble estuary 

The Ribble estuary is believed to be accreting overall, with long term sediment budgets 

showing a positive trend of accretion up until 1999 (van der Wal et al., 2002) since 

1999 there has been no further sediment budgets. Through a series of multispectral 

remote sensing images processed to show suspended sediment concentration, the 

Ribble estuary was shown to exhibit a pump and flush mechanism of sediment 

transport (Wakefield, 2005). This mechanism in effect means that, partly due to the 

linear morphology of the Ribble estuary, sediments are redistributed to the water 

column by disturbance of the flood tide and then pumped to the upper estuary (e.g. 

Choi and Kim, 2016). On the ebb tide there is a partial back wash, though it is the 

effects of high river discharge and possibly storminess that cause a flushing of 

sediments to the estuary mouth, which are then pumped back into the estuary on the 

next flood tide (Wakefield et al., 2011). 
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2.2. Radioactive contaminants within the estuarine and marine environment 

The radionuclides 137Cs and 241Am were the focus of this work as they provided 

contrasting information due to their differing behaviour in the marine and estuarine 

environments as they have different levels of conservativeness in the water column 

and are known to be readily detectable. These properties mean that they act as good 

geochemical tracers in Irish Sea sediments and allow inferences of sediment 

movements to be formed based on the concentration and ratios of these radiogenic 

contaminants within the sediment matrix.  

2.2.1. Historic and current discharges of radioactive contaminants 

Westinghouse Springfields Fuel Limited located on the northern bank of the Ribble 

estuary is responsible for the manufacture of uranium fuel for the UK civil nuclear 

programme. The Springfields site makes authorised discharges of radionuclides from 

the uranium decay series directly to the Ribble estuary, these do not include 137Cs and 

241Am. Therefore, the 137Cs and 241Am found within the Ribble estuary is derived from 

atmospheric deposition, Ribble river catchment concentration and Irish Sea sources, 

with the latter being by the far the largest source.   

Sellafield Limited manages and operates the Sellafield nuclear fuel reprocessing 

complex on the North West English coast. The Sellafield site is complex and 

undertakes nuclear decommissioning, nuclear fuel reprocessing and waste 

management and storage activities. Sellafield is considered to be the primary source of 

137Cs and 241Am, along with a number of other radionuclides, to the Irish Sea and its 

surrounding estuaries (Gleizon and McDonald, 2010; Vintró et al., 2000). The site 

historically had an emphasis on nuclear weapons development and to a lesser extent 

domestic nuclear power research and later production. Consequentially Sellafield, as 

the UK's pre-eminent nuclear material research, production and reprocessing facility, is 

the main source of radioactive discharges to the Irish Sea. 

The 1957 Windscale accident was the most severe Sellafield non-authorised discharge 

according to the international atomic energy agency's (IAEA) international nuclear and 

radiological event scale (INES), which ranked the accident as INES 5. This accident 

resulted in radioactive deposition equivalent to around 1/30th of that deposited by the 

Chernobyl accident, with deposition occurring predominantly in the North West of 

England (Bonnett and Cambray, 1991). Authorised marine discharges via the Sellafield 

pipeline over the past 60 years however represent the more substantial impact 

Sellafield has had on the environment and understanding any risks to humans and 
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wildlife from these historic discharges is needed (Hunt et al., 2013; Rahman et al., 

2013). 

The Sellafield authorised discharges to the Irish Sea are bulk diluted and discharged 

over 2.5km off shore. Discharged radionuclides travel with coastal and shallow shelf 

sea currents as a dissolved phase or they attach to suspended matter where by they 

either fall out of the water column or travel as part of the Irish Sea's sediment transport 

systems. With Sellafield discharges currently in decline in comparison to the 1970's, 

future variability in environmental radioactivity levels may be dominated more so by 

remobilisation of the radionuclides currently stored within the environment (Hunt et al., 

2013). 

2.2.2. Properties of contaminant sink radionuclides 137Cs, 241Am and 239+240Pu / 241Pu 

An overview of how 137Cs and 241Am have been observed behaving within the marine 

and estuarine environment is provided, this overview also includes 239+240Pu / 241Pu. 

Plutonium was included as current activity concentrations of 241Am are significantly 

affected today by ingrowth – the decay of a parent radionuclide and production of a 

daughter radionuclide – from 241Pu. Therefore, the plutoniums are covered as they 

represent a source of 241Am to the marine and estuarine environment. 

Plutonium 

Located in the north eastern Irish Sea the Sellafield mud patch is the primary 

environmental store of plutonium radionuclides and via remobilisation contributes to 

rising concentrations of plutonium around the Irish Sea (e.g. Kershaw et al.1999a) as 

well as the North Sea and Arctic Sea (Kershaw et al., 1999b). Mud patch plutonium has 

been shown to have a relatively low re-dissolution rate (<1%) which can be enhanced 

via disturbance; with the disturbance believed to be a combination of bioturbation and 

tidal/storm events (Leonard et al., 1999; McDonald et al., 2001). 

Aldridge et al. (2003) successfully (validated via hind casting) investigated 239+240Pu 

remobilisation via a modelling approach that attempts to account for the physical, 

chemical and biological mechanisms of remobilisation.239+240Pu is remobilised from the 

eastern Irish Sea mud patches via pore water exchange and tide and storm activity. It 

is then transported as a dissolved phase as part of the Irish Sea ocean currents whilst 

being scavenged from the water column by fine grained sediments and suspended 

material. The importance of these sediment transport processes is such that 
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239Pu/240Pu remobilisation can to a great extent be accounted for by sediment transport 

modelling (Gleizon and McDonald, 2010). 

239+240Pu sediment concentrations have been declining by an order of magnitude less 

than the rate of decline seen in Sellafield discharges; the implication being that the 

remobilisation of the environmental store of 239+240Pu is responsible for this trend (Hunt 

et al., 2013). Concentrations of 239+240Pu at sites further away from the immediate 

Sellafield vicinity have in some cases not experienced a significant decline or have 

increased. Consequently, the study by Hunt et al. (2013), which used a 50-year time 

series, supports the assertions in the literature that Sellafield derived radionuclides are 

being remobilised and this is a significant process in the inter-annual variation of 

anthropogenic radionuclide spatial distribution (Mackenzie & Scott 1993; Leonard et al., 

1999; Aldridge et al., 2003; Goshawk et al., 2003; Lindahl et al., 2011). 

Americium 

By 2009 630 TBq of 241Am had been produced within the environment through the 

process of radioactive ingrowth compared to 510 TBq that has been discharged by 

Sellafield since 1963 (Hunt et al., 2013). Ingrowth adds 8 TBq y-1 to the environmental 

store of 241Am compared to direct discharges of 0.04 TBq y-1 (Hunt et al., 2013). 

Effectively 241Am concentration within the environment is now more affected by the 

decay production from 241Pu than by to authorised discharges. 

241Am has very similar environmental behaviour to plutonium, with it being highly 

particle reactive and binding to the organic and carbonate fractions of the sediment 

(Desideri et al., 2001). Consequently the mud patches store large quantities of 241Am 

as a time integrated source (Finegan et al., 2009). 241Am is slightly less soluble than 

plutonium but shares a vulnerability to enhanced remobilisation via a combination of 

bioturbation and tidal/storm events (Leonard et al., 1999; McDonald et al., 2001). The 

remobilisation of 241Am from the mud patch is believed to occur as part of a wider 

sediment transport system within the Irish Sea (Aston and Stanners, 1982), with 

sediment transport being more important for 241Am remobilisation than other particle 

reactive radionuclides such as 239+240Pu (Marsden et al., 2006) due to 241Am having a 

lower distribution coefficient. 

Agreement is found in the literature that 241Am is being remobilised from the 

environmental stores and this remobilisation is a significant cause of inter-annual 

variation in 241Am concentrations (Mackenzie & Scott, 1993; Gleizon & McDonald, 

2010; Kershaw et al., 1999a). 241Am exhibits the same process of remobilisation as 
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seen in 239+240Pu, which is characterised by declines in the immediate vicinity of 

Sellafield and a spreading of activity away from Sellafield (Hunt et al., 2013). 

Caesium 

Irish sea radioceasium discharges peaked in 1977 and had levelled off by 1985, as 

137Cs has a half-life of 30.17 years it would be reasonable to expect present (2017) 

concentrations in the environment to have declined substantially. The low rate of 

decline and lack of a decline in some cases was, like 241Am, interpreted as evidence 

that a source of 137Cs other than discharges was in operation. The Sellafield mud patch 

is believed to be this source, as it is for 241Am and plutonium (e.g. Hunt et al., 2013). 

137Cs is a conservative radionuclide and as such most of the discharges were within the 

dissolved phase, which facilitated transport of a significant amount to the Northern 

Atlantic and Arctic waters (Kershaw et al., 1999). Large amounts of 137Cs are located 

within the Sellafield mud patch though this has been declining via a combination of re-

dissolution and sediment transport (Hunt et al., 2013). 

137Cs enters deposition sites such as estuaries as a mixed time integrated source 

transported by adhesion to clays and silts (e.g. Brown et al., 1999). Deposition within 

estuaries is dependent on site micro-topography (Bradley and Clapham, 1998) and the 

clay/silt bound caesium is then re-distributed frequently within this system (Assinder et 

al., 1997). Once deposited within temporally stable sediment deposits such as 

saltmarshes the 137Cs is usually fixed, though the most labile elements have been 

found to show a degree of mobility (Morris et al., 2000). 

It is likely that the 137Cs signal found within Irish Sea sediment will homogenise over 

time as the significance of mud patch remobilisation which is dominant at present 

declines in its importance and factors such as half-life decay and re-dissolution become 

more significant (Hunt et al., 2013; Mackenzie & Scott, 1993; Vives I Batlle et al., 

2008). At present remobilisation is causing a degree of scatter in 137Cs concentrations 

at sites further away from Sellafield, this has been shown to be affected by Irish Sea 

sediment transport systems as 137Cs bound to finer grained fraction of the sediment is 

less likely to be transported out of the eastern Irish sea (MacKenzie et al., 1999) 
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Coastal contaminant sinks 

Coastal contaminant sinks are known to be acting as sources to other near shore 

environments within the Irish sea (Hunt et al., 2013). At the saltmarsh scale, 

remobilisation within the estuary and saltmarsh itself is also known to be occurring 

(Lindahl et al., 2011; Morris et al., 2000; Oh et al., 2009). With authorised discharges 

from nuclear facilities being much reduced compared to historic levels, remobilisation 

of radioactive contaminants from coastal contaminant sinks will, and in some cases 

already has, emerged as the dominant source of radionuclides to the environment 

(Aldridge et al., 2003; Goshawk et al., 2003; Hunt et al., 2013; Leonard et al., 1999; 

Lindahl et al., 2011; A. B. Mackenzie and Scott, 1993). 

The predicted increase in sediment disturbance and remobilisation means that 

historically deposited contaminants will also be remobilised and moved within and out 

with the estuary (Aldridge et al., 2003; Gleizon and McDonald, 2010; Hunt et al., 2013; 

Marsden et al., 2006). The time integrated discharges of radiogenic contaminants that 

are present within sediment deposits such as the clay and silt dominated saltmarshes 

represent substantial coastal contaminant sinks (Gleizon and McDonald, 2010; Rainey, 

1999; Wakefield, 2005). 

2.2.3. Sediment-bound contaminants 

The distribution of radioactivity within the intertidal environment is closely correlated 

with the distribution of fine sediments due to radionuclide sorption to the surface of clay 

particles (Clifton et al., 1999; MacKenzie et al., 1999). Therefore, sediment deposition 

environments will also be sites of radionuclide accumulation; this is best emphasised 

with saltmarshes, which act as a temporal record of estuarine contaminant levels 

(Morris et al., 2000). 137Cs and 241Am differ in their chemical conservativeness and as 

such sediment bound 137Cs is more vulnerable to redissolution as it is more likely to be 

in disequilibrium with the 137Cs concentration within the overlying water this is less the 

case for 241Am (MacKenzie et al., 1999; McDonald et al., 2001). 

At the Ribble estuary the association of 137Cs and 241Am with the clays and silts of the 

sediment matrix was investigated by Rainey (1999) and later Wakefield (2005). They 

established significant correlations between the percentage of clays and silts and the 

concentrations of 137Cs and 241Am. These correlations were strong enough to allow a 

proxy relationship to be derived that allowed prediction of 137Cs and 241Am as a function 

of the percentage clay. These proxy relationships were applied to multispectral data 

collected by airborne remote sensing for the extent of the mudflats of the Ribble 
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estuary and resulted in the mapping of surface contaminant distribution within the 

Ribble estuary. 

Given the strong association of contaminants with fine grained sediment within the 

estuary and as part of the wider Irish Sea sediment transport system, the question to 

be answered is will remobilisation of sediments result in the remobilisation of 

contaminants? There is some evidence to suggest that sediment remobilisation from 

storms and other physical processes may be responsible for the remobilisation of 

contaminants (e.g. Morelli and Gasparon, 2015). Should estuarine stores of 

contaminants be remobilised then it may be the case that the tidal processes that 

govern sediment reworking will see remobilised sediment concentrations sufficiently 

diluted (Periáñez, 2005). 

Saltmarshes represent the most concentrated coastal contaminant sink with historic 

discharges of contaminants stored as vertical stratified deposits (Fox et al., 1999). The 

implications of saltmarsh erosion and the redistribution of the sediment-bound 

contaminants is of great interest, particularly if this redistribution is likely to be a pulse 

or diffuse source (Allen and Pye, 1992). There is currently a paucity of literature 

exploring such scenarios. One of the few examples of research on these issues is the 

work of Rahman et al (2013) who determined that that such remobilisations could result 

in a three - to four - fold increase in best estimate doses for saltmarsh users. How 

sediment bound contaminants will be affected by changes in the estuarine environment 

is particularly relevant given the potential impacts of climate change in the coastal 

environment. 

2.3. The role of climate change in contaminant remobilisation 

The fine grained estuarine sediment deposits are in effect coastal contaminant sinks, 

therefore modifications to the coastal system that promote enhanced sediment 

remobilisation will result in accelerated contaminant remobilisation. At present there is 

a consensus found within the literature that the North Atlantic region surrounding the 

British Isles and parts of western Europe will experience an increase in storm 

frequency and intensity in coming years (Mölter et al., 2016). Such findings are partially 

based on studies of the North Atlantic Oscillation (NAO), which is an index of the local 

climate that has been linked to storminess (Bader et al., 2011; Bengtsson et al., 2006; 

Greeves et al., 2007; Keim et al., 2004) and in some cases variation in erosion and 

accretion rates (Esteves et al., 2011). 
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Sea level rise, which is more widely studied, will impact sediment erosion and 

accretion, tidal surge frequency and intensity and shore line retreat (Allen and Pye, 

1992). Sea-level rise will result in the landward migration of the estuarine environment, 

the change in coastal policy towards managed realignment is indicative of the 

acceptance of this reality as it is a climate change adaption strategy (Robins et al., 

2016). It is hoped that managed realignment will allow the estuarine environment to 

migrate inland, though should this not be the case then the sediment would be 

remobilised to the marine environment.  

Sea level rise and storminess are the two mechanisms through which climate change 

is likely to impact the estuarine environments sediment deposits. Individual extreme 

storm events are known to cause significant estuary wide changes to sediment 

deposits, though their significance relative to the long term narrative of estuarine 

sediment movement remains uncertain (Blott et al., 2006). Classic beach theory tells us 

that an intertidal profile will flatten in response to increased storminess and otherwise 

steepen during low energy seasons, though engineered defences can prevent an 

overall expansion of the intertidal profile resulting in saltmarsh edge erosion (e.g. Allen 

and Pye, 1992). This idealised transfer of material in response to storminess may be 

complicated by sea level rise as an enhanced tidal frame or storm surge will see 

hydrodynamic energy increased, which may result in increased sediment being ejected 

from the estuary during the ebb tide (van der Wal et al., 2002; Wakefield, 2005). 

The way in which an estuarine environment will respond to climate change enhanced 

sea level rise and storminess is determined by a range of factors such as; local wind 

climate, local sediment transport, sediment supply, estuary morphology and extent of 

anthropogenic modification (Brown et al., 2016; Adams et al., 2011; Esteves et al., 

2011; Luo et al., 2015). Storminess has been linked to erosion in the short to medium 

term at a number of sites (Adams et al., 2011; Esteves et al., 2011; Gutiérrez et al., 

2016). At a longer time scale storminess has been linked to increases in the rate of 

saltmarsh critical sea level rise rate, in effect given an adequate supply of fine grained 

material, saltmarshes in some cases may be able to keep pace with sea level rise 

(Schuerch et al., 2013). However, potential modifications to wave climate; wave height 

(H0), wave period (T) and wave direction (Ɵ0) will result in significant modification to 

sediment supply via longshore sediment transport and sediment erosion rates via 

cross-shore sediment transport (Sierra and Casas-Prat, 2014). 

Understanding the effects of climate change for sediment transport, estuary evolution 

and specifically the remobilisation of contaminated sediments is an active area of 
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research. The best knowledge view derived from the above, is that climate change will 

result in conditions that are known to promote sediment erosion such as modifications 

to the estuaries hydrodynamics (Azevedo et al., 2010; Choi and Kim, 2016; Gleizon et 

al., 2003; Luo et al., 2015; Stark et al., 2017). Therefore, it is reasonable to state that 

climate change will likely result in an enhanced rate of sediment remobilisation from 

estuarine sediment deposits.  

2.4. Conclusion 

Contaminants have long been known to be preferentially bound to sediments within 

coastal margins and thus the potential for contaminant redistribution has always 

existed. The anticipated changes in climate have however given a new emphasis to 

understanding how such contaminants will be remobilised in response to disturbance. 

The lack of understanding of exactly how the anticipated changes to the coastal system 

will affect coastal contaminant sinks is a concern that needs to be resolved. Through 

studying how coastal contaminant sinks behave temporally and spatially under current 

circumstance and how they respond to disturbance perhaps insight into how they may 

react to the potential challenges of climate change may be gained. 
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3. Spatio-temporal characteristics of radioactive contaminants in the Ribble 

estuary 

The Ribble estuary contains deposition features notably mudflats, saltmarshes and 

sandbanks created by the inputs of Irish Sea derived marine sediments and North 

West England derived riverine sediments (van der Wal et al., 2002). The presence of 

these sand banks, mudflats and saltmarshes, is evidence that supports the view that 

the estuary is a sink for marine sediments and the predominant balance of sediment 

transfers is towards accretion within the estuary (Luo et al., 2013). The bulk of Ribble 

estuarine contamination originates from the Irish Sea (e.g. Brown, 1997), particle 

reactive contaminants will either enter the estuary bound to fine grained sediments or 

those that are unbound will bind to fine grained sediments or the organic fraction of the 

sediment matrix within the estuary (Brown et al., 1999). Estuaries in general and 

specifically the Ribble estuary are viewed as a sink for marine contamination with 

contaminants being concentrated within the mudflats and saltmarshes (Assinder et al., 

1997; Rainey et al., 1999). 

It is important for us to understand estuarine contamination as estuaries are an 

exchange environment between the terrestrial and marine environments. How marine 

derived contaminants affect humans, wildlife and the functioning of that ecosystem is of 

great importance (Bolıv́ar et al., 2002; Villa et al., 2009). For example, the spatial 

distribution and concentration of contaminants will determine the dose of radiation that 

organisms receive from radionuclides, therefore understanding the characteristics of 

contaminants allows us to understand their effects (Hunt, 1997; Stark et al., 2017). 

Understanding how contaminants are incorporated into the estuary, specifically the 

estuaries saltmarshes and mudflats, will deepen our understanding of likely 

contaminant behaviour. Such knowledge will allow a better understanding of how 

contaminants may react to changes in the estuary, for example a shift in sediment 

transport dynamics will likely modify the spatial distribution of sediment bound 

contaminants (Schoellhamer et al., 2007; Chen et al., 2017). The ability to observe 

trends in these movements requires an understanding of the natural variability in the 

system that the contaminants are part of (Gosnell et al., 2016) and therefore monitoring 

is required to characterise the estuaries contaminant characteristics which is explored 

in this chapter. 

Known contaminant relationships with different fractions of the sediment matrix such as 

clay, silt, sand and organic matter, mean that changes within these sediment fractions 
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can be reliably inferred as changes in the concentration of contaminants within the 

sediment matrix (Atkin, 2000; Ben-Dor et al., 2002; Deronde et al., 2008, 2006; Rainey, 

1999; Wakefield, 2005; Wal and Herman, 2006). It is widely reported that contaminants 

such as 241Am and 137Cs will bind to the clay, silt and organic fractions of the sediment 

matrix, with varying degrees of ease e.g. 241Am binds more readily to organic matter 

than 137Cs (Clifton et al., 1999; MacKenzie et al., 1999; McDonald et al., 2001). These 

relationships when quantified as a ratio provide a measure of the amount of 

contamination associated with a specific sediment fraction. Where change within this 

sediment fraction is measured, then these ratios through inference allow estimates of 

the associated change in contamination concentration. Analysing variability in this ratio 

accounts for variability in the sediment matrix composition in contrast to bulk sediment 

contaminant concentrations, which are influenced by variation in the sediment matrix 

composition. 

Changes in the ratio of contamination to a fraction of the sediment matrix can be the 

result of changes in the concentration of the contaminant or changes in the overall 

sediment matrix composition. The concentration of contaminants can vary due to the 

increase of available contaminants to be fixed to this part of the sediment matrix or 

chemical remobilisation of contaminants from that sediment matrix. Such a change that 

is contaminant driven would be characterised by a change in contaminant 

concentration without a corresponding change in the sediment matrix.  

Alternatively, such changes in the ratio can be driven by a more complex process of 

sediment remobilisation in which sediment erosion and/or accretion can result in 

changes to the sediment matrix composition. This process can be described as the 

mixing of sediments with differing contaminant concentrations resulting in a new 

sediment matrix with altered contaminant concentrations. This type of scenario was 

recently observed at the near shore sediments of Fukushima, Japan where vertical 

mixing has resulted in reduced 137Cs concentrations (Otosaka, 2017). In this case the 

ratio change would be characterised by a change in the sediment matrix as well a 

corresponding change in the contaminant concentration.  

By observing variability in such sediment-contaminant relationships, it is possible to 

differentiate between monthly variability in contamination as a result of sediment 

reworking and real increases and decreases in estuarine contamination and this will be 

shown in the following chapter. 
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Contaminant-sediment relationships are generally thought to be temporally stable and 

this has been the case for when contamination levels were significantly higher than at 

present (2017) (Rainey, 1999). However, as the UK has undergone continuous 

improvement in environmental legislation, contamination levels are falling (Leonard et 

al., 2017). In particular, radioactive contaminant discharge levels are now significantly 

lower than historic releases e.g. Sellafield 137Cs discharge 1980 = 5000 TBq | 2015 = 

3.1 TBq. Consequently the remobilisation of marine sediment deposits enriched by 

historic discharges (the environmental store) is now a significant cause of inter annual 

variability in contamination levels around the Irish Sea (Hunt et al., 2013).   

As environmental contamination levels move away from their historically high levels the 

nature of these contaminant sediment matrix relationships may change. This is 

evidenced by the work of Wakefield (2005) through repeated observations of the 

clay/137Cs relationship at the Ribble estuary. Wakefield (2005) identified that the ratios 

could be significantly affected and in some cases decoupled through disturbance 

mechanisms such as high levels of precipitation and/or high riverine discharge. It was 

believed that resuspension of 137Cs followed by sediment erosion may have resulted in 

significant changes to these ratios that would in effect challenge the assertion that 

137Cs is significantly correlated with fine sediments (Wakefield, 2005). There is a lack of 

further work following up on the implications of lower estuarine contamination levels on 

the strength of such contaminant sediment matrix ratios. 

Long term radioactive decay and sediment reworking with less contaminated 

sediments from the marine environment and catchments can lead to a long-term trend 

of declining radiogenic contaminant concentration (Gleizon and McDonald, 2010). As 

estuarine contamination, has already moved away from the historically high levels of 

past years, the uncertainty of the nature of contaminant sediment matrix relationships 

is a significant issue. Such relationships are vital for informing estuary wide analysis of 

contaminant redistribution and understanding the likely implications of such 

remobilisations. 

The presence of contaminant relationships with the sediment matrix are important 

when linking estuarine and coastal morphological change to contaminant 

remobilisation. Without understanding these fundamental relationships, it is not 

possible to infer contaminant remobilisation from sediment movement. Developing an 

understanding of how contaminants interact with the estuaries sediment matrix has 

implications for upscaling to coastal sediment transport models and predictions of 

climate change impacts. 
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3.1. Aims 

This chapter aims to characterise the spatial and temporal characteristics of radioactive 

contaminants within the different fractions of the sediment matrix. The following 

questions will be examined: 

 Is there a significant relationship between contaminants and particle size 

distribution? 

 Is there a significant relationship between contaminants and percentage organic 

matter? 

 Is the contaminant sediment property ratios temporally stable? and at what 

scales do these ratios exist at? 

3.2. Methods 

3.2.1. Site selection 

Within the Ribble estuary an area of mudflat located around the Lytham St Anne’s 

lifeboat jetty (Figure 3.1) was selected for this work due to the presence of a diverse 

range of sediment types across an elevation range from 0 – 3m. The area had 

sediment deposits that transitioned from fine grained deep mud deposits towards 

coarse silty sand deposits. This sediment diversity at this location reflects those found 

across the whole estuary and this means that the results from the field site can be 

applied to the entire estuary. 

The elevation range present means that there will be sediment deposits that vary in the 

frequency in which they are subjected to disturbance, as sediments higher in the tidal 

frame are disturbed less frequently due to a lack of energy (Jickells and Rae, 1997). 

Therefore, transects were set out across the gradient of elevation within the tidal frame, 

with the purpose to target this survey across sediments that have varying rates of 

disturbance. This ensures that this work incorporates sample sites with a range of 

diversity in sediment composition and disturbance frequency, which is important to 

ensure my findings are applicable more widely to the estuary.  
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Figure 3.1 The top map shows the area of mudflat in front of the Lytham St Anne’s 

lifeboat jetty with transects marked in red. Transects are numbered 1-3. 

The bottom map shows the location of these mudflats within the Ribble 

estuary, highlighted by a red polygon. 

3.2.2. Field work 

Three transects were set out across the mudflats as shown in Figure 3.1. The transects 

were laid out using a tape measure beginning at the edge of the Lytham St Anne’s 

saltmarsh and terminating at the water’s edge of the Ribble’s main channel at low tide. 

Every 15m a coloured flag and bamboo cane where inserted into the sediment, to mark 

the samples location. The setting out of transects was to ensure evenly spaced 
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sampling along an environmental gradient, this targeted approach was to ensure 

diversity in the sediment types. 

Located to the East of the Lytham St Anne’s lifeboat jetty transect 1 consisted of 12 

sample points and was oriented from North to South beginning at the saltmarsh edge 

and terminating at the Ribble’s main channel. There was a band of relatively deep, fine 

grained sediments that ran through the middle of this transect; for this reason, transect 

2 was orientated to cut diagonally across this band to increase sampling of these 

sediments. Transect 2, which consisted of 13 points, began 5m east of the top of 

transect 1 at the saltmarsh edge and ran south east towards a small tributary of the 

Ribble’s main channel, terminating at a steep (60o) decline. 

Transect 3 consisting of 11 points was located over 500m west of the Lytham St 

Anne’s lifeboat jetty and was orientated North - South beginning at the saltmarsh edge 

and terminating at the Ribble’s main channel. Where the transect terminated there was 

a large mussel bed and these sediments were the coarsest observed across all three 

transects. 

At each flag a 1m2 quadrat was used to define the sampling area. The quadrat was 

placed so that when facing the Ribble’s main channel (South) and sighting along the 

row of flags the sample point’s flag was always in the northwest corner of the quadrat. 

Within each 1m2 area a sediment scrape was collected by running a trowel over the 

surface of the sediment (collecting the upper 5mm of sediment) and placing the 

material collected into a pre-labelled plastic bag. Coordinates of each sample point 

where surveyed using a Leica 1200 differential global positioning system (DGPS), a 

one hour preliminary site calibration was used to ensure high spatial accuracies when 

post processing the data. 

At each sample site the amount of ionising radiation was measured using a Thermo-

scientific Radeye© and MC71 probe air kerma unit at a standard height of 1m. The air 

kerma unit was pre-calibrated using an IAEA traceable sealed 137Cs source following a 

method designed to be compliant with the University of Stirling’s Environmental 

Radioactivity Laboratory’s (ERL) United Kingdom Accreditation Service (UKAS) 

accredited quality control system. 

The sample points located on these three transects were sampled in March 2014, May 

2014, September 2014 and December 2014. At each repeat visit observations about 

noticeable physical changes at the site were recorded. Care was taken to ensure that 
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field workers operated outside the collection points’ quadrats to minimise disturbance 

during sampling. 

3.2.3. Sediment preparation 

The plastic bag containing the sediment sample from the field work was emptied into a 

2000µm calibrated test sieve and the sample was sieved in accordance with a United 

States Environmental Protection Agency (US EPA) methodology (EPA, 2001). Across 

the four sampling campaigns there was a negligible amount of material above 2000µm, 

often blades of grass, pieces of plastic or some crushed mussel shells. The sieved 

sediment was placed in a large tin foil tray and homogenised further by gloved hands 

and chemically inert plastic paddles. 

3.2.4. Sediment properties 

After sieving and homogenising each individual sediment sample, subsamples for the 

following analytical methods were collected as, while wet, the sediment fractions will 

separate under gravity with time. 

pH 

The sediment pH was measured using a standard 1:1 ratio method, where by 20g of 

sediment was mixed with 20ml of distilled water and agitated by hand for a minute and 

allowed to settle for 15 minutes. A combi pH meter, calibrated with pH buffers 4 and 7, 

was placed in the soil/water solution and the meter and beaker agitated gently to 

promote movement around the probe, when a stable reading was displayed it was 

recorded. 

Particle size distribution 

Particle size distribution was determined using a Beckman Coulter Counter LS 230, 

which is a laser diffraction system that produces an estimate of particle size based on 

Mie theory (Wriedt, 2012). The system records the intensity and angle of light scattered 

by the sample when a laser is fired at it, through modelling how light would reflect from 

a homogenous sphere (Mie theory), the system can estimate the size of the particles 

the laser is being fired at. 

15g of sediment, 30ml of distilled water and 2ml of sodium hexametaphosphate 

solution was added to a 60ml polypropylene bottle. This bottle was placed on a 

mechanical agitator for 30 minutes to ensure the sediment was disaggregated. The 
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bottle was then placed on a magnetic stirring plate and 2ml of sample was extracted by 

pipette and added to the sample loader on the Beckman Coulter Counter LS 230. 

To improve the accuracy of the Mie theory based approach to estimating particle size 

distribution, an optical module was parametrised using the refractive indexes of the 

major mineral constituents that composed the Ribble estuary sediment. Five repeat 

measurements were made to ensure that the estimation was reliable and sizing was 

reported as percentage of sediment that is less than (%<) 2, 63, 212, 630 and 2000 

µm. 

Organic matter and carbonates 

The sequential loss on ignition (LOI) method was used, this method allows the 

assessment of the percentage organic matter and carbonates within the sample by a 

controlled ignition of the sample in a furnace. A full method review was conducted by 

Wang et al., (2011); they produced ideal temperature profiles for various sediment 

types that would allow successful sequential loss on ignition. I selected their 

temperature profile for estuarine sediment for my sequential loss on ignition, which 

consisted of 475oC for 15 hours for organic matter determination followed by 800oC for 

12 hours for carbonate determination.  

20g of sediment was placed within a dry pre-weighed crucible then placed in a furnace 

set to 105oC for 24 hours, the sample was removed and weighed, the percentage 

decrease in weight of the sample is the percentage moisture. The sample was then 

placed in the furnace set to 475oC for 15 hours, the sample was removed and weighed, 

the percentage decrease in weight is the percentage organic matter. The sample was 

returned to the furnace at 800oC for 12 hours, the final percentage decrease in weight 

is the percentage carbonates of the sediment. 

3.2.5. Contaminants 

After the sieved homogenised sediment within the tin tray was subsampled for the 

analyses in section 3.2.4, the tray was weighed and placed in an oven set to 105oc for 

24 hours. The tray was weighed after 24 hours and the percentage decrease in weight 

was the percentage moisture content of the sample. The dried sample was 

disaggregated using mortar and pestle then homogenised, the sample was placed as a 

cone then quartered and quartered again and folded over on itself (Schumacher, 

1990). 
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Metals 

Metal concentrations within the sediment were determined using Inductively Coupled 

Plasma-Optical Emission Spectrometry (ICP-OES). The ICP-OES uses plasma to 

excite the elements within a sample to trigger the emission of electromagnetic 

radiation. The position on the electromagnetic spectrum and intensity of this emission 

allows the calculation of the identity of the element and its concentration. The system 

was pre-calibrated using TraceCERT® certified reference materials for the following 

elements; Al, Ba, Be, Cd, Co, Cr, Cu, Fe, Ga, K, Mg, Mn, Ni, Pb, Rb, Sr, V, Zn, As, Hg 

and Sn. 

A subsample of the homogenised sediment was placed in a mortar and pestle and 

ground to a fine powder then placed in a new pre-marked sample bag. 0.25g (+/-

0.005g) of this sediment was placed into a Polytetrafluoroethylene tube and 2ml of 

concentrated nitric acid was added to each tube and the actual weight used recorded. 

The tubes were carefully sealed and placed inside a MARS 5 microwave digestion 

system and a pre-programmed sediment digestion programme was run. Following 

cooling the tubes where rinsed using 100ml of deionised water into a funnel lined with a 

filter paper (Whatman grade no 2) over a 100ml volumetric flask. Additional deionised 

water was added to each volumetric flask to make up the solution to 2% nitric acid. 

Quality control samples were analysed with each sample batch. These included two 

blanks to check for residual contamination in the Polytetrafluoroethylene tubes and 

0.25g (+/-0.005g) of a NIST-SRM certified sandy clay soil (CRM049-50G). All digested 

samples were agitated and 15ml of sample was decanted into a 15ml centrifuge tube 

and placed on an automated sampler connected to the ICP-OES. The data were then 

processed using calibration curves derived from standards which were run for each 

sample batch through the ICP-MS to convert the emissivity data to parts per billion. 

Gamma spectrometry 

The remaining homogenised sediment was placed inside a large mechanical grinding 

dish and placed inside the mechanical grinder which was then run for 3 minutes. The 

sample was checked to ensure it had been ground thoroughly to a fine texture, if not it 

was reground for an additional 3 minutes. The ground sediment was placed on a clean 

steel tray and homogenised by mixing with chemically inert plastic paddles with the 

sample being quartered and quartered again and folded over on itself. 
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The ground sediment was added to a pre-weighed plastic container of known 

geometry; the sample was added incrementally then tapped to ensure a consistent 

settling of the ground sediment. Once the container was filled it was levelled off with a 

knife and any sediment around the threads was brushed off. A lid was placed on the 

container, which then had molten wax placed around the seal to ensure it was air tight. 

The sealed containers were left for 2 weeks to allow the natural decay chain to reach 

equilibrium within the sealed container. 

The sealed containers were transferred to the University of Stirling’s Environmental 

Radioactivity Laboratory (ERL) for quantification of the full range of gamma emitting 

radionuclides by gamma ray spectrometry (Knoll, 2010). The ERL is operated in 

accordance with a UKAS accredited ISO/IEC 17025:2015 management system. A suite 

of ORTEC® GMX N Type 35% pure High Purity Germanium (HPGe) detectors, which 

are routinely calibrated with National Physical Laboratory (NPL) certified standards 

used for gamma ray spectrometry. 

Each sealed container was placed on top of the HPGe detector, which is surrounded 

by a lead lined structure to minimise background interference. The detector measures 

the number of gamma ray emissions from radioactive decay of the radionuclides 

present within the sample. The proprietary ORTEC software Gammavision was used to 

analyse the sample; the software uses radionuclide libraries, geometry calibrations, 

energy calibrations and efficiency calibrations to calculate the amount present for a 

number of gamma emitting radionuclides with energies ranging from 20 to 2000 keV. 

This study has focused on two of the radionuclides – 137Cs and 241Am. The results for 

each sample were decay corrected to the date the sample was collected and reported 

as activity for each nuclide in Bq kg-1. 

3.2.6. Dosimetry 

The dosimetry results collected in the field from a height of 1m over a 600 second 

duration were entered into an ERL prepared template that calculates the absorbed 

dose rate in air for each location in µGy hr-1. The air kerma equipment was calibrated 

by Cavendish Nuclear Ltd in accordance with their UKAS accredited methods. Shortly 

before field visits a 137Cs check source was used to check that the air kerma equipment 

was functioning correctly. 
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3.2.7. DGPS 

The DGPS data were extracted to propriety Leica software (Leica Geooffice) for post 

processing with Ordnance Survey (OS) base station data. Four base stations from the 

OS-Net were selected, these were Giggleswick, Blackpool, Manchester and Daresbury, 

these were the closet to the Lytham field site. The DGPS data were shifted towards a 

reference point that was averaged from the four base stations and processed, allowing 

a ±1.5-3cm accuracy to be achieved. These data are exported as x, y, z coordinates on 

the British National Grid coordinate system. 

3.2.8. Statistical analysis 

Data exploration 

The investigation of the radiometric and metals data in combination with the discussion 

in section 2.2 highlighted a number of contaminants that would be ideally suited for the 

analysis here. 137Cs is conservative in nature as it does not readily bind to particulates 

such as sediments with a half-life of 30.17 years’ contrasts 241Am which does readily 

bind to sediments and has a half-life of 432.2 years. These radionuclides lend 

themselves to rapid in situ characterisation and are excellent proxies of other sediment 

bound contaminants, therefore where chosen for focused analysis. 

A BGS report (Ridgway, 2001) which investigated the distinctions between natural and 

anthropogenic sources of metals within the Ribble estuary and catchment determined 

that the Ribble was polluted with Mg, Ca, Fe, V, Cr, AS, Rb and Sr. Contaminants that 

represented groups of metals were selected for this study, these included a naturally 

occurring metal (Fe), anthropogenic metal (Sr) and metalloid (As). 

Summary statistics were calculated using the describe by function of the psych 

package (Revelle, 2016) within the R programming environment. The reported data 

describe the central tendency (mean and median), dispersion (min, max and range), 

variance (standard deviation and median absolute deviation) and shape of the 

distribution (skew and kurtosis). These statistical outputs were calculated for each of 

the sample parameters: 137Cs, 241Am, As, Fe, Sr, % clay, %silt, %sand, %OM, 

%Carbonates and pH in each month (March, May, September and December. The 

summary statistics were also calculated for all points along each transect for each 

month. 
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A correlation matrix was produced using the cor() function in R, this produces a matrix 

of calculated Pearson correlation coefficients ranging from -1 to +1. The closer to the 

value of 1 (negative or positive) denotes the strength of the correlation with ±1 being 

perfect correlation the sign (±) tells you whether it is a positive or negative correlation. 

This is a measure of linear dependence between x and y and is useful for quantifying 

which variables may be correlated. The plot() function was also used to produce a 

large graph matrix such as that shown in Appendix 1.1, which is a visual representation 

of the correlation matrix. This was used as a tool to aid the selection of metals to be 

profiled as representing the general trend in metal concentration.  

Fe was correlated at > 80% with As, Cd, Co, Cr, K, Mg, Mn, Ni, P, V and Zn was 

selected to represent naturally abundant metals. As was correlated with Al, Cd, Co, Cr, 

Fe, K, Mg, Ni, P and V at > 80% and represents a metalloid. Sr was correlated with As, 

Cr and V and represents a metal that is likely to be present at anthropogenically 

enhanced levels. These three metals through cross correlation allow the results of the 

metals analysis to be presented in a concise fashion.  

Temporal and spatial variability 

Analysis of variance was used to determine if there was significant difference between 

subsets of the variables using the grouping variables month and transect number. The 

month grouping aggregated the three transect data from each of the four months 

March, May, September and December. The transect grouping compared individual 

transects (e.g. 1, 2 and 3) against each other for each month. These two grouping 

arrangements allowed the spatial variation across the Lytham sediments and temporal 

variation in the Lytham sediments to be assessed for statistically significant change. 

The ANOVA requires the assumption of normality in the data distribution, however 

there is evidence to suggest that ANOVA will outperform the nonparametric alternative 

Kruskal Wallis H test even in cases where this assumption is not correct (e.g. 

McDonald et al., 2014). Post hoc tests to further interpret the results in the case of the 

Kruskal Wallis H test can result in error propagation through the manual adjustment of 

p - values (Zar, 2010). Therefore, data transformation has been applied to achieve a 

normal distribution, however where the deviation from normality was not substantial an 

ANOVA was used. 

The aov() function was used to conduct the ANOVA in R with the results of the model 

being stored as a model object which in turn had a Tukey-Kramer test conducted on it 
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using the TukeyHSD() function. This test allowed the differences at the group level to 

be examined. 

Contaminant sediment relationships 

The radioactive contaminants 137Cs and 241Am were found to have variability that was 

similar to the variability in the sediment matrix specifically the particle size distribution 

and there were substantial concentrations present. The metals contaminants however 

where present in negligible quantities and did not exhibit significant change similar to 

that seen with the radioactive contaminants. For these reasons this work focused on 

the radioactive contaminants 137Cs and 241Am and used these contaminants to narrate 

the nature of statistically significant variability in the contaminant sediment relationships 

within the Ribble.  

137Cs and 241Am relationships with the sediment properties are explored to quantify the 

nature of the detected correlation from section 3.3.1. Regression analysis was 

conducted for both contaminants against the sediment properties % clay, % silt, % 

sand and % organic matter. All data was transformed by natural logarithm and mallows 

statistics and residual diagnostics plots were used as part of model simplification. 

Linear regression models that used log transformed data were produced that predicted 

contaminant concentration from the sediment property data. Regression models were 

produced for the individual transect and for each of the four months. 

Annual regression models where fitted to the full data set and compared to historic data 

sets from the work of Rainey (1999) from 1995 and 1997 and Wakefield (2005) from 

2002 and 2003. These regression models were statically compared by a dummy 

variable regression, which used a numeric stand in for the categorical variable in this 

case the year the data was collected (Rogerson, 2008). The data for 1995, 1997, 2002, 

2003 and 2014 where compared and grouped based on statistical difference. 
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3.3. Results 

The results are presented here firstly as a descriptive interpretation of the sediment 

properties (clay, silt, sand, organic matter, pH), the contaminants (137Cs, 241Am, Fe, Sr 

and As) and measured dose. The results are interpreted in terms of temporal change 

across the year 2014 and spatial change between the different transects. 

This analysis then goes on to explore key relationships between the sediment 

properties and the contaminants 137Cs and 241Am across different spatial and temporal 

scales. These relationships are then contrasted with historic data to evaluate how 

contaminants sediment relationships have changed over the past 20 years. 

3.3.1. Temporal and spatial variability 

Summary statistics and ANOVA analysis with post hoc tests were used to determine 

how the sediment matrix and contamination concentration of that matrix varied 

temporally. The full model outputs are in Appendix 1 as a list of R console print 

formatted outputs for each ANOVA analysis, F statistics are referenced within the 

following text when referring to the significance of any change. 

Sediment properties (% clay, %silt, %sand, %OM, %Carbonates, pH) 

Table 3.1  % clay content summary statistics for each of the four monthly sampling 

campaigns. MAD = median absolute deviation, n = 36. 

Month 

Mean 

% 

SD 

% 

Median 

% 

MAD 

% 

Min 

% 

Max 

% Skew Kurtosis 

Mar 3.60 2.32 2.90 1.77 0.87 8.81 0.97 -0.30 

May 4.98 2.46 4.78 2.23 1.22 10.30 0.44 -0.70 

Sep 7.86 2.05 7.76 2.19 4.73 14.00 0.70 0.26 

Dec 6.28 2.16 6.13 2.17 2.85 12.20 0.70 0.06 

 

The site accumulated fine grained clays throughout the year until September, then 

those fine-grained clays were eroded away as the winter begins as shown in Table 3.1. 

The percentage of clay within the sediment was significantly higher for September in 
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comparison to March and May (F (3,140 = 23.52, p < 0.001)). The post September 

decline was also significant (F (3,140 = 23.52, p < 0.05)), furthermore the percentage 

clay for December was not significantly higher than May. The data were positively 

skewed towards low clay values (Table 3.1) however the range was consistent across 

all four months, which means that in September the whole site saw a uniform increase 

in percentage clay. The September to December decline was also uniform in that the 

range remained the same but a 2% decrease in the minimum was observed. 

In March there was spatial variation at the site with transect 2 covering sediments that 

were significantly higher in clay content and transect 3 covering sediments that had the 

least amount of clay (F (2,33 = 5.504, p < 0.01)). By May this significant spatial 

variation had disappeared apart from at transect 3 which still had significantly less clay, 

though the alpha level of this difference was <0.05 as opposed to <0.01 in March. For 

September and December there was no significant spatial variation detected in these 

data. 

The site saw a positive trend of 87% increase in the amount of fine grained silts at the 

site, with this accumulation occurring exclusively between May and September from 

20.4% to 37.5% silt. Changes in silt content between September and December were 

not significantly different, similarly for March and May. However, May and September 

do differ significantly (F (3,140 = 21.5, p < 0)), therefore between May and September 

the amount of silt at the site increased and it has remained so until the end of the 

survey campaign. 

Table 3.2  % silt content summary statistics for each of the four monthly sampling 

campaigns. MAD = median absolute deviation, n = 36. 

Month 

Mean 

% 

SD 

% 

Median 

% 

MAD 

% 

Min 

% 

Max 

% Skew Kurtosis 

Mar 17.62 10.76 16.91 9.83 2.59 41.68 0.73 -0.31 

May 20.46 16.15 17.58 13.90 2.60 76.54 1.42 2.22 

Sep 37.53 12.36 37.74 16.69 15.95 60.80 -0.09 -1.27 

Dec 36.36 14.04 36.58 16.43 12.95 61.25 0.17 -1.21 
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Table 3.3  % sand content summary statistics for each of the four monthly sampling 

campaigns. MAD = median absolute deviation, n = 36. 

Month 

Mean 

% 

SD 

% 

Median 

% 

MAD 

% 

Min 

% 

Max 

% Skew Kurtosis 

Mar 67.55 10.18 69.76 10.24 41.67 82.80 -0.58 -0.41 

May 66.67 14.16 70.35 8.97 12.70 83.10 -1.86 4.04 

Sep 51.19 13.36 48.65 15.79 24.70 75.50 0.25 -1.13 

Dec 53.09 15.11 51.75 20.09 26.00 81.20 -0.03 -1.12 

 

The month of May stands out with a large positive skew and a high maximum value 

relative to the mean (Table 3.2), this suggests there was a small number of samples 

that had a large amount of silt present. Spatially, in March the site had significant 

difference between transect 2 which had a high accumulation of silts and transect 3 

which had a low accumulation of silts (F (2,33 = 6.189, p < 0.001)). From May to 

December there was no significant difference between transects. 

There was a negative trend present in the fine sand data with a 20% decline over the 

1-year survey period, this decline occurred between May and September. September 

and December were not significantly different, and March and May were not 

significantly different. However, May and September did differ significantly (F (3,140 = 

15.28, p < 0)), therefore between May and September the amount of fine sand at the 

site decreased from a median of 70% to around 50%. 

There was no significant spatial variation between transects therefore the summary 

data in Table 3.3 are a good approximation of the Lytham sites trend in sand. The 

month of March stands out as having a distribution that was partially skewed by sites 

with low sand content. The patterns of changing percentage sand reported here share 

a number of trends with percentage silt and clay, the nature of how these trends fit 

together is discussed in section 3.4.1. 
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Table 3.4  % organic matter content summary statistics for each of the four monthly 

sampling campaigns. MAD = median absolute deviation, n = 36. 

Month 

Mean 

% 

SD 

% 

Median 

% 

MAD 

% 

Min 

% 

Max 

% Skew Kurtosis 

Mar 0.76 0.46 0.68 0.44 0.22 1.73 0.73 -0.67 

May 2.05 1.49 1.86 0.92 0.70 8.78 2.74 9.24 

Sep 4.20 1.75 3.67 1.64 1.95 7.91 0.70 -0.83 

Dec 2.84 1.43 2.37 1.12 1.21 6.16 0.79 -0.80 

 

The amount of organic matter within the sediment increased across the year, peaking 

in September but declined in December. The percentage organic matter was variable 

between the months with all months being significantly different apart from December 

and May (F (3,140 = 39.58 p < 0)). The range for the data was also highly variable with 

the greatest difference observed in March which resulted in the data being highly 

skewed by a few samples with large (e.g. 8%) amounts of organic matter (Table 3.4). 

Spatial variation was not significant though; generally speaking transect 2 had more 

organic matter (4.8%) followed by transect 1 (3.7%) then transect 3 (3.1%). In March 

and December, the ANOVA results suggested that transect 3 had significantly less 

organic matter than transects 2 and 1. 

Table 3.5  % carbonates content summary statistics for each of the four monthly 

sampling campaigns. MAD = median absolute deviation, n = 36. 

Month 

Mean 

% 

SD 

% 

Median 

% 

MAD 

% 

Min 

% 

Max 

% Skew Kurtosis 

Mar 2.16 0.37 2.12 0.44 1.49 2.86 0.06 -1.00 

May 3.85 0.66 3.83 0.83 2.70 5.16 0.01 -1.12 

Sep 3.64 0.77 3.51 0.62 2.53 5.58 0.85 -0.05 

Dec 4.11 0.41 4.16 0.39 3.19 4.93 -0.33 -0.38 
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Table 3.6  pH summary statistics for each of the four monthly sampling campaigns. 

MAD = median absolute deviation, n = 36. 

Month Mean SD Median MAD Min Max Skew Kurtosis 

Mar 8.28 0.42 8.29 0.21 7.12 9.50 0.36 1.96 

May 8.17 0.23 8.20 0.30 7.60 8.50 -0.53 -0.65 

Sep 7.70 0.13 7.70 0.15 7.44 7.98 0.06 -0.80 

Dec 7.86 0.13 7.88 0.12 7.47 8.19 -0.11 1.48 

 

During the survey period the percentage carbonates increased from March to May, 

then remained consistent across the spring and summer before increasing again in the 

winter (December). The differences in means shown in Table 3.5 were not significant 

for May and September. Spatially the data were subject to a great deal of 

intersessional variation with the percentage carbonates being different across the sites 

and there being no particular trend in the data. 

