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ABSTRACT 22 

Phenology is a key component of ecosystem function and is increasingly included in assessments 23 

of ecological change. We consider how existing, and emerging, tropical phenology monitoring 24 

programs can be made most effective by investigating major sources of noise in data collection 25 

at a long-term study site. Researchers at Lopé NP, Gabon, have recorded monthly crown 26 

observations of leaf, flower and fruit phenology for 88 plant species since 1984. For a subset of 27 

these data, we first identified dominant regular phenological cycles, using Fourier analysis, and 28 

then tested the impact of observation uncertainty on cycle detectability, using expert knowledge 29 

and generalized linear mixed modelling (827 individual plants of 61 species). We show that 30 

experienced field observers can provide important information on major sources of noise in data 31 

collection and that observation length, phenophase visibility and duration are all positive 32 

predictors of cycle detectability. We find that when a phenological event lasts > 4 weeks, an 33 

additional 10 years of data increases cycle detectability by 114 percent and that cycle 34 

detectability is 92 percent higher for the most visible events compared to the least. We also find 35 

that cycle detectability is four times as high for flowers compared to ripe fruits after 10 years. To 36 

maximise returns in the short-term, resources for long-term monitoring of phenology should be 37 

targeted towards highly visible phenophases and events that last longer than the observation 38 

interval. In addition, programs that monitor flowering phenology are likely to accurately detect 39 

regular cycles more quickly than those monitoring fruits, thus providing a baseline for future 40 

assessments of change. 41 

 42 
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La phénologie est un élément clé du fonctionnement de l'écosystème et est de plus en plus 43 

incluse dans l’évaluation des changements écologiques. Nous considérons comment les 44 

programmes de surveillance de la phénologie tropicale, aussi bien courants qu’émergents, 45 

peuvent être rendus plus efficaces en étudiant les principales sources de bruit liées à la collecte 46 

de données sur un site d'étude à long terme. Les chercheurs du Parc National de la Lopé au 47 

Gabon, ont recueilli des observations mensuelles de la phénologie des feuilles, fleurs et fruits 48 

provenant de la canopée de 88 espèces de plantes depuis 1984. Pour un sous-ensemble de ces 49 

données, nous avons d'abord identifié des cycles phénologiques réguliers dominants à l’aide 50 

d’une analyse Fourier, puis testé l'impact de l'incertitude liée à l’observation sur la probabilité de 51 

détecter un cycle régulier significatif en utilisant des connaissances spécialisées et un modèle 52 

linéaire généralisé à effets mixtes (827 plantes individuelles de 61 espèces). Nous démontrons 53 

que les observateurs expérimentés peuvent fournir des informations importantes sur les 54 

principales sources de bruit liées à la collecte de données, et que la visibilité et la durée de la 55 

phénophase ainsi que la longueur de l'observation prédisent de manière positive la détectabilité 56 

du cycle. Nous constatons que lorsqu'un événement phénologique dure plus de 4 semaines, 10 57 

années de données supplémentaires augmentent la détectabilité du cycle de 114 pour cent, et que 58 

la détectabilité du cycle est 92 pour cent plus élevée pour les événements les plus visibles par 59 

rapport aux moins visibles. Nous constatons également que la détection du cycle varie selon la 60 

phénophase, étant quatre fois plus élevée pour les fleurs que pour les fruits mûrs après 10 ans. 61 

Afin de maximiser les rendements à court terme, les ressources allouées à la surveillance à long 62 

terme devraient cibler les événements phénologiques hautement visibles dont la durée dépasse 63 

celle de l'intervalle d'observation. En outre, les programmes qui surveillent la phénologie de la 64 

floraison sont susceptibles de détecter avec précision les cycles réguliers plus rapidement que 65 
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ceux qui surveillent les fruits, fournissant ainsi une base de référence pour les évaluations futures 66 

du changement. 67 

 68 

 69 
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WHILE THE IMPACTS OF CLIMATE CHANGE ON PHENOLOGY ARE WIDELY ACKNOWLEDGED 73 

(Chambers et al. 2013, Cleland et al. 2007), most of the evidence is geographically and 74 

taxonomically biased towards temperate regions and vertebrates (Feeley et al. 2016). There is 75 

little data available to assess change in tropical plant phenology and, to date, few relevant 76 

published studies (but see Chapman et al. this issue and Pau et al. 2013 for recent examples).   77 

