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Prior to adoption of the 1972 Clean Water Act (CWA) most U.S. power plants 

used once-through cooling water systems that discharged large quantities of warm 

water and resulted in significant amounts of thermal pollution in neighboring 

bodies of water.  The CWA essentially mandated recirculating systems for most 

new facilities.  This paper investigates whether there was either cost-saving or 

performance enhancing technological advance in cooling systems and how these 

advances are related to imposition of the CWA.  
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I  Introduction 

Thermal electrical generating plants use cooling systems to control the heat of combustion and 

increase net power output.  Prior to adoption of the U.S. Clean Water Act (CWA) in 1972, most 

power plants were constructed with once-through cooling systems that took in and discharged 

large amounts of cooling water and resulted in significant temperature increases in their 

neighboring bodies of water.  The increased temperatures of the bodies into which plants 

discharged their cooling water caused changes in their ecosystems that could be called thermal 

pollution damage.  The Clean Water Act used a technology standard which essentially required 

that most new plants be built with recirculating cooling systems, which reuse cooling water and 

result in far less thermal pollution. 

Whether the instrument used to reduce thermal pollution has hindered technological advance is 

unknown.  This analysis tests whether the rate of technological advances that reduce the 

performance-adjust cost of installing a cooling system was impacted by the CWA.  While 

previous research of this type has focused on air pollution control technology, this is the first 

analysis that the authors are aware of to focus on advances in water pollution control technology.  

Cost saving advances might be expected if the utilities that construct and operate power plants 

are cost-minimizing entities.  In addition, as manufacturers of once-through systems faced 

increasing competition from recirculating systems, it is possible that this would spur increased 

technological advance as once-through cooling systems fought to maintain their position in the 

marketplace.   
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II Background 

Among the environmental impacts of thermal electrical generating plants is the release of 

thermal energy with expelled cooling water.  Power plants use cooling systems to control heat as 

well as to decrease the temperature and pressure of steam that has passed through a generating 

turbine, increasing the pressure differential across the turbine and improving the performance of 

the unit. The use of cooling systems can increase the power output of a boiler/generator 

combination.  The environmental impact comes when the water used in the cooling system is 

released into a water source at a temperature far above the ambient temperature, an impact 

referred to as thermal pollution.  Thermal pollution has the potential to severely impact 

ecosystems in the affected bodies of water, significantly affecting the mix of species found and 

potentially reducing the biodiversity of the area.  Interestingly, the effects of thermal pollution 

can vary dramatically from location to location and from season to season, and are not 

unambiguously bad.  In some circumstances, thermal emissions have been associated with 

increased biodiversity.  However, to the extent that any ecological change from the natural state 

represents damage to at least one part of that ecosystem, thermal emissions could be considered 

damaging under any circumstances. 

Prior to 1970, most cooling systems used cooling water once and then discharged it back into the 

body of water from which it was drawn.  These once-through systems generally take in massive 

amounts of water, straining and chlorinating it to prevent damage to cooling hardware.
1
  After 

the cooling water is treated, it is used to cool steam that has already passed through a generating 

turbine.  The cooling process lowers the temperature of the steam, reducing its pressure.  This 

                                                           
1
 Issues related to the design of these intake systems and their potential to kill many aquatic animals was the subject 

of a Supreme Court’s Entergy v. Riverkeeper decision in April of 2009. 
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reduced post-generation pressure steepens the pressure gradient across the turbine and allows 

more power to be produced with no associated increase in fuel consumption.  The water, which 

has absorbed a significant amount of thermal energy, is then returned to the body of water from 

which it was drawn, causing a localized increase in the ambient water temperature.  Typical 

temperature increases are 17˚F for fossil fuel plants and 23˚F for nuclear plants (EPRI, 2004). 

