
216 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 49, NO. 1, JANUARY 2019

Guided Policy Search for Sequential
Multitask Learning
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Abstract—Policy search in reinforcement learning (RL) is a
practical approach to interact directly with environments in
parameter spaces, that often deal with dilemmas of local optima
and real-time sample collection. A promising algorithm, known as
guided policy search (GPS), is capable of handling the challenge
of training samples using trajectory-centric methods. It can also
provide asymptotic local convergence guarantees. However, in its
current form, the GPS algorithm cannot operate in sequential
multitask learning scenarios. This is due to its batch-style training
requirement, where all training samples are collectively provided
at the start of the learning process. The algorithm’s adaptation is
thus hindered for real-time applications, where training samples
or tasks can arrive randomly. In this paper, the GPS approach is
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reformulated, by adapting a recently proposed, lifelong-learning
method, and elastic weight consolidation. Specifically, Fisher
information is incorporated to impart knowledge from previously
learned tasks. The proposed algorithm, termed sequential mul-
titask learning-GPS, is able to operate in sequential multitask
learning settings and ensuring continuous policy learning, with-
out catastrophic forgetting. Pendulum and robotic manipulation
experiments demonstrate the new algorithms efficacy to learn
control policies for handling sequentially arriving training sam-
ples, delivering comparable performance to the traditional, and
batch-based GPS algorithm. In conclusion, the proposed algo-
rithm is posited as a new benchmark for the real-time RL and
robotics research community.

Index Terms—Elastic weight consolidation (EWC), guided
policy search (GPS), reinforcement learning (RL), sequential
multitask learning.

I. INTRODUCTION

AS A CORE component of artificial intelligence (AI),
reinforcement learning (RL) offers the robotics commu-

nity, a framework and set of tools for designing sophisticated
and hard-to-engineer behaviors to interact with the realis-
tic world. In other words, it enables robots, as agents, to
autonomously seek optimal behaviors through trial-and-error
learning. Further, instead of explicitly deriving a solution to
this unresolved problem, an objective function is usually used
to describe the learning task, and its associated feedback [1].
Generally, the agent in RL attempts to maximize long-term
rewards, as a specific form of the objective function, in order
to acquire optimal behaviors for performing the task.

Estimation of expected long-term rewards from raw expe-
riences obtained in the learning process [2], requires use
of traditional methods such as dynamic programming and
temporal-difference learning. These can address challenges of
filling the complete state-action space with data [3]. However,
they cannot meet requirements of high-dimensional continu-
ous state and action spaces that are particularly encountered in
the robotics domain. Policy search, a subfield of RL, has been
applied in robotics applications for a wide range of tasks, such
as manipulation [4], grasping [5], and locomotion [6]. This
scales application of RL into high-dimensional continuous
action spaces, using parameterized policies, to avoid bootstrap-
ping introduced by traditional value-function approximations.
Direct policy search methods can effectively deal with high-
dimensional systems, whereas complex policies, with hundreds
of parameters, frequently present a challenge for such meth-
ods, requiring many samples [3]. Additionally, policy search
methods need to address the problem of sample complexity
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resulting from high-dimensional, continuous action spaces [3].
Furthermore, despite the development of deep RL, policy
search still tends to fall into poor local optima [7].

The guided policy search (GPS) method introduces trajec-
tory optimization to mitigate the issue of sample efficiency,
for guiding policy search away from local optima. This offers
significant potential for learning robotic tasks with mini-
mal trials. The approach mainly utilizes trajectory-centric
optimization to generate suitable samples, and also guides
the learning process to train complex, high-dimensional poli-
cies [8]–[10]. Mirror descent GPS (MDGPS) introduced by
Montgomery and Levine [10], considers GPS as approxi-
mating mirror descent. It provides a total bound for global
policy cost and an appropriate step size to enhance global pol-
icy. Recently, Chebotar et al. [11] extended this to a global
policy sampling scheme, and introduced a KL-constrained
path integrals (PI2) approach. This enhanced its generaliza-
tion capability, by increasing the diversity of training data.
Nevertheless, current GPS schemes can only train policies with
a batch mode for different tasks, and are known to struggle
with challenges of incremental data processing, particularly
in robotic applications [12]–[14]. Specifically, GPS methods
will not work if all training tasks are presented sequentially,
and not collectively made available during the early training
period.

GPS agents can, however, learn policies from streaming data
for the case of a single task. Most RL algorithms, such as Q-
learning [2], [15] and Sarsa [16], work in an online mode only
for one task. On the other hand, there are a number of online
learning models for solving multitasks [17]–[19]. However,
the GPS approach is unable to handle different tasks that are
not known apriori and specified sequentially, even though it
can learn policies by acquiring trajectory information online.
The ability to continually learn, without catastrophic forget-
ting, is of significant importance to enable effective interaction
with the realistic world [20]. When applied to robotic appli-
cations for example, the agent has to meet strong real-time
requirements that generally present higher demands for online
learning scenarios. Specifically, the robot will be required to
learn skills to handle sequential tasks in real-time, and rapidly
adapt to the dynamic environment.

