
 1 

Biochemical and molecular studies of the polyunsaturated fatty acid desaturation pathway in 1 

fish 2 

 3 

 4 

Douglas R. Tocher, Morris Agaba, Nicola Hastings and Alan J. Teale 5 

 6 

 7 

Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, Scotland, U.K. E-mail: 8 

d.r.tocher@stir.ac.uk. 9 

 10 

 11 

Key words: Fish; polyunsaturated fatty acids; desaturation; elongation; cell culture; molecular 12 

biology. 13 

 14 

 15 

Running head: Fatty acid desaturation pathway in fish 16 

  17 

 18 

 19 

 20 

 21 

 22 

23 



 2 

Abstract 23 

 24 

Fish have an absolute dietary requirement for certain polyunsaturated fatty acids (PUFA) 25 

termed “essential fatty acids” (EFA) that include members of both the n-6 and n-3 series 26 

typified by linoleic acid, 18:2n-6, and α-linolenic acid, 18:3n-3. However, the biologically 27 

active forms of EFA are generally the C20 and C22 metabolites of 18:2n-6 and 18:3n-3, viz. 28 

20:4n-6, 20:5n-3 and 22:6n-3. Some fish species can convert C18 PUFA to the C20 and C22 29 

PUFA through a series of alternating desaturation and chain elongation reactions mediated by 30 

microsomal systems containing elongases and Δ6 and Δ5 fatty acid desaturases. In species 31 

that cannot perform these conversions, the C20 and C22 PUFA themselves are dietary EFA 32 

and their C18 homologues do not satisfy EFA requirements. The extent to which the foregoing 33 

statements apply quantitatively to a given fish species varies widely. Therefore, a vital area in 34 

lipid nutrition in fish is the provision of sufficient amounts of the correct EFA to satisfy the 35 

requirements for normal growth and development, requirements that can vary quantitatively 36 

during the life of the fish and are particularly important factors in larval marine fish. This 37 

paper reviews the work on defining and characterising the fatty acid desaturation and 38 

elongation pathway in fish. Biochemical studies have been advanced by the use of cell 39 

cultures which have elucidated key parts of the pathway. Thus, the presence of the so-called 40 

Sprecher shunt, where 22:6n-3 is produced from 20:5n-3 through two successive elongations 41 

and a Δ6 desaturase followed by peroxisomal chain shortening, was demonstrated in trout. 42 

Similarly, the block in the pathway in marine and/or piscivorous fish could be due to either a 43 

deficiency of C18-20 elongase or Δ5 desaturase and this varies between different marine 44 

species. Recent work has focussed on the molecular biology of the pathway with the cloning 45 

of fatty acid desaturases and elongases from a variety of fish species. Zebrafish have been 46 

used as a model species and a unique desaturase possessing both Δ6 and Δ5 activity along 47 

with an elongase with very high C18-20 activity have been cloned and characterised. 48 

Understanding this pathway is of increased importance due to the current dependence of 49 

salmonid and marine fish aquaculture on fish oil, the supply of which is becoming 50 

increasingly limited and unsustainable, necessitating the use in fish feeds of sustainable plant 51 

oils, rich in C18 PUFA, but devoid of C20 and C22 PUFA.  52 
53 
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Introduction 53 

 54 

Lipid nutrition of fish is a subject that has received enormous attention in the last 10 years 55 

(see Sargent et al. 2002). In particular, much work has focussed on the optimal requirements 56 

and functional roles of polyunsaturated fatty acids (PUFA) during larval and early 57 

developmental stages of marine fish (Sargent et al. 1999). However, the study of lipid and 58 

fatty acid biochemistry of larval fish, especially marine larval fish, is hampered by their very 59 

small size. This can place a significant limitation on the amount of material available for 60 

study. Of course, the small size of larvae can be compensated, in some instances by numbers, 61 

particularly if the enzymes and/or metabolic pathways can be effectively studied in 62 

homogenates or some other similar preparation of whole animals. However, it is often far 63 

more illuminating to study specific organ, tissue or subcellular fractions and in these cases 64 

the considerable practical problems of dissecting large numbers of very small animals 65 

through a binocular microscope can be prohibitive. One alternative is to use larger animals. 66 

This usually requires the use of older animals such as juveniles and this can be acceptable in 67 

some circumstances where the developmental stage of the fish or the ontogeny of the enzyme 68 

systems or metabolic pathways is not a major issue. However, a further alternative is to go 69 

even smaller, by studying the pathways at a cellular or molecular level.  70 

 71 

This paper describes the utilization of both cell culture systems and molecular techniques in 72 

the study of the genes, enzymes and metabolic pathways of lipid and fatty acid metabolism in 73 

fish. The advantages (and disadvantages) of utilizing cell culture systems in metabolic studies 74 

are described and the types of data that can be obtained are illustrated through studies 75 

performed in our own laboratory over the last 5-6 years. The aims of these studies were to 76 

elucidate the PUFA desaturation and elongation pathway in salmonids, and the nature of the 77 

deficiency in the pathway in marine fish, and the metabolic pathway behind the metabolism 78 

of 18:5n-3 in fish. Recently, molecular studies have begun to elucidate the genetics of these 79 

processes through the cloning and characterisation of the genes involved which will enable 80 

further studies of their expression and regulation. 81 

 82 

Cell culture studies 83 

 84 

Fish cell culture is long-established and many cell lines are available commercially and from 85 

various research laboratories around the world. Fish cell culture has mainly been developed 86 
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over the years as a diagnostic tool in pathology particularly in the area of virology where the 87 

cell lines offer a range of host cells for diagnosis, characterisation and research into therapies. 88 