The effects of these localized increases in water temperature vary tremendously depending on 

specific conditions.  The discharge of a certain thermal volume
2
 of water might have a negligible 

impact if it is diffused broadly or put into a large or fast moving body of water but massive 

effects if discharged at one point or into a small, static body of water.  In addition, warm water 

has less capacity for dissolved oxygen than does cold water.  Because the natural processes that 

decompose organic waste consume oxygen, the warmer water released from cooling systems 

tends to encourage algal production compared to colder water.  Different aquatic creatures prefer 

different temperatures.  Releases of cooling water have the capacity to change the mix of 

creatures living near the effluent point and their level of activity.  Whether this altered mix of 

species and behaviors necessarily constitutes pollution damage is debatable and may depend on 

local conditions and in which season the releases occur.  Summer releases into already warm 

water may overheat some species or more fully deplete the oxygen in the water.  Winter releases, 

however, might increase the diversity or the activity level of aquatic life, perhaps creating new 

recreational fishing opportunities. In the absence of any research to the contrary, we will assume 

that a greater thermal volume of discharge does, in fact, result in pollution damage and thus a 

reduction in thermal discharge is desirable, other things being the same. 

                                                           
2
 We will use the term thermal volume to be the product of the volume of water released and its increased 

temperature. 
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The CWA effectively required new generating units to install closed circuit cooling systems, but 

offered the possibility of variances if the plant operator could demonstrate that a proposed once-

through system would not adversely impact the local aquatic ecosystem.
3
 Plants that can 

successfully demonstrate that a once-through cooling unit, which may be much less expensive to 

install and operate than a closed circuit unit, will not compromise the existence of a balanced, 

indigenous population, may install a once-through system.  This aspect of the CWA put closed 

cycle cooling systems into competition with once-through systems and essentially put pressure 

on designers of once-through systems to mitigate their environmental impact.  

There is a large theoretical literature examining the effects of different environmental policy 

instruments on technological advancement and diffusion. A good review of the literature can be 

found in Jaffe et al (2002).  Standard economic theory suggests that technology standards offer 

poor incentives for innovation in pollution control technology, especially if they are subject to 

change when technology advances.  Several papers (Downing and White (1986); Millman and 

Prince (1989); Zerbe (1970); Requate and Unold (2003)) show that technological standards 

generally offer incentives for innovation that are smaller than those offered by market-based 

regulations. While the above findings assume a perfectly competitive supply of pollution control 

technology, David and Sinclair-Desgagne (2005) show that a monopolistic supplier of pollution 

control equipment will capture all of the rents from a polluting firm under a technology standard, 

implying that technologically adjusted costs will not fall over time. 

                                                           
3
 In the text of section 316(a) of the Act: 

“With respect to any point source… whenever the owner or operator of any such source… can 

demonstrate… that any effluent limitation proposed for the control of the thermal component of any 

discharge from such source will require effluent limitations more stringent than necessary to assure the 

projection and propagation of a balanced, indigenous population of shellfish, fish, and wildlife in and 

on the body of water into which the discharge is to be made, the Administrator… may impose an 

effluent limitation… that will assure the protection and propagation of a balanced, indigenous 

population of shellfish, fish, and wildlife in and on that body of water.” 
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Several papers have investigated advances in air pollution equipment at thermal power plants.  

The most common equipment analyzed are flue-gas desulfurization (FGD) units, which are end-

of-pipe sulfur dioxide pollution control technologies. FGD systems were initially encouraged 

through an emissions standard in the 1970 Clean Air Act. The 1990 Clean Air Act initiated a 

system of tradable permits for sulfur dioxide emissions. Bellas (1998), Popp (2003), Lange and 

Bellas (2005) and Perino (2010) all use a hedonic price functions to model installation and/or 

operating costs of FGD systems.  The results generally find that costs of FGD systems installed 

under an emissions standard regime did not decrease significantly over time, implying that the 

technology was stagnant. When the tradable permit scheme was initiated, FGD systems had a 

statistically significant drop in price. Perino (2010) finds evidence of price discrimination by 

FGD producers, suggesting that prices would have fallen more in the absence of market power. 

Bellas and Lange (2010) use a similar model for the installation and operating cost of flue-gas 

particulate (FGP) collectors, an end-of-pipe particulate pollution control technologies. 

Particulates have been regulated through an emissions standard since the 1970 Clean Air Act. 

Results match the predictions of David and Sinclair-Desgagne (2005) in that operating cost 

reductions are captured by the suppliers through increases in the purchase price. This analysis is 

the first, that the authors are aware of, that tests the relationship between environmental policy 

and technological advancement of water pollution control.  

