

Abstract

Object-oriented methods for analysis, design and programming are commonly used by

software engineers. Formal description techniques, however, are mainly used in a research
I

environment. We have investigated how rigour can be introduced into the analysis phase of

the software development process by combining object-oriented analysis (OOA) methods

with formal description techniques. The main topics of this investigation are a formal

interpretation o f the OOA constructs using LOTOS, a mathematical definition of the

basic OOA concepts using a simple denotational semantics and a new method for object-

oriented analysis that we call the Rigorous Object-Oriented Analysis method (ROOA).

The LOTOS interpretation of the OOA concepts is an intrinsic part of the ROOA

method. It was designed in such a way that software engineers with no experience in

LOTOS, can still use ROOA.

The denotational semantics of the concepts of object-oriented analysis illuminates the

formal syntactic transformations within ROOA and guarantees that the basic object-

oriented concepts can be understood independently of the specification language we use.

The ROOA method starts from a set o f informal requirements and an object model and

produces a formal object-oriented analysis model that acts as a requirements specification.

The resulting formal model integrates the static, dynamic and functional properties of a

system in contrast to existing OOA methods which are informal and produce three separate

models that are difficult to integrate and keep consistent. ROOA provides a systematic

development process, by proposing a set o f rules to be followed during the analysis phase.

During the application o f these rules, auxiliary structures are created to help in tracing

the requirements through to the final formal model.

As LOTOS produces executable specifications, prototyping can be used to check the

conformance o f the specification against the original requirements and to detect inconsis

tencies, omissions and ambiguities early in the development process.

Acknowledgements

Dr. Robert Clark was my supervisor in this thesis. I was very lucky to have the opportunity

to work with him. It was Dr. Clark who suggested the ideas that would grow into the

work I am presenting now. I have to thank him for that. But, more than that, I have

to thank him for being always ready to read and comment on what I was writing, be it

notes, examples, technical papers, and finally this thesis, and for being always available

for our discussions over these three years. Thank you. Bob, I hope you may find that the

time you spent helping me was not wasted.

Prof. Pedro Guerreiro is my colleague and dear friend in Lisbon. I learnt with him

how to program, I wrote my M.Sc. thesis under his supervision and worked with him in

the Departamento de Informática o f Universidade Nova de Lisboa for four years. He is the

person I have to thank in the first place for having the opportunity to come to Stirling.

On top of all this, I owe him all the time he spent reading my technical reports, my papers

and this thesis. Thank you, Pedro, for being always there when needed.

Dr. Peter Ladkin was my colleague at the Department, here at Stirling. He took an

interest in my work, and become acquainted with it, although this was somewhat o f a new

subject for him. In the process, we had many discussions that helped me clarify my own

ideas. He taught me many things about denotational semantics, and we worked together

on the ideas that led to the theory presented in Chapter 5, in particular the ideas presented

in Section 5.3 and Section 5.5.3. Thank you, Peter, without your help this thesis would

have taken much longer to complete.

Prof. Kenneth Turner and M r. Charles Rattray also helped me to accomplish this

thesis. They were always available to comment on my papers and technical reports during

these years. Also, Mr. Steve Marsh helped by reading an earlier draft of this thesis. Thank

you, Ken, Chic and Steve for your patience with me.

Lim Pink wrote her M.Sc. dissertation on an assessment to the ROOA method. This

gave me the insight on how a newcomer can learn and apply ROOA. Thank you. Pink,

for being a good friend, and for reading a previous draft of this thesis.

The computer officers in the department had to endure my complaints about software

that did not seem to work, e-mails that did not arrive, workstations behaving strangely.

Thank you, Sam, Graham and Catherine, for putting up with my questions.

My friends in Stirling helped in the moments I felt lonely and far from home. Thank

you, Amelia, Antonio, Ashley, Claire, Dave, Gary, G;ill, Julie, Manfred, Mike, Paul, Pink,

Steve and Toya! Thank you to all people in the Department for making me feel welcome.

Working in Stirling was a great experience. I will miss you all.

My parents, Fernando and Lucinda, deserve all my love for everything they always do

for me. “ Bigada, Papinho e Maminha, pelo vosso carinho, compreensao e apoio.”

The Junta Nacional de Investiga^áo Científica e Technológica (JNICT) financed this

Ph.D. through Programa CIENCIA. The Department of Computing Science and Mathe

matics, University of Stirling, provided financial support towards travelling expenses for

conferences.

IV

Contents

1 In trodu ction 1

1.1 The Scope and Objective of the T h esis ... 2

1.2 The Contribution of the T h e s is .. 2

1.2.1 Integrating Formal Specification Languages with O O A 3

1.2.2 Suitability of the LOTOS Specification Language................................. 5

1.2.3 Formal Interpretation of the OOA Constructs in LOTOS 6

1.2.4 Dcnotational Semantics for OOA Models .. 6

1.3 Related W o r k ... 7

1.4 The Structure of the T h e s is .. 9

1.5 The Topics o f the T h esis ... 11

2 Form al O b ject-O rien ted Specifications 12

2.1 Software D evelopm ent.. 12

2.1.1 Software Life-Cycle... 13

2.1.2 Software Development M odels.. 14

2.1.3 Relationship Between Analysis and Design ... 15

2.2 Object-Oriented Approaches.. 17

2.2.1 Which Approach in the Analysis P h ase?... 18

2.2.2 Object-Oriented Analysis M eth od s...21

2.2.3 Differentiating OOA from Object-Oriented D e s ig n 22

2.2.4 The Origins of Object-Oriented Methods ..24

2.3 Formal Methods and Executable Specifications...25

2.3.1 Classification of Approaches... 25

2.3.2 The Benefits of Combining OOA and Formal M ethods.......................29

2.3.3 Reasons for Choosing LOTOS .. 30

2.3.4 P rototyp ing

2.4 Conclusions.. 37

3 M odelling Fundam ental O O A C on cep ts in L O T O S 38

3.1 Introduction..

3.2 Object-Oriented D efin itions.. 39

3.2.1 Class Templates ...39

3.2.2 Classes

3.2.3 Abstract Class T em plates ...40

3.2.4 Objects

3.2.5 A ttributes...

3.2.6 Object Id en tity .. 4I

3.2.7 State (o f an O b je c t) .. 4I

3.2.8 External O b je c ts

3.2.9 Environment (of an O b je c t) ... 42

3.2.10 S erv ices

3.2.11 M ethods...

3.2.12 Behaviour (o f an Object) ...42

3.2.13 E vents... 43

3.2.14 Message Connections.. 43

3.2.15 In h erita n ce ...43

3.2.16 Conceptual R elationships...45

3.2.17 Composition and D ecom position ..47

3.2.18 A g g re g a te s ..

3.2.19 S u bsystem s..

3.3 Mapping Object-Oriented Concepts into L O T O S ...50

3.3.1 Automated Banking System E x a m p le ...50

vi

3.3.2 Class Tem plate..51

3.3.3 S ervices...57

3.3.4 Attributes... 59

3.3.5 Classes ...60

3.3.6 Object Identity 63

3.3.7 O b je c t s ...65

3.3.8 Message Connections.. 69

3.3.9 Specifying Inheritance with L O T O S ... 72

3.3.10 Abstract Class Tem plates... 78

3.3.11 Conceptual R elationships... 79

3.3.12 Composition and D ecom position ..84

3.3.13 Subsystem s.. 84

3.4 C onclusions.. 85

4 Further C on cepts: C om plex O b jec ts 87

4.1 Introduction... 87

4.2 The Role o f Aggregation...88

4.3 Combination of Objects: Another View ..89

4.4 Transitivity... 91

4.5 Classifying A ggregation ...92

4.5.1 Aggregation: Hidden C om p on en ts .. 93

4.5.2 Aggregation: Shared Components .. 96

4.5.3 Catalog Aggregation.. 99

4.6 Properties of A ggregation .. 100

4.7 Managing C om p lex ity .. 102

4.8 Modelling Aggregation in LOTOS ..103

4.8.1 Aggregation with Hiding.. 105

4.8.2 Aggregation with S h arin g ... I l l

4.8.3 Sharing Concepts but not O b je c t s ...114

4.8.4 Hiding and Sharing: Moving A rou n d ..115

vii

4.9 C onclusions.. 116

5 Form alising O b ject-O rien ted A nalysis W ith LO TO S 117

5.1 Introduction..117

5.2 The Reasons For this W o r k ...118
I

5.3 Basic Concepts: Set of Values and Variable^ j .. 119

5.4 Defining the Concepts o f Object-Oriented M odels... 120

5.4.1 Clciss T em plate .. 121

5.4.2 The Generic Behaviour Description C t-B ..122

5.4.3 The Visibility Function I ... 123

5.4.4 Class Template in LO TO S... 125

5.4.5 A ttributes.. 128

5.4.6 S erv ices ..128

5.4.7 Object Generator... 130

5.5 Defining the Concepts o f Object-Oriented S ystem s... 131

5.5.1 O b je c t ...131

5.5.2 Behavioural Constraints vs. Behavioural H is to ry132

5.5.3 Deriving the Behaviour of an Object from the Class Template 133

5.5.4 Deriving the Behaviour of an Object in LOTOS 134

5.5.5 Is—instance, Classes and Other Concepts..135

5.6 C onclusions.. 136

6 T he R igorou s O b ject-O rien ted Analysis M eth od 137

6.1 Introduction.. 137

6.2 The ROOA Method .. 139

6.3 The ROOA Process .. 143

Task 1: Build an Object M o d e l .. 143

Task 2: Refine the Object M o d e l ... 144

Task 2.1: Complete the Object M o d e l ...145

Task 2.1.1: Add Interface Objects ... 146

V lll

Task 2.1.2: Add Static Relationships.. 146

Task 2.1.3: Add Attributes and Services..146

Task 2.2: Initial Identification of Dynamic Behaviour................................147

Task 2.2.1: Define Interface Scenarios ... 147

Task 2.2.2: Define ETDs and Start Object Communication Table . . 148

Task 2.2.3: Message C on nections...149

Task 2.3: Structure the Object M o d e l ... 152

Task 3: Build the LOTOS Formal M odel...153

Task 3.1: Create an Object Communication Diagram (O C D)155

Task 3.2: Specify Class Templates .. 159

Task 3.2.1: Specify P ro ce sse s ... 160

Task 3.2.2: Specify A D T s .. 163

Task 3.3: Compose the Objects into a Behaviour Expression...................164

Task 3.4: Prototype the Specification...166

Task 3.5: Refine the Specification... 166

Task 3.5.1: Model Static Relationships ..167

Task 3.5.2: Introduce Object Generators.. 167

Task 3.5.3: Identify new Higher Level O b jects 168

Task 3.5.4: Demote an Object to be Specified only as an ADT . . .169

Task 3.5.5: Promote an Object to be Specified as a P r o c e s s 170

Task 3.5.6: Refine Processes and ADTs .. 170

6.4 The ROOA Documents .. 172

6.5 C onclusions...173

7 T he D esign R ationale o f R O O A 175

7.1 History ... 175

7.2 Major Problems and Their R eso lu tion .. 176

7.3 ROOA: Main Previous Versions... 186

7.3.1 ROOA: First Version..186

7.3.2 ROOA: Second Version ... 187

IX

7.3.3 ROOA: Third V ers ion ... 188

7.4 Conclusions.. 189

8 A ssessm ent o f the R O O A M eth od 191

8.1 Introduction... 191
I

8.2 Why a Rigorous Object-Oriented Analysis Method? ... 192

8.3 What About Rigorous M e th o d s? ...192

8.4 Strengths and Weaknesses of the ROOA M e t h o d ..194

8.4.1 The ROOA Process .. 194

8.4.2 Importance o f Techniques Used within R O O A196

8.4.3 Assessing the Resulting LOTOS Specification... 197

8.5 Suitability of LOTOS .. 199

8.6 ROOA Applied to Case Studies..201

8.6.1 The Automated Ranking S y s te m ... 201

8.6.2 The Warehouse Management System ... 202

8.6.3 The Car Rental S y s te m ..204

8.6.4 ROOA Applied by O th ers ...204

8.7 ROOA: Domains o f Application..206

8.8 C onclusions... 206

0 C onclusions and P rosp ects 208

9.1 Summarising the Goals of the T h e s is ..208

9.2 Results o f the T h e s is ... 209

9.3 Future Work on ROOA ...211

9.3.1 Improvements in the ROOA M e th od ... 211

9.3.2 Useful Tools to Support R O O A ...212

9.3.3 Broader Applications...................... 213

9.4 Concluding R em arks... 213

B ibliography 214

List of Figures

2.1 Wegner’s classification schem a... 17

2.2 ROOA’s horizontal development .. 36

3.1 A relationship between o b j e c t s ..46

3.2 A Coad and Yourdon object model for the banking system51

3.3 'I'wo objects of the same class communicate via a ch a n n e l............................. 72

3.4 S pecia l-A ccou n t as a concrete class template of the abstract superclass

Account .. 78

4.1 Aggregation... 93

4.2 Aggregation with two hidden com pon en ts .. 94

4.3 a) Higher level of abstraction: aggregate; b) Lower level of abstraction: the

components and the aggregate’s extra functionality.. 95

4.4 Aggregation with hidden components marked as a single class template . . 95

4.5 Static aggregation with one shared component and one hidden component . 96

4.6 Sharing the class template, but not the o b je c t s ...97

4.7 Sharing the class template and the o b je cts .. 98

4.8 Catalog aggregation and physical aggregation...................................... 99

4.9 One person belongs to two research groups ... 100

4.10 Behaviour o f the video player example defined as a finite state automaton . 105

4.11 Video player aggregate.. 106

4.12 Object Communication D ia g ra m ...106

4.13 Object Communication D ia g ra m ...112

xii

6.1 The models built by many object-oriented analysis m eth ods............................ 138

6.2 Context o f ROOA in the development life c y c le ...140

6.3 Core of R O O A ...141

6.4 Object model produced by the OMT m e t h o d ..144

6.5 ETD for depositing a cheque belonging to another b a n k148

6.6 Message connections between A and B ... 149

6.7 Refined object m od e l... 154

6.8 Initial object communication diagram ... 158

6.9 Revised object communication diagram ..170

6.10 Documents produced during the application of R O O A173

7.1 Class templates offering all their services in a single g a te181

7.2 Giving gates according to the structure ..182

7.3 Process Accounts is only accessed by a single g a t e .. 182

7.4 A first version of the banking system in a first version of an O C l)187

xiii

C hapter 1

Introduction

Object-oriented approaches and formal methods have both been proposed as ways of

alleviating problems in the development and maintenance of reliable software systems.

Object-oriented approaches are gradually becoming more and more accepted in industry,

during all phases of software development. Formal methods are also gradually becoming

more used in industry, but they are not usually introduced until the design phase. This is

because the construction of an initial formal specification during early stages of develop

ment is difficult. In fact, little previous work has been done in the area o f object-oriented

analysis and formal methods.

The starting point in the use of formal methods in the software development process

is a formal requirements specification of what the proposed system is to achieve. Once

a formal specification has been given, it is possible, at least in theory, to verify a design

and eventual implementation with respect to that specification. Two important questions

remain, however. How is the initial formal requirements specification created from a set

of informal requirements and how can it be validated with respect to those requirements?

It is clear that these cannot be formal processes.

The purpose o f this thesis is to investigate how formal methods can be used within

the context of object-oriented analysis, during the requirements analysis phase of the soft

ware life cycle. The result o f this investigation is the Rigorous Object-Oriented Analysis

(RO O A) method. The ROOA method specifies the required behaviour o f a system by con-

Chapter 1. Introduction 2

structing a model using the formal description technique LOTOS (Language Of Temporal

Ordering Specification) [BB87, IS088]. As LOTOS has a formal semantics, the model has

a precise meaning and can be used as a formal requirements specification of the system’s

intended behaviour.

i

1.1 The Scope and Objective of the Thesis

This thesis is primarily concerned with investigating how LOTOS can be used to add

rigour to the object-oriented analysis process. To accomplish this, it was necessary to;

• assess the existing object-oriented analysis methods and identify which characteris

tics would be useful to consider, to extend or to modify;

• study the LOTOS specification language and identify in which way it could be used

to model the most common object-oriented concepts;

• analyse how LOTOS could be brought to co-exist with informal object-oriented

analysis methods;

• develop a method which would integrate the LOTOS formal language with the ex

isting object-oriented analysis methods;

• propose a formal definition o f the basic object-oriented concepts.

The result o f this investigation is the ROOA method, together with both a mapping

which shows how each object-oriented concept can be specified in LOTOS and a simple

denotational semantics formalising basic concepts such as class template, class, object,

behaviour, state, attributes and services.

1.2 The Contribution of the Thesis

This section summarises the contributions made by the thesis, which are:

• propose a method which integrates formal specification languages with object-oriented

analysis (OOA) methods;

Chapter 1. Introduction 3

• explore the suitability of the LOTOS language to create an initial formal require

ments specification;

• propose a formal interpretation of object-oriented analysis constructs in LOTOS;

• develop a simple denotational semantics describing basic object-oriented concepts.
I

1 .2 .1 In teg ra tin g F orm al S p e c if ic a t io n L a n gu ages w ith O O A

The major contribution of this thesis is the investigation of how formal methods can be

used during the requirements analysis phase to develop object-oriented systems. The

advantages of this integration are to bring formal specification languages closer to the ev

eryday work of software engineers, helping them to lose the fear o f using formal languages.

Also, by using formal methods early in the development life-cycle we can create an initial

formal requirements specification which we can then use as the starting point of a more

formal development.

The result of this study is the ROOA method. ROOA proposes a systematic develop

ment process to create an initial formal requirements specification. It brings together two

different frameworks which have been previously kept apart: OOA methods and formal

specification languages.

O b ject-or ien ted analysis m ethods such as those by (load and Yourdon, by Jacobson,

by Rumbaugh et al., and by Shlaer and Mellor create an informal analysis model or set

of models [CY91a, Jac92, RBP‘*'91, SM92]. The object model, based on an extension to

entity-relationship diagrams, describes the static properties of a system while the dynamic

model, normally expressed in terms of state transition diagrams, describes its behaviour.

Some methods, such as those by Rumbaugh et al. and by Shlaer and Mellor, also propose

a functional model, which uses data flow diagrams to describe the operations in the object

model and the actions in the dynamic model [RBP'*'91, SM92]. In most methods, the

object model is central with the dynamic and functional models being of lesser importance.

Entities in the real world exist concurrently. A major advantage of the object-oriented

approach is that it supports the direct modelling of real world entities as a set o f au-

Chapter 1. Introduction 4

tonomous objects which communicate with one another by sending messages. An object-

oriented analysis model should therefore represent the requirements as a set of communi

cating concurrent objects even when the eventual ipiplementation is to be sequential. A

formal language used to formalise the analysis model should therefore support parallelism.

I

L O T O S is composed of a process algebra and abstract data types and it does not di

rectly incorporate any object-oriented constructs. This was not one o f the goals o f its

designers, and understandably so: when LOTOS was designed, object technology was not

a mainstream concern. However, the language is suitable for writing specifications in an

object-oriented style [Rud92]. Discovering ways to accomplish this was one of our main

concerns while developing ROOA.

LOTOS directly supports encapsulation, abstraction and information hiding. Con

current objects may be modelled as process instances, composed by using the parallel

operators, and message passing is modelled as two processes synchronising on an event.

This straightforward mapping makes LOTOS capable of representing a system as a set of

communicating concurrent objects.

The R O O A m eth od shows how LOTOS can be integrated with object-oriented analysis

methods. ROOA complements existing object-oriented analysis methods (such as those by

Rumbaugh et al., Coad and Yourdon and Shlaer-Mellor), enabling precision and formality

in development where required, for example in safety-sensitive systems [CY91a, RI3P‘'’ 91,

SM89].

Producing an object model from a set of informal requirements is a complex process.

OOA methods propose strategies for the identification of objects and their attributes,

services and relationships so that a suitable object model can be created. Most OOA

methods are much better at describing the static aspects of a problem than they are at

describing the expected dynamic behaviour. The ROOA method builds on the object

model produced by any of the informal OOA methods and on the dynamic and functional

properties given in the informal requirements.

The model produced by ROOA integrates the static, dynamic and functional models,

Chapter 1. Introduction 5

unlike informal object-oriented analysis methods, such a« the one by Rumbaugh et al.,

which create three separate models [RBP'*'91]. It is primarily a dynamic model, but it

keeps the structure of the static object model. The object communication table and the

object communication diagram are intermediate structures which help us in the difficult

transformation from the static to the dynamic model and in tracing the requirements

through to the final formal model.

An important part of the ROOA method is to give a formal interpretation in LOTOS

of object-oriented analysis constructs such as: class templates, objects, inheritance, rela

tionships between objects, message passing between objects, aggregates, and subsystems.

As a LOTOS specification is executable, we use prototyping to help the developers

to understand the user requirements, to discover omissions, contradictions, ambiguities

or inconsistencies early in the development process, to validate the resulting specification

against those requirements, and at the same time, to help the users to evaluate their

own needs. A set of tools, such as syntax checkers, semantic checkers and simulators,

is available with LOTOS. The SMILE simulator supports value generation and allows

symbolic execution of a specification where a set o f possible values is used rather than

particular values [EW93]. In the analysis phase, non-determinism can be exploited to

model behaviour so that premature design decisions are not made.

ROOA uses a stepwise refinement approach for the development and for validation of

the specification against the requirements. The development process is iterative and parts

of the method can be re-applied to subsystems. Different objects can be represented at

different levels of abstraction and the model can be refined incrementally.

1 .2 .2 S u ita b ility o f th e L O T O S S p e c ifica t io n L an gu age

Our goal was to introduce rigour to the object-oriented analysis process by creating an

initial formal specification, and, on the other hand, to develop a method which could

be given to software engineers to use in real projects. To satisfy this goal, the formal

specification language chosen has to incorporate a certain number of characteristics. For

example, the language should be well-established and standardised, if possible; it had to

Chapter 1. Introduction 6

be able to produce specifications in an object-oriented style; it had to be supported by

tools which then could be used for prototyping; it had to incorporate concurrency, since it

is important, in the analysis phase, to see the resulting specification as a set o f concurrent

objects.

LOTOS satisfies these requirements. ^

1 .2 .3 F orm al In te r p r e ta t io n o f th e O O A C o n s tr u c ts in L O T O S

Currently, ROOA offers a mapping between each construct used by most o f the existing

object-oriented analysis methods and LOTOS. This is an important part of our method,

as it helps software engineers less skilled in formal specification languages to use ROOA.

Among the OOA concepts studied, we would like to highlight the contribution of the

thesis towards the understanding o f aggregates. Aggregation has been studied for some

years, but even so there is not a general agreement on the exact meaning of the concept.

We devoted a long time to review other authors’ views on aggregates and decided to

propose our own idea, which is more generic and closer to reality, we believe. We describe

two main kinds of aggregates: aggregates with hidden components and aggregates with

shared components. We indicate the set of properties which each kind of aggregate should

have. Finally, we show how aggregates can be specified in LOTOS.

1 .2 .4 D e n o ta tio n a l S e m a n tic s fo r O O A M o d e ls

Having developed the ROOA method and shown how each OOA construct could be spec

ified in LOTOS, it was important to abstract from LOTOS and describe our views of each

concept in a mathematical form so that it would be better understood by others.

As a result, we developed a simple denotational semantics which describes, in terms of

tuples and functions, the basic object-oriented concepts. During this study it was impor

tant to separate the OOA concepts into two kinds: those which appear in the specification

and those which only exist when an executable specification runs. This led us to decide

that while class templates are concepts which exist in the specification, objects only exist

while a specification is executing. B y using the principle o f substitution and the notion o f

Chapter 1. Introduction 7

(logical) individual variables, we show how objects can be derived from generic descriptions

such as class templates. This implies deriving the behaviour of objects from behavioural

expressions in cl2iss templates.

1.3 Related Work

Clark, in earlier work, proposed an object-based style to write LOTOS specifications

[Cla91, Cla92a, Cla92b, CJ92]. There are three main differences between our work and

Clark’s. First, he was concerned with the design and implementation phases of the soft

ware development, while we are concerned with the analysis phase. Second, he proposed

an object-based style to write LOTOS specifications, while we are interested in finding

an object-oriented style where the concepts of inheritance, class template, class (object

generator), object, aggregation and static relationships between objects, for example, play

an important role. Clark had already proposed ways to model classes as LOTOS process

definitions, objects as process instances and communication between objects as a pair of

LOTOS processes synchronising on an event. Our work goes further and extends the for

malisation of object-based concepts to include inheritance and the concepts used by OOA

methods, integrating also some of the concepts proposed by the Open Distributed Pro

cessing (ODP) model. Third, together with the object-oriented style we have developed

to write LOTOS specifications, we are proposing a complete method to create an ini

tial object-oriented analysis requirements specification and we integrate our ideas within

existing OOA methods. This has no counterpart in Clark’s previous work.

Many others have been proposing ways to specify object-oriented concepts and LO

TOS [Bla89, CRS90, May89, Rud92]. The focus o f their work is different from ours, as

they are usually concerned with extending LOTOS to incorporate object-oriented con

cepts. This is the case with Rudkin’s work where he proposes extending LOTOS to

incorporate inheritance [Rud92]. We have adopted the ISO standard LOTOS language,

without considering any of its extensions.

Jungclaus and his colleagues, while integrating formality with object-oriented concepts,

developed a formal object-oriented specification language called TROLL [JSHS91]. Our

Chapter 1. Introduction 8

work differs from theirs in that we have developed a method which integrates a standard

formal specification language with existing OOA methods. (Other specification languages

which incorporate object-oriented concepts are Object Z [SBC92], OBJ3 [GKK'*'88] and

ObjLog [Bri94].)

Bahsoun et al. [BMS93] proposed ways to formalise object-oriented concepts using

Lamport’s TLA logic [Lam94], while formalisations using universal algebra and category

theory have been reported by Ehrich and his colleagues [EGS93, EGS91, ESS89]. However

these approaches are different from ours (as we further explain in Chapter 5) «is we give

primacy to the concepts as they exist in the OOA methods.

Jones [Jon93], Laorakpong and Saeki [LS93]. and Cusack and Lai [CL91] have been

working on formalising object-oriented specifications. These approaches introduce a new

methodology, but they do not seem to build on existing practical approaches, as ROOA

does.

The team developing the ODP model [IS094] are proposing ways to model the concepts

o f class template, object, class and service in specification languages such as LOTOS, Z

and SDL. However, their goal is to produce a model for telecommunication networks, not

to add rigour to OOA methods, which is the primary objective of ROOA.

The projects RAISE [GHH"*'92] and SPECS [Gen92] were proposed to formalise re

quirements analysis. Another author, Li, also proposes a way to formalise requirements

[Li93]. However while we were interested in bringing formality to the existing object-

oriented analysis process, they were proposing completely different approaches, not taking

into consideration existing OOA methods.

Hedlund reported some work on integrating LOTOS with object-oriented development

methods [Hed93]. He does not, however, deal with the analysis phase and his study is

restricted to the Jacobson’s method [Jac92]. Our approach haa similarities with that o f

Zave [Zav91], although a major feature of ROOA is its integration with object-oriented

analysis methods.

Chapter 1. Introduction 9

1.4 The Structure of the Thesis

This thesis has nine chapters and four appendices. Chapter 1 is this introduction. We

now briefly present the remaining chapters and the appendices.

C hapter 2. Formal Object-Oriented Specifications. This chapter gives the software

engineering background to the R-OOA development. It* starts with a brief introduction to

software development life-cycle models, emphasising the relationship between the analysis

and design phases. It then discusses the object-oriented paradigm, examining in particular

object-oriented analysis methods and their relation to object-oriented design. Finally, it

identifies the different kinds of specifications, groups them according to their properties,

analyses the benefits derived from combining object-oriented analysis methods with formal

methods, states the reasons for LOTOS as the formal description technique to be used

within ROOA, and gives a general overview o f prototyping, emphasising its use during the

analysis phase.

C hapter 3. Modelling Fundamental OOA Concepts in LOTOS. This chapter gives an

informal definition of each of the most common object-oriented analysis concepts, such

as inheritance, class templates, objects, services, attributes, relationships and message

connections between objects. We use the problem of specifying an automated banking

system as an example to show how to model each of these concepts in LOTOS, including

inheritance.

C hapter 4. Further Concepts; Complex Objects. This chapter focuses on complex ob

jects, usually known as aggregates. It briefly describes how aggregates are understood

by other authors, then presents our own views by classifying aggregates according to the

properties of their components, and by defining the properties we believe aggregates should

have. Finally, it uses a simple example to show how ROOA models each kind of aggregate

in LOTOS.

C hapter 6 . Formalising Object-Oriented Analysis With LOTOS. This chapter provides

a simple denotational semantics to describe the basic object-oriented concepts in terms of

Chapter 1. Introduction 10

simple mathematical formalisms such as tuples, sets and functions. It divides the concepts

into two types: the ones which appear in the specification, such as class templates and

services, and the ones which only come into existence in the running system, such as

objects. The main focus here is to explain how the behaviour of objects at run-time is

specified through the generic behaviour description j;iven in the class template.

C h ap ter 6. The Rigorous Object-Oriented Analysis Method. This chapter describes the

ROOA method. It presents ROOA in the context of the software life cycle, showing how

it interacts with the requirements capture and with the design phase. It discusses the de

velopment model adopted within ROOA. The main part of this chapter describes in detail

each task and subtask of ROOA. We illustrate this description by using the automated

banking system, whose requirements were presented in Chapter 3. Some intermediate

structures are used and explained while applying ROOA to this example.

The two primary intermediate structures used are the object communication table

and object communication diagram. They are used to develop the final object-oriented

analysis LOTOS model and to help trace through the original requirements to the LO 1 OS

specification. An algorithm is presented that helps us to create the object communication

diagrams.
Finally, the chapter discusses the various documents created during application o f the

ROOA method.

C h ap ter 7. The Design Rationale of ROOA. This chapter explores the problems we

found and the solutions tried during the development of ROOA. It justifies the solutions

we adopted, and it also discusses the reasons why we discarded some of the intermediate

solutions.

C h ap ter 8. Assessment o f the ROOA Method. This chapter discusses the need for a

rigorous object-oriented analysis method, assesses the ROOA method, highlighting its

strengths and weaknesses, examines the suitability of LOTOS as the chosen specification

language, and finally, reviews the ROOA method while applied to case studies by ourselves

and by others.

Chapter 1. Introduction 11

C hapter 9. Conclusions and Prospects. This chapter states the conclusions o f this work

and identifies possibilities for further development. Finally, it identifies the transforma

tions in ROOA which can be performed automatically and outlines the tools which could

be developed to support ROOA.
I

A ppen dix A . LOTOS Overview. This appendix contains a brief introduction to the

LOTOS specification language. It describes processes, abstract data types and the struc

ture of a LOTOS specification, and presents the syntax o f the most important LOTOS

operators.

A ppen dix B . How to Specify Object Identifiers: Additions to the Library. This ap

pendix contains the specification of the ADTs which we introduced to the existing LOTOS

libraries. These ADTs were created to deal with object identifiers.

A ppen dix C . Publications. This appendix shows a list of our technical reports and

publications, in conferences and journals, under the topics: object-oriented methods, and

formal description techniques.

A ppen dix D . Acronyms. This appendix lists the abbreviations used in this thesis. We

tried to keep acronyms to a minimum, to make reading easier, and more pleasant, we

hope.

1.5 The Topics of the Thesis

The thesis discusses three main topics: the ROOA method, the philosophy behind ROOA

and a simple denotational semantics. To learn about the ROOA method. Chapter 3,

Chapter 4 and Chapter 6 should be read in sequence. To understand the philosophy

behind the method, its strengths and weaknesses, Chapter 7 and Chapter 8 should then

be read.

For those interested in a simple denotational semantics to define the basic object-

oriented concepts, we advise that Chapter 5 should be read after Chapter 3.

Chapter 2

Formal Object-Oriented

Specifications

2.1 Software Development

Developing an efficient and reliable software system is a difficult task. As Booch says

[Boo87]:

Developing software systems is an activity that demands much intellectual

capacity. Completing an efficient, reliable, maintainable, and understandable

system on time is often an even more Herculean task, especially in the case of

large, real-time programming projects.

When software systems were small by today’s standards, programmers believed that build

ing software was synonymous to writing programs, sometimes in a very artistic way. To

day, software systems are much more complex and so software engineers are required to

use more skills than just programming artistry when developing the system. They need

techniques, methods, and tools that help them progress through a set of required stages.

Since the sixties, many techniques, methods and tools have been produced to support

software development. However, the subject remains an active area of research, since the

systems we want to develop are still growing in complexity and size. Furthermore, the

clients who want those systems are more and more demanding.

12

Chapter 2. Formal Object-Oriented Specifications 13

In this thesis we are especially interested in two areas of the software technology

evolution: object-oriented analysis and formal methods.

2 .1 .1 S o ftw a re L ife -C y c le

The software life-cycle begins when a software product is conceived and ends when the

product is retired [IEE91]. The starting point is usually the set of user requirements. Part

of these requirements define what the system must achieve (these are called functional

requirements). Other part of the user requirements deal with constraints such as efficiency,

available hardware, response-time, etc. We refer to these constraints as non-functional

requirements.

The software life-cycle consists of several phases. The standard approach considers

five phases: analysis, design, implementation, testing and maintenance. The boundary

between each phase is not always clear. A simple definition of each phase could be:

• Analysis is the study of a problem, prior to taking some action [DeM79]. During

this phase we work out the user requirements in order to establish the properties the

system should possess. As everybody says, analysis defines what the system must

do. The result o f this phase is the requirements specification.

• Design is concerned with how the system is going to accomplish what was defined

during analysis. In the design we concentrate on determining which are the useful

components (data structures and functions) and on how they are going to be imple

mented. The requirements specification obtained at the end of the analysis phase

is the starting point for the design phase. However, it is not always clear where

analysis finishes and design starts.

• Implementation is the process o f transforming the results of the design phase into

instructions for the computer, by using a programming language. Implementation

should deliver programs that are correct and efficient.

• Testing “demonstrates” that the programs written in the implementation phase sat

isfy the requirements specification and correctly transform the input data. Dur-

Chapter 2. Formal Object-Oriented Specifications 14

ing this phase we correct implementation errors and eliminate unexpected program

states.

• Maintenance represents all the operations that are necessary to ensure the continuous

working of the system. This is an important phase even when the software system

is working according to the user requirements.. We must accept continuous and

constant evolution as a natural law o f software. After the system has been delivered,

requirements can be modified, the environment in which the system operates can

change and an increase in the efficiency and quality of the system can be required.

Our work is concerned with the analysis phase.

2 .1 .2 S o ftw a re D e v e lo p m e n t M o d e ls

There are several ways to go from one phase to another, that is, there are several life-cycle

models. Some of those models are simple, others are more complex.

The original sequential waterfall or stagewise model, was first presented in [Ben56,

Ben83]. However, this model is always applied with feedback, based on the changes pro

posed by Royce [Roy70]. The five phases are applied sequentially during the development

and use of the software product. At the end o f each phase we can go back to the previous

phase, introduce a change and then propagate the effects of that change. Consequently,

we can only step back to an earlier phase to correct errors. This is also called the iterative

waterfall or cascade model. Swartout and Balzer showed why the waterfall model with

well defined phases could not work, by showing that the specification and implementation

of a system are inevitably intertwined [SB82].

The problems of sequential ordering and strictly separated phases can be overcome

by prototyping models, such as the spiral model popularised by Boehm [Bel86, Boe88,

BB89, BGS84] and the ones in [Fai85, Pet88, Som92j. These models basically have the

same phases as the waterfall model, but they permit us to interleave the phases during

the development. This follows from Swartout and Balzer. If the implementation phase

shows that we need to go back and modify the specification, we reopen the design phase

concurrently with the implementation phase, and perform the necessary changes. Then

Chapter 2. Formal Object-Oriented Specifications 15

w e propagate the effects of the changes to the implementation, until the design and the

implementation come to a point where they match again.

The prototyping models use formalisms for analysis and design phases which lead to

executable specifications, promoting prototyping during the early stages of the develop

ment. The spiral model has been accepted by the US Air Force as their model for software

development [Gre89].

We embrace rapid prototyping in the ROOA development process. We use LOTOS

[IS088] as an executable specification language and the LITE tool [EW93] as the proto

typing tool.

2 .1 .3 R e la t io n s h ip B e tw e e n A n a ly s is and D e s ig n

In every book on the subject, the classic definition for analysis and design is always there:

analysis states what the system should do, while design states how the system accomplishes

what was defined during analysis. But, does this tell us exactly what is analysis and what is

design? Does it help us to decide when analysis finishes and design starts? As Davis notes,

the division into what and how can be subject to individual perceptions [Dav88]. If we are

using functional methods, we can say that in analysis we construct data flow diagrams and

entity-relationship diagrams and in design we construct structure charts, apply the third

normal form to the data structures and transform the entities in the entity-relationship

diagram into data base tables (skeleton tables). Letting the techniques drive us along the

development works for some kinds of problems. However, other problems exist where the

frontier between analysis and design requires more precision.