The lack of evidence for phenological change in the tropics should not be taken as 78 

evidence of no change, but instead reflects the paucity of long-term data records and the 79 

complexity of monitoring highly diverse tropical ecosystems. The question remains as to how to 80 

fill this evidence-gap and assess both stability and change in phenological function. 81 

Phenology datasets that have already supported effective statistical tests of change have 82 

been either very long - for example Japanese cherry blossom records began in the 9th century 83 

(Aono & Kazui 2008, Primack et al. 2009) - or very widespread - for example The International 84 

Phenology Gardens network, initiated in 1957, includes 89 European sites across 28 latitudes 85 

(Humboldt-University of Berlin 2012). The most widespread contemporary phenology 86 

monitoring programs are those that involve citizen scientists, make use of accessible technology 87 

- such as smartphones apps - and observations made in everyday life (e.g. the USA National 88 

Phenology Network’s “Nature’s Notebook”, USA-NPN 2017). From these successful temperate 89 

examples we learn that to achieve phenology datasets with strong statistical power (long-term, 90 

widespread etc.), data collection methods need to have real sticking power (cultural importance, 91 

familiarity, appeal to a large spread of people and ease of recording). 92 
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It is apparent that such “sticking power” remains a challenge in the tropics. Even among 93 

science-led monitoring programs, there is little coordination of recording effort across multiple 94 

sites (Morellato et al. 2016, Adole et al. 2016), fieldwork is often remote and logistically 95 

challenging and financial resources for long-term monitoring are extremely limited meaning that 96 

few sites can be considered long-term (e.g. >10 yr continuous monitoring; Mendoza et al, 2017; 97 

Adamescu et al, this issue). In addition, many of the tropical phenology studies that are now 98 

invaluable to assess global change were originally conceived for the study of resource 99 

availability and are not necessarily optimised to study climate-change impacts on plants (e.g. 100 

phenology monitoring at Lopé NP was originally set up in 1984 to study Gorilla and 101 

Chimpanzee foraging: Tutin et al. 1991).  102 

IMPROVING STATISTICAL POWER IN ANALYSES OF TROPICAL PHENOLOGY.— While a complete 103 

redesign of tropical phenology monitoring programs within tightly coordinated networks would 104 

be ideal, we do not consider it to be feasible immediately, nor can it can reach into the past. 105 

Instead we ask: How can we ensure that existing science-led phenology monitoring programs are 106 

allocating limited resources most effectively for their research aims? 107 
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There are two ways to improve statistical power in analyses of data from phenology 108 

monitoring programs: (1) increase sample size; and (2) reduce noise. Sample size can be 109 

restrictive both spatially (e.g. the number of sites recording phenology data or the area / number 110 

of individuals monitored) and temporally (e.g. the length of the study). The spatial sample 111 

determines the scope of potential research questions while the length of study positively affects 112 

the detectability of regular phenological cycles (Bush et al. 2017) and phenological shifts 113 

(Chambers et al. 2013). Noise can be introduced to phenology data through both “process 114 

uncertainty” (how well we can predict ecological processes e.g. the regularity of phenological 115 

cycles) and “observation uncertainty” (how easily we can observe and record ecological events). 116 

Different life-cycle events and stages such as development of leaves, flower and fruits, even 117 

from the same species, may differ in regularity and/or ease of observation, leading to systematic 118 

biases in phenology recording related to the frequency and type of observations (see Regan at al. 119 

2002 for a full description and “taxonomy” of the different uncertainties associated with 120 

ecological data). 121 
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To explore this further, we present hypothetical scenarios of crown phenology 122 

observations subject to different combinations of process and observation uncertainty and 123 

demonstrate how interpretation of the data without careful consideration of the source of noise 124 

could lead to erroneous conclusions. For species where a phenological event is easy to see (e.g. 125 

large, brightly coloured flowers that contrast with the leaf canopy or cauliflorous flowers on the 126 

trunk of the tree), most observations will be accurate and it will be straightforward to tell from 127 

the recorded data if the actual cycle is regular or irregular (Fig. 1A-C, Observation uncertainty = 128 