However, cell lines have been used extensively and very successfully in metabolic studies in 89 

the mammalian field. Similarly, several years ago, we decided to utilize a variety of cell 90 

culture systems, including established cell lines as model systems in our studies investigating 91 

lipid and especially fatty acid metabolism in fish.  92 

 93 

Advantages of cell cultures 94 

 95 

In these studies, cell culture systems offered three main advantages over studies employing 96 

whole fish. These can be summarised as control, containment and cost. Firstly, environmental 97 

conditions can be controlled easily and very precisely in cell culture systems. Temperature 98 

can be controlled simply by adjusting the temperature controller of the incubator and/or by 99 

having incubators at different temperatures. Thus, studies investigating both acute and 100 

chronic effects of temperature can be performed very easily and in a variety of ways (Tocher 101 

and Sargent 1990a). Similarly, the osmolality of the medium can be adjusted easily, at least in 102 

the case of increased salinity, by the addition of appropriate amounts of sodium chloride to 103 

the medium, as may be required with cell cultures from marine fish (Tocher et al. 1988). We 104 

have performed studies in this way to investigate the effects of increasing salinity changes on 105 

lipid and fatty acid compositions in an Atlantic salmon (Salmo salar) cell line (AS) (Tocher 106 

et al. 1994, 1995a). Osmolality below the normal level found in most commercial media 107 

preparations (~300 mOsm.kg-1) is a little more difficult but possibly of much less interest in 108 

any case. However, the medium and associated supplements supply all the nutrition to the 109 

cells, and so studies into the effects of nutrients can also be performed with relative ease. 110 

There are a considerable number of different media formulations and supplements 111 

commercially available from which to choose. As with salinity above, it is easier to look at 112 

additional nutrient supplements to the cells and these can be added in high purity and in 113 

various forms and concentrations. Removal of specific nutrients may be more difficult if they 114 

are normal components of cell culture media formulations although it is entirely possible, 115 

albeit slightly more time consuming, to formulate your own medium.  116 

Cell cultures also offer the advantage of containment. This could include the use of 117 

radioisotopes for metabolic tracer studies, potentially hazardous or toxic chemicals such as 118 

carcinogens in toxicology studies, and pathogenic or infectious micro-organisms. 119 

Containment is primarily achieved through the use of tissue culture flasks that offer sufficient 120 



 5 

protection even if used vented, but can be used unvented if an appropriate medium such as 121 

Leibovitz L-15, which does not contain bicarbonate buffer and thus does not require exposure 122 

to a CO2 atmosphere, is utilized. To list cost as an advantage of cell culture may be surprising 123 

to some but this is certainly a major factor to include. Some capital expenditure is required 124 

but this can be tailored somewhat to both specific requirements and budget. Ideally, a 125 

dedicated cell culture laboratory with sealed floors and walls, single purpose sink areas, air 126 

conditioning and separate areas for media preparation, primary culture preparation and 127 

subculture would be desirable but not essential. A vertical laminar air flow cabinet, a cooled 128 

incubator, an inverted microscope and a dedicated fridge-freezer set aside in a dedicated area 129 

of a larger laboratory are probably the minimum requirements. This represents no more than 130 

moderate capital expenditure. Consumables, including media, sera, other reagents and 131 

disposable plasticware (flasks, pipettes, centrifuge tubes and vials/containers) are not cheap 132 

but save considerable time, a vital factor when man-power is the single most expensive item 133 

in the research budget. Perhaps the most important factor in assessing the cost-effectiveness 134 

of cell culture is the huge cost of the alternative. Studies with fish require aquaria, with all the 135 

associated costs of water supply and purification, fish and feed costs and, of course, 136 

husbandry staff. In addition, some studies would be very much more difficult to perform with 137 

fish. Studies on temperature effects require aquaria to be maintained at non-ambient 138 

temperatures and thus require heating or cooling of the water and/or the room. Work with 139 

radioisotopes is extremely difficult with whole fish particularly when 14C is used due to the 140 

possibility of production and release of 14CO2 into the atmosphere. Containment is similarly a 141 

problem when using toxins or pathogens and in all these cases it adds to the costs of 142 

performing experiments with fish.  143 

 144 

Problems of using fish cell cultures in metabolic studies 145 

 146 

The use of cell cultures is not, however, without its own problems. The first of these is 147 

temperature. For the majority of fish cell lines the optimum growth temperature is in the 20 - 148 

25 oC range. These include cell lines from Atlantic salmon (AS), rainbow trout 149 

(Oncorhynchus mykiss) (RTG-2, RTH) and turbot (Scophthalmus maximus) (TF) which are 150 

all routinely cultured at 22 oC. However, the normal ambient temperature in U.K. waters for 151 

these species of fish would rarely exceed 15 oC, a temperature we routinely use as a 152 

“holding” temperature, to slow the growth of the cells during periods when they are not being 153 

actively used in experiments. Culture at 10 oC or below usually results in unacceptably low 154 
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growth rates even in cell lines from these cooler water fish. Therefore, fish cell lines such as 155 

those above are being cultured at a temperature higher than normal, a situation that does not 156 

occur in mammalian cell culture. In contrast, other fish species, such as Mediterranean fish 157 

including gilthead sea bream (Sparus aurata), would normally experience water temperatures 158 

in the low 20’s and thus cells derived from them (SAF-1) would not be at an unusually high 159 

temperature when cultured at 20 – 25 oC. These are particularly important points to be aware 160 

of in relation to temperature adaptation/acclimation studies where the lower temperature, say 161 

10 oC, actually represents a more normal temperature for some cell lines and 22 oC could be 162 

regarded as a stressed temperature, whereas in other cell lines the opposite would be true. 163 

