
Opening the Black Box: Analysing MLP Functionality using Walsh
Functions

Kevin Swingler
Computing Science and Maths, University of Stirling, Stirling, FK9 4LA. Scotland

Keywords: Multilayer Perceptrons, Walsh Functions, Network Function Analysis

Abstract: The Multilayer Perceptron (MLP) is a neural network architecture that is widely used for regression, classifica-
tion and time series forecasting. On often cited disadvantage of the MLP, however, is the difficulty associated
with human understanding of a particular MLP’s function. This so called black box limitation is due to the
fact that the weights of the network reveal little about structure of the function they implement. This paper
proposes a method for understanding the structure of the function learned by MLPs that model functions of
the class f : {−1,1}n → Rm. This includes regression and classification models. A Walsh decomposition
of the function implemented by a trained MLP is performed and the coefficients analysed. The advantage
of a Walsh decomposition is that it explicitly separates the contribution to the function made by each subset
of input neurons. It also allows networks to be compared in terms of their structure and complexity. The
method is demonstrated on some small toy functions and on the larger problem of the MNIST handwritten
digit classification data set.

1 INTRODUCTION

The multilayer perceptron (MLP) (Rumelhart
et al., 1986) is a widely used neural network archi-
tecture. It has been applied to regression, classifica-
tion and novelty detection problems and has been ex-
tended in various ways to process time varying data,
e.g. (Elman, 1990). In the field of data mining MLPs
are a common choice amongst other candidates such
as classification trees, support vector machines and
multiple regression. Due to the wide variety of tasks
for which they are suited, and their ability as univer-
sal approximators, MLPs have become very popular.
However, there is one aspect of the MLP that restricts
and complicates its application, and that is the role of
the hidden neurons. A common criticism of the MLP
is that its knowledge is not represented in a human
readable form. The comparison that is often made
is with classification or regression trees, which rep-
resent partitions in the input space explicitly in their
structure. This makes human understanding of the un-
derlying function and the reasons behind any given
output quite easy. Given a picture of a classification
tree, a human may apply it to an input pattern without
even needing a computer to run the algorithm. This is
far from simple with an MLP.

The hidden units in an MLP act as feature detec-
tors, combining inputs from below into higher order
features that are, in turn, combined by higher layers

still. The common learning algorithms such as back
propagation of error (Rumelhart et al., 1986) have
no explicit means of ensuring that the features are
optimally arranged. Different neurons can share the
same feature, or have overlapping representations. In
networks where each layer is fully connected to the
one above, every hidden neuron in a layer shares the
same receptive field, so their roles often overlap. This
makes analysis even more difficult as hidden neurons
do not have independent roles. The inclusion of addi-
tional layers of hidden neurons compounds the prob-
lem further.

Some work has been carried out on the analysis of
hidden neurons in MLPs. For example, (Kamimura,
1993) used an entropy based analysis to identify im-
portant hidden units (known as principal hidden units)
in a network for the purpose of pruning an oversize
hidden layer. (Sanger, 1989) proposed a method of
contribution analysis based on the products of hid-
den unit activations and weights and (Gorman and
Sejnowski, 1988) presented a specific analysis of the
hidden units of a network trained to classify sonar tar-
gets.

The question of how to extract rules from multi-
layer perceptrons has received more attention and is
still a very active field of research. (Kulluk et al.,
2013) propose a fuzzy rule extraction method for
neural networks, which they call Fuzzy DIFACONN.
(Hruschka and Ebecken, 2006) propose a clustering

This is a post-peer-review, pre-copyedit version of a paper published in Merelo J., Rosa A., Cadenas J., Dourado A., Madani K.,
Filipe J. (eds) Computational Intelligence. Studies in Computational Intelligence, vol 620. Springer, Cham. The final authenticated
version is available online at: https://doi.org/10.1007/978-3-319-26393-9_18

https://doi.org/10.1007/978-3-319-26393-9_18

based approach to MLP rule extraction that uses ge-
netic algorithm based clustering to identify clusters of
hidden unit activations which are then used to gener-
ate classification rules. (Saad and Wunsch II, 2007)
use an inversion method to generate rules in the form
of hyperplanes. Inverting an MLP (i.e. finding the
inputs that lead to a desired output) is done by gra-
dient descent and using an evolutionary algorithm.
Both (Augasta and Kathirvalavakumar, 2012) and (Ji-
vani et al., 2014) present recent comparative studies
of neural network rule extraction, distinguishing be-
tween methods that are decompositional, pedagogical
and eclectic. A decompositional approach extracts
rules from the weights and activations of the neural
network itself. The pedagogical approach, which is
taken in this paper, treats the neural network as a black
box and generates rules based on the outputs gener-
ated by the network in response to a set of input pat-
terns. Eclectic rule extraction combines both of the
aforementioned approaches.

More work has concentrated on choosing the right
number of hidden units for a specific data set. (Baum
and Haussler, 1989) bound the number of weights by
the target error size, (Uphadyaya and Eryurek, 1992)
bounded the number of hidden units by the number
of patterns to be learned, (Widrow and Lehr, 1990)
chose a bound based on the number of output units in
the network, and (Weigend et al., 1992) pointed out
that the amount of noise in the training data has an
impact on the number of units used. Some have taken
a dynamic approach to network structure discovery,
for example (Bartlett, 1994) used an information the-
oretic approach to add or remove hidden neurons dur-
ing training. The problem with this approach to train-
ing an MLP is that the existing weights are found in an
attempt to minimise error for that number of hidden
neurons. Adding a new one may mean the existing
weights are starting in a configuration that is unsuit-
able for a network with more neurons. Other search
methods have also been applied to finding the right
structure in an MLP. (Castillo et al., 2000) and (Yao,
1999) used genetic algorithms to search the space of
network structures, for example.