Low, Process uncertainty = Low: High). On the other hand, if for another species the same 129 

phenological event is difficult to see (e.g. flowers that are very small, held high in the canopy or 130 

persist for just a few days), data are likely to be recorded imperfectly and the cycle may appear 131 

irregular (Fig. 1G-H, Observation uncertainty = High, Process uncertainty = Low: High). 132 

Without quantifying the observation biases for these species, it will be impossible to differentiate 133 

if their actual cycles are regular or irregular as an inaccurately recorded regular cycle will look 134 

similar to an accurately recorded irregular cycle (Fig. 1G compared to Fig. 1C). This distinction 135 

is important as adaptive features of the phenological cycle itself and changes in predictability or 136 

synchrony will be of great interest to the global change community, whereas apparent 137 

irregularity derived from inaccurate observation will not. In this paper, we seek to quantify 138 

observation biases between species and phenophases at our study site, Lopé NP, Gabon, in order 139 

to direct precious resources where they are likely to give robust data and to include important 140 

sources of variation in future explanatory models of plant phenology and ecological change. 141 
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Quantifying observation uncertainty for different phenological events is not easy as there 142 

are multiple sources of variation - specific to the phenology sampling method in question - that 143 

lead to systematic observation biases. At Lopé, phenology monitoring takes the form of crown 144 

observations, and variation in the “visibility” of phenological events and their “duration” are 145 

likely to be key factors contributing to uncertainty. Visibility, however, is inherently subjective 146 

from the point of view of the observers. For example, the size of a flower or fruit is likely to 147 

influence how visible it is, but so will its colour, or the distance it is held from the observer (e.g. 148 

a large green flower high up in the canopy may be less “visible” than a small, red flower lower in 149 

the canopy or a cauliflorous flower growing from the tree trunk). In order to capture this 150 

information many multiple axes of variation would need to be measured and then calibrated with 151 

the observer experience. Such empirical data is not readily available and so instead, we sought to 152 

describe the visibility and duration of phenology events using expert knowledge elicited from 153 

long-term phenology observers at our site. These experts hold substantive knowledge of the 154 

ecosystem based on their personal experience over many years of fieldwork at the site (Martin et 155 

al. 2012). 156 
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Considering data for all species and phenological events (leaf, flower and fruit cycles, 157 

hereafter “phenophases”) recorded as part of the Lopé long-term phenology study, alongside 158 

expert knowledge for observation uncertainty, we ask the following questions: (1) Can 159 

observation uncertainty be quantified? (2) Does observation uncertainty impact detectability of 160 

regular cycles among different species and phenophases? (3) What are the relative contributions 161 

of different sources of observation uncertainty to cycle detectability? We believe that the 162 

analysis presented here, using rare, long-term data, will help to improve resource allocation and 163 

sample design at other existing and emerging tropical phenology programs and aid robust 164 

assessments of phenological change in the future.  165 
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METHODS 166 

 167 

THE LOPÉ LONG-TERM PHENOLOGY STUDY.— Since 1984, researchers at the Station d’Études des 168 

Gorilles and Chimpanzées (SEGC) in Lopé National Park, Gabon have recorded leaf, flower and 169 

fruit phenology monthly for 88 species of tropical trees and shrubs (>1000 individuals) spread 170 

over an area of 33km2. The SEGC study area is situated in a tropical forest-savanna matrix with 171 

an equatorial climate characterised by two dry and two wet seasons annually (see Tutin & White 172 

1998 for detailed site description). At the beginning of every month (usually completed within 173 

the first seven working days), SEGC researchers examine the crowns of each plant from the 174 

ground with 10 x 42 binoculars and record the proportion of the canopy covered by each 175 

phenophase (new and senescent leaves, flowers, unripe and ripe fruits) as a scale from zero to 176 

four (including half points; Tutin & Fernandez 1993b, Tutin & White 1998).  The data recorded 177 

for each phenophase form multiple continuous time series for each individual tree. Data are only 178 

recorded autonomously by observers with >1 yr experience with the plant species involved and 179 

working under another observer. Data have been recorded by a total of only ten observers 180 

throughout the 387 mo (32 yr) of continuous observations, with individual observers making 181 

continuous contributions of 2-20 yr. Thus this dataset is likely to have minimal (but not zero) 182 

inter-observer biases. 183 
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DETECTING PHENOLOGY CYCLES USING FOURIER ANALYSIS.— We excluded data collected before 184 

