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ABSTRACT
Benchmarks are important to demonstrate the utility of optimi-
sation algorithms, but there is controversy about the practice of
benchmarking; we could select instances that present our algo-
rithm favourably, and dismiss those on which our algorithm under-
performs. Several papers highlight the pitfalls concerned with
benchmarking, some of which concern the context of the auto-
mated design of algorithms, where we use a set of problem instances
(benchmarks) to train our algorithm. As with machine learning, if
the training set does not re�ect the test set, the algorithm will not
generalize. �is raises some open questions concerning the use of
test instances to automatically design algorithms.

We use di�erential evolution, and sweep the parameter se�ings
to investigate the practice of benchmarking using the BBOB bench-
marks. We make three key �ndings. Firstly, several benchmark
functions are highly correlated. �is may lead to the false conclu-
sion that an algorithm performs well in general, when it performs
poorly on a few key instances, possibly introducing unwanted bias
to a resulting automatically designed algorithm. Secondly, the num-
ber of evaluations can have a large e�ect on the conclusion. Finally,
a systematic sweep of the parameters shows how performance
varies with time across the space of algorithm con�gurations.
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�is technical report is provided in support of the paper “In-
vestigating BenchmarkCorrelationswhenComparingAlgo-
rithms with Parameter Tuning” published at GECCO 2018,
Kyoto, Japan.

1 INTRODUCTION
Continuous optimisation is the practice of sampling a continuous
search space, with the aim of minimizing (or maximising) an objec-
tive. Continuous optimisation benchmark sets are typically used to
compare the performance of di�erent metaheuristics. �e Black-
Box Optimization Benchmarking (BBOB-2009) benchmarks [11]

are a commonly used benchmark for comparing continuous opti-
misation metaheuristics [18]. BBOB consists of 24 noiseless test
functions and 30 noisy test functions. While it is well known that no
single algorithm will perform well across all functions we ask how
good are the benchmarks at teasing out the di�erent performances of
di�erent algorithms? Furthermore, when we consider the automatic
design of algorithms (ADA), the set of functions used to train the
algorithms is critical. As with machine learning, if the training set
does not re�ect the test set, then the algorithm will not generalize.
Consequently, it is very important to understand how algorithm
performance varies across the benchmarks before extending our
focus to real-world problems.

We question whether correlations in performance of di�erent
algorithms can identify benchmarks that are similar in terms of
performance. �erefore, correlated benchmarks will not contribute
any new information to the overall picture of performance of an
algorithm. We consider algorithms with di�erent parameter se�ing
to be di�erent algorithms, and therefore, the algorithms de�ned by
the set of parameters de�nes the algorithm design space.

In this paper we make three major contributions:

(1) Firstly, algorithm performances on several benchmark func-
tions are highly correlated (within the set of algorithms
we consider). �is may lead to the false conclusion that an
algorithm performs well in general when it only performs
poorly on a few key instances.

(2) Secondly, the number of evaluations has a dramatic im-
pact when concluding either which algorithm performs
best, or which benchmarks are correlated and therefore
which instances to select when automatically designing an
algorithm.

(3) Finally, we conducted a two-stage (coarse-grained then
�ne-grained) systematic sweep of the parameters to inves-
tigate how performance varies with number of evaluations
for di�erent parameter se�ings.

We begin the paper in Section 2 with a summary of the back-
ground in benchmarking and automatic design of algorithms, and
their common issues. We make some formal de�nitions and explain
our experimental design in Sections 3 and 4. In Section 5 we report
experimental results, with a discussion of their implications in Sec-
tion 6. Finally, in Section 7 we draw our conclusions and suggest
future work arising from this study.



2 BACKGROUND
2.1 Benchmarking
Benchmarking is essential to demonstrate the performance of the
algorithm on a set of problems. In this paper, we are consider-
ing ADA, where we need two sets of instances; one to tune the
algorithm parameters, and one to test the algorithm.

In machine learning, the central assumption is that the training
data is drawn from the same distribution as the test data. We cannot
expect to build a good quality model from poor quality data. �ere-
fore, we could make the statement “an algorithm is only as good as
the benchmarks it has been tested on”. In general, testing on more
benchmarks is be�er than testing on fewer benchmarks, and gives
us more con�dence that the algorithm is e�ective. It has also been
shown recently that the typical approach of sampling uniformly at
random to generate benchmark instances does not in fact yield a
uniform distribution of instances, leading to further possible bias in
the results [7]. While from a machine learning perspective, we gain
more con�dence in a model as it is demonstrated to be accurate on
more data, we can never have total con�dence in its performance
on unseen data. �e aim of this paper is to show that selecting test
cases is problematic in general, and so we should be aware of these
issues when automatically designing algorithms.

