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SUMMARY 

Global land-use change and industrialisation has driven biodiversity declines and impaired 

ecosystem functioning. Recently, there have been large-scale efforts to not only halt habitat 

loss but create and restore habitat on formerly managed (e.g. agricultural) land. However, 

although the effects of habitat loss and fragmentation on biodiversity are well understood, 

our understanding of how biodiversity responds to habitat created in a patchy configuration 

is not. In particular, little is known about the relative importance of local (e.g. patch size) 

vs landscape scales (e.g. amount of habitat in the landscape) for restoring biodiversity in 

created habitat. Here, a long-term, large-scale natural experiment (the Woodland Creation 

and Ecological Networks project) was used to understand how bird species, communities 

and behaviour respond to woodland created in a patchy configuration on post-agricultural 

land. I used a combination of direct and indirect survey methods to quantify bird diversity, 

abundance and vocal behaviour in post-agricultural woodlands of known age in Great 

Britain. I show that secondary woodlands favour generalist species and older patches 

contain more individuals and species due to their vegetation structure. In relative terms, 

local-scale factors such as patch size made the greatest contribution to bird diversity and 

abundance. Colonisation events drive community assembly in new habitat, and I found that 

large-scale (km2) habitat patterns were more important than patch-level factors during 

colonisation of breeding territories by a long distance migrant bird (Willow Warbler 

Phylloscopus trochilus). Land management practices surrounding a habitat patch can also 

affect its perceived quality and relative attractiveness to potential colonisers. Using the 

Eurasian Wren Troglodytes troglodytes as a model species, I found that high proportions of 

agricultural land at woodland edges caused an increase in perceived predation risk. In 

conclusion, I suggest that post-agricultural woodlands rapidly provide valuable habitat for 

generalist woodland birds. Local, patch-level factors (area, vegetation structure) also 

appear relatively more important than landscape factors for woodland bird communities. 

Land-managers seeking to maximise the benefits of woodland creation for birds should 

thus focus on creating large patches with a diverse vegetation structure. 
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CHAPTER 1  

GENERAL INTRODUCTION 
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LAND-USE CHANGE AND ITS IMPACT ON THE NATURAL ENVIRONMENT 

The industrial revolution of the 1700s triggered dramatic changes in land management 

practices that transformed the Earth’s ecosystems and biophysical functioning (Figure 1.1) 

(Lambin 2001). Formerly natural landscapes were converted to agricultural land, and 

cleared to be exploited for oil, minerals and timber. Remaining natural habitat became 

fragmented (i.e. broken into smaller pieces) and embedded in a patchwork or ‘matrix’ of 

managed land-cover. For many societies, large-scale industrialisation and land-use change 

paved the way to improved food production and security, better health, universal access to 

education and increased life expectancy. However, industrialisation also came at the 

expense of the natural environment and its biodiversity, which in turn affected those 

communities who rely on natural resources for their livelihoods. The continued 

exploitation of globally limited resources also poses a threat to future societies, who will 

be shouldered with the challenge of coping with and repairing the environmental damage 

caused by our current and past actions. 

 

 

Figure 1.1 Estimated global land-use change from 1700 to 1995.  Adapted from Figure 1 in 

Lambin et al. (2001). 
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Perhaps the most damaging consequence of land-use change has been the 

fragmentation and loss of natural habitats, which threatens the earth’s animal and plant 

diversity (Haddad et al. 2015; Maxwell et al. 2016). Habitat loss can also impact on 

environmental processes, for example contributing to greenhouse gas emissions or causing 

landslides and exacerbating floods (e.g. García-Ruiz et al. 2017). For biodiversity (the 

diversity of species and their genes), habitat fragmentation affects how individuals move 

through the landscape during dispersal and colonisation (Hanski 1994), which disrupts 

gene flow between previously connected populations. This can cause local and global 

extinctions of sensitive species and can impair ecosystem resilience to future change, such 

as a warming climate (Oliver et al. 2015).  

By the 1970s there was increasing interest in combining biogeography and 

metapopulation theories with conservation planning (MacArthur & Wilson 1967; Diamond 

1975) to understand how changes in the spatial arrangement (i.e. configuration) and 

amount (i.e. composition) of natural habitat alters ecosystems (Simberloff & Abele 1976). 

Early work focused on understanding patterns of biodiversity responses to habitat loss due 

to fragmentation, with the aim of informing the size, shape and location of protected areas 

(Diamond 1975). Later, attention moved to understanding the ecological processes that 

cause spatial and temporal patterns of biodiversity change (e.g. Tewksbury et al. 2008; 

Thompson 2007). More recently, there has been a focus on disentangling the impact of 

habitat loss and fragmentation on ecosystem function (e.g. the Stability of Altered Forest 

Ecosystems Experiment). However, given the extent of historic losses in many regions, it 

is increasingly acknowledged that we must also seek to understand how habitat creation on 

formerly managed (e.g. agricultural) land can be optimised to benefit biodiversity using the 

limited resources available for conservation (Dolman 2012; Humphrey et al. 2015; Watts 

et al. 2016). 
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Habitat creation vs habitat loss 

Until recently, actions to restore or create habitat on formerly managed land have typically 

been informed by lessons learned from studying biodiversity responses to habitat loss (i.e. 

fragmentation) (Humphrey et al. 2015). The rationale for this has been that biodiversity 

declines can theoretically be reversed by creating and replicating habitat patterns that 

minimise biodiversity declines following habitat loss. However, biodiversity responses to 

habitat loss and habitat creation are not necessarily reciprocal. The reasons for this are two-

fold. Firstly, biodiversity declines due to habitat loss occur because the pre-existing 

ecological community is disassembled over time, whereas biodiversity is expected to 

increase following habitat creation because a new community assembles over time. 

Secondly, most assessments of biodiversity responses to habitat loss are made over 

relatively short timescales (Haddad et al. 2015), which can be misleading because species 

with slow life histories can persist long after the surrounding landscape has been 

fragmented. Often, such remnant populations will eventually become extinct following 

large-scale land-use change, but there is a delayed response or ‘extinction debt’ to be paid 

at a later date (Tilman et al. 1994; Kuussaari et al. 2009), sometimes centuries after the 

initial disturbance. Thus, some species can, at least initially, appear immune to the effects 

of habitat fragmentation or loss, and this might lead us to conclude that such species are 

tolerant of fragmented landscapes in general. However, in the case of new habitat created 

in a patchy configuration, there can be a substantial time lag between habitat creation, 

resource development in a patch and eventual colonisation, the length of which will depend 

on interactions between a species’ life history traits such as dispersal ability and the 

composition or configuration of the surrounding landscape. This time lag occurs in the 

opposite direction to an extinction debt, and is known as a ‘colonisation (or ‘immigration’) 

credit’ (Jackson & Sax 2010). Such ecological time lags present a significant challenge to 

understanding how best to create and configure new habitat at large spatial scales 

(Kuusaari et al. 2009; Jackson & Sax 2010). 

 

Forest loss and its impacts on biodiversity  

Except for Polar Regions, almost all terrestrial environments have been affected by land-

use change, but temperate regions have experienced some of greatest and most prolonged 

losses of natural habitat (Haddad et al. 2015). Temperate forest, for example, declined 

substantially following large-scale timber exploitation (e.g. for ship building and sea 

defences) and clearance for cropland and pasture. Forests support more biodiversity than 
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any other terrestrial habitat and provide significant social, economic and environmental 

benefits (Moseley et al. 2015; García-Ruiz et al. 2017), and habitat loss and fragmentation 

pose the greatest threat to global forest biodiversity (Haddad et al. 2015; Maxwell et al. 

2016).  

Following a decline of approximately 29% since the 1700s, global forest cover now 

stands at 30.8% of the Earth’s land surface (Food and Agriculture Organisation 2017) and 

remaining forest is highly fragmented (Haddad et al. 2015). There is significant regional 

variation in the scale of deforestation, however. In Great Britain, forest cover (Plate 1) 

currently stands at approximately 13%. This comprises approximately 5% native broadleaf 

forest or ‘woodland’ and 8% commercial plantations, which are typically coniferous and 

non-native (e.g. monocultures of Sitka spruce Picea sitchnesis). Although forest loss in 

Great Britain lies at the extreme end of the spectrum of loss, similar patterns have occurred 

in other temperate regions (Haddad et al. 2015). 

 

 

Plate 1.1 Example of an immature (c.20 years old) broadleaf woodland (right) in an 

agricultural landscape in Great Britain (overlooking the village of Bo’ness) with 

surrounding scattered trees, arable fields and hedgerows. 

 

Population trends of forest-dependent species also show significant regional 

variation (Figure 1.2). In Europe, the common forest bird index (standardised population 

trends) declined by 5% between 1980 and 2015 (Figure 1.2a), but in the United Kingdom 

the similar woodland bird index declined by 23% between 1970 and 2015 (Figure 1.2b). 
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Despite these declines, however, both indices have stabilised in the past decade, with 

continuing declines of obligate forest specialists such as Lesser-spotted woodpecker 

Dendrocopos minor being offset by increasing numbers of more generalist, facultative 

forest species such as Blackcap Sylvia atricapilla (Balmer et al. 2013). For other taxa, such 

as woodland mammals, invertebrates, plants and reptiles, the picture is less clear. This is 

in-part due to insufficient long-term population trend data and also because other taxa 

(particularly mammals) are less diverse than birds, making it difficult to quantify general, 

community-level trends.  

 

 

Figure 1.2 Estimated forest/woodland bird population trends in Europe (a: 34 species; 

source EBCC/BirdLife/RSPB/CSO) and the United Kingdom (b: 37 species; source 

BTO/RSPB). Black lines show smoothed indices and dashed lines are 95% confidence 

intervals. Inset maps are © EuroGeographics for the administrative boundaries. 

 

Conserving forest biodiversity 

Landscape-scale biodiversity conservation combines efforts to protect existing natural 

habitats with those aimed at restoring and creating new habitat.  Habitat creation is often 

focused on increasing the size of existing sites or improving ‘connectivity’ between 

remnant natural patches, with a particular focus on ancient woodland in Great Britain 

(Lawton 2010). Ancient woodland is defined as a stand that has existed on historic maps 

since 1600 AD in England and Wales, or 1750 AD in Scotland. Although these dates are 

used for practical purposes (map availability), many ancient woodlands are probably much 

older and likely became established soon after the last glacial period c.12,000 years ago. 
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Ancient woodland in good condition is often said to be ‘irreplaceable’, but 

secondary woodland can also have substantial value for biodiversity. Theory predicts that 

natural communities will re-establish over time given a sufficient source of colonists. 

However, for many taxa it remains unknown if communities will ever resemble those 

found in ancient habitat, and one of the most important unanswered questions in landscape 

conservation is how long will it take for communities to re-establish after habitat creation? 

This is a difficult question to answer because community assembly in most habitats occurs 

over decades or centuries. Thus, it is rarely possible to observe community assembly over 

time using experimental approaches because the observation time required exceeds the 

lifetime of most ecological studies, and certainly exceeds the lifespan of most ecologists. 

To address this problem, it is possible to use ‘natural’ or ‘mensurative’ approaches 

(McGarigal & Cushman 2002; Lindenmayer 2009; Watts et al. 2016). These methods seek 

to strike a balance between the rigidity of controlled experiments, which are often limited 

in scale, and the often weakly controlled nature of observational studies (Haddad et al. 

2015). One of the main benefits of a carefully designed natural experiment is that it can 

encompass much larger scales than highly controlled experimental designs (Haddad et al. 

2015). For example, the Metatron is a relatively large, well-controlled, enclosed 

experiment designed to simulate a ‘metaecosystem’ (Stokstad 2012). This state-of-the-art 

facility can be used to study how changes in landscape configuration affect dispersal under 

a warming climate, for example. However, although the Metatron is large relative to other 

true experiments, it remains relatively small (10s of m2) in a landscape context, which 

limits the taxa that can be studied. Furthermore, the enclosed design leads to boundary 

effects that are likely to influence disperser movement in ways that could be difficult to 

extrapolate to natural environments (Stokstad 2012). These limitations reinforce the need 

for natural experiments.  

There are now several well-known natural experiments designed to understand how 

individuals, populations and communities respond to large-scale changes in habitat 

configuration or composition under near-natural or natural conditions. These include the 

Savannah River Site Corridor Experiment, USA (Haddad 1999), the Biological Dynamics 

of Forest Fragments Project, Brazil (Laurance et al. 2011), the Stability of Altered Forest 

Ecosystems Experiment in Malaysian Borneo (Ewers et al. 2011), and the Nanangroe 

Natural Experiment, Australia (Lindenmayer et al. 2001). These vary in scale from 

hundreds of m2 to km2, and in scope from studying the specific effects of corridor creation 

on dispersal behaviour to understanding whole ecosystem responses to large-scale habitat 
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loss. Experiments like these have provided valuable insights into the effects of habitat 

fragmentation on biodiversity from individual to community levels, but they all share on 

main limitation that limits their usefulness for studying habitat creation - they are all 

relatively young. Thus, they can only give limited insights into the long-term temporal 

responses of biodiversity to habitat fragmentation and creation, and for many taxa with 

slow life histories they cannot be used to understand how long it will take for communities 

to become re-established in new habitat. 

These limitations are being addressed by a new type of natural experiment that uses 

historic habitat creation to inform future restoration efforts, such as the Woodland Creation 

and Ecological Networks (WrEN) project (Watts et al. 2016). The WrEN project is a 

collaboration between the University of Stirling and Forest Research, which receives 

ongoing support and input from the National Forest Company, the Woodland Trust, the 

Department for the Environment, Food and Rural Affairs, Natural England and other 

stakeholders. This diversity of stakeholders from the public and private sectors has driven 

the WrEN project’s research agenda; to understand how habitat creation can be optimised 

to benefit biodiversity, and to disentangle the relative importance of local and landscape 

scales for biodiversity in fragmented secondary habitats (i.e. woodland). The WrEN project 

uses a patch-based approach and exploits detailed historical maps in Great Britain to 

estimate woodland creation dates over the past 160 years (Watts et al. 2016) (n = 101 

woods; Figure 1.3). To date, the WrEN project has recorded a total of over 1100 species, 

including bats, small terrestrial mammals, birds, ground and aerial invertebrates, vascular 

plants, lichens and bryophytes, and has over 150 measures of local and landscape-scale 

characteristics for each patch and its surrounding landscape. This unique dataset offers a 

wealth of opportunities for disentangling the relative importance of spatial and temporal 

scales for biodiversity in habitats created in a patchy configuration. 
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Figure 1.3 Map of Great Britain showing the two study areas in Scotland and England with 

approximate locations of the study woodlands (n = 101). 
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Woodland birds 

Although the negative effects of habitat loss and fragmentation on biodiversity are 

pervasive, studies of forest birds (individual species and communities) underpin much of 

the evidence base (Humphrey et al. 2015). Forest birds are an ideal taxon for studying the 

impacts of land-use change because they are diverse, show interspecific variation in how 

they respond to patterns of land-use at local and landscape scales, and are relatively easy to 

detect and identify in the field. As for other taxa, most studies have focused on species, 

community or behavioural responses to habitat loss and fragmentation (Dolman 2007; 

Dolman 2012). There are multiple lines of evidence to suggest that patch size is the most 

important predictor of woodland/forest bird species richness and occupancy (Bayard & 

Elphick 2010; Dolman 2012), both in remnant fragments and in new patches. However, the 

process or processes that drive this pattern have been unclear (Dolman 2012). Do larger 

patches have more structural heterogeneity (e.g. tree-fall gaps) and therefore higher niche 

availability than smaller patches? Does interspecific competition limit the number of 

territories a patch can support?  Do patches act as ‘nets’ that capture individuals from the 

available species pool in proportion to their area, and thus larger patches have higher 

abundance and diversity due to probability alone? Or, does patch size and shape affect 

predation pressure and reproductive output? The strength of support for these potential 

mechanisms is varied (Dolman 2012) and it has been argued that species or community 

responses to landscape configuration or composition are likely to vary between 

geographical regions (Villard 2002; Bayard & Elphick 2010). If this is true, then making 

general recommendations for habitat creation is likely to be extremely challenging 

(Dolman 2012).  

  

Pattern vs process 

Species or community responses to habitat configuration and composition are both 

temporally and spatially hierarchical (Dolman 2012). In forests, successional processes 

play an important temporal role in shaping bird communities. Generalist species that prefer 

more open canopies and dense vegetation with a low canopy height are the first to colonise 

young stands. These are then forced to move to patch edges when the canopy begins to 

close. Then, facultative forest species begin to colonise as trees mature and the vegetation 

structure begins to diversify. Finally, obligate forest species that require a closed canopy, 

open understorey and mature trees colonise when the shrub layer is lost following full 

canopy closure. Thus, a forest or woodland patch is expected to comprise a nested subset 
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of these three broad groups (generalists, facultative and obligate species) depending on its 

age (Dolman et al. 2007).  

The spatial scales that determine the suitability of a forest for bird species and 

communities are also nested (Dolman et al. 2007; Dolman 2012). At very fine scales (m2), 

the vegetation structure is important for nest-site location. Then, the vegetation structure 

and management (i.e. grazing pressure, coppicing) of the woodland at the territory scale 

(10s – 100s of m2) influences resource availability (food, roosting sites), and vegetation 

structure can also be linked to predation risk (e.g. Whittingham & Evans 2004; Bellamy et 

al. 2017). In a fragmented landscape, there is also substantial evidence (but mainly from 

North America) that the type of land-use at the patch edge (e.g. within 10s of m) can affect 

nest predation risk (Thompson 2007). At larger scales (100s to 1000s m2), patterns of land-

use can affect colonisation rates, dispersal processes and predation pressure. For example, 

when there is more habitat in the landscape then there is a larger pool of potential colonists 

for the focal patch, and patch isolation or ‘connectedness’ can affect movement between 

patches (Hanski 1994; Bélisle 2005). 

 Disentangling which of the many temporal and spatial processes have the greatest 

relative importance for species and communities is a significant challenge, not least 

because they are often interconnected and highly co-linear. For example, older patches 

might have higher bird abundance and diversity (e.g. species richness), but is this due to 

the greater availability of time-dependent resources such as tree holes, or because older 

patches simply have more time to sample individuals from the available species pool 

(Figure 1.4)? Since patch age and vegetation structure are highly correlated in forest 

habitats, separating their independent effects analytically is often impossible and this 

problem has impeded progress in landscape ecology generally. 
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Figure 1.4 Alternate hypotheses illustrating two potential relationships between patch age and bird 

abundance and diversity (species richness). In (a), older patches have higher bird abundance and 

richness because (i) they have a greater chance of sampling individuals from the available species 

pool, and (ii) they have a more diverse vegetation structure. In (b), patch age has no direct relationship 

with bird diversity or abundance, but older patches have a more diverse vegetation structure and thus 

greater niche and resource availability, which can support higher bird abundance and diversity.  

 

Methodological advances 

Recent analytical developments have made it possible to address some of the common 

problems associated with analysing data that are correlated in time and space. One of the 

most useful statistical developments has been improved accessibility to a technique known 

as piecewise structural equation modelling (or confirmatory path analysis; Lefcheck 2016). 

This method can be used to examine the relative support for multiple alternate hypotheses 

and can account for direct and indirect causal relationships, correlations between both 

dependent and independent variables and data with non-normal error distributions (e.g. 

Poisson), which are common in ecology.  

 Large-scale ecological studies can also be limited by sample size in time and space, 

which affects statistical power. In many cases, there is a time-for-space trade-off (Haddad 

et al. 2012). Studies conducted over very large spatial scales (1000s of km2) typically have 

low temporal resolution (e.g. annual visits to study sites) compared to those conducted 

over small scales (100s of m2), which might be visited daily. Because of these trade-offs, 

there is a middle-ground that is poorly understood. For example, observed patterns of 

colonisation rates in a patch are predicted to be driven by movement behaviour, where 

higher physical connectivity (e.g. hedgerow availability) in a landscape means that 
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individuals can move more freely between patches. However, because of the challenges 

associated with tracking individual movements at sufficiently large temporal and spatial 

scales, support for a direct link between patterns of physical landscape connectivity and 

movement behaviour in birds is actually very weak (Dolman 2012). The majority of 

evidence is based on observational inference or from ‘removal’ trials, which involve 

trapping, translocating and re-releasing individuals into landscapes with different habitat 

configurations to monitor their movement behaviour. The generalisability of this work to 

natural systems has been questioned, and there is a need to understand how large-scale 

habitat patterns influence behaviours linked to movement, such as colonisation rates. 

Technological developments, such as inexpensive, automated audio recorders, can help 

advance knowledge in this area. 

 

AIMS AND OUTLINE 

Here, I aim to address two primary questions that have limited our ability to optimise 

woodland creation for the benefit of biodiversity, focusing on bird communities in post-

agricultural woodlands: 

 

1. What is the relative importance of local (e.g. management practices) and landscape 

scales (e.g. habitat amount, configuration), and time (woodland age) for bird 

communities in woodland created on post-agricultural land?  

2. What are the behavioural processes that could be driving patterns of species and 

community responses to woodland created in a patchy configuration? 

 

I combine natural experiments with the latest analytical and technological tools to 

answer these questions. In Chapter 2, I examine bird community responses to habitat 

creation using structural equation modelling to disentangle the direct and indirect 

relationships between local and landscapes scales and woodland age for bird species 

richness and abundance. In Chapter 3, I develop a new, inexpensive, bioacoustic 

monitoring tool (the ‘Solo’ system) that can be used to remotely monitor environmental 

sounds, such as bird song, for long time periods. I then used the Solo system in Chapter 4 

where I present a novel experimental design that can be used to detect daily bird 

colonisation events in naturally replicated woodland patches. This design allowed me to 

test if large scale habitat patterns act as cues for a long-distance migrant bird, the Willow 

Warbler Phylloscopus sibilatrix, during colonisation and settlement of breeding territories. 
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It has been suggested that predation pressure could drive community responses to local and 

landscape-scale habitat patterns. To address this question in Chapter 5, I tested if land-use 

surrounding a woodland patch affects perceived predation risk and causes a trade-off 

between alarm call behaviour and singing behaviour in the Wren Troglodytes troglodytes.  

 

Thesis structure 

Chapters 1 and 6 present a general introduction and discussion to the thesis topic and 

results, data chapters 2 – 5 are written in manuscript form. I have indicated if these are 

published, are under review or are in preparation to submit to a journal. Because chapters 2 

– 5 have individual Discussion sections I have tried to avoid substantial repetition in 

Chapter 6 as far as possible. The thesis is written in the first person singular form, but 

much of the work would not have been possible without the contributions of my 

supervisors and other collaborators, whose contributions are detailed at the beginning of 

each chapter. 
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CHAPTER 2  

BIRD COMMUNITY RESPONSES TO HABITAT 

CREATION IN A LONG-TERM, LARGE-SCALE 

NATURAL EXPERIMENT 
 

An adapted version of this chapter has been published as:  

 

Robin C. Whytock, Elisa Fuentes‐Montemayor, Kevin Watts, Patanjaly Barbosa De 

Andrade, Rory T. Whytock, Paul French, Nicholas Macgregor and Kirsty J. Park. 2017. 