When using MLPs (and other machine learning
techniques), it is common practice to produce sev-
eral models to be used in an ensemble (Krogh and
Vedelsby, 1994). Due to the random start point of
the weight values, and the differences in architecture
across the networks in an ensemble, it is not easy to
know whether or not different networks are function-
ally different. It is possible to train a number of differ-
ent MLPs that all implement the same function (per-
haps with differing quality of fit across the weights)
with very different configurations of weight values.

For example, one could re-order the hidden units of
any trained network (along with their weights) and
produce many different looking networks, all with
identical functionality. One way to compare MLPs is
to compare their outputs, but a structural comparison
might also be desirable, and that is what we present
here.

Note the distinction between the structure of an
MLP, which is defined by the neurons and connect-
ing weights, and the structure of the function it im-
plements, which can be viewed in a number of other
ways. This paper views the underlying function im-
plemented by an MLP in terms of the contribution of
subsets of input variables. The number of variables in
a subset is called its order, and there are

(n
k

)
subsets of

order k in a network of n inputs. The first order sub-
sets are the single input variables alone. The second
order subsets are each of the possible pairs of vari-
ables, and so on. There is a single order n set, which
is the entire set of inputs. Any function can be repre-
sented as a weighted sum of the values in each of these
subsets. The weights (known as coefficients in the
chosen analysis) are independent (unlike the weights
in an MLP, whose values are determined to an extent
by other weights in the network) and specific to their
variable subset. The first order coefficients describe
the effect of each variable in isolation, the second
order coefficients describe the contribution of vari-
able pairs, and so on. The method for decomposing
a neural network function into separate components
described in this paper is the Walsh transform. When
the phrase “network functionality” is used in this pa-
per, it means the form the function takes in terms of
how the interactions between different subsets of in-
put variables affect each output variable.

Section 2 describes the Walsh transform in some
detail. This is followed by a description of the method
for producing Walsh coefficients from a neural net-
work in section 3. Section 4 introduces some func-
tions that will be used in experiments described in
following sections. Section 5 demonstrates how the
method can be used to track the complexity of MLPs
during training and section 6 demonstrates how a par-
tial transform on a small sample from a larger net-
work can provide useful insights. The Walsh method
is compared to other methods of understanding net-
work structure in section 7. Finally, sections 8 and 9
offer some conclusions and ideas for further work.

2 WALSH FUNCTIONS

Walsh functions (Walsh, 1923), (Beauchamp,
1984) form a basis for real valued functions of binary

x = 0 1 2 3 4 5 6 7

ψ0

ψ1

ψ2

ψ3

ψ4

ψ5

ψ6

ψ7

Figure 1: A pictorial representation of an order 3 Walsh
matrix with black squares representing 1 and white squares
-1. A Walsh sum is calculated by summing the product of
the Walsh coefficient associated with each row by the values
in the column indexed by the function input.

vectors. Any function f : {−1,1}n → R can be rep-
resented as a weighted linear sum of Walsh functions.
The Walsh functions take the form of a sequence of bit
strings over {−1,1}2n

where n is the number of vari-
ables in the function input. n is known as the Walsh
function order. There are 2n Walsh functions of order
n, each 2n bits long. Figure 1 shows a representation
of the order 3 Walsh functions. Each Walsh function
has an index from 1 to 2n, with the jth function be-
ing ψ j and bit number x of the jth Walsh function is
ψ j(x). As figure 1 shows, the Walsh functions can be
viewed as a matrix of values from {−1,1} with rows
representing each Walsh function and columns repre-
senting each bit.

A Walsh representation of a function f (x) is de-
fined by a vector of parameters, the Walsh coeffi-
cients, ω = ω0 . . .ω2n−1. Each ω j is associated with
the Walsh function ψ j, that is a row in the Walsh
matrix. Each possible input, x is given an index, x,
which is calculated by replacing any -1 in x with 0
and converting the result to base 10. For example if
x = (1,−1,1), then x = 5. Each column of the Walsh
matrix corresponds to a value of x.

The Walsh representation of f (x) is constructed
as a sum over all ω j. In the sum, each ω j is either
added to or subtracted from the total, depending on
the value of the bit corresponding to x (i.e. column x
in the Walsh matrix), which gives the function for the
Walsh sum:

f (x) =
2n

∑
j=0

ω jψ j(x) (1)

2.0.1 Constructing the Walsh Functions

The value of a single cell in the Walsh matrix, ψ j(x) is
calculated from the binary representation of the coor-
dinates (j,x), of j and x, and returns +1 or -1 depend-
ing on the parity of the number of 1 bits in shared
positions. Using logical notation, a Walsh function is
derived from the result of an XOR (parity count) of
an AND (agreement of bits with a value of 1):

ψ j(x) =⊕n
i=1(xi∧ ji) (2)

where ⊕ is a parity operator, which returns 1 if
the argument list contains an even number of 1s and
-1 otherwise.

2.0.2 Calculating the Coefficients - the Walsh
Transform

The Walsh transform of an n-bit function, f (x), pro-
duces 2n Walsh coefficients, ωx, indexed by the 2n

combinations across f (x). Each Walsh coefficient, ωx
is calculated by

ωx =
1
2n

2n−1

∑
j=0

f (j)ψ j(x) (3)

Each of the resulting Walsh coefficients has an
index, which defines the set of input variables over
which it operates. Converting the index to a binary
representation over n bits produces a representation
of the variables associated with the coefficient where
a 1 in position i indicates that xi contributes to the ef-
fect of that coefficient. For example, over 4 bits, the
coefficient ω9 produces a binary word 1001, which
tells us that x1 and x4 contribute to the effect of ω9.
The order of a coefficient is defined as the number of
bits it contains that are set to 1. For example, ω2 and
ω8 are first order as they have one bit set to 1, and
ω9 is second order. The magnitude of a coefficient
indicates its importance in contributing to the output
of the function on average across all possible input
patterns.

