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Abstract 
Traditional core stability training was developed as a method of treating and preventing back 

pain. It was however, seamlessly applied to healthy and athletic populations without scientific 

evidence supporting its efficacy. Traditional core stability focussed on isolating and training 

the anatomical region between the pelvis and diaphragm, using isometric or low load exercises 

to enhance spinal stability.  Scientific research challenged this approach for healthy function 

and athletic performance, resulting in a more functional anatomical definition, which included 

pelvic and shoulder girdles. Hence, a revised definition of dynamic trunk stability; the efficient 

coordination, transfer and resistance by the trunk, of force and power generated by upper and 

lower appendicular skeletal extremities during all human movement. This led to an integrated 

exercise training approach to dynamic trunk stability. Although early evidence suggested 

loaded compound exercises preformed upright, in particular back squat, were effective in 

activating and developing trunk muscles, evidence was inconclusive.   

Accordingly, the aims of this PhD were to investigate neuromuscular trunk function in loaded, 

free barbell back squat to understand training implications for trunk stability in dynamic 

athletic activity.  Five research studies were conducted; 4 are published and 1 is being prepared 

for re-submission.  

The literature review revealed evidence that back squat was an effective method of activating 

trunk stabilzers and showed that these muscles were load sensitive (study 1).  A survey of 

practitioners reported an understanding and appreciation of the challenge against core stability 

training for athletic populations.  Furthermore, perceptions were aligned with growing 

evidence for dynamic and functional trunk stability training (study 2).  A test-retest 

neuromuscular study established interday reliability and sensitivity of electromyographical 

measurement of trunk muscle activity in squats (study 3).  Trunk muscle activation in back 

squat was higher than hack squat at the same relative, but lower absolute loads (study 4).  

Trunk muscle activation was lower in squats and bodyweight jumps in the strong compared to 

weak group (study 5).  Furthermore, activation of the trunk muscles increased in each 30o 

segment of squat descent and was highest in first 30o segment of ascent for all loads (study 5). 

In conclusion, this series of studies confirmed acute effect of squats on trunk stabilizers and 

demonstrated that external load increases activation in these muscles.   Parallel squat depth is 

important in optimizing trunk muscle activation.  Finally, high levels of squat strength result in 

lower trunk muscle activation in loaded squats and explosive jumps.   
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Introduction  

Background 

This PhD and a suite of research studies are the response to a question that arose in applied 

strength and conditioning during the early 2000s: Is traditional core stability training 

appropriate for the development of trunk stability for dynamic athletic activity?  Clinical 

research into back pain and the role of deep and superficial trunk stabilizer muscles 

established the concept of core stability training (CST) in mid-1990 (Panjabi, 1992; 

Hodges and Richardson, 1998). The transfer and application of CST to healthy, uninjured 

and athletic populations spread seamlessly without apparent scientific justification 

(Lederman, 2010).  There was however, significant commercial interest and investment (J. 

Willardson, 2007).  In the exercise and fitness industry, renowned for gimmicks and fads, 

CST gained traction and spread to all sectors including strength and conditioning.  

Context 

Traditional approach to CST is incongruous to physical development of athletes for 

dynamic athletic performance for several reasons.  The most obvious concern is the 

reductionist approach of CST, isolating and training muscular, skeletal and neural 

structures between the diaphragm and pelvis (Panjabi, 1992; Hodges and Richardson, 

1998).  In dynamic sporting activity, this anatomical region functions as an integral part of 

the full kinetic chain and therefore should be trained or developed within that context.  The 

second major issue with traditional CST is the isometric nature of the exercise format.  

This flaunted well established exercise training principles of specificity and overload, 

particularly relevant for dynamic athletic, movement, characterised by any combination of 

high velocity, force and torque.   

There has been extensive research on the topic of core stability in healthy populations and 

for athletic performance (Kibler, Press and Sciascia, 2006; J. M. Willardson, 2007; Hibbs 

et al., 2008; Reed et al., 2012; Martuscello et al., 2013; Silfies et al., 2015; Maaswinkel et 

al., 2016; Prieske, Muehlbauer and Granacher, 2016; Wirth, Hartmann, et al., 2016).  The 

particular area of interest within the published literature was the loaded back squat and 

efficacy of this exercise in activating the trunk stabilizers.  This exercise is specific to 

many sporting activities and can be overloaded safely and effectively.  Most important 
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however, is the manner in which it challenges the core or trunk in an integrated and 

functional way.  In fact, for novice squatters on a progressive loaded squat programme, the 

ability to stabilize the trunk represents the limiting factor.  In other words, primary 

adaptation in the first stage of a progressive load squat programme is trunk stability.  

Hence, development effective trunk stability is required in order to begin to overload lower 

limbs, the main purpose of squat training for athletic performance. What is unknown is 

how changes in squat load effect trunk muscle activation or how chronic squat strength 

training changes neuromuscular function of trunk stabilizers. 

There is compelling evidence that trunk stability is dependent on effective coordination of 

all muscles of the trunk (Cholewicki and VanVliet Iv, 2002; McGill et al., 2003; Akuthota 

and Nadler, 2004; Hibbs et al., 2008; Behm et al., 2010; Wirth, Hartmann, et al., 2016).  

The trunk muscles with the largest moment arms are the erector spinae, quadratus 

lumborum and rectus abdominis which are responsible for stabilizing the spinal column 

(Cholewicki and VanVliet Iv, 2002; Behm et al., 2010).  The internal and external obliques 

and transversus abdominis develop intra-abdominal pressure, thereby stabilizing the spine 

specifically in the lumbar region  (Cholewicki and VanVliet Iv, 2002; Behm et al., 2010).  

McGill et al (1996) determined that surface EMG was an effective method of measuring 

EMG amplitude in these muscles for most tasks, including maximal voluntary contractions 

(McGill, Juker and Kropf, 1996).  They explained that the magnitude of error increased for 

deep muscles such as psoas.  In our review, the most common muscle sites used to measure 

trunk stability (Anderson and Behm, 2005; Hamlyn, Behm and Young, 2007; Nuzzo et al., 

2008; Bressel et al., 2009; Willardson, Fontana and Bressel, 2009; Clark, Lambert and 

Hunter, 2012) were (Appendix 3): 

 Rectus abdominis (RA: 2 cm lateral from the midline of the umbilicus) 

 External oblique (EO: halfway between inferior costal margin of ribs and anterior 

superior iliac spine) 

 Upper lumber erector spinae (ULES: 6 cm lateral to L1-L2 spinous processes) 

 Lumbar sacral erector spinae (LSES: 2 cm lateral to L5-S1 spinous processes).   

 

Hence, quadratus lumborum, multifidus, internal oblique and transversus abdominis were 

excluded.  Two reasons put forward by these authors was diminished accuracy of surface 

EMG in measuring deep muscles and that the selected superficial muscles were reflective 

of neuromuscular activity during dynamic trunk stability (Anderson and Behm, 2005; 
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Hamlyn, Behm and Young, 2007; Bressel et al., 2009; Schwanbeck, Chilibeck and 

Binsted, 2009).   

There is agreement in the literature that an important factor contributing to confusion 

around the topic of core stability is the absence of agreed terms and definitions (Kibler, 

Press and Sciascia, 2006; Hibbs et al., 2008; Behm et al., 2010; Key, 2013; Martuscello et 

al., 2013; Silfies et al., 2015; Spencer, Wolf and Rushton, 2016; Wirth, Hartmann, et al., 

2016; Clark, Lambert and Hunter, 2018).  The terms core stability and core strength have 

attracted much attention and debate (Hibbs et al., 2008; Prieske et al., 2016; Wirth, 

Hartmann, et al., 2016).  Hibbs et al (2008) described the aetiology of these terms and 

explored the concept that stability was required for everyday function and rehabilitation 

from lower back pain (LBP), while strength was necessary for dynamic athletic activity 

(Hibbs et al., 2008).  They concluded that there was no evidence for this separation and 

that core strength was central to stability (Hibbs et al., 2008).  Many now subscribe to a 

more functional definition of core stability; a dynamic process characterized by effective 

muscular function and neuromuscular control (Silfies et al., 2015; Prieske et al., 2016).  

Where muscular function includes both strength and endurance, while neuromuscular 

control refers to coordination of efferent and afferent neural pathways (Silfies et al., 2015).  

Describing trunk stability as core strength and core stability is closely associated to the 

scientific endeavours to measure core strength and endurance (Hibbs et al., 2008; Prieske 

et al., 2016).   

In a systematic review, Prieske et al (2016) found that trunk muscle strength, measured 

isometric and dynamically, played only a minor role in measures of fitness and athletic 

performance (Prieske et al., 2016).  Isometric tests included timed prone plank and 

dynamic tests, peak isokinetic torque in trunk flexion and extension (Prieske et al., 2016).  

Regardless of the absence of an association between trunk muscle strength, fitness and 

performance tests, it is patently clear that these tests do not reflect complex, dynamic and 

multifaceted day-to-day movement or athletic activity.  This highlights the folly of 

attempting to measure trunk stability using currently available methods and technology.  

Based on growing evidence in scientific literature (Prieske et al., 2016; Wirth, Hartmann, 

et al., 2016) and this glaring methodological testing error, it is clear that trunk strength is 

central to trunk stability and is not directly measurable given prevailing methodology. 
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Back squat (Papers 3, 4 & 5) and hack squat (Paper 4) exercises are central to research 

published in papers 3, 4 and 5.  Free barbell back squat is a widely used exercise in 

programmes for sports performance, health and fitness and body building.  The hack squat 

is more common in body building, general fitness and rehabilitation training programmes.  

The primary purpose of both exercises is to develop eccentric and concentric strength of 

the lower limb through flexion and extension of knee and hip joints and to a lesser extent 

ankle joint.  The mechanics of free barbell back squat require that the line of force or 

centre of gravity in the sagittal plane remain over the base of support through the full range 

of movement.  In the hack squat line of gravity does not need to coincide with the point 

where force is applied in the foot position, due to the supported trunk and fixed external 

load.  These difference in mechanics of these two exercises obviously have implications on 

the neuromuscular demands of all muscles involved (Appendix 2). 

Most neuromuscular research has investigated the acute responses (McCaw and Melrose, 

1999; Caterisano et al., 2002; Gullett et al., 2009; Paoli, Marcolin and Petrone, 2009; 

Brandon et al., 2014) and chronic adaptation (Hakkinen, 1989; Hakkinen et al., 1998; 

Aagaard et al., 2002) of prime mover muscles responsible for driving concentric load in 

the back squat.  These muscles, the quadriceps group comprise of vastus lateralis, rectus 

femoris and vastus medialis. Research indicates that isometric (Carolan and Cafarelli, 

1992) and isokinetic (Häkkinen et al., 1998) training results in increased maximal 

voluntary activation of the agonists with a significant reduction in coactivation of the 

antagonists or muscles opposing the quadriceps, the hamstrings. There is however, little 

evidence for synergist or stabilizer muscle response to compound lower limb strength 

training.  Buckthorpe and co-workers (2015) measured changes in neural activation of 

agonist, antagonist and stabilizer muscles after 3 weeks isometric and isointertial elbow 

flexion training (Buckthorpe et al., 2015).  Maximal dynamic strength (1RM) increased 

significantly more than isometric maximal voluntary force (iMVF).  Agonist, antagonist 

and stabilizer EMG increased significantly in the follow-up 1RM test, and only in the 

stabilizers for iMVF test.  It is highly likely that synergist adaptation to compound lower 

limb strength exercises, such as back squat, underpin improvements in dynamic squat 

strength and reported associated performance gains.  Despite the obvious importance of 

trunk stabilizers in transferring and resisting force during the squat, there is scant 

neuromuscular information on trunk muscle activation response and adaptation to squat 

training.   
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Early research compared trunk muscle activation in squats to instability exercises 

(Anderson and Behm, 2005; Hamlyn, Behm and Young, 2007; Nuzzo et al., 2008; Bressel 

et al., 2009) and gave the first evidence that squat load directly influenced activation of 

these muscles.  Subsequent studies compared trunk muscle activation in back and overhead 

squat (Aspe and Swinton, 2014) and the squat to isometric and dynamic strength exercises 

(Comfort, Pearson and Mather, 2011).  There was a clear and obvious requirement for 

more information on neuromuscular trunk function in loaded, free barbell back squat. 

Scope 

The suite of studies in this PhD thesis straddle performance sport and applied sports 

science research.  The main question arose in response to a strength and conditioning trend 

in high performance sport (PhD candidate).  The research question and methods were 

formulated according to principles of applied sports science research through the guidance 

from two PhD supervisors and many of those acknowledged above (page 2).  This 

conforms to the conceptual model proposed by Coutts (2016), where he proposes that 

questions innovated in high performance are investigated using robust and rigorous sports 

science research methods to develop and reinforce evidence based practice (Coutts, 2016). 

Despite the significant rise in applied sport science research in performance sport (Coutts, 

2016; Kraemer et al., 2017), there is little evidence of this translating effectively to applied 

practice, let alone sports performance (Bishop, 2008).  In response, Bishop (2008) 

proposed the Applied Research Model for the Sports Sciences to better facilitate translation 

to practice by informing initial design and conceptualization of research (Bishop, 2008).  

The model consists of 8 steps progressing from problem definition, concluding with 

implementation studies to measure the effectiveness in practice.  Retrospective alignment 

of studies in this PhD to this model proves quite insightful.  Paper 1, the review and paper 

2, the survey defined and contextualized the problem into a research question fulfilling the 

model’s criteria for step 1 and 2.  The third paper established methodological reliability of 

neuromuscular and kinematic measures proposed for studies 4 and 5. This, along with 

paper 4 comparing trunk muscle activation in hack versus back squat is classified as 

descriptive research and is therefore aligned to step 2 of the model.  The final study falls 

across steps 3, 4 and 5; establishing predictors of performance, experimental testing of 

predictors and determinants of key performance predictors.  In this study, we investigate 

and compare a number of key performance attributes in strong versus weak squatters.  The 

model progresses to intervention studies which would be a recommendation arising from 
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this PhD; conduct a training study to assess the impact of improved squat strength on trunk 

muscle activation and dynamic trunk stability in proxy tests of athletic performance. 

The starting point for this PhD was to review the scientific research literature on the topic 

of muscle activation in loaded back squat exercise. This is the first published paper of this 

thesis (Clark, Lambert and Hunter, 2012).  This was important in order to determine and 

confirm the specific area of our research within the context of wider neuromuscular 

research into the back squat exercise. Furthermore, it was important to review the related 

neuromuscular research methods as they applied to the back squat exercise.  This informed 

methods used in our study to establish reliability in trunk electromyography (EMG) 

capture in the back squat (Clark, Lambert and Hunter, 2016).  It also determined kinematic 

tests and EMG normalization methods used in all our subsequent research (Clark, Lambert 

and Hunter, 2016, 2017). 

Application of traditional CST was well established and appeared to withstand the growing 

scientific challenge.  In fact there was a view that it’s use in healthy and athletic 

populations continued to develop and spread (J. Willardson, 2007).  Surveys are an 

effective scientific research tool used previously to assess nutrition knowledge (Torres-

McGehee et al., 2012) and understanding of scientific training principles in the workplace 

(Durell, Pujol and Barnes, 2003).  The motivation for the specific area of research in the 

PhD arose from a clear gulf between applied practice and scientific principles and latterly, 

published scientific evidence.  Hence, the second question was to determine perceptions 

and application of core stability training in people working and participating in sport 

using a survey.  In the publication, survey results are analysed to determine extent to 

which scientific research informed CST perceptions and practice.   

Our first publication, confirmed that back squat was an effective method of activating the 

trunk muscles and that this activation increased with increases in load (Clark, Lambert and 

Hunter, 2012).  It was also apparent that methodology around the measurement of trunk 

activation in back squat, reported in the scientific literature was inconsistent and unreliable.  

Surface electromyography (sEMG) data capture for muscles of the trunk required a 

standardized approach to ensure that findings could be interpreted, compared and have an 

impact on practice.  This review also identified inconsistencies in EMG normalization 

methods.  The purpose of the third study was to establish reliability and sensitivity of the 

measurement of trunk muscle electromyography in the loaded back squat exercise. 
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We established reliability of sEMG in measuring trunk muscle activation in the back squat 

and demonstrated that this method was sensitive to typical load changes in this exercise.  

Most previous trunk muscle activation research had compared the back squat to isometric 

(Comfort, Pearson and Mather, 2011) or unstable exercises (Anderson and Behm, 2005; 

Hamlyn, Behm and Young, 2007; Nuzzo et al., 2008; Bressel et al., 2009).  The 

requirement to stabilize the free barbell in the back squat is a unique and important feature 

of the exercise.  In the one published study, there was no difference in trunk muscle 

activation between the more stable Smith machine squat and the free barbell squat for the 

rectus abdominus and erector spinae muscles (Schwanbeck, Chilibeck and Binsted, 2009).  

This was contrary to what we believed based on our review of the literature.  Hence, the 

fourth study of the PhD compared trunk muscle activation in free barbell back squat to 

machine supported hack squat for a range of moderate to heavy loads. 

The survey demonstrated that perceptions and practice amongst people working and 

participating in sport did reflect the current information in the scientific literature.  The 

review and survey concluded that there was a requirement for more data on efficacy of 

commonly used exercises in activating trunk stabilizers.  A further recommendation was to 

investigate the adaptations to long-term squat training.  Specifically, how does acquired 

back squat strength through regular, progressive training change trunk stability in dynamic 

athletic activity?  Hence, the fifth and final study aimed to determine how squat training 

status influenced trunk muscle activation in the back squat, squat jump and 

countermovement jump. 
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Study 1: Scientific review - muscle activation in the loaded 
free barbell squat 
 

The scope of the review included all publications that reported muscle activation measured 

by sEMG in back squat.  The review did include data for other exercises where these were 

compared to back squat.   Studies included reported neuromuscular activation data for all 

muscle sites of the lower limb, hips, thighs and trunk region.   

Section headings of the review paper reflect topics covered in the scientific literature.  

Most of these topics were areas of interest in the applied setting, where research had aimed 

to verify common applications and variations of back squat exercise using neuromuscular 

analysis.  Common applications include technical squat variations such as stance width, hip 

rotation and squat depth and programming manipulations such as external load and 

instability.   

A limitation of the review process and publication was the use of a systematic narrative 

review method rather than a systematic or meta-analysis method.  The variety and breadth 

of the sub-topics related to muscle activation in the back squat was more suited to a 

systematic narrative approach.  Furthermore, differences in research design and methods 

precluded a systematic of meta-analysis review.  The selected method presented and 

debated findings of selected research publications.  It included qualitative analysis in the 

discussion and quantitative analysis in tables that reported muscle sites investigated in each 

study (Table 1) along with study design and key findings (Table 2).  The outcome 

however, did serve to guide and inform neuromuscular research in back squat trunk muscle 

activation.  The review summary confirmed there was sufficient evidence that loaded 

barbell squats were effective in activating trunk stabilizing muscles.  Recommended 

practical applications gave clear direction for subsequent research to determine the role of 

back squat in developing dynamic trunk stability.   
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ABSTRACT

Clark, DR, Lambert, MI, and Hunter, AM. Muscle activation in

the loaded free barbell squat: A brief review. J Strength Cond

Res 26(4): 1169–1178, 2012—The purpose of this article was

to review a series of studies (n = 18) where muscle activation in

the free barbell back squat was measured and discussed. The

loaded barbell squat is widely used and central to many

strength training programs. It is a functional and safe exercise

that is obviously transferable to many movements in sports and

life. Hence, a large and growing body of research has been

published on various aspects of the squat. Training studies

have measured the impact of barbell squat loading schemes on

selected training adaptations including maximal strength and

power changes in the squat. Squat exercise training adapta-

tions and their impact on a variety of performance parameters, in

particular countermovement jump, acceleration, and running

speed, have also been reported. Furthermore, studies have

reported on the muscle activation of the lower limb resulting

from variations of squat depth, foot placement, training status,

and training intensity. There have also been studies on the

impact of squatting with or without a weight belt on trunk

muscle activation (TMA). More recently, studies have reported

on the effect of instability on TMA and squat performance.

Research has also shown that muscle activation of the prime

movers in the squat exercise increases with an increase in the

external load. Also common variations such as stance width, hip

rotation, and front squat do not significantly affect muscle

activation. However, despite many studies, this information has

not been consolidated, resulting in a lack of consensus about

how the information can be applied. Therefore, the purpose of

this review was to examine studies that reported muscle

activation measured by electromyography in the free barbell

back squat with the goal of clarifying the understanding of how

the exercise can be applied.

KEY WORDS resistance training, strength tests, athletic

performance

INTRODUCTION

T
he squat exercise has a long history in fitness
training, exercise for rehabilitation, and strength
training for performance in sport. It is a functional
movement that is performed loaded or unloaded

by flexing and extending the hip, knee, and ankle joints in
a manner similar to many movements that occur in daily
activity and sport. The squat exercise is regarded as a closed
kinetic chain exercise where the force is expressed through
the end (length) of the limb while it is fixed to the ground (11).

Variations of the loaded barbell squat are widely used in the
physical preparation programs for athletes in many sports.
The primary reasons for this are the functional nature of the
squat exercise movement, the ability to overload the muscles
during this exercise, and the relative safety (9) of the squat
when performed in a squat rack or cage. As a consequence,
this exercise and a selection of variants have been subjected
to research. For example, training studies have measured the
impact of barbell squat loading schemes (14) on selected
training adaptations including maximal strength (30) and
power changes in the squat (2,14,18,29,31). Squat exercise
training adaptations and their impact on a variety of
performance parameters, in particular countermovement
jump, acceleration, and running speed (7,34), have also been
reported. Kinematic, kinetic, and electromyographic (EMG)
studies have reported muscle activation of the lower limb
resulting from variations of squat depth (5), foot placement
(10,24,25), and training status and training intensity (26).
There have also been studies (36) on the impact of squatting
with or without a weight belt on trunk muscle activation
(TMA). More recently, a number of researchers have
reported the effect of instability on TMA and squat
performance (2,3,13,20,21,23,27,33).

The barbell squat was established as a key exercise in the
physical preparation of athletes before the growing body of
scientific evidence describing muscle activation in variations
of this exercise. However, despite the growing body of
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evidence, there is no consensus on how the information
should be applied. The organic manner in which this research
has been conducted and published necessitates a review of the
findings as they relate to athletic training and therefore inform
practice. In particular, because of (a) the narrow topic area,
defined by muscle activation in the free barbell back squat;
(b) the wide range of methodologies used in the studies;
and (c) the spread of muscle sites reported, we decided
that a systematic narrative review method was the most
appropriate way to achieve our objectives of consolidating
the evidence so that it can be applied in a more evidence-
based way.