We could say that analysis deals with the problem-space while design deals with the

solution-space. In an object-oriented view, analysis models the world by identifying the

classes and objects that form the vocabulary o f the problem domain and design invents

the mechanisms that provide the behaviour required by this model [Boo91]. However,

deciding when design should start is often a problem. If we start too early, we risk not

knowing enough about the problem to make a good design. If we start too late, we risk

wasting too much time in doing detailed analysis which can overload the designer with

Chapter 2. Formal Object-Oriented Specifications 16

lots of unnecessary information.

The level of abstraction is also important, because we do not want to overspecify the

problem. Suppose we have an automatic banking application and we want our system

to be able to handle several clients simultaneously. Should the concurrency be shown

in analysis, or not? Is the protection required for concurrent access to the data a non

functional requirement? Should non-functional requirements be ignored in the analysis

phase and only included in the design, and if so, can we then say that the final document

produced during the analysis phase meets the user requirements?

Depending on the method used we might have different levels o f abstraction in the

specifications. In some methods we can easily avoid having to specify concurrency or data

access-protection, in others it might be more difficult. If we specify a system by only

defining its external behaviour, rather than by modelling its behaviour, then cases such as

the banking example can initially be defined without including parallelism or data access-

protection in the model, with the extra non-functional requirements being held informally

in a separate document.

When clients write a requirements document, they use their knowledge of the system.

As their knowledge may be limited, the original requirements can be unnecessarily detailed

when describing parts of the system they know well, but can have ambiguities, inconsis

tencies and contradictions, and can omit information about parts that they know less

well. Certain kinds of clients like to impose non-functional requirements which mandate

implementation of the system in a certain way.

Non-functional requirements should not constrain the analysis. The design might either

be restricted or not, depending on what the non-functional requirements look like. The

implementation will always be restricted. In other words, non-functional requirements

cannot be ignored in the solution, but they should only be considered in the right place.

The question of whether or not a requirements analysis specification document meets

the original requirements is fundamental. However, if gaps are found in the original

requirements document, they must be corrected. Only then we can assume that the

specification meets the original requirements.

Chapter 2. Formal Object-Oriented Specifications 17

An exact definition of what analysis is and what design is seems to depend on a par

ticular context; every “how” is a solution to a higher level “what” and a “ what” may be

part o f an even higher level “ how” . That is, as soon as the context changes the scope of

analysis and the scope of design also change.

2.2 Object-Oriented Approaches

The concept o f class, in software, is not new. Simula 67 was the first programming

language to introduce the concept of class as a mechanism to encapsulate data and the

related operations [BDMN80, DN66]. The next important object-oriented language was

Smalltalk [GK76, GR83].

Wegner gives a definition for the term object-oriented. In his opinion, an object-

oriented approach must incorporate the concepts of object, class and inheritance (see

Figure 2.1) [Weg87].

Figure 2.1; Wegner’s classification schema

The late eighties and early nineties saw the development o f many different object-

oriented analysis and design methods [Ber88, Ber89, BGHS91, Boo91, CY91a, CY91b,

Col89, CAB"''94, Jac92, RG92, RBP'*'91], as well as an increase in the use o f object-

oriented and object-based programming languages. Perhaps the most important aspect

is the integration of analysis, design and programming in a single framework, using the

same concepts.

There are two major advantages in developing object-bs^ed software [BM85]:

Chapter 2. Formal Object-Oriented Specifications 18

• to reduce the total life-cycle software cost by increasing programmer productivity

and reducing maintenance costs;

• to implement software systems that resist both accidental and malicious corruption

attempts.
»

The primary goal of modern software development is to encourage the use of software

modules to provide specific functionality and whose interactions are through well-defined

interfaces. This results in a reduction of the complexity o f systems, which, in turn, results

in systems which are easier to understand, and easier to build, test and maintain. As

a further benefit, the use o f modularisation together with abstraction and information

hiding results in greater sharing of software and “ less reinvention of the wheel” , promoting

reusability. Object-oriented methods claim to provide these benefits better than other

methods [Bha83].

Object-oriented methods are concerned with modelling real world entities as objects.

Therefore, they follow one o f the most fundamental rules of modern Software Engineering

practice, namely “ form following function” , i.e. making the solution resemble the orig

inal problem. Such solutions are inherently easier to test, modify, and debug [Ber88].

This is especially the case with concurrent systems which can be modelled as a set of

communicating concurrent objects [Cla90, Cla92b].

2.2.1 Which Approach in the Analysis Phase?

If we decide to use object-oriented methods during design, the question remains as to which

approach to choose for analysis, especially if a requirements document does not exist yet.

This is because most OOA methods suppose the existence o f an informal requirements

document (for a further discussion of this problem see [HS93]).

During the early nineties there was much debate about the necessity o f having object-

oriented analysis methods [Bro91, Fir91, HS92, Shu91, Wal91]. Perhaps because o f the

expertise already acquired, the powerful support tools (especially CASE tools) created

for functional analysis, and the experience already gained with functional methods such

Chapter 2. Formal Object-Oriented Specifications 19

as Structured Analysis, some authors have proposed that functional analysis and object-

oriented design are compatible [Con89a, Con89b, Shu91, War89). These authors try to

minimise the problem o f performing analysis and design with different kinds of approaches

by saying that since requirements analysis (saying what) and design (saying how) have

different purposes and serve different masters, it shpuld not be surprising to see different

modes o f expression.

The reasons for making functional analysis methods compatible with object-oriented

design make sense from an managerial point o f view, as expertise on functional analysis

and automated support tools already exist and so less retraining would be necessary.

There are other authors who believe that functional analysis and object-oriented design

are not compatible and state that since the difference between the two approaches is

profound, attempts to bend functional methods to object-oriented methods are bound to

fail [Bro91, Fir91, Wal91].

Believers in the marriage of the two approaches propose ways to identify objects in

a data flow diagram (D FD). We believe that objects which directly represent real world

objects are easily identified, but others are usually more arbitrary. While DFDs emphasise

processes, object-oriented approaches emphasise objects, which is a very different concept.

Also, a DFD process does not correspond to an object-oriented operation. While a process

transforms input data into new output data, an object-oriented operation “works” on an

abstract object. The data is contained in the object and does not move independently of

the object. And so, identifying objects from a DFD seems to be the wrong way to do it,

because it leads us to Identify objects by means of DFD processes, instead o f primarily

identifying objects which “own” operations. We cannot say that a Structured Analysis

data item is an object, because an object is much more than just data. The use of

functional analysis in an otherwise object-oriented approach complicates the tracing of

requirements, by forcing the software engineer to look first to a DFD and then switch his

or her line of thinking to objects.

The incompatibilities between functional analysis and object-oriented design cause sig

nificant problems of quality, productivity and costs [Fir91]. These incompatibilities result

Chapter 2. Formal Object-Oriented Specifications 20

from the differences in the abstractions used. Firstly, functional analysis relies primarily

upon functional abstraction with minimal data abstraction, while object-oriented design

primarily uses object abstraction (but also uses data abstraction, functional abstraction,

process abstraction, exception abstraction). Secondly, functional analysis localises (and

decomposes) according to functional abstraction, whereas object-oriented design methods

localise (and either decompose or compose) according to object abstraction.

We believe that the difficulty of combining effectively two fundamentally different ap

proaches is unnecessary. The best approach for an object-oriented design begins with an

object-oriented view of the problem domain created during analysis [Wal91]. If a require

ments document does not exist, we can always use methods which integrate the capture of

the requirements within the building of the models, such as the method Object Behaviour

Analysis proposed by Rubin and Goldberg [RG92]. We believe in OOA methods, but

we also know that object-oriented analysis methods are not suited to model all kinds of

problems, just as functional methods are not well suited to all kinds of problems.

However, if the problem can be modelled by following the concept of object, an object-

oriented analysis method preceding a complementary object-oriented design method pro

motes a consistency of concept and expression that helps to minimise the traditional errors

that occur in the move from analysis to design.

We agree that software engineers must be able to change their preconceived ideas when

something new and better appears. But, we understand that this requires hard evidence

that the new methods do provide more reliable and cost-effective solutions. With “ always

arriving new” technologies, each one promising to solve the software crisis, we understand

why software engineers might feel sceptical any time a new fashion appears.

In spite of the fact that a great effort is being invested in developing object-oriented

technology, a complete acceptance of this paradigm will only be possible after the meth

ods and languages prove their usefulness, and efficient, reliable and powerful supporting

tools have been created. Fichman and Kemerer [FK92] state that, although little empir

ical evidence exists to support many of the claims made in favour o f object-orientation,

organisations that are able to absorb this radical change may well find themselves in a

Chapter 2. Formal Object-Oriented Specifications 21

stronger position than those incapable of making the transition from the traditional func

tional methods to the object-oriented methods. A fuller discussion of these points is given

in [MC92].

2.2.2 Object-Oriented Analysis Methods
I

The main goal o f an object-oriented analysis (OOA) method is to identify objects and

classes which make up the proposed system, to understand the structure and behaviour

o f each object, to gather in one place all the information relating to a particular object

and class and, at the same time, show how the objects in the system interact statically

and dynamically.

In general, object-oriented methods share the following set of common tasks:

1. Understand user requirements.

2. Identify and classify objects.

3. Define classes.

4. Identify relationships between objects.

5. Identify inheritance relationships between classes.

6. Construct documentation.

To understand the user requirements we read the initial requirements document and

any other source o f information which may describe the problem, or part of it. More

over, we should interview the users or clients of the system so that we can have a better

understanding of the problem being studied.

In order to identify objects, several methods [CY91a, RBP‘*'91] recommend we look at

nouns, pronouns, noun phrases, adjectival and adverbial phrases in the initial requirements

document, while others [RG92] suggest that a better way of identifying objects is to focus

on their behaviour. After we identify the objects, we group them into classes.

A class is defined in terms o f its static and its dynamic aspects. The static aspect is

given by a list of its attributes and services. The dynamic behaviour is usually described

Chapter 2. Formal Object-Oriented Specifications 22

by using state transition diagrams, but it plays a secondary role in most methods. The

set of state transition diagrams is Ccdled the dynamic model.

Relationships between objects can be static or dynamic. The static relationships are

represented by their names and their cardinality. The dynamic ones are represented by

arrows connecting the calling to the called object, and are known as message connec

tions. These relationships are represented in the object model which is supported by a

diagram based on Entity-Relationship diagrams [Che76] where enhancements have been

introduced to support aggregates, inheritance and message connections. Some methods

add scenarios [RBP+Ql] (or use cases [Jac92]) to the dynamic model and show the inter

actions between objects for each scenario by means of an event trace diagram [RBP'*'91]

(or interaction diagram [Jac92]).

Documentation plays a crucial role when developing software. Several methods have

an explicit step to construct it while others leave it implicit.

More recent methods, such as [RBP'*'91, SM92], also incorporate a functional model

which uses data flow diagrams to describe the meaning of the services in the object model

and the actions in the dynamic model. However, in most methods, the object model plays

the central role, with the dynamic and functional models being of less importance.

A major advantage of the object-oriented approach is that, as the concepts used in

object-oriented analysis and design are the same, the transition from analysis to design is

smoother.

2.2.3 Differentiating OOA from Object-Oriented Design

The use of object-oriented design methods independently of any object-oriented analysis

method has created confusion about the responsibilities of analysis and design.

In Section 2.2.1 we discussed the dilemma of whether object-oriented analysis or func

tional analysis should be used with object-oriented design. In this section we want to

clarify the responsibilities of object-oriented analysis and object-oriented design.

Some object-oriented design methods are supposed to be applied to the results of an

object-oriented analysis. Others exist which assume a preliminary functional analysis.

Chapter 2. Forma.1 Object-Oriented Specifications 23

Because of this, object-oriented design methods have different starting points.

Object-oriented analysis is concerned with understanding the user requirements and

modelling them by identifying problem-space objects. Most OOA methods suppose the

existence of a requirements document [CY91a, RBP"'"91] while others may start analysis

by writing the user requirements [Ber89, RG92]. ̂Hpydalsvik and Sindre argue that an

OOA method which starts based on an existing requirements document is largely a high

level design method [HS93].

If the design method is based on the results of an object-oriented analysis, then the

analysis method will already have identified and described the problem-space objects. The

design method takes those objects and decides which are to remain in the final system;

adds new objects which only belong to the solution domain and whose purpose is to

support the implementation of the objects o f the problem-space; and finally decides about

the implementation o f each object. In this case, the transition between analysis and design

is not a problem.

If the design method is based on the results of a functional analysis, then it must

identify the problem-space objects before it can deal with the solution-space. Therefore,

the object-oriented design method must perform a task which is really the concern of the

analysis phase.

As an example, Booch’s Object-Oriented Design may suppose a functional analysis

document as a starting point while Object-Oriented Design by Rumbaugh et al. [RBP"''91],

for example, supposes the existence of an object-oriented analysis document. The objects

identified by Booch ’s method are problem-space and solution-space objects whereas the

objects identified by OMT are solution-space objects, as the problem-space objects were

identified in the analysis phase (see [MC92] for further information).

In both cases, it is the design phase which is responsible for the identification of

solution-space objects and for the decision o f whether or not each problem-space object is

to be kept in the solution.

Looking at functional methods for analysis and design we can identify an interesting

concept, which seems to have been forgotten in object-oriented methods. Functional

Chapter 2. Formal Object-Oriented Specifications 24

methods usually talk about the ideal system and the real system (sometimes called the

logical and the physical system) [DeM79, GS79]. The ideal (logical) system is proposed

during the analysis phase and it reflects the system without any constraint, i.e. in an ideal

environment. In an ideal environment, we could add that nothing unexpected can happen

to the system. This could be seen as a good reason to deal with erroneous situations in a

later stage of the development.

The real (physical) system is proposed during the design phase and it should reflect

the environmental constraints in which the system is going to operate. However, this can

be dealt with in the last steps of functional analysis methods if they are proposed without

any design method. Therefore, in general, analysis and design can overlap if their methods

do not take into account the design method that follows analysis, or the analysis method

that precedes design.

This idea of “ ideal” and “ real” is interesting, and could be brought into object-oriented

methods in order to help clarify the distinction between the phases. Although the idea

of “ problem-space” and “solution-space” does correspond, to some extent, to the “ ideal”

and “ real” concepts, it is worth noticing that the problem-space objects are usually based

on requirements documents which incorporate constraints.

2.2.4 The Origins of Object-Oriented Methods

A significant question is whether or not existing object-oriented analysis and design meth

ods are implementation language dependent. One thing is what they should be, the other

is what they really are.

It is generally agreed that analysis methods should not be implementation language

dependent, while design methods can be. However, this does not always occur in practice.

The reason is easy to explain. The evolution of the software development life-cycle was

backwards, i.e. from programming to design to requirements analysis. It is no different

now; object-oriented development has its roots in object-oriented programming. Many

of the concepts in the analysis and design methods therefore come from programming

languages. If the programming language emphasises certain concepts, then authors will

Chapter 2. Formal Object-Oriented Specifications 25

try to include them in the analysis (or design) methods. This is not a new situation, many

functional methods were developed with the eventual implementation very much in mind.

We group object-oriented methods into two classes, depending upon their authors (and

users): Ada community methods and object-oriented programming language community

methods. Object-oriented analysis methods such ^ the ones from Berard [Ber93] and

Colbert [Col89] expect the eventual implementation to be in a language like Ada, and

inheritance plays a weak role in their method. We used the method Object-Oriented

Requirements Analysis from Berard in our previous work to develop an object-based Mes

sage Switching System in Ada [FMG89, FMG90a, FMG90b, GFM89, MFG89, MGF90].

On the other hand, the object-oriented analysis method from Coad and Yourdon is ori

ented towards an implementation in a programming language which supports inheritance.

Champeaux and Olthoff go further and state that object-oriented analysis “acknowledges

that an implementation is done in an object-oriented programming language” which would

seem to deny the advantages of the approach to the Ada community [dC089].

2.3 Formal Methods and Executable Specifications

2.3.1 Classification of Approaches

Specifications can be classified according to three criteria:

• Functional versus Object-Oriented (or Object-Based).

• Formal versus Informal.

• Executable versus Non-Executable.

Representatives from each pair can be combined in any order. For example, func

tional methods can lead to informal non-executable functional specifications. Formal

methods such as Object Z [CDD"*‘89] lead to formal non-executable object-oriented spec

ifications. We are interested in formal, executable, object-oriented specifications [CM94,

MC92, MC93a, MC93b, MC93c, MC94a, MC94b, MC94c, MC94d, MLC94).

Chapter 2. Formal Object-Oriented Specifications 26

Functional versus O b ject-O rien ted

Functional and object-oriented methods can produce approaches which we call:

1. Functional when we use functional analysis and functional design.

2. Hybrid when we use functional analysis and o,bject-oriented design.

3. Object-oriented when we use object-oriented analysis and object-oriented design.

The functional approach has been applied for the last twenty years. During this time,

many methods for both the analysis and the design phases have been proposed and CASE

tools created to support these methods. The most widely used functional analysis methods

are Structured Analysis by de Marco [DeM79], Yourdon [You89] and by Gane and Sar-

son [GS79]. Although many people have acquired a good understanding of this subject,

some problems still remain. The main problem is that functional methods do not provide

a single representation for the processes and for the data.

The hybrid approach was commonly used in the late eighties, when object-oriented de

sign methods were applied together with functional methods. This creates problems which

sometimes can be difficult to solve. With a large system, the requirements specification

will be divided into several components each of which will be dealt with by a separate

team member. If object-oriented design is being used in the design phase, and each of the

components identified in the (functional) analysis phase is given to a different member of

the design team, there can be major integration problems when the system is finally put

together.

As the concepts used by functional methods and the concepts used by object-oriented

methods are so different, the transition from a functional analysis to an object-oriented

design is very difficult.

Although many object-oriented analysis (and design) methods have appeared in the

last few years, people are not keen to change completely from a functional culture to an

object-oriented culture. One of the reasons is that there is not proof that the object-

oriented methods are better than the functional methods, for example. It is recognised

that object-oriented methods are not well suited to describe all kinds o f problems. Also,

Chapter 2. Formal Object-Oriented Specifications 27

it is necessary to invest more to develop CASE tools at least as good as the existing ones

supporting functional methods. For these reasons, object-oriented analysis and design

methods are being introduced gradually but slowly in industry [Sta93, WRW93].

Because the concepts used in object-oriented analysis and design are the same, the

gap between the analysis phase and the design ph^e is very narrow [Ber93]. Moreover,

the techniques used by the object-oriented design methods usually produce designs which

are very close to program text. Sometimes they already are outline code, as when Ada

or Eiffel is used as a design language. However, it is more difficult to separate “analysis

concerns” from “ design concerns” , as the concepts and techniques used have much more

in common than is the case with functional methods [Ber93, p47].

Formal versus Informal

'I'he primary benefit of formal techniques is that, as they have a precise mathematical

semantics, the resulting specifications are unambiguous. In contrast, informal techniques

lead to specifications which leave much of their interpretation to the reader. The impre

cision of an informal specification can give the implementor a freedom of interpretation

which can cause errors and omissions in the code, resulting in high costs for support and

repair. (According to Boehm, correcting one error in an early stage of the development

is much cheaper than correcting the same error in the code [Boe87, Boc81].) Moreover,

this imprecision can lead to misunderstandings in validating the informal specification

against the requirements. A formal approach to specification is therefore useful, in that

it allows design and eventual implementation to be verified against the specification, at

least in theory, although it still leaves the problem of validating the specification against

the initial informal requirements document.

Proving that a requirements specification for a large and complex system, a design spec

ification and the eventual implementation all describe exactly the same system is beyond

the current state of the art. A practical approach is to make the specification executable

and perform the validation by means of conformance testing where a series of interface

scenarios are used to show that the different specifications and the final implementation

Chapter 2. Formal Object-Oriented Specifications 28

all exhibit the same behaviour.

Executable versus Non-Executable

We believe that if a requirements analysis specification only says what the system does,

then it cannot be executed. In order to have an e;çecutable specification we must intro

duce some how in it. Some software engineers propose that specifications should not be

executable, because a specification written in a notation that is directly executable will

contain more implementation detail than a non-executable one [HJ89]. There is also the

danger that executable specifications can overspecify a problem. There are two reasons for

this. Firstly, an implementor may be tempted to follow the algorithmic structure o f the

specification and, secondly, the executable specification may produce particular results in

cases where a more abstract specification might allow a number of different results.

There are other authors who believe that the use o f formal and executable specifications

only bring advantages, and no disadvantages, when developing software [Fuc92, Zav84,

Zav91, ZY81]. Also, being able to demonstrate that a specification exhibits the expected

behaviour can greatly increase one’s confidence in it [Fuc92]. The accusation that this

is no more than testing is partially answered by using symbolic evaluation. The LOTOS

SMILE simulator [EW93] supports symbolic execution.

Some formal description languages can be executed, others cannot. There are some

whose main feature is that they are executable, e.g. me too [AJ90], there are others of

which a large subset is executable, e.g. LOTOS (Language of Temporal Ordering Specifi

cation) [1S088], while others cannot be executed, e.g. VDM (Vienna Development Method)

[Jon86]. Informal functional analysis techniques lead to requirements specifications that

are not executable.

If a specification is executable, then it can act as a prototype o f the system. One

can raise the question about whether or not a prototype must be executable on a com

puter. For some authors prototyping can be done manually [Gib90], for others it must

be automatic [AJ90]. In Section 2.3.4 we present a further discussion on prototyping and

executable specifications.

Chupter 2. Forma.1 Object-Oriented Specific&tions 29

2.3.2 The Benefits of Combining OOA and Formal Methods

The importance o f formal methods has increased in the past few years. A recent study

about the use of formal methods in twelve industrial systems concluded that [CGR93]:

[...] formal methods, while still immature in certain important respects, are be-
I

ginning to be used seriously and successfully by industry to design and develop

computer systems.

Nevertheless, the use of formal methods is not yet satisfactory. Another survey based

on the available literature and on enquiries in industry took place to find out the reasons

for the weak acceptance of formal methods [AP93]. The results showed that there are

major benefits of using formal methods and a few significant limitations. Among the

benefits of using formal methods, we would like to emphasise that formal methods:

1. produce specifications which are unambiguous;

2. help to discover inconsistencies, ambiguities, omissions earlier in a project life-cycle;

3. can, in principle, be used to verify that a program is correct, according to the

properties shown by a specification;

4. can be used to build an implementation by successive mathematical transformations

of a specification.

The major limitations for using formal methods seem to be the need for mathematicians

to do proofs and perhaps the lack of tools. However, the specification languages are not

much more difficult to learn than programming languages and the proofs are not always

necessary [AP93, Hal90].

Most currently used software engineering practices lack formality. We believe that

combining formal methods with the object-oriented paradigm can be a fruitful approach

when modelling and developing large software systems. On the one hand, by formalising

the object-oriented models, formal methods force us to be rigorous about the meaning

of each system component and not leave modelling decisions to be made at the imple

mentation stage. On the other hand, by using the practical OOA methods with formal

Chapter 2. Formal Object-Oriented Specifications 30

methods we are making the formal specification languages more acceptable for use by a

larger community.
Craigen et al. support this view by recommending, among others, the following di

rections of research [CGR93]: (a) improve the integration of formal methods with other

software engineering practices, such as object-oriented programming; (b) develop nota

tions more suitable for use by individuals not expert in formal methods or mathematical

logic.
ROOA proposes a mapping of the object-oriented analysis constructs into LOTOS

which helps users in the use of the formal specification language.

Another area of research, this time suggested by Plat et al., is the construction of an

initial formal specification in the preliminary design [PKT92]. According to these authors,

none of the known formal methods provide guidelines about how a requirements specifi

cation can be constructed. In fact, the use of formal methods is often delayed until the

design phase with the result of the analysis phase being an informal requirements speci

fication. In ROOA we combine OOA methods with LOTOS to produce an initial formal

requirements specification during the analysis phase. As the resulting specification is exe

cutable, the difficult task of validating the informal requirements against the specification

is simplified. Executable specifications also result in a greater involvement by the users in

a software project [Fuc92].

Work has been done on how to get a first formal specification. An example is the

SPECS project, whose goal was to support the formalisation of requirements by creating a

specification generation process [Gen92]. However, the starting point of this specification

generation process is an informal requirements specification, which therefore requires a

previous analysis phase. The resulting method is called the CR&F method.

2.3.3 Reasons for Choosing LOTOS

As our goal is to integrate formal description techniques with object-oriented analysis

methods so that they can be used by software engineers, we believe that the chosen formal

description technique should satisfy the following conditions;

Chapter 2. Formal Object-Oriented Specifications 31

• it is an ISO standard;

• it is able to produce specifications in an object-oriented style;

• support tools are available;

• the specifications are executable so that prototyping can be used;

• it supports concurrency.

The specification language LOTOS satisfies these conditions.

As we said before, a m ajor advantage of the object-oriented approach is that it sup

ports the direct modelling o f real world entities as a set of autonomous objects which

communicate with one another by sending messages. Therefore, an object-oriented analy

sis model should represent the requirements cis a set of communicating concurrent objects

even when the eventual implementation is to be sequential. The formal language used to

represent the formal model should support this view.

LOTOS has a process part and a data typing part. The process part is based on a

combination of the language CSP [Hoa85] and of the language CCS [Mil89]. The data-

typing part is based on A CT ONE [EM85]. Processes communicate by synchronising

on events during which information may be exchanged. As there is a straightforward

mapping between concurrent objects and process instances and between message passing

and event synchronisation, LOTOS is well suited to representing the requirements as a

set of communicating concurrent objects. Inheritance is more difficult to represent, but

can be modelled as well. We believe that a practical method should be based on standard

languages, so we have not used any of the suggested object-oriented extensions to LOTOS

(e.g. [Rud92]).

Prototyping is a useful tool in validating a specification against a set of requirements.

LOTOS offers an extensive set of tools, such as syntax checkers, semantic checkers and

simulators. The SMILE simulator [EW93] supports non-determinism and value generation.

This allows symbolic execution of a specification where a set of possible values is used

rather than particular values. Many more behaviours can then be examined with each

simulation than is possible when all data values have to be instantiated. SMILE uses a

Cha.pter 2. Forma.! Object-Oriented Specifications 32

narrowing algorithm to det6rmine when a combination of conditions can never be true.

As we are in the analysis phase, we can use non-determinism to model behaviour so that

premature design decisions are not made.
During the last few years, several object-oriented specification languages have been

proposed, such as Object Z [CDD+89] and TROLL [HG94, JSHS91]. However, none of

the currently existing languages, for one or other reason, satisfied the proposed criteria.

2.3.4 Prototyping

Informally, the term prototyping can refer to a tool (e.g. SMILE [EW93]), a specification

language (e.g. LOTOS [IS088]), an approach (e.g. spiral model [Boe88]) or the actual

building process. The end product is the prototype.

In engineering, ‘prototype’ can mean:

• a model of the problem in a reduced scale (for example a dam or a bridge); or

• a product built (by hand) before production on a large scale.

Neither of these meanings can be directly applied to software. According to the IEEE

Standard Glossary of Software Engineering Terminology, a prototype is a preliminary

type, form, or instance of a system that serves as a model for later stages or for the final,

complete version o f the system [IEE91]. When speaking about the prototype of a software

system, we use this expression to denote a model of the system to be implemented. Hence,

a prototype should be executable [AJ90, BGW82, Cho92, JDP89, TY92]. The term rapid

prototyping is often used to indicate the early execution o f the specification. A (rapid)

prototype differs from the actual implementation in that it focuses on the functionality of

the problem rather than on efficiency.

In software engineering we can imagine prototyping to be useful for;

• exploration;

• experimentation;

• evolutionary development;

Chapter 2. Formal Object-Oriented Specifications 33

• throw-away development;

• a pilot project.

The borderline between exploration and experimentation is fuzzy. Exploration is used

to clarify requirements and desirable features of the target system, while experimentation is
I

used to determine whether or not a solution is adequate before we start developing the large

scale implementation [Flo84]. Both cases are used for validation of ideas. The resulting

product obtained by experimentation may be thrown away if the environment where the

prototype was produced is not integrated with that of the final product. The prototype

obtained by exploration is normally thrown away, as it is messy and unstructured.

The evolutionary approach (see [Dav92, IH87, Smi91]) produces a sequence of versions

in which each version is a refined version of the previous one. The prototype is built in

a quality manner (including software rt?quirements specification, design documentation,

and thorough test) [Dav92]. The well-understood parts are built first and the parts not

understood well are left for further iterations. There are some authors who differentiate

between evolutionary and incrementa/development [Flo84, Cra89, 1H87]. The incremental

development deals with a problem by stepwise extension. The main difference between

these two approaches is that with the evolutionary approach the design is allowed to evolve

throughout the use of the system, whilst with the incremental approach the design is frozen

and the only changes accepted are those due to implementation errors. This means that

an evolutionary approach also contemplates the maintenance phase and so any changes

introduced during this phase are dealt with as if the system was still in its early days o f

development. However, the incremental approach does not deal with changes introduced

during the maintenance phcise. We do not distinguish between the evolutionary approach

and the incremental approach.

In the throw-away development proposed by Brooks, the functionality o f a system is

simplified in order to decrease the time of prototyping [Bro75]. The parts o f the system not

well-understood are built quickly, not paying too much attention to efficiency. However,

by doing this, the parts of the problem which can make the system fail may be eliminated.

The temptation to give the prototype to the client, by pressure either from the client or

Chapter 2. Formal Object-Oriented Specifications 34

from the managers, should be resisted. In his classic “The Mythical Man-Month” , Brooks

advises plan to throw one away; you will, anyhow [Bro75, pi 16]'.

Finally, prototyping can be used to build a pilot project. A pilot project can be used to

support the introduction of new technology. It accepts higher risks during development,

such as delays and extra costs, and the final product is delivered to the client.

In summary, we believe that the throw-way and the evolutionary approaches are the

two primary schools of prototyping. In the throw-away approach the prototype software

is constructed in order to learn more about the problem and its solution. The resulting

working model only shows some of the features of the final system. The idea is to determine

characteristics of the system, to estimate costs, to establish feasibility and performance

limits and, if necessary, to explore different designs and interfaces. After the desired

knowledge has been obtained, the final product is discarded. Followers of the throw-away

approach are [BGS84, Dav82, Gom83, GS81].

In the evolutionary approach, the prototype is also constructed in order to learn more

about the problem and its solution. However, once the knowledge has been gained, the

prototype is adapted to satisfy the now better-understood requirements. Then, the pro

totype is used again, more is learned, and, once more, the prototype is re-adapted. This

process is repeated indefinitely until the prototype system satisfies all needs. This ap

proach seems to respond to the inevitable change of requirements during the development

and operation of the system. Followers of the evolutionary approach are [BGW82, BT75,

MC83, TY92, Zel80].

Prototyping with Formal Executable Specifications

The above description of prototyping is very general. It does not focus on any special

phase of the software life cycle or on any prototyping tools. We can use prototyping at

any stage of the software development, if we have the appropriate tools [Rat88j. In this

thesis we are interested in executable specifications to be used as prototypes during the
* Brook's law of prototypes: plan to throw away; In [BenSS, p64], Zerouni says: if you plan to throw

away one, you will throw away two.

Chapter 2. Formal Object-Oriented Specifications 35

analysis phase.

We are using prototyping to help:

• verify the internal consistency of a formal spetification;

• validate the specification against the requirements.

Boehm says that, when classifying the top 10 list of software metrics in terms of their

value in industry situations [Boe87, p84]:

Finding and fixing a software problem after delivery is 100 times more ex

pensive than finding and fixing it during the requirements and early design

ph2ises.

This insight has been a major driver in focusing industrial software practice on

thorough requirements analysis and design, on early verification and validation,

and on up-front prototyping and simulation to avoid costly downstream fixes.

He considers this to be the factor number one in his top 10 list.

ROOA allows us to use prototyping from the very early stages of the development.

It uses an evolutionary approach to incrementally produce a formal requirements spec

ification expressed in LOTOS. As the resulting specification is executable, we use the

LOTOS tools as prototyping tools. The approach we follow can be seen as a horizontal

development where each specification obtained is refined and validated to produce a more

complete one (see Figure 2.2).

We are concerned with the production o f a specification within the requirements life

cycle. The requirements life cycle can be seen as comprising three main development

stages within the analysis phase [NW93]: problem identification, modelling activity and

analysis activity. Dubois et al. [DDBP93] divide the analysis activity into analysis (to test

whether the conceptual model satisfies formally required quality criteria) and validation (to

test whether the conceptual model meets the informal user requirements). The problem

identification includes the understanding o f the informal requirements, if they already

exist, and, if they do not exist, the capture o f the requirements by studying any available

Chapter 2. Formai Object-Oriented Specifications 36

Figure 2.2: ROOA’s horizontal development

documents which describe parts o f the problem and by discussions with the customer. The

ROOA method accomplishes the modelling activity by using object models, event trace

diagrams, object communication tables, object communication diagrams and LOTOS to

produce an initial formal model o f the required system. ROOA is then concerned with the

analysis activity, by refining and validating the requirements specification built during the

previous stage. To accomplish this, we use prototyping.

From the Formal Specification to the Implementation

After having the formal requirements specification produced by ROOA we can follow two

different approaches to the implementation. First, we can follow the Swartout [SB82] ap

proach by taking the requirements specification, creating from there a design specification

and then an implementation, allowing feedback in any stage.

Secondly, we can use the requirements specification as the first stage in a formal de

velopment, by following a transformation trajectory from specification through design

to implementation. Each transformation starts with a complete formal specification and

adds to it design (and later implementation) detail and creates a new version of the formal

specification which preserves the behaviour of the previous one.

At each stage we can use prototyping to ensure that each specification conforms to

the previous specification and to verify internal consistency of the specifications. This

approach has its roots in the work proposed by Balzer et al. [BCG83]. It is also the

Chapter 2. Formal Object-Oriented Specifications 37

VDM approach where proof obligations, and not prototyping, are used to show that the

specifications conform to the higher level ones.

ROOA is concerned with producing the initial formal specification and not with the

resulting development trajectory.

2.4 Conclusions

This chapter introduced the background for the thesis and created the context for the work

we present in the following chapters. It can be divided into two main parts. The first

part started by analysing the software development concept, by giving an overview of the

software life-cycle and software development models, and then focused on the differences

between analysis and design. Then, it concentrated on object-oriented approaches and

related functional analysis (structured analysis) with object-oriented design, highlighting

the need for an integrated object-oriented framework.

The second part discussed formal methods and executable specifications. It began by

classifying the existing approaches according to the kind of methods used and the resulting

specifications produced. It followed by examining the benefits o f combining object-oriented

analysis with formal methods. Next, it showed the reasons to choose LOTOS as the ROOA

specification language. Then, it presented several views of prototyping and indicated the

advantages of having formal and executable specifications. Finally, it introduced two ways

to go from a formal requirements specification to an implementation.

Chapter 3. Modelling Fundamental OOA Concepts in LOTOS 39

• Environment of an object and external objects;

• Events and message connections (communication);

• Inheritance;

• Conceptual relationships; ,

• Composition and decomposition;

• Aggregates;

• Subsystems.

In Section 3.2 we introduce each of these object-oriented concepts and in Section 3.3

we give an interpretation of them in LOTOS, leaving to Chapter 4 a detailed study of

aggregates. The basic concepts of class template, service, attribute, class and object are

then described formally in Chapter 5.

3.2 Object-Oriented Definitions

As there are many different definitions of object-oriented concepts in the literature, we

give here a coherent set of definitions which are used in the rest of the thesis. These

definitions are based on the Open Distributed Processing Reference Model and on a general

understanding of object-oriented analysis concepts [IS094, Rud93].

3.2.1 Class Templates

A class template describes the common static and dynamic properties of objects o f the

same kind (belonging to the same class).

Each node in the object model proposed by most o f the OOA methods describes a

class template, as opposed to an object or a class.

Cha.pter 3. Modelling Fundamental OOA Concepts in LOTOS 40

3.2.2 Classes

A class is the set o f all objects which share the common features specified by a class

template. This definition also includes the notion of subclass, since the set can be a subset

of all objects which possess the common features specified by a (super-)class template.

I

3.2.3 Abstract Class Templates

An abstract class template is a (super)class template which has no objects, i.e. it cannot

be instantiated. An abstract class template is used in the definition of subclasses. The

restriction of having no instances does not apply to the subclasses.

Some authors propose a special abstract class (template) symbol to be used in the

object model [CY91a].

3.2.4 Objects

An object is a member of a class and is created by instantiating the class template.