 

III Data Description 

 

The data come from the U.S. Energy Information Administration Form 767, an annual survey of 

U.S. steam-electric plants with ratings of 10 megawatts or greater. This form collects information 
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on the design and operation of myriad aspects of the plants including the water cooling 

system(s).  Because the information utilized here relates to the purchase of a water cooling 

system, only data from one year is needed. Data used in this analysis come from the year 2000 

survey, though the information and results are compared across years to ensure consistency of 

the data.  The variables used in this analysis describe the cost, design and operation of the 

cooling system, the capacity and performance of the associated generator(s) and the 

characteristics of the body of water from which the cooling system draws and into which it 

discharges water. 

REAL INSTALLATION COSTS is the real installed cost of cooling system i in thousands of 

dollars, adjusted for inflation using the Producer Price Index for the year of installation.
4
 (U.S. 

Council of Economic Advisors, 2008). Dummy variables are created for each type of cooling 

system, ONCE-THROUGH and RECIRCULATING. The once-through (recirculating) dummy 

variables take the value of one if the system is once-through (recirculating) and is zero otherwise. 

NATURAL is a dummy variable equal to one if the cooling system intakes water from a water 

body expected to have significant wildlife populations (lake, river, or ocean).  It is zero if the 

water is taken from a well or municipal source. FLOWRATE is the design cooling water flow 

rate at 100 percent load at intake in cubic feet per second.  MAXRATING is the nameplate rating 

of generator j.  These are summed for the generators associated with each cooling unit.  

MAXFLOW1 is the sum of the design flow rates in the condensers in cubic feet per second at 

100 percent load for the generators served by cooling system i.  TEMPERATURE INCREASE is 

the average design temperature rise in degrees Fahrenheit across the condenser at 100 percent 

                                                           
4 Downloaded from the St. Louis Federal Reserve web site, 

http://research.stlouisfed.org/fred2/series/PPIACO/downloaddata?cid=31, 1982=100. 

 

http://research.stlouisfed.org/fred2/series/PPIACO/downloaddata?cid=31
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load for generators associated with cooling system i.   THERMAL VOLUME is the sum of the 

products of the maxflow and temprise variables for the generators served by cooling system i.  

This is a measure of the total amount of cooling done by cooling system i.  PLANT REGION 

dummy variables are created based on Census Bureau classifications of the U.S.  

Variables used to test the impact of environmental policy on installation costs are discussed here. 

YEAR INSTALLED is the year in which the cooling system came on line and is used as a proxy 

for vintage of the system.  CWA is a dummy variable which is equal to one if the cooling system 

was installed in 1974 or after and is zero if the cooling system was installed in the year 1973 or 

earlier.
5
 To test for the effect of the CWA on water cooling system installation costs, an 

interaction term of YEAR INSTALLED and CWA is calculated by multiplying the two variables 

together.  Since the CWA expressed a preference for recirculating systems, an additional 

interaction term is created to test for a differential effect on installation costs between once-

through and recirculating system after the CWA was in place. The variable is the product of the 

YEAR INSTALLED, CWA, and RECIRCULATING variables.   

A list of summary statistics for the variables used in this analysis is given in Table I.  

 IV Analysis 

A hedonic price model will be used to estimate the effects of vintage and regulatory policy on 

the cost of water cooling systems. The model assumes that the characteristics of the water 

cooling and generation system alter the price of the water cooling system. The estimation 

equation is given by: 

                                                           
5
 Robustness of the CWA variable, with the value of one starting in 1973, 1975, and 1976, were also used in the 

analysis. Given that water cooling systems, and power plants in general, are large investments that take multiple 

years to complete no CWA dummy starting in 1972 (the year the Act passed) is used. 
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                                                                 [1] 

Where    is the real installation costs of a cooling water system,   is a utility dummy variable,    

is a vector of cooling water system characteristics,   is a vector of characteristics of the 

generator(s) with which the given cooling water system is paired,    is the type of cooling water 

system (once-through or recirculating),   is a vector of regulatory policy variables, and    is a 

vector of regional dummy variables.  The error terms are clustered on the utility to control for 

potential correlation between water cooling systems within the same utility. A Durbin-Wu-

Hausman endogenity test was performed to determine whether the choice of water cooling type 

(recirculating or once-through) is endogenous in the model. The test failed to reject the exogenity 

of the water cooling type.
6
 

The policy and interaction terms’ interpretation is complicated, thus a short discussion of this is 

warranted. The year installed variable shows whether performance-adjusted installation costs 

have fallen over time, which represents technological advancement in this model. The CWA 

dummy variable shows whether a one time change in real installation costs occurred when the 

CWA passed. The year installed CWA interaction term shows how the association of year 

installed with real installation costs was altered for systems installed after the CWA was passed.  