A function of n inputs produces 2n Walsh coef-
ficients, so it is not always possible to consider the
value of each coefficient individually. In this work we
look at individual coefficients and also define some
simple aggregate measures for summarising the re-
sults of a Walsh transform. They are the number of
non-zero coefficients, which is taken as a crude mea-
sure of overall complexity, and the average magnitude
of coefficients at each order, which produces a set of
values that measure the contribution to the function’s
output made on average by interactions of each possi-
ble order.

3 METHOD

In this context, the Walsh transform is not used to
understand the training data, but to understand a neu-
ral network that was trained on that data. The analysis
is in terms of the inputs to and the outputs from the
network, not its weights or activations, making this a
pedagogical approach. The black box of the neural
function is assessed in terms of its Walsh decomposi-
tion. Walsh functions map a vector of binary valued
inputs onto a real valued output, so any function with
this structure is amenable to the analysis. As shown
below, multiple output neurons and classification net-
works may also be analysed with this approach, so the
outputs can be nominal, discrete or continuous.

As neural networks can generalise and produce an
output for any given input pattern, we can generate an
exhaustive or randomly sampled data set from which
to perform the Walsh transform. A full Walsh decom-
position, as defined in equation 3 requires an exhaus-
tive sample of the input space. In all but the smallest
of networks, this is unfeasible in an acceptable time
period, so the coefficients must be calculated from
a sample. In either case, the sample used to calcu-
late the coefficients is generated from the whole input
space, not just the training data. The significant coef-
ficients (those that are significantly far from zero) can
be very informative about the underlying structure of
the function (in this case, the MLP). The procedure is
similar to that of pedagogical rule discovery in that it
treats the MLP as a black box and performs an analy-
sis on the output values that the network produces in
response to input patterns. The method proceeds as
follows:

1. Build a single MLP using your chosen method of
design and weight learning;

2. Generate input patterns (either exhaustively or at
random) and allow the MLP to generate its asso-
ciated output, thus producing (x, f (x)) pairs;

3. Use the resulting (x, f (x)) pairs to perform a
Walsh transform using equation 3;

4. Analyse the significant coefficient values, ωx.

The method can also be used for MLPs designed
for classification rather than regression. In such cases,
there is normally a single output neuron for each
class, with a target output value of one when the input
belongs to the neuron’s designated class and zero oth-
erwise. Properly trained, each neuron represents the
probability of a new pattern belonging to its desig-
nated class. Such a network is effectively a number of
related functions (one for each class) with a continu-
ous output between zero and one. Each output neuron
can be analysed in turn using the same procedure.

Step 4, the analysis of the ωx values can take
many forms. This paper discriminates between anal-
ysis during training (section 5) where the goal is to
gain an insight into the level of complexity a net-
work achieves as learning progresses, and post train-
ing analysis, designed to provide insights into the
function of the trained network. The example of such
an analysis in section 6.1 shows how the generalisa-
tion ability of a network may be investigated from the
results of the Walsh analysis. The goal of the analy-
sis is not to generate rules, so this is not another rule
extraction method, rather it is designed to give human
insights into the hidden life of the MLP.

4 EXPERIMENTS

A set of functions of increasing complexity1 were
chosen to generate data to test this analysis. They are:

OneMax, which simply counts the number of val-
ues set to one across the inputs. This is a first order
function as each variable contributes to the output in-
dependently of any others. The OneMax function is
calculated as

f (x) =
n

∑
i=1

xi (4)

Vertical symmetry, which arranges the bits in
the input pattern in a square and measures symmetry
across the vertical centre line. This is a second order
function and is calculated as

f (x) =
n

∑
i=1

n

∑
j=1

δi jsi j (5)

where δi j is the Kronecker delta between xi and x j,
and si j is 1 when i and j are in symmetrical positions
and 0 otherwise.

K-bit trap functions are defined by the number
of inputs with a value of one. The output is highest
when all the inputs are set to one, but when at least
one input has a value of zero, the output is equal to
one less than the number of inputs with a value of
zero. For example, in three bits, f (111) = 3 is the
function’s maximum, f (000) = 2 produces the next
highest output, and f (011) = 0 is a global minimum.
A k-bit trap function over n inputs, where k is a factor
of n is defined by concatenating subsets of k inputs
n/k times. Let b ∈ x be one such subset and c0(b) be
the number of bits in b set to zero.

1Complexity has a specific meaning in this context. It
describes the number and order of the interactions between
inputs that produce a function’s output.

f (x) = ∑
b∈x

f (b) (6)

where

f (b) =
{

c0(b)−1, if c0(b)> 0
k, if c0(b) = 0 (7)

The first case in equation 7, which applies to all
but 1 in 2k patterns, could be modelled with a first or-
der network (a linear perceptron, for example), which
is a local minimum in the error space. The ‘trap’ part
of the function is caused by the second case in equa-
tion 7, which requires the output to be high when all
of the inputs have a value of one. This requires a
higher order function, including components at orders
from 1 to k, but only a small proportion of the data (1
in 2k of them) contains any clue to this.

5 ANALYSIS DURING TRAINING

Experiments were conducted to investigate the
structure of the function represented by an MLP as
it learns. The MLP used in these experiments had
a single hidden layer and one linear output neuron.
The functions described above were used to generate
training data, which was used to train a standard MLP
using the error back propagation algorithm. At the
end of each epoch (a single full pass through the train-
ing data), a Walsh transform was performed on the
predictions made by the network in its current state.