An object can be used to model either a real world entity or a concept. It combines

structure with behaviour in a single encapsulated entity which can be characterised by

name, state information and services {or operations) ([CY91a, p53], [Jac92, p44], [RBP+91,

pp22-26]). The name gives identity to the object and is used to reference it. The state

information is given by the values of the data types (attributes) encapsulated by the object.

The services constitute the interface of the object.

An object has an internal and an external view. During the analysis phase we are

mainly concerned with the object’s external view and with describing the behaviour o f

each object in an abstract way. During the design and implementation phases we are

mainly concerned with its internal view.

The external view of an object corresponds to its interface and includes only those

properties which the client objects need to see. The internal view of an object corresponds

to its implementation and it reveals the underlying structure o f any stored data, the details

of the algorithms used to accomplish the services, and the underlying layers of abstraction

used to implement it. The designer of the object knows both the internal and the external

Chapter 3. Modelling Fundamental OOA Concepts in LOTOS 41

views. The users of an object only know its external view.

3.2.5 Attributes

An attribute defines a static property o f a class template, describing a data value held by

each object o f the class. The attribute values give the object’ s state information. Each

attribute name is unique in a class, but attributes in different classes can have the same

name.

3.2.6 Object Identity

Each object is distinct from any other object. Two objects can have the same attribute val

ues and offer the same services, but they will still be different from each other. Rumbaugh

et al. define identity as [RBP"*‘ 91]:

[...] a distinguishing characteristic of an object that denotes a separate exis

tence of the object even though the object may have the same data values as

another object.

This distinguishing characteristic is referred to as the object identifier.

3.2.7 State (of an Object)

The state of an object, at a given time, is determined by the values of its attributes

([CY91a, pl45], [Jac92, pp228-229], [RBP+91, p84,p87]) together with the conditions

that determine the services which the object currently offers. The values of the attributes

are related to the static aspect of the object, whilst the conditions control the possible

state transitions and therefore are related to the dynamic aspect of the object.

3.2.8 External Objects

An external object is an object which does not belong to the system being analysed, that

is, it is an object outside the problem domain. The set of external objects provides the

environment for the entire system.

Chapter 3. Modelling Fundamental OOA Concepts in LOTOS 42

3.2.9 Environment (of an Object)

The environment of an object is formed by all the other objects which constitute the

system; i.e. it is the part of the model which is not part of that specific object. An

external object is not part o f the environment o f any object in the system.
»

3.2.10 Services

We distinguish between offered services and required services. An offered service is a

capability that an object exports and which can be used (called) by other objects in the

model or by the actors (or external objects) o f the system. A required service is a service

that an object requires from another object. This service is defined in the second object

as an offered service. The services are the only mechanism other objects (inside or outside

the system) can use to change or to query an ob ject’s state. Therefore, an object interacts

(communicates) with other objects via services.

It is common in the object-oriented community to classify the services offered by an

object into three categories: constructors, modifiers, and selectors. A constructor creates

an object, and usually initialises its state. A modifier has the ability to change the state

of the object in which it is encapsulated. A selector returns state information about the

object, but does not change the state.

3.2.11 Methods

We differentiate between services and methods. A service is contained in the interface of

an object (or class template) and advertises an object’s capability. A method is internal

to an object (or class template) and is the actual mechanism by which the service is

accomplished.

3.2.12 Behaviour (of an Object)

The behaviour of an object describes the dynamic conduct of the object during its life

time. It is described in terms of the interactions the object can have with other objects,

the order in which these interactions may occur and the way the state information of the

Chapter 3. Modelling Fundamental OOA Concepts in LOTOS 43

object changes. Conditions that determine the events in which the object can take part

restrict that ob ject’s behaviour.

3.2.13 Events

An event is something that happens instantaneously .at a point in time. An event has no

duration, compared with the time granularity in which we are interested.

In general, two events may, or may not, be related by precedence. That is, one event

may precede or follow another, two events may occur simultaneously, or they may be

completely independent.

3.2.14 Message Connections

Objects interact (communicate) with each other by sending messages. Some OOA methods

use the term message connection to mean communication between two objects. A message

connection reflects a dynamic processing dependency between an object and the other

parts o f the system. Message connections are represented in an object model as arrows. If

a message connection is defined from object A to object ff, it means that object A requires

services from B to accomplish its behaviour and the arrow points to B.

The mechanism objects actually use to communicate between each other depends upon

the language used. In a sequential language, such as Smalltalk, objects communicate via

message passing while in concurrent languages, such as Ada, communication is achieved

by entry calls.

3.2.15 Inheritance

Generalization/specialization, is-a, and aubtyping/supertyping are some of the terms used

to denote an inheritance-like concept.

There are two main definitions of inheritance: behavioural inheritance and incremental

inheritance [IS094]. Behavioural inheritance is related to the typing concept. Incremental

inheritance is concerned with the the creation of a derived class template by the modifi

cation o f a parent class template.

Chapter 3. Modelling Fundamental OOA Concepts in LOTOS 44

We say a superclass is defined by the existing class template and a subclass is defined

by the newly defined class template which inherits all the services and attributes o f the

superclass and, in addition, can redefine inherited services and add new attributes and

new services to the inherited ones.

Incremental inheritance provides the capability to, allow objects to be specialised from

existing ones. It is based on the idea of incrementally modifying existing class implemen

tations. It mainly supports the concept o f reusability and software engineers use it to

define new classes from existing ones, even when no subtyping relationship is intended.

Incremental inheritance is therefore used as a mechanism to share code and the services

offered by the newly defined class. In LOTOS, behavioural inheritance is achieved by

restricting incremental inheritance [Cla94c, CM94, MC93a].

In behavioural inheritance, objects of a subclass inherit all the services and attributes

defined in their superclass and can be used wherever an object of the superclass is expected.

Objects o f a subclass can extend the inherited properties by defining new services. Redefi

nition ofservic.es is also allowed, but only if the signature and the semantics of the redefined

service conform to the signature and semantics of the service in the superclass. A signature

conforms to another if the number and the type o f the parameters of those services are

the same, and also if the returned results, if any, are of the same type. For the semantics

to conform, the redefinition o f services must also obey two extra conditions [BD92]:

1. The redefined service must return the same value as the original service in the

superclass when applied to the base part of the subclass object. (The base part of

the subclass is the part o f the subclass, attributes and services, which is also defined

in the superclass.)

2. Let 6 be a superclass object with the same initial state as the base part of a subclass

object d. Redefinition must change the state of the base part of d in the same way

as the superclass service changes the state o f 6.

As we are in the analysis phase, we are concerned with the sharing o f properties, not

the sharing of code, even if we can use incremental inheritance to implement behavioural

Chapter 3. Modelling Fundamental OOA Concepts in LOTOS 45

inheritance. Some authors have argued that we should have separate behavioural inher

itance and incremental inheritance hierarchies, as their similarity is a source of confu

sion [Ame91, DT88, Ier93, Por92],
The discussion above can be extended to include the ability of a subclass to inherit

properties from several superclasses. This is called rtiultiple inheritance.

3.2.16 Conceptual Relationships

There is an open-ended requirement for conceptual relationships (or associations or static

relationships). They are the most common type of relationships and are application de

pendent, describing the role that one object plays with respect to another. For example,

in a banking problem, we could define the relationship has—a between the object account

and the object card, and read it account has—a card. These relationships are characterised

by their names and their cardinality. The cardinality is defined in terms of an upper

bound which can be 1 : 1 (to be read one-to-one), 1 : N (one-to-many), and N : M

(many-to-many) and a lower bound which can be 0 : 0 (zero-to-zero), 0 : 1 (zero-to-one)

and 1 : 1 (one-to-one). The lower bound specifies the minimum number o f mappings be

tween objects. It can be studied by taking into consideration the two objects involved in

the relationship and called for example 0 : 1, or it can be studied concentrating only on

one of the objects involved. In this case, authors use the terminology optional (if it is a

“zero-side”) or mandatory (if it is a “one-side”).

We combine the lower bound and the upper bound, separated by a comma, and we

use this combination in the object model beside the class template of the objects to which

it refers. Figure 3.1 shows two class templates with objects, using Coad and Yourdon’s

notation, connected by a line that indicates a relationship. The numbers drawn in both

extremes of this line represent the cardinality of the relationship. The maximum cardinal

ity (upper bound) of this relationship is 1 : A/ and the minimum (lower bound) is 0 : 1,

reading from the left to the right*.

This is supposing that the relationship is defined implicitly in both directions, i.e. bidi-

'I f the maximum and the minimum on the same aide are both one, we write ‘ 1’ , instead of ‘ 1, 1’ .

Chapter 3. Modelling Fundamental OOA Concepts in LOTOS 46

Figure 3.1: A relationship between objects

rectional. While some methods give preference [RBP'*'91] to bidirectional relationships,

there are others [Jac92] which suggest that it is better to define each relationship in a

single direction, i.e. unidirectional. ROOA accepts object models built by using any of the

existing object-oriented analysis methods, and therefore it can deal with both bidirectional

and unidirectional relationships. As we will see in Section 3.3.11, the exercise of modelling

one or the other kind o f relationship in LOTOS is similar.

An association between two objects, where each one belongs to a different class (a

binary association), means that one object knows about the other or, if it is bidirectional,

they know about each other. We can have a unary association, if the two objects involved

in the relationship belong to the same class, and a complex association, if more than two

objects (from different classes) are related. Complex cissociations can always be trans

formed into a collection o f binary associations by creating another object to which each

o f the existing objects would relate.

Different associations between the same objects can coexist in the same model. In this

case we should keep them separated and model them independently in order to give the

right semantics to the model.

An association gives a potential for communication to the objects involved.

Binary Relationships

A binary relationship is defined between two objects, each one belonging to a different class.

Let us consider the maximum cardinality. In mathematical terms, a binary relationship R

between the two sets Si and Sj is called 1 : 1 when each element o f Si is related to at most

one element of Sj and the same condition holds for the inverse relation fi“ *; it is called

Chapter 3. Modelling Fundamental OOA Concepts in LOTOS 47

1 : N when each element of Si can be related to many elements of S2 and each element of

S2 is related to at most one element of St by the inverse relation; and any relation can be

called M : N, i.e. there is no restriction and therefore each element of Si can be related to

many elements of Sj, and in the R~^ relation, each element of S2 can be related to many

elements of Si- Therefore, every 1 : 1 relation is a l': N relation and every 1 : N relation

is a M : N relation. What is important is to determine the most constrained group to

which the relation belongs.

This study can be extended to include the lower bound.

Unary Relationships

Unary relationships involve two objects of the same class^. This type o f relationship can

be sometimes seen as an inheritance relationship.

Note that, unary relationships give us the potential to define communication between

two objects of the same class. This is important, since message connections used by

the most common object models only define communication between objects of different

classes [CY91a, Jac92].

Relationships with Values

'I'here are situations in which a specific piece of information does not belong to any of

the objects involved in the relation, but it only exists because those objects are related;

i.e. it belongs to the relationship itself. In such a situation we say that a relationship holds

values. This relationship may be binary or unary.

3.2.17 Composition and Decomposition

An object-oriented system can be regarded as a collection of interacting objects each

of which is a member of a class. The concepts of class, inheritance and aggregation

(see Section 3.2.18) are very helpful in managing software complexity, but they are not

’ One could expect that a unary relationship would involve only one object. Thin is not the case. In

fact, what gives the name to the relationships is the number of classes included.

Chapter 3. Modelling Fundamental OOA Concepts in LOTOS 48

enough. If we are constructing a large and complex system then, in order to control

complexity, it is necessary to group objects into subsystems. Whether this is frequent

depends upon the style of the original requirements document. The description of the

system may be mainly “flat” , i.e. without hierarchical structure, in which case grouping

the objects into subsystems is important in understanding and structuring the overall

system [Mil56, Par72, You82].
There are two particularly important structuring techniques that we can apply to

collections of objects:

• Composition, which combines objects to form larger objects;

• Decomposition, which refines larger objects into component objects.

A bottom-up development makes heavy use o f composition and a top-down develop

ment makes heavy use of decomposition. Which technique is more useful for a particular

development depends on the size and complexity of the problem, but also, in a first it

eration, on the style of the requirements. We can use a mixture of both. We can first

use decomposition to divide the system into subsystems and later use composition to

build subsystems or composite objects from simpler (perhaps already existing) objects;

for example, objects reused from another context.

3.2.18 Aggregates

Aggregation is a special form of relationship, and not an independent concept. It is a

part—of relationship in which the aggregate (composite object) is made of parts (object

components).
We can distinguish two situations when dealing with aggregation; (i) the object com

ponents are only known by the aggregate and therefore no associations or message con

nections are defined between the other objects o f the system and the components; (ii)

the object components are shared by other objects in the system, having associations and

message connections with those objects.

In the first case, where the object components are not shared, the object components

Chapter 3. Modelling Fundamental OOA Concepts in LOTOS 49

are hidden from the rest o f the system and they belong exclusively to the aggregate. The

interface with the rest o f the system is made via the composite object.

In the second case, where the object components are shared, the aggregation relation

ship should be seen as a regular conceptual relationship, where each object component is

related to the composite object. |
In both cases, the aggregate and each object component have their own identity.

One of the goals we had in mind when developing ROOA was to produce a method

which could be applied to model large systems. For this reason, aggregates play an impor

tant role in ROOA, as they are the main mechanism to model complex objects. Therefore,

the decision we made o f dedicating a whole chapter. Chapter 4, to deal with aggregates

and to show how we model them in LOTOS is not a surprising one.

3.2.19 Subsystems

A subsystem is merely a grouping of class templates and is only created to structure

the system, helping us manage complexity. The difference between an aggregate and a

subsystem is that an aggregate is an object (and is defined by a class template) while a

subsystem is not and therefore it has no identifier.
Subsystems are like transparent boxes which are not visible to the rest of the objects

in a system. Therefore, other objects communicate directly with the object components

o f a subsystem as if it did not exist. Subsystems only exist to guide the reader’s attention

through the system.
Class templates are grouped to form subsystems by following the concepts of coupling

and cohesion. Coupling measures the “strength of interconnection” among subsystems

and cohesion measures how tightly bound or related the components of a subsystem are

to one another. Ideally, we want loosely coupled subsystems so that we may treat each

subsystem relatively independently of the others, and strongly cohesive subsystems so that

the components of a given subsystem are functionally and logically dependent.

Chapter 3. Modelling Fundamental OOA Concepts in LOTOS 50

3.3 Mapping Object-Oriented Concepts into LOTOS

As LOTOS contains two distinguishable parts, processes and abstract data types, a choice

must be made as to which part is better suited to model an object, a class template and

a class. In ROOA, a class template is specified either as:

• A process and one or more ADTs: the process describes dynamic behaviour and the

ADTs, given as parameters of the process, describe state information.

• A single ADT: when an object only plays the role of attribute of another object, it

is modelled simply as an ADT.

Objects which have an important role in the system are always able to communicate

with other objects and may receive communication from other objects. The class template

that defines this kind o f object is defined with a process and one or more ADTs.

Objects in the object model which do not need to communicate with other objects are

considered by ROOA as attributes; and, in ROOA, an attribute is modelled by an ADT.

These ‘objects’ from the object model are then values of ADTs. These values are kept

as parameters of processes which model objects with an important communication role.

(In fact, these ADTs may be used to specify more complex ADTs which then are used as

parameters of some processes.)

In the following sections we present the LOTOS interpretation of the object-oriented

concepts described in Section 3.2 by means of a running example.

3.3.1 Automated Banking System Example

The example we have chosen is an automated banking system. A brief outline o f the

problem is given here.

Clients may take money from their accounts, deposit money or ask for their

current balance. All these operations are accomplished using either automatic

teller machines or counter tellers. Transactions on an account may be done by

cheque, standing order, or using the teller machine and card. There are two

Chapter 3. Modelling Fundamental OOA Concepts in LOTOS 51

kinds o f accounts: savings accounts and cheque accounts. Savings accounts

give interest and cannot be accessed by the automatic tellers.

This problem has been first analysed using the method proposed by Coad and Your-

don [CY91a]. The final object model is depicted in Figure 3.2.

gfHrv,StMton
wttbdraw.CMh

T
Count •r_T*U«r

op«n_occount
do»«_oocount
deposit, cash
Qat.balanoa
ssk_transfar
sat_stand_ordsr
cancat_stand_ord
crsdtt_chaqus
dabft^chaqua

Automatlc.Tallar

mini.statamant

ttandloQ_Ofdaf
Amount
Data
BanK_Nama
Aoooont_Numbar
crsats
cancal
dabit

Othar_Bank
Nama
Addrats
Phona
racaiva.transfar
sand.transfar
chagua, withdraw
ramola. wtthd ra w

Chagua
Numbar
Amount
Data
Acoount_Numbar
Payab*a_To______
withdraw
dapoatt

Numbar
Balartca
craata
ramo va
withdraw
dapoalt ât_balanĉ

Chaqua_Account

Savtnfla.Account
Park>d
Intaraat
cradit_intaraat
updata.data

Card 0,* Cllant
Numbar Nama

Explry.Data Phona

Figure 3.2: A Coad and Yourdon object model for the banking system

3.3.2 Class Template

A class template (or template for short) embodies the common characteristics of objects of

the same kind. It specifies what constitutes a typical object, without individual identity.

A template is defined in LOTOS by specifying a process definition. The process defi

nition may have formal parameters which are part o f the common features o f that kind of

object. These parameters, which are ADTs, define the state o f the object. In general, we

use one or more ADTs to specify the state information of an object. An object defined

Chapter 3. Modelling Fundamental OOA Concepts in LOTOS 52

by a template can move from one state to another by LOTOS events defined in the body

of the process definition which correspond to the services in the object model. Thus,

a process definition together with its formal parameters specify the services (with their

methods implemented as operations in the ADTs) and the attributes o f the corresponding

class template. 1 ,

The Process Definition

The process defining a class template, called a process template, can use any combination

of the LOTOS operators to specify the behaviour required (see Table A.2 in Appendix A).

The state information is given by one or more ADTs which specify the operations required

to support the services offered by the template.

An example o f a process template using the choice operator, is as follows:

p r o c e s s T e m p la te C g D (sta te : S ta te _ T e m p la te) n o e x i t :=

(g ! s e l e c t o r _ l ! G e t _ I d (s t a t e) . . . ;

e x l t (s t a t e)

[]
g !m o d i f i e r _ l ! G e t _ I d (s t a t e) . . . ;

e x l t (F l (s t a t e))

[]

) » a c c e p t u p d a t e .s t a t a : S ta te .T e m p la te in T e m p la t e [g] (u p d a t e _ s t a t e)

e n d p roc

The process Template is defined recursively and uses gate g for synchronization with other

processes. It communicates with other objects in the system through structured events.

A structured event is composed of:

e a gate name for communication;

e a service name which plays the role o f message name;

Chapter 3. Modelling Fundamental OOA Concepts in LOTOS 53

• the identifier o f the object being called;

• a list of optional parameters.

The event:

g ! s e l e c t o r _ l ! G « t _ I d (s t a t o) 1

is a structured event where g is a gate, s e le c t o r - l is the message name which corresponds

to an offered service in the object model, and Get—Id (s ta te) is an operation defined in

the ADT State-Tem plate and which gives the object identifier. This operation is required

when we group the object identifier with other attributes in the same ADT. (We reserve

the term operation to be used in the context of an A D T. In the context of a class template

defined in an object model, we use the term service.)

The operator □ is the non-deterministic choice operator and >> is the enable operator.

The behaviour expression A>>B means that on successful completion of process A we start

execution of process B. The constructor accept . . . in is used to pass values as we exit

from one process and enable another.

The above template is offering a selector, given by the message name s e le c to r -1 , and

a modifier, given by the message name m od ifier—1. As a selector does not change the

state of the object, exit returns the initial state given as a parameter of the process. On

the other hand, as the modifier changes the state o f the object, exit returns the value

obtained by applying FI to the initial state. The operation FI is defined in the ADT

State-Tem plate.

Using the running example, let us consider the object model represented in Figure 3.2.

Ignoring the services create and remove, for the time being, the template Account could

be defined as:

process Account[g](this.account: Stats.Account) : noszit :»
(g Ideposlt IGet_Account_Humbar(this_account) 7m: Money;
exlt(Credlt_Account(this_account, m))

□
g Iget.balance IGet_Account_lumber(thls_accotwt)

I Get.Balance(thls.account);

Chapter 3. Modelling Fundamental OOA Concepts in LOTOS 54

exit(this_account)

O
g ivithdran !Get_Account_Humber(this_acco^t) ?m: Money;

(choice il_money: Bool []
[il.money] -> g !rtn_withdraw !Get_Account_H\imber(this_account) !true;

exit(D ebit.A ccount(this.account, m))

[]
[not(il.m oney)] -> g !rtn.withdraw !Get.Account.Mumber(this.account)

¡fa ls e ;
exit(th is.account)

)
) » accept update.account: State.Account in Account[g](update.account)

endproc

The structured event g ¡ d e p o s i t ¡ G e t . A c c o u n t . N u m b e r (t h i s . a c c o u n t) ?m : Honey; is the

first action prefix expression in the behaviour expression

g ¡deposit ¡Get.Account.Number (this.Account) ?m: Money;
exit(Credit.A ccount(th is.account, m))

and it denotes the offered service d eposit . There are no required services from other

objects in that behaviour expression, but if there were to be, they would appear after that

action prefix.
The operations Get_Account_Number, Cradit_Acco\int and Get_Balance are defined

in the ADT in which sort State-Account is defined. The parameter th is_accou nt rep

resents the ob ject’s state information and is updated by the recursive call.

The generalized choice operator choice , used to specify the service withdraw, allows

the introduction of non-determinism. Notice that by using this operator we can specify the

two possible situations with the account, the account has sufficient funds and the account

does not have sufficient funds, without querying the account’s balance and without doing

any calculations (as we will see when specifying ADTs).

Offering services as the alternative events of a choice expression is the most common

LOTOS representation of a class template. It is not however necessary for all templates

Chapter 3. Modelling Fundamental OOA Concepts in LOTOS 55

to look like Accoimt. The structure and the operators depend on the behaviour we want

to specify.
As a rule, we propose that the name given to a process template is the one used by

the corresponding class template in the object model, with an initial upper case letter.

The AD T Definition

The arguments of a process are defined as ADTs. Given that LOTOS provides few built-in

facilities, defining ADTs tends to be a time consuming task. Each operation is defined

by one or more algebraic equations. Since we are in the analysis phase, and do not wish

to become involved with design issues, it would be preferable to use ADTs where only a

small number of simple equations are required. This can be achieved by defining ADTs

which contain only the necessary information to allow the specification to be prototyped

with state information and values to be passed during the communication. Thus, we are

interested in the kind of information that is to be transferred between objects rather than

the details of the algorithm by which the information is to be calculated within an object.

We build an ADT in the following way:

1. Leave the modifiers without equations. This treats them as constructors of the ADT

and gives a record of the history of the events that have changed the object’s state

information.

2. Define dummy equations fo r selectors when a particular result does not need to be

returned. More detail will be added in the design phase. A dummy equation does

not query the state of the ADT and always returns the same constant value. It

therefore adds no information that was not already in the signature. An equation

must be given as otherwise a new constructor on the result sort would have been

defined.

The dummy equations are used in conjunction with non-determinism introduced in

the process part, and it is there that the different possible situations are covered.

3. Define equations for selectors that need to return a particular value. The selector

Chapter 3. Modelling Fundamental OOA Concepts in LOTOS 56

must be defined using an equation for each constructor.

The ADT that defines the sort S tate-A ccount could be as follows:

ty p e A ccount_T ype i s A ccount_H um ber_Set_T ype, M onoy_Type, B a lan ce_T yp e

s o r t s S ta te_A ccou n t ^

: Account_M um ber, B a lance -> S ta te _ A cco u n t

: S t a te _ A c c o u n t , Money -> S ta te _ A cco u n t

: S t a t e _ A c c o u n t , Money -> S ta te _ A cco u n t

: S ta te _ A c c o u n t -> B a lan ce

opn s Maike.Account

C re d it .A cco u n t

D e b it .A cc o u n t

G et.B a lim ce

G et.Account.M um ber : S t a te .A c c o u n t -> A ccount.N ujnber

eqns l o r a l l a : S t a te .A c c o u n t , n : A ccou n t.H u m ber, m: Money

o f s o r t B alance

G e t .B a la n c e (a) = S om e.B a lan ce ;

o f s o r t Account.Hum ber

Get_Account_Niunber(M ake_Account (n ,m)) = n ;

G et_A ccoun t_M u niber(C red it_A ccoxm t(a ,in)) = G et_A ccount_M um ber(a) ;

G et_A ccoun t.H um ber(D ebit_A ccou nt (a ,n>)) = G et.A ccoun t.M u m ber (a) ;

en d ty p e

In Account-Type there is one constructor (Make-Account which creates an account from its

components), two modifiers (Credit-A ccount which credits the account, and D ebit-A c

count which debits the account), and two selectors (Get—Balance which returns an ac

count balance and Get-Account_Number which returns an account number). For the

constructors and the modifiers we give their signature and no equations. The selector

Get-Balance does not need to return a particular value o f balance (it is not important for

us) and so it is defined with a dummy equation, always returning the value Some-Balance.

Some—Balance is a constant defined in the abstract data type Balsmce—Type.

Since we use non-determinism in the process part, the use of dummy equations in the

ADT does not exclude the study of the different possible situations. For example, we

use the non-deterministic choice operator in process Account and, along with that, we

explore the two possible situations which can happen: either there is enough money in an

Chapter 3. Modelling Fundamental OOA Concepts in LOTOS 57

account or there is not enough money in an account.

G et_A ccoun t_N \ om ber, however, has to return a particular account number and so it

is defined with an equation for each constructor.
The number of ADTs defined as parameters of the class template can vary. We would

like to be able to incorporate all the attributes of an object in a single ADT. However,

as we will see, inheritance of attributes and associations are better modelled as separate

ADTs. We can also decide to model some attributes separately for reasons o f reusability.

As a rule, we propose to name an ADT which defines an object state by using the

template name followed by the suffix -Type, and let the sort name be the name of the

template prefixed by Sbabe_The operations of the ADT can be named differently from

the services in the object model, or else with the same name followed by _ADT. The sort

of auxiliary ADTs, such as Balance-Type and Account_Number_Set_Type, can be named

without the term S ta te -. The constructor is always named with the template name

prefixed by Make- and the name o f the operation that gives the object identifier always

starts with G et- and follows with the identifier name.

3.3.3 Services

As noted previously, service is used in the context of an object model and a process, and

operation is used in the context o f an ADT. Also, we use the term basic constructor to

denote a constructor in LOTOS that creates a value o f an ADT from its components.

Maike—A c c o u n t is an example of a basic constructor.

A service name in the object model appears as a message name in a LOTOS structured

event in the process that defines the template. The method o f a service is defined as a

LOTOS behaviour expression and may include one or more operations in the ADTs given

as arguments of the process template.

Whenever possible, the interaction between a server and a client is modelled by a single

event as in the behaviour expression:

g (deposit iast_Account_lusibsr(thls_sccount) ?■ : Money;

exit(Credlt_Account(thls_account, m))

Chapter 3. Modelling Fundamental OOA Concepts in LOTOS 58

defined in template Accovint. The message name is deposit (it has the same name as the

service in the object model). Credit-Account is the name of the corresponding operation

on the sort State-Account. The whole behaviour expression is the offered service in

LOTOS, and we can call it by its message name, in this case deposit.

The (first) action prefix g ¡d e p o s i t !G et_A ccou p t_B u n ib er(th i8_a ccou n t) ?m: Money;

denotes the signature of the offered service deposit^ . (In Chapter 5 we give a formal

definition o f a service.)
When the specified behaviour is complex, a call/return pair of events must be used as

in:

g ¡w ithdraw ¡ G e t_A ccou n t_N u m b er(th is_a ccou n t) ?m: Money;

(c h o i c e il_ m o n e y : B oo l []

[if_ m o n e y] -> g ¡ r tn .w ith d r a w ¡G et_A ccoim t_M vun ber(th is_accou nt) ¡t r u e ;

e x i t (D e b i t _ A c c o u n t (t h is _ a c c o u n t , m))

[]
[n o t (i l .m o n e y)] -> g ¡r tn .w ith d ra w ¡G et_A ccou n t_H u m b er(th is_a ccou n t) ¡ f a l s e ;

e x i t (t h i s .a c c o u n t)

)

In this case, the signature of the offered service withdraw is the combination of the action

prefix g ¡w ithdraw ¡G e t_ A cco u n t_ H u m b e r(th is_ a cco u n t) ?m: Money; and the return event

g ¡r tn .w ith d r a w (The return event always has the service name prefixed with r t n —)

In order to perform a withdrawal. Account has to investigate whether or not the

amount to be debited is less than (or equal to) the existing balance. The choice op

erator is non-deterministic and allows us to specify both the situation where there is

enough money to debit the account (given by the guard [i f .money]), and the situation

where there is not enough money and therefore the debit is not allowed (given by the

guard [n o t (i f .m o n e y)]). Non-determinism is a useful mechanism in the analysis phase

since it allows us not to compromise the decisions which may only be correctly made during

the design phase. Following the guards, Account offers another event (rtn—withdraw) for

synchronization which returns information about whether or not the service was successful.

^Informally we can use the term service to denote signature o j the service.

Chapter 3. Modelling Fundamental OOA Concepts in LOTOS 59

The message names are defined as constructor operations in a specific ADT called

0p_N2unes, as follows:

ty p e Op_Naines i s

s o r t s Op.Name

opns ' ,

d e p o s i t , w ithdraw , g e t .b a l e o i c e , c r e a t e , rem ove, . . . : -> Op_Hame

en dtype

This discussion has referred only to the services an object offers to its environment or

to external objects, but in order to accomplish them it may need to refer to other objects’

services. The call to such a required service appears after the action prefix that defines the

offered one. For example, C ou n ter-T eller offers in gate t the service d e p o s it—cash. In

order to accomplish a deposit, C ou n ter-T eller must call the service d ep osit defined in

Account, using gate g for synchronization. The appropriate part of the process definition

of C ounter-T eller is:

t !d e p o 8 it _ c a s h l i d ?n : Account_H um ber ?m: Money;

(• d e p o s i t .c a s h b e in g on o f f e r t o th e u s e r s *)

g 'd e p o s i t In Im;

(e c a l l d e p o s i t s e r v i c e d e f i n e d in A ccou n t *)

where id is the identifier of the counter teller. This is needed to show the choice the client

made in choosing this teller.

3.3.4 Attributes

As each attribute of a class template is modelled as a separate ADT, we could give a

value of each one as a parameter o f the template. However, we prefer to compose all the

attributes in a single ADT and then use this one as the parameter o f the process (just

as we did for Account). This is not, however, always possible. If a subclass extends the

attributes inherited from its superclass, the new attributes will be modelled as ADTs and

given as extra parameters of the process template that defines the subclass. Similarly, an

Chapter 3. Modelling Fundamental OOA Concepts in LOTOS 60

association between objects will be modelled as an attribute defined as an ADT and given

as a parameter of the process defining the class template.

The basic constructor in an ADT defining an object state shows the components of a

data value. The elements in its domain correspond to the attributes of the object. In the

example given above, Make_Account is the basic CQnstructor and Account-Number and

Balemce are the two attributes of an account. These two attributes are defined in two

separate ADTs. A basic constructor will not always have all the attributes in its domain

as some may be implicit.

3.3.5 Classes

We propose to model a class in LOTOS by means o f an object generator. An object

generator is built from a template and it allows the creation o f objects that share the

same set of features.

C.’onsider the following process definition of a simple object generator:

p r o c e s s O b je c t_ G e n e r a to r [a] : n o e x it :=

T em pla te [a] III i ; O b je c t .G e n e r a t o r [a]

where

p r o c e s s T e m p la te [a] : n o e x i t

(* some b e h a v io u r *)
en d p roc

e n d p roc

The interleaving operator I I I indicates that the two processes Template and O b jec t-

Generator are composed in parallel, but do not interact with one another. The internal

event “ i ” is used to control recursive instantiation of O bject—Generator so that infinite

recursion can be stopped.
In most real situations an object needs to be initialised when it is created and the

initialisation operation should only be offered once for each object. We could do that

inside this template as follows [Cla92b];

process Object.OensratorCa] : noexlt ;■

Chapter 3. Modelling Fundamental OOA Concepts in LOTOS 61

Tem plateC a] III i ; O b je c t .G e n e r a t o r [a]

« h e r e

p r o c e s s Tem plateC a] : n o e x i t :=

a ¡ c r e a t e ; T e m p la t e .l [a]

«h e r e
I

p r o c e s s T e m p la t e .l [a] : n o e x i t :=

(* some b e h a v io u r e)

en dproc

en dproc

en d p roc

An alternative solution, which eliminates the need for the internal event and only uses

two processes, is:

p r o c e s s O b je c t .G e n e r a to r C a] : n o e x i t :=

a ' c r e a t e ;

(T em plateC a] III O b je c t .G e n e r a t o r C a])

where

p r o c e s s Tem plateC a] : n o e x i t :=

(* some b e h a v io u r e)

en dproc

en d p roc

Here, Template does not encapsulate the service create , letting it be offered by the

generator. This is the way in which crea te should be regarded. Adopting this view, the

definition of the class template is much simpler.
In the initialisation we can pass values that are then used to build the state information

of an object. We adopt the rule that one of the values in the initialisation event is always

the object identifier. For each class o f objects, we can define a set of identifiers given as a

formal parameter of the corresponding object generator. The template’ s process definition

includes a parameter giving the state of the object. Consider the following definition.

procaaa 0bjact_0«n«ratorCa](ida: Id.Sat) : noaxlt :■
a Icraata 71d_countar: Id Tlnit.vall: Valua.Sortl Cid.countar notin ida] ;

Chapter 3. Modelling Fundamental OOA Concepts in LOTOS

(Tem plateCa] (M a J c e _ T e m p la to (id _ c o u i it e r ,in it _ v a l l))

62

I I
O b je c t _ G e n e r a t o r [a] (I n s e r t (id _ c o \ in t e r , i d s))

)
sh a re

p r o c e s s T e m p la t e [a] (s t a t e : S ta te _ T e m p la te) :• n o e x it :=

(
(• b e h a v io u r e x p r e s s io n s w ith e x i t f u n c t i o n a l i t y *)

) » a c c e p t s t a t e .m o d i l i e d : S ta te_T em p la te in T e m p la t e C a](s ta t e _ m o d if ie d)

en d p roc

en dproc

The object generator holds the set of identifiers already allocated, id s . The selection

predicate:

C (id _ co u n te r n o t i n i d s)]

guarantees that the new object identifier is different from all existing ones of the same

sort. When O b je c t- Generator is instantiated it offers synchronization with the event:

a ¡c r e a t e ? id _ c o u n t e r : I d ? i n i t _ v a l l : V a lu e _ S o r t l C id _ co u n te r n o t in i d s] ;

When an object is required, another object offers an event such as

a ¡c r e a t e ? o b j e c t _ i d : I d ¡ v a i l ;

Then, synchronization takes place and Template is instantiated causing an object to

be created with some state information. Note that while the value v a i l is passed into

O bject-G enerator, the object identifier is created using value generation. (In this exam

ple, the structured event that originates the creation of the object has only one optional

parameter, v a il . In other examples, several optional parameters may be required.)

In the case we are presenting, we are supposing that the set ids is initialised to be

the empty set. For each new object created, its identifier is added to Ids. In the banking

system, a possible object generator for Account would be:

process AccountsC g](sees : Account_lunbsr_Sst) : nosxlt
g Icrsats 7acc_countsr: Account.lumbsr C(acc_countsr notln a c e s)] ;

(Account[g](Maks_Account(acc.countsr,0))

Chapter 3. Modelling Fundamental OOA Concepts in LOTOS 63

I I
A c c o u n t s [g] (I n s « r t (a c c _ c o u n t e r ,a c c s))

)
en d p roc

While the templates are named by using the ñamé (in the singular) of the corresponding

class template in the object model, object generators are named with the plural of the

template’s name.
By using object generators we are able to create, through the behaviour o f the object

generator, an infinite number of objects. There are however situations where we know the

exact number o f objects we need. If we only need one object of a given class during the

system’s life an object generator is not required. Also, there are situations with composite

objects where we may need to impose a fixed number of components. In this situation the

instantiation of the template process would be done by explicitly calling that template’s

name. For example, if only one object in our application was required, the object would

be created by:

T em p la te [a](M aX e-T em p la teC id l o l T e m p la te -Id . v a i l))

where i d l is a specific identifier we assign to the object and v a i l is a value of sort

Value-Sort 1.
There is also the situation where we can impose an upper limit to the number of

objects. In such a case, the object generator would hold the set (non-empty) o f identifiers

not yet allocated and the selection predicate would guarantee that the new object identifier

is one of those.