Therefore, the purpose of this article is to review the studies
(n = 18) that investigated the muscle activation during the
free barbell back squat and applied variations of this exercise
as used in the physical training of athletes for performance.
The review does include data from studies that reported
muscle activation in the leg extension, leg press, front squat,
and Smith machine squat, only where these exercises have
been compared with the free barbell back squat.

A PubMed search of the academic literature was performed
using the following terms: ‘‘free barbell back squat,’’ ‘‘loaded
back squat,’’ ‘‘back squat,’’ ‘‘electromyography,’’ ‘‘EMG,’’ and
‘‘muscle activation,’’ limited to English articles and human
subjects. Literature was also sourced from links to related
articles, hand searches, and the bibliographies of academic
articles. The searches retrieved 18 full articles, where muscle
activation in the loaded free barbell back squat was reported.

MUSCLE SITES ANALYZED

In all the studies reviewed, EMG activity in muscles of the
lower limb was measured and reported more than twice as
often (56 of 80) as muscles of the trunk (24 of 80) (Table 1).
Interest in hamstring and quadriceps activation was the
higher than any other muscle group reported; biceps femoris
and vastus medialis activation were each reported in 12 of
the 18 studies. This reflects the fact that these muscles are
traditionally the primary muscles of interest in loaded squat
training, hence the interest in factors and variables that may
influence muscle activation and therefore training efficacy of
the squat exercise.

More recently, a number of investigators (2,3,13,23,27,33)
have reported TMA for the loaded squat exercise under
different conditions. The trunk muscles reported most fre-
quently are the rectus abdominus (6 of 18), external oblique
(4/18), and various aspects of the erector spinae (8 of 18).
In all the studies reviewed, the measurement of the activation
of the muscles of the trunk is used to assess the impact of
stability vs. instability in the squat.

NORMALIZATION PROCEDURES

One of the challenges with EMG analysis is that the ampli-
tude of the data is highly variable and influenced by a number
of factors. Measurements can differ across muscle sites, and
intrasubject day-to-day fluctuations also contribute to the

variability. Although it is not the purpose of this article to
review EMG normalization procedure, a basic understanding
of the process and the procedures used in the studies reviewed
justifies comment.

One method of accounting for this variation is to normalize
the EMG data against a reference value. The most common
normalization method is to express the EMG activity under
investigation as a percentage of the EMG activity during
a maximal isometric voluntary contraction (MVIC), usually
performed at the start of test session.

The majority of the studies reviewed (3,12,13,23,25,
28,32,33,36) used an MVIC procedure to normalize EMG
data. In studies with repeated measures within the same
individual, mean EMG was reported without normalization
(2,27). Recent evidence (1) has been published to support
a dynamic method of normalization (i.e., EMG data collected
while cycling at 70% peak power) as being more repeatable
than maximal voluntary contraction (MVC). Dankaerts et al.
(8) also showed that normalization with submaximal
voluntary contractions was more reliable than normalization
with MVC when measuring TMA. In his recent review,
Burden (4) states that using a dynamic MVC with the same
muscle action is better than an isometric MVC at an arbitrary
angle to normalize the EMG for a dynamic test effort.

MUSCLE ACTIVATION AND THE LOADED BACK SQUAT

An inclusion criterion for this review was that the exercise
under investigation was the free barbell back squat as this is
the most widely practiced version of the loaded squat (12),
especially in strength training for athletic performance. Given
this popularity, it is not surprising that this version of the
squat is used in most research where muscle activation is
investigated to confirm commonly held coaching theories.
A summary of research design and key findings for all
reviewed studies is presented in Table 2.

Stance Width and Hip Rotation

It is a long-held belief in coaching that by manipulating squat
stance width, specific muscle groups in the lower limb can be
targeted, thereby influencing training adaptation. For exam-
ple, in track sprint cycling, there is a strong belief that stance
width in the squat should be equal to the width between the
bicycle pedals and that feet should be parallel as they are
when pedalling. The 2 studies (22,24) that measured lower
limb muscle activation in 3 different stance widths for 2
submaximal relative squat loads had one common finding;
lower limb muscle activation increased as a result of the
increase in load. Paoli et al. (24) subjects perform the squat at
loads of 0, 30, and 70% 1 repetition maximum (RM) with feet
at hip width (greater trochanter width), 150 and 200% of hip
width. They reported an increase in activation for all 8
muscles monitored with each increment in load; however,
the gluteus maximus was the only muscle that had increased
activation as stance width increased. These differences were
only significant at the lowest loads (0% 1RM) and heaviest
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load (70% 1RM). McCaw and Melrose (22) also used the 3
stance widths; shoulder width and 75 and 140% of shoulder
width and 2 test loads; and 65 and 75% squat 1RM. On
average, EMG of the quadriceps (rectus femoris, vastus
lateralis, and vastus medialis) was 20% higher for the 75%
1RM for all stance widths and phases of the squat compared
with the 60% 1RM. Interestingly, stance width did not affect
muscle activation of the quadriceps contrary to the popular
belief. Activation of the adductor longus was 28% greater for
the heavier load and was highest during the ascent in the wide
stance squat. Similarly, the activation of the gluteus maximus
during the ascent was double that compared with the descent.

Pereira et al. (25) compared squatting with parallel depth
while the hip was in neutral position and rotated to 30� and
50�. Ten subjects performed a RM parallel squat in the 3 hip
positions, and muscle activity of the rectus femoris and the
hip adductors (adductor longus and gracilis) was recorded.
Muscle activity of the hip adductors was significantly greater
with the rotation of the hips from neutral to 30� and from 30�
and to 50� only in the last 30� of flexion to parallel and the
first 30� of extension or ascent. Hip rotation did not change
activation of the rectus femoris, the main extensor muscle in
the squat. All muscle activity was significantly greater in the
deepest phase (last 30�) of the squat in flexion and extension
regardless of hip rotation.

Extreme stance widths of 40% wider than shoulder width
(22) or twice the width of the hips (24) result in greater
activation of adductors of the thigh and gluteus maximus.
High adductor activation is also increased by turning the feet
out or rotating the hips (25). The studies by Paoli et al. (24)
and McCaw and Melrose (22) demonstrate that activation of
quadriceps, the agonist, increases as a result of an increase in
external load in the squat. Therefore, it may be concluded
that if the purpose of the squat exercise is to overload the
primary movers, then the stance, width of feet, and hip
rotation should be dictated by the technical demands of
executing the squat safely and to the appropriate or selected
depth. These guidelines will vary according to individual
physical mechanics and are covered by strength coaching
principles. Central to this is ensuring that the vertical travel of
the load in the sagittal plane remains in the line of gravity. In
applied terms, this means that from a side view (sagittal
plane), the vertical path of the bar during the squat is kept
close to a perpendicular line emanating from the middle of
the foot throughout the range of movement.

There is also evidence (25) that regardless of foot position,
activation is highest in the last phase of the descent to parallel
and the first phase of the ascent. This means that partial or
quarter squats will result in reduced muscle activation of the
prime movers and therefore arguably produce an inferior
training effect in comparison to parallel or full squats. Although
the loads used in these studies are representative of those used
in athletic strength training, it is also common to train at higher
relative loads where it would be unlikely that the widest stance
widths in these studies would be practical or safe.

Squat Depth

A range of squat depths are used practically; however, it is
generally believed that a squat depth to parallel is most
effective for improving athletic performance (6). This belief
is supported by a study (5) where the activation of muscles
of the quadriceps, hamstrings, and buttocks for squats to
3 depths, partial, parallel, and full with knee angles of 135, 90
and 45�, respectively, was measured. Caterisano et al. (5) used
a load of between 0 and 125% body weight because of the
difficulty of standardizing the load across the 3 depths and
found that activation of the gluteus maximus increased with
the increase in squat depth. Increased muscle activation with
squat depth was only found in the gluteus maximus in the full
squat (35% mean integrated EMG) compared with 17% in
the partial squat. No differences were found across the squat
depths for the remaining 3 thigh muscles; biceps femoris,
vastus medialis, and vastus lateralis. A limitation of this study
was the selection of the test load as this would have
represented very different relative loads for the squat at each
depth. For example, a load that may have been a moderately
high load for the full squat would have been a light load for
the partial squat in the same individual.

Given the findings in the studies looking at stance width
(22,24) where an increase in absolute load resulted in
increased activation, one would expect that if Caterisano
et al. (5) had managed to test using a relatively equivalent
load for each squat depth, then they may well have found
a difference in the activation for each depth of squat. A
possible solution would be to determine a 1RM for the squat
for each depth and then test muscle activation at the same
relative submaximal percentage for each depth.

Wretenberg et al. (35) measured the activation of the vastus
lateralis, rectus femoris, and the long head of biceps femoris
in powerlifters (n = 6) and strength trainees (n = 8) with
a combined average 1RM of 200 kg for the full squat. All
subjects performed both parallel squats and full squats with
the bar in the high position for the strength trainees and low
position for the powerlifters. Mean peak muscle activation for
all muscles was higher in the powerlifters for both squat
depths, although this was only significant for the rectus
femoris. Wretenberg et al. (35) found no difference in muscle
activation across the 2 depths of the squat.

The authors suggested that this was because of their greater
body mass and absolute mass lifted in testing for the
powerlifters. The average body mass of the powerlifters
was 5.7 kg greater than the strength trainees, and the
powerlifters’ average full squat 1RM was 0 kg greater than for
the strength trainees. This meant that average test load of
65% of the 1RM represented 123% of the body mass for the
strength trainees compared with 190% for the powerlifters.
The average test load for the powerlifters was 65 kg heavier
than that used for the strength trainees while the body mass
difference was only 5.7 kg in favor of the powerlifters. Hence,
the greater overall activation found in the powerlifters is
probably explained entirely by the greater absolute loads lifted
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by them compared with the strength trainees rather than
the difference in body mass. However, if we ignore the
comparison between powerlifters and strength trainees,
the pooled data indicate that, at a relative submaximal load,
there was no difference in muscle activation of the muscles of
the upper leg, including the prime movers, between squatting
to parallel or full depth.

The real question in applied strength training for
performance in sport is whether loaded squats performed
to different depths at the same relative load result in different
muscle activation and therefore different training stimuli. By
using the same absolute load, Caterisano et al. (5) failed to
answer this question; however, their results did give some
indication that greater depth increases activity of the gluteus
maximus. In the study of Wretenberg et al. (35), there was no
difference in activation between parallel and full squats for
well-trained subjects at a submaximal load. Pereira et al. (25),
however, divided the eccentric and concentric movements
into 30� segments and found that activation was highest for
the deepest segment of both phases in a RM parallel squat.
This suggests that depth of squat does impact on muscle
activation. The results of the study by Wretenberg et al. (35)
suggest that absolute load lifted per kilogram body mass had
an impact on activation regardless of the depth of the squat.
Both these studies focussed exclusively on the muscles of the
thighs; it would be of significant interest to assess the impact
of squat depth on TMA.

Weight Belt

The use of a supportive abdominal belt or weight belt is
common in heavy lifting in weight training and in manual
handling tasks. Zink et al. (36) conducted a study to measure
the impact of squatting at a high relative load (90% 1RM)
with or without a weight belt on joint kinematics and muscle
activity of the following muscles: vastus lateralis, biceps
femoris, adductor magnus, gluteus maximus, and erector
spinae. There were no significant differences for mean EMG
and time to peak EMG for any of the muscles in the
concentric or eccentric phase of a parallel squat at 90% 1RM
with a weight belt compared with no weight belt. Squatting
with a weight belt, however, was significantly faster, for the
total movement and for each phase separately, than when
performed without a weight belt.

It appears that when stability is enhanced by the use of
a weight belt, squat performance in terms of the velocity of
movement and bar kinematics is improved. The authors
of this research concede that although this may possibly
represent an opportunity for the development of more work
and power, at the same time, this may undermine the training
effect resulting from slower and more stable training.

External Load

The loads used for the free barbell squat tests in the studies
reviewed ranged from 0 to 90% of 1RM and included loads
determined as a percentage of body mass and according to the
RM method (Table 2). Wretenberg et al. (35) conducted a

study to assess the effect of squatting with the high bar posi-
tion compared with a low bar and whether this was different
for full squats compared with the parallel squat. They used
highly trained subjects who performed squats at 65% of their
full squat 1RM. The loads reported were representative of the
submaximal loads commonly used in strength training for the
development of dynamic athlete performance. Two research
groups used near maximal loads of 90% of 1RM. Zink et al.
(36) used parallel squats at this intensity to assess the impact
of a weight belt vs. no weight belt on muscle activation.
Nuzzo et al. (23) used a range of loads: 50, 70 and 90% of
1RM in the squat and deadlift, to assess muscle activation in
comparison to 3 stability ball exercises.

A methodological challenge facing investigators com-
paring 2 or more variations of the squat is how to determine
a relatively equal test load for each variation to ensure that
the dependent variable is the variation of the squat and not
the load. Wretenberg et al. (35) and Caterisano et al. (5)
failed to account for this in their studies comparing squats
at different depths. The former used a load of 65% of the
1RM for the full squat for both test depths, full and parallel
squat. Caterisano et al. (5) overcame this by selecting a test
load which the subjects could complete for the 3 squat
depths with the correct technique. If we assume that squats
performed to different depths each represent a different
physical challenge, then the test load for each depth should
be based on the same submaximal relative percentage
calculated from the maximal ability for each depth.
Wilk et al. (32), Pereira et al. (25), and Schwanbeck et al.
(27) overcame this challenge by using 12, and 8 RM,
respectively, for each of the test variations. This is achieved
by determining the maximal load which the subject can
complete for the given number of repetitions, and in the
study of Schwanbeck et al. (27), this was determined for the
free bar back squat and the Smith machine back squat.
Possibly, the most accurate theoretical method is to
determine the 1RM for each of the squat variations and
then calculate the submaximal test load for each as
a percentage of the maximum (1RM). Gullett et al. (12),
in a biomechanical comparison for the front and back
squats, tested 1RM for each of these exercises, and McBride
et al. (21) determined both stable and unstable squat 1RM.

There is an indication that increments in load for the same
squat variation have an impact on muscle activation
(22,24,35). Therefore, the test loads should be relatively
equal if the research question is whether muscle activation is
affected by a specific squat variation.

Instability

Although the squat is an established method of developing
strength through the whole body, evidence that it is an
effective method of developing core stability or trunk strength
is relatively new (13,23). The concept of using instability as
part of the protocol, whether it be for fitness for health,
conditioning for sport, or exercise for rehabilitation, is based
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on the principle of core stability (15,19). Initially, the
recommendations for core stability training were to isolate
the contraction of the deep stabilizing muscles of the trunk
(16,17). The use of unstable training surfaces was introduced
in the belief that this would increase the challenge placed on
these stabilizing muscles. As a consequence, a number of
studies (2,20,21,33) have been conducted to assess the impact
of instability during the squat on muscle activation. There
have also been studies comparing muscle activation in the
squat performed on a stable surface and selected unstable
trunk exercises (13,23). For example, Anderson and Behm (2)
reported greater muscle activation in the key muscles of the
thigh and trunk when performing squats on 2 balance disks
compared with a Smith machine. Hamlyn et al. (13)
compared the TMA during squats and deadlifts at 80% of
1RM with 2 trunk strengthening exercises performed on an
unstable surface. The results showed that first, the squat
produced significantly greater activation of the lower sacral
erector spinae than the other 3 exercises, and second, the
deadlift resulted in greater activation of the upper lumbar
erector spinae. Nuzzo et al. (23) showed that TMA in squats
and deadlifts was greater than or equal to that found in 3
stability ball exercises in male subjects with an average squat
1RM to body mass ratio of 1.78 (21). The latter 2 groups
(13,23) concluded that upright free weight training on
a stable base was effective in challenging and developing
trunk stability through effective TMA. Finally, McBride et al.
(20,21) assessed the impact of instability on force and muscle
activity (vastus lateralis, biceps femoris, and erector spinae) in
both isometric (20) and dynamic squats (21). They found that
instability in an isometric squat significantly impaired force
and power capabilities without an advantage for muscle
activity. Unstable squat 1RM (83 kg) was significantly lower
(44 kg) than the stable squat 1RM (128 kg), and muscle
activity at the same relative loads was equal or less in the
unstable trial compared with the stable squat. McBride et al.
(20,21) concluded that stable squats were more effective in
producing force, power, and muscle activation, including
TMA, than unstable squats.

Anderson and Behm (2) assessed the parallel squat under
3 conditions of stability: in a Smith machine, with a free bar,
and with a free bar standing on balance disks. Three loads
were tested for each condition: body mass, 29.5 kg (the load
of the bar in the Smith Machine), and 60% of body mass.
They found that muscle activation in the muscles of the legs
and the trunk stabilizers was highest during the most
unstable squat with the free bar on the balance disks. They
also report an increase in activation with the increase in load
for all muscles apart from the hamstrings and abdominal
stabilizers. Furthermore, they showed that EMG activity was
highest during the concentric movement compared with the
eccentric phase for all squat variations in the following
muscles: soleus, vastus lateralis, biceps femoris, upper lumbar
erector spinae, and abdominal stabilizers. Duration of activity
of the abdominal stabilizers during the transition between

descent and ascent was significantly higher for the unstable
squat.

Although the purpose of many of the studies referred above
was not primarily to measure and describe TMA in the loaded
squat, they all showed that this exercise is an effective method
of challenging the trunk stabilizers. There is also evidence that
the introduction of instability impairs force and power
production in the squat without necessarily increasing TMA.

Acute Fatigue

Strength training in the practical setting is usually performed
with a certain amount of acute muscular fatigue, and as such
the effect of this on muscle activation is of interest. Smilios
et al. (28) measured the power output and EMG activity
during a moderate load muscular endurance session (4 sets of
20 repetitions at 50% 1RM). They measured power output
and EMG in a set of 4 repetitions at a light load (40% 1RM)
and heavy load (80% 1RM) immediately before and after the
endurance sets and again at 30 minutes after this. The
subjects, who were resistance-trained men with an average
squat 1RM of 129 kg, performed the parallel back squat.
Power output was significantly reduced in sets 3 and 4 of the
muscular endurance protocol, although EMG activity
increased from set to set for the quadriceps but not the
biceps femoris muscles.

Average power immediately after the endurance work was
reduced by 14 and 21% for the power tests at 40 and 80%
1RM. These improved but remained 8 and 14% lower for the
2 power test loads, respectively, after 30 minutes of recovery.
Average quadriceps EMG activity at 3 and 30 minutes post
endurance effort was decreased by 12 and 14% for the 40%
1RM power tests and 6 and 10% for the 80% 1RM power tests.
Biceps femoris EMG activity did not change in the 40 and
80% 1RM power tests performed at 3 and 30 minutes after the
endurance protocol.

The authors hypothesize that the increase in EMG activity
of the agonists during the endurance sets, despite the loss of
power across the sets, was because of an increased central
drive to maintain work though increased motor unit
recruitment (28).

Front Vs. Back Squat

A number of variations of the loaded barbell squat are used in
programs for the development of athletes. The 2 most
common versions are the back squat, where the bar is carried
across the back of the shoulders, and the front squat, with the
bar across the front of the shoulders. There is a belief that this
technical difference produces a different physical challenge
and therefore training effect. This would be reflected by
a difference in activation of the primary muscles across these
2 squats.

Subjects performed 2 trials of 3 repetitions for each squat
variation: front and back squat at 70% of the 1RM (12). The
1RM scores were determined for each squat on 2 separate
prior occasions. During the investigative efforts, EMG
activity for the following muscles was recorded: rectus
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femoris, vastus lateralis, vastus medialis, biceps femoris,
semitendinosus, and erector spinae. These authors found no
difference in muscle activity across the 2 squat variations;
however, they did show that average muscle activity was
significantly higher during the ascent than the descent for the
6 muscles that were monitored.

Using a test load of 70% of 1RM for each of the 2 squat
variations meant that the absolute load lifted was 61.8 6

18.6 kg for the back squat and 45.8 6 14.1 kg for the front
squats. Muscle activity was not found to be different for the
front squat compared with the back squat at 70% 1RM. The
common belief in coaching is that these 2 exercises offer
different physical challenges primarily because of the
difference in the position of the load in relation to the line
of gravity throughout the movement. It is possible that
the submaximal load used in this experiment failed to elicit
this difference; however, this is surprising given the low level
of squat training exposure reported for subjects in this study.

Free Bar Vs. Smith Machine Squat

Schwanbeck et al. (27) compared a free bar squat with a squat
performed in a Smith machine to assess muscle activity in the
legs (tibialis anterior, gastrocnemius, vastus lateralis, vastus
medialis, and biceps femoris) and in the trunk (lumbar erector
spinae and rectus abdominus). The test load for each exercise
was determined as an 8RM as this load represented
a common method of determining training intensity for
athletic conditioning. This method resulted in the test loads
being 14–23 kg heavier for all subjects for the Smith machine
squat than the free bar squat.

Despite this, the free bar squat elicited 43% higher average
activity for all muscle groups than the Smith machine squat.
Closer inspection of individual muscles shows that only 3 leg
muscles had significantly higher activation in the free bar
squat, gastrocnemius (34%), biceps femoris (26%), and vastus
medialis (49%) compared with the Smith machine squat. The
muscles of the trunk followed this trend but failed to reach
significance. The authors claim that this was because of the
low number of subjects (n = 6) in the study.

Squat Vs. Leg Extension and Leg Press

Wilk et al. (32) compared the muscle activity of the
quadriceps and hamstrings in 3 exercises: the squat, the leg
press, and the leg extension. They found that the highest
activation occurred in the closed kinetic chain squat
compared with both the leg press and leg extension and
that this was significant for the vastus lateralis, medial, and
lateral hamstrings. The maximal activation of the quadriceps
presented at a knee angle between 88� and 2� during the
concentric phase. For the hamstrings, the peak activation
occurred between 60� and 74� knee flexion also during the
concentric movement. This confirms the belief that squatting
with a free external load represents a greater neural challenge
to the prime movers than exercises that isolate the limb as in
the leg press and leg extension exercises. It has been
suggested that this may be because of the increased demand

to stabilize the free bar load in the squat; however, this would
not necessarily present as increased EMG of the prime
movers but rather the stabilizing muscles. The higher
activation in the free bar squat may well be because of the
fact that the load is lifted vertically against gravity compared
to during the machine leg exercises where the load is applied
via levers.