The problem of sequential multitask learning in GPS
(SMT-GPS) has also been considered part of lifelong learn-
ing [21], [22], since the agent aims to add new task knowledge,
while transferring knowledge between tasks. Lifelong learning,
considered a general approach to efficiently learn consecu-
tive tasks, has been explored for RL for some time [23].
Recently, an efficient lifelong learning algorithm for policy
gradient methods has been proposed [24], which adopts a
linear function to represent the policy. However, these meth-
ods are currently limited in their application, and deep neural
networks are increasingly becoming more popular, particularly
for robotic manipulation environments. For multitask domains
in computer vision, Li and Hoiem [25] recently introduced
deep neural networks to address the problem of continu-
ously learning new prediction tasks, without accessing training
data for previously learned tasks. However, current neural
network approaches have still not been able to fully implement

continual learning, and there is also inevitable catastrophic for-
getting associated with this mode of learning. In an attempt to
enable agents to continuously learn without catastrophic for-
getting, Kirkpatrick et al. [26] recently proposed training of
networks, using an elastic weight consolidation (EWC) algo-
rithm, that can maintain expertise from previously learned
tasks. For gradient policy learning, a deep deterministic-policy
gradient (DDPG) algorithm [27] has been proposed to continu-
ously improve policy, whilst an agent explores its environment.
Compared to batch algorithms, DDPG is capable of address-
ing tasks for continuous control, which could be explored as
a form of sequential multitask learning.

In this paper, we reformulate the GPS method in an effi-
cient and scalable manner, based on a sequential multitask
learning mechanism. The aim is to incrementally build a
predictive model from data sequences, without catastrophic
forgetting [28]. As noted earlier, current GPS approaches can
only handle scenarios where data from all tasks is simulta-
neously made available during the early training stage, which
constitutes an impractical constraint for consecutive task learn-
ing. By exploiting and adapting the recently developed EWC
algorithm [26], we propose incorporation of Fisher informa-
tion (FI), to protect weights that are important for previous
tasks, while learning the new task at hand. To some extent,
this also overcomes catastrophic forgetting, in our proposed
approach to sequential multitask learning.

In summary, the main contribution of this paper is novel
formulation of a GPS-based framework, and its algorithmic
implementation, termed SMT-GPS. The proposed SMT-GPS
algorithm can effectively utilize consecutive task information,
enabling agents to accomplish new tasks incrementally, with-
out forgetting those learned previously. This is demonstrated
through learning control policies for two dynamical systems,
specifically, upward swinging pendulum and peg insertion
tasks.

The rest of this paper is organized as follows. Section II
gives a brief review of background and related work.
Section III presents formulation of the proposed frame-
work, its algorithmic implementation and theoretical analysis.
Comparative experimental results are presented and discussed
in Section IV. Finally, concluding remarks and future work
suggestions are outlined in Section V.

II. BACKGROUND AND RELATED WORK

The agent’s goal in RL is to seek a policy π to complete a
specific task in an environment. At each time step t, the agent
observes a state xt and selects an action according to policy
π(ut|xt), producing a state transition according to dynamics
p(xt+1|xt, ut).

For the policy search method, it aims to optimize a parame-
terized policy πθ (ut|xt) over action ut conditioned on the state
xt. Given stochastic dynamics p(xt+1|xt, ut) and cost function
�(xt, ut), the goal is to minimize the expected cost

J(θ) =
T∑

t=1

Eπθ [�(xt, ut)] (1)

where the notation πθ(τ) is overloaded to denote the marginals
of πθ (τ) = p(x1)

∏T
t=1 p(xt+1|xt, ut)πθ (ut|xt) with a trajectory
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Algorithm 1 MDGPS
1: for Optimizing for successful pegging do
2: for position i ∈ {0, . . . , M} do
3: C-step: pi ← argminpi

Epi(τ )[
∑T

t=1 �(xt, ut)]
s.t.DKL(pi(τ )‖π ′θ (τ )) ≤ ε

4: end for
5: S-step:
6: πθ ← argminθ

∑
t,i,j DKL(πθ(ut|xt,i,j)‖pi(ut|xt,i,j))

(via supervised learning)
7: end for

τ = {x1, u1, . . . , xT , uT}. The standard approach to policy
search is computing the gradient ∇J(θ) and using it to improve
J(θ) [3].

A. Guided Policy Search

Simply put, the gist of GPS is to utilize a series of local
controllers p(u|x) to optimize global policy πθ , represented
by a deep neural network, that can describe a broad range
of behaviors. These local controllers are used to generate
guiding samples that can guide policy search to regions of
high rewards. Thus, GPS can efficiently train this deep neu-
ral network with fewer samples than direct policy search [5].
The minimization of expected cost can be rewritten as the
following constrained problem:

min
p,πθ

Ep[�(τ)] s.t. p(ut|xt) = πθ(ut|xt) ∀xt, ut, t. (2)

A variant of GPS, the MDGPS algorithm [7], splits global
policy optimization into several local policy optimizations, in
order to estimate ∇J(θ). There are two loops in this particular
algorithm, as shown in Algorithm 1. The inner loop (S-step)
conducts local policy optimizations, while the outer loop (S-
step) is a global policy optimizer which makes use of whole
samples collected from the C-step.