 164 

A second problem with the use of fish cell cultures is one of particular importance in relation 165 

to lipid and fatty acid studies. Cell culture media are normally devoid of fatty acids and so 166 

cells in culture generally derive all their lipid and fatty acids from the lipid contained in the 167 

serum supplement, which is an almost ubiquitous supplement due to its various properties 168 

including promotion of attachment, growth and proliferation of the cultured cells. Fetal 169 

bovine serum (FBS), the predominant serum supplement used in cell culture including fish 170 

cell culture, is relatively rich in PUFA and for mammalian cells, FBS provides a sufficient 171 

amount and balance of n-6 and n-3PUFA. In contrast, although the total amount of PUFA is 172 

adequate, fish cells grown in FBS display lower percentages of n-3PUFA and are enriched in 173 

n-6PUFA in comparison with fish tissues (Tocher et al. 1988). This has important 174 

consequences when cultured fish cells are used in studies of fatty acid metabolism. We have 175 

used two approaches to solve this problem. Firstly, we investigated the possibility of 176 

producing fish cell lines that can grow and proliferate in the absence of serum. To date, we 177 

have found one cell line, EPC-EFAD, derived from the carp (Cyprinus carpio) epithelial 178 

papilloma line, EPC, that can survive and proliferate in essential fatty acid-deficient (EFAD) 179 

medium (Tocher et al. 1995b). The EPC-EFAD line has now been growing continually in 180 

EFAD medium for over 7 years and 130 passages although the rate of proliferation is lower 181 

than the parent EPC line. This cell line is virtually devoid of n-6 and n-3PUFA but contains 182 

appreciable amounts of n-9PUFA (Tocher and Dick 2001) and thus does not represent a 183 

model system for fish normally although they have been useful in studies on the effects of 184 

EFA deficiency on fatty acid metabolism in freshwater fish (Tocher and Dick 1999, 2000, 185 

2001). An alternative solution is to reduce the serum added to the medium and to supplement 186 

with a mix of pure fatty acids designed to restore the fatty acid composition of the cells to 187 

that of the original tissue in the fish. For instance, primary cultures of turbot brain astroglial 188 
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cells established in medium containing FBS contained increased proportions of 18:1(n-9), 189 

and total n-9 and n-6 PUFA, and greatly reduced n-3PUFA in comparison with turbot brain. 190 

Supplementation with a mixture of 5 µM 20:5n-3 and 25 µM 22:6n-3 acids for 4 days 191 

significantly increased the percentages of these acids in total cellular lipid of trout and turbot 192 

astrocytes and restored the n-3PUFA composition of the cells to that found in brain (Bell et 193 

al. 1994; Tocher et al. 1996).  194 

 195 

A final caveat to the use of cell cultures in metabolic studies relates to interpretation and 196 

extrapolation of the results. It is obvious that cell cultures are not whole animals. Many 197 

factors important in controlling and regulating metabolism are simply not replicated in the 198 

cell culture systems. Complex multi-cell type organ structure is difficult to replicate in cell 199 

culture and even most tissue specific features such as 3D-structure, orientation and sidedness 200 

are lost in culture and, in addition, the cells themselves may be dedifferentiated (as in cell 201 

lines) and of changed morphology. Nonetheless, many features of inherent intracellular 202 

biochemistry and metabolism will be retained by cells in culture and provided the researcher 203 

is aware of the limitations then cell cultures provide a very useful additional experimental 204 

tool. Cautious extrapolation to the whole animal is possible particularly when the cell data are 205 

entirely consistent with other available data and, particularly, whole animal data, but 206 

ultimately whole animal studies are required for final confirmation. 207 

   208 

Types of cell culture systems 209 
 210 

Different types of cultured cell systems can be utilized to fit the particular requirements of the 211 

studies. In our own studies we have used three types, the first of which is short-term cultures, 212 

where the cells are attached to the substrate (plastic), but there is no growth or division over 213 

the time-course of the experiment, around 2 – 24 h (Buzzi et al 1996, 1997). The major 214 

benefit of these cultures is that the cells retain their differentiated phenotype. The retention of 215 

differentiated phenotype is also the aim with primary cultures that are attached, and grow and 216 

divide over a much longer period of time, ranging from days to weeks (Tocher and Sargent 217 

1990b). Depending upon the cell type, some limited subculture of primary cultures may be 218 

possible but not always. Established cell lines are immortal, growing and dividing at 219 

infinitum with routine subculture necessary to maintain the cells in optimum condition 220 

(Tocher et al. 1988). The down side of cell lines being that they are usually de-differentiated, 221 
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possessing either fibroblast or epithelial morphology. The following sections describe the use 222 

of some of these cell cultures as model systems to investigate specific aspects of fatty acid 223 

metabolism in fish. 224 

 225 

Determining the PUFA desaturation/elongation pathway in trout 226 

 227 

All vertebrates, including fish, lack Δ12 and Δ15 (ω3) desaturases and so cannot form 18:2n-6 228 

and 18:3n-3 from 18:1n-9. Therefore, 18:2n-6 and 18:3n-3 are essential fatty acids in the 229 

diets of vertebrates. These dietary essential fatty acids can be further desaturated and 230 

elongated to form the physiologically essential C20 and C22 PUFA, 20:4n-6, 20:5n-3 and 231 

22:6n-3 (Fig.1). With one exception the reactions occur in the microsomal fraction of the 232 

liver and the same enzymes act on the n-3 and the n-6 fatty acid series. Originally the 233 

insertion of the last, Δ4, double bond in 22:6n-3 was assumed to occur through direct Δ4 234 

desaturation of its immediate precursor 22:5n-3. However, Howard Sprecher and coworkers 235 

showed that in rat liver, the 22:5n-3, is further chain elongated to 24:5n-3 which is then 236 

converted by Δ6 desaturation to 24:6n-3 which is then converted, by a chain shortening 237 

reaction in the peroxisomes, to 22:6n-3 (Sprecher 1992; Sprecher et al. 1995).  238 
 239 

Whether the production of 22:6n-3 in fish involved Δ4 desaturation of 22:5n-3 or Δ6 240 

desaturation of 24:5n-3 with chain shortening of the resultant 24:6n-3 to 22:6n-3 was 241 

investigated in our laboratory by Buzzi et al. (1996, 1997). The cell system chosen was 242 

primary hepatocytes prepared by collagenase perfusion of intact, isolated liver from rainbow 243 

trout fed a n-3PUFA-deficient (olive oil) diet to stimulate the PUFA desaturation pathway. 244 