Bird community responses to habitat creation in a long‐term, large‐scale natural 

experiment. Conservation Biology DOI:10.1111/cobi.12983 

 

Contributions: RCW, EF-M, KW, NM and KP co-designed the study. RW collected the 

data with assistance from RTW, PF and PBDA. RCW analysed the data and wrote the 

manuscript, and all co-authors commented on an earlier draft. 
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ABSTRACT 

Ecosystem function and resilience are compromised when habitats become fragmented due 

to land-use change. This has led to national and international conservation strategies aimed 

at restoring habitat extent and improving functional connectivity (i.e. maintaining dispersal 

processes). However, biodiversity responses to landscape-scale habitat creation and the 

relative importance of spatial and temporal scales is poorly understood, and there is 

disagreement over which conservation strategies should be prioritised. I used 160 years of 

historic post agricultural woodland creation as a natural experiment to evaluate 

biodiversity responses to habitat creation in a landscape context. Birds were surveyed in 

101 secondary, broadleaf woodlands aged 10 – 160 years with ≥ 80% canopy cover and 0 

– 17% broadleaf woodland in the surrounding landscape (within 3000 m). I used piecewise 

structural equation modeling to examine the direct and indirect relationships between bird 

abundance and diversity, ecological continuity (patch age), patch characteristics, and 

landscape structure, and also quantified the relative conservation value of local and 

landscape scales for bird communities. Ecological continuity indirectly affected total bird 

abundance and species richness through its effects on stand structure, but ecological 

continuity had a weaker influence (effect size close to 0) on the abundance and diversity of 

species most closely associated with woodland habitats. This was probably because 

woodlands were rapidly colonised by woodland generalists in ≤ 10 years (minimum patch 

age) but were on average too young (median 50 years) to be colonised by woodland 

specialists. Local patch characteristics were relatively more important than landscape 

characteristics for bird communities. Based on my results, biodiversity responses to habitat 

creation depended on local-and landscape-scale factors that interacted across time and 

space. I suggest there is a need for further studies that focus on habitat creation in a 

landscape-context, and that knowledge gained from studies of habitat fragmentation and 

loss should be used to inform habitat creation with caution because they are not necessarily 

reciprocal. 
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INTRODUCTION  

For landscapes to support biodiversity and ecosystem services in the long term they need to 

function as coherent “ecological networks” (Lawton et al. 2010; Humphrey et al. 2015). 

Conceptually, these comprise a spatial network of core habitats areas, corridors, stepping-

stones, and buffer zones. In combination, these local and landscape elements are expected 

to contribute to ecosystem function by increasing the persistence and movement of species 

across fragmented landscapes (e.g. Opdam et al. 2006; Lawton et al. 2010; Humphrey et al. 

2015). 

Based on principles derived from island biogeography and conservation planning 

(MacArthur & Wilson 1967; Diamond 1975), there is increasing interest in applying the 

ecological network concept to landscape-scale conservation (e.g. Hoctor et al. 2000; 

Jongman et al. 2011; Watts et al. 2016). However, the value of this concept as a 

conservation tool has been contested (Boitani et al. 2007), and there is disagreement over 

which elements should be prioritised. For example, should the focus be on actions to 

restore functional connectivity by creating habitat corridors or on actions to increase 

habitat quality or extent (e.g. Hodgson et al. 2011; Fahrig 2013; Hanski 2015). 

There are two main knowledge gaps that potentially impede efforts to design 

effective ecological networks. First, for most taxa, the relative ecological importance of 

local versus landscape-scale characteristics is poorly understood, which has led to 

uncertainty over where to prioritise resources (Dolman et al. 2007; Humphrey et al. 2015). 

Second, understanding of biodiversity responses to landscape configuration is underpinned 

by studies of habitat loss (e.g. Villard et al. 1999; Vergara & Armesto 2009; Gibson et al. 

2013) and it is unclear if the ecological consequences of removing habitat (i.e. 

fragmentation) and the outcomes of habitat creation are reciprocal (Munro et al. 2007; 

Naaf & Kolk 2015; Watts et al. 2016). 

Addressing these knowledge gaps has been challenging, not least because the time 

lag between habitat creation and biodiversity responses can be tens to hundreds of years, 

and many taxa respond to landscape configuration at kilometre scales or more (Boitani et 

al. 2007; Haddad et al. 2015; Watts et al. 2016). Processes occurring over such long 

periods and large spatial scales are difficult to replicate (Watts et al. 2016); thus, controlled 

experiments designed to test the effects of alternate conservation actions remain rare 

(Haddad 2012; Jenerette & Shen 2012; Legrand et al. 2012). 

Recently, natural (or mensurative) experiments have advanced understanding of 

landscape-scale ecological processes and patterns (McGarigal & Cushman 2002; 
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Lindenmayer 2009; Watts et al. 2016). These seek to strike a balance between the rigidity 

of manipulative experiments and the relatively low control of observational studies (Watts 

et al. 2016). For example, Mortelliti and Lindenmayer (2015) used a longitudinal (16 

years) natural experiment (Nanangroe, Australia) to evaluate the effects of landscape-scale 

matrix transformation on bird communities. They used a random stratified design to 

control for factors that could influence the bird community independent of the changing 

matrix. Thus, the effects of matrix change could be untangled from the effects of other 

local and landscape characteristics (Mortelliti & Lindenmayer 2015), and results showed 

that matrix transformation in the form of forestry plantations can influence bird turnover 

rates in remnant native woodland. 

Responses of bird communities to landscape configuration have received 

widespread attention (e.g. Bennet et al. 2004; Vergara & Armesto 2009; Galitsky & Lawler 

2015). This is in part because of the taxon’s high diversity and because landscape 

attributes, such as patch isolation and matrix composition, can inhibit some species’ 

movements despite their ability to fly and apparent high mobility (e.g. Bélisle et al. 2001). 

This paradox raises questions about the biological and ecological mechanisms that govern 

dispersal (Stevens et al. 2014). Forest birds are particularly vulnerable to landscape 

change, and many species have declined globally as a result of deforestation, which has 

wider implications for ecosystem function (Şekercioğlu et al. 2004). 

Existing evidence, primarily from studies of habitat loss, suggests that for forest 

birds there should be a focus on maintaining or creating large forest patches, and patch area 

consistently predicts avian diversity, occupancy, and turnover rates (e.g. Dolman 2007; 

Bregman et al. 2014; Humphrey et al. 2015). Other factors such as vegetation structure, 

management practices (e.g. livestock grazing) and patch shape can also play an important 

role in determining diversity of forest birds (Martin & McIntyre, 2007; Munro et al. 2007). 

However, few studies (Vergara & Armesto, 2009; Galitsky & Lawler 2015) have 

simultaneously examined the relative influence of these factors across multiple spatial and 

temporal scales. 

In addition to maintaining gene flow, migration and dispersal processes, functional 

ecological networks should satisfy the reproductive, feeding, resting, and sheltering 

requirements of multiple taxa. However, conservation actions that benefit one species can 

disadvantage another. For example, restoring contiguous forest on grazing pasture will 

benefit forest species but is likely to be detrimental to species associated with grassland. 

Furthermore, even within a land-cover type, individual species can have opposing 
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responses to environmental factors and landscape configuration (Law et al. 2014; Galitsky 

& Lawler 2015). Finding a balance between the needs of multiple taxa therefore presents a 

challenge, and biodiversity metrics such as species richness may not capture the diverse 

needs of different groups or individual species. To find a middle ground, species can be 

grouped objectively according to shared ecological traits. For example, French and Picozzi 

(2002) used hierarchical clustering to group breeding birds based on their feeding, 

breeding, and resting habitat requirements and assessed the relationship between these 

clusters and large-scale patterns of land use. 

I moved beyond investigating biodiversity responses to landscape fragmentation 

and habitat loss and evaluated, in a natural experiment, biodiversity responses to habitat 

creation in a landscape context. I surveyed bird abundance and diversity in 101 agricultural 

woodlands that appeared on historic maps in the last 10 – 160 years (Watts et al. 2016). I 

used structural equation models and tested for the existence of direct and indirect causal 

relationships between patch characteristics, ecological continuity, and landscape structure 

based on a priori expectations (Appendix 2.1), which allowed interactions that operate 

across temporal and spatial scales to be teased apart. I also compared the relative 

importance of local versus landscape-scale characteristics for the purposes of informing 

conservation and policy. 

 

METHODS 

Study area and site selection 

A detailed description of the methods I used for site selection, as part of the Woodland 

Creation and Ecological Networks (WrEN) project, is in Watts et al. (2016). In summary, 

broadleaf, secondary woodland patches >0.5 ha with ≥80% canopy cover were identified in 

lowland agricultural areas in central Scotland and central England (Appendix 2.2) from the 

National Forest Inventory for Great Britain data set (Forestry Commission 2013). Potential 

sites were systematically selected based on multiple local- (e.g. size, age) and landscape- 

(e.g. amount and degree of connectivity of surrounding woodland) level selection criteria.  

A total of 101 woodlands were surveyed for birds. Woodlands were 10 – 160 years 

old, 0.5 – 31.89 ha in area (reflecting the size distribution in the landscape), 0 – 17% 

broadleaf woodland cover in the surrounding landscape (within 3000 m), and 7 – 1573 m 

to the nearest broadleaf woodland. Detailed information and summary statistics for all 

local and landscape variables are in Appendix 2.3. 
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Bird surveys 

Breeding birds were surveyed using a reduced version of the common bird census method 

(Marchant et al. 1990). Sites were visited in 2015 on three occasions, once in April, May, 

and June respectively. There was a minimum of seven days between surveys. Based on 

national bird census data, bird population trends for most species of interest did not 

fluctuate significantly from the average in 2015 (British Trust for Ornithology 2016), 

suggesting it was a representative year. Surveys began 30 minutes after sunrise and usually 

ended by 1100 (no later than 1130). Woodland patch geometry varied considerably. To 

account for this, survey effort was standardised to 10-minutes per hectare per visit, and 

observers approached all areas of the patch within a minimum distance of 50 m to increase 

the probability of detecting territorial birds. Repeat visits were made by the same observer 

and patches of <1 ha were surveyed for a minimum of 10 minutes per visit. Further details 

on the bird-survey methods are given in Appendix 2.4.  

Corvids (other than Eurasian Jay [Garrulus glandarius]) and raptors were excluded 

due to their large territories and, for some species, low detectability (e.g. Eurasian 

Sparrowhawk [Accipiter nisus]). Species with a distribution that did not include both of my 

study areas in Scotland and England (e.g. Nightingale Luscinia megarhynchos) were also 

excluded (Appendix 2.4). I included resident and migrant species in the analyses, and 

species were assigned to one of five functional groups (see Results) based on the 

classifications given in Table 1 of French and Picozzi (2002), who used Euclidean distance 

and hierarchical clustering (Ward, 1963) to group British birds based on their feeding, 

breeding, and resting habitat requirements. Each species belongs to a single cluster. 

Nomenclature follows the British Ornithologists’ Union (2013).  

 

Patch characteristics and landscape data 

Local patch characteristics (patch age, patch geometry, vegetation structure, management 

practices) and landscape metrics (landscape composition, landscape configuration) were 

recorded during field surveys in 2013, 2014, and 2015 or estimated from the U.K. Land 

Cover Map 2007 (Morton et al. 2011) and National Forest Inventory data set (Forestry 

Commission 2013) using ArcMap v10.2 (ESRI 2011). 

Landscape composition was quantified by calculating the percent cover of 

broadleaf woodland, any woodland, semi-natural land cover (excluding woodland) and 

urban land cover surrounding the patch at eight nested scales (GIS buffers): 100, 250, 500, 

1000, 1500, 2000, 2500, and 3000 m. I limited the maximum buffer size to 3000 m to 

ensure spatial independence between sites as far as possible, and this was also considered 
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ecologically appropriate based on knowledge of woodland-bird dispersal distances (Paradis 

et al. 1998).  

To quantify landscape configuration, I calculated a connectivity index for broadleaf 

woodland (broadleaf woodland connectivity) based on the incidence function model 

(Hanski 1994; Moilanen & Hanski 2001). 

 

Modeling approach 

My two main aims were to disentangle the direct and indirect relationships between bird 

diversity and abundance, local patch characteristics (i.e. metrics of ecological continuity, 

patch geometry, vegetation structure and management) and landscape metrics (habitat 

composition and configuration in the landscape) and to quantify the relative importance of 

local versus landscape scales. I therefore used piecewise structural equation models 

(SEMs) (Lefcheck 2016), a multivariate technique that can be used to test whether a priori 

hypothesised direct and indirect causal relationships between variables are supported by 

the observed data, and to compare relative effect sizes between variables. A global 

conceptual model (metamodel) (Figure 2.1) based on underlying theory and evidence was 

used to guide the construction of more narrow hypotheses for individual functional groups 

and total species richness (Appendix 2.1). 

Before fitting SEMs, constituent generalised linear models (GLMs) were validated 

following Zuur et al. (2010). In some cases variables were log transformed to achieve a 

normal error distribution (Appendix 2.5). Bivariate relationships were explored graphically 

to identify potential nonlinear relationships. No multicollinearity was detected in 

constituent GLMs with a variance-inflation-factor threshold of < 5. Continuous predictor 

variables were mean centered and scaled by 1 SD, and binary predictor variables were 

transformed to have values of -1 and 1 so that their effect sizes were directly comparable 

with those of continuous predictors. For all landscape metrics I preselected the most 

appropriate buffer size for inclusion in the SEM by creating generalised linear models for 

each metric, scale, and response combination and retained only the scale with the lowest 

corrected Akaike information criterion (AICc). 

During SEM validation, missing paths were evaluated and either added to the 

model if they were considered causal (these were few and are indicated in Appendix 2.5) 

or allowed to freely covary. Shipley’s test of directed separation (Fisher’s C) was used to 

evaluate global SEM fit, where values of p> 0.05 indicated the model was supported by the 

observed data (although alternative models may also be valid). Predictions from SEMs 
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were made with non-focal predictors set at their median value. I used R statistical software 

(R Core Team, 2015) for all analyses. 

 

 

 

Figure 2.1 Metamodel used to guide structural equation model (SEM) construction illustrating 

general hypothesised direct and indirect relationships (Appendix 2.1) between response variables 

(bird abundance and bird species richness) and metrics of patch geometry, vegetation structure, 

management practices, landscape composition, and landscape configuration (dashed arrows, 

hypothesised correlated relationships [based on knowledge of my study sites] that do not have a 

causal explanation). Agriculturally improved grassland is abbreviated as AIG. 
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RESULTS 

A total of 8,252 records of adult birds of 59 species were recorded. After applying 

selection criteria to exclude probable non-breeders and species with a restricted range, 

7,791 records of adult birds (median = 59, range = 17 – 495 records per site) of 46 species 

(median = 13, range 5 – 26 species per site) were retained for analysis. The remaining 

species fell into five functional groups (Figure 2.2). Those in the open, mixed, or general 

wood and scrub group, such as Eurasian Wren (Troglodytes troglodytes) (96% of 

woodlands), Blue Tit (Cyanistes caeruleus) (90% of woodlands), and European Robin 

(Erithacus rubecula) (89% of woodlands) dominated. Chaffinch (Fringilla coelebs), a 

farmland seed eater, was detected in 98% of woodlands.  

A complete analysis was conducted for each of the five functional groups. For 

brevity, only results for raw species richness and the two groups most strongly associated 

with woodland habitats (open, mixed, or general wood and scrub and broadleaf trees and 

hedgerows) are discussed in the main text, but all results are given in Appendix 2.5. These 

two functional groups are also likely to be the main conservation focus of woodland 

creation. Goodness-of-fit statistics for all SEMs are given in Appendix 2.5, and in all cases 

the final models reproduced the data well (P > 0.05). 
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Figure 2.2 The proportion of woodlands in which each species was recorded as probably breeding 

(points and 95% confidence intervals, equation in Appendix 2.6). Functional groups are from French 

& Picozzi (2002) (see Methods). 
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Total species richness 

As expected, there was a strong positive relationship between total bird abundance and 

total bird species richness (Figure 2.3a; Appendix 2.5). However, in contrast to 

expectations, abundance was not the only direct driver of species richness, and by 

evaluating missing paths I also identified significant direct relationships between species 

richness and local- (patch area) and landscape-scale (broadleaf woodland connectivity) 

variables (Figure 2.3a). 

Confirming my expectations, mean tree diameter at breast height was larger in 

older patches, which in turn positively influenced total bird species richness. Other than 

patch area, only tree species richness directly affected total bird abundance at the local 

scale. 

Broadleaf woodland connectivity at 250 m had a positive, direct effect on species 

richness, but no other landscape-scale metric strongly affected total bird abundance or 

richness (Figure 2.3a).  

 

Broadleaf trees and hedgerows functional group 

Only two of the nine species expected in the broadleaf trees and hedgerows group were 

recorded in ≥20% of woodlands (Figure 2.2), and two species with a geographic 

distribution that overlaps the two study areas were not detected, Wood Warbler 

(Phylloscopus sibilatrix) and Pied Flycatcher (Ficedula hypoleuca) (Balmer et al. 2013). 

Unexpectedly, patch age and abundance of this group were not significantly related 

(Figure 2.3b; Appendix 2.5). After evaluating missing paths, there was a direct negative 

relationship between patch size and species richness (controlling for abundance), although 

the effect was relatively small and unlikely to be ecologically relevant. 

Livestock presence in the woodland reduced the group’s relative abundance by 

approximately 61%, from an estimated mean of 5.41 (5.24 – 7.84 CI) to 2.12 (2.02 – 4.82 

CI) adult birds recorded. In contrast to my original hypothesis, analysis of missing paths 

showed this effect was direct and not mediated by the negative effect of livestock presence 

on understorey cover. 

Also contradicting expectations, high proportions of broadleaf woodland in the 

landscape reduced rather than increased relative abundance. This effect was equivalent to a 

4% reduction in abundance per 1% increase in the amount of broadleaf woodland 

surrounding the patch at 1000 m, from an estimated mean of 7.52 records of adult birds 
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(6.3 – 11.53 CI) in woodlands with no surrounding broadleaf at 1000 m to 1.72 (1.32 – 

5.56 CI) records with 20% broadleaf woodland at 1000 m. 

 

Open, mixed, or general wood and scrub functional group 

All 13 species expected in the open, mixed, or general wood and scrub group were 

detected: seven species in >40% of woodlands and nine in >20% of woodlands (Figure 

2.2). Results from the SEM (Figure 2.3c; Appendix 2.5) were similar to the broadleaf trees 

and hedgerows group.  

Ecological continuity had no detectable influence on abundance. Unexpectedly, 

after controlling for the positive area-abundance relationship, larger patches had lower 

species richness than smaller patches, although the effect was small relative to other 

variables. Livestock presence directly reduced relative abundance but not because of 

reduced understorey cover. 

At the landscape-scale, there was a direct positive relationship between species 

richness and the amount of any woodland in the landscape at 500 m, but other landscape 

metrics were of relatively low importance. 

I also hypothesised that dead wood cover and the number of nest boxes in the 

woodland would have a positive effect on the relative abundance of this group, but I did 

not detect any significant relationships, and effect sizes for these predictors were small 

relative to other variables in the model. 

→ Figure 2.3 Structural equation model (SEM) path diagrams for (a) total bird species richness 

and (b, c) species richness and abundance of birds belonging to functional groups associated with 

woodland. Arrows and standardised effect sizes for significant variables indicate direction and 

relative magnitude of the relationship. Dashed arrows indicate nonsignificant relationships that were 

specified in the a priori model. Grey text indicates a variable in the metamodel that was not in the 

SEM (Appendix 2.5). Coefficients of determination (R2) are shown for all response variables and 

goodness-of-fit statistics are in Appendix 2.5: Table 7. Agriculturally improved grassland is 

abbreviated as AIG. 
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DISCUSSION 

The strategic creation of ecological networks could mitigate the effects of past habitat loss 

and fragmentation by improving ecosystem function and resilience (Lawton et al. 2010; 

Humphrey et al. 2015). For most taxa there are likely to be substantial time lags between 

habitat creation and species' responses (e.g. patch colonisation), and it could take centuries 

for communities to fully re-establish. However, despite the theoretical importance of 

ecological continuity, its importance for biodiversity has rarely been measured at 

representative time scales, and its importance relative to other factors such as patch size is 

generally unknown (Munro et al. 2007; Humphrey et al. 2015). Here, ecological continuity 

(i.e. patch age) ranged from 10 to 160 years (median 50 years), and older woodlands with 

mature trees had higher total bird abundance and thus richness, supporting my hypothesis 

that older woodlands can support more individuals and species due to greater structural 

diversity.  

Although ecological continuity was important for total species richness, it had little 

detectable influence on functional groups most closely associated with wooded habitats. 

Generalist woodland species in the open, mixed, or general wood and scrub group (n = 13 

species) were found in a high proportion of study sites, and the lack of any strong direct or 

indirect relationships between patch age and this group's abundance or diversity suggests 

they can rapidly colonise post agricultural woodlands, probably in ≤10 years. This agrees 

with results of short-term studies (≤ 25 years) of bird community responses to woodland 

creation in Australia (Kavanagh et al. 2007; Law et al. 2014) and the Scottish uplands 

(Savory 2016). In contrast to generalist species, those in the more specialist broadleaf trees 

and hedgerows group were relatively scarce in my study sites. Although the reasons for 

this are unclear, I suggest that a combination of woodland age, size, and historic 

management practices inside the patch (e.g. livestock grazing) may have played a role in 

reducing woodland suitability for these species (Fuller et al. 2005; Dolman et al. 2007). 

Several species of woodland birds have declined in the United Kingdom during the 

past 30 years, and others have increased, but reasons for these contrasting trends are 

unclear (Fuller et al. 2005). From 1995 to 2015, nine of the 13 species belonging to the 

open, mixed, or general wood and scrub group increased, three did not change 

significantly, and one declined (British Trust for Ornithology, 2016). During the same 

period, five species in the broadleaf trees and hedgerows group increased significantly, 22 

did not change significantly, and two declined (British Trust for Ornithology, 2016). All 

three declining species and the two species missing from my study sites (Pied Flycatcher 
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and Wood Warbler) are long distance migrants, and there is evidence that factors outside 

the breeding range are in part to blame for these declines (Vickery et al. 2014). For the 

remaining species that have increased or remained stable, some evidence suggests that 

population trends could be linked to higher overwinter survival rates due to a warming 

climate (Gregory et al. 2007). Based on my results, which show that post agricultural 

woodlands provide highly favourable habitat for generalist woodland birds, I further 

suggest that the recent expansion of broadleaf woodland cover in the United Kingdom 

during the past 30 years (Harmer et al. 2015) may have contributed to population increases 

or stability. Although speculative, this gives some grounds for optimism, and conservation 

policies aimed at increasing broadleaf woodland cover can potentially have rapid, positive 

effects on woodland biodiversity. Nonetheless, some declining species have not apparently 

benefited from expanding broadleaf woodland cover, and it is unclear just how long it will 

take for any benefits to be accrued. 