The year installed CWA recirculating interaction term shows how the association of year 

installed with real installation costs was altered for recirculating systems installed after the CWA 

was passed.  

V.  Results and Discussion 

                                                           
6
 Nonetheless, an instrumental variable estimation was also run to determine if the policy variables have the same 

sign and significance as those in Table II.  The policy variables sign and significance are unchanged using the 

specification in Table 2, Column 1. Results are available from the authors by request. 
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Table II, Column 1 shows the results of Ordinary Least Squares regressions of the model given 

in [1]. Column 2 and 3 show the robustness of the coefficients to different model specifications.  

Column 2 omits the utility dummy variables while Column 3 uses a natural log transformation 

for the dependent variable. Characteristics of the water cooling system have a robust association 

with real installation costs.  The coefficient on recirculating systems is consistently positive and 

statistically significant, implying that they are more expensive to install than once-through 

systems. A larger generator rating is consistently positive and statistically significant. Other 

characteristic coefficients have the same sign but are not statistically significant in all 

estimations. 

The evidence on technological advance over time comes from the installation year variable and 

its interactions.  The results from Table II show no statistically significant advance previous to 

the CWA regulations. The interaction terms show that the passage of the CWA had no statistical 

effect on installation costs for the models that include a firm dummy.  If the firm dummy is 

excluded, the passage is statistically associated with a one-time drop in costs and an increasing 

trend over time. The effect of CWA passage on recirculating system installation costs is for a 

decreasing and statistically significant trend over time in two of the three models.  The result that 

installation costs have statistically fallen since the imposition of environmental policy in the 

form of a technology standard is uncommon.  The theoretical prediction and empirical evidence 

points to technology standards leading to no reduction or an increase in costs over time.    

The results given in Table II all assume that a change in the pattern of installation costs due to 

the CWA occurred in 1974.  In order to determine whether this assumption is robust, model [1] 

was re-run with CWA dummies that assume a change in the years 1973, 1975, and 1976.  Results 

of the robustness of the CWA specification are given in Table III.  Using the year 1973 as a 
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break point leads to the same results as when 1974 is used. Recirculating systems fell in 

installation costs after the CWA while once-through and both types pre-CWA had constant 

installation costs.  However, if the CWA dummy starts in 1975 or 1976 then none of the policy 

variables are statistically significant.
7
  While these 1975 and 1976 CWA results show that the 

results concerning technological advance in recirculating systems are not robust, the 

specification assumes that a change in behavior occurred well after the CWA actually became 

law.  In all, the results provide evidence that technology standards may not restrict technological 

advancement as much as past evidence suggest.       

VI. Conclusion 

The theoretical predictions of the impact of technology standards on costs of pollution control 

equipment are well researched.  They tend to show that technology standards are inferior 

instruments in encouraging technological advancement when compared with market-based 

instruments.  The empirical evidence is generally consistent with this prediction; however most 

of the evidence comes from air pollution control equipment.  This analysis extends the literature 

by providing evidence on the relationship between environmental policy instrument and 

technological advancement for water cooling systems.   

The CWA essentially instituted a technology standard for recirculating water cooling systems at 

U.S. power plants.  The ratio of once-through to recirculating water cooling systems reversed 

after passage of the CWA. A hedonic price model of water cooling systems is estimated here 

using year installed as a proxy for vintage. The results find that there was no statistical evidence 

of technological advancement previous to the CWA.  After the CWA, recirculating systems have 

                                                           
7
 If a logged dependent variable is used with a 1975 CWA dummy variable, then the statistically significant negative 

coefficient for recirculating systems interacted with CWA dummy returns.  Full regression results are available from 

the authors by request. 
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shown a statistical reduction in installation costs over time while once-through systems have not. 