These cells were maintained in short-term culture for up to 24h. Incubation of hepatocytes for 245 

3h with [1-14C]18:3n-3 or [1-14C]20:5n-3, added as complexes with fatty acid-free bovine 246 

serum albumin, resulted in the recovery of large amounts of radioactivity as 22:6n-3 with 247 

only traces of radioactivity recovered in C24 PUFA (Table 1). In contrast, when liver 248 

microsomes were incubated for 3h with the same radioactive fatty acids, no radioactivity was 249 

recovered in 22:6n-3, but substantial amounts of radioactivity were recovered in 24:5n-3 and 250 

24:6n-3 (Table 1). These data suggested that the pathway as proposed by Sprecher for rat 251 

liver also occurred in trout liver. Incubation of the trout hepatocytes with [1-14C]24:5n-3 252 

resulted in radioactivity being recovered in both 22:6n-3 and 24:6n-3 (Table 2). Similarly, 253 

incubation of trout hepatocytes with [1-14C]24:6n-3 resulted in the recovery of radioactivity 254 
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in 22:6n-3 (Table 2). Thus, the experiments with primary hepatocytes prepared from rainbow 255 

trout had provided data consistent with the fact that the production of 22:6n-3 in trout 256 

occurred through the so-called “Sprecher shunt”.   Thus, 20:5n-3 is elongated by two 257 

sequential steps to 24:5n-3 which is then desaturated by a Δ6 desaturase to 24:6n-3, all in the 258 

microsomes, and that this intermediate is then chain shortened to 22:6n-3 at an extra-259 

microsomal site, presumably peroxisomes (Buzzi et al. 1996,1997). While all the steps in the 260 

pathway from 18:3n-3 to 22:6n-3 in Fig.1. have so far been established for fish only in 261 

rainbow trout hepatocytes, there is accumulating evidence that the same pathway occurs in 262 

primary hepatocytes from Atlantic salmon (Tocher et al. 1997), Arctic charr (Salvelinus 263 

alpinus), brown trout (Salmo trutta) (Tocher et al. 2001a), zebrafish (Danio rerio), tilapia 264 

(Oreochromis niloticus) (Tocher et al. 2001b), and carp cells in culture (Tocher and Dick 265 

1999). Cell studies were unable to resolve whether the same Δ6 fatty acid desaturase 266 

catalysed each of these steps or whether different Δ6 desaturases (isoenzymes) were involved 267 

for the C18 and C24 PUFA (see later). 268 
 269 
Determining the deficiency in the PUFA desaturation/elongation pathway in marine fish 270 

 271 

It had been known for some time that the EFA requirements of freshwater and marine fish are 272 

qualitatively different, as in rainbow trout 18:3n-3 alone can satisfy the EFA requirement, 273 

with 18:2n-6 only required for optimal growth, whereas in the most studied marine species, 274 

turbot, the longer chain PUFA 20:5n-3 and 22:6n-3 are required. This suggested a difference 275 

in the fatty acid desaturase/elongase activities, and it was subsequently shown that this in vivo 276 

difference was also present in cultured cell lines (Tocher et al. 1989). Initial studies involving 277 

supplementation of turbot cells (TF) in culture, compared to both rainbow trout cells (RTG-2) 278 

and Atlantic salmon cells (AS), with various n-3 and n-6 PUFA had shown that the apparent 279 

deficiency in the desaturase/elongase pathway in turbot was either in the C18 to C20 elongase 280 

(C18-20 elongase) multi-enzyme complex or the the fatty acyl Δ5 desaturase step (Tocher et al. 281 

1989). Defective C18-20 elongase appeared the more likely of the two alternative based on (i) 282 

the ability of turbot cells to produce 20:4n-6 when supplemented with 20:3n-6, which 283 

bypasses the elongase and indicated the presence of some Δ5 desaturase activity, (ii) the 284 

accumulation of 18:4n-3 and 18:3n-6 in cells supplemented with 18:3n-3 and 18:2n-6, 285 

respectively, and (iii) the accumulation of 18:2n-9, and not 20:2n-9 or 20:3n-9, in cells 286 

cultivated in the absence of EFA. However, results from in vivo injection studies with other 287 

marine fish species such as gilthead sea bream were more consistent with a deficiency in Δ5 288 
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desaturase activity (Mourente and Tocher 1994). Therefore, as the situation in marine fish 289 

was unclear, and as a deficiency in the fatty acid elongase activity responsible for the 290 

conversion of C18 to C20 PUFA had not been reported in any other animal or cell line, we 291 

aimed to establish unequivocally the location of the defect in the desaturase/elongase 292 

pathway in marine fish using the established cell lines, AS, TF and SAF-1. Each of these cell 293 

lines was incubated for 4 days with various 14C-labelled n-3PUFA that were the direct 294 

substrates for individual enzymic steps in the desaturation/elongation pathway (Ghioni et al. 295 

1999; Tocher and Ghioni 1999). Thus, 18:3n-3 was the direct substrate for Δ6 desaturase, 296 

18:4n-3 was the direct substrate for C18-20 elongase, 20:4n-3 was the substrate for Δ5 297 

desaturase and 20:5n-3 was the substrate for C20-22 elongase (Table 3). The data in Table 3 298 

show the percentage of radioactivity recovered as the products of each enzymic step. Thus, 299 

the results showed that all three cell lines had substantial Δ6 activity as 76%, 82% and 66% 300 

of radioactivity from  301 

[1-14C]18:3n-3 was recovered as Δ6 desaturated products in AS, TF and SAF-1 cells, 302 

respectively. However, both marine cell lines showed very reduced C18-20 elongase activity 303 

compared with AS cells. However, whereas the SAF-1 cell line showed virtually no Δ5 304 

desaturase activity, the TF cell line showed considerable Δ5 activity (Table 3). All cell lines 305 

showed similar levels of C20-22 activity. Thus the primary deficiency in the PUFA 306 

desaturation/elongation pathway in gilthead sea bream cells was established to be at the level 307 

of Δ5 desaturase whereas the only deficiency observed in the TF cells was at the C18-20 308 

elongase. The SAF-1 cell line may also show a deficiency in C18-20 elongase but it is possible 309 

that the virtual absence of Δ5 activity results in the accumulation of 20:4n-3 which inhibits 310 