Local, patch-level factors were generally more important than landscape 

characteristics. Patch area was consistently the most important predictor of bird abundance 

and thus species richness, which is a well-known relationship (Dolman 2012). However, 

the relative importance of patch area versus other important factors such as ecological 

continuity, management practices, vegetation structure, patch age, and landscape 

composition has been unclear. This knowledge gap has made it difficult for land managers 

and policy makers to identify which of the many possible local and landscape-scale actions 

should be prioritised during woodland creation. My results show that larger patches not 

only have higher abundance and thus species richness but also that this relationship is, in 

relative terms, almost twice as important as other local and landscape-scale metrics for bird 

communities in post agricultural woodlands. I propose that, as a simple rule of thumb, 

patches larger than 5 ha should be created where possible (Appendix 2.4) (Bellamy et al. 

1996; Dolman et al. 2012) when the aim is to benefit generalist woodland bird 

communities, although much larger woodlands (i.e. > 30 ha) may be required to benefit 

woodland specialists (Dolman et al. 2012).  

Secondary to patch area, livestock presence (an index of grazing pressure) within 

the woodland was consistently negative for the two functional groups of woodland birds, 

and the effect was strongest for the broadleaf trees and hedgerows group. I hypothesised 

that this negative relationship would be due to the effect of grazing on understorey cover, 

but my results did not support this, and I found that livestock directly reduced bird 

abundance. This could be because my measure of understorey cover did not reflect the 
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structural needs of affected species or because disturbance from livestock has more of an 

effect than the structural impact of grazing. I suggest that both explanations are plausible, 

and further work is needed to disentangle their independent effects. Because livestock was 

present in approximately 18% of woodlands I studied (all in Scotland), reducing or 

removing grazing pressure could be an efficient way to increase woodland bird diversity in 

Great Britain. I also suggest that, where woodland exists for conservation purposes, 

livestock should be excluded unless grazing forms part of a well-defined conservation 

strategy (Pollock et al. 2005). 

My results also showed some unexpected relationships. For example, abundance of 

the broadleaf trees and hedgerows group declined when there were higher proportions of 

broadleaf woodland cover in the surrounding landscape. My original hypothesis was based 

on the assumption that source populations would be larger in the presence of more 

woodland in the landscape and this would lead to higher abundance and richness in the 

focal patch. However, results instead suggest that when there is more broadleaf woodland 

in the landscape, this might draw individuals away from the relatively small isolated 

patches represented by my study sites. Perhaps the perceived quality (as captured by patch 

age and measures of vegetation structure and size) and thus attractiveness of a patch is 

therefore relative to the amount and quality of other patches in the landscape (Stier & 

Osenberg 2010), but further work is required to test this hypothesis, which I address in 

Chapter 4. 

To achieve the best outcomes for biodiversity there is a need for evidence-based 

habitat creation, which may involve using knowledge gained from studies of habitat 

fragmentation (i.e. habitat loss) to inform habitat creation efforts. However, biodiversity 

responses to habitat fragmentation and biodiversity responses to habitat created in a patchy 

configuration are not necessarily reciprocal. This is because time-dependent resources will 

likely pre-exist in remnant patches after fragmentation of the surrounding landscape has 

occurred (e.g. ancient woodland fragments), but in new habitat patches there are likely to 

be time lags between resource development and subsequent colonisation. Thus, remnant 

patches might retain species associated with long periods of ecological continuity until the 

patch eventually pays an extinction debt (Tilman 1994), which could temporarily mask the 

importance of local and landscape-scale factors for colonisation. I therefore suggest that 

lessons learned from studies of habitat fragmentation should only be used to inform habitat 

creation with caution, and there is a need for further work that specifically examines 

biodiversity responses to habitat creation in a landscape context. 
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Results demonstrate that local and landscape-scale factors interact across time and 

space to determine the biodiversity outcomes of habitat creation; and factors at the local 

scale have relatively more effect on woodland bird communities than landscape 

characteristics. Policy makers and conservationists are often faced with the challenge of 

evaluating the outcomes of their actions, such as habitat creation. Although some taxa may 

respond rapidly to habitat creation (i.e. generalists), it could take centuries for specialist 

communities to fully re-establish. Thus, short-term assessments of biodiversity responses 

to conservation actions, such as the decadal time scales used to assess the conservation 

status of global biodiversity (e.g. Aichi biodiversity targets), could paint an overly 

pessimistic view of conservation actions. One must therefore be careful to acknowledge 

the existence of time lags between conservation actions and biodiversity responses when 

evaluating the efficacy of conservation efforts.  
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Appendix 2.1 Hypotheses underlying the metamodel 

 

My primary response variables of interest were total bird species richness and relative 

abundance, and within functional group species richness and relative abundance. Species 

richness was calculated as the total number of breeding species recorded in a patch, and 

relative abundance was calculated as the pooled, total number of adult birds recorded from 

all three visits.  

Preliminary graphical analyses suggested that, as expected, relative abundance and 

species-richness were positively correlated. As such, I hypothesised that local and 

landscape characteristics indirectly influence species richness through their direct effects 

on abundance. This was based on the assumption that species are sampled in proportion to 

their availability (i.e. abundance) in the local species pool. Thus, if a patch can support 

more individuals then the probability that a species is sampled from the local species pool 

is higher.  

Ecological continuity (patch age, calculated from the date of planting; see Watts et 

al. 2016) can influence colonisation rates either by increasing colonisation probability over 

time, or by allowing time-dependent resources (such as tree cavities for hole-nesting birds) 

to develop in a patch (Vesk et al. 2008). Since birds are generally highly mobile it is likely 

that colonisation can occur rapidly, but only where there are sufficient patch-level 

resources. For example, cavity nesting birds might rapidly reach a woodland but fail to 

breed (i.e. colonies) due to a lack of mature trees and associated tree holes. Other 

potentially limiting resources include, for example, a lack of invertebrate prey species 

associated with mature, veteran trees (Davies et al. 2008). Older woodlands are also likely 

to have greater within-patch heterogeneity and thus greater niche diversity, for example as 

a result of canopy gaps created by tree falls. I therefore expected ecological continuity to 

indirectly influence bird abundance and diversity through its direct effects on stand 

structure (an index of resource/niche availability). This was accounted for in the model by 

including a direct path between patch age and tree DBH mean, which in turn was expected 

to directly influence stand heterogeneity (tree DBH standard deviation) and bird 

abundance. 

Intensive grazing pressure in woodlands can reduce woodland bird abundance and 

diversity (Martin & McIntyre 2007), for example through changes in understorey structure. 

I therefore hypothesised that livestock presence (an index of grazing pressure) would 

indirectly influence abundance by reducing woodland understorey cover. Wild ungulates 
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can also influence woodland bird communities through grazing pressure (Gill & Fuller 

2007) but this was not assessed here since it is difficult to accurately quantify deer 

abundance/presence in such a large number of woodlands. 

Evidence from similar studies suggests that there are positive log-linear and power-

law relationships between patch size and bird species richness and abundance in woodland 

patches (Dolman et al. 2007). Here, continuing with my hypothesis that abundance drives 

species richness through sampling effects, I included only a direct path between patch area 

(log transformed) and abundance in my a priori model. An index of patch ‘compactness’ 

(see Appendix 2.3) was also included to account for potential edge effects (Dolman 2012). 

Larger patches were expected to be more compact, since several of the smaller patches 

were linear shelter belts, and I therefore also included a direct path between patch area and 

compactness. 

Other patch-level metrics expected to be important included tree species richness 

and % dead wood cover, both of which can increase resource availability and niche 

diversity in a patch. Bird boxes were also common in many of the woodlands and I 

expected a positive relationship between their availability and the abundance of birds 

(within functional groups) that commonly nest in boxes. 

At the landscape scale, I expected higher proportions of woodland in the landscape 

to act as a source for the focal patch, and thus expected a direct positive relationship 

between woodland amount (either broadleaf woodland or any woodland depending on the 

functional group of interest) in the landscape and bird abundance. Landscape configuration 

(broadleaf woodland connectivity) was expected to be important for obligate woodland 

species, which are less likely to cross non-wooded habitats during dispersal.  

Agricultural activity in the landscape can have a negative impact on bird 

communities (Donald et al. 2006). Here, I hypothesised that the % cover of agriculture in 

the landscape would indirectly affect woodland bird communities by reducing the amount 

of semi-natural habitat surrounding the woodland, and thus reducing potential foraging 

habitat. Lastly, I predicted that the % of urban land cover in the landscape would directly 

reduce bird abundance, perhaps by limiting colonisation or reducing foraging 

opportunities.  
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Appendix 2.2 Map of the study sites 

 

 

 

Figure 1. Map of Great Britain showing the two study areas in Scotland and England with 

approximate locations of the study woodlands. 
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Appendix 2.3 Descriptions and summary statistics for all variables 

 

Table 1. Description and source of local and landscape metrics used in analyses. Summary 

statistics for all variables are given in Table 2. 

Variable Description Source 

Management Edge habitat, patch age and 

management practices inside patch 

boundary 

 

   

 Patch age (years) Time since appearance on historic maps Ordnance Survey maps 

 n bird boxes Counted on final bird survey Field survey 2015 

 Livestock presence/absence Sheep, cattle or horses inside patch Field survey 2015 

   

Vegetation structure Metrics describing habitat structure 

and heterogeneity inside the patch 

 

   

 Tree species richness n tree species Field survey 2013/14 

 Tree DBHb mean Mean for patch Field survey 2013/14 

 Tree DBH SDc SD of patch mean Field survey 2013/14 

 Understorey cover % Mean for patch Field survey 2013/14 

 Dead wood cover % Mean for patch Field survey 2013/14 

   

Patch geometry 2D patch size and shape  

 Patch area  ha GIS NFI dataset 

 Shape index  Patch perimeter divided by perimeter of 

perfect circle with same area 

GIS NFI dataset 

Landscape  Measures of landscape connectivity and 

matrix composition, each calculated at 

eight spatial scalesd 

 

   

 Broadleaf woodland conn. Index (incidence function model) GIS NFI dataset 

 Any woodland %  Percent cover GIS NFI dataset 

 BL % Percent cover GIS NFI dataset 

 Urban areas %  Percent cover GIS LCM (2007) 

habitat codes 22 & 23 
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Variable Description Source 

Arable / agriculturally 

improved grassland % 

Percent cover GIS LCM (2007) 

habitat codes 3 & 4 

 Semi-natural land cover %  Percent cover GIS LCM (2007) 

habitat codes 5 – 14, 

17 – 21 

aGeographic Information System (GIS) data calculated using ArcMap v10.2 (ESRI 2011) 

and National Forest Inventory (Forestry Commission, 2013) and Land Cover Map 2007 

data (Morton et al. 2011). 
bDiameter at breast height 
cStandard deviation 
dMetric calculated in nested buffers at 100 m, 250 m, 500 m, 1000 m, 1500 m, 2000 m, 

2500 m and 3000 m surrounding each woodland patch. 
eIndex based on Incidence Function Model (Hanski 1994; Moilanen & Hanski 2001; 

Moilanen & Nieminen 2002). The sum contribution from all surrounding woodland patches 

of each category was calculated based on their size and distance from the target patch (i.e. 

each of my study sites), assuming that 5% of dispersers would potentially reach each of the 

previously defined buffer sizes (i.e. 100, 250, 500, 1000, 1500, 2000, 2500 and 3000 m). 

Thus the contribution from each surrounding patch declines along a negative exponential 

dispersal function to the target patch. 
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Table 2. Summary statistics for predictor variables used in analyses, showing subsets of management, vegetation structure, patch geometry and 

landscape variables.  

Variable Scale Mean Median SD Min. Max. N obs. (factors) 

Management        

 Age (year) Patch 68.28 50.00 47.26 10.00 160.00 - 

 n bird boxes Patch 0.29 0.00 1.12 0.00 7.00 - 

 Livestock (yes) Patch - - - - - 21 

 Livestock (no) Patch - - - - - 80 

Vegetation structure        

 Tree species richness Patch 4.45 4.00 2.29 1.00 13.00 - 

 Tree DBH mean Patch 28.12 24.30 15.00 8.11 90.20 - 

 Tree DBH standard deviation Patch 12.22 10.75 7.79 1.33 43.38 - 

 Understorey cover % Patch 1.98 1.20 2.01 0.00 8.00 - 

 Dead wood cover % Patch 1.76 1.80 0.63 0.00 3.00 - 

Patch geometry        

 Area Patch 3.37 1.87 5.04 0.50 31.89 - 

 Shape index Patch 1.60 1.44 0.47 1.12 3.17 - 

Landscape        

 Any woodland % 100 m GIS buffer 0.05 0.00 0.09 0.00 0.52 - 

 Any woodland % 250 m GIS buffer 0.07 0.04 0.09 0.00 0.53 - 

 Any woodland % 500 m GIS buffer 0.10 0.06 0.09 0.00 0.47 - 

 Any woodland % 1000 m GIS buffer 0.13 0.11 0.10 0.00 0.43 - 

 Any woodland % 1500 m GIS buffer 0.13 0.12 0.09 0.00 0.42 - 
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Variable Scale Mean Median SD Min. Max. N obs. (factors) 

 Any woodland % 2000 m GIS buffer 0.13 0.13 0.09 0.01 0.37 - 

 Any woodland % 2500 m GIS buffer 0.13 0.13 0.09 0.01 0.37 - 

 Any woodland % 3000 m GIS buffer 0.13 0.12 0.08 0.01 0.35 - 

 Broadleaf woodland % 100 m GIS buffer 0.02 0.00 0.04 0.00 0.21 - 

 Broadleaf woodland % 250 m GIS buffer 0.03 0.02 0.04 0.00 0.21 - 

 Broadleaf woodland % 500 m GIS buffer 0.05 0.04 0.05 0.00 0.25 - 

 Broadleaf woodland % 1000 m GIS buffer 0.06 0.05 0.05 0.00 0.22 - 

 Broadleaf woodland % 1500 m GIS buffer 0.06 0.05 0.04 0.00 0.18 - 

 Broadleaf woodland % 2000 m GIS buffer 0.06 0.05 0.04 0.01 0.18 - 

 Broadleaf woodland % 2500 m GIS buffer 0.06 0.04 0.04 0.00 0.17 - 

 Broadleaf woodland % 3000 m GIS buffer 0.05 0.04 0.04 0.00 0.17 - 

 Broadleaf woodland connectivity 100 m GIS buffer 8643.05 348.07 25904.61 0.00 190035.08 - 

 Broadleaf woodland connectivity 250 m GIS buffer 21717.34 6511.39 39893.08 0.00 222386.70 - 

 Broadleaf woodland connectivity 500 m GIS buffer 49557.79 26431.09 63434.33 0.00 321256.86 - 

 Broadleaf woodland connectivity 1000 m GIS buffer 120934.83 85210.94 120224.75 740.21 672950.41 - 

 Broadleaf woodland connectivity 1500 m GIS buffer 211126.08 168084.60 178144.69 6388.44 1039764.24 - 

 Broadleaf woodland connectivity 2000 m GIS buffer 319189.01 249295.42 238279.40 21565.77 1405338.56 - 

 Broadleaf woodland connectivity 2500 m GIS buffer 444288.34 350377.67 302396.37 49482.91 1791266.07 - 

 Broadleaf woodland connectivity 3000 m GIS buffer 586000.65 469856.74 370738.26 89612.11 2202040.28 - 

 Urban % 100 m GIS buffer 0.02 0.00 0.05 0.00 0.24 - 

 Urban % 250 m GIS buffer 0.02 0.00 0.05 0.00 0.30 - 

 Urban % 500 m GIS buffer 0.03 0.00 0.06 0.00 0.36 - 
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Variable Scale Mean Median SD Min. Max. N obs. (factors) 

 Urban % 1000 m GIS buffer 0.04 0.01 0.07 0.00 0.33 - 

 Urban % 1500 m GIS buffer 0.05 0.02 0.08 0.00 0.36 - 

 Urban % 2000 m GIS buffer 0.06 0.02 0.08 0.00 0.37 - 

 Urban % 2500 m GIS buffer 0.06 0.02 0.08 0.00 0.34 - 

 Urban % 3000 m GIS buffer 0.06 0.02 0.07 0.00 0.35 - 

 Arable/agriculturally improved grassland % 100 m GIS buffer 0.80 0.85 0.23 0.00 1.00 - 

 Arable/agriculturally improved grassland % 250 m  GIS buffer 0.79 0.84 0.20 0.00 1.00 - 

 Arable/agriculturally improved grassland % 500 m GIS buffer 0.75 0.78 0.20 0.00 1.00 - 

 Arable/agriculturally improved grassland % 1000 m GIS buffer 0.69 0.75 0.20 0.07 0.99 - 

 Arable/agriculturally improved grassland % 1500 m GIS buffer 0.66 0.70 0.21 0.09 0.96 - 

 Arable/agriculturally improved grassland % 2000 m GIS buffer 0.63 0.65 0.23 0.03 0.95 - 

 Arable/agriculturally improved grassland % 2500 m GIS buffer 0.60 0.60 0.23 0.02 0.94 - 

 Arable/agriculturally improved grassland % 3000 m GIS buffer 0.58 0.60 0.25 0.03 0.93 - 

 Semi-natural land cover % 100 m GIS buffer 0.17 0.08 0.22 0.00 1.00 - 

 Semi-natural land cover % 250 m GIS buffer 0.17 0.12 0.19 0.00 1.00 - 

 Semi-natural land cover % 500 m GIS buffer 0.19 0.12 0.19 0.00 1.00 - 

 Semi-natural land cover % 1000 m GIS buffer 0.22 0.16 0.19 0.00 0.93 - 

 Semi-natural land cover % 1500 m GIS buffer 0.23 0.17 0.18 0.00 0.80 - 

 Semi-natural land cover % 2000 m GIS buffer 0.23 0.19 0.18 0.01 0.73 - 

 Semi-natural land cover % 2500 m GIS buffer 0.23 0.19 0.18 0.02 0.74 - 

 Semi-natural land cover % 3000 m GIS buffer 0.23 0.19 0.18 0.02 0.75 - 

.
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Appendix 2.4 Additional details of the bird-survey methods 

 

All hand-drawn bird registrations from field maps were digitised into Geographic 

Information System (GIS) format using ArcMap v10.2. (ESRI 2011). Records of 

individuals flying over the patch or observed outside of the patch boundary were 

excluded from analyses. Species were considered present (i.e. probably breeding) if 

territorial behaviour (song, alarm call, mating, nest building, active nest, male and 

female pair) was observed on at least one visit, or if the species was detected during 

two of the three surveys. Since survey effort and the criteria used to determine 

breeding status were less stringent than similar studies (e.g. > 3 visits with territory 

mapping), I validated results by comparing an observed vs expected species-area 

curve for a subset of woodland species (n  = 17 species) that were also surveyed by 

Bellamy et al. (1996). I found no significant difference (Figure 1), suggesting the 

methodology was robust. 

Records of Nightingale Luscinia megarhynchos (n = 1 site), Lesser 

Whitethroat Sylvia curruca (n = 3 sites), and Marsh Tit Poecile palustris (n = 5 

sites) were excluded due to their restricted geographical range and historic absence 

from the Scottish study area (Balmer et al. 2013). Nuthatch Sitta europaea (n = 3 

sites) was excluded from functional group analysis because it was a rare breeding 

species in Scotland at the time of assessment by French and Picozzi (2002), who 

did not therefore assign it to any group. Grey Wagtail Motacilla cinerea, Cuckoo 

Cuculus canorus, Siskin Spinus, Goldcrest Regulus, Swallow Hirundo rustica and 

Mallard Anas platyrhynchos were also excluded from functional group analyses due 

to the low number of individuals and species in their respective groups. 
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Figure 1. Observed species area curve (black line ±95% CI) from a linear regression model 

with raw species richness as the response and log(area) as a fixed effect, vs expected number 

of species (red line) based on formula given in Bellamy et al. (1996). Points show raw data 

from this study. The following subset of species (n = 17) were used for direct comparison: 

Blackbird Turdus merula, Bullfinch Pyrrhula pyrrhula, Blue tit Cyanistes caeruleus, 

Chaffinch Fringilla coelebs, Coal tit Periparus ater, Dunnock Prunella modularis, Green 

woodpecker Picus viridis, Goldcrest Regulus regulus, Great spotted woodpecker 

Dendrocopos major,  Great tit Parus major, Jay Garrulus glandrius, Long-tailed tit 

Aegithalos caudatus, European nuthatch Sitta europaea, Robin Erithacus rubecula, Song 

thrush Turdus philomelos, Treecreeper Certhia familiaris, Wren Troglodytes troglodytes. 
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Appendix 2.5 Structural equation model results 

 
Table 1. Full piecewise structural equation model (SEM) for total species richness. The hypothesised beta sign shows the expected, a priori relationship between pairs of variables 

as well missing paths that were considered likely to be causative. All significant and non-significant predictors are shown. Pairs of variables with correlated errors (i.e. those not 

considered causative but which had a significant correlation) are denoted ~~. For variables measured at multiple scales (see Appendix 2.3), the ‘best’ scale was selected using AICc 

prior to constructing the SEM (see main text). Goodness of fit statistics for the model are given in Table 7. 

Response Predictor Hypothesised Beta sign Observed Beta SE p R2 

Raw richness Log(abundance) + 3.482 0.463 < 0.001 0.72 

 Log(tree DBH mean) Missing path in a priori model 1.091 0.305 0.001  

 Broadleaf conn. 250 m Missing path in a priori model 0.591 0.275 0.035  

 Log(area) Missing path in a priori model 1.017 0.486 0.039  

Understorey cover Livestock y/n - -0.329 0.119 0.007 0.07 

Semi-nat. % 100 m Arable / AIG % 100 m - -0.748 0.070 < 0.001 0.54 

 Broadleaf % 100 m - -0.147 0.070 0.038  

Shape index Log(area) + 0.282 0.096 0.004 0.08 

Log(tree DBH mean) Age + 0.660 0.076 < 0.001 0.44 

Log(abundance) Log(area) + 0.831 0.069 < 0.001 0.70 

 Tree richness + 0.131 0.060 0.031  

 Semi-nat. % 100 m + 0.091 0.058 0.124  

 Understorey cover + -0.082 0.063 0.197  

 Shape index + 0.063 0.063 0.321  

 Broadleaf conn. 250 m + 0.058 0.066 0.383  

 Broadleaf % 100 m + 0.026 0.065 0.693  

 Log(tree DBH mean) + 0.018 0.066 0.784  

~~ Tree richness ~~ Shape index NA 0.247 NA 0.006  

~~ Understorey cover ~~ Log(area) NA 0.298 NA 0.001  

~~ Understorey cover ~~ Northing NA -0.473 NA 1.000  

~~ Log(abundance) ~~ Northing NA 0.330 NA < 0.001  

~~ Log(tree DBH mean) ~~ Log(area) NA -0.278 NA 0.998  
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Table 2. Full piecewise structural equation model (SEM) for the broadleaf trees and hedgerows functional group. The hypothesised beta sign shows 

the expected, a priori relationship between pairs of variables as well missing paths that were considered likely to be causative. All significant and non-

significant predictors are shown. Pairs of variables with correlated errors (i.e. those not considered causative but which had a significant correlation) 

are denoted ~~. For variables measured at multiple scales (Appendix 2.3), the ‘best’ scale was selected using AICc prior to constructing the SEM (see 

main text). Goodness of fit statistics for the model are given in Table 7. 