TRAINING STATUS AND MUSCLE ACTIVATION IN THE

SQUAT

All the studies reviewed so far have compared muscle
activation for variations of the back squat in a range of subjects
including those untrained, moderately trained, and well
trained in the back squat and of both genders (Table 1). Pick
and Becque (26) reported muscle activation of 2 primary
movers in the squat, vastus lateralis and vastus medialis, for
a back squat set to failure at 85% 1RM in trained (1RM =
184 kg) and untrained male subjects (1RM = 120 kg).

They found that the trained subjects ( 6 0.9 repetitions)
completed significantly more repetitions at 85% 1RM than
the untrained group (7 6 0.7 repetitions) and therefore
demonstrated greater relative submaximal lifting capacity.
Muscle activity was recorded during 1RM testing, and EMG
during the repetitions to failure was reported as a percentage
of 1RM EMG. This was higher in both the 1RM test and the
repetitions to failure for the trained compared with the
untrained group for both the individual muscles and
combined data. Of particular importance was that this
difference was significant toward the end of the test, at 80
and 0% of repetitions to failure.

The study is characterized by the high relative back squat
1RM of 1.6 of body mass reported for an untrained group and
the fairly marked difference in body mass between the 2
groups; the untrained group (74.8 kg) was 15.1 kg lighter than
the trained subjects (89.9 kg). This meant that the test load
difference on average was 54 kg heavier for the trained group
than the untrained group. It appears that the difference in
absolute load may explain the difference in the EMG
measured during both the 1RM test and repetitions to failure.

SUMMARY

� Increasing stance width and hip rotation increase activation
of the adductors and gluteus maximus and not the primary
movers of the squat exercise.
� Muscle activation is not different in squats to varying depths

at moderate loads. Within a parallel squat, it appears that
activation is greatest in the last phase of the descent and the
first phase of the ascent.
� Activation of the muscles of the legs and trunk increases as

a consequence of increases in absolute external load.
� It is important to use equal, relative, submaximal test loads

calculated from a maximum for each specific squat if the
aim is to measure the differences in activation between 2
types of squat or squat variation such as depth of squat.
� Muscle activity is not influenced by the use of a weight belt.
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� Squatting on an unstable base increases the activation of the
leg and trunk muscle, but it impairs force and power
production in this exercise.
� The squat at moderate external loads is a more effective

method of activating the trunk stabilizers compared with
other instability trunk exercises.
� Acute fatigue in a submaximal squatting task results in

increased muscle activation corresponding to a loss of
power across the task. Power and EMG is reduced for up to
30 minutes in a low and high load power test.
� Muscle activation in muscles of the leg, thigh, and trunk is

the same in the front and back squat at 70% of 1RM.
� Free bar squat elicits higher overall EMG than squats in

a Smith Machine, leg press, and leg extension.
� Highest activation occurs in the concentric phase of the

squat.
� In sets to failure at 85% 1RM, trained subjects completed

significantly more squat repetitions than untrained subjects
and produced higher muscle activation in both the 1RM
test and the set of repetitions to failure.

PRACTICAL APPLICATIONS

The free barbell back squat is superior to more supported
squats performed in a Smith machine and closed kinetic chain
leg exercises in activating the prime movers. There is also
evidence that the level of activation of the agonist muscles is
increased with the increase in absolute external load. It is also
clear that many technical alterations to the squat, including
stance width, hip rotation, and the use of a weight belt, do not
enhance the activation of the prime movers. At moderate
loads, even fairly significant alterations, as found in the front
squat, do not alter the activation of the prime movers
compared with the back squat. These data suggest that
increases in load are largely responsible for increased
activation. Also the concentric phase produces the highest
activation and within the eccentric phase, the last third of the
descent to parallel elicits the highest activation. Therefore, if
the aim is to increase the strength of the known prime movers,
the technique should ensure effective completion of the squat
to parallel at the desired load.

At loads of greater than 50% of 1RM, the back squat to
parallel is an effective method of developing trunk activation
and therefore arguably trunk stability. The application of the
loaded squat for the development of trunk and core stability is
an area for future research.
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Study 2: A survey of contemporary perspectives of core 
stability training  
 

The review confirmed that loaded barbell squat was effective in activating the trunk 

muscles.  The next question was to determine the extent to which these developments in 

the scientific process and literature had entered applied thinking and practice.  This was the 

justification and purpose of the survey, the second section of the thesis.  The background 

section of the survey presents an in-depth review of the scientific challenge to traditional 

CST for healthy and athletic populations.  Followed by a detailed explanation of the 

purpose of the survey and how questions were built around prominent themes in the 

scientific CST debate (Appendix 1).  Furthermore, in the survey discussion, findings were 

analysed against the prevailing issues in the scientific literature to measure the extent to 

which research had influenced applied perceptions and practice.  

The limitations of the survey are covered in the final paragraph of the discussion in the 

published paper.  However, it is worth pointing out the further potential bias that may have 

arisen as a result of recruiting participants from the principle investigators email contacts 

and LinkedIn connections.  This most certainly contributed to the high number of 

respondents from strength and conditioning.  
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Contemporary perspectives of core stability
training for dynamic athletic performance:
a survey of athletes, coaches, sports science
and sports medicine practitioners
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Abstract

Background: Core stability training has grown in popularity over 25 years, initially for back pain prevention or
therapy. Subsequently, it developed as a mode of exercise training for health, fitness and sport. The scientific
basis for traditional core stability exercise has recently been questioned and challenged, especially in relation
to dynamic athletic performance. Reviews have called for clarity on what constitutes anatomy and function of
the core, especially in healthy and uninjured people. Clinical research suggests that traditional core stability
training is inappropriate for development of fitness for heath and sports performance. However, commonly
used methods of measuring core stability in research do not reflect functional nature of core stability in uninjured,
healthy and athletic populations. Recent reviews have proposed a more dynamic, whole body approach to training
core stabilization, and research has begun to measure and report efficacy of these modes training. The
purpose of this study was to assess extent to which these developments have informed people currently
working and participating in sport.

Methods: An online survey questionnaire was developed around common themes on core stability training
as defined in the current scientific literature and circulated to a sample population of people working and
participating in sport. Survey results were assessed against key elements of the current scientific debate.

Results: Perceptions on anatomy and function of the core were gathered from a representative cohort of
athletes, coaches, sports science and sports medicine practitioners (n = 241), along with their views on
effectiveness of various current and traditional exercise training modes. Most popular method of testing
and measuring core function was subjective assessment through observation (43%), while a quarter (22%)
believed there was no effective method of measurement. Perceptions of people in sport reflect the scientific debate,
and practitioners have adopted a more functional approach to core stability training. There was strong support for
loaded, compound exercises performed upright, compared to moderate support for traditional core stability exercises.
Half of the participants (50%) in the survey, however, still support a traditional isolation core stability training.

Conclusion: Perceptions in applied practice on core stability training for dynamic athletic performance are aligned to a
large extent to the scientific literature.
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Key points

� Core stability training for healthy and athletic
populations has recently been questioned and
challenged in scientific literature. The narrow
definition of both the anatomy, spinal region
between pelvis and diaphragm, and the method of
training the core through the isolation of muscles in
this region does not relate to full body core function
that characterises dynamic athletic performance.

� The survey reveals that this is reflected in opinions
of people working and participating in sport. Half
of the participants identified the area between and
including the pelvic and shoulder girdles as the core.
Majority supported functional loaded exercises such
farmer’s walk (87%) and barbell squats (84%) as
effective exercises for the development of core
stability.

� Despite the support for a more functional approach,
selected traditional core stability training methods
do retain a certain amount of support; isometric
plank exercise (56%) and unstable stability ball
exercises (41%). Many respondents (42%) felt that
core function should be measured subjectively
through observation of sporting and or exercise
performance.

� Trunk is the preferred name of the anatomical
region for almost half (45%) the participants while
35% supported the term core.

Background
The absence of a universally accepted definition of core
stability (CS) is well noted in the scientific literature [1–8].
A number of these publications have proposed a defin-
ition, focussing either on function, anatomical constitu-
ents of the core or both. Several reviews have questioned
and challenged core stability training (CST) for prevention
and treatment of back pain [9–11] and for improvement
of function and performance in healthy and athletic popu-
lations [1, 5–7, 12–14]. There is a view [1, 7] that CST in
its current form evolved from clinical research [15] in
the 1990s. The application of a clinical exercise
approach in healthy and athletic populations has been
criticised, primarily on the basis that teaching an iso-
lated muscle pattern in uninjured athletes is unfounded
[6, 10, 16]. Despite this, CST as an intervention spread
to all exercise disciplines across clinical, fitness and
sports performance settings with significant commer-
cial interest and support [14].
Most review articles on this topic recognised that the

application of traditional CST in healthy and athletic
groups lack scientific justification [3, 7, 14, 17]. This re-
sulted in a body of research investigating CST in healthy
populations [18–22] along with aforementioned review

articles [1, 6, 7, 12–14]. Reviewers have noted that re-
search cannot progress this topic effectively until there
is a standardised agreement on the anatomical structure
and function of the core [1, 6, 7]. A further limitation re-
ported by most reviewers is the absence of a valid and
reliable test of core function [1, 12]. As a result most re-
search on the topic is methodologically limited [12, 13]
and therefore ineffective in confirming or challenging
the concept and practice of CST for health and per-
formance. A case has been made in the literature for
a more functional definition of anatomy of the core,
applicable to healthy and athletic populations [1, 8].
Similarly, it is proposed that the description of core
function is revised to encompass normal healthy and
athletic human movement [8].
Several comprehensive reviews over the last decade

have examined the research on the effectiveness of
various CST methods for athletic performance [1, 6, 7,
12–14]. Reviews covered the variations in CST including
instability training, trunk rotation exercises, functional
training and exercise intensity. Martuscello et al. pro-
posed a five core exercise classification system based on
their review of the research [6]. The categories were
traditional core exercise (sit-ups), core stability exercises
(isometric plank), ball or device exercises (stability ball),
free weight exercise (squat and deadlift) and noncore
free weight exercise (upper body). In a recent study con-
ducted in an applied performance sport setting, Spencer
et al. proposed a comprehensive spinal exercise classifi-
cation [2]. The classification incorporated static and
dynamic exercises that were either functional or
non-functional according to spinal displacement across
four physical outcomes: mobility, motor control, work
capacity and strength. Both studies [2, 6] clarify the
range and nature of core stability exercises used in
the literature and practice; however, there is concern
that many core stability intervention studies are di-
luted by other exercises and activities preventing a
clear assessment of impact of CST [7, 12, 13]. Fur-
thermore, in athletic populations, a reductionist ap-
proach or selective activation to improve integrated
function is unsubstantiated [1, 2, 7, 12].
The proposed protection against injury and improved

athletic performance from CST has been the subject of
many research studies and review papers. Silfies et al. con-
cluded that following a review of 11 studies, there was
limited evidence to support the use of CST to prevent
upper extremity injury and improve athletic performance
[3]. The authors questioned whether performance in core
stability tests reflected physical or athletic capability and
level of conditioning, rather than solely core stabilization.
Tests included the isometric front and side bridge,
single-leg raise [10], star excursion test [11] and closed
kinetic chain upper extremity stability test [12]. A
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systematic review conducted by Prieske et al. [12] con-
cluded that CST compared with no training or regular
sports-specific training does improve trunk muscle
strength measured predominantly by isometric plank.
However, increases in trunk muscle strength only had a
small effect on physical fitness and athletic performance
measures in trained individuals. CST compared to al-
ternative physical training methods in trained individ-
uals had little impact on trunk muscle strength,
physical fitness and athletic performance measures.
Both studies strongly suggest that high levels of gen-
eral fitness are associated with better performance in
CS tests and therefore a lower risk of injury and bet-
ter athletic performance test scores [3, 12].
Separating the core into smaller local and larger

global muscles has little bearing on core stability for
dynamic movement in healthy people. In Lederman’s
[10] words, this is an anatomical classification with
no functional relevance. The role the core plays in stabilis-
ing the body is dynamic and responsive to many postural
challenges that occur in normal movement and complex,
reactive environment of sport [14]. The concepts of core
strength and core stability have been reviewed the literature
[1, 5, 23]. Whether these are separate attributes [5] or
whether core strength is required for core stability [23] re-
main unresolved questions [1]. In this context, core
stability is an integrated, functional motor task [7, 24]
and training should reflect this according to movement pat-
terns [14, 24], forces [7, 24] and torque and velocity [8, 24].
A limitation identified by Prieske et al. [12] was the

lack of validity of tests used in most of the research.
Trunk muscle strength in most studies was measured by
timed isometric test (prone bridge) which, firstly, does
not reflect force and velocity of movement of dynamic
athletic activity [12]. Secondly, CST programmes in
many of the studies incorporated prone plank or similar
isometric exercises in the exercise intervention, which
rendered timed isometric prone plank an inappropriate
test of trunk muscle strength in these cases. Most
reviews conclude there is not a valid method of measur-
ing the effect of CST on trunk muscle strength within
the context of improving dynamic athletic performance
[1, 13, 14, 17, 25, 26]. As a result, many researchers have
resorted to using conventional performance tests such as
countermovement jump and sprint tests [12, 13, 27].
The first three levels of Martuscello’s [6] core exercise

classification system appear to contravene the estab-
lished overload training principle [28] when applied to
an athletic population. Traditional low load core exer-
cises, minimal range or isometric core stability exercises
and ball/device exercises are all characterised by low
force, low velocity and restricted range of movement.
Hence, these do not represent training overload in prep-
aration for activities that characterise most sports and

athletic events. Researchers have begun to investigate
trunk muscle activation in a number of dynamic, loaded free
weight exercises to determine their suitability for the devel-
opment of dynamic trunk strength and stability [29–37].
Surface electromyography methodology shows there is
good evidence that loaded exercises performed in a stand-
ing position are an effective method of overloading the
trunk stabilization system in a dynamic manner. While
several reviewers recognise this development [6, 7, 14], it
is best summarised by Wirth et al. (2016), ‘… we recom-
mend the use of classical strength-training exercises as
these provide the necessary stimuli to induce the desired
adaptations.’
The flawed foundations of CST for dynamic athletic

performance have been exposed in the scientific litera-
ture. Research is underway to better understand the
most effective training methods for the development of
trunk stability. The aim of this survey is to assess the
current perspectives of CST in the applied sports setting
to determine how well scientific literature informs these
opinions. Our hypothesis is that opinions of those who
work and participate in sport will reflect scientific debate
on key core stability training topics.

Methods
The online survey questionnaire (Additional file 1) was
developed around common themes on core stability as
defined in the current scientific literature. The online
survey was created and distributed using Bristol Online
Survey (BOS) tool (Tower Hill, Bristol, UK). The ques-
tionnaire comprised four sections: anatomy of the core,
function of the core, methods of measuring core func-
tion and methods of training the core. The survey con-
cluded with general questions about the application of
core strength training for dynamic athletic performance.
The survey question on the anatomy of the core is

based on definitions in the literature. We used the defin-
ition of local and global stabilization of intersegmental
spine proposed by Bergmark (1989) [38]; the passive
spinal column, active spinal muscles and neural control
unit as described by Panjabi [39]; axial skeleton between
pelvic and shoulder girdle including rib cage, spinal col-
umn and associated muscle and nerves proposed by
Behm et al. [8]; and lumbo-pelvic hip complex according
to Faries and Greenwood [23]. Categories of exercises
and selection criteria for CST used in the survey ques-
tion were drawn from published studies that investigated
muscle activation using these manipulations. The ques-
tion around core strength and core stability were based
on reviews of this topic [1, 7].
A pilot survey was conducted using the postgraduate

sports studies group (n = 20) at the University of Stirling.
The questionnaire was modified according to feedback
from the pilot survey. Approval for the study was granted
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by the local research ethics committee in accordance with
the Helsinki Declaration (2013) [40].

Participants
The survey was circulated using two methods: shared
with the principal authors’ 700 LinkedIn connections
and sent by email to 220 qualifying contacts. All recipi-
ents were asked to share the survey with all their
contacts that met the criteria of working or participating
in sport.

Statistical analysis
The data analysis was descriptive and frequency was pre-
sented in the tables as number and percentage (n (%)).
Data presented in Figs. 1, 2, 3 and 4 were analysed using
Kruskal-Wallis test to assess support for each statement
on 5-point Likert scale. Data presented as mean and
95% CI. Five-point scale is as follows: 1 = strongly agree
or very effective and 5 = strongly disagree or not effect-
ive at all. Significant differences were further analysed
using Dunn’s multiple comparison post hoc test. Priori
alpha level of significance was set at p < 0.05.

Results
Participants
The online survey was completed by 241 respondents from
a range of disciplines involved in sport (Table 1). The high-
est return by employment group was received from
strength and conditioning coaches (S&CC; 47%) followed
by athletes and players (A&P; 17%) and sport medicine
practitioners and physiotherapists (SM&P; 17%). A quarter
of the cohort were involved in sport at university or
school level (27%). A similar number (33%) were
working in professional sport, either with full-time
professional athletes (21%), or elite funded athletes
in institutes of sport (12%). Volunteers working in

recreational sport made up 15% while 9% were
semi-professional in part-time paid roles.
Responses to all questions were analysed for all re-

spondents (n = 241) and for each of the five demo-
graphic groups. There were no differences between
group responses and total cohort, so data are presented
and discussed for the total cohort.
The majority (87%) were qualified to degree level or

higher, 40% had masters or MSc degrees and 12%
had doctoral degrees. Most respondents (73%) re-
ported to have a discipline specific professional quali-
fication. Respondents reported to have been working
in their specific discipline for an average of 8 years
(range 0–36 years).

Fig. 1 Reported support for a series of statements relating to core
stability and core strength. Data are reported as mean level of
agreement with 95% CI. 1 = strongly agree, 5 = strongly disagree.
Significant differences p < 0.001: a vs b, a vs d, b vs d and c vs d. CI:
confidence interval

Fig. 2 Responses to a series of questions on the effectiveness of
selected categories of exercise in developing core stability for
dynamic athletic performance. Data are reported as mean level of
effectiveness with 95% CI. 1 = very effective, 5 = not effective at all.
Significant differences p < 0.001: a vs c, d, e, f, g and h; b vs c, d, e, f,
g and h; c vs d and f; d vs e, f and h; e vs f; f vs g and h; g vs h. CI:
confidence interval

Fig. 3 Responses to which criteria should inform exercise selection
for the development of core stability for dynamic athletic
performance. Data are reported as mean level of agreement
with 95% CI. 1 = strongly agree, 5 = strongly disagree. Significant
differences p < 0.05: a vs c, a vs d, b vs c, b vs d and c vs d.
CI: confidence interval
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Anatomy and name of the core
In response to the question on the anatomical region
that comprised the core, half of the respondents (50%)
identified the region between and including the pelvic
and shoulder girdles and associated muscles and nerves
(Table 2). Approximately, a quarter of respondents
(27%) identified the region between the diaphragm and
pelvic floor and associated muscles and nerves as the
core, while for 18%, this was the lumbar spine, pelvis,
hip joints and related muscles and nerves. Interestingly,
more participants (45%) felt that the region should be
called the trunk while 35% supported the term core and
18% preferred torso.

Methods of measuring core function
Respondents were asked to identify the most effective
method of measuring core stability in a healthy, unin-
jured person. Almost a quarter (22%) reported that there
was no effective method to test core stability. A number
(43%) of the respondents proposed subjective assessment
of core stability through observation. Of these, 17% sug-
gested observation of sport-specific movement or exer-
cise technique and 26%, observation of ground-based
loaded barbell exercises. Objective assessments were
proposed by 32% and included the timed isometric plank
(19%), functional movement screen (9%) and isometric
trunk bracing with biofeedback (4%).

Core function and core stability training
Core stability and core strength (Fig. 1)
The majority believed that core strength is required for
stability (mean 1.9, 95% CI 1.8–2.0, p < 0.001) and far
fewer agreed that these were separate attributes (mean
2.6, 95% CI 2.4–2.7, p < 0.001) (Fig. 1). Most participants
disagreed with the statement that core strength was re-
quired for athletic performance, but not everyday life
(mean 3.9, 95% CI 3.7–4.0, p < 0.001).

The effectiveness of certain exercise categories on CST
(Fig. 2)
The exercise categories deemed most effective in devel-
oping core stability for dynamic athletic performance
were (Fig. 2) squats and Olympic lifts (mean 1.7, 95% CI,
1.6–1.8, p < 0.001) and farmers walk (mean 1.7, 95% CI

Fig. 4 Responses to a series of statements relating to ground-based
loaded free barbell exercises and trunk muscle activation. Data are
reported as mean level of agreement with 95% CI. 1 = strongly
agree, 5 = strongly disagree. Significant differences p < 0.001: a vs b,
a vs d, b vs c, c vs d. CI: confidence interval

Table 1 (A) Employment and (B) education information presented for all respondents (total and group)

Total S&CC A&P SM&P SP&B SC

All respondents 241 114 (47) 42 (17) 41 (17) 24 (10) 20 (8)

A.

Academic, university or school sport role 66 (27) 29 (12) 10 (4) 11 (5) 10 (4) 6 (2)

Professional: full-time paid position, full-time paid athletes 50 (21) 37 (15) 0 (0) 9 (4) 3 (1) 1 (0)

Volunteer, recreational club sport 35 (15) 4 (2) 21 (9) 6 (2) 2 (1) 2 (1)

Elite professional: full-time paid position, funded, amateur
athletes (Institute)

30 (12) 15 (6) 1 (0) 4 (2) 7 (3) 3 (1)

Elite non-professional, part-time, regional or national athletes 30 (12) 16 (7) 5 (2) 7 (3) 0 (0) 2 (1)

Semi-professional: paid part-time position 22 (9) 9 (4) 2 (1) 3 (1) 2 (1) 6 (2)

Other 8 (3) 4 (2) 3 (1) 1 (0) 0 (0) 0 (0)

B.