C18-20 elongase through a feedback mechanism. Irrespective of which enzyme step was 311 

deficient, the cell line data was entirely consistent with earlier feeding studies and in vivo 312 

studies indicating that marine fish were unable to produce significant amounts of 20:5n-3 and 313 

22:6n-3 from 18:3n-3. 314 

 315 

Determining the metabolism of 18:5n-3 in fish 316 

 317 

Octadecapentaenoic acid (all-cis 18:5n-3) is a fatty acid characteristically present in certain 318 

algal groups in marine phytoplankton, including dinoflagellates, haptophytes and 319 

prasinophytes, all of which have important roles in the marine ecosystem (Sargent et al. 320 

1995). 18:5n-3 is usually co-associated in these organisms with 22:6n-3. Given that 321 
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biosynthesis of 22:6n-3 involves peroxisomal chain shortening of its precursor 24:6n-3, it is 322 

possible that 18:5n-3 is biosynthesized by chain shortening of 20:5n-3. However, marine 323 

zooplankton and fish ingesting phytoplankton contain little or no 18:5n-3 demonstrating that 324 

this fatty acid is readily metabolized by marine animals. It could be completely catabolized 325 

by marine animals by β-oxidation but it may also be directly chain elongated to 20:5n-3.  326 

 327 

In this study, [U-14C]18:4n-3 and [U-14C]18:5n-3 were prepared from the haptophycean alga 328 

Isochrysis galbana cultured in sodium 14C-bicarbonate, and their metabolism studied in 329 

cultured cells from turbot (TF), sea bream (SAF-1) and Atlantic salmon (AS) that differ in 330 

their abilities to perform C18 to C20 elongation reactions. The rationale being that the TF cell 331 

line’s deficiency in C18 to C20 fatty acid elongase would perhaps help to differentiate between 332 

the two possible pathways for the metabolism of 18:5n-3 in fish as suggested above. 333 

Incubation of the cell lines with both labelled 18:4 and 18:5 showed two remarkable features 334 

(Table 4). Firstly, no radiolabelled 18:5 was ever detected in any of the three cell lines, even 335 

when labelled 18:5n-3 was incubated with the cells and even in short incubations of less than 336 

1h. Secondly, the pattern of distribution of radioactivity was identical for both fatty acids, 337 

that is the recovery of radioactivity in different fatty acid fractions after incubation with [U-338 
14C]18:5 was identical to the distribution of radioactivity after incubation with [U-14C]18:4 339 

(Table 4). Indeed, the pattern only varied between the cell lines based upon the differences in 340 

their PUFA desaturation/ elongation pathways. The one difference between incubation with 341 

18:4 and 18:5 was that the quantitative recovery of radioactivity was significantly lower with 342 

18:5n-3. These results showed that 18:5n-3 was not metabolised in fish cells by chain 343 

elongation to 20:5n-3. In retrospect, this was perhaps unsurprising as, unlike 18:4n-3, 18:5n-3 344 

is not a normal intermediate in the desaturation/elongation pathway (Fig.1). However, 18:5n-345 

3 is a normal intermediate in the pathway for the β-oxidation of 20:5n-3 (Fig.2). In contrast, 346 

18:4n-3 is not an intermediate in the PUFA β-oxidation pathway although the first step in the 347 

β-oxidation of 18:4n-3, dehydrogenation, results in the formation of trans Δ2, all-cis 348 

Δ6,9,12,15-18:5 (2-trans 18:5n-3) (Fig.2). The 2-trans 18:5n-3 intermediate is also produced 349 

by the action of a Δ3, Δ2-enoyl-CoA-isomerase acting on 18:5n-3, this enzyme being the next 350 

step in the β-oxidation pathway after the production of 18:5n-3. Thus, 2-trans 18:5n-3 is a 351 

common intermediate in the β-oxidation of both 18:4n-3 and 18:5n-3. It appeared therefore 352 

that 18:5n-3 incorporated into the fish cells was treated as a β-oxidation intermediate by the 353 

fish cell lines resulting in the production of 2-trans 18:5n-3 in amounts which probably 354 



 12 

exceeded the capacity of the β-oxidation pathway.  This resulted in the reversal of the 355 

dehydrogenase step and production of labelled 18:4n-3 (Fig.2) which was then metabolised 356 

as normal via the desaturation/elongation pathway producing labelled 20:4n-3 and 20:5n-3 357 

(Fig.1). A proportion of the 2-trans 18:5n-3 proceeded down the β-oxidation pathway 358 

resulting in the overall lower recovery of radioactivity when the cells were incubated with 359 

18:5 compared to cells incubated with 18:4. To further test this hypothesis, cells were also 360 

incubated with either 18:5n-3 or 2-trans 18:5n-3, and similar mass increases of 18:4n-3 and 361 

its elongation and further desaturation products occurred in cells incubated with 18:5n-3 or 2-362 

trans 18:5n-3. We therefore concluded that 18:5n-3 was readily converted biochemically to 363 