Summary statistics designed to reflect the com-
plexity of the function the network has implemented
and the level of contribution from each order of in-
teraction were calculated from the Walsh coefficients.
The complexity of the function was calculated as the
number of significant non-zero Walsh coefficients.
The size of the contribution from an order of inter-
action, o was calculated as the average of the abso-
lute value of the coefficients of order o. Experiment
1 trained networks on the simple OneMax function
(equation 4). Figure 2 shows the training error and
network complexity of an MLP trained on the One-
Max function. During learning, the network initially
becomes over complex and then, as the error drops,
the network complexity also drops to the correct level.

In experiment 2, an MLP was trained on the sym-
metry function of equation 5, which contains only
second order features. Figure 3 shows the results of
analysing the Walsh coefficients of the network func-
tion during learning. Three lines are shown. The solid
line shows the network prediction error over time and
the broken lines show the contribution of the first

0 1,000 2,000

0

0.2

0.4

Training Epoch

Tr
ai

ni
ng

E
rr

or

Error
Complexity

100

200

C
om

pl
ex

ity

Figure 2: Comparing training error with network complex-
ity during learning of the OneMax function with an MLP
with one hidden unit. Note that complexity falls almost
1000 epochs after the training error has settled at its min-
imum.

0 200 400
0

0.2

0.4

0.6

Training Epoch

Tr
ai

ni
ng

E
rr

or

0

2

4

6

·10−2

M
ea

n
W

al
sh

C
oe

ffi
ci

en
tError

Order 1
Order 2

Figure 3: Network error and contribution of first and second
order Walsh coefficients during training of an MLP on a
second order function. Note the fall in the error rate when
the second order coefficients overtake the first.

and second order coefficients in the Walsh analysis
of the network function. Note the point in the error
plot where the error falls quickly corresponds to the
point in the Walsh analysis where the second order
coefficients grow past those of first order. Compare
this chart to that in figure 4, where the same prob-
lem is given to another MLP with the same structure,
but which becomes trapped at a local error minimum,
which is a first order dominated approximation to the
function. The plot suggests that the higher order com-
ponents cannot increase their contribution and that
this network is unlikely to improve.

Figure 5 shows the error of an MLP decrease as it
learns the 4 bit trap problem described by equation 6.
The contribution of the first, second, third and fourth

0 500 1,000

1

2

3

·10−2

Training Epoch

W
al

sh
C

on
tr

ib
ut

io
n

Order 1
Order 2

Figure 4: Contribution of first and second order Walsh coef-
ficients during training of an MLP on a second order func-
tion, stuck in a local minimum.

0 500 1,000
0

0.2

0.4

0.6

Training Epoch

Tr
ai

ni
ng

E
rr

or

0

2

4

6

·10−2

W
al

sh
O

rd
er

Error
Order 1
Order 2
Order 3
Order 4

Figure 5: The contribution of first, second, third and fourth
order Walsh coefficients during training of an MLP on a the
4-bit trap function plotted with the average error per pass
through the data set (solid line).

order Walsh coefficients are each summed and plot-
ted separately. The final, correct configuration can be
seen in the right hand part of the plot, with the first or-
der coefficients having the strongest contribution, but
with the second, third and fourth also required to es-
cape the ’trap’ of the order below. The plot shows
the first order coefficients growing first (as they did
in figure 3), causing the average error to rise due to
the higher order trap part of the function. The first
order components are suppressed by the high error
they cause, but the error doesn’t settle to its lowest
point until the first order coefficients recover the cor-
rect level of contribution.

(a) First order (b) Second order
Figure 6: First and second order coefficients of a symme-
try counting function. In (a), the coefficients are all zero.
In (b), the shade of gray indicates a non zero second order
coefficient across the two pixels with shared gray level.

5.1 A Second Order Function

In the following experiment, a second order function
is investigated. The function is a measure of pattern
symmetry, as defined in equation 5. Figure 6a shows
the first order coefficients of a network trained to mea-
sure the symmetry of an image. Unsurprisingly, it
shows no first order coefficients of importance. Mid
grey indicates values close to zero, which suggests ei-
ther that the variable that corresponds to the coeffi-
cient is unimportant or that variables are involved at
higher orders. The higher order coefficient values tell
us which of these possibilities is true.

Figure 6b shows the second order coefficients of
a Walsh transform of the symmetry predicting MLP.
The plot is produced by finding pairs of inputs that
share a non-zero second order coefficient and setting
them both to the same, unique shade of gray. Note
that the centre column inputs share no second order
relationships and are shaded mid-gray. The others are
shaded so that their gray level matches that of the in-
puts with which they share a non-zero second order
coefficient. The depth of shade does not indicate the
size of the parameter, just that a connection exists.
The shading is to discriminate between input pairs.

It is clear from figure 6b that each input is im-
portant to the calculation of the function output, so
the interpretation of the zero valued first order coeffi-
cients is that the inputs’ contributions are important,
but only at orders above one.

The next experiment described in this paper makes
use of partial samples from both the coefficients and
the input space to gain an insight into the structure
of an MLP trained on a pattern recognition task. It
also illustrates the way error rates can be compared
to determine how much of the network’s functionality
has been explained by the computed coefficients.

6 PARTIAL WALSH ANALYSIS

For even moderately large numbers of inputs, cal-
culating every Walsh coefficient can take an imprac-
tically long amount of time. In such cases, a partial
Walsh analysis can still be useful. A partial analy-
sis calculates the values of only a small subset of the
Walsh coefficients. An obvious choice for the subset
of coefficients to calculate are those of the lower or-
ders. ω0 is the average output of the function (in this
case, the MLP) across the sampled data. The first or-
der coefficients, ω1,ω2,ω4, . . . represent the average
contribution of each input in isolation. In general, or-
der k coefficients represent the additional contribution
of each subset of inputs of size k to the function out-
put. The number of coefficients of order k from a set
of inputs of size n is

(n
k

)
, a figure which rises exponen-

tially with k up to k = n/2 and then falls exponentially
after that, to the point where there is just one order n
coefficient. In general, one might expect a function to
have significant interactions at the lower orders rather
than the higher ones, so the number of coefficients of
interest can be said to rise exponentially with their or-
der.