MSc/Masters 96 (40) 51 (21) 7 (3) 20 (8) 13 (5) 5 (2)

Degree/Hons 84 (35) 41 (17) 17 (7) 9 (4) 7 (3) 10 (4)

PhD 28 (12) 10 (4) 2 (1) 10 (4) 4 (2) 2 (1)

Diploma 27 (11) 9 (4) 13 (5) 2 (1) 0 (0) 3 (1)

Other 6 (2) 3 (1) 3 (1) 0 (0) 0 (0) 0 (0)

Data presented as number and percentage (n (%)) of all respondents. Italics represent the highest response for the column
S&CC strength and conditioning coaches, A&P athletes and players, SM&P sports medicine practitioners and physiotherapists, SP&B sports physiologists and
biomechanists, SC sports coaches
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1.6–1.9, p < 0.001). Conversely, support was moderate to
low for traditional core stability exercises, namely sus-
pended compound exercises (mean 2.2, 95% CI 2.1–
2.3, p < 0.001), isometric plank (mean 2.5, 95% CI,
2.4–2.6, p < 0.001), hanging leg raise (mean 2.8, 95%
CI 2.7–2.9, p < 0.001) and instability abdominal exer-
cises (mean 2.8, 95% CI 2.7–3.0, p < 0.001). Partici-
pants identified two exercise categories that were
more ineffective than effective; abdominal bracing
(mean 3.2, 95% CI, 3.0–3.3, p < 0.001) and sit-ups
(mean 3.7, 95% CI, 3.5–3.8, p < 0.001).

The exercise selection criteria for effective CST (Fig. 3)
Correct movement pattern (mean 1.8, 95% CI 1.7–1.9,
p < 0.001) was identified as most important exercise selec-
tion criteria for development of core stability for dynamic
athletic performance (Fig. 3). Exercises characterised by
forces that were equal to or greater than the force in the
sport or event, were supported by 60% of the cohort
(mean 2.4, 95% CI 2.3–2.5, p < 0.05). Most were either un-
decided or disagreed on the importance of velocity of
movement (mean 2.6, 95% CI 2.5–2.8, p < 0.05) and
sustained isometric contraction (mean 2.7, 95% CI
2.6–2.8, p < 0.05) in core stability exercises for athletic
performance.

Ground-based free barbell exercises and trunk muscle
activation (Fig. 4)
Most participants agreed that increases in external load
in standing barbell exercises would increase trunk
muscle activation (mean 2.0, 95% CI 1.9–2.1, p < 0.001)

(Fig. 4). Equally important in this form of resistance
training was correct postural control (mean 2.0, 95% CI
1.9–2.2, p < 0.001). Slow controlled movement (mean
2.8, 95% CI 2.7–2.9, p < 0.001) and increases in velocity
(mean 2.6, 95% CI 2.5–2. 8, p < 0.001) of strength train-
ing exercises were not seen as important in eliciting
trunk muscle activation in ground-based free barbell
exercises.
Finally, results for the general questions on the appli-

cation of core stability exercises are presented on Table 3.
Most participants (85%) felt that it was appropriate to
include specific exercises to train core stability in
healthy, uninjured individuals. Less than half (45%) felt
that it was effective to exercise the core stabilisers in iso-
lation, while a majority (65%) agreed that core stability is
developed during normal progressive exercise training.

Discussion
Core stability training for healthy and athletic popula-
tions has been scrutinised and challenged in recent years
in scientific literature [6, 7, 10, 13, 41–43]. Descriptions
of the core by anatomic structures are entirely
dependent on the chosen definition of core function [1].
The original narrow definition presented in early re-
search focussed on the spinal region between the dia-
phragm and pelvis [44]. This approach identified
muscular and neural dysfunction associated with back
pain. Hence, core function was isolated to this region
and proposed training intervention isolated the involved
muscles. This approach did not transfer to healthy indi-
viduals and athletes where core function is obviously at
the centre of dynamic movement characterised by force
and velocity through the length of the body [10]. Core
stability described by Fletcher (2016), ‘…is the kinetic

Table 2 Responses to the question of what (A) anatomic region
makes up the core and (B) which term best describes this
anatomical region

Total

A.

The spine and the associated muscles and nerves 5 (2)

The lumbar spine, pelvic and hip joints and associated
muscles and nerves

43 (18)

The region between and including the pelvic and
shoulder girdles and associated muscles and nerves

120 (50)

The region between and diaphragm and pelvic floor
and associated muscles and nerves

65 (27)

Other 8 (3)

B.

Torso 43 (18)

Trunk 108 (45)

Core 85 (35)

Upper limb 0 (0)

Other 5 (2)

Data presented as number and percentage (n (%)) of all respondents. Italics
represent the highest response

Table 3 Answer to a series of questions about the application
of core stability

Total

Do you think it is necessary to include
specific exercises to train core stability
in a healthy, uninjured athlete’s exercise
programme?

Yes 206 (85)

No 30 (12)

Do not know 5 (1)

Do you think it is possible to isolate
and train the core stabilization system?

Yes 120 (50)

No 82 (34)

Do not know 39 (16)

Do you think it is effective to isolate
and train the core stabilization system?

Yes 89 (37)

No 108 (45)

Do not know 44 (18)

Do you think that the core stability is
automatically developed during normal,
progressive exercise training?

Yes 157 (65)

No 67 (28)

Do not know 17 (7)

Data presented as number and percentage (n (%)) of all respondents. Italics
represent the highest response for each question
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link transferring torques between the upper and lower
extremities in sporting actions’ [45]. Consequently,
constituent anatomy of the core is described in the
literature to reflect, i.e. region between and including
pelvic and shoulder girdles and associated skeleton,
muscles and nerves [1, 8]. Our survey results suggest
this shift has permeated applied sports setting; half of
the respondents agreed with this definition of the
core while a quarter identified with the original de-
scription, i.e. structures between diaphragm and pelvic
floor including muscles and nerves.
Surveys have been used effectively to assess nutri-

tion knowledge [46] and understanding of scientific
training principles [47] in the workplace. Response
rate to our survey (n = 241) was good in comparison
to similar surveys which gathered information from
both athletes (Wade et al., n = 57) [48] and people
working in sport (Taylor et al., n = 28) [49], (Durell et
al., n = 137) [47] and (Torres-McGehee et al., n = 579)
[46]. Furthermore, the representative quality of our
cohort is reflected by the spread of respondents, with
33% in full-time professional positions, either working
with professional athletes (21%) or full-time Institute
of sport athletes (12%). A quarter (27%) were involved
in sport in an academic setting, either school or uni-
versity and a quarter (27%) were in non-professional
roles, either volunteering (15%) or part-time (12%).
The majority were qualified to degree level (87%) and
half had postgraduate degrees (52%). Most had an
industry-specific qualification and on average were
well experienced (mean 8 years) in their discipline.
The cohort is therefore representative of people work-
ing and participating in sport. Furthermore, they were
reasonably well informed, indicating survey results
that represent unbiased perceptions of the wider
population.
Our survey investigated perceptions around core

stability and core strength (Fig. 1). The majority be-
lieved that core strength is required for stability and
far fewer agreed that these were separate attributes. In
a comprehensive review Hibbs et al. [1] concluded that
these two terms had yet to be clearly defined, in fact
they failed to identify any characteristics that differen-
tiated exercises for core strength and core stability.
These researchers reviewed studies that investigated
core stability in response to loaded resistance exercises
and traditional core stability exercises. A later system-
atic review proposed a five-level core exercise classifi-
cation system that progressed from traditional core
exercises to noncore free weight exercises [6]. Inter-
estingly the fourth classification level was free weight
exercises defined as ‘dynamic, externally loaded, intent
to activate lower body and core muscles’. Both these
reviews suggest that the concept of strength in the

term core strength relates to the overarching nature of
the exercise, rather than the impact on or adaptation
in the core stabilization system.
While core strength and core stability may well be

viewed by some in our survey as separate entities, this
has yet to be demonstrated scientifically [1]. The selec-
tion of exercises used to develop core stability for
healthy function can range from low load, minimal range
of movement, abdominal bracing exercises to dynamic,
loaded resistance exercises [6]. Research has not been
able to identify and describe adaptations that occur in
muscles responsible for stabilising the core as a conse-
quence of different exercise modes [1, 12]. It is recog-
nised though that effective core stability is the control of
movement, including high force and high velocity
movement, generated by interaction between axial and
appendicular skeletons [5, 7, 8]. Most survey responses
disagreed with the statement that core strength was re-
quired for athletic performance, but not everyday life.
This demonstrated alignment with the principle that
core stability underpins both healthy function and dy-
namic athletic performance. In effect core strength and
core stability are synonyms and are used accordingly in
the literature [1, 5, 23]. This is reflected in the survey
question seeking to determine whether core stability and
strength are separate attributes. Responses were mixed
with just over half (57%) in agreement and the rest ei-
ther undecided (16%) or in disagreement (27%).
In our survey questions that assessed support for ex-

ercise categories most effective in developing core sta-
bility for dynamic athletic performance, there was
clearly more support for functional, loaded exercises
(Fig. 2). Squats and Olympic lifts and farmers walk
that engage the full kinetic chain. Conversely support
was moderate to low for traditional, non-functional
core stability exercises, namely suspended compound
exercises, isometric plank, hanging leg raise, and in-
stability abdominal exercises. Two exercise categories,
namely abdominal bracing and sit-ups, were regarded
as ineffective rather than effective, The survey results
therefore reflect the many reviews that highlighted a
lack of evidence to support traditional CST for healthy
individuals and recommended loaded, dynamic exercises
that engage the full kinetic chain [1, 6, 7, 12–14, 45].
Correct movement pattern was identified as most im-

portant exercise selection criteria for development of
core stability for dynamic athletic performance (Fig. 3).
Exercises characterised by forces that were equal to or
greater than force in the sport or event, were supported
by 60% of the cohort. Most were either undecided or
disagreed on whether velocity of movement and sus-
tained isometric contraction were important in core sta-
bility exercises for athletic performance. Kibler et al.
(2006) accurately describes the exercise criteria for
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effective CST: ‘integrated activation of multiple seg-
ments’ providing ‘force generation’ that produces ‘inter-
active movement’ characterised by ‘proximal stability
and distal mobility’ [5]. Core stability development is
therefore integral to all dynamic exercise training and
sports specific movement, while quality of training effect
is determined by specificity of movement, forces and
velocity.
There is growing evidence in the literature that external

load in free barbell exercises performed in a standing pos-
ition is related to muscle activation of trunk stabilisers
[29, 30, 33, 34, 37, 50]. Impact of this stimulus on core sta-
bility in dynamic athletic performance is more difficult to
demonstrate. In a recent systematic review, Prieske et al.
(2016) reported a large effect for CST on trunk muscle
strength measured by timed isometric plank, compared to
no or only regular sports training [12]. When compared
to alternative training, such as whole-body strength train-
ing, CST had a small sized effect on trunk muscle
strength. CST had a small sized effect on muscle strength
(e.g. Squat 1RM), a medium sized effect on muscle power
(e.g. countermovement jump) and a small sized effect on
athletic performance (e.g. 5000 m run time). They con-
cluded that CST for healthy individuals, in the absence of
any other fitness training, would increase trunk muscle
strength. However, when combined with other training,
such as whole-body strength training, CST is not effective.
They also propose that increases in trunk muscle strength
from CST, has limited effect on physical fitness and athlete
performance in trained individuals. Findings from the sur-
vey indicate that this information has begun to inform ap-
plied practice (Fig. 4). Most agreed that increases in
external load in standing barbell exercises would increase
trunk muscle activation. Equally important in this form of
resistance training was correct postural control.
The survey included a series of questions (yes/no/do

not know) investigating perceptions on the application
of CST for dynamic athletic performance (Table 3). Most
(85%) of the cohort felt it necessary to include specific
exercises to train core stability in healthy, uninjured ath-
letes. With reference to traditional CST, two questions
were asked; whether it was possible to isolate and train
the core stabilization system, and whether this approach
was effective. Half of the group believed that this was
possible, 34% felt not and the rest were undecided
(16%). The isolated training approach was regarded as
not effective by 45%, and 37% were supportive. Prieske’s
review highlighted growing evidence that specific, trad-
itional CST is ineffective in healthy individual and ath-
letes [12]. They also that reported that regular sports
training and commonly used supplementary training,
such as whole-body strength training, presents superior
stimuli, that adhere to the overload training principle
[28], for development of core stability in this population.

Most survey respondents (65%) concurred with this by
agreeing that core stability is developed through normal,
progressive exercise training. The perception in applied
practice conflicts with scientific literature with regards
effectiveness of traditional core stability exercises for
athletic performance. The majority (85%) of survey re-
spondents believed that specific exercises were required
to train core stability and half supported the use of exer-
cises that isolated trunk stabilisers.
A limitation of the survey was the method of recruit-

ing participants through email and direct messaging on
an online professional community platform (LinkedIn).
Emails and notifications may have been filtered to spam
or junk folders and not reached intended participants.
Participants were directed to an online survey, which
may have served as a deterrent. Despite this, the number
and quality of participants was good in comparison to
similar surveys. A further limitation may well have been
the inconsistency of prevailing terminology around the
topic of CST and broader area of exercise and fitness.
Steps were taken to adhere to the most commonly used
terms from the scientific literature in the survey.

Conclusion
The survey has provided evidence that a revised, more
functional definition of core function and constituent anat-
omy described in the literature is starting to be used in the
practical setting. Almost half (45%) of the respondents pre-
ferred trunk as the name for this anatomical region over
core (35%). The absence of a valid objective method of
measuring core function (22%) means that the most effect-
ive way is through observation (43%) of exercise and ath-
letic movement. A quarter (26%) proposed subjective
assessment of movement in upright loaded resistance exer-
cises as the most effective method of measuring core func-
tion. This coincides with the strong shift in perceptions
towards more functional approach to core stability training
for dynamic athletic performance. Loaded exercises in an
upright position, such as barbell squat and farmers walk,
were viewed as effective training methods as proposed in
the literature [7, 8, 14]. Core stability as an integrated, func-
tional motor task [7], with training reflecting this according
to movement patterns [14], forces [7], torque and velocity
[8], appear to be guiding practice in the workplace accord-
ing to the survey. These findings along with strong support
for developing core stability through normal progressive
exercise training, means we found in favour of our hy-
pothesis. Some support remained for traditional CST
through specific exercises (85%) and the isolation ap-
proach (50%). Our findings lead to the following recom-
mendations: Research to continue into efficacy of
activating trunk stabilisers through selected sport specific
and supplementary training modalities, including com-
pound, loaded strength exercises. Continue to investigate
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the transfer of training induced trunk muscle activation to
functional performance, specifically functional stability.
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Study 3: Determine reliability of trunk muscle 
electromyography in the squat exercise 
 

The survey findings confirmed a connection between perceptions and practices in the 

applied setting and key aspects of trunk stability in scientific literature.  The survey found 

good support for more functional, integrated anatomical definition of the trunk and 

consequently, exercise selection for developing trunk stability.  There was clear support for 

compound loaded exercises and a recognition of the role of force, velocity and correct 

technical movement in exercise training for trunk stability.  However, strong support 

remained for traditional CST training including the isolation approach.   

There are two possible explanations for this ambivalence; firstly, this may reflect time 

taken for scientific research to fully effect change in applied setting and secondly, 

illustrates absence of valid and verifiable research based exercise guidelines to 

comprehensively replace traditional CST.  The recommendations from the survey were to 

continue to investigate and demonstrate efficacy of loaded, upright compound exercises in 

activating trunk stabilizers and to demonstrate transfer of this training stimulus to athletic 

function and performance.  

The review study recognised variability in research tools used in published research on 

trunk muscle activation in back squat.  EMG data analysis and presentation included 

integrated EMG, where raw EMG signal was reported, and normalized EMG.  Two 

methods of normalization were reported; EMG in test effort is normalized to EMG during 

a maximal voluntary isometric contraction (MVIC) or normalized to a pre-identified signal 

during a dynamic, submaximal test effort. 

Previous work from our laboratory demonstrated that submaximal, dynamic EMG 

normalization methods were more reliable and sensitive than normalizing to maximal 

isometric EMG methods (Balshaw and Hunter, 2012). This was found for vastus lateralis 

and biceps femoris activation in the back squat at moderate (65 & 75% 1RM) and heavy 

(85 & 95% 1RM) loads.  Prior to that, dynamic, submaximal normalization of lower limb 

muscle EMG was found to be more effective than MVIC method in cycling (Albertus-

Kajee et al., 2010) and running (Albertus-Kajee et al., 2011).  Dankaerts et al (2004) 

reported greater within and between day reliability for dynamic submaximal EMG 
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normalization than MVIC for trunk muscles in healthy and back pain patients (Dankaerts 

et al., 2004).   

In an extensive review of EMG normalization procedures, Burden (2010) determined that 

accuracy MVC forces and torques were dependant on training status and could therefore be 

20-40% less than absolute maximal values (Burden, 2010).  Hence, using MVC generated 

EMG as the denominator in the normalization process may not represent a relative 

consistent anchor for submaximal EMG analysis for a mixed group of participants.  

Furthermore, they concluded that normalizing to mean EMG captured in submaximal 

dynamic execution of the task under investigation is suitable for within trial analysis, but 

not between trails where electrodes are re-applied.  Kinematic stability and consistency of 

the back squat technique within and between participants can be controlled through 

standardising range of movement or squat depth and using the same relative external load.  

As a result, and based on evidence supporting dynamic, submaximal EMG normalization 

we selected to normalize EMG for the 3 neuromuscular studies to mean concentric EMG at 

65% 1RM back squat.  This meant the within each muscle group mean eccentric and 

concentric EMG at 75, 85 and 95% 1RM was normalized to the mean concentric EMG at 

65% 1RM    

There was also variability in methods of determining back squat test loads, which may 

have undermined reliability and value of findings.  Particularly after having established 

that trunk muscle activation is sensitive to load increments. Comparing activation in 

response to absolute loads does not account for individual differences in strength levels.  

This is overcome by using relative test loads calculated from individual maximal strength 

test scores corrected for body mass.  Furthermore, there were no reports on the reliability 

and repeatability of measuring trunk muscle activation by sEMG in the back squat. 

Based on the review we established a standard methodology for all subsequent studies.  

Selected muscle sites were based on previous published research (Anderson and Behm, 

2005; Hamlyn, Behm and Young, 2007) and guidelines from the SENIAM (Surface 

Electromyography for non-Invasive Assessment of Muscle) (Hermens et al., 1999) 

(Appendix 3).  The detailed review of the literature leading to the selection of these muscle 

sites is presented in the introduction of the thesis.  Synchronised linear encoder signal was 

used to determine mean root mean square (RMS) processed EMG or muscle activation 

data for eccentric and concentric phases of the squat (Appendix 4).   
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jklmnomlmpqrstuvwxyvz{lk|lk{pur}qr~un��qmwp�k�rn�k��n{x��vnp|�ku{mzk��������������������������������������
�� ¡¢£¤¡¡

44



�����������	
�
���	��� ������������������

��������� ���!�"��#�$#�# %�&'�(�)*��+),-���.�/* �0�12&� ,�+�3

456789767:;�<=�>?@AB�C@DE65�F65E:?<G;<H?8IJ;�7A�:J5�K<8L5L�M8EB�NO@8:�FP5?E7D5
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î��Ü�÷øî� ø�ùî��Ü�÷�î� ø�øîø�Ü�÷
î	
46



�����������	
�
���	��� ������������������

��������� ���!�"��#�$#�# %�&'�(�)*��+),-���.�/* �0�12&� ,�+�3
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4567896:;<=>?@A<B�?>@CDE>CFGHIJKHG�LJ�MJNO�PKQRGSGKLHTUVW�XYZ[\V]Û UW_�YW�_̀U�U]]UW_aY]�[̀VZU�XU]\YWUX�bc�VW�VdUaefgh�ij�kl�mm�nofpgh�qqrsl�mmt�uvwx�hfyx�z{�|�vpyohmhpw�vp�}~mf��joim�lk�wi��k�|�}~mf��n�n��q�t�����{l������{�{kt�n�����<���������xhoh�uf��f��i�f��vgpv�yfpw�vpyohf�h�vp�wvmh�f��f�oh���w�ij�YW]aUVZUZ�YW�\�VX���a�_̀U�U]]UW_aY]�[̀VZU���n��q�t�������������{�{kt�������<����@t��~hfp�hyyhpwovy��h�iyvw���hy�vph���vgpv�yfpw���uvwx�YW]aUVZUX�\�VX��Y_̀� ¡¢£�¤¡¥�wh�wvpg�oh�hf�vpg�wxh��vgpv�yfpw�n����{�{kt�vpyohf�h��iyy�ooh��fw�sk�|�fp���k�|�}~mf��n�����<����B���¦yyhpwovy��iuho�vpyohf�h���vgpv�yfpw���n����{�{kt�f�ipg�v�h��if��������<����§t��̈ i��vgpv�yfpw��v©hohpyh��io�vpwhofywvip��uhoh��bZUadUX�bU_�UUW�_UZ_�XVcZ���a�VWc����_̀U�U]]UW_aY]�ªYWÛ V_Y]�dVaYVb\UZ������«@�¬>���
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Study 4: Comparison of trunk muscle activation in back and 
hack squat 

The most obvious characteristic of loaded free barbell squat is the requirement of the trunk, 

as an integral part of the kinetic chain, to stabilize the load through the full range of 

movement.  Many previous studies investigating core stability compared stable squats to 

those performed on an unstable surface.  Findings indicated that instability compromised 

force and power production in the squat without necessarily increasing trunk muscle 

activation.  Furthermore, previous research had shown no difference in trunk muscle 

activation between the more stable Smith machine squat and free barbell squat at the same 

relative load (Schwanbeck, Chilibeck and Binsted, 2009).  Hence, comparison of the free 

barbell squat to a more supported version, the hack squat, would facilitate the evaluation of 

the challenge on trunk stabilizers posed by the free barbell (Appendix 2).  The use of 

equivalent relative loads meant that the absolute load in hack squat would be greater than 

back squat, suggesting higher lower limb activation in hack squat versus back squat.   

In the neuromuscular trials of study 4, back and hack squat test order was fixed.  This may 

be seen as a limitation according to strict scientific research design suggesting random test 

order.  Similarly, in study 5, squat and countermovement jump tests preceded loaded back 

squats in all neuromuscular tests. In both cases this was done to prevent postactivation 

potentiation (PAP), defined as ‘transient increase in muscle contractile performance after 

previous contractile activity’ (Sale, 2002).  Sale (2002) proposed that prior heavy load 

efforts increase activation low frequency portion of the force / frequency curve (Sale, 

2002).  Hence, performing hack squat trials at the same relative, but higher absolute loads 

prior to the back squat trials would arguably increase activation in subsequent back squat 

performance.  Furthermore, it is well established that prior heavy squat efforts increase 

countermovement jump performance (Mitchell and Sale, 2011; Esformes and Bampouras, 

2013).  Consequently, in study 4 and 5 test order was fixed for all neuromuscular trails to 

ensure that hack squat preceded back squat, squat test loads were incremental and body 

weight jumps preceded squat trials. 