Response Predictor Hypothesised Beta sign Observed Beta SE p R2 

Log(richness) Log(abundance) + 1.066 0.040 < 0.001 0.92 

Log(area) Missing path in a priori model -0.154 0.040 < 0.001 

Understorey cover Livestock y/n - -0.329 0.119 0.007 0.07 

Log(tree DBH mean) Age + 0.660 0.076 < 0.001 0.44 

Shape index Log(area) + 0.282 0.096 0.004 0.08 

Semi-nat. % 3000 m Arable / AIG % 3000 m - -0.710 0.071 < 0.001 0.50 

Log(abundance) Log(area) + 0.645 0.081 < 0.001 0.61 

Livestock y/n Missing path in a priori model -0.315 0.100 0.002 

Broadleaf % 1000 m + -0.238 0.097 0.016 

Broadleaf conn. 3000 m + 0.160 0.095 0.097 

Understorey cover + 0.087 0.073 0.240 

Semi-nat. % 3000 m + 0.088 0.077 0.254 

Log(tree DBH mean) + 0.081 0.077 0.295 

Shape index + 0.036 0.074 0.624 

Tree richness + 0.012 0.072 0.871 

~~ Log(tree DBH mean) ~~ Livestock y/n NA 0.129 NA 0.099  

~~ Log(tree DBH mean) ~~ Log(area) NA -0.278 NA 0.998  

~~ Semi-nat. % 3000 m ~~ Livestock y/n NA 0.285 NA 0.002  

~~ Semi-nat. % 3000 m ~~ Broadleaf conn. 3000 m NA -0.248 NA 0.994  

~~ Log(area) ~~ Arable / AIG % 3000 m NA 0.436 NA < 0.001  

~~ Log(area) ~~ Northing NA -0.651 NA 1.000  

~~ Understorey cover ~~ Arable / AIG % 3000 m NA 0.347 NA < 0.001  

~~ Understorey cover ~~ Log(area) NA 0.298 NA 0.001  

~~ Tree richness ~~ Northing NA 0.157 NA 0.059  

~~ Tree richness ~~ Arable / AIG % 3000 m NA -0.155 NA 0.939  

~~ Shape index ~~ Tree richness NA 0.267 NA 0.004  
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Table 3. Full piecewise structural equation model (SEM) for the open, mixed, or general wood and scrub functional group. The hypothesised beta sign 

shows the expected, a priori relationship between pairs of variables as well missing paths that were considered likely to be causative. All significant 

and non-significant predictors are shown. Pairs of variables with correlated errors (i.e. those not considered causative but which had a significant 

correlation) are denoted ~~. For variables measured at multiple scales (Appendix 2.3), the ‘best’ scale was selected using AICc prior to constructing 

the SEM (see main text). Goodness of fit statistics for the model are given in Table 7. 

Response Predictor Hypothesised Beta Observed Beta SE p R2 

Log(richness) Log(abundance) + 0.998 0.093 < 0.001 0.70 

Log(area) Missing path in a priori model -0.306 0.091 0.001 

Any woodland % 500 m Missing path in a priori model 0.176 0.057 0.003 

Understorey cover Livestock y/n - -0.329 0.119 0.007 0.07 

Semi-nat. % 100 m Arable / AIG % 250 m - -0.702 0.084 < 0.001 0.44 

Any woodland % 500 m Missing path in a priori model -0.093 0.084 0.270 

Log(tree DBH mean) Age + 0.660 0.076 < 0.001 0.44 

Log(abundance) Log(area) + 0.820 0.076 < 0.001 0.68 

Livestock y/n - -0.173 0.082 0.039 

Any woodland % 500 m + 0.125 0.064 0.053 

Tree richness + 0.091 0.062 0.145 

Understorey cover + -0.086 0.066 0.195 

Semi-nat. % 100 m + 0.070 0.064 0.276 

Cumulative woody debris + 0.057 0.063 0.371 

N bird box + -0.041 0.064 0.524 

Log(tree DBH mean) - 0.042 0.071 0.551 

~~ Abundance ~~ Northing NA 0.455 NA < 0.001  

~~ Log(area) ~~ N bird box NA 0.263 NA 0.004  

~~ Log(area) ~~ Any woodland % 500 m NA 0.071 NA 0.239  

~~ Log(area) ~~ Cumulative woody debris NA -0.281 NA 0.998  

~~ Log(area) ~~ Northing NA -0.651 NA 1.000  

~~ Understorey cover ~~ Log(area) NA 0.298 NA 0.001  

~~ Understorey cover ~~ Northing NA -0.473 NA 1.000  

~~ Log(tree DBH mean) ~~ Livestock y/n NA 0.129 NA 0.099  

~~ Log(tree DBH mean) ~~ Log(area) NA -0.278 NA 0.998  
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Table 4. Full piecewise structural equation model (SEM) for the tree and building nesters functional group. The hypothesised beta sign shows the 

expected, a priori relationship between pairs of variables as well missing paths that were considered likely to be causative. All significant and non-

significant predictors are shown. Pairs of variables with correlated errors (i.e. those not considered causative but which had a significant correlation) 

are denoted ~~. For variables measured at multiple scales (Appendix 2.3), the ‘best’ scale was selected using AICc prior to constructing the SEM (see 

main text). Goodness of fit statistics for the model are given in Table 7. 

Response Predictor Hypothesised Beta sign Observed Beta SE p R2 

Log(richness) Log(abundance) + 0.865 0.039 < 0.001 0.88 

Livestock y/n Missing path in a priori model 0.170 0.048 0.001 

Understorey cover Livestock y/n - -0.329 0.119 0.007 0.07 

Semi-nat. % 1000 m Arable / AIG % 1500 m - -0.722 0.072 < 0.001 0.50 

Urban % 2000 m Missing path in a priori model -0.178 0.072 0.016 

Log(tree DBH mean) Age + 0.660 0.076 < 0.001 0.44 

Log(abundance) Urban % 2000 m + 0.300 0.083 0.001 0.39 

 Livestock y/n + 0.432 0.122 0.001  

 Log(area) + 0.213 0.096 0.029  

 Semi-nat. % 1000 m + 0.175 0.094 0.065  

 Understorey cover - -0.148 0.090 0.104  

 Log(tree DBH mean) - 0.119 0.094 0.207  

 Tree richness + 0.004 0.084 0.958  

~~ Understorey cover ~~ Arable / AIG % 1500 m NA 0.304 NA 0.001  

~~ Understorey cover ~~ Log(area) NA 0.298 NA 0.001  

~~ Understorey cover ~~ Northing NA -0.473 NA 1.000  

~~ Livestock y/n ~~ Arable / AIG % 1500 m NA -0.440 NA 1.000  

~~ Semi-nat. % 1000 m ~~ Livestock y/n NA 0.226 NA 0.012  

~~ Semi-nat. % 1000 m ~~ Age NA -0.212 NA 0.983  

~~ Log(tree DBH mean) ~~ Log(area) NA -0.278 NA 0.998  
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Table 5. Full piecewise structural equation model (SEM) for the farmland seed eater functional group. The hypothesised beta sign shows the expected, 

a priori relationship between pairs of variables as well missing paths that were considered likely to be causative. All significant and non-significant 

predictors are shown. Pairs of variables with correlated errors (i.e. those not considered causative but which had a significant correlation) are denoted 

~~. For variables measured at multiple scales (Appendix 2.3), the ‘best’ scale was selected using AICc prior to constructing the SEM (see main text). 

Goodness of fit statistics for the model are given in Table 7. 

Response Predictor/s  Hypothesised Beta sign Observed Beta SE p R2 

Log(richness) Log(abundance)  + 0.730 0.072 < 0.001 0.53 

Age  Missing path in a priori model -0.265 0.093 0.006 

Semi-nat. % 1500 m  Missing path in a priori model -0.184 0.073 0.013 

Log(tree DBH mean)  Missing path in a priori model 0.157 0.094 0.100 

Semi-nat. % 1500 m Arable / AIG % 2500 m  - -0.668 0.075 < 0.001 0.45 

Log(tree DBH mean) Age  + 0.660 0.076 < 0.001 0.44 

Log(abundance) Log(area)  + 0.550 0.104 < 0.001 0.30 

Arable / AIG % 2500 m  Missing path in a priori model -0.475 0.125 < 0.001 

Urban % 100 m  + -0.109 0.089 0.225 

Log(tree DBH mean)  - 0.084 0.098 0.391 

Semi-nat. % 1500 m  + -0.031 0.117 0.790 

Tree richness  - -0.006 0.087 0.949 

~~ Log(tree DBH mean) ~~ Log(area)  NA -0.278 NA 0.998  

~~ Abundance ~~ Northing  NA 0.489 NA < 0.001  
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Table 6. Full piecewise structural equation model (SEM) for the grassland and shrubs or trees functional group. The hypothesised beta sign shows the 

expected, a priori relationship between pairs of variables as well missing paths that were considered likely to be causative. All significant and non-

significant predictors are shown. Pairs of variables with correlated errors (i.e. those not considered causative but which had a significant correlation) 

are denoted ~~. For variables measured at multiple scales (Appendix 2.3), the ‘best’ scale was selected using AICc prior to constructing the SEM (see 

main text). Goodness of fit statistics for the model are given in Table 7. 

Response Predictor Hypothesised Beta sign Observed Beta SE p R2 

Log(richness) Log(abundance) + 0.717 0.058 < 0.001 0.68 

Livestock y/n Missing path in a priori model -0.214 0.074 0.005 

Understorey cover Livestock y/n - -0.329 0.119 0.007 0.07 

Semi-nat. % 3000 m Arable / AIG % 3000 m - -0.737 0.072 < 0.001 0.52 

BL.1500 Missing path in a priori model -0.117 0.072 0.106 

Tree DBH SD Age + 0.647 0.076 < 0.001 0.44 

Tree richness + 0.243 0.076 0.002 

Shape index Log(area) + 0.282 0.096 0.004 0.08 

Log(abundance) Log(area) + 0.669 0.099 < 0.001 0.47 

Broadleaf conn. 2500 m - -0.238 0.086 0.007 

Semi-nat. % 3000 m + -0.303 0.116 0.011 

Tree richness + 0.197 0.082 0.018 

Arable / AIG % 3000 m - -0.300 0.133 0.026 

Understorey cover - -0.029 0.089 0.745 

Tree DBH SD + 0.013 0.092 0.889 

~~ Semi-nat. % 3000 m ~~ Livestock y/n NA 0.313 NA 0.001  

~~ Log(area) ~~ Arable / AIG % 3000 m NA 0.436 NA < 0.001  

~~ Log(area) ~~ Northing NA -0.651 NA 1.000  

~~ Understorey cover ~~ Arable / AIG % 3000 m NA 0.347 NA < 0.001  

~~ Understorey cover ~~ Log(area) NA 0.298 NA 0.001  

~~ Understorey cover ~~ Northing NA -0.473 NA 1.000  

~~ Shape index ~~ Tree richness NA 0.267 NA 0.004  

~~ Abundance ~~ Northing NA 0.069 NA 0.245  

~~ Tree DBH SD ~~ Log(area) NA -0.305 NA 0.999  
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Table 7. Goodness of fit statistics for all piecewise structural equation models 

Group Fisher’s C df p AICc K n 

Raw species richness 57.06 56 0.435 114.034 22 101 

Tree and building nesters 40.96 44 0.603 101.298 23 101 

Farmland seed eaters 34.98 26 0.112 85.48 20 101 

Grassland and shrubs, trees 63.26 74 0.809 137.972 27 101 

Broadleaf trees and hedgerows 71.53 70 0.427 146.242 27 101 

Open, mixed and general wood and 

scrub 

56.02 62 0.690 126.993 26 101 
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Appendix 2.6 Formula for calculating 95% confidence intervals in Figure 2.2 

 

𝑝̂ ± 1.96(√
𝑝̂(1 − 𝑝̂)

𝑛
) 

Where n is the sample size and p̂ is the sample proportion. 
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CHAPTER 3  

SOLO: AN OPEN SOURCE, CUSTOMISABLE 

AND INEXPENSIVE AUDIO RECORDER FOR 

BIOACOUSTIC RESEARCH 
 

An adapted version of this chapter has been published as: 

 

Robin C. Whytock and James Christie. 2017. Solo: an open source, customisable and 

inexpensive audio recorder for bioacoustic research. Methods in Ecology and Evolution 

8:308-312. 

 

Contributions: RCW and JC co-designed the Solo system. JC created the Solo software. 

RCW conducted field testing and wrote the manuscript, with comments on an earlier draft 

from JC.  
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ABSTRACT 

Audio recorders are widely used in terrestrial and marine ecology, and are essential for 

studying many cryptic or elusive taxa. Although several commercial systems are available 

they are often expensive and are rarely user-serviceable or easily customised. Here, I 

present the Solo audio recorder. Units are constructed from the Raspberry Pi single board 

computer and run easy-to-install and freely available software. I provide an example 

configuration costing £167 (£83 excluding suggested memory card and battery), which 

records audible sound continuously for approximately 40 days. I also provide a video 

tutorial showing hardware assembly and documentation is available via a supporting 

website. The Solo recorder has been extensively field tested in temperate and tropical 

regions, with over 50,000 hours of audio collected to date. This highly customisable and 

inexpensive system could greatly increase the scale and ease of conducting bioacoustic 

studies.  
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INTRODUCTION 

Bioacoustics has improved our understanding of evolution, taxonomy, wildlife 

conservation and animal physiology (Blumstein et al. 2011). Many birds (Aves) and 

invertebrates produce territorial song, bats (Chiroptera: Microchiroptera) use ultrasound to 

detect prey, and elephants Loxodonta sp. use infrasound to communicate. Calls and songs 

are often unique to a species, and in many instances convey the biological, behavioural and 

ecological characteristics of the source. Acoustic recordings can therefore reveal a wealth 

of information about individuals, populations and the environment. 

Outside the laboratory, ecological sounds are typically recorded using remotely 

operated or handheld devices (Efford et al. 2009; Bardeli et al. 2010; Blumstein et al. 2011; 

Marques et al. 2013; Cerquiera & Aide 2016). Automated systems that record continuously 

or in response to acoustic triggers have become increasingly popular, and can be deployed 

in isolation or complex spatial arrays (e.g. Mennill et al. 2012). These are suitable for a 

variety of ecological applications ranging from simple species presence/absence surveys to 

tracking acoustically active animals in three-dimensional space, and identifying individuals 

from their unique vocalisations. Such systems are indispensable for studying cryptic taxa 

such as bats, and for detecting elusive, nocturnal or rare species. However, although 

deploying small numbers of commercially available recording units (e.g. Wildlife 

Acoustics’ Song Meter) can be affordable (Mennill et al. 2012), deploying large numbers 

(e.g. for landscape-scale studies) can be costly. Relatively inexpensive systems based on 

tablet computers have become available more recently (Aide et al. 2013; Cerquiera & Aide 

2016). However, the core components of these systems are rarely user-serviceable and they 

often contain unnecessary hardware and software that becomes redundant when used for 

bioacoustic research.  

Inexpensive single board computers have become widely available in the past 

decade. For example, the Raspberry Pi single board computer (c. £20 at time of writing), 

which was originally developed as an educational tool, has been adapted for a broad 

variety of applications. These and similar devices, such as the BeagleBone Black 

development board consume minimal power and use high-specification hardware relative 

to their small size and low cost. Furthermore, they are operated using freely distributed and 

readily available open source, Unix-based operating systems, and can be powered by any 

DC battery, such as USB charging devices or vehicle batteries. These features make single 

board computers like the Raspberry Pi highly customisable, and they have many potential 

applications in ecology. 
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Here, I introduce the Solo audio recorder. The system records audible sound up to 

22.05 kHz for long periods (> one month) without user intervention, and can also record 

audio up to a Nyquist frequency of 96 kHz (i.e. sampling rate of 192 kHz). The Solo is 

straightforward to build and operate, and is constructed from inexpensive hardware and 

freely available software. Solos have proven to be robust during extensive field testing in 

temperate and tropical environments, and users can customise the software or hardware 

configuration to suit research needs. 

SYSTEM OVERVIEW 

Solos (Plate 3.1) are operated using custom-written software and the current version is 

available online from https://solo-system.github.io/. The core system comprises a 

Raspberry Pi single board computer (Farnell element14, Leeds, UK), PiFace clock module 

(OpenLX SP Ltd, London, UK) and Cirrus Logic audio card (Cirrus Logic, Austin, Texas, 

USA; CLAC). Although other suitable single-board computers are available, I chose the 

Raspberry Pi as the foundation of the Solo, since it was the first single-board computer to 

be generally available, it was rapidly successful and the software is now widely supported 

and debugged. It also supports the CLAC high definition audio card, which has a sampling 

rate of up to 192 kHz. 

The Solo is compatible with a wide range of external microphones, and accepts 

microSD cards and any 5 V power supply (Box 3.1). Using the default software 

configuration, the Solo records audio continuously at a sampling rate of 16 kHz (8 kHz 

Nyquist) in .wav format (saved as individual ten minute, time stamped sections) until the 

power supply is removed or the memory card reaches storage capacity. However, the audio 

file section length, time zone, sampling rate and microphone gain can be configured to suit 

research requirements. Source code is also available via the supporting website for 

advanced users who wish to customise the software. 
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Plate 3.1 Illustrative examples of assembled Solo recorders; (a) Raspberry Pi A+ and CLAC, (b) 

Raspberry Pi A+ and CLAC with attached EM172 microphone and USB travel charger as a power 

supply, (c) example configuration (see text) deployed in a woodland (driBox lid removed to show 

contents). 
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Box 3.1: Hardware requirements 

Raspberry Pi (essential): The following Raspberry Pi models have been tested: A+, B+, 

2B, 3B, Pi Zero (the last model requires soldering). The Raspberry Pi A+ was used 

during all field testing because it has the lowest power consumption. 

Cirrus Logic audio card (optional): Provides a high-fidelity (up to 192 kHz sampling 

rate) interface between the Raspberry Pi and an external microphone. The CLAC also 

has an internal stereo microphone, but this is difficult to weatherproof and an external 

microphone is recommended for field deployment. 

External microphone/s (optional): The CLAC supports an external microphone (mono 

or stereo pair) with a 3.5 mm jack input (converters are widely available, e.g. from XLR 

to 3.5 mm jack). 2 – 3V of plug-in-power can be supplied to the microphone via the 

CLAC if required. 

PiFace clock module (optional): Used to store the date and time of recordings and is 

powered by a button cell battery (CR1220). It must be set up prior to deployment using a 

network connection (see https://solo-system.github.io/).  

Power: Any 5 V power supply (micro-USB) providing a minimum of 700 mA is 

suitable, such as a USB travel charger or 12 V car battery with a 5 V converter and 

micro-USB adapter. A mains supply can also be used if available. Using a Raspberry Pi 

A+, the units consume approximately 0.35 W during operation. 

Memory: The Raspberry Pi accepts a single microSD card of any size. The Solo 

software image requires approximately 1.5 GB of memory space and the remainder is 

used to store audio data. Table 3.1 shows estimated storage requirements for various 

sampling rate and memory card size combinations. 
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Table 3.1 Approximate storage capacity (hours in .wav format) of 

different microSD memory card sizes and sampling rate combinations 

when recording on a single channel. These values should be halved 

when recording in stereo. 

 8 GB 16 GB 32 GB 64 GB 128 GB 256 GB 

8 kHz 112 251  529  1085  2196  4418 

16 kHz 56 125  263  524  1098  2209  

44.1 kHz 20 45 96 196  398 801  

192 kHz 4 10 22 45 91 184 

 

FIELD TESTING 

Audible sound 

Approximately 52,381 hours of audible sound have been recorded to date by 40 Solos 

using a variety of hardware and software configurations. Five systems (n = 600 hours 

recorded) were deployed in the Ebo forest, southwest Cameroon during the wet season in 

2015, where annual rainfall is approximately 3,500 mm. A further ten systems (n = 10,383 

hours recorded) were deployed between February and June 2015 in Central Scotland and 

Central England as part of a pilot study of long-eared owl Asio otus and tawny owl Strix 

aluco ecology in association with the British Trust for Ornithology. Finally, approximately 

41,398 hours of audio (n = 35 systems) were recorded in 2015 and 2016 in Central 

Scotland and Central England as part of the Woodland Creation and Ecological Networks 

(WrEN) project (Watts et al. 2016). Four spectrograms of bird song recorded using the 

example configuration presented here are shown in Figure 3.1. 
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Figure 3.1 Spectrograms of four bird songs recorded using the example Solo configuration 

(Hanning window length = 256). The Solo was deployed in the middle of a small (c.1 ha) 

broadleaved woodland in Central Scotland. No post processing was performed. 
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Ultrasound 

The ultrasound capabilities of the Solo have not been tested extensively, nonetheless there 

is considerable scope for development given the maximum sampling rate of 192 kHz. 

During a small scale field test in Central Scotland (n = 240 hours from five systems), 

foraging calls of soprano pipistrelle Pipistrellus pygmaeus were recorded (Figure 3.2). This 

was achieved using the example hardware configuration given below and setting the 

sampling rate to 192 kHz. The Solo was positioned on the ground beneath a known roost, 

and bats emerged and foraged approximately 3 - 4 m above the microphone. 

 There is considerable scope for developing the ultrasound capabilities of the Solo. 

We recommend that anyone interested in recording ultrasound should experiment with 

alternative microphones, such as the Knowles FG series (Knowles, Itasca, Illinois, USA). 

 

Figure 3.2 Spectrogram showing foraging calls of a soprano pipistrelle (Hanning window length = 

1024). No post processing was performed. 
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EXAMPLE HARDWARE CONFIGURATION 

The example hardware configuration (Table 3.2) described here was designed to record 

breeding woodland birds in temperate broadleaved woodland as part of the WrEN project, 

and it was found to be the most cost-effective configuration relative to battery life and 

audio quality. Using the default software settings, this configuration will record at a 

sampling rate of 16 kHz continuously (i.e. 24/7) for approximately 40 days during 

deployment (mean = 39.8, SE = 0.9 days, n = 24 systems with available data). See the 

supporting website https://solo-system.github.io/ and video tutorial 

https://youtu.be/2Fq05JlEKjw for a full description of how to build, operate and customise 

a Solo recorder. 
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Table 3.2 Components used to build the example Solo hardware configuration, approximate cost and 

manufacturer details. Suggested websites for purchasing non-generic components are also given. 