3.3.6 Object Identity

In LOTOS, when we instantiate a process we must give a unique identity to each new

object created. This is the purpose of an object identifier.

Object-oriented analysis methods propose that only attributes known from the real

world should appear in the object model. In many situations object identifiers do not

have a meaning in the real world and so, according to the above proposition, they should

Chapter 3. Modelling Fundamental OOA Concepts in LOTOS 64

be added to the model in a later phase. This is a common procedure when dealing with

informal and non-executable specifications, but it cannot be followed for formal executable

specifications such as those in LOTOS, where objects are created dynamically during

prototyping.
In the analysis phase, we are interested in defining a simple mechanism to be used to

define distinguished object identifiers for each class template. This is achieved by defining

the two special ADTs Id_Type, with the sort Id, and Set_Id_Type, which actualises the

Set ADT already defined in the library. In order to have these two ADTs always available,

we add them to the LOTOS library (see Appendix B).
As noted earlier, the object generator in its extended form requires a set o f identifiers.

Whenever object identifiers are needed for a given class, Set_Id_Type is instantiated. For

example, for the class o f objects Accoimt, we instantiate it as follows:

ty p e A ccount_N unibor_Sot_Typo i s S ot_Id _T y p e

renzonedby

e o rtn a n e s Account_H um ber l o r Id

A ccount_B um bor_Set l o r Set

en dtype

Account-Number is the sort name of the object identifiers i d l , id2 , . . . o f an account.

Recalling the template Accoimt:

p r o c e s s A c c o u n t t g] (t h is _ a c c o u n t : S ta te _ A cco u n t) n o e x i t :=

g ¡d e p o s i t IG e t_ A cco u n t_ B u m b e r(th is_ a cco u n t) . . .

[]

en dproc

Get—Account—Number, defined in the ADT Account-Type, returns the appropriate account

identifier.

Generating Identiflera

Whenever a new object is created we have to produce an identifier. The Open Distributed

Processing model [IS094] suggests four different ways to generate or allocate names (iden-

Chapter 3. Modelling Fundamental OOA Concepts in LOTOS 65

tifiers) for objects:

1. Allow the object to chose its own name, and ensure that it is suitably unambiguous;

2. Elect to use some information already known to identify the object unambiguously;

3. Allocate unique identifiers (e.g. numbers) to Ithe objects, perhaps in the order in

which they come into existence;

4. Some hybrid of the above.

For its simplicity, we choose the option 3 together with value generation which allows the

introduction of uninstantiated variables.

For example, as presented in Section 3.3.5, an account number would be generated

when the object generator Accounts offers for synchronization:

g ! c r e a t e ? a c c _ c o u n t e r : Account_Nuinber [(a c c _ c o u n t e r n o t ln a c e s)] ;

and some other object offers:

g ! c r e a t e ?acc_n u m ber: Account_H uinber;

When these two events synchronize, one value o f the set of possible values of the sort

A ccount- Number is ascribed to both acc_number and acc_counter. This value is con

strained such that it is not already in the set aces. This technique is called value generation

and it avoids defining an algorithm to generate the account number.

Value generation is supported by the SMILE simulator from LITE^ [EW93] in the

following way: it generates a symbol which may take any value from the set of possible

values. This allows us to execute the specification symbolically rather than use particular

values.

3.3.7 Objects

An object encapsulates its state and the algorithms which accomplish its behaviour. Any

change in an object’s state is only possible by means of interaction through a well defined

‘ L IT E i(a act of tool* for LOTOS produced a* part o f the LOTOSPHERE ESPRIT Project.

Chapter 3. Modelling Fundamental OOA Concepts in LOTOS 66

interface with the environment of that object. An object is a member of a class and is

created by instantiating a class template.

Creation (of an Object)

In cases where the operation that creates an objept is offered to the environment, the

operation crea te appears in the object model. This happens with Account, where a

client can ask to open an account. In other cases, the creation operation does not appear

in the object model. In our method, the operation create is not defined in the process

template, but in the object generator. An object is created by instantiating the process

which defines the class template. This can happen in two different ways:

1. If we want to create the objects dynamically, the instantiation occurs indirectly by

sending a create message to an object generator;

2. If we want to create the objects statically, the template is instantiated directly and

an object generator is not required.

Consider that in the banking example, an unknown number o f accounts are needed.

Then, a new account is created by means of the object generator Accounts which offers.

g (c r e a t e ? a c c _ c o u n t e r : Account_lIuinber C (a cc_ co u n te r n o t in a c c s)] ;

and an instance of C ou nter-T eller would offer:

g (c r e a t e ?a cc_n u m b er : A c c o u n t .lu m b e r ;

in order to open an account. If only a single instance (or a small number) of account objects

had been required, then we would not have defined the generator Accounts and each

account object would be created by calling the template Account directly, for example.

A c c o u n tCg](M a k «_ A cc o u n t(ld l o l A cco u n t .Iu m b a r , 0))

Deletion (of an Object)

A deletion operation may or may not appear in the object model. There are situations

where we may want an object to “ live forever” , but there are others where we require

explicitly that an object should be removed. For this, we define a ramova service in the

Chapter 3. Modelling Fundamental OOA Concepts in LOTOS 67

template that defines the object. In situations where inheritance is involved, this service

must be defined in the process defining the subclass template.

The termination of an object is accomplished by,terminating its LOTOS process. Ter

mination o f a LOTOS process is achieved by two LOTOS behaviour expressions; ex it,

representing the successful termination of the process; and stop , representing the abnor

mal termination of the process. Therefore we use stop.

To delete an object, the service remove in the object model is modelled as follows;

p r o c e s s A c c o u n t [g] (t h i s .a c c o u n t : S ta te _ A c c o u n t) : n o e x i t :=

(. . .

[]
g ¡rem ove !G e t_ A cco u n t_ M u m b e r (th is_ a cco u n t);

s to p
) » a c c e p t u p d a te _ a c c o u n t : S ta te _ A cco u n t in A c c o u n t [g](u p d a te _ a c c o u n t)

en dproc

Note that we are defining the remove operation in the template Account because we

are ignoring the fact that an account is an abstract superclass, with subclasses. If we were

taking this into consideration, this operation would be defined for each subclass.

State (o f an O b ject)

The state o f an object is given by the values o f the parameters defined in the process

template and by the services currently being offered by the object.

Consider that Template_A offers the two services B erv ice_l and s «rv ica _3 and that

after s a r v lc s —1 has been called only B ervice_2 is on offer. Such a situation can be

specified in LOTOS as follows®;

procBBB Tamplata.A [g] (■: Stat*_Sort) : noaxlt :■
(g laarvlca.l;
g lBarvlca_2;
•xit(s)

®Xo aimplify the problem, we are considering that the services do not change attribute s .

Chapter 3. Modelling Fundamental OOA Concepts in LOTOS 68

a
g ! s e r v i c e _ 3 ;

e x i t (s)

) » a c c e p t u p d a t e .s t a t e ; S t a te _ S o r t in T e m p la te _ A [g](u p d a te _ s ta te)

Here, the state of an object of the class template Template_A is given by the value of s

together with the services on offer at each moment.

For simplification, we could define the state of an object as being determined by the

values of its attributes. In such a situation, the state would always be given by the

parameters of the process, but the definition of Template_A has to be changed to:

p r o c e s s Tem plate_A CgD (s : S ta "te_S ort, b : B o o l) : n o e x it : =

(C n o t(b)] -> g ! s e r v i c e _ l :

e x i t (s , t r u e)

[]
[b] -> g ! s e r v i c e _ 2 ;

e x i t (s , f a l s e)

[]
[n o t (b)D -> g ! s e r v i c e _ 3 :

e x i t (s , f a l s e)

) » a c c e p t u p d a t e _ s t a te : S t a t e _ S o r t , u p d a t e _ b o o l : B oo l

in T e m p la t e _ A [g](u p d a te _ s t a te , u p d a te _ b o o l)

b would normally be defined within State_J5ort. Here we are giving it explicitly as a

separate argument of the process only to simplify the explanation.

In LOTOS, these two definitions o f Template_A are similar in practice and it is trivial

to transform one into the other. However, it is easier to explain ‘ state of an object

in mathematical terms if we take the second definition. This is the reason why we use

this definition in Chapter 5. In ROOA we prefer to adopt the first definition, because it

produces a more compact specification.

Chapter 3. Modelling Fundamental OOA Concepts in LOTOS 69

Behaviour (of an Object)

A behaviour describes the order in which the (LOTOS) offered services of that object can

occur and the changes in the object’s state. Behaviours are required to define sequencing

rules, the possible choice of services at any given time, and, for more complex behaviours,

concurrency rules [IS094]. The state of an object lean restrict the services that can be

offered by the object at a given time as LOTOS (structured) events can have guards.

In the ROOA context, a structured event (or just event for short) corresponds to the

signature of a service.
The behaviour of an object is given in LOTOS by the externally visible behaviour

and by the internally invisible behaviour. The externally visible behaviour is specified

by structured events which occur when the object synchronises with other objects in the

system. In terms of ROOA, this means that one object is calling a service of another

object. The structure of the event which corresponds to calling a service (in the calling

object) is equivalent to the structure of the event that defines the signature of the called

service (in the called object). The internal, invisible behaviour is specified by structured

events only defined internally to the called object and so are invisible to the object’ s

environment.
In summary, the behaviour of an object is given by a collection of offered services (with

signature and methods, as we will see in Chapter 5) with a set of constraints on the order

in which they may occur. In Chapter 5 we discuss the behaviour of class templates and

objects in more detail.

3.3.8 Message Connections

In LOTOS two or more processes communicate via event synchronisation by using gates.

However, as message passing in the object-oriented paradigm involves two objects, we

restrict communication in LOTOS to be defined between two process instances which

synchronise at a common gate on an externally visible event.

An object can behave as a client, as a server, or both. Client objects send messages

to server objects which may or may not return an answer. A server normally offers all

Chapter 3. Modelling Fundamental OOA Concepts in LOTOS 70

its services at a single gate. If it also acts as a client, then it uses separate gates to

communicate with its servers.
Communication is achieved by synchronizing on a structured event of the form:

(gate name) (message name) (object identifier) (optional parameters)

For example, a C ounter-Teller can send a message to Account asking for a deposit:

g 'deposit !acc_number ¡amount;

and an instance of Account synchronizes with this event by offering:

g ¡d e p o s i t ¡G ot_A ccou n t_N u m b er(th is_A ccou n t) ?m: Money;

Value matching of acc_number and Get Account—Num ber(this_account) is used to en

sure correct synchronization. Value passing is used to pass the value amount to the variable

m. Although a client must know the identity of the server, a server can service many clients

without knowing their identity.
The client gives the service (message) name, the server object identifier and, optionally,

some parameters. In order to give an answer, the server can either accomplish one of its

methods, send a message to another object, or both. Sometimes the request and the

answer can be specified in LOTOS as a single behaviour expression in each object (as

happened above). In this case, the entire communication is an atomic event. Another

example is when a Counter—T e lle r sends a message to Account asking for an account

balance;

g ¡g e t .b a la n c a ¡a cc .n u m b er T ba lau ice ; Money;

and an instance of Accoxint synchronizes with this event by offering:

g ¡g a t .b a la n c e ¡G et_A ccou n t_M u «b er(th i«_a cco\ x n t) ¡G e t _ B a la a c e (t h ie _ a c c o u n t) ;

In general, the server may not be able to give the result immediately in which case the

client must offer a second synchronization event to receive the server’s result. These events

form a non-atomic action which can be interpreted as a form o f remote procedure call. In

this situation, the second synchronization should not be understood as if the server object

was now behaving as a client of the initial client object. Neither the “call event” nor the

“return event” includes the identifier o f the object which initiated the communication.

Chapter 3. Modelling Fundamental OOA Concepts in LOTOS 71

An example is when C ounter-T eller sends a message to withdraw money. Xhis

requires a call (from C ou nter-T eller to Account) and a return event (from Account to

Counter—T e lle r) .

g 'w ith d raw !a c c _ n u »b e r 'am ount;

g !r tn _w ith d ra w 'acc_n u m ber ?o k : B o o l ; 1

Both events use the value of the account number (i.e. the identity of the server) to en

sure correct synchronization. A c c o u n t “accepts” the call and receives the parameter

am ou n t. Then it carries out the method w ith d r a w and then returns the result to the

client C o u n t e r - T e l l e r in one of two alternative events;

g tw ithdraw !G et_A ccou n t_N u m b er(th is_a ccou n t) ?m: Money;

(c h o i c e i f .m o n e y : B oo l []

[i f .m o n e y] -> g ! r tn .w ith d r a w !G et_A ccou n t_N u m b er(th is_a ccou n t) I t r u e ;

e x i t (D e b i t _ A c c o u n t (t h is _ a c c o u n t , m))

[]
[n o t (if_ m o n e y >] -> g ! r tn .w ith d r a w 'G et_ A cco u n t_ H u m b e r (th is_ a cco u n t) l i a i s e ;

e x i t (t h i s .a c c o u n t)

The discussion presented above shows how two objects which belong to different classes

communicate. These two objects are connected by a message connection in the object

model. Usually, as we have seen, if an object wants to initiate a communication then

it has to receive, from its environment or the external world, the object identifier o f the

object with which it wants to communicate.

It is possible that two objects belonging to the same class template need to com

municate. We discussed in Section 3.2.16 how unary associations give the capability of

communication between two objects of the same class. In LOTOS, the only way to specify

such a communication is by creating a channel of communication. This channel is an

object, which serves as an intermediary between the two original objects (see Figure 3.3).

Having created this object, we converted the ‘unary’ communication into a ‘binary’

communication, and so we can follow the general procedure. Therefore, a channel is

defined as a process, which synchronizes with the process which defines the original class

Chapter 3. Modelling Fundamental OOA Concepts in LOTOS 72

Figure 3.3: Two objects of the same class communicate via a channel

template.

3.3.9 Specifying Inheritance with LOTOS

As LOTOS was developed before object-oriented techniques became widely accepted, in

heritance is not directly supported. However, by using the standard LOTOS constructs,

incremental inheritance can be represented in a straightforward way. In this section we

only deal with incremental inheritance. Pure extension, where there is no redefinition

or deletion of services, does provide behavioural inheritance. For further discussion on

behavioural inheritance and on how the conditions given in Section .3.2 must be verified

in a LOTOS specification, see [Cla94c, CM94, MC93a].

To be able to specify inheritance in LOTOS (extension and redefinition of services and

extension of attributes), the superclass has to be defined with exit functionality [Rud92].

The reason is that, within the specification of a subclass, many of the offered services are

provided by invoking the superclass. After a service defined in the superclass has been

handled, all the services offered by the subclass must again be on offer. We must therefore

exit from the superclass so that the subclass, and not the superclass, is invoked recursively.

This means that all superclasses in LOTOS are abstract class templates. Although this is

required by the syntax and semantics of LOTOS, Hiirsch has discussed the advantages of

superclasses always being abstract [Hiir94]. (Later in this section we show how a concrete

class template can be created from an abstract superclass.)

Considering Fn(x) to be any function involving x and defined as an operation in the

ADT which defines the sort of x, the superclass would take the form:

process S u p ercla ss[g](sta ts ; State_Sort) : exlt(State_Sort)

g Ise le c to r .l IO et_Id(state) . . . ;

Chapter 3. Modelling Fundamenta.] OOA Concepts in LOTOS 73

e x i t (s t a t e)

a
g !m o d i l i e r _ l !G e t _ I d (s t a t o)

e x i t (F I (a t a t «))

[]
g !m o d i l ie r _ 2 !G e t _ I d (s t a t e) . . . ;

e x i t (F 2 (s t a t e))

and proc

We can create the subclass Extended-Class based on that Superclass which is extended

to offer more services:

p r o c e s s E x t e n d e d _ C la s s [a] (s t a t e : S t a t e _ S o r t) : n o e x i t ; =

((S u p e r c la s s [a] (s t a t e)

» a c c e p t u p d a t e _ s t a te : S t a te _ S o r t in e x i t (u p d a t e _ s t a t e)

)
[]

a !m o d i l ie r _ 3 ! G e t _ I d (s t a t e) . . . ;

a x i t (F 3 (s t a t e))

) » a c c e p t u p d a t e .s t a t a : S t a t « _ S o r t in E x t e n d « d _ C la s s [a] (u p d a t e .s t a t e)

and proc

The first occurrence of the operator accep t ... in is not needed, as the result of

Superclass is of the same sort o f the result given by Extandad—Class and the name

o f the parameters of both templates are the same. However, we can leave it there so that

the skeleton of the subclass template takes a more general form.

Note that the subclass Extended—Class could also be extended in the number o f gates,

if this was necessary to define the new services.

Rudkin presents a rigorous approach to how inheritance can be introduced in LO

TOS, and describes the problems with self referencing (when the superclass has noexit

Chapter 3. Modelling Fundamental OOA Concepts in LOTOS 74

functionality) [Rud92].
If a redefinition of one or more services is required, the idea is to “eliminate” them first

and then create them with the necessary differences. To accomplish this it is necessary

to have an auxiliary superclass where the services that are going to be directly inherited

are defined. Supposing that we wanted to redefine, the service modif ier_2 , we specify

auxiliary class M odifier-C lass with the services we want to keep and use it as follows in

the definition of the new class Redof ined_Class:

p r o c e s s M o d i f i e r .C l a s s [a] (s t a t e : S t a t e .S o r t) : e x i t (S t a t e _ S o r t) :=

a ! s e l e c t o r _ l ! G e t _ I d (s t a t e) . . . ;

exitC einy S t a t e _ S o r t)

[]
a !m o d i f i e r _ l !G e t _ I d (s t a t e) . . . ;

e x i t (a n y S t a t e _ S o r t)

en d p roc

where emy is a LOTOS keyword and can be used with any type, predefined or not.

p r o c e s s R e d e f in e d _ C la s 8 [a l (s t a t e : S t a t e _ S o r t) n o e x it :=

((S u p e r c la s s e s] (s t a t e) I [a] I M o d i f i e r .C l a s s [a] (s t a t e))

[]
a !n e w _m od ifie r_2 !G e t _ I d (s t a t e) . . . ;

exit(F 2a (s ta ta))

C]
a Imodifier_3 IGat_Id(state) . . . ;

axit(F3 (a tate))

) » accept updata.state: State.Sort in Radafined.Class[a](updata.state)

endproc

As before, modif iar_3 is an added service.

Chapter 3. Modelling Fundamental OOA Concepts in LOTOS 75

So far, we have been discussing extension and redefinition of services. But, how can we

create a subclass which extends the state information of its superclass? As the attributes

are defined in the abstract data type part, it seems that incremental modifications in the

attributes o f the object should be done there. There are however some complications.

We can use the ACT-ONE language to extend (and^combine, and rename) abstract data

types, but only in what concerns the operations defined in the ADT. If we want to extend

the number of components, then the functions defined in the initial abstract data type

cannot be inherited, since the constructor operations need to “know” about all the data

components of the structure. The solution is to add more ADTs as parameters of the class

template that defines the subclass, although this gives us a broken structure for the state

information of the object.
Taking Superclass and Modifier-Class defined above, and supposing we want to

define a subclass which extends the superclass state and redefines the service modif ier_2,
the process template Redefined—Class would take the form;

p r o c e s s R e d e f in e d _ C la s s [a , b]

(s t a t e : S t a t e _ S o r t , e x t _ s t a t e ; E x t _ S t a t e _ s o r t) : n o e x i t :=

(((S u p e r c la s s [a] (s t a t e)

I [a] I
M o d i f i e r .C l a s s [a] (s t a t e)

)
>> a c c e p t u p d a t e .s t a t e : S t a t e .S o r t in e x i t (u p d a t e _ s t a t e , e x t . s t a t e)

[]
a lnew_modiflar_2 IGet_Id(stata) .

axlt(F 2a (s ta te) , F2b (e x t_sta te))

[]
b lmodlfler_3 IGet_Id(state)

exit(F 3a (s ta te) . F3b (e x t_sta te))

) » accept updata.stata: S tate .S ort, ext.updata.state: Ext_State_Sort

Chapter 3. Modelling Fundamental OOA Concepts in LOTOS 76

in R e d e l in e d _ C la s s [a , b] (u p d a t e _ s t a t e , e x t _ u p d a te _ s t a t e)

en dproc

Now, the state information of objects of the class template Redef ined_Class is the pair

of ADTs (s t a t e , e x t_ s ta te) .

In the object model represented in Figure 3.2, Cheque_Accoimt and Savings—Account

are identified as subclasses of the superclass Account. In Section 3.3.2, Account was

defined with noexit functionality, but if it is to be used as a superclass, its functionality

has to be changed to ex it :

p r o c e s s A c c o u n tC g D (th is _ a c c o u n t : S ta to _ A cco u n t) e x it (S ta te _ A c c o u n t) : =

g ¡d e p o s i t !G e t_ A cco u n t_ H u in b e r(th is_ a cco u n t) ?m: Money;

e x i t (C r e d it _ A c c o u n t (t h is _ a c c o u n t , m))

[]
g !g e t_ b a la n c e ! G et_A ccou n t_H u m b er(th is_a ccou n t)

!G e t _ B a la n c e (th is _ a c c o u n t) ;

e x i t (t h i s _ a c c o u n t)

[]

en dproc

The superclass can then be extended to create a C h e q u e -A c c o u n t subclass. The new

class template inherits the properties of the superclass and defines the new operation

p r l n t _ m l n l - 8 t a t e m e n t .

p r o c e s s C h eq u e .A ccou n t Cg] (t h l s .a c c o u n t : S ta ta _ A cco u n t) : n o e x l t : =

(A ccount [g] (t h i s .a c c o u n t)

C]
g 1 print_minl_atatamont I Get_Account_Iumber(this_account) ¡this.account;
exlt(thls_account)

) >> a c c e p t u p d a t e .a c c o u n t : S ta te .A c c o u n t

in C h equ e .A ccou n t [g] (u p d a te .a c c o u n t)

en dproc

Chapter 3. Modelling Fundamental OOA Concepts in LOTOS 77

Both kinds of account (savings account and cheque account) have identifiers of sort

Account- Nximber in order to inherit from the same superclass. This is why we divided

the identifiers defined in the ADT Id-Type into several groups (see Appendix B). There

fore, the ADT A c c o u n t _Number_Set.Type needs to be changed in order to include this

information: I

ty p e A ccou n t.M u m bor.S et.T yp e ia S e t .I d .T y p e

renam edby

sortn am es A ccount.N um ber l o r Id

A cco u n t .Iu m b e r .S o t l o r S et

opnnames I s .C h e q u e .A cc l o r F i r a t .S e t

la .S a v in g s .A c c l o r S e co n d .S e t

en d ty p e

Is.C heque.A cc and Is .S a v in g s .A c c establish the set of identifiers which can be used to

create cheque accounts and savings accounts, respectively.

An object generator for Cheque.Account, for example, would be:

p r o c e s s C h e q u e .A c c o u n t s [g] (a c c s : A ccou n t.B u m b er .S e t) n o e x i t :=

g 'c r e a t e ? a c c . c o u n t e r : A ccount.B um ber 'ch eq u e

f (a c c . c o u n t e r n o t in a c c s) and I s .C h e q u e .A c c (a c c . c o u n t e r)] ;

(C h e q u e .A c c o u n t [g](M a k e _ A c c o u n t (a c c .c o u n te r , 0))

I I I
C h e q u e .A c c o u n t s [g] (I n s e r t (a c c . c o u n t e r , a c c s) }

)
endproc

¡cheque is required to give the type of account we want to create. The object generator

holds the set of identifiers already allocated and the selection predicate:

[(acc.counter notln accs) and Is.Choque.Accfacc.counter)];

imposes the condition that the new object identifier is different from all existing ones and

Is_Chequ«_A cc(acc_counter) guarantees that the new object identifier belongs to the

correct subrange of Account.Number.

Chapter 3. Modelling Fundamental OOA Concepts in LOTOS 78

We defined the superclass Accoun't in the object model not to have any specific in

stances, and so it does not need an object generator. However, if we change the require

ments in order to allow the creation o f objects of the,superclass, a new process would have

to be created. Let us call this process Special.A ccount;

p r o c e s s S p e c ia l_ A cco u n ‘t CgD ('th is _ a c c o u n 't : S ta t« ,_A ccou n t) n o e x i t . —

A c c o u n t [g] (t h is _ a c c o u n t)

» a c c e p t u p d a to _ a c c o u n t : S ta te _ A cco u n t

in S p e c ia l_ A c c o u n t [g] (u p d a te _ a c c o u n t)

en dproc

The inheritance hierarchy would now be as depicted in Figure 3.4.

Figure 3.4: Special-A ccount as a concrete class template of the abstract superclass

Account

If several instances of Specia l-A ccount were required, we would define an object

generator.

3.3.10 Abstract Class Templates

A process defining an abstract class template does not have any instances and is only used

in the definition o f processes which define subclass templates. Process Account defined

Chapter 3. Modelling Fundamental OOA Concepts in LOTOS 79

in Section 3.2.15 with exit functionality is an example of an abstract class template in

LOTOS.

3.3.11 Conceptual Relationships

We represent conceptual relationships (associations) in LOTOS as arguments in the pro

cess defining the class template. These arguments are ADTs which represent either the

identifier of an ob ject or a set of identifiers, depending on the cardinality o f the association.

Since we are in the analysis phase, we do not want to decide how certain properties o f the

system should be designed and then implemented. However, if we are creating executable

specifications, we have to model associations in order to be able to simulate the results,

but it does not mean that we have to make final decisions at this stage. Later, in the

design, we will decide the best way to implement an association. It may well be that we

may represent an association as a new object.
We propose that any relationship involving a superclass will be inherited by the objects

of its subclasses. Therefore such relationships are modelled in the template that defines

the superclass.

Binary Relationships

One-To-One

A one~io~one relationship is modelled in each object as an attribute which is the required

object identifier. If the minimum of the cardinality is zero we can use a set of identifiers,

instead of the identifier itself. The empty set gives us a simple way of dealing with optional

relationships.
In the following examples we only show the relationship being modelled in one o f the

objects. To model it in both objects a similar technique should be applied to the second

object.
Suppose there is an optional 1:1 relationship between a cheque account and a card.

The template Ch«qu«_Account would be:

process Choqus_AccountCg](this_account: Stats.Account,

Chapter 3. Modelling Fundamental OOA Concepts in LOTOS 80

c a r d s : Card_M uinber_Set) : n o e x i t : =

((A c c o u n t [g] (t h is _ a c c o u n t)

» a c c e p t u p d a t e .a c c o u n t : S ta te .A c c o u n t in e x it (u p d a t e _ a c c o u n t , c a r d s)

)
[]

g ! p r in t_ m in i_ s ta te m e n t !G et_A ccou n t_H u m b er(th is_a ccou n t) ! t h is _ a c c o u n t ;

e x i t (t h i s _ a c c o u n t , c a r d s)

[]

) » a c c e p t n ew _a ccou n t: S t a te _ A c c o u n t , c a r d s : Card_Num ber_Set

in C h e q u e _ A cco u n t[g](n e w _ a cco u n t, c a r d s)

en d p roc

and the object generator must be changed to initialise the parameter cards of the template

Cheque-Account:

p r o c e s s C h e q u e _ A c c o u n t s [g](a c c s : A ccou nt_H um ber_S et): n o e x i t :=

g ¡ c r e a t e ? a c c _ c o u n t e r : Account_IU Biber ¡cheque

C (a cc_ co u n te r n o t in a c c s) and Is_ C h e q u o _ A c c (a c c _ c o u n te r)D ;

(C h equ e_A ccou n tC g](M a k o_A ccou n t(a cc_cou n ter , 0) , O o f Card_M um bor_Sot)

I I I
C h e q u o _ A c c o u n t s [g] (I n s e r t (a c c _ c o u n t e r ,a c c s))

en d p roc

O o f Card_Number_Set represents the empty set.

If the relationship was mandatory, rather than optional, it would mean that for each

account there must be one card. Therefore, instead of the empty set o f Card_Numbar_

Sat, one card identifier of the sort Card.Numbar is needed. In the above example, by

initialising the object with an empty set, we can create an account and later on create a

card, if necessary. However, if the association is mandatory, then at the time we create an

account, we must create the corresponding card. Thus:

procass Chaqua_Accounts[g, cd](acca: Account_lusibsr_Sat) : noaxit :■

Chapter 3. Modelling Fundamental OOA Concepts in LOTOS 81

g ¡c r e a t e ? a c c _ c o u n t e r : Account_Humber ¡ch equ e

[(a c c _ c o u n t e r n o t in a c c s) and Is_ C h e q u e _ A cc (a cc_ co u n te r)D ,

cd ¡c r e a t e ? c a r d _ n r ; Card_lluiiiher ¡ a c c _ c o u n t e r ;

(C h eq u e .A ccou n tC g](M a k e_A ccou n t(a cc_cou n ter , 0) , ca rd _ n r)

I I I
C h e q u e _ A cco u n ts [g](I n s e r t (a c c _ c o u n t e r ,a c i s))

)
en dproc

The gate cd is used to communicate with the Card object generator (which we are not

showing here). The value acc_counter would only be passed if the association was bidi

rectional.

One-To-Many

A one-to-many association is modelled as an attribute that has the value of the object

identifier in the many side (contained object) and as an attribute that is a set of object

identifiers in the other side (container object). Again, optional relationships are modelled

by using a set of identifiers instead o f a single identifier.

In the object model depicted in Figure 3.2, Cheque-Account has a one-to-many asso

ciation with Card. This case would be dealt with using a set of cards in the same way as

the optional zero-to-one association we studied above.

Many-To-Many

A many-to-many association can be transformed into two one-to-many associations by

creating a third object and using it to relate the other two objects. This is the way we

handle this when dealing with relational databases. Here, for simplicity, we do not use that

third object, modelling a many-to-many relationship as two one-to-many relationships,

but in a way that each one appears in each object as an attribute that is a set o f object

identifiers.
In the banking system example, Choqua—Account has a many-to-many relationship

with Standlng-Ordar. We must add to Chaqua-Account the parameter s o b of sort

Chapter 3. Modelling Fundamental OOA Concepts in LOTOS 82

SO_Number_Set. The value of sos is the set o f standing order numbers associated with

that account. Any time a standing order is created, its identifier should be given to the

corresponding account. (This is supposing that accounts know about standing orders. It

could be that only standing orders had to know about accounts.)

The template Cheque-Account with the extra argument sos is given below:

p r o c e s s C h equ e_A ccou n tC g D (t h i s _ a c c o u n t : S t a te _ A c c o u n t ,

c a r d s : C ard_N um ber_Set, s o s : SO_Mumber_Sot) : n o e x i t :=

((A ccou n t E g] (t h is _ a c c o u n t)

>> a c c e p t u p d a t e _ a c c o u n t : S ta te _ A cco u n t

in e x i t (u p d a t e _ a c c o u n t , c a r d s , s o s)

)
E]

) » a c c e p t u p d a t e _ a c c o u n t : S t a te _ A c c o u n t , c a r d s : C ard_N um ber_Set,

s o s : SO_Humber_Set

in C h e q u e _ A c c o u n t E g] (u p d a t e _ a c c o u n t , c a r d s , s o s)

e n d p ro c

The object generator now has to instantiate the process template with one more pa

rameter:

p r o c e s s C h e q u e _ A cco u n ts E g](a ccs : A ccount_M um ber_Set) : n o e x i t :=

(C h e q u e .A cco u n tE g](M a k e _ A cco u n t(a cc_ co u n te r , 0) ,

O o l Card_*umber_Set, ■(> o l S0_Iumber_Set)

I I I
Cheque.AccountsEg] •••

• n d p roc

In this case, a standing order knows about two accounts (the one which is going to be

credited and the one which is going to be debited). Because we know the cardinality of

the association in standing order/cheque account direction and also the accounts involved

Chapter 3. Modelling Fundamental OOA Concepts in LOTOS 83

in the association when a standing order is created, we can use the two account identifiers

separately, instead of giving a set with the two identifiers as elements of that set:

p r o c e s s S tim d in g _O rd ers [a , b , c] (s o s : SO _Iuinbor_Set) : n o o x i t :=

a !s o _ c r e a t e ? n l : Account.Hum ber ?n 2 : Account_Muinber ?b k : Bank.Name

?m: Money ? s o _ c o u n t e r : SO_Number C so_cou n ter n o t in s o s l ;

(S ta n d in g .O rd e r [a . b , c] (M jik e_S O (so_cou n tor . n l , n 2 , b k . m))

I I I
S ta n d in g _ O rd e rs [a , b , c] (I n s e r t (s o _ c o u n t e r , s o s))

)
en d p roc

Unary Relationships

Unary relationships are modelled as an identifier (or set of identifiers) in the process

template. There are, however, situations where they can be seen as is-a (generaliza

tion/specialization) relationships. In object-oriented development, inheritance is an im

portant concept which usually comes to light early in the development process. However,

there are situations where this concept does not show up clearly. Consider the example

of a company with its employees. It could be useful to define a relationship manager
in the Employee object that relates an employee with his or her manager. If there is a

significant difference in terms of behaviour or in terms of structure between the concept

“employee” and the concept “ manager” , we should create a superclass Person and the

two subclasses Employee and Manager. Otherwise, we add to Employee an attribute that

gives the identifier of the manager who is also an employee. This would be done by adding

to the template another argument which gives the manager object identifier.

Relationships with Values

Relationships can hold values. We could define a pair (or set o f pairs) where the first

component is the identifier of one o f the objects and the second is the value and then give

this information to one (or both) o f the objects. However, a simple solution is to create

Chapter 3. Modelling Fundamental OOA Concepts in LOTOS 84

a new object which holds the value and also the identifiers of the objects involved in the

association.
For example, suppose an application deals with a stock of products and that we have to

keep information about the suppliers of the products. Now, let us define the relationship

i s _ s u p p l i e d between P r o d u c t and S u p p l i e r in whi^h a supplier supplies many products

and a product is supplied by a single supplier. Moreover, a client needs to know the

quantity of a given product that a supplier supplied. The q u a n t i t y attribute does not

belong either to P r o d u c t or S u p p l i e r individually, but to both, i.e. to the relationship.

We then create a new object, called S u p p l y which would be defined as follows:

p r o c e s s S u p p l y [g] (t h i s _ q u a n t i t y : Q u a n t it y _ S o r t ,

o b j l _ i d : O b je c t l _ I d , o b j2 _ id : 0 b je c t 2 _ I d) : n o e x it :=

e n d p r o c

A lternat ive ly the param eters t h i s _ q u a n t i t y , o b j l _ i d a n d o b j 2 _ i d cou ld h ave been d e

fined as part o f a single A D T .

Notice that we are supposing that the identifier of an object of this template is the

pair o b j_ id l , o b j_ id 2.

3.3.12 Composition and Decomposition

Objects are combined to form composite objects by using the LOTOS enabling, interleav

ing and parallel operators.
The characteristics of a composite object are determined by (a) the objects that are

combined; and (b) the way they are combined.

3.3.13 Subsystems

A subsystem is only created to structure the system, helping us manage complexity. It

does not add any extra functionality to the system. We model subsystems by using the

LOTOS interleaving and parallel operators.

Chapter 3. Modelling Fundamental OOA Concepts in LOTOS 85

In o u r banking system, we create the subsystem F i n a n c i a l - I n s t r u m e n t s , built from

the class templates C h equ e and S t a n d i n g —O r d e r .

p r o c e s s F i n a n c i a l _ I n s t r u n i e n t s [o b , c s , b a] : n b e x i t :=

(Cheques Cob, c s , ba]

I I
S taaid ing_O rdorsC ob , c s , ba] (O o l SO_Humbor_Sot)

)
e n d p roc

where C h e q u e s and S t a n d i n g - O r d e r s are object generators.
A subsystem has a name (e.g. F i n a n c i a l - I n s t r u m e n t s) , but it has no state or iden

tifier (the process F i n a n c i a l - I n s t r u m e n t s has no arguments). The name is only needed

when joining all the pieces of the system. It will never be used by any object (an ac

count, for example) to communicate with a component (a cheque or a standing order, for

example). This communication is direct, without the subsystem’s knowledge.

During our experiments with ROOA, we discovered rules by which class templates can

be grouped to form subsystems. Some of these rules were imposed by LOTOS, which is

not the right reason for grouping, but they make sense as a rationale. We present them

in Chapter 6.

3.4 Conclusions

This chapter described the representation of object-oriented analysis concepts in LOTOS.

This includes the main concepts of: class template, class, object, communication between

objects and inheritance. A class template defines the common characteristics of objects of

the same kind and is modelled with a LOTOS process definition and one or more ADTs

which represent the attributes. A class is the set of objects instantiated from a given class

template. We extend this idea and propose object generators to create objects from a

given class template. An object is a member of a class and is created by instantiating a

class template.