1986 when the project was being established and made selections for further analysis according 185 

to the following criteria; more than five years continuous data for each individual plant, no data 186 

gaps greater than three months, and no persistent records of disease (e.g. field comments 187 

referring to the ill-health of a tree consistently for more than a year). The resulting sample 188 

consisted of 4280 continuous time series for new and senescent leaves, flowers, unripe and ripe 189 

fruits from 856 individual plants of 70 species. The number of individuals per species ranged 190 

from 1 to 41, with a mean of 12, while the length of time individual plants were monitored 191 

ranged from 60 to 353 mo, with a mean of 249 mo.  192 

To identify the dominant regular cycle for each time series in this sample we used Fourier 193 

analysis; Fourier is a form of spectral analysis based on sine and cosine waves that can be used to 194 

quantitatively describe the cyclic nature of any time series data (Bloomfield 2000). We used a 195 

confidence test, based on 95% confidence intervals and a null hypothesis of “no cyclicity”, to 196 

determine if the dominant cycle was objectively different to surrounding noise. We refer to a 197 

“detected cycle” as one that can be quantified and considered significant according to this 198 

method. A full explanation of the Fourier methods used and our data selection criteria is given in 199 

Bush et al. (2017). 200 

ELICITING EXPERT-KNOWLEDGE ON TWO MAJOR SOURCES OF OBSERVATION UNCERTAINTY.— 201 
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We gathered expert knowledge to describe the observation uncertainty associated with each 202 

phenophase for every species in our study. Following the recommendations of Martin et al. 203 

(2012), the authors of this study were assigned different (sometimes multiple) roles in the 204 

process of expert elicitation; EB, NB and KA acted as the “problem owners” defining the 205 

questions and design of the expert survey, while KA, LW, ED and CT were the “experts”, each 206 

of whom had recorded phenology data at SEGC for more than 15 yr. EB and NB were the 207 

“analysts” and independently processed the expert responses and analysed the data.  208 

EB and the station manager at SEGC facilitated the process of expert elicitation in 209 

February 2016. For ease of interpretation by all experts we chose to elicit knowledge on 210 

observation uncertainty in the form of categorical measures (Method 7, Kuhnert et al. 2010). The 211 

experts were independently presented with a survey listing all species monitored at SEGC and 212 

five phenophases (new and senescent leaves, flowers, unripe and ripe fruits) and asked to record 213 

their perception of both the visibility and duration for each. Phenophase visibility was presented 214 

as a score from one to three, representing events that are “Difficult to see”, “Easy to see” and 215 

“Very obvious”. Phenophase duration was presented as a binary category: “events lasting <= 4 216 

wks” or “events lasting >4 wks” (the 4-wk interval corresponding to the field observation 217 

frequency). The observers were informed that they were allowed to leave an answer blank if they 218 

were unsure.  219 
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A correlation matrix for phenophase visibility showed that scores were positively 220 

correlated between all observer pairs, ranging from 0.13 to 0.38 (mean = 0.27; Fig.S1). To 221 

combine the expert judgements we took group averages (Martin et al. 2012) by calculating mean 222 

event visibility and modal duration category for each species-phenophase. We excluded 15 223 

percent of species-phenophase visibility scores because fewer than three observers provided an 224 

answer, and 31 percent of species-phenophase duration scores because either fewer than three 225 

observers provided an answer or there was no clear majority (e.g. if two observers considered an 226 

event to last <= 4 wks and two observers considered an event to last > 4 wks). This may occur 227 

when the true event duration is around 4 wks and thus the phenophase cannot be easily assigned 228 

to either category. 229 

MODELLING THE IMPACT OF OBSERVATION UNCERTAINTY ON CYCLE DETECTION AMONG 230 

PHENOLOGY DATA.— To compare how different sources of observation uncertainty contribute to 231 

variation in cycle detectability we combined the data derived from the 4280 times series used in 232 

Fourier analysis with the observer scores for phenophase visibility and duration. We only 233 

included species with more than three observed individuals and complete information on 234 

phenophase visibility and duration, resulting in a final sample of 3083 time series from 827 235 

individuals (61 species). Before analysis, we standardized predictors by scaling them to mean = 0 236 

and standard deviation = 2 to allow meaningful comparison of effect sizes (Schielzeth 2010; 237 