During the C-step, the MDGPS algorithm uses a time-
varying, linear Gaussian controller p(ut|xt) ∼ N(Ktxt + kt, Ct)

as the local controller. The iterative linear-quadratic regula-
tors (iLQRs) algorithm is employed to calculate all terms in
p(ut|xt) at different conditions [5]. For estimation of dynamics,
the MDGPS adopts a time-varying, linear Gaussian function
to fit these as: p(xt+1|xt, ut) = N(fxt + futut + fct, Ft), where
the Gaussian mixture model is used to estimate the dynamic
model [10].

Finally, the S-step is set to optimize the global policy by
introducing a deep neural network to mimic local policies gen-
erated at each condition. This converts the RL formulation into
a supervised learning problem and traditional methods can be
employed to optimize the global policy.

However, the MDGPS scheme requires all local policies at
different conditions to support the training for global policy.
In other words, the agent cannot learn continuously when con-
ditions are given sequentially, as part of sequential multitask
learning. Hence, the learning algorithm will require reformu-
lation in order to enable incremental task completion at a new
condition, instead of starting from scratch. Specifically, there
is a need to learn policies in an incremental manner, and hence

avoid strict requirements of acquiring all conditions together
at the initial learning stage.

B. Elastic Weight Consolidation

General AI capabilities are known to be particularly difficult
to realize in real-world settings. This is due to the require-
ment for agents to continuously learn and remember previously
learned tasks [29]. Nevertheless, researchers have proposed a
range of methods aimed at realizing such learning capabili-
ties. Recently, Kirkpatrick et al. [26] proposed a novel EWC
algorithm, exploiting task-specific synaptic consolidation, as a
potential solution to continuous learning. The EWC approach
applies neural networks to adjust the learning process on cer-
tain weights, in accordance with the importance of previous
tasks. A brief review of this state-of-the-art method is next
presented.

Assuming there are a sequence of tasks to learn, for sim-
plicity, we only consider two tasks A and B here. Generally
speaking, the agent will employ gradient-descent-based learn-
ing of parameters θ∗A , to complete task A, after having been
trained for this task only. When it comes to task B, the agent is
required to train parameters θ , in order to complete both these
tasks. The EWC algorithm proposes to maintain knowledge of
task A, by optimizing parameters θ to remain in a region of
low error for task A, centered around θ∗A . Specifically, given the
training data set D = DA∪DB (where DA and DB represent the
training data for task A and B, respectively), the conditional
probability p(θ |D) can be computed from the prior probabil-
ity of parameters p(θ) and probability of the data p(D|θ) (by
applying Bayes rule and the equation D = DA ∪ DB)

log p(θ |D) = log p(DB|θ)+ log p(θ |DA)− log p(DB). (3)

According to [26], the objective function �(θ) in EWC aims
to minimize

�(θ) = �B(θ)+
∑

i

λ

2
Fi

(
θi − θ∗A,i

)2 (4)

where the loss-function �(θ) represents the negative of
log-probability of data, given the parameters [that is,
− log p(D|θ)]; �B(θ) denotes the negative log-likelihood, or
loss-function of task B; the FI matrix F carries information
about task A; i represents sets for each neural network param-
eter; and λ quantifies relative importance between the old task
A and new task B.

Once the EWC has learned appropriate parameters, θ

for solving these two tasks, it moves to a third task C.
Consequently, (4) is used again to learn new parameters, both
to complete this new task C, and also keep neural network
parameters close to the learned parameters for completed tasks
A and B.

III. PROPOSED METHOD

A. GPS-Based Framework for Sequential Multitask Learning

In this section, we propose a reformulation of the conven-
tional GPS algorithm based on a modified EWC mechanism,
and present a general framework for sequential multitask
learning.
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Fig. 1. Proposed GPS-based framework for sequential multitask learning.