The pH of the sediment declined through March and May and then began to increase 

again in September and December. The decline seen in March to May was not 

significant, though the decline from May to September was significant (F (3,140 = 

39.36 p < 0)). There was a great deal of variation in the distribution of the data between 

months (Table 3.6), with March having two to four times the range of the other months. 

At the site the spatial variability of these data can be defined as the following, transect 

3 was the most acidic at 7.86 in March and 8.13 in May (F (2,33 = 14.76 p<0)) and 

transect 2 8.02 in May was the second most acidic with this being significant in May 

and December. 
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Contaminants (137Cs, 241Am, As, Fe, Sr) 

Table 3.7  137Cs summary statistics for each of the four monthly sampling 

campaigns. MAD = median absolute deviation, n = 36. 

Month 

Mean 

Bq kg-1 

SD 

Bq kg-1 

Median 

Bq kg-1 

MAD 

Bq kg-1 

Min 

Bq kg-1 

Max 

Bq kg-1 Skew Kurtosis 

Mar 42.64 31.46 32.05 20.98 9.80 110.00 1.01 -0.40 

May 38.22 31.20 30.75 19.90 0.15 168.44 2.17 6.12 

Sep 67.09 53.35 56.83 34.28 2.63 311.11 2.71 9.60 

Dec 54.82 30.18 48.12 29.67 20.53 139.91 1.13 0.81 

 

The 137Cs concentration of the sediment increased across the year peaking in 

September but declined between September and December. The activity concentration 

of 137Cs was significantly higher in September than March and May (F (3,140 = 4.247, 

p < 0.01) however the decline from September to December seen in Table 3.7 was not 

statistically significant. All months had a positive skew, which means that for all months 

there were a number of samples that had high 137Cs activity concentrations. The range 

in these data increased across the year with a large increase between May and 

September followed by an equally large decrease between September and December. 

In March there was spatial variation at the site with transect 2 covering sediments that 

were significantly higher in 137Cs activity concentration and transect 3 covering 

sediments that had the smallest concentration of 137Cs (F (2,33 = 6.031, p < 0.01)). By 

May this significant spatial variation had disappeared apart from at transect 2 which still 

had significantly less 137Cs, though the alpha level of this difference was <0.05 

opposed to <0.01 in March. For September and December there was no significant 

spatial variation detected in these data. 

The 241Am activity concentration of the sediment increases across the year peaking in 

September and goes into decline between September and December. The activity 

concentration of 241Am was significantly higher in September than March and May (F 

(3,140 = 6.577, p < 0.01) however the decline seen in Table 3.8 between September 

and December was not significant. All months had a positive skew, which means that 
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for all months there were a number of samples that had high 241Am concentrations. The 

range of these data increased across the year with a large increase between May and 

September which is followed by an equally large decrease between September and 

December. 

Table 3.8  241Am summary statistics for each of the four monthly sampling 

campaigns. MAD = median absolute deviation, n = 36. 

Month 

Mean 

Bq kg-1 

SD 

Bq kg-1 

Median 

Bq kg-1 

MAD 

Bq kg-1 

Min 

Bq kg-1 

Max 

Bq kg-1 Skew Kurtosis 

Mar 39.33 27.17 31.65 15.86 10.60 108.00 1.07 -0.11 

May 34.34 24.93 30.66 19.23 0.00 132.12 1.72 4.36 

Sep 63.07 40.59 53.53 29.70 0.00 221.45 1.69 4.15 

Dec 48.90 22.20 45.61 23.89 20.42 113.08 0.94 0.47 

 

In March there was spatial variation at the site with transect 2 covering sediments that 

were significantly higher in 241Am activity concentration and transect 3 covering 

sediments that had the smallest activity concentration of 241Am (F (2,33 = 7.097, p < 

0.01)). By May this significant spatial variation had disappeared apart from at transect 2 

which still had significantly less 241Am, though the alpha level of this difference was 

<0.05 opposed to <0.01 in March. For September and December there was no 

significant spatial variation detected in these data. It should be noted that the temporal 

and spatial variation seen in 241Am was identical to that of 137Cs. 

The As concentration did not exhibit a particular trend; it fluctuated sometimes 

increasing and sometimes decreasing with month, though between May and 

September there was a large increase in As concentration relative to the other months. 

Statistically the increase in As concertation from May to September was the only 

significant change (F (3,140 = 11.8, p < 0.01)) as the declines seen for March and 

December were not significant. The range between months was consistent and the 

months have similar minimum and maximum values, though March stands out as 

having a large positive skew which is the result of its elevated maximum value. 

Understanding the site’s spatial trends was limited because the As concentration was 

so low for transect 3 in March and December. 
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Table 3.9  As summary statistics for each of the four monthly sampling campaigns. 

MAD = median absolute deviation, n = 36. 

Month 

Mean 

ppb 

SD 

ppb 

Median 

ppb 

MAD 

ppb 

Min 

ppb 

Max 

ppb Skew Kurtosis 

Mar 5.09 1.31 4.91 1.00 3.24 8.80 0.91 0.29 

May 4.39 1.22 4.17 0.43 3.32 10.59 3.71 15.67 

Sep 6.27 1.48 6.12 1.60 3.87 9.42 0.31 -1.02 

Dec 5.89 1.77 5.38 1.90 3.47 9.85 0.70 -0.51 

 

Table 3.10  Fe summary statistics for each of the four monthly sampling campaigns. 

MAD = median absolute deviation, n = 36. 

Month 

Mean 

ppb 

SD 

ppb 

Median 

ppb 

MAD 

ppb 

Min 

ppb 

Max 

ppb Skew Kurtosis 

Mar 5455 2471 5143 2138 1858 10554 0.60 -0.52 

May 6692 2477 6422 1607 4088 17622 2.47 8.11 

Sep 8698 2822 8056 2832 3996 13436 0.21 -1.24 

Dec 7968 2766 7317 2546 4455 14790 0.69 -0.61 

 

The Fe concentration of the sediment increased throughout the year peaking in 

September and then experienced a decrease between September and December. The 

Fe concentration of the sediment was significantly higher for September in comparison 

to March and May (F (3,140 = 10.57, p < 0.001)). The post September decline was not 

significant in this case though the mean and median shown in Table 3.10 did show a 

decrease. Therefore, the Fe concentration can be said to have increased between May 

and September and the concentrations remained at the elevated levels for the 

remainder of the survey period. Spatial variability in the Fe concentration was confined 

to March where transect 2 was significantly higher and transect 3 was significantly 

lower, there were no other spatial trends for Fe during the survey period. 
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Table 3.11  Sr summary statistics for each of the four monthly sampling campaigns. 

MAD = median absolute deviation, n = 36. 

Month 

Mean 

ppb 

SD 

ppb 

Median 

ppb 

MAD 

ppb 

Min 

ppb 

Max 

ppb Skew Kurtosis 

Mar 93.86 18.90 95.53 17.52 53.62 125.33 -0.17 -0.71 

May 79.73 17.16 79.79 20.10 50.94 125.20 0.32 -0.49 

Sep 109.84 23.10 109.39 22.34 60.36 154.67 -0.03 -0.79 

Dec 99.41 18.98 97.43 26.01 73.52 138.16 0.35 -1.15 

 

The shape of the data distribution as indicated by the skew factor and Kurtosis factor 

indicated that for March there were a few samples that had relatively high 

concentrations of Fe. 

The Sr concentration within the sediment was variable between months, with the 

concentration increasing and decreasing between each month. The concentration 

significantly decreased from March to May and then significantly increased from May to 

September (F (3,140 = 14.67, p < 0)). From September to December there was a slight 

decrease but this was within the expected variability given the stated standard 

deviation of these data and was not significant. The data distribution did not appear to 

be substantially impacted by the few samples with high Sr concentration and the range 

observed was consistent across all months, though in September it was elevated. 

There were few spatial trends found in the data other than transect 3 being significantly 

lower in Sr concentration in December. 

Air kerma 

The air kerma data varied across the sampling period however this variation was within 

what would be expected by the standard deviation (Table 3.12). There was no 

significant difference between the data sets for the monthly groupings, therefore the air 

kerma data does not vary temporally for these data. Transect 3 was significantly higher 

in air kerma measurements than transects 1 and 2 for march, September and 

December (F (3,72 = 1.182, p < 0.01)). 
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Table 3.12  Air kerma summary statistics for each of the four monthly sampling 

campaigns. MAD = median absolute deviation, n = 19. 

Month 

Mean 

µGy h-1 

SD 

µGy h-1 

Median 

µGy h-1 

MAD 

µGy h-1 

Min 

µGy h-1 

Max 

µGy h-1 Skew Kurtosis 

Mar 0.05 0.01 0.05 0.01 0.04 0.06 -0.01 0.12 

May 0.05 0.01 0.05 0.01 0.02 0.06 -1.12 0.35 

Sep 0.05 0.01 0.05 0 0.04 0.06 0.27 -0.63 

Dec 0.05 0.01 0.05 0.01 0.04 0.06 0.11 -1.47 

 

3.3.2. Contaminant sediment relationships 

The analysis of the variables in 3.3.1 revealed that there were some common trends 

throughout the data sets, particularly between the particle size distribution and the 

contaminants 137Cs and 241Am. The theory that sediment movement accounts for the 

monthly variation in these contaminants is discussed in section 3.4.1, here this theory 

is tested by exploring the spatial and temporal variability in this relationship. 

The monthly trends for 137Cs and 241Am association with clay, silt, sand and organic 

matter are presented here for March, May, September and December. The analysis 

used the coefficient of determination (R2) as a measure of the strength of the 

contaminant sediment relationship. Summary statistics are reported in section 3.3.1 for 

reference. A total of 136 regression analyses were conducted, these data are given in 

appendix 1. The results were interpreted at the monthly level, though reference is 

made to transect variability, for the purpose of being concise these transect data are 

not presented here and are only discussed when relevant. 

March 2014 

The regression analysis conducted for the March 2014 data is presented in Figures 3.2 

and 3.3, the plots show the regression model with the data plotted around it to give an 

idea of the goodness of fit of the regression models. Based on the scatter of the data in 

the plots silt appeared to be the best predictor of both 137Cs and 241Am concentration. 

This was supported by the data with the silt regressions returning a coefficient of 

determination of R2 = 89% (p<0.01) for both relationships. Clay also performed well as 
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a predictor of contamination levels with 74% of the variability in the contamination data 

explained by clay. The observed relationship between clays and silts and the 

contaminants 137Cs and 241Am is that as the amount of fine sediment increase so does 

the quantity of contaminants. 

Sand acted as a negative predictor variable were by as the percentage of sand 

increased the concentration of contamination decreased. Transect 3 had significantly 

less contamination however did not have significantly more fine sands, the site did 

have significantly less clay and silt (F (2,33 = 5.504, p < 0.01). Therefore, it is 

reasonable to suggest that fine sand was not an appropriate predictor as it is a case of 

correlation not equalling causation. The presence of sand means the area will have a 

coarse particle size distribution, and consequently, less clay and silt, which were 

positively correlated with 137Cs and 241Am. 

The relationship between organic matter and 137Cs and 241Am exhibited a lot of scatter 

as shown in Figures 3.2 and 3.3, the coefficients of determination were 68% for 137Cs 

and 72% for 241Am. The data, however were, subject to high spatial variation with the 

transect 1 and 3 regressions failing to explain a sufficient amount of variance (>70%). 

This contrasted with transect 2 which explained some 93% and 95% of the variance in 

137Cs and 241Am data respectively. 

For March 2014 the data showed that silt and clay performed as strong predictors of 

137Cs and 241Am concentration within the sediment. Organic matter and sand 

underperformed as predictors for the reasons discussed in section 3.4.). 
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Figure 3.2  March 2014 log vs log plots (In) showing the natural log transformed data 

and fitted linear model. Data were regressed with 137Cs Bq kg-1 as the 

response variable and percentage clay, silt, sand and organic matter 

acting as predictor variables. 
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Figure 3.3  March 2014 log vs log plots (In) showing the natural log transformed data 

and fitted linear model. Data were regressed with 241Am Bq kg-1 as the 

response variable and percentage clay, silt, sand and organic matter 

acting as predictor variables. 
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May 2014 

 

Figure 3.4  May 2014 log vs log plots (In) showing the natural log transformed data 

and fitted linear model. Data were regressed with 137Cs Bq kg-1 as the 

response variable and percentage clay, silt, sand and organic matter 

acting as predictor variables. 
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Figure 3.5  May 2014 log vs log plots (In) showing the natural log transformed data 

and fitted linear model. Data were regressed with 241Am Bq kg-1 as the 

response variable and percentage clay, silt, sand and organic matter 

acting as predictor variables. 

The data for May had noticeably less scatter around the fitted linear regression models 

for clay, silt and organic matter against 137Cs and 241Am (Figures 3.4 and 3.5). Organic 

matter and silt were the best predictors of 137Cs and 241Am concentration within May 

with coefficients of determination ranging between 91% and 95%. This increase in the 

predictive power of organic matter for May was in contrast to March where there was 

significant variation between the transects that hindered successful regression. In May 

there was no significant variation between transects percentage organic matter (section 

3.3.1). The lack of significant variation between transects resulted in the average 

monthly regression model fitting the data with minimum deviance. 
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The relationship between clay and the contaminants was stronger in May with more of 

the variation in 137Cs (R2 = 80%) and 241Am (R2 = 83%) data explained by variation in 

percentage clay content than in March. However, there was greater inter-transect 

variability that was not accounted for by a significant change in the amount of clay 

present in each transect. It is true that transect level regression models were more 

vulnerable to the effects of outliers due to having fewer data points, therefore the 

residuals of individual points have more power. These differences highlight that a 

general model that includes spatial variability such as the monthly models can 

approximate the relationship between contaminants and the sediment matrix. 

The sand regression models performed at 137Cs R2 = 47% and 241Am R2 = 50% which 

means that variation in sand explained more variability in the contaminants than was 

the case for March’s sand regression models. The lack of predictive power was not 

surprising given the same pattern of wide scatter shown in Figures 3.4 and 3.5 

however clay, silt and organic matter performed as strong predictors of 137Cs and 241Am 

for May 2014. 

September 2014 

The September data exhibited more scatter than was seen in March and May for clay, 

silt and organic matter, though there was less scatter for sand (Figures 3.6 and 3.7). 

The scatter around the fitted regression models was more severe in the 137Cs plots 

(Figure 3.6) than the 241Am plots (Figure 3.7). The regressions of organic matter 

produced the best predictive models for September with the following coefficients of 

137Cs R2 = 64% and 241Am R2= 81%. The principal difference between the regression 

models in September was between the contaminants and not the predictor variables. 

Regressions of clay, silt, sand and organic matter against 241Am produced coefficients 

of determination between 75% and 82% in contrast 137Cs coefficients ranged from 47% 

to 66%. 

One of the key findings of section 3.3.1 was the significant increase in fine sediments 

at the Lytham site between May and September, the significance is discussed in 

section 3.4.1. The transect level regression did reveal spatial variability that was 

evident with good fitting (R2 > 77%) regression models for transects 1 and 2 but no 

significant fits being obtained from transect 3. Between May to September transect 3 

went from having the least amount of silt to having the most, which may explain the 

difficulty in modelling contaminants at this site from the particle size distribution 

(discussed further in section 3.4.2). 
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Figure 3.6  September 2014 log vs log plots (In) showing the natural log transformed 

data and fitted linear model. Data were regressed with 137Cs Bq kg-1 as 

the response variable and percentage clay, silt, sand and organic matter 

acting as predictor variables. 
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Figure 3.7  September 2014 log vs log plots (In) showing the natural log transformed 

data and fitted linear model. Data were regressed with 241Am Bq kg-1 as 

the response variable and percentage clay, silt, sand and organic matter 

acting as predictor variables. 
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December 2014 

 

Figure 3.8  December 2014 log vs log plots (In) showing the natural log transformed 

data and fitted linear model. Data were regressed with 137Cs Bq kg-1 as 

the response variable and percentage clay, silt, sand and organic matter 

acting as predictor variables. 
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Figure 3.9  December 2014 log vs log plots (In) showing the natural log transformed 

data and fitted linear model. Data were regressed with 241Am Bq kg-1 as 

the response variable and percentage clay, silt, sand and organic matter 

acting as predictor variables. 

Data for December showed more scatter in 241Am particularly for the organic matter 

plot. In contrast, the 137Cs data showed less scatter than was seen in September 

(Figures 3.8 and 3.9). The sediment property contaminant relationships at transect 3 

that were absent in September returned in December, however the regression models 

have unacceptable coefficients of determination that range from R2 = 45% to R2 = 55%. 

Though the site wide average regression models returned coefficients of determination 

for 137Cs between 73% and 78% and for 241Am between 70% and 77%. Therefore, the 

sediment property regression models account for a similar amount of variance in 241Am 

in December as they did in September and there was a marked improvement for 137Cs. 
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3.3.3. Temporal variability in radioactive contaminant sediment relationships 

 

Figure 3.10  Monthly models for 2014 plotted on a log vs log plots (In). Data were 

modelled with 137Cs Bq kg-1 as the response variable and percentage clay, 

silt, sand and organic matter acting as predictor variables. 
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Figure 3.11  Monthly models for 2014 plotted on a log vs log plots (In). Data were 

modelled with 241Am Bq kg-1 as the response variable and percentage 

clay, silt, sand and organic matter acting as predictor variables. 

The temporal trend between the four months is explored here, to provide a narrative of 

how the monthly models compared to each other. The sediment property relationships 

were defined by a regression model that predicted 137Cs and 241Am activity 

concentrations in Bq kg-1 from measurements of the sediment particle size distribution 

or organic matter content were calculated for four months of the year 2014. These 

monthly models are plotted in Figures 3.10 and 3.11. The regression models are linear 

models plotted in a log-log format and like above the coefficient of determination is 

used to describe how well the regression models accounts for variation in the 

contaminant data. 
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Table 3.13  Coefficients of determination (R2) for each monthly regression model for 

137Cs. 

137Cs Clay Silt Fine sand Organic matter 

Mar 75 89 33 70 

May 84 92 52 95 

Sep 47 54 62 65 

Dec 75 73 78 77 

 

Table 3.14  Coefficients of determination (R2) for each monthly regression model for 

241Am. 

241Am Clay Silt Fine sand Organic matter 

Mar 76 89 31 72 

May 81 93 50 95 

Sep 78 76 76 82 

Dec 70 70 75 77 

 

The clay regression models showed that March and May had similar slopes though 

March had a higher intercept, December had the same intercept as May but its slope 

was slightly larger (Figures 3.10 and 3.11). However, September was substantially 

different with a much lower intercept and a far steeper slope. This was tested 

statistically using a dummy variable regression which confirmed that the September 

137Cs and 241Am regression models where distinct (p < 0.05). This variability resulted in 

a noted decline in the coefficient of determination for the 137Cs model in September as 

shown in Table 3.13. 

The March and December silt regression models had similar slopes though December 

had a lower intercept, May had the highest intercept but had a shallower slope than 

March and December. September was again substantially different to the other models 
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with a much lower intercept and larger slope. The dummy variable regression 

confirmed that the September silt regression models for 137Cs and 241Am were distinct 

(p < 0.05). The variation in the coefficients of determination (Tables 3.13 and 3.14) 

showed that the 137Cs model was most affected by the increase in silts that occurred in 

September. 

The fitted regression models presented in Figures 3.10 and 3.11 showed that 

December and May where visually similar in terms of slope and intercept with 

September and March being distinct. Due to the wide variability in these data and 

poorness of the fitted models, it is not appropriate to conduct a dummy variable 

regression. As previously stated, the sand regression models are not likely to be robust 

predictors, their coefficients were shown to range from R2 = 31% to R2 = 78%. Their 

coefficients were highest in September and December and lowest in March and May 

contrasting with the results for clay and silt (Table 3.13 and 3.14) 

The organic matter regression models were all distinct according to the dummy 

variable regression analysis, though visually May and September had similar intercepts 

and slopes, while March and December had higher intercepts and slightly shallower 

slopes. The organic matter regression models had similar or identical coefficients of 

determination across all months apart from September when the 137Cs model produced 

low coefficients of determination. 

3.3.4. 20-year trend in radioactive contaminant sediment relationship 

The percentage clay sediment property relationship was explored using data from 1995 

– 2014 for both 137Cs and 241Am. The data were decay corrected to the 2014 data set 

before regression analysis was conducted to ensure the effect of radioactive decay 

was accounted for. Decay correcting allowed the 2014 data to be compared to the 

historic data sets as it removes reductions in 137Cs which would occur from radioactive 

decay, therefore changes in activity levels will be the result of accumulation or 

remobilisation. 

A visual inspection of the 137Cs regression models given in Figure 3.12 showed that the 

earlier models 1995 and 1997 appear to be very similar to the 2003 model although 

this had a slightly higher intercept. The 2002 and 2014 models have the same intercept 

(Table 3.15) though 2002 had a steeper slope, these models appeared to be similar 

despite the 12-year time difference between when these data were collected. 2003 had 

the highest intercept though the low slope distinguished it from the 1995 and 1997 

models. A dummy variable regression analysis confirmed this visual split in the model 
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groupings determining that 1995 and 1997 were not dissimilar from each other. The 

2002, 2003 and 2014 models were not statistically different (p < 0.05) but were distinct 

from the 1995 and 1997 models. Therefore, the nature of the percentage clay / 137Cs 

relationship within these data changed temporally between the early 1990s but not 

significantly between 2003 and 2014. 

The 241Am regression models given in Figure 3.13 showed a great deal of overlap, 

model 2014 and 1995 were more similar in terms of their slopes than 1997 is to 1995. 

This was contrary to observations of the 137Cs models whereby the models from the 

1990s were distinct from those models in the 2000s and 2014. There was also a large 

amount of variability in the model intercepts as seen in Table 3.15 and the coefficient of 

determination of the more recent 2014 regression model was similar to that of the 1995 

regression model (77% compared to 82%). The models were not statistically distinct 

however the 2014 data that were used to build the regression model were lower though 

not significantly so. Therefore, in contrast to the percentage clay / 137Cs relationship the 

percentage clay/ 241Am relationship has remained temporally stable from 1995 to 2014. 
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Figure 3.12  Annual models plotted on a log vs log plots (In). Data were modelled with 

137Cs Bq kg-1 as the response variable and percentage Clay acting as the 

predictor variable. 
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Figure 3.13  Annual models plotted on a log vs log plots (In). Data were modelled with 

241Am Bq kg-1 as the response variable and percentage Clay acting as the 

predictor variable. 
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Table 3.15  Regression model parameters for % clay / 137Cs for 1995, 1997, 2002, 

2003 and 2014. % clay / 241Am was only applied to 1995, 1997 and 2014.  

Nuclide Parameter 1995 1997 2002 2003 2014 

137Cs 

R2 93 93 88 92 71 

Slope 1.36 1.37 1.18 1.01 1.08 

Intercept 2.34 2.43 1.98 2.68 1.93 

241Am 

R2 82 91 NA NA 77 

Slope 1.14 1.54 NA NA 1.01 

Intercept 2.39 1.43 NA NA 2.00 

 

3.4. Discussion 

The temporal and spatial characteristics of a range of sediment properties were 

analysed from March 2014 to December 2014. The analysis focused on the association 

of contaminants, principally 137Cs and 241Am, with the sediment matrix. These analyses 

attempted to establish if it is correct to treat sediment movement as contaminant 

movement. 

3.4.1. Sediment spatio temporal variability 

The particle size distribution of the Lytham site over time has shifted towards finer 

sediments with increases in the amount of silt and clay and decreases in the amount of 

sands. This change occurred between May and September, suggesting that fine 

grained sediments were being preferentially deposited at the site. After September, 

there was a decline in the amount of fine grained sediments present though this decline 

was only significant for clay. 

During March and May fine sediments such as clay accumulated within the mudflats 

located higher in the tidal frame, In September and December these fine sediments 

were remobilised. A model for sediment deposition within the Ribble estuary advanced 

by Wakefield (2005) suggests sediments are deposited during low energy conditions 

and then remobilised to the outer estuary to then be deposited again when energy 
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conditions permit. The data collected here may support this trend in the fine-grained 

sediments as they were deposited until September and then experienced a decline as 

the winter season began, which is characterised by enhanced disturbance (Esteves et 

al., 2011). 

That the reduction in clay fraction was significant, unlike the reduction in silt, is due to 

the clays being finer and more vulnerable to remobilisation. The silts and sands do 

undergo change though with lower statistical significance, this is likely due the energy 

changes within the estuary not being high enough. This energy required to remobilise 

clays can be provided by heavy precipitation events during low tide that will 

disproportionately washout the finer and lighter clays opposed to the heavier silts.  

There was a substantial siltation event at transect three in the September data. The 

increase in the percentage of the sediment that was silts can only be explained by the 

addition of sediments representing the silt fraction or the remobilisation of the coarse 

sand sediments which were then lost from the area. The remobilisation of sands is not 

likely as the sand fraction, being larger, simply requires more energy to remobilise and 

the energy that would remobilise sands would also have remobilised the silt and clay 

fractions which we know increased in quantity. Therefore, the silt and clay fractions 

must have been deposited at a higher rate relative to the sand fraction in the months 

between May and September. This deposition will likely be a result of continued 

accretion of fine sediments at the site from the Irish sea or from other parts of the 

estuary. 

3.4.2. Contaminant spatio-temporal variability 

The metals Fe and Sr and metalloid As were found at concentrations far below the 

National Oceanic and Atmospheric Administration (NOAA) screening quick reference 

table (SQuiRTs) values (Warren et al., 2012); they also exhibited a great deal of 

temporal variability. It is therefore reasonable to say that the observed Fe, Sr and As 

concentrations within the site are not likely to pose a threat to human health at current 

concentrations and the site would not be considered contaminated.  

Spatially these metals were found at higher concentrations at transects 2 and lowest 

concentrations at transect 3, this is in agreement with the general spatial distribution of 

137Cs and 241Am. Weak (R2 = 40% - 55%) liner relationships exist between these three 

metals and 137Cs and 241Am and the clay and silt fractions. As the contaminant 

concentrations were so low, this causes uncertainty in the temporal and spatial data, 

which was responsible for the high amount of scatter that was encountered when trying 
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to conduct a regression analysis. The lower contaminant concentrations are thought to 

mean that a less contaminated sediment has been added to the site and that this has 

occurred at different levels across the tidal frame, resulting in a spatially uneven 

dilution. 

The radionuclides 137Cs and 241Am were found to have identical spatial and temporal 

variation in the sediment concentration of these contaminants. The contaminants had a 

strong correlation with each other with a 137Cs to 241Am ratio of 5:4 being present 

across the full sampling period. Their temporal variation mimicked that of the clays and 

silts, which was to be expected as these contaminants are known to bind to clays and 

silts (MacKenzie et al., 1999). Consequently, as the quantity of fine sediments 

increase, so should the activity concentration of 137Cs and 241Am (Rainey et al., 1999). 

This association with the fine fraction of the sediments was tested by a large number of 

regression analyses, that aimed to determine if these associations where spatially and 

temporally stable, they were found to be stable temporally and spatially though with the 

following caveats. 

There was some spatial variation observed between transects that was not found in the 

monthly comparisons that were used to assess temporal variation. Part of this will be 

due to the reduction in the number of samples (following removal of outliers) included 

in the modelling for transects. However, there was one incident in September that 

significantly affected the performance of the monthly models, this was the September 

siltation event. The substantial accumulation of silts at the site decoupled the 

contaminant fine sediment relationship for sites located lower down in the tidal frame. 

From May to September transect 3 transitioned from having the coarsest sediment and 

lowest 137Cs and 241Am activity concentrations of the three transects to having the 

highest clay and silt percentages and 137Cs and 241Am activity concentrations. The 

significant increase in clays and silts for September is believed to have been caused by 

deposition as opposed to sand erosion for the reasons given earlier. This has resulted 

in a new sediment mix with different activity concentrations of 137Cs and 241Am being 

added to the site. This caused scatter in the regression model as the two types of 

sediment would be expected to take some time to mix thoroughly (Brown et al., 2015). 

This time to mix may also explain the high amount of variability in this month’s 

regression models. 

There are two possible explanations for the September siltation events’ effects on the 

contaminant sediment property relationships. 1) That the continued gradual accretion 
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of sediments from the Irish Sea at the site over summer caused an enrichment of fine 

sediments that had higher contaminant concentrations than those sediments found in 

March and May. However, this does seem unlikely as the Irish Sea sediment is being 

deposited year-round and its contaminant concentration is similar to those sediments 

that are already present. 2) such a significant change in the sediment mix, is caused by 

a sediment with significantly higher contaminant concentration being deposited at this 

site. The effects of such a deposition would be that the sediment contaminant 

relationship would exhibit greater scatter whilst seeing bulk contaminant concentrations 

increase, which they did for this site.   

The likely source of fine-grained sediments which have a higher concentration of 

radioactive contaminants such as 137Cs and 241Am is the Ribble estuary saltmarshes 

(Assinder et al., 1997; Clifton et al., 1999; Mudge et al., 1997). A probable explanation 

is that sediments from these saltmarshes may have been redistributed to the mudflats 

which owing to their significantly higher concentration of contaminants resulted in the 

decoupling of the contaminant relationship during the siltation event. This further 

highlights the need to better understand the nature of inter estuary transfers of 

sediment, perhaps through the use of better remote sensing techniques and sediment 

transport modelling.  

In 2014 the estuarine sediments activity concentration of 137Cs and 241Am was 

significantly related to how much clay and silt was present at the site. Fine grained 

sediments can therefore be said to act as a proxy for these contaminants. The results 

demonstrated that the contaminant proxy relationships were subject to temporal and 

spatial variation. The data showed that variation occurred between different transects 

with those such as transect 3 which were lower down in the tidal frame having more 

scatter in the data. The data also showed that the proxy relationships were not 

temporally stable with the coefficients of determination varying temporally for some 

transects. However, in only one incidence (September’s siltation event) did this 

variability disprove the statement that 137Cs and 241Am activity concentration was 

determined by the percentage of fine sediments present. 

3.4.3. Long term trend 1995 - 2014 

The analysis of annual data sets spanning a 20-year period aimed to investigate the 

long-term trend of estuarine contamination. The prior assumption of this work was that 

radioactive contaminant concentration was dependent upon three variables; radioactive 

decay, remobilisation from the site and accumulation at the site. 
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Remobilisation could result in the relocation of contaminants to other parts of the 

estuary or out with the estuary to the Irish Sea sediment transport system, though it 

could also be the bulk dilution of contaminants with uncontaminated sediments. 

Accumulation would be the increase in contaminant concentration within a particular 

fraction of the sediment matrix (e.g. % clay), the source of this increase in 

contamination could be sediments with a higher contmant concentration such as the 

Ribble saltmarshes (Assinder et al., 1997; Clifton et al., 1999; Mudge et al., 1997) or 

contaminant concentrated marine sediment deposits such as the Sellafield mud patch 

located in the eastern Irish Sea (Kershaw et al., 1999; Lindahl et al., 2011; Marsden et 

al., 2006). 

As radioactive discharges are much reduced to the environment, (Coughlan et al., 

2015) the effect of these physical mixing processes should be a downward trend in 

estuarine contamination. However, the data showed that this downward trend occurred 

until 2002 but that from 2002 – 2014 these data are not statistically distinct after the 

effect of radioactive decay is accounted for. 

Possible explanations for this could be that diffuse sources of contaminants from the 

Irish Sea or other parts of the estuary are ‘topping up’ the contaminant concentration at 

the rate it is being diluted (e.g. Hunt et al., 2013). Estuary wide sediment budgets are 

required to better understand why the long-term data do not show a gradual downward 

trend in contamination by identifying additional sources of contaminated sediment 

present in the estuary. Sediment transport modelling for the Ribble estuary would 

reveal how sediments are redistributed within the estuary and may shed light on likely 

sources or at the minimum the nature of sediment transfers within the estuary. At the 

coastal scale sediment transport modelling for the North West of England would shed 

light on the nature of the reworking of sediments from higher concentration deposits 

near Sellafield to less concentrated areas such as the Ribble (Gleizon and McDonald, 

2010; Periáñez, 2005, 2003).  

3.5. Conclusions 

The activity concentration of the contaminants 137Cs and 241Am was found to be 

determined by the variation of fine sediments in the mudflats. Organic matter was also 

a good predictor though it had more inter-transect variability, which made building a 

general model for the estuary more difficult. The findings are consistent with the view 

found in the literature that contaminants in general are associated with fine sediments 

(MacKenzie et al., 1999; Rainey et al., 1999). Furthermore, they agree with Wakefield’s 
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(2005) data which show that disturbance can cause a decoupling in these 

relationships, which in this case was most likely through physical remobilisation of the 

sediments from the saltmarshes to the mudflats.  

Estuarine contamination levels were shown to have declined significantly from 1995 to 

2014 though from 2003 to 2014 there was not a significant decline. This lack of a 

significant decline was interpreted as the estuaries contaminant levels being topped up 

at the same rate of dilution, though ultimately such sources would have to be identified 

to confirm this. These sources are likely to be the estuarine saltmarshes and Irish sea 

deposits which are believed to be undergoing reworking and hence releasing 

sediments, which is then traveling towards estuaries along the Irish Sea coast (Hunt et 

al., 2013). The nature of estuarine contamination was clearly linked to changes in 

sediment particle size distribution. Therefore, it would be reasonable to suggest that 

the physical drivers of sediment remobilisation are also influential in monthly and 

annual variation in sediment contaminant concentration. 
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4. The impact of disturbance events on estuarine sediment properties over a 

two-year period 

Within the context of this work disturbance events are considered to be discrete 

incidents that cause a change to the sediment matrix or some of its properties over a 

short time frame. These events can include, though are not limited to, storminess, high 

riverine discharge and high precipitation. Typically, such an event will modify the 

energy dynamics of the estuary or a part of the estuary, which in turn can affect the 

estuaries sediment transport system (Masselink and Russell, 2013). The underlying 

theory being that had the disturbance event not occurred the properties of the sediment 

matrix would be as it was before disturbance.  

Storm events have been observed to cause sediment remobilisation from the mudflats 

to the saltmarsh surface, where such sudden changes in elevation of the saltmarshes 

relative to the mudflats can trigger erosion processes due to modified local 

hydrodynamic processes (e.g. Pethick, 1992). In this example, the immediate bulk 

remobilisation of sediment from the mudflat to the saltmarsh is evident in the short term 

but over a longer time scale a secondary effect is also present. This secondary effect is 

a change in the local energy regime that results in local sediment transport being 

changed such that saltmarsh edge erosion can be promoted resulting in a transfer of 

sediment to the mudflats over a longer period.  

Disturbance events are described here as discrete events that cause an accelerated 

modification to the sediment properties away from what would be seen as part of daily 

variability. The daily and seasonal variability of the sediment is governed by the long-

term Irish Sea coastal sediment transport to the Ribble estuary and the estuary wide 

sediment transport system that dictates how terrestrial, estuarine and marine 

sediments are distributed within the Ribble estuary (Luo et al., 2015). The ebb and flow 

of the tide will see sediments sorted through out the tidal frame according to the mass, 

cohesiveness of the sediments and the available energy of the tides (Choi and Kim, 

2016; Pamba et al., 2016). Disturbance events are a deviation from these daily 

processes as they represent an injection of excess energy to the hydrodynamics of the 

area and can modify coastal morphology and the sediment transport system by 

increasing sediment supply (Brooks et al., 2017; Pye and Blott, 2008; Sierra and 

Casas-Prat, 2014). 

It is important to understand the significance of these events in the seasonal and 

annual variability of the estuary’s sediments so as to deepen our understanding of how 
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such estuarine stores of sediment may behave in the future (Dissanayake et al., 2015; 

Pye and Blott, 2016). As discussed in section 3.4, the association of radioactive 

contaminants namely 137Cs and 241Am with clays and silts, means that the seasonal 

and annual variability of some contaminants is to a great extent governed by the 

processes that rework sediments (Hunt et al., 2013; Leonard et al., 1999; McDonald et 

al., 2001). A deeper understanding of the role of these infrequent high energy events 

occupy will have implications for those interested in the reworking of sediment bound 

contaminants. 

Increased moisture in the atmosphere due to rising temperatures, will likely see an 

increase in the frequency and intensity of storm events globally and this is predicted to 

be the case for the Irish Sea as well (Mölter et al., 2016). Consequently, the frequency 

and intensity of high impact disturbance events that can see an injection of energy to 

the regional (Irish Sea) and local (Ribble estuary) sediment transport systems will likely 

also increase (Blott et al., 2006; Esteves et al., 2011). High riverine discharge events 

represent a disturbance event that can promote the remobilisation of sediments to the 

mouth of the Ribble estuary, and where several of these events occur within a short 

period, it is believed that they will promote the remobilisation of sediments to the Irish 

Sea, to be redistributed by the Irish sea sediment transport system (Wakefield, 2005). 

Wave climate has been highlighted as an understudied aspect of climate change 

induced changes to storminess that may lead to significant changes to the coastal 

system (Sierra and Casas-Prat, 2014; Stive et al., 2002). Though there is uncertainty, it 

is generally agreed that the frequency of these high impact disturbance events will 

increase (Robins et al., 2016). 

The implication of sediment remobilisation is that those sediments may be transported 

to new areas within or outwith the Ribble estuary. This is of concern as the relocation of 

sediments will mean that any associated contaminants will also be relocated given the 

relationships between contaminants (137Cs and 241Am) and sediment fractions that were 

shown in chapter 3, these associations are also widely reported within the literature 

(Inoue et al., 2017; Lansard et al., 2005). 

The spatio-temporal stability of the contaminant sediment proxy relationships 

established in chapter 3 was reported as being influenced by the September siltation 

event. The causes of this variability in the sediments is explained in chapter 3 as being 

a combination of daily and seasonal processes that dictate long term trend along with 

short high impact disturbance events. These events cause substantial initial change 

that can be followed up by a longer-term modification to how sediment is transported 
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within the local area (Adams et al., 2011; Blott et al., 2006; Gutiérrez et al., 2016; 

Robins et al., 2016). The assumption that disturbance events e.g. storminess and high 

riverine discharge are significant out with the natural seasonal variability, as discussed 

above, are explored in this chapter to determine the significance of discrete 

disturbance events on sediment remobilisation and consequently contaminant 

remobilisation.  

4.1. Aims 

This chapter then aims to determine if measurements of climate driven disturbance 

events such as storminess and high riverine discharge can be used to explain part of 

the variability in measurements of sediment properties. The following research 

questions will be investigated:  

 Does storminess cause variation in the sediment particle size distribution? 

 Does storminess cause variation in the sediment contaminant levels? 

 Does storminess cause variation in the sediment elevation? 

 Does high riverine discharge cause variation in the sediment particle size 

distribution? 

 Does high riverine discharge cause variation in the sediment contaminant 

levels? 

 Does high riverine discharge cause variation in the sediment elevation? 

4.2. Data sets 

The questions being investigated here are not necessarily that storminess and high 

riverine discharge cause variation in the sediment of the estuary as, from the literature 

discussed in chapter 2.3, it is reasonable to assume this to be the case (Adams et al., 

2011; Blott et al., 2006; Gutiérrez et al., 2016; Robins et al., 2016). It is the context of 

detecting a statistically significant effect of these disturbance variables on the 

properties of the sediment that is of interest. Consequently, the analysis here focuses 

on those discrete high impact disturbance events and ignores the cumulative effects 

from processes that occur daily. The presence of a significant effect when ignoring the 

ebb and flow tides and variation in tidal height indicates that high impact events such 

as storminess, can cause a significant effect that it is detectable through the masking of 

seasonal and daily reworking of the sediments. 

A statistical analysis of sediment property time series is the only viable method that can 

reasonably answer these questions, though this does introduce issues of time series 
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duration, temporal resolution and the variables that should be measured. It is important 

that the duration of the study is long enough to include multiple seasons so that any 

trend is truly detected and not just down to seasonal fluctuations, therefore at least two 

years of data are required. Understanding temporal resolution is more complicated 

though as sampling constraints are a significant factor; for example, an ideal time 

series would have daily measurements as the shorter the duration between points the 

smaller the assumption about how that system changed between being monitored. 

However, this is simply not practicable in most studies given available resources. A 

compromise in sampling frequency was, therefore, used in this analysis. The factors to 

be used in this analysis are significant wave height as a proxy for storminess (Brooks 

et al., 2016; Rangel-Buitrago et al., 2016), riverine discharge and variation in the Ribble 

estuary’s sediment properties. 

4.2.1. Ribble estuary sediment properties 

The sediment properties data were provided by Dr Richard Wakefield from a larger 

data set collected during his PhD studies into temporal trends in estuary sedimentation 

within the Ribble between 2002 and 2004. This large data set consisted of 74 individual 

time series at a 4 week frequency for a two year duration, with these data coming from 

upper and lower estuary sites. Included variables were particle size distribution, 137Cs 

concentration, and bed elevation changes. The decision to use these data was formed 

by two factors, the practical limitations of duplicating such an extensive data set and 

the availability of coincident wave height data.  

When planning, this work, I was faced with the option of using the pre-existing 

sediment property data provided by Dr Richard Wakefield, or expanding the sampling 

campaign from chapter 3 to include a longer duration and finer temporal resolution. To 

expand the chapter 3 sampling campaign would have allowed a finer temporal 

resolution and eliminated the coarseness in Dr Wakefield’s data set introduced by 

aggregating sampling measurements. However, fine scale monthly changes in 

sediment properties have already been studied by past workers (Atkin, 2000; Rainey, 

1999; Wakefield, 2005) and there would be marginal benefits in producing a monthly 

time series for the Ribble. Therefore, the collection of such a data set would have come 

at the cost of chapters 5 and 6 and would have greatly limited my ability to study large 

scale sediment movement and consider its implications. 

Modelled wave property data from the National Oceanographic Centre (NOC), as 

discussed below in section 4.2.2, covered the time frame from 1996 - 2007, which was 
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coincident with the sediment property data and were extracted for a fixed point at the 

mouth of the Ribble estuary (Brown et al., 2010). An alternative to this modelled data 

would have been to get these data from a series of wave buoys in the Irish Sea, though 

during the course of this project there was technical issues with these wave buoys that 

created data gaps. Therefore, the availability of wave height data was a strong part of 

the decision to use the Wakefield 2002-2004 data set.  

 

Figure 4.1  Map of the Ribble estuary with the four sampling locations denoted by a 

red circle. 

The field properties data were collected by Wakefield (2005) from four locations within 

the Ribble estuary; Preston, Savick Brook, Warton bank and Lytham (figure 4.1) during 

2002 - 2004. At each location, Wakefield laid out a number of transects dependant on 

the size of the site Preston (2), Savick Brook (3), Warton (5) and Lytham (3). Transects 

were deployed across the mudflat horizontally to the Ribble main channel and 

numbered with transect 1 being farthest from the main channel and transect 2 being 

second farthest. Along each transect poles were inserted to denote sampling stations, 

it is from these sampling stations that sediment scrapes and observations of elevation 

change relevant to the top of the pole were made. These measurements were repeated 

every month beginning in March 2002 and ending in February 2004. 
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The sediment scrapes were processed in the same fashion to section 3.2.3 to 

determine particle size distribution (% clay, % silt, %sand) and 137Cs (Bq kg-1) 

concentration, with the difference in height measurements indicating the magnitude of 

erosion or accretion. 

4.2.2. Significant wave height as a proxy for storminess 

Through the ARCoES project, the National Oceanography Centres (NOC) Proudman 

Oceanographic Laboratory provided an extract from an 11-year wave simulation of the 

Irish Sea (Brown et al., 2010). The model was a 1.85km nested 3rd generation spectral 

wave model (WAM) coupled with the Proudman Oceanographic Laboratory Coastal 

Ocean Modelling System (POLCOMS). At the mouth of the Ribble estuary hourly 

estimates of significant wave height (Hs), second moment period (TM02), peak wave 

period (TP) and mean wave direction (Ɵm) where made from 1996 - 2007. 

From the wave property data, the significant wave height (Hs) was targeted for use as 

an indicator of storminess within the Irish Sea. Where a pattern of waves observed for 

a period of time would form a positively skewed Gaussian or Rayleigh distribution, the 

Hs is defined as the mean of the highest one third of this distribution. This gives a good 

approximation of the average height of the highest waves for the given time interval, 

however it is still likely that waves in excess of twice the reported Hs will occur 

(National Oceanic and Atmospheric Administration, 2017). I use Hs as a proxy for 

storminess in this work due to it being a measurement of the extreme wave climate that 

would be present during a storm event (e.g. Valchev et al., 2012). In effect this analysis 

assumes that wave height will be elevated during storms (Rangel-Buitrago et al., 

2016).   

4.2.3. Ribble riverine discharge 

The riverine discharge is defined in this work as the total volume (m3) of water that 

passed an Environment Agency (EA) gauging station at Preston in any given 24-hour 

period. The station used is located above the tidal reach of the Ribble. The data were 

formatted with a total river discharge value for each calendar day from 2002 - 2005. 
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4.3. Methods 

This section describes a time series statistical analysis with the Granger causality test 

chosen as the statistical test of choice. This test and the data preparation and 

processing steps are discussed in detail below. As all this analysis was conducted 

within the R programming environment it is important to note that a time series is a 

vector of data points that are indexed at different times.  

4.3.1. Granger causality test as it relates to the data sets 

Simply put the Granger casualty test is a hypothesis test of whether values of time 

series x can be used to predict values of time series y. The test evaluates if the 

structure of time series storminess is significantly present in the structure of time series 

% clay after a period of temporal lag. It is important to note that this test does not 

determine causality despite the name or statistically determine that storminess causes 

variation in % clay. This method compares the underlying trend in time series 

storminess and compares it to the underlying trend in time series % clay and 

determines if the structure of time series storminess is present in time series % clay. 

Should it be the case that this structure is present, then reasonable interpretation must 

be used to determine what is likely the cause for this positive result. 

The Granger causality test is a bivariate hypothesis test used to assess temporal 

ordering in two data sets. The Granger causality test and variations of it (Attanasio and 

Triacca, 2011; Toda and Yamamoto, 1995) have been used extensively for 

investigating presumed bivariate hypotheses e.g. the causal relationship between 

global greenhouse gas emissions and global temperatures (Attanasio et al., 2013). 

4.3.2. Preparation of data subsets for analysis 

The three time series data sets were not of the same temporal resolution; the wave 

height data were given in one hour increments, the riverine discharge data were in 24 

hour increments and the sediment property data were in monthly increments. This is an 

issue as, in order to conduct the time series analysis, the two data sets that are being 

tested against each other must be equidistant. The options to rectify this problem are to 

interpolate the data sets so that they are equidistant or to degrade one of the data sets 

to achieve equidistance. I chose to create four data subsets that would undergo 

granger causality testing to better understand the effects of coarseness in temporal 

resolution.  
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The four subsets are listed here with a subset ID which is used throughout to avoid 

confusion as all these data subsets are derived from the three source data sets 

described in section 4.2. The method used to create each subset follows this list.  

1) SubIntSP = the interpolated sediment property data set, the original significant 

wave height data and original riverine discharge data.  

2) SubMeanHs = the Mean of the Significant wave height data for a four-week period, 

the original sediment property data and the original riverine discharge data.  

3) SubSumHs = the Sum of the Significant wave height data for a four-week period, 

the original sediment property data and the original riverine discharge data. 

4) SubScenHs = the high significant wave height scenario data set, the original 

sediment property data and the riverine discharge data. 

 

SubIntSP was created by applying an exact linear interpolation to the sediment property 

data using the wave height data as a reference, the method was similar to the simple 

linear interpolation conducted by Kang and Larsson (2014) to correct non equidistant 

data. This exact interpolator uses a straight line between sampled points to estimate 

values for time points that where not sampled. This ensured that for every point of the 

wave height data, a new point for the sediment property data was generated using an 

exact linear interpolation algorithm meaning both data sets were then equidistant in 

their observations. These transformations were conducted using the zoo time series 

package (Zeileis et al., 2016) within the R environment, with the zoo function 

na.approx() being modified to conduct the linear interpolation.  

The Subsets SubMeanHs and SubSumHs are data sets which have degraded the significant 

wave height data to the same temporal resolution as the sediment property data. Each 

data point in the sediment property data represents a site visit on which samples of 

sediment where collected from locations within the Ribble estuary. The degradation 

applied aggregates the significant wave height data for the time period between site 

visits. Two methods of aggregation are used which results in two subsets. SubMeanHs 

takes the Mean of all waves in the four-week period before each site visit and SubSumHs 

totals the wave heights of all waves in the four-week period before each site visit.  

As the significant wave height data is being used as a proxy for storminess this 

aggregation can be problematic in that storminess is defined here as a disturbance 

event that is short in duration and infrequent in occurrence. Therefore, by degrading 

the significant wave height data the signature of these short-term events may be 

removed. This potentially circumvents the purpose of this chapter, however these 
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analyses where conducted as it checks for rigour in the methods and ensures a robust 

analysis by not relying on one method of data analysis. These pair of degraded data 

subsets also offer a counter to the potential issue of the interpolated subset dataset 

(SubIntSP) which whilst preserving the signature of the storminess proxy may be over 

analysing the sediment property dataset.  

 

 

Figure 4.2  Wave direction rose, the bars show the direction that the waves are 

traveling towards. The concentric rings denote what percentage of the 

waves the bars represent. The colours on the bars denote the proportion 

of the waves that have the stated wave height. 

The fourth data subset created (SubScenHs) was an attempt to isolate the underlying 

nature of storminess by specifically targeting a subset of the significant wave height 

dataset which is used as a proxy for storminess here. Figure 4.2 represents the 

distribution of wave directions and magnitude of waves for the point at the estuary 

mouth where the wave climate was modelled. From this diagram, it is clear that an arc 

of 450 and 1350 included the waves with the highest wave heights and it also 
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represented the waves that are angled towards the mouth of the Ribble estuary and 

are therefore likely to impact it.  