Chapter 3. Modelling Fundamental OOA Concepts in LOTOS 86

As specifying ADTs is usually a lengthy and tedious task, we propose a simpler way

to accomplish this job. The basic idea is that modifiers are left without equations, and

selectors are defined with dummy equations, if they do not need to return a particular

value, and with proper equations, if they need to return a particular value.

Communication between objects (message connections) is modelled by two LOTOS

processes synchronizing on a structured event. During synchronization the two processes

may exchange data. Complex object interactions may be built out of simpler interactions,

by using the LOTOS parallel operators.
Another main concept discussed in this chapter is that of inheritance. We model inher

itance by using technical features o f LOTOS, namely superclasses with exit functionality.

Chapter 4

Further Concepts: Complex

Objects

4.1 Introduction

In entity-relationship models, the term aggregation is used to describe the relationship

between an entity and its attributes. Each attribute is a component of an entity, and

the entity is an aggregate of its attributes. We are interested in a broader definition of

aggregation which describes the relationship between objects and allows a more complex

object to be formed from the combination of simpler objects. The complex object is

called the aggregate object and the simpler objects are called object components, or just

components. Aggregates are described by part—of, whole—part, component—of, or consists—of

relationships.
We have a broader view of aggregation than some other authors. An important char

acteristic of our aggregates is that they may add behaviour to the behaviour defined in

their components. Moreover, components within the aggregate may communicate between

each other without the aggregate’s ‘ knowledge’ . The services defined in a component may

or may not be on offer by the aggregate. We ciassify aggregation according to whether or

not the components are visible to the other objects in the system and also whether or not

the number of components can vary in time.

87

Chapter 4. Further Concepts: Complex Objects 88

We make a clear distinction between aggregates and subsystems. While an aggregate

is an object, a subsystem is only a group of objects, without individual identity.

Although, in the past few years, researchers have paid special attention to aggregation,

there is no standard definition of what an aggregate is. This chapter reviews the more

common views of aggregation and presents our view, proposing a set of properties that

aggregates should satisfy. Finally, it shows how ROOA uses LOTOS to model aggregates.

4.2 The Role of Aggregation

Aggregation is a relationship between several objects which allows a more complex object,

the aggregate, to be built from a combination of simpler objects, the components. Both

aggregates and components are objects; they have an identity, they offer services according

to a certain behaviour and they have state information which records the results of their

services. The behaviour and state information of the aggregate is given by a combination of

the behaviour and state information of its components and by extra data and functionality.

Aggregation with hidden components is a kind of abstraction. There are other kinds,

generalization being an example. Abstraction is the suppression of detail about an object,

except for that relevant to the immediate purpose. Other kinds of abstraction can be

applied during implementation where a concept is described by parts, but none of these

parts is a true object. Implementation abstraction hides implementation detail from the

user. “ Real-world” abstraction, such as aggregation and generalization, is useful when

thinking about the real world. It defines a more abstract (higher level) object which is

useful for our understanding of the problem. This sort of abstraction helps in controlling

the size and complexity of large systems during development and, if a system is developed

using levels of abstraction, the resulting product is less difficult to understand.

It is important to distinguish between the role of an aggregate and that of a grouping

of objects, such as subsystems. We believe that an aggregate must be a representation

of an entity from the real world and it may have information of its own, for example

the number of components. In the more interesting case, the aggregate manages the

interaction between its components and the rest of the objects in the model. Whereas

Chapter 4. fhrther Concepts: Complex Objects 89

subsystems may be used during analysis, and may have no implementation consequences,

aggregates are objects which have first class status in the system and which usually appear

in the final implementation.
A subsystem is not an object, it is a grouping of logically related objects. The behaviour

of a subsystem is given by the behaviour o f its components. Each component communicates

directly with objects outside the scope o f the subsystem, as if the subsystem did not exist.

Wirfs-Brock et al., for example, describe a subsystem as an analysis construct which does

not survive in the implementation [WBWW90, p30]:

A subsystem is a set of classes (and possibly other subsystems) collaborating to

fulfil a set of responsibilities. Although subsystems do not exist as the software

executes, they are useful conceptual entities.

These subsystems are groupings of objects useful for understanding a problem, but

they may or may not describe a concept from the real world. Aggregates, on the other

hand, describe complex concepts from the real world and so they are named objects.

The role played by aggregation varies from author to author. Rumbaugh et al. define

it as a stronger form of association (conceptual relationship) [RBP'*'91]; Smith and Smith

stress its importance as a mechanism to introduce abstraction [SS77]; and Hartmann et

al. [HJS92] use aggregation as a structuring mechanism and define its formal semantics,

showing how it is supported by the specification language TROLL [JSHS91].

We see aggregation as a mechanism for structuring a large system into different levels of

abstraction, in which each higher level object is described in terms of simpler objects. As

we will see, it uses abstraction, information hiding and encapsulation as basic techniques.

4.3 Combination of Objects; Another View

Although aggregation seems a simple concept, a standard definition does not exist (see

e.g. [Bla93, Civ93, HJS92, Ode94]).
As we are interested in modelling aggregation formally, this section discusses the

view supported by Hartmann ei al. who define a formal semantics for composite ob-

Chapter 4. Further Concepts: Complex Objects 90

jects [HJS92]. According to them, the combination o f objects to form a more complex ob

ject (such as an aggregate) is modelled by structure-preserving mappings between objects,

also called object morphisms. A special case of object morphism is the object embedding

morphism which describes a complex object ob\ encapsulating an object ob-̂ . The set of

life cycles of the encapsulated object ob ̂ must be preserved and events of ob\ must use

events of 062 to modify 062’s state. This latter requirement is captured by the concept of

calling. If an event ei, in obt, calls an event 62, in 062, then whenever ei occurs, C2 also

occurs.
Hartmann ei al. state that an object embedding morphism between objects ob\ and

062, assuming that <>¿>2 is embedded in ob\, has to satisfy the two following conditions:

1. The events of »¿>2 are included in the set o f events of ob\. For the life cycle of the

(composite) object 061, if we constrain a life cycle to the events of the embedded (or

part) object, we have to obtain a valid life cycle of the embedded object.

2. The attributes of 062 are included in the attributes of ob\. For observations of ob\

projected to the attributes of the part object, we must obtain the same observation

as for applying the observation mapping o f part object ob2 to a life cycle of ob\

restricted to the events of 062•

An aggregate object that satisfies these two rules is the coproduct of its components.

Such an object does not add any behaviour to the behaviour already defined in its compo

nents. Most object-oriented analysis methods argue that the interesting situation appears

when the aggregate htis properties of its own together with the properties of its compo

nents [CY91a, dCLF93, RBP+91].

Imposing the condition that every event defined in an object component has also to

be defined in the aggregate forbids a component to have services hidden from the aggre

gate. Such hidden services would allow, for example, communication between components

without the aggregate’s intervention. Hence, the two rules forbid the communication be

tween object components defined at the same level o f the hierarchy and in the scope of

the aggregate.

Cha,pter 4. Further Concepts: Complex Objects 91

We want our aggregates to have extra functionality which is unknown to their com

ponents. Moreover, we want to allow communication between object components without

the aggregate’s knowledge. Therefore we permit, services defined in a component, and

which are only needed by another component, not to be on offer by the aggregate. For

these reasons our aggregates are different from thpse of Hartmann et al.

4.4 Transitivity

As a component is an object, it may happen that this object is itself a complex object,

composed of other objects. The object at the top level of the hierarchy need not know

that one or more o f its components are aggregates. This leads to the issue of transitivity.

While some authors [dCLF93] explicitly say that aggregation is not transitive, other au

thors [RBP+91] define transitivity as one of the most important properties of aggregates.

Transitivity can be discussed according to the semantics o f the aggregation relationship.

Let us suppose that aggregate ob\ has the component 062 which has a component ob^. It

is the case that if ob2 is part of the internal structure of ob\ and of»3 is part of the internal

structure of ob^, then ob ̂ is part of the internal structure o f 061. However, transitivity

is lost when aggregation relationships with different semantics are involved. For example,

I am part of a research group and my arm is part o f me, but my arm is not part o f my

research group.

Message connections, for example, are not transitive. If ob\ has a message connection

with of>2 and of>2 has a message connection with ob^, this does not mean that ob\ has a

message connection with 0&3. If this was not so, information hiding and encapsulation

would not be available. Nevertheless, indirect communication is possible. When the top

level object, object ob\, requests a service from one of its components, object 062, it

may well be that ob ̂ delegates part o f the service to one o f its components, object 063.

However, ohj does not need to know the 062-services which correspond to calls of 063-

services. We can say that, in general, ohj-services call 062-services which call o63-services.

This is discussed by Rumbaugh e< al. [RBP'^91] as propagation of operations and is what

Hartmann et al. [HJS92] call event-calling.

Chapter 4. Further Concepts: Complex Objects 92

4.5 Classifying Aggregation

We describe an aggregate in terms of its components. We allow a component to be hidden

(non-shared) from other objects or shared by other objects. We use the term aggregation

to refer to the relationship between the aggregate and its components. As a conceptual

relationship, aggregation has cardinality. We show da^dinality at the end points of the

relationship with an amount (k) or a range (n, m)*.

A hidden component is not visible to other objects in the system and so it can only

communicate with the rest of the system through the aggregate, although it can interact

with other components in the same aggregate. An aggregate defines the scope o f its hidden

components and encapsulates each of them.

A shared component can be accessed by other objects in the system. For each shared

component, an aggregate has an attribute holding the object identifier of that component.

A component encapsulates its own state and behaviour, in the sense that its state may

only be changed using the services defined in its interface. The interaction between an

aggregate and its components and among components is via communication [MC93c].

So far, we have been talking about aggregates and components as being objects. We

will from here on talk about aggregate classes, component classes, aggregate objects and

component objects. However, in situations where the meaning is understood by the con

text, we may use only the terms “aggregate” and “component” .

In the object model of OOA methods the aggregate is represented by the class template

at the top level of the hierarchy and the components are the class templates at the bottom

(see Figure 4.1).

P'or our work, we allow aggregates with either a static or dynamic number of compo

nents, but we restrict the number of component classes to be constant. The structure of an

aggregate with a constant number of components is defined at requirements-specification

time and its composition never changes, while the structure of an aggregate with a variable

number of components can have its composition changed during its life time.

Aggregation with a static number of hidden components is called disjoint composition

'W e omit cardinality when it is not important for the problem being diecuaaed.

Chapter 4. Further Concepts: Complex Objects 93

Figure 4.1: Aggregation

by Hartmann et al. [HJS92] and ensemble by Champeaux et al. [dCLF93]. Hartmann

and his colleagues also distinguish aggregation with a static number of shared components

(they call it static non-disjoint composition) and aggregation with a dynamic number of

shared components (they call it dynamic non-disjoint composition).

Some authors treat other aspects of aggregation. For example, Odell cla.ssifies aggre

gates according to six kinds [Ode94]. Most of these kinds o f composite objects do not

seem to us to be useful in describing software systems.

4.5.1 Aggregation: Hidden Components

A hidden component is defined internally to its aggregate, and so it is hidden to the

other objects in the system (as defined in [dCLF93, HJS92, RBP"*'91]). Furthermore, this

object exists only while the aggregate exists. A hidden component may only interact with

other components in the same aggregate or with the aggregate. The aggregate manages

any interaction between such components and the rest o f the model. All the services

defined within hidden components which are to be offered to the outside are on offer by

the aggregate. When these services are required from the aggregate by another object, the

aggregate routes the message to one of its components, receives the answer, if any, and

then returns the result. Figure 4.2 shows a simple object model composed o f an aggregate

with two hidden components and a client. We have used a modified version of the Coad

Chapter 4. Further Concepts: Complex Objects

and Yourdon notation. Each box in the object model represents a class template.

94

(— rvtc»_C1) (ffvtc<,C1)

—
Cll«nt_A . »If9.».v!0...............

servlca_B1
Mivtce.CI
Mrvtc«.D2

service^l
servic6_A2

Compon«nt_D

Mrvtce_D1
servlc«_D2

Compon«nt_C

Mrvice_C1
servtce_C2

Figure 4.2; Aggregation with two hidden components

There is a problem in representing aggregation with hidden components. The notation

used by object-oriented analysis methods, such as [CY91a, Jac92, RBP‘*'91] is confusing,

since it represents two different levels of abstraction in the same diagram. The aggregate

is represented by the top box in the diagram and the components are represented by the

lower boxes. However, the aggregate is really composed o f everything and the lower boxes

should be represented inside the top box.

In Structured Analysis, when drawing Data Flow Diagrams (DFDs), for example, we

use a diagram for each level of abstraction: a DFD at level n + 1 replaces a process in

the DFD at level n. This approach is not used to build object models. In a CASE tool,

such as ObjecTool*, subjects (or modules, or subsystems) can be expanded to show their

object components, even if the resulting final diagram has a flat structure. However, an

aggregate cannot be simply replaced by its components, because it is not just the collection

of its components, as a subsystem is; it has extra functionality. If aggregates are useful

to structure a system into levels of abstraction, we should be able to use them to build

object models accordingly. Figure 4.3 represents this idea.

We want to use existing object-oriented CASE tools, and so we accept the standard

OOA terminology. We propose an alternative interpretation of the diagram, considering, at

'ObjecTooI U a trademark of Object International, Inc.

Chapter 4. Further Concepts: Complex Objects 95

a) b)

Figure 4.3: a) Higher level of abstraction: aggregate; b) Lower level o f abstraction: the

components and the aggregate’s extra functionality

the lower level of abstraction, the top box of the diagram to be the interface of the aggregate

and the aggregate, i.e. the whole structure, as the dotted box shown in Figure 4.4.

Aggr*oat«_B

(■•rvtc^^CI)

MrvtM.AI
Mrvtc«_A2

(result)

Aogragal* B
(Inteitecey

servlce_B1
sarvice_C1
service_D2

Component_D

servtce.DI
servlce_D2

(servtee.CI)

^ (result)

Compor>ent_C

servIce.CI
servlce.C2

Figure 4.4: Aggregation with hidden components marked as a single class template

At one level o f abstraction, Aggregate—B represents the complete structure. At a lower

level of abstraction we have Component—C, Component—D and the extra functionality the

aggregate offers (represented by Aggregate—B which is now regarded as the interface to the

components). We choose to name the complete aggregate with the same name as the box

Chapter 4. Further Concepts: Complex Objects 96

at the top level o f the aggregation, since they represent the same concept.

If the number of instances of each component is static, the internal structure of the

aggregate never changes. If the number of object components is dynamic, the aggregate

may create new objects or even remove some of the existing ones, changing its internal

structure. Notice however, that in both situations, the interface of the aggregate never

changes and the components only exist while the aggregate exists. The creation of new

component objects is the exclusive decision of the aggregate.

4.5.2 Aggregation: Shared Components

A shared component has a life of its own, that is, it can exist independently of the aggre

gate. While a non-shared component is encapsulated in the aggregate and hidden from

the rest of the model, a shared component is visible outside the scope of the aggregate

and therefore it can communicate directly with other objects. The aggregate knows its

shared components by having a specific attribute for each one. This attribute holds the

object identifier of the component. Figure 4.5 shows the example given in Figure 4.2, but

now Component—C is visible outside the aggregate.

Figure 4.5: Static aggregation with one shared component and one hidden component

The top box represents the whole aggregate and each lower box its components. As

Component—C is shared, it is outside the dotted box. The services offered by the shared

Chapter 4. Further Concepts: Complex Objects 97

component ca.n also be offered by the aggregate. It is a client’s decision to choose either

Aggregate—B or Component—C ior communication. When an object, outside the scope of

the aggregate, communicates with the aggregate, it may or may not give the identifier of

the shared object involved.
There are situations which may be relevant in understanding certain problems, but

which are not shown by an object model. When we talk about a shared component, we do

not specify in which terms this component is shared. For example, it may be important

to be able to determine whether or not a given instance of a component class is shared,

or if the sharing concerns different instances.

Let us consider two examples. In the first one, we define an aggregate Car with a

component E n g in e . The engine class is shared by another aggregate. P la n e . It seems

reasonable to assume that one instance of E n g i n e may not be shared by a car and a plane,

at the same time. Therefore, in Figure 4.6 we have sharing of a concept, but not a sharing

of objects, even if the concept of relationship is defined between instances and not between

classes.

Figure 4.6: Sharing the class template, but not the objects

For the relationship between Engine and Car, Engine has optional cardinality, which

means that an engine may or may not have a relation with an object in Car (similarly for

the relationship between Engine and Plane). In such a situation, the object model does

not distinguish between cases where an object component can belong to two aggregate

objects at the same time, belong to only one o f them, or to none o f them.

The case in Figure 4.6 can be seen as a mixture of sharing and hiding. The component

Chapter 4. Further Concepts: Complex Objects 98

class is shared, but the component object is hidden. A component class being shared

means that we can use the definition of the component to build different aggregates.

(If the component class was not shared it would not be visible to other aggregates.) A

component object being hidden, means that the object has to be instantiated within the

aggregate and no other objects know about it. ^

Now, consider the aggregates Feunily and Research-Group sharing the same compo

nent Person. In this case, an instance of person can be simultaneously shared by an

instance of family and by an instance o f research group. As we can see in Figure 4.7, we

cannot show the difference between this situation and the situation depicted in Figure 4.6

in an object model.

Figure 4.7: Sharing the class template and the objects

We can have static aggregation, when the number of components is constant, and

dynamic aggregation, when the number of components is variable. Both cases are dealt

with in a similar way to aggregation with hidden components, except that now the creation

of an object component may be initiated either by the aggregate or by one o f the other

objects.

Hartmann et al. allow the creation of a dynamic aggregate with non-existing object

components [HJS92]. Such components, at the moment the aggregate is defined, have an

empty life cycle, but their identifiers have to be pre-determined.

According to some authors, only aggregation with hiding represents a useful mecha

nism [Jac92, RDP+gi]. Rumbaugh et al., for example, argue that aggregation with sharing

should be treated as an ordinary conceptual relationship [RBP'*’91]. We believe that there

arc advantages in showing such a relationship as an aggregation as it can improve our

Chapter 4. Further Concepts: Complex Objects 99

understanding of a system and may give directions for reusability. (We justify this view

in Sections 4.8.2 and 4.8.4.) While a conceptual relationship is likely to change when it is

put in a different context, an aggregation may not change.

With respect to deletion, a shared component can only be removed when no other

object in the system has access to it.
I

4.5.3 Catalog Aggregation

Some authors classify aggregation into physical and catalog, according to its cardinal

ity [Bla93]. In physical aggregation, each component object is part of at most one aggre

gate object of a given class, while, in catalog aggregation, each component object may be

part o f many aggregate objects of the same class. That is, in a physical aggregation, each

relationship from each component to the aggregate has multiplicity one, while in catalog

aggregation, each relationship from each component to the aggregate has the multiplicity

many. This is shown in Figure 4.8.

Figure 4.8: Catalog aggregation and physical aggregation

(The examples discussed in the previous section are physical aggregates.)

Catalog aggregation describes sharing between instances of the same class: two differ

ent instances of a given aggregate class share the same component object. In Figure 4.9

the object Edward is a member of the Naural—Natworka and Artlf Iclal—Intalliganca
research groups.

When we allow catalog aggregation we lose information hiding, since an object com

ponent has to be known by two aggregate objects. Therefore, we treat this kind of ag-

Chapter 4. Further Concepts: Complex Objects 100

F’igure 4.9: One person belongs to two research groups

gregation as aggregation with shared component classes. Catalog aggregation is helpful

when designing problems where components of the same type are interchangeable.

When discussing the design of relational data bases, Smith forbids catalog aggregation

by imposing the following rule [SS77]: for a given aggregate class A with the component

classes Ci, ..., C„, two distinct real-world instances of A must not determine the same

instances of C,-. That is, a given member o f C; must not be shared by two instances of A.

Kim et al., when defining dependent objects, are implicitly deflning physical aggrega

tion [KHC'’ 87]. Some authors classify the complex object of a physical aggregation into

aggregate, if it has a 1 : 1 relationship with each component, and collection, if it has a

1 : N relationship with each component [Civ93]. A collection is useful to define homoge

neous sets o f objects, for example a Football_Team is a collection of objects of the class

F ootba ller . However, we do not consider this a special kind of aggregation and we use

the term aggregate for both cases.

4.6 Properties of Aggregation

There are many different views of aggregation and in the previous sections we have dis

cussed some of them. Authors seem not to agree on which specific properties aggregates

should satisfy. However, we can identify one point which they all have in common: in

teresting aggregates have hidden components. Aggregates with hidden components are

implemented using encapsulation. This permits an aggregate to be seen as a single object

Chapter 4. Further Concepts: Complex Objects 101

at one level of abstraction, and so it can be used as a structuring mechanism.

We agree that most advantages come from using aggregates with hidden components.

However, instead of treating and representing aggregation-with-sharing as a regular form

of conceptual relationships, we use the terminology of aggregation. By doing this, we are

giving more information about the composition o f an object, improving the understand-

ability o f the relationship that connects the two objects.

We propose that aggregates have the following properties:

• Aggregates may have extra functionality in addition to the functionality defined in

their components;

• Object components at the same level of abstraction (within the same aggregate) can

communicate with each other without having to communicate via their aggregate;

• There is a mechanism of service delegation (propagation of operations) between

objects at consecutive levels of abstraction;

• An aggregate acts as the interface to, or manager of, the aggregate components.

It calls services of the components, but the components do not call services of the

aggregate;

• In general, aggregation is not transitive if the semantics of the relationships involved

differ. Aggregation is never transitive with respect to message connections. Suppose

that aggregate A has a component B and B has a component C . If A communicates

with B, and B communicates with C, this does not imply that A communicates

(directly) with C;

• Aggregation is antisymmetric: if B is a component of A, then A is not a component

o f B.

Aggregates with hidden components satisfy the following extra properties:

• An aggregate encapsulates its components;

Chapter 4. Further Concepts; Complex Objects 102

• Each component is hidden from the rest of the world, i.e. it is not visible outside the

scope of the aggregate;

• The deletion of an aggregate implies the deletion o f <dl its components.

Aggregates with shared components satisfy the extra following properties:

• The components cannot be encapsulated as they must be visible to other objects

outside the scope of the aggregate;

• If necessary, a component may know about its aggregates. This is the case for catalog

aggregation, where it may be useful for a component to know to which aggregates it

belongs;

• The deletion o f a component is only possible if there are no other aggregates with

references to it. It may be initiated by other objects in the model;

• The deletion of an aggregate does not imply the deletion of its components;

• The aggregate can exist after the deletion of its components;

• The creation of a component may be initiated by other objects in the model.

4.7 Managing Complexity

Aggregation gives a mechanism for structuring large systems. Such structuring may be

accomplished either top-down or bottom-up. In a top-down approach, aggregates can show

up early. As the development evolves, these complex objects are refined and their compo

nents identified. Even when we identify aggregates early, we do not have to guarantee their

correct classification into hidden or shared. As we will show in Section 4.8.4, moving from

one type to the other is very simple and brings no problems. In a bottom-up approach,

we may start identifying the lower level objects and then we may group some of them to

form aggregates.

In some situations, depending on the style of the requirements, it may be difficult

to start with a top-down approach. We can identify two reasons for this. First, if the

Chapter 4. Further Concepts: Complex Objects 103

requirements are written in a functional way, when dividing a system according to its

functional areas it may be that different areas describe parts of the same object. If each

team takes a functional area, some of the teams may have different views of the same

object. For a large project it is necessary to give names to candidate objects, without

spending much time considering whether or not a given object is important. The analysts

can use their knowledge about the real world. Next, we can make groupings of objects

according to their role in the system and keep interactions between groupings low. Each

group of objects is then given to different teams who proceed with the analysis using a

mixture o f top-down and bottom-up approaches.

Second, the requirements document may describe the problem in a very flat style,

without hierarchical structure. It is also possible that the users describe physical details

of the problem and are unable to abstract concepts. If this happens, the candidate objects

we start identifying are certainly low level objects. As the development proceeds, more

complex objects, such as aggregates, are identified.

Most OOA methods start by identifying objects. Depending on the style used to

write the requirements document, we can identify aggregates sooner rather than later. We

believe that in a large project the objects we start identifying are a mixture of complex and

simple objects. We can identify complex objects in two ways: by analysing relationships

and similarities between objects (bottom-up composition) and, while describing an object

we may identify it as being a complex object (top-down decomposition).

4.8 Modelling Aggregation in LOTOS

We have shown in Chapter 3 how to model objects and classes in LOTOS. An object is

normally modelled by a process and one or more ADTs, but when an object in the object

model only plays the role of attribute of another object, it is modelled by a single AD T.

To be useful as an abstraction, an aggregate must play an Important role in the system

and so it is modelled as a process and one or more ADTs. If the object only plays the role of

an attribute, although an attribute may have internal structure, we do not regard it as an

aggregate. For example, although we can consider the attribute Address to be composed

Chapter 4. Further Concepts: Complex Objects 104

o f H ouse-N um ber, S t r e e t - N a m e , P o s t - C o d e , C i t y —Name and C o x m try —Name, A d d r e s s is

modelled cis an ADT which is a combination o f sorts (one sort for each component). Also,

if the components of an object only play the role of attributes, the object is modelled as

an ordinary object, not as an aggregate.

This section is concerned with showing how to model aggregates in LOTOS. As many

authors suggest, we model aggregation with shared components as conceptual relation

ships. The aggregate and each component are defined by separate processes, and the

aggregation (the relationship) is modelled in the same way as for conceptual relationships.

Unless something different is said in the requirements, the aggregate knows its components,

but the components do not know about the aggregate.

An aggregate with hidden components is modelled as a process which encapsulates a

process for each of its components together with a process manager, or interface. As a rule,

we give the same name to both the process representing the aggregate and the process

representing the interface. The following subsections discuss this in detail. A hybrid

aggregate has hidden and shared components. The hidden components are modelled as

processes embedded in the process defining the aggregate, while the shared components

are modelled as separate processes. A reference to each separate process is modelled as

an ADT and given as a parameter of the aggregate’s process.

While a simple object may be regarded as a sequential machine, an aggregate has the

implicit connotation of having internal parallelism [dCLF93].

Having a static or a dynamic number o f object components does not complicate the

problem, since we can easily define object generators. If we are dealing with aggregation

with hidden components, the ob ject generators for each component are defined inside the

aggregate and therefore they are not visible from the outside. This allows the same set

of identifiers to be used by different object generators defined inside different aggregates.

The advantage of this is its simplicity. However, each component is then only uniquely

identified when the aggregate identifier is given together with the component identifier.

We do not see this as a problem, since the components are not visible to the other objects

in the system and so the aggregate identifier must always be used to access them.

Chapter 4. Further Concepts: Complex Objects 105

To demonstrate how aggregates can be modelled in LOTOS, we use a simple video

player with four functions: load a tape, play a tape, stop playing and eject a tape. The

video has two components: a motor and an eject mechanism. Its behaviour is given by

the finite state automaton depicted in Figure 4.10.

Loaded;
stopped

eiect/

P*ayi

stop

Empty;
stopped

Playing;k>adM
eject ' play

Figure 4.10: Behaviour o f the video player example defined as a finite state automaton

4.8.1 Aggregation with Hiding

If the number o f components is constant, we can define the internal composition of the

aggregate at specification time. Creation or deletion of the aggregate implies the creation

or deletion of its components. Therefore, the deletion of a component is impossible without

the deletion o f the aggregate.

Let us suppose that the video player has one motor and one eject mechanism. Fig

ure 4.11 shows the class templates for Video, each one with its attributes and services.

S tate—V can take the values empty, loaded and p laying ; State_N can take the values

stopped and run; finally, State_E can take the values empty and loaded.

As the components are not shared, we draw a dotted box (structure) around the

aggregate. The semantics o f this is that the class components Motor and Eject-Mechanism

are encapsulated within the aggregate Video, and so they are not visible outside Video.

In Chapter 6 we show, by following an algorithm, how to build an Object Communication

Chapter 4. Further Concepts: Complex Objects 106

Figure 4.11: Video player aggregate

Diagram (OCD) as depicted in Figure 4.12. (In this simple example, the rest of the system

is the interface scenario.)

Figure 4.12: Object Communication Diagram

In LOTOS, the corresponding top level behaviour expression takes the form:

(V ld c o C v] (N a k a _ V ld « o (id l o l V i d « o _ I d , ampty o f S ta te _ V , b r a n d . v l d a o ,

t y p « _ v i d « o , i d l o f M o t o r . I d , i d l o f E j « c t_ M a ch a n la m _ Id))

I Cv] I
I n t a r f a c « _ S c « n a r l o [v]

)
whara

p r o c a a a V l d a o f v] (t h i a . v l d a o : V i d a o . S t a t a) : n o a x l t :■

h ld a m, a in

(V idaoC v, m. a] (t h l a . v l d a o)

Chapter 4. Further Concepts: Complex Objects 107

I [m . e] I
(M o t o r C m] (M a k e _ M o t o r (G e t _ M o t o r _ I d (t h i s _ v i d e o) , s t o p p e d o f S t a t e _ M))

I I I
E j e c t _ M e c h e m is m [e]

(M a k e _ E j o c t _ M e c h a n i8m (G e t _ E j e c t _ M o c h a n i8m _ I d (t h i s _ v i d e o) ,

e m p t y o f S t a t e ^ E))

)
)

w h e r e

p r o c e s s V i d e o C v , m , e] . . . e n d p r o c (• V i d e o *)
p r o c e s s H o t o r C m] . . . e n d p r o c (* M o t o r *)

p r o c e s s E j e c t _ M e c h a o i i s m [e] . . . e n d p r o c (• E j e c t . M e c h e m i s m ♦)

e n d p r o c (* V i d e o e)

As we discussed before, we name the complete aggregate with the same name as the box

at the top level o f the aggregation. This is shown in LOTOS by having two processes

with the same name, one encapsulating the other. At one level of abstraction the outside

process represents the aggregate (i.e. the box at the top level of the hierarchy) while at

a lower level of abstraction the inner process represents the box at the top level of the

hierarchy which is now regarded as the interface to the component objects.

As gates m and e are hidden in the external process Video, Motor and Eject-Mechanism

are encapsulated within Video and defined after the keyword where. The two components

are therefore hidden from In ter fa ce -S cen a rio . In this example we are only creating

one instance of each class template Motor and Eject-Mechanism, but we could create

others by having more process instantiations in the behaviour expression. The operations

Get_Motor_Id and G et.E ject.M echanism .ld are defined in the ADT that defines the

sort V ideo .S tate , as follows:

t y p e V i d a o . T y p e i s V i d a o _ I d _ S e t _ T y p e , S t a t e _ V _ T y p a , B r a n d _ V _ T y p a ,

T y p e _ V _ T y p e , M o t o r _ I d _ S e t _ T y p e , E j a c t _ M e c h a n i s m _ I d _ S e t _ T y p e

s o r t s V i d e o . S t a t e

o p n s

M a k e . V i d e o : V i d e o . I d , S t a t e . V , B r a n d . V , T y p e . V , M o t o r . I d ,

Chapter 4. Further Concepts: Complex Objects 108

C h an ge .S ta te

G et_V id eo_Id

G et_M otor_Id

E ject_M echan ism _Id -> V id e o _ S ta t e

: V id o o _ S t a t e , S ta te_V - > V id o o _ S ta t e

: V i d e o .S t a t e -> V i d e o . I d

; V id e o _ S t a t e - > M otor_Id

G et_E j«ct_M ech anism _Id : V id a o _ S ta te -> E j«ct_M ech an ism _Id

eqns l o r a l l v : V id e o _ S t a t e , b : B ran d.V , t : Type_V, n : V id e o _ I d , m: M o to r_ Id ,

e : E jec t_M ech im ism _Id , s , s i : S ta te_V

o i a o r t V id o o _ I d

G et_V ideo_Id(M sike_V id eo (n , s , b , t , m, e)) = n ;

G e t _ V id e o _ I d (C h a n g e _ S t a t e (v , s)) = G e t _ V i d e o _ I d (v) ;

o l s o r t H o to r _ Id

G et_M otor_Id (M ak o_V id eo (n , s , b , t , m, o)) = m;

G et_M oto r_ Id (C h a m g e _ S ta te (v , a)) = G e t _ M o t o r _ I d (v) ;

o f s o r t E je c t_H ech a n ism _Id

G et_E ject_M echea iism _Id(M a*e_V ideo(n , s , b , t , m, o)) = e ;

G e t_ E joc t_M ech a n ism _Id (C h a jig e_S ta t« (v , s))

= G e t _ E je c t _ H a c h a n is m _ I d (v) ;

o f s o r t . . .

andtype

In LOTOS, defining an aggregate with a dynamic number of components is not difficult,

since we have the facility o f defining object generators. An object generator allows us

to create multiple instances of objects. Supposing that the number of components was

dynamic, the external process Video would be defined as:

process V ideo[v](thls_vldao: V ldeo.Stata): noaxlt

hida m, a in

(VidaoCv, m, a](th ls .v ld a o)

|[m, a] I
(Motors[m]({> of Motor_Id_Sat)

I I I
E ja c t .M a c h a n ls m s C a] (O o f EJact_M achanism _Id_Sat)

))

Chapter 4. Further Concepts: Complex Objects 109

where

e n d p roc (♦ V id eo *)

in which Motors and Ej ect_Mechanisms are object generators, each one initialised with

an empty set o f identifiers. As the components are hidden, their process definitions are in

the scope of the external process Video, after the keyword where. As an example, let us

consider the object generator Motors:

p r o c e s s M otors [c] (m t s : M o t o r _ I d _ S e t) : n o e x i t : =

c ' c r e a t e ? i d : M o t o r . I d [i d n o t i n m t s] ;

(M o t o r [c] (M a k e _ M o to r (id o i M o to r_ Id , s to p p e d o l S t n t e _ M))

I I I
M o t o r s [c] (I n s e r t (i d , m t s))

)
where

p r o c e s s M o t o r [c] (t h i s _ m o t o r : M o t o r _ S t a t e) : n o e x i t :=

([G e t _ S t a t e (t h i s _ m o t o r) eq s to p p e d] ->

(c !p la y ! G e t _ M o t o r _ I d (t h i s _ m o t o r) :

e x i t (C h a n g e _ S t a t e (t h i s _ m o t o r , r u n))

)
[]

e n d p roc (• Motor *)
en d p ro c (e Motors e)

Motors holds the set of identifiers already created. (Notice that for simplicity we are using

the same gate c to create a motor and to operate the motor, but we could use two different

gates.)

When In tsrfa cs -S ca n a rio requires a service. Video routes the request to the right

component and then returns the result, if any. When more than one object component

is ready to synchronize, one component will be chosen non-deterministically. The inner

Video process, i.e. the process defining the interface of the aggregate, can be defined as:

Chapter 4. Further Concepts: Complex Objects no

p r o c e s s V i d e o [v , m, e D (t h i s _ v i d e o : V i d e o _ S t a t e) : n o e x i t :=

(h id e c r e a t e _ m o t o r , c r e a t e _ e j e c t in

[G e t _ S t a t e (t h i s _ v i d e o) eq l o a d e d] ->

(V !p la y ! G e t _ V i d e o _ I d (t h i s _ v i d e o) ;

m !p la y ?m l : M otor_Id [ml I s i n G e t _ M o t o r _ I d _ s e t (t h i s _ v i d e o)] ;

o x i t (C h a n g e _ S t a t e (t h i s _ v i d e o . p l a y i n g))

[]

[]

[]
c r e a t e _ m o t o r ;

m ¡ c r e a t e ?idm: H o to r _ I d ;

e x i t (A d d _ M o t o r (t h i s _ v i d e o , idm))

[]
c r e a t e _ e j e c t ;

e ¡ c r e a t e ? id e : E je c t_ N e ch a n is m _ Id ;

e x i t (A d d _ E je c t _ N e c h a n is m (th is _ v id e o , i d e))

) » a c c e p t u p d _ v id e o : V id e o _ S ta t e in V id eoE v , m, e] (u p d _ v i d e o)

endproc (* V ideo *)

where create_m otor and cre a te _ e je c t are internal events. The behaviour expression:

m ¡p la y ? m l : M otor_Id [ml I s i n G e t _ M o t o r _ I d _ s e t (t h i s _ v i d e o)] ;

may synchronize with any motor which is in the right state and whose identifier is known

by the aggregate.

The creation of new motors is defined in the body of the inner process Video, by using

the internal event creata.m otor and then synchronizing on event:

m ¡craate 7 idm: M o t o r . I d ;

with the corresponding event defined in the object generator. The E jectJlachanlsm is

dealt with in a similar way.

Chapter 4. Further Concepts: Complex Objects 111

The operation Add.Motor and Add.Ej ect.Mechanism are defined in the ADT V ideo.