The basic GPS setting aims to study incremental learn-
ing of policies for solving a task at different conditions, that
are provided sequentially instead of being provided together.
The traditional GPS fails to work in the former setting, since
it needs to learn global policies with all task conditions.
This fundamental limitation of the GPS can be attributed
to the structure of interaction between global policy (S-step
in Algorithm 1) and local policies (C-step in Algorithm 1),
which prelimits the sequential multitask learning mode. In
other words, in order to learn tasks incrementally, the agent
should be able to separate mutual effects between global and
local policy optimizations when encountering a new task con-
dition, failing which it would affect both S-step and C-step
outcomes. An online approach will require the global policy
to be learned asynchronously from each single local policy.
Therefore, in contract to the traditional GPS algorithm, we
propose optimize a single local policy directly in the C-step
as follows:

p← argmin
p

Ep

[
T∑

t=1

�(xt, ut)

]
. (5)

This breaks the limited relationship between the global pol-
icy and local policies, where optimization for local policies
will not be influenced by the global policy. Nevertheless, the
traditional GPS can quickly and efficiently train global policy
that benefits from local policies at different task conditions. As
a compensation mechanism for the absence of these interac-
tions, instead of optimizing local policies with a fixed number
in [10], we propose to optimize local policies continuously
until they can complete the task at the current task condition.
Thus, we only select “successful samples” generated by these
trajectories that complete the task to execute the next step.
Global policy optimization is readily carried out with these
successful samples generated by local polices. Additionally,
in order to learn a task continuously at different task con-
ditions, the global policy needs to remember all previously
learned policies and generalize to complete the new task, in
an incremental manner.

Fig. 1 illustrates our proposed GPS-based framework for
sequential multitask learning. The local policy pi is generally
optimized with iLQRs [5] or the PI2 method [11]. The global
policy πθi usually adopts a deep neural network to represent a
broad range of behaviors. Further, the current task information
is evaluated by an information extraction approach, such as the
FI matrix. This records the second derivative of the loss near a
minimum, with the guarantee of positive semidefiniteness. The

parameters ⊕ and ⊗ represent methods of feature information
fusion and incremental learning (such as the EWC algorithm),
respectively.

Our proposed formulation enables global policy to perform
a task at the current task condition, and at the same time,
remember previously learned tasks without catastrophic for-
getting. Next, we present an algorithmic implementation of
our proposed framework for sequential multitask learning.

B. New Algorithmic Implementation for Sequential
Multitask Learning

In this section, an SMT-GPS algorithm is proposed to tackle
the problem of tight coupling between the global and local
policies. Specifically, a modified EWC algorithm is devel-
oped to combine previous results with current information,
by employing a FI matrix to impart knowledge of previously
learned tasks.

Algorithm 2 summarizes our proposed method. Initially,
the previous policy p is set to null, owing to the absence
of a previous task. In the inner loop (lines 3–7), the agent
aims to learn local policies individually at a given task condi-
tion, where an iLQR algorithm is utilized to fit dynamics and
optimize local policies. As for the outer loop (lines 8 and 9),
the agent applies local policies collected from the inner loop,
to optimize global policy. This employs a variant of the EWC
algorithm to complete optimization under different task con-
ditions. More precisely, we use those trajectories that can
complete the task, to generate successful samples and employ
the sample set Dm to optimize global policy. This is totally
different from the traditional GPS scenario, where all samples
are collected to carry out optimization. Further, the ability
to continuously learn at different task conditions is realized
by this modified EWC algorithm (corresponding to operation
⊗ in Fig. 1), where different FI matrixes are fused, with a
sum operation over task conditions encountered to-date (cor-
responding to operation ⊕ in Fig. 1). In particular, a variable
weight parameter λi is introduced to measure importance of
different task conditions, which is different from the constant
parameter λ employed in primary EWC settings. Next, we uti-
lize this modified EWC algorithm to formulate the following
optimization problem:

πθ ← argmin
θ

T∑

t=1

DKL
(
πθ (ut|xt,m)‖pm(ut|xt,m)

)

+ λi

2

m∑

i=1

(θ − θi)
TFi(θ − θi). (6)



220 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 49, NO. 1, JANUARY 2019

Algorithm 2 SMT-GPS
1: Initialize: p← null
2: for condition m = 1 to M do
3: for iteration k ∈ 1, . . . , K do
4: Generate samples Di = τi,j by running pi

5: Fit linear-Gaussian dynamics pi(xt+1|xt, ut) using
samples in Di

6: Optimize local policy:
7: p← argminp Ep [

∑T
t=1 �(xt, ut)]

8: end for
9: Collect “successful samples” by running pi, and record

as Dm

10: Optimize global policy with Dm:
11: πθ ← argminθ

∑
t DKL(πθ (ut|xt,m)‖pm(ut|xt,m)) +

λi
2

∑m
i=1(θ − θi)

TFi(θ − θi)

12: end for

According to (6), we train a neural network with gradi-
ent descent learning, to optimize global policy for the agent
to learn different tasks continuously. This equates to learning
sequential multitasks without catastrophic forgetting, and con-
stitutes a novel algorithmic implementation of our proposed
framework.

C. Theoretical Analysis

In this section, we present a theoretical analysis of global
policy cost and provide its upper bound. It is shown that the
global policy limitlessly approaches local policies that have
already completed tasks. Equivalently, the global policy is able
to complete tasks at different task conditions.