SubScenHs is a subset of those wave heights that had a direction between 450 and 1350 

and a size greater than 1m which is the equivalent of the mean of all wave height data 

plus one standard deviation. This subset was also aggregated to produce a mean of 

these specifically selected waves for the four-week period before each field visit. This 

aggregated subset does degrade the data, but by using a scenario which accounts for 

wave direction and size it is more likely this subset will maintain the underlying trend in 

storminess. Therefore, this scenario of direction and wave height is believed to isolate 

elements of the significant wave height data that are most likely to be a good proxy for 

storminess. This is supported by the work of Luo et al., (2015) whom suggested that for 

the Ribble Estuary storm waves directed towards the estuary may cause enhanced 

disturbance by eroding the inner estuary and therefore the direction of waves is an 

important factor.  

4.3.3. Granger causality analysis within R 

For each of the four data subsets their three constituent time series datasets were 

loaded into the R programing environment and all-time series were converted to 

POSIXlt objects using as.POSIX function, which is required to read these data for the 

analysis. Dates were converted to represent the number of seconds since a fixed 

epoch; in this case, it was the number of seconds since 00:00am January 1st 1974, 

which is a default time point used by many applications. The Zoo time series package 

and lmtest statistical analysis package were loaded and the Granger causality analysis 

was conducted (Zeileis and Hothorn, 2002). 

The time series data were tested for stationarity, which is when the properties of a time 

series do not depend on the time at which the series was observed. Stationarity can be 

achieved through the process of differencing, this involves calculating the difference 

between consecutive observations and conducting the analysis on this new differenced 

data set. Unit root tests revealed that seasonal and then first differencing was required 

to achieve stationarity, this was conducted using the lmtest differencing function. An 

example of a differenced time series is presented in figure 4.3, the storminess time 

series in this example had the seasonal trend removed by seasonal differencing. 

However, it was not stationary so had first differencing applied and was tested with unit 

roots test, the result was a time series that can be said to be stationary. 
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Figure 4.3  Example of a wave height (Hs) time series that has had seasonal and first 

differencing applied to the data a) raw Hs time series, b) seasonal 

differencing has been applied to these data, c) first differencing has been 

applied to the time series found in b. 

The differenced data sets were then used for a Granger causality test which tested the 

hypothesis that x causes y and the reverse that y causes x. These results were then 

interpreted as passes or fails. 
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4.4. Results 

Each iteration of the Granger causality test evaluated the following null and alternate 

hypotheses at a significance level of p-value = < 0.05 to determine a pass or fail. 

Causation is referred to as “Granger cause” below to emphasise that it is causation 

within the confines of this particular statistical test and not true causation.  

 H0 Disturbance mechanism does not Granger cause variation in sediment 

properties 

 H1 Disturbance mechanism does Granger cause variation in sediment 

properties 

I tested two disturbance mechanisms here; a time series of riverine discharge and a 

time series of significant wave height which is used as a proxy for storminess. The 

storminess proxy consisted of four data subsets; SubIntSP, SubMeanHs, SubSumHs and 

SubScenHs. Each subset interpolated, aggregated or specifically subset the three source 

time series to produce four subsets that would allow this analysis to test for a temporal 

trend in the storminess proxy and sediment properties data sets.  

The sediment properties data consists of the particle size distribution, the 137Cs activity 

concentration and the change in sediment bed elevation. The hypotheses were tested 

for each sediment property against each disturbance mechanism for each transect. 

This allows the effects of these disturbance mechanism to be assessed at a spatial 

scale that ranges from the mouth of the estuary to the extent of the Ribble’s tidal reach. 

These results are presented as tables below and discussed in section 4.5. 
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4.4.1. Storminess proxy 

SubIntSP: Interpolated sediment properties 

Through the granger causality analysis, the underlying temporal trend within the 

significant wave height data was compared to the underlying trend within an 

interpolated time series of the sediment properties data. The results of this analysis are 

displayed in tables 4.1 and 4.2 as a pass or fail at a significance level of p-value = < 

0.05. These data showed that none of the sediment property variables from the five 

transects located in the upper estuary had any similarity in temporal trend with the 

significant wave height data. In the lower estuary three of the eight transects; Lytham 1, 

Lytham 2 and Warton 3 showed positive results indicating that the trend in the 

significant wave height data sets was partially replicated in the trend of the sediment 

properties data at these sites. A test for reciprocal causation found that the Lytham 1 

sand data exhibited reverse causation across the significant wave height data and the 

sediment property data.  

Table 4.1  Upper estuary Granger causality matrix. For each transect the matrix 

reports whether the sediment variable was as a pass (green) or fail (grey). 

A pass denotes that the trend in the storminess proxy data was found in 

the corresponding sediment property data at p-value = < 0.05. 

Transect % Clay % Silt % Sand PSD 137Cs Elevation change 

Preston 1 

      
Preston 2 

      
Savick 1     

  
Savick 2 

      
Savick 3 
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Table 4.2  Lower estuary Granger causality matrix. For each transect the matrix 

reports whether the sediment variable was as a pass (green) or fail (grey). 

A pass denotes that the trend in the storminess proxy data was found in 

the corresponding sediment property data at p-value = < 0.05. 

Transect % Clay % Silt % Sand PSD 137Cs Elevation change 

Warton 1 

      
Warton 2 

      
Warton 3     

  
Warton 4 

      
Warton 5 

      
Lytham 1 

      
Lytham 2 

Lytham 3 

      
 

SubMeanHsand SubSumHs: Degraded storminess proxy 

Through the granger causality analysis, the underlying temporal trend within the 

sediment properties data was compared to two subsets of the significant wave height 

data. The results of this analysis are displayed in tables 4.3 and 4.4 as a pass or fail at 

a significance level of p-value = < 0.05. 

SubMeanHs demonstrated that for the upper estuary at transect Preston 2 there was a 

significant temporal trend found in both the significant wave height data and particle 

size distribution. In the lower estuary, the full particle size distribution and 137Cs data at 

transect Warton 2 showed there was significant similarity between the temporal trend in 

the Sediment property data and significant wave height data. Within these data 

reciprocal causation was not found though reverse causation was present.  

The SubSumHs data set showed that transect Preston 1’s elevation change data had 

significant temporal trend along with the particle size distribution data and elevation 

change data from transects Warton 2 and Warton 5. Like SubMeanHs reciprocal 
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causation was absent but reverse causation was present. These subsets which 

degraded the significant wave height data through aggregation appeared to offer no 

real advantage over the interpolated data set.  

Table 4.3  Upper estuary Granger causality matrix. For each transect the matrix 

reports whether the sediment variable was as a pass (green) or fail (grey). 

A pass denotes that the trend in the storminess proxy data was found in 

the corresponding sediment property data at p-value = < 0.05. This matrix 

has M = mean storminess and S = sum of storminess. 

Transect % Clay % Silt % Sand PSD 137Cs Elevation change 

Preston 1 

     

S 

Preston 2 

  

M M 

  
Savick 1     

  
Savick 2 

      
Savick 3 
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Table 4. 4  Lower estuary Granger causality matrix. For each transect the matrix 

reports whether the sediment variable was as a pass (green) or fail (grey). 

A pass denotes that the trend in the storminess proxy data was found in 

the corresponding sediment property data at p-value = < 0.05. This matrix 

has M = mean storminess and S = sum of storminess. 

Transect % Clay % Silt % Sand PSD 137Cs Elevation change 

Warton 1 

      
Warton 2 M M M S M +S 

 
Warton 3     

  
Warton 4 

      
Warton 5 

     

S 

Lytham 1 

      
Lytham 2 

Lytham 3 

      
 

SubScenHs: High wave height scenario data set 

The SubScenHs data set failed to identify the presence of significant temporal trend 

between the significant wave height data and the sediment property data. This was 

primarily due to differencing reducing the length of some of the time series and thus 

making them unsuitable for this analysis. The distribution of storminess was primarily 

located in the second half of the data October 2002 – February 2004, this meant that 

differencing which causes a reduction in the length of the data also reduced the length 

of the temporal trend which the method tried to isolate. As under 50% of the data could 

not be included as the modified data sets failed unit root test it was impossible to 

achieve stationarity and thus this analysis failed.  
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4.4.2. The Ribble riverine discharge 

Through the granger causality analysis, the underlying temporal trend within the 

riverine discharge data was compared to the underlying trend within the sediment 

properties data. The results of this analysis are displayed in tables 4.5 and 4.6 as a 

pass or fail at a significance level of p-value = < 0.05. There was a strong spatial 

component with the riverine discharge data’s temporal trend being found within the 

sediment properties of transects in the lower estuary more so than the upper estuary. 

In the upper estuary transect Preston 1 showed significant trend for the silt and 137Cs 

data. In the lower estuary, all transects but Warton 2 showed some extent of significant 

presence of temporal trend. The absence of reciprocal causation and reverse 

causation within these data sets means that I can accept the alternate hypothesis for 

these data. I can also state that the underlying temporal trend in the River Ribble’s 

discharge volume was significantly present within the properties of the sediments in the 

lower estuary. 

Table 4.5  Upper estuary Granger causality matrix. For each transect the matrix 

reports whether the sediment variable was as a pass (green) or fail (grey). 

A pass denotes that the trend in the riverine discharge data was found in 

the corresponding sediment property data at p-value = < 0.05. 

Transect % Clay % Silt % Sand PSD 137Cs Elevation change 

Preston 1 

      
Preston 2 

      
Savick 1     

  
Savick 2 

      
Savick 3 
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Table 4.6  Lower estuary Granger causality matrix. For each transect the matrix 

reports whether the sediment variable was as a pass (green) or fail (grey). 

A pass denotes that the trend in the riverine discharge data was found in 

the corresponding sediment property data at p-value = < 0.05. 

Transect % Clay % Silt % Sand PSD 137Cs Elevation change 

Warton 1 

      
Warton 2 

      
Warton 3     

  
Warton 4 

      
Warton 5 

      
Lytham 1 

      
Lytham 2 

Lytham 3 

      
 

4.4.3. Reciprocal causation: Storminess proxy and Ribble riverine discharge 

Through the granger causality analysis, the underlying temporal trend within the 

riverine discharge data was compared to the underlying trend within the significant 

wave height data. This test aims to determine if there is significant temporal trend 

reproduced in both data sets, the presence of such trend in the case of these data 

would suggest they are influenced by similar factors. It is believed that the regional 

climate will determine the amount of precipitation and hence the amount of riverine 

discharge. It is also believed the regional climate will influence the extent of storminess 

and hence the wave climate at the mouth of the Ribble estuary. Therefore, here I test 

the hypotheses that the regional climate influences disturbance. The results of this 

analysis were that a highly significant reciprocal causation was present at lag = -1. The 

significant wave height and riverine discharge time series both have the same 

underlying temporal trend present.  
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4.5. Discussion 

4.5.1. Storminess proxy 

The underlying temporal trend of the significant wave height data was detected in the 

particle size distribution of two transects at the mouth of the estuary. This can be 

interpreted as the sediments at these transects have their particle size distribution 

modified in response to the size of the waves at the mouth of the Ribble estuary on a 

monthly timescale. The data suggest that storminess does cause variation in the 

particle size distribution of the sediment, which is in line with what would be expected 

from the literature (Brooks et al., 2017; Pye and Blott, 2008; Sierra and Casas-Prat, 

2014). However, the role of significant wave height as a proxy for the magnitude of 

storminess is more complex.  

The absence of significant detection in the upper estuary and the few transects that 

passed the statistical test in the lower estuary would lead to the conclusion that, whilst 

significant wave height is a key influencing factor, it is not a substantial reason for why 

sediment properties change within the Ribble estuary. There are however other factors 

that the data revealed which complicate the simplistic interpretation that storminess, 

through its’ proxy, is a significant disturbance mechanism. These other factors 

identified from the analysis are reciprocal causation, reverse causation and data 

temporal resolution. 

Reciprocal causation was present for sand at transect Lytham 1 though reverse 

causation was a more substantial issue and its dominance offers clues to what is likely 

to be occurring within these data. Reciprocal causation is defined by the Granger 

causality framework as the storminess proxy causes the variation in sediment 

properties and the properties of the sediment cause the variation in the storminess 

proxy, both these statements are true in reciprocal causation. Generally, when 

reciprocal causation is present it means that there is a third unknown variable that is 

governing the temporal trend in both data sets. Reverse causation however is when the 

Granger hypothesis ‘the properties of the sediment cause the variation in the 

storminess proxy’ is found to be true alone. Clearly, where this is present it is counter 

intuitive and therefore suggests that there may be an interpolation error that is 

distorting the data. This error is the interpolation applied to the grain size data to force it 

to a finer temporal resolution through an exact linear interpolator.  

The main effect of interpolation is that an assumption is made about the rate of change 

at which a property transitions from one measured point to another measured point i.e. 
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it is assumed to be steady and is represented by a straight line between two points. For 

example, should 100% of the change in a measured value occur one day before the 

point was measured again, then an exact linear interpolator is forecasting that change 

back in time because it assumes that change occurred at a consistent rate. As the 

Granger causality test attempts to detect a duplication of a trend in one-time series at a 

temporal lag in the other, the above interpolation error will cause failure and in some 

cases reverse causation. 

Alternatively, the data can be degraded so that interpolation is not required however 

doing so did not appear to offer any particular advantage over the interpolation method 

in this particular case. The analytical results (tables 4.3 and 4.4) showed that there was 

completely different output to the interpolation methods results (tables 4.1 and 4.2), 

even though transects identified as significant were the same transects identified by the 

interpolation methods reverse causation. 

On the basis of the results obtained from all four storminess proxy subsets it is likely 

that there was a temporal trend being replicated in the sediment property data sets in 

the transects located at the mouth of the estuary. However, the analysis does not 

support this assertion strongly, merely indicates that there may be some trend that 

would be worthy of further investigation. The difference in temporal resolutions of the 

data sets is the cause of this problem when trying to compare the long-term trend of 

sediment property variation to short infrequent storm events through a proxy. 

This analysis is pushing the limit of what can be achieved with physical sampling. 

Furthermore, the issues discussed above are primarily a result of the coarseness of the 

temporal resolution of the field data. A monthly sampling campaign is likely to be the 

limit for the frequency of field visits to the same point given the resource implications. 

Therefore, to take this work forward along with the underlying idea of observing the 

temporal trend of storminess being reproduced in the sediments of an estuary a truly 

non-invasive/intensive technique is required. 

In theory non-invasive/intensive techniques that allow the collection of fine temporal 

resolution data of the estuaries sediments exist in the form of hyperspectral remote 

sensing, which can quantifiably measure the properties of sediments (e.g. Rainey et 

al., 2003). However, despite there being many techniques (Ben-Dor et al., 2002; 

Deronde et al., 2006; Rainey, 1999; Wal and Herman, 2006) that allow the 

measurement of particle size distribution, organic matter and surface contaminant 

concentration available since the mid 1990’s these methods have rarely been applied 
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outside a method development paper. With the advent of the availability of relatively 

inexpensive air borne drones and development of lightweight spectral sensors and 

advanced automated image processing algorithms perhaps the ability to collect fine 

temporal resolution data of the sediment properties may be on the horizon. 

4.5.2. Ribble riverine discharge 

The temporal trend seen in the riverine discharge data was significant in the particle 

size distribution of transects Warton 1, 3, 4, 5 and Lytham 1 and 3, this suggests that 

the riverine discharge is a significant factor in the remobilisation and deposition of 

sediments. The results for the upper transects (table 4.5) show that the riverine 

discharge played less of a role here than in the lower estuary (table 4.6). The alternate 

hypotheses that riverine discharge caused significant variation in the sediment 

properties of the estuarine sediment can be accepted. It is clear that the riverine 

discharge mainly affects the lower estuary with only one of the five upper estuary 

transects reporting a significant effect. 

This spatial split in transect response to riverine discharge does seem counter intuitive 

at first glance, though it may be a result of the lower estuaries wider width meaning that 

those sites are only affected by large riverine discharge events in comparison to the 

upper estuary which is affected by all discharge events. The daily riverine discharges 

may be hiding longer term monthly effects on the sediment matrix in the upper estuary 

by disturbing the sediment at a higher frequency. Where the lower estuary daily riverine 

discharges that are unremarkable in magnitude do not have the opportunity, due to a 

wider channel, to hide the longer-term trend in the sediment matrix.  

The presence of the Douglas tributary, which is located downstream of the upper 

estuary transects but upstream of the lower estuary transects, may also play a role 

here. This additional source of discharge may compensate for the widening of the 

channel at the lower estuary, which would be expected to reduce the energy of the 

river water as it is spread over a greater area (e.g. Gleizon et al., 2003; Luo et al., 

2015; van der Wal et al., 2002). 

The temporal characteristics of these discharge events are controlled by the extent of 

urbanisation and modification to the River Ribble, as these factors control the rate at 

which water enters the River Ribble. The effect of these factors is that the temporal 

profile of the discharge events is substantially different to the storminess proxy 

temporal profiles. Where a storm occurs and high waves are generated, once the storm 

fades the waves will dissipate (Brooks et al., 2017), though due to the holding capacity 
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of the catchment the effects of high rainfall that causes these high riverine discharge 

events can be stretched out (Stapleton et al., 2008). The difference in temporal 

characteristics of these two disturbance mechanisms is likely why the riverine 

discharge data did not experience reciprocal causation or reverse causation. In this 

case, the findings strongly indicate that the riverine discharge is a highly significant 

disturbance mechanism which is responsible for remobilisation of sediments.  

4.5.3. Storminess proxy and riverine discharge 

The significant wave height and riverine discharge data had the same temporal trend 

present in both data sets at a highly significant level with minimal temporal lag (lag = -

1), meaning the data’s underlying trend was significantly similar. It is not surprising that 

when the meteorological conditions exist that promote stormy waves, these conditions 

also cause high precipitation; therefore, it would be expected that both these 

mechanisms would have a similar trend. The exact interpretation of the Granger 

causality hypothesis tests is that when reciprocal causation is present a third unknown 

variable is responsible for this temporal trend in both of the disturbance mechanism 

data sets. This third unknown variable would be the regional climate which dictates 

local weather patterns. Therefore, climate is likely to be a significant mechanism 

governing disturbance in riverine discharge as well as a possible mechanism of 

disturbance in stormy wave climate. 

4.6. Conclusion 

This chapter has investigated whether temporal trends in the two-time series of the 

disturbance mechanisms significant wave height as a proxy for storminess and riverine 

discharge could be detected in the behaviour of sediment properties at a number of 

different locations within the Ribble estuary. What was important about this analysis 

was that it ignored the long-term mechanisms of daily reworking by ebb and flow tides 

etc. and focused solely on the short-term high impact disturbance events. The 

implication being that if significant trend was found whilst ignoring the other complex 

factors that operate within the estuary, it gives an idea of the importance of these short-

term factors on the temporal fluctuations of the tested sediment properties. 

The riverine discharge was clearly found to be a significant factor in modifying 

sediment properties over the two-year time period that data were analysed for in the 

lower estuary. Storminess, through its proxy was not found to be a substantial factor 

though it is likely that it is influencing some of the transects at the lower estuary. 

However, this was not to a degree sufficient to see its temporal trend repeated in the 
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overall temporal trend of the sediment properties at many sites throughout the estuary. 

The storminess proxy whilst not being a substantial disturbance mechanism, a weak 

statistically significant trend was detected. It is possible that the storminess data may 

require a finer resolution sediment property data set to fully explain what is happening 

within the estuarine sediments. The role of storminess may not have been resolved 

fully in this chapter however the results have illustrated a case for further work 

preferably using a higher resolution data set collected through a non-invasive/intensive 

method. 

These results have demonstrated that individual high impact disturbance mechanisms 

can be significant in determining how the estuarine sediments are reworked. If climate 

is accepted as the third variable responsible for the presence of reciprocal causation 

between the discharge and storminess proxy data, then we are investigating not only 

the impact of stormy waves and high riverine discharge on sediment properties but also 

the effect of climate as a disturbance mechanism for sediment remobilisation. 
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5. The spatio-temporal characteristics of long term Ribble estuary sediment 

movements 

The importance of variation in sediment particle size distribution and the remobilisation 

of sediments in determining the concentration of estuarine contaminants such as 137Cs 

and 241Am was discussed in chapter 3. The effects of a substantial siltation event in 

September 2014 resulted in a degradation in the proxy relationship between 

137Cs/241Am and % clay and this was believed to be the result of silts with a distinctly 

different contaminant concentration being deposited at the site. Chapter 4 has 

highlighted that the effects of disturbance mechanisms have a strong spatial 

component. Together these points highlight the need to develop an understanding of 

sediment movement within the Ribble estuary especially the spatial and temporal 

characteristics of sediment movement. 

Sediment movement within the Ribble estuary is not a closed system as it is an 

extension of the Irish Sea sediment transport system (van der Wal et al., 2002). Marine 

sediments from the Irish Sea, particularly from the Liverpool bay area, are known to be 

deposited within the Ribble estuary (Luo et al., 2015). Likewise, it is known that Ribble 

estuarine sediments are remobilised to the Irish sea (Atkin, 2000; Wakefield, 2005). 

However, the general prevailing trend in most estuaries is deposition, as evidenced by 

the presence of the extensive sandbanks, mudflats and saltmarsh, which are all 

sediment deposition features (Jickells and Rae, 1997). Although post deposition 

remobilisation will see these sediments subject again to the prevailing sediment 

transport system as governed by the local energy, river discharges and hydrodynamic 

processes (Azevedo et al., 2010; Falconer and Lin, 1997; Wolanski et al., 2001). The 

sediment bound contaminants that are remobilised and redistributed within the estuary 

or perhaps out with the estuary as part of these sediment movements is the reason 

why sediment movement is of interest. The temporal and spatial variability of sediment 

bound contaminants can be understood by exploring the nature of sediment 

movements (Atkin, 2000; Rainey et al., 1999; Wakefield et al., 2011). This has 

implications in turn for those interested in investigating potential health impacts from 

these contaminants on humans and wildlife (e.g. Hunt, 1997).  
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Figure 5.1  Map outlining the different types of sediment deposits of the Ribble 

estuary. A blue line has been drawn around the outer estuary sandbanks, 

a red line has been drawn around the mudflats and purple lines have 

been drawn around the north shore and south shore saltmarshes. 

Though estuaries can be viewed as one large deposition feature, within them, there is 

stratification particularly by particle size (e.g. van der Wal et al., 2002). For example, in 

the Ribble estuary sand banks dominate at the outer estuary transitioning to mudflats 

from the mouth of the estuary up till Preston and finally to areas of saltmarsh in the 

upper tidal frame (Figure 5.1). This stratification is the result of how the following 

interact; the mass of the sediment, the available tidal energy and the estuaries 

morphology. These processes can be generalised as the estuary hydrodynamics, 

which is how the tide flood and ebb cycle along with its suspended sediments interacts 

with the estuary surface. These three sediment deposit categories allow the sediments 

of the Ribble estuary to be categorised by their sediment grain size as well as their 

likely contaminant concentration. For example, the sandbanks at the outer estuary are 

composed of coarse sandy sediments, which the analysis from chapter three illustrated 

would have low contaminant concentrations.  

The mudflats contain a mixture of clays, silts and sands, with the mixture being 

controlled by elevation with those mudflats higher in elevation containing a larger 
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percentage of clays and silts (Rainey et al., 2003). These sediment deposits are 

disturbed daily with the ebb and flow of the tidal cycle, though the extent of disturbance 

will be lower in the upper tidal frame (higher elevations) where the mudflats begin to 

transition into the saltmarshes and deposition via tidal pumping is dominant (Gleizon et 

al., 2003; Lyons, 1997). The mudflats have been shown in chapter 3 to exhibit 

substantial variability in contaminant values, ranging from 3 Bq kg-1 to 311 Bq kg-1 for 

137Cs (table 3.7). The mudflats represent an exchange environment where catchment, 

Irish Sea and estuarine sediments and their associated contaminants are mixed, 

therefore mudflats serve as a good indicator of the current levels of contamination. 

The Ribble saltmarshes are located on the north bank (Warton marshes) and south 

bank (Longton and Hesketh marshes) of the main channel. Saltmarshes are 

considered to be relatively stable and representative of contaminant levels in the past 

especially deeper down in the sediment vertical profile and consequently these often 

have higher levels of contamination reflecting past discharge practices (Brown et al., 

1999; Lindahl et al., 2011; Rahman et al., 2013). The long-term behaviour of the 

saltmarshes is important for those interested in understanding the possible radiological 

implications of increased sediment remobilisation as saltmarshes can be substantial 

stores of contaminants (Hunt et al., 2013; Rahman et al., 2013). 

One feature within the Ribble which will be used to explore the long-term changes in 

sediments in saltmarshes is the presence of a managed realignment scheme. The 

scheme was implemented in 2009 at Hesketh Outmarsh to expand the area of 

saltmarsh habitat for wading birds. Sediments have been eroded and accumulated 

within the managed realignment area since the initial breach in 2009, these 

movements may reveal information about how saltmarsh sites may react to 

disturbance. As it is not possible to study the consequences of a natural disturbance 

event owing to complexity of the logistics, this chapter aims to use this anthropogenic 

disturbance event as an analogue for general disturbance and specifically sediment 

remobilisation. This chapter focuses on the consequence for sediment movement, 

while chapter 6 explicitly deals with contaminant remobilisation at the Hesketh 

Outmarsh. 
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5.1. Aims 

Morphological change and inferred movement of sediment within the intertidal area is 

explored here from 1999 – 2015. The analysis focuses on the specific sediment 

categories; the sandbanks, mudflats and saltmarshes. The nature of this section is 

exploratory and therefore attempts to answer the following questions to deepen the 

understanding of sediment transport in the Ribble estuary. 

 Is the long-term trend in estuary sedimentation positive (accretion dominant) or 

negative (erosion dominant)?  

 What are the morphological characteristics of sediment movement for the 

sandbanks, mudflats and saltmarshes?  

 How has the Hesketh Outmarsh managed realignment scheme affected the 

estuary’s sediment deposits and transport of sediments? 

5.2. Data sets 

The analysis used to answer this chapter’s questions about the Ribble estuary’s long-

term sediment movement, relied on the use of remotely sensed topographic survey 

data. These data allow large spatial areas of the estuary to be reliably surveyed, with 

multiple data sets from measurements made in different years it was possible to 

interpret long term trends in estuary sediment movements. A brief overview of the 

principles of remotely sensed topographic data, the data sets that were collected and 

the locations which were surveyed is given below. 

5.2.1. LiDAR overview 

Light Detection and Ranging (LiDAR) is a widely used remote sensing topographic 

survey technology and LiDAR data sets form the basis for this Chapter. A 

comprehensive explanation of LiDAR technology is found in Bossler et al. (2010). 

A short explanation of LiDAR is that the technology maps the surface topography by 

firing a laser along a sweeping arc from, in this case, the underside of an aircraft which 

flies over the intended survey area. These pulses of laser light are reflected back to the 

LiDAR system by the land surface, the return time is recorded and given the known 

speed of light a linear distance can be calculated by the system. Aircraft aeronautics 

provide information about the aircraft position, pitch and roll, which allow the LiDAR 

system to determine the 3D coordinates at which the laser beam was emitted. With a 

known start position of the beam of light as well as the beams arc and length it is 
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possible to construct and solve a geometry equation to determine the coordinates of 

the surface from which the beam was reflected. 

The LiDAR data are then represented as a list of coordinates (x, y and z) for each point 

that returned a signal. This format is called a point cloud and it is from these data that a 

useful digital terrain model (DTM) or digital surface model (DSM) can be derived. 

These data will often have geostatistical models (an interpolation method) fitted, the 

nature of the model used will determine whether it is a DSM or DTM that is produced. 

DSM’s fit a geostatistical model that passes through all the points in the point cloud. 

Where vegetation is known to be present, as in the case of the saltmarshes, within the 

Ribble estuary it is best to use a DTM, which fits a ‘bare earth surface’ model that 

ignores the data determined to be vegetation returns. 

Equation 5.1  ܴܧܵܯ ൌ ටଵ


∑ ሺݕ െ ොݕ

ୀଵ ሻଶ 

The processed models are then geo-corrected with data provided by a ground based 

survey team that has collected highly accurate positional data for a number of points 

within the estuary. The Root Mean Square Error (RMSE) is then calculated (Eq. 5.1) as 

a measure of the accuracy of the data product. The size of the RMSE is proportional to 

the quality of the validation survey and consequently the smaller this value is the more 

confidence there is in the DSM or DTM. 

5.2.2. Available LiDAR data 

The environmental regulator for England and Wales, the Environment Agency (EA), 

through its Geomatics Group has been collecting topographic survey data of the 

coastal areas and river systems in England and Wales since 1998. The Geomatics 

Group flies two aircraft outfitted with LiDAR systems to collect these data and it 

processes these data as DSMs and DTMs. In response to the high impact storms seen 

in 2014, the EA has made these data open access as of August 2015, with the aim of 

improving flood modelling in England and Wales. 

Multi-year DTM data from the EAs data archives were extracted for this project, the 

exact data sets are listed in table 5.1. There were differences in the observed RMSE 

and spatial resolution levels over the past 18 years. These differences are associated 

with improvements in survey technology and LiDAR instrumentation over this time. 



99 
 

Table 5.1  The LiDAR data sets used in this chapter are listed here with their 

accompanying spatial resolution and RMSE. A description of the extent of 

the spatial coverage is also provided. 

Year RMSE (m) Resolution (m) Description 

1999 0.15 2 Full estuary coverage 

2005 0.15 1 Partial outer estuary 

2006 0.15 1 Partial outer estuary 

2007 0.05 0.25 Mid estuary coverage 

2009 0.05 0.25 Full estuary coverage 

2010 0.05 0.25 Mid estuary coverage 

2011 0.05 0.25 Mid estuary coverage 

2014 0.05 0.5 Mid estuary coverage 

2015 0.05 0.5 Partial mid estuary coverage 

 

In addition to these data, the ARCoES project commissioned NERC’s Airborne 

Research and Survey Facility (ARSF) to collect LiDAR data covering the full extent of 

the estuary. The flight survey was conducted in October 2015. However, the data 

processing steps required meant that the data were not released until the end of 

October 2016 by which point it was too late to include in this chapter. These data will 

be used during the preparation of this work for publication. 

5.2.3. Study sites 

With the available data sets (table 5.1), it was determined that two approaches would 

be taken to interpreting sediment changes; 1) is an evaluation of the full estuary 

coverage from 1999-2009 and 2) a similar evaluation of the changes observed mid 

estuary from 1999-2015. The full estuary data set covered all areas of saltmarsh, 

mudflats and most of the sandbanks but there are only two full LiDAR data sets 

available (in 1999 and 2009). The mid-estuary covered an area that spans from 

Longton marshes to Banks marshes on the south of the estuary and included the 
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mudflats located north and south of the main river channel and the surrounding 

saltmarshes. There were available data sets for 1999, 2005, 2006, 2007, 2009, 2010, 

2011, 2014 and 2015. In addition, three localised areas that represented specifically 

the three sediment deposit categories (sand banks, mudflats and saltmarshes) were 

investigated. 

 

Figure 5.2  The Ribble estuary is shown with two boxes denoting the areas that the 

localised focus sites are based. The sandbanks studied are located at the 

Lytham beach site in the outer estuary, with the mudflats and saltmarshes 

being studied at the Hesketh Outmarsh site in the mid estuary. 

The Lytham beach site, which acted as a localised focus site for the sandbanks, was a 

constrained sand dominated part of the outer estuary with large concrete seawall 

defences which considerably restricts the ability of the tidal frame to adapt to change. 

The Hesketh Outmarsh site covers saltmarshes and mudflats located in the mid 

estuary, it is these sediments that are enriched in contaminants and of most interest to 

this work. This is also the location of the managed realignment site, which this work 

treats as analogue for a disturbance event. 
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5.3. Methods 

The DTM data sets were processed here to determine the change in sediment volume 

between different years. Cluster analysis of the data was conducted for each time 

period to allow the physical properties of morphological change to be measured. The 

five sets of data that where analysed are listed below. 

 1999 – 2009 full estuary coverage 

 1999 – 2015 mid estuary coverage 

 Localised site 1 – sand banks 

 Localised site 2 - mudflats 

 Localised site 3 – Hesketh Outmarsh 

5.3.1. Raster processing framework 

The EA DTM products were delivered as 1km ASCII Grid tiles with varying resolutions. 

Whilst it is possible to apply a spatial analysis to raster products split across multiple 

tiles, few open source tools support this and doing so unnecessarily complicates the 

processing chain. Therefore, the decision was made to develop a raster processing 

framework that would convert these raw data to a stage that analysis could be 

conducted. The following software and applications where used in this analysis; ESRI 

ArcGIS, QGIS and the R statistical programming language with the packages 

SDMTools and Maptools. Figure 5.3 presents the data processing steps that were 

performed. 
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Figure 5.3  This schematic flow diagram showing the data processing stages to 

convert raw ASCII data to a form useful in the current study. 

The raster processing framework devised (figure 5.3) consisted of four stages in data 

processing. 

1. The first stage involved loading each year’s data and manually inspecting the 

data for possible errors such as large areas of missing data or discontinuity 

between the individual 1km tiles. There were no issues with the initial data 

quality checks and all available data sets were deemed suitable. 

2. The next step involved merging all the 1km individual raster tiles to a single 

data set using an automated ArcGIS model which was constructed to carry out 
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this task. This was conducted for each year where there were data available. A 

number of the tiles had data gaps between tiles where there were lines of pixels 

with no data, it was decided not to interpolate across these areas as this 

analysis did not require a continuous topography to function. 

3. The 1999 data set was the most spatially comprehensive and was selected as 

the template to assess all other data against however, this is a 2m x 2m grid 

resolution whereas the other data sets are available at much higher resolution 

(table 5.1). The data for years other than 1999 were therefore resampled to a 2 

x 2m grid to ensure consistent comparison of the data between years clearly 

the newer data sets with a finer spatial resolution lost data as a part of this 

degradation. Where the 1999 data set was not required however, the data sets 

were resampled so that all data had a finer 25cm raster grid resolution instead. 

4. The spatial extent of the data sets often included areas that were of no interest 

for this analysis and therefore these were masked. This was achieved by 

creating three feature class files; intertidal zone, saltmarsh and mudflat. These 

files were created from a surface classification of the estuary which used the 

Mean High Water (MHW) and Mean Low Water (MLW) lines calculated for 

2015 in the Ordnance survey master map product (figure 5.4). 

 

The master map MHW and MLW polylines were produced using ARCGIS editor tools 

and the QGIS polygoniser tool to manually create masks that encompassed saltmarsh 

surface type, mudflat surface type and a file that represented the whole intertidal zone 

(figure 5.4). The main channel was also digitised and used to remove areas that are 

regarded as always being under water as the LiDAR derived topography is inaccurate 

in these areas. 

The result of this processing chain was that for each year where data were available, 

an intertidal zone, mudflat and saltmarsh raster file was created containing elevation 

data relative to the ordnance survey datum. 
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Figure 5.4  The Ribble estuary is shown with a classified intertidal zone, green = 

saltmarshes, grey = mudflats and blue is water that is below low tide. 

These classifications were derived from averaged tide data from 2015. 

These data are used to assign habitat type to the LiDAR data.  

5.3.2. Raster of difference – Limit of detection 

For each time period (e.g.1999 and 2009) that a volume of change was required, the 

pair of rasters produced using the approach outlined above were processed to 

calculate a new raster called the raster of difference (ROD). Within the ROD raster, 

each pixel contained a value for the change in height (in mm) between the dates of the 

two input rasters. Given that the data sets are using the same raster grid it is possible 

to use raster math functions to produce the ROD using the following equation (Eq. 5.2) 

applied to each pixel in the target rasters. 

Equation 5.2   ܴܱܦ ൌ ݎ݁ݐݏܴܽ	ݓ݁ܰ െ  .ݎ݁ݐݏܴܽ	݈ܱ݀

This subtracts the pixel value in the older of the two datasets from its corresponding 

pixel value in the newer of the two data sets. Where there is discontinuity in spatial 

extent between the source data sets, the ROD pixel value was filled with a NA value, 

therefore the ROD only contains differenced values. 
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The newly produced ROD contains change in elevation data for each 2m x 2m pixel, 

as mm above or below the ordnance survey datum. The following equation (Eq. 5.3) 

was then used to convert the change in height (mm) to a change in volume (m3). 

Equation 5.3  ܸ݁݉ݑ݈	݂	݄ܿܽ݊݃݁	ሺ݉ଷሻ ൌ ሺܴܱܦ ൊ 1000ሻ ൈ  ሺ݉ଶሻ	ܽ݁ݎܽ	݈݁ݔ݅

This equation will calculate the volume of material that was eroded or deposited for 

each pixel area, in the case of a 2 x 2 m source data product this volume applies to a 

4m2 area. 

The root mean square error (RMSE) measures the difference between ground survey 

data and the airborne survey data, it is a standard method of reporting the accuracy of 

a spatial data set and the equation is given in Eq. 5.4. The source DTM’s have differing 

RMSE, which is associated with improvements in survey technology used to collect 

and process the data, therefore the RMSE was lower with newer data sets. A common 

approach to managing uncertainties in the DTMs is to apply a minimum level of 

detection threshold to the raster of difference, to distinguish between significant 

elevation change and noise introduced by error in the source DTMs. 

Equation 5.4   ܴܧܵܯ ൌ ටଵ


∑ ሺݕ െ ොݕ

ୀଵ ሻଶ 

Equation 5.5  ݑߜோை ൌ ඥሺݖߜ௪ሻଶ  ሺݑߜௗሻଶ 

The initial error from the source DTMs may be propagated in the raster of difference, 

therefore the above equation (Eq. 5.5) is given as a method for calculating this error 

propagation (Montreuil et al., 2014). ݑߜோை is the propagated error in the raster of 

difference and ݖߜ௪/ݑߜௗ is the error in the source new and old DTMs, old being the 

chronologically first data set. Therefore	ݑߜோை acts as a modified version of the RMSE 

that accounts for error propagation and was set as the limit of detection (Eq 5.6). 

Equation 5.6   ܴܱܦܱܮܦ ൌ 	 ሺܴܱܦ௫௦  െݑߜோைሻ  ሺܴܱܦ௫௦  	  ோைሻݑߜ

Equation 5.6 was implemented in ArcGIS using the attributes tool to determine the 

ROD values. The calculation excluded any value that were deemed to be below 

confidence level which was determined for each case as it is dependent upon the 

RMSE of the source data. These RMSEs are lower with newer data sets as survey 

technology has improved substantially from 1999 (first data set) to present (2016), 

resulting in less error in ground truthing the data. The result was a limit of detection 

that was applied to each ROD. The resulting raster of difference limit of detection 
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(RODLOD) may be overly conservative, however it ensures that any conclusions 

drawn from further analysis provide confidence that the data are representative of 

sediment volume change in the estuary. 

5.3.3. Cluster analysis 

The RODLODs represent the volume of sediment that has either eroded or accreted 

within each pixel between the two dates when the LiDAR data were collected. These 

data can also be used to visually identify morphological changes within the estuary that 

have distinguishing physical attributes. To quantify these physical attributes without 

relying too heavily on user interpretation, which can be subjective, a statistical method 

was developed to identify and quantify such events. The clustering algorithm was 

applied to each RODLOD and the results of this clustering were exported as a feature 

class that contained polygons which denoted the shape of each significant changed 

morphological feature. The steps in the clustering analysis are given in figure 5.5 and 

were: 

1. The first step in this process was to generate a feature point for the centre of 

every pixel, this feature point stored the pixel value within the features attribute 

table. This processing was conducted using the ArcGIS raster to feature tool. 

2. Clustering was then performed using the ArcGIS hot spot analysis tool, which is 

an implementation of the Getis-Ord local statistic (Ord and Getis, 2010). For 

every feature point, a z and p value is calculated. These data were used to 

determine feature points that were clustered within the global dataset by 

comparing a local sum of z-scores with a global sum of z-scores. Z-scores 

above 1.96 or below -1.96 which also have a p-value of < 0.05 represent 

statistically significant features at 95% confidence that exhibit clustering. These 

are either positive (> 1.96 and are accumulating sediment) or negative (< -1.96 

and are losing sediment). The magnitude of the z-score was proportional to the 

strength of the localised clustering relative to the global data. 

3. A zone of indifference was used to conceptualise the spatial relationship for 

these data. This conceptualisation is similar to that of spatial autocorrelation in 

that, as distance between features increases, their relationship declines. 

However, this model incorporated a fixed distance band of 6m (equal to 2.5 

pixels) to form a search area for calculating the local z scores, this will ensure 

the scores are not skewed by data that is located at distance.  
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Figure 5.5  This schematic flow diagram shows the stages incorporated into the 

clustering analysis which used the ArcGIS suite to conduct processing. 
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Two ArcGIS process models were constructed using the model builder tool to 

subdivide the processing chain (figure 5.5). This was a precaution as the data 

processing took several weeks of computing time and consequently the risk of the 

computers crashing mid process was high. The first model imported the RODLOD, 

converted it to a feature class file and began the clustering analysis via the Getis-Ord 

local statistic hotspot analysis. The results of the analysis were added to the feature 

class attribute table. 

The second model used the calculated z-values and p-values to cluster the data 

through a combination of attribute and spatial selection criteria. Geoprocessing 

techniques were then applied to the clustered feature points to generate a bounding 

polygon and this polygon was converted to a number of spatially distinct features with 

geometric properties added to their respective attribute tables. 

The clustering methodology provided a robust spatial statistics approach to interpreting 

change within the estuary that overcame potential subjectivity associated with user 

interpretation of the rasters of difference. The polygons generated can be used in 

conjunction with the source raster and zonal statistic functions to determine the 

magnitude of erosion and accretion events. 

5.3.4. Volume determination 

The rasters of difference produced by sections 5.3.2 and the sediment morphological 

feature bounding geometries produced by the cluster analysis in section 5.3.4 provided 

appropriate tools to calculate the change in volume of sediment between years. These 

tools also allowed the physical features of the sediment movements to be calculated as 

follows. 

Using the zonal statistics tool in ArcGIS and the intertidal sediment mask and 

saltmarsh mask as a defined search area, zonal statistics were calculated, this 

represented the sum, mean and number of pixels present within the defined search 

area. This was also applied using the clustering analysis bounding geometries, all 

results were exported to Microsoft® Excel files, and an R script was written to 

aggregate all data together as tables. 

A limitation of this analytical approach was the spatial discontinuity of the data, which 

had implications for the sum of change measurements and resulted in some 

uncertainty in assertions of temporal trend, as it was not appropriate to compare 

volumes of change. To reduce this introduced error all measurements are reported  
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with regard to the surveyed area and the figures produced highlight localised change 

so that the interpretation was not overreaching. This emphasis was also placed on 

averaged per pixel values, which are not subject to this discontinuity issue as they are 

an average and can thus be compared to other time points. 

5.4. Results 

The nature of sediment change within the Ribble estuary is described with reference to 

the five datasets outlined at the start of section 5.3. Only figures that are relevant to the 

narrative are included in this section, those that are not given here are presented in 

Appendix 2. The full print out of the zonal statistics can also be found in Appendix 2 

with relevant excerpts summarised in this section. 

5.4.1. 1999 – 2009 full estuary coverage 

The 1999 and 2009 LiDAR data represent almost full estuary coverage, absent only for 

some areas of the Ribble sand banks in the outer estuary. The sand banks represent 

stores of coarse grained sediment that as previously established (chapter 3.3.2) have a 

negative correlation with estuarine radiogenic contamination. Therefore, for the 

purposes of conducting a sediment budget for the Ribble estuary, which will ultimately 

be used to look at contaminant movement (chapter 6), the available data were 

regarded as sufficient. 

Between 1999 and 2009 the data analysed show that generally erosion is dominant 

between these two survey dates. Figure 5.6 shows the full map of sediment 

movements, the outer sandbanks were dominated by trends of substantial sediment 

movement, it is here that many of the large sediment volume changes were detected 

as these large sand banks migrated across the estuary. The mudflats were a patch 

work of erosion and accretion with the Lytham mudflats showing a general trend of 

accretion. The saltmarshes showed a mix of accretion and erosion in the main creeks 

with erosion being a dominant factor in the smaller branches of creeks. 

The Ribble saltmarshes showed erosion overall (-0.3 m3), this means that from 1999 -

2009 the volume of saltmarsh declined on average by 0.3 m3/m2 (table 5.2). The 

saltmarsh erosion is shown in figure 5.6 and characterised by front of marsh erosion; 

this is where the front of the saltmarsh is eroded resulting in the retreat of the saltmarsh 

by a few meters. There was also wide spread creek based erosion, which takes the 

form of lateral erosion where creeks widen their channel causing bank collapse by  
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Figure 5.6  Map of change in volume (m3) of sediment from 1999 – 2009 for the Ribble estuary, each pixel has an area of 4 m2. 
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Table 5.2 Summary statistics for the movement of sediment in the Ribble estuary 

between 1999 and 2009.  

Description 

Total 

change 

(m3) 

Survey 

area (m2) 

Average 

change 

(m3/m2) 

Significant change in Saltmarshes -5.6E+06 1.9E+07 -0.30 

Significant change in Mudflats -2.5E+06 1.5E+07 -0.17 

Total change in Saltmarshes -5.9E+06 2.4E+07 -0.24 

Total change in Mudflats -2.7E+06 2.3E+07 -0.11 

Significant change in realignment 

site 
-6.3E+05 1.5E+06 -0.42 

Total change in realignment site -6.4E+05 1.7E+06 -0.38 

Significant change in Saltmarshes 

minus realignment 
-4.9E+06 1.7E+07 -0.29 

Total change in Saltmarshes minus 

realignment 
-5.3E+06 2.2E+07 -0.23 
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undercutting (Figure 5.6). The creeks also showed a pattern of increasing their length 

by eroding deeper in to the interior of the saltmarsh. 

The impact of the Hesketh Outmarsh realignment scheme is considered in table 5.2 to 

determine if this scheme was skewing the saltmarsh erosion figures. The data showed 

that the Hesketh site accounted for 11.3% of the saltmarsh erosion during the 10-year 

period. Excluding the realignment scheme contribution, resulted in the long-term trend 

in saltmarsh erosion changing only marginally – a reduction to 0.29 m3/m2. 

The Ribble mudflats showed an average trend of erosion (-0.17 m3/m2), though erosion 

here was nearly half that of the average saltmarsh erosion. Mudflat erosion is 

characterised by reworking of large sediment features such as sand bars and mudflat 

features found near saltmarsh creeks. Furthermore, a section of the Ribble training 

wall appears to have collapsed in the mid-section of the Ribble resulting in the erosion 

of a large section of mudflat. There is also considerable variability at the Ribble 

confluence with its tributary the Douglas. The Douglas has seen large movements of 

mudflat features over the ten-year period probably caused by fluctuations in the flow of 

the two rivers. These changes can be seen in the LiDAR data. It is worth also noting 

that the Lytham mudflats, which were surveyed in chapter 3, showed a trend of 

sediment accumulation. 

Table 5.2 presents the significant change values and the total values for the different 

sites and sediment types in the Ribble estuary. The total values presented are the sum 

of pixel values without using the limit of detection method. The significant change 

values do use the limit of detection method, which can be seen to skew the data 

towards higher values as it filtered out values of slight change which fell within the 

associated error of the LiDAR product. This translated to 23.2% of the saltmarsh data 

being filtered out reducing the volume of sediment being eroded by 5.5%. The change 

in mudflats was more subtle, with 37% of the data being filtered out, reducing the 

volume estimate by 6.5%. 

The Ribble estuary had a general trend of sediment erosion from the saltmarshes 

which are not accounted for by subsequent accumulation within the mudflats 

suggesting that there is a trend of sediment transfer out from the estuary during 1999 

to 2009. 
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5.4.2. 1999 – 2015 mid estuary coverage 

The mid estuary area had repeat coverage of LiDAR data for the years 1999, 2007, 

2009, 2010, 2011, 2014 and 2015, this provided additional time points between 1999 – 

2015. Therefore, it was possible to construct six pairs of data that chronicled sediment 

movement within this area to see whether there was a general trend of erosion at all 

time points as indicated by the 1999 to 2009 data. The mid estuary contained most (> 

70%) of the sediments that were expected to be enriched in contaminants based on 

the findings of chapter 3.3.2, therefore this subsection allows the study of the 

movement of the Ribble’s most contaminated sediment. These data are presented 

below as full page images of the calculated raster of differences, which show where 

sediment was lost or accumulated between the date ranges. 

For the period 1999 to 2007, as shown in figure 5.8 and reported in table 5.3, the 

average trend was of significant erosion at the rate of -0.3 m3/m2 for the saltmarshes 

and -0.32 m3/m2for the mudflats over the 8-year time period. Mudflat erosion occurred 

predominantly along the north bank of the main channel near the Warton aerodrome 

as well as those mudflats near the confluence point of the Ribble and Douglas. In 

contrast to the patterns of erosion at the north bank, the south bank mudflats 

accumulated substantial amounts of sediments and the mudflats on the south of the 

river that are located closer to the mouth of the estuary experienced less erosion than 

those further upstream.  
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Figure 5.7  Frontal saltmarsh erosion resulting in a retreat of the saltmarsh extent for 

an area of the Hesketh Outmarsh saltmarshes (OSGB; 340000,426000). 

Saltmarsh erosion was characterised by the retreat of the marsh face due to erosion, a 

good example of this is seen in figure 5.7. As a result of extensive erosion likely 

through undercutting, the front of the saltmarsh marsh has receded by up to 20m in 

this particular case, this type of erosion was observed at multiple sites within these 

data. The surface of the marsh accumulated sediments predominantly near the creek 

systems, this has the appearance of a darkened blue halo around the creeks. The 

creeks were diverse in terms of their erosion with accretion being seen generally but 

with some creeks clearly eroding deeper into the saltmarsh while others showed signs 

of infilling. 