Table 1).  238 
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To test the effects of phenophase visibility (Visibility Scaled) and phenophase duration 239 

(Duration) on the likelihood of detecting a cycle we used a Generalized Linear Mixed Model 240 

(GLMM, family = binomial, link = logit). As we already know time series length is an important 241 

positive predictor of cycle detection (Bush et al. 2017) we included it as a fixed effect in the 242 

model (Length Scaled).  243 

In our mixed model we included the grouping factors tree ID, Species and Phenophase 244 

as random intercepts and all continuous predictors as random slopes by Phenophase. First, this 245 

reflected the hierarchical nature of the data (multiple phenophases simultaneously recorded per 246 

individual tree; duration and visibility scored at the level of the species-phenophase) and second, 247 

it allowed us to take account of the biological differences (process uncertainties) between species 248 

and phenophases. 249 

We followed a model simplification process starting with the maximal model for both 250 

fixed effects (all possible pair-wise interactions between predictors) and random effects (random 251 

slope by Phenophase for all continuous predictors), removing each term in a step-wise fashion 252 

and then comparing resulting models using AIC values. We used the standardised effect sizes 253 

derived from the final, most parsimonious model to compare between predictors. We temporarily 254 

modified the final model by removing terms for the intercept and the main effect of continuous 255 

predictors involved in interactions to determine if predictor effect sizes were different to zero 256 

(95% confidence intervals derived from standard errors; Schielzeth 2010).    257 
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RESULTS 258 

 259 

OVERVIEW OF DOMINANT PHENOLOGY CYCLES.— Using all available phenology time series from 260 

the Lopé long-term study after selection criteria, we confidently detected regular cycles from 36 261 

percent of the sample (total number of time series = 4280, 5 different phenophases from 856 262 

individuals). However, detection differed among phenophases, being highest for flowers (59%) 263 

and unripe fruit (54%) and lowest for ripe fruit (29%) and senescing leaves (25%).  Annual 264 

cycles were most commonly detected among reproductive data (75% all detected cycles for 265 

flowers, unripe and ripe fruits were annual), while sub-annual cycles were most commonly 266 

detected from vegetative data (51% all detected cycles for new and senescing leaves were sub-267 

annual). 268 

OBSERVATION UNCERTAINTY SCORES.— The inter-quartile ranges for the visibility scores of  all 269 

phenophases overlapped (Fig. 2a) but on average, new leaves were considered the most visible 270 

(mean score = 2.42) and flowers the least visible (mean score = 2.08). In contrast, event duration 271 

scores were not evenly distributed among phenophases (Fig. 2b); Unripe fruit events were 272 

perceived as lasting > 4 wks for almost all species (65 / 66 species) while new leaf events were 273 

perceived as lasting <= 4 wks for all species. 274 
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EFFECTS OF OBSERVATION UNCERTAINTY ON CYCLE DETECTION.— After model simplification, all 275 

of the main predictors and an interaction between Length Scaled and Duration were retained in 276 

the most parsimonious model (Table S1). We found both Length Scaled and Visibility Scaled to 277 

have significant positive effects (95% confidence intervals different to zero; Fig. 3a and Table 278 

S2) on the likelihood of detecting a cycle from our phenology data. The relative effect of 279 

Visibility Scaled (standardised effect size = 0.79) was almost half that of Length Scaled when 280 

Duration <= 4 weeks (standardised effect size = 1.51), and a third of Length Scaled when 281 

Duration > 4 weeks (standardised effect size = 2.31; Fig. 3a).  Model predictions from the final 282 

model showed that when a phenophase event lasted <= 4 weeks, the likelihood of detecting a 283 

regular cycle was 0.23 after 10 yr of data collection and 0.39 after 20 yr. If the phenophase event 284 

lasted > 4 wks, the likelihood of detecting a regular cycle after 20 yr of data collection increased 285 

to 0.47 (Fig. 3b). We also found that for the least visible phenophase events (score = 1) the 286 

likelihood of detecting a regular cycle was 0.26 when the phenophase event lasted <= 4 wks and 287 

0.34 when the phenophase event lasted > 4 wks. For the most visible phenophase events (score = 288 