The purpose of the fourth study was to compare trunk muscle activation in the free barbell 

back squat to the machine hack squat at 4 equivalent, moderate to heavy loads.   
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Abstract 

The hack squat (HS) is likely to produce a greater 1 repetition maximum (1RM) compared to 

the back squat (BS). This can be attributed to the support of the trunk during the HS 

compared to no support during BS. This support however, may compromise trunk muscle 

activation (TMA), therefore producing different training adaptations. Accordingly, the 

purpose of this study was to compare 1RM in BS and HS and TMA at 4 relative loads, 65,  

75, 85 and 95% of maximal system mass. Ten males completed 3 test sessions:1) BS and HS 

1RM, 2) HS & BS neuromuscular test familiarization, and, 3) Neuromuscular test for 3 reps 

at 4 loads for BS and HS. BS TMA was significantly greater (p<0.05) than HS for all muscles 

and phases except rectus abdominus in concentric phase. TMA increased (p<0.05) with load 

in all muscles for both exercises and phases apart from lumbar sacral erector spinae in HS 

eccentric phase. Mean HS 1RM and submaximal loads were significantly (p<0.0001) higher 

than the equivalent BS loads. Duration of the eccentric phase was higher (p<0.01) in HS than 

BS but not different in concentric phase. Duration increased significantly (p<0.01) with load 

in both exercises and both phases. Despite higher absolute tests loads in HS, TMA was higher 

in BS. TMA is sensitive to load in both exercises. BS is more effective than HS in activating 

the muscles of the trunk and therefore arguably more effective in developing trunk strength 

and stability for dynamic athletic performance. 

Key words: back squat, hack squat, trunk muscles, neuromuscular, electromyography, core 

stability 
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INTRODUCTION 

The squat exercise is a compound movement that engages all muscles below the shoulders 

including the lower limb. The primary purpose of both the back squat (BS) and hack squat 

(HS) are to develop strength and power in the lower limb
1–4

. Both are widely used for the 

development of performance capabilities for a variety of sports
2,5 

and as a rehabilitative 

exercise for lower limb injuries and post-surgical programmes
1,6,7

. Recent research has 

focused on loaded compound exercises such the squat and deadlift as a method of developing 

trunk strength and stability. The hack squat (HS) has been used in a number of research 

training studies
8–10

, however no trunk muscle activation data exists for HS.

Research investigating the BS
11–15

, front squat
12,13,16

, and overhead squat
15 

have confirmed 

that the loaded, free barbell squat is an effective method of activating the stabilizing muscles 

of the trunk. There is also evidence that in BS magnitude of activation across the majority of 

muscle sites is sensitive to the external load
1,11,17,18

. As a result, a number of researchers 

concluded that BS is an effective method for developing dynamic trunk strength and stability 

for healthy function and athletic performance
11,17–19

.

There are variations of the squat exercise performed in a machine supported set-up. These 

include leg press
6,20

, HS
4 
and Smith machine squats

14,21–23 
and are generally performed at 

higher absolute loads than BS
14,21

. It is believed that these more stable versions of the squat 

compromise and reduce TMA due to biomechanical set-up and support
22,23

. Fletcher and 

Bagley (2014)
14 

reported an 11% greater Smith machine one repetition maximum (1RM) 

compared to BS. Despite this, erector spinae electromyography (EMG activity was 

significantly greater in BS compared to the Smith machine squat 1RM test. 

The HS offers more support than the Smith machine squat; it is commonly viewed as a safe 

version of the loaded squat exercise, especially suitable in the absence of established barbell 

squat technique and for rehabilitation programmes
4,24

. The HS is performed in a machine 

angled posteriorly at 45
o 

where force is applied and resisted through padded shoulder yokes. 

The participant’s back is positioned on a padded board offering greater support to the trunk 

during squat movement
4 
contributing to higher loading capacity compared to Smith machine 

squat and BS. To our knowledge, there is no research comparing 1RM in HS to BS.  

However, untrained subjects developed a 1RM of over 250 kg after 8 weeks HS training
8,9

. 

This is equivalent to a relative 1RM of approximately 3.3 times body mass, greater that any 
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previously reported BS relative 1RM. This suggests the supported characteristic of HS is 

accompanied by the ability to lift greater maximal loads than in free bar BS. 

Centre of gravity of the person and external load, or the system load, in BS must remain over 

base of support
25 

to prevent failure and or injury. As a result, force is resisted in the eccentric 

phase and expressed in the concentric phase through the line of gravity which determines  

how the loads are experienced by the affected muscles. When squatting in a linear motion 

machine, such as a Smith Machine or HS, the centre or line of gravity can safely sit outside 

the foot stance or the point where force is applied. This is the result of anterior  foot  

placement which is made possible by the supported trunk and fixed external load. This 

introduces horizontal forces which potentially change load direction experienced by muscles 

of the body
25

, including the prime movers and trunk stabilizers. To our knowledge there is 

no research describing or quantifying either trunk or lower limb muscle activation in HS. 

Using a two dimensional model of a free body diagram, Abelbeck (2002)
25 

assessed 

moments and work of the hip and knee joints for 6 foot positions anterior to the line of 

gravity. Position 1  was  under  the  line  of  gravity and  at  position  6,  knees  were  flexed  

to  90
o  

and thighs

horizontal. Each foot position away from the line of gravity resulted in a greater moment 

about both joints. Net work done at the knee decreased while it increased at the hip with 

each anterior foot position. HS is a tilted and supported version of a linear motion machine 

squat. Escamilla
6 

(1998) measured activation of 6 muscles of the lower limb in leg press and 

squat 

exercise at 12RM. Foot placement in the leg press was anterior to the line of gravity 

equivalent to position 6 in Ablebeck’s
25 

(2002) study. Apart from biceps  femoris  in 

extension where activation was greater in the squat than leg press, there were no significant 

differences in activation between the two exercises for all muscles in both flexion and 

extension. 

It has been established that TMA, across majority of muscle sites, is sensitive to increases in 

external load in BS
1,11,17,18

. It is also accepted that load capacity of HS is greater than for 

BS
8,9

. In the BS, stabilization of the trunk is necessary to ensure that the centre of gravity of 

the system load remain over the base of support for the eccentric and concentric phases. 

Anterior foot placement in the HS, facilitated by fixed external load and trunk 
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support, resulted in higher work at the hip joint
25 

but no meaningful increase in activation

of leg muscles
6
. Trunk muscle activation under these conditions is unknown.   While

there is an 

appreciation of these differences in applied strength and conditioning, these have not been 

measured and quantified. 

Accordingly, we hypothesize that the requirement to stabilize the bar in BS places greater 

demands on muscles of the trunk than greater absolute loads in the more supported HS. In 

accordance with this, objectives of the study were to; 1) determine 1RM for HS and BS  

within a strength trained cohort, 2) compare TMA in HS and BS in a range of relatively 

equivalent external loads, and 3) determine whether TMA was load sensitive in HS and 

BS. 

METHODS 

Experimental Approach to the Problem 

All subjects attended 3 test sessions (Figure. 1). In the first, a 1RM test was conducted for 

BS and HS. In session 2, subjects completed the neuromuscular test protocol 

familiarization with loads calculated from the 1RM. In the third session, the 

neuromuscular test protocol was repeated while EMG and kinematic measures were 

taken. All tests were conducted 5 to 7 days apart. 

All BS repetitions were performed according to technique described by Earle and Baechle 

(2000)
26

. Starting with the barbell in high bar position, on the trapezius across the back of

the shoulders with hip and knee joints fully extended. Feet were placed shoulder width 

apart with legs externally rotated by 3-5
o 
so that that the toes were turned slightly out.

Hack squats
24 

were performed with the back placed against the padded surface, shoulders

wedged under the yokes and feet placed shoulder width apart to the front of the footplate. 

Both squat versions comprised of a descent through knee and hip flexion to where mid-

point of the thigh joint  was below mid-point of the knee joint with a minimum knee 

flexion of 90
o
. The transition between the descent and the ascent was visually assessed as

the point where the top of the thighs were horizontal in BS and parallel to the footplate in 

HS. The load was returned to the start position by extending the hip and knees in a 

controlled manner as fast as possible. All BS were performed using barbells and discs 

approved by International Weightlifting Federation (Eleiko, Sweden). BS tests were 

conducted in a safety power cage (FT700 Power Cage, Fitness Technology, Skye, 
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Australia) and HS in a plate loaded Bodymax CF800 Leg Press/Hack Squat Machine. 

Figure 1. Experimental design illustrating the timing and content of the three test 
sessions and the standardised warm-up. 1RM – 1 repetition maximum. 

Subjects 

Ten males actively participating in regular strength training with at least 1 years’ 

experience in BS exercise were recruited for the study. Using G*Power software (3.1) we 

calculated a minimum of 10 participants was required for 90% power from the effect size 

of RMS  increase in the eccentric phase of BS from 75-95% load
17

. Subject characteristics 

were; age: 27 ± 8 years, body mass: 86 ± 8 kg, squat training age: 6 ± 5 years, BS 1RM: 

142 ± 29 kg, relative BS 1RM: 1.7 ± 0.3, HS 1RM: 171 ± 34 kg and relative HS 1RM: 2.0 

± 0.4. In accordance with Declaration of Helsinki (2013)
27

, the local research ethics 

committee granted 

approval for the study. The risks and potential benefits of the study were explained to all 

subjects prior to signing an informed consent form. Signed parental consent was recorded 

for the subjects under the age of 18. Subjects abstained from strenuous exercise and 

followed usual dietary habits for 24 hours prior to test sessions which were conducted at 

the same time of day to account for circadian variation
28

.

Procedures 

1RM testing 

Following a standardised warm-up of 5 minutes stationary cycling and 10 minutes body 

weight exercises, subjects completed BS 1RM test according to an established protocol
26

. 

Barbell warm-up comprised 3-5 sets of diminishing repetitions at progressive loads 

determined for each subject from previous 1RM test results and current training loads. BS 

1RM test was performed first followed by HS 1RM to avoid possible potentiation effect 
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of higher absolute loads reported for HS
8,9

. 1RM test scores were recorded as highest load

lifted successfully through required range of movement within 4 attempts in BS and HS. 

Subjects were instructed to control cadence of descent and perform ascent as fast as 

possible under control. Three minute rest periods were allocated between each warm-up 

and test set
24,29–31

. Correct squat depth for both exercises was established during warm-up

sets and reinforced during testing by an experienced strength coach, the principle 

investigator, who conducted all tests. 

Neuromuscular test load calculation 

Test loads for sessions 2 and 3 were calculated using the system mass (SM)
17,32 

approach.

This is calculated by adding 88.6% of body mass to 1RM, which is equivalent to body 

mass minus the mass of the shanks and  feet.   This represents total load  lifted  vertically 

when performing the squat
32

. The neuromuscular test protocol comprised 2 BS warm-up

sets of 10 repetitions at 45 and 55% SM, followed by 4 sets of 3 repetitions at 65, 75, 85 

and 95% SM for BS and then HS. Back squat and HS test loads were determined 

according to following equation: 

SM max = 1RM + (0.886 x body mass) (kg) 

External test load = (SM max x percentage of SM) - (0.886 x body mass) (kg) 

Familiarization and neuromuscular test trials 

In test session 2, subjects completed the standardised warm-up and neuromuscular test 

protocol at individually calculated loads for BS and HS. During this familiarization 

session exercise technique, squat depth and rest times were rehearsed. In test session 3, 

subjects were prepared for EMG and kinematic data collection which was confirmed 

during 2 warm-up sets before proceeding to neuromuscular test protocol. Subjects were 

instructed to control descent and perform ascent as fast as possible under control for both 

BS and HS. Squat depth was monitored using linear transducer data and observation. 

Kinematic data 

The duration and displacement of eccentric and concentric phases of both exercises were 

measured by linear transducer (Celesco, PT5A, California, USA). The linear transducer 

was placed directly beneath, and attached to the barbell in BS. In HS it was placed 

adjacent to the 

footplate and attached at shoulder height to the sled of the HS machine to measure full 
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displacement of the load along the 45
o 
plane of travel

29,33
.

A bespoke Matlab (Matlab R2010A, The Mathworks Inc., USA) programme was 

designed to identify initiation and completion of descent and ascent of the load in order to 

determine eccentric and concentric phases for EMG selection. 

Electromyography 

Muscle activity was measured from 5 sites on right-hand side of the body based on 

established bilateral symmetry of these muscles
34

; rectus abdominus (RA), external

oblique (EO), lumbar sacral erector spinae (LSES), upper lumbar erector spinae (ULES) 

and vastus lateralis (VL)
11,23 

using surface EMG (Biopac MP100, Biopac Systems Inc., 

Santa Barbara, CA). SENIAM (Surface Electromyography for Non-Invasive Assessment 

of Muscles) recommendations were followed for skin preparation and application of 

electrodes
35

. Hair was removed, sites abraded with emery paper and cleaned with an 

alcohol swab in preparation for two Ag-AgCl EL258S bipolar 8 mm diameter electrodes 

(Biopac Systems Inc., USA). These were housed in custom made soft rubber mould with 

20 mm inter electrode distance. They were filled with conductive gel and fixed in position 

with transparent adhesive dressing. Electrodes were fixed longitudinally along muscle 

fibre orientation according to 

SENIAM (ULES and VL)
23

, (LSES, ULES and VL) and
11 

(RA, EO, LSES and ULES). EMG 

was sampled at a rate of 2000 Hz, anti-aliased with a 500 Hz low pass filter and root 

mean square processed (RMS). We have previously demonstrated acceptable absolute 

(CV%) and relative (ICC) reliability of mean RMS data for these trunk muscles in the 

back squat exercise at similar loads
17

.

Mean RMS for eccentric and concentric phases were calculated from 3 reps for each load 

and exercise. Mean RMS data for 75, 85 and 95% SM for each phase of both exercises 

were normalized to mean RMS of concentric phase of 65% SM in BS and presented as 

mean ± SD percentage normalized RMS. It has been demonstrated that submaximal 

dynamic contraction, not maximal isometric contraction, offer more reliable amplitude for 

EMG normalization of trunk muscles in healthy controls and patients with lower back 

pain
33

. We have previously

shown that submaximal dynamic normalization was far more reliable and sensitive than 

MVC methods in BS exercise for VL
17,33

.
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Statistics were performed using GraphPad Prism version 6.07 for Windows, GraphPad 

Software, La Jolla California USA. Data were analysed with a 2-way repeated measures 

analysis of variance (ANOVA) for condition (x2) and load (encoder displacement and 

duration x2, RMS x3). 1RM data were analysed using paired t-tests. F ratios were 

considered significant at p<0.05. Significant condition effect was followed by post-hoc 

Sidak’s  procedure for multiple comparisons. All data are presented as mean ± SD for 

each phase of 

both exercises and all test loads. Where appropriate, 95% lower and upper confidence 

intervals (CI) and Cohen’s d effect sizes (ES)
36  

calculated by:

Cohen's d = Mean1 - Mean2 / SDpooled, where SDpooled = √[(SD 1
2
+ SD 2

2
) / 2].

ES were then interpreted as <0.2 = trivial, ≥0.2 - 0.5 = small, ≥0.5 - ≤0.8 = moderate, 

>0.8 = large 
36

.

RESULTS 

Electromyography 

In the eccentric phase RMS was significantly (p<0.05 to p<0.0001) greater in BS vs. HS 

in 7 of the 9 test loads for EO, ULES and LSES (Table 1). However, there was no 

difference in RA RMS in the eccentric phase between BS and HS; whereas concentric 

RMS was significantly (p<0.05 to p<0.0001) greater in BS than HS in all muscle sites and 

in 8 out of 12 instances (Table 2). 

Table 1. Normalized mean percentage RMS in the eccentric phase, Mean diff., 95% 
confidence intervals, p-values, Cohen’s d and effect size (ES) and for hack squats 
and back squats performed at the 3 test loads, 75, 85 and 95% SM. 

95% CI of diff. Cohen’s 

Lower Upper P d ES 

 

 

Test Hack squat Back squat Mean 

load (mean ±SD) (mean ±SD) Diff. 

75% 64 ±30 65 ±22 -0.9 -18.7 16.9 >0.999 -0.03 Trivial 

RA 85% 73 ±34 68 ±22 4.7 -13.1 22.5 >0.999 0.16 Small 

95% 86 ±35 82 ±22 3.7 -14.1 21.6 >0.999 0.13 Small 

75% 57 ±31 87 ±33 -29.4 -48.8 -9.9 0.003* -0.91 Moderate

EO 85% 62 ±27 80 ±26 -19.2 -38.6 0.3 0.054 -0.72 Moderate

95% 70 ±31 94 ±27 -24.0 -43.4 -4.5 0.013* -0.84 Moderate

75% 92 ±38 118 ±56 -26.1 -40.8 -11.5 0.001* -0.55 Small 

ULES 85% 84 ±39 130 ±47 -45.9 -60.5 -31.3 <0.0001* -1.07 Moderate

95% 85 ±41 155 ±64 -69.2 -83.8 -54.6 <0.0001* -1.29 Large 

75% 72 ±21 88 ±12 -16.0 -34.1 2.1 0.096 -0.92 Moderate

LSES 85% 75 ±19 95 ±15 -19.8 -38.0 -1.7 0.030* -1.14 Moderate

95% 75 ±24 107 ±22 -32.5 -50.7 -14.4 0.001* -1.44 Large 

Statistical Analysis 
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Note: *Significant greater mean RMS in back squat compared to hack squat (p<0.05). 

Table 2. Normalized mean percentage RMS in the concentric phase, Mean diff., 95% 

confidence intervals, p-values, Cohen’s d and effect size (ES) and for hack squats 

and back squats performed at the 3 test loads, 75, 85 and 95% SM. 

95% CI of diff. Cohen’s 

Lower Upper P d ES 

 

 

 

Note: *Significant greater mean RMS in back squat compared to hack squat (p<0.05). 

RMS increased with load in the following trunk muscle sites in the eccentric phase for 

both exercises (Figure 2): RA (F(2, 18)  = 13.52, p<0.001) EO (F(2, 18)  = 5.258 p<0.05), 

ULES  F(2, 18) 

= 6.374 p<0.01). There was no eccentric load effect for LSES for both BS and HS. RMS 

increased with load in all muscle sites and both exercises in the concentric phase (Figure 

3): RA (F(2, 18)  = 7.795 p<0.01), EO F(2, 18)  = 14.70 p<0.001), LSES (F(2, 18)  = 18.76 

p<0.001) and 

ULES F(2, 18)  = 6.035 p<0.01). 

Mean VL RMS was significantly (F(1, 9) = 5.846 p<0.05) higher for BS vs HS in the 

concentric phase and a tendency in the eccentric phase where post-hoc analysis 

demonstrated significance for 3 test loads (75% SM p <0.0001, 85% SM p <0.01, 95% 

SM p<0.0001). Muscle activation in VL produced a significant load effect in both 

exercises for both phases: eccentric (F(2, 18) = 18.85 p<0.001) concentric (F(2, 18) = 3.711 

Test Hack squat Back squat Mean 

load (mean ± SD) (mean ± SD) Diff. 

75% 96 ±51 132 ±68 -36.4 -73.6 0.5 0.054 -0.61 Moderate 

RA 85% 117 ±68 159 ±60 -41.6 -78.6 -4.7 0.024* -0.65 Moderate 

95% 138 ±67 166 ±64 -27.4 -64.3 9.6 0.199 -0.42 Small 

75% 81 ±34 142 ±42 -61.1 -102.1 -20.1 0.003* -1.60 Large 

EO 85% 99 ±26 188 ±90 -89.0 -130.0 -47.9 <0.0001* -1.34 Large 

95% 123 ±43 224 ±114 -100.7 -141.8 -59.7 <0.0001* -1.16 Moderate 

75% 112 ±42 152 ±46 -39.8 -64.5 -1.4 0.039* -0.90 Moderate 

ULES 85% 133 ±90 169 ±49 -36.1 -84.7 -21.6 0.001* -0.50 Small 

95% 128 ±62 230 ±107 -102.2 -112.3 -49.2 <0.0001* -1.17 Moderate 

75% 97 ±37 130 ±27 -33.0 -91.3 11.8 0.170 -1.02 Moderate 

LSES 85% 105 ±31 159 ±43 -53.1 -87.7 15.4 0.243 -1.42 Large 

95% 110 ±32 191 ±50 -80.7 -153.7 -50.6 0.000* -1.92 Large 

64



p<0.05). 

Figure 2. Mean RMS for the eccentric phase for 3 test loads, 75, 85 and 95% SM for the 
4 trunk muscle sites; A – rectus abdominus, B – external oblique, C – lumbar sacral 
erector spinae and D – upper lumbar erector spinae. Significant load effect: * (p<0.05), ** 
(p<0.01), *** (p<0.001) and significant difference between BS and HS: # p<0.05 and 
p<0.0001. 
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Figure 3. Mean RMS for the concentric phase for 3 test loads, 75, 85 and 95% SM for 
the 4 trunk muscle sites; A – rectus abdominus, B – external oblique, C – lumbar sacral 
erector spinae and D – upper lumbar erector spinae. Significant load effect: ** (p<0.01), 
*** (p<0.001) and significant difference between BS and HS: # (p<0.05 to p<0.0001). 

1RM tests and test loads 

The mean HS 1RM was significantly (p <0.0001) higher at 171 ± 34 kg when compared 

to 142 ± 29 kg in BS. As a result relative test loads at 65, 75, 85 and 95% SM were 

significantly greater in HS than BS by 16.5, 17.5, 20.5 and 23.0 kg respectively (F(1, 9)  = 

19.94 p<0.01). 

Kinematic measures 

Eccentric displacement in BS was significantly (F(1, 9) = 33.62 p<0.001) greater than in HS  

for 4 test loads by 21.4, 20.8, 21.5 and 22.2 cm (Figure. 2A). Eccentric displacement 

decreased significantly (F(3, 27) = 5.931 p<0.01) with load in both BS and HS. Duration of 
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eccentric phase was significantly (F(1, 9) = 18.54 p<0.01) greater in HS compared to BS for 

all test loads (Figure.3A). Duration significantly (F(3, 27) = 5.371 p<0.01) increased with 

load for both BS and HS for eccentric phase with a significant (F(3, 27) = 2.968 p<0.05) 

interaction effect which occurred from progressively reduced differences from 20.4% 

(65% SM) to 10.6 (95% SM). 