The trend of erosion was still present in the 2007 – 2009 data set although the rates 

declined slightly in the saltmarshes (-0.27 m3/m2) and substantially for the mudflats (-

0.13 m3/m2) (table 5.3). The mudflats again showed intense erosion at the confluence 

of the Douglas and Ribble, and at the Warton marshes. It is suspected that the Warton 

marshes mudflat erosion (based on its location (figure 5.6 339000, 426000) and the 

geometry of the event) were a partial collapse of the Ribble training wall. The middle 

mudflats near the Warton Aerodrome showed a general trend of accretion throughout 

this period. 
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Figure 5.8  Map of change in volume (m3) of sediment from 1999 – 2007 for the mid Ribble estuary, each pixel has an area of 4 m2. 



116 
 

 

Figure 5.9  Map of change in volume (m3) of sediment from 2007 – 2009 for the mid Ribble estuary, each pixel has an area of 0.0625 m2. 
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Figure 5.10  Map of change in volume (m3) of sediment from 2009 – 2010 for the mid Ribble estuary, each pixel has an area of 0.0625 m2. 
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Figure 5.11  Map of change in volume (m3) of sediment from 2010 – 2011 for the mid Ribble estuary, each pixel has an area of 0.0625 m2. 
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Figure 5.12  Map of change in volume (m3) of sediment from 2011 – 2014 for the mid Ribble estuary, each pixel has an area of 0.25 m2. 
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Figure 5.13  Map of change in volume (m3) of sediment from 2014 – 2015 for the mid Ribble estuary, each pixel has an area of 0.25 m2. 
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Table 5.3  Ribble mid estuary summary statistics for 1999 – 2015 for the significant 

change data using the limit of detection method. Total change was 

derived from the sum of all pixels. Survey area was the geometry of the 

survey area and was calculated independently of the volume 

determination.  

Year range Habitat 

Total change 

(m3) 

Survey area 

(m2) 

Average change 

(m3/m2) 

1999 - 2007 Saltmarsh -1.4E+06 4.7E+06 -0.30 

1999 - 2007 Mudflat -5.3E+05 1.7E+06 -0.32 

2007 - 2009 Saltmarsh -7.1E+05 2.6E+06 -0.27 

2007 - 2009 Mudflat -1.2E+05 9.1E+05 -0.13 

2009 - 2010 Saltmarsh 4.3E+05 1.7E+06 0.25 

2009 - 2010 Mudflat 1.6E+05 8.4E+05 0.19 

2010 - 2011 Saltmarsh -4.5E+04 5.5E+05 -0.08 

2010 - 2011 Mudflat -7.6E+04 6.6E+05 -0.11 

2011 - 2014 Saltmarsh 1.5E+05 1.2E+06 0.12 

2011 - 2014 Mudflat -1.2E+05 9.3E+05 -0.12 

2014 - 2015 Saltmarsh 5.5E+04 3.9E+05 0.17 

2014 - 2015 Mudflat 2.4E+04 3.4E+05 0.07 
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Table 5.4  Ribble mid estuary summary statistics for 1999 – 2015. These are total 

values and use no limit of detection. Total change is equal to the sum of 

all pixels. Survey area is the geometry of the survey area and is 

calculated independently of the volume determination.  

Year range Habitat 

Total change 

(m3) 

Survey area 

(m2) 

Average change 

(m3/m2) 

1999 - 2007 Saltmarsh -2.3E+06 1.3E+07 -0.18 

1999 - 2007 Mudflat -5.6E+05 3.0E+06 -0.18 

2007 - 2009 Saltmarsh -1.4E+06 1.2E+07 -0.12 

2007 - 2009 Mudflat -1.4E+05 2.9E+06 -0.05 

2009 - 2010 Saltmarsh 9.7E+05 9.0E+06 0.11 

2009 - 2010 Mudflat 2.4E+05 2.2E+06 0.11 

2010 - 2011 Saltmarsh 2.2E+05 9.0E+06 0.02 

2010 - 2011 Mudflat -2.7E+04 2.3E+06 -0.01 

2011 - 2014 Saltmarsh 4.3E+05 7.0E+06 0.06 

2011 - 2014 Mudflat -1.1E+05 1.8E+06 -0.06 

2014 - 2015 Saltmarsh 8.9E+04 4.7E+06 0.02 

2014 - 2015 Mudflat 8.3E+03 1.3E+06 0.01 

 

Between 2007 -2009 the saltmarshes showed a uniform trend across all areas at the 

mid estuary with erosion in the small creeks and accumulation in the larger creeks. The 

most striking change shown in figure 5.9 was the excavations at the Hesketh Outmarsh 

management realignment site. As discussed in section 5.4.1, these excavations 

accounted for 11.3% of sediment movements in the saltmarshes during this time 

period. The Hesketh managed realignment scheme will be the focus of section 5.4.5 

where these fine scale changes will be considered further. 
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The changes between 2009 and 2010 were dominated by substantial accretion in both 

sediment categories, the mudflats showed accretion at the rate of 0.19 m3/m2 while the 

saltmarsh saw an average accretion of 0.25 m3/m2 (table 5.3). The mudflats also saw 

large scale accretion at the confluence of the Douglas and Ribble though throughout 

the rest of the mid estuary the mudflats were a mosaic patchwork of zones of accretion 

and erosion. 

 

Figure 5.14  A fixed extent comparison for the periods 2007 – 2009 and 2009 – 2010. 

The scale used for the colour ramp is the same for both data sets and 

only significant change is displayed through the application of a limit of 

detection. The areas shown represent saltmarsh creeks and surface 

marsh ponds. 

The saltmarshes showed a distinct accretion trend across all of the mid estuary 

between 2009 and 2010. The accretion occurred in the small creeks (figure 5.10, 

where the smaller creeks are shown as a blue lines). The three main creeks that are 

connected to the Hesketh site were dominated by erosion from the sides and bottoms 

of these creeks. On the marsh surface, there were signs of vertical accretion. There 

was for example, a distinctive infilling of marsh ponds (figure 5.15) compared with 

figure 5.10 which showed the presence of the marsh ponds at grid reference 

340500,426700. Figure 5.14 highlights this contrast with a side by side comparison for 
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different time periods, the figure demonstrates that the mid Ribble estuary has shifted 

from a general trend of erosion to a general trend of accretion. 

Erosion returned to the mid estuary during 2010 and 2011 with -0.8 m3/m2 for the 

saltmarshes and -0.11 m3/m2 for the mudflats (table 5.3). However, the total values 

(table 5.4) indicated that the average change per m2 (i.e. without the limit of detection 

consideration), for saltmarsh was just 0.02 m3/m2 and mudflat value of -0.01 m3/m2. 

This suggests that between 2010 and 2011 there was no real significant change. 

Figure 5.11 shows this visually. The mudflats showed a mix of accretion and erosion 

events spread across the mudflats at this site. Within the saltmarshes for 2010-2011 

the creeks changed from accreting as seen in 2009 – 2010 to eroding, with most of this 

occurring in the three main creeks attached to the managed realignment site. 

 

Figure 5.15  An example of a marsh pond on the Ribble saltmarshes. Marsh ponds are 

bare patches of sediment that retain water after the ebb tide. (Photo taken 

of the New marsh site in 2015) 
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2011 – 2014 was the only time period in which the saltmarshes and mudflats differed in 

terms of accreting or eroding regimes, with the mudflats eroding by -0.12 m3/m2 and the 

saltmarshes accreting by 0.12 m3/m2 (table 5.3). The majority of the mudflat erosion 

occurred from the north bank of the mid estuary. For example, figure 5.12 shows a long 

band of mudflat that has eroded between the 2011 and 2014. Along the south bank 

mudflats there was also a general trend of erosion, though there are intermittent 

patches of accretion near the mouths of the three large creeks. 

 

Figure 5.16  Photograph of a creek that was undercutting the sides of the saltmarsh on 

either side at the Hesketh Outmarsh site (Photo taken of the New marsh 

site in 2015). 

The saltmarshes between 2011 and 2014 accumulated large amounts of sediment 

within (0.12 m3/m2) the managed realignment site. The sediment was deposited on the 

marsh surface in the immediate vicinity of the major creeks in this area. The three main 

creeks that connect the Hesketh Outmarsh site to the wider estuary showed erosion 

was dominant at the sides of the creeks, which were cutting into the marsh sides with 

the middle of these creeks accumulating sediment. Figure 5.16 shows an example of a 

creek at the Hesketh saltmarshes that is in the process of undercutting the sides of the 

saltmarsh on either side, this is the type of process occurring at these creeks. 

2014 -2015 was marked by a return to accretion with 0.17 m3/m2 seen in the 

saltmarshes and 0.07 m3/m2 for the mudflats (table 5.3), these values were heavily 

influenced by extreme events as the table 5.4 values showed much reduced values of 
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0.02 m3/m2 for the saltmarshes and 0.01 m3/m2 for the mudflats. There was a large 

amount of accretion seen near the main channel, and some large accretion events 

were observed at the confluence of the Ribble and Douglas (figure 5.13). Within the 

saltmarshes at this time a complex mix of accretion and erosion events are occurring. 

 

Figure 5.17  The mid estuary sediment significant change data is shown as the 

average volume of change per 1 m2 area. Faded blue and orange boxes 

are used to represent the time period from which each data set is derived. 

The Green (saltmarsh) and Grey (mudflat) bars are placed at the end of 

the time period as the volume of change is relative to the start and end of 

the time period. 

Between 1999 and 2014 the mid estuary of the Ribble experienced a great deal of 

variability in the sediment deposits of the estuary (Figure 5.17). The mudflats 

experienced substantial changes in this time period with the mudflat surface often 

being a patch work of accretion and erosion events. These events were characterised 

as elongated shapes that often ran parallel to the main channel. Saltmarsh erosion was 

dominated by erosion and accretion in the creeks that flipped between eroding and 

accreting between different time periods although the main creeks did show some 

consistency in that they were predominantly being eroded. 
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5.4.3. Localised site 1 – Sandbanks  

 

Figure 5.18  Map of change in volume (m3) of sediment from 2013 – 2014 for the outer 

Ribble estuary sandbanks, each pixel has an area of 4 m2. These data 

have had a limit of detection applied to them so that only significant 

movement is shown. 
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The Lytham beach site is a sand dominated environment. Four time points beginning in 

1999 and ending in 2014 were constructed from the available LiDAR data for this area. 

Figure 5.18 is an enhanced image of the 2013 to 2014 data and showed a typical 

example of the type of sediment movement observed at the Lytham beach site. This 

site can be characterised as having large sand bars that run parallel to the immediate 

coast. The dominant mechanism of change appears to be sandbar migration towards 

the mouth of the estuary and the nearshore. The sandbars appeared to diminish in size 

as distance from the near shore reduced. The pattern of layered erosion and accretion 

shown in figure 5.18 does suggest that the sediment in this area may be moving 

towards the coast.  

Table 5.5 Lytham beach site summary statistics for four data sets ranging from 1999 

– 2014. Total change was equal to the sum of all pixels. Survey area was 

the geometry of the survey area and was calculated independently of the 

volume determination.  

Year range Total change (m3) Survey area (m2) 

Average change 

(m3/m2) 

1999 - 2005 2.3E+06 1.4E+06 1.56 

2005 - 2009 -9.6E+05 8.7E+05 -1.11 

2009 - 2013 9.5E+04 5.5E+05 0.17 

2013 - 2014 4.1E+04 5.2E+05 0.08 

 

The data contained in Table 5.5 are a summation of the individual zonal statistics data 

calculated for each raster. They show a varied picture of sediment movement between 

1999 and 2014. The first time point 1999 – 2005 showed an average increase of 1.56 

m3/m2 of sediment over the 6-year time period assuming an even rate of accumulation 

this equates to 0.26 m3/m2 of deposition per year. In contrast the second time point had 

a negative average change value suggesting that for these data erosion was dominant. 

The average change between 2005 and 2009 was -1.11 m3/m2 which, assuming an 

even rate of erosion, equated to a very similar -0.28 m3/m2 of erosion each year. The 

rate of sediment movement was much reduced for the time period 2009 -2013 with 

average deposition being 0.17 m3/m2 which gave an annual rate of deposition of 0.04 
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m3/m2. From 2013 – 2014 the annual deposition was 0.08 m3/m2 almost double the 

presumed annual rate from the preceding data set. 

5.4.4. Localised site 2 – Mudflats 

This section focused on a subset of the mid estuary mudflat area to explore the nature 

of morphological change in the mudflat sediments. The data shown give significant 

movement (m3) values, which are data that has exceed the limit of detection. The focus 

is on the Warton mudflats that are located on the north bank of the Ribble’s main 

channel and the Hesketh mudflats located on the south bank of the Ribble main 

channel. 

1999 – 2007 represents a long-term trend in sediment movement with 8 years between 

the data sets. Figure 5.18 shows that the north bank mudflats have eroded over this 

time period; this has occurred across all of the mudflats in the eastern extent of the 

study site, though in the west the change was not significant. There were areas of 

accretion in the north bank mudflats located at the mouths of a number of creeks. The 

south bank accreted substantial amounts of sediment around the mouth of a large 

creek. The large areas of erosion at the south bank site were in fact saltmarsh erosion, 

with the marsh retreating by up to 20 meters at this site. The north and south bank can 

be said to be substantially different in terms of their sediment movement between 1999 

and 2007. 

2007 -2009 highlights the spatial variability in sediment movement, figure 5.20 shows 

on the north banks areas of erosion siting side by side with areas of accretion. The 

mudflats for this time period were composed of a complex patchwork of accretion and 

erosion events. The impact of the saltmarsh creeks on the mudflats is seen in this 

dataset although in this case it was erosion associated with the saltmarsh creek 

mouths opposed to the previous accretion seen between 1999 and 2007. 
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Figure 5.19  Map of change in volume (m3) of sediment from 1999 to 2007 for the mid Ribble estuary, each pixel has an area of 4 m2. These 

data have had a limit of detection applied to them so that only significant movement is shown. 
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Figure 5.20  Map of change in volume (m3) of sediment from 2007 to 2009 for the mid Ribble estuary, each pixel has an area of 0.0625 m2. 

These data have had a limit of detection applied to them so that only significant movement is shown. 
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5.4.5. Localised site 3 – Hesketh Outmarsh 

 

Figure 5.21  Overview of the mid estuary localised site Hesketh Outmarsh. The site is 

split into an area of mature saltmarsh designated Old marsh and an area 

of emergent saltmarsh designated New marsh.  

Results are presented here for an analysis of the long-term trends seen in the Hesketh 

Outmarsh managed realignment site, data were available for the years 1999, 2007, 

2009, 2010, 2011, 2014 and 2015. The inner site is referred to as the new marsh as it 

represents new saltmarsh formation and the outer site beyond the sea wall is referred 

to as the old marsh as it consists of older mature saltmarsh (figure 5.21). Two sets of 

data are presented to detail the sediment changes that have occurred in response to 

this anthropogenic disturbance event. Volume of change values cited here were 

calculated for this local site alone i.e. only data within the localised site respectively 

(new marsh and old marsh) are used. These data are used in the contaminant analysis 

in chapter 6. 



133 
 

Figure 5.22 shows the Hesketh Outmarsh new marsh site post realignment, the strong 

green outline of the trenches that have been excavated to re-establish the connection 

of the saltmarsh to the estuary are distinct. These excavations are characterised by a 

branching network of creeks that were excavated and a deepening of the central creek 

that runs through the old saltmarsh site near the Ribble main channel. Unsurprisingly 

the data showed an average change value (table 5.6) of -0.56 m3/m2 due to the 

excavation of the saltmarsh main creeks and breaching of the sea walls during this 

time period. 

2009 - 2010 (figure 5.23) is the first-time step since initial realignment. This returned an 

average change value of 0.21 m3/m2. This accretion was seen occurring as widespread 

deposition of sediment across the new marsh site. Erosion at the site was confined to 

the main channels and not the sub channels, suggesting that the main channels were 

eroding at a faster rate than the smaller sub channels. In fact, there was some infilling 

of the smaller channels, possibly due to their elevation resulting in them acting as 

sediment traps. 

The data between 2010 and 2011 (Figure 5.24) showed a much-reduced deposition 

value of 0.02 m3/m2 for this time period. Accretion took the form of deposition 

concentrated around the main creeks, with deposition reducing as distance from the 

saltmarsh creeks increased. Within the saltmarsh creeks, particularly the main 

channels, the sedimentation pattern evolved to be more complex, exhibiting both 

erosion and accretion side by side. The creeks show a braided pattern of erosion which 

was interrupted by the deposition of a sediment bar (Fig 5.24 341680, 425700). 
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Figure 5.22  Map of significant change in sediment volume from 2007 to 2009 for the 

Hesketh Outmarsh managed realignment site. 
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Figure 5.23  Map of significant change in sediment volume from 2009 to 2010 for the 

Hesketh Outmarsh managed realignment site. 
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Figure 5.24  Map of significant change in sediment volume from 2010 to 2011 for the 

Hesketh Outmarsh managed realignment site. 
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Figure 5.25  Map of significant change in sediment volume from 2011 to 2014 for the 

Hesketh Outmarsh managed realignment site. 
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Figure 5.26  Map of significant change in sediment volume from 2014 to 2015 for the 

Hesketh Outmarsh managed realignment site. 
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Table 5.6  Hesketh Outmarsh new marsh site summary statistics for the volume of 

change (m3) in sediment. 

Year range Volume of change (m3) Average 

change 

(m3/m2) 

2007 – 2009 -2.2E+05 -0.56 

2009 – 2010 5.3E+04 0.21 

2010 – 2011 1.9E+03 0.02 

2011 – 2014 6.9E+04 0.21 

2014 – 2015 -5.3E+02 -0.01 

 

During the 2011 to 2014 period (Figure 5.25), expansion of creek erosion occurred, 

with erosion branching into the smaller creeks. This expansion led to the formation of 

numerous small sub creeks that are typically seen in a natural saltmarsh. Deposition 

covered a wider area of the marsh but was still concentrated around the creek network. 

Erosion concentrated along the edges of the marshes for this time period and 

appeared to be eroding laterally as opposed to vertically. 

2014 – 2015 (Figure 5.26) contrasts with the previous data sets due to the relatively 

small average change value of -0.01 m3/m2 meaning that deposition had been 

substantially reduced. There was very little deposition out with the creeks, in fact most 

deposition was occurring solely within the creeks at this point in time. 

1999 – 2007: (figure 5.27) shows the sedimentation patterns at the old marsh site 

before the realignment scheme at Hesketh was implemented. There was accumulation 

along the saltmarsh creeks with the greatest accumulation being at the saltmarsh edge. 

There was a lesser amount of accumulation in the creek/channel middle. This 

accumulation was causing saltmarsh creeks to be infilled with sediment. There was 

also accumulation at the front of the saltmarsh suggesting that the marsh was 

expanding. On the surface of the saltmarshes there was general accumulation from 

gradual build-up of sediment. The mudflats showed a mix of erosion and accumulation 
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of sediment as a combination of long ellipsoid features which ran parallel to the main 

channel. 

 

Figure 5.27  Map of significant change in sediment volume from 1999 to 2007 for the 

Hesketh Outmarsh old marsh site. 
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Figure 5.28  Map of significant change in sediment volume from 2007 to 2009 for the 

Hesketh Outmarsh old marsh site. 
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Figure 5.29  Map of significant change in sediment volume from 2009 to 2010 for the 

Hesketh Outmarsh old marsh site. 
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Figure 5.30  Map of significant change in sediment volume from 2010 to 2011 for the 

Hesketh Outmarsh old marsh site. 
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Figure 5.31  Map of significant change in sediment volume from 2011 to 2014 for the 

Hesketh Outmarsh old marsh site.  
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Figure 5.32  Map of significant change in sediment volume from 2014 to 2015 for the 

Hesketh Outmarsh old marsh site. 
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Table 5.7  Hesketh Outmarsh old marsh site summary statistics for the volume of 

change (m3) in sediment. 

Year range Volume of change (m3) Average 

change 

(m3/m2) 

1999 - 2007 2.6E+03 0.20 

2007 – 2009 -4.1E+04 -0.61 

2009 – 2010 6.1E+03 0.06 

2010 – 2011 -1.5E+04 -0.31 

2011 – 2014 -1.1E+04 -0.12 

2014 – 2015 -2.7E+03 -0.07 

 

2007 to 2009 (figure 5.28) shows the site after the realignment; the main creek that 

runs through the mature saltmarsh of the old marsh site was deepened substantially 

and this carried on to the mudflat where it joined the main river channel. There 

appeared to be erosion between these time points along the sides of the main 

saltmarsh channel, likely due to it widening in response to the changes in 

hydrodynamics. The accretion previously seen at the front of the marsh and within its 

creek network has stopped at this time. 

2009 -2010 (figure 5.29) shows the site after initial disturbance. The main saltmarsh 

channel has started to accrete. Erosion in the main channel was occurring still at the 

sides of the main channel and was likely to be from the channel widening as it adapted 

to the new hydrodynamics of the area. The mudflats at the front of the marsh were 

predominantly accreting during this time period although as previously seen, there 

were a number of erosion areas also present. The smaller creeks in the marsh were 

generally accreting, which was a trend shared by the marsh surface. A number of 

depressions (marsh ponds) in the marsh surface were observed to be accreting at a 

greater rate than the surrounding marsh surface as they were likely to be acting as 

sinks for sediment. 
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For 2010 to 2011 (figure 5.30) the erosion in the main channel was still going on 

although now it was primarily confined to the edges of the marsh near the front and 

back. There was also some minor erosion occurring in the minor creeks across the 

marsh area and surface accretion was much reduced apart from at the front of the 

saltmarsh. Across the mudflat accretion was occurring though the extent of accretion is 

highly variable, mudflat erosion at this point was confined to the areas in front of the 

mouths of large saltmarsh creeks. 

2011 - 2014 (figure 5.31) showed the same trends as those seen between 2010 and 

2011 with erosion mainly occurring along the sides of the main creek channels and in 

the same locations. However, surface deposition was much increased though it was 

greatest at the front of the marsh it also occurred near the back for areas close to large 

creeks. There was more erosion of the sub creeks in this time period particularly along 

their sides, which suggests that these creeks were widening. The mudflats remained 

much the same as 2010 - 2011 with a general trend of accretion. 

2014 – 2015 (figure 5.32) is the most complex data with the main channel showing a 

braided pattern of erosion and accretion spots. The main channel creek was still 

undergoing lateral erosion along the sides especially at the front of the marsh but it was 

not as extensive as in previous years. The mudflats were exhibiting more erosion at 

this point with the mudflats being composed of compartments of erosion and accretion 

that were spatially complex. For this time point there was comparably less sediment 

movement. 
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5.5. Discussion 

Section 5.4 described a detailed investigation into the three main sediment categories - 

sandbanks, mudflats and saltmarshes - within the Ribble estuary. The investigation 

inferred the movements of sediment over different time periods where LiDAR data were 

available. Where possible, the change in sediment volumes were quantified and 

average values calculated that represented the state of sediment flux for the given time 

period and given location within the estuary. 

5.5.1. 1999 – 2009 full estuary coverage 

The large-scale analysis conducted using data from 1999 to 2009 demonstrated that 

there was a net sediment loss of 8.1 E+6 m3. This means that the volume of sediment 

within the survey area in 2009 was less than that in the survey area from 1999. As the 

survey area fully covered the mudflats and saltmarshes, it is known that this is not a 

case of sediment simply being transferred to another part of the estuary. This suggests 

that the missing sediment may have been remobilised to the Irish Sea through the 

interconnected sediment transfer systems that are responsible for sediment 

redistribution around the Irish Sea (Luo et al., 2015; van der Wal et al., 2002; Wakefield 

et al., 2011).  

As the outer estuary beyond the sand banks was not included within this analysis as it 

was out with the available data, it is possible that this may be where the lost sediment 

has been transferred to, though this is just speculation. Determining where these 

sediments and their sediment bound contaminants have gone would require 

development of more advanced sediment transport models to improve past estimates 

of sediment movements in this part of the Irish Sea (Gleizon et al., 2003; Gleizon and 

McDonald, 2010; Luo et al., 2015; Lyons, 1997; van der Wal et al., 2002). This would 

be an interesting area for future work and allow the fate of remobilised sediment to be 

examined and theorised. 

Given that this analysis was based on the measurement of two data sets, it is possible 

that on the two LiDAR survey days the estuary was substantially different by chance as 

a result of events that had occurred in the immediate period before the LiDAR 

measurements were made. Furthermore, it is well known that within the Ribble estuary 

sediment moves in and out from the offshore areas beyond the mouth of the estuary 

(Atkin, 2000; Wakefield, 2005). This is therefore an important point to consider as it is a 

limitation of this analysis.  
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In the Ribble estuary the ebb and flow of the tide creates a tidal bore which will cause 

turbulent conditions that promote sediment remobilisation, such remobilisation will be 

more pronounced on the mudflats (Atkin, 2000; Wakefield, 2005).Therefore the 

mudflats are expected to be more dynamic in their morphological change as they are 

exposed to more disturbance. As 65% of the reported lost sediment came from 

saltmarshes which are believed to be comparatively more stable, it seems plausible 

that the observed trend of erosion was dominant during this 10-year time period. 

There were also a number of discreet, large sediment movement events that may have 

contributed to this trend of erosion. These include: 

 The retreat of a section of mature marsh front 5.4.1. 

 The collapse of a section of the Ribble training wall which allowed more 

movement of sediment on the north bank mid estuary mudflats. 

 The fact that the Hesketh site accounted for 11% of all erosion during this time 

period and that this estimate did not include the effects of modified 

hydrodynamics causing erosion in mature saltmarshes and mudflats. 

Despite year on year fluctuations and likely transfers of sediment between the 

surveyed estuary and the outer estuary and Irish Sea itself, a general trend of erosion 

over the 10 years from 1999 -2009 is supported by the observed sediment movements 

from the mudflats and saltmarshes. Therefore, it is likely that sediment bound 

contaminants (mainly from the saltmarshes) have been relocated during this time-

period. In effect the saltmarshes would have been acting as a source of time-

integrated, sediment-bound contaminants to the estuary and the Irish Seas sediment 

transfer system (Brown, 1997; Hunt et al., 2013; Mudge et al., 1997). This will be 

discussed further in chapter 6. 

5.5.2. 1999 – 2015 mid estuary coverage 

The mid estuary analysis considered an area of extensive mudflats and saltmarshes, 

therefore, the sediment movements here in these clay and silt rich deposits will have 

implications for sediment associated contaminant transfers (Assinder et al., 1997; 

Rainey et al., 2003; Wakefield, 2005). This section aimed to explore the trend in 

sediment movement as it was an area that covered around 35% of the estuary yet 65% 

of the mudflats and saltmarshes are found here. Sediment movements were shown to 

be variable between the different time periods, exhibiting inter-annual variability (figure 

5.17). 
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The early data sets for 1999 to 2007 and 2007 to 2009 showed erosion to be the 

dominant form of sediment movement, this corroborated the findings of the long-term 

sediment budget in section 5.5.1. However, by the 2009 to 2010 time period, the mid 

Ribble area had shifted to a pattern of accumulating sediments. Given this 

accumulation occurred over a 1-year period, this was the most substantial 

sedimentation event seen within the period of study. After this substantial accretion 

event the pattern of erosion and accretion took on a great deal of variability within the 

study area, shifting from erosion to accretion for each of the following data sets. 

What was of interest was that the saltmarshes tended to be the largest contributors to 

either the erosion or accretion, with the saltmarshes losing or gaining more sediment 

than the mudflats in most cases. This is significant for this work as previously 

mentioned, because saltmarshes store relatively high concentrations of historic 

radiogenic contaminants, for example, nuclear sector discharged 137Cs and 241Am (e.g. 

Brown et al., 1999).   

Sediment movement in the saltmarshes tended to show erosion in the small creek 

networks while accretion occurred in the large creeks as well as the mudflats near 

large creeks (e.g. figure 5.9). This is interpreted as the eroded sediment from the 

saltmarsh small creeks accumulating in the large creeks and then being remobilised to 

the mudflats. This process was observed in reverse whereby when erosion was 

dominant in the large creeks and the mudflats near these creeks, accretion was 

occurring in the saltmarsh small creeks (e.g. figure 5.10). The data appear to show a 

long-term back and forth mechanism of sediment being cycled between the 

saltmarshes and the mudflats.  

This cycling process is caused by saltmarsh creek bank migration. Bank migration 

within the small creek networks involves undercutting up to the point the creek bank 

collapses, thus creating a temporal profile which appears to show erosion happening 

suddenly as a single event. When such erosion from undercutting occurs, the excess of 

sediment within the creeks will be carried towards the mudflats by the daily ebb flows 

over a period of time (Hu et al., 2017; Pieterse et al., 2017). Therefore, as the eroded 

sediment from the small creeks converges at the large creeks, accretion will be 

observed in these large creeks and the nearby mudflats. This accounts for the transfer 

of sediment from the small creeks to the large creeks as well as the nearby mudflats.  
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These systems are complex in terms of their spatio-temporal properties and a second 

process that is the opposite of the bank migration driven process was observed to be in 

operation at these saltmarshes. Erosion of the sediment in the fronting mudflats as well 

as the large creeks and accretion in the small creek network was observed in the data. 

The bank migration process discussed above was driven by an excess supply of 

sediment in the small creeks and the ebb tide, this second process is believed to be 

driven by an excess of sediment in the large creeks and nearby mudflats and the flood 

tide. Where the flood tides have been reported as being the dominant energy 

mechanism the overall trend in sediment transfer within saltmarsh will be towards the 

small creeks (e.g. Pieterse et al., 2017). Therefore, from the data it appears that a 

cyclic sediment transfer process is in operation which exhibits inter annual variability. 

5.5.3. Localised site 1 – Sandbanks 

The first localised site investigated was the sandbanks located near Lytham St Anne’s. 

As previously mentioned, and based on the findings of chapter 3.3.2, these sand 

deposits are not expected to be significant in terms of contaminant remobilisation as 

they are inversely correlated with estuarine radiogenic contaminants such as 137Cs and 

241Am. However, they form one of the three main sediment deposit categories of the 

estuary and it was important to study all aspects of the estuary, to ensure a complete 

accounting of the estuaries sediment volumes. As these sites were found to have 

substantial morphological change and inferred sediment movement, it was also 

important to quantify these so that they did not skew observations of any mudflat 

sediment volume change. 

The sandbank sediment remobilisation took the form of clearly distinct sandbank 

migration with deposits of sand having a morphology of classic sandbanks that 

appeared to be migrating towards the estuary mouths (Figure 5.18; 330500, 429500). 

The distinct morphology of these feature leads me to believe that the pattern of layered 

erosion and accretion features towards the near shore and mouth of the Ribble estuary 

may in fact be evidence of the sandbanks direction of travel. This chapters 

observations of these sandbank features confirm the postulated theory of channel ward 

migration (Rainford, 1997), which suggests these sands are migrating to the main 

channel and infilling it (van der Wal et al., 2002). The sandbanks whilst probably not 

significant to contaminant remobilisation had a relatively simple pattern of spatial 

variation, with a clearly defined structure to sediment movement. 
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5.5.4. Localised site 2 – Mudflats 

Chapter 3 explored the temporal and spatial variability of the Ribble mudflats and 

showed that the mudflats preferentially store contaminants due to a positive correlation 

with percentage clay. However, contaminant values ranged from 2.6 Bq kg-1 to 311Bq 

kg-1 for 137Cs and 2 Bq kg-1 to 171 Bq kg-1 for 241Am across the study sites and across 

the length of the study period. The conclusion being that variation in sediment particle 

size distribution was responsible for this variability and that sediment movements were 

a significant factor in determining contaminant concentration. 

The mudflats were shown to exhibit a high degree of spatial variability and there was 

little to no long-term trend in these sediments, with erosion and accretion being highly 

spatially variable. This is likely due to the drivers of sediment movement within the 

mudflats operating at a fine temporal scale with the daily ebb/flow of the tides and the 

tidal bore being responsible for a large extent of mixing in the mudflats (Azhikodan and 

Yokoyama, 2015). The data did show that accretion of the mudflats, particularly those 

in front of the saltmarsh, tended to coincide with erosion of the saltmarsh creek system. 

These coincident morphological changes represent a transfer of sediment from the 

saltmarshes to the mudflats. This can be further supported by the presence of a delta 

fan shape at the mouth of the saltmarsh creeks – a common feature of sediments 

being laid down by hydrological processes as they are washed out of a creek or 

channel. Moreover, these areas were spatially distinct from the typical parallel ellipsoid 

that was observed dominating mudflat sediment movements. 

The sediment in the saltmarsh creeks typically had contaminant values of 159 Bq kg-1 

to 576 Bq kg-1 for 137Cs and 122 Bq kg-1 to 188 Bq kg-1 for 241Am (see chapter 6.3 for 

further details). Therefore, these transfers of sediment from saltmarshes to mudflats 

constitute a source of radiogenic contaminants to the mudflats. The identification of this 

sediment source and its average levels of contamination is important for this works 

aims of evaluating the significance of sediment bound contaminant remobilisation. 

5.5.5. Localised site 3 – Hesketh Outmarsh 

It is difficult to observe how an estuary will respond to a natural disturbance event such 

as a high impact storm or prolonged sea level rise without information prior to and after 

the event. Difficulties such as the unpredictability of such storms, the logistical 

difficulties involved in mobilising a response prior to and after such an event, and the 

uncertainty in knowing which events will have a suitably large impact that could be 

detected and therefore should be studied. Consequently, this study has taken 
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advantage of the Hesketh Outmarsh managed realignment scheme as an example of a 

significant anthropogenic disturbance event that modified the local hydrodynamics and 

triggered sediment erosion and deposition mechanisms in the local vicinity. 

The initial excavation works saw the historic creeks that where infilled during the 1980s 

land reclamation re-established. This was done to reconnect the site to the estuary to 

accelerate marsh formation and encourage sediment accretion across the marsh 

surface. The site underwent a period of creek formation which saw lateral and vertical 

erosion across the site as a dense network of saltmarsh creeks were formed. These 

erosion events persisted for the first three years after the breaching of the sea walls 

and have led to sediment bound contaminants in these eroded sediments being 

remobilised and redistributed by the estuary wide sediment transfer system. 

The trend of sediment accumulation seen from 2009 onwards will likely mean that 

those time integrated stores of contaminants have been deposited on the marsh 

surface near the creeks. This will be considered further in chapter 6 where sediment 

cores taken at different locations in the estuary are used to estimate the historic levels 

of contaminants. These transfers of sediments and by consequence sediment bound 

contaminants were in response to the physical disturbance of the excavations. 

The mature marsh located north of the breached sea wall did not have the physical 

disturbance of excavations applied to it, instead the creation of a new saltmarsh 

resulted in what was a previously a dead-end creek becoming a main creek connecting 

the new saltmarsh to the estuary (figure 5.22). These modifications to the saltmarsh 

creeks altered the hydrodynamics of the area, resulting in increased water velocities 

and drainage times that caused creek erosion (Browne, 2017; Pieterse et al., 2017). 

This erosion continued for some time after the disturbance event. The erosion caused 

the main creek to widen substantially (over 10 times wider in 2015 than 2007) and 

deepen to a depth of 7m. This erosion has also led to bank collapse along the creek 

with large sections of marsh being undercut, these sediments where then removed by 

the ebb tide and represent a time integrated source of sediment bound contaminants 

that will have been remobilised and redistributed within the estuary. 

In the most recent data set available (for 2014 – 2015), the rates of erosion were much 

reduced and accretion has occurred in the new marsh site, though erosion was still 

clearly present in the old marsh site. This is significant as the mature saltmarshes 

present at the old marsh site are expected to be the most concentrated store of 

contaminants in the estuary (see chapter 6). Follow up topographic surreys are 
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recommended to monitor if these marshes have entered a stage of recovery from 

disturbance or if the reduced rates of erosion are just a lull in a larger temporal trend. 

5.6. Conclusions 

The long-term trends in sedimentation patterns within the Ribble estuary from 1999 -

2015 show complex patterns of erosion and accretion which varied over the different 

time periods for which LiDAR data were available. For example, erosion was clearly 

dominant from 1999 – 2009, though from 2009 – 2015 the pattern of sedimentation 

was very variable. The implications are that there was a great deal of movement in the 

sediment types, with the saltmarsh sediments being subject to more movement than 

was originally thought. 

Looking at the differences in sediment movement over shorter timescales, highlighted 

the fact that sediments were being eroded from the small creek networks possibly due 

to bank migration as part of saltmarsh evolution. With the sediment being temporarily 

remobilised to the larger creeks as well as the nearby mudflats. The mudflat sediments 

were then subject to great spatial and temporal variability and likely to mix the mature 

saltmarsh sediments with new sources from the river, marine and the existing sediment 

stocks within the estuary. Consequently, this is likely to dilute any historic contaminant 

levels originating in the saltmarsh sediments (e.g. Rahman et al., 2013). In some 

cases, these mixed sediments were observed to be deposited back in the saltmarsh 

creeks or on the marsh surface surrounding this network of creeks. 

The managed realignment site has prompted the erosion of mature saltmarsh by 

causing the lateral and vertical expansion of three large creeks that are connected to 

the new marsh site. This is believed to be caused by a modification to the local 

hydrodynamic conditions, similar to the processes reported by Browne (2017) that were 

responsible for long term erosion of Long Island, USA saltmarshes. The consequence 

is that the time integrated store of contaminants stored in these marshes has seen its 

rate of transfer to the mudflats accelerated. This in turn has seen an acceleration in the 

rate at which sediment bound contaminants have been remobilised to the estuary and 

in turn the Ribble and Irish Sea’s sediment transfer systems. 
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6. Sediment-bound radioactive contaminant remobilisation in response to an 

anthropogenic disturbance event 

The Ribble estuary experiences a great deal of morphological variability, which 

translates to a large amount of sediment movement. The estuary is known to receive 

constant inputs of Irish Sea marine sediment, transported primarily from the Liverpool 

bay area (Luo et al., 2015; van der Wal et al., 2002). It has also been shown that the 

estuary transfers sediments back to the Irish sea sediment transfer system, with the full 

estuary sediment budget from chapter five highlighting that a substantial volume of 

estuarine sediment was likely transferred to the marine environment. Therefore, the 

Ribble estuary is clearly an open system and given the large-scale transfers of marine 

and estuarine sediments can be viewed as an exchange environment of sediment 

bound radiogenic contaminants.   

The principal mechanisms of sediment transfer within the estuary are believed to be 

the estuary hydrodynamics and discrete high impact disturbance events (Azevedo et 

al., 2010; Azhikodan and Yokoyama, 2015). The estuaries hydrodynamics and river 

discharges are responsible for daily remobilisation of sediments within the estuary and 

the sorting of sediments within the Ribble by particle size and the energy available to 

move those particles (Azevedo et al., 2010; Pamba et al., 2016). On a longer time 

scale, discreet high impact disturbance events such as storms and high riverine 

discharge as a result of heavy precipitation within the river catchment represent an 

injection of excess energy that can cause large scale sediment remobilisations (e.g. 

Allen and Duffy, 1998; Chen et al., 2017). These mechanisms underpin the idea that 

the sediments within the estuary, specifically the mudflat sediments and the newly 

deposited saltmarsh sediments are a product of sediment mixing (Azhikodan and 

Yokoyama, 2015).   

With substantially reduced liquid discharges from Sellafield and sediment mixing with 

fresh uncontaminated material that is known to occur during sediment transport, it 

would be reasonable to expect estuarine contaminant levels to be declining (Gleizon 

and McDonald, 2010; Marsden et al., 2006). In the case of the Ribble estuary where 

the primary source of radiogenic contamination is from the Irish sea sediment transfer 

system, mixing of sediments should dilute concentrations of radiogenic contaminants 

(Hunt et al., 2013; Rainey et al., 1999; Wakefield, 2005). Where concentrations of 

these radiogenic contaminants are not reducing and radionuclide ingrowth can not 

explain the lack of a reduction then a possible explanation is that a concentrated 
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source of sediment bound contaminants may be toping up these sediments 

contamination levels (Hunt et al., 2013; Marsden et al., 2006). Such an example of a 

lack of decline was reported in chapter 3 for 241Am which may have been due to a 

combination of the top up of 241Am from in growth from 241Pu and from sediment 

remobilisation from more concentrated sources such as the Ribble saltmarshes and 

Irish sea sediments.  

In chapter 5 a series of saltmarsh and mudflat morphological changes was interpreted 

as sediment moving back and forth between the saltmarsh creeks to the mudflats as a 

result of creek bank collapse. The implication of these observations is that there is back 

and forth movement of sediment from the saltmarshes to the mudflats and the wider 

Ribble estuary sediment transport system. This redistribution of sediments and their 

associated sediment bound contaminants represents a source of diffuse radiogenic 

contaminants to the estuary and by extension the Irish Sea sediment transfer system.  

The Ribble saltmarsh sediments are known to contain contaminant concentrations that 

can be up to 179% higher than the highest concentration mudflat sediments (section 

3.3.1). Therefore, transfer of fine grained sediments, which are known to act as 

vehicles for contaminant transport, will also lead to contaminant movement from the 

saltmarshes to the mudflats (Brown, 1997; Hunt et al., 2013; Wakefield et al., 2011). 

That the saltmarshes have been acting as a source of contaminants to the estuarine 

environment is supported by the following three findings of this work so far: 1) the lack 

of a significant decline in 241Am and 137Cs in mudflat sediments (3.3.4); 2) the detection 

of a mechanism of sediment transfer between the mudflats and the saltmarshes 

(5.5.2); and, 3) the quantification of substantial saltmarsh erosion (Table 5.2).  

The identification and quantification of these diffuse sources of contaminants to the 

estuarine environment is important given the context of current historically low point 

source contaminant discharges, as seen in the significant reduction in Sellafield 

discharges of the radionuclides 137Cs and 241Am (Ray, 2013). This means that inter-

annual variation in contaminant concentration within the estuarine environment will be 

partially influenced by the rate of diffuse releases of contaminants from contmant 

concentrated sediment deposits within the estuary and around the Irish Sea (Hunt et 

al., 2013). These diffuse environmental sources are more complicated to quantify than 

point source discharges and therefore mechanisms of sediment remobilisation are 

important for understanding the nature of contaminant remobilisation.  
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The anticipated implications of climate change highlights the need to better understand 

the significance of the transfer of radiogenic contaminant concentrated sediments from 

saltmarshes to the estuary and beyond. It is believed that the effects of climate change 

particularly for the North Atlantic area will be an increase in the amount of energy within 

the climate system and an accelerated rate of sea level rise (Mölter et al., 2016). These 

factors have the potential to modify the estuary hydrodynamics and increase the 

frequency of high impact disturbance events (Azevedo et al., 2010; Gleizon et al., 

2003; Luo et al., 2015). The result would be a modification to the temporal and spatial 

patterns of sediment redistribution at sites such as the Ribble estuary (Dissanayake et 

al., 2015; Esteves et al., 2011).  

The Hesketh Outmarsh managed realignment site was investigated in chapter 5 as an 

example of a known disturbance event whose impacts can be measured. In chapter 5 

it’s the morphological change which occurred at the site which was analysed to infer 

sediment movements, prior knowledge of the particle size of these sediments was then 

used to estimate radiogenic contaminant remobilisation. The disturbance caused by the 

realignment is believed to have modified the local hydrodynamics and it is the effects of 

those modified hydrodynamics that are of particular interest to this work. Comparing 

the old and new marsh sites, offered the most information about the consequences of 

modifying local hydrodynamics particularly of the saltmarsh creeks. The findings of the 

study reported here in chapter 6 consider the wider implications of managed 

realignment as well as the implications of increasing disturbance for sediment bound 

radiogenic contaminants.  

6.1. Aims 

The spatial dynamics of saltmarsh contamination are explored here for the purpose of 

determining a robust method for estimating contaminant remobilisation from the site. 

The method is developed to estimate likely contaminant remobilisation in response to 

the disturbance event triggered by the implementation of the managed realignment 

scheme. Using a focused sediment budget, sediment movement is converted to an 

estimation of sediment bound contaminant movement. 

 Is there significant spatial variation in saltmarsh contaminant concentration? 

 How much historic contamination has been remobilised as part of sediment 

movements at the Hesketh out marsh site? 

 How has the temporal trend in contaminant remobilisation changed since 

disturbance? 
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6.2. Methods 

Site selection 

 

Figure 6.1  This aerial photograph was collected by the Environment Agency 

Geomatics group in 2007 prior to the realignment scheme. The Hesketh 

study area is denoted by a red polygon within which there are two sub 

categories Old marsh (green polygon / points) and New marsh (Blue 

polygon / points). 

The Hesketh Outmarsh, as discussed in section 6.1, was the ideal site for a case study 

of sediment bound contaminant remobilisation. The new marsh site is located to the 

south of the breached sea wall and the old marsh site is to north (figure 6.1). Targeted 

areas were selected within each of the new and old marsh sites to give two focused 

areas to conduct this research (figure 6.1). The reasoning for this was that for the 
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remobilised sediment data to be converted to an estimate of contaminant 

remobilisation it was vital that the marsh that is being eroded be thoroughly 

characterised. 

 

Figure 6.2  Example photograph of undercutting action that is typical of saltmarsh 

lateral erosion from the Hesketh saltmarshes (Photo taken of the Old 

marsh site in 2015). 

The selected areas within the Hesketh Outmarsh are highlighted in figure 6.1, they are 

discrete compartments of their respective saltmarshes with creeks on all sides. This 

was a desirable feature as this study was conducted post the 2009 breach and so no 

data were available from before the sea defences were breached. Given the stated 

aims of this chapter, it was important to investigate an area of saltmarsh that was 

known to have experienced net erosion. The nature of the erosion at these sites was 

creek based undercutting of the sides (figure 6.2), which in turn resulted in a 

contraction of the marsh surface area. Therefore, the two field sites selected for 

investigation provide a compartment of saltmarsh which is known to be undergoing 

erosion but is not excessive in size so that it can be fully characterised in terms of its 

contaminant properties. 

The new marsh site was reclaimed from the estuary in the 1980’s, which is 

contemporary with the peak discharges of Sellafield (e.g. Vintró et al., 2000), it was 

therefore reasonable to assume lower sediment concentrations of 137Cs and 241Am 

should be expected than in the mature saltmarsh found in the Ribble estuary. The 

agricultural practices associated with wheat production, which was carried out at this 
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site, involved routine ploughing and infrequent deep ploughing. This means that the 

contaminants activity depth profile at the new marsh site can be expected to deviate 

from the classic saltmarsh activity depth profile (e.g. Brown et al., 1999) that would be 

expected to be found at the old marsh. 

6.2.1. Field work at Hesketh Outmarsh 

At each of the field sites, thirty sampling points were distributed across the marsh 

surface in a 35 m grid. Thirty sample points per field area was decided to offer the best 

trade-off in terms of sampling density and sample processing times. At each sampling 

point a survey flag was inserted to mark the location and a sediment scrape of the 

upper 10 mm of sediment was collected with a trowel and placed in a new pre-labelled 

plastic bag. Coordinates of each sample point were recorded using a Leica 1200 

differential global positioning system (DGPS), a one-hour duration was used for raw 

data logging at the base station. 

At each sample site the amount of ionising radiation was measured using a Thermo-

scientific Radeye© air kerma unit at a standard height of 1m. The air kerma unit was 

pre-calibrated using an IAEA traceable sealed 137Cs source following the method 

compliant with the University of Stirling’s Environmental Radioactivity Laboratory’s 

(ERL) United Kingdom Accreditation Service (UKAS) accredited quality control system. 

A Mobile Gamma Spectrometry System (MoGSS) was then used to survey the marsh 

surface. MoGSS is a rapid mobile in situ gamma spectrometry system that logs gamma 

ray counts and geographic coordinates every one second. The user simply walks the 

site area of interest whilst holding the Na-I (Tl) about 20 cm from the ground surface. 

Preliminary data from this system were used to identify high and low areas of 

radioactive contamination. This information was then used to identify sites for coring, 

so that both high contaminant sites and low contaminant sties would be sampled. 

Two sediment cores of a length of 1 m and diameter of 0.10 m where collected from 

each site to give a total of four cores. These cores were extracted by hammering a 

section of drain pipe into the marsh surface with a sledgehammer. The core and tube 

were then extracted using a hydraulic jack and ball clamp. These deep cores were then 

give sample numbers and sealed with durable sticky tape. 
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6.2.2. Sediment processing 

The deep cores were stored in the University of Stirling’s -40 oC freezers from the end 

of the field campaign until sediment processing could be began. The cores were placed 

in a custom built cryogenic chamber, which flash froze the cores to -80 oC, this was 

required to ensure the cores remain in one piece during sediment extraction from the 

casings. The core casings were cut along their length using a circular saw with a depth 

of cut slightly less than the casing thickness to prevent smearing occurring. 

Once the intact sediment cores were removed from their casings the cores were 

sectioned using a knife in increments measured from the top of the core. Cores where 

sectioned at 5cm increments, though one core from each site was sectioned at 1cm 

increments to observe finer scale change. Care was taken to ensure no cross-

contamination occurred by cleaning equipment between sections. The extracted 

sections were then subsampled by pressing a circular aluminium cookie cutter device 

into the sediment to extract a disc of known volume, this also removed the outer layer 

of sediment which may have been smeared during the process of driving the corer tube 

into the marsh. The core sample was then placed in a pre-weighed aluminium tray and 

placed in an oven for 24 hours at 105oC and then weighed once dry, these 

measurements allowed the % moisture and bulk density of the sediment to be 

calculated. 

The sediment scrapes were removed from the departmental cold store room where 

they had been stored since the completion of the field campaign. These samples were 

placed in a pre-weighed aluminium tray and placed in an oven for 24 hours at 105oC 

and then weighed once dry. The dried core sediment and the dried scrape sediment 

were then ground, containerised and counted for gamma emitting radionuclides using 

the same methodologies described in section 3.2.3 and 3.2.5. 

6.2.3. DGPS data processing 

The DGPS data were extracted to propriety Leica software Leica Geooffice for post 

processing with Ordnance Survey (OS) base station data. Four base stations from the 

OS-Net were selected, these are Giggleswick, Blackpool, Manchester and Daresbury. 