It is also possible to estimate the Walsh coeffi-
cients from a sample of random input patterns and
their associated predicted outputs from the network,
rather than analysing every input pattern exhaustively.
As with the calculation of any statistic from a sam-
ple, the values gained are estimates, but they can still
provide useful insights into the functioning of a neu-
ral network. The number of samples required to esti-
mate coefficients accurately grows exponentially with
their order, so the low order coefficients can be esti-
mated with smaller samples than the higher order co-
efficients require.

The values that are found as a result of sampling
a small proportion of the Walsh coefficients can be
used to reconstruct an estimate of the function imple-
mented by the MLP that produced them. This recon-
structed function can be used to generate predictions
on the test data. The accuracy of this model will al-
most always be worse than that of the MLP but by
comparing the respective error rates, the proportion
of MLP’a ability that is captured by the Walsh coeffi-
cients can be measured.

6.1 Measuring Generalisation

Generalisation is the ability of an MLP to produce
correct outputs for patterns that were not in its train-
ing data. As the weights of the network are difficult
to analyse, the performance of the learned function
in areas of input space that are outside those covered

by the training data can be difficult to assess. Test
and validation sets perform this task to a degree, but
this paper proposes a new method based on a Walsh
analysis where the network is analysed with random
input patterns. The use of random inputs (i.e. patterns
where each input takes an independent, uniformly dis-
tributed random value) allows a trained network to
be tested on potentially massive test sets. Of course,
these random patterns do not have associated target
outputs, but as the Walsh analysis makes use of only
the predicted output from the network, the test pat-
terns do not need a target (or desired) output. This
allows the analysis to explore a far greater variety of
the input/output space of a trained neural network.

The Walsh coefficients of an MLP function are
generated by randomly sampling from the whole in-
put space, not just the part of it covered by the training
or test data. The coefficients give a picture of the gen-
eral shape of the function, not just its behaviour on
the training ot test data. The experiments described in
this section demonstrate the use of a Walsh decompo-
sition of an MLP trained on the MNIST (Lecun and
Cortes,) handwritten digit data set. The goal is not to
produce a better classification rate than those already
reported in the literature. The goal is to train some
different networks and use a Walsh analysis to gain
an insight into their structure.

6.1.1 Learning the MNIST Data

The MNIST images are made up of 28× 28 pixels,
making 784 inputs, each with a value from 0 to 255,
indicating a grey level in an anti-aliased image. In
this work, input values were passed through a thresh-
old to create binary patterns rather than the grey level
images of the raw MNIST data. A neural network
with 784 inputs, 20 hidden units and 10 outputs (1 for
each of the digits from 0 to 9) was trained on the stan-
dard MNIST training set, where the images are cen-
tred on their centre of mass. The resulting network
implements 10 different functions, each mapping the
input pattern to a continuous output variable that re-
flects how well the input pattern matches digits that
correspond to its class (i.e. the identity of the digit).
These functions are not independent as they share the
weights between the input and hidden layer. Across a
well trained network, the outputs should sum to one.
The network achieved a correct classification rate of
89%, which is poor compared to any serious attempt,
but useful for illustration purposes here.

An individual Walsh decomposition for each out-
put neuron based on 50,000 random input samples
and their associated network output was performed
after training had completed. This produced ten
Walsh decompositions. Initially, only the first order

coefficients were calculated. The first order coeffi-
cients were plotted on a grid where the pixel locations
from the inputs correspond to the first order coeffi-
cients of the Walsh decomposition, as shown in fig-
ure 7, in which it is clear that the network does not
even have a very general first order model of the pat-
terns that make each digit. Take the coefficients for
the digit “1”, for example. Very few of the pixels are
used—four or five central pixels have large positive
coefficients (making a positive contribution the out-
put neuron value for class “1”) and there are a small
number of negative (shown in white) pixels to the top
left and bottom right which cause pixels in their re-
spective locations to diminish the output for the class
“1” output neuron. This shows the network to have a
reliance (one might argue and over-reliance) on spe-
cific inputs for making a classification. This would
manifest itself as a poor ability to cope with noise in
any test data where the specific pixels were altered.

When used to reconstruct a first order approxi-
mation to the network’s function, the first order co-
efficients alone for this model achieved a root mean
squared error (RMSE) of 0.17, indicating that the first
order coefficients have captured a large proportion of
the network’s functionality. The RMSE of a decom-
position with respect to the MLP it was derived from
is calculated by using equation 1 to produce an out-
put for a number of random samples from the input
space, which is compared with the output from the
MLP given the same input. A very low RMSE for a
partial decomposition indicates that the remaining co-
efficients (those excluded from the partial decompo-
sition) make very little additional contribution to the
function output.

Note that all of the images in this paper are pro-
duced by normalising the coefficients being plotted to
a range that causes the colours to vary from white to
black. This leads to some distortion when the range is
very small, as there may be a small distance between
the highest and lowest coefficient. If all coefficients
are close to zero, the highest will still appear black
and the lowest white, though in reality they are all
similarly small. This means that you cannot compare
one plot with another in terms of absolute values.

6.1.2 Adding Training Noise

A common method of improving generalisation is to
add noise to the input values in the training data. By
randomly flipping 10% of the input bits each time a
pattern was learned, the correct classification rate on
the test data increased to 93%. The impact on the
first order coefficients can be seen in figure 8 where
it is clear that some (but not all) of the digits are now
quite clearly identified across more of the input vari-

Figure 7: First order Walsh coefficients from a network
trained on the MNIST data with no added noise. Grey
squares indicate no contribution to classification from a first
order component. Greater depth of black or white indicates
stronger contribution (positive or negative).

ables. The coefficients reveal the degree to which
some classes have a clearly defined shape in the net-
work and others do not. Returning to the example of
the digit “1”, figure 8 shows how a larger number of
central pixels have a positive effect on the output neu-
ron for class “1”. The white inhibitory pixels are also
more clear and widespread in these figures.