Figure 4. Kinematic data for the BS and HS where panel A is eccentric displacement and 
B concentric displacement. Significant load effect in both conditions: # (p<0.01), and  
significant difference between HS and BS: * (p<0.001). 
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Figure 5. Kinematic data for the BS and HS where panel A is eccentric duration and B 
concentric duration. Significant load effect in both conditions: # (p<0.01) and significant 
difference between HS and BS: * (p<0.001) ** (p<0.0001). 

 
Concentric displacement was significantly (F(1, 9) = 26.30 p<0.001) greater in BS than HS 

(Figure. 2B) for all loads. There was no displacement load effect for either exercise in the 

concentric phase. Concentric phase duration increased significantly (F(3, 27) = 115.5 

p<0.0001) for BS and HS alongside increases in load. There were no differences between  

BS  and HS for duration of concentric phase during tests at 65, 75 and 85% SM. 

However, there was a significant (F(3, 27) = 14.82 p<0.0001) interaction effect where BS 

duration at 95% SM was significantly (p<0.0001) greater than HS (Figure. 3B). 
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DISCUSSION 

This is the first study to compare maximal strength and TMA in HS and BS. Anecdotal 

evidence that HS maximal strength capacity is greater than BS is confirmed under 

scientific research conditions. As hypothesized, TMA in BS was greater than HS in the 

majority of muscle sites, at the same relative loads. Furthermore, TMA in both exercises 

increased with each load increment which were similar to those commonly used in 

applied strength and conditioning practice. 

TMA was greater in BS vs. HS for all measured muscles during both phases, with the 

exception of rectus abdominus in the eccentric phase which demonstrated no such 

differences. This largely agrees with our hypothesis, although the rectus abdominus 

finding was also unsurprising given the previous equivocal reports of this muscle’s 

RMS activity in Smith Machine vs. BS
14; 22

. The likely cause of this variance is the flexed

trunk position during most of BS, which causes skin to fold in the rectus abdominus 

region, thus moving electrodes away from activated motor units and inevitably increasing 

measurement  variability. While the role of rectus abdominus as a stabilizer in squats 

remains unclear it appears from our data that rectus abdominus contribution to 

stabilization increases with load in both phases of both exercises, and this is greater in the 

concentric phase of BS. 

In the lateral stabilizers, activation of external oblique muscle was significantly greater in 

BS than HS in all instances and both phases apart from 85% SM in eccentric phase. The 

shared function of rectus abdominus and external oblique muscles are to create intra-

abdominal pressure during exertion through the trunk
37

. Individually rectus abdominus

controls lumbar extension and external oblique controls lateral flexion and rotation of the 

trunk
37

. Logically, these functions will be challenged more in BS than HS which suggest

greater trunk muscle adaptation potential in the free bar BS. 

Activation of posterior stabilizers, lumbar sacral erector spinae and upper lumbar erector 

spinae muscles was greater in BS than HS in 9 out of 12 instances. Importantly, in these 2 

muscle sites at the heaviest load, 95% SM, activation was higher in BS than HS. Hamlyn 

and coworkers
11  

(2007) using the mean RMS calculated from a 1 second sample from

each phase, eccentric and concentric, showed that LSES and ULES activation was more 

than twofold higher in back squat at 80% 1RM compared the bodyweight squats. The 

purpose of erector spinae muscle complex is to extend the trunk, or in the case of BS 

prevent trunk flexion
14,15,17

.  In the free bar exercise this challenge is greater where  back
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and  trunk are unsupported. During the descent activation was significantly higher in BS 

than HS for all three loads in ULES and for 85 and 95% SM in LSES. This was similar 

for the ascent however the magnitude of activation was greater for both exercises and all 

three loads in both ULES and LSES (Tables 1 and 2) (Concentric RMS: 97-230% vs 

Eccentric RMS: 92-155%). The higher activation of trunk stabilizers in the concentric 

compared to eccentric phase has been reported in a number of studies.
12,13,15,38

Activation of external oblique and erector spinae muscles have been shown to increase 

alongside load in BS with submaximal loads of 50 and 75% 1RM
39

. In 2 studies where

higher loads were used, the primary purpose was to compare TMA in deadlift exercise 

and a range of dynamic
18 

and isometric
11 

trunk exercises. Both studies reported a load

effect in the posterior trunk muscles for BS but this was not significant.  In our recent 

study we demonstrated a significant load effect in BS for all trunk muscles in the 

eccentric phase and for lumbar sacral erector spinae, upper lumbar erector spinae and 

external oblique in the concentric phase
17

. In the current study we found a load effect for

both exercises, both phases and all muscle sites except for lumbar sacral erector spinae in 

the eccentric phase in both BS and HS. LSES activation in the BS increased by load in the 

eccentric phase (Table 1) but this did not reach significance, possibly due to the size of 

the sample.   Importantly, loads in both our studies reflected loads commonly used during 

training for development of athletic performance. Therefore, TMA responses are 

representative of what may be expected for this type of activity in moderate to well 

strength trained populations. 

In this study where load was significantly higher in HS, vastus lateralis RMS was greater 

in the BS for all loads and both phases. Vastus lateralis RMS increased with load in both 

BS and HS which is well established for this muscle during both eccentric
17 

and

concentric phases 
29

. This is similar to earlier work from our laboratory where there was

higher activation of vastus lateralis in concentric phase at 100% 3RM compared to 75% 

3RM despite higher power produced in the lower load test effort
29

. Fundamentally, this

demonstrates the large effect comparatively lower forces, external load in BS vs HS, have 

on increasing activation of prime lower limb muscle where no external support is 

provided for lifting weights vertically against gravity. 

Mean 1RM for HS was 29 kg (18%) greater than BS, significantly more than the 11% 

difference between Smith Machine and BS 1RM previously reported
14

. As such, we

demonstrated that absolute test loads at 65, 75, 85 and 95% SM were higher in HS than 
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BS. Eccentric displacement was on average 22 cm less in HS than BS across 4 test loads. 

This can be explained by the positioning in HS machine in which the moment about both 

knee and hip joint increase as the feet move anterior to the line of gravity
25

. At the same

time, work done at the knee probably decreased due to reduced range of movement, while 

compensatory work at the hip may have increased. Therefore, the reduced overall 

displacement (external marker) and the higher absolute load (internal marker) in the HS 

possibly resulted in a greater moment and therefore work at the hip compared to the BS
25

.

Eccentric displacement decreased across the 4 test loads for both squat versions. This is 

possibly due to compressive force of the incremental external loads causing spine 

shrinkage
40

. Wisleder
40 

showed that an external load equivalent to body mass resulted in a

mean shrinkage of 3.9 mm. This shrinkage would result in a progressively lower start 

point for the descent with each higher test load. This would reduce eccentric displacement 

despite completing a full depth squat. Interestingly, concentric displacement was not 

affected by load, probably due to subjects following the instruction to complete this phase 

as fast as possible, which may have ended in full extension overriding the shrinkage. 

The eccentric phase of the BS was significantly faster for each load despite a significantly 

greater displacement. There was no difference between the duration of HS and the BS in 

the concentric phase apart from the heaviest load (95% SM) where HS was performed 

quicker than BS. This suggests that the instruction to ascend as fast as possible 

compensated the greater BS displacement and HS load respectively, in the concentric 

phase for 3 loads. While the instruction to descend in a controlled manner was applied to 

both exercises, BS descent was faster than HS. This occurred despite the greater support 

offered by the HS machine and the greater range of movement in the BS. A possible 

explanation could be familiarity with BS training reflected by mean squat training age of 

6 years (Range: 1-17 years) compared to the relative novelty of the HS exercise within 

this group. 

In our earlier study we established reliability of surface EMG in measuring trunk muscle 

activation in the BS
17

. The current study has confirmed and expanded those findings. The

kinematic characteristics of the unsupported free bar BS are a greater range of movement, 

faster descent and lower absolute external loads than the HS. Importantly, this study has 

shown that under those conditions the BS places greater demands on the trunk stabilizers 

than the HS and that this increases with load. Three factors therefore explain greater trunk 

muscle activation in the BS, greater range of movement, faster descent and importantly, 
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the requirement to control the unsupported external load through the full kinetic chain. 

This included lower limbs, hips and pelvis and, as shown by this study, the trunk. We 

have shown that both the BS and HS challenge the trunk stabilizers and that this 

activation increases in both exercises with load. However, BS is a significantly more 

effective method of activating the trunk stabilizers than HS. The conclusion therefore is 

that free barbell loaded squats are an effective exercise for the development of dynamic 

trunk strength and stability and for both BS and HS, trunk stability training effect is 

enhanced by increasing external load. 

PRACTICAL APPLICATIONS 

This study presents a number of interesting and novel findings particularly applicable to 

evidence based, applied strength and conditioning coaches. The key finding is that the 

free barbell back squat elicits greater trunk muscle activation than HS at the same relative 

load. This strengthens the case made in previous studies
11,17–19 

and confirms applied

anecdotal evidence that back squat is an effective method of developing dynamic trunk 

strength and 

stability. Similarly, we have presented novel research evidence to demonstrate and 

quantify greater absolute maximal strength capacity in HS compared to BS for a cohort of 

well-trained subjects. A further novel finding was the greater activation of vastus lateralis 

in the concentric phase of BS compared to HS despite significantly higher absolute HS 

loads. We also confirmed previous research
1,11,17,18 

showing that increases in external load

in both the  BS and HS produce greater trunk muscle activation. 

The implication of these findings for applied setting, is that free barbell squat is an 

effective exercise for the development of dynamic strength and stability in the trunk. The 

more stable hack squat is less effective for this purpose, however in both exercises trunk 

stabilization training effect can be enhanced by increasing external load. 
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Study 5: Impact of back squat training status on trunk 
muscle activation in squats and jump tests  

We established reliability and sensitivity of sEMG measurement of trunk muscle activation 

in back squat and demonstrated acute effect of moderate to heavy loads.  Comparisons 

between back and hack squat confirmed that free barbell version placed higher demands on 

trunk stabilizers than more supported hack squat.  The only previous research suggested no 

difference in trunk muscle activation between 8RM in free barbell back squat and Smith 

machine squat (Schwanbeck, Chilibeck and Binsted, 2009).   

Two questions remained; how does trunk muscle activation change through the full range 

of squat movement for different loads and secondly how does regular progressive squat 

training impact on trunk muscle activation in the squat jump (SJ), countermovement jump 

(CMJ) and back squat?  To answer the first question, we used a synchronised electro-

mechanical knee goniometer (Appendix 5) to enable the analysis of RMS data in three 

segments or tertiles for each phase of the squat (Appendix 6).  In the second question, we 

compared trunk muscle activation in participants with different squat training status and 

strength while performing loaded squats and bodyweight jumps. 
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ABSTRACT 

Purpose:  To measure impact of back squat training status, on trunk muscle activation in 

moderate to heavy back squat, squat jump (SJ) and countermovement jump (CMJ).  Squat 

training status was determined by absolute, relative 1 repetition maximum (RM) and squat 

training age.   

Methods:  Fifty one males, with squat training experience of one year or more completed 2 

test sessions.  Squat 1RM was tested first and participants were assigned to either strong 

group (SG), middle group (MG) or weak group (WG) according to relative squat 1RM.  In 

test 2, EMG data were collected for four trunk muscle sites; rectus abdominus, external 

oblique, lumbar sacral erector spinae and upper lumbar erector spinae while completing 3 

reps of SJ, CMJ and squat at 65, 75 and 95% system mass max.  Squat and jump phases were 

determined from a linear transducer and 30o tertiles for the eccentric and concentric phases, 

from a knee goniometer.  

Results:  Normalized RMS for each muscle site in both squat phases significantly (p<0.0001) 

increased by similar amounts with load from 75 to 95% SM, hence data were combined for 

all further analysis.  Trunk muscle activation was significantly (p<0.05) lower in SG vs WG 

in eccentric back squat for all loads and in heaviest concentric load (95% SM).  Concentric 

and flight phase RMS in both jumps was lower (p<0.05) in SG vs WG.  For all test loads 

RMS increased significantly (p<0.0001) for each respective tertile of squat descent and first 

concentric tertile where highest activation was recorded. 

Conclusion:  Greater squat strength resulted in lower trunk muscle activation in back squat 

and jumps compared weaker participants.  Full depth parallel squats are important to achieve 

highest trunk muscle activation.  

Key Words:  surface EMG, neuromuscular activation, trunk stability, muscular strength
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INTRODUCTION 

Several researchers have demonstrated effectiveness of loaded, compound exercises in 

activating trunk stabilizers (1–5).  Traditional core stability exercises, characterized by 

isolated (6) isometric (7) exercises do not reflect dynamic human movement in un-injured 

individuals (8).  It is therefore appropriate to investigate the efficacy of dynamic, integrated, 

loaded exercises in developing trunk stability in healthy individuals.  Several studies have 

reported effective trunk muscle activation for selected dynamic exercises (9), squats (1,2,10–

12), standing, seated, unilateral and bilateral exercises (13) and deadlifts (3).  Effects of 

specific exercise characteristics on trunk muscle activation have also been investigated, 

including; instability (5), external load (1,2), trunk rotation (14,15) and movement velocity 

(14,15).  Hence, there is good evidence that variations of loaded, dynamic, compound 

exercises, including back squat, are effective in activating trunk stabilizer muscles (16,17).  

Furthermore, while acute trunk muscle activation response to back squats at different loads is 

well described, chronic adaptation to progressive squat training over an extended period is 

not known.   

We have previously demonstrated acceptable reliability and sensitivity of sEMG in 

measuring trunk muscle activation in back squat (1).  We and others have shown a load effect 

for trunk muscle activation in this exercise (1–4,18).  Activation increased by load in 

eccentric and concentric phases for all four trunk muscle sites; rectus abdominus (RA), 

external oblique (EO), lumbar sacral erector spinae (LSES) and upper lumbar erector spinae 

(ULES) (1,2).  Higher trunk muscle activation in concentric phase of loaded back squat 

compared to the descent has been previously demonstrated in our laboratory (1,2) and by 

others (10,18).  Hip adductor and quadriceps activation in the back squat was higher in the 

last 30o of descent and first 30o of ascent than any other part of both phases of loaded parallel 

squats (19,20).  Hence, there is evidence that for effective lower limb muscle activation the 
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minimal optimal squat range is 90o knee flexion or parallel (19,20).  Therefore, understanding 

how trunk muscle activation changes through the full range of the loaded back squat is 

important to inform squat depth for most effective development of dynamic trunk stability.  

Furthermore, understanding how trunk muscles adapt to squat training across all sections of 

the squat descent and ascent provides evidence for the efficacy of back squat in developing 

trunk stability. 

The impact of maximal strength and training status on muscle activation in the squat has been 

reported for muscles of the lower limb but not trunk stabilizers.  Muscle activation of 

quadriceps in back squat 1RM test was significantly higher in trained compared to untrained 

subjects (21).  Higher activation in trained participants explained, in part, their capacity to lift 

higher 1RM loads and complete more reps in the single set to failure (21).  Also, rate of force 

development (RFD) has been demonstrated to be underpinned by higher mean average EMG 

and rate of EMG rise in quadriceps following 14 weeks of lower limb training (22). This is 

likely to be due to higher efferent neural drive which explains both improved strength and 

RFD performance (22).  Therefore, higher activation during maximal contractions in trained 

individuals is associated with increased motor unit recruitment, synchronization of motor unit 

discharge and improved intermuscular coordination (21,22).  These neuromuscular measures 

therefore explain higher performances in strength, power and strength endurance associated 

with strength training status.  As such, we would expect to see similar training adaptations in 

the trunk muscles, yet this has not been investigated. 

Effective strength training for athletic performance should incorporate methods that address 

deficits across the force velocity curve by overloading the full range of this spectrum (23,24).  

The back squat, SJ and CMJ are established methods of training all components of the force 

velocity curve including; maximal strength, strength speed, speed strength and the stretch 

shortening cycle (23,25,26).  The relationship between back squat strength and performance 
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in CMJ and SJ is well established (27–29).  There is evidence that loaded squats have an 

acute potentiation effect on jumps (28,29) and a chronic training effect on improving jump 

performance (25,27).  However, despite the obvious importance of trunk stability in 

transferring jump force and power through full kinetic chain, there is no evidence for acute 

and chronic trunk muscle activation in SJ and CMJ.  Hence, this is of interest, along with the 

impact of adaptation to back squat training on trunk stability in CMJ and SJ performance.  

Accordingly, the purpose of this study is to investigate impact of back squat strength and 

training status on trunk muscle activation in CMJ, SJ at bodyweight and back squat at 

moderate to heavy loads.  Our hypothesis is that trunk muscle activation will be higher in 

participants with high relative back squat strength compared to those with lower squat 

training age and strength. 

METHODS 

Participants 

Fifty-one males actively participating in regular strength training with at least one 

years’ experience in back squat exercise were recruited for this study (Age: 22.3 ± 3.1 

years, Body mass: 81.5 ± 11.2 kg).  Recruitment targeted participants across the full 

range of relative back squat strength according to squat training age and 1RM capability. 

Participants were recruited from a range of university and club sports including; rugby, 

football, American football, tennis and swimming.  All participants were injury free at 

the time of the study and had no history of injury with a bearing on back squat exercise.  

University of Stirling, School of Sport Research Ethics Committee in accordance with 

the Helsinki declaration (2013) granted ethical approval for the study.  All participants 

gave informed written consent prior to testing. 
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After extraction and scrutiny, back squat sEMG data for one participant was 

removed due to being corrupted and unsuitable for analysis.   

Experimental Design 

Participants attended the laboratory on two separate occasions with 3-7 days 

between visits.  During the first visit, body mass, height and training history were 

collected, followed by back squat 1RM test.  During the second visit, surface sEMG and 

kinematic data were collected for 3 repetitions of SJ, CMJ and back squat at 3 

progressive loads based on 1RM.  Fixed testing order was used to avoid potentiation of 

the exercise tested second (28).  Both sessions began with a standardized warm-up and 

participants rested for 3 min between each test set.  Testing was conducted at the same 

time of day to account for circadian rhythm (30).  Participants followed usual dietary 

intake and avoided strenuous exercises for 24 hours prior to testing. 

Based on relative back squat 1RM, participants were assigned to one of 3 groups 

for comparative analysis by dividing evenly into; Strong group (SG), Middle group 

(MG) and Weak group (WG) based in relative back squat 1RM (Table 1). 

Back squat 1RM test 

Participants performed a standardized warm-up before back squat 1RM testing.  

This comprised of a range of dynamic, compound body weight exercises that progressed 

to loaded barbell back squat for 3 sets of 10-8 reps at 20kg, 45 and 55% 1RM.  The 

standardized warm-up was repeated prior to neuromuscular test protocol and on both 

occasion technical requirements of SJ, CMJ and back squat depth were rehearsed and 

confirmed.   

The back squat 1RM and neuromuscular test protocols were conducted in a safety 

squat rack (FT700 Power Cage, Fitness Technology, Skye, Australia) using competition 

approved barbell and discs (Eleiko, Sweden).  All squat efforts were assessed for correct 
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technique and depth by primary investigator, an experienced strength coach.  The 1RM 

test protocol, previously described by McGuigan (2016) (31), was used to determine 

maximal load completed with correct technique and depth within 5 attempts.  

Participants were required to descend to where top of the thighs were horizontal or lower 

followed by a continuous ascent to full extension of hips and knees.  Participants were 

instructed to control descent cadence and drive the bar up as fast as possible, with 

control, during ascent (32).  Three-minute seated rest was scheduled between each test 

repetition. 

Back squat training and test loads calculated according to system mass max (SM) 

assume that 89% of body mass is included in external load (1,2).  The remaining 11%, 

(i.e. shanks and feet) do not move vertically in squat exercise.   

• SM = 1RM + (0.89 x body mass) (kg)

• External load = (SM x percentage of SM) – (0.89 x body mass) (kg).

This method is established in back squat research (1,2) and was applied to calculate back 

squat warm-up and test loads in this study 

Kinematic data 

A single linear transducer (Celesco, PT5A, California, USA), fitted to the safety 

squat cage directly above the participant was attached to the middle of the barbell for 

back squat and a wooden dowel for jump tests.  Linear transducer measured 

displacement and time from initiation of the descent, transition from descent to ascent to 

end of ascent for each rep of back squat and jump tests.  This facilitated identification of 

eccentric and concentric phases and jump height for SJ and CMJ tests. 

An electro mechanical goniometer, incorporating a high precision rotary 

potentiometer (6657s-1-103, Bourns, Riverside, CA, USA), was attached to right knee to 

measure flexion and extension.  The fixed rotary potentiometer of the goniometer was 
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placed at the center of rotation of the knee.  The fixed arm of the goniometer was 

attached to the lateral thigh by surgical tape.  The actuating goniometer arm was attached 

to the lateral calf by Velcro onto a neoprene sleeve, reinforced with surgical tape.  The 

actuating arm incorporated three hinges to allow naturel extension through the movement 

and a compact swiveling gimbal to accommodate small angular movement.  The 

goniometer was manually calibrated to fixed plastic protractor (33). 

 A threshold was established within Acqknowledge software (Version 4.4.2, 

Biopac Systems Inc, CA) to produce a digital output to indicate correct knee flexion had 

been reached that corresponded to required back squat depth.  Correct execution of 

technique resulted in an audible sound.  When the sound was not heard, the repetition 

was excluded and repeated.  Minimum knee flexion that corresponded to back squat 

depth, where thighs were horizontal or lower, was established for each participant during 

the first warm-up set with the barbell.   

Linear transducer data synchronized to root mean square (RMS) data were used 

to demarcate eccentric and concentric phases in back squat and jump tests and flight 

phase in jump tests.  Back squat goniometer data were used to segment eccentric and 

concentric phases into three equal 30o (degree) tertiles for RMS analysis (19).   

Neuromuscular test 

On arrival, participants were weighed and screened for injury or illness prior to 

electrodes being fixed to 4 trunk muscle sites.  Muscle sites were shaved, abraded and 

cleaned with an alcohol swab (34).  At each muscle site, 2 adhesive electrodes (Ambu 

WhiteSensor WS, Ambu, Cambridgeshire, UK) were attached longitudinally along 

muscle fibre orientation with a 20 mm inter-electrode space according to Surface EMG 

(sEMG) for Non-Invasive Assessment of Muscles (SENIAM) guidelines (34).  

Electrodes from two muscle sites were connected to a BioNomadix 2 Ch. EMG Wireless 
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Transmitter (BN-EMG2).  Two wireless transmitters were secured in a harness; one on 

upper back for posterior muscle sites; lumbar sacral erector spinae (LSES) and upper 

lumbar erector spinae (ULES), and the second for rectus abdominus (RA) and external 

oblique (EO) on the mid-chest.  All connector cables were secured to minimize artifact 

noise and position of transmitters did not interfere with execution of back squat or jumps. 