The DGPS data were shifted towards a reference point that was formed from an 

average of the four base stations and processed, due to the 1 - hour duration of raw 

data collection ±1.5 - 3 cm accuracy is achieved. These data were presented as x, y 

and z coordinates on the British National Grid coordinate system. 
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6.2.4. Dosimetry 

The dosimetry results collected in the field from a height of 1m over a 600 second 

duration were entered into standard spreadsheet that calculated the absorbed dose 

rate in air for each site as µGy hr-1. The air kerma equipment was calibrated by 

Cavendish Nuclear Ltd in accordance with their UKAS accredited methods. Shortly 

before field visits the calibration of the air kerma equipment was checked using a 137Cs 

source to ensure the equipment was functioning correctly. 

6.2.5. MoGSS 

Mobile Gamma Spectrometry System (MoGSS) is a rapid mobile in situ gamma 

spectrometry system that logs gamma ray counts and geographic coordinates every 

one second. With the aid of pre-programmed stripping algorithms total counts for user 

defined target windows can be measured that minimise the effect of high energy 

nuclides contributing to lower energy nuclide counts. User defined windows for 137Cs 

and 241Am were used to extract the data from the surveys. As counts are proportional 

to the amount of gamma emitting radionuclides within the vicinity of the Na-I (Tl) 

detector this system allows the relative mapping of gamma emitting radionuclides. 

The data were processed using the R statistical analysis environment, where a script 

was written to aggregate all the thousands of spectral data points for each field site 

(new marsh/old marsh). These data were checked for quality, the main issue found 

with these data was that at the time of sampling this was an experimental system, 

which would infrequently result in the DGPS receiver failing to record coordinate data. 

This error could be easily identified by plotting the data within a geographical 

information system and following the data’s time stamps, data which did not follow the 

known site survey walk pattern were identified as errors and removed. 

6.2.6. Radiogenic contaminant horizontal spatial analysis 

The spatial distribution of the surface contaminant concentrations for both saltmarsh 

areas were calculated using data from the MoGSS in situ Na-I (Tl) logging system. This 

required the development of regression models that could convert the raw MoGSS data 

to an estimation of 137Cs and 241Am activity concentrations (Bq kg-1). As this MoGSS 

method is novel, widely accepted spatial statistics approaches were also used to 

convert the sediment scrape data to an interpolated surface, for the purpose of 

validation and comparison of spatial trends (Bossler et al., 2010; Ouyang et al., 2003). 
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Sediment scrape 

The sediment scrape data were loaded into ArcGIS with accompanying coordinate data 

provided by the DGPS, these data were projected to a feature class file before being 

analysed. The ArcGIS implementation of Empirical Bayesian Kriging (EBK) was used 

to fit a geostatistical model to these data. The EBK method was selected as it allowed 

an automatic generation of a semivariogram through a process of subsetting and 

simulations (Esri, 2012). This simulated semivariogram can be modified by the user in 

a defined number of simulations so that the, spatial conceptualisation of the underlying 

geostatistical model is refined through processing. This method is more suitable for 

smaller data sets, with the primary limitation being its long processing times. The 

output of these data was four rasters depicting contaminant concentration (Bq kg-1) for 

137Cs and 241Am for the new marsh and old marsh site. 

Inistu Gamma spectrometry data 

Using the sediment scrape data and the pre-processed MoGSS data four predictive 

models were constructed using regression analysis and spatial statistics. The method 

presented here uses the new marsh 137Cs data set as an example, the analytical steps 

were conducted for each of the four data sets and the associated figures for the other 

three data sets can be found in appendix 3. 

Table 6.1  Summary of the four regression models produced to estimate 137Cs and 

241Am concentration from MoGSS data at the two marsh sites. 

Data set Regression equation R2 P-Value 

137Cs New Marsh ݕ ൌ െ496  log	ሺ188.57ݔሻ 80% <0.001 

241Am New Marsh ݕ ൌ െ870  log	ሺ203.9ݔሻ 79% <0.001 

137Cs Old Marsh ݕ ൌ െ331.96  log	ሺ130.79ݔሻ 74% <0.001 

241Am Old Marsh ݕ ൌ െ1141.58  log	ሺ244.82ݔሻ 60% <0.001 

 

The data analysis was conducted within the R statistical analysis environment. Using 

the dplyr package random sampling algorithm (sample n) the data set was split into two 

parts; a modelling data set and a validation dataset. Each of the two parts had MoGSS 

data for 137Cs and the sediment scrape 137Cs activity concentration (Bq kg-1) data. The 
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modelling dataset was subjected to a regression analysis; a simple log transformation 

of the predictor variable was seen to produce the simplest regression model that 

explained the most variance in y with x. This regression model was fitted to the data in 

figure 6.3 and a summary of the regression equation and parameters is given in table 

6.1. 

Using the 137Cs counts from the validation data set estimates of 137Cs Bq Kg-1 were 

calculated using the regression equation. These estimated concentrations were plotted 

against the observed sediment concentrations in figure 6.4, a linear model was fitted to 

the data for the purpose of visualising the general trend in comparison to a 1:1 

prediction line. The general trend in this case was seen to be slightly overestimating at 

high values and underestimating at low values, this was primarily caused by two points 

which deviated from the mean. I chose not to remove points that could be considered 

outliers form visual diagnostic analysis as the NaI (Tl) system is known to produce a 

degree of scatter, therefore my model should try to fit for that scatter. With this scatter 

the regression model fitted to the data retuned R2 = 82% p-value <0.001, therefore the 

regression model estimates surface activity to within an acceptable margin of error. 
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Figure 6.3  Total counts for the 137Cs window from the MoGSS dataset are plotted 

against the 137Cs Bq kg-1 of the sediment scrapes from the new marsh. A 

regression model which used the log transformed MoGSS data was fitted 

to the data with 95% confidence intervals. 
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Figure 6.4  Comparison of estimated activity for 137Cs in the new marsh (x axis) and 

measured activity (y axis) a linear model is fitted to these data to show the 

general trend in comparison to the 1:1 prediction line. 

Having validated these regression models, they were used to make estimations of 

137Cs and 241Am activity concentrations for both the new marsh and old marsh sites. 

These data were then imported in to ArcGIS and had a geostatistical model fitted to 

them using the Empirical Bayesian Kriging function. A resolution of 0.5 m was set so 

that the data would be aggregated for most points to smooth out spikes in the data. As 

the fitted model takes on a nonlinear shape at values of less than 10 counts the model 

adopts a curve that estimates negative values at less than 10 counts. The adopted 

solution was to treat negative values as zero contamination and to average them out by 

using a slightly coarse interpolation of 0.5 m. 
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6.2.7. Radiogenic contaminant vertical spatial analysis 

The four cores collected in this work plus two cores collected from an earlier visit to this 

site in late 2013 as part of a pilot study were combined and analysed in the R statistical 

environment. Descriptive statistics were calculated and activity depth profiles were 

plotted, the interpretation of these data is found below in section 6.3.2. From these 

data, average contaminant reference values were derived using the mean of the core 

depth integrated mean. These average contaminant reference values were used in 

conjunction with the surface activity data to derive reference values for section 6.2.9. 

6.2.8. Inferred sediment movement 

Morphological change was analysed and inferences of sediment movement were 

produced from 2007 to 2015 (chapter 5), the estimation of the volumes of sediment that 

were remobilised within this time period were derived from a subset of the data 

presented in section 5.4.5. The evaluation here only considered locations in the estuary 

which were eroding (e.g. where negative values were available in chapter 5 as positive 

values represent deposition of material) as the focus of this section is on the 

remobilisation of stored contaminants to the estuarine environment. These sediment 

movements were fed into section 6.2.9 and used to calculate the volumes of 

contaminated sediment that had been remobilised. 

6.2.9. Radiogenic contaminant remobilisation 

The estimation of the quantity of contaminants that were remobilised from the new 

marsh and old marsh sites required three pieces of information; the volume of sediment 

that was remobilised, the density of the sediment and an estimate of how much 

contamination was present in the remobilised sediment. With these three pieces of 

information, it is possible to estimate the quantity of saltmarsh stratified contaminants 

that have been remobilised. 

The volume of sediment remobilised was determined on a 0.5 x 0.5m basis for the 

Hesketh Outmarsh site using the raster of difference products with the limit of detection 

applied (from chapter 5). For every 0.25m2 area of the study site a volume of change 

m3 was provided for this analysis. 

The bulk density value of 1230 kg m-3 with a standard deviation of 264 kg m-3 was 

determined to be suitable for a reference value of the bulk density of the saltmarsh 
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sediment. This was based on the descriptive statistics of all the cores collected from 

the site with this value being agreed as a representative value. 

Contaminant reference values were taken from the average of the five cores taken 

within the marshes and the average surface activity concentrations of the two 

saltmarshes. Core 17 was not used due to its activity depth profile being representative 

of a disturbed site, this is explained further in the discussion. The cores that were taken 

from areas of the marsh that were not disturbed were again favoured as examples of 

an activity depth profile before disturbance. Contaminant reference values of 233 Bq 

kg-1 for 137Cs and 141 Bq kg-1 for 241Am were selected. These values were lower than 

the undisturbed core sites and higher than the old marsh sites. The 241Am value was in 

line with current surface activities though the 137Cs value was higher than current 

surface activities. 

A method that used the ArcGIS raster calculator was developed to determine the 

amount of contamination remobilised based on bulk density (BD) and contaminant 

reference values (CRV). The equation below (Eq. 6.1) was typed into the raster 

calculator and run for every pixel of the volume of change rasters of difference. The 

raster calculator extracted the pixel value and inserted it as the volume of change 

(VOC) in the below equation and produced a new raster with each cell containing the 

amount of contamination that was calculated to have been remobilised. Zonal statistics 

were used to quantify the total amount of contaminants that has been remobilised since 

the 2007 disturbance event for the new marsh and old marsh site.  

Equation 6.1:  

Remobilised contamination Bq kg-1 = ሺVOC ݉ଷ×BD kg ݉ଷ⁄ ሻ×CRV Bq kg-1 
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6.3. Results 

The analysis conducted in this chapter produced an estimation of contaminant 

remobilisation using Eq. 6.1. To make this estimation the saltmarsh vertical and 

horizontal variation in contaminant concentration was characterised. The results of 

these characterisations are presented first then the estimation which uses the 

characterisation data is presented. 

6.3.1. Horizontal spatial properties of radiogenic contaminants 

Subsets of the descriptive statistics and model output are presented where necessary, 

the full printout can be obtained for each model and data set within Appendix 3. 

The rasters produced from the geostatistical analysis for both the MoGSS data and the 

sediment scrape data are displayed as maps in figures 6.5 and 6.6. These maps show 

that the MoGSS geostatistical models showed a great deal of site variation in 

comparison to the sediment scrape geostatistical models. The sediment scrape data 

characterised the sites’ surface contamination as a trend of high values in the south 

and east of the site and low values in the north and west of the site. In comparison the 

two map products characterised the same spatial trend but the difference is of 

resolution, with the MoGSS geostatistical model providing a greatly enhanced view of 

sites’ contaminant distribution. A per pixel comparison between these maps is shown in 

figure 6.7, this figure shows a great deal of variation though the general trend is 

reproduced here in both data sets (R2 = 46% p-value < 0.001). 

It should be noted that 137Cs and 241Am share a statistically significant correlation with a 

regression analysis determining that 137Cs and 241Am activity concentrations had a 

strong linear relationship (R2 = 98%, p-value < 0.001), the result is that the spatial 

trends for figures 6.5 and 6.6 are almost identical. 

The descriptive statistics for MoGSS and sediment scrape data show that both 

methods returned similar means and medians for the concentration of the 137Cs and 

241Am (table 6.2). The MoGSS data were less influenced by extremes and had a more 

normal distribution than the sediment scrape data. From these results the surface 

sediments of the new marsh site are represented by concentration values of 136 Bq kg-

1 for 137Cs and 125 Bq kg-1 for 241Am. 
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Figure 6.5  The left image shows the MoGSS derived map of surface activity and the map on the right shows the sediment scrape 

derived map of surface activity for 137Cs at the new marsh site. 
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Figure 6.6  The left image shows the MoGSS derived map of surface activity and the map on the right shows the sediment scrape 

derived map of surface activity for 241Am at the new marsh site.
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Figure 6.7  Plot of the new marsh MoGSS 137Cs activity concentration data against 

the 137Cs predicted by the spatial statistics model fitted to the sediment 

scrape data. The colour ramp from red to blue indicates the number of 

points at that location. 
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Table 6.2  Summary statistics for the new marsh site for 137Cs (Bq Kg-1) and 241Am 

(Bq Kg-1), prefix SM = MoGSS data, prefix SC = sediment scrape. MAD = 

median absolute deviation. 

Data 

type Mean  SD Median MAD Min Max Skew Kurtosis 

137CsSM  136 62 139 68 1.7 313 -0.07 -0.57 

241AmSM 125 42 125 44 1.9 235 -0.17 -0.37 

137CsSC 138 70 165 59 27 230 -0.46 -1.42 

241AmSC 119 56 144 44 31 183 -0.54 -1.43 
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Figure 6.8  The left image shows the MoGSS derived map of surface activity and the map on the right shows the sediment scrape 

derived map of surface activity for 137Cs at the old marsh site. 
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Figure 6.9  The left image shows the MoGSS derived map of surface activity and the map on the right shows the sediment scrape 

derived map of surface activity 241Am at the old marsh site.
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The geostatistical models fitted to the data sets for the old marsh site have good 

agreement on what the spatial distribution of 137Cs and 241Am is within the old marsh 

site (figures 6.8 and 6.9). Within the site there was a difference in activity levels with a 

west east divide clearly present, the western side of the marsh had higher activities. 

This area with higher activities had a slightly higher elevation and it had a key feature 

which was a large patch of exposed sediment that drained from north to south across 

this area. 

Table 6.3 Summary statistics for the old marsh site for 137Cs (Bq Kg-1) and 241Am 

(Bq Kg-1), prefix SM = MoGSS data, prefix SC = sediment scrape. MAD = 

median absolute deviation. 

Data 

type Mean SD Median MAD Min Max Skew Kurtosis 

137CsSM  114 50 113 52 3.5 234 -0.04 -0.64 

241AmSM 107 54 101 57 0.1 259 0.25 -0.7 

137CsSC 96 58 108 76 26 235 0.36 -0.86 

241AmSC 87 44 99 57 28 172 0.03 -1.46 

 

The MoGSS and sediment scrape data’s descriptive statistics show that both methods 

returned similar means and medians (table 6.3). There was less variability in the old 

marsh sediment scrape data compared to the new marsh site. From these results the 

surface sediments of the old marsh site are represented by concentration values of 114 

Bq kg-1 for 137Cs and 125 Bq kg-1 for 241Am. 
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6.3.2. Radiogenic contaminant vertical profiles 

 

Figure 6.10 Activity concentration depth profiles for 137Cs Bq kg-1 for four cores 

collected from the new marsh site. 

 

Figure 6.11  Activity concentration depth profiles for 241Am Bq kg-1 for four cores 

collected from the new marsh site. 
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Figure 6.12  Activity concentration depth profiles for 137Cs Bq kg-1 for two cores 

collected from the old marsh site. 

 

Figure 6.13  Activity concentration depth profiles for 241Am Bq kg-1 for two cores 

collected from the old marsh site. 
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Figures 6.10 to 6.13 all present core activity concentration depth profiles for 137Cs or 

241Am. The figures are a graphical representation of the vertical distribution of the 

contamination. The saltmarsh surface is represented by a depth 0 cm, contaminant 

concentration is reported down to 1 m for the long cores and 0.5 m for the shallow 

cores, in this study two shallow cores (L1 and L2) and four long cores (5, 17, 26 and 

30) were collected and analysed. This graphical representation of core contaminant 

data is standard in the environmental radioactivity literature (e.g. Brown et al., 1999; 

Mackenzie and Scott, 1993). The cores where compared using their respective 

elevations to attempt to produce a narrative that incorporated sedimentation rates, 

however more cores would have been needed for this narrative and thus it was not 

used. Descriptive statistics for each core where calculated and the relevant statistics 

for each core are stated in this section where appropriate.  

The new marsh site had four cores available. Cores L1 and L2 were collected around 

20 m south of the new marsh focus area (figure 6.1). These cores were categorized as 

undisturbed marsh and were taken as an example of the marshes activity depth profile 

before disturbance. Core 5 represents a semi disturbed marsh example and core 17 

represents a fully disturbed core example. These categorisations of these cores are 

relevant for deriving the contaminant reference values, the justification and reasoning 

for the categorisation of these cores is explained fully in the discussion section (6.5.2). 

At the new marsh site there was a clear distinction between the activity depth profiles 

of the sediments, where cores 5, L1 and L2 were similar but core 17 distinctly different. 

Core 17 was taken from an area of marsh that has seen in excess of 0.5m of erosion 

as a creek was formed and consequently represents a partial activity depth profile. 

Cores 5, L1 and L2 have mean activities ranging from 285 Bq kg-1 to 476 Bq kg-1 for 

137Cs and 118 Bq kg-1 to 226 Bq kg-1 for 241Am. 

The old marsh cores are more complex and on initial inspection core 30 appears 

suspect, with the likely physical factors that may have accounted for core 30’s unique 

profile described in the discussion section. These cores provide mean activities ranging 

from 172 Bq kg-1 to 363 Bq kg-1 for 137Cs and 137 Bq kg-1 to 267 Bq kg-1 for 241Am. 

These data show that the sediments of the new marsh in terms of the radioactive 

contaminants had a lower range than the old marsh but the peaks of the activity depth 

profiles were broader and thus the sediments where more homogeneous in 

comparison to the old marsh sediments. 
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6.3.3. Mass balance of contaminants 

The volume of change data used to drive the estimation of contaminant remobilisation 

was processed as a sediment budget for the site. These data are reported in table 6.4. 

The new marsh site experienced most of its erosion from 2007 to 2009, this was driven 

by the large scale earth works as part of the realignment scheme. From 2009 to 2014 

the site was in a state of accretion with smaller amounts of erosion occurring between 

2014 and 2015. The old marsh site experienced less loss of sediment however it 

remained in a state of erosion for a longer period from 2010 to 2015. 

The new marsh and old marsh calculated quantities of 137Cs and 241Am that have been 

remobilised from the site are presented in table 6.5. These data show 67.3 GBq of 

137Cs and 40.9 GBq of 241Am was remobilised in the initial period form the new marsh. 

12.5 GBq of 137Cs and 7.6 GBq of 241Am was remobilised in the initial period form the 

old marsh. In the following years since the managed realignment scheme was 

implemented a downward trend in the quantity of contamination remobilised for each 

following year is present. 

Table 6.4  Sediment budget data for the Hesketh Outmarsh site from 2007 to 2015. 

Year range 

  

Volume of change (m3) Average (m3/m2) 

New marsh Old marsh New marsh Old marsh 

2007 – 2009 -2.2E+05 -4.1E+04 -0.56 -0.61 

2009 – 2010 5.3E+04 6.1E+03 0.21 0.06 

2010 – 2011 1.9E+03 -1.5E+04 0.02 -0.31 

2011 – 2014 6.8E+04 -1.1E+04 0.21 -0.12 

2014 – 2015 -5.3E+02 -2.7E+03 -0.01 -0.07 
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Table 6.5  Calculated volumes of remobilised contaminants for the Hesketh 

Outmarsh site from 2007 to 2015. 

Year range 

  

Remobilised 137Cs (GBq) Remobilised 241Am (GBq) 

New marsh Old marsh New marsh Old marsh 

2007 – 2009 67.3 12.5 40.9 7.6 

2009 – 2010 5.6 6.1 3.4 3.7 

2010 – 2011 4.8 5.8 2.9 3.5 

2011 – 2014 6.1 7.8 3.7 4.7 

2014 – 2015 1.8 2.4 1.1 1.4 

 

6.4. Discussion 

The saltmarshes were characterised using a novel in-situ technique and these 

characterisations were used to produce saltmarsh contaminant reference values. 

These values in conjunction with a multiyear LiDAR derived sediment budget were 

used to calculate the volume of contaminants that were remobilised in response to the 

Hesketh Outmarsh managed realignment scheme. 

6.4.1. Saltmarsh radiogenic contamination 

The developed MoGSS method was validated by using a subset of the data. The 

results of this validation showed favourable results and proved its predictive ability. As 

an additional step the data were compared to a geostatistical model; in effect 

comparing predictions from a Bayesian kriging function to predictions from the MoGSS 

method. Such kriging functions are used as standard practice (Bossler et al., 2010; 

Smith et al., 2008) therefore comparing this method to what is in effect a widely 

accepted practice (e.g. Oh et al., 2009) was seen as a second way of assessing the 

quality of the method. The results produced the same underlying trend though the 

MoGSS method allowed finer detail to be mapped, which resulted in a better 

characterisation of the site. 
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The new marsh site was in effect an island attached to the rest of the marsh by a 

narrow isthmus, with large creeks on all sides and two smaller creeks penetrating in to 

the marsh. The smaller creeks had lower levels of contamination this is likely due to 

them being some 0.5 m below the marsh surface therefore the subsurface maxima of 

contamination, which was around 0.1 – 0.2 m in depth, would have been almost 

entirely remobilised from these locations. The activity depth profile of core 17, which 

was taken from a creek site supports this as the activity depth profile of the core is 

much reduced in 137Cs Bq kg-1 activity concentration for the whole core compared to 

cores such as core 5 which are known to have not experienced erosion.  

Core 17 also exhibited an interesting feature in that 241Am had two peaks one at depth 

with 137Cs and a second located at the marsh surface. This second 241Am peak is the 

result of deposition of sediments that have enriched 241Am values and not ingrowth as 

ingrowth would have affected the activity depth profile at all depths where 241Pu and 

241Am are found. As the second 241Am peak is in the upper 5cm of sediment it is likely 

that this second peak was formed by sediment deposition. Such sediments could have 

come from saltmarshes that have been eroded, which is the case for this site. These 

enriched sediments could have also come from the estuary or the Irish sea, as 241Am in 

particular is affected by remobilisations from the environmental store of radioactivity 

and ingrowth from 241Pu decay (Aston and Stanners, 1982; Hunt et al., 2013; Leonard 

et al., 1999; Lindahl et al., 2011). This cores activity depth profile proves that the 

subsurface maxima of historic contamination has been remobilised through erosion 

and that post deposition remobilisation of radiogenic contaminants is occurring.  
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Figure 6.14  Photograph of the large main creek which ran adjacent to the old marsh 

site. This creek expanded in size as a result of the managed realignment, 

the rough areas seen in the creek are sections of marsh that have been 

undercut (Photo taken of the Old marsh site in 2015). 

The old marsh was an island of saltmarsh surrounded on all sides by creeks. Just 

under half of its perimeter was adjacent to the main creek, which caused substantial 

erosion at this site (figure 6.14). The site surface appeared to be composed of two 

saltmarshes of different age, they are identifiable from aerial photographs by a distinct 

colour change and in the field, this is identifiable by a step down in elevation. The data 

showed the site contaminant activity concentration was highest in the westward area 

which had a higher elevation reflecting the older, more established nature of the 

saltmarsh. 

It is likely that the 1980’s land reclamation is responsible for these two different aged 

marshes at the old marsh site. When the main creek was converted to a dead end by 

the placement of sea walls it will have begun a process of sediment accretion that was 

observed to be in operation from 1999 - 2007 prior to the breach (chapter 5.4.5). This 

accretion would have seen the marshes expand on either side of the main creek, 

exactly as they were seen to be doing in figure 5.24. 

Cores 26 and 30 offer more evidence in support of this theory that the old marsh is in 

fact two marshes of a different age. Both cores had unusual activity depth profiles that 

deviated from what would be expected to be found for a mature saltmarsh that had 
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been accreting sediment and sediment bound contaminants from the beginning of the 

nuclear age to present day. They also had a high content of sand present which again 

is unusual, as clays and silts should be dominant. These unusual activity depth profiles 

are not likely to be caused by smearing as the outer edge of the core slices was 

removed to avoid smearing during the coring process. This suggests that the old marsh 

sites contaminant distribution is spatially complex.  

The surface of the new marsh showed a great deal of relative variability in 

contamination with ranges of 311 Bq kg-1 for 137Cs and 233 Bq kg-1 for 241Am. This 

variation was true for the old marsh site as well which exhibited similar ranges for both 

137Cs and 241Am. Therefore, there is substantial variability in contaminant concentration 

across the saltmarsh surfaces. This variability highlights the need to characterise the 

saltmarshes for this work before determining a reasonable contaminant reference value 

for the marsh surfaces. As this reference value should incorporate the spatial dynamics 

of the radiogenic contaminants found at the saltmarshes. 

6.4.2. Remobilised radiogenic contamination 

The method developed for assessing the quantity of contaminants that were 

remobilised was a simple linear equation that used saltmarsh contaminant reference 

values, saltmarsh bulk density values and sediment change values. As this equation 

was implemented as a per pixel iteration across the study site, there was a great deal 

of flexibility in which data sets could be used to drive this equation, as the quality of the 

input data dictated the scope and complexity of the output. Where high frequency data 

were available for all three parameters then it was possible to produce a high-

resolution simulation.  

The contaminant reference values were set by conducting an in-depth characterisation 

of the saltmarshes and generating average values, which were weighted towards the 

subsurface sediment bound contaminants. They were weighted in that there were three 

subsurface values for every one surface value and it was the average of these that 

formed the contaminant reference value. The reasoning behind this was that the 

current surface spatial distribution of contaminants may be indicative of past spatial 

distributions of contaminants that where present during marsh formation. This 

characterisation was conducted to incorporate the spatial trend of contaminant 

distribution into the contaminant reference values for the site.  

The sediment change values were derived from an eight-year sediment budget 

conducted for the Hesketh Outmarsh site at five time steps, this was part of the Ribble 
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sediment analysis conducted in chapter 5. These data allowed the assessment of 

contaminant remobilisation at the relatively fine resolution of 0.5 m. The analysis used 

an intense characterisation exercise and applied conservative limits of detection that 

accounted for error propagation in the source data sets to produce a robust method of 

contaminant estimation. 

The new marsh site, as discussed in chapter five, was characterised by high erosion 

values from 2007 - 2009, these data were skewed by the earth works and landscaping 

conducted as part of the managed realignment. In this initial period some 67 GBq of 

137Cs and 41 GBq of 241Am was lost from the site due to the reestablishment of the 

main creeks. 2009 - 2010 represents the first year of erosion induced sediment 

remobilisation that was not caused by the excavation works, though the site was 

accreting from this point onwards. For this year the quantity of remobilised 

contaminants was much reduced from the previous time step at 5.6 GBq of 137Cs and 

3.4 GBq of 241Am. The rate of contaminant remobilisation continued to decline until 

2014 - 2015 with a yearly value of 1.8 GBq of 137Cs and 1.1 GBq of 241Am that was 

remobilised. These remobilisations were dominated by creek induced erosion of the 

sides of the marshes by undercutting the saltmarsh creek banks. At present based on 

the downward trend in erosion it appears that the marsh site has reached some form of 

equilibrium and is no longer subject to substantial sediment change in in the form of 

major accretion or erosion events. 

The old marsh site, which was not subject to the substantial excavation works seen at 

the new marsh site, was primarily affected by erosion by the widening of the newly 

reconnected main creek. The initial 2007 – 2009 period reported remobilisation values 

of 12.5 GBq of 137Cs and 7.6 GBq of 241Am and like the new marsh these values have 

continued to decline probably as result of the main creek reaching an equilibrium point 

in terms of its width. 

These observations of the quantity of contaminants that have been remobilised and the 

rates at which they have been remobilised are exactly as they are described, they are 

remobilised contaminants and not contaminant budgets. The method expressly ignores 

accretion and focuses on erosion for a number of reasons, erosion is the remobilisation 

of a volume of the marsh to the intertidal environment. As it is possible to quantify this 

volume and the likely contaminant concentration of the marsh, then a reasonable 

estimate of the quantity of contaminants is possible. 
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Accretion however is more complex the remobilisation mechanism (chapter 5.5) of 

sediment transfers from the saltmarshes to the mudflats and back to the saltmarsh 

again involves a mixing and dilution process in the mudflats. Chapter 3 revealed that 

the concentration of contaminants within the mudflats was highly variable temporally 

and spatially, in contrast to the vertically stratified saltmarshes. Therefore, producing a 

reasonable contaminant reference value for these accretions would be fraught with 

uncertainty. For these reasons this work focused on identifying how much 

contaminants were being remobilised from the saltmarshes to the Ribble estuary 

sediment transport system, in effect quantifying these sources of contaminants. 

6.5. Conclusion 

This work has shown that there was significant spatial variation in how the 

contaminants were stored within the saltmarshes both in terms of surface spatial 

variability and the vertical distribution of the contaminants at depth. This spatial 

variability was measured and incorporated into a contaminant reference value which 

was used to estimate the quantity of contaminants that have been remobilised from the 

Hesketh Outmarsh to the Ribble estuary. 

From 2007 to 2015 85.6 GBq of 137Cs and 34.6 GBq of 241Am were estimated to have 

been remobilised at the new marsh site and 52 GBq of 137Cs and 20.9 GBq of 241Am 

were estimated to have been remobilised at the old marsh site. The rates of 

remobilisation have reduced substantially over the years, which is believed to be due to 

the sites reaching equilibrium with the new energy regime caused by the managed 

realignment scheme. 

Based on the data presented, the remobilised sediment and its associated radiogenic 

contaminants would have been remobilised first to the wider estuary, where it would 

have mixed with sediment from other sources resulting in a change to the contaminant 

concentration ratio of this sediment. The ‘new’ sediment could then have been moved 

out of the estuary or deposited in other parts of the estuary. A sediment transport 

model of the Ribble estuary would be required to determine which of these two 

processes is most likely to have happened. Based on the evidence presented here 

though, remobilisation of the sediment and its’ associated radiogenic contaminants are 

most likely to enter the Ribble’s sediment transfer system and then the Irish sea 

sediment transfer system. By entering these systems, they are likely deposited 

according to the hydrodynamics during the time of remobilisation, supporting the idea 
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of producing a sediment transport model as a potentially useful tool for further work at 

this site.  

Remobilisation of the environmental store of radioactivity from radiogenic contaminant 

enriched sediments such as saltmarshes has been demonstrated to occur at an 

accelerated rate for a site that has undergone anthropogenic disturbance (managed 

realignment). The old marsh site acted as an analogue for understanding the impacts 

of changing hydrodynamics as a result of a disturbance event. The disturbance and 

saltmarsh response were somewhat similar to the findings of Browne (2017) whom 

investigated the post disturbance erosion of saltmarshes. There is however a lack of 

work looking at these types of disturbance events at a landscape scale with novel 

results therefore being presented here. The findings at the old marsh site provide 

evidence that increasing disturbance to the coastal margins, either through an increase 

in storminess or sea level rise, will likely accelerate the rate of radiogenic contaminant 

remobilisation to the marine environment.  
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7. Conclusions 

Estuarine and marine sediments can act as sinks for contaminants, with industrial 

discharges of radiogenic contaminants being concentrated within clay and silt deposits 

within estuaries as well as within the marine environment (Brown, 1997; Brown et al., 

1999; Clifton et al., 1999; Mackenzie and Scott, 1993; Rainey et al., 1999). 

Saltmarshes by virtue of their formation processes act as a stratified environmental 

store of radiogenic contaminants such as 241Am and 137Cs (Assinder et al., 1997; Brown 

et al., 1999). The time integrated discharges of contaminants that are present within 

saltmarshes represent substantial coastal contaminant sinks (Gleizon and McDonald, 

2010; Rainey, 1999; Wakefield, 2005). These contaminant sinks are often referred to 

as being part of the environmental store of radioactivity and have previously been 

thought to be locked within sediments (Rahman et al., 2013b). 

Coastal contaminant sinks are now accepted to be acting as sources to other near 

shore environments within the Irish sea (Hunt et al., 2013). At the saltmarsh scale, 

remobilisation within the estuary and saltmarsh itself is also known to be occurring 

(Lindahl et al., 2011; Morris et al., 2000; Oh et al., 2009). With authorised discharges 

from nuclear facilities being much reduced compared to historic levels, remobilisation 

of radioactive contaminants from coastal contaminant sinks will, and in some cases 

already has, emerged as the dominant source of radionuclides to the environment 

(Aldridge et al., 2003; Goshawk et al., 2003; Hunt et al., 2013; Leonard et al., 1999; 

Lindahl et al., 2011; Mackenzie and Scott, 1993). 

It is the store of contaminants in the sediments that creates interest in better 

understanding the nature of sediment morphological change and sediment movement. 

Anthropogenic modifications and climate change have the potential to alter the amount 

of energy within the estuary and its hydrodynamics, which in turn will impact how 

sediments are remobilised and cycled within and out with the estuary (e.g. Brown et al., 

2016; Azevedo et al., 2010; Browne, 2017; Wolanski et al., 2001). The current 

expectation that climate change will result in an increasing frequency of storminess is 

linked to sediment remobilisation (e.g. Mölter et al., 2016). The significance of sediment 

movements for radionuclide remobilisation was explored throughout his work. 

The problem of climate change induced acceleration to the rate of sediment bound 

radiogenic contaminant remobilisation was considered and the following five research 

questions have been addressed.  
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 Are the relationships between estuarine radiogenic contaminants and the 

sediment matrix temporally and spatially stable in the short to medium term? 

(Chapter 3) 

 Are mechanisms of disturbance significantly correlated with changes in the 

sediment matrix and radiogenic contaminant concentration? (Chapter 4) 

 What is the nature of sediment movement within the Ribble Estuary? (Chapter 

5) 

 How do saltmarshes respond to the emplacement of a manged realignment 

scheme within their locality? (Chapter 5) 

 How much contamination is remobilised from saltmarshes in response to an 

analogue for disturbance? (Chapter 6) 

7.1. Research questions 

 Radiogenic contaminants and the sediment matrix 

Chapter 3’s findings confirmed the established contaminant sediment relationships 

(MacKenzie et al., 1999; Rainey, 1999) that show 137Cs and 241Am are particle reactive. 

These findings are important because the expected increase in sediment remobilisation 

rates under climate change scenarios will have implications for contaminant transport. 

These particle reactive relationships also underpin the quantification of saltmarsh 

radionuclide remobilisations conducted within chapter 6 and therefore it was important 

to establish that these relationships are present at the Ribble estuary. The following 

questions were asked in chapter 3:  

 Are the relationships between estuarine radiogenic contaminants and the 

sediment matrix temporally and spatially stable in the short to medium term? 

 Is there a significant relationship between contaminants and particle size 

distribution? 

 Is there a significant relationship between contaminants and percentage organic 

matter? 

 Is the contaminant sediment property ratios temporally stable? and at what 

scales do these ratios exist at? 
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The radionuclides 137Cs and 241Am were found to exhibit strong statistical associations 

with the particle size distribution, in that as the clay and silt content of the sediment 

matrix increased so did the concentration of these contaminants. The findings confirm 

those in the literature that contaminants in general are associated with fine sediments 

(MacKenzie et al., 1999; Rainey et al., 1999). They also agree with Wakefield (2005) in 

that disturbance can cause a decoupling in these relationships which I believe in the 

case of my data was through physical remobilisations of the sediments between 

deposits (September siltation event). 

Organic matter was also a good predictor though it had more inter-transect variability, 

which made building a general model for the estuary more difficult. 241Am is known to 

be preferentially bound to organic matter which is why the relationship with organic 

matter was explored. Percentage of organic matter in the sediment can change 

seasonally with the influx of detritus from leaf fall in the autumn as well as 

microphytobenthos production (de Jonge et al., 2012; van der Wal et al., 2008). 

Therefore, this parameter was assessed over the year to investigate whether these 

seasonal changes might affect radionuclide concentrations. 

The 137Cs and 241Am contaminant sediment property ratios were found to be spatially 

and temporal variable between transects. The data showed that variation occurred 

between different transects with transect 3, which was lower down in the tidal frame, 

having less clay and silt. The data also showed that the contaminant ratios were not 

temporally stable with the coefficients of determination varying temporally for all 

transects. However, the data from transect 3 during the September siltation event was 

the only incidence of variability in the sediment particle size distribution and 

contaminant concentration rendering the contaminant ratio not statistically significant.  

The substantial accumulation of silts during the event described as the September 

siltation event, decoupled the contaminant fine sediment relationship for sites located 

lower down in the tidal frame. From May to September transect 3 transitioned from 

having the coarsest sediment and lowest 137Cs and 241Am activity concentrations of the 

three transects to having the highest clay and silt percentages and 137Cs and 241Am 

activity concentrations. The event clearly had higher deposition of fine sediment in 

comparison with course sediment at this site. These finer sediments had higher activity 

concentrations of 137Cs and 241Am and there had been insufficient time for the two 

types of sediment to mix thoroughly (Brown et al., 2015). The consequence was that 

there was too much scatter in the surveyed data for the relationship between 

radiogenic contaminants and clay/silt to be statistically significant. 
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There are two possible explanations for the effects of this siltation event on the 

contaminant sediment property relationships: 

1. That the continued gradual accretion of sediments from the Irish Sea at the site 

over summer caused an enrichment of fine sediments that had higher 

contaminant concentrations than those sediments found in March and May. 

However, this does seem unlikely as the Irish Sea sediment is being deposited 

year-round and its contaminant concentration is similar to those sediments that 

are already present.  

2. A sediment with significantly higher contaminant concentration has been 

deposited here. The effects of such a deposition would be that the sediment 

contaminant relationship would exhibit greater scatter whilst seeing bulk 

contaminant concentrations increase, which they did for this site.   

The second explanation is more plausible given the weight of the evidence of the 

observed changes during the seasonal sampling campaign. 

The long-term trend in 137Cs and 241Am contamination at the Ribble estuary is a 

downward trend in contamination levels until 2002 but from 2002 to 2014 there has not 

been a significant change in the levels of sediment contamination. This is likely to be 

the result of diffuse sources of contaminants from the Irish Sea or other parts of the 

estuary ‘topping up’ the contaminant concentration at the same rate it is being diluted 

by sediment mixing (e.g. Hunt et al., 2013). The September siltation event is an 

example of such an introduction of sediment with a higher contaminant concentration 

from an area such as the Ribble saltmarshes. It should be noted that these types of 

remobilisations of saltmarsh sediment to the mudflats were described in chapter 5 in 

the form of bank migration promoting saltmarsh erosion towards the mudflats. 

The research described in chapter 3 confirmed that the relationship between the 

estuarine radiogenic contaminants and the sediment matrix are temporally and spatially 

stable with a few notable caveats. For, example the first caveat is that there is 

variability both spatially and temporally, but this variability does not fundamentally 

challenge the established wisdom that, as clay and silt increase within the sediment 

matrix, so does the activity concentration of 137Cs and 241Am. The September siltation 

event is evidence of sediment bound contaminant transfer from a concentrated 

sediment deposit (saltmarsh) to a less concentrated sediment deposit (mudflat). The 

lack of a significant decline in 137Cs and 241Am concentration post 2002 is also evidence 
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that these activity concentration levels are being inflated by remobilisations from more 

concentrated deposits within the estuary and from the Irish Sea (e.g. Hunt et al., 2013). 

 Mechanisms of disturbance and the sediment matrix 

The significance of discreet high impact disturbance events that contribute to the short-

term modification of the sediment matrix properties as well as the cumulative effect on 

longer term trends is my second key underpinning mechanism. Storminess is widely 

regarded as a factor that will become more significant as the frequency of high impact 

storms increases in future years (Mölter et al., 2016), however its effects are yet to be 

fully understood (Adams et al., 2011; Esteves et al., 2011; Gutiérrez et al., 2016; 

Schuerch et al., 2013; Sierra and Casas-Prat, 2014). There is a view that whilst it is not 

a significant driver at present it may become so in the near future especially for 

estuaries such as the Ribble that may or may not be at a state of dynamic equilibrium 

(Pye and Blott, 2014; van der Wal et al., 2002). The following question was asked in 

chapter 4:  

 Are mechanisms of disturbance significantly correlated with changes in the 

sediment matrix and radiogenic contaminant concentration? 

Storminess was found to cause variation in the particle size distribution, sediment 

elevation and contaminant concentration of the sediment, which is in line with what 

would be expected from the literature (Brooks et al., 2017; Pye and Blott, 2008; Sierra 

and Casas-Prat, 2014). The data showed statistically significant causation though this 

was not repeated at many sites within the Ribble estuary, therefore storminess is 

considered a minor factor and reciprocal causation in the data was an issue. An 

interpolation artefact is the likely cause of the presence of the reciprocal causation in 

these data. The main effect of the interpolation is that an assumption is made about the 

rate of change at which a property transitions from one measured point to another 

measured point i.e. it is assumed to be steady and is represented by a straight line 

between two points. Therefore, I think that the results are valid and that what has been 

analysed is the long-term trend of how the estuarine sediment matrix responds to 

successive disturbance from storm events. The cumulative effect of storm events at 

Southport near the mouth of the Ribble Estuary has been shown to be a significant 

factor in beach morphological evolution (e.g. Pye and Blott, 2016).  

There is a clear causal linkage between storminess / riverine discharge data and the 

sediment bed elevation change as well as sediment matrix properties such as particle 

size and contaminant concentration. The Ribble riverine discharges were revealed to 

be a substantial driver of change within the Ribble estuarine sediments. These 
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discharges will influence the estuary hydrodynamics and promote seaward erosion 

during peak river discharges. The riverine discharge will also impact the sediment 

matrix properties by preventing accretion in the upper estuary as increased river flow 

will impact sediment deposition from the incoming flood tide (Azevedo et al., 2010; 

Gleizon et al., 2003). The fact that this disturbance mechanism was predominantly 

correlated with lower estuary transects, suggests that riverine discharge impacts these 

sites by eroding sediments from the upper estuary to those lower estuary sites during 

heavy river discharge periods.  

The analysis of reciprocal causation showed that the storminess data, and riverine 

discharge data was affected by regional climate which influences the precipitation 

patterns as well as the extent of storminess for the Irish Sea and specifically the Ribble 

estuary. However, the linkages between the multiple drivers of sediment disturbance 

and remobilisation should be further explored to yield a fuller understanding of how 

sediments and the sediment bound contaminants will behave in the coming years. The 

impact of storminess on the properties of the sediment matrix should also be revisited 

using higher temporal resolution data sets, specifically to quantify the measurable 

impact of storminess (Brooks et al., 2017; Esteves et al., 2011; Robins et al., 2016).  

 Ribble estuary sediment movement 

Within estuaries sediments from the marine, estuarine and terrestrial environment are 

mixed and deposited within mudflats, saltmarshes and sandbanks or transported out 

with the estuary (Wakefield et al., 2011). This known variability in the sediment 

deposits, means that environmental stores of radioactivity will at some time scale be 

vulnerable to remobilisation (e.g. Rahman et al., 2013). The loss of large sections of 

saltmarsh at Arnside, North West England due to shifting river channels caused by high 

riverine discharge during the 2013 winter storms, is an example of these stores of 

radioactivity being remobilised to the Irish Sea. The uneven distribution of radiogenic 

contaminants within estuarine sediment deposits such as mudflats (Gleizon et al., 

2003; Lyons, 1997; Rainey et al., 2003) and saltmarshes (Brown et al., 1999; Lindahl et 

al., 2011) means that the impact of exposure to radiological contaminants can be 

variable and dependent upon which sediments are remobilised. To understand the 

nature of sediment bound contaminant remobilisation the morphological change and 

sediment movement of the Ribble estuary was explored in chapter 5.  

 What is the nature of sediment movement within the Ribble Estuary? 

 Is the long-term trend in estuary sedimentation positive (accretion dominant) or 

negative (erosion dominant)?  
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 What are the morphological characteristics of sediment movement for the 

sandbanks, mudflats and saltmarshes?  

Characterisation of the Ribble Estuary’s sediment spatio-temporal properties was 

conducted over 16 years from 1999 – 2015, making this estuary one of the best 

characterised in the world. The analysis focused on sediment morphological change 

which can be used to infer sediment movement. Where a negative (erosion) or positive 

(positive) change in sediment morphology was detected the sediment can be said to 

have moved. This distinction is important as true movement would require repeated 

daily LiDAR surveys and the incorporation of hyperspectral data (Deronde et al., 2008, 

2006).  

The geospatial analysis used geo-statistics and clustering algorithms to allow 

computational delineation of sediment morphological features. This was key to defining 

the morphological characteristics of the Ribble estuaries sediment movements 

objectively, as it removed user bias in determining what features were of note. Similar 

approaches should be applied to future data sets as a means of quantifying 

morphological change within a complex sediment system. 

The analysis of the Ribble Estuary sandbanks in the context of radiogenic contaminant 

remobilisation is of little interest due to contaminants not binding to coarse grained 

sediments such as sand. However, the morphological characterisation of these 

features is perhaps an interesting finding of this research. These features confirm the 

postulated theory of channel ward migration (Rainford, 1997), which suggests these 

sands are migrating to the main channel and infilling it (van der Wal et al., 2002). The 

detected pattern of layered erosion and accretion features shown in figure 5.18 is a 

clear example of sand migration towards the nearshore and Ribble channel.  

The Ribble mudflats and saltmarshes were found to be interconnected, I identified 

features that suggest a back and forth transfer of sediment between the mudflats and 

the saltmarshes. Within the mudflats a highly variable pattern of sediment 

morphological change was interspersed with occasional ellipsoids running parallel to 

the main channel and delta fans originating from a saltmarsh creek.  

The ellipsoids were interpreted as evidence of the ebb tide deposition of sediment as 

they are formed along the same direction as the receding Ribble ebb tide. The 

ellipsoids are significant as they highlight how the September siltation event from 

chapter 3 could have occurred. Transect 3 which ran from saltmarsh edge towards the 

Ribble main channel is interpreted as having sampled across such an ellipsoid. 
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Therefore transect 3 sampled two distinct types of sediment with contrasting 

contaminant activity concentrations resulting in excess scatter in the data. This occurs 

because the two types of sediment have not had sufficient time to mix from time of 

deposition to time of sampling.  

The delta fans at the mouths of saltmarsh creeks are a deposition feature formed by 

sediment that has been washed out of the saltmarsh creeks by the ebb tide. The 

saltmarsh sediments undergo erosion via bank migration and marsh retreat, which 

causes sediment to be deposited within the large creeks and mudflats in front of the 

saltmarsh. Bank migration is the process in which undercutting of the saltmarsh that 

runs parallel to the creeks results in collapse of the saltmarsh bank. This collapse 

represented the deposition of saltmarsh sediment into the creeks which is then eroded 

via flood and ebb tides. The presence of extensive erosion within the large network of 

saltmarsh creeks and the formation of a delta fan at the mouth of the saltmarsh creek, 

provides evidence of the transfer of saltmarsh sediments to the mudflats.  

Some of these remobilised sediments are redeposited within the creeks and on the 

saltmarsh surface due to the flood and ebb tides of the Ribble estuary. The great 

spatial and temporal variability of the mudflats will likely mix the mature saltmarsh 

sediments with new sources from the river, marine and the existing sediment stocks 

within the estuary. Consequently, this is likely to dilute any historic contaminant levels 

originating in the saltmarsh sediments, such that the sediment redeposited within the 

saltmarshes creeks and surface will be distinct from that which was remobilised (e.g. 

Rahman et al., 2013). 

My findings support the views of Rahman et al., (2013) and Hunt et al., (2013) that the 

environmental store of radioactivity should not be considered ‘safely stored’ and the 

implications of remobilisation should be further investigated. Over a ten-year period 

from 1999 – 2009 the estuary was observed to have undergone a net trend of erosion 

with some 8.1 E+6 m3 of sediment being un accounted for. Interestingly the effects of 

marsh retreat and bank migration caused by the evolution of the saltmarsh creek 

systems resulted in saltmarshes accounting for some 65% of the erosion measured. 

This is significant as radiogenic contaminants are concentrated in the saltmarshes and 

such remobilisations confirm the saltmarshes as a source of such contaminants to the 

estuarine environment.  

The dominance of accretion and erosion was found to be temporally variable and that 

the estuary could switch between either for different years. This is likely evidence of a 

larger Irish Sea sediment transfer system mechanism and should be investigated in 
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further research. This is why sediment remobilisation, through the detection of 

deposition features that reveal a cycling of sediment between the saltmarshes and 

mudflats are emphasized over sediment budgets, which are fraught with the risk of 

over interpretation.   

 Hesketh Outmarsh managed realignment scheme 

The Hesketh Outmarsh case study provides the opportunity to study the impacts of a 

managed realignment scheme on the nearby saltmarshes and sediment deposition in 

the locality. This is important as such schemes will become more common 

internationally as governments seek to preserve coastal habitat in response to sea 

level rise. This scheme represents an anthropogenic modification to the local 

hydrodynamics of the mid estuary and therefore provided the opportunity to study what 

may be considered an analogue for disturbance. The Hesketh Outmarsh was explored 

as a case study of a manged realignment scheme and as an analogue for disturbance, 

by monitoring the changing morphology of the realignment site and nearby sediment 

deposits. Using a hindcast the following research question was answered; 

 How do saltmarshes respond to the emplacement of a manged realignment 

scheme within their locality?  

Using multiple LiDAR data sets from 1999 – 2015 the sites morphological change and 

sediment movement were analysed from the initial breach in 2007 to 2015. The 

analysis focussed on two sites; the first was the area of new saltmarsh created by the 

scheme (new marsh site) and the second was an area of mature saltmarsh just outside 

the scheme (old marsh site).  

The new marsh site was reconnected to the Ribble estuary via series of landscaping 

projects that included the excavation of the main historic saltmarsh creeks and the 

breaching of the sea wall defences. The site underwent extensive erosion for the initial 

three years after the breach, which was characterised by the formation of a dense 

network of creeks. The sites creeks widened and depended through bank migration 

which resulted in undercutting of the marsh along the creek networks and the 

subsequent remobilisation of the saltmarsh sediments. At the same time, there was 

substantial deposition of sediment on the marsh surface from 2009 onwards. The 

dramatic reduction in sediment movement by 2014 and 2015 suggests that the effects 

of the initial disturbance of realignment have diminished such that the site is now 

nearing equilibrium with the estuary.  
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The old marsh site was most interesting to this work as it represented a response to 

modified hydrodynamics, which means those findings are generalised easier than the 

new marsh site which experienced excavations. The old marsh site responded to the 

main creek that ran through the site transforming from a dead end to being connected 

to a newly forming saltmarsh. These modifications to the saltmarsh creeks create 

altered hydrodynamics, that result in increased water velocities and drainage times that 

will cause creek erosion that can continue for some time after the point of disturbance 

(Browne, 2017; Pieterse et al., 2017). The old marsh site had previously been accreting 

within the creeks, specially at the ends of the creeks which were infilling suggesting 

that this was a long-term trend in response to the initial construction of the sea walls 

that made these creeks a dead end in the 1980s.  