Figure 8: First order Walsh coefficients from a network
trained on the MNIST data with 10 percent added noise.
The noise ensures that no individual input can be relied
upon to produce a correct classification, and so produces
a model that covers more of the input space, and so is better
at generalisation.

When used to reconstruct a first order approxi-
mation to the network’s function, the first order co-
efficients alone for this model achieved a root mean
squared error of 0.32, showing the first order coeffi-
cients to be responsible for less of the MLP’s func-
tionality, even though more of them are used. The
remaining network functionality is of a higher order,
leading to the conclusion that this network, which
has better generalisation ability than the first, is more
complex in the sense that it relies on more higher or-
der interactions between the input variables to make
its classifications. Discovering the higher order coef-
ficients of interest is not trivial as significant coeffi-
cients are sparse among all possible coefficients.

6.1.3 Adding Training Jitter

Another method for attempting to improve the gen-
eralisation ability of a handwritten digit classifier is
to jitter the training data, which means to shift each
training image a small random number of pixels in a
random direction before each is presented to the net-
work for learning. Each training pattern is learned

several times, each time with a new random shift to
its location. This has the effect of blurring the first or-
der coefficients across the input space, making them
less useful for classification. Imagine an extreme case
where the digit for “1” is moved to any location in
the input field. No single pixel would be set to 1 (i.e
black) more often than any other when the input pat-
tern represents a 1, so there would be no useful first
order information in the data. Second order contri-
butions between pixel pairs would be required for a
good classification model. Pairs of pixels that are both
set to 1 or both set to 0 when the input pattern repre-
sents “1” would have a positive coefficient and those
that differed would have a negative coefficient. The
strongest effect we would expect in the example of
the digit “1” would be positive weights between pix-
els that were above and below each other in the image
field.

The hypothesis is that an MLP trained on jittered
inputs would produce weaker first order and stronger
second order coefficients. To illustrate this point, take
a simpler example than the MNIST data using hand
designed digits over 25 pixels arranged in a 5×5 grid.
Concentrating on the example for digit “1” and allow-
ing that digit to be represented by any pattern of three
or more black pixels above each other on an otherwise
white background. Figure 9 shows some example “1”
digit images. The other digits (0 and 2 to 9) were also
hand designed and a data set was created containing
equal numbers of examples of each. The other digits
were fixed in their location, but the “1” digits were
placed at random in the input field and given random
lengths of 3,4, or 5 pixels. After training a neural
network to distinguish between the examples of “1”
digits and designs for the other digits from 0 to 9, a
full first and second order Walsh decomposition was
performed by sampling random input patterns and the
associated output from the neuron corresponding the
class “1”.

Figure 9: Three examples of small training patterns for the
digit “1”, varied by location and length, but maintaining the
vertical quality.

Figure 10 shows the first order coefficients for the
output for “1”. Note that there is very little varia-
tion in the values as the value of any individual pixel
makes no consistent contribution to the output. Sec-
ond order coefficients are not as straight forward to
plot and view as those of first order, as there is one
coefficient for every pair of input variables. To visu-
ally represent some of the second order coefficients,

those with the highest absolute values were chosen
and plotted as pairs joined with a line, as shown in fig-
ure 10, in which black dots indicate a positive coeffi-
cient between the two inputs and white dots indicate a
negative coefficient. Each figure shows a small num-
ber of coefficients (three positive and four negative).
It is clear that pairs of pixels that are in the same ver-
tical line share a positive coefficient and pairs that are
in different columns share a negative coefficient. Not
every second order coefficient has a significant value.
As with the first order coefficients, a small number of
them are sufficient to allow correct classifications to
be made, so there is no pressure during training for
further weight changes to produce a function where
every coefficient has the expected value.

Figure 10: First order coefficients (left) of a network trained
on the randomly placed “1” digits of figure 9, and some ex-
amples of large positive (middle) and negative (right) sec-
ond order coefficients from the same network.

On a toy example, this is easy to see. On the larger
MNIST data, the process is not as straight forward.
This is partly because there are many more second or-
der coefficients to sample and partly because not all
of them need to take a value. As pointed out above,
and as seen in the first order examples before noise
is added, a sparse subset of coefficients are actually
needed to reproduce the functionality of the network
and once the error is sufficiently low, there is no pres-
sure to change the weights further. However, the pro-
cess was repeated for the MNIST data. An MLP was
trained on the MNIST data and during training, each
input pattern was moved by up to 4 pixels in one of
the eight possible directions.

Figure 11 shows the first order coefficients, with
the result of the shifted input patterns clearer to see in
some classes than others. The root mean squared error
between the first order Walsh decomposition of this
MLP and the output of the MLP was 0.10, indicating
that, contrary to expectations, the network in which
the patterns were shifted around is better able to rely
on the pixel values in isolation, rather than needing
higher order coefficients.

6.1.4 Choosing Higher Order Coefficients

The number of coefficients that might be calculated
grows exponentially with the number of variables and
the order of the coefficients so it is crucial to choose
the coefficients of to sample carefully. This section
discusses some possible heuristics that might be em-
ployed when choosing which higher order coefficients

Figure 11: First order coefficients calculated from the out-
put neurons corresponding to each class of hand written
digit from training data subjected to random jitter.

to sample. The coefficients can be used to approxi-
mate the function that the neural network has imple-
mented, using equation 1 and assuming a zero value
for all of the un-calculated coefficients. The mean dif-
ference between the network output and that predicted
by the Walsh decomposition indicates the mean size
of the missing coefficients. When that is sufficiently
small, there can be few remaining coefficients to dis-
cover.