2.2 Automated Design of Algorithms
ADA includes parameter tuning, automated algorithm selection,
automated algorithm con�guration, and synthesising algorithmic
components from primitive instructions. In one sense, ADA means
the tuning of numerical parameters to obtain good performance on
a future set of problem instances. Examples are mutation rate and
crossover rate in genetic algorithms. ADA can also mean algorithm
con�guration, where a choice of algorithmic components needs to
be made. Examples are deciding on a steady-state or generational
population model in evolutionary algorithms. Another example is
elitism, where the best individuals in the current population are
promoted to the next generation without undergoing selection. An-
other interpretation of ADA is a GP as a hyper-heuristic [30], where
algorithmic components of an existing algorithm is created from
scratch by GP. An example is designing job shop scheduling rules
[6] and evolving heuristics for examination timetabling problem
[22].

More recently, there has been extensive interest in automatically
tuning or selecting algorithms by modelling algorithm performance
with respect to the �tness landscape or other features of the prob-
lems. For example, [17, 21] showed that only a small number of
features are needed to separate the BBOB problem groups. �ese
can then be used to select well-suited algorithms [2, 5], predict per-
formance [4], or choose parameter se�ings [3, 19]. More relevant
to the present work, [26, 27] showed how parameter tuning for
Di�erential Evolution (DE) for the BBOB and CEC2014 functions
was impacted by di�erent running budgets. �e correlations we
�nd may provide some further explanation for this.

While all of these approaches can be considered to be ADA, we
will speci�cally look at two parameters of di�erential evolution
[25]; di�erential weight (F), and crossover rate (CR). An interesting
new direction is an investigation into the relationship between
reasonable parameter se�ings on a set of benchmarks which are

described using a set of features. A model can then be built to
compute the parameter se�ing for a new function. Whichever of
these methods we employ to automatically design algorithms, in
each of the cases choosing the appropriate problem instances is
crucial, as these functions form the basis on which we make any
empirical claims.

2.3 Benchmarking, ADA and No Free Lunch
�e no free lunch theorems [29] state that no algorithm performs
be�er than any other algorithm over the set of all discrete problems.
�is is also demonstrated empirically by the work of [20] where
the performance of algorithms is mapped into the feature space of
problems. �is research, very visually, shows there are clusters of
expertise where algorithms outperform each other, and highlights
the fact that certain algorithms are specialised to certain sets of
problems. �is work also demonstrates the much broader interpre-
tation of the no free lunch theorems: on a subset of problems there
is an algorithm with dominant performance. ADA aims to �nd this
algorithm with dominant performance. To reiterate our main point,
picking a set of problem instances is very important in the context
of algorithm design in general, but ADA in particular. In general,
we are not interested in solving the set of all problems, but solving
problems with a particular characteristic in common. �ese charac-
teristics are represented by a sample of the benchmarks instances.
As [8] reports, performance results of an algorithm depend as much
on the benchmarks as they do on the algorithm. Essentially, NFL is
a bridge between algorithms and benchmarks.

2.4 Benchmarking is Problematic
�ere are a lot of issues surrounding benchmarking, and [12] lists
principles regarding benchmarking. Of particular interest is bench-
marking with GP [28] as GP is one ADA technique. One of the
dangers of benchmarking is not investing the same amount of eval-
uations in tuning two algorithms; you may invest considerable
time in tuning one algorithm, while you invest li�le or no time to
the second algorithm, or just use the default se�ings. Tools like
irace [15], reduce this possibility by allowing both algorithms the
same amount of “warm-up” computational time tune before being
applied to the �nal set of test benchmark instances, when the true
(and fair) comparison can be made.

A further issue is that typically comparisons take the form of
“Algorithm A outperformed B on 20/24 of the benchmarks, while
B outperformed A on the remaining 4”. If those 20 benchmarks
are highly correlated, yet the other 4 are not, then B can be said to
be more general than A. Of course, the usual conclusion of such
a paper is that A was most general, performing be�er on more
instances. Our paper is concerned with investigating the tuning of
parameters on a set of benchmarks and examining the correlations
in performance between the algorithms on di�erent functions.