It has been suggested in the literature that modifications to the hydrodynamics of an 

estuary can result in changes to sediment deposition and rates of erosion (Azevedo et 

al., 2010; Gleizon et al., 2003; Stark et al., 2017). At the old marsh site, such erosion 

and deposition of sediment was quantified in response to a change in hydrodynamics, 

and it can be concluded that the site underwent extensive erosion in response to the 

managed realignment scheme. As climate change is anticipated to modify estuary 

hydrodynamics (e.g. Blott et al., 2006) then these findings support the assertion that 

climate change may result in enhanced saltmarsh erosion.  

 Saltmarshes as sources of contaminants 

The detected remobilisation of sediments from the Ribble saltmarshes will result in the 

transfer of sediment bound radiogenic contaminants to the mudflats where they are 

mixed and redistributed either within the estuary or out with the estuary. Saltmarshes 

therefore act as a diffuse source of radionuclides to the wider estuary. Understanding 

the nature of these remobilisations first requires an understanding of the spatial 

distribution of radionuclides within the saltmarsh, as the spatial distribution can be 

complex (Oh et al., 2009). The following research questions were addressed:  

 How much contamination is remobilised from saltmarshes in response to an 

analogue for disturbance? 

 Is there significant spatial variation in saltmarsh contaminant concentration? 

 How much historic contamination has been remobilised as part of sediment 

movements at the Hesketh out marsh site? 

 How has the temporal trend in contaminant remobilisation changed since 

disturbance? 
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The old marsh site appeared to be composed of two saltmarshes of different ages, 

identifiable from aerial photographs and as a change in elevation. The data showed the 

site contaminant activity concentration was highest in the westward area which had a 

higher elevation and was probably the older saltmarsh. This would also be consistent 

with being formed during the initial land reclamation in the 1980s, with the eastern part 

of the marsh accreting substantially due to the construction of the sea walls.  

The new marsh site surface activities of 241Am and 137Cs support the assumption that 

remobilised contaminants are mixed and diluted before being deposited on the marsh 

surface. This was evident in the lower surface activities found in areas off the new 

marsh site that are known to have undergone erosion and then deposition. The 

increased activities of 241Am within some surface sediments however do suggest that a 

source of 241Am, likely the sub surface maxima of eroded saltmarsh sediments 

elsewhere in the estuary is being deposited on the marsh surface with marginal mixing. 

This conflicting evidence suggests that the deposition of remobilised sediments and the 

associated radionuclides is variable and likely subject to the prevailing hydrodynamics 

and energy within the system at the time of erosion.  

The complex spatial variability of contaminant distribution within the saltmarshes 

supports the decision to develop a novel measurement driven geostatistical approach 

to quantify the spatial properties of the saltmarsh contaminants. The approach taken 

allowed contaminant remobilisation to be estimated from high resolution radionuclide 

characterisation and sediment movement data products. Remobilisation in this context 

is important as it referred to the movement of contaminants from a vertically stratified 

source as it is within the saltmarshes, to the creeks and mudflats where it may be 

mixed and deposited on the marsh surface. This is important as without a daily time 

series it is not possible to quantify contaminant movements post remobilisation, even if 

those movements were to be transfers back to the saltmarsh. Therefore, this method 

quantified the amount of 137Cs and 241Am that was removed from the saltmarshes as 

stratified deposits. 

Radionuclide transfers to the estuary from 2007 – 2015 were estimated as 86 and 52 

GBq of 137Cs and 35 and 21 GBq of 241Am, from the new and old marsh sites 

respectively. These remobilisations were substantially reduced in later years with most 

movement occurring in the initial years after the realignment (e.g. 2007 – 2009). This 

quantification of remobilised 137Cs and 241Am is the first time such a remobilisation has 

been physically measured opposed to past modelling/inference approaches and is a 
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valuable contribution towards efforts to improve our understanding of the environmental 

store of radioactivity (Gleizon and McDonald, 2010; Hunt et al., 2013).  

The peak Sellafield discharges during the 1980’s were approximately 5000 TBq for 

137Cs and 140 TBq for 241Am, the particle reactive discharges are now incorporated 

within sediment deposits around the Irish sea such as saltmarshes. Now with current 

discharges being 3.1 TBq of 137Cs and 30 GBq of 241Am (Cefas, 2015), diffuse 

remobilisations of environmental radioactivity from sediment deposits are likely to be 

the main source of radionuclides to the environment. 

7.2. Implications for contaminant movement 

In this work, it has been shown that radionuclides are being remobilised into the 

environment as a result of reworking of sediments in mudflats and saltmarshes. This is 

occurring at a range of spatial and temporal scales. The reworking mechanisms are 

likely to be exacerbated by the impacts of climate change which will increase 

disturbance through an increasing frequency of high impact storms. Using a managed 

realignment scheme as an example of disturbance to an area of saltmarsh, strong 

evidence has been gained for what the impacts of such a disturbance would be 

specially the implications of altered hydrodynamics.   

The managed realignment scheme at the Hesketh Outmarsh resulted in substantial 

erosion from 2007 -2009 at both the new marsh site and the old marsh site. At the old 

marsh site this erosion occurred due to an increase in the water velocities and drainage 

times of the main creeks caused by the expansion of the tidal frame into the new marsh 

site. These increased water velocities result in modified hydrodynamics at the old 

marsh site, such that there is more energy in the system which promotes bank 

migration as the main creeks widen and deepen resulting in saltmarsh sediment that 

borders these creeks being eroded. 

There is enhanced erosion within the main creeks, but the modifications to the 

hydrodynamics have caused the branching network of smaller creeks to accelerate 

their development and expand having previously been in a state of infilling (pre-2007). 

Saltmarsh erosion at this site is a function of undercutting within the creeks, which 

leads to sections of marsh collapsing into the creek. This bank migration is very similar 

to how a river meanders across its flood plain. The marsh sediment that is eroded 

represents a vertical cross section of the saltmarsh and therefore encapsulates a full 

depth profile of radionuclides contained and laid down within the saltmarsh over the 

past 60 years that Sellafield has been operating. These sediments and their associated 

radionuclides are eroded by the flood and ebb tides with material moving between the 
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main creeks and nearby mudflats. At the old marsh site, it is estimated that some 52 

GBq of 137Cs and 21 GBq of 241Am has been remobilised in this fashion between 2007 

and 2015.  

The eroded sediment accumulates within the main creeks and the nearby mudflats 

where it forms delta fans at the mouths of the main creeks. These eroded sediments 

can be remobilised from the creeks to the marsh surface; where this occurs shortly 

after erosion, it results in increased activities of 241Am at deposition sites on the marsh 

surface. The eroded sediment is however eventually washed out by the ebb tides to the 

mudflats where a combination of flood/ebb tides, tidal bores and riverine discharge 

promote the redistribution of these sediments within the wider estuary. These factors 

will also promote the mixing of the saltmarsh sediments with mudflat sediments and the 

eventual dilution of the sediment bound radiogenic contaminants.  

The transfer of these saltmarsh sediments to the mudflat will result in an initial period 

where the newly arrived sediment is significantly different in particle size distribution 

and contaminant concentration to the sediments already at the site. The deposition of 

such sediments as bulk deposits has been identified as ‘mud drapes’ in the literature 

(Choi and Kim, 2016; Wakefield, 2005) and was also seen in the September siltation 

event described in chapter 3. Such transfers of concentrated sediment bound 

contaminants to the mudflats represents the remobilisation of the environmental store 

of radioactivity. 

These remobilisations can have significant effects on the inter annual variation in 

radioactivity levels of the receiving site. At the Lytham mudflats, the lack of a significant 

decline in 241Am and 137Cs concentrations from 2002 to 2014 despite 12 years of mixing 

and dilution is believed to be in part caused by the addition of contaminants from the 

environmental stores of radioactivity in the estuary, such as the saltmarshes and from 

the Irish sea mud patch.  

7.3. Future work 

A number of research activities should be considered in the future: 

 Daily sediment morphological change and sediment movement 

LiDAR measurements of the Ribble estuary at frequent time intervals would allow a 

more detailed study of sediment morphological change to be undertaken. In the current 

work, the shortest time period between observations was one year and in some cases, 

there were gaps of several years between measurements. It is desirable to observe 

sediment morphological change and movement in direct response to mechanisms of 
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disturbance so ideally on short time scales for example pre and post major storm 

disturbance events. The daily flood and ebb tidal cycle operates at the finest temporal 

resolution of these mechanisms of disturbance. Therefore, future work should aim to 

explore sediment morphological change and sediment movement at a daily time scale 

for the purpose of evaluating the 3D effects of the flood ebb tidal cycle. This would 

contribute to a refinement of the knowledge of the extent of daily sediment 

remobilisations as present estimations rely on inferences from modelled 

hydrodynamics and 2D quantifications (Wakefield et al., 2011).  

Recognising however the logistical difficulties associated with this recommendation, it 

is further recommended that advanced airborne LiDAR systems be developed to 

survey the Ribble estuary in its entirety using drones for example to reduce the 

logistical difficulties associated with aircraft based LiDAR. At present LiDAR data is 

economically expensive to acquire for large areas such as estuaries and therefore a 

cheaper alternative could use recent advances in photogrammetry (Brunier et al., 2016; 

Jaud et al., 2016). 

Such work would however reveal the extent of morphological change and sediment 

movement and would produce a high-resolution sediment budget for a single flood ebb 

tidal cycle. This would have the added advantage of allowing the quantification of daily 

radiogenic contaminant remobilisations using the methods described in chapter 6. 

Understanding the effects of the daily flood and ebb tidal cycle on the remobilisation of 

sediments and sediment bound contaminants should be an area for further study in the 

coming years.  

 Radiogenic contaminant remobilisation method application to other estuaries 

The method developed to estimate the quantity of radiogenic contaminants remobilised 

from the Hesketh Outmarsh saltmarshes in chapter 6 should be applied to a more 

radioactively contaminated saltmarsh site such as those found in the Ravenglass 

estuary. As the UK’s most radioactively contaminated estuary, remobilisation of 

Ravenglass sediments could be used as a worst-case scenario, in determining whether 

there is a significant risk to humans or the environment from the relocation of the 

radionuclides within the estuary. If the risk is low here, then there should be little 

concern from radioactive contaminants in other estuaries. The findings of Rahman et 

al., (2013) showed that remobilisations of contaminants could approach safety 

thresholds in a dosimetry based risk assessment at saltmarshes that were more 

concentrated in contaminants. So such an evaluation using the tools developed here 

would be beneficial. In recent years there is evidence to suggest that Ravenglass is 
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acting as a sink for remobilised Sellafield mud patch radiogenic contaminants and also 

as a diffuse source to the wider Irish Sea (Aston and Stanners, 1982; Goshawk et al., 

2003; Hunt et al., 2013; Lindahl et al., 2011; Oh et al., 2009).  

 Revisiting storminess granger causality at a higher temporal resolution 

Chapter 4 explored the nature of disturbance mechanisms on the sediment matrix of 

the Ribble estuary mudflats. The analysis did show that increased storminess was 

significant however this was not a substantial factor in explaining the variation in the 

sediment matrix. Past modelling and field investigations have both concluded that 

storminess, specifically in the form of high amplitude waves, is expected to be a 

significant factor in sediment remobilisation in the Ribble estuary (Luo et al., 2015; 

Rainford, 1997; Robins et al., 2016; van der Wal et al., 2002). However, the temporal 

resolution of my sediment property data in this project was too course and therefore 

only the underlying trend in the storminess data was only partially detected. 

Sediment property data collected at a higher temporal resolution should be collected to 

enable a proper time series analysis to determine if storminess specifically the 

associated high amplitude waves are responsible for detectable modifications to the 

sediment matrix. The best approach would be to place sensors along a section of 

saltmarsh to measure changes in it and the fronting mudflat. Topographic data and 

optical reflectance spectra data would allow both the quantification of the sediment 

particle size distribution as well as quantification of sediment movement (Montreuil et 

al., 2014; Rainey et al., 2003; Wal and Herman, 2006). The work of Deronde et al. 

(2006; 2008) highlights how such data can be used to explore sediment movement 

along a section of sand dominated coast and these same methods would be applicable 

to a mudflat.  

The recent advances in automatic image stack adjustment based photogrammetry 

would allow a relatively low-cost alternative to the above proposed work (Brunier et al., 

2016; Jaud et al., 2016). The emplacement of high resolution cameras at multiple 

points could yield daily estimates of mudflat morphological change. This approach 

would allow a time series analysis to be conducted as was done in chapter 4 but with a 

much higher spatial and temporal resolution data. The downside to this approach is 

that it would be computationally intense however with advances in processing 

algorithms the associated time of this type of processing has been reduced. Daily time 

series analysis might result in a different outcome from that of chapter 4 but either way 

the effect of storminess on the mudflat sediment matrix would be better quantified.  
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 Modelling saltmarsh diffuse radiogenic contaminant releases 

Repeated measurements of the sediment matrix and estuary morphology were used to 

infer temporal change in the Ribble’s sediment deposits from a 1 m2 quadrat scale up 

to landscape scale. This approach produced three datasets: 1) a 19-year hindcast of 

mudflat 241Am and 137Cs relationships with sediment particle size; 2) a 16-year hindcast 

of estuary morphological change; and 3) a 10-year estimation of the Ribble’s sediment 

budget. By observing changes in the past, it is possible to predict what changes might 

occur in the future.  

Work conducted using similar geospatial modelling approaches to those used here 

would provide an excellent training data set for advanced modelling. A sediment 

transport model that can resolve the nature of diffuse radiogenic contaminant 

remobilisation from environmental stores of radioactivity would be a useful tool, with 

applications for a wider range of estuarine contaminants. Production of such a tool may 

be possible in the near future given recent advances in coastal modelling (e.g. van 

Maanen et al., 2016) resulting in a new ability to quantify the sediments of the intertidal 

environment at a high spatial resolution and to observe fine scale changes at a high 

temporal resolution.  

Such an advanced model would take the form of a machine learning framework similar 

to a neural network, which would use continued observations of how the estuarine and 

marine sediments are changing to improve its predictive power (Buyukyildiz and 

Kumcu, 2017; Lagos-Avid and Bonilla, 2017; van Maanen et al., 2010). A limiting factor 

on the implementation of such a model though is the lack of high spatial and temporal 

resolution data. With increasing availability of high-resolution topographic data sets and 

the availability of new airborne sensing platforms such as UAV LiDAR and 

photogrammetry, this may no longer be the case.  

The creation of a routine survey programme at the Ribble saltmarshes that used UAV 

derived topographic surveys or sensors in situ to observe daily changes in the 

saltmarsh is desirable. An ideal field site for this would be the eastern Hesketh 

Outmarsh, which is undergoing managed realignment in 2017. The coupling of high 

spatial and temporal resolution topographic data with advanced machine learning may 

reveal new insights into saltmarsh sediment transfers in response to disturbance.  

7.4. Summary 

In summary, a multidisciplinary approach was used to analyse the spatio-temporal 

characteristics of Ribble estuary sediment and its associated sediment bound 

radiogenic contaminants. The morphological changes within the saltmarshes and 
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mudflats were identified and showed saltmarsh sediment erosion with subsequent 

transfer of this eroded sediment to the mudflats. The sediment matrix and associated 

contaminants were temporally variable and sensitive to disturbance mechanism such 

as high riverine discharge and storminess. The evidence collected shows that there are 

spatial and temporal trends which indicate post deposition remobilisation of radiogenic 

contaminants is occurring. 

The environmental store of radioactivity is functioning as a diffuse source of 

radionuclides to the Ribble estuary and by extension to the Irish Sea. This is likely to be 

accelerated by disturbance which is anticipated to increase as a consequence of 

climate change. While the full implications of disturbance are not yet understood, it is 

known that events which modify local hydrodynamics can in turn lead to changes in 

sediment transport and erosion rates. Therefore, increasing the frequency of high 

impact storm events associated with climate change will most likely result in an 

accelerated rate of radionuclide remobilisation from the environmental store of 

radioactivity.  

There should be further work investigating the radiological significance of these 

remobilisations for human and non-human biota that utilise estuaries and other coastal 

environments. This should be investigated further at sites with more concentrated 

radiogenic contaminant sinks than those of the Ribble estuary such as the saltmarshes 

found in the Ravenglass estuary. 
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Appendix 1 

Appendix T1.1  Correlation matrix for a range of sediment metal concentrations 

  Al  As  Ba  Cd  Co  Cr  Cu  Fe  Hg  K  Mg  Mn  Ni  P  Pb  Sr  V  Zn  Ca  Mo 

Al 1.00  0.88  0.85  0.65  0.78  0.96  0.37  0.80  ‐0.12  0.91  0.76  0.69  0.80  0.69  ‐0.19  0.80  1.00  0.55  0.42  0.46 

As 0.88  1.00  0.71  0.82  0.90  0.94  0.63  0.89  ‐0.01  0.90  0.87  0.77  0.92  0.80  0.13  0.79  0.90  0.78  0.52  0.48 

Ba 0.85  0.71  1.00  0.52  0.62  0.80  0.19  0.67  ‐0.11  0.73  0.68  0.61  0.56  0.59  ‐0.28  0.77  0.85  0.40  0.52  0.40 

Cd 0.65  0.82  0.52  1.00  0.96  0.78  0.73  0.95  ‐0.11  0.75  0.93  0.85  0.89  0.88  0.49  0.70  0.66  0.92  0.60  0.31 

Co 0.78  0.90  0.62  0.96  1.00  0.89  0.73  0.98  ‐0.13  0.85  0.97  0.88  0.95  0.90  0.37  0.76  0.79  0.91  0.60  0.35 

Cr 0.96  0.94  0.80  0.78  0.89  1.00  0.55  0.89  ‐0.13  0.94  0.88  0.77  0.90  0.83  0.04  0.84  0.96  0.74  0.57  0.44 

Cu 0.37  0.63  0.19  0.73  0.73  0.55  1.00  0.67  ‐0.09  0.51  0.69  0.60  0.74  0.67  0.55  0.51  0.38  0.85  0.54  0.23 

Fe 0.80  0.89  0.67  0.95  0.98  0.89  0.67  1.00  ‐0.14  0.82  0.95  0.88  0.90  0.86  0.26  0.76  0.80  0.85  0.57  0.33 

Hg ‐0.12  ‐0.01  ‐0.11  ‐0.11  ‐0.13  ‐0.13  ‐0.09  ‐0.14  1.00  ‐0.11  ‐0.14  ‐0.13  ‐0.11  ‐0.11  ‐0.04  ‐0.14  ‐0.12  ‐0.12  ‐0.12  0.21 

K 0.91  0.90  0.73  0.75  0.85  0.94  0.51  0.82  ‐0.11  1.00  0.82  0.67  0.88  0.80  0.11  0.77  0.92  0.71  0.50  0.54 

Mg 0.76  0.87  0.68  0.93  0.97  0.88  0.69  0.95  ‐0.14  0.82  1.00  0.89  0.90  0.94  0.37  0.80  0.77  0.89  0.74  0.31 

Mn 0.69  0.77  0.61  0.85  0.88  0.77  0.60  0.88  ‐0.13  0.67  0.89  1.00  0.78  0.85  0.26  0.72  0.68  0.77  0.59  0.12 

Ni 0.80  0.92  0.56  0.89  0.95  0.90  0.74  0.90  ‐0.11  0.88  0.90  0.78  1.00  0.85  0.36  0.75  0.81  0.88  0.54  0.40 

P 0.69  0.80  0.59  0.88  0.90  0.83  0.67  0.86  ‐0.11  0.80  0.94  0.85  0.85  1.00  0.42  0.77  0.70  0.86  0.75  0.24 

Pb ‐0.19  0.13  ‐0.28  0.49  0.37  0.04  0.55  0.26  ‐0.04  0.11  0.37  0.26  0.36  0.42  1.00  0.04  ‐0.17  0.59  0.36  ‐0.01 

Sr 0.80  0.79  0.77  0.70  0.76  0.84  0.51  0.76  ‐0.14  0.77  0.80  0.72  0.75  0.77  0.04  1.00  0.81  0.64  0.80  0.30 

V 1.00  0.90  0.85  0.66  0.79  0.96  0.38  0.80  ‐0.12  0.92  0.77  0.68  0.81  0.70  ‐0.17  0.81  1.00  0.56  0.45  0.47 

Zn 0.55  0.78  0.40  0.92  0.91  0.74  0.85  0.85  ‐0.12  0.71  0.89  0.77  0.88  0.86  0.59  0.64  0.56  1.00  0.65  0.30 

Ca 0.42  0.52  0.52  0.60  0.60  0.57  0.54  0.57  ‐0.12  0.50  0.74  0.59  0.54  0.75  0.36  0.80  0.45  0.65  1.00  0.12 

Mo 0.46  0.48  0.40  0.31  0.35  0.44  0.23  0.33  0.21  0.54  0.31  0.12  0.40  0.24  ‐0.01  0.30  0.47  0.30  0.12  1.00 

 



207 
 

Appendix T1.2  Model output for March 
seasonal differences 

 
 [1] "clay" 
            Df Sum Sq Mean Sq F value  Pr(>F)    
y            2  47.19  23.597   5.504 0.00866 ** 
Residuals   33 141.49   4.287                    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
            diff        lwr        upr     p adj 
2-1  2.387371795  0.3533863  4.4213573 0.0185147 
3-1  0.007651515 -2.1132334  2.1285364 0.9999568 
3-2 -2.379720280 -4.4612267 -0.2982139 0.0221869 
 
[1] "silt" 
            Df Sum Sq Mean Sq F value  Pr(>F)    
y            2   1105   552.4   6.189 0.00522 ** 
Residuals   33   2945    89.3                    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
           diff        lwr       upr     p adj 
2-1  11.7161538   2.435849 20.996459 0.0107760 
3-1   0.3927273  -9.284067 10.069521 0.9945482 
3-2 -11.3234266 -20.820551 -1.826302 0.0165616 
 
[1] "fine_sand" 
            Df Sum Sq Mean Sq F value Pr(>F)   
y            2  678.5   339.2   3.792 0.0329 * 
Residuals   33 2951.9    89.5                  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
          diff        lwr        upr     p adj 
2-1 -10.214423 -19.504873 -0.9239734 0.0286424 
3-1  -7.205682 -16.893054  2.4816903 0.1771452 
3-2   3.008741  -6.498765 12.5162478 0.7198483 
 
[1] "organic_matter" 
            Df Sum Sq Mean Sq F value  Pr(>F)    
y            2  2.026  1.0128    6.27 0.00492 ** 
Residuals   33  5.330  0.1615                    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
          diff          lwr        upr     p adj 
2-1  0.3849359 -0.009857969  0.7797298 0.0572036 
3-1 -0.1794697 -0.591130620  0.2321912 0.5391830 
3-2 -0.5644056 -0.968423203 -0.1603880 0.0045765 
 
[1] "carbonates" 
            Df Sum Sq Mean Sq F value   Pr(>F)     

y            2  1.769  0.8845   9.742 0.000473 *** 
Residuals   33  2.996  0.0908                      
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
          diff         lwr       upr     p adj 
2-1  0.5083974  0.21241187 0.8043830 0.0005220 
3-1  0.4073485  0.09871732 0.7159796 0.0075150 
3-2 -0.1010490 -0.40394976 0.2018519 0.6943051 
 
[1] "airkerma" 
            Df Sum Sq Mean Sq F value  Pr(>F)    
y            2  29418   14709    8.76 0.00269 ** 
Residuals   16  26866    1679                    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
17 observations deleted due to missingness 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
        diff        lwr      upr     p adj 
2-1 51.35714  -7.467972 110.1823 0.0923827 
3-1 99.00000  37.954293 160.0457 0.0019129 
3-2 47.64286 -11.182258 106.4680 0.1235721 
 
[1] "ph" 
            Df Sum Sq Mean Sq F value   Pr(>F)     
y            2  2.790  1.3950   13.47 5.27e-05 *** 
Residuals   33  3.416  0.1035                      
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
          diff        lwr        upr     p adj 
2-1  0.0624359 -0.2536245  0.3784963 0.8789997 
3-1 -0.5692424 -0.8988061 -0.2396787 0.0004880 
3-2 -0.6316783 -0.9551230 -0.3082337 0.0000987 
 
[1] "CS137" 
            Df Sum Sq Mean Sq F value  Pr(>F)    
y            2   9273    4637   6.031 0.00586 ** 
Residuals   33  25370     769                    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
          diff       lwr       upr     p adj 
2-1  30.649359   3.41298 57.885738 0.0246525 
3-1  -5.194697 -33.59471 23.205321 0.8952594 
3-2 -35.844056 -63.71677 -7.971342 0.0093050 
 
[1] "Al" 
            Df Sum Sq Mean Sq F value   Pr(>F)     
y            2  319.2  159.58   9.957 0.000413 *** 
Residuals   33  528.9   16.03                      
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
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    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
          diff        lwr       upr     p adj 
2-1  5.7992351   1.866758  9.731712 0.0027437 
3-1 -0.7671987  -4.867686  3.333288 0.8907017 
3-2 -6.5664338 -10.590787 -2.542081 0.0009474 
 
[1] "As" 
            Df    Sum Sq   Mean Sq F value  Pr(>F)    
y            2 2.031e-05 1.015e-05   8.494 0.00106 ** 
Residuals   33 3.945e-05 1.195e-06                    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
            diff           lwr           upr     p adj 
2-1  0.001161217  8.722391e-05  0.0022352092 
0.0318003 
3-1 -0.000643887 -1.763765e-03  0.0004759906 
0.3470606 
3-2 -0.001805104 -2.904188e-03 -0.0007060187 
0.0008801 
 
[1] "Ba" 
            Df  Sum Sq  Mean Sq F value  Pr(>F)     
y            2 0.03878 0.019391   10.65 0.00027 *** 
Residuals   33 0.06009 0.001821                     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
            diff         lwr         upr     p adj 
2-1  0.071386837  0.02947088  0.11330279 
0.0005777 
3-1  0.006885835 -0.03682092  0.05059259 
0.9211217 
3-2 -0.064501003 -0.10739626 -0.02160575 
0.0022610 
 
[1] "Cd" 
            Df    Sum Sq   Mean Sq F value  Pr(>F)    
y            2 3.120e-07 1.560e-07   6.449 0.00432 ** 
Residuals   33 7.981e-07 2.419e-08                    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
             diff           lwr           upr     p adj 
2-1  2.108623e-04  5.809608e-05  3.636286e-04 
0.0051003 
3-1  4.242769e-05 -1.168653e-04  2.017207e-04 
0.7916640 
3-2 -1.684347e-04 -3.247701e-04 -1.209925e-05 
0.0325005 
 
[1] "Co" 
            Df    Sum Sq   Mean Sq F value  Pr(>F)    
y            2 1.409e-05 7.044e-06   8.207 0.00128 ** 
Residuals   33 2.832e-05 8.580e-07                    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
             diff           lwr           upr     p adj 
2-1  1.292038e-03  0.0003819984  0.0022020771 
0.0039438 
3-1 -2.136206e-05 -0.0009702817  0.0009275576 
0.9983192 
3-2 -1.313400e-03 -0.0022447008 -0.0003820988 
0.0041961 
 
[1] "Cr" 
            Df    Sum Sq   Mean Sq F value   Pr(>F)     
y            2 0.0005862 2.931e-04   9.208 0.000664 *** 
Residuals   33 0.0010504 3.183e-05                      
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
            diff          lwr          upr     p adj 
2-1  0.007606777  0.002064729  0.013148825 
0.0053620 
3-1 -0.001473579 -0.007252404  0.004305246 
0.8071319 
3-2 -0.009080356 -0.014751886 -0.003408827 
0.0011691 
 
[1] "Cu" 
            Df    Sum Sq   Mean Sq F value Pr(>F)   
y            2 2.462e-05 1.231e-05   3.582 0.0391 * 
Residuals   33 1.134e-04 3.437e-06                  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
             diff          lwr           upr     p adj 
2-1  0.0002192223 -0.001601865  2.040310e-03 
0.9531088 
3-1 -0.0016704289 -0.003569320  2.284622e-04 
0.0936180 
3-2 -0.0018896511 -0.003753285 -2.601683e-05 
0.0463312 
 
[1] "Fe" 
            Df Sum Sq Mean Sq F value   Pr(>F)     
y            2  76.73   38.37   9.238 0.000652 *** 
Residuals   33 137.05    4.15                      
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
           diff       lwr       upr     p adj 
2-1  3.08214439  1.080330  5.083959 0.0017747 
3-1  0.09116731 -1.996172  2.178507 0.9936888 
3-2 -2.99097708 -5.039561 -0.942393 0.0030247 
 
[1] "Hg" 
            Df    Sum Sq   Mean Sq F value Pr(>F) 
y            2 3.240e-06 1.619e-06    1.15  0.329 
Residuals   33 4.643e-05 1.407e-06                
  Tukey multiple comparisons of means 
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    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
             diff          lwr          upr     p adj 
2-1 -0.0005448217 -0.001710040 0.0006203963 
0.4924792 
3-1 -0.0007090941 -0.001924095 0.0005059063 
0.3364864 
3-2 -0.0001642724 -0.001356714 0.0010281691 
0.9390709 
 
[1] "K" 
            Df Sum Sq Mean Sq F value  Pr(>F)    
y            2  16.74   8.371   7.041 0.00284 ** 
Residuals   33  39.24   1.189                    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
           diff        lwr        upr     p adj 
2-1  1.37806260  0.3069599  2.4491653 0.0092705 
3-1 -0.08367137 -1.2005355  1.0331928 0.9815530 
3-2 -1.46173397 -2.5578613 -0.3656066 0.0068881 
 
[1] "Mg" 
            Df Sum Sq Mean Sq F value  Pr(>F)    
y            2  9.756   4.878   6.016 0.00592 ** 
Residuals   33 26.756   0.811                    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
          diff        lwr        upr     p adj 
2-1  1.0027057  0.1182019  1.8872094 0.0234797 
3-1 -0.1537195 -1.0760125  0.7685735 0.9121733 
3-2 -1.1564252 -2.0615940 -0.2512564 0.0098080 
 
[1] "Mn" 
            Df  Sum Sq Mean Sq F value Pr(>F)   
y            2 0.03445 0.01723   5.037 0.0123 * 
Residuals   33 0.11285 0.00342                  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
           diff         lwr          upr     p adj 
2-1  0.06899011  0.01154752 0.1264327103 
0.0157107 
3-1  0.01093969 -0.04895707 0.0708364422 
0.8955499 
3-2 -0.05805043 -0.11683508 0.0007342236 
0.0534970 
 
[1] "Ni" 
            Df    Sum Sq   Mean Sq F value  Pr(>F)    
y            2 1.964e-05 9.820e-06   6.602 0.00388 ** 
Residuals   33 4.909e-05 1.487e-06                    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 

Fit: aov(formula = x ~ y, data = test) 
 
$y 
             diff           lwr           upr     p adj 
2-1  0.0012512995  5.327299e-05  0.0024493260 
0.0391328 
3-1 -0.0004859829 -1.735194e-03  0.0007632278 
0.6102066 
3-2 -0.0017372824 -2.963299e-03 -0.0005112658 
0.0040154 
 
[1] "P" 
            Df Sum Sq Mean Sq F value  Pr(>F)    
y            2 0.0821 0.04105   5.905 0.00643 ** 
Residuals   33 0.2294 0.00695                    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
           diff         lwr         upr     p adj 
2-1  0.08965114  0.00774611  0.17155617 0.0294582 
3-1 -0.01805213 -0.10345644  0.06735219 0.8628067 
3-2 -0.10770326 -0.19152187 -0.02388465 0.0093655 
 
[1] "Pb" 
            Df    Sum Sq   Mean Sq F value  Pr(>F)    
y            2 0.0001192 5.962e-05   7.952 0.00152 ** 
Residuals   33 0.0002474 7.500e-06                    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
            diff           lwr           upr     p adj 
2-1 -0.004370206 -0.0070598655 -0.0016805465 
0.0009931 
3-1 -0.002181360 -0.0049859313  0.0006232121 
0.1521872 
3-2  0.002188846 -0.0005636528  0.0049413456 
0.1404914 
 
[1] "Sr" 
            Df   Sum Sq   Mean Sq F value Pr(>F)   
y            2 0.001955 0.0009774   3.059 0.0604 . 
Residuals   33 0.010545 0.0003195                  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
            diff           lwr         upr     p adj 
2-1  0.017427777 -0.0001316656 0.034987221 
0.0520744 
3-1  0.006272016 -0.0120376315 0.024581664 
0.6808451 
3-2 -0.011155761 -0.0291254534 0.006813931 
0.2932717 
 
[1] "V" 
            Df   Sum Sq   Mean Sq F value   Pr(>F)     
y            2 0.001675 0.0008376   10.81 0.000244 *** 
Residuals   33 0.002556 0.0000775                      
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
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Fit: aov(formula = x ~ y, data = test) 
 
$y 
           diff          lwr          upr     p adj 
2-1  0.01271516  0.004070169  0.021360142 
0.0028156 
3-1 -0.00272822 -0.011742553  0.006286112 
0.7401176 
3-2 -0.01544338 -0.024290339 -0.006596413 
0.0004292 
 
[1] "Zn" 
            Df   Sum Sq   Mean Sq F value Pr(>F)   
y            2 0.001634 0.0008170   3.813 0.0324 * 
Residuals   33 0.007071 0.0002143                  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
            diff          lwr        upr     p adj 
2-1  0.015498855  0.001120268 0.02987744 
0.0324046 
3-1  0.003853134 -0.011139759 0.01884603 
0.8044317 
3-2 -0.011645721 -0.026360241 0.00306880 
0.1429630 
 
[1] "Ca" 
            Df Sum Sq Mean Sq F value Pr(>F) 
y            2   10.4   5.212   0.426  0.657 
Residuals   33  404.2  12.248                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
          diff       lwr      upr     p adj 
2-1  1.0892602 -2.348569 4.527090 0.7192777 
3-1 -0.0623572 -3.647064 3.522349 0.9989960 
3-2 -1.1516174 -4.669766 2.366532 0.7036849 
 
[1] "Mo" 
            Df    Sum Sq   Mean Sq F value Pr(>F)    
y            2 1.786e-07 8.929e-08   7.544  0.002 ** 
Residuals   33 3.906e-07 1.184e-08                   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
             diff           lwr           upr     p adj 
2-1  0.0001185738  1.170708e-05  2.254405e-04 
0.0270196 
3-1 -0.0000473921 -1.588245e-04  6.404034e-05 
0.5551947 
3-2 -0.0001659659 -2.753293e-04 -5.660241e-05 
0.0020599 
 
[1] "AM241" 
            Df Sum Sq Mean Sq F value  Pr(>F)    
y            2   7770    3885   7.097 0.00273 ** 
Residuals   33  18065     547                    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 

Fit: aov(formula = x ~ y, data = test) 
 
$y 
          diff        lwr       upr     p adj 
2-1  26.665385   3.682507  49.64826 0.0200680 
3-1  -7.022727 -30.987519  16.94206 0.7540336 
3-2 -33.688112 -57.207949 -10.16827 0.0036315 
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Appendix T1.3  Model output for May 
seasonal differences 
 
[1] "clay" 
            Df Sum Sq Mean Sq F value Pr(>F)   
y            2  36.84  18.421   3.488 0.0422 * 
Residuals   33 174.28   5.281                  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
          diff        lwr        upr     p adj 
2-1  1.5944872 -0.6629289  3.8519033 0.2081767 
3-1 -0.8280303 -3.1818916  1.5258310 0.6669025 
3-2 -2.4225175 -4.7326746 -0.1123604 0.0382306 
 
[1] "silt" 
            Df Sum Sq Mean Sq F value Pr(>F)   
y            2   1483   741.7   3.201 0.0536 . 
Residuals   33   7647   231.7                  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
          diff         lwr       upr     p adj 
2-1  14.211154  -0.7422888 29.164596 0.0651948 
3-1   1.984091 -13.6082182 17.576400 0.9477616 
3-2 -12.227063 -27.5298694  3.075744 0.1380480 
 
[1] "fine_sand" 
            Df Sum Sq Mean Sq F value Pr(>F) 
y            2    614   307.2   1.583   0.22 
Residuals   33   6402   194.0                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
         diff        lwr       upr     p adj 
2-1 -9.867949 -23.550142  3.814245 0.1954014 
3-1 -4.192424 -18.459171 10.074323 0.7528583 
3-2  5.675524  -8.326332 19.677381 0.5853899 
 
[1] "organic_matter" 
            Df Sum Sq Mean Sq F value Pr(>F) 
y            2   7.07   3.533   1.651  0.207 
Residuals   33  70.63   2.140                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
          diff        lwr       upr     p adj 
2-1  1.0630769 -0.3739706 2.5001245 0.1803245 
3-1  0.5109091 -0.9875344 2.0093526 0.6832461 
3-2 -0.5521678 -2.0227897 0.9184541 0.6308835 
 
[1] "carbonates" 
            Df Sum Sq Mean Sq F value Pr(>F)   
y            2   2.52  1.2600   3.227 0.0525 . 
Residuals   33  12.89  0.3905                  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 

 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
          diff         lwr        upr     p adj 
2-1  0.5277564 -0.08606445 1.14157727 0.1032892 
3-1 -0.0455303 -0.68557586 0.59451525 0.9833515 
3-2 -0.5732867 -1.20144853 0.05487511 0.0792736 
 
[1] "airkerma" 
            Df Sum Sq Mean Sq F value Pr(>F)   
y            2  35090   17545   3.013 0.0776 . 
Residuals   16  93183    5824                  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
17 observations deleted due to missingness 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
         diff        lwr      upr     p adj 
2-1  49.28571 -60.269178 158.8406 0.4924003 
3-1 108.00000  -5.690485 221.6905 0.0639542 
3-2  58.71429 -50.840607 168.2692 0.3727730 
 
[1] "ph" 
            Df Sum Sq Mean Sq F value   Pr(>F)     
y            2 0.8759  0.4380   14.76 2.63e-05 *** 
Residuals   33 0.9790  0.0297                      
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
          diff         lwr         upr    p adj 
2-1 -0.3679487 -0.53713686 -0.19876057 0.000020 
3-1 -0.2551515 -0.43156801 -0.07873502 0.003312 
3-2  0.1127972 -0.06034376  0.28593817 0.260448 
 
[1] "CS137" 
            Df Sum Sq Mean Sq F value Pr(>F)   
y            2   5439  2719.7   3.136 0.0567 . 
Residuals   33  28622   867.3                  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
         diff         lwr      upr     p adj 
2-1  29.38940   0.4598275 58.31897 0.0458421 
3-1  12.73466 -17.4308859 42.90021 0.5599269 
3-2 -16.65473 -46.2602011 12.95073 0.3625481 
 
[1] "Al" 
            Df Sum Sq Mean Sq F value Pr(>F) 
y            2   5.57   2.784   1.979  0.154 
Residuals   33  46.41   1.407                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
          diff        lwr       upr     p adj 
2-1  0.9350456 -0.2299287 2.1000199 0.1357412 
3-1  0.3653161 -0.8494302 1.5800625 0.7429102 
3-2 -0.5697295 -1.7619216 0.6224626 0.4775376 
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[1] "As" 
            Df    Sum Sq   Mean Sq F value Pr(>F) 
y            2 1.070e-06 5.327e-07   0.344  0.712 
Residuals   33 5.114e-05 1.550e-06                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
             diff           lwr         upr     p adj 
2-1  3.968734e-04 -0.0008259645 0.001619711 
0.7078381 
3-1  3.103639e-04 -0.0009647180 0.001585446 
0.8225375 
3-2 -8.650943e-05 -0.0013379169 0.001164898 
0.9842695 
 
[1] "Ba" 
            Df   Sum Sq  Mean Sq F value   Pr(>F)     
y            2 0.005272 0.002636   10.46 0.000303 *** 
Residuals   33 0.008315 0.000252                      
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
             diff          lwr          upr     p adj 
2-1  0.0253863871  0.009793388  0.040979387 
0.0009712 
3-1  0.0004051877 -0.015854002  0.016664378 
0.9979407 
3-2 -0.0249811994 -0.040938505 -0.009023894 
0.0014897 
 
[1] "Cd" 
            Df    Sum Sq   Mean Sq F value Pr(>F) 
y            2 2.632e-07 1.316e-07   1.846  0.174 
Residuals   33 2.353e-06 7.131e-08                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
             diff           lwr          upr     p adj 
2-1  1.949374e-04 -6.737358e-05 0.0004572485 
0.1776659 
3-1  4.292684e-05 -2.305911e-04 0.0003164448 
0.9216983 
3-2 -1.520106e-04 -4.204501e-04 0.0001164289 
0.3578651 
 
[1] "Co" 
            Df    Sum Sq   Mean Sq F value Pr(>F) 
y            2 7.130e-06 3.565e-06   1.968  0.156 
Residuals   33 5.976e-05 1.811e-06                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
             diff           lwr          upr     p adj 
2-1  0.0010558625 -0.0002660129 0.0023777379 
0.1382063 
3-1  0.0003987638 -0.0009795870 0.0017771146 
0.7593990 
3-2 -0.0006570987 -0.0020098577 0.0006956602 
0.4662610 
 
[1] "Cr" 
            Df    Sum Sq   Mean Sq F value Pr(>F) 

y            2 0.0000621 3.106e-05   1.585   0.22 
Residuals   33 0.0006466 1.959e-05                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
            diff          lwr         upr     p adj 
2-1  0.003086885 -0.001261230 0.007435000 
0.2050308 
3-1  0.001014800 -0.003519082 0.005548683 
0.8475854 
3-2 -0.002072084 -0.006521787 0.002377618 
0.4952532 
 
[1] "Cu" 
            Df    Sum Sq   Mean Sq F value Pr(>F) 
y            2 0.0000651 3.257e-05   1.567  0.224 
Residuals   33 0.0006859 2.079e-05                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
             diff          lwr         upr     p adj 
2-1  0.0029494893 -0.001528964 0.007427942 
0.2531969 
3-1  0.0003415913 -0.004328198 0.005011380 
0.9824049 
3-2 -0.0026078979 -0.007190983 0.001975187 
0.3544222 
 
[1] "Fe" 
            Df Sum Sq Mean Sq F value Pr(>F) 
y            2  21.91  10.953   1.874   0.17 
Residuals   33 192.90   5.845                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
          diff       lwr      upr     p adj 
2-1  1.8397729 -0.535171 4.214717 0.1543640 
3-1  0.6359246 -1.840486 3.112335 0.8047081 
3-2 -1.2038483 -3.634279 1.226582 0.4526729 
 
[1] "Hg" 
            Df    Sum Sq   Mean Sq F value Pr(>F) 
y            2 2.480e-07 1.241e-07   0.394  0.677 
Residuals   33 1.039e-05 3.148e-07                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
             diff           lwr          upr     p adj 
2-1 -5.461308e-05 -0.0006057193 0.0004964931 
0.9679615 
3-1 -2.017965e-04 -0.0007764480 0.0003728549 
0.6678295 
3-2 -1.471835e-04 -0.0007111654 0.0004167985 
0.7990350 
 
[1] "K" 
            Df Sum Sq Mean Sq F value Pr(>F) 
y            2  0.930  0.4650   2.054  0.144 
Residuals   33  7.472  0.2264                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
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$y 
           diff        lwr       upr     p adj 
2-1  0.35918602 -0.1082203 0.8265923 0.1587461 
3-1  0.05892351 -0.4284521 0.5462991 0.9527135 
3-2 -0.30026250 -0.7785890 0.1780640 0.2856342 
 
[1] "Mg" 
            Df Sum Sq Mean Sq F value Pr(>F)   
y            2  11.47   5.735   3.411  0.045 * 
Residuals   33  55.49   1.682                  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
          diff          lwr      upr     p adj 
2-1  1.2821564  0.008371747 2.555941 0.0482420 
3-1  0.2683358 -1.059869692 1.596541 0.8738334 
3-2 -1.0138206 -2.317365296 0.289724 0.1522189 
 
[1] "Mn" 
            Df Sum Sq Mean Sq F value Pr(>F) 
y            2 0.0696 0.03481   2.061  0.143 
Residuals   33 0.5573 0.01689                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
           diff         lwr        upr     p adj 
2-1  0.10366544 -0.02399243 0.23132331 0.1298862 
3-1  0.03559436 -0.09751753 0.16870625 0.7902135 
3-2 -0.06807107 -0.19871147 0.06256932 0.4170222 
 
[1] "Ni" 
            Df    Sum Sq   Mean Sq F value Pr(>F) 
y            2 1.153e-05 5.765e-06   1.077  0.352 
Residuals   33 1.767e-04 5.354e-06                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
             diff           lwr         upr     p adj 
2-1  0.0013403687 -0.0009325981 0.003613335 
0.3291683 
3-1  0.0009013723 -0.0014687041 0.003271449 
0.6234945 
3-2 -0.0004389964 -0.0027650675 0.001887075 
0.8889075 
 
[1] "P" 
            Df Sum Sq Mean Sq F value Pr(>F)   
y            2 0.1421 0.07106    3.51 0.0415 * 
Residuals   33 0.6681 0.02025                  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
           diff         lwr        upr     p adj 
2-1  0.14380080  0.00403361 0.28356800 0.0426806 
3-1  0.03340126 -0.11233731 0.17913982 0.8408589 
3-2 -0.11039955 -0.25343218 0.03263309 0.1563410 
 
[1] "Pb" 
            Df    Sum Sq   Mean Sq F value Pr(>F) 
y            2 0.0002181 1.091e-04   1.378  0.266 

Residuals   33 0.0026110 7.912e-05                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
            diff          lwr         upr     p adj 
2-1  0.005565727 -0.003171876 0.014303330 
0.2756371 
3-1  0.001091168 -0.008019738 0.010202074 
0.9535745 
3-2 -0.004474559 -0.013416303 0.004467185 
0.4455194 
 
[1] "Sr" 
            Df   Sum Sq   Mean Sq F value Pr(>F)   
y            2 0.001725 0.0008623   3.317 0.0487 * 
Residuals   33 0.008580 0.0002600                  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
            diff           lwr         upr     p adj 
2-1  0.016278811  0.0004396184 0.032118003 
0.0429421 
3-1  0.005414489 -0.0111014125 0.021930390 
0.7029402 
3-2 -0.010864322 -0.0270735724 0.005344929 
0.2416241 
 
[1] "V" 
            Df    Sum Sq   Mean Sq F value Pr(>F) 
y            2 0.0000345 1.723e-05   1.788  0.183 
Residuals   33 0.0003181 9.639e-06                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
             diff           lwr         upr     p adj 
2-1  0.0023271965 -0.0007225995 0.005376992 
0.1626454 
3-1  0.0009139856 -0.0022661090 0.004094080 
0.7621101 
3-2 -0.0014132108 -0.0045342606 0.001707839 
0.5141497 
 
[1] "Zn" 
            Df   Sum Sq   Mean Sq F value Pr(>F) 
y            2 0.002895 0.0014476   1.978  0.154 
Residuals   33 0.024153 0.0007319                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
            diff          lwr        upr     p adj 
2-1  0.021284058 -0.005291023 0.04785914 
0.1368380 
3-1  0.008073147 -0.019637320 0.03578361 
0.7564830 
3-2 -0.013210911 -0.040406877 0.01398506 
0.4662322 
 
[1] "Ca" 
            Df Sum Sq Mean Sq F value Pr(>F)   
y            2  167.7   83.85   4.766 0.0152 * 
Residuals   33  580.5   17.59                  
--- 
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Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
          diff        lwr        upr     p adj 
2-1  4.6120954  0.4920092  8.7321817 0.0255144 
3-1  0.2590171 -4.0370945  4.5551287 0.9880106 
3-2 -4.3530783 -8.5694240 -0.1367327 0.0418448 
 
[1] "Mo" 
            Df    Sum Sq   Mean Sq F value Pr(>F) 
y            2 1.014e-08 5.072e-09   2.279  0.118 
Residuals   33 7.345e-08 2.226e-09                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
             diff           lwr          upr     p adj 
2-1 -1.810169e-05 -6.444450e-05 2.824112e-05 
0.6078113 
3-1 -4.197309e-05 -9.029584e-05 6.349656e-06 
0.0989093 
3-2 -2.387140e-05 -7.129694e-05 2.355414e-05 
0.4414199 
 
[1] "AM241" 
            Df Sum Sq Mean Sq F value Pr(>F)   
y            2   4383  2191.4   4.164 0.0244 * 
Residuals   33  17369   526.3                  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
          diff       lwr       upr     p adj 
2-1  26.006021   3.47034 48.541702 0.0208244 
3-1   8.910252 -14.58824 32.408740 0.6252162 
3-2 -17.095769 -40.15796  5.966423 0.1791243 
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Appendix T1.4  Model output for 
September seasonal differences 
 
[1] "clay" 
            Df Sum Sq Mean Sq F value Pr(>F) 
y            2   5.52    2.76   0.643  0.532 
Residuals   33 141.56    4.29                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
           diff       lwr      upr     p adj 
2-1  0.80884615 -1.225662 2.843354 0.5972143 
3-1 -0.01318182 -2.134612 2.108248 0.9998718 
3-2 -0.82202797 -2.904069 1.260013 0.6013930 
 
[1] "silt" 
            Df Sum Sq Mean Sq F value Pr(>F) 
y            2    339   169.5   1.118  0.339 
Residuals   33   5004   151.7                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
        diff       lwr      upr     p adj 
2-1 3.886667 -8.209989 15.98332 0.7126727 
3-1 7.682121 -4.931349 20.29559 0.3065478 
3-2 3.795455 -8.583821 16.17473 0.7343587 
 
[1] "fine_sand" 
            Df Sum Sq Mean Sq F value Pr(>F) 
y            2    641   320.4   1.886  0.168 
Residuals   33   5606   169.9                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
          diff       lwr      upr     p adj 
2-1  -4.542308 -17.34521 8.260596 0.6623367 
3-1 -10.550000 -23.89989 2.799891 0.1437391 
3-2  -6.007692 -19.10972 7.094331 0.5057050 
 