The best heuristic in most circumstances is to start
with the lowest order coefficients first. In the case of
the MNIST data, the first order coefficients accounted
for most of the network’s ability, and so gave a rea-
sonable picture of its functional shape. The identity
of the significant first order coefficients may be used
to drive the choice of second order coefficients. The
choice is between an assumption that variables that
are useful at the first order level will also be useful
in combination and the opposite assumption that vari-
ables that were found to have no first order contri-
bution might play their role in higher orders. With
human knowledge of the training process, one might
be able to make informed choices as to which pixels
might interact.

Another option with image data such as the
MNIST set is to calculate coefficients that join neigh-
bouring pixels. For example, each of the 784 pixels
might share a second order coefficient with any of the
remaining 783, but each pixel has only eight immedi-
ate neighbours. By hypothesising that written digits
are made by a continuous stroke and so neighbouring
pixels are more likely to interact to influence classi-
fication output, a small field around each pixel can
be chosen, greatly reducing the number of calcula-
tions to be made. Second order Walsh coefficients
in a small neighbourhood act as edge detectors, giv-
ing negative coefficients at points where neighbouring
pixels that disagree contribute positively to the func-
tion output. This approach shares a great deal with
the use of Markov Random Fields for image process-
ing such as segmentation and edge detection, (see (Li,
1995) for example). The key difference in this con-
text is that we are not using the local field to process
an image, but to analyse an MLP that was trained to

classify a set of images. If the MLP has not captured
certain features, then the analysis cannot reveal them,
so a failure to find features that might have been ex-
pected is not a reflection of the method, but on the
particular MLP’s underlying functional shape.

7 COMPARISON WITH OTHER
METHODS

Recent published work in this field, such as the pa-
pers mentioned in the introduction, has concentrated
on rule discovery, though what constitutes a rule is
quite flexible. (Jian-guo et al., 2008), for example
build a binary truth table to represent the function
of the MLP. The Walsh method is a pedagogical ap-
proach, according to the definitions in (Jivani et al.,
2014) as it treats the MLP as a black box. One of
the advantages of the pedagogical approach is that the
rules that are produced are easy to interpret.

Order Weights

1

2

3

4

5

Figure 12: 5 Bit
Trap Walsh Coef-
ficients.

The Walsh decomposition
approach certainly aids inter-
pretability, but it cannot be
considered a rule extraction al-
gorithm as it does not gener-
ate rules. Instead, it provides
insight into the complexity of
an MLP, highlighting both the
level of complexity, and the
variables involved. For exam-
ple, in the k-bit trap function,
it is clear from an examina-
tion of the coefficients that in-
puts are organised into subsets
which interact within the traps,
but that they are independent
across traps.

One advantage of the
Walsh method is that the
coefficients may be easily vi-
sualised. Figure 12 shows the

coefficients generated from an MLP that has learned
a 5-bit trap function over 30 inputs. The figure is
generated by discarding non-significant coefficients
and then sorting the remaining coefficients into
combinatorial sequence so that low order coefficients
are at the top of the figure. Each row of the figure
represents a single coefficient as the binary equiva-
lent of its index. For example ω5 is a second order
coefficient with binary representation 101, meaning
that the coefficient measures the interaction between
inputs 1 and 3. Dark pixels represent connected
inputs in the figure.

Another advantage of the pedagogical rule extrac-

tion approach is that it is portable across network ar-
chitectures as it treats the network as a black box. The
Walsh method shares this advantage. A common fea-
ture of rule extraction methods is that they accept a
reduction in accuracy in return for a simpler set of
rules. The rule set can be evaluated on the same test
data as the MLP that generated the rules and the trade-
off between accuracy and size of the rule set needs to
be managed. To reproduce the functionality of the
network perfectly with a rule set can require a great
many rules and a large number of exceptions (or rules
that apply to a very small area of input space). The
Walsh method shares this limitation, but for different
reasons. As the Walsh functions are a basis set, there
is no function that they cannot represent, so there is
no network whose behaviour cannot be perfectly re-
produced. Any network with binary inputs can have
its behaviour perfectly reproduced by a Walsh decom-
position, but only by a full decomposition from an
exhaustive sample of input,output pairs. This is pos-
sible for small networks, but infeasible for networks
with large numbers of inputs. A sample of coefficients
must then be calculated from a sample of data points,
which will lead to an approximate representation of
the MLP function.

Classification rules are generally local in that they
partition a data set into subspaces that share the same
output. This works well when the inputs are numeric
as the conditional part of the rule can specify a range.
When the inputs are discrete, as in the binary case
studied here, the rules cannot partition the input space
across a range. In such cases, a rule set may not be the
best way to understand a function. Take the charac-
ter recognition task for example, we can learn more
by visualising the coefficients (even just those of low
order) than by studying a long list of rules. Walsh co-
efficients are global as they describe the contribution
of an input or group of inputs across the entire input
space. This means that it is not possible to partition
the input space and so derive simple rules. Every co-
efficient plays a part in calculating the output from
every input pattern. General statements can still be
made, however, but they are of the form “When vari-
able x = 1, the output increases” or “When variables
a and b are equal, the output decreases”. These state-
ments can be generated directly from the coefficients.

8 CONCLUSIONS

An MLP trained on binary input data with either
numeric or categorical output neurons can be anal-
ysed using Walsh functions. Such an analysis can
reveal the relative complexity of different networks,

give an insight into the way the function represented
by an MLP evolves during learning and shed light on
which areas of input space a network has utilised in
learning that function. This understanding can help
in understanding how well a network will generalise
to new data and where its likely points of failure may
be. An exhaustive Walsh decomposition is only pos-
sible for small networks, but a partial decomposition
based on a random sample from the network’s input
space can still be used to gain valuable insights into
the specific function learned by an MLP.