18:4n-3 via a 2-trans 18:5n-3 intermediate generated by a Δ3, Δ2-enoyl-CoA-isomerase acting 364 

on 18:5n-3 and, therefore, that 2-trans 18:5n-3 was implicated as a common intermediate in 365 

the β-oxidation of both 18:5n-3 and 18:4n-3 (Ghioni et al. 2001). 366 

 367 

Molecular studies 368 

 369 

Very recently, molecular biological and genetic techniques have begun to be applied to lipid 370 

and fatty acid metabolism in fish in order to elucidate the genetics of the above pathways 371 

through the cloning and characterisation of the genes involved enabling further studies on the 372 

expression and regulation of the genes. These techniques have particular advantages when 373 

applied to larvae. Firstly, the small size of fish larvae presents no problem in the preparation 374 

of RNA and/or cDNA even if tissue-specific RNA is required as relatively little tissue is 375 

required. The larval RNA/cDNA can not only be used in routine gene expression studies 376 

through conventional Northern blotting or real-time PCR but can also be used for cloning 377 

genes expressed specifically in larvae. In addition, modern in-situ hybridisation techniques 378 

can also be used to locate organ- and tissue-specific gene expression and are equally, or 379 

indeed more, able to be applied to larvae as to larger fish. The above cell culture studies have 380 

demonstrated the great significance of PUFA desaturase and elongase enzymes in fish. 381 

Several questions still remained though including a) was there one or two different Δ6 382 

desaturases (isoenzymes) for the desaturation of C18 and C24 PUFA, and b) what were the 383 

precise defects in Δ5 desaturase and C18-20 elongase in marine fish (Tocher et al. 1998). The 384 

following sections describe our current studies aimed at cloning and characterising PUFA 385 

desaturase and elongase genes in fish. 386 

 387 
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Cloning and characterisation of PUFA desaturase genes in fish 388 

 389 

A zebrafish EST sequence (Genbank accession no. AI497337) was identified that displayed 390 

high homology to mammalian Δ5 and Δ6 desaturase genes. Thus, cDNA was synthesized 391 

from zebrafish liver total RNA using reverse transcriptase and a portion of this cDNA was 392 

then subjected to PCR amplification with appropriate primers predicted from the zebrafish 393 

EST sequence. The products were cloned into the pYES2 plasmid, and nucleotide sequences 394 

determined. The 1590 bp open reading frame of the zebrafish cDNA encoded a protein with 395 

substantial similarity to vertebrate Δ6 desaturases. Overall amino acid identities were 64% to 396 

human Δ6 desaturase and 58% to human Δ5 desaturase (Hastings et al. 2001). In addition, the 397 

zebrafish protein contained a similar N-terminal cytochrome b5-like domain and the three 398 

catalytically important histidine boxes conserved in all members of the desaturase gene 399 

family and believed to be involved in catalysis. When the zebrafish cDNA was expressed in 400 

the non PUFA-producing yeast Saccharomyces cerevisae it conferred the ability to convert 401 

linoleic acid (18:2n-6) and α-linolenic acid (18:3n-3) to their corresponding Δ6 desaturated 402 

products, 18:3n-6 and 18:4n-3 (Table 5). However, in addition, it conferred on the yeast the 403 

ability to convert di-homo-γ-linoleic acid (20:3n-6) and eicosatetraenoic acid (20:4n-3) to 404 

arachidonic acid (20:4n-6) and eicosapentanoic acid (20:5n-3), respectively, indicating that 405 

the zebrafish gene encoded an enzyme having both Δ6 and Δ5 desaturase activities (Table 5). 406 

The enzyme was more active towards n-3 and Δ6 substrates compared to n-6 and Δ5 407 

substrates. This was the first report of a functionally characterized polyunsaturated fatty acid 408 

desaturase enzyme of fish, and the first report of a fatty acid desaturase in any species with 409 

both Δ6 and Δ5 activities. Recently, we have shown that the zebrafish desaturase has no Δ4 410 

desaturase activity but was able to desaturate 24:5n-3 to 24:6n-3 suggesting that a single Δ6 411 

desaturase may be responsible for the desaturation of both C18 and C24 substrates (Table 5). 412 

 413 

Further PUFA desaturase genes with homology to the zebrafish desaturase and vertebrate Δ6 414 

desaturase genes in general have been cloned from fish. Genes from carp, Atlantic salmon 415 

and cod have been cloned in our own laboratory and other putative desaturase genes have 416 

been cloned from cherry salmon (Oncorhynchus masou), tilapia, sea bream and rainbow trout 417 

(Seilez et al., 2001). Most of these genes remain to be functionally characterised but 418 

preliminary data has suggested that the Atlantic salmon gene also has both Δ6 and Δ5 419 

activities with the latter being greater. Phylogenetic analysis indicated that, with respect to 420 
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other functionally characterized genes, the zebrafish sequence had highest homology with 421 

mammalian Δ6 desaturases, with human Δ5 desaturase appearing to be distinct from the Δ6 422 

desaturase sequences (Fig.3). All the fish genes clustered together. Although more fatty acid 423 

desaturase genes may be found in zebrafish, salmon and mammals, it is conceivable that the 424 

bi-functional desaturase described here is a component of a prototypic vertebrate PUFA 425 

biosynthetic pathway that has persisted in freshwater fish species. That humans and other 426 

mammals have two distinct enzymes for Δ5 and Δ6 desaturation may be an adaptation to a 427 

terrestrial diet providing lower amounts of pre-formed C20 and C22 PUFA than the diets of a 428 

vertebrate ancestor that they share with freshwater fish. Functional divergence of the products 429 

of a putative ancient gene duplication event is a possible mechanism underlying adaptation to 430 

such a dietary change. 431 

 432 

Cloning and characterisation of PUFA elongase genes in fish 433 
 434 

Fatty acid elongation, the addition of 2-carbon units, is effected in four steps each catalysed 435 

by a specific enzyme. The first step is a condensation reaction of the precursor fatty acyl 436 

chain with malonyl-CoA to produce a β-ketoacyl chain that is then hydrogenated in three 437 

successive steps. The condensation step is widely regarded as the “elongase”, and the one 438 

that determines the substrate specificity and is rate limiting. Mortierella alpina elongase 439 