[1] "organic_matter" 
            Df Sum Sq Mean Sq F value Pr(>F)   
y            2  24.58  12.290   4.888 0.0138 * 
Residuals   33  82.97   2.514                  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
          diff        lwr        upr     p adj 
2-1  1.8367949  0.2791978 3.39439190 0.0179139 
3-1  0.2756061 -1.3485373 1.89974941 0.9091199 
3-2 -1.5611888 -3.1551767 0.03279904 0.0558739 
 
[1] "carbonates" 
            Df Sum Sq Mean Sq F value  Pr(>F)    
y            2  6.994   3.497   8.369 0.00115 ** 
Residuals   33 13.789   0.418                    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 

 
$y 
           diff        lwr        upr     p adj 
2-1 -0.96871795 -1.6036874 -0.3337485 0.0019513 
3-1 -0.88969697 -1.5517947 -0.2275992 0.0064531 
3-2  0.07902098 -0.5707836  0.7288255 0.9521727 
 
[1] "airkerma" 
            Df Sum Sq Mean Sq F value   Pr(>F)     
y            2  31964   15982   14.02 0.000304 *** 
Residuals   16  18240    1140                      
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
17 observations deleted due to missingness 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
         diff       lwr       upr     p adj 
2-1 -29.35714 -77.82782  19.11354 0.2896734 
3-1  68.50000  18.19960 118.80040 0.0076509 
3-2  97.85714  49.38646 146.32782 0.0002403 
 
[1] "ph" 
            Df Sum Sq Mean Sq F value Pr(>F) 
y            2 0.0534 0.02670   1.524  0.233 
Residuals   33 0.5782 0.01752                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
          diff         lwr       upr     p adj 
2-1 0.07275641 -0.05727152 0.2027843 0.3663652 
3-1 0.08946970 -0.04611351 0.2250529 0.2518958 
3-2 0.01671329 -0.11635255 0.1497791 0.9490674 
 
[1] "CS137" 
            Df Sum Sq Mean Sq F value Pr(>F) 
y            2   2290    1145   0.388  0.681 
Residuals   33  97322    2949                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
         diff       lwr      upr     p adj 
2-1  7.450682 -45.89430 60.79567 0.9374291 
3-1 19.826167 -35.79791 75.45025 0.6598423 
3-2 12.375485 -42.21582 66.96679 0.8439998 
 
[1] "Al" 
            Df Sum Sq Mean Sq F value Pr(>F) 
y            2  161.8   80.91   2.414  0.105 
Residuals   33 1106.0   33.52                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
         diff        lwr       upr     p adj 
2-1  3.467905  -2.218927 9.1547372 0.3056653 
3-1 -1.567275  -7.497069 4.3625196 0.7944758 
3-2 -5.035180 -10.854876 0.7845157 0.1005822 
 
[1] "As" 
            Df    Sum Sq   Mean Sq F value Pr(>F) 
y            2 3.350e-06 1.673e-06   0.758  0.476 
Residuals   33 7.281e-05 2.206e-06                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
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Fit: aov(formula = x ~ y, data = test) 
 
$y 
             diff           lwr          upr     p adj 
2-1  0.0006985612 -0.0007605015 0.0021576239 
0.4762561 
3-1  0.0001646355 -0.0013567638 0.0016860347 
0.9619228 
3-2 -0.0005339257 -0.0020270771 0.0009592257 
0.6580940 
 
[1] "Ba" 
            Df  Sum Sq  Mean Sq F value Pr(>F) 
y            2 0.00229 0.001144   0.607  0.551 
Residuals   33 0.06216 0.001884                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
            diff         lwr        upr     p adj 
2-1  0.017621543 -0.02501125 0.06025433 0.5732680 
3-1  0.002397276 -0.04205694 0.04685150 0.9903958 
3-2 -0.015224267 -0.05885310 0.02840457 0.6711808 
 
[1] "Cd" 
            Df    Sum Sq   Mean Sq F value Pr(>F) 
y            2 1.858e-07 9.289e-08   1.831  0.176 
Residuals   33 1.674e-06 5.073e-08                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
             diff           lwr          upr     p adj 
2-1  1.245489e-04 -9.670128e-05 3.457990e-04 
0.3620727 
3-1 -4.316086e-05 -2.738636e-04 1.875419e-04 
0.8907184 
3-2 -1.677097e-04 -3.941291e-04 5.870959e-05 
0.1795845 
 
[1] "Co" 
            Df    Sum Sq   Mean Sq F value Pr(>F) 
y            2 5.900e-06 2.950e-06   1.821  0.178 
Residuals   33 5.344e-05 1.619e-06                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
             diff           lwr          upr     p adj 
2-1  0.0007363332 -0.0005137468 0.0019864132 
0.3299710 
3-1 -0.0001909963 -0.0014944843 0.0011124918 
0.9313700 
3-2 -0.0009273295 -0.0022066156 0.0003519567 
0.1923571 
 
[1] "Cr" 
            Df    Sum Sq   Mean Sq F value Pr(>F) 
y            2 0.0001719 8.594e-05   1.351  0.273 
Residuals   33 0.0020996 6.362e-05                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
             diff          lwr         upr     p adj 
2-1  0.0048773558 -0.002957938 0.012712649 
0.2914120 

3-1  0.0007848185 -0.007385228 0.008954865 
0.9698636 
3-2 -0.0040925373 -0.012110890 0.003925816 
0.4316307 
 
[1] "Cu" 
            Df    Sum Sq   Mean Sq F value Pr(>F)   
y            2 6.561e-05 3.281e-05    5.12 0.0116 * 
Residuals   33 2.114e-04 6.410e-06                  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
           diff           lwr         upr     p adj 
2-1 0.001144912 -0.0013415440 0.003631368 
0.5028747 
3-1 0.003337306  0.0007446198 0.005929993 
0.0092347 
3-2 0.002192394 -0.0003521536 0.004736942 
0.1023736 
 
[1] "Fe" 
            Df Sum Sq Mean Sq F value Pr(>F) 
y            2  30.27  15.136   2.009   0.15 
Residuals   33 248.63   7.534                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
           diff        lwr       upr     p adj 
2-1  1.89611047 -0.8001613 4.5923822 0.2109100 
3-1 -0.02695313 -2.8384196 2.7845133 0.9996950 
3-2 -1.92306360 -4.6823295 0.8362023 0.2165354 
 
[1] "Hg" 
            Df    Sum Sq   Mean Sq F value Pr(>F) 
y            2 7.260e-07 3.631e-07   0.717  0.496 
Residuals   33 1.671e-05 5.065e-07                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
             diff           lwr          upr     p adj 
2-1 -3.086497e-04 -0.0010077392 0.0003904399 
0.5309138 
3-1 -2.918189e-04 -0.0010207761 0.0004371383 
0.5930151 
3-2  1.683079e-05 -0.0006985919 0.0007322534 
0.9981645 
 
[1] "K" 
            Df Sum Sq Mean Sq F value Pr(>F) 
y            2   6.89   3.443   2.369  0.109 
Residuals   33  47.97   1.454                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
          diff        lwr       upr     p adj 
2-1  0.7442748 -0.4400657 1.9286153 0.2848757 
3-1 -0.2830185 -1.5179585 0.9519214 0.8408718 
3-2 -1.0272933 -2.2393041 0.1847175 0.1096158 
 
[1] "Mg" 
            Df Sum Sq Mean Sq F value Pr(>F) 
y            2   4.04   2.019   1.486  0.241 
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Residuals   33  44.84   1.359                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
           diff       lwr       upr     p adj 
2-1  0.68356730 -0.461507 1.8286416 0.3205578 
3-1 -0.02777034 -1.221766 1.1662258 0.9982060 
3-2 -0.71133764 -1.883165 0.4604895 0.3088503 
 
[1] "Mn" 
            Df Sum Sq Mean Sq F value Pr(>F)   
y            2 0.1952 0.09762    4.64 0.0168 * 
Residuals   33 0.6943 0.02104                  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
           diff         lwr        upr     p adj 
2-1  0.16602558  0.02354263 0.30850854 0.0194794 
3-1  0.03118725 -0.11738310 0.17975761 0.8645487 
3-2 -0.13483833 -0.28065018 0.01097352 0.0744979 
 
[1] "Ni" 
            Df    Sum Sq   Mean Sq F value Pr(>F) 
y            2 5.320e-06 2.659e-06   0.678  0.515 
Residuals   33 1.294e-04 3.921e-06                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
             diff          lwr         upr     p adj 
2-1  0.0005432812 -0.001401918 0.002488480 
0.7736218 
3-1 -0.0003920463 -0.002420352 0.001636259 
0.8838253 
3-2 -0.0009353275 -0.002925973 0.001055318 
0.4891462 
 
[1] "P" 
            Df Sum Sq Mean Sq F value Pr(>F) 
y            2 0.0535 0.02673   1.787  0.183 
Residuals   33 0.4936 0.01496                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
           diff         lwr        upr     p adj 
2-1  0.06966045 -0.05047706 0.18979796 0.3410778 
3-1 -0.01886954 -0.14413977 0.10640069 0.9276262 
3-2 -0.08852999 -0.21147433 0.03441434 0.1963614 
 
[1] "Pb" 
            Df    Sum Sq   Mean Sq F value Pr(>F) 
y            2 7.180e-06 3.590e-06   1.174  0.322 
Residuals   33 1.009e-04 3.057e-06                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
            diff           lwr         upr     p adj 
2-1 0.0001514074 -0.0015660877 0.001868902 
0.9745540 

3-1 0.0010385271 -0.0007523457 0.002829400 
0.3410038 
3-2 0.0008871198 -0.0008705019 0.002644741 
0.4394928 
 
[1] "Sr" 
            Df   Sum Sq   Mean Sq F value Pr(>F) 
y            2 0.001961 0.0009804   1.936   0.16 
Residuals   33 0.016709 0.0005063                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
           diff          lwr        upr     p adj 
2-1 0.012884466 -0.009219138 0.03498807 
0.3373393 
3-1 0.017703108 -0.005344844 0.04075106 
0.1590091 
3-2 0.004818642 -0.017801378 0.02743866 
0.8608201 
 
[1] "V" 
            Df   Sum Sq   Mean Sq F value Pr(>F) 
y            2 0.000627 0.0003136   1.999  0.152 
Residuals   33 0.005178 0.0001569                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
            diff          lwr         upr     p adj 
2-1  0.007541904 -0.004762592 0.019846400 
0.3021095 
3-1 -0.002048795 -0.014878985 0.010781395 
0.9190607 
3-2 -0.009590699 -0.022182671 0.003001272 
0.1636789 
 
[1] "Zn" 
            Df   Sum Sq   Mean Sq F value Pr(>F) 
y            2 0.000102 5.076e-05   0.399  0.674 
Residuals   33 0.004197 1.272e-04                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
           diff          lwr        upr     p adj 
2-1 0.002436575 -0.008641538 0.01351469 
0.8523910 
3-1 0.004172358 -0.007379054 0.01572377 
0.6526011 
3-2 0.001735783 -0.009601154 0.01307272 
0.9253235 
 
[1] "Ca" 
            Df Sum Sq Mean Sq F value  Pr(>F)    
y            2  126.5   63.26   6.561 0.00399 ** 
Residuals   33  318.2    9.64                    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
        diff        lwr      upr     p adj 
2-1 0.663904 -2.3863217 3.714130 0.8551977 
3-1 4.370400  1.1898576 7.550943 0.0053086 
3-2 3.706496  0.5850067 6.827986 0.0170566 
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[1] "Mo" 
            Df    Sum Sq   Mean Sq F value Pr(>F)   
y            2 3.812e-08 1.906e-08   3.968 0.0285 * 
Residuals   33 1.585e-07 4.803e-09                  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
             diff           lwr           upr     p adj 
2-1  3.590167e-06 -6.448481e-05  7.166514e-05 
0.9908124 
3-1 -6.869865e-05 -1.396820e-04  2.284736e-06 
0.0594479 
3-2 -7.228882e-05 -1.419543e-04 -2.623380e-06 
0.0406472 
 
[1] "AM241" 
            Df Sum Sq Mean Sq F value Pr(>F) 
y            2   1669   834.7   0.492  0.616 
Residuals   33  56002  1697.0                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
          diff       lwr      upr     p adj 
2-1  15.825532 -24.64067 56.29173 0.6070859 
3-1   4.493098 -37.70197 46.68816 0.9631059 
3-2 -11.332434 -52.74406 30.07919 0.7815340 
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Appendix T1.5  Model output for December 
seasonal differences 
 
[1] "clay" 
            Df Sum Sq Mean Sq F value Pr(>F) 
y            2   6.57   3.286   0.691  0.508 
Residuals   33 156.90   4.755                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
          diff       lwr      upr     p adj 
2-1 -0.6767949 -2.818727 1.465137 0.7205661 
3-1 -1.0492424 -3.282686 1.184201 0.4892545 
3-2 -0.3724476 -2.564423 1.819527 0.9088949 
 
[1] "silt" 
            Df Sum Sq Mean Sq F value Pr(>F) 
y            2    629   314.5   1.654  0.207 
Residuals   33   6273   190.1                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
          diff       lwr       upr     p adj 
2-1  -2.850128 -16.39354 10.693282 0.8639181 
3-1 -10.182576 -24.30461  3.939459 0.1955556 
3-2  -7.332448 -21.19228  6.527383 0.4062357 
 
[1] "fine_sand" 
            Df Sum Sq Mean Sq F value Pr(>F) 
y            2    559   279.3   1.241  0.302 
Residuals   33   7427   225.1                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
        diff        lwr      upr     p adj 
2-1 2.010833 -12.726019 16.74769 0.9401884 
3-1 9.401742  -5.964722 24.76821 0.3033622 
3-2 7.390909  -7.690246 22.47206 0.4600984 
 
[1] "organic_matter" 
            Df Sum Sq Mean Sq F value Pr(>F)   
y            2  15.82   7.908   4.662 0.0165 * 
Residuals   33  55.97   1.696                  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
           diff       lwr         upr     p adj 
2-1  0.07115385 -1.208139  1.35044677 0.9897868 
3-1 -1.40045455 -2.734404 -0.06650549 0.0379705 
3-2 -1.47160839 -2.780790 -0.16242679 0.0248319 
 
[1] "carbonates" 
            Df Sum Sq Mean Sq F value   Pr(>F)     
y            2  2.054   1.027   8.851 0.000836 *** 
Residuals   33  3.829   0.116                      
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 

 
$y 
          diff        lwr         upr     p adj 
2-1 -0.1796154 -0.5142335  0.15500271 0.3959230 
3-1 -0.5859091 -0.9348233 -0.23699488 0.0006819 
3-2 -0.4062937 -0.7487296 -0.06385779 0.0171525 
 
[1] "airkerma" 
            Df Sum Sq Mean Sq F value  Pr(>F)    
y            2  31581   15790   6.861 0.00705 ** 
Residuals   16  36824    2301                    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
17 observations deleted due to missingness 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
         diff        lwr       upr     p adj 
2-1 -17.35714 -86.226666  51.51238 0.7948419 
3-1  77.00000   5.530719 148.46928 0.0338793 
3-2  94.35714  25.487620 163.22667 0.0073215 
 
[1] "ph" 
            Df Sum Sq Mean Sq F value  Pr(>F)    
y            2 0.1506 0.07528   5.801 0.00694 ** 
Residuals   33 0.4282 0.01298                    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
           diff         lwr         upr     p adj 
2-1 -0.15493590 -0.26683634 -0.04303546 0.0049603 
3-1 -0.09053030 -0.20721154  0.02615094 0.1535137 
3-2  0.06440559 -0.05010922  0.17892041 0.3627182 
 
[1] "CS137" 
            Df Sum Sq Mean Sq F value Pr(>F) 
y            2   1745   872.5   0.956  0.395 
Residuals   33  30131   913.1                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
          diff       lwr      upr     p adj 
2-1   2.676622 -27.00558 32.35882 0.9733913 
3-1 -13.527644 -44.47797 17.42269 0.5375213 
3-2 -16.204266 -46.57994 14.17141 0.4003273 
 
[1] "Al" 
            Df Sum Sq Mean Sq F value Pr(>F)   
y            2  175.9   87.97   4.131 0.0251 * 
Residuals   33  702.7   21.29                  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
         diff       lwr        upr     p adj 
2-1  1.579413 -2.953485  6.1123115 0.6719618 
3-1 -3.760686 -8.487246  0.9658750 0.1402134 
3-2 -5.340099 -9.978901 -0.7012963 0.0211741 
 
[1] "As" 
            Df    Sum Sq   Mean Sq F value  Pr(>F)    
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y            2 3.426e-05 1.713e-05   7.462 0.00212 ** 
Residuals   33 7.575e-05 2.295e-06                    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
             diff           lwr           upr     p adj 
2-1  0.0006999554 -0.0007883004  0.0021882111 
0.4884810 
3-1 -0.0016570047 -0.0032088443 -0.0001051651 
0.0343261 
3-2 -0.0023569600 -0.0038799866 -0.0008339335 
0.0016826 
 
[1] "Ba" 
            Df   Sum Sq   Mean Sq F value Pr(>F) 
y            2 0.003934 0.0019672   2.153  0.132 
Residuals   33 0.030147 0.0009135                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
           diff         lwr         upr    p adj 
2-1  0.00790379 -0.02178611 0.037593694 0.791855 
3-1 -0.01743126 -0.04838963 0.013527107 0.361918 
3-2 -0.02533505 -0.05571861 0.005048513 0.117130 
 
[1] "Cd" 
            Df    Sum Sq   Mean Sq F value  Pr(>F)    
y            2 8.317e-07 4.158e-07   7.391 0.00223 ** 
Residuals   33 1.857e-06 5.630e-08                    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
             diff           lwr           upr     p adj 
2-1 -0.0000629858 -0.0002959859  0.0001700143 
0.7861670 
3-1 -0.0003577629 -0.0006007176 -0.0001148082 
0.0027833 
3-2 -0.0002947771 -0.0005332208 -0.0000563333 
0.0126719 
 
[1] "Co" 
            Df    Sum Sq   Mean Sq F value  Pr(>F)    
y            2 2.428e-05 1.214e-05   5.659 0.00771 ** 
Residuals   33 7.079e-05 2.145e-06                    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
             diff          lwr           upr     p adj 
2-1  0.0001316018 -0.001307093  0.0015702971 
0.9726317 
3-1 -0.0017104013 -0.003210563 -0.0002102396 
0.0225988 
3-2 -0.0018420031 -0.003314311 -0.0003696949 
0.0115634 
 
[1] "Cr" 
            Df    Sum Sq   Mean Sq F value Pr(>F)   
y            2 0.0005842 2.921e-04   4.918 0.0135 * 

Residuals   33 0.0019597 5.939e-05                  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
            diff          lwr          upr     p adj 
2-1  0.003110751 -0.004459066  0.010680567 
0.5768919 
3-1 -0.006662979 -0.014556206  0.001230248 
0.1114654 
3-2 -0.009773730 -0.017520403 -0.002027056 
0.0108302 
 
[1] "Cu" 
            Df    Sum Sq   Mean Sq F value Pr(>F)   
y            2 0.0001428 7.142e-05   3.635 0.0374 * 
Residuals   33 0.0006484 1.965e-05                  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
            diff          lwr           upr     p adj 
2-1  0.002680642 -0.001673572  0.0070348560 
0.2990542 
3-1 -0.002188009 -0.006728251  0.0023522338 
0.4717444 
3-2 -0.004868650 -0.009324594 -0.0004127067 
0.0297909 
 
[1] "Fe" 
            Df Sum Sq Mean Sq F value  Pr(>F)    
y            2  66.95   33.48   5.498 0.00869 ** 
Residuals   33 200.92    6.09                    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
          diff       lwr         upr     p adj 
2-1  0.8056149 -1.618177  3.22940698 0.6961435 
3-1 -2.4506210 -4.977966  0.07672449 0.0588719 
3-2 -3.2562359 -5.736656 -0.77581565 0.0078599 
 
[1] "Hg" 
            Df    Sum Sq   Mean Sq F value Pr(>F) 
y            2 9.540e-07 4.772e-07   0.848  0.437 
Residuals   33 1.856e-05 5.626e-07                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
             diff           lwr          upr     p adj 
2-1  0.0001749967 -0.0005617857 0.0009117791 
0.8302100 
3-1 -0.0002250937 -0.0009933542 0.0005431668 
0.7541087 
3-2 -0.0004000904 -0.0011540866 0.0003539058 
0.4041135 
 
[1] "K" 
            Df Sum Sq Mean Sq F value  Pr(>F)    
y            2  22.32  11.161   6.241 0.00503 ** 
Residuals   33  59.02   1.788                    
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--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
           diff       lwr        upr     p adj 
2-1  0.07247917 -1.241152  1.3861104 0.9899487 
3-1 -1.67048931 -3.040244 -0.3007348 0.0140370 
3-2 -1.74296847 -3.087291 -0.3986463 0.0087083 
 
[1] "Mg" 
            Df Sum Sq Mean Sq F value   Pr(>F)     
y            2  20.86  10.430   8.632 0.000966 *** 
Residuals   33  39.87   1.208                      
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
          diff       lwr        upr     p adj 
2-1  0.2317304 -0.848034  1.3114948 0.8589035 
3-1 -1.5186575 -2.644553 -0.3927615 0.0062461 
3-2 -1.7503879 -2.855379 -0.6453965 0.0013128 
 
[1] "Mn" 
            Df Sum Sq Mean Sq F value  Pr(>F)    
y            2 0.2374 0.11872   6.967 0.00299 ** 
Residuals   33 0.5624 0.01704                    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
           diff        lwr         upr     p adj 
2-1 -0.01472715 -0.1429601  0.11350580 0.9572227 
3-1 -0.18345894 -0.3171705 -0.04974740 0.0053796 
3-2 -0.16873179 -0.2999607 -0.03750288 0.0093171 
 
[1] "Ni" 
            Df    Sum Sq   Mean Sq F value Pr(>F)   
y            2 5.598e-05 2.799e-05   4.404 0.0202 * 
Residuals   33 2.097e-04 6.355e-06                  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
             diff          lwr           upr     p adj 
2-1  0.0001822638 -0.002294131  2.658659e-03 
0.9821892 
3-1 -0.0026073369 -0.005189533 -2.514094e-05 
0.0474154 
3-2 -0.0027896007 -0.005323853 -2.553484e-04 
0.0284278 
 
[1] "P" 
            Df Sum Sq Mean Sq F value   Pr(>F)     
y            2 0.4292 0.21458   9.164 0.000684 *** 
Residuals   33 0.7727 0.02342                      
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 

Fit: aov(formula = x ~ y, data = test) 
 
$y 
           diff        lwr         upr     p adj 
2-1 -0.01220905 -0.1625246  0.13810649 0.9783542 
3-1 -0.24311501 -0.3998526 -0.08637743 0.0016427 
3-2 -0.23090596 -0.3847334 -0.07707853 0.0023009 
 
[1] "Pb" 
            Df   Sum Sq   Mean Sq F value   Pr(>F)     
y            2 0.001519 0.0007596   21.25 1.17e-06 *** 
Residuals   33 0.001179 0.0000357                      
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
            diff         lwr           upr     p adj 
2-1 -0.010108342 -0.01598112 -0.0042355615 
0.0005091 
3-1 -0.015999015 -0.02212270 -0.0098753282 
0.0000009 
3-2 -0.005890674 -0.01190066  0.0001193148 
0.0556574 
 
[1] "Sr" 
            Df   Sum Sq   Mean Sq F value  Pr(>F)    
y            2 0.003276 0.0016379   5.791 0.00699 ** 
Residuals   33 0.009334 0.0002828                    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
            diff         lwr           upr     p adj 
2-1  0.005211024 -0.01130950  0.0217315499 
0.7213740 
3-1 -0.017455538 -0.03468188 -0.0002291941 
0.0464980 
3-2 -0.022666562 -0.03957306 -0.0057600600 
0.0065804 
 
[1] "V" 
            Df    Sum Sq   Mean Sq F value Pr(>F)   
y            2 0.0009174 0.0004587   4.887 0.0138 * 
Residuals   33 0.0030976 0.0000939                  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
            diff          lwr          upr     p adj 
2-1  0.004047899 -0.005469136  0.013564934 
0.5551450 
3-1 -0.008225211 -0.018148849  0.001698427 
0.1199584 
3-2 -0.012273110 -0.022012496 -0.002533724 
0.0109326 
 
[1] "Zn" 
            Df  Sum Sq  Mean Sq F value Pr(>F)   
y            2 0.00705 0.003525   4.626 0.0169 * 
Residuals   33 0.02515 0.000762                  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
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Fit: aov(formula = x ~ y, data = test) 
 
$y 
            diff         lwr          upr     p adj 
2-1  0.001284838 -0.02583142  0.028401098 
0.9925767 
3-1 -0.029690055 -0.05796482 -0.001415287 
0.0379283 
3-2 -0.030974893 -0.05872468 -0.003225103 
0.0259933 
 
[1] "Ca" 
            Df Sum Sq Mean Sq F value   Pr(>F)     
y            2  154.9   77.46   10.72 0.000258 *** 
Residuals   33  238.4    7.22                      
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
          diff       lwr       upr     p adj 
2-1  0.8510769 -1.789132  3.491286 0.7111106 
3-1 -3.9947071 -6.747715 -1.241699 0.0032101 
3-2 -4.8457840 -7.547677 -2.143891 0.0003066 
 
[1] "Mo" 
            Df    Sum Sq   Mean Sq F value Pr(>F) 
y            2 2.030e-08 1.016e-08   0.662  0.523 
Residuals   33 5.066e-07 1.535e-08                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
             diff           lwr          upr     p adj 
2-1  5.494705e-06 -0.0001162161 1.272055e-04 
0.9932586 
3-1 -4.847092e-05 -0.0001753816 7.843980e-05 
0.6210317 
3-2 -5.396563e-05 -0.0001785200 7.058874e-05 
0.5432191 
 
[1] "AM241" 
            Df Sum Sq Mean Sq F value Pr(>F) 
y            2   1568   784.0   1.649  0.208 
Residuals   33  15686   475.3                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
          diff       lwr       upr     p adj 
2-1   1.548968 -19.86708 22.965019 0.9827944 
3-1 -13.453326 -35.78435  8.877698 0.3141452 
3-2 -15.002294 -36.91870  6.914110 0.2279696 
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Appendix T1.6  Model output for seasonal 
differences 
 
[1] "clay" 
             Df Sum Sq Mean Sq F value   Pr(>F)     
y             3  358.0  119.35   23.52 2.18e-12 *** 
Residuals   140  710.4    5.07                      
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
         diff          lwr        upr     p adj 
2-1  1.385833  0.005328311  2.7663384 0.0487316 
3-1  4.264444  2.883939422  5.6449495 0.0000000 
4-1  2.684722  1.304217200  4.0652272 0.0000078 
3-2  2.878611  1.498106089  4.2591161 0.0000015 
4-2  1.298889 -0.081616133  2.6793939 0.0731991 
4-3 -1.579722 -2.960227245 -0.1992172 0.0179237 
 
[1] "silt" 
             Df Sum Sq Mean Sq F value   Pr(>F)     
y             3  11712    3904    21.5 1.64e-11 *** 
Residuals   140  25426     182                      
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
         diff       lwr       upr     p adj 
2-1  2.842222 -5.417025 11.101470 0.8075660 
3-1 19.913333 11.654086 28.172581 0.0000000 
4-1 18.740278 10.481030 26.999525 0.0000002 
3-2 17.071111  8.811864 25.330358 0.0000019 
4-2 15.898056  7.638808 24.157303 0.0000098 
4-3 -1.173056 -9.432303  7.086192 0.9827335 
 
[1] "fine_sand" 
             Df Sum Sq Mean Sq F value   Pr(>F)     
y             3   8148  2715.9   15.28 1.18e-08 *** 
Residuals   140  24880   177.7                      
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
           diff        lwr       upr     p adj 
2-1  -0.8783333  -9.048306  7.291640 0.9923444 
3-1 -16.3611111 -24.531084 -8.191138 0.0000040 
4-1 -14.4591667 -22.629140 -6.289194 0.0000546 
3-2 -15.4827778 -23.652751 -7.312805 0.0000137 
4-2 -13.5808333 -21.750806 -5.410860 0.0001696 
4-3   1.9019444  -6.268029 10.071917 0.9302429 
 
[1] "organic_matter" 
             Df Sum Sq Mean Sq F value Pr(>F)     
y             3  224.2   74.75   39.58 <2e-16 *** 
Residuals   140  264.4    1.89                    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 

          diff         lwr        upr     p adj 
2-1  1.2900000  0.44779381  2.1322062 0.0006255 
3-1  3.4391667  2.59696047  4.2813729 0.0000000 
4-1  2.0827778  1.24057159  2.9249840 0.0000000 
3-2  2.1491667  1.30696047  2.9913729 0.0000000 
4-2  0.7927778 -0.04942841  1.6349840 0.0730021 
4-3 -1.3563889 -2.19859508 -0.5141827 0.0002872 
 
[1] "carbonates" 
             Df Sum Sq Mean Sq F value Pr(>F)     
y             3  82.69  27.564   82.39 <2e-16 *** 
Residuals   140  46.84   0.335                    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
          diff         lwr       upr     p adj 
2-1  1.6869444  1.33246324 2.0414256 0.0000000 
3-1  1.4827778  1.12829657 1.8372590 0.0000000 
4-1  1.9522222  1.59774102 2.3067034 0.0000000 
3-2 -0.2041667 -0.55864787 0.1503145 0.4416951 
4-2  0.2652778 -0.08920343 0.6197590 0.2138652 
4-3  0.4694444  0.11496324 0.8239256 0.0041762 
 
[1] "airkerma" 
            Df Sum Sq Mean Sq F value Pr(>F) 
y            3  14936    4979   1.182  0.323 
Residuals   72 303167    4211                
68 observations deleted due to missingness 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
          diff       lwr      upr     p adj 
2-1 -35.421053 -90.79155 19.94945 0.3403629 
3-1 -20.368421 -75.73892 35.00208 0.7682723 
4-1  -4.263158 -59.63366 51.10734 0.9970345 
3-2  15.052632 -40.31787 70.42313 0.8908352 
4-2  31.157895 -24.21261 86.52840 0.4547794 
4-3  16.105263 -39.26524 71.47576 0.8699083 
 
[1] "ph" 
             Df Sum Sq Mean Sq F value Pr(>F)     
y             3  7.820  2.6067   39.36 <2e-16 *** 
Residuals   140  9.272  0.0662                    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
          diff          lwr         upr     p adj 
2-1 -0.1044444 -0.262161158  0.05327227 0.3162409 
3-1 -0.5791667 -0.736883381 -0.42144995 0.0000000 
4-1 -0.4163889 -0.574105603 -0.25867218 0.0000000 
3-2 -0.4747222 -0.632438936 -0.31700551 0.0000000 
4-2 -0.3119444 -0.469661158 -0.15422773 0.0000053 
4-3  0.1627778  0.005061064  0.32049449 0.0402624 
 
[1] "CS137" 
             Df Sum Sq Mean Sq F value  Pr(>F)    
y             3  18220    6073   4.247 0.00661 ** 
Residuals   140 200193    1430                    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
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Fit: aov(formula = x ~ y, data = test) 
 
$y 
          diff        lwr      upr     p adj 
2-1  -4.416994 -27.592189 18.75820 0.9599576 
3-1  24.446464   1.271270 47.62166 0.0343874 
4-1  12.176139 -10.999055 35.35133 0.5226900 
3-2  28.863458   5.688264 52.03865 0.0080909 
4-2  16.593133  -6.582061 39.76833 0.2493815 
4-3 -12.270325 -35.445519 10.90487 0.5160550 
 
[1] "Al" 
             Df Sum Sq Mean Sq F value Pr(>F)     
y             3   2477   825.7   37.94 <2e-16 *** 
Residuals   140   3046    21.8                    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
         diff        lwr       upr     p adj 
2-1 -5.644775 -8.5036910 -2.785859 0.0000055 
3-1  5.724800  2.8658840  8.583716 0.0000040 
4-1  2.385287 -0.4736292  5.244203 0.1369221 
3-2 11.369575  8.5106589 14.228491 0.0000000 
4-2  8.030062  5.1711458 10.888978 0.0000000 
4-3 -3.339513 -6.1984293 -0.480597 0.0149462 
 
[1] "As" 
             Df    Sum Sq   Mean Sq F value   Pr(>F)     
y             3 7.539e-05 2.513e-05    11.8 6.14e-07 *** 
Residuals   140 2.981e-04 2.129e-06                      
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
             diff           lwr          upr     p adj 
2-1 -0.0006978599 -0.0015921820 0.0001964622 
0.1823447 
3-1  0.0011748705  0.0002805484 0.0020691927 
0.0045742 
4-1  0.0007941541 -0.0001001680 0.0016884763 
0.1008826 
3-2  0.0018727304  0.0009784083 0.0027670525 
0.0000013 
4-2  0.0014920140  0.0005976919 0.0023863362 
0.0001593 
4-3 -0.0003807164 -0.0012750385 0.0005136057 
0.6858998 
 
[1] "Ba" 
             Df Sum Sq Mean Sq F value   Pr(>F)     
y             3 0.1079 0.03595   23.86 1.57e-12 *** 
Residuals   140 0.2110 0.00151                      
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
            diff         lwr          upr     p adj 
2-1 -0.042507628 -0.06629934 -0.018715914 
0.0000455 
3-1  0.034535981  0.01074427  0.058327695 
0.0013370 
4-1  0.002200117 -0.02159160  0.025991831 
0.9950899 

3-2  0.077043609  0.05325190  0.100835323 
0.0000000 
4-2  0.044707745  0.02091603  0.068499459 
0.0000164 
4-3 -0.032335865 -0.05612758 -0.008544151 
0.0030849 
 
[1] "Cd" 
             Df    Sum Sq   Mean Sq F value  Pr(>F)    
y             3 8.500e-07 2.833e-07   4.794 0.00328 ** 
Residuals   140 8.275e-06 5.911e-08                    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
            diff           lwr          upr     p adj 
2-1 1.414125e-04 -7.584029e-06 0.0002904091 
0.0695189 
3-1 1.818652e-04  3.286864e-05 0.0003308618 
0.0098920 
4-1 1.924178e-04  4.342122e-05 0.0003414143 
0.0055259 
3-2 4.045267e-05 -1.085439e-04 0.0001894492 
0.8945964 
4-2 5.100525e-05 -9.799131e-05 0.0002000018 
0.8100067 
4-3 1.055258e-05 -1.384440e-04 0.0001595491 
0.9977740 
 
[1] "Co" 
             Df    Sum Sq   Mean Sq F value   Pr(>F)     
y             3 5.569e-05 1.856e-05   9.855 6.13e-06 *** 
Residuals   140 2.637e-04 1.884e-06                      
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
             diff           lwr          upr     p adj 
2-1  5.485754e-04 -2.925526e-04 0.0013897035 
0.3297657 
3-1  1.456457e-03  6.153290e-04 0.0022975850 
0.0000822 
4-1  1.455593e-03  6.144652e-04 0.0022967212 
0.0000831 
3-2  9.078816e-04  6.675354e-05 0.0017490096 
0.0289098 
4-2  9.070178e-04  6.588976e-05 0.0017481458 
0.0291230 
4-3 -8.637778e-07 -8.419918e-04 0.0008402642 
1.0000000 
 
[1] "Cr" 
             Df   Sum Sq   Mean Sq F value   Pr(>F)     
y             3 0.003665 0.0012216   23.88 1.53e-12 *** 
Residuals   140 0.007161 0.0000511                      
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
            diff          lwr          upr     p adj 
2-1 -0.005475109 -0.009858159 -0.001092060 
0.0078493 
3-1  0.007110670  0.002727621  0.011493720 
0.0002550 



225 
 

4-1  0.005979566  0.001596516  0.010362616 
0.0029487 
3-2  0.012585780  0.008202730  0.016968829 
0.0000000 
4-2  0.011454675  0.007071626  0.015837725 
0.0000000 
4-3 -0.001131104 -0.005514154  0.003251945 
0.9078724 
 
[1] "Cu" 
             Df    Sum Sq   Mean Sq F value Pr(>F)   
y             3 0.0001353 4.511e-05   3.227 0.0245 * 
Residuals   140 0.0019574 1.398e-05                  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
             diff           lwr         upr     p adj 
2-1  0.0020670609 -0.0002245440 0.004358666 
0.0928339 
3-1  0.0018561011 -0.0004355038 0.004147706 
0.1562323 
4-1  0.0025577644  0.0002661594 0.004849369 
0.0221234 
3-2 -0.0002109598 -0.0025025648 0.002080645 
0.9951550 
4-2  0.0004907034 -0.0018009016 0.002782308 
0.9445634 
4-3  0.0007016632 -0.0015899418 0.002993268 
0.8560885 
 
[1] "Fe" 
             Df Sum Sq Mean Sq F value   Pr(>F)     
y             3  220.9   73.63   10.57 2.61e-06 *** 
Residuals   140  975.3    6.97                      
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
          diff        lwr       upr     p adj 
2-1  1.2366756 -0.3809542 2.8543054 0.1975076 
3-1  3.2427801  1.6251502 4.8604099 0.0000039 
4-1  2.5127982  0.8951683 4.1304280 0.0005064 
3-2  2.0061045  0.3884747 3.6237343 0.0084475 
4-2  1.2761226 -0.3415072 2.8937524 0.1744974 
4-3 -0.7299819 -2.3476117 0.8876479 0.6446302 
 
[1] "Hg" 
             Df    Sum Sq   Mean Sq F value Pr(>F) 
y             3 7.100e-07 2.352e-07   0.339  0.797 
Residuals   140 9.727e-05 6.948e-07                
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
             diff           lwr          upr     p adj 
2-1 -1.570451e-04 -0.0006678805 0.0003537902 
0.8546043 
3-1 -1.824619e-04 -0.0006932973 0.0003283734 
0.7894987 
4-1 -1.227694e-04 -0.0006336048 0.0003880659 
0.9239306 
3-2 -2.541683e-05 -0.0005362522 0.0004854185 
0.9992231 
4-2  3.427567e-05 -0.0004765597 0.0005451110 
0.9981047 

4-3  5.969250e-05 -0.0004511429 0.0005705279 
0.9902222 
 
[1] "K" 
             Df Sum Sq Mean Sq F value   Pr(>F)     
y             3   80.7  26.899   18.78 2.72e-10 *** 
Residuals   140  200.6   1.433                      
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
          diff        lwr        upr     p adj 
2-1 -0.9922810 -1.7258433 -0.2587187 0.0032642 
3-1  0.5101642 -0.2233981  1.2437265 0.2737703 
4-1  1.0360735  0.3025113  1.7696358 0.0019164 
3-2  1.5024452  0.7688829  2.2360075 0.0000023 
4-2  2.0283546  1.2947923  2.7619168 0.0000000 
4-3  0.5259093 -0.2076529  1.2594716 0.2483008 
 
[1] "Mg" 
             Df Sum Sq Mean Sq F value   Pr(>F)     
y             3   37.7  12.567   8.257 4.26e-05 *** 
Residuals   140  213.1   1.522                      
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
          diff         lwr       upr     p adj 
2-1 0.25907682 -0.49701639 1.0151700 0.8095646 
3-1 1.08848034  0.33238714 1.8445735 0.0014938 
4-1 1.18010657  0.42401337 1.9361998 0.0004709 
3-2 0.82940352  0.07331032 1.5854967 0.0254634 
4-2 0.92102975  0.16493655 1.6771230 0.0100886 
4-3 0.09162623 -0.66446697 0.8477194 0.9891230 
 
[1] "Mn" 
             Df Sum Sq Mean Sq F value   Pr(>F)     
y             3 0.8332  0.2777   15.78 6.78e-09 *** 
Residuals   140 2.4636  0.0176                      
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
           diff         lwr         upr     p adj 
2-1  0.07111805 -0.01018072 0.152416824 0.1089743 
3-1  0.20686121  0.12556243 0.288159981 0.0000000 
4-1  0.13010021  0.04880143 0.211398979 0.0003183 
3-2  0.13574316  0.05444438 0.217041931 0.0001571 
4-2  0.05898216 -0.02231662 0.140280929 0.2385685 
4-3 -0.07676100 -0.15805978 0.004537772 0.0717007 
 
[1] "Ni" 
             Df    Sum Sq   Mean Sq F value   Pr(>F)     
y             3 0.0001388 4.626e-05   9.853 6.15e-06 *** 
Residuals   140 0.0006574 4.700e-06                      
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
             diff           lwr         upr     p adj 



226 
 

2-1 -0.0001180205 -0.0014460480 0.001210007 
0.9956348 
3-1  0.0018180240  0.0004899965 0.003146051 
0.0028283 
4-1  0.0019806431  0.0006526156 0.003308671 
0.0009201 
3-2  0.0019360445  0.0006080170 0.003264072 
0.0012616 
4-2  0.0020986635  0.0007706360 0.003426691 
0.0003885 
4-3  0.0001626191 -0.0011654084 0.001490647 
0.9887869 
 
[1] "P" 
             Df Sum Sq Mean Sq F value   Pr(>F)     
y             3 0.6783  0.2261   11.03 1.52e-06 *** 
Residuals   140 2.8707  0.0205                      
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
           diff           lwr        upr     p adj 
2-1 0.005247912 -0.0825111267 0.09300695 
0.9986551 
3-1 0.092210181  0.0044511422 0.17996922 
0.0353955 
4-1 0.166541391  0.0787823520 0.25430043 
0.0000133 
3-2 0.086962269 -0.0007967701 0.17472131 
0.0530947 
4-2 0.161293479  0.0735344398 0.24905252 
0.0000260 
4-3 0.074331210 -0.0134278291 0.16209025 
0.1276385 
 
[1] "Pb" 
             Df   Sum Sq   Mean Sq F value Pr(>F)     
y             3 0.004325 0.0014415   33.62 <2e-16 *** 
Residuals   140 0.006003 0.0000429                    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
            diff          lwr          upr     p adj 
2-1  0.010462220  0.006449244  0.014475195 
0.0000000 
3-1 -0.003005849 -0.007018825  0.001007127 
0.2131606 
4-1  0.007670850  0.003657874  0.011683826 
0.0000114 
3-2 -0.013468069 -0.017481045 -0.009455093 
0.0000000 
4-2 -0.002791370 -0.006804346  0.001221606 
0.2736179 
4-3  0.010676699  0.006663723  0.014689675 
0.0000000 
 
[1] "Sr" 
             Df  Sum Sq  Mean Sq F value   Pr(>F)     
y             3 0.01700 0.005665   14.67 2.34e-08 *** 
Residuals   140 0.05408 0.000386                      
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 

$y 
            diff          lwr          upr     p adj 
2-1 -0.014129222 -0.026174941 -0.002083503 
0.0143957 
3-1  0.015980407  0.003934689  0.028026126 
0.0040931 
4-1  0.005551103 -0.006494616  0.017596822 
0.6289769 
3-2  0.030109629  0.018063911  0.042155348 
0.0000000 
4-2  0.019680325  0.007634606  0.031726044 
0.0002269 
4-3 -0.010429304 -0.022475023  0.001616415 
0.1147458 
 
[1] "V" 
             Df  Sum Sq  Mean Sq F value Pr(>F)     
y             3 0.01046 0.003485   33.87 <2e-16 *** 
Residuals   140 0.01440 0.000103                    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
            diff          lwr           upr     p adj 
2-1 -0.012389895 -0.018606290 -0.0061735002 
0.0000045 
3-1  0.010863677  0.004647282  0.0170800717 
0.0000693 
4-1  0.004610074 -0.001606321  0.0108264689 
0.2209784 
3-2  0.023253572  0.017037177  0.0294699670 
0.0000000 
4-2  0.016999969  0.010783574  0.0232163641 
0.0000000 
4-3 -0.006253603 -0.012469998 -0.0000372079 
0.0480448 
 
[1] "Zn" 
             Df  Sum Sq  Mean Sq F value   Pr(>F)     
y             3 0.01338 0.004460   8.642 2.66e-05 *** 
Residuals   140 0.07225 0.000516                      
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
           diff           lwr        upr     p adj 
2-1 0.012945879 -0.0009765362 0.02686829 
0.0783842 
3-1 0.015043792  0.0011213764 0.02896621 
0.0286659 
4-1 0.027177306  0.0132548909 0.04109972 
0.0000072 
3-2 0.002097913 -0.0118245030 0.01602033 
0.9795132 
4-2 0.014231427  0.0003090115 0.02815384 
0.0430741 
4-3 0.012133514 -0.0017889011 0.02605593 
0.1110492 
 
[1] "Ca" 
             Df Sum Sq Mean Sq F value Pr(>F)   
y             3  139.9   46.63   3.263 0.0234 * 
Residuals   140 2000.9   14.29                  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
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Fit: aov(formula = x ~ y, data = test) 
 
$y 
          diff        lwr      upr     p adj 
2-1 -0.9080923 -3.2250058 1.408821 0.7385481 
3-1  0.4255551 -1.8913584 2.742469 0.9639256 
4-1  1.8249679 -0.4919455 4.141881 0.1755933 
3-2  1.3336474 -0.9832660 3.650561 0.4422339 
4-2  2.7330603  0.4161468 5.049974 0.0136725 
4-3  1.3994129 -0.9175006 3.716326 0.3988003 
 
[1] "Mo" 
             Df    Sum Sq  Mean Sq F value  Pr(>F)    
y             3 1.458e-07 4.86e-08   4.943 0.00271 ** 
Residuals   140 1.376e-06 9.83e-09                    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
 
$y 
             diff           lwr           upr     p adj 
2-1 -8.526314e-05 -1.460281e-04 -2.449823e-05 
0.0020833 
3-1 -6.676528e-05 -1.275302e-04 -6.000364e-06 
0.0251344 
4-1 -4.473383e-05 -1.054987e-04  1.603108e-05 
0.2268002 
3-2  1.849786e-05 -4.226705e-05  7.926277e-05 
0.8581975 
4-2  4.052931e-05 -2.023561e-05  1.012942e-04 
0.3099416 
4-3  2.203144e-05 -3.873347e-05  8.279636e-05 
0.7818646 
 
[1] "AM241" 
             Df Sum Sq Mean Sq F value   Pr(>F)     
y             3  17266    5755   6.577 0.000343 *** 
Residuals   140 122512     875                      
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = x ~ y, data = test) 
$y 
          diff        lwr       upr     p adj 
2-1  -4.996945 -23.126525 13.132635 0.8903348 
3-1  23.737417   5.607837 41.866997 0.0047485 
4-1   9.562694  -8.566885 27.692274 0.5193113 
3-2  28.734362  10.604782 46.863942 0.0003709 
4-2  14.559639  -3.569940 32.689219 0.1620238 
4-3 -14.174722 -32.304302  3.954858 0.1809210 
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Appendix T1.7  Model output for 241Am for 
transect 1 season 1 
 
[[1]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.28424 -0.09774 -0.04557  0.08212  0.38393  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   2.0689     0.1522   13.59 9.85e-06 *** 
log(clay)     1.0085     0.1273    7.92 0.000215 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.2141 on 6 degrees of 
freedom 
Multiple R-squared:  0.9127, Adjusted R-squared:  
0.8981  
F-statistic: 62.72 on 1 and 6 DF,  p-value: 0.0002152 
 
 
[[2]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.26558 -0.09008 -0.01473  0.08930  0.29524  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  1.60484    0.17152   9.357 8.45e-05 *** 
log(silt)    0.70865    0.07467   9.491 7.80e-05 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.1811 on 6 degrees of 
freedom 
Multiple R-squared:  0.9375, Adjusted R-squared:  
0.9271  
F-statistic: 90.08 on 1 and 6 DF,  p-value: 7.797e-05 
 
 
[[3]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.46143 -0.35957 -0.00713  0.40538  0.45004  
 
Coefficients: 
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)      22.176      5.567   3.984  0.00725 ** 
log(fine_sand)   -4.422      1.291  -3.425  0.01405 *  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.4214 on 6 degrees of 
freedom 
Multiple R-squared:  0.6617, Adjusted R-squared:  
0.6053  

F-statistic: 11.73 on 1 and 6 DF,  p-value: 0.01405 
 
 
[[4]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.76884 -0.18686 -0.02716  0.26839  0.66366  
 
Coefficients: 
                    Estimate Std. Error t value Pr(>|t|)     
(Intercept)           3.5908     0.2328  15.425 4.69e-06 
*** 
log(organic_matter)   0.7048     0.2429   2.901   0.0273 
*   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.4674 on 6 degrees of 
freedom 
Multiple R-squared:  0.5838, Adjusted R-squared:  
0.5145  
F-statistic: 8.418 on 1 and 6 DF,  p-value: 0.02729 
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Appendix T1.8  Model output for 241Am for 
transect 2 season 1 
 
[[1]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.65965 -0.10742  0.05924  0.15417  0.43092  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   1.6334     0.4276   3.820 0.005089 **  
log(clay)     1.3420     0.2414   5.559 0.000535 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.3133 on 8 degrees of 
freedom 
Multiple R-squared:  0.7943, Adjusted R-squared:  
0.7686  
F-statistic:  30.9 on 1 and 8 DF,  p-value: 0.0005355 
 
 
[[2]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.22834 -0.04193  0.01725  0.08989  0.15657  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   0.5933     0.2320   2.557   0.0338 *   
log(silt)     1.0690     0.0728  14.684 4.55e-07 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.1307 on 8 degrees of 
freedom 
Multiple R-squared:  0.9642, Adjusted R-squared:  
0.9598  
F-statistic: 215.6 on 1 and 8 DF,  p-value: 4.546e-07 
 
 
[[3]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.53921 -0.12333  0.00581  0.12610  0.42332  
 
Coefficients: 
               Estimate Std. Error t value Pr(>|t|)     
(Intercept)     18.8473     2.3216   8.118 3.93e-05 *** 
log(fine_sand)  -3.6246     0.5643  -6.423 0.000204 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.2784 on 8 degrees of 
freedom 
Multiple R-squared:  0.8376, Adjusted R-squared:  
0.8173  