9 FURTHER WORK

This work has used Walsh functions as its method
of complexity analysis, but other basis functions–
particularly those suitable for real valued inputs–are
also worthy of investigation. As the analysis is not
designed to reconstruct the function, merely to shed
light on its structure in a human readable form, it
should be possible to use an information theoretic
measure of interaction such as mutual entropy.

The method provides a useful measure of network
complexity that is not based on the number of weights
in the network. Training methods that favour simple
models over more complex ones often use parameter
counts (in the case of MLP, the weights) as a mea-
sure of complexity. For example, minimum descrip-
tion length (MDL) methods are often based on param-
eter counts, but might usefully be adapted to account
for other types of complexity such as that described
here. The Walsh analysis reveals that two networks of
equal size do not necessarily share an equal complex-
ity. The relationship between network complexity and
network size is an interesting field of study in its own
right. Of course, this analysis is not restricted to use
with MLPs. Any regression function may be used, but
it is well applied to MLPs as they are difficult to anal-
yse in terms of the structure of their weights alone.

The number of Walsh coefficients to consider
grows exponentially with the number of inputs to the
network, so it is not possible to exhaustively calculate
every possible one in a large network. For networks
that contain key interactions at a number of different
higher orders, the task of finding the significant coef-
ficients becomes a great problem. Work on heuristics
for finding the significant high order coefficients in
a sparse coefficient space is ongoing. One approach
is to build a probabilistic model of the importance of
different neurons and connection orders and sample
coefficients from that model. As more coefficients are
found, the quality of the model improves and allows
the faster discovery of others.

REFERENCES

Augasta, M. and Kathirvalavakumar, T. (2012). Rule ex-
traction from neural networks - a comparative study.
pages 404–408. cited By (since 1996)0.

Bartlett, E. B. (1994). Dynamic node architecture learning:
An information theoretic approach. Neural Networks,
7(1):129–140.

Baum, E. B. and Haussler, D. (1989). What size net gives
valid generalization? Neural Comput., 1(1):151–160.

Beauchamp, K. (1984). Applications of Walsh and Related
Functions. Academic Press, London.

Castillo, P. A., Carpio, J., Merelo, J., Prieto, A., Rivas, V.,
and Romero, G. (2000). Evolving multilayer percep-
trons.

Elman, J. L. (1990). Finding structure in time. Cognitive
Science, 14(2):179–211.

Gorman, R. P. and Sejnowski, T. J. (1988). Analysis of
hidden units in a layered network trained to classify
sonar targets. Neural Networks, 1(1):75–89.

Hruschka, E. R. and Ebecken, N. F. (2006). Extract-
ing rules from multilayer perceptrons in classification
problems: A clustering-based approach. Neurocom-
puting, 70(13):384 – 397. Neural Networks Selected
Papers from the 7th Brazilian Symposium on Neural
Networks (SBRN ’04) 7th Brazilian Symposium on
Neural Networks.

Jian-guo, W., Jian-hong, Y., Wen-xing, Z., and Jin-wu, X.
(2008). Rule extraction from artificial neural network
with optimized activation functions. In Intelligent Sys-
tem and Knowledge Engineering, 2008. ISKE 2008.
3rd International Conference on, volume 1, pages
873–879. IEEE.

Jivani, K., Ambasana, J., and Kanani, S. (2014). A sur-
vey on rule extraction approaches based techniques
for data classification using neural network. Interna-
tional Journal of Futuristic Trends in Engineering and
Technology, 1(1).

Kamimura, R. (1993). Principal hidden unit analysis with
minimum entropy method. In Gielen, S. and Kappen,
B., editors, ICANN 1993, pages 760–763. Springer
London.

Krogh, A. and Vedelsby, J. (1994). Neural network ensem-
bles, cross validation, and active learning. In NIPS,
pages 231–238.

Kulluk, S., Özbakir, L., and Baykasoğlu, A. (2013). Fuzzy
difaconn-miner: A novel approach for fuzzy rule ex-
traction from neural networks. Expert Systems with
Applications, 40(3):938 – 946. FUZZYSS11: 2nd In-
ternational Fuzzy Systems Symposium 17-18 Novem-
ber 2011, Ankara, Turkey.

Lecun, Y. and Cortes, C. The MNIST database of handwrit-
ten digits.

Li, S. Z. (1995). Markov random field modeling in computer
vision. Springer-Verlag New York, Inc.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986).
Parallel distributed processing: Explorations in the
microstructure of cognition, vol. 1. chapter Learning
Internal Representations by Error Propagation, pages
318–362. MIT Press, Cambridge, MA, USA.

Saad, E. and Wunsch II, D. (2007). Neural network explana-
tion using inversion. Neural Networks, 20(1):78–93.
cited By (since 1996)22.

Sanger, D. (1989). Contribution analysis: A technique for
assigning responsibilities to hidden units in connec-
tionist networks. Connection Science, 1(2):115–138.

Uphadyaya, B. and Eryurek, E. (1992). Application of neu-
ral networks for sensor validation and plant monitor-
ing. Neural Technology, (97):170–176.

Walsh, J. (1923). A closed set of normal orthogonal func-
tions. Amer. J. Math, 45:5–24.

Weigend, A. S., Huberman, B. A., and Rumelhart, D. E.
(1992). Predicting Sunspots and Exchange Rates with
Connectionist Networks. In Casdagli, M. and Eubank,
S., editors, Nonlinear modeling and forecasting, pages
395–432. Addison-Wesley.

Widrow, B. and Lehr, M. (1990). 30 years of adaptive neu-
ral networks: perceptron, madaline, and backpropaga-
tion. Proceedings of the IEEE, 78(9):1415–1442.

Yao, X. (1999). Evolving artificial neural networks. In Pro-
ceedings of the IEEE, volume 87, pages 1423–1447.