 Standardized warm-up was completed up to and including SJ and CMJ rehearsal, 

thereafter participants were prepared for neuromuscular and kinematic data capture.  

Wireless transmitters were attached and goniometer fixed to the right knee.  Transmitters 

were matched with a receiver unit in Biopac MP150 (Biopac Systems Inc., Santa 

Barbara, CA) which facilitated transmission of high resolution sEMG signal at a rate of 

2000 Hz.  Three back squat warm-up sets followed: 10 reps at 20 kg (barbell), 10 reps at 

45% SM, 8 reps at 55% SM.  Neuromuscular and kinematic data signals were confirmed 

and corrected where necessary during these sets.  Minimum squat depth was determined 

during 10 reps at 20 kg and programmed into the Biopac system via the knee 

goniometer.   

The barbell was replaced by a wooden dowel (< 0.25 kg) and attached to the 

linear transducer for SJ and CMJ tests.  In both jump tests, participants were instructed to 

reset completely between each rep, perform maximal concentric efforts and ensure dowel 

remained in contact with shoulders throughout.  In SJ, participants began by squatting to 

parallel, where thighs were horizontal and paused for count of 3 before jumping.  Squat 

depth in CMJ was self-selected and followed immediately by a maximal jump effort 

(26).  Three-minute seated rest was allocated between each test set.   

The wooden dowel was replaced with 20 kg barbell (Eleiko) and back squat tests 

were conducted for 3 reps at 65, 75 and 95% SM with 3 minutes rest between each set.  
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Back squat test loads were calculated using system mass max formula, incorporating 

individual 1RM score and body mass measured at start of neuromuscular test session. 

Surface Electromyography 

Trunk muscle sEMG was measured from 4 sites on right-hand side of the body; 

RA, EO, LSES and ULES.  Bilateral symmetry has been established for these muscles 

(35).   Reliability of sEMG analysis of trunk muscle activation at these sites has been 

demonstrated in our laboratory (1,2) and by others (4,36).   

 sEMG was sampled at a rate of 2000 Hz and anti-aliased with a 500 Hz low pass 

filter.  Raw sEMG signal was processed via Biopac MP150 amplifiers by applying an 

averaged RMS filter with a rolling 100-ms wide Bartlett window.  Once processed, mean 

RMS was extracted for each phase using the synchronized linear transducer data, and for 

each tertile using synchronized knee goniometer signal.   Mean RMS for 3 reps of all test 

sets in back squat and jump tests were normalized to mean RMS of concentric phase at 

65% SM.  Normalizing RMS data to a dynamic submaximal data point is well 

established for trunk muscles in healthy participants and has been effective in measuring 

trunk muscle activation in back squat studies (1,2). 

Data analysis 

Muscle activation data are presented as mean (±SD) normalized RMS percentage 

and were analyzed and reported for all participants (n-50) and by group (WG, MG and 

SG).  Back squat neuromuscular test data was analyzed and presented for concentric and 

eccentric phase and by tertile for each phase (19).  Knee goniometer data was used to 

divide eccentric and concentric phases into 3 equal 30o segments or tertiles for RMS 

analysis (19).  Tertiles are referred to as E-1, E-2, E-3, C-1, C-2, C-3, where E-1 is first 

tertile of the descent, C-1 first tertile of ascent and C-3, final tertile leading back to full 

extension.   
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RMS data for the jumps are presented for 3 phases; eccentric, concentric and 

flight.  The concentric RMS sample was limited to the segment of that phase where 

participant was in contact with the ground and able to apply downward force. The end of 

the concentric phase identified from linear transducer data as concentric or upward 

displacement point that corresponded with upright standing position at start of eccentric 

phase.  The flight phase was from the point of leaving the ground to point where peak 

displacement was reached.  This began at the end of concentric phase, from the point 

where displacement exceeded upright standing position. 

Statistical analysis 

All statistical analyses were performed on GraphPad Prism software (Version 

7.00, La Jolla, CA).  Normal distribution of relative back squat 1RM data was 

established using D’Agostino & Pearson normality test (alpha=0.05).  A two-way 

analysis of variance (ANOVA) was used to determine the differences in participant data 

(back squat 1RM, SJ and CMJ height and training history) and trunk muscle activation 

(normalized RMS percentage) measures between groups and test conditions.   Level of 

significance of (p<0.05) was selected to determine statistical differences. 

RESULTS 

Participant data  

Mean back squat 1RM for all participants was 122 kg (SD ± 34 kg) which 

translated to a relative 1RM (1RM/Body mass, kg) of 1.5 (SD ± 0.3, Range: 0.8 to 2.2) 

(Table 1).  Relative back squat 1RM data passed D’Agostino & Pearson normality test 

(p<0.05).  The three groups were significantly different according to absolute back squat 

1RM (F2, 47 = 51.1, p<0.0001) and relative back squat 1RM (F2, 47 = 125.7, p<0.001).  

WG and SG were significantly different for strength training age (F2, 47 = 3.6, p<0.05), 

squat training age (F2, 47 = 5.0, p<0.05), SJ height (F2, 94 = 8.8, p<0.01) and CMJ height 
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(F2, 94 = 8.8), p<0.05).  Body mass was significantly higher in SG compared to MG (F2, 47 

= 5.6, p<0.01). 

Neuromuscular analysis: Back squat 

All participants. RMS for all participants combined increased significantly 

alongside load from 75 to 95% SM for all individual muscle sites in eccentric phase: RA-

18%, EO-17%, LSES-33% and ULES-36% (F2, 588 = 47.9, p < 0.0001) and concentric 

phase: RA-45%, EO-63%, LSES-46% and ULES-79% (F2, 588 = 225.3, p < 0.0001).  As a 

result, RMS data for 4 muscle sites was combined for all further analysis.   

Concentric RMS for each test load is significantly (F1, 294 = 93.1, p<0.0001) 

greater than eccentric activation by: 15% (65% SM), 20% (75% SM) and 52% (95% 

SM).  Activation in both phases increased significantly (F2, 294 = 126.6, p<0.0001) with 

each load: 65-75% SM-14%, 65-95% SM-56% and 75-95% SM-42% and showed 

significant interaction effect (F2, 294 = 15.3, p<0.0001) across the three test loads.   
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Group analysis.  When assessed by group, RMS in the SG was significantly 

lower than WG for all test loads in eccentric phase (F2, 141 = 26.7, p<0.05) and at 95% 

SM in concentric phase (F2, 141 = 26.7, p<0.05) (Figure 1).  There were no group 

differences at 65 and 75% SM in concentric phase (F2, 141 = 1.8, p<0.17).   

Figure 1. Normalized back squat mean RMS percentage for 3 groups (WG, MG and SG), 3 

test loads; 65, 75 and 95% SM in the; A.  Eccentric phase and B. Concentric phase.  

Significant differences: * p<0.05, ** p<0.01.  (SM – system mass max, WG - weak group, 

MG – middle group, SG – strong group, SM – system mass max and RMS – root mean 

squared) 
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Group analysis by tertile.  RMS is lower in SG compared to WG in all 3 

eccentric tertiles for all loads apart from tertile E-1 at 95% SM (F5, 235 = 35.6, p<0.0001) 

(Figure 2).  In tertile C-1 at 95% SM, both the WG and MG have higher activation than 

SG (F2, 47 = 3.6, p<0.01).  There were no differences between groups in all concentric 

tertiles at 65 and 75% SM and for C-2 and C-3 at 95% SM. 

Figure 2. Normalized back squat mean RMS percentage for 3 groups in 3 tertiles for eccentric 

and concentric phases. Test loads: A. 65% SM, B. 75% SM and C. 95% SM.  Significant 

differences: * p<0.05, ** p<0.01, *** p<0.001.  (E – eccentric, C – concentric, WG -  weak 

group, MG – middle group, SG – strong group and RMS – root mean squared) 
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All participant analysis by tertile.  RMS increased significantly (F5, 245 = 77.2, 

p<0.0001) for each descending tertile (E1, E2 and E3) of the squat and peaked during the 

first part of the upward movement (Tertile C1) for each test load (Figure 3).  RMS in the 

final two concentric tertiles (C2 and C3) decreased as ascent progressed to full extension 

of hips and knees.  There was a significant load effect (F2, 98 = 209.8, p<0.0001) and 

interaction (F10, 490 = 29.3, p<0.0001) by tertile across the three test loads. 

Figure 3. Normalized back squat mean RMS percentage for all participants, 3 tertiles for each 

phase, eccentric and concentric and 3 test loads; 65, 75 and 95% SM.  * Significant 

differences between tertiles within each load, p<0.0001, ** Significant load effect p<0.0001.  

(SM – system mass max, E – eccentric and C – concentric, RMS – root mean squared) 

Neuromuscular analysis: SJ and CMJ 

Group analysis.  In concentric and flight phase of both jumps, activation is 

significantly lower in SG compared to WG (F2, 144 = 54.5, p <0.05) (Figure 4).  MG 

activation was higher than SG in concentric phase of SJ (F2, 144 = 54.5, p <0.05).  
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Figure 4. Normalized SJ and CMJ mean RMS percentage for 3 groups in eccentric, 

concentric and flight phase; A. SJ and B. CMJ.  Significant difference between groups * 

p<0.05, ** p<0.001. (SJ - squat jump and CMJ – countermovement jump, WG - weak group, 

MG – middle group, SG – strong group and RMS – root mean squared) 
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All participant analysis.  RMS was higher in concentric and flight phase 

compared to eccentric phase for both jumps (F2, 300 = 75.8, p<0.0001) (Figure 5).  There 

were no differences in RMS between concentric and flight phase for both jumps (SJ: 

p<0.91, CMJ: p<0.41) nor between the SJ and CMJ for all phases (Ecc: p<0.14, Con: 

p<0.13, Flight: p<0.99). 

Figure 5. Normalized SJ and CMJ mean RMS percentage for all participants in eccentric, 

concentric and flight phase. * Significant difference between phases p<0.0001. (SM – system 

mass max, SJ - squat jump, CMJ – countermovement jump and RMS – root mean squared) 

DISCUSSION 

This study measured the impact of back squat training status on trunk muscle 

activation in squats, SJ and CMJ.  High levels of back squat strength resulted in lower 

trunk muscle activation in squats at moderate to heavy loads and in bodyweight jumps.  

Detailed trunk muscle activation changes through the descent and ascent of the back 

95



squat were analyzed in order to understand the impact of squat depth on activation of 

trunk stabilizers.  Trunk muscle activation was highest in the lowest segments of both 

descent and ascent of the parallel squat for all test loads.  According to absolute and 

relative maximal back squat 1RM strength, participants represented a wide range of 

strength levels, confirmed by normal distribution and significant between group 

differences in 1RM test scores.   

Evidence that higher back squat strength results in greater lower limb agonist 

EMG response to maximal strength effort guided our hypothesis for trunk muscle 

activation (21,22).  We found against this hypothesis.  Higher levels of back squat 

strength resulted in lower levels of trunk muscle activation in eccentric back squat at 

moderate and high loads and in the concentric phase, at high loads.  The lower levels of 

trunk muscle activation in SG compared to WG occurred at the same relative back squat 

loads, which in fact were higher absolute loads.  Hence, higher absolute and relative back 

squat strength from regular progressive squat training is achieved, in part through the 

development of more effective and efficient trunk stabilization.  This is reflected in 

tertile analysis of RMS by group.  Trunk muscle activation in SG was significantly lower 

than WG for first 3 tertiles of eccentric phase and in heaviest load, 95% SM, in first 

concentric tertile.  This finding indicated that for phases of the squat that placed highest 

demand on trunk stabilizers, the strongest participants had lower trunk muscle activation 

than weaker participants.  Repeated activation of these stabilizers through regular 

progressive loaded squat training to this depth results in important neuromuscular 

adaptations for athletic performance. 

The current study confirmed our previous findings that increases in external load 

result in increased trunk muscle activation for both eccentric and concentric phases of 

back squat (1,2).  We also showed higher activation in concentric compared to eccentric 
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phase for all participants combined.  There is evidence that lower limb muscle activation 

is highest in the final part of the eccentric and first part of concentric phase of the parallel 

squat (19,20).  Parallel squats have been shown to be safe (37) and result in a number of 

positive physiological and performance adaptations (38).  Higher trunk muscle activation 

in the current study occurred in the final 30o of the descent and first 30o of ascent, 

reinforcing the importance of squatting to parallel to maximize trunk muscle activation.  

This data confirms the importance of squatting to this depth to elicit optimal activation 

and ensure neuromuscular adaptations that underpin efficient performance.  

Higher levels of back squat strength translated to lower trunk muscle activation in 

concentric and flight phase of SJ and CMJ.  The SG, with higher jump heights in SJ and 

CMJ, had significantly lower trunk muscle activation than the WG.  This demonstrates 

transfer of adaptation from a high load, low velocity, compound exercise, the back squat, 

to a dynamic and power oriented movement, central to performance in many sports and 

athletics activities.  It also suggests that improved efficiency in dynamic trunk 

stabilization mechanisms from heavy squat training may transfer positively to other 

dynamic athletic activities. 

This study is the first to report trunk muscle activation in squat jump and 

countermovement jump.  McBride et al (2008) found concentric iEMG of the agonists 

(vastus lateralis and vastus medialis) did not differ between SJ and CMJ, despite higher 

CMJ concentric peak force, velocity and jump height (39).  This is likely due to high 

levels of agonist pre-activity and eccentric muscle activity in CMJ and stationary SJ start 

position (39).  Similarly, our study found no difference between SJ and CMJ trunk 

muscle activity in eccentric, concentric and flight phase despite marginally higher CMJ 

jump height.  For both jumps, concentric and flight phase trunk muscle activation was 

higher than eccentric activation.  Mean normalized RMS percentage in concentric and 
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flight phase was approximately 200% indicating high demand for trunk stabilization 

during these two phases.  Particularly interesting is the high activation of the trunk 

stabilizers during the flight phase where there is no ground contact and therefore direct 

force application.  Our data provides evidence that there is a high demand on trunk 

stability in the flight phase of jumps.  Importantly, we show that back squat training 

results in neuromuscular adaptations that improve efficiency of the trunk stabilizers 

under these conditions. 

It has been suggested that improved jump performance as a result of back squat 

training is possibly due to biomechanical similarity in body position of the squat exercise 

and jump tests (40).  Consequently, it may be that morphological training adaptations to 

squat training develops trunk muscle strength which increases trunk stiffness resulting in 

greater transfer of ground reaction force and therefore jump height (40).  We have 

previously demonstrated that loaded free barbell back squat resulted in higher trunk 

muscle activation than the more supported machine based hack squat for the same 

relative, moderate to heavy loads (2).  Our interpretation was that back squat was 

characterized by greater range of movement, faster descent and importantly, control of 

unsupported external load through full kinetic chain, including lower limbs, hips, pelvis 

and trunk.  The current study therefore confirms previous speculation (40) that trunk 

muscle adaptations to back squat training results in improved trunk stability and 

stiffness.  These adaptations facilitate greater resistance and transfer of force and power 

in both the ground based concentric and flight phases of explosive, dynamic activities.  

While this was not a training study the most important findings have direct 

applied relevance.  Firstly, a relative back squat 1RM of greater than 170% body mass 

acquired through squat training resulted in lower activation of the trunk stabilizers in the 

eccentric and concentric phase of heavy load squats compared to participants with a 
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relative squat 1RM of less than 140% of body mass.  This neuromuscular adaptation 

corresponds with increased load carrying capacity through the full kinetic chain, 

including the trunk.  In the applied setting, it is accepted that the most important early 

adaptation to progressive loaded back squat training is primarily development of the 

trunk’s capacity to maintain the position of the external load over the center of the base 

of support in the sagittal plane.  The implication of this finding for strength and 

conditioning confirms and describes the neuromuscular adaptation in trunk stabilizers 

central to improved overall squat performance through training.  The biomechanical and 

neuromuscular analysis of this adaptation, capacity to resist forward trunk flexion, within 

the context of overall squat training adaptation, is an important area for future research. 

Secondly, the most relevant finding for athletic performance, is that the 

adaptation to squat training translates directly to dynamic body weight jumps, where 

trunk stabilization in higher jumps require lower muscle activation. Specifically, this 

neuromuscular adaptation in trunk stabilizers becomes significant in squat trained 

participants in the concentric phase, once downward force is applied, and subsequent 

flight phase occurs.  Arguably, this greater stability presents as greater trunk stiffness in 

dynamic jumps, facilitating more effective resistance and transfer of force generated by 

lower limb in the concentric phase of the jump.  Trunk muscle activation in the flight 

phase is not significantly different to that in concentric phase within each group.  This 

highlights the importance of trunk stability and stiffness required for effective kinetic 

control while not in contact with the ground.  Which explains, in part, the greater ground 

reaction force and higher jump heights in squat training studies (25,40–42).  

Furthermore, this greater trunk stiffness contributing to more effective transfer of 

concentric force into jump performance, comes at relatively lower activation of the trunk 

stabilizers.  Logically, it would be expected that this adaptation translates to trunk control 
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in other dynamic ground based athletic activities, such as sprinting, and represents an 

area for future research.  This evidence means that loaded barbell squat can be regarded 

as an effective method of developing efficient trunk stability for performance in a range 

of dynamic sporting activities. 

The third key finding with applied relevance is impact of squat depth on activation of 

trunk stabilizers.  Knee and hip angle specific strength training to improve running and 

sprinting performance has been debated for some time in the literature (37).  The case 

has been made to avoid extreme range of movement, characteristic of parallel and full 

squats in favour of quarter squats. Primarily, this is due to knee and hip actions that are 

similar to the target activity (37,43–46).  This finding, higher trunk muscle activation in 

the deepest part of the squat, ensures that where development of trunk stability is a 

training aim, parallel or full squats are more effective than partial squats.   

The use of surface electromyography to measure neuromuscular electrical activity 

reliably during dynamic, loaded activities has been challenged in the literature.  

However, we previously demonstrated reliability and sensitivity of sEMG in measuring 

lower limb (33,47) and trunk (1) muscle activity in back squat.  Furthermore, to increase 

accuracy of our neuromuscular data, we followed a dynamic method of normalization to 

a submaximal reference point which has been found more accurate in analysis of trunk 

muscle RMS data in back squat (1). 

CONCLUSION 

This is the first study to show that back squat strength training adaptations reduce 

trunk muscle activation in squat jump, countermovement jump and moderate to heavy 

squats.  Trunk muscle activation in back squat at moderate to heavy loads is highest in 

the last third of squat descent and first third of ascent, confirming importance of parallel 

squats for optimal trunk stability development.  Trunk muscle activation in these 
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demanding segments of the parallel back squat was significantly lower in trained 

participants compared to those less trained.  Hence, the loaded parallel barbell back squat 

is an effective training method for development of efficient trunk stability.  Furthermore, 

back squat training adaptations are effective in developing stability in dynamic jump 

performance. 

These findings highlight possible future research areas including; 1) the impact of 

squat training adaptation on trunk muscle and whole body performance in acceleration, 

sprint and change of direction speed, and 2) impact of squat strength, acquired through 

chronic training, on acute fatigue of the trunk stabilizers in dynamic athletic activities. 
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Thesis Conclusion 

Thesis summary 

The first study, the literature review confirmed that trunk muscle activation increased with 

squat load and was greater in the concentric phase compared to the descent. Furthermore, 

the review revealed the need to establish reliability and sensitivity of surface EMG in 

measuring back squat trunk muscle activation (Clark, Lambert and Hunter, 2012).   

The survey found that the majority of respondents were aligned to the more integrated 

definition of core anatomy and function, and hence supported a functional approach to 

exercise selection for developing trunk stability.  Despite this clear alignment with the 

scientific literature, several participants remained in support of an isolated approach for 

the development of core stability.  

In the third study, we demonstrated acceptable interday reliability and sensitivity of sEMG 

in measuring trunk muscle activation in barbell loaded back squat.  Importantly, we 

confirmed that in a well trained group, activation increased significantly in response to 

increases in load equivalent to 10 percent of squat 1RM.  This increase occurred in all four 

trunk muscles (RA, EO, LSES and ULES) in the eccentric phase and all muscles (EO, 

LSES and ULES) apart from RA in concentric phase.  

In the fourth study, we demonstrated that despite significantly higher external loads in the 

hack squat, trunk muscle activation was greater in free barbell back squat at equivalent 

relative loads.  We determined that the back squat kinematic characteristics explaining 

these differences were; greater range of movement, faster descent and the requirement to 

control the unsupported external load through the full movement, engaging the entire 

kinetic chain.   

The most important and novel finding in the final study was that trunk muscle activation 

was lower in participants who were stronger in the squat compared to weaker subjects. 

This was found for all three loads (65, 75 and 95% SM) in the eccentric phase and only the 

heaviest load (95% SM) in concentric phase.  The second novel finding was that this lower 

EMG response in the stronger group translated to all three phases of the SJ and CMJ but 

was only significant in concentric and flight phase.  This reduced activation in the strong 

group was also associated with significantly higher jump performances compared to the 
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weak group.  In summary, adaptation to progressive squat training results in more efficient 

trunk stability in squat strength tasks and dynamic, bodyweight jump performance.  The 

final study demonstrated that trunk muscle activation increased significantly in each 30o 

segment of descent and reached the highest level in the first 30o segment of ascent for all 

test loads.  Hence, highest trunk muscle activation occurred in the two lowest 30o segments 

of the parallel squat movement. 

Research design 

In the 3 neuromuscular studies we used cross-sectional design to observe a single group 

(Study 3 and 4) and compare different groups, strong, middle and weak (Study 5), at a 

single time point.  This is an observational approach where we did not intervene and 

influence participant status.  As a result, the study 5 findings require ratification in a 

training study in order to facilitate further effective translation to applied practice.  

Specifically, a well structured randomized controlled trial (RCT) measuring effects of 

increased squat strength on trunk stability while performing dynamic athletic actions 

(Hecksteden et al., 2018). The study should be conducted on a representative and large 

enough cohort of participants to ensure appropriate statistical power (Hopkins, Schabort 

and Hawley, 2001).  Current applied training guidelines for development of trunk stability 

in healthy and athletic participants lack scientific foundation.  Our findings partly fill this 

void by addressing the fact; loaded compound exercises are an effective method of 

developing dynamic trunk stability.  Further investigation and clarification through 

effective RCT’s are required to challenge and replace the many un-scientific core stability 

training practices.  