Type. This ADT has to be changed to support sets of motors and sets o f eject mechanisms.

When other objects in the system know about the existence of the components, they

can initiate the creation of a new component. However, the components are not visible,

and so it is always the aggregate’s responsibility to select the right component and to

create new ones, by using the object generators.

As a result of having encapsulated components, another instance o f Video can use

the same component identifiers. This means that the identifier of a component must be

combined with the identifier o f the aggregate to give the full object component identifier.

Although a dynamic number of hidden components can be specified in LOTOS, we

believe that it is not a common case. One situation is when a component breaks down.

If a component is not responding to the services required, the aggregate can substitute it

with a new component. The AT&T ESS5 switch has ‘auditors’ which go around checking

invariants in software modules which have a certain functionality. If a module does not

satisfy the invariant, the auditor shuts them down and reinitialises them, or replaces them

with other instances [Hoa94].

4.8.2 Aggregation with Sharing

A shared component exists independently of the aggregate. It is modelled in the usual way,

with a class template and perhaps an object generator, but outside the process defining the

aggregate. The aggregation relationship will then be modelled as a conceptual relationship

in the ADT that defines the state information. In general, the aggregate has a reference to

the shared component, while the shared component only has a reference to the aggregate

if it is explicitly required.

As the components are shared, the deletion of the aggregate does not imply the dele

tion of its components, as happened in the previous section. However, the deletion of a

component may imply the deletion of the aggregate.

Let us recall the video player example, where we have two object components, one for

each component class. Figure 4.13 shows the OCD supposing that EJact—Machanlsm and

Chapter 4. Further Concepts: Complex Objects

Motor can be directly accessed by In terfac e -S cen a rio .

112

Figure 4.13: Object Communication Diagram

In LOTOS, the top level behaviour expression takes the form:

(Intorlace_Sconario[v, m, e]
I [v] I
Videofv, m, e](Make_Video(idl of Video_Id, empty of Stato_V, brauid_video,

type_video, idl of Motor_Id, idl of Eject_Mechanism_Id))

)
I Cm, e] I

(Motor[m](Make_Motor(idl of Motor_Id, stopped of State_M))
I I I

Eject_HechanismCe]
(M^□ce_Eject_Mechanism(idl of Eject_Mechanism_Id, empty of State_E))

)
where

The difference between this situation and aggregation with hidden components is that the

communication gates m and a are visible from the In tsr fa c a .S c a n a r lo . Process Video

corresponds to the interface in the case of aggregation with hiding, although here we want

to regard it as the whole aggregate. The ADT that specifies the video state information

is unchanged. The information about the relationship between Vldao and Motor and

between Vldao and EJact-Machanlsm is given by the parameters o f Maka_Vldao. Instead

of modelling these relationships in the ADT, we could model them as extra parameters of

the process Vldao, as we do for normal conceptual relationships. However, we prefer the

flrst option.

Chapter 4. Further Concepts: Complex Objects 113

If we had a dynamic number of object components, the parameters of Make_Video

would be sets of identifiers, instead o f single identifiers, and the LOTOS top level be

haviour expression would instantiate an object generator for each component, instead of

instantiating each component.

We can also model catalog aggregation. For example, suppose that two videos could

share a motor and an eject mechanism. This can be represented as;

(In terla ce _S c en a rio [v , m, e]

I [v] I

(V i d e o f v , m, e] (M a i :o _ V id e o (i d l o f V id e o _ I d , empty o f S t a to _ V ,

b r a n d _ v id e o , t y p e _ v i d e o , i d l o f M otor_Id ,

i d l o f Eject_M ech^uli8m _Id))

I I I
V i d e o f v , m, e] (M a k e _ V id e o (i d 2 o f V id e o _ I d , empty o f S ta te _ V ,

i d l o f M otor_Id , i d l o f E je c t_ M e ch a n is m _ Id))

)
)
I [m , e] I

(M otor [m](M a k e_M otor (id l o f M o to r_ Id , s to p p e d o f S ta te_M))

I I I
Ej ect_N ech an ism [e]

(N a k e _ E je c t_ N e ch a n is m (id l o f E ject_M ech anism _Id , empty o f S t a t e . E))

)
« h e r e

When modelling cat^llog aggregation we may want to change the ADT of the component

to deal with an extra attribute which gives the set of aggregates in which it takes part.

In the example given in Section 4.5.3, it is desirable that a person knows about his or her

research groups.

While in the case of static aggregation with hiding the aggregate had sole responsibility

for creating its components at specification time, in the case o f dynamic aggregation

the creation and deletion o f an object component may be initiated by other objects in

Chapter 4. Further Concepts: Complex Objects 114

the system. Also, if the object requiring the service knows the identifier of the object

component which will be involved in the operation, we can use that information when

asking the service to Video, instead of using value generation:

p r o c e s s V i d e o [v , m, e] (' t h i s _ v i d e o : V id e o _ S t a t e) : n o e x i t : =

([G e t _ S t a t e (t h i s _ v i d e o) eq lo a d e d] -> i

(V !p la y ! G e t _ V i d e o _ I d (t h i s _ v i d e o) ? m l : M otor_ Id

[ml I s i n G e t _ M o t o r _ I d _ s e t (t h i s _ v i d e o)] ;

m Ip lay !ml;

e x i t (C h a n g e _ S t a t e (t h i s _ v i d e o , p l a y i n g))

[]

[]

en dproc (♦ V id eo ♦)

4.8.3 Sharing Concepts but not Objects

In Sections 4.5.2 and 4.5.3 we discussed some different views o f sharing. When the com

ponent class is shared, the object components may or may not be. The LOTOS behaviour

expressions in Section 4.8.2 give us both shared component classes and shared object com

ponents. A shared component class and non-shared object component can be obtained by

proceeding as we did for hidden components, but now the component class templates are

defined outside the scope of the external Video process while they are instantiated within

its scope:

p r o c e s s V i d e o [v] (t h i s . v i d e o : V i d e o _ S t a t e) : n o e x i t

h id e m, e in

(V ideoCv, m, e] (t h i s . v i d e o)

ICsi,e]|

(H o to r C m](H a k e _ M o to r (G e t_ H o to r _ Id (th is_ v ld e o) , s t o p p e d o f S t a t e .H))

III
EJect.MechanissiCa]

Chapter 4. Further Concepts: Complex Objects

(MaLke_Eject_Mechimi8ni(Get_Eject;_Mechani8m_Id(this_video) ,
empty of State_E))

115

)
where
proce88 VideoCv, m, e] ... endproc (• Videb •)

endproc (* Video *)

proceee Motor[g] ... endproc (* Motor *)
proceee Eject.HechaniemCg] ... endproc (♦ Eject_Mechamism *)

4.8.4 Hiding and Sharing: Moving Around

Having modelled aggregates with hidden components and aggregates with shared compo

nents in LOTOS, let us discuss the changes necessary to transform one into the other. The

basic difference in modelling these two kinds o f aggregates is concerned with encapsulation

and information hiding. While hidden components are encapsulated by the aggregate and

hidden from the other objects in the model, shared components are modelled as separate

processes which are visible from outside the aggregate.

As we have discussed in Section 4.5.1, in order to encapsulate a hidden component

into its aggregate, we create a higher level structure which we name with the same name

as the class template at the top of the aggregation hierarchy in the object model.

To transform an aggregate with hidden components into an aggregate with shared

components, we follow the two steps:

1. Replace the process that defines the higher level structure, i.e. the outside process,

by its behaviour expression which joins the inner process with the components. The

inner process now plays the role of the higher level structure.

2. Make all the gates visible outside the aggregate’s scope, removing the h ide operator,

and add those gates to any process instances which need them.

The opposite, i.e. transforming an aggregate with shared components into an aggregate

with hidden components, can be accomplished in two steps:

Chapter 4. Further Concepts: Complex Objects 116

1. Encapsulate the aggregate and components processes within an extra process. Name

this process with the same name as the previous aggregate. (Now, the outside process

represents the aggregate and the inner process represents the interface of the whole

structure with the other objects in the model.)

2. Hide, in the encapsulating process, the gates tvhich are used to communicate with

the aggregate components.

The procedures above can both be applied when dealing with object generators.

4.9 Conclusions

Aggregation is a useful concept which can be used to control the size and complexity

of a largo system. Aggregation with hidden components mainly uses the concepts of

abstraction, encapsulation and information hiding. This helps in providing a top-down

approach which aids the software engineer developing the system and, at the same time,

guides the reader to understand the system.

Aggregation with shared components does not bring as many advantages and many

authors advocate that it should be treated as an ordinary conceptual relationship. How

ever, we believe that there are advantages in showing it in an object model. It will give

hints about the structure of a system, helping us to understand it, and it can also give di

rections for reusability. While a conceptual relationship is more likely to change when the

system is put in a different context, an aggregation may not change and so we can see it as

reusable in other contexts. That is why we propose modelling it within the ADT, instead

of modelling it as an extra argument in the process template, as we do with conceptual

relationships.

LOTOS can model aggregation with shared and with hidden components. Encapsu

lation is dealt with by changing the scope of processes and using the hide operator. By

defining sets and object generators, LOTOS also deals well with the cases of a static and

a dynamic number o f object components.

Chapter 5

Formalising Object-Oriented
Analysis W ith LOTOS

5.1 Introduction

The purpose of this chapter is to specify the components o f an object model and their

relations in such a way as to illuminate the formal syntactic transformations used in

OOA methods, more precisely, in the ROOA method. One goal is to provide a simple-as-

possible denotation of each concept so that practitioners o f object-oriented analysis can

get on with the hard job of building models without, say, having to learn category theory,

universal algebra or fixpoint theory. The actual formalisation of the concepts is thus

of secondary importance, accomplished where possible simply by listing components as

tuples, and functions and relations by giving their denotational type (i.e. the domain and

range sets). Nevertheless, there are technical problems arising with even so straightforward

an approach. Our main concern is to identify and solve these problems. The main problem

solved here is: how the behaviour of objects (in the system) is derived from the expressions

of generic behaviour contained in the class templates in the model.

In this chapter we will only handle the concepts we believe are the more important

and the basic ones. The theory we present can be used to extend the definitions over the

rest o f the OOA concepts.

117

Chapter 5. Formalising Object-Oriented Analysis With LOTOS 118

We assume some familiarity with the Z notation [Spi89].

5.2 The Reasons For this Work

The first reason is precision, i.e. the formalisation of object modelling concepts. We

motivate the approach taken in ROOA and its serriantics by contrasting the goals of

ROOA with those of other work.

Another reason is enhanced expressive power. Object models suggested in the OOA lit

erature are rendered less expressive by their dependence on particularly simple behavioural

models (e.g. finite automata [CY91a, RBP'*'91]) and particular notions of atomic action.

The semantics of LOTOS, used for ROOA, allows much richer expression o f behaviour

than these proposed models.

Other approaches to giving formal structure to object-oriented concepts have started

with objects as fundamental and derived other concepts from these. They are mainly

concerned with object-oriented programming, or with object-oriented design, not with

OOA. Examples include a formalisation [BMS93] using Lamport’s TLA logic [Lam94],

and formalisations using universal algebra and category theory [EGS93, EGS91, ESS89].

These approaches are as powerful as LOTOS for describing the behaviour o f objects.

However, the existing object-oriented analysis methods give primacy to class templates

and their meaning, and objects are simply not around. (Objects only appear during the

execution of an executable model, such as the one created by ROOA, but not in the

definition of that model.) Hence those approaches do not appear to explain the concepts

of OOA in practical methods such as O M T as ROOA does, in a way understandable by

practitioners without advanced mathematical experience.

Furthermore, those other approaches do not make a clear distinction between static

structure and behaviour, in the way emphasised by methods such as OMT [RBP‘*'91] or

some approaches to Open Distributed Processing [Got93]. Recovery from failure (e.g.

[LS83]) cannot be properly solved in the analysis stage. The philosophy of OOA suggests

that they should be addressed at the design stage, using methodologies developed for this

purpose. According to this philosophy, such classes o f problems should be separated from

Chapter 5. Formalising Object-Oriented Analysis With LOTOS 119

the architecture of the system as expressed by the specification text, as in ROOA.

Other approaches to the development of formal system specifications in an object-

oriented manner may be found in the paper by Cusack and Lai [CL91], in the work

proposed by Jones [Jon93] and in the work proposed by Laorakpong and Saeki [LS93].

These approaches introduce new methodology in order to obtain formal specifications,

and it is not clear that they build on practical approaches such as [Jac92, RBP'*‘ 91], as in

ROOA. The goal o f Cusack and Lai is to integrate object-oriented concepts into LOTOS

specifications (rather than the other way around, as in ROOA), and “ the immediate area

o f application ... is the development of international standards for ... Open Distributed

Processing (ODP) systems” . A similar goal with respect to VDM-style development un

derlies the work of Laorakpong and Saeki. Finally, Jones is concerned with a formal

notation for object-oriented programming and design, not with OOA. Because of their

goals, these approaches focus on the specification o f objects rather than the concepts of

OOA, and do not strictly adhere to the division between analysis and design recommended

by [CY91a, Jac92, RBP+fil, SM89] and employed in ROOA.

5.3 Basic Concepts: Set of Values and Variables

First we define the set set—of—values of all possible sets of values of data types. We also

define an infinite set of variables. Specification languages have various ways to handle

data typing, some extensional (data types are identical if their sets o f possible values are

identical, no matter what the names) or intensional (not extensional). We only need to

use data values (i.e. extensional data typing) for this work, but a language such as LOTOS

does not have fully extensional data typing. We must therefore be flexible enough in what

we do to cohere with the data typing principles we might encounter in this and other

languages. We define V as the set containing all data values, and data-types as the set

o f data types (whatever they may be). We define a separate naming function extension

which associates a data type with a set of values, and do not say (because we do not

need to) what the properties o f this function are, or how identities between data types

are handled. Our development ensures that the sets class-templates, objects, attributes.

Chapter 5. Formalising Object-Oriented Analysis With LOTOS 120

services, data—types, message—types are all disjoint. We further require that the two sets

s e t -o f—values = { u | t) C V } = PV
variables = {xi \ i € N}

are disjoint from each other and from everything else in sight. We define a naming relation

named—by. STRING x {variables U data-typ^s L) class-templates LI objects O
U attributes U services U message—types U object—generators)

which assigns names to everything in sight. We also have a mapping

extension : data—types —► set—o f—values

which gives the extension of each data type. Finally the set

variable—type—pairs = { {x ,d) \ x € variables, d € data-types)

allows binding of variables in a particular context with data types.

The justification for these definitions is as follows. We accumulate all possible set-of-

values values in V, and therefore a specific data type will have an extension which is a

specific subset of the values of V. We need an infinite set o f variables for standard syntactic

reasons. Variables in a particular use are generally bound to data types: we want to be

able to select a variable x o f specific type real, say, in a given application. Therefore we

need a set of variable-to-data-type bindings.

5.4 Defining the Concepts of Object-Oriented Models

We define the various concepts class template, attribute and service in the static structure.

We may define from these concepts the derivative notions of object and class which are not

in the object model, but in the implemented system. An object is an instance o f a class

template, which is to say that it heus the attributes specified in the template, the services

provided therein, and the behaviour defined therein. The notion of embodiment is thus

quite simple: since everything is defined in the template except the identity o f particular

objects (although their sort is defined), an object is defined by assigning an identifier, and

assigning behaviour by instantiating a free variable in the class template to the object

identifier. A class is defined as the set of all objects that may be instantiated from a given

Chapter 5. Formalising Object-Oriented Analysis With LOTOS 121

class template. As we show in Chapter 3, in ROOA we define the instantiation of objects

from class templates by means of an artifact we call an object generator.

Suppose the item item is the name of an element o f a tuple (or sequence or record)

defining concept. We shall in general write concept.item to refer to the value o f this item

in concept, as one normally does for records. ,

5 .4 .1 C lass T e m p la te

A class template is defined by a name, a finite set of attributes S/i, a finite set o f services

E5 and a behaviour description B which apply to all objects instantiating this template.

Thus, we define;

class—template = (name,TÌA',obj—id,YlsiT,B)

where name € dom{named—by[> class—templates) is the name of the class template*. I here

is a distinguished attribute obj—id € known as the object identifier attribute. Values

of obj-id are the possible identifiers of the different objects instantiated from B. The

function I : Set describes the services that are available for each given state

of an instantiated object, i.e. the interface of an object at a given state. This function

is explained in Section 5.4.3. B describes the typical behaviour of objects instantiated

from the class template, and is defined by means of LOTOS constructs. We thus commit

ourselves here to a specific form for B. It is, however, important that no matter what lan

guage B is formulated in, it has certain properties which may be expressed using concepts

from the syntax of logic. (The function of B is explained in Section 5.4.2.) The purpose

of this requirement is that a class template c< defines the behaviour of arbitrary objects

instantiating c<, and mentions no specific object by name. It may also refer to objects

instantiating other templates, including the services they offer, again without mention

ing specific objects by name. This is accomplished in logical syntax simply by using free

variables.

The syntactic details o f how this is accomplished in particular behaviour description
'For definition of the domain and range restriction operators < and as well as the domain and range

selectors dom and ran, see [Spi89, pages 96, 98]

Chapter 5. Formaìising Object-Oriented Analysis With LOTOS 122

languages such as LOTOS, SDL, Manna-Pnueli temporal logic, or TLA, are dependent on

these particular languages. Therefore we explain such syntactic restrictions here generi-

caJly, but illustrate with the ROOA derivation in LOTOS. Individual languages will require

that the restrictions are translated into the syntactic restrictions that make sense for these

languages. i

5.4.2 The Generic Behaviour Description c t - B

The behavioural description CfB contained in a definition of c< may have different forms,

depending on the description language chosen. In ROOA, it is part of a LOTOS specifi

cation, usually a LOTOS process definition. But a semantic explanation of C/.B should

also explain its function if expressed in another description method such as SDL or TLA.

We explain it here and in Section 5.5.3.

The behavioural description Ct-B is generic, in that it should provide a schema for

describing the behaviour of an arbitrary object instantiated from c<. We describe features

we require of CfB so that it may be transformed into a description of the behaviour o f an

individual object instantiated from c<. The procedure for transformation itself is described

in Section 5.5.3.

We describe the structure of Cf.B in general syntactic terms taken from logic, using

the notions of (logical) individual variable^, and substitution. We need to interpret these

notions in a given target language (LOTOS, SDL, TLA, etc.). We illustrate with a LOTOS

example in ROOA.

Since Ct.B is intended to be a generic behaviour expression, it must contain terms which

are not constant, but which take different values when used to describe the behaviour o f a

particular object. (In logic, these terms are said to range over their collection of values.)

There is no bound on the number of objects instantiated in a system from the class

templates in the object model. We require a set Y o f individual variables ranging over

values of the attribute obj-id (that is, over the set dom{named—by> objects)). We also use

^This notion should o f course be distinguished from the notion o f program variable, or variable as used

in LOTOS.

Chapter 5. Formalising Object-Oriented Analysis With LOTOS 123

the set of terms C referring to the class templates. There is a fixed set of class templates

in the model, namely, the set ran{name(L-by> class-templates), and the set of their names

is C = dom^named—by > class—templates).

When a variable ¡/ 6 T is used in the behaviour expression Ct.B to refer generically to

an object, it must range over objects instantiated from a particular class template c. We

denote this binding by c.y. We also require a distinguished individual variable t, used in

Ct-B in the form C / . ¿ . When ct.B is used to describe the behaviour o f a particular object ob

the value of whose obj—id is oid, the term c<.t will be replaced by oid (see Section 5.5.3).

Thus C (. ¿ is used to refer to the ‘currently instantiated object’. This corresponds to the

concept called ‘self ’ in Smalltalk, or ‘this’ in C+ + . See Section 5.5.1 for definition of the

concept object, and Section 5.5.3 for an explanation of how the behaviour of the object ob

is obtained from the expression C(.B.

When Cf.B mentions a service of an object instantiated from a different class template

c, we write the occurrence â s c.y .service, name, where c £ C, y E Y , and service £ c.Es

(the set of services offered by template c). Similarly, when an attribute o f an object

instantiated from C(is referred to (only attributes of objects instantiating the current

class template may be referred to — all values of attributes of objects instantiating other

templates must be accessed by services offered by those objects) then a term o f the form

Ct.y.attribute.name is used.

In order to explain how the generic behaviour expression Ct.B is used to generate an

expression describing the behaviour of a particular object in the system with identifier oid,

we must identify the terms of the form c<.t, c.y, c.y.service.name and Cf.y.attribute.name

and all occurrences of them in Ct.B.

5.4.3 The Visibility Function J

Objects have ‘state’ [RBP"'’ 91]. We define the value o f an object at any point to be the

collection of values of the attributes o f the object. We identify the state of the object at a

given time with its value. In any particular state, not all o f the services may be offered by

the object. I is the visibility function, that for each state of an ob ject tells which services

Chapter 5. Formalising Object-Oriented Analysis With LOTOS 124

are visible in that state. In the banking system problem we have been using through

the chapters of this thesis, we could impose, for example, that in an Account object,

a withdraw service cannot be offered if the value, of Balance is 0 (see Section 5.4.4).

With each state o f the object we may associate the set o f services which are offered in

that state. However, which services are offered in a particular state is (a) dependent on

properties of the state of that object alone; and (b) invariant over all objects instantiating

the same template. For example, the fact that withdraw is not offered in a state in which

Baleince is 0 is a generic constraint on all objects of type Account. Thus, visibility is

statically determined: the collection o f all such constraints, the visibility function, is a

feature of the class template. Where is the set of states (defined below), I has the

type X : Set -+ P S 5 .

Since a state o f an object is its value, the set of attribute-value pairs of the object at a

particular time, we require that the set of states S^ is the collection of all possible combi

nations of values o f all attributes. But not all o f these sets o f at tribute-value pairs may be

attained by some object in some run o f some system, in other words, these potential states

may not be reachable. However, it is often combinatorially intractable to determine which

states are reachable [RS88]. Furthermore, it is evident from reachability analyses that the

distinction between those states which are reachable or not is properly a logical conse

quence of the behavioural description o f the system, and thus of logical properties of the

behavioural descriptions c.B for all class templates c. Therefore the distinction between

reachable and non-reachable states should not be made in the denotational description

of the class template. Thus, we may define to be the collection o f all assignments o f

values of the right type to attributes in where a.valueset is the value domain of the

attribute (see Section 5.4.5):

= { / I / : 5] ̂ —► V A Va e E .4 • /(f l) € a.value-set)

where value—set € dataXtypes,

Chapter 5. Formalising Object-Oriented Analysis With LOTOS 125

5.4.4 Class Template in LOTOS

Consider the banking system defined in Section 3.3.1. A possible definition o f the class

template Account is :̂

p r o c e s s A c c o u n t [a D (th is _ a c c o u n t : S t a t e .A c c o u n t) : n o e x i t :=

(a ¡d e p o s i t !G et_A ccou n t_N u m b er(th is_a ccou n ti) ?m: Money;

e x i t (C r e d i t .A c c o u n t (t h i s .a c c o u n t , m))

[]
a !g e t_ b a la n c e !G e t_ A cco u n t_ N u m b e r (th is_ a cco u n t)

!G e t _ B a la n c e (t h is _ a c c o u n t) ;

e x i t (t h i s .a c c o u n t)

[]
(c h o i c e z e r o _ b a l 2m c e : B o o l []

[n o t (z e r o _ b a la n c e)] ->

(a ¡w ithdraw ¡ G e t_ A cco u n t_ N u m b o r (th is_ a cco u n t) ?m: Money;

(c h o i c e enough_m oney: B o o l □

[enough_m oney] ->

a ¡r tn _w ith d ra w ¡G e t_ A c c o u n t_ Iu m b e r (th is _ a c c o u n t) ¡ t r u e ;

e x i t (D e b i t _ A c c o u n t (t h is _ a c c o u n t , m))

[]
[n o t (en ou gh .m on ey)] ->

a ¡r tn .w ith d ra w ¡G e t_ A c c o u n t_ lu m b e r (th is _ a c c o u n t } ¡ f a l s e ;

e x i t (t h i s .a c c o u n t)

)
)
[z e r o .b a la n c e] -> e x i t (t h i s _ a c c o u n t)

)
) >> a c c e p t u p d a t e .a c c o u n t : S t a te .A c c o u n t in A c c o \ in t [a](u p d a t e .a c c o u n t)

en dproc

We explain how to identify the various syntactic components of the object definition in

the LOTOS expression informally. The name of the class template is Account; the set o f

’ For aimpUcity, we are ignoring the fact that Account is an abstract supercli

Chapter 5. Formalising Object-Oriented Anaiysis With LOTOS 126

attributes including the obj—id, are given in the ADT where the sort Stata—Account

is specified; the set E5 o f services are defined as the behaviour expressions of the choice

operator The signatures of the services are the first action prefixes o f those behaviour

expressions together with any corresponding return events. Specifically, the signatures of

the three services offered by Account are: 1

a ¡deposit !Get_Accoimt_Hunibor(this_accouiit) ?m: Money;
a !get_balance •Get_Account_Niunber(this_account) !Got_Balance(this_account);

for the services d eposit and get—balance and:

a ¡sithdraw IGet_Account_Number(this_account) ?m: Money;
a !rtn_vithdraw . . . ;

for the service withdraw.

Get_Account_Nuniber(this_account) is an operation specified in the ADT where the

sort State.Account is defined, returning the object identifier of an object instantiated

from the class template Account. It corresponds to the individual variable Ct-t reserved

for the ‘current object’, E5 is the set of services whose names are deposit, get—balzmce
and withdraw. Specifically,

Es = ron({deposit,get_balance,withdraw} < named—by)

Given these bindings of syntactic parts of the LOTOS expression to the formal parts

of the class-template tuple and the identification of expressions of the form c^.t, c.y,

c.y.service.name and Ct.y.attribute.name, the behaviour description B is given by the

body o f the process definition.
The interface function I is defined in LOTOS by identifying guarded expressions in

the behaviour description. Consider, for example, the expression:

[not(z«ro_balanc«)] -> a ¡withdraw ¡Gst_Account_lumbar . . .

[zaro.balanea] -> •xltCthla.account)

This ensures that a client may only use the service withdraw if the balance is not zero. As

ROOA deals with the analysis phase, a reference to the state o f an object may be a symbolic

Chapter 5. Formalising Object-Oriented Anaiysis With LOTOS 127

reference. Therefore, in process Accoimt we use the generalised LOTOS choice operator

choice to cover the two possible situations expressed by the two guards zero—balamce

and not (z e r o —b a lan ce), whose values depend on the state of the object when the guard

is evaluated at run time. The gate a is used to represent the channel of communication

between Account and Coimter—T e lle r . i

The argument t h is —accoim t defines the state of objects of class template Account,

that is, it defines Ha and the collection of values at any time. In ROOA, this is defined by

an ADT, as shown in Section 3.3.2. There is in each such ADT a distinguished operation

always prefixed with the term Make— which has Ha as domain type and returns the sort

of the object. It is used by the object generator to instantiate objects. Ha may be read

directly off the domain expression in the LOTOS-type of the whatever operation.

The ADT Accoim t-Type shows the attributes in Ha as Account—Niimber and B a lw ce .

The operations defined in Account—Type are components o f the methods used to perform

the services offered (see Section 5.4.6).

Error Handling

The process Account, as it was specified above, brings us a problem: what happens when

a client who has no balance in her or his account, asks for a withdrawal? There will be no

process account to synchronise with it and therefore we would have a state of deadlock!

We could restrict the tellers to not accept withdrawals from clients whose accounts have

no balance. However, this would not be a realistic solution and also it would impose that

tellers would have to know that piece o f information about each single account. In fact,

what is needed here is to deal with abnormal errors, i.e. errors which may only occur if

we take the pessimistic view o f the problem.

In LOTOS these errors are not intellectually difficult to handle, as they are always

specified in the same general manner. However, because our events do not deal only with

variables, but also with values, we cannot propose a general event to catch all the erroneous

situations, as proposed in [McC93], for example. Therefore, we have to deal with them in

each single place they can appear.

Chapter 5. Formalising Object-Oriented Analysis With LOTOS 128

In an early stage of ROOA, and for the banking system, we were dealing with these

kinds of errors in this way. We soon realised that the benefits did not compensate the

extra work. The specification was growing quickly and we were losing readability. It was

really “slave” work with not enough compensations. For these reasons, and because we

are in the analysis phase, we decided to leave this tq be treated in the design phase.

Therefore, in ROOA, instead o f defining the class template Account as shown above,

we specify it as shown in Chapter 3.

5.4.5 Attributes

We define an attribute as a tuple

attribute = {name, value s e t)

where name £ dom{named—by> attributes) and valueset £ se t-o fsa lu es is the set of all

values that the attribute may have.

In ROOA, an attribute is defined in a LOTOS ADT. In the banking example, we saw

that the class template Account has two attributes: Account_Number and Balance. These

attributes appear as arguments of the operation Make-Account.

5.4.6 Services

A service £ Cf.Us is offered by all objects instantiating a given class template C(. It is

used by other objects to query or change the state of the object which offers it. Objects

which are instances of the same class template may not directly use each others’ services.

(If an object A uses a service of object B, we say that objects A and B communicate.

The communication channels between objects are determined statically, in the model, and

correspond to gate a in the previous example.) Each service is defined by a unique name

and by one or more methods. We define its type as follows:

service = signature ^ {methodi,„methodn)
signature = {name, obj-id, in—parameters, out-parameters)
in-parameters £ attributes’ ̂ x variable—type-pairs’” X D

Chapter 5. Formalising Object-Oriented Analysis With LOTOS 129

where is the concatenation operator on sequences, D 6 data—types’’ is a p-tuple of

specific data types; and

out—parameters € Q

where Q G data—types'’ \ also name 6 dom(named—by > services).

We distinguish here the static structure of a methcid (simply its signature with its input

and output parameters) from the description o f how the method is used or how the value

returned in the output parameters is calculated. The use o f a method properly belongs to

the dynamic description, as does the description of how the value is calculated, and must

be described in B. (TLA [Lam93] actions correspond to our methods.) Therefore, these

features belong to the LOTOS description of the behaviour of the service. A method is

defined by a LOTOS behaviour expression such as

methodi = a ; exit{A D T -op{...))

where a is a collection o f action denotations which can include invocation o f services

defined in other objects, for example. The exit construct indicates successful termination.

This construct may have arguments which we use, in this case, to change the value of

one or more attributes of the object, by invoking an operation defined in an A D T. This

operation has the form:

A D T —op : state-sort, variable-type-pairs’" —► state—sort

where state—sort represents the sort of the states of an ob ject, e.g. S ta te—Accoim t in the

ADT above.

The behaviour of the method which specifies the service withdraw in the banking

system, is given by the two following behaviour expressions:

(choice anough.money: Bool []
[anough_money] ->

a Irtn.wlthdraw IOot_Account_luMber(thls_account) Itrue;
exit(Deblt.Account(thle.account, m))

C]
[not (anough.monay)] ->

Chapter 5. Formalising Object-Oriented Analysis With LOTOS 130

a !rtn_«ithdraw ! Got_Acco\uit_Humber(this_account) ¡ f a l s e ;

e x it(th is_a c c o u n t)

)

where the A D T -op is Debit-Account. Each one o f these two behaviour expressions

define one method, each o f which is used as an 2dternative of the other. Notice that there

are methods which change the state of an object (called modifiers) and others which do

not (called selectors). The selectors only return the value of one or more attributes, as

happens with Get-Balance. In any case the exit construct always returns the state o f the

object, whether updated (as in exit(Debit_Account(this_account, m))) or not (as in

exit (this.account)).

5 .4 .7 O b je c t G e n e r a to r

In ROOA, an object is instantiated from the class template by a special mechanism called

an object generator. Although an object generator knows about the objects (identifiers)

already created, it is mainly used to instantiate a class template.

object—generator — (name, Ct, create—obj—Cf, object—id s e t , fi)

An object generator has a name, name 6 dom(named—by > object-generators), and

instantiates objects from the template by offering the service create-obj-Ct in a manner

described by the behaviour /3. It also contains a distinguished name object—id se t for the

set o f identifiers o f objects already instantiated from c«.

When an object is instantiated by a call to object—generator .create—obj—Ci, it has an

initial state. The initial state is defined in the behavioural description fi. A behavioural

description without a specified initial state is an invalid description. Most behavioural

specification languages such as LOTOS, SDL and TLA either include or require such an

initial state definition.

An object generator for class template Account looks as follows:

process Accounts[sD(sees: Account.lumber_Sst) ; noszlt :■
(s (crests Tscc.counter: Account.lunber [(scc.counter notln sees)];

Chapter 5. Formalising Object-Oriented Analysis With LOTOS 131

(A c c o u n t [a] (M a k e_A cco\ in t(a cc_cou n ter , 0 o f B a le m ce))

I I I
A c c o u n t s [a] (I n s e r t (a c c . c o u n t e r , a c c s))

)

where Accovints is the name of the object generator and accs is the set of identifiers of

objects already instantiated from class template Account. The service whose signature is:

a 'c r e a t e ? a c c _ c o u n t e r : Account_N um ber C (a c c _ c o u n te r n o t in a c c s)] ;

corresponds to creatc-obj-Ct and it uses value generation to generate an object identifier

of sort Account—Number which is then used to instantiate the class template by executing

A c c o u n t [a](M iJ c e _ A c c o u n t (a c c _ c o u n to r , 0 o f B a la n c e))

The operation Make_Account is defined in the ADT Accoimt_Type and it creates a value

of the sort State_Account. The initial state of the object account created is the result

given by Make_Accoimt.
The behaviour ¡3 is given by the body o f the process definition. The object generator

is defined recursively so that we can continue to create objects.

5.5 Defining the Concepts of Object-Oriented Systems

Certain concepts of object-oriented methods are not properly part of the object model, as

described for example in [RBP+Ql], but are part of the system design that derives from

a given object model. Most attempts to define the semantics of object-oriented systems

concentrate on objects, classes, inheritance and aggregation, and are properly part of the

system design, not the model. Our approach produces a model which fits closely with the

object model and, at the same time, uses the power of LOTOS to describe behaviour.

5.5.1 Object

An object in the design represents what ‘ runs’ in the implemented system. A class template

is a definition wiiich is used to create objects. An object is an instantiation of a class

template. The class template includes the description o f the generic behaviour o f an

Chapter 5. Formaüsing Object-Oriented Analysis With LOTOS 132

object, as well as defining all attributes which the object may have. In order to know all

about an object it is sufficient to know about only which template ct it was instantiated

from, and its identifier (the value of the attribute C f o b j - i d) . The object’s behaviour must

be derived from Ct-B . Hence we define

object = {ident, class—template.name) ,

where ident £ dom(named—by > objects).

5.5.2 Behavioural Constraints vs. Behavioural History

In the definition of object in Section 5.5.1, the object itself is rather bare. Objects have

a history of behaviour, which may be different for each object, and furthermore is not

derivable from the class template. Where, one may ask, is this behavioural history in the

definition of object?

The answer is that the history of behaviour o f an object, no matter how important for

the operation o f the object in the system, is not properly part of a semantic account of

class template, object, and their relation. In contrast, an account o f how the constraints

on an object’s possible behaviour are obtained is properly part of the semantics. Ci.B is

a constraint expression, with lots of free variables. We describe in Section 5.5.3 how the

behavioural constraints on an object are obtained from the constraint expression in the

template.

This position may be compared with that o f semantics of programs. Compare objects

with programs. A specification includes the constraints on a program’s behaviour. An

actual behaviour of the program, or a partial behaviour (a history) is described by a

(partial) trace. The specification describes the set of all possible traces. Each individual

partial trace that satisfies the specification, and which may or may not occur during the

lifetime o f the system, is not considered part o f semantics. It is up to the program whether

it wants to keep around such information about its previous behaviour. In many object-

oriented systems, this may be important for auditing, just as in previous designs in the

before object-orientation era, keeping history variables around for the same purposes was

also considered important. But it is not part o f semantics. It is part o f programming.

Chapter 5. Formalising Object-Oriented Analysis With LOTOS 133

5.5.3 Deriving the Behaviour of an Object from the Class Template

Let ob be the ‘current object’ and let its identifier ob. ideni be oid for notational simplicity.

The behaviour of ob can be described by S [c,.i/o»d] where B[ct.t/oid] is the expression

obtained by substituting oid for every occurrence o f the distinguished individual variable

C(.t in B [Lad94]. B [cfilo id] still contains individual variables, say for example simply

c.y, for other objects whose services ob may use. Since the expression still has an unbound

individual variable c .y , it does not yet describe concrete behaviour. The description is

supposed to say what behaviour is allowed between ob and other objects instantiated from

c.