3 DEFINITIONS
We de�ne an algorithm A = (M,θ ) as a metaheuristic M with
a parameter set θ if applicable. �e same metaheuristic with a
di�erent parameter set θ ′ (or di�erent operators) is regarded as a
di�erent algorithm A′. �e algorithms we consider are stochastic,
and so will produce di�erent results from di�erent runs. �is is
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dependent on the pseudo-random number generator (PRNG) seed
s . We denote As to be algorithm A run with PRNG seed s . �e seed
s may be set to a speci�c value for repeatability, or set based on
system time.

We de�ne a single benchmark B = (f ,Ω,ϕ,L) as a function f ,
search space Ω, parameter set ϕ if applicable, an evaluation limit
L. For a given function, the minimum �tness minx (f (x)) may be
known or unknown. If we are using an evaluation limit L, we do
not need to know the minimum �tness as termination is controlled
by the evaluation limit and not controlled by convergence within
a tolerance of the global optimum. For some benchmarks such as
the BBOB benchmark set, the space is rotated and/or translated,
and so is also dependent on an PRNG seed t . We denote Bt to be
benchmark B instance constructed with PRNG seed t .

�e �tness of a single run we denote as As (Bt ) to be the �tness
reached when seeded algorithm As is run on seeded benchmark
instance Bt . Since the PRNG seeds are �xed this will produce the
same �tness value if the algorithm is re-run on the benchmark. It is
conventional for the seed t be regenerated for each run to allow for
a statistical analysis of the algorithm performance to be undertaken.
We conform to this convention.

Typically, within the literature [10], the expected number of
function evaluations to convergence within a de�ned tolerance on
the global optimum is used as a measure of algorithm performance.
�is is sometimes called the �xed-target performance measure [9].

As we are optimising the parameters of an algorithm and mea-
suring the performance of the algorithm on the problem (i.e. the
algorithm’s �tness for the problem), to avoid confusing with �tness
of a candidate solution, we refer to measuring the performance of
an algorithm as meta-�tness. We de�ne meta-�tness to be how well
algorithm A performs on benchmark B according to some measure
M . In our experiments, M is the expected quality of the best can-
didate found a�er a prede�ned number of �tness evaluations has
been reached (�xed-budget).

�e advantage of using a �xed-budget for M , over the more
conventional �xed-target, is that experiments generally run for less
time, as convergence is not required. Hence this method is o�en
used in parameter tuning (e.g. methods such at iterated racing [15]).

However, there are drawbacks using a �xed-budget. Fixed-target
measure allows for ratio data, meaning the numerical values of
the runtime, to be compared [9]. For instance, it may be said that
on benchmark B, algorithm A performs twice as fast as algorithm
A′. Fixed-budget uses ordinal data so ratios are meaningless. For
instance, it may be said that on benchmark B, algorithm A outper-
forms algorithm A′, but not by how much. We take this drawback
in to account in the interpretation of results.

Sampling As (Bt ) for random (s, t) gives rise to a probability
distribution. We denoteA (B) as the mean of this distribution, which
we call themeta-�tness ofA onB. Since this is not known, we denote
A (B) as an estimate of A (B) which is computed by averaging over
n runs using the usual arithmetic mean as A (B) =

∑
As (Bt )
n for n

choices of (s, t). We are taking A (B) to be a good approximation to
A (B) for large n, as is standard practice. �is average is used as the
meta-�tness (the expected measure of algorithm performance on a
given benchmark).

Table 1: Di�erential Evolution parameters held constant in
all experiments.

Parameter Se�ing
Population Size 10

Convergence Tolerance 0.0
Di�erential Weight Dithering O�

Polish (L-BFGS-B) O�
Population Initialization Latin Hypercube sampling

Table 2: Di�erential Evolution parameters ranges varied for
coarse-grained parameter sweep.

Parameter Range of Se�ings
di�erential weight (F) {0.0, 0.1, . . . , 1.9}

crossover probability (CR) {0.0, 0.1, . . . , 0.9}

4 EXPERIMENTAL DESIGN
�e focus of our study is a set of di�erent parameters (di�erential
weight, F and crossover probability, CR) for di�erential evolution,
applied to the BBOB benchmarks. �e experiment was in two
stages to keep the total run time to a practical level. Stage 1 was
a coarse-grained sweep of the parameters, covering the full range
of possible values, with the aim of �nding a suitable near-optimal
range for each to study in more detail. Stage 2 was a �ne-grained
sweep of the parameters surrounding the previously-identi�ed near-
optimal se�ing, the results from which form the major basis for
our discussion.