The result is robust to some specifications but not to altering the year that the CWA had an 

impact on installation costs.  The result for recirculating systems after the CWA is a break from 

past evidence concerning the relationship between technological standards and technological 

advancement.   
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Table I: Summary Statistics 

 
 

 

  

Summary Statistics

Sample All Systems Once-Through Recirculating Pre-CWA Post-CWA

Variable     

Real Installation Costs ($1000) 7845          

(11723)

6635                       

(10469)

9472                      

(13112)

6859                

(11703)

11075        

(11217)

Natural Water Body Intake 0.85                            

(0.35)

0.98                        

(0.12)

0.67                

(0.46)

0.86                    

(0.33)

0.81                  

(0.38)

Recirculating System 0.41                   

(0.49)

0.29               

(0.45)

0.80                      

(0.39)

Year Installed 1964                   

(12.03)

1960                     

(9.6)

1970                         

(12.6)

1960  

(9.39)

1980                 

(4.8)

Flow Rate Intake (Cubic ft/second) 151.73                     

(371.26)

13.53                           

(84.9)

349.78                       

(509.01)

306.58                        

(410.39)

298.86                      

(410.48)

Maximum Generator Rating (MWh) 356,115                    

(336,308)

313,873                           

(310,942)

416,009                    

(362,237)

292,944                  

(311,369)
574.079         

(327,569)

Maximum Generator Flow Rate (Cubic ft/second) 376.63                     

(352.22)

378.15               

(383.05)

374.98                 

(303.96)

339.16                   

(351.77)

505.89           

(322.45)

Design Generator Temperature Increase (F) 18.72                

(5.74)

17.35                 

(5.23)

20.72                 

(5.78)

17.69             

(5.29)

22.28                           

(5.80)

Thermal Volume 7060                            

(6383)

6327                     

(5916)

8113             

(6876)

5900      

(5875)

11068            

(6459)

Mean with Standard Deviation in Parenthesis 
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Table II: Regression Results 

 

 

  

Dependent Variable: Real Installation Costs

Variable

Natural Water Body Intake 2687*               

(1604)

1377           

(938.32)

0.30              

(0.20)

Recirculating System 5248***                          

(1780)

4111***                          

(1102)

0.44*                        

(0.23)

Clean Water Act Dummy -304984           

(396111)

-729218**           

(309361)

0.82                         

(40.66)

Year Installed -51.10               

(127.22)

6.87       

(62.97)

0.01            

(0.01)

Year Installed*Clean Water Act Dummy 155.61            

(200.80)

368.05**      

(156.69)

-0.01                    

(0.01)

Year Installed *CWA* Recirculating -2.34*            

(1.23)

-1.07           

(1.07)

-0.01**                    

(0.00)

Flow Rate Intake 6.89***            

(2.94)

5.82***            

(2.14)

0.01                

(0.01)

Maximum Generator Rating 0.02***     

(0.00)

0.02***     

(0.00)

0.01***     

(0.00)

Maximum Generator Flow Rate -16.0*                 

(9.47)

-14.60**                 

(6.55)

-0.01             

(0.00)

Design Generator Temperature Increase -136.05        

(151.60)

-58.84        

(146.20)

0.02                 

(0.01)

Total Thermal Volume 0.63           

(0.41)

0.48         

(0.30)

0.01                           

(0.01)

Controls Utility & 

Region 

Region Utility & 

Region 

Dependent Variable Level Level Logs

Observations 1094 1094 1094

R
2 0.46 0.29 0.6

*, **, *** indicates 10%, 5%, and 1% significance, respectively, against a null of no 

effect
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Table III: Robustness of CWA Dummy Specification 

 

Dependent Variable: Real Installation Costs

CWA Switch Year 1973 1974 1975 1976

Clean Water Act Dummy -276346                 

(395390)

-304984           

(396111)

-537130          

(407255)

-363298            

(443033)

Year Installed -43.50                  

(133.66)

-51.10               

(127.22)

-22.30               

(117.57)

-50.88        

(112.74)

Year Installed*Clean Water Act Dummy 140.80              

(200.15)

155.61            

(200.80)

271.34               

(206.46)

184.42      

(224.41)

Year Installed *CWA* Recirculating -2.01*                        

(1.19)

-2.34*            

(1.23)

-1.07           

(1.07)

-1.19          

(1.33)

*, **, *** indicates 10%, 5%, and 1% significance, respectively, against a null of no effect

Other Controls: Natural Water Body Intake, Recirculating System, Flow Intake Rate, Maximum 

Generator Rating, Maximum Generator Flow Rate, Design Generator Temperature Increase, 

Total Thermal Volume, Utility Dummy, and Plant Region Dummy