(GLELO) amino acid sequence cDNA encoding a PUFA elongase was used to probe in silico 440 

for related sequences in the Genbank EST database. This identified mammalian, chicken, 441 

Xenopus and zebrafish ESTs. Consensus PCR primers were designed in conserved motifs 442 

and used to isolate full length cDNA from livers of several fish species using the rapid 443 

amplification of cDNA ends (3” and 5”RACE) strategies to clone full length elongase 444 

cDNAs of zebrafish, carp, salmon and turbot (AF465520). The amplified cDNAs encoded 445 

putative open reading frames (ORFs) of 291-295 amino acids whose sequences were highly 446 

conserved among the fish species and with other vertebrate elongases. The fish elongase 447 

polypeptides have up to 7 predicted transmembrane (TM) domains, a canonical endoplasmic 448 

reticulaum retention signal, and several potential phosphorylation sites which may be 449 

important in regulation of enzyme function. Expression of the zebrafish gene in the yeast S. 450 

cerevisiae demonstrated that the ORFs encoded a fatty acid elongase with substrate 451 

specificity ranging from the monounsaturated fatty acid palmitoleic acid (16:1n-7) to the long 452 

chain highly unsaturated fatty acid, 22:5n-3. The zebrafish elongase activity was in the rank 453 
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order C18-20 > C20-22 > C22-24 and was more active towards n-3 substrates than n-6 substrates 454 

(Table 6). Recently, functional characterisation of the salmon and turbot elongases has 455 

revealed that they have similar specificities to the zebrafish enzyme with the rank order for 456 

overall activity being zebrafish > salmon > turbot. The turbot enzyme was relatively more 457 

active towards the C20 substrates than C18 substrates compared to the zebrafish and salmon 458 

enzymes. However, it was particularly interesting that the turbot gene coded for a 459 

functionally active protein. This was not contradictory to the cell culture data as, although the 460 

deficiency in the desaturation/elongation pathway appeared to be at the C18-20 elongase step in 461 

TF cells, there was activity present. The sequence data suggested another possibility for low 462 

C18-20 elongase activity in TF cells as the Kozak sequence (which marks the following 463 

methionine codon as the start codon) in the turbot cDNA is a poor signal for initiation of 464 

translation and turbot elongase was less efficient than zebrafish and salmon elongases 465 

particularly for C18 substrates. 466 

 467 

Conclusions 468 

 469 

The use of a variety of cell culture systems has greatly advanced biochemical studies which 470 

have in turn elucidated key parts of the PUFA desaturation and elongation pathway in fish. 471 

The presence of the so-called Sprecher shunt, where 22:6n-3 is produced from 20:5n-3 472 

through two successive elongations and a Δ6 desaturase followed by peroxisomal chain 473 

shortening, was demonstrated in primary hepatocytes isolated from trout. Similarly, studies 474 

on established cell lines revealed that the block in the pathway in marine and/or piscivorous 475 

fish was due to either a deficiency of C18-20 elongase or Δ5 desaturase and this varied between 476 

different marine species. Current work is focussing on the molecular biology of the pathway 477 

with the cloning of fatty acid desaturases and elongases from a variety of fish species. 478 

Zebrafish have been used as a model species and a unique desaturase possessing both Δ6 and 479 

Δ5 activity and an elongase with very high C18-20 activity have been cloned and characterised. 480 

The zebrafish desaturase was capable of desaturating both C18 and C24 Δ6 substrates. 481 

Understanding this pathway is of increased importance due to the current dependence of 482 

salmonid and marine fish aquaculture on fish oil, the supply of which is becoming 483 

increasingly limited and unsustainable, necessitating the use in fish feeds of sustainable plant 484 

oils, rich in C18 PUFA, but devoid of C20 and C22 PUFA (Sargent et al. 2002).  485 

 486 

487 
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 620 

Table 1. Desaturation of [1-14C]18:3n-3 and [1-14C]20:5n-3  
by hepatocytes and liver microsomes from rainbow trout 
fed an (n-3)-deficient diet. Results are expressed as a 
percentage of total radioactivity recovered in specific fatty  
acids in polar lipids and are means ± SD (n=3). Based on  
data taken from Buzzi et al. (1996).    
                

Fatty acid Hepatocytes   Microsomes 
        
[1-14C]18:3n-3        
        

18:3 22.5 ± 0.8  52.7 ± 4.5 
20:3 3.7 ± 0.5  19.0 ± 4.9 
22:3 1.1 ± 0.1  3.0 ± 1.0 
24:3 1.2 ± 0.1  1.9 ± 0.2 

        
18:4 8.9 ± 0.7  9.0 ± 0.3 
20:4 4.6 ± 1.7  0.3 ± 0.0 
22:4 1.5 ± 0.2  1.6 ± 0.2 

        
20:5 15.3 ± 3.6  6.0 ± 1.1 
22:5 4.8 ± 1.0  1.5 ± 0.1 
24:5 trace  2.7 ± 0.4 

        
22:6 36.4 ± 7.5  trace 
24:6 trace  2.4 ± 0.6 

        
[1-14C]20:5n-3        

        
20:5 39.7 ± 0.7  57.8 ± 1.0 
22:5 10.1 ± 0.5  13.8 ± 2.1 
24:5 4.3 ± 0.4  4.7 ± 0.1 

        
22:6 45.9 ± 0.7  trace 
24:6 trace  23.6 ± 1.2 

                
621 
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 621 

 622 

Table 2. Metabolism of [1-14C]24:5n-3 and  
[1-14C]24:6n-3 by hepatocytes from rainbow 
trout fed an (n-3)-deficient diet. Results are 
means ± SD (n=3). Based on data taken from  
Buzzi et al. (1997).    
          