4.1 Algorithm and Benchmark Set-up
We used the DE implementation in the SciPy1 optimize package. For
all experiments, the DE parameters in Table 1 were held constant.

�e benchmark functions used are the Python implementation2

of the BBOB functions, converted to Python 3 using the 2to3 tool3.
�e BBOB benchmarks used were the 24 noiseless functions, on
the 10-dimensional search space [−5, 5]10.

4.2 Coarse-Grained Parameter Sweep
For coarse-grained sweep, a generation limit of 10 generations was
applied. In this implementation of DE, this constraint was set by
se�ing maxiter to 9, which speci�ed how many times the algorithm
will iterate a�er generating a population. For each parameter se�ing
θ , the performance A (B) was measured, on termination, for n =
1000 to obtain the estimate A (B).

4.3 Choosing Optimal Parameters
For each algorithm con�guration θ , each of the 24 benchmarks
provide a ranking of which con�gurations were best, by giving
an ordering of the con�gurations from best to worst. To reach a
consensus of the best con�guration over all benchmarks, the rank-
ings were used a ballots in an instant run-o� or preferential voting
system [1]. In this system, the counting is conducted in rounds.
1SciPy 0.18.1 for Python 3
2h�ps://github.com/numbbo/coco
3h�ps://docs.python.org/3/library/2to3.html
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At each round, the con�guration with the lowest number of �rst-
ranks is eliminated and the algorithms are re-ranked (e�ectively the
benchmarks ‘voting’ for that algorithm as their �rst preference then
transfer their vote to the next preference). �e algorithm remaining
once all others are eliminated is chosen.

4.4 Local Space of Parameter Values
At the �ne-grained stage, we chose a neighbourhood region of 10×
10 samples centred around the best parameter se�ing as determined
by the voting following the coarse grained parameter sweep. �e
neighbourhood samples were spread out in increments of 0.01
for each function. For this experiment, the DE was run for 25
generations (by se�ing maxiter to 24). In contrast to the course-
grained parameter sweep (which only recorded best �tness on
termination) we recorded the best �tness reached at each generation.
�e mean for each con�guration at each generation was computed
over the 1000 samples.

5 RESULTS
�e data for these experiments is available from [TBC] 4. With the
initial coarse-grained parameter sweep, the rankings of parameter
se�ings produces F = 0.3, CR = 0.9 as overall consensus optimum
parameters. �is was done by instant run-o� voting as described,
however, the same consensus is also obtained by averaging the
ranks. �e resulting 10 × 10 region for the local parameter sweep
was F ∈ {0.25, 0.26, . . . 0.34} CR ∈ {0.85, 0.86, . . . 0.94} as shown
in Fig. 1.

Figure 1: View of parameter space for di�erential weight F
and crossover rate CR in the �ne-grained parameter sweep.
�e red circles indicate the parameters run in the coarse-
grained parameter sweep and the black crosses indicate the
parameters run in the �ne-grained parameter sweep.

We have 100 DE parameter con�gurations for each function. A
standard way of presenting the result would be to plot the A (B)
against L. For benchmark F1, we have chosen three parameter

4Link to our Online Research Repository will be added here.

con�gurations and plo�ed the meta-�tness against generation in
Fig. 2.

We wish to compare the performance of di�erent algorithms
across di�erent functions. So next we introduce the correlations for
di�erent DE con�gurations. For a given generation limit L, each of
DE con�guration θ has a certain estimate of meta-�tness A (B) for
each benchmark B. We consider the functions pairwise. For a pair
of benchmarks B and B′ which di�er only by parameter se�ing ϕ,
we can map θ to a point (x ,y), where x = A (B), y = A (B′). �e
value ρ (L) is the Spearman’s rank correlation between the two
data vectors ®x (the vector of x coordinates) and ®y (the vector of
y coordinates), which is a function of generation limit L. We are
using Spearman’s rank correlation rather than the more common
Pearson correlation.