Suppose that obi and ob2 are precisely the instantiated objects from template c, with

identifiers db\.ident and 6 b2 -ident respectively, which we denote c.oid\ and c.oid2 for sim

plicity. The required description of ob’s interaction with one specific other object is ob

tained when any value o f another object identifier instantiating a template c is substituted

for the variable c.y appearing in B[ct.t./oid]. The object ob may engage in its c-object

interactions with obi, and also with obj. Thus the two expressions f?[ci.<./oit/][c.j//c.oidi]

and B [ci.iloid][c.y/c.oid-^ describe the interactions in which ob can engage.

A combination of these behaviour expressions expresses the behaviour of ob in terms of

all the other c-objects obi and obj. The combination of expression B[ct.i/oid][c.y/c.oid^]

with expression B[ct.t/oid][c.y/c.oid-^ may take different forms according to the specific

language in which B is written. In LOTOS, the combinator is *[]’ and the combined

expression is:

B [c t . L l o i d] [c . y / c .o i d i] [] B [c t . i l o i d] [c . y / c . o i d 2]

If a logical language is used, then the combination is logical d i s j u n c t i o n , yielding

B [c (. i / o i d] [c . y / c .o i d i] V B [c t . i / o i d] [c . y / c . o i d 2]

This states that ob can engage in B behaviour with e i t h e r oh\ o ro b j.

Although this operation has been expressed with one template and two instantiated

objects for simplicity, it generalises directly to multiple class templates and instantiated

objects. Whatever its specific form, this syntactic operation o f s u b s t i t u t io n -h c o m b in a t io n

Chapter 5. Formalising Object-Oriented Analysis With LOTOS 134

yields the behavioural description o f object ob at any state o f the system. As other objects

are created, a similar operation must be performed: say oba is newly instantiated with

identifier oba.ideni, denoted c.oids for simplicity. The expression e[c,.t/oid][c.y/c.o»da]

must be formed and comòmed with the other behaviour expressions to yield the behavioural

description of object ob in the new environment. ^

Note that the expressions described here need not actually be formed. It is sufficient

that a procedure exists to obtain a precise description o f the behaviour of an object in

its run-time environment from the behaviour expression Cf.B in the class template Cf. We

have given such a procedure.

5.5.4 Deriving the Behaviour of an Object in LOTOS

To illustrate the procedure in LOTOS, we introduce part of a process definition which

specifies the class template C ounter-T eller:

p r o c e s s C o u n t e r _ T e l le r [t , a] (i d : I d _ T e l l e r s) : n o e x i t : =

(t !g e t _ b a la n c e ! id ? a c c _ n r : A ccou nt.nu m ber ;

a ! g e t .b a la n c e ia c c .n r ? b : B a la n ce ;

t i r t n .b a la n c e ! id i a c c .n r !b ;

e x i t (i d)

[]

) » a c c e p t i d : I d .T e l l e r s in C o u n t e r .T e l l e r [t , a] (i d)

en d p roc

Objects of the class template C ou nter-T eller invoke services of objects of the class tem

plate Account. Let C ou n ter-T eller be the class template c,, the value id be the object

identifier of the current object, while the LOTOS-variable a cc .n r : Account.Number cor

responds to the individual variable c.y.

An expression describing the behaviour of an object instantiated from Counter—T e lle r ,

having, say, identifier 125, i.e, the expression corresponding to B[Counter-Teller.i/ 12B],

is:

t Iget.balance 1126 Tacc.nr: Account.number; ...

Chapter 5. Formalising Object-Oriented Analysis With LOTOS 135

Counter teller number 125 can communicate with any object instantiated from the class

template Account. Suppose we create precisely two accounts with identifiers 35467 and

35468. The complete behaviour o f counter teller 125 when communicating with any of the

two accounts, asking for any service, is given by the combination of the services offered by

C ounter-T eller. We substitute 35467 and 35468 for the expression acc_nr, and combine
I

with the choice operator [] to obtain

B[Counter-TeUer.i/ 12S][acc-nr/35467] [] e[Counier_TeZ/er.t/125][acc_nr/35468]

Notice that the behaviour o f counter teller 125 changes with time, according to the ser

vices executed. Suppose we created the two accounts, one subsequently to the other. When

communicating with account number 35467, before account 34568 was created, counter

teller 125’s behaviour is described by: B[Coun<er_T'eZZer.i./125][acc_nr/35467]. After ac

count 35468 is created, the behaviour expression changes to include in the combination

the expression f?[Coufitcr_7e//cr.i/125][acc_nr/35468].

This informal description h l̂s illustrated how a description of the behaviour of an

object in a specific system may be obtained by purely syntactic means from the behaviour

description B in the class template. The description has been given in a generic way and the

particular syntactic operations needed to effect this for the given behavioural specification

language LOTOS have been used as illustration. This shows how the behaviour of object

ob instantiated from template c< is determined by the behavioural description ct.B. A

formal definition of ob needs to specify no extra behavioural component beyond that

contained in Ct.B.

5.5.5 Is—instance, Classes and Other Concepts

The is—instance relation is a binary relation between objects and the class templates of

which they are instances. When an object is created, according to the semantics it is a pair

of names ob = {identifier, class tem plate, name). The image o f ob under the named—by

relation [Spi89, page 123] {named—by o ob), is thus the pair consisting o f the object along

with the class template it was instantiated from. This pair is an element o f is—instance.

If one requires this relation for any purpose, it is necessary to require o f the object-

Chapter 5. Formalising Object-Oriented Analysis With LOTOS 136

generator that when it creates an object ob, it also adds {named-by o ob) to is-instance

(which is defined to have value 0 when no objects have yet been created). One may then

straightforwardly define the class generated by c<, class(ct) = dom {is-instance> { c«}) .

An account of the concepts o f an object-oriented system will also include a semantics

for message-passing and for inheritance, which require some more detailed attention than

the rather simple definition of class and is—instance above.

5.6 Conclusions

In this chapter, we have given a simple denotational semantics for the concepts of object-

oriented analysis, which include class template, service, attribute, behaviour, object gener

ator and visibility. We described the form required o f a behaviour expression in a class

template, so that the behaviour o f any object instantiated from that template is precisely

specified. We employed the notions of individual variable and .substitution from the syntax

of logic to explain in general terms how this behavioural description was transformed. We

illustrated this transformation with ROOA templates and behaviour expressions written

in LOTOS.

Chapter 6

The Rigorous Object-Oriented

Analysis Method

6.1 Introduction

The Rigorous Object-Oriented Analysis (ROOA) method takes the static properties o f a

system captured in an object model and the dynamic and functional properties described

in the original set of requirements and produces a formal object-oriented analysis model.

The object model can be built by any of the existing OOA methods.

The formal object-oriented analysis model:

1. formalises the object model describing each class template and relationship in a

mathematical manner.

2. Adds state information and behaviour to each class template and describes the order

in which the events occur.

3. Shows the message connections between objects and the information passed during

communication.

4. Defines the behaviour of the whole system by putting together its classes.

5. Is formal and executable, and therefore rapid prototyping can be used to check

137

Chapter 6. The Rigorous Object-Oriented Analysis Method 138

the conformance o f the specification against the original requirements and to detect

inconsistencies, omissions and ambiguities in the original requirements.

The formalisation o f the information in an object model can be done semi-automatically,

i.e. it requires some decisions, but most o f the work is fairly straightforward and is similar

for each class template. However, identifying the Ibehaviour o f each class template, the

events and their order and the information passed during message communication is not

trivial. Existing OOA methods propose two extra models (see Figure 6.1) to capture the

behaviour of a system (the dynamic model) and the transformations of the data (the func

tional model). They then end up with three models, each of which shows different aspects

of the system and which are difficult to integrate and keep consistent. Furthermore, the

dynamic model is difficult to understand since it does not give an integrated view o f the

behaviour of the system. It is usually composed of a set of state transition diagrams, one

for each class template.

Analyti*

(Ob^«ct Ort«nt«d Analysis Methods)

Figure 6.1: The models built by many object-oriented analysis methods

In contrast, the ROOA method produces a single formal model which integrates the

static, dynamic and functional properties o f a system. The ROOA model is primarily a

dynamic model, but it preserves the structure o f the object model.

Chapter 6. The Rigorous Object-Oriented Analysis Method 139

6.2 The ROOA Method

ROOA gives us an integrated view o f the system, showing at the same time its static,

dynamic and functional properties. The formal description technique (FD T) we have

chosen is LOTOS. As LOTOS has a precise syntax and mathematical semantics, the

resulting model is formal and unambiguous. Mor^oyer, as LOTOS is executable, the

model is executable, and so prototyping can be used to give immediate feedback to the

clients who can check if the prototype exhibits the intended behaviour.

ROOA uses a stepwise refinement approach for the development and for validation of

the specification against the requirements. The development process is iterative. Differ

ent objects may be represented at different levels of abstraction and the model refined

incrementally.

ROOA involves three tasks:

1. Build an object model.

The construction of the object model is performed by applying any of the existing

object-oriented analysis methods, such as OOA by Goad and Yourdon, OOSE by

Jacobson, OMT by Rumbaugh et al. [CY91a, Jac92, RBP'*'91].

2. Refine the object model.

To refine the object model we start by guaranteeing that it includes interface objects,

attributes, and static relationships; then we identify initial dynamic behaviour by

identifying services and message connections; finally, we structure the object model

by identifying subsystems.

3. Build the formal LOTOS OOA model.

The LOTOS formal model specifies the object model, gives the dynamic behaviour

o f each object and o f the whole system, shows the message communications be

tween objects in the system and also models the information passed when objects

communicate.

ROOA acts as the central part of the analysis phase, but it interacts with requirements

capture and can provide the starting point o f the design phase. Figure 6.2 illustrates

Chapter 6. The Rigorous Object-Oriented Analysis Method 140

ROOA in the context of the software development life cycle and shows how the various

tasks are connected.

_ A na ly iti D—tgn,...

ROOA

(ObfM l Mo<tol Conatnictlon)

Figure 6.2: Context of ROOA in the development life cycle

The object model construction is, of necessity, informal. It is performed by reading

through the requirements document, interviewing the clients (or the users), etc., finding

the objects o f the system and the relationships between them. We use the part of an OOA

method that builds the object model to perform it. The application of the next two tasks

of ROOA may lead us to change the object model, and if we find any omissions or incon

sistencies we also change the requirements document where the problem we are analysing

is stated. We can use ROOA with prototyping to analyse the system incrementally.

The resulting ROOA specification can then be used as the first stage in a software

development trajectory where the requirements specification is transformed into a design

specification either by using correctness preserving transformations or by using prototyping

to ensure that the two specifications conform to one another.

Figure 6.3 gives a view o f the two main tasks of ROOA, Refine Object Model and Build

Formal LOTOS OOA Model, showing their composition.

The main goal o f ROOA is to produce a formal LOTOS object-oriented analysis model.

To accomplish this, ROOA has to refine the object model produced by one of the OOA

methods and formalise it. It then has to identify the dynamic properties o f each class

template and o f the overall system in the original requirements and formally specify them.

Chapter 6. The Rigorous Object-Oriented Analysis Method 141

•ttribut««. M rvic««, r»latk>nshipt. htr«fch>>8 dynamic A functional propartia«

ObfACt

contains
soma of attrs,
sarvs, rains, _
msgs, hlararchlas

Rafinad ObJacI Modal

(with subsystarrts)

Build
Formal LOTOS

OOA Modol

LOTOS
Roquiromants
Spifetfication
contains dynamic,
functional ar>d
obiact modals

(Initial Oynamicr
„.Bahaviour.

3.1
Craata O CO 1

3.4
Prototypa

3.5
Rafina

Spacificationv

Figure 6.3: Core of ROOA

Finally, it has to identify the information passed during communication, also in the original

requirements, and formally specify it. However, if the starting point is the result o f a

separate team’s application of one o f the OOA methods, dynamic and functional models

may already have been produced. In this situation, ROOA would integrate the information

spread among the three models and give a formal and executable specification of the

system. Given the existing dynamic and functional models, the application o f the ROOA

tasks would be much faster.

Analysts know how important it is to involve the clients (or the users) o f the system

in the development process. Some can argue that FDTs should not be used so early in

the software development life cycle, since they are not easily understood by most clients.

That may be true, but there are other advantages of using FDTs as early as possible to

develop software, especially if the resulting specification is executable. Apart from the

advantages already mentioned (such as having a formal description of the system and

using prototyping to find inconsistencies, omissions and ambiguities early) there is also

the advantage of increasing the analyst’s confidence in the system. This is due to two

main reasons:

By using FDTs, analysts have to understand every “corner” o f a problem in order to

specify it. The use o f informal techniques allows them to be vague in the description

Chapter 6. The Rigorous Object-Oriented Analysis Method 142

and so may unintentionally avoid certain characteristics of the system that they

do not fully understand. By the time they finish the analysis using FDTs they will

know much more about the system than they would know if they were using informal

techniques. This knowledge helps them to present their idea of the system to the

clients and understand their explanations. ^

• If the analysts use an FDT which produces executable specifications they can also

use rapid prototyping for checking the specification against the requirements. The

possibility o f using prototyping gives them confidence in the specification they are

developing. By using ROOA, they also have the possibility o f developing the system

incrementally, using components which have already been verified.

These advantages compensate for the difficulty the clients may have in reading the spec

ification. The simulation tools can be used to show the system to the clients. For our

method we suggest the analysts use the simulator SMILE [EW93] for their work since, as

we said in Chapter 2, it supports non-determinism and value generation. However, this

tool is perhaps too complicated to be used to show the system to the client. The simulator

HIPPO [vEVD89] does not offer as many possibilities to check the specification, but it

has a much simpler interface and so we advise it to be used when the specification is to

be shown to the client.

The final purpose of this chapter is to describe each task of the ROOA method. This

description is accomplished by using, as a case study, a running example. The example

we have chosen is the automated banking system whose requirements were presented in

Chapter 3. ROOA was first applied to this problem with Coad and Yourdon’s method

(Figure 3.2 depicts the object model obtained). Later, we have applied ROOA with OMT

to the same problem. The goal of this exercise was to test how ROOA would behave

in conjunction with a different method. This turned out to be an interesting exercise,

as it showed us important differences between the two OOA methods with regard to the

information their resulting object models contain. The identification of those differences

led us to improving ROOA to better integrate object models produced by most OOA

methods. In the following section, as we present each task, we give the results of the

Chapter 6. The Rigorous Object-Oriented Analysis Method 143

application of ROOA together with OMT.

6.3 The ROOA Process

An object model shows class templates and concentrates on the static relationships be

tween objects. The integrated analysis model produced by ROOA specifies a system’s

dynamic behaviour and the data transformations as well as the static relationships. It

typically involves many instances of each class template. To avoid being overwhelmed

with detail in the first iteration of ROOA, only a single instance o f each class template is

considered, i.e. we focus on the concept of a single typical object o f a class. For this reason,

the names given to the documents and diagrams use the term object (e.g. object model,

object communication table and object communication diagram) and the discussion in the

following sections is in terms of objects rather than classes.

In later iterations, the model is generalized so that we deal with classes rather than

objects. However, the term object is kept for the diagrams and documents, even though,

by the end o f the last iteration, they reflect the more general concept o f class template

and class.

Task 1; Build an Object Model

An object model shows the class templates that compose the system and the relationships

between their objects. The objects can be found by looking for physical entities and

concepts in the problem domain. Not all the objects are explicit in the system requirements

document; some are implicit to the problem domain or the general knowledge of the real

world. In general it is not difficult to identify objects, but it is difficult to select which of

them are relevant to the system. Our goal is to identify the objects which are essential

throughout the system’s development life cycle.

The construction of the object model can be considered as a separate task from the

other ROOA tasks, and it can be accomplished by a different team. During application of

our method, the object model may be modified. The advantage o f starting with an object

model produced by any object-oriented analysis method is that we can build on the work

Chapter 6. The Rigorous Object-Oriented Analysis Method 144

which has already been done to identify objects.

The object model is the main focus o f most OOA methods. This brings no problems,

if the problem we are modelling is primarily static. However, there are other problems

which have a preponderant dynamic component. For this kind of problem, we may need

to use techniques such as Event Trace Diagrams (ETDs) [RBP"'‘ 91] to help us build the

object model.

An example o f an object model for the problem described in Section 3.3 and which

was built by using OMT [RBP"*‘ 91] is depicted in Figure 6.4.

Figure 6.4: Object model produced by the OMT method

Task 2: Refine the Object Model

Many OOA methods are mainly concerned with the identification o f entity objects. Entity

objects correspond to those objects that support the information that the system must

keep and maintain. According to Jacobson, there are however other kinds of objects:

interface objects and control objects [Jac92]. Interface objects are the objects that the

actors use to communicate with the system, ask it for services and receive answers from

it. (Actors are the external objects, clients or users, that interact with the system.) They

Chapter 6. The Rigorous Object-Oriented Analysis Method 145

transfer the actors’ actions into system events and the system’s answers into something

that the actor can read and understand. The control objects deal with the functionality

that does not fit into any of the entity or interface objects. The entity objects will exist

in the initial object model, but the interface objects may not.

During this task, we add interface objects to the object model. Next we refine the

resulting object model so that each class template is described with attributes and ser

vices. Then we define static relationships and message connections between objects, and

finally, we start structuring the system. To structure the system, we use aggregates and

subsystems. Aggregates are complex objects, built from simpler objects, which may al

ready have been identified in Task 1. Subsystems are also groupings of objects, but they

do not enjoy the status of being an object. These groupings are often found by minimizing

the static relationships between objects. We wish to identify subsystems by taking into

consideration message connections as well as static relationships.

Therefore, before we start producing the LOTOS formal model, we want our object

model to reflect the static properties and the dynamic dependency between objects. This

is achieved by guaranteeing that it incorporates:

1. Interface objects.

2. Static relationships.

3. Attributes and services in each class template.

4. Message connections.

Task 2.1: Complete the Object Model

During this task we start adding interface objects to the object model and then we add

more information to each class template. In object models created using some OOA

methods [RBP'*'91], the class templates are defined only by name and a list of attributes.

In others [CY91a] we also have services and message connections. We propose that a class

template can only be fully understood if it is defined by a name, a list of attributes and a

Chapter 6. The Rigorous Object-Oriented Analysis Method 146

list of offered services. Moreover, in our object model the class templates are related by

static relationships (and message connections which are added in Task 2.2.2).

Task 2 .1 .1 : A d d Interface O b jects

Interface objects model behaviour and information th,at is part o f the system interface with

the system’s environment. Thus, everything in the system that is concerned with an inter

face is placed in interface objects. An example of an interface object is A utom atic-T eller.

Task 2 .1 .2 : A d d Static Relationships

A static relationship between two (or more) objects means that one object “knows about”

the other (or, if the relationship is bidirectional, they “know about” each other). There

are three kinds of static relationships:

1. Conceptual relationships.

2. Aggregation.

3. Inheritance.

Relationships are present in most object models given by OOA methods. However, the

method proposed by Berard [Ber89, Ber93] puts the objects together in the object model

by showing the visibility between objects (which correspond to message connections),

without defining relationships. Also, some relationships in OMT turn out to be message

connections.

Task: If static relationships are not already in the object model, identify them and

add them to it.

Task 2 .1 .3 : A d d A ttributes (and Services)

Attributes can be viewed as the components (elementary or not) which make up the state

of an object, although it is possible for an object not to have attributes. The services

offered by an object constitute the mechanism that allows other objects to change or

query that ob ject’s state information. Some authors argue that as services will change

Chapter 6. The Rigorous Object-Oriented Analysis Method 147

during the design phase, it is not relevant to add them to the objects in the analysis

phase [Jac92, RBE+Ql]. We believe that most of the services identified during this phase

will be retained with few changes during the design. Hence, we propose that for an object

to be fully understood, its definition should include its attributes, if any, and its services.

To identify the services offered by each object, vfe can follow two steps. First, place

ourselves inside each object and, according to the original requirements of the system,

identify the services each of the objects has to offer to its environment so that the ob ject’s

attributes can be interrogated and updated. Further services may be identified when we

deal with message connections.

Task: If attributes and services are not already in the object model, identify them

and add them to it. The services may be left until Task 2.2.

T ask 2.2: Initial Identification o f D ynam ic B eh aviou r

An object model describes the static properties o f a system. To capture and record

dynamic behaviour from the information given in the informal requirements, we proceed

according to the following steps:

1. we model the behaviour that the environment requires from the system as a set of

interface scenarios, related to the use cases o f Jacobson [Jac92]; then,

2. we build ETDs to show dynamic behaviour o f the system (they may already exist

from Task 1); and finally,

3. we collect the information in the ETDs in an Object Communication Table.

Notice that interface objects belong to the system, but interface scenarios do not.

Task 2.2.1: D efine Interface Scenarios

Interface scenarios model the interaction of a system with its environment, i.e. they show

a series of services (requests and responses) that the actors (clients or users) can require

from the system. Each one, modelling different parts o f the functionality of the system.

Chapter 6. The Rigorous Object-Oriented Analysis Method 148

can be seen as a list o f calls to the services offered by the interface objects together with

the expected responses.
By using interface scenarios together with the object model, we can understand the

system’s functionality and dynamic behaviour.

The interface scenarios will be modelled in LOTOS in Task 3. They play an important

role during the prototyping o f the formal specification.

Task 2.2.2: Define ETDs and Start Object Communication Table

Starting with an interface scenario event, we trace through the object model identifying the

object interactions required to satisfy the requested behaviour and record the information

in an ETD. The events in the ETDs may suggest additional services to add to the class

templates in the object model. Some services could have already been identified in Task

2.1.3.
Consider once more the banking example. In Chapter 3 we showed how to map OOA

constructs into LOTOS and illustrated some of the LOTOS code for the banking system.

Here, we will consider one of the class templates which we found, as we will show during this

chapter, more difficult to model: Cheque. In Figure 6.5 we present a simple ETD showing

the events exchanged between objects when a d e p o s it—cheque service is required.

Scenario Countar Tallar

dapoatLchaqua .

Chaqua

o*va_raoa>pt

dapoatt
paftiapa_dapoa*t

Othar Bank

chaqua_wHhdraw

rtn.wHhdraw

fuN.dapoaH

Figure 6.5: ETD for depositing a cheque belonging to another bank

Other ETDs showed us that Cheque should offer two services: d ep osit and withdraw.

By drawing ETDs we could understand better what a ‘cheque’ was. ETDs help us reason

Chapter 6. The Rigorous Object-Oriented Analysis Method 149

about the behaviour of objects without having to worry yet about formality. While drawing

this ETD, we discovered that we needed to include two extra services in Cheque-Account:

perh aps-deposit and fu l l -d e p o s it . Together with these services, we identified an extra

attribute in Account, which is Balance-Pending. When depositing a cheque, Balance-

Pending takes the amount to be deposited, by using the service perhaps—d ep os it and,

when the cheque is cleared, fu l l -d e p o s it adds the value of Balance-Pending to Balauice.

In Chapter 3, we did not identify these services while building the object model by using

Coad and Yourdon’s method (see Figure 3.2).

The information from the different ETDs (and from the object model) is then collected

in an Object Communication Table (OCT). Eventually, this table will be composed of five

columns, but now we are only building the first two columns. In the first column we list the

class templates that form the object model and in the second column we list the services

offered by each class template. If the services are given in the object model, column one

and column two can be filled in directly (see Table 6.1).

Task: Define interface scenarios and ETD s, add services, if appropriate, to the class

templates in the object model. Fill columns one and two of the OCT.

Task 2.2.3: Add Message Connections

A message connection shows a processing (dynamic) dependency between a client and its

server. It is defined as single arrow, not a double arrow. Therefore, if A is a client of I)

and B is a client of A, we draw two arrows, as shown in Figure 6.6.

Figure 6.6: Message connections between A and B

During this task we fill the third and fourth columns of the OCT. In the third column

{Required Services) we list, for each service offered by a class template in column one, the

services that that class template requires from other class templates to accomplish that

particular service. The notation Kclaas—template.service> is used to refer to the required

Chapter 6. The Rigorous Object-Oriented Analysis Method 150

service defined in class template. In the fourth column (Clients) we list, for each service

offered in column one, the class templates (clients) which require that service. For each

offered service we may have a list o f clients. Note that the clients of the interface objects

are the interface scenarios.

To help us to identify the required services we ̂ use the interface scenarios and the

ETDs. For example, starting with an interface scenario event, we can follow complete

paths o f functionality in the system, filling the table and creating corresponding message

connections as we trace instances of the class templates in the object model. As we trace

through the object model “simulating” threads of its functionality, new services may be

identified which should be added to the appropriate class template and inserted in the

second column o f the table. Notice that by performing this step we are also checking the

necessity for each service in the object model.

ETDs are a major help in showing message connections, a.s they show the events

exchanged between instances of class templates.

For the object model in Figure 6.4, and considering each class template with its services,

the first four columns of the OCT would be filled as shown in Table 6.1 and the information

added to the object model, as shown in Figure 6.7.

When we construct this table we may identify information that we are not yet able to

describe. In general, if a service requires more than one service from other class templates,

there is an order in which the required services occur. If this order is sequential, it can be

given by the order in which we fill column three. There are, however, situations where the

services required are alternatives. For example, the class template Cheque offers d ep os it .

If the cheque is drawn on our bank, then we can withdraw the amount from the account

where it is drawn and credit the payee’s account. However, if the cheque is drawn on

another bank, before we credit it to our client’s account, we must query 0th«r_Bank to

know whether or not funds are available to cover the cheque. Part o f this information

may be given in the ETDs which can be used later as a guideline to build the LOTOS

specification.

The first two columns in the OCT duplicate information given in the object model.

Chapter 6. The Rigorous Object-Oriented Analysis Method 151

C la ss O ffe r e d R e q u ir e d C lie n ts
T e m p la t e s S e r v ic e s S e rv ice s

Entry—Station (ES) w ithdraw ^ash A ccount .withdraw Interface-Scenario
Counter—Teller (C T) open—account A ccount .create Interface-Scenario

close-account A ccount .remove Interface-Scenario
deposit-cash A ccount .deposit Interface-Scenario
give-balance A ccount .get-balance Interface-Scenario
deposit-cheque C heque.deposit Interface-Scenario
ask—transfer A ccount, withdraw

A ccount.deposit
Interface-Scenario

OB .send—transfer
set-standing-order SO.create Interface-Scenario
cancel-standing-order SO .cancel Interface-Scenario

A u tom atic—Teller (A T) m ini-statem ent Cheque—A ccou n t.print-m i ni-stat Interface-Scenario
Other—Bank (O B) receive-transfer A ccount .deposit Interface-Scenario

send—t ransfer C T, SO
cheque—withdraw Cheque
rem ote—withdraw A ccou n t. wi t hdraw interface-bcenario

StandingJOrder (SO) create CT
cancel CT
debit A ccount, withdraw

A ccount .deposit
O B.send—transfer

internal

Cheque withdraw A ccoun t, withdraw CT
deposit A ccoun t, withdraw

A ccount .deposit
A ccount .perhapB-deposit
O B .cheque—withdraw
A ccount .fu ll-deposit

CT

A ccoun t (A) create CT
remove CT
deposit C T , Cheque, O B , SO
withdraw C T , ES, Cheque,

O B , SO
balance CT

C heque—A ccount (C A) print-m in i-stat AT
perhaps-deposit Cheque
fu ll-deposit Cheque

Savings—Account (S A) credit-interest internal
update-date internal

Table 6.1: OCT with class templates, services offered, services required and clients

Tools such as ObjecTool permit extra information to be recorded about attributes, services,

etc. Such information is not presented diagrammatically in the object model, but is

available in textual form. Instead o f building the OCT by hand, we can record, for

each service, its clients and the lower level services it requires. A translator has been

constructed by Clark [Cla94a] which takes the textual output from ObjecTool and creates

the corresponding OCT.

Chapter 6. The Rigorous Object-Oriented Analysis Method 152

The message connections are drawn in the object model according to the OCT. If one

class template requires services defined in more than one class template (server), then there

is an arrow starting from the first class template reaching each o f the servers. Only one

message connection is drawn from one particular class template to another class template,

independently of the number o f services the first class template needs from the second.

Task: Complete columns three and four of the OCT and add, if necessary, message

connections to the object model.

Task 2.3: S tructure the O b je c t M o d e l

Grouping class templates into subsystems or into aggregates is necessary when we are

dealing with large complex systems.

This task is difficult to accomplish and so we cannot expect to do it completely and

correctly in the first iteration. The low level class templates in the object model often

remain almost unchanged during the development, but the high level structure is less

stable. Our suggestion is to do only what is obvious to begin with, and then come back to

it as our knowledge about each individual class template increases. We use aggregates and

subsystems to structure a large system. The fundamental difference between an aggregate

and a subsystem is that, while the components are an intrinsic part of the aggregate,

and the aggregate is itself an object from the problem domain, a subsystem is merely a

grouping of related class templates.

During the first iteration, only obvious groupings are identified. Suitable candidates

are:

• Class templates that participate in an aggregation relationship; they form an aggre

gate.

• Class templates that participate in an inheritance relationship; they form a subsys

tem.

Grouping other class templates should be left until later iterations, when we have

a better knowledge about the system. However, when we identify subsystems we have

Chapter 6. The Rigorous Object-Oriented Analysis Method 153

to make sure that their components are logically related, highly coupled and that the

interaction between subsystems should be low. Other candidates to form subsystems,

which may only be grouped in later stages, are:

• a set o f clients which use the same servers;

• a set o f servers which have the same clients.

We show groupings in the object model by surrounding the class templates by a rect

angle with dotted lines. The OCT should be changed to encode this information. The

changes include using the name of the subsystem or aggregate in the first column o f the

table, instead o f the component’s name, and using the name of the subsystem or aggre

gate followed by the name of the component between brackets in any other place where

that component is mentioned. For example, instead of considering Counter-Teller,
Automatic—Teller and Entry-Station independently, we should only deal with with

Teller. (The same can be said about Account, Savings—Account and Cheque-Account.)
These changes are shown in columns one to four in Table 6.2.

Figure 6.7 represents the refined object model first shown in Figure 6.4.

Task 3: Build the LOTOS Formal Model

The advantage of building a LOTOS formal model is that we end up with a single model

which:

• Models the static, dynamic and functional aspects of the system.

• Has a formal semantics.

• Is executable.

The resulting model acts as a formal requirements specification. Since a LOTOS speci

fication is executable, rapid prototyping can be used to discover and correct inconsistencies,

omissions, contradictions and ambiguities while we are still doing analysis. Moreover, the

Chapter 6. The Rigorous Object-Oriented Analysis Method 154

Figure 6.7: Refined object model

resulting model incorporates the characteristics of object-oriented systems, since it consid

ers a system as a set of concurrent objects where message passing is modelled by objects

synchronizing on an event during which information may be passed.

We start by building an object communication diagram, which shows the system as a

set of communicating objects. It gives the structure of the LOTOS specification. Then, we

model each class template in the object model in LOTOS and we add to it its behaviour.

Next, by following the structure o f the object communication diagram, we compose the

objects (instances of the class templates) by using parallel operators and we prototype the

specification. Finally, we refine the specification.

Chapter 6. The Rigorous Object-Oriented Analysis Method 155

Task 3.1: Create an Object Communication Diagram (OCD)

The OCD is a graph where, in the first iteration, each node represents an object and each

arc connecting two objects represents a gate of communication between them. In later

iterations, the diagram is generalised to deal with multiple instances of the same class

template. In the beginning, some of the objects ipay not be connected by arcs to the

rest of the diagram. As the method is applied, these objects will either disappear or be

connected to the others, and new groupings may appear, refining the diagram.

The central feature of the final LOTOS specification is that it is primarily a dynamic

model, although it contains all the static information given in an object model. A major

task in the creation o f the formal LOTOS model is the transformation from a static to

a dynamic model. The OCD and the O C T are intermediate structures created to help

in the transformation. The OCD shows the structure of the object model which then is

preserved in the structure of the behaviour expression in the LOTOS dynamic model.

During this task we also complete the OCT that we started building in Task 2.2.2,

by adding to it the column Gates. This column will give the name of the gates that the

objects in column one and column four use to communicate between each other. The fifth

column of the O CT is then used to label the arcs in the OCD.

The following algorithm shows how to construct the OCD from the O CT and the

object model:

1. Draw the nodes.

In the first iteration, take an instance of each class template in column one of the

OCT and for each one draw a node in the OCD. For each object grouping already

identified, proceed in a similar way, considering the composite object or subsystem

as a node and showing each object component as an inner node of the first. Again,

each inner node corresponds to an instance of each component class template.

2. Connect nodes by arcs.

For each message connection between two class templates in the object model, draw

an arc between the two corresponding nodes in the OCD. If a message connection

Chapter 6. The Rigorous Object-Oriented Analysis Method 156

to a component of a composite object or subsystem is defined, draw the arc in the

OCD to the higher level node. At the end of the first iteration, some nodes may be

unconnected to the rest of the diagram.

3. Label arcs.
Repeat this step for each class template in thp first column of the O CT.

(a) Complete column five in the table.

Looking at the second {Offered Services') and fourth {Clients) columns:

• Give the same gate name for the object communications which require the

same set, or subset, o f services; i.e. where there is an overlap between the

set of services required by different clients.

• Give different gate names for object communications which require a differ

ent set of services, i.e. where there is no overlap between the set of services

required by each client.

These two rules are the result of requiring that an object cannot use the

same gate to communicate with both an object at the same level o f ab

straction and another object at a different level of abstraction.

Table 6.2 shows the gate names for the banking example.

(b) Give gate names to the arcs in the OCD as follows:

For each class template in column one o f the OCT, identify the arc in the

OCI) that connects the corresponding object to each of the clients in column

four. The name of the arc is the name o f the gate given in column five to the

corresponding server and client pair.

The initial OCD built by following the above rules is depicted in Figure 6.8.

4. Deal with superclasses.

In general, we do not require instances of the superclass. If this is the case remove

the corresponding node from the OCD. (Coad and Yourdon have different notations

for classes without instances, i.e. abstract classes, and classes with instances, but

others do not [CY91a].)

Chapter 6. The Rigorous Object-Oriented Analysis Method 157

5. Add more arcs.
During the specification of each individual object we may identify new message

connections, which will require more arcs in the OCD. If this happens, proceed

according to steps 2 and 3.

C la ss O ffe r e d R e q u ir e d C lie n ts G a te s

T e m p la te s S e rv ice s S e rv ice s

Teller open—account (C T) BA.create Interface-Sceniu-io t

[ES + C T + AT] close -accou n t (C T) BA.rem ove Interface-Scenario t
deposi t-cash (C T) BA.deposit Interface-Scenario t
w ithdraw ^ ash (E S) BA. withdraw Interface-Scenario t
gi ve—balance (C T) BA.get—balance Interface-Scenario t
deposi t-cheque (C T) Cheque.deposit Interface-Scenario t
m in i-statem ent (AT) B A .p rin t-m in i-sia t Interface-Scenario t
ask—t ransfer(C T) BA. withdraw Interface-Scenario t

BA.deposit
OB.send—transfer

set-stan d in g -ord er(C T) SO.create Interface-Scenario t
ca n cel-stan d in g-order(C T) SO.cancel Interface-Scenario t

O ther-Bank (O B) receive-transfer BA.deposit Interface-Scenario o b i
send—transfer T eller(C T), SO ob2
cheque-w ithdraw C heque ob3
rem ote—withdraw BA.withdraw Interface-Scenario o b i

Standing JDrder create T eller(C T) so

(SO) cancel T eller(C T) so
debit BA.withdraw internal

BA.deposit
O B .send-transfer

Cheque withdraw BA.withdraw T eller(C T) c
deposit BA.withdraw Teller! C T) c

BA.deposit
B A .perhaps-deposit
O H .rheque-w ithdraw
B A .fu ll-deposit

B a n k ^ cco u n t (A) crea te (A) T eller(C T) ba
(A + CA + SA] rem ove(A) T eller(C T) ba

d ep osit(A) T eller(C T), ba
C heque, OB, SO

w ithdraw (A) T eller(E S.C T), ba
C heque, OB, SO

g e t_b a lu ice (A) Teller! C T) ba
p rin t-m in i-sta t(C A) Teller! AT) ba
perhaps-deposi t (C A) C heque ba
fu lL jdeposit(C A) C heque ba
credi t-in tereit (S A) internal
update-d«te(S A) internal

Table 6.2: OCT with gates

In the later iterations object generators and new groupings are added to the model.

Chapter 6. The Rigorous Object-Oriented Analysis Method 158

Figure 6.8: Initial object communication diagram

This requires the following changes in the diagram:

6. Introduce object generators.

After introducing object generators, each node represents multiple objects, i.e. a

class of objects. We use names in the singular for the class templates in the object

model and for the nodes in the initial OCD, but we use names in the plural for object

generators. Hence each node corresponding to a class template with a generator

not all the class templates need a generator — has a plural form o f name. (The final

OCD for the banking system is illustrated in Figure 6.9.)