Without loss of generality, given task conditions for train-
ing, we assume that the probabilities of πθ (x) and p(x) follow
different distributions, yet both are bounded as 0 < α <

πθ(x), p(x) < β < 1. Further, each weight parameter λi

satisfies the constraint 0 < λi < 1.
1) State Distribution Difference: Given εt =

maxxt DKL(πθ (ut|xt)‖p(ut|xt)), the state distribution difference
satisfies: ‖πθ (xt)− p(xt)‖1 ≤ εt + 4α

∏t
t′=1
√

2εt′ .
According to [10] and [30], we can express the state

distribution p(xt) as

p(xt) =
[

t∏

t′=1

(
1−√

2εt′
)]

[
πθ (xt)− p̃(xt)

]+ p̃(xt) (7)

where p̃(xt) is some other distribution, and the probability 1−√
2εt′ implies that p(xt) and πθ (x) take the same action at time

step t.
Applying a second-order Taylor series in KL divergence,

with an assumption of 
θ → 0

DKL(qθ (z)‖qθ+
θ (z)) ≈
(
Ez

[
log qθ (z)

]− Ez
[
log qθ (z)

])

− Ez
[∇ log qθ (z)

]

θ

− 1

2

θT

Ez

[
∇2 log qθ (z)

]

θ

= 1

2

θT

Ez

[
−∇2 log qθ (z)

]

θ

= 1

2

θTF
θ (8)

where F = Ez [−∇2 log qθ (z)]. The proof for this approx-
imation can be found in [31]. A previously learned global
policy represented by π ′�, can be readily used to represent
previous local policies at different task conditions, specifically,
for each policy pi, pi = π ′�. Following the optimization of
a global policy by applying (6), we can obtain a new global
policy πθ situated in the neighborhood of π ′�, represented as
πθ = π ′�−
�. Thus at each task condition i, by substituting
θ = �−
� and applying 
θ = 
�→ 0, we can rationally
derive the following:

DKL
(
πθ (xt,i)‖p(xt,i)

) = DKL
(
π ′�−
�(xt,i)‖π ′�

(
xt,i

))

= DKL
(
π ′θ (xt,i)‖π ′θ+
�(xt,i)

)

= DKL
(
π ′θ (xt,i)‖πθ+
θ (xt,i)

)

= 1

2

θTF
θ

= 1

2
(θ − θi)

TFi(θ − θi). (9)

The above corresponds to the second term of the optimization
problem in (6). Thus, the optimization problem for global
policy can be rewritten as

πθ ← argmin
θ

∑

t

DKL
(
πθ (ut|xt,m)‖pm(ut|xt,m)

)

+ λi

∑

i

DKL
(
πθ (xt,i)‖p(xt,i)

)
. (10)

Consequently, the state distribution difference Dis =
‖πθ (xt) − p(xt)‖1 at time step t and task condition m can be
expressed as follows:

Dis =
∥∥∥∥∥DKL(πθ (ut|xt)‖p(ut|xt))

+ λi

m∑

i=1

DKL
(
πθ (xt,i)‖p(xt,i)

)− p(xt)

∥∥∥∥∥
1

≤
∥∥∥∥∥εt + λi

m∑

i=1

DKL
(
πθ (xt,i)‖p(xt,i)

)− p(xt)

∥∥∥∥∥
1

≤ ‖εt + DKL(πθ (xt)‖p(xt))− p(xt)‖1
≤ ∥∥εt + Dχ2(πθ (xt)‖p(xt))− p(xt)

∥∥
1

≤
∥∥∥∥∥εt + (πθ (xt)− p(xt))

2

p(xt)
− p(xt)

∥∥∥∥∥
1

=
∥∥∥∥∥εt + 2πθ (xt)

[
πθ (xt)− p̃(xt)

]

p(xt)

×
[

1−
t∏

t′=1

(
1−√

2εt′
)]
− πθ(xt)

2

p(xt)

∥∥∥∥∥
1

≤
∥∥∥∥∥εt + 4

[
1−∏t

t′=1

(
1−√2εt′

)]

p(xt)

∥∥∥∥∥
1

(11)

where the second step follows from the definition
εt = maxxt DKL(πθ (ut|xt)‖p(ut|xt)), the third step fol-
lows DKL(πθ (xt)‖p(xt)) = maxxt,i DKL(πθ (xt,i)‖p(xt,i)) and∑m

i=1 λi = 1, the fourth and fifth steps follow from the con-
clusion DKL(p(x)‖q(x)) ≤ Dχ2(p(x)‖q(x)) (presented in [32]),
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the sixth step follows (7), and the last inequality comes from
the fact that 0 < πθ(x) < 1 and ‖πθ (xt)− p̃(xt)‖ ≤ 2 for dis-
crete distributions. For the continuous case, the result can be
obtained through the limit of an infinitely fine discretization.
Next, it is noted that

t∏

t′=1

(
1−√

2εt′
)
≥ 1−

t∏

t′=1

√
2εt′ (12)

so we can have

‖πθ (xt)− p(xt)‖1 ≤ ‖εt + 4
∏t

t′=1
√

2εt′

p(xt)
‖1. (13)