3), this increased to 0.5 when the phenophase event lasted <= 4 wks and 0.58 when the 289 

phenophase event lasted > 4 wks (Fig. 3c). 290 
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EFFECTS OF PROCESS UNCERTAINTY ON CYCLE DETECTION.— The random intercepts for 291 

Phenophase and Species accounted for most of the variance in the data (23% and 25%, 292 

respectively) while tree ID accounted for the least (<0.04%; see Table S3 for variance and 293 

standard deviation). The likelihood of detecting a cycle varied by Phenophase, being most likely 294 

for flowers and least likely for senescing leaves and ripe fruits. While for unripe fruits and new 295 

leaves, likelihood of detecting a cycle was greater than, but very similar to, the intercept for the 296 

fixed effects model (Fig. 4 and Table S4). In the most parsimonious model, a random slope term 297 

by Phenophase was retained for Length Scaled. The effect of Length Scaled as a predictor of cycle 298 

detectability was positive for all phenophases (Fig. 4a), however, the effect was more positive 299 

than the general trend for new leaf, and flower cycles and less positive than the general trend for 300 

unripe fruit cycles (Table S4).  301 
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DISCUSSION 302 

 303 

We have shown that experienced field observers can provide important information on major 304 

sources of noise in phenology monitoring and that this can improve explanatory power for 305 

analyses of complex phenological data. For data derived from crown observations, we found that 306 

time series length, phenophase event visibility and duration are all good, positive predictors of 307 

finding regular phenological cycles. However, a relative increase in time series length has up to 308 

three times as large an effect on likelihood of detecting a cycle as a similar increase in 309 

phenophase visibility (comparison of standardised effect sizes).  310 
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The hierarchical nature of our modelling approach, including both species and 311 

phenophases, also allowed us to investigate variation in cycle detectability due to biological 312 

differences (process uncertainty). Species is an important predictor of cycle detectability, with 313 

some species - such as Duboscia macrocarpa, Detarium macrocarpum and Saccoglottis 314 

gabonensis - much more likely to have highly regular cycles among all phenophases than the 315 

general trend. We also found that cycle detectability varies among phenophases and is highest 316 

for flowers, followed by new leaves and unripe fruits and lowest for senescing leaves and ripe 317 

fruit.  It is interesting to note, that among reproductive phenophases, detectability is highest for 318 

flowers, then unripe fruits, then ripe fruits. The fact that flowers occur first in a chain of linked 319 

events is likely to contribute to this pattern, as there are fewer accumulated opportunities for 320 

ecological processes to contribute noise at this stage. For instance more regular flowering than 321 

fruiting could arise because trees may abort their reproductive efforts after poor pollination or 322 

unfavourable weather conditions, or because of widespread removal of flowers by florivores 323 

(e.g. red colobus monkeys, Procolobus rufomitratus, in Uganda; Chapman et al. 2013). 324 

LESSSONS LEARNED FOR EFFECTIVE ANALYSIS OF LONG-TERM TROPICAL PHENOLOGY DATA.— The 325 

information gained from this study can help guide us to more effective data collection and more 326 

robust statistical analyses of tropical phenology; namely the best ways to increase sample size 327 

and reduce noise.  328 
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Our first conclusion is that differences in observation uncertainty among species for the 329 

same phenophase should be accounted for in explanatory models of phenology data, otherwise 330 

the error associated with observational differences may lead to misleading conclusions. For 331 

example, it would be possible to erroneously link some aspect of leafing phenology to the 332 

functional group of the species (e.g. shade-tolerant, long-lived species) when in reality it could 333 

have arisen from an observation bias, such as visibility, associated with those traits (Figure 1). 334 

There have been a number of calls for more quantitative assessment of the impacts of climate on 335 

tropical phenology (Butt et al. 2015, Mendoza et al. 2017) and to correct the temperate (Northern 336 

hemisphere) bias of current climate change studies (Feeley et al. 2016). We have shown that 337 

even a simple assessment of observation uncertainty, undertaken by experienced field observers, 338 

can provide important information and be incorporated into and improve quantitative analyses of 339 

existing tropical phenology data. 340 
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LESSONS LEARNED FOR THE DESIGN OF TROPICAL PHENOLOGY MONITORING PROGRAMS.— Going 341 

forward, we propose that both established and new programs seek to minimise sources of noise 342 

in phenology sampling design. We have shown that the length of study is the most important 343 

predictor of cycle detectability; thus it is vitally important that resources be directed towards 344 

maintaining existing and emerging long-term monitoring programs. For all phenophases, an 345 

additional 10 yr of data collection (from 10 to 20 yr) increases likelihood of detecting a cycle by 346 