 
Radioactivity recovered 
in 

 
specific fatty acid 
fractions 

Fatty acid 
in total polar lipid 
(percentage) 

     
[1-14C]24:5n-3     
     

20:5                      trace  
22:5 1.4 ± 0.1  
24:5 56.6 ± 9.9  
22:6 23.1 ± 6.2  
24:6 18.9 ± 5.2  

     
[1-14C]24:6n-3     

     
20:5/22:5 11.5 ± 1.5  

22:6 28.1 ± 4.8  
24:6 60.4 ± 3.6  

          
 623 
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 624 

Table 3. Apparent activities of enzymes of the PUFA desaturation and elongation pathway in Atlantic  
salmon (AS), turbot (TF) and sea bream (SAF-1) cell lines. Data represents the percentage of total   
radioactivity recovered as products of each enzymic step. n.d., not detected. Based on data recalculated  
from Ghioni et al. (1999) and Tocher and Ghioni (1999).         
                                
                
 Δ6 desaturase  C18-20 elongase  Δ5 desaturase  C20-22 elongase 
                
Substrate AS TF SAF-1   AS TF SAF-1   AS TF SAF-1   AS TF SAF-1 
                
[1-14C]18:3n-3 76.0 81.9 66.1  60.3 18.5 25.2  38.7 11.2 n.d.  4.9 3.2 n.d. 
[U-14C]18:4n-3 - - -  81.2 25.9 19.0  56.4 19.5 0.7  9.2 5.1 n.d 
[U-14C]20:4n-3 - - -  - - -  38.8 62.3 0.7  7.8 17.8 n.d 
[1-14C]20:5n-3 - - -  - - -  - - -  12.1 12.8 10.9 
                                

625 
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 625 

Table 4. Recovery of radioactivity in specific fatty acids after 
incubation of Atlantic salmon (AS), turbot (TF) and gilthead  
sea bream (SAF-1) cell lines with [U-14C]18:4n-3 and  
[U-14C]18:5n-3. Data represent the percentage of total  
radioactivity recovered. n.d., not detected. Based on data taken  
from Ghioni et al. (2001).       
                  
         
 ΑS  TF  SAF-1 
         
Fatty acid 18:4 18:5   18:4 18:5   18:4 18:5 
         
18:4n-3 18.8 24.0  74.1 76.7  81.0 82.6 
20:4n-3 23.6 23.2  4.4 4.5  13.2 10.3 
22:4n-3 1.2 1.1  0.8 1.1  5.1 6.0 
18:5n-3 n.d. n.d.  n.d. n.d.  n.d. n.d. 
20:5n-3 48.4 46.1  16.4 14.8  0.7 1.1 
22:5n-3 4.5 3.3  1.6 1.2  n.d. n.d. 
22:6n-3 1.7 n.d.  n.d. n.d.  n.d. n.d. 
                  
 626 
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Table 5. Desaturase activities associated with the zebrafish PUFA  
desaturase gene expressed in the yeast Saccharomyces cerevisiae.  
Results are expressed as the percentage of substrate fatty acid converted 
to the product fatty acid. . n.d. not detected.  
        
    
Substrate Product Substrate desaturated Desaturase activity 
fatty acid fatty acid (percentage)   

    
18:3n-3 18:4n-3 29.4 Δ6 

18:2n-6 18:3n-6 11.7 Δ6 

20:4n-3 20:5n-3 20.4 Δ5 

20:3n-6 20:4n-6 8.3 Δ5 

22:5n-3 22:6n-3 n.d. Δ4 

22:4n-6 22:5n-6 n.d. Δ4 

24:5n-3 24:6n-3 ~5-10% Δ6 

24:4n-6 24:5n-6 2-5% Δ6 
        
    
 628 

629 



 26 

 629 

Table 6. Elongase activities associated with the zebrafish PUFA  
elongase gene expressed in the yeast Saccharomyces cerevisiae.  
Results are expressed as the percentage of substrate fatty acid converted 
to the product fatty acid. n.d. not detected.  
        
    

Substrate Product Substrate elongated Elongase activity 
fatty acid fatty acid (percentage)   

    
18:4n-3 20:4n-3 85.4 C18-20 
18:3n-6 20:3n-6 70.7 C18-20 
20:5n-3 22:5n-3 46.4 C20-22 
20:4n-6 22:4n-6 25.6 C20-22 
22:5n-3 24:5n-3 4.9 C22-24 
22:4n-6 24:4n-6 trace C22-24 

        
 630 

631 
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Figure Legend 631 

 632 

Figure 1.  Pathways for the biosynthesis of C20 and C22 PUFA from 18:3n-3 and 18:2n-6 633 

showing the two possible routes for the production of 22:6n-3 from 20:5n-3 (and 634 

22:5n-6 from 20:4n-6). Δ6, Δ5 and Δ4 represent microsomal fatty acyl desaturase 635 

activities, E1, E2 and E3 denote microsomal fatty acyl elongase activities and SC 636 

denotes peroxisomal chain shortening. The dotted lines indicate pathways for 637 

which there is no direct evidence in fish.   638 

 639 

Figure 2.  Section of the β-oxidation pathway for n-3PUFA showing the position of 2-640 

trans 18:5n-3 as a common intermediate in the β-oxidation of 18:5n-3 and 18:4n-3. 641 

 642 

Figure 3.  Phylogeny of desaturase deduced amino acid sequences. Sequences marked with 643 

an asterisk are not functionally characterized. Data base accession numbers for the 644 

nucleic acid sequences are indicated.  Deduced amino acid sequences were aligned 645 

using ClustalX and sequence phylogenies were predicted using the Neighbour Joining 646 

method of Saitou and Nei (1987). Confidence in the resulting phylogenetic tree 647 

branch topology was measured by bootstrapping the data through 1000 iterations with 648 

the numbers representing the frequencies with which the tree topology presented here 649 

was replicated after the iterations. Horizontal branch lengths are proportional to the 650 

number of amino acid replacements per position, the scale bar indicating this value.  651 

 652 
653 
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Fig.2. 689 
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