Component Cost (£) Model Manufacturer Website 

Raspberry Pi 15 Model A+ (lowest 

power consumption 

available) 

Farnell 

element14, 

Leeds, UK 

http://uk.farnell.com 

Cirrus Logic 

Audio Card 

24 One model Cirrus Logic, 

Austin, Texas, 

USA 

http://uk.farnell.com 

 

PiFace clock 9 Clock module with 

dedicated button-cell 

battery (CR1220) 

OpenLX SP Ltd, 

London, UK 

http://uk.farnell.com 

 

128 GB 

microSD 

memory card  

40 SanDisk Ultra SDXC 

class 10 

SanDisk, 

Milpitas, 

California, USA 

- 

Car battery 44 063XD: 12 V, 50 Ah generic - 

Battery terminal 

clamp 

2 12 V car battery 

terminal clip 

 

generic - 

12 V to 5 V 

converter 

9 DC-DC 12V To 5V 

converter module with 

USB adapter 15 W 3 A 

generic - 

Microphone 15 Clippy EM172 model 

FC049 

Primo 

Microphones, 

Inc. Mckinney, 

Texas, USA 

http://micbooster.com/ 

 

Plastic 

electronics 

enclosure 

1 Business card box generic  

DRiBOX 8 FL-1859-200 DRiBOX, Black 

River Falls,  

Wisconsin, USA 

http://dri-box.com/ 

 

Total cost £167    
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Data retrieval 

Using the default configuration, audio is stored in a folder-per-day hierarchy as 10 minute 

sections. The data are stored on a dedicated partition on the microSD card and are accessed 

by using a computer and SD card reader. Free software may be required by non-Linux 

users to access the partition (see supporting website). 

 

DISCUSSION 

The Solo is a reliable, inexpensive, highly customisable audio recorder that can operate in 

remote locations for long time periods without user intervention. Example applications 

include landscape-scale studies (e.g. Watts et al. 2016) where dozens of systems might be 

required to achieve sufficient sample sizes, or deployment in situations where there is a 

high risk of the device being destroyed (e.g. by vandalism). Citizen science data are also 

increasingly used in ecological and conservation research (e.g. Newson et al. 2015; Kobori 

et al. 2016), and the Solo could increase participation in large-scale bioacoustic studies 

where the expense of commercial systems potentially limits participation. 

Another advantage of the Solo over several existing systems is that it is 

predominantly built from open source hardware and software, and it can accept a wide 

variety of off-the-shelf microphones and power supplies. These features not only future-

proof the system, but also make it user-serviceable, thus encouraging modification and 

development by the end user to suit specific research needs. Although commercial systems 

are likely to remain popular with those who require the additional benefits of warranties, 

customer services and out-of-the-box usability, the Solo recorder offers unprecedented 

flexibility at a fraction of the cost, which itself is likely to reduce over time given price 

trends in technology. 

 

Directions for future development 

At present, the Solo does not have a scheduling function, which would allow audio to be 

recorded only during predetermined time periods rather than continuously. In some audio 

recorders this can increase battery life. However, the Raspberry Pi does not have an 

efficient low-power mode, and a scheduling function would not therefore reduce power 

consumption significantly. Nonetheless, scheduling would improve storage capacity, 

which is of particular concern when recording at high sampling rates. In particular, 

scheduling is likely to be essential for recording taxa that are only active during short 
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periods of the day and emit ultrasound, such as many bats and invertebrates. Furthermore, 

advanced scheduling could be used to improve the scope of field studies. For example, 

sampling rates could be changed according to prescheduled times, perhaps recording 

audible sound during daylight and ultrasound at night. 

Audio is currently recorded in raw uncompressed .wav format, which requires 

approximately double the storage space of a compressed lossless format such as .flac, and 

future versions of the Solo software image could offer users a range of audio format 

options to address this. Furthermore, although the Solo can be operated for long time 

periods unattended, the user must collect the data and refresh the battery periodically, 

which may be difficult in some circumstances. Other systems are capable of wirelessly 

transmitting data to a base station (e.g. Aide et al. 2013), which addresses this problem. 

These capabilities could also be implemented in future Solo versions.  

Finally, the processing power and potential functionality of the Raspberry Pi is 

underused by the Solo system in its current form, and the Raspberry Pi has the capacity to 

support many other features not discussed here. Examples include the addition of acoustic 

triggers that only record sounds above a specified amplitude, on-board data processing 

(e.g. species detection), a digital display, wireless communication in the field (e.g. with a 

smart phone or tablet) and the addition of peripherals (e.g. temperature loggers).  

The Solo is an open source, customisable and inexpensive system for collecting 

high definition, long-term audio data. It has several advantages over comparable systems, 

and its introduction here (1) makes high-quality equipment accessible to those with limited 

resources, (2) improves the feasibility of conducting bioacoustic research across 

representative spatiotemporal scales, and (3) has the potential to advance the field of 

bioacoustics through the development of novel hardware and software configurations, 

leading to improved data collection. 
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CHAPTER 4  

CONTEXT-DEPENDENT COLONISATION OF 

TERRESTRIAL HABITAT “ISLANDS” BY A 

LONG-DISTANCE MIGRANT BIRD 
 

An adapted version of this chapter has been submitted for publication and is in 

review: 

Robin C. Whytock, Elisa Fuentes-Montemayor, Kevin Watts, Nicholas Macgregor, Lefora 

Williams and Kirsty J. Park. Submitted. Context-dependent colonisation of terrestrial 

habitat “islands” by a long-distance migrant bird. Submitted to Proceedings of the Royal 

Society B: Biological Sciences 

 

Contributions: RCW conceived the study with input from EF-M, KW, NM and KJP. RW 

collected the data with assistance from LW. RCW analysed the data and wrote the 

manuscript, and all co-authors commented on an earlier draft. 
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ABSTRACT 

Global land-use change threatens species and ecosystems by affecting the movement 

behaviour of individuals and populations when landscapes become fragmented.  Landscape 

context and fine-scale habitat characteristics can affect how individuals perceive patch 

quality during colonisation. However, although the effects of landscape context on 

colonisation behaviour has been investigated in aquatic environments, it has rarely been 

studied in terrestrial environments or at large spatial scales. I used a “natural” experiment 

to assess how landscape context influenced patch colonisation rates in a large-scale (c.7000 

km2) terrestrial system where colonisers (Willow Warbler Phylloscopus trochilus L.) are 

capable of rapid, long-distance (> 100 km / day) movements. Bioacoustic recorders were 

used to detect first colonisation dates in 23 spatially independent habitat patches in 

Scotland and England. I compared support for eight competing hypotheses that tested how 

first colonisation dates were affected by both local- and landscape-scale factors, such as the 

amount of bird song in a patch and the amount or configuration of habitat in the landscape 

(i.e. landscape context). Based on similar studies in aquatic environments, my general 

prediction was that landscape context would be a stronger predictor of arrival dates in 

isolated habitat patches than local, patch level factors. Results supported this expectation, 

and showed that first colonisation of focal patches was up to 5 days later in landscapes 

with high habitat availability, supporting the “propagule redirection” hypothesis. 

Alternative explanations, such as the diversity of bird song in a patch on the first song date 

had minimal support. Results suggest that large-scale habitat patterns can affect the timing 

of key events during the migrant bird breeding cycle. More broadly, I suggest that 

colonisation processes observed in fragmented aquatic environments can in some 

circumstances be extended to large-scale terrestrial environments.  
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INTRODUCTION 

Understanding how landscape-scale habitat patterns influence colonisation dynamics in 

fragmented landscapes is an important theme in ecology and conservation (Haddad et al. 

2015; Resetarits & Silberbush 2016). Theories of landscape connectivity broadly predict 

that during dispersal and colonisation the importance of habitat composition and 

configuration is related to a species’ mobility and degree of habitat specialism (e.g. Taylor 

et al. 1993; Bélisle 2005). Colonisation can also be context-dependent, where colonisers 

select habitat patches based on the relative availability or quality of alternative habitat in 

the landscape (Resetarits 2005; Stier & Osenberg, 2010; Resetarits & Silberbush 2016). 

For many taxa, our understanding of how landscape-scale habitat patterns influence 

colonisation dynamics is limited to relatively coarse temporal scales (annual 

colonisation/extinction patterns; e.g. Bennet et al. 2004; Mortelliti & Lindenmayer 2015) 

and this can mask fine-scale behavioural processes that are important during initial 

colonisation of a breeding territory (Bélisle 2005). This knowledge gap is especially true 

for highly mobile, terrestrial species that are capable of rapid, kilometre-scale movements. 

Evidence from aquatic islands provides some of the strongest support for context-

dependent colonisation. In experimental coral landscapes, the number of colonisers is 

higher when focal patches have no adjacent patches, supporting the “propagule 

redirection” hypothesis (sensu Jones 1997; Stier & Osenberg 2010). Thus, colonisation 

rates are lower when isolated patches have more habitat in the surrounding landscape 

because colonists are redirected away from the focal patch. In the opposite direction, the 

“field of dreams” hypothesis predicts that “if you build it, they will come” and thus 

colonisation rates are expected to be proportional to habitat amount, which leads to higher 

colonisation rates in larger patches (Palmer et al. 1997; Stier & Osenberg 2010). Perceived 

patch quality can also be context-dependent; for example, predator presence in one patch 

can reduce the perceived quality of neighbouring patches in the local landscape (Resetarits 

& Binckley 2009; Resetarits & Silberbush 2016; Bohenek et al. 2017).  

In terrestrial environments, the effects of landscape context on species turnover and 

community assembly are well-studied, but less is known about the influence of landscape 

context on colonisation behaviour (Bélisle 2005). The reasons for this knowledge gap are 

two-fold: (i) it is often difficult to precisely detect colonisation events and their timing, 

despite technological advances such as global positioning system (GPS) tracking, and (ii) it 

is difficult to conduct studies over sufficiently large spatial scales to ensure habitat patches 



 

68 

 

are well replicated and spatially independent (i.e. colonisers should not move between 

focal patches). 

Birds are among the most well-studied taxa in landscape ecology but although 

landscape configuration plays an important role in shaping bird communities the link 

between pattern and process is poorly understood (Bélisle 2005). Homing experiments 

show that displaced Ovenbirds Seiurus aurocapilla return faster to established territories 

when forest cover in the landscape is high (Bélisle & Desrochers 2001; Desrochers et al. 

2011), suggesting that the amount of available habitat in the landscape is likely to be 

important during colonisation and habitat selection. Gap-crossing experiments have also 

been used to quantify how individuals cross non-habitat and indicate that forest species 

prefer to move through forest and forest edge rather than cross non-forest areas (Bélisle & 

Desrochers 2002; Robertson & Radford, 2009; Desrochers et al. 2011). Although this work 

has provided valuable insights into the movement behaviour of birds, such experiments 

have been criticised for being unrealistic (Powell & Stouffer 2015) and any link between 

experimental movement behaviour (e.g. during translocations) and natural colonisation 

behaviour remains speculative. Furthermore, there is usually a significant trade-off 

between spatial and temporal resolutions, where studies at large spatial scales tend to have 

low temporal resolution (e.g. monthly or yearly assessments of patch occupancy), and 

studies with high temporal resolution (daily counts of birds or translocation experiments) 

are usually limited to relatively small spatial scales. To meaningfully assess how 

landscape-scale habitat patterns influence habitat selection and colonisation behaviour in 

highly mobile taxa such as birds there is a need to achieve both high spatial and temporal 

resolutions (Bélisle 2005). 

Entire populations of migratory birds move biannually between their breeding and 

wintering grounds. In spring in the northern hemisphere, males typically arrive on the 

breeding grounds before females and compete to secure the “best” territories (Part 1994), 

and changes in timing of arrival at the breeding grounds can have significant reproductive 

consequences due to phenological match or mismatch with resource availability (e.g. 

Arvidsson & Neergard 1991; Baker et al. 2004). Many migrant birds also show strong 

natal and breeding philopatry (e.g. Lawn 1994; Part 1994). Thus, the amount of available 

breeding habitat (i.e. territory availability) in a landscape will correlate with the number of 

individuals that return annually to breed in a given area. Combined with the varied 

landscapes over which migration and subsequent colonisation or re-colonisation of 

breeding territories occurs, this behaviour presents an ideal “natural experiment” to test the 
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effects of local, patch -level factors (such as management practices) and landscape-scale 

habitat patterns (i.e. landscape context) on colonisation (Hollander et al. 2012). 

Furthermore, although landscape context can affect migrant bird fitness during stopover 

site selection during migration (Ktitorov et al. 2008), it remains unclear how landscape 

context influences initial colonisation of breeding territories. Bennet et al. (2004) found 

that migrant bird communities responded to regional gradients of land-use, but were unable 

to disentangle which factors were most important because of high multicollinearity 

between measures of land-cover. Despite a lack of empirical evidence, it is predicted that 

migrant birds will select landscapes with high habitat availability during initial 

colonisation (Bennet et al. 2004). Recent global declines of migratory birds are also poorly 

understood, and flyway-scale land-use change is implicated in population declines of some 

species (Vickery et al. 2014). Understanding how large-scale habitat patterns influence 

migratory bird colonisation behaviour is therefore a conservation priority. 

Here, I used a natural experiment approach to test whether colonisation rates of 

terrestrial habitat “islands” are context-dependent when individuals are capable of rapid, 

large scale movements that are independent of habitat availability (i.e. direct, nocturnal 

migratory flights). I used inexpensive bioacoustic recorders to monitor migrant bird 

(Willow Warbler Phylloscopus trochilus L.) arrival (date of first male song) in focal 

patches distributed across large spatial scales. Habitat patches were spatially independent 

as far as possible and of similar size, but varied in the amount and configuration of habitat 

in the landscape (i.e. context). I explicitly tested three competing hypotheses that described 

how landscape context might affect colonisation rates landscape-selection”, “redirection” 

and “relative patch size”; see Methods), and compared support for these with a further five 

hypotheses that accounted for patch “quality” and other non-landscape factors that are 

known to influence habitat selection in migratory birds, such as heterospecific attraction 

(Mönkkönen & Forsman 2002). 

 

METHODS 

Model species 

To test whether colonisation rates of habitat islands depend on landscape context, the study 

system must satisfy six key assumptions: (i) the focal species must use habitats that can be 

easily characterised at coarse spatial scales (e.g. any wooded habitat in the landscape); (ii) 

territory densities must be proportional to habitat amount (this assumption is tested in 

Appendix 4.1: Figure 1); (iii) individuals must initially be absent from the patch; (iv) focal 
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patches must provide suitable habitat for potential colonisers; (v) the timing of colonisation 

events must be detected with high precision and accuracy; and (vi) individuals must be 

capable of actively selecting patches (e.g. territorial bird vs wind dispersed invertebrate). 

To meet these criteria, I selected P. trochilus, a generalist woodland passerine bird that 

breeds in northern Eurasia (above approximately 41o N) and overwinters in sub-Saharan 

Africa (del Hoyo et al. 2017) as a model species. 

In Great Britain, P. trochilus breeds in coniferous and broadleaf woodland and 

scrub, with an estimated 2.2 million territories across the island (Musgrove et al. 2013). 

Birds prefer woodland patches larger than 0.5 ha with intermediate canopy cover and 

vegetation ranging in height from roughly 3 to 6 m (Bellamy et al. 2009; Stostad & 

Menéndez 2014). Historical reporting rates show that P. trochilus begins to arrive in Great 

Britain in the last week of March and the population is fully installed by the end of April 

(BirdTrack 2017). Migration occurs mainly at night and birds travel at average speeds 

ranging from 40 to 85 km per day, but speeds of up to 218 km per day have been recorded 

(Southern 1938; Hedenström & Petterson 1987). Males arrive before females and are 

highly vocal when establishing territories, producing a loud, easily detected song that can 

be repeated up to six times or more per minute (Gil et al. 1999). Males of breeding age are 

highly philopatric, but adult interannual survival is relatively low at around 40% and thus 

individual turnover is high (Tiainen 1983; Lawn 1994). Once on the breeding grounds, 

males compete for the best territories, with higher quality territories occupied earlier in the 

season. Territory sizes range from approximately 0.2 - 0.3 ha (Foppen & Reijnen 1994; 

Hedlund 2015). 

 

Habitat islands 

Thirty-five post-agricultural broadleaf woodlands were selected to represent habitat islands 

from 107 woodlands used by the Woodland Creation and Ecological Networks (WrEN) 

research project (Appendix 4.2: Figure 1). The WrEN project (http://www.wren-

project.com) comprises a large-scale natural experiment that aims to evaluate how 

landscape structure and patch characteristics influence biodiversity responses to habitat 

creation (Watts et al. 2016). Patch size is often a stronger predictor of bird species 

occurrence than other factors such as landscape configuration (Dolman et al. 2007; Chapter 

2). Since my primary interest was the influence of landscape composition and 

configuration (i.e. context) on colonisation rates, I controlled for patch area by selecting 

small woodlands of similar size (0.5 - 2.6 ha), but which varied in the amount and 
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configuration of suitable habitat in the surrounding landscape (c.f. Figure 7a in Fahrig 

2013). Patches were previously surveyed in 2015 for breeding birds using standard census 

techniques (mapping over three visits; Chapter 2). The thirty-five woodlands consisted of 

twenty-three woods occupied by P. trochilus in 2015. To try and achieve a larger sample 

size, an additional 12 previously unoccupied woods that appeared to offer suitable habitat 

were also selected. The mean number of adult records (total mapped visual or aural 

registrations from three surveys) per occupied patch (n = 23) in 2015 was 3.48 ±1.26 95% 

CI, indicating that patches held one territory on average per survey. Patches were typically 

≥ 3 km apart and were considered spatially independent because P. trochilus dispersal 

distances (i.e. distance between natal and breeding site) are typically < 1 km (Foppen & 

Reijnen 1994). Patch age (years since woodland establishment) ranged from 10 to 160 

years (median 90 years), and age was correlated significantly with mean tree diameter at 

breast height (DBH) (r = 0.78, P < 0.001, n = 23 occupied patches).  

 

Detecting colonisation 

I used Solo audio recorders (Chapter 3) to record the first date of male P. trochilus song in 

each patch. Pilot tests were used to calibrate microphones so that songs could be detected 

at distances of approximately 50 m (Appendix 4.2: Figure 2), which is equivalent to a 

sampling area of 0.3 ha (i.e. one P. trochilus territory). It was therefore assumed that 

probability of detection was close to or equal to 1 within a focal patch, the unit of interest, 

and close to 0 for habitat in the surrounding landscape. 

A single recorder was deployed in the centre of each woodland patch during the last 

week of March 2016 in advance of birds arriving and set to record audio continuously (24 

hr, 7 days) until 1st May 2016. On the day of deployment, song playback was used to 

ensure that no territorial males were present in the study sites. P. trochilus song was 

broadcast using an .mp3 player and handheld speaker in 10 second bursts at 1-minute 

intervals for 3 minutes. No birds responded to song playback, indicating that patches were 

vacant when data collection commenced. 

 To identify the first song date in each woodland I used a sub-sampling approach. 

Three continuous 10-minute blocks of audio were randomly sampled from the three-hour 

period after sunrise per day of audio recording (i.e. 30 minutes of audio per day). I then 

manually examined audio spectrograms for P. trochilus song. After the first detection, I 

counted the number of calls in the sub-sampled audio for 14 consecutive days to ensure 

that the patch had been settled (i.e. colonised). Patches with no songs on two consecutive 
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days of the 14 were considered not settled. To evaluate within-season turnover of 

individual males, I examined the relationship between song rates in a patch n days since 

the first song date, expecting the pattern to be consistent with Figure 4 in Arvidsson and 

Neergaard (1991) if there was no turnover (i.e. an initial steep rise in call rate followed by 

a plateau). I also compared first arrival dates with countrywide data from the British Trust 

for Ornithology to ensure that they were representative of those across Great Britain in 

2016. 

 

Hypotheses 

The “propagule redirection” hypothesis (sensu Jones 1997; Stier & Osenberg 2010) 

predicts that when habitat availability in the landscape is low, focal patches will receive 

more colonists over time. This is based on the expectation that individuals sample 

randomly from the available habitat in a landscape.  In the system used here, this would be 

indicated by earlier first song dates in more isolated patches because the probability of 

receiving an earlier colonist is higher per unit time (Figure 4.1a, solid line). In this case 

colonists are not a “propagule” per se but an adult male or first-year male of breeding age, 

and I therefore refer to this hypothesis as “redirection”. 

 Alternatively, if individuals are attracted to “landscape units” (i.e. not patches) that 

appear more favourable in general then focal patches might be colonised earlier when the 

amount of woodland in the landscape is higher. I call this the “landscape-selection” 

hypothesis, which would be consistent with the predictions made by Bennet et al. (2004). 

The expectation is that the initial cue to settlement is selection of landscapes with high 

habitat availability, with subsequent sorting into territories based on local, territory-level 

factors (e.g. food availably, vegetation structure etc). Thus, when the amount of habitat in 

the landscape is high, the expectation would be that the focal patch is colonised earlier than 

an equivalent patch with less habitat in the landscape (Figure 4.1a, dashed line). The 

direction of this predicted relationship, however, could also be caused by philopatry. Thus, 

landscapes with more habitat (and thus a higher number of potential territories) will 

receive more individuals returning to their previous breeding territories or close to their 

natal sites, which should lead to earlier colonisation of patches with more habitat in the 

surrounding landscape. The two mechanisms (i.e. landscape selection vs philopatry effects) 

are not mutually exclusive, however. It is therefore important to acknowledge that the 

study design used here cannot disentangle the independent effects of landscape selection vs 
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philopatry where first song date is earlier in focal patches with more habitat in the 

landscape. 

 Larger patches have higher woodland bird abundance and occupancy (Dolman et 

al. 2007; Chapter 2). Individuals might therefore select patches based on their relative size 

in a landscape, with relatively large patches occupied earlier than relatively small patches. 

I therefore expected focal patches to be colonised earlier if they were large relative to 

nearby patches in the landscape, which I call the “relative patch size” hypothesis (Figure 

4.1b).  

In addition to the three competing hypotheses outlined above, I also considered the 

effect of distance to the nearest neighbouring patch (a simple measure of landscape 

connectivity) on colonisation rates. Based on my assumption that first colonisation occurs 

after nocturnal flights I hypothesised that it would have no effect (Figure 4.1c).  

Measures of patch “quality” such as canopy cover, understory cover, tree DBH and 

tree diversity can be used to describe patch suitability for breeding P. trochilus (Bellamy et 

al. 2009; Stostad & Menéndez 2014). Since most of the patches were already known to be 

used by P. trochilus and generally similar in structure (i.e. broadleaf post-agricultural 

woodlands), and since I assumed that colonisation occurred rapidly at dawn after nocturnal 

flights, I predicted that patch-level factors would have no effect on colonisation rates 

(Figures 4.1d – 4.1g).  

 Manipulative experiments have demonstrated that migrant birds are attracted to the 

vocalisations of other woodland birds (heterospecific attraction) when choosing territories 

(Mönkkönen & Forsman 2002). To test for the existence of heterospecific attraction I 

calculated an index of acoustic complexity (which correlates with bird species richness) in 

the patch on the first song date, expecting that patches would be colonised earlier as 

soundscape complexity (i.e. bird song richness) increased (Figure 4.1h).  

 I attempted to control for patch size during site selection as far as possible, but 

since there was some small variation I tested for an effect, expecting no relationship 

between patch area and colonisation rates (not illustrated). Finally, the null model 

predicted that woodlands further north and east would be colonised later (not illustrated) 

based on knowledge of large-scale P. trochilus migration patterns in the UK (Southern 

1938).  
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Figure 4.1 Hypothesised relationships between first P. trochilus song and variables describing 

landscape context (a - c), patch quality (d - g), and acoustic complexity in a patch (h) (see Methods). 