70 percent for phenology events lasting <= 4 wks and by 114 percent for events lasting > 4 wks. 347 

Observation length is a source of uncertainty relevant to all phenology sampling methods (e.g. 348 

both crown observations and traps) and clearly, the elusive “sticking power” necessary to ensure 349 

long-term data collection needs to be addressed in the tropics. This can be achieved either 350 

through recognition of the importance of phenology research and allocation of substantial long-351 

term resources from tropical nations and international funders, or through relevant and 352 

innovative, citizen-based initiatives. 353 
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While increasing the length of observation has the largest relative effect on cycle 354 

detectability, it is not always practicable. Often the duration of monitoring programs is outside of 355 

scientists’ control, or assessments are necessary in the short-term and cannot wait an additional 356 

ten years. Therefore, for new monitoring programs looking to make meaningful assessments of 357 

cycle regularity through canopy observations over a short time, we recommend that they target 358 

species with highly visible phenological events that last longer than the monitoring interval (in 359 

our case, monthly). For example, at Lopé, flowers from species Beilschmedia fulva, Milica 360 

excela and Mammea africana are difficult to see (visibility score <1.5) and last < 4 wks, whereas 361 

flowers from species Antidesma vogelianum, Mangifera indica and Omphalocarpum procerum 362 

are very easy to see (visibility score >2.5) and persist in the canopy for > 4 wks. Data from the 363 

latter species are more likely to be robust and free from observation error (similar to the 364 

scenarios for “low” observation uncertainty from Figure 1). After a period of initial monitoring 365 

(at least 5 yr) it will be possible for data collectors at study sites to assess the amount of noise 366 

associated with specific species and phenophases in their sample. This information would allow 367 

project managers to select directly for the most easily observed species and target limited 368 

resources towards them by increasing sample sizes and including such species in inter-site 369 

comparisons. 370 
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Inevitably there will be occasions when it is important to monitor a noisy species or 371 

phenophase. For example, Moabi (Baillonella toxisperma) nuts are an important source of oil for 372 

cooking, cosmetics and rural enterprises in central Africa (Plenderleith & Brown 2004) but 373 

Moabi trees exhibit irregular phenology (random intercept for cycle detectability = -0.50) and its 374 

flowers are difficult to see, as they are small and held very high in the canopy (similar to 375 

scenarios for “high” process uncertainty and “high” observation uncertainty, Figure 1). In such 376 

cases it will be important to tailor observation programs accordingly, by investing in alternative 377 

forms of monitoring (e.g. installing cameras in tree canopies opposed to observations from the 378 

ground), increasing number of trees monitored or increasing the frequency of observations. 379 

Any systematic biases in recording phenology data will of course be related to the 380 

sampling method, “visibility” and “duration” being key sources of uncertainty identified for 381 

crown observation sampling protocols. The duration of a phenophase may be of less concern for 382 

trapping methods, although different biases are likely to arise such as rate of decomposition and 383 

trap-checking frequency, or the relative influence of weather conditions such as strong winds on 384 

the deposition of plant material. If used concurrently, crown observations and trapping methods 385 

could prove to be complimentary, accounting for different sources of uncertainty particular to 386 

each. In particular, seed traps employed alongside canopy monitoring could be used to further 387 

quantify the duration of phenological events. 388 



Bush et al.  Reducing uncertainty in tropical phenology 

 25 

 The scientific community hopes to assess climate-induced changes in tropical ecological 389 

processes with only decades-long data at their disposal (for example, the data analysed here 390 

represents the longest published continuous phenology dataset in the tropics). This expectation 391 

has been raised by the rate of change observed in temperate systems (Schwartz et al. 2006). 392 

However, with such limited data it is essential that variation associated with processes outside of 393 

the focal question be kept to a minimum. When allocating resources for new and ongoing 394 

research, phenologists should aim to maintain monitoring programmes for as long as possible 395 

and target species and phenophases with least inherent noise to maximise statistical power and 396 

therefore ability to assess change in future analyses.  397 
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All Lopé long-term phenology data are archived in Gabon within the Gabon National Parks 413 