F-statistic: 41.26 on 1 and 8 DF,  p-value: 0.000204 
 
 
[[4]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.22376 -0.07688  0.01878  0.09595  0.18966  
 
Coefficients: 
                    Estimate Std. Error t value Pr(>|t|)     
(Intercept)          3.91355    0.04296   91.11 2.35e-13 
*** 
log(organic_matter)  1.38806    0.09828   14.12 6.14e-
07 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.1356 on 8 degrees of 
freedom 
Multiple R-squared:  0.9614, Adjusted R-squared:  
0.9566  
F-statistic: 199.5 on 1 and 8 DF,  p-value: 6.141e-07 
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Appendix T1.9  Model output for 241Am for 
transect 3 season 1 
 
[[1]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-0.5042 -0.4173  0.1488  0.2842  0.6273  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   2.5885     0.2780   9.310 6.47e-06 *** 
log(clay)     0.5737     0.2726   2.105   0.0646 .   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.417 on 9 degrees of 
freedom 
Multiple R-squared:  0.3298, Adjusted R-squared:  
0.2554  
F-statistic: 4.429 on 1 and 9 DF,  p-value: 0.06463 
 
 
[[2]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.19136 -0.10539 -0.05888  0.06692  0.33984  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  1.04277    0.25305   4.121  0.00259 **  
log(silt)    0.83158    0.09961   8.349 1.57e-05 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.1722 on 9 degrees of 
freedom 
Multiple R-squared:  0.8856, Adjusted R-squared:  
0.8729  
F-statistic:  69.7 on 1 and 9 DF,  p-value: 1.572e-05 
 
 
[[3]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-0.5932 -0.4930  0.1921  0.4150  0.6353  
 
Coefficients: 
               Estimate Std. Error t value Pr(>|t|) 
(Intercept)      2.3639     3.5982   0.657    0.528 
log(fine_sand)   0.1786     0.8604   0.208    0.840 
 
Residual standard error: 0.5081 on 9 degrees of 
freedom 
Multiple R-squared:  0.004768, Adjusted R-
squared:  -0.1058  
F-statistic: 0.04311 on 1 and 9 DF,  p-value: 0.8401 
 

 
[[4]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.39895 -0.29733 -0.02252  0.20549  0.67666  
 
Coefficients: 
                    Estimate Std. Error t value Pr(>|t|)     
(Intercept)           3.6346     0.2145  16.945  3.9e-08 *** 
log(organic_matter)   0.5928     0.2074   2.858   0.0188 
*   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.3688 on 9 degrees of 
freedom 
Multiple R-squared:  0.4758, Adjusted R-squared:  
0.4175  
F-statistic: 8.169 on 1 and 9 DF,  p-value: 0.01884 
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Appendix T1.10  Model output for 
241Am for transect 1 season 2 
 
[[1]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.43356 -0.11042  0.02615  0.11534  0.30621  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   2.0300     0.2203   9.217 7.03e-06 *** 
log(clay)     0.7668     0.1496   5.125 0.000624 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.2108 on 9 degrees of 
freedom 
Multiple R-squared:  0.7448, Adjusted R-squared:  
0.7164  
F-statistic: 26.27 on 1 and 9 DF,  p-value: 0.0006238 
 
 
[[2]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.32766 -0.08896 -0.01822  0.08790  0.31242  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  1.75725    0.21918   8.017 2.18e-05 *** 
log(silt)    0.55688    0.08744   6.369  0.00013 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.1779 on 9 degrees of 
freedom 
Multiple R-squared:  0.8184, Adjusted R-squared:  
0.7982  
F-statistic: 40.56 on 1 and 9 DF,  p-value: 0.00013 
 
 
[[3]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.60031 -0.15275 -0.00098  0.19455  0.52518  
 
Coefficients: 
               Estimate Std. Error t value Pr(>|t|)   
(Intercept)     10.0614     4.0544   2.482   0.0349 * 
log(fine_sand)  -1.6270     0.9487  -1.715   0.1205   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.3623 on 9 degrees of 
freedom 
Multiple R-squared:  0.2463, Adjusted R-squared:  
0.1626  

F-statistic: 2.941 on 1 and 9 DF,  p-value: 0.1205 
 
 
[[4]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
      Min        1Q    Median        3Q       Max  
-0.107318 -0.046724 -0.007716  0.017846  0.227378  
 
Coefficients: 
                    Estimate Std. Error t value Pr(>|t|)     
(Intercept)          2.75290    0.03791   72.61 9.01e-14 
*** 
log(organic_matter)  1.11280    0.08213   13.55 2.72e-
07 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.09022 on 9 degrees of 
freedom 
Multiple R-squared:  0.9533, Adjusted R-squared:  
0.9481  
F-statistic: 183.6 on 1 and 9 DF,  p-value: 2.719e-07 
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Appendix T1.11  Model output for 
241Am for transect 2 season 2 
 
[[1]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.22455 -0.17268 -0.04668  0.08998  0.43001  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   2.1594     0.4348   4.967 0.000564 *** 
log(clay)     0.9027     0.2329   3.875 0.003084 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.2251 on 10 degrees of 
freedom 
Multiple R-squared:  0.6003, Adjusted R-squared:  
0.5603  
F-statistic: 15.02 on 1 and 10 DF,  p-value: 0.003084 
 
 
[[2]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.27003 -0.04616 -0.03224  0.10156  0.16353  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   1.3664     0.2981   4.584    0.001 **  
log(silt)     0.7421     0.0893   8.311 8.42e-06 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.1266 on 10 degrees of 
freedom 
Multiple R-squared:  0.8735, Adjusted R-squared:  
0.8609  
F-statistic: 69.07 on 1 and 10 DF,  p-value: 8.418e-06 
 
 
[[3]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.23112 -0.11614 -0.06316  0.14702  0.29008  
 
Coefficients: 
               Estimate Std. Error t value Pr(>|t|)     
(Intercept)      8.9313     0.9062   9.856 1.82e-06 *** 
log(fine_sand)  -1.2518     0.2218  -5.643 0.000214 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.174 on 10 degrees of 
freedom 
Multiple R-squared:  0.761, Adjusted R-squared:  
0.7371  

F-statistic: 31.85 on 1 and 10 DF,  p-value: 0.0002144 
 
 
[[4]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.20008 -0.11330  0.01540  0.08233  0.28856  
 
Coefficients: 
                    Estimate Std. Error t value Pr(>|t|)     
(Intercept)           3.0642     0.1168  26.237 1.49e-10 
*** 
log(organic_matter)   0.8474     0.1212   6.992 3.75e-
05 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.1467 on 10 degrees of 
freedom 
Multiple R-squared:  0.8302, Adjusted R-squared:  
0.8132  
F-statistic: 48.89 on 1 and 10 DF,  p-value: 3.751e-05 
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Appendix T1.12 Model output for 241Am for 
transect 3 season 2 
 
[[1]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.22455 -0.17268 -0.04668  0.08998  0.43001  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   2.1594     0.4348   4.967 0.000564 *** 
log(clay)     0.9027     0.2329   3.875 0.003084 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.2251 on 10 degrees of 
freedom 
Multiple R-squared:  0.6003, Adjusted R-squared:  
0.5603  
F-statistic: 15.02 on 1 and 10 DF,  p-value: 0.003084 
 
 
[[2]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.27003 -0.04616 -0.03224  0.10156  0.16353  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   1.3664     0.2981   4.584    0.001 **  
log(silt)     0.7421     0.0893   8.311 8.42e-06 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.1266 on 10 degrees of 
freedom 
Multiple R-squared:  0.8735, Adjusted R-squared:  
0.8609  
F-statistic: 69.07 on 1 and 10 DF,  p-value: 8.418e-06 
 
 
[[3]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.23112 -0.11614 -0.06316  0.14702  0.29008  
 
Coefficients: 
               Estimate Std. Error t value Pr(>|t|)     
(Intercept)      8.9313     0.9062   9.856 1.82e-06 *** 
log(fine_sand)  -1.2518     0.2218  -5.643 0.000214 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.174 on 10 degrees of 
freedom 
Multiple R-squared:  0.761, Adjusted R-squared:  
0.7371  

F-statistic: 31.85 on 1 and 10 DF,  p-value: 0.0002144 
 
 
[[4]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.20008 -0.11330  0.01540  0.08233  0.28856  
 
Coefficients: 
                    Estimate Std. Error t value Pr(>|t|)     
(Intercept)           3.0642     0.1168  26.237 1.49e-10 
*** 
log(organic_matter)   0.8474     0.1212   6.992 3.75e-
05 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.1467 on 10 degrees of 
freedom 
Multiple R-squared:  0.8302, Adjusted R-squared:  
0.8132  
F-statistic: 48.89 on 1 and 10 DF,  p-value: 3.751e-05 
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Appendix T1.13  Model output for 
241Am for transect 1 season 3 
 
[[1]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.30093 -0.11711  0.00985  0.12073  0.24582  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   1.0670     0.3705   2.880   0.0164 *   
log(clay)     1.4427     0.1850   7.798 1.47e-05 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.1802 on 10 degrees of 
freedom 
Multiple R-squared:  0.8588, Adjusted R-squared:  
0.8447  
F-statistic: 60.81 on 1 and 10 DF,  p-value: 1.472e-05 
 
 
[[2]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.21305 -0.07335  0.01273  0.05205  0.22814  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  -0.3380     0.3492  -0.968    0.356     
log(silt)     1.2323     0.1004  12.274 2.36e-07 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.1196 on 10 degrees of 
freedom 
Multiple R-squared:  0.9378, Adjusted R-squared:  
0.9315  
F-statistic: 150.6 on 1 and 10 DF,  p-value: 2.362e-07 
 
 
[[3]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.45788 -0.01544  0.04646  0.09810  0.20258  
 
Coefficients: 
               Estimate Std. Error t value Pr(>|t|)     
(Intercept)      9.5048     0.7351  12.929 1.44e-07 *** 
log(fine_sand)  -1.3979     0.1838  -7.606 1.83e-05 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.1841 on 10 degrees of 
freedom 
Multiple R-squared:  0.8526, Adjusted R-squared:  
0.8379  

F-statistic: 57.86 on 1 and 10 DF,  p-value: 1.827e-05 
 
 
[[4]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.39082 -0.09220 -0.04011  0.12561  0.38957  
 
Coefficients: 
                    Estimate Std. Error t value Pr(>|t|)     
(Intercept)            2.685      0.206  13.036 1.34e-07 *** 
log(organic_matter)    1.069      0.169   6.326 8.62e-05 
*** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.2144 on 10 degrees of 
freedom 
Multiple R-squared:  0.8001, Adjusted R-squared:  
0.7801  
F-statistic: 40.01 on 1 and 10 DF,  p-value: 8.619e-05 
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Appendix T1.14  Model output for 
241Am for transect 2 season 3 
 
[[1]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.30013 -0.11977 -0.02857  0.09522  0.30181  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   0.2300     0.3683   0.625    0.545     
log(clay)     1.8699     0.1748  10.697 3.76e-07 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.1803 on 11 degrees of 
freedom 
Multiple R-squared:  0.9123, Adjusted R-squared:  
0.9043  
F-statistic: 114.4 on 1 and 11 DF,  p-value: 3.756e-07 
 
 
[[2]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.21243 -0.07679  0.00815  0.06123  0.33425  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  -0.5857     0.3902  -1.501    0.161     
log(silt)     1.3276     0.1091  12.173    1e-07 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.1601 on 11 degrees of 
freedom 
Multiple R-squared:  0.9309, Adjusted R-squared:  
0.9246  
F-statistic: 148.2 on 1 and 11 DF,  p-value: 1.004e-07 
 
 
[[3]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.24481 -0.09418  0.04515  0.10976  0.14003  
 
Coefficients: 
               Estimate Std. Error t value Pr(>|t|)     
(Intercept)     11.7536     0.5140   22.87 1.26e-10 *** 
log(fine_sand)  -1.9530     0.1314  -14.86 1.25e-08 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.1326 on 11 degrees of 
freedom 
Multiple R-squared:  0.9526, Adjusted R-squared:  
0.9483  

F-statistic: 220.9 on 1 and 11 DF,  p-value: 1.254e-08 
 
 
[[4]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
      Min        1Q    Median        3Q       Max  
-0.079036 -0.045820 -0.019824  0.007267  0.211588  
 
Coefficients: 
                    Estimate Std. Error t value Pr(>|t|)     
(Intercept)          1.82581    0.09604   19.01 9.20e-10 
*** 
log(organic_matter)  1.44473    0.05847   24.71 5.47e-
11 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.081 on 11 degrees of 
freedom 
Multiple R-squared:  0.9823, Adjusted R-squared:  
0.9807  
F-statistic: 610.6 on 1 and 11 DF,  p-value: 5.471e-11 
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Appendix T1.15 Model output for 241Am for 
transect 3 season 3 
 
[[1]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-0.9107 -0.0932 -0.0033  0.1292  1.3989  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|) 
(Intercept)  3.82552    3.04210   1.258    0.244 
log(clay)    0.08508    1.50934   0.056    0.956 
 
Residual standard error: 0.6511 on 8 degrees of 
freedom 
  (1 observation deleted due to missingness) 
Multiple R-squared:  0.000397, Adjusted R-
squared:  -0.1246  
F-statistic: 0.003178 on 1 and 8 DF,  p-value: 0.9564 
 
 
[[2]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.75385 -0.25580 -0.06431 -0.02287  1.32488  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|) 
(Intercept)   0.6310     2.4596   0.257    0.804 
log(silt)     0.9096     0.6628   1.372    0.207 
 
Residual standard error: 0.5859 on 8 degrees of 
freedom 
  (1 observation deleted due to missingness) 
Multiple R-squared:  0.1905, Adjusted R-squared:  
0.08936  
F-statistic: 1.883 on 1 and 8 DF,  p-value: 0.2072 
 
 
[[3]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.50919 -0.20970 -0.05222  0.04412  1.31348  
 
Coefficients: 
               Estimate Std. Error t value Pr(>|t|)   
(Intercept)      11.705      4.002   2.925   0.0191 * 
log(fine_sand)   -2.033      1.054  -1.928   0.0900 . 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.5381 on 8 degrees of 
freedom 
  (1 observation deleted due to missingness) 
Multiple R-squared:  0.3173, Adjusted R-squared:  
0.2319  
F-statistic: 3.718 on 1 and 8 DF,  p-value: 0.08998 

 
 
[[4]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.37105 -0.21681 -0.06351  0.02776  1.01269  
 
Coefficients: 
                    Estimate Std. Error t value Pr(>|t|)    
(Intercept)           1.9598     0.6018   3.257  0.01158 *  
log(organic_matter)   1.5644     0.4513   3.467  
0.00848 ** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.4117 on 8 degrees of 
freedom 
  (1 observation deleted due to missingness) 
Multiple R-squared:  0.6004, Adjusted R-squared:  
0.5504  
F-statistic: 12.02 on 1 and 8 DF,  p-value: 0.008482 
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Appendix T1.16  Model output for 
241Am for transect 1 season 4 
 
[[1]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.21117 -0.09705  0.02822  0.09294  0.20093  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   1.6003     0.2234   7.165 3.05e-05 *** 
log(clay)     1.2142     0.1177  10.320 1.19e-06 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.135 on 10 degrees of 
freedom 
Multiple R-squared:  0.9142, Adjusted R-squared:  
0.9056  
F-statistic: 106.5 on 1 and 10 DF,  p-value: 1.191e-06 
 
 
[[2]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.32382 -0.15836 -0.02742  0.14300  0.42983  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   0.6489     0.6068   1.069 0.310010     
log(silt)     0.8888     0.1664   5.342 0.000327 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.2347 on 10 degrees of 
freedom 
Multiple R-squared:  0.7405, Adjusted R-squared:  
0.7145  
F-statistic: 28.53 on 1 and 10 DF,  p-value: 0.0003275 
 
 
[[3]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
      Min        1Q    Median        3Q       Max  
-0.225501 -0.126275  0.007288  0.123488  0.208290  
 
Coefficients: 
               Estimate Std. Error t value Pr(>|t|)     
(Intercept)      8.1439     0.5366  15.176 3.13e-08 *** 
log(fine_sand)  -1.1122     0.1391  -7.998 1.18e-05 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.1694 on 10 degrees of 
freedom 
Multiple R-squared:  0.8648, Adjusted R-squared:  
0.8513  

F-statistic: 63.96 on 1 and 10 DF,  p-value: 1.18e-05 
 
 
[[4]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.22925 -0.11780 -0.09177  0.13933  0.27972  
 
Coefficients: 
                    Estimate Std. Error t value Pr(>|t|)     
(Intercept)           3.0721     0.1313  23.405 4.59e-10 
*** 
log(organic_matter)   0.7570     0.1124   6.735 5.14e-
05 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.1958 on 10 degrees of 
freedom 
Multiple R-squared:  0.8194, Adjusted R-squared:  
0.8013  
F-statistic: 45.36 on 1 and 10 DF,  p-value: 5.137e-05 
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Appendix T1.17  Model output for 
241Am for transect 2 season 4 
 
[[1]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.15033 -0.09939 -0.02233  0.07477  0.29596  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   2.0594     0.1908  10.795 3.42e-07 *** 
log(clay)     1.0548     0.1065   9.901 8.16e-07 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.1364 on 11 degrees of 
freedom 
Multiple R-squared:  0.8991, Adjusted R-squared:  
0.8899  
F-statistic: 98.03 on 1 and 11 DF,  p-value: 8.164e-07 
 
 
[[2]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
      Min        1Q    Median        3Q       Max  
-0.269325 -0.142901 -0.004937  0.153745  0.260624  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   0.9328     0.4602   2.027   0.0676 .   
log(silt)     0.8396     0.1288   6.516 4.33e-05 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.1948 on 11 degrees of 
freedom 
Multiple R-squared:  0.7943, Adjusted R-squared:  
0.7756  
F-statistic: 42.46 on 1 and 11 DF,  p-value: 4.329e-05 
 
 
[[3]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.27940 -0.08548 -0.01202  0.10778  0.15008  
 
Coefficients: 
               Estimate Std. Error t value Pr(>|t|)     
(Intercept)      8.8747     0.4756   18.66 1.12e-09 *** 
log(fine_sand)  -1.2732     0.1216  -10.47 4.68e-07 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.1297 on 11 degrees of 
freedom 
Multiple R-squared:  0.9087, Adjusted R-squared:  
0.9005  

F-statistic: 109.5 on 1 and 11 DF,  p-value: 4.68e-07 
 
 
[[4]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.20101 -0.09273 -0.03160  0.11472  0.19134  
 
Coefficients: 
                    Estimate Std. Error t value Pr(>|t|)     
(Intercept)          2.93091    0.09989   29.34 8.49e-12 
*** 
log(organic_matter)  0.88229    0.08395   10.51 4.49e-
07 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.1293 on 11 degrees of 
freedom 
Multiple R-squared:  0.9094, Adjusted R-squared:  
0.9012  
F-statistic: 110.4 on 1 and 11 DF,  p-value: 4.491e-07 
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Appendix T1.18 Model output for 241Am for 
transect 3 season 4 
 
[[1]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.57268 -0.10747  0.08928  0.15361  0.42883  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   1.9698     0.5962   3.304  0.00917 ** 
log(clay)     0.9352     0.3421   2.734  0.02308 *  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.3384 on 9 degrees of 
freedom 
Multiple R-squared:  0.4537, Adjusted R-squared:  
0.393  
F-statistic: 7.474 on 1 and 9 DF,  p-value: 0.02308 
 
 
[[2]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.47244 -0.12185  0.01739  0.15770  0.45751  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)   
(Intercept)   0.8048     0.8709   0.924   0.3795   
log(silt)     0.8267     0.2583   3.201   0.0108 * 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.3131 on 9 degrees of 
freedom 
Multiple R-squared:  0.5323, Adjusted R-squared:  
0.4804  
F-statistic: 10.24 on 1 and 9 DF,  p-value: 0.01082 
 
 
[[3]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-0.4737 -0.2345  0.1036  0.1246  0.4390  
 
Coefficients: 
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)      9.9135     2.1768   4.554  0.00138 ** 
log(fine_sand)  -1.5617     0.5358  -2.915  0.01718 *  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.3283 on 9 degrees of 
freedom 
Multiple R-squared:  0.4856, Adjusted R-squared:  
0.4284  

F-statistic: 8.495 on 1 and 9 DF,  p-value: 0.01718 
 
 
[[4]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.50837 -0.08513 -0.04669  0.06937  0.53103  
 
Coefficients: 
                    Estimate Std. Error t value Pr(>|t|)     
(Intercept)           2.8129     0.2160  13.021 3.83e-07 
*** 
log(organic_matter)   1.3133     0.3419   3.841  
0.00396 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.2818 on 9 degrees of 
freedom 
Multiple R-squared:  0.6211, Adjusted R-squared:  
0.5789  
F-statistic: 14.75 on 1 and 9 DF,  p-value: 0.003963 
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Appendix T1.19  Model output for 
137Cs for transect 1 season 1 
 
[[1]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.33479 -0.13642 -0.05813  0.09958  0.49092  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   1.9459     0.1909  10.191  5.2e-05 *** 
log(clay)     1.1416     0.1597   7.149 0.000378 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.2685 on 6 degrees of 
freedom 
Multiple R-squared:  0.8949, Adjusted R-squared:  
0.8774  
F-statistic:  51.1 on 1 and 6 DF,  p-value: 0.0003778 
 
 
[[2]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.31467 -0.12713 -0.02507  0.10967  0.38818  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  1.41691    0.21744   6.516 0.000623 *** 
log(silt)    0.80394    0.09466   8.493 0.000146 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.2295 on 6 degrees of 
freedom 
Multiple R-squared:  0.9232, Adjusted R-squared:  
0.9104  
F-statistic: 72.13 on 1 and 6 DF,  p-value: 0.0001458 
 
 
[[3]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.50385 -0.38815 -0.01199  0.44814  0.47400  
 
Coefficients: 
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)      25.389      6.088   4.170  0.00588 ** 
log(fine_sand)   -5.163      1.412  -3.658  0.01061 *  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.4609 on 6 degrees of 
freedom 
Multiple R-squared:  0.6904, Adjusted R-squared:  
0.6388  

F-statistic: 13.38 on 1 and 6 DF,  p-value: 0.01061 
 
 
[[4]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.88406 -0.20237 -0.02876  0.27396  0.80602  
 
Coefficients: 
                    Estimate Std. Error t value Pr(>|t|)     
(Intercept)           3.6700     0.2689   13.65 9.61e-06 *** 
log(organic_matter)   0.7997     0.2806    2.85   0.0292 
*   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.5399 on 6 degrees of 
freedom 
Multiple R-squared:  0.5751, Adjusted R-squared:  
0.5043  
F-statistic: 8.122 on 1 and 6 DF,  p-value: 0.02919 
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Appendix T1.20  Model output for 
137Cs for transect 2 season 1 
 
[[1]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.57905 -0.10494 -0.00405  0.16231  0.50739  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   1.4795     0.4342   3.407 0.009262 **  
log(clay)     1.4799     0.2452   6.036 0.000311 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.3181 on 8 degrees of 
freedom 
Multiple R-squared:   0.82, Adjusted R-squared:  
0.7975  
F-statistic: 36.44 on 1 and 8 DF,  p-value: 0.0003106 
 
 
[[2]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
      Min        1Q    Median        3Q       Max  
-0.314183 -0.028766  0.001067  0.045773  0.172354  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  0.38972    0.24991   1.559    0.158     
log(silt)    1.16067    0.07842  14.800 4.28e-07 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.1407 on 8 degrees of 
freedom 
Multiple R-squared:  0.9648, Adjusted R-squared:  
0.9604  
F-statistic:   219 on 1 and 8 DF,  p-value: 4.276e-07 
 
 
[[3]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.61019 -0.15161  0.00192  0.16833  0.49959  
 
Coefficients: 
               Estimate Std. Error t value Pr(>|t|)     
(Intercept)     20.0139     2.6672   7.504  6.9e-05 *** 
log(fine_sand)  -3.8880     0.6483  -5.997 0.000324 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.3198 on 8 degrees of 
freedom 
Multiple R-squared:  0.818, Adjusted R-squared:  
0.7953  

F-statistic: 35.97 on 1 and 8 DF,  p-value: 0.0003244 
 
 
[[4]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.23598 -0.10128 -0.03086  0.07322  0.35075  
 
Coefficients: 
                    Estimate Std. Error t value Pr(>|t|)     
(Intercept)          3.99488    0.05695   70.14 1.90e-12 
*** 
log(organic_matter)  1.49167    0.13031   11.45 3.07e-
06 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.1799 on 8 degrees of 
freedom 
Multiple R-squared:  0.9425, Adjusted R-squared:  
0.9353  
F-statistic:   131 on 1 and 8 DF,  p-value: 3.069e-06 
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Appendix T1.21  Model output for 
137Cs for transect 3 season 1 
 
[[1]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-0.5881 -0.4976  0.1799  0.3164  0.6821  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   2.5277     0.3333   7.584 3.38e-05 *** 
log(clay)     0.7147     0.3268   2.187   0.0565 .   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.4998 on 9 degrees of 
freedom 
Multiple R-squared:  0.3471, Adjusted R-squared:  
0.2745  
F-statistic: 4.784 on 1 and 9 DF,  p-value: 0.05651 
 
 
[[2]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.30003 -0.16686 -0.03560  0.07629  0.60651  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   0.7828     0.4004   1.955 0.082322 .   
log(silt)     0.9633     0.1576   6.111 0.000177 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.2726 on 9 degrees of 
freedom 
Multiple R-squared:  0.8058, Adjusted R-squared:  
0.7842  
F-statistic: 37.35 on 1 and 9 DF,  p-value: 0.0001768 
 
 
[[3]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-0.7188 -0.5610  0.2462  0.4401  0.9396  
 
Coefficients: 
               Estimate Std. Error t value Pr(>|t|) 
(Intercept)    3.168679   4.380217   0.723    0.488 
log(fine_sand) 0.002211   1.047348   0.002    0.998 
 
Residual standard error: 0.6185 on 9 degrees of 
freedom 
Multiple R-squared:  4.953e-07, Adjusted R-
squared:  -0.1111  
F-statistic: 4.458e-06 on 1 and 9 DF,  p-value: 0.9984 
 

 
[[4]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.44093 -0.32890 -0.03683  0.20104  0.99735  
 
Coefficients: 
                    Estimate Std. Error t value Pr(>|t|)     
(Intercept)           3.7923     0.2685  14.126  1.9e-07 *** 
log(organic_matter)   0.6948     0.2596   2.676   0.0254 
*   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.4616 on 9 degrees of 
freedom 
Multiple R-squared:  0.4432, Adjusted R-squared:  
0.3813  
F-statistic: 7.163 on 1 and 9 DF,  p-value: 0.02536 
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Appendix T1.22  Model output for 
137Cs for transect 1 season 2 
 
[[1]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.41997 -0.08577  0.00614  0.16113  0.24158  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   2.0800     0.2124   9.792 4.26e-06 *** 
log(clay)     0.7780     0.1443   5.392 0.000438 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.2033 on 9 degrees of 
freedom 
Multiple R-squared:  0.7636, Adjusted R-squared:  
0.7373  
F-statistic: 29.07 on 1 and 9 DF,  p-value: 0.0004378 
 
 
[[2]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.31223 -0.06818  0.01101  0.09993  0.24766  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  1.79933    0.20357   8.839 9.90e-06 *** 
log(silt)    0.56664    0.08121   6.977 6.49e-05 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.1652 on 9 degrees of 
freedom 
Multiple R-squared:  0.844, Adjusted R-squared:  
0.8266  
F-statistic: 48.68 on 1 and 9 DF,  p-value: 6.486e-05 
 
 
[[3]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-0.6106 -0.1462  0.0129  0.1649  0.4811  
 
Coefficients: 
               Estimate Std. Error t value Pr(>|t|)   
(Intercept)      11.095      3.863   2.872   0.0184 * 
log(fine_sand)   -1.854      0.904  -2.051   0.0706 . 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.3453 on 9 degrees of 
freedom 
Multiple R-squared:  0.3184, Adjusted R-squared:  
0.2427  

F-statistic: 4.205 on 1 and 9 DF,  p-value: 0.07056 
 
 
[[4]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.12192 -0.04741 -0.01824  0.03358  0.16284  
 
Coefficients: 
                    Estimate Std. Error t value Pr(>|t|)     
(Intercept)          2.81630    0.03411   82.57 2.84e-14 
*** 
log(organic_matter)  1.12031    0.07389   15.16 1.03e-
07 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.08117 on 9 degrees of 
freedom 
Multiple R-squared:  0.9623, Adjusted R-squared:  
0.9581  
F-statistic: 229.9 on 1 and 9 DF,  p-value: 1.027e-07 
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Appendix T1.23  Model output for 
137Cs for transect 2 season 2 
 
[[1]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.30823 -0.14458 -0.01982  0.05770  0.46083  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   1.5033     0.4736   3.174  0.00992 **  
log(clay)     1.2883     0.2538   5.077  0.00048 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.2452 on 10 degrees of 
freedom 
Multiple R-squared:  0.7205, Adjusted R-squared:  
0.6925  
F-statistic: 25.77 on 1 and 10 DF,  p-value: 0.0004801 
 
 
[[2]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.42252 -0.08296  0.02228  0.10780  0.19896  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   0.7200     0.4220   1.706    0.119     
log(silt)     0.9540     0.1264   7.546 1.96e-05 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.1792 on 10 degrees of 
freedom 
Multiple R-squared:  0.8506, Adjusted R-squared:  
0.8357  
F-statistic: 56.94 on 1 and 10 DF,  p-value: 1.957e-05 
 
 
[[3]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.24862 -0.19628 -0.07878  0.21670  0.29032  
 
Coefficients: 
               Estimate Std. Error t value Pr(>|t|)     
(Intercept)     10.5441     1.1738   8.983 4.21e-06 *** 
log(fine_sand)  -1.6336     0.2873  -5.685 0.000202 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.2254 on 10 degrees of 
freedom 
Multiple R-squared:  0.7637, Adjusted R-squared:  
0.7401  

F-statistic: 32.32 on 1 and 10 DF,  p-value: 0.0002023 
 
 
[[4]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.16426 -0.12863 -0.01451  0.03869  0.42084  
 
Coefficients: 
                    Estimate Std. Error t value Pr(>|t|)     
(Intercept)           2.8693     0.1362   21.07 1.29e-09 *** 
log(organic_matter)   1.1261     0.1413    7.97 1.22e-05 
*** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.171 on 10 degrees of 
freedom 
Multiple R-squared:  0.864, Adjusted R-squared:  
0.8504  
F-statistic: 63.52 on 1 and 10 DF,  p-value: 1.217e-05 
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Appendix T1.24 Model output for 137Cs for 
transect 3 season 2 
 
[[1]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.36821 -0.17211 -0.07215  0.15475  0.60148  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   1.7106     0.1763   9.703 4.60e-06 *** 
log(clay)     1.2708     0.1342   9.469 5.62e-06 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.287 on 9 degrees of 
freedom 
Multiple R-squared:  0.9088, Adjusted R-squared:  
0.8986  
F-statistic: 89.67 on 1 and 9 DF,  p-value: 5.623e-06 
 
 
[[2]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.28444 -0.12532 -0.07701  0.12880  0.33005  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  1.35052    0.14870   9.082 7.93e-06 *** 
log(silt)    0.80707    0.06004  13.443 2.91e-07 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.207 on 9 degrees of 
freedom 
Multiple R-squared:  0.9526, Adjusted R-squared:  
0.9473  
F-statistic: 180.7 on 1 and 9 DF,  p-value: 2.911e-07 
 
 
[[3]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.70201 -0.63234 -0.00081  0.54497  0.67025  
 
Coefficients: 
               Estimate Std. Error t value Pr(>|t|)     
(Intercept)      8.5217     1.5082   5.650 0.000313 *** 
log(fine_sand)  -1.2984     0.3628  -3.579 0.005944 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.6105 on 9 degrees of 
freedom 
Multiple R-squared:  0.5873, Adjusted R-squared:  
0.5414  

F-statistic: 12.81 on 1 and 9 DF,  p-value: 0.005944 
 
 
[[4]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.24640 -0.12097 -0.02431  0.05134  0.36026  
 
Coefficients: 
                    Estimate Std. Error t value Pr(>|t|)     
(Intercept)          2.73832    0.06574   41.66 1.32e-11 
*** 
log(organic_matter)  1.16078    0.08089   14.35 1.66e-
07 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.1945 on 9 degrees of 
freedom 
Multiple R-squared:  0.9581, Adjusted R-squared:  
0.9535  
F-statistic: 205.9 on 1 and 9 DF,  p-value: 1.656e-07 
 
 
  



246 
 

Appendix T1.25  Model output for 
137Cs for transect 1 season 3 
 
[[1]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.61800 -0.05557  0.05485  0.15307  0.25958  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   0.5683     0.5141   1.105    0.295     
log(clay)     1.6911     0.2567   6.588 6.17e-05 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.25 on 10 degrees of 
freedom 
Multiple R-squared:  0.8127, Adjusted R-squared:  
0.794  
F-statistic:  43.4 on 1 and 10 DF,  p-value: 6.172e-05 
 
 
[[2]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.66353 -0.05147  0.02589  0.17848  0.24404  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  -0.8185     0.7590  -1.078    0.306     
log(silt)     1.3694     0.2182   6.276 9.19e-05 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.26 on 10 degrees of 
freedom 
Multiple R-squared:  0.7975, Adjusted R-squared:  
0.7773  
F-statistic: 39.39 on 1 and 10 DF,  p-value: 9.188e-05 
 
 
[[3]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.66698 -0.05785  0.08024  0.15304  0.23676  
 
Coefficients: 
               Estimate Std. Error t value Pr(>|t|)     
(Intercept)     10.4142     1.0425   9.990 1.60e-06 *** 
log(fine_sand)  -1.6273     0.2606  -6.245 9.57e-05 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.261 on 10 degrees of 
freedom 
Multiple R-squared:  0.7959, Adjusted R-squared:  
0.7755  

F-statistic:    39 on 1 and 10 DF,  p-value: 9.572e-05 
 
 
[[4]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.55975 -0.07509 -0.04177  0.10927  0.45375  
 
Coefficients: 
                    Estimate Std. Error t value Pr(>|t|)     
(Intercept)           2.4239     0.2481   9.772 1.96e-06 *** 
log(organic_matter)   1.2881     0.2035   6.330 8.57e-
05 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.2582 on 10 degrees of 
freedom 
Multiple R-squared:  0.8003, Adjusted R-squared:  
0.7803  
F-statistic: 40.07 on 1 and 10 DF,  p-value: 8.573e-05 
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Appendix T1.26  Model output for 
137Cs for transect 2 season 3 
 
[[1]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.26039 -0.12238 -0.03128  0.12846  0.30398  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  0.08414    0.39592   0.213    0.836     
log(clay)    1.94474    0.18971  10.251 1.27e-06 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.1896 on 10 degrees of 
freedom 
Multiple R-squared:  0.9131, Adjusted R-squared:  
0.9044  
F-statistic: 105.1 on 1 and 10 DF,  p-value: 1.266e-06 
 
 
[[2]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.23899 -0.13059 -0.02981  0.09635  0.29199  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  -0.7763     0.4164  -1.864   0.0919 .   
log(silt)     1.3847     0.1174  11.797 3.43e-07 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.1666 on 10 degrees of 
freedom 
Multiple R-squared:  0.933, Adjusted R-squared:  
0.9263  
F-statistic: 139.2 on 1 and 10 DF,  p-value: 3.428e-07 
 
 
[[3]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.21744 -0.08116  0.04599  0.07237  0.16872  
 
Coefficients: 
               Estimate Std. Error t value Pr(>|t|)     
(Intercept)     12.2056     0.5052   24.16 3.36e-10 *** 
log(fine_sand)  -2.0642     0.1284  -16.08 1.79e-08 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.1242 on 10 degrees of 
freedom 
Multiple R-squared:  0.9628, Adjusted R-squared:  
0.959  

F-statistic: 258.5 on 1 and 10 DF,  p-value: 1.792e-08 
 
 
[[4]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.11166 -0.05278  0.00121  0.03716  0.12885  
 
Coefficients: 
                    Estimate Std. Error t value Pr(>|t|)     
(Intercept)          1.72123    0.10082   17.07 1.00e-08 
*** 
log(organic_matter)  1.52277    0.06259   24.33 3.14e-
10 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.08293 on 10 degrees of 
freedom 
Multiple R-squared:  0.9834, Adjusted R-squared:  
0.9817  
F-statistic: 591.9 on 1 and 10 DF,  p-value: 3.138e-10 
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Appendix T1.27 Model output for 137Cs for 
transect 3 season 3 
 
[[1]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.97959 -0.05117  0.00150  0.06010  1.65394  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|) 
(Intercept)   4.9149     3.2529   1.511    0.165 
log(clay)    -0.4012     1.6110  -0.249    0.809 
 
Residual standard error: 0.6983 on 9 degrees of 
freedom 
Multiple R-squared:  0.006843, Adjusted R-
squared:  -0.1035  
F-statistic: 0.06202 on 1 and 9 DF,  p-value: 0.8089 
 
 
[[2]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.92688 -0.22977 -0.10076  0.00554  1.56751  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|) 
(Intercept)   1.5557     2.7892   0.558    0.591 
log(silt)     0.6911     0.7537   0.917    0.383 
 
Residual standard error: 0.6701 on 9 degrees of 
freedom 
Multiple R-squared:  0.08544, Adjusted R-squared:  -
0.01617  
F-statistic: 0.8408 on 1 and 9 DF,  p-value: 0.3831 
 
 
[[3]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-0.6874 -0.2653 -0.1701  0.1389  1.5228  
 
Coefficients: 
               Estimate Std. Error t value Pr(>|t|)   
(Intercept)      11.429      4.413   2.590   0.0292 * 
log(fine_sand)   -1.924      1.159  -1.661   0.1312   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.6131 on 9 degrees of 
freedom 
Multiple R-squared:  0.2345, Adjusted R-squared:  
0.1495  
F-statistic: 2.757 on 1 and 9 DF,  p-value: 0.1312 
 
 
[[4]] 

 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-0.4721 -0.3045 -0.1605  0.1724  1.2120  
 
Coefficients: 
                    Estimate Std. Error t value Pr(>|t|)   
(Intercept)           2.1513     0.6959   3.092   0.0129 * 
log(organic_matter)   1.5317     0.5319   2.880   0.0182 
* 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.5055 on 9 degrees of 
freedom 
Multiple R-squared:  0.4796, Adjusted R-squared:  
0.4217  
F-statistic: 8.293 on 1 and 9 DF,  p-value: 0.01818 
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Appendix T1.28  Model output for 
137Cs for transect 1 season 4 
 
[[1]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.20650 -0.06206 -0.03350  0.08599  0.21115  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   1.3428     0.2190   6.131 0.000111 *** 
log(clay)     1.3920     0.1154  12.066 2.77e-07 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.1323 on 10 degrees of 
freedom 
Multiple R-squared:  0.9357, Adjusted R-squared:  
0.9293  
F-statistic: 145.6 on 1 and 10 DF,  p-value: 2.775e-07 
 
 
[[2]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.33577 -0.09842 -0.04147  0.10686  0.45221  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   0.1564     0.6070   0.258    0.802     
log(silt)     1.0453     0.1665   6.280 9.14e-05 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.2348 on 10 degrees of 
freedom 
Multiple R-squared:  0.7977, Adjusted R-squared:  
0.7775  
F-statistic: 39.44 on 1 and 10 DF,  p-value: 9.14e-05 
 
 
[[3]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
      Min        1Q    Median        3Q       Max  
-0.218063 -0.113141  0.007322  0.111819  0.219973  
 
Coefficients: 
               Estimate Std. Error t value Pr(>|t|)     
(Intercept)      8.9038     0.5050  17.631 7.33e-09 *** 
log(fine_sand)  -1.2905     0.1309  -9.861 1.81e-06 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.1594 on 10 degrees of 
freedom 
Multiple R-squared:  0.9067, Adjusted R-squared:  
0.8974  

F-statistic: 97.23 on 1 and 10 DF,  p-value: 1.807e-06 
 
 
[[4]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.18405 -0.11706 -0.04982  0.09749  0.26476  
 
Coefficients: 
                    Estimate Std. Error t value Pr(>|t|)     
(Intercept)          2.99137    0.10426   28.69 6.16e-11 
*** 
log(organic_matter)  0.90459    0.08928   10.13 1.41e-
06 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.1555 on 10 degrees of 
freedom 
Multiple R-squared:  0.9112, Adjusted R-squared:  
0.9024  
F-statistic: 102.7 on 1 and 10 DF,  p-value: 1.409e-06 
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Appendix T1.29  Model output for 
137Cs for transect 2 season 4 
 
[[1]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.18887 -0.10256 -0.03195  0.06684  0.33125  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   1.5938     0.2257    7.06 2.10e-05 *** 
log(clay)     1.3567     0.1261   10.76 3.53e-07 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.1614 on 11 degrees of 
freedom 
Multiple R-squared:  0.9133, Adjusted R-squared:  
0.9054  
F-statistic: 115.8 on 1 and 11 DF,  p-value: 3.532e-07 
 
 
[[2]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.32888 -0.16663 -0.03868  0.11641  0.45921  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   0.1061     0.5446   0.195    0.849     
log(silt)     1.0908     0.1525   7.154 1.86e-05 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.2305 on 11 degrees of 
freedom 
Multiple R-squared:  0.8231, Adjusted R-squared:  
0.807  
F-statistic: 51.18 on 1 and 11 DF,  p-value: 1.86e-05 
 
 
[[3]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.33466 -0.04282 -0.00826  0.04912  0.32387  
 
Coefficients: 
               Estimate Std. Error t value Pr(>|t|)     
(Intercept)     10.3421     0.5758   17.96 1.69e-09 *** 
log(fine_sand)  -1.6331     0.1473  -11.09 2.61e-07 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.1571 on 11 degrees of 
freedom 
Multiple R-squared:  0.9179, Adjusted R-squared:  
0.9104  

F-statistic:   123 on 1 and 11 DF,  p-value: 2.606e-07 
 
 
[[4]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.23420 -0.11781 -0.00028  0.08955  0.34391  
 
Coefficients: 
                    Estimate Std. Error t value Pr(>|t|)     
(Intercept)           2.7181     0.1207   22.53 1.49e-10 *** 
log(organic_matter)   1.1319     0.1014   11.16 2.44e-
07 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.1561 on 11 degrees of 
freedom 
Multiple R-squared:  0.9189, Adjusted R-squared:  
0.9115  
F-statistic: 124.6 on 1 and 11 DF,  p-value: 2.44e-07 
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Appendix T1.30 Model output for 137Cs for 
transect 3 season 4 
 
[[1]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.66062 -0.08105  0.04443  0.21510  0.51996  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)   
(Intercept)   1.6451     0.7026   2.342   0.0439 * 
log(clay)     1.1753     0.4031   2.916   0.0171 * 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.3987 on 9 degrees of 
freedom 
Multiple R-squared:  0.4858, Adjusted R-squared:  
0.4286  
F-statistic: 8.502 on 1 and 9 DF,  p-value: 0.01715 
 
 
[[2]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.58217 -0.15271  0.00503  0.17960  0.55523  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   0.2233     1.0304   0.217  0.83325    
log(silt)     1.0263     0.3056   3.358  0.00841 ** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.3704 on 9 degrees of 
freedom 
Multiple R-squared:  0.5562, Adjusted R-squared:  
0.5069  
F-statistic: 11.28 on 1 and 9 DF,  p-value: 0.008412 
 
 
[[3]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.59164 -0.24510  0.07829  0.15866  0.57384  
 
Coefficients: 
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)     11.7652     2.5057   4.695  0.00113 ** 
log(fine_sand)  -1.9963     0.6168  -3.237  0.01021 *  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.378 on 9 degrees of 
freedom 
Multiple R-squared:  0.5379, Adjusted R-squared:  
0.4866  

F-statistic: 10.48 on 1 and 9 DF,  p-value: 0.01021 
 
 
[[4]] 
 
Call: 
lm(formula = substitute(log(Time.corrected.activity) ~ 
log(i),  
    list(i = as.name(x))), data = test) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.54331 -0.13257 -0.06955  0.01986  0.73647  
 
Coefficients: 
                    Estimate Std. Error t value Pr(>|t|)     
(Intercept)           2.7454     0.2663   10.31 2.77e-06 *** 
log(organic_matter)   1.5804     0.4215    3.75  0.00456 
**  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.3474 on 9 degrees of 
freedom 
Multiple R-squared:  0.6097, Adjusted R-squared:  
0.5663  
F-statistic: 14.06 on 1 and 9 DF,  p-value: 0.004558 
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Appendix F1.1 Clay, silt, sand and organic matter regression models for 241Am 
for transect 1 season 1 
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Appendix F1.2 Clay, silt, sand and organic matter regression models for 241Am 
for transect 2 season 1 
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Appendix F1.3 Clay, silt, sand and organic matter regression models for 241Am 
for transect 3 season 1 
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Appendix F1.4 Clay, silt, sand and organic matter regression models for 241Am 
for transect 1 season 2 
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Appendix F1.5 Clay, silt, sand and organic matter regression models for 241Am 
for transect 2 season 2 
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Appendix F1.6 Clay, silt, sand and organic matter regression models for 241Am 
for transect 3 season 2 
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Appendix F1.7 Clay, silt, sand and organic matter regression models for 241Am 
for transect 1 season 3 
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Appendix F1.8 Clay, silt, sand and organic matter regression models for 241Am 
for transect 2 season 3 
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Appendix F1.9 Clay, silt, sand and organic matter regression models for 241Am 
for transect 3 season 3 
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Appendix F1.10 Clay, silt, sand and organic matter regression models for 241Am 
for transect 1 season 4 
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Appendix F1.11 Clay, silt, sand and organic matter regression models for 241Am 
for transect 2 season 4 
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Appendix F1.12 Clay, silt, sand and organic matter regression models for 241Am 
for transect 3 season 4 
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Appendix F1.13 Clay, silt, sand and organic matter regression models for 137Cs 
for transect 1 season 1 
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Appendix F1.14 Clay, silt, sand and organic matter regression models for 137Cs 
for transect 2 season 1 

 

 
   



266 
 

Appendix F1.15 Clay, silt, sand and organic matter regression models for 137Cs 
for transect 3 season 1 
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Appendix F1.16 Clay, silt, sand and organic matter regression models for 137Cs 
for transect 1 season 2 
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Appendix F1.17 Clay, silt, sand and organic matter regression models for 137Cs 
for transect 2 season 2 
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Appendix F1.18 Clay, silt, sand and organic matter regression models for 137Cs 
for transect 3 season 2 
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Appendix F1.19 Clay, silt, sand and organic matter regression models for 137Cs 
for transect 1 season 3 
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Appendix F1.20 Clay, silt, sand and organic matter regression models for 137Cs 
for transect 2 season 3 
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Appendix F1.21 Clay, silt, sand and organic matter regression models for 137Cs 
for transect 3 season 3 
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Appendix F1.22 Clay, silt, sand and organic matter regression models for 137Cs 
for transect 1 season 4 
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Appendix F1.23 Clay, silt, sand and organic matter regression models for 137Cs 
for transect 2 season 4 
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Appendix F1.24 Clay, silt, sand and organic matter regression models for 137Cs 
for transect 3 season 4 
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Appendix 2 

 

 

Figure A2.1   Map of change in volume (m3) of sediment from 1999 – 2005 for the outer Ribble  
estuary sandbanks, each pixel has an area of 4m2. These data have had a limit of  
detection applied to them so that only significant movement is shown. 
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Figure A2.2   Map of change in volume (m3) of sediment from 2005 – 2009 for the outer Ribble  
estuary sandbanks, each pixel has an area of 4m2. These data have had a limit of  
detection applied to them so that only significant movement is shown. 
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Figure A2.3   Map of change in volume (m3) of sediment from 2009 – 2013 for the outer Ribble  
estuary sandbanks, each pixel has an area of 4m2. These data have had a limit of  
detection applied to them so that only significant movement is shown. 
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Appendix 3 

 

Figure A3.1   Total counts for the 137Cs window from the MoGSS dataset are plotted against the 137Cs Bq kg‐1 of 
the sediment scrapes from the old marsh. A regression model which used the log transformed 
MoGSS data was fitted to the data with 95% confidence intervals. 
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Figure A3.2   Total counts for the 241Am window from the MoGSS dataset are plotted against the 137Cs Bq kg‐1 of 
the sediment scrapes from the new marsh. A regression model which used the log transformed 
MoGSS data was fitted to the data with 95% confidence intervals. 
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Figure A3.3   Total counts for the 241Am window from the MoGSS dataset are plotted against the 137Cs Bq kg‐1 of 
the sediment scrapes from the old marsh. A regression model which used the log transformed 
MoGSS data was fitted to the data with 95% confidence intervals. 
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Figure A3.4   Comparison of estimated activity for 137Cs in the old marsh (x axis) and measured activity (y axis) a 
linear model is fitted to these data to show the general trend in comparison to the 1:1 prediction 
line. 
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Figure A3.5   Comparison of estimated activity for 241Am in the new marsh (x axis) and measured activity (y axis) 
a linear model is fitted to these data to show the general trend in comparison to the 1:1 prediction 
line. 
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Figure A3.6   Comparison of estimated activity for 241Am in the old marsh (x axis) and measured activity (y axis) 
a linear model is fitted to these data to show the general trend in comparison to the 1:1 prediction 
line. 
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Figure A3.7   Plot of the old marsh MoGSS 137Cs activity concentration data against the 137Cs predicted by the 
spatial statistics model fitted to the sediment scrape data. The colour ramp from red to blue 
indicates the number of points at that location. 
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Figure A3.8   Plot of the new marsh MoGSS 241Am activity concentration data against the 137Cs predicted by the 
spatial statistics model fitted to the sediment scrape data. The colour ramp from red to blue 
indicates the number of points at that location. 
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Figure A3.9   Plot of the old marsh MoGSS 241Am activity concentration data against the 137Cs predicted by the 
spatial statistics model fitted to the sediment scrape data. The colour ramp from red to blue 
indicates the number of points at that location. 
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