The dashed line in (a) represents the expected relationship for the “landscape-selection” hypothesis 

and the solid line in (a) the “redirection” hypothesis. 
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Predictor variables 

Two variables were used to test my three primary hypotheses of interest. The amount of 

habitat (any woodland) in the landscape was used to test the “redirection” and “landscape-

selection” hypotheses, and the ratio between the focal patch size and the median patch size 

of any woodland in the landscape was used to test the “relative patch size” hypothesis. 

Habitat amount and relative patch size were calculated from Forestry Commission (2013) 

spatial data at eight scales (nested buffers surrounding the patch; 100 m, 250 m, 500 m, 

1000 m, 1500 m, 2000 m, 2500 m and 3000 m). I selected a single “scale of effect” (Fahrig 

2013) for each landscape variable using univariate Poisson generalised linear models and 

corrected Akaike Information Criterion (AICc). Four variables were used to test the effects 

of vegetation structure on first arrival date, which were percent canopy cover, tree mean 

DBH, tree species richness and percent understory cover (obtained during field surveys; 

Appendix 4.3). Acoustic complexity was used to test the heterospecific attraction 

hypothesis and was calculated as the mean acoustic complexity index (Pieretti et al. 2011) 

for the 3 x 10-minute sub-sampled audio files from the first song date in a patch. To 

validate the index, I regressed the averaged acoustic complexity value against raw bird 

species richness per site (n = 23) in 2015, confirming that there was a positive relationship 

(Appendix 4.4: Figure 1). Patch size was calculated from Forestry Commission (2013) 

spatial data. 

 

Modelling approach 

Linear models were used to quantify the relative effects of each predictor on first P. 

trochilus song date. Geographical position (i.e. northing and easting) was expected to have 

the strongest effect on first song date, and the null model included northing and easting 

only as continuous predictors. Generalised linear models were fitted by maximum 

likelihood, and residual diagnostics suggested a Poisson error structure was more 

appropriate than a Gaussian error structure. To avoid overfitting the data (i.e. modeling the 

residual variation because the ratio between n and the number of parameters is too low), 

and because I was primarily interested in the relative magnitude of effects, separate models 

were constructed for each predictor of interest but in all models northing and easting were 

included as covariates. 

Predictors were mean centred and scaled by one standard deviation to compare 

relative effect sizes (β). AICc was used to compare goodness of fit between each model and 

the null, and 95% confidence intervals for effect sizes were bootstrapped from 500 
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resamples of the data. Multicollinearity between predictors (i.e. northing, easting and the 

predictor of interest) was assessed using variance inflation factors (threshold < 5) and 

model validation followed Zuur et al. (2010). A correlation matrix for all predictors is in 

Appendix 4.5: Table 1 and results for the null model are given in Appendix 4.5: Table 2. R 

statistical software was used for the analysis (R Core Team, 2016). 

 

RESULTS 

Of the 35 woodland patches surveyed, P. trochilus were detected only in the 23 patches 

previously occupied in 2015, and these data were used in the analysis (Appendix 4.6: 

Figure 1). The median arrival date was the 16th of April (range 5th - 22nd April). Arrival 

dates were consistent with British Trust for Ornithology countrywide data in the same year 

(Appendix 4.6: Figure 2), indicating that results were representative. Although P. trochilus 

was detected in 23 woodlands it did not settle in five of them; however, since the 

hypotheses were structured in a way that focused on first song date and not subsequent 

probability of settlement, I retained all 23 sites in the analyses. In patches that were settled, 

song rates increased over time after the first detection before reaching a plateau, and the 

shape of the relationship was generally consistent with those observed by Arvidsson and 

Neergaard (1991) (Appendix 4.6: Figure 1). In several instances males may have been 

replaced, however (e.g. Appendix 4.6: Figures 1f and 1g). 

After accounting for geographic location, the first song was detected significantly 

earlier in patches with low amounts of woodland in the surrounding landscape at 2 km 

compared to those patches with high amounts of woodland (Table 4.1; Figures 4.2 and 

4.3). The effect size was relatively large (Table 4.1) and first song date was delayed by 

approximately 5 days as woodland amount in a 2 km buffer increased from 5 – 30%. The 

positive direction of this effect was consistent with the “redirection” hypothesis (Figure 

4.1a), and the variance explained (36%) was 11 – 12% higher than alternative models 

(Table 4.1).  

Contradicting expectations, there was no evidence to suggest that the relative size 

of the focal patch compared to other patches in the landscape affected colonisation rates. 

Distance to the nearest woodland, patch size and vegetation structure inside the patch also 

had no detectable effects on first colonisation, as expected. Counter to expectations, I 

found no support for heterospecific attraction. 
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Figure 4.2 Relationship between first P. trochilus song date and habitat amount within 2 km of a 

woodland patch. Circles are observed values and semi-transparent lines are bootstrapped 95% 

confidence intervals. 

 

 

 

 

 

Figure 4.3 Illustration showing the relationship between the amount of woodland in the 

landscape (green, 2 km buffer) and observed first P. trochilus song date (day in April 2016) 

in four example focal woodlands (red) at similar latitudes (near 56o N). 

 

 

 

 

  



 

78 

 

Table 4.1 Results from the Poisson generalised linear models showing the standardised 

coefficient estimates for each predictor of interest (β). Northing and easting were included as 

covariates in each model, but their estimates are not shown. The null model (H0) included northing 

and easting only and results are in Appendix 4.2: Table 5. 

Model Focal predictor β -95% +95% P 
ΔAICc  

from H0 
R2 

1 Proportion any woodland (2 km buffer) 0.12 0.01 0.23 0.04 -1.35 0.36 

2 Relative patch size (2 km buffer) 0.01 -0.12 0.13 0.92 2.95 0.23 

3 Distance to nearest wood (m) 0.02 -0.09 0.12 0.73 2.84 0.24 

4 Canopy cover percent 0.04 -0.09 0.16 0.58 2.65 0.24 

5 Tree species richness 0.02 -0.09 0.13 0.68 2.79 0.24 

6 Understorey cover percent 0.00 -0.12 0.10 0.93 2.95 0.23 

7 Tree DBH mean -0.01 -0.12 0.10 0.91 2.95 0.23 

8 Acoustic complexity index -0.01 -0.12 0.10 0.91 2.94 0.23 

9 ln(area) (ha) 0.04 -0.10 0.17 0.59 2.67 0.24 

 

DISCUSSION 

The importance of landscape context for community assembly and dispersal behaviour is 

well known, but the relationship between landscape context and colonisation behaviour is 

less clear, particularly in terrestrial systems and for organisms that undertake very large-

scale, rapid movements. In agreement with experimental work in aquatic environments, 

results support the “redirection” hypothesis (Stier & Osenberg 2010), and I found little 

support for the “landscape selection” (Bennet et al. 2004) or “relative patch size” 

hypotheses. Previous work in the study area also supports the redirection hypothesis and, 

after controlling for patch size and other factors, the relative abundance of woodland birds 

was lower in focal patches (n = 101) when the amount of broadleaf woodland within 1 km 

was higher (Figure 2.3b).  

Whether this pattern is caused by a random sampling process (i.e. higher 

probability of “capturing” a colonist when there is less habitat in the landscape), or if 

individuals are actively selecting patches with low amounts of habitat in the surrounding 

landscape, cannot be disentangled using these results. Philopatry also plays an important 

mechanistic role in dictating where birds return to breed each year. Adult males will 

typically return to their previous territory if they bred successfully, and first year males 

will return to within 1 km of their natal territory on average. Despite strong philopatry in P. 

trochilus, however, it cannot explain the observed relationship between first song date and 

the amount of woodland in the landscape based on our a priori expectations.  Therefore, 
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given the remarkable navigational skills of migrant birds and the cognitive ability of some 

species to actively select vacant territories based on their relative quality (e.g. prospecting 

behaviour in Collared Flycatchers Ficedula albicollis; Doligez et al. 2004a; Doligez et al. 

2004b), I suggest that the relationship between first song date and habitat amount in the 

landscape is unlikely to be due to a random sampling process, and propose that isolated 

patches become disproportionally attractive to early colonists in landscapes with less 

alternative habitat. 

The relatively isolated agricultural woodlands studied here probably represent poor 

quality habitat patches for P. trochilus. Yet, when they are situated in landscapes with little 

alternative habitat they appear to become relatively more attractive because colonists arrive 

earlier. Paradoxically, this is despite P. trochilus’ ability to travel more than 100 km per 

night during migration, which implies that individuals could avoid sparsely wooded 

landscapes with relative ease. This relationship would have been overlooked by studies of 

patch occupancy or abundance (e.g. Mortelliti & Lindenmayer 2015; Huber et al. 2017; 

Chapter 2) because most patches were eventually occupied and thus would appear equally 

“attractive” if surveys were made at coarse temporal scales or later in the season. 

During migration and stopover, body mass gain in P. trochilus is higher when 

landscapes have more forest cover (Ktitorov et al. 2008). It therefore appears perverse that 

the first songs are detected in the most isolated woodlands since these individuals are likely 

to experience fitness costs. Perhaps isolated woodland patches are acting as ecological 

traps (Robertson et al. 2013), leading individuals to trade off current vs future fitness 

potential by avoiding further, potentially risky long distance migratory flights when the 

landscape appears to have limited habitat availability. Other migratory birds are also 

attracted to “ecological traps” that arise from novel habitat patterns in the landscape, such 

as selectively harvested forest (Robertson & Hutto 2007). Considering P. trochilus 

declines across much of their range (Vickery et al. 2014) there is a need to understand if 

the habitat selection patterns observed here are causing relatively high-quality individuals 

(as measured by earlier arrival date) to select sub-optimal breeding territories. 

Translocation experiments have shown that forest birds (including long-distance 

migrants such as Ovenbird) return faster to established territories when landscapes are 

more favourable and have more habitat (Bélisle & Desrochers 2001; Desrochers et al. 

2011). This suggests that the same could be true during initial colonisation of breeding 

territories. However, the drivers that motivate a bird to return to an established territory 

(perhaps with eggs or nestlings) are quite different to those that motivate initial 
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colonisation or re-colonisation of a territory after spring migration. Results are consistent 

with colonisation occurring after nocturnal flights that are not constrained by habitat 

availability in the landscape. In the case of translocation experiments, individuals probably 

take advantage of available habitat to travel by day and return rapidly to their existing 

territory, where they have invested significant resources. We should therefore be cautious 

when extrapolating findings from experimental work on movement ecology to natural 

systems. 

 Contradicting expectations, I detected no relationship between acoustic complexity 

in a patch and first song date, providing no support for heterospecific attraction during 

initial colonisation. Heterospecific attraction is, however, well supported by evidence from 

other studies that have tested for its existence experimentally (e.g. Mönkkönen & Forsman 

2002; Fletcher 2007). These have shown that migrant bird abundance tracks the abundance 

of other woodland bird species. I suggest that heterospecific cues might influence migrant 

bird densities at the local scale once the population has arrived and territorial assortment 

has begun, but when territories are mostly vacant during initial colonisation early in the 

season then heterospecific cues are probably less important than large-scale habitat 

patterns. This hypothesis could be tested more robustly by recording first colonisation 

events (as here) and then also monitoring post-colonisation dynamics (i.e. migrant density) 

in a patch, for example by quantifying how heterospecific cues and landscape composition 

interact to affect migrant bird species accumulation in a patch. 

The lack of support for the relative patch size hypothesis was surprising given the 

apparent importance of patch size for P. trochilus and other woodland birds (Bennet et al. 

2004; Dolman et al. 2007; Chapter 2). There is ongoing debate surrounding the importance 

of habitat amount vs habitat configuration (i.e. relative patch size in this study) for 

community assembly in fragmented landscapes (Fahrig et al. 2013; Haddad et al. 2017). 

This result suggests that habitat amount is more important than habitat configuration for P. 

trochilus during colonisation or re-colonisation of territories after migration. 

 It is important to acknowledge that these results are from a single year and 

differences in weather conditions or population densities between years, for example, 

might also interact with landscape context to influence colonisation and settlement rates. 

Nonetheless, arrival times were consistent with the historical average in Great Britain and 

those recorded in 2016, and results supported a well-defined, a priori hypothesis. 

Furthermore, although I detected no effect of patch size or vegetation structure on 

colonisation rates, this is not necessarily because these factors are unimportant, but because 
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I was successful in controlling for their effects during site selection. It would be interesting 

to look at interactions between local and landscape-scale factors when seeking to 

understand colonisation dynamics under natural conditions, but this would require a 

substantial numbers of study sites and would be logistically challenging.  

I conclude that habitat amount in the landscape can affect P. trochilus arrival times 

in small habitat patches after Spring migration, which is surprising given that movement 

through the landscape is not constrained by habitat composition or configuration (i.e. 

nocturnal flights). These results represent an important step forward in understanding how 

landscape context influences colonisation dynamics by extending results from smaller, 

experimental systems in aquatic environments to considerably larger scales and to a 

terrestrial environment under natural conditions. The non-invasive methods used to detect 

colonisation events also offer considerable promise for studying how landscape 

composition and configuration influence the colonisation behaviour of other highly mobile, 

acoustically active taxa that might be too small to track in time and space using existing 

tracking technology. 

 

ACKNOWLEDGEMENTS 

I am grateful to landowners for permitting access to the study sites. The study was funded 

by the Natural Environment Research Council, the National Forest Company and Forest 

Research. The WrEN project has been funded by the University of Stirling, Natural 

England, Forestry Commission, Scottish Natural Heritage, the Department for the 

Environment, Food and Rural Affairs, the National Forest Company, Forest Research, the 

Woodland Trust and Tarmac Ltd. 

  



 

82 

 

Appendix 4.1 P. trochilus relative abundance and habitat amount 

 

Satisfying the assumption that P. trochilus densities are proportional to habitat 

amount 

An important assumption is that P. trochilus densities are proportional to the amount of 

habitat in the landscape. This is because when two landscapes have the same proportion of 

habitat but not the same number of potential territories, the number of potential colonists 

will also differ between the two landscapes. This could lead to spurious results, especially 

type II errors (false negatives) where differences in P. trochilus densities between 

landscapes obscure any effect of habitat amount. Ideally, the assumption that densities are 

proportional to habitat amount should be tested at the landscape scale, for example by 

quantifying the relationship between P. trochilus densities and habitat amount in 10 km 

grid squares, but this would be logistically challenging. British Trust for Ornithology data 

could be used to test the assumption but was unavailable at the time of writing. 

Alternatively, since results from Chapter 2 showed there was a strong positive correlation 

between patch size and the relative abundance of birds in the study woodlands, it is 

possible to test if P. trochilus relative abundance increases linearly with patch size. 

Confirming this relationship would support the assumption that the amount of woodland in 

the landscape is also likely to be proportional to the number of territories.  

 

Methods 

To test this assumption I used data collected in Chapter 2 and created a generalised linear 

model with the relative abundance of P. trochilus per patch as the response variable and 

patch size as a continuous fixed effect (n  = 101 patches: see Methods in Chapter 2). The 

model was fitted using a negative binomial error structure  (log-link) to account for over-

dispersion. P. trochilus were rarer in England than in Scotland, so country was also 

included as a categorical fixed effect, and a two-way interaction between country and patch 

size was included because the slope of the relationship was expected to differ between the 

two regions, since P. trochilus have declined significantly in England during recent 

decades (Balmer et al. 2013).  The model was fitted using maximum likelihood estimation 

(MASS R package; Venables & Ripley 2002) and goodness of fit was assessed by visually 

inspecting residual plots following Zuur et al. (2010). P. trochilus are typically found at 

densities of approximately 3.3 per ha (see Methods), and the relationship between patch 

size and relative abundance was expected to be close to this density on average. 
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Results 

As expected, there was a positive relationship between patch size and the relative 

abundance of P. trochilus (Table 1), and the interaction showed that densities in the study 

sites were lower in England than Scotland, as predicted. In Scotland, mean densities were 

close to expectations (but with high uncertainty) based on the predicted 3.3 territories per 

ha (Figure 1a) but this was not the case in England, where densities were significantly 

lower than expected (Figure 1b). 

 

 

Table 1. Coefficient estimates, standard errors and P values from 

the generalised linear model (negative binomial error distribution 

with a log-link function) showing the relationship between P. 

trochilus relative abundance (intercept) and fixed effects of patch 

size (n = 101 patches: see Methods in Chapter 2), country (Scotland 

or England) and patch-size x country interaction. The shape 

(dispersion) parameter (θ) for the negative binomial distribution was 

0.981 (0.229 SE). 
Variable Estimate SE P 

(Intercept) -0.12 0.31 0.69 

Patch size (ha) 0.06 0.03 0.02 

Country (Scotland) 0.80 0.40 0.04 

Patch size (ha) * Country (Scotland) 0.49 0.14 0.002 

 

 

Figure 1. Relationship between patch size (i.e. habitat amount) and the relative abundance of 

breeding Willow Warblers in 101 woodlands surveyed in 2015 (Chapter 2; Whytock et al. 

2017). Plot (a) shows results for Scotland and plot (b) for England. Solid black lines are the 

back-transformed fitted values from the generalised linear model (Table1) and dashed black 

lines are 95% confidence intervals. The dashed red line shows the expected relationship based 

on 3.3 Willow Warbler territories per ha (see Methods). Gray filled circles show the raw data. 

The x-axis range represents the range of patch sizes in Scotland (a) and England (b), 

respectively. 
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Interpretation 

These results support the assumption that P. trochilus densities increase linearly on 

average with habitat amount, but only in Scotland (where 20 of the 23 sites used in the 

analysis were located; Appendix 4.2: Figure 1).   
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Appendix 4.2 Map of the study sites and microphone detection distances 

 

Figure 1. Map of the study sites. Sites colonised by Willow Warblers Phylloscopus 

trochilus and used in analyses (n = 23) are shown as filled triangles. Filled circles 

indicate sites where acoustic loggers were deployed but no Willow Warblers were 

detected. 
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Figure 2. Relationship between microphone (array of n = 10) distance from a singing male 

willow warbler (n = 1 territory; n = 97 song phrases) and song delta dB (i.e. difference in power 

between signal and adjacent 1 s of background noise) when the microphone was calibrated to 

detect song at distances of c.50 m. Recordings were made in good weather conditions. 
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Appendix 4.3 Summary statistics for all local and landscape variables 

Table 1. Description and source of local and landscape metrics used in the analysis. 

Summary statistics for all variables are given in Table 2. 

Variable Description Source 

Landscape context   

   

 Proportion woodland  Percentage cover GIS NFI dataset a 

 Relative patch size Ratio between median patch size (mp) in 

landscape and focal patch size (fp): 

𝑚𝑝 ÷ 𝑓𝑝 

GIS NFI dataset 

 Distance to nearest wood (m) Euclidean distance to nearest patch of 

any woodland 

GIS NFI dataset 

   

Patch ‘quality’   

   

 Canopy cover percent Mean for patch Field survey 

2013/14 

 Tree species richness n tree species Field survey 

2013/14 

 Understory cover percent Mean for patch Field survey 

2013/14 

 Tree DBH mean (cm) Mean for patch Field survey 

2013/14 

Patch size    

   

 Patch area  Ha, log transformed GIS NFI dataset a 

   

Acoustic complexity   

   

 Acoustic complexity index Mean for 3x 10-minute audio files (see 

Methods) on day of first P. trochilus 

song. Calculated in a frequency band 

between 0.5 and 8 kHz using R package 

seewave (Sueur et al. 2008; Pieretti et al. 

2011). 

Audio recordings 

aGeographic Information System (GIS) data calculated using ArcMap v10.2 and National Forest 

Inventory data (Forestry Commission 2013). 
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Table 2. Summary statistics for all predictor variables and the response variable (first P. trochilus 

song date). 

Variable Mean SD Median Minimum Maximum 

Landscape context      

      

Proportion woodland (2 

km) 0.18 0.07 0.19 0.05 0.33 

Relative patch size (2 km) 0.82 0.45 0.72 0.22 1.72 

Distance to nearest wood 

(m) 117.92 127.14 67.85 7.54 530.68 

      

Patch ‘quality’      

      

Canopy cover % 73.38 17.55 78.00 36.00 97.50 

Tree species richness 4.83 2.69 4.00 1.00 12.00 

Understory cover % 2.12 2.23 1.30 0.00 8.00 

Tree DBH (mean) 30.84 13.73 24.93 13.90 61.49 

      

Patch size      

      

Area (ha) 1.14 0.67 0.78 0.50 2.59 

      

Acoustic complexity      

      

 Acoustic complexity index 134.27 5.86 132.86 122.45 144.79 

      

Response variable      

      

First willow warbler (1=1st 

April ‘16) 15.30 3.81 16.00 5.00 22.00 
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Appendix 4.4 Acoustic complexity index and species richness 

 

Figure 1. Relationship between acoustic complexity index (log transformed) 

and raw bird species richness (t22 = 1.92, Beta = 0.02, p = 0.066, R2 = 0.15) in 

the 23 sites colonised by Willow Warblers Phylloscopus trochilus. The black 

line is the fitted values from a generalised linear model with a Gaussian error 

structure (identity link) and the grey polygon represents 95% confidence 

intervals. Circles are observed values.  
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Appendix 4.5 Correlation matrix and summary statistics for the null GLM 

 

Table 1. Matrix of Pearson’s correlation coefficients for all predictor variables 
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Northing -0.92          

Understory cover % 0.31 -0.30         

Tree DBH (mean) -0.19 0.27 0.20        

Canopy cover % 0.31 -0.14 0.28 -0.20       

Distance to nearest wood (m) 0.14 -0.08 0.13 0.08 -0.08      

Tree species richness 0.21 -0.23 0.26 0.14 0.13 -0.03     

Relative patch size (2 km) -0.38 0.49 -0.03 0.20 0.09 0.13 -0.38    

Proportion woodland (2 km) -0.19 0.26 -0.23 0.08 -0.01 0.06 -0.15 0.25   

Acoustic complexity index 0.19 -0.20 0.42 0.38 0.22 -0.07 0.50 -0.14 -0.28  

ln(area) 0.61 -0.63 0.13 -0.29 0.19 -0.07 0.26 -0.68 -0.17 0.07 

 

 

 

Table 2. Summary statistics for the null model (AICc 128.83). 