Given the lower bound α for p(xt), we can obtain the upper
bound for ‖πθ (xt)− p(xt)‖1 which is

‖πθ (xt)− p(xt)‖1 ≤ εt + 4α

t∏

t′=1

√
2εt′ . (14)

2) Global Policy Cost: For the state-distribution difference
‖πθ (xt)− p(xt)‖1 ≤ εt + 4α

∏t
t′=1
√

2εt′ , we can set a bound
for the global policy cost as follows:

T∑

t=1

Eπθ (xt,ut)[l(xt, ut)]

≤
T∑

t=1

[
Ep(xt,ut)[l(xt, ut)]+

[
εt + 4α

t∏

t′=1

√
2εt′

]
L(xt, ut)

+ √
2εtL(xt, ut)

]
(15)

where L(xt, ut) = maxxt,ut l(xt, ut).
In the first step, we specify a bound on the cost of global

policy at time step t according to

Eπθ (xt,ut)[l(xt, ut)] = 〈πθ (xt, ut), l(xt, ut)〉
= 〈πθ (xt, ut)− p(xt)πθ (ut|xt)l(xt, ut)〉
+ 〈p(xt)πθ (ut|xt), l(xt, ut)〉
= 〈πθ (ut|xt)

[
πθ (xt)− p(xt)

]
, l(xt, ut)〉

+ 〈p(xt)
[
πθ (ut|xt)− p(ut|xt)

]
l(xt, ut)〉

+ Ep(xt,ut)[l(xt, ut)]

≤ ‖πθ (xt)− p(xt)‖1L(xt, ut)

+ ‖πθ (ut|xt)− p(ut|xt)‖1L(xt, ut)

+ Ep(xt,ut)[l(xt, ut)]

≤ Ep(xt,ut)[l(xt, ut)]

+
[
εt + 4α

t∏

t′=1

√
2εt′

]
L(xt, ut)

+ √
2εtL(xt, ut) (16)

where L(xt, ut) = maxxt,ut l(xt, ut), and the proof for
maxxt ‖πθ (ut|xt)− p(ut|xt)‖1 ≤ √2εt was presented in [30].

Fig. 2. Pendulum.

Next, summing the above quantity over all time t, we get

T∑

t=1

Eπθ (xt,ut)[l(xt, ut)]

≤
T∑

t=1

[
Ep(xt,ut)[l(xt, ut)]+

[
εt + 4α

t∏

t′=1

√
2εt′

]
L(xt, ut)

+ √
2εtL(xt, ut)

]
. (17)

This bound on the cost of global policy illustrates that for
the case of low cost local policies, we will eventually reduce
the cost of global policy πθ (ut|xt). In our setting, local policies
adopted in (6) ensure they are capable of performing tasks by
being trained on successful samples, or equivalently, the cost
for local policy is kept particularly small. Noting εt ≤ ε in
the C-step of Algorithm 1, and by choosing a small enough ε,
we can keep the difference between global and local polices
arbitrarily small so as to learn sequential multiple tasks without
catastrophic forgetting.

IV. SIMULATION ILLUSTRATION

In this section, we employ the proposed SMT-GPS algo-
rithm to learn control policies for two dynamical systems
shown in Figs. 2 and 3, specifically, a pendulum swing-
ing upward, and a peg insertion environment. By generating
multiple tasks, through varying the initial position of each
system (illustrated in Table I), a series of tasks are used to
evaluate the algorithm. First, a pendulum experiment is carried
out, to demonstrate the feasibility of the SMT-GPS approach to
continue learning without catastrophic forgetting, in contrast
to a conventional RL algorithm. Next, a robot manipulation
experiment is conducted to explicitly illustrate the ability of
sequential multitask learning in SMT-GPS, in comparison with
a traditional GPS-based method.

A. Pendulum Control

1) Dynamical System: The controller of the pendulum aims
to swing the pendulum several times to build up momentum
to make the pendulum upright. It also needs to decelerate the
pendulum early enough to prevent it from falling over. If the
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TABLE I
SYSTEM PARAMETERS USED FOR DIFFERENT TASKS

TABLE II
RESULTS OF DDPG AND SMT-GPS

Fig. 3. Peg insertion.

maximal load torque mgl is greater than the maximal output
torque umax, a nontrivial solution results for this one degree
of freedom system. The state comprises angles and velocities
relative to the target position. The goal is to study a policy for
controlling the pendulum swinging upward. For each task, if
the final position of the pendulum is close to upright position
(θ < 0.1π ), the task is considered to be successful. The cost
function at state xt, for action ut, is given by

�(xt, ut) = 1

2
wu‖ut‖2 + 1

2
wx‖pxt − p∗‖2 + 1

2
wv‖vxt − v∗‖

(18)

where pxt and vxt are the position and velocity of pendulum at
state xt, respectively, p∗ and v∗ represent the target information
for position and velocity of the pendulum, and wu, wx, and wv

are weighting parameters. This cost function encourages low
energy actions for target pendulum positions.