Reliability and comparison studies on a small number of participants using multiple 

comparisons have been questioned.  In study 3 & 4, we had a relatively small number of 

participants and analysed a fairly large number of data points, including kinematic and 

RMS measures.  Hopkins et al (2001), in a review suggested that reliability of tests relating 

to physical performance were acceptable in a lower number cohort where the group is 

homogenous in the key area of competence (Hopkins, Schabort and Hawley, 2001).  In 

these two studies, the 10 participants were competent in the barbell back squat evidenced 

by a mean relative 1RM of 165% body mass.  Given that barbell back squat was the 

exercise being studied, we concluded that our cohort size represented an acceptable 

number for the analyses that we performed. Nevertheless, we performed sample size 
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calculation at 90% power using G*Power effect size difference (F test ANOVA RM) from 

RMS (ULES) from 75-95% SM from back squat reported in study 4.  This confirmed that 

a minimum sample size of 8 is required when performing 3 repeated measurements. 

In study 5 we had a total group of 50 participants, who demonstrated normal distribution 

for relative BS 1RM according to D’Agostino & Pearson normality test (alpha=0.05).  

This resulted in two groups of 17 (weak and middle groups) and one of 16 (strong group).   

Using the same effect size RMS as above but applied in a different G*Power model (F test 

ANOVA RM) using 3 independent groups at 90% power, we calculated that a minimum of 

12 participants per group were required. Given we used substantially more than 12 in each 

group we are therefore confident that type I and type II errors were avoided. 

Electromyography 

The use of surface EMG to measure muscle activity has been used for over two centuries 

and the refinement of procedures have improved accuracy and reliability.  Electrode 

placement for effective measurement of trunk muscle EMG has been researched resulting 

in published guidelines (Hermens et al., 2000; Huebner et al., 2014).  Normalization of 

trunk stabilizer EMG data captured in dynamic exercise has been extensively researched 

and discussed at length earlier in this thesis (Introduction and Introduction to Paper 3).  

The neuromuscular studies began with an investigation that demonstrated acceptable 

reliability and sensitivity for our method of analysis of trunk muscle activation in the back 

squat.  Specifically, the research studies 4 and 5 were designed to ensure neuromuscular 

data was captured in a single test session, thereby avoiding re-application of electrodes and 

associated loss of accuracy.  While there are recorded limitations associated with surface 

EMG assessment of muscle function and specifically in trunk stabilizers, it remains the 

most effective method of measuring this in loaded dynamic exercise.  The accuracy of our 

finding, that increases in squat load produced greater trunk muscle activation in all muscles 

tested, improved over the 3 neuromuscular studies.  This strongly suggests that this is a 

valid and reliable finding.  This consolidates previous studies which reported trunk muscle 

load effect for the squat using diverse methodology as reported in our review (Clark, 

Lambert and Hunter, 2012).  

Surface EMG measurement of rectus abdominus activation response to load increases in 

the dynamic back squat has proven inconsistent (Hamlyn, Behm and Young, 2007).  
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Huebner et al (2014) investigated surface EMG amplitude in 5 trunk muscles for 4 

different electrode placement positions and found RA EMG amplitude varied the most, 

regardless of electrode position (Huebner et al., 2014).  We argued (study 3) that the 

variance in RA sEMG measurement may result from folds in the skin adjacent to RA 

during deep flexion of the hip.  In study 3 we reported unacceptable absolute reliability 

(CV%) but fair relative reliability (ICC) for RA RMS and found a tendency for load effect 

in this muscle (Clark, Lambert and Hunter, 2016).  In the second neuromuscular study we 

found a significant load effect for RA for all loads in both phases of the back and hack 

squat (Clark, Lambert and Hunter, 2017).  We repeated this finding in the final study (n-

50) where RMS in RA increased by 18 and 45% in the eccentric and concentric phase

respectively, in response to 20% increase in external load.  It appears that through 

improved and consistent electrode placement, better management of clothing and artefact, 

we were able to capture RA sEMG more accurately as we progressed through the 3 

neuromuscular studies.  Importantly this confirmed that RA activation is sensitive to 

increases in squat load. 

EMG measurement on one side of the body is an established method for bilateral standing 

and jumping exercises performed in sagittal where the load is carried in the midline 

(Seroussi and Pope, 1987; Sihvonen, Partanen and Hanninen, 1988; Vakos et al., 1994).  

Bilateral symmetry of EMG signal has been demonstrated in this category of movement, 

which means that EMG captured on the right-hand side accurately reflects bilateral trunk 

muscle activation in this category of exercise. 

Kinematics 

In the three neuromuscular studies, we used a linear transducer (Celesco, PT5A, California, 

USA) to measure barbell displacement and in study 5, jump kinematics.  This is a highly 

effective method for analysis of squat kinematics where participants remain on the ground, 

with flat feet throughout the movement.  Furthermore, there is evidence that analysis of 

jumps by linear transducer is valid and reliable in comparison to force platform tests 

(Harris et al., 2010; Hansen, Cronin and Newton, 2011).  Linear transducer data can 

determine the start and end of the squat and separate eccentric and concentric phases 

accurately.  However, when identifying phases of jumps where participants leave the 

ground in the flight phase, this technology has limitations.  The end of the concentric phase 

determined by linear transducer is the point where concentric displacement matches the 
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start position or upright standing.  Therefore, flight phase starts once displacement 

proceeds beyond this point.  The start of the flight phase in kinematic analysis of jumps 

using a force plate would be at ‘toe off’ after full plantar flexion (Linthorne, 2001).  This 

means that in study 5, the segment from flat foot upright standing to toe off is included in 

flight phase, despite still being in contact with the ground. What has not been reported, in 

the authors view, is relative contribution of this plantar flexion segment of the concentric 

phase to force application and jump performance.     

In study 5 we found that trunk muscle activation was significantly higher in concentric 

phase compared to eccentric phase and importantly remained at the same level during 

flight phase.  The question therefore arises, does the ground contact portion (plantar 

flexion) included in the flight phase influence this activation?  Farris at al (2016), in an in 

vivo analysis of plantar flexor muscle-tendon interaction during vertical jumping, 

concluded that this muscle group makes their greatest contribution in early to middle 

portion of the concentric phase (Farris et al., 2016).  The authors suggest this is primarily 

to stabilize and facilitate power generated by knee extensors. They concluded there was no 

evidence that stored elastic energy in the plantar flexors contributed to force production in 

the final stage of concentric phase prior to toe off.  Our interpretation therefore, is that high 

muscle activation in the flight phase is to stabilize the trunk for effective performance and 

in preparation for landing.  This is supported by our finding that in the strong squat group 

activation in both concentric, and specifically the flight phase, was significantly lower than 

in the weak group.  

In studies 3 and 4 we found that eccentric displacement decreased significantly with each 

10% increase in load, while concentric displacement remained unchanged for all loads.  

The absence of knee and hip angle measurements in these two studies meant that we were 

not able to explain this with any certainty.  We presented two possible explanations; 

increases in load resulted in subconscious proprioceptive inhibition preventing full knee 

and or hip flexion to avoid the final, most challenging segment of the parallel squat.  We 

also suggested spinal shrinkage due to incremental compressive forces might be a factor.  

Wisleder et al (2001) found spine shrinkage of -3.9 ± 1.2 mm resulting from spinal 

bending, rotation and pure compression in response to a load equal to body mass (Wisleder 

et al., 2001).  We found a mean reduction in displacement of 56 mm (Range 22-86 mm) 

for loads equivalent to 77, 100, 127 and 150% body mass.  Even at loads greater than body 

mass, it is unlikely that spine shrinkage would account in full for this reduction in eccentric 
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displacement.  Hence, we propose that reduced displacement is the result of lower squat 

start position due to spine compression and protective inhibition preventing full depth 

squats at heavier loads.  Our explanation for the absence of a reduction in concentric 

displacement in studies 3 and 4 remains applicable.  The instruction to complete this phase 

as explosively as possible means that velocity increases as mechanical load is overcome, 

and peaks in the final stage of hip and knee extension.  This means that the final height of 

displacement exceeds the (compressed) start point, which is clearly visible when observing 

moderate to heavy load squats performed explosively.   

Impact:  Applied strength and conditioning 

The back squat is an established method of developing lower limb for performance in 

sports where strength, power, acceleration and speed are important (Seitz et al., 2014).  

There is also a growing appreciation of the role of trunk stability in effective function of 

the kinetic chain in dynamic athletic performance.  Specifically, the role of the trunk 

anatomical region in resisting, coordinating, transferring and optimizing forces, torques 

and power generated by the limbs within the full, integrated kinetic chain.  However, there 

is little scientific evidence on how this should be trained in a healthy and athletic 

population.   

Trunk stability for sports performance is integrated within the full kinetic chain and 

therefore must tolerate force, torque and velocities characteristic of such movement.  

Logically therefore, a training intervention to develop trunk stability must adhere to two 

key training principles, specificity and overload.  To be specific, exercises should be 

dynamic and similar to the movement for which trunk stability is required.  Overload is 

achieved by executing selected movements under conditions of greater force, torque or 

velocity of movement.   

The findings of this suite of studies confirm that loaded free barbell squat is effective in 

activating the trunk stabilizers.  Importantly, this stimulus is integrated within a compound, 

whole body movement, which addresses the first limitation of traditional CST, specificity.  

Our research has confirmed that loaded back squats represent a training overload for the 

trunk stabilizers, thereby addressing the second limitation of traditional CST.  While there 

has been progress in scientific challenge to traditional core stability, research has failed to 

give clear direction on the most effective training methods to develop dynamic trunk 

113



stability for athletic performance. Our research provides that direction with scientific 

evidence; 

 Trunk stabilizers are sensitive to typical training load manipulation in the back squat.

 Trunk muscle activation is highest in the final 30o of squat descent to parallel and first

30o of ascent regardless of load.

 Adaptations to loaded back squat training improve efficacy of trunk stability

mechanisms under load.

 Trunk muscle adaptations to loaded squat training transfer to powerful, dynamic

bodyweight jumps, characteristic of many sports.

The loaded parallel back squat can be viewed with confidence as an effective method of 

activating and training the trunk stabilizers.  Squat training with loads ranging from 65 to 

95% of 1 repetition maximum will activate trunk stabilizers effectively. This will increase 

dynamic trunk stability required to withstand increasing loads in the squat and over time 

will do this more efficiently, at lower levels of trunk muscle activation.  Furthermore, 

training to parallel depth or lower will optimize activation during training and develop 

stability in the deepest, most challenging phase of squat descent and ascent. 

The development of squat strength through continuous, progressive training will transfer to 

SJ and CMJ performance (Wirth, Keiner, et al., 2016).  We showed that squat strength was 

also associated with lower trunk muscle activation in concentric and flight phase of SJ and 

CMJ.  Therefore, squat training adaptation results in greater jump performance at lower 

levels of activation of the trunk stabilizers. Arguably, this adaptation to squat training will 

transfer to a range of dynamic athletic actions.   

Recommendations for strength training programmes for development of strength, power 

and performance in athletic activities: 

 Include the loaded free barbell back squat at progressive loads ranging from 65 to

95% 1RM for the development of trunk stability.

 Ensure correct and safe technique, specifically squatting to a minimum of parallel

depth.

 Use the following criteria to monitor progress in the development of trunk stability: 
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 In compound loaded exercises, observe and monitor the ability to adhere to correct

technique under load and progression of load. Specifically, the capacity to manage

load through the trunk; evidenced by monitoring the ability to keep the path of the load

over the base of support through the full range of movement.

 In technical sporting movements, observe and monitor the ability to execute technical

movements at high force, velocity and torque effectively and correctly in situ.

 In both of the above contexts, monitor and assess acute change within a training

session in response to fatigue to assess short-term endurance.

 In both of the above contexts, monitor and record development across a longitudinal

training period to assess progress and chronic adaptation.

Impact:  Future research 

Reviews on the application of CST for sports performance and proxies thereof report a 

number of commons research flaws (Reed et al., 2012; Silfies et al., 2015; Prieske, 

Muehlbauer and Granacher, 2016; Wirth, Hartmann, et al., 2016), which should guide and 

inform future research.  There is agreement that absence of a valid test of core stability has 

undermined progress in scientific understanding of core stability training effects (Hibbs et 

al., 2008; Prieske, Muehlbauer and Granacher, 2016).  Isolating and measuring trunk 

muscle strength as a component of trunk stability is in itself flawed (Okada, Huxel and 

Nesser, 2010).  Furthermore, current reliance on tests that resemble common exercises 

used in CST means that results are biased in favour of CST.  Complex neuromuscular 

interactions that underpin dynamic trunk stability cannot be described by a single measure 

of strength, especially strength measured by an isometric test.  Current scientific 

methodology is not capable of isolating and measuring these factors within athletic activity 

to inform training manipulations.  Nor is methodology available to measure acute exercise 

response or chronic training adaptations in selected trunk stability exercise interventions.  

Which means that testing proxies of sports performance is currently the most effective 

method of assessing transfer of trunk stability training interventions. 

Our novel findings that improved trunk stability developed through loaded barbell squat 

training make a significant contribution to: 

1. Increased load carrying capacity in loaded barbell squat by enhancing stability at more

efficient levels of trunk muscle activation.
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2. Increased body weight jump performance by increasing trunk stability at more efficient

levels of trunk activation.

The importance of these findings for applied strength and conditioning practice have been 

described above.  With reference to the first point, there would be value in better 

understanding how other commonly used loaded compound exercises, engage and develop 

the trunk stabilizers.   Perhaps more meaningful and interesting, relating to point 2, is how 

do the adaptations to loaded squat training translate to trunk stability in other dynamic 

athletic activities?  Research recommendations: 

 Subject the key findings of this research to further investigation in a randomized

controlled training study.

 Investigate acute response and adaptation of trunk muscles to exercise and training

with compound loaded exercises, including deadlift and Olympic weightlifting

exercises.

 Based on the principle that squat training impacts positively on stabilizer adaptation,

determine the impact of progressive squat training on neck strength as a protection

against concussion.

 Impact of enhanced trunk stability from progressive squat training on dynamic trunk

stability in performance of common sporting activities such as; sprinting, cycling,

reactive agility in racquet sports, canoe paddling and rowing.
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Core	Stability	(copy)

Page	1:	Page	1

There	have	been	a	number	of	recent	reviews	highlighting	the	lack	of	consensus	around	the
topic	of	core	stability.	There	is	however	agreement	that	core	stability	is	important	in
everyday	life	and	dynamic	sporting	activity.	The	confusion	lies	in	the	most	effective	manner
of	developing	and	measuring	core	stability.	

This	motivated	me	to	embark	on	a	PhD	a	few	years	ago	looking	at	neuromuscular	function
of	the	trunk	in	the	loaded	squat	in	the	hope	of	shedding	some	light	on	this	approach	for
developing	core	stability.

An	obvious	related	question	is:	How	do	people	working	in	sport	view	core	stability	and	its
development	for	dynamic	athletic	performance?	

I	appreciate	your	time	in	completing	this	short	survey	(<15	min)	which	will	focus	on	core
stability	for	dynamic	athletic	performance.

Appendix 1
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Page	2

Section	1:	Demographics

Sports	Medicine	Practitioner

Sports	Physiotherapist

Masseur	/	Soft	Tissue	Therapist

Strength	and	Conditioning	Coach

Sports	Physiologist

Sports	Psychologist

Performance	Nutritionist

Biomechanist

Performance	Analyst

Sports	Coach

Athlete	/	Player

Sports	management

Other

1. What	is	your	Primary	discipline?	 	Required

1.a. 	If	you	selected	Other,	please	specify:

Professional,	full-time	paid	position	working	with	full-time	paid	atheletes

Semi-professional,	paid	part-time	position

Elite	professional,	full-time	paid	position	working	with	funded	and	amateur	athletes

2. What	area	of	sport	are	you	involved	in?	 	Required

Appendix 1
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(Institute)

Elite	non-professional,	part-time	working	with	regional	or	national	selected	athletes

Volunteer	in	recreational	club	sport

Academic,	university	or	school	sport	role

Other

2.a. 	If	you	selected	Other,	please	specify:

Team	sport

Individual	athletes

Combination	of	team	and	individual	athletes

3. Please	indicate	below	which	describes	most	accurately	where	you	do	most	of	your
work.	 	Required

PhD

MSc	or	Masters

Degree	or	Honours	degree

Diploma

Other

4. What	is	your	highest	academic	qualification?	 	Required

4.a. 	If	you	selected	Other,	please	specify:

Appendix 1
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Section	2:	Core	Stability

Yes

No

4.b. 	Do	you	have	a	professional	qualification	linked	to	your	discipline?	 	Required

4.c. 	How	many	years	have	you	been	working	in	your	current	discipline?	 	Required

The	spine	and	the	associated	muscles	and	nerves

The	lumbar	spine,	pelvic	and	hip	joints	and	associated	muscles	and	nerves

	 The	region	between	and	including	the	pelvic	and	shoulder	girdles	and	associated
muscles	and	nerves

	 The	region	between	and	diaphragm	and	pelvic	floor	and	associated	muscles	and
nerves

Other

5. Which	statement	below	do	you	think	best	describes	what	constitutes	the	core	most
accurately?	 	Required

5.a. 	If	you	selected	Other,	please	specify:

Torso

6. What	term	do	you	believe	best	describes	the	anatomical	region	that	this	survey	is
dealing	with?	 	Required
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Trunk

Core

Upper	limb

Other

6.a. 	If	you	selected	Other,	please	specify:

	Required

1
Strongly
agree

2
Agree

3	Neither
agree

nor
disagree

4
Disagree

5
Strongly
disagree

Core	strength	is	required	for	core
stability

Core	strength	and	core	stability
are	separate	attributes

Core	strength	is	required	for
dynamic	athletic	performance	but
not	everyday	life

Core	stability	is	dependent	on
neural	timing	and	muscular
coordination	rather	than	core
strength

7. Please	rate	how	strongly	you	agree	or	disagree	with	the	following	statements.

8. Do	you	believe	that	trunk	muscle	activation	measured	by	surface	electromyography
is	reflective	of	performance	of	the	core	stabilization	system?	 	Required
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Yes

No

Don't	know

	Required

1	Very
effective

2 3 4
5	Not

effective
at	all

Isolated	abdominal	bracing

Isometric	held	exercises	such	the	plank

Dynamic	abdominal	exercises	such	as	sit-ups

Dynamic	inverted	exercises	such	as	hanging
leg	raise

Suspended	compound	exercises	using
systems	such	as	the	TRX

Instability	abdominal	exercises	performed	on
a	Swiss	ball

Functional	exercises	such	as	farmers	walk

Loaded	free	barbell	exercises	such	as	Squats
and	Olympic	lifts

9. Please	rate	the	following	categories	of	exercise	on	their	effectiveness	in	developing
core	stability	for	dynamic	athletic	performance?

	Required

10. Please	rate	how	strongly	you	agree	or	disagree	with	the	following	statements	as	they
relate	to	determining	exercise	selection	for	the	development	of	core	stability	for	dynamic
athletic	performance.
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1
Strongly
agree

2
Agree

3
Neither
agree

nor
disagree

4
Disagree

5
Strongly

Disagree

The	exercise	must	subject	the
athlete	to	forces	equal	to	or
greater	than	expected	in	the	sport
or	event

The	exercise	must	emphasize
correct	movement	pattern	above
all	else

The	exercise	must	subject	the
athlete	to	velocity	of	movement
equal	to	or	greater	than	expected
in	the	sport	or	event.

The	exercise	must	develop
capacity	for	sustained	isometric
contraction

	Required

1
Strongly
agree

2
Agree

3	Neither
agree	nor
disagree

4
Disagree

5
Strongly
disagree

Trunk	muscle	activation	will
increase	with	increases	in
velocity	of	movement.

Trunk	muscle	activation	is
dependent	on	correct	postural
control

11. Please	rate	how	strongly	you	agree	or	diagree	with	the	following	statements	as	they
relate	specifically	to	ground	based	loaded	free	barbell	exercises	(Squats	and	Olympic
weightlifting	exercises).
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Trunk	muscle	activation	is
enhanced	by	slow	controlled
movement

Trunk	muscle	activation	will
increase	with	increases	in
external	load

12. What	is	the	most	effective	method	of	measuring	core	stability	in	a	healthy,	un-injured
person?	 	Required

Yes

No

Don't	know

13. Do	you	think	it	is	necessary	to	include	specific	exercises	to	train	core	stability	in	a
healthy,	uninjured	non	athlete’s	exercise	programme?	 	Required

Yes

No

Don't	know

14. Do	you	think	it	is	necessary	to	include	specific	exercises	to	train	core	stability	in	a
healthy,	uninjured	athlete’s	exercise	programme?	 	Required
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Yes

No

Don't	know

15. Do	you	think	that	the	development	of	core	stability	can	prevent	back	pain?	 

Required

Yes

No

Don't	know

16. Do	you	think	that	certain	lower	limb	overuse	injuries	are	caused	by	poor	or	under
developed	core	stability?	 	Required

Yes

No

Don't	know

17. Do	you	think	it	is	possible	to	isolate	and	train	the	core	stabilization	system?	 

Required

Yes

No

Don't	know

18. Do	you	think	it	is	effective	to	isolate	and	train	the	core	stabilization	system?	 

Required
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Yes

No

Don't	know

19. Do	you	think	that	the	core	stability	is	automatically	developed	during
normal,	progressive	exercise	training?	 	Required
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Page	3

Thank	you	for	completing	the	survey.
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Muscle Sites: 

1 – Exernal oblique (EO) 

2 – Rectus abdominus (RA) 

3 – Lumbar sacral erector spinae (LSES) 

4 – Upper lumbar acral erector spinae (ULES) 

5 – Vastus lateralis (VL) 

1
2 

5 

4 

3 
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Appendix 4

Eccentric and concentric phase determined from displacement 
(cm) measured by linear encoder used to identify mean EMG for

each phase.

Concentric Eccentric 
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Appendix 5

Kinematic set-up: Back squat

Linear encoder:

Measures barbell displacement 
(cm) 
Determine eccentric and concentric 
phases of the back and hack squat
and jumps
Determine flight time for jumps

BioNomadix 2 Ch. EMG transmitter:

Each transmits high resolution 
sEMG signal at a rate of 2000Hz 
from two muscle sites to the Biopac 
MP150 receiver unit

Electromechanical goniometer:

Measure knee flexion in eccentric 
phase and extension in concentric
phase.
Signal used to determine three 30o

tertiles in each phase; eccentric and 
concentric.
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