Variable β SE Z P 

Intercept 2.72 0.05 50.56 < 0.001 

Easting 0.28 0.14 1.96 0.05 

Northing 0.34 0.14 2.37 0.02 
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Appendix 4.6 Patch settlement results 

 

Figure 1. Relationship between n days since first song detected and the total number of songs per 

20 minutes of sub-sampled audio (points) in 18 patches that were considered colonised after first 

detection. Lines (LOESS) were fitted using the scatter.smooth() function in R. 
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Figure 2 The relationship between geographic position (10 km grid reference) and arrival 

date (a, b) in the study sites (red circles; n = 23). Selected BTO BirdTrack data (available 

online) from the same year (black circles) are also shown for comparison. Point size in plot 

(c) is scaled according to arrival date. 
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CHAPTER 5  

PERCEIVED PREDATION RISK IN 

AGRICULTURAL LANDSCAPES: A CASE 

STUDY OF THE EURASIAN WREN Troglodytes 

troglodytes 
 

An adapted version of this chapter is being prepared for submission:  

 

Robin C. Whytock, Elisa Fuentes-Montemayor, Kevin Watts, Nicholas A. Macgregor 

Eilidh Call, Jennifer Mann and Kirsty J. Park. In prep. Perceived predation risk in 

agricultural landscapes: evidence for communication trade-offs in a ubiquitous woodland 

bird Troglodytes troglodytes  

 

Contributions: RCW conceived the study with input from EF-M, KW, NM and KJP. RW 

collected the data with assistance from EC and JM. RCW analysed the data and wrote the 

manuscript, and all co-authors commented on an earlier draft. 
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ABSTRACT 

Land-use change and habitat fragmentation are well known drivers of biodiversity 

declines, but the causal mechanisms are often unclear. In forest birds, increased predation 

pressure has been proposed as a potentially important driver of community change in 

fragmented landscapes. Predation can also have non-lethal effects on prey, such as creating 

‘landscapes of fear’ that cause individuals to avoid favourable habitat due to higher 

perceived risk of predation. Such non-lethal effects of predation have received relatively 

little attention in the context of habitat fragmentation, however. Here, I hypothesised that 

perceived predation risk is positively correlated with the amount of agricultural land 

surrounding a woodland fragment in a model woodland bird species, the Eurasian Wren 

Troglodytes troglodytes. I used bioacoustic recorders to quantify Wren alarm call rates and 

song rates in 32 naturally replicated broadleaf woodlands located in landscapes with 

varying amounts of agricultural land-cover. As predicted, results showed that perceived 

predation risk was higher when there was more agricultural land cover in the landscape, 

but the effects were strongest at the woodland edge (within 20 m). Further work is required 

to determine if changes in perceived predation risk can affect individual fitness, prey 

densities, patch attractiveness or demographic rates. Nonetheless, evidence from 

experimental work on other passerine birds has shown that body condition declines when 

perceived (but not actual) predation risk increases. If this is also true under natural 

conditions then the patterns observed here indicate that woodlands with high amounts of 

agricultural land at their edge could provide relatively sub-optimal habitat for ground-

nesting woodland birds such as the Eurasian Wren. 
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INTRODUCTION 

Habitat loss, fragmentation and land-use change disrupt ecological functioning and cause 

biodiversity loss, but the mechanistic links between pattern and process can be obscure. 

Behavioural responses to habitat configuration often underlie species responses to 

landscape change. For example, reduced connectivity between isolated patches can inhibit 

individual movement through the landscape and impair dispersal and colonisation 

behaviour. Land-use change can also affect non-movement behaviour, such as predator-

prey interactions (Dolman et al. 2007; Thompson 2007). Most work on the relationships 

between landscape fragmentation, land-use change and predation has focused on lethal 

effects (e.g. nest predation). However, predators can also have non-lethal effects on prey, 

for example causing prey to avoid valuable but dangerous foraging habitat (Cresswell 

2008), potentially resulting in fitness costs. Although the lifetime fitness costs of non-lethal 

predator-prey interactions can be as great as, or even greater than lethal effects (Cresswell 

2008), non-lethal effects have received relatively limited attention in the context of 

landscape fragmentation and land-use change. 

 Songbird reproductive fitness is strongly mediated by nest predation (see reviews 

by Lahti 2001; Thompson et al. 2002; Stephens et al. 2003). Predation pressure operates 

across a hierarchy of spatial scales ranging from the geographic distribution of predators, 

predator responses to large-scale habitat patterns, patch-scale effects on predation risk (e.g. 

patch size, edge effects) and nest site characteristics. In forest passerines, nest predation 

rates typically increase as forest cover in the landscape declines, probably because predator 

densities (e.g. corvids) are higher in agricultural or urban environments that replace forest 

(Thompson 2007). At the local scale, predation rates can increase when nests are closer to 

patch edges or when patches are smaller, although the evidence is equivocal (Lahti 2001). 

Very fine scale measures of vegetation structure in the immediate vicinity of the nest site, 

such as understory cover, can also influence predation rates by affecting nest-detectability. 

However, predator-prey responses to landscape change are often context-dependent, and 

most studies are from North America with few comparative studies in Europe, leading to a 

call for more research (Dolman et al. 2007). 

 The non-lethal effects of predators on prey include behavioural trade-offs that can 

incur fitness costs (Cresswell 2008). Examples include opportunity costs when prey avoid 

foraging in areas with high predation risk (Hilton et al. 1999), or when prey allocate time 

to predator detection at a cost to other activities such as territorial defence (Krebs 1980). 

Perceived predation risk can also affect physiology and demography. For example, Great 
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Tits Parus major body mass (fat reserves) declines under increased levels of perceived (but 

not actual) predation risk (Gosler et al. 1995; Gentle and Gosler 2001). In wild Song 

Sparrows Melospiza melodia the number of offspring declined by 40% per year solely due 

to the perception of risk (Zanette et al. 2011). Thus, perceived predation risk can incur 

multiple physiological, demographic and behavioural costs that could have wider 

consequences for populations. 

Vocal communication (singing, alarm calling) is a fundamental behaviour used by 

passerines for territorial defence, advertising individual quality, attracting a mate, 

signalling predator presence and signalling hunger. Alarm calls often have several 

functions and the messages they convey can vary throughout the year. During the breeding 

season, alarm calls serve multiple functions. For example, nestling begging behaviour, 

which is noisy and can attract predators, is suppressed by parental alarm calls in the White-

browed Scrubwren Sericornis frontalis (Platzen & Magrath 2004). Thus, parental alarm 

calls can serve as an early warning of predation risk to nestlings. Alarm calls can also 

convey more subtle messages. In Black-capped chickadees (Poecile atricapilla) 

experimental presentation of predators showed that there was a correlation between 

acoustic features of alarm calls and predator body size, and this information was decoded 

by conspecifics during mobbing behaviour (Templeton et al. 2005). A recent study showed 

that when Great Tits perceived an increase in predation risk they traded off territorial 

communication (i.e. male song) with an increase in alarm-call behaviour (Abbey-Lee et al. 

2015). Furthermore, this effect was carried over for days after exposure to the predator cue. 

Given the almost ubiquitous importance of vocal behaviour such as alarm calling for 

passerine birds, such patterns are likely to be widespread. The factors that drive 

behavioural responses to perceived predation risk are also likely to be direct (e.g. increased 

predator abundance) and indirect, for example through land-use change and its effects on 

predator behaviour. 

 Quantifying perceived predation risk under natural conditions is challenging, firstly 

because it can be difficult to observe predator-prey interactions and secondly because 

observer presence can interfere with both predator and prey behaviour. To overcome these 

challenges, studies of birds typically simulate predation risk (e.g. at feeder stations), for 

example by using dummy predators or by broadcasting predator vocalisations (e.g. Gentle 

& Gosler 2001; Zanette et al. 2011; Abbey-Lee et al. 2015). However, technological 

advances such as camera traps have also made it possible to detect attempted or actual 

predation events under natural conditions, for example at songbird nests (Bellamy et al. 
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2017), which can complement findings from experimental work. Knowledge of bird 

communication behaviour has also been greatly advanced by affordable bioacoustic 

technology (e.g. Chapter 3), and automated detectors can now be deployed to record bird 

song and other communication behaviour at landscape-scales and for long time periods 

(Blumstein et al. 2011).  

 Here, I use a natural experiment approach and a model species (Eurasian Wren 

Troglodytes troglodytes) to assess if agricultural landscapes cause an increase in perceived 

predation risk. I asked three key questions (i) does perceived predation risk in a habitat 

patch increase with more agricultural land-use in the landscape?, (ii) what is the scale of 

effect (local or landscape)?, and (iii) what is the relative importance of landscape vs local 

(e.g. livestock presence) effects on perceived predation risk? 

 

METHODS 

Study sites 

Thirty-two post-agricultural broadleaf woodlands (Figure 5.1) were selected from a larger 

sample of 107 woodlands used by the Woodland Creation and Ecological Networks 

(WrEN) natural experiment (Watts et al. 2016). Patch size is an important predictor of nest 

predation in woodland birds (Dolman 2012) but the primary aim was to understand how 

surrounding land-use, and not patch size, affected perceived predation risk. I therefore 

controlled for area effects as far as possible by selecting woodlands of similar size (0.5 – 

2.6 ha), but which were ‘naturally replicated’ across landscapes that varied in the amount, 

configuration and types of land management within 3 km. Patches were also c.3 km apart, 

firstly to ensure that they were spatially independent, and secondly because it was 

considered an ecologically relevant scale, which was sufficiently large to see changes in 

predator abundance, for example. 
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Figure 5.1 Map of the 32 study sites in Great Britain. 
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Study species 

The Eurasian Wren Troglodytes troglodytes is a ubiquitous woodland bird in Great Britain 

(Balmer et al. 2013) and during surveys in the study sites in 2015 it was recorded in 96% 

of 101 woodlands (Chapter 2). Nests are dome shaped and located on or near the ground 

(usually < 5 m) in thick vegetation or cavities, and constructed from dry leaves, moss, 

grass and other plant material (Ferguson-Lees et al. 2009). A loud and characteristic 

‘chattering’ alarm call is made when the nest site is threatened (Ferguson-Lees et al. 2009) 

and nest predation is one of the most important factors affecting Wren fecundity 

(Wesołowski 1983). The predator community in the study areas comprises Sparrowhawk 

Accipiter nisus, Buzzard Buteo buteo, Tawny Owl Strix aluco, Eurasian Magpie Pica pica, 

Eurasian Jay Garrullus glandarius, Carrion Crow Corvus corone, Jackdaw Corvus 

monedula, European weasel Mustela nivalis, stoat Mustela ermine, European badger Meles 

meles, red fox Vulpes vulpes and Gray squirrel Sciurus carolinensis. 

 

Quantifying perceived predation risk 

Solo audio recorders (Chapter 3) were deployed in the centre of each woodland and set to 

record audio continuously (24 h 7 d) from 1 Mar – 30 Apr 2016, when Wren territories are 

established and egg laying occurs (Ferguson-Lees et al. 2009). This method allowed alarm 

calls (an index of perceived predation risk) to be detected at high temporal resolutions in 

focal patches spread across a large geographic area, but with the trade-off that predator 

species could not be identified, which would be more feasible at small scales using direct 

observation or experimental manipulations of predation risk. 

  

Hypotheses 

I hypothesised that alarm call rates would be higher when there was more arable and 

pasture in the landscape. This expectation was based on studies that found songbird nest 

predation rates were higher in agricultural landscapes (e.g. Andren 1992; reviewed by 

Thompson 2007). However, since some patches were likely to have higher Wren densities 

than others, for example because of differences in fine-scale measures of habitat structure, 

I only expected to see an effect of arable or pasture in the landscape on alarm call rates 

after controlling for Wren abundance in a patch; using song rates as an index of abundance 

(Figures 5.2). In addition, song rates are also likely to be directly affected by the proportion 

of arable and pasture in the surrounding landscape because landscapes with high 

proportions of arable and pasture also have lower proportions of woodland. Thus, there 
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should be less competition from singing males in neighbouring patches, which is likely to 

lead to lower singing rates in focal patches when there is a high proportion of arable and 

pasture in the landscape (Figure 5.2).    

Species, communities and individual behaviour are all affected by patterns of land 

use across multiple spatial scales, which is known as the ‘scale of effect’ (Fahrig 2013). 

The scale of effect can be linear, non-linear, have a threshold or can operate at a single 

scale; e.g. Fuentes-Montemayor et al. 2011). No assumptions were made about the scale of 

effect or its shape here, other than it was expected to be < 3 km (Chapter 2), which is 

substantially greater than the distance at which Wrens are likely to perceive a threat from a 

predator. 

 Woodlands located in agricultural landscapes might also be exposed to higher 

levels of disturbance from humans, vehicles, livestock and domestic animals such as dogs. 

Disturbance from livestock (here the presence of horses, cows or sheep), such as trampling 

of nests, is likely to be perceived as a threat. Livestock could also have indirect effects on 

perceived predation risk by modifying the understory layer of a woodland through grazing 

pressure, potentially affecting nest concealment and detection by predators. I therefore 

predicted (i) alarm call rates would be higher in patches where livestock were present, 

which would be seen via a direct effect (disturbance; Figure 5.2) and (ii) that livestock 

would indirectly increase perceived predation risk by reducing the amount of understory 

cover (Figure 5.2).  

 Numerous studies have found that predation risk is higher when nests are closer to 

patch edges or when patches have a high edge to area ratio (Lahti 2001). It was therefore 

expected that alarm call rates would be higher in patches with a high edge to area ratio. 

This was captured using the variable ‘patch shape’ (Figure 5.2), which was calculated as 

the length of the patch perimeter divided by the perimeter of a perfect circle with same area 

as the patch.  

Because Wrens need woodland with sufficient cover for foraging and nest 

concealment, I expected densities (i.e song rates) to be higher in woodlands with greater 

structural variation (as measured by tree DBH standard deviation) (Figure 5.2). 
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Figure 5.2 Path diagrams illustrating the hypothesised effects of vegetation structure (Tree 

DBH SD, understory cover %), woodland management (livestock presence), patch shape, 

song rates (an index of abundance), and the proportion of arable in the landscape on alarm 

calls in woodland fragments. Black arrows show hypothesised positive effects and red 

arrows show hypothesised negative effects, and arrow width indicates the expected relative 

magnitude of the effect.  

 

Data Analysis 

I used an unbiased re-sampling approach to quantify alarm (and song) rates in each 

woodland. Audio sequences were examined on four equally spaced days in April (9th, 16th, 

23rd and 30th) to cover the entire month. For each site, I randomly sampled four 10-minute 

sections of audio (i.e. 40 minutes) from three time periods per day: (i) the 3 hr period after 

sunrise (morning), (ii) between 1200 and 2 pm (midday), and (iii) the 2 hr period before 

sunset (evening). Using spectrograms, I then counted the number of songs in the morning 

(when singing peaks) on each date and counted the number of alarm calls in the morning, 

midday and in the evening on each date. I then summed the total number of alarm calls and 

the total number of songs per day in each site. 
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I used piecewise structural equation modeling (SEM; Lefcheck 2016) to examine 

local and landscape effects on perceived predation risk and song rates. Figure 5.2 shows 

the hypothesised direct and indirect relationships tested. 

Alarm counts and song counts were log transformed for analyses and linear mixed 

effects models (Bates et al. 2015) were used to construct the SEMs. Component models 

were validated following Zuur et al. (2010). All predictors were mean centred and scaled 

by 1 SD to compare relative effect sizes (β). Because the number of alarm calls and songs 

were likely to vary as a function of nestling stage (c.f. Southern House Wren Troglodytes 

musculus: Fasanella & Fernandez 2009), and because there was likely to be asynchrony 

between sites, I accounted for this by including date (n = 4 days) as a random intercept in 

all constituent models in the SEM. I also initially included date nested in site as a random 

intercept but models did not always converge, and the site-level effect explained no 

additional variance so was removed. 

To identify the scale of effect of the relationship between alarm call rates and the 

amount of arable and pasture in the landscape I separately constructed nine SEMs, one for 

each of the nine scales used (20, 100, 250, 500, 1000, 1500, 2000, 2500, 3000 m GIS 

buffers). I then compared standardised effect sizes and AICc to select the single ‘best’ scale 

(n = 9 SEMs).  

For all SEMs (i.e. at each scale), I evaluated potentially missing paths and added 

those that were significant (P < 0.05) and ecologically plausible to the model, or they were 

otherwise specified as having correlated errors. Fitted SEMs were evaluated using Fisher’s 

C. A significance threshold of P > 0.05 was used to indicate the model reproduced the data 

well. 

 

RESULTS 

After sub-sampling, a total of 421 Wren alarm calls (median 1, range 0 – 27 per day, n = 

35 woodlands) and 7139 songs (median 184, range 0 – 587 per day, n = 35 woodlands) 

were detected in 280 hours of audio. No Wren alarms or songs were detected in one 

woodland and it was removed from further analyses. Two other woodlands were also 

removed due to missing data, leaving 32 woodlands in the analyses. 

SEM results (Figure 5.3 and 5.4; Appendix 5.1: Tables 1 & 2) showed that, after 

controlling for the number of songs (an index of abundance) in a woodland, the number of 

alarm calls increased significantly when there was proportionally more arable and pasture 

within 20 m of each patch. This was the only scale found to have a statistically significant 
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effect on alarm call rates, but effect sizes suggested there appeared to be a threshold where 

the proportion of arable and pasture had no effect beyond 1000 m (Figure 5.3). 

 

 

 

Figure 5.3 Standardised effect sizes (bars show 95 % confidence intervals) for Wren alarm 

call rates as a function of the proportion of arable and pasture in the landscape at eight nested 

spatial scales (GIS buffers). 

 

There was a significant negative relationship between the proportion of arable and 

pasture within 20 m and the number of songs in the woodland (Figure 5.4), but I found no 

significant direct or indirect relationships between alarm calls or song rates and tree DBH 

SD, patch shape, livestock presence or understory cover, and standardised effect sizes were 

relatively small. However, by examining missing paths I found an unexpected positive 

relationship between livestock presence in the woodland and the number of songs, which 

was then included in the final models. 
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Figure 5.4 Path diagram showing results from the structural equation model with the strongest 

support, which included a significant, negative effect of the amount of arable and pasture within 20 

m of the woodland patch on wren song rates, indicating a communication trade-off (hypothesised in 

Figure 5.2a). 

 

DISCUSSION 

Landscape change due to conversion for agriculture and other purposes threatens species 

and ecosystems, with forest habitats and species particularly at risk (Haddad et al. 2015). 

Patterns of species and community responses to habitat fragmentation and loss are well 

studied but it can be difficult to identify the ecological mechanisms that drive these 

patterns (Dolman 2012). Evidence from studies of multiple taxa show that when 

individuals perceive an increased risk of predation, this can have negative, cascading 

effects on individuals and populations (Cresswell 2008; Ripple & Beschta 2004; Resetarits 

& Silberbush 2016). Here, I asked if perceived predation risk is greater in agricultural 

landscapes, and if yes what is the scale of effect? Results suggest that predation risk 

perceived by Wrens does increase in agricultural landscapes, and the effects are highly 

local (20 m from woodland edge). 

 I was not able to identify predator species and can only speculate about the 

mechanisms that led to higher alarm call rates when there was more agricultural land at 

woodland edges. One explanation is that predator abundance (e.g. corvids, red fox) 

increases in agriculturally dominated landscapes, which leads to increased predation rates. 

However, the very local-scale effect of agriculture on alarm call rates observed here 

instead suggests that predators could be disproportionally attracted to woodland edges. 
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This might be because there is higher food availability or because the edge provides cover 

when traveling, which would be particularly valuable to medium and small mammalian 

predators such as European weasel, stoat and red fox. However, many of these hypotheses 

are poorly tested and results are often equivocal (Chalfoun et al. 2002). Quantifying 

predator functional and numerical responses to habitat configuration and composition 

therefore remains an important area for future research. Agricultural landscape are also 

likely to have higher levels of anthropogenic activity (humans, vehicles, dogs), which 

could cause disturbance and higher alarm call rates. Although this cannot be ruled out as 

causing the patterns observed here, livestock presence in the woodland was not found to 

affect alarm call rates, suggesting that the impact of such disturbance is probably minimal. 

Furthermore, Wrens are also strongly associated with anthropogenic habitats in the UK and 

elsewhere (Wesołowski T. 1983), suggesting that they are relatively resilient to 

anthropogenic disturbance.  

The highly localised effects of arable and pasture on alarm call rates also probably 

reflect the distances at which Wren’s perceive a threat. There has been substantial research 

into the distances at which birds will tolerate a threat before fleeing (flight initiation 

distances; Weston et al. 2012), but surprisingly little research has investigated the same 

phenomenon for alarm calls, despite the link between the two behaviours (i.e. alarm calls 

often precede escape behaviour). It has been proposed that flight initiation distances could 

be used to mitigate against land-management practices that might cause undue disturbance 

to bird populations (Weston et al. 2012). For example by ensuring that stimuli which cause 

a disturbance are sighted sufficiently far from potential breeding habitat. It might therefore 

be possible to use alarm-initiation distances as a similar conservation management tool. 

I did not quantify the demographic consequences of increased predation risk, but 

there is sufficient evidence from studies of other passerines to suggest that an increase in 

perceived predation risk can impact on demographic rates and thus population persistence 

in a patch, for example by causing lower fecundity through physiological changes, such as 

decreased body condition (Gentle & Gosler 2001). Predators can also create ‘landscapes of 

fear’, where individuals avoid habitat or foraging opportunities with high predation risk 

(Ripple & Beschta 2004; Cresswell 2008), which could cause patches with high predation 

risk to appear relatively unattractive to potential colonisers (Resetarits & Silberbush 2016). 

In Great Tits, experimental evidence suggests that even when perceived predation 

risk is higher, individuals’ trade-off territorial defence (i.e. singing rates) (Abbey-Lee et al. 

2015). In many birds territory loss can incur substantial lifetime fitness costs, and the risk 
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to life from predation must be very high before individuals risk losing their territory 

(Abbey-Lee et al. 2015). We did not quantify if such a tradeoff exists in Wrens, but it is 

plausible that singing rates decline when birds spend more time producing alarm calls, and 

this should be investigated in future. 

Surprisingly, I found that song rates were significantly higher when livestock was 

present in the woodland. The mechanisms for this are unclear, but in woodland bats 

detection rates were higher in grazed woodlands, despite these woodlands having lower 

numbers of invertebrates than woodlands with no grazing (Fuentes-Montemayor et al 

2013). Perhaps grazing therefore creates structural features that also favours Wren foraging 

behaviour and thus Wren densities.  

 

Conclusions 

Results show that perceived predation risk is higher in agricultural landscapes, but the 

effect is highly localised. Many questions remain unanswered however, and it remains 

unknown if high levels of perceived predation risk affect community assembly in 

fragmented woodlands. I suggest the following questions are used to guide future research 

in this area: 

 

 Does an increase in perceived predation risk correlate with actual predation risk? 

 Which predators or predator guilds are responsible for causing an increase in 

perceived predation risk in agricultural landscapes? 

 Do agricultural landscapes modify predator behaviour or predator numbers? 

 Can these effects be mitigated by ‘buffering’ woodland edges with semi-natural 

habitat? 

  

I recommend that future studies combine both experimental and observational work to 

build a more complete picture of why agricultural landscapes cause the patterns observed 

here. In particular, there is a need to simultaneously quantify both prey and predator 

numerical and functional responses to large-scale patterns of land-use and land-use change. 
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Appendix 5.1 Summary statistics for the structural equation models 

 

Table 1. Estimated coefficients, standard errors (SE) and P-values from each ‘scale of effect’ 

structural equation model (20 m to 3 km). Hypothesised relationships (positive or negative), 

significant missing paths and correlated variables assumed to have no causal relationship 

(denoted ~~) are also indicated. 