2) Results and Discussion: In this section, we employ the
dynamical system to evaluate our proposed SMT-GPS algo-
rithm. It is benchmarked against a well-known RL algorithm,
termed DDPG, which continuously improves the policy by
training a deterministic policy. For each task, we execute 100
steps to generate a trajectory sample, and collect ten sam-
ples during each session (corresponding to one iteration in
Algorithm 2). The SMT-GPS and DDPG algorithms are imple-
mented to optimize policy for the sequentially specified tasks.
When an agent completes learning at task i, experiments are
evaluated a total of fifty times for tasks 1, 2, . . . , i.

Table II shows that both algorithms are capable of complet-
ing previously learned tasks 1, 2, . . . , i, when learning a new
task i. This is evidenced by the final position of the pendulum
being close to the target upright position (θ ≈ 0). Further, this
indicates the proposed algorithm has some ability to overcome
catastrophic forgetting.

To compare the two algorithms in more detail, we inves-
tigate the average loss accumulated in 100 executing steps,
which indirectly describes the final state of pendulum. As seen
in Table II, after training at all four tasks, SMT-GPS achieves
similar results to DDPG when testing at those four tasks.
However, the proposed SMT-GPS can finish the task sequen-
tially, and delivers less loss than DDPG, both in terms of loss
function and final position of the pendulum. More importantly,
SMT-GPS only utilizes samples generated at the current task
condition in order to learn the control policy. On the other
hand, the DDPG requires samples in different tasks to be ran-
domly presented to train policy. Since previous task samples
need to be collected to update policy, when faced with a new
task, the DDPG places a higher demand, both in the manner
tasks appear and space samples are stored.

B. Peg Insertion

1) Dynamical System: This robot manipulation experiment
requires controlling a seven degree of freedom 3-D simulated
arm with the MuJoCo simulation environment [33], to insert a
tight-fitting peg into a hole. The state consists of joint angles,
velocities, and end-effector positions relative to the target posi-
tion. For each task, if the distance d between the current state
and goal position is smaller than a baseline 0.06 (as shown
in Fig. 4), the task is considered to be successful. The cost
function presented in [5] is

�(xt, ut) = 1

2
wu‖ut‖2 + wp�12

(
pxt − p∗

)
(19)

where ut is the robot action, pxt is the position of end effector
for state xt, p∗ is the desired end effector position, and the
norm �12(z) is calculated by (1/2)‖z‖2+√

γ + z2 which cor-
responds to the sum of an �2 and �1 norm. This cost function
comprises two terms, the first weighted by wu to encourage
low energy actions and the other weighted by wp to enable
the peg to reach target hole precisely.

In this section, the SMT-GPS and MDGPS are employed
to conduct comparative experiments. For the SMT-GPS, the
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global policy for each task is represented by a fully connected
neural network, with the structure [26 − 100 − 100 − 7]. In
each manipulation task, only successful samples that represent
successful trajectories for completing the task are collected,
to train the neural network global policy. As for the MDGPS,
environment settings described in [10] are employed.

Specifically, for each task, a trajectory sample is generated
for 100 steps, and five samples collected during each iteration.
The SMT-GPS and MDGPS algorithms are applied to optimize
the policy iteratively. When the agent is learning task i, the
experiment is evaluated at previously visited tasks 1, 2, . . . , i.

A further three subexperiments are carried out to evaluate
the efficacy of the proposed SMT-GPS method. The first exper-
iment aims to demonstrate the effectiveness of the proposed
method, by comparing with the same neural network, but with-
out employing FI. Subsequently, a comparative experiment of
SMT-GPS with MDGPS is designed to demonstrate the form-
ers sequential multitask learning capability. Finally, we utilize
FI to carry out a concrete analysis of the comparative efficacy
of the proposed SMT-GPS. Comparative results are presented
and discussed in the next section.

2) Results and Discussion:
a) Overcoming catastrophic forgetting: In this experi-

ment, in order to analyze algorithms from the perspective of
storing previous information, a new policy (denoted “Policy1”)
is constructed within the same neural network framework.
However, FI from previous tasks is not exploited here, whilst
the agent learns a new task. In other words, the training for
Policy1 only depends on the current task information, with
the exception of neural network parameters inherited directly
from training previous tasks.

First, we evaluate the SMT-GPS and Policy1 at 200
positions randomly selected around the four initial tasks.
Experimental results presented in Fig. 4 illustrate that once the
agent has learned the control policy for four tasks, the SMT-
GPS can almost complete peg insertion at all test tasks, both
in terms of the distance to target and success rate. However,
Policy1 fails in some areas around the training tasks.