Agency (ANPN) archive and in the UK within the University of Stirling’s Online Repository for 414 

Research Data (DataSTORRE; http://hdl.handle.net/11667/103). The monthly fruit, flower and 415 
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however, applications for access may be made to ANPN (science@parcsgabon.ga) and will be 417 

considered on a case-by-case basis. The derived Fourier outputs and observation uncertainty 418 

scores used in this paper are available immediately at DataSTORRE 419 

(http://hdl.handle.net/11667/92).  420 
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TABLES 506 

TABLE 1. Key summary statistics and definitions of all predictors included in the maximal 507 

model. 508 

Variable Definition Level a Summary statistics b Predictor c 

Time series 

length 

Length of continuous 

observation of tree in 

months. 

ID Continuous (Mean = 251; 

SD = 93.9; Min = 60.0; 

Max = 353) 

Length Scaled 

Phenophase 

visibility 

Mean observer score for 

visibility, 1 (Difficult to see) 

to 3 (Very obvious).  

Sp-Ph Continuous (Mean = 

2.27; SD = 0.43; Min = 

1.0; Max = 3.0) 

Visibility Scaled 

Phenophase 

duration 

Modal observer score for 

duration, 0: <= 4 wks, 1: > 4   

wks. 

Sp-Ph Categorical (0 = 59%) Duration 

 509 

a Level of data-collection for variable (ID = Tree ID; Sp-Ph = Species-phenophase) 510 

b Summary statistics for variables included in binomial GLMM pre-scaling 511 

c Code for scaled predictor included in binomial GLMM 512 

 513 

  514 
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FIGURE LEGENDS 515 

FIGURE 1. Simulated data scenarios to show the impacts of both observation and process 516 

uncertainty on recorded time series (observed scores: red solid line) compared to real time series 517 

(actual scores: gray dashed line). Observation uncertainty is “low” when a phenological event is 518 

easy to see and the recorded time series closely matches the real time series and “high” when a 519 

phenological event is difficult to see leading to many missing observations and a recorded time 520 

series that does not closely match the real time series. Process uncertainty is “low” when 521 

phenological events occur in clean, regular cycles and are easy to predict and is “high” when 522 

phenological events occur in noisy, irregular cycles and are difficult to predict. From the 523 

recorded time series alone, it is impossible to differentiate between a record with high process 524 

uncertainty but low observation uncertainty (bottom left) and a record with low process 525 

uncertainty but high observation uncertainty (top right). 526 

FIGURE 2. Summary of mean scores calculated for phenophase event visibility and duration by 527 

phenophase. (A) Distribution of mean phenophase visibility scores for each species showing 528 

median scores (bold horizontal lines), the interquartile range (coloured boxes) and the 95% range 529 

(vertical lines) and the breaks between each score (horizontal dashed lines). (B) Percentage of 530 

species categorised according to phenophase duration: events lasting <= 4 wks (light shading) 531 

and events lasting > 4 wks (dark shading). 532 
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FIGURE 3. Standardised effect sizes (A) and predictions (B and C) for all predictors retained in 533 

the final model.  (A) The standardised effect of each predictor on the likelihood of detecting a 534 

regular cycle (filled black circles) and 95% confidence intervals (horizontal black lines) to show 535 

whether effect is significantly different to zero (derived from a modified final model with 536 

intercept and main effect for Length Scaled temporarily removed). (B-C) Model predictions for the 537 

relationship between the significant predictors - time series length, phenophase visibility (both 538 

continuous) and phenophase duration (binary) - and the likelihood of detecting a significant 539 

cycle from phenology data. 540 

FIGURE 4. Predictions from the final model by phenophase. General model predictions (grey 541 

lines) and 95% confidence intervals (grey shades) show the relationship between both significant 542 

continuous predictors (A) time series length and (B) visibility and the likelihood of detecting a 543 

significant cycle from phenology data when phenophase events last <= 4 weeks. Predictions 544 

from the random intercept and slope terms show how model predictions vary by phenophase 545 

(coloured lines). The mean probability of detecting a cycle from binned raw data demonstrates 546 

the model fit (coloured dots, scaled by number of observations in each bin).  547 