Response Predictor 
Hypothesis

ed sign 

Estimat

e 
SE P 

      

ln(alarm calls) ln(songs) 
+ 

0.47 0.13 
< 

0.001 

 Prop. arable & pasture (20 m) + 0.19 0.09 0.026 

 Livestock presence + -0.09 0.11 0.434 

 Understory cover - 0.04 0.09 0.623 

 Patch shape + 0.00 0.08 0.974 

ln(songs) Livestock presence 
Missing 

path 
0.26 0.08 0.001 

 Prop. arable & pasture (20 m) - -0.12 0.06 0.049 

 Tree DBH SD + -0.06 0.06 0.384 

Understory cover % Livestock presence - -0.04 0.11 0.713 

~~ Understory cover 

% 

~~ Prop. arable & pasture (20 

m) 

 
0.25 - 0.002 

      

      

ln(alarm calls) ln(songs) 
+ 

0.47 0.13 
< 

0.001 

 
Prop. arable & pasture (100 

m) 

+ 
0.17 0.09 0.064 

 Livestock presence + -0.07 0.11 0.558 

 Understory cover - 0.04 0.09 0.675 

 Patch shape + 0.01 0.08 0.916 

ln(songs) Livestock presence 
Missing 

path 
0.23 0.08 0.004 
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Response Predictor 
Hypothesis

ed sign 

Estimat

e 
SE P 

      

 
Prop. arable & pasture (100 

m) 

- 
-0.14 0.06 0.019 

 Tree DBH SD + -0.05 0.06 0.441 

Understory cover % Livestock presence - -0.04 0.11 0.713 

~~ Understory cover 

% 

~~ Prop. arable & pasture 

(100 m) 

 
0.31 - 

< 

0.001 

      

 

ln(alarm calls) ln(songs) 
+ 0.50 0.14 < 

0.001 

 
Prop. arable & pasture (250 

m) 

+ 0.17 0.10 0.097 

 Understory cover - 0.08 0.09 0.352 

 Patch shape + 0.03 0.09 0.711 

 Livestock presence + -0.03 0.12 0.780 

ln(songs) 
Prop. arable & pasture (250 

m) 

- -0.24 0.06 < 

0.001 

 Livestock presence 
Missing 

path 

0.14 0.08 0.102 

 Tree DBH SD + -0.03 0.06 0.580 

Understory cover % Livestock presence - -0.04 0.11 0.713 

~~ Understory cover 

% 

~~ Prop. arable & pasture 

(250 m) 

 0.05 - 0.306 

      

      

ln(alarm calls) ln(songs) + 0.47 0.14 0.002 

 Understory cover - 0.09 0.09 0.294 

 
Prop. arable & pasture (500 

m) 

+ 
0.10 0.12 0.414 

 Livestock presence + -0.06 0.13 0.678 
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 Patch shape + 0.03 0.09 0.770 

ln(songs) 
Prop. arable & pasture (500 

m) 

- 

-0.38 0.07 

< 

0.001 

 Patch shape 
Missing 

path -0.20 0.05 

< 

0.001 

 Livestock presence 
Missing 

path -0.10 0.06 0.074 

 Tree DBH SD + 0.01 0.08 0.896 

Understory cover % Livestock presence - -0.04 0.11 0.713 

      

ln(alarm calls) ln(songs) + 0.42 0.13 0.002 

 Understory cover - 0.09 0.09 0.299 

 Livestock presence  + -0.10 0.14 0.481 

 
Prop. arable & pasture (1000 

m) 

+ 0.03 0.12 0.822 

 Patch shape + 0.00 0.09 0.969 

ln(songs) Livestock presence 
Missing 

path 

0.22 0.09 0.023 

 Patch shape 
Missing 

path 

-0.12 0.06 0.045 

 
Prop. arable & pasture (1000 

m) 

- -0.11 0.09 0.202 

 Tree DBH SD + -0.08 0.07 0.225 

Understory cover % Livestock presence - -0.04 0.11 0.713 

      

      

ln(alarm calls) ln(songs) + 0.41 0.13 0.002 

 Understory cover - 0.09 0.09 0.343 

 Livestock presence  + -0.10 0.13 0.439 

 
Prop. arable & pasture (1500 

m) 

+ 0.03 0.11 0.797 

 Patch shape + 0.00 0.09 0.998 
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ln(songs) Livestock presence 
Missing 

path 

0.30 0.08 0.001 

 Patch shape 
Missing 

path 

-0.09 0.06 0.132 

 
Prop. arable & pasture (1500 

m) 

- 0.04 0.08 0.574 

 Tree DBH SD + -0.03 0.07 0.620 

Understory cover % Livestock presence   - -0.04 0.11 0.713 

      

      

ln(alarm calls) ln(songs) + 0.41 0.13 0.002 

 Understory cover - 0.09 0.09 0.359 

 Livestock presence  + -0.10 0.12 0.400 

 
Prop. arable & pasture (2000 

m) 

+ 0.03 0.10 0.749 

 Patch shape + 0.00 0.08 0.986 

ln(songs) Livestock presence 
Missing 

path 

0.31 0.08 < 

0.001 

 Patch shape 
Missing 

path 

-0.09 0.06 0.121 

 
Prop. arable & pasture (2000 

m) 

- 0.08 0.07 0.241 

 Tree DBH SD + -0.03 0.07 0.693 

Understory cover % Livestock presence - -0.04 0.11 0.713 

      

      

ln(alarm calls) ln(songs) + 0.41 0.13 0.002 

 Understory cover - 0.08 0.09 0.376 

 Livestock presence  
+ -

0.10 

0.12 0.417 

 
Prop. arable & pasture (2500 

m) 

+ 0.05 0.10 0.609 

 Patch shape + 0.00 0.08 0.969 
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ln(songs) Livestock presence 
Missin

g path 

0.31 0.08 < 0.001 

 Patch shape 
Missin

g path 

-

0.09 

0.06 0.100 

 
Prop. arable & pasture (2500 

m) 

- 0.10 0.07 0.153 

 Tree DBH SD 
+ -

0.03 

0.06 0.681 

Understory cover % Livestock presence 
- -

0.04 

0.11 0.713 

      

      

ln(alarm calls) ln(songs) + 0.41 0.13 0.002 

 Understory cover - 0.09 0.09 0.346 

 Livestock presence  
+ -

0.10 

0.12 0.400 

 
Prop. arable & pasture (3000 

m) 

+ 0.05 0.10 0.630 

 Patch shape + 0.00 0.08 0.954 

ln(songs) Livestock presence 
Missin

g path 

0.31 0.08 < 0.001 

 Patch shape 
Missin

g path 

-

0.10 

0.06 0.092 

 
Prop. arable & pasture (3000 

m) 

- 0.10 0.07 0.130 

 Tree DBH SD 
+ -

0.03 

0.06 0.654 

Understory cover % Livestock presence 
- -

0.04 

0.11 0.713 
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Table 2. Goodness-of-fit statistics for each ‘scale of effect’ structural equation model 

Scale of effect 

(m) AICc K n 

Fisher's 

C df P 

20* 56.954 17 128 17.39 12 0.139 

20 54.895 18 128 12.62 10 0.246 

100 56.575 18 128 14.30 10 0.160 

250 58.615 18 128 16.34 10 0.090 

500 54.027 19 128 8.99 10 0.533 

1000 57.597 19 128 12.56 10 0.249 

1500 52.407 19 128 7.37 8 0.497 

2000 51.787 19 128 6.75 8 0.564 

2500 51.627 19 128 6.59 8 0.582 

3000 51.807 19 128 6.77 8 0.562 

*Structural equation model with no path between proportion arable and pasture at 20 m 

and ln(Songs)  
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CHAPTER 6  

GENERAL DISCUSSION 
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It is widely accepted that forest and woodlands provide significant ecological, economic, 

environmental and societal benefits, but there is debate over the relative value of primary 

woodland or forest vs secondary habitats. If secondary woodland is to benefit current and 

future woodland-dependent species, there is a need to carefully strategise woodland 

creation in the landscape. For the first time, I disentangle the relative importance of 

temporal, local and landscape scales for bird communities and behaviours (territory 

selection, communication) in created woodland. I also present an inexpensive, robust and 

open-source bioacoustic recorder, and use this tool to explore the relationships between 

landscape configuration and colonisation and communication behaviour in birds. Finally, I 

examined how ecological time lags – delays between an action (e.g. woodland creation) 

and species’ responses – have implications for conservation evaluation and policy targets. 

Results from this thesis can be used to inform woodland creation for the benefit of 

woodland bird diversity in Great Britain. Results are also likely to be relevant to other 

lowland, temperate agricultural landscapes in the northern hemisphere. Here, I identify 

several important directions for future empirical and theoretical research. 

 

Optimising woodland creation to benefit biodiversity 

Results indicate that post-agricultural woodlands rapidly benefit generalist woodland bird 

abundance and diversity, but it remains unknown if they will ever benefit species 

associated with ancient woodland (Chapter 2). Land managers seeking to create woodland 

on post-agricultural land should maximise patch size (> 5 ha) and limit livestock grazing 

inside the patch where possible. Although speculative, very isolated woodlands could be 

acting as ecological traps for migrant birds (Chapter 4) and I therefore suggest that patches 

are created close to neighbouring woodland whenever possible. Perceived predation risk 

was greater when woodlands had high proportions of agriculture at their edge (within 20 

m; Chapter 5) and there is sufficient evidence from elsewhere to suggest that changes in 

perceived predation risk can affect individual fitness, demographic rates and perceived 

patch ‘quality’.  Because of this, I recommend that a 20 m buffer of semi-natural habitat 

(any natural land cover that does not include woodland, water, agriculture or urban land) is 

created between the edge of newly planted woodland and surrounding agricultural fields. If 

left to go fallow this buffer will eventually become part of the woodland through natural 

succession, but the time-lag should be sufficient to reduce the potential impact of increased 

predation or perceived predation risk on new colonisers (i.e. founding individuals). 

 



 

117 

 

Biodiversity pattern in fragmented landscapes 

Studies that identify patterns of species and community responses to local and landscape-

scale habitat patterns dominate landscape ecology. This has been especially true for birds. 

Many studies have found that large scale measures of landscape composition and 

configuration play a role in shaping bird communities (Chapter 2; Dolman 2007; Dolman 

2012), but I found that their relative importance was low compared to local-scale factors, 

such as patch size or livestock presence.  

The importance of patch size (i.e. area) for woodland birds is long-established, but 

surprisingly its relative importance has rarely been quantified. Here, I found that the 

standardised effect of patch area was almost double that of other variables. In Southeast 

England, patch size was also the most important predictor of bird species richness in small 

agricultural woodlands of unknown age (Bellamy, Hinsley & Newton 1996). However, in 

many regions, a significant barrier to effective landscape-scale woodland creation is the 

limited space available. In Great Britain, private land ownership and agricultural 

management restrict the number and size of woodland patches that can be created or 

extended. Where it is impossible to create a large patch or increase the size of an existing 

patch, there should be a focus on improving habitat quality. For example, increased tree 

species richness in a patch had positive effects on total species richness (Chapter 2). Care 

should also be taken to balance the relative economic cost and logistical feasibility of 

potential actions with their statistical effect sizes. For example, whilst it may not be 

feasible to plant a single large woodland patch, it might be possible to plant two individual, 

smaller patches. In this situation, the land manager could offset the small size of the 

patches by erecting stock fences to exclude livestock. 

There remains significant debate surrounding the processes that make patch size 

important for woodland birds. The area-quality hypothesis predicts that habitat 

heterogeneity increases incidentally as a function of area (Dolman 2012), resulting in 

greater niche diversity. However, the woodlands used in this study were generally 

homogenous plantations created by woodland grant or conservation schemes, as shelter 

belts or for rearing game. Furthermore, measures of habitat heterogeneity such as tree 

species richness, tree size, understorey cover and the amount of coarse woody debris were 

not correlated with area. Instead, species richness and abundance probably increased with 

area because territory sizes are limited by a minimum threshold at which individuals will 

tolerate inter- or intraspecific competitors. Thus, only a limited number of bird territories 

can ever be present per unit-area of woodland. 
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Although Chapter 2 focused on obligate and facultative woodland species, other 

groups such as farmland seed-eaters were also common in the study sites. These species 

are not typically the primary conservation focus of woodland creation, but I did find some 

interesting results. For example, the amount of arable or improved grassland in the 

landscape (2500 m) had a strongly negative effect on farmland seed eater abundance and 

therefore richness in woodlands (Appendix 2.5: Table 4). This supports existing evidence 

that links intensive agricultural practices to farmland bird declines (Donald et al. 2001). 

Thus, although woodlands are not necessarily the favoured habitat of this species group 

(with the exception of Chaffinch), the negative influence of intensive agriculture in the 

surrounding landscape is clear. 

 Tree and building nesters, which prefer to nest in cavities, were also rare in our 

woodlands (Chapter 2: Figure 2.2). It was predicted that the abundance and richness of this 

group would be correlated with woodland age, because older trees typically have more 

cavities for nesting purposes. However, results did not support this hypothesis, and instead 

the most important, positive predictor of abundance and richness of this group was 

livestock presence in the patch. This is probably because the species in this group (e.g. 

Starling Sturnus vulgaris, Pied Wagtail Motacilla alba) prefer to feed on grassland with an 

open understory and low sward, which is common in grazed woodlands. This result 

highlights the trade-offs that can occur when undertaking conservation actions. Removing 

livestock from a woodland is likely to benefit most woodland birds, but the subsequent 

closure of the understory will disadvantage other species that feed on grassland. 

Quantifying these trade-offs should be prioritised in future work that examines biodiversity 

responses to habitat creation. 

 

Processes underlying biodiversity patterns in fragmented landscapes 

An important aim of this thesis was to move away from focusing exclusively on pattern 

and instead focus on identifying and quantifying underlying processes. There are several 

reasons why studying process is more challenging than studying pattern in landscape 

ecology. For vertebrates and invertebrates, changes in landscape configuration and 

composition largely affect movement behaviour, which includes foraging, dispersal, 

colonisation and prey avoidance. These are difficult behaviours to quantify under natural 

conditions at the best of times because it can be difficult to achieve sufficient replication. 

In landscape ecology, the problem is greatly magnified when there is a need to conduct 
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behavioural studies at km scales whilst also ensuring that replicates are spatially 

independent. 

Remotely operated technology such as bioacoustic sensors or GPS tracking devices 

can overcome some of the challenges of scale in behavioural ecology. However, for small 

passerine birds, high end satellite tracking technology is currently too large, preventing its 

use. Smaller ‘geolocators’ have been used to study passerine movements during migration 

by estimating longitude and latitude from sunrise and sunset times, but data are very coarse 

(typically > 100 m accuracy) and birds must be re-trapped to retrieve the data.  

Audio sensors can be used to detect acoustically active taxa at large spatial scales. 

However, many of the commercial systems are expensive and thus most bioacoustic 

studies are often limited in spatial extent because of economic reasons. Since many birds 

communicate vocally, it is possible to make inferences about their movement behaviour by 

recording their presence using audio recorders. To overcome budget limitations and extend 

bioacoustic studies to large spatial scales, I co-developed the open-source ‘Solo’ 

bioacoustic system (Chapter 3; Whytock & Christie 2017). 

Using the Solo system, I was able to determine which local and landscape-scale 

cues are used by migratory birds during territory selection (i.e. colonisation) in spring. This 

experimental design has never before been used to understand avian colonisation 

behaviour, and it offers substantial opportunities for future research. Superficially, the 

method is similar to that used in the study of movement behaviour in microchiropteran 

bats. The primary difference is that it is possible to explicitly relate local and landscape 

factors to colonisation events in migratory birds, and not just to foraging or commuting 

behaviour, which is typical in studies of bats.  

Results in Chapter 4 indicated that the amount of woodland in the landscape acted 

as an important cue during territory selection and settlement. The direction of the effect 

contradicted expectations, however, and patch colonisation was earlier when the amount of 

habitat in the landscape was low. I discussed the possibility that such isolated woodland 

patches could be acting as ecological traps, and recommended that future work investigates 

the fitness consequences of breeding in highly isolated patches. I predict that, after 

controlling for male age (which is also correlated with fitness in Willow Warblers), highly 

isolated patches will attract ‘fitter’ males (i.e. better body condition) earlier in the season, 

but their annual reproductive output will be lower relative to males in landscapes with high 

amounts of woodland. If this prediction is confirmed, it would be indicative of an 

ecological trap, where high quality males are selecting sub-optimal breeding territories. 
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In North America, several studies have found links between landscape composition 

and configuration and nest predation pressure. Outside of North America, however, this 

topic has received relatively little attention. As a consequence, it has been unclear if links 

between predation pressure and landscape structure are generalisable, or if they are highly 

context dependent. In Chapter 5, I found that perceived predation risk increased when there 

was more agricultural land at the woodland edge, which confirms results from 

experimental studies in other species (Abbey-Lee et al. 2015). An increase in perceived 

predation risk can create a ‘landscape of fear’. Thus, even though I did not investigate the 

demographic consequences of predation risk, patches with higher perceived predation risk 

might appear relatively unattractive to prospective colonisers. This process could affect 

community assembly in a patch but results presented in Chapter 2 contradict this 

expectation, and no strong relationship between the amount of agriculture at the woodland 

edge and bird diversity or abundance was detected. This suggests that the effects of 

increased perceived predation risk in agricultural landscapes are probably relatively small 

at the community level. 

 

Policy implications 

Woodland creation has become a popular conservation action that has strong public 

support. In January 2018, the British Government announced plans to spend £5 million 

creating the ‘Northern Forest’, which will involve planting 50 million trees over the next 

25 years, and with careful planning this could provide significant benefits to the 

environment and society. However, conservation as a discipline suffers from an 

‘implementation gap’; where the latest scientific evidence is not always applied in practice. 

The results and data contained in this thesis will contribute to the wider WrEN project, 

which aims to inform future habitat creation efforts by looking to the past. The WrEN 

project is built on a foundation of knowledge exchange, where stakeholders working in 

applied conservation collaborate with WrEN project scientists to identify key research 

themes. Several of the WrEN stakeholders, such as the National Forest Company and the 

Woodland Trust, are central to the creation of the Northern Forest. These organisations are 

therefore well-placed to take the results from this thesis and the wider WrEN project into 

practice, demonstrating the value of the knowledge-exchange model and early involvement 

of important stakeholders when developing scientific research. 

There is little doubt that we need to create more woodland to address historic 

losses, not only to benefit biodiversity but also to benefit the environment, the economy 
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and society. However, it must be acknowledged that there will be ecological, economic and 

cultural trade-offs. Economically, woodland creation might result in the loss of productive 

agricultural land, but this could be offset in part by exploiting timber and other resources 

through careful woodland management. Ecologically, woodland often replaces grass fields, 

which provide habitat for non-woodland species such as declining lapwing Vanellus 

vanellus and other waders. From a cultural perspective, it has been argued that Britain is 

unique in Europe because its landscape is a product of long-term cultural management, and 

its open spaces attract tourists and country sports enthusiasts from across the world. We 

must therefore ask if the benefits of large scale woodland creation are sufficient to offset 

these potential losses.  

When creating new habitat, the goal is often to replicate the ecological 

communities found in ancient or natural habitats. I propose that we should not be overly 

concerned about perfectly replicating ‘natural’ habitats such as ancient woodland - because 

we risk disappointment, at least over measurable timescales. After all, the ecological and 

environmental processes that precede the establishment of natural, climax woodland 

operate over millennia and there is no quick fix. The scale of forest loss in Britain and 

other countries is enormous, and in Britain very little ancient woodland remains. I believe 

we should focus on protecting and restoring those ancient woodlands that do remain, but 

we should also seek to plant new woodlands at large-scales that are as species-diverse and 

as large as possible. Finally, if we actively manage created woodlands in diverse and 

creative ways, we will not only increase their broader cultural and biodiversity benefits, we 

will greatly increase their ecological and economic value to society in the long term. 

 

 

Limitations 

One of the main limitations with the study design used here was that I did not account for 

historic temporal and spatial changes in the landscapes surrounding each patch. Thus, it is 

possible that a patch might appear relatively isolated using present-day spatial data, but the 

surrounding landscape might have had historically high proportions of woodland habitat 

that has now disappeared. The consequence of this scenario is that we might wrongly 

conclude the present-day bird community assembled in an unfavourable landscape (i.e. low 

woodland availability), and landscape composition or configuration are not therefore 

important. However, most large-scale losses of forest or woodland habitat in Britain 

occurred long before the 1900s. Because most of the study sites were < 50 years old, there 
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is unlikely to have been significant changes in landscape structure during this time-period, 

although many hedgerows have been lost in recent decades, but I did not explicitly 

examine the influence of hedgerows here due to a lack of available data. 

 Secondly, there is evidence to suggest the regional populations of a species can 

differ in their responses to landscape composition and configuration. For example, the 

Eurasian Wren is closely associated with ancient, contiguous forest in mainland Europe. In 

Britain, however, the Wren is a ubiquitous species found in urban areas, moorland, coastal 

habitat and grassland. Thus, the Wren population in Britain will respond differently to 

land-use change compared to the mainland population in Europe. The same could be true 

for other species in Britain, which has experienced comparatively long periods of large-

scale habitat fragmentation and loss, which is likely to have exerted selective pressures on 

local populations that may now be well-adapted to living in fragmented landscapes. 
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CONCLUSIONS 

In this thesis I aimed to quantify the relative importance of local and landscape scales for 

woodland birds in secondary, post-agricultural woodlands. The rationale behind this aim 

was to better inform conservation and land-management decisions. For example, when 

seeking to increase woodland bird diversity in a newly created woodland, should there be a 

focus on improving habitat extent in the landscape or improving habitat ‘quality’ in the 

patch itself. Although large scale habitat patterns at the landscape-scale contribute to bird 

abundance and diversity in post-agricultural woodlands, their relative effects on bird 

diversity and abundance appears to be small compared to factors at the patch-level, such as 

patch size and the presence of livestock (Chapter 2). Nonetheless, results presented in 

Chapters 4 & 5 suggest factors at the landscape-scale can be important predictors of bird 

behaviour, including first song dates in the migratory Willow Warbler, and alarm calling 

behaviour in the ubiquitous Eurasian Wren. However, these effects were only detected 

after experimentally controlling for patch size, which would likely have obscured results 

because of its very high relative importance. 

It has long been known that patch size is an important predictor of bird diversity 

and abundance in habitat fragments, but surprisingly few studies have quantified its 

relative importance compared to other local- and landscape-scale factors. In particular, 

there is a need to consider its relative importance compared to alternative land-

management actions that could be implemented during woodland creation. Results from 

this thesis suggest that the greatest relative returns from woodland creation will be gained 

by making patches as large as possible. In light of this, I conclude that local-scale factors 

are relatively more important than landscape factors for woodland bird diversity and 

abundance in Great Britain. When faced with making complex decisions during woodland 

creation, I recommend that land-managers focus on maximising patch sizes if the aim is to 

benefit woodland birds. 
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