Results show that the SMT-GPS algorithm outperforms
Policy1 for completing the insertion task. This is due to use
of the EWC algorithm to optimize the SMT-GPS approach.
However, Policy1 is capable of self-optimizing only at the
current task without taking FI of previous tasks into account.
Specifically, Policy1 lacks the second term on the right-hand
side of (6). Thus, equipped with the EWC algorithm which
utilizes previous task information, the proposed SMT-GPS is
able to complete different sequentially presented tasks in this
experiment. Further, it can exploit previously learned informa-
tion without catastrophic forgetting, that is, it has the ability
to learn knowledge continuously.

b) Sequential multitask learning capability: In this sec-
tion, experiments are carried out using the proposed SMT-GPS
approach and the MDGPS algorithm, in order to evalu-
ate the comparative effectiveness of their multitask learning
capabilities.

In the MDGPS algorithm, all samples of different tasks are
presented together at the beginning of training, in order to ana-
lyze policies in a batch way. For SMT-GPS, the agent learns

(a)

(b)

Fig. 4. Result of comparing SMT-GPS and Policy1. (a) Distance.
(b) Accuracy.

TABLE III
RESULTS OF COMPARING SMT-GPS AND MDGPS

policies based only on current task samples, after it completes
previous tasks. We test these two algorithms on a total of
120 different tasks, with initial positions randomly selected
within the square area constructed by associated training tasks.
In other words, both algorithms are evaluated at 30 similar
yet different tasks separately, generated around four different
training tasks.

Results are presented in Table III which show that
the proposed SMT-GPS algorithm can attain comparable
performance to MDGPS in three aspects, including distance
between end-effector position and target position, the action
cost, and success rate of peg insertion. However, the SMT-GPS
only relies on current task samples, which is totally differ-
ent from the MDGPS whose training samples for all tasks
need to be presented in advance. In other words, the proposed
SMT-GPS can be seen to complete multiple tasks sequentially
without requiring whole task information, and can also achieve
better results at the neighborhood of these four tasks.

c) Fisher information analysis: Finally, we carry out an
experiment to further analyze the concrete influence of retain-
ing previous information, with a form of FI incorporated in
the EWC algorithm.

As before, we use the Policy1 method as a contrastive
method, and train policies with the same settings as in the
first section. Since FI describes the accuracy of estimated pos-
terior probability for each task parameter, we now make a
comparison between different tasks in terms of their FI values.



224 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 49, NO. 1, JANUARY 2019

(a)

(b)

Fig. 5. Result about FI difference on each weight in layer 3 for com-
paring SMT-GPS and Policy1 methods. FI differences in (a) SMT-GPS and
(b) Policy1.

For simplicity, the neural network weights in the third layer
(i.e., the second hidden layer) are used for illustration. The
outcomes are calculated in three scenarios, showing FI differ-
ences between each of the first three tasks with the fourth
task, corresponding to the top (t1 − t4), middle (t2 − t4),
and bottom (t3 − t4) figures in Fig. 5, respectively. As can
be seen, the FI differences in three figures achieve similar
results since the agent can complete each of the previous
tasks when learning the current task. Here, FI is employed
to record important information of previous tasks, which can
be considered a way of communicating information between
different learning tasks. It can also be seen that, for the case
of the SMT-GPS algorithm, FI differences present smaller
values compared to Policy1. For instance, there are signif-
icant differences around the weight 4500, which show that
Policy1 is not capable of learning a perfect global parameter
to represent the previous parameters for each task. Therefore,
we conclude that the proposed SMT-GPS method is able to
retain key weights for previously learned tasks. In other words,
it can recall previous task information to avoid catastrophic
forgetting, whilst executing a new learning task.

V. CONCLUSION

In this paper, we proposed a novel GPS-based frame-
work for sequential multitask learning. It enables agents
to continuously learn policies for different tasks, without
catastrophic forgetting. In particular, an algorithmic imple-
mentation, termed SMT-GPS, has been realized, and com-
paratively evaluated on two dynamical systems, specifically,
an upward-swinging pendulum and peg insertion environ-
ments. These demonstrate the algorithms ability to both

remember previous task policies and incrementally learn,
new task-specific knowledge. Use of well-trained local poli-
cies, optimized by “successful samples representing successful
completion of trajectories, enable the SMT-GPS to address
the problem of catastrophic forgetting. The latter is of signif-
icant importance, for enabling effective interaction with the
real world.

Further, the agents global policy employs a modified EWC
algorithm to perform self-optimization at different task con-
ditions. Here, FI is introduced to represent parameters for
previous tasks. Thus, the agent can generate a successful policy
for completing all encountered tasks. In contrast to traditional
batch algorithms employed in RL, such as GPS, the proposed
SMT-GPS is capable of learning policies incrementally, with-
out requiring all learning tasks to be presented in advance. The
new algorithm is thus posited as a new benchmark method, for
the real-time RL and robotics research community.

For future work, the proposed framework can be extended
by introducing deep neural networks, to effectively deal with
visual inputs. This could enable agents to complete tasks and
learn continuously in more complex environments. Further,
exploring other learning models for the SMT-GPS, such as
learning to reach different target positions for the same task
setting, is another challenging future work direction.
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