�is is because we are comparing meta-�tness between di�erent
functions, where we cannot assign meaning to the numerical values,
and only wish to compare the performance on an ordinal basis. In
Fig. 3 we have plo�ed ρ for the �rst few generations for functions F1,
and F6. We see that the correlation starts near zero at generation 0,
as the �rst generation is random, then rises and falls with generation
limit.

Since we have 24 functions to compare pairwise, we can con-
struct a correlation matrix between the functions. Here, each cell
corresponds to the correlation in meta-�tness between the two
functions in the row and column header. We also calculate the
median value of correlation between a given benchmark B with
every other benchmark. �e correlation matrix for generation limit
10 is shown in Table 3.

Since the median correlation for each benchmark is a function of
generation limit L, we now plot median Spearman’s rank correlation
of each of the 24 functions against generation limit L as in Fig. 4.

In Fig. 4 we observe that in generation 2, all functions are
strongly positively correlated with one-another, except for function
F23 which has a median correlation of −0.30.

�e lowest median correlation observed is function F7 at gen-
eration 5, where median correlation is −0.90. A number of other
functions: F17, F18, and F24 are also low at this generation, with
other functions F6 and F19 dropping to near-zero correlation.

At generation 8, a crossing point has occurred where many func-
tions with high median correlations such as F1, F12, F13, and F16
now drop to negative correlations, and many functions with pre-
viously negative median correlation such as F7, F17, and F18 now
move to having high positive median correlations. We see that
functions F7, F17, and F18 maintains a strong positive correlation
with one another as shown in Fig. 5, where as generation limit in-
creases, the three approach a correlation near 1.0 with one another.
�us, these three functions (within the scope of which we have
studied them) give us the same information about the algorithm’s
performance, and so it is redundant to run all three in this case.

For most generation limits L during these runs, most functions
are on average positively correlated with a few exceptions.
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Figure 2: Fitness by generation (log-log plot) for three selected DE parameters settings on function F1. �e three parameters
are the suite consensus best θ = (F = 0.3,CR = 0.9), and the best (0.25, 0.92) and worst (0.34, 0.85) within the �ne-grained 10 × 10
parameter sweep. Fitness is the mean over 1000 runs.

Table 3: Matrix of correlations between all benchmark functions at generation 10. Blue cells denote a strongly-positive correla-
tion, red cells denote a strongly-negative correlation. �e right-most column is the median correlation of the related function
with every other function.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 Median
0.98 -0.76 -0.84 -0.81 -0.93 -0.96 -0.37 0.19 -0.94 -0.89 -0.28 0.55 0.94 -0.81 0.95 -0.92 -0.94 -0.25 -0.5 -0.44 -0.58 -0.52 0.94 F1 -0.52

-0.75 -0.81 -0.85 -0.9 -0.92 -0.39 0.27 -0.93 -0.88 -0.26 0.52 0.94 -0.78 0.93 -0.88 -0.94 -0.31 -0.49 -0.35 -0.48 -0.54 0.94 F2 -0.49
0.92 0.71 0.75 0.83 0.04 -0.27 0.79 0.81 0.09 -0.77 -0.78 0.98 -0.89 0.88 0.87 0.16 0.49 0.49 0.39 0.33 -0.9 F3 0.39

0.78 0.92 0.9 0.12 -0.14 0.84 0.9 0.02 -0.79 -0.88 0.96 -0.95 0.95 0.94 0.21 0.3 0.53 0.39 0.47 -0.93 F4 0.39
0.79 0.75 0.27 -0.1 0.85 0.88 -0.04 -0.71 -0.77 0.76 -0.84 0.83 0.85 0.36 0.47 0.5 0.36 0.59 -0.88 F5 0.47

0.94 0.25 -0.09 0.84 0.92 0.14 -0.6 -0.96 0.84 -0.95 0.93 0.96 0.35 0.31 0.42 0.35 0.5 -0.92 F6 0.35
0.18 -0.07 0.9 0.88 0.35 -0.62 -0.95 0.88 -0.98 0.94 0.95 0.32 0.49 0.47 0.5 0.35 -0.95 F7 0.47

-0.54 0.24 0.27 0.03 0.12 -0.27 0.09 -0.2 0.16 0.25 -0.04 0.04 0.31 0.26 0.79 -0.18 F8 0.12
-0.12 -0.25 0.15 0.07 0.21 -0.22 0.14 -0.19 -0.21 0.39 -0.05 -0.01 -0.03 -0.5 0.15 F9 -0.07

0.83 0.15 -0.62 -0.83 0.79 -0.92 0.88 0.88 0.15 0.47 0.38 0.7 0.49 -0.94 F10 0.47
0.03 -0.79 -0.9 0.89 -0.94 0.98 0.95 0.22 0.48 0.62 0.35 0.56 -0.92 F11 0.48

0.09 -0.32 0.08 -0.19 0.09 0.18 0.55 0.28 0.07 0.03 -0.43 -0.18 F12 0.07
0.58 -0.81 0.71 -0.81 -0.68 -0.09 -0.33 -0.71 -0.26 -0.26 0.7 F13 -0.33

-0.85 0.95 -0.92 -0.98 -0.42 -0.39 -0.39 -0.28 -0.42 0.93 F14 -0.42
-0.94 0.94 0.93 0.24 0.47 0.58 0.33 0.39 -0.93 F15 0.39

-0.98 -0.99 -0.31 -0.5 -0.52 -0.45 -0.45 0.99 F16 -0.50
0.96 0.19 0.49 0.59 0.44 0.47 -0.95 F17 0.47

0.36 0.45 0.48 0.35 0.49 -0.98 F18 0.45
0.19 0.14 -0.39 -0.19 -0.32 F19 0.16

0.44 0.35 0.04 -0.54 F20 0.30
0.27 0.38 -0.45 F21 0.38

0.38 -0.47 F22 0.33
-0.44 F23 0.35

F24 -0.47

6 DISCUSSION
6.1 Summary of Benchmark Study
In summary, we have taken a standard set of benchmarks for
continuous optimisation used in competitions and research pa-
pers. We have run a standard implementation of DE, perform-
ing a sweep across the parameters, F ∈ {0.0, 0.1. . . . , 1.9}, and
CR ∈ {0.0, 0.1, . . . , 0.0}, while �xing other parameters (see Table
2).

We ranked the performance of each parameter se�ings across
the functions to determine reasonable parameter se�ings for these
functions. Having identi�ed the best se�ing as F = 0.3, CR = 0.9

for the benchmark suite, we then conducted a �ne-grained investi-
gation of the parameter se�ings around the best values where we
swept F ∈ {0.25, 0.26, . . . , 0.34}, and CR ∈ {0.85, 0.86, . . . , 0.94}.

We found that early in the run there was very li�le correlation
between the performances of di�erent parameter se�ings. �is is
to be expected as the �rst generation of DE is e�ectively a random
search. However, a�er a few generations, most functions are highly
correlated, while some are anti-correlated. As the number of gener-
ations increases we see di�erent performances across the functions.
�e performance on some functions remains correlated over the
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Figure 3: All 100 DE con�gurations plotted by meta-�tness on function F1 and meta-�tness on function F6, for generation
limit of 1 (top-le�, ρ = −0.33), 2 (top-right, ρ = 0.85), 3 (bottom-le�, ρ = 0.78), and 4 (bottom-right, ρ = 0.33). Note that the scales
on both axes decreases with generation, as the algorithms advance.

whole run, while other functions become anti-correlated, and then
correlated again.

6.2 Implications for Automated Design of
Algorithms

Benchmarking is necessary for at least two reasons in the context
of ADA. Firstly, we need to provide a set of example benchmark
instances (problems, functions or test data) on which we train our
model using ADA. Secondly, we need to demonstrate the utility of
our automatically designed model on a separate set of instances.
�is is in contrast to manual design, where we only need to demon-
strate the performance of an algorithm on the set of test instances,
as is done in most papers.

�ese two sets of instances (training and test) need to be related
in some way if there is to be any meaningful connection between
the trained model and its performance on the test set. In machine
learning, this is well understood, where train and test performances
are reported. �is division of data into a training and test set is less
well understood by in optimisation community, where we o�en
have a small �nite set of optimisation problems which are not
explicitly divided into training and test set.

�e performance of DE on a number of functions in the BBOB
set are highly correlated (e.g. F7, F17, F18), and therefore could
be considered as redundant. What is important about these three
functions, for example, is that the performance of the algorithm is
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Figure 4: �e median Spearman’s rank correlation by generation (log-x) limit on all BBOB benchmarks of dimension 10, for
DE using a parameter sweep around θ = (F = 0.3,CR = 0.9). Generation 8 has been highlighted as the crossing point.

highly correlated at each “snap shot” in the runs (of course exclud-
ing the initial few populations which are e�ectively random search
and therefore not correlated).

What is more other functions appear to be strongly negatively
correlated. �ese correlations do not necessarily just occur within
the �ve groups of functions based on their structure (de�ned by
[11]): corroborating earlier results [18] that clustered the BBOB
functions in to di�erent groups according to algorithm performance.
However, in addition to this observation, we have also found that
these correlations vary with the number of function evaluations.
�is has a particular implication for using exploratory landscape
analysis to predict performance and select appropriate algorithms
as advocated by [18]. Choice of the evaluation budget must match
the available budget in the target “unseen” instances, or the perfor-
mance model will be �awed, biased by correlations present only in
part of the search space.

�erefore, we should take care when synthetically generating
problem instances for ADA, and then make claims about the appli-
cability of the algorithm to real-world problems. While the results
in this paper concern one algorithm, DE, applied to one domain,

continuous optimization, it is possible that these conclusions extend
to other algorithms applied to other domains. While benchmarking
is tricky, we should adopt a scienti�c approach and report results
as fully as possible; speci�cally giving both the number of function
evaluations and precise speci�cations of problem instances, at each
stage of the experimental process. Furthermore, it is false to assume
that parameter tuning on a smaller evaluation budget will lead to
fair comparisons with a larger budget [26, 27].

7 CONCLUSION AND FUTUREWORK
We now discuss our results which naturally lead onto some related
further work. �e current work only examines DE, a well-known
algorithm for continuous optimisation. However, to draw broader
conclusions, we intend to investigate at how benchmark functions
compare under other algorithms, such as CMA-ES and conventional
genetic algorithms. We suspect similar conclusion can be drawn
for algorithms other than DE (preliminary experiments with a GA
show the same pa�ern), but what remains to be seen is if functions
which are correlated when using DE are also correlated when using,
for example, CMA-ES.

7



Figure 5: �e pairwise correlations by generation (log-x) between BBOB benchmark functions F7, F17, and F18 of dimension
10, for DE using a parameter sweep around θ = (F = 0.3,CR = 0.9).

We have used a �xed-budget (i.e. a prede�ned number of func-
tion evaluations) to compare performance on di�erent functions.
We should also repeat our analysis using the approach of obtaining
solutions within a certain tolerance of the global optima. It would
be interesting to see if functions which are correlated using a �xed-
budget are also correlated using a �xed-tolerance limit. Similarly,
we aim to conduct a similar analysis holding di�erent DE param-
eters �xed and allowing other parameters to become part of the
ADA process.

In Section 5, we identi�ed that for the scope of the study, func-
tions F7, F17, and F18 remained very strongly positively correlated.
�us, given the performance of DE on one of these functions, the
other two add no information to the benchmarking process �is
corresponds to the �ndings of [18] in which F17, and F18 were al-
ways clustered together. If we are able to identify highly-correlated
benchmark functions in terms of algorithm performance, we may
be able to identify a procedure to select and eliminate redundant
functions from a benchmark set. A possible procedure for identi-
fying a smaller set of representative benchmarks from a suite of
benchmarks may involve clustering benchmarks based on corre-
lations, then eliminating all but the centre of those clusters. �is
would produce a benchmark set which is as powerful as the original
(in terms of describing algorithm performance), but are a smaller
set of functions. In Section 2 we discussed that having benchmarks
which are very similar (in terms of algorithm performance) dilutes
the conclusions we can draw when an algorithm performs “well”
on x out of 24 benchmarks. Complicating the picture further is that
these correlations may be algorithm-speci�c.

If we are able to identify highly-correlated benchmarks, we may
also be able to identify possible combinations of performance fea-
tures which do not exist in the benchmark sets. �ese gaps could be
�lled by generating new benchmarks. Some work has already been
done in this area. For example, it is possible to generate seed points

corresponding with a desired underlying structure, and then inter-
polating a �tness landscape between them [13, 16]. It is also possible
to evolve instances matching a particular distribution of features
[24], or corresponding to a particular order of inter-variable depen-
dencies [23]. [14] have evolved problems to reveal weaknesses in
PSO algorithms. �is would have the potential to form a basis for
a general approach to constructing new benchmarks that would
mitigate the problem of correlated performance on existing ones.
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