7. Introduce new groupings of objects.

New groupings of objects may lead us to merge some arcs. If two or more objects

are grouped, we can decide to use the same communication arc for the services the

component objects offer, i.e. all the services offered (not required) by the composite

object or subsystem would be offered at the same gate. The idea is to treat the

higher level object as one object, instead o f dealing with each object component

separately. When we create groupings, name clashes can occur in the OCT. To avoid

this problem, we put the name o f the component between brackets after the name

o f the service in column two (see Tables 6.2 and 6.3.) Notice, however, that name

clashes do not occur in the LOTOS model as the services will be distinguished by the

object identifier of the object offering the service. Therefore, using the component

Chapter 6. The Rigorous Object-Oriented Analysis Method 159

name between brackets is a precaution we only have to take during the construction

of the object communication table.

After this we have to change column one of the OCT to deal with the groupings

and change column four to replace the name of a component with the name of its

subsystem or aggregate. Next, we re-apply again the rules in step 3 of Task 3.1 to

all the cases where the groupings or their components are referred. This can cause

some of the gates to be amalgamated.

Task 3.2: Specify Class Templates

As our goal is to produce a formal model in LOTOS, we should not spend too much time in

Tasks 2.3 and 3.1 during the first iteration. Although producing a hierarchical architecture

is fundamental to the understandability of a system, and a behaviour expression with a

large number of processes may not be easily understood, we start building the formal

model by modelling individual objects in LOTOS, before we have defined much hierarchy

in the system. By specifying objects in LOTOS we gain more knowledge about the system

and this will help in later iterations to find suitable groupings.

In Chapter 3 we discussed how to model objects, class templates, classes and inher

itance in LOTOS and in Chapter 4 we discussed how to model aggregates. We now

start specifying the more complex objects. The behaviour o f an object is specified by a

class template and its state information by one or more ADTs given as parameters of the

template. And so, for each individual object, we:

1. Specify the class template by a LOTOS process definition.

2. Specify ADTs using ACT ONE.

A process definition with its ADTs fully specifies an object, i.e. defines the class tem

plate. It defines the static, dynamic and functional aspects of an object. The object model

defines each class template by its name, a list o f services and a list of attributes. An ADT

alone could define and formalise the information. The behaviour of each class template is

not, however, given by the object model. The OOA methods give it in a separate model.

Chapter 6. The Rigorous Object-Oriented Analysis Method 160

the dynamic model. A process*, together with ADTs, is required formally to specify

the behaviour o f each individual object. The transformation o f data and information ex

changed during message passing is given by another separate model by the OOA methods,

the functional model. Here, with processes and ADTs we specify the information passed

during synchronization and specify the transformations which cause an object’s state to

change. We also model the interface scenarios as processes and each static relationship in

the object model. Finally, following the structure in the OCD, we compose the processes

into behaviour expressions, defining in this way the behaviour of the whole system.

We end up with an executable specification where we can use rapid prototyping to

validate the specification against the requirements.

During the whole process we may find objects which we decide to specify as a single

ADT. These objects usually play a secondary role in the system, acting only as attributes

of other objects. However, they can be promoted, to be specified with a process, if we

change their importance in the problem.

Task 3.2.1; Specify Dynamic Behaviour

To specify the dynamic behaviour of a class template we take as a starting point columns

two and three of the OCT. Column two gives the services offered by the class template

and column three gives the services required by that class template, from another clzuss

template. Then, we have to find out the order in which the calls to the required ser

vices occur. For that, we should imagine ourselves inside an object specified by the class

template and act as if it was the centre of the system. The offered services are often

represented in the process as the alternatives in a choice expression. The required services

usually come in sequence after an offered service in a behaviour expression. In LOTOS,

objects communicate via event synchronization which takes place through gates. The arcs

in the OCD correspond to gates through which the objects communicate.

The services offered and required are modelled in LOTOS as structured events, as
'A n object corresponds to the instantiation o f a LO T O S process. When the distinction is clear from

the context, we use the term process for both a process definition and a process instantiation.

Chapter 6. The Rigorous Object-Oriented Analysis Method 161

discussed in Section 3.3.8. Specifying a class template as a process, we show the services

and their order, we show message passing with information being passed during synchro

nization, and we give it a precise meaning. The ADTs given as parameters of the process

give the object’s state information. It is important to define the signature of the services

and to describe the class template in terms of its attributes. Comparing the class template

defined with a process and ADTs with the class template as it appears in the object model

we can appreciate how much more new information we now have. Some of this informa

tion, such as dynamic behaviour, is described by the OOA methods in supplementary

models (dynamic and functional). Here, we have a single integrated model that defines

the static, dynamic and functional properties in a formal manner.

In order to specify a process incrementally, only a subset o f services may be dealt with

in the first iteration.

For example, let us consider the class template Cheque. While specifying it, we discov

ered one more service enquire—cheque which is only offered after a deposit or a withdraw

have been offered. One solution for this could be the use o f a boolean flag which, when

“true” , only allows a deposit or a withdrawal to be accepted. After a deposit or a with

drawal occurs, the flag will be set to “ false” and only state information enquires are then

Allowed. The alternative, which we prefer, is to split the cheque process into two processes,

one dealing with the active part o f the cheques (deposit and withdraw operations), and

other dealing with the passive part (enquiries about the cheque state information). This

approach is related to the discussion in Chapter 3, Section 3.3.7, about the state of an

object. Once more, we choose the solution which gives us less code. So, we specify Chaque

by using the two auxiliary processes: Actlva_Chaqua and P asslv a —Chaqua.

procass Chaquafc, ob3, ba](ch: Chaqua.Iuaibar) : noaxlt
(Actlva_Chaqua[c, ob3, ba](ch)
» accapt thia.chaqua: Stata.Chaqua In Paaalva.ChaquaCc](this.chaqua)

)
andproc

First, we would like to mention that the parameter defined in Chaqua is not exactly

Chapter 6. The Rigorous Object-Oriented Analysis Method 162

the kind of sort we would expect. This was the first solution we thought of to deal with

cheques. To start with, we only define a simple ADT which is composed of the attribute

Cheque-Number. Only then does the template Passive-Cheque deal with the full state o f

cheques. Secondly, notice that we cannot access Passive-Cheque until Active-Cheque is

finished. This sequentiality is introduced by the enable operator >>.
I

Active-Cheque is then specified as follows:

p r o c e s s A c t iv e _ C h e q u e [c , o b 3 , b a] (c h : Cheque_Humber) e x it (S ta to _ C h e q u e) :=

((c 'd e p o s i t ? i d : I d _ T e l l e r s ?b k : Bank_Hame

?c h _ lr o m : Acco\int_Mumbor ? c h _ t o : Account_M umber ! ch ?m: Money;

ba !p e r h a p s _ d e p o s it ! c h _ t o !m;

< [bk eq T h is_B ank] ->

(ba '» i t h d r a v I c h .fr o m !m;

ba !r tn _ w ith d ra w !ch _ fro m ? c h e q u e _ v a l id : B o o l;

ba ! t u l l _ d e p o s i t !c h _ t o !m ! c h e q u o _ v a l id ;

o x it (M a k o _ C h e q u e (ch , ch _ lro m , c h _ t o , b k , m))

)
[]

[bk ne T h is .B a n k] ->

(ob3 ! ch e q u e _ « ith d ra w !bk !ch _ fro m !c h !m; (* t o o th e r banks *)

ob3 !r tn _ ch e q u a _ w ith d ra v Ibk !ch _ fro m !c h !m ? c h e q u e _ v a lid : B o o l;

ba i f u l l . d e p o s l t l c h _ t o Im I c h e q u e .v a l id ;

ex it (M a k e _ C h a q u e (ch , c h . l r o m , c h _ t o , b k , m))

)))
[]

(c (w ithdraw 7 id : I d . T e l l e r s 7bk ; Bank.Rame

7n: A c c o u n t .lu n b e r (ch 7m: Money; . . . (* w ith my cheque in my bank *)

))
en d p roc

When an instance o f A ctive—Cheque asks for the service f u l l —d ep osit from an instance

of Cheque-Account, the behaviour of Cheque-Account depends upon the value of the

boolean variable ch eq u e-va lid . If this variable takes the value ‘true’ , the amount m is

Chapter 6. The Rigorous Object-Oriented Analysis Method 163

added to the current balance, otherwise it is not.

Finally, Passive-Cheque can be:

p r o c e s s P a s s iv e _ C h e q u e [c] (t h is _ c h e q u e : S ta te_C h equ e) : n o e x i t :=

(c ! e n q u ire_ch eq u e ? i d : I d _ T e l l e r s

!G et_C h equ e_H u m ber(th is_ch oqu e) ! t h i s _ c h e q u e ;

e x i t (t h i s . c h e q u e)

) » a c c e p t u p d a te .c h e q u e : S ta te_C h eq u e in P a ss iv e _ C h e q u e [cD (u p d a te _ ch e q u e)

e n d p roc

Having discovered one more service (enquire.cheque), we have to update the OCXs and

the refined object model accordingly.

Task 3 .2.2: Specify A D T s

An ADT defines the necessary equations to allow the objects to be prototyped with state

information and values to be passed during the communication, but without giving too

much detail about how each service is performed internally. The ADT describes the

attributes of an object and the operations which deal with those attributes.

• As with a process, an ADT can be specified incrementally. We can start by specifying

only some of the attributes and services and add more detail in later iterations.

In Chapter 3 we discussed how to model ADTs in LOTOS and we gave the rules to be

followed when applying ROOA. As the ADT we presented there for an account is more

interesting than the ADT where the sort State—Cheque is defined, we do not show the

LOTOS code for Cheque.Type.

The order in which we specify processes and ADTs (Tasks 3.2.1 and 3.2.2) is arbitrary.

We can start with a process and then move to the corresponding ADTs, or we can start

with the ADTs and then move to the process. We may decide to start specifying a group

of processes and then specify the A D T s, or vice-versa. Also, part o f the system may be

fully dealt with, ignoring the rest.

The application of this task (Task 3.2) may require application o f Task 2.2, i.e. if

further relationships, attributes, services and message connections are identified, they

Chapter 6. The Rigorous Object-Oriented Analysis Method 164

must be added to the refined object model. Task 3.1 must also be applied if new message

connections are identified.

Task 3.3: Compose the Objects into a Behaviour Expression

Following the structure o f the OCD, we compose the objects defined in Task 3.2 into a LO-
I

TOS behaviour expression by using the parallel operators. The algorithm by Clark [Cla94b]

describes how this can be done for an OCD of arbitrary complexity and identifies situations

in which an OCD cannot be represented in LOTOS. The main point o f this algorithm is

that a server cannot be grouped with a subset o f its clients.

Notice that, since in the first iteration each node in the OCD represents a single object,

the composed behaviour expression is built of single objects. F'or example, the objects that

form the OCD in Figure 6.8 would be composed as follows:

(O t h a r .B a j ik C o b l , o b 2 , o b 3 , b a] (M ako_B anlt(. . .))

I[ob2, ob3]I
(T e lle r [t , ob2, c , so, ba]

I [c , so] I
(Cheque[ob3, c , ba](Make_Cheque(. . .))

I I I

Standing.Order[ob2, so, ba](Hake_SO(. . .))

))
I [b a] I

Bank.Account[ba]
)

where . . .

Before we can start the next task, we have to model the interface scenarios and compose

them, one at a time, with the behaviour expression above. Consider the following part of

an interface scenario for the banking system:

procass lntarlaca_Sc«narlo[t, o b i]: nowxlt :■

(a craats an automatic ta lla r and a countar ta lla r *)

t Icraata Tide: Id .Tallara;

Chapter 6. The Rigorous Object-Oriented Analysis Method 165

t ¡ c r e a t e ? id a : I d _ T e l l e r s ;

(• open a cheque a cco u n t fro m co u n te r t e l l e r •)

t ! op e n _ a cco u n t ! id c ¡c h e q u e ;

t ¡ r tn _ o p e n _ a cco u n t ¡ i d c ? n c : Account_H ulnber;

(* d e p o s i t from c o u n te r t e l l e r *)

t ¡d e p o s i t .c a s h ¡ i d c ¡n c ¡T his_M on; ,

t ¡r t n _ d e p o 8 it _ c a s h ¡ i d c ¡n c ¡T his_M on;

(e b a la n c e from a u to m a tic t e l l e r *)

t ¡ p r in t_ m in i_ 8 ta te m e n t ¡ id a ¡n c ;

t ¡r tn _ p r in t_ m in i_ s t a te m e n t ¡ id a ¡n c ? a : A ccou n t;

(* w ith d raw a l from a u to m a tic t e l l e r *)

t ¡w ith d ra w _ca sh ¡ id a ¡n c ¡This_M on;

t ¡ r tn _w ith d ra w _ca sh ¡ i d a ? v a l : B o o l ;

(h id e s u c c e s s in s u c c e s s ; s to p)

en dproc

The Interface-Scenario process acts as if it was the client of the whole system. It

initiates calls to the tellers on gate t and to other banks on gate ob i, and waits for the

respective answers. We composed it in parallel with the above behaviour expression, by

using gates t and o b i, as follows:

((O th e r_ B a n k [o b l. o b 2 , o b 3 , b a](M a k e_B a n k (. . .))

)

I [ba] I

B a n k .A ccou n t[b a]

)
I[t, obi]I

I n t « r f a c a _ S c s n a r i o [t , o b i]

In later iterations, when object generators are introduced to deal with multiple in

stances, the composed behaviour expression is refined and built up of a combination of

object generators and o f single objects (in cases where generators are not required).

Chapter 6. The Rigorous Object-Oriented Analysis Method 166

We may decide to deal only with part of the system and then, in further iterations,

add more objects until the whole system is considered.

Task 3.4: Prototype the Specification

We use interface scenarios and rapid prototyping to check services, message connections
♦

and attributes. The syntax and static semantics o f thie'LOTOS specification are checked by

the LOTOS tools and the specification can be prototyped by using SMILE or some other

LOTOS simulator. Any errors, omissions or inconsistencies found during the simulation

will lead us to iterate Tasks 2.2, 3.1, 3.2 and 3.3 and to update the original requirements

document, the object model, the O C T and the OCD.

In the first iteration, as the emphasis is on ensuring that the individual class templates

have been correctly specified, a behaviour expression consisting of single instances of class

templates is prototyped. In later iterations, multiple instances are dealt with and we check

that the complete system has been properly specified.

Task 3.5: Refine the Specification

We refine the specification by re-applying Tasks 2.3, 3.1, 3.2, 3.3 and 3.4. During successive

refinements we may:

1. Model static relationships.

2. Introduce object generators.

3. Identify new higher level objects.

4. Demote an object to be specified only as an ADT.

5. Promote an object from an A D T to a process and an ADT.

6. Refine processes and ADTs by introducing more detail.

Chapter 6. The Rigorous Object-Oriented Analysis Method 167

Task 3.5.1: Model Static Relationships

The first action we have to take in the second iteration is to model conceptual relationships.

Notice that at this stage we are still dealing with a single instance of each class template

defined in the object model.

Depending on its cardinality, a static relationship is either modelled as an attribute,

or as a set o f attributes, in one of the objects involved in the relation (or both if the

relationship is bidirectional), as described in Chapter 3.

This task involves Tasks 3.2, 3.3 and 3.4.

Task 3.5.2: Introduce Object Generators

During a first iteration we deal only with a single instance of each class template. This

simplifies the problem and allows us to prototype with a specific number of objects. How

ever, in general, several instances o f the same class may be required. This is achieved by

defining an object generator for a class template.

When dealing with subsystems, we can decide to define an object generator for each

component, or else define an object generator for the whole subsystem. Which is to be

preferred depends on each particular situation.

In Chapter 3 we discussed in detail how ROOA specifies object generators in LOTOS.

There we presented the most often used view of an object generator. However, to deal

with certain specific problems we may require a variation of the object generator. ROOA

allows it. For example. Cheque is one of those special cases. During later refinements of

the LOTOS specification, this class template was one o f the class templates that suffered

more changes. One of the important changes was to consider that we had two kinds

o f cheques: the ones to withdraw and the ones to deposit. So, we split Cheque into a

Cheque.Wlthdraw and Cheque.Depoelt. Another difference in cheques is that the object

identifier is not generated by the system. These lead us to define an object generator

which can be used to create objects of both kinds:

Chapter 6. The Rigorous Object-Oriented Analysis Method 168

p r o c e s s C h e q u e s [c , o b 3 , ba] : n o e x i t

c ! c r e a te _ c h e q u e ? c h : Cheque_Mumber ?b k : Bank_Hiune

? lr o m _ a c c : Account_Huinber ? t o _ a c c : Account_Hum ber ?m: Money;

(C h e q u e _ D e p o s it [c , o b 3 , ba] (M ake_C hequ e(ch , fr o m _ a c c , t o _ a c c , b k , m))

I I I
C h e q u e s [c , o b 3 , b a] i

)
[]

c ! c r e a te _ c h e q u e ? c h : Cheque_Humber ?b k : B^u^k_Il^une

?n : Account_H um ber ?m: Money;

(C h equ e_W ithd raw [c, o b 3 , b a] (M ake_C hequ e(ch , n , n , b k , m))

I I
C h e q u e s [c , o b 3 , ba]

)
en dproc

The object generator has no parameters now, but each branch of the choice has still the

same structure of the object generators discussed in Chapter 3.

This task affects 'fksks 3.1, 3.2, 3.3 and 3.4.

Task 3.5.3; Identify New Higher Level Objects

The identification of new higher level groupings (subsystems and aggregates) leads us

to change both the initial OCD and the OCT in order to incorporate the new objects.

Therefore we should apply again Tasks 3.1, 3.3 and 3.4.

In the banking example, we grouped Chaquas with Standing—Ordars to form the

subsystem Flnanclal-Instrum antB. These changes can be seen in the OCT represented

in Table 6.3. The revised OCD, based on Table 6.3 and after we have introduced object

generators, is depicted in Figure 6.9.

Chapter 6. The Rigorous Object-Oriented Analysis Method 169

C la ss O ffe r e d R e q u ir e d C lie n ts G a te s

T e m p la te s S e rv ice S e r v ic e

TeUer op en -a ccou n t (C T) B A .create Interface-Scenario t

Other_B&nk (O B) receive^ransfer B A .deposit Interface-Scenario o b l
send-transfer T elier(C T), F I(SO) ob2
cheque—withdraw Fl(C heque) ob2
rem ote—withdraw BA.withdraw Interface-Scenario o b l

Financial-Instrument (FI) crca te (S O) T eller(C T) cs

[SO + Cheque] cancel(S O) * , Teller(C T) cs
d cb it(S O) BA.withdraw

B A .deposit
OB .send-transfer

internal

w ithdraw (C heque) B A. withdraw TeUer(CT) CB

deposit(C h eque) BA.withdraw
B A .deposit
B A .p erh a ps^ ep osit
O B .cheque—withdraw
BA.fulLjdeposit

Teller(C T) cs

B ank-A ccount (B A) create Teller(C T) ba

rem ove Teller(C T) ba
deposit T eiler(A T ,C T), O B ,

FI(C heque, SO)
ba

withdraw T eller(E S,C T). O B ,
FI(C heque, SO)

ha

Teller(C T) ba

Table 6.3: Refined OCT

Now, the composition o f the object generators in the OCD would take the form:

(O th o r_ B a n k s [o b l, o b 2 , b a] (I n s e r t (T h is _ B a n k , { } o i Bemk_Name_Set))

I Cob2] I

(T e l l e r s [t , o b 2 , c s , ba]

I [c s] I

F in a n c la l_ I n s tr u m e n t s [o b 2 , c s , ba]

))
I [ba] I

Bank.Accounts[ba]

Task 3.6.4: Demote an Object to be Specified only as an ADT

If an object plays a secondary role in the system, i.e. it only acts as an attribute of other

objects, it should be specified as a single ADT.

Chapter 6. The Rigorous Object-Oriented Analysis Method 170

Figure 6.9: Revised object communication diagram

In this case, delete that object from the OCD. This affects Task 3.1, 3.2, 3.3 and 3.4.

Note that in Task 3.2 we only need to delete the process corresponding to that object.

Task 3.6.5; Promote an Object to be Specified as a Process

An object that we considered to have a secondary role in the system may rise in importance

when we add more detail to the specification. Because we allow processes and ADFs to

be specified incrementally, new information can have this effect on the formal model.

This task affects Task 3.1, 3.2, 3.3 and 3.4.

Task 3.5.6: Refine Processes and ADTs

The complete definition o f a process or an AD T can be done incrementally. In each

refinement we can add more detail to the specification. When more information is added to

the formal model, more static relationships, attributes, services, and message connections

can be identified. In this case, add them all to the object model and apply again Tasks 2

and 3.

In the specifications we developed by using ROOA, there were major differences be

tween the initial ones and the final ones. These differences are of two kinds: structure

and detail. The structure o f a specification can change according to the extra complex

objects and subsystems we find during refinement. The detail involved when specifying

each class template for the first time depends on the experience already acquired with

Chapter 6. The Rigorous Object-Oriented Analysis Method 171

ROOA. Even then, we advise complex objects to be specified incrementally. Start by just

using the services (and attributes) we understand about, leaving for further iterations the

ones which we do not understand well. A good example of this was the class template

Cheque. It kept changing during the application of the method. The final version of the

process specifying Cheque-Deposit is as follows:

p r o c e s s C h e q u e _ D e p o s it [c s , o b 2 , b a] (t h is _ c h e q u e : Cheque) : n o e x l t :=

(C h e q u e _ D e p o s it _ l[c s , o b 2 , b a](t h is _ c h e q u e)

» a c c e p t th is _ c h e q u e : Cheque in P a s s iv e _ C h e q u e _ D e p o s it [c s] (th is _ c h e q u e)

)
»h e re

p r o c e s s C h e q u e _ D e p o s it_ l [c s , o b 2 , ba]

(t h is _ c h e q u e : Cheque) : e x it (C h e q u e) :=

ba !p e r h a p s _ d e p o s it ! G e t_ A c c_ T o (th is_ ch e q u e)

! G e t .A m o u n t (th is .c h e q u e) ;

([G et_B a u ik (th is_ch eq u e) eq This_B ank] ->

(b a iw ithdraw ! G e t_A cc_F rom (th is_ch eq u e) ! G e t_ A m o u n t(th is _ ch e q u e);

ba !r tn _w ith d ra w _ok !G e t_A cc_F rom (th is_ch eq u e) ? c h e q u e _ v a l id : B o o l;

ba ! f u l l _ d e p o s i t !G a t_ A cc_ T o (th is_ ch e q u e)

! G et_A m ou n t(th is_ch eq u e) ! c h e q u e .v a l id ;

e x i t (t h i s _ c h e q u e)

)
[]
[Get_Bank(thls_cheque) ne Thls.Bank] ->
(ob2 Icheque_withdra« IGet_Bank(this_cheque)

IGet_Acc_From(this_chaque) IGat_Choque_Mumber(this.cheque)
IGet_Amount(thls_cheque) ; (e to other banks *)

))
endproc (e Cheque_Deposlt_l *)

process Passive_Cheque_Deposlt[cs](thls.cheque: Cheque) . . . endproc

endproc (e Cheque.Deposit e)

Cba.pter 6. The Rigorous Object-Oriented Analysis Method 172

With the refinement of the template we had to refine also the ADT Cheque-Type so

that operations such as Get—Amount were defined.

There is not a clear boundary between analysis and design; there never was. Therefore

the old question “ when does analysis finish and design start?” is still an open question.

However, before we move to the design, we have to ensure that the requirements specifi-
I

cation is internally consistent and deals with all thé essential objects identified from the

original requirements. For a specification to be internally consistent, we have to guaran

tee that, for every message connection, there are appropriate events in the calling and

the called objects, for every static relationship there are all the objects involved in the

relationship and a complete trace through the system can be made for every interface

scenario.

6.4 The ROOA Documents

The most useful form of describing a process is in terms of work products [PC86]. ROOA

is not only a process of developing software. It also produces documentation as the process

is applied. In Figure 6.10 we show the products built by ROOA.

The object model is produced by Task 1 and the information it contains depends on

the object-oriented analysis method used. The refined object model is produced by Task

2 and it includes an object model where the objects are described with a list o f attributes

and a list of services. This object model also describes the static and dynamic relationships

between objects and the interface objects (when necessary). During Task 2 we also define

interface scenarios to model the interaction of the system with its environment. The OCT

(object communication table) is a table developed during Tasks 2.2.2, 2.2.3 and 3.1. It

helps to define the services offered and required by each object, the message connections

between objects and the points o f synchronization between the objects. The OCD (object

communication diagram) is a graph that represents the dynamic structure o f the final

LOTOS specification. Finally, the LOTOS specification is developed from Task 3.2 to

Task 3.5.6.

Cha,pter 6. The Rigorous Object-Oriented Analysis Method 173

ROOA Method

Figure 6.10: Documents produced during the application of ROOA

6.5 Conclusions

This chapter together with Chapters 3 and 4 describes the final product o f our investiga

tion, i.e. the Rigorous Object-Oriented Analysis (ROOA) method. Therefore, Chapters 3

and 4 are an important part o f the ROOA method as they show how each object-oriented

concept is modelled in LOTOS.

The ROOA method integrates LOTOS with existing OOA methods, producing a for

mal object-oriented analysis model which acts as a requirements specification of the sys

tem. It proposes a systematic development process which is composed of three main tasks:

build an object model; refine the object model and identify dynamic behaviour; build a

LOTOS formal object-oriented analysis model. We have discussed each o f these tasks in

detail by discussing each o f their subtasks which are also composed of subsubtasks.

The final ROOA model integrates the static, dynamic and functional properties of

a system, unlike other OOA methods which produce three separate models which are

Chapter 6. The Rigorous Object-Oriented Analysis Method

difficult to integrate and keep consistent. This model is primarily a dynamic model, but

it maintains the structure o f the static object model. This is very important since human

beings find static models easier to understand.

A major task in the creation of a LOTOS specification is the transformation from a

static to a dynamic model. The OCT and the OCD are two intermediate structures used
»

to help in this transformation.
ROOA uses a stepwise refinement approach for the development and for validation of

the specification against the requirements. The development process is iterative, allowing

us to apply ROOA to objects at different levels of abstraction and to refine the model

incrementally.

As the final model is formal and executable, ROOA uses prototyping to detect and

correct errors, inconsistencies, ambiguities, etc. early and to give feedback to the require

ments capture.

C hapter 7

The Design Rationale of ROOA

7.1 History

We initiated the ROOA project in January 1992. It look us over two years to reach the

state in which it is now. During this time, ROOA’s development benefited from: being

applied to different problems (including its application by other people), and continu

ally to the banking system; regular current literature surveys in the object-oriented field;

comments of reviewers and colleagues on our publications. The books by Rumbaugh et

al. [RBP'*'91] and the one by Jacobson [Jac92] influenced our work a lot and helped us

considerably in developing ROOA to its current form. Until these appeared, the exist

ing OOA methods emphasised the object model, as happened with Coad and Yourdon’s

method [CY91a]. OMT [RBP+91] and OOSE [Jac92] propose additional complementary

models which helped us to feel confident about the role o f the LOTOS model we were

producing.

Initially, our approach to building the LOTOS model was mainly to provide a specifi

cation which described the external behaviour. Later, ROOA consisted of formalising the

object model, adding to it dynamic and functional properties which were not contained

in the purely static architectural object models. To formalise the object model, we had

to devise a method for specifying in LOTOS each concept appearing in an object model.

We began by using the OOA method by Coad and Yourdon [CY91a]. This method is

175

Chapter 7. The Design Rationale o f ROGA 176

based upon the concepts of class, object, relationship, message passing between objects,

inheritance and aggregation. Mapping these concepts into LOTOS is an important part

o f the ROOA method. The LOTOS model produced by ROOA is primarily a dynamic

model and is therefore good at the description o f behaviour. Nevertheless, its structure is

directly related to the structure of the object model and so it is equally good at describing

the static properties.

ROOA, as described in this thesis, is a result of successive refinements and the effort

we made to encapsulate within ROOA the diverse object models created by most of the

OOA methods. During ROOA development it was important to keep in mind that as we

were producing an analysis method, we should not engage in decisions that are better left

to the design phase. Consequently, we use non-determinism and value generation heavily,

and we employ an abstract way to specify ADTs.

This chapter explains the problems we faced during the development of ROOA. It

discusses the design decisions we made and explains why we rejected some solutions in

favour of others. Section 7.2 discusses the most significant problems we had to solve.

Section 7.3 presents the three main stages which ROOA passed through before it attained

the final stage presented in Chapter 6.

7.2 Major Problems and Their Resolution

Paralleliam . A significant decision was to model objects as processes instead of having

a process controlling a list o f objects, each one specified as an ADT. Even passive objects

are created by means o f object generators. Consequently, we have sets of processes instead

o f one process controlling a set of ADTs.

Our first solution o f the banking system exercise modelled each account object as

a value of an ADT. All accounts were specified with the process Data—Basa which has

the argument DB—Accounts_Typa. DB_Accounts_Type is an ADT which specifies a set

o f accounts. The process T ran sactions, running in parallel with Data_Base, accepts

the services required from the clients and passes them on to Data_Basa. This did not

sufficiently abstract from the implementation.

Chapter 7. The Design Rationale o f ROOA 177

We therefore decided to define each object as a process instance, taking advantage of

the LOTOS parallel operators, and specifying a system <is a set o f concurrent objects.

In this way we avoid premature design or implementation decisions, such as protection

techniques for the concurrent access of shared data.

Classes and O b jects . After deciding that ROÓA should model a system as a set of

concurrent objects, we started by modelling the concept o f class in LOTOS as a process

definition and the concept of object (of a class) as a process instantiation. Since an object is

a member of a class, the object-oriented-analysis relation o f class to object seemed similar

enough to the LOTOS relation of process to process instantiation. However, with this

mechanism, the LOTOS versions of objects could only be created statically, at specification

time. This was a critical failing. An object model does not specify, in general, how many

objects o f each class are actually instantiated in a running system. Also, we felt, this

is not part of the requirements document in general. Hence we needed a mechanism

for specifying, in LOTOS, classes and objects without committing ourselves to a specific

number of objects.

A G en eric ‘ O b jec t-G en era tor ’ in L O T O S . We wanted to be able to create objects

dynamically, without a priori limitation on the number of possible objects.

This led us to devise the concept of object generator. The idea o f dynamically cre

ating processes was already used in LOTOS, by using the interleaved operator I I I and

recursivity. This is the basic structure of an object generator. However, an object genera

tor uses a service with a selection predicate to explicitly create the objects and uses value

generation of object identifiers to hold information about the objects already created. Ob

ject generators allow us to instantiate a variable number o f objects during the simulation

of a specification. The ROOA specification thus contains no limitation on the number

of objects allowed. Nevertheless, the LOTOS specification may be tested by symbolic

execution.

Chapter 7. The Design Rationale o f ROOA 178

T h e Im plem en tation o f an O b je c t G en erator . Initially, we generated natural num

ber values for use as object identifiers. This is a cumbersome procedure in LOTOS. LOTOS

data types are algebraic data types with few facilities to make them easy for developers

to use. For example, the naturals consist of the terms 0, succ(O), succ{succ{0)),..., but we

would have preferred to use the normal symbols 0, 1 ,2 , 3, etc.

During the development of ROOA, we had three‘options to deal with the object iden

tifiers. First, we thought that the user (here symbolised by the interface scenario) would

give to the object generator a value to be used as the object identifier. This seemed to

us a way to avoid the problem, without solving it. Next, we defined a special function to

generate natural numbers as object identifiers. We were never happy with this solution

as it seemed to be too close to an implementation decision. As the LOTOS simulator

SMILE supports value generation, we found that this technique was preferable to creating

arbitrary object identifiers. So, for the third solution, we started using value generation

to create the identifiers.

C lasses and O D P . In the OOA literature [CY91a, Jac92, RBP+91], the concept of

class appears with two mutually incompatible definitions:

• a class specifies the common characteristics of objects of the same kind;

• a class is a set of objects of the same kind.

To choose which definition to follow we took the definitions from the ODP model [1S094],

which proposes class templates, classes and objects. A class template is specified by a

process definition, an object is a process instantiation and a class is the set of objects

instantiated from the same class template. A class has some similarities with our notion

of an object generator, since the object generator holds the set o f object Identifiers o f the

objects which have already been instantiated.

Refining the Notion of Class Template. During the development of a class template

as a process definition in LOTOS, we had to make some decisions concerning the infor

mation it should contain. In LOTOS, when we created an instance of a class template.

Chapter 7. The Design Rationale o f ROOA 179

we could not give a name to the process instance being created. This led us to formulate

the need for object identifiers. An object identifier is an attribute of an object with a

similar function to that o f a key in a relational database. A second object uses the object

identifier to specify which object it is to communicate with.

State. The state of an object at any time is giveh by the configuration of the values o f

the attributes of the object at that time. This is handled in LOTOS by defining the (type

o f the) attributes as one or more ADTs which are then given as parameters of the process

defining the class template.

As LOTOS gives few built-in facilities, specifying full-blown ADTs may be a complex

and lengthy task. Each operation has to be defined by one or more (probably many)

equations. However, as we are in the analysis phase, we did not want to give too much

detail about how services are handled internally. Therefore, we thought that we could get

by using simpler ADTs with a small number o f equations. Our first solution was to use

dummy ADTs. In a dummy AD T, modifiers return the initial value and selectors return

always a symbolic constant value. For example, in the banking system, the equation

specifying a credit into account acc with amount m is defined as

C red it_A ccou n t(acc, m) « a cc ;

and getting the balance o f that account would be given by the equation

G et.B a lan ce(acc) ” Some.Balance

where Some-Balance is a constant value defined in an ADT. The value acc is o f sort

State-A ccount defined in an ADT and it represents the state o f an account. These equa

tions give abstract state information to the objects, define the signature of the operations

and indicate the type o f the information passed when objects communicate. However,

they do not allow us to record any information about the event history of the objects, for

example.

As in some types of systems a record of the history of events, for example an ‘audit

trail’ , may be required, we had to reject the above solution and propose another. For the

Chapter 7. The Design Rationale o f ROOA 180

new solution, we changed the specification of the ADTs (which we then called Symbolic

ADTs) according to their operations. Modifiers are specified without equations. This

enables us to treat them as ADT constructors, and so we gain a record of the history of

events. Selectors for which a particular result does not need to be returned are defined

with dummy equations. Selectors which need to return a particular value are defined with
I

one equation for each constructor.

The use of the generalised ch o ice operator in the process part allows us to cover all

the possible states which are not covered in the ADTs, as shown in Chapter 3.

C om m u n ication s. Work on communication between objects in LOTOS was already

available at the time of initial development of ROOA [Cla92b]. Besides, it is straightfor

ward to define communication between objects using LOTOS constructs, such as synchro

nisation in gates. Events defined in processes synchronise in gates.

We started by defining the structure of a LOTOS event. Initially, the specification

produced by the first iteration of the ROOA method was written in a form equivalent to

basic LOTOS. An initial version of a structured event in LOTOS had the form:

{gate name) {message name)

where message name corresponds to the service offered by the object. With the introduc

tion o f ADTs and the refinement of ROOA, the structured event became:

{gate name) {message name) {caller object id) {called object id) {parameters) {result)

As communication may be non-atomic, for example as in a remote procedure call or

an Ada rendezvous, we thought that the structured event should include the identifier of

both objects involved in the synchronisation. This solution did not survive for long, since

to model remote procedure call or rendezvous an object needs to know the identifier of the

object it is to communicate with, but the second object does not need statically to know

the identifier of the object that called it. Finally, the structure of the LOTOS event took

the form:

{gate name) {message name) {called object identifier) {parameters)

this reflects the structure of both the client’s call and the server’s answer.

Chapter 7. The Design Rationale o f ROOA 181

T h e O b je c t C om m u n ication D iagram (O C D). How to define the number of gates

necessary in the specification turned out to be one o f the more difficult problems we had

to solve. The OCD appeared in the early stages o f the ROOA development, mainly to

help us solve this problem.

Initially, we believed that all the services offered by a class template should be on offer
*

on a single gate, but we soon discovered that this solution would not work (see Figure 7.1).

This could be because a gate is, by definition, to be used for communication between two

(or more) processes and not to be thought of as the private property o f a single process.

Figure 7.1: Class templates offering all their services in a single gate

We then decided to assign gates according to the structure of the specification. This

second solution would assign one gate for communication between two subsystems, between

two complex objects or between one subsystem and one complex object, whose structure

we already knew, as in Figure 7.2. This way we reduced the number o f gates, but we

ended up with another problem: a class template could have to offer the same service at

different gates. Therefore, we required a more satisfactory solution.

The third attempt defined gates according to the types o f objects and required that an

object could not use the same gate to communicate with both an object at the same level

o f abstraction and another object at a different level of abstraction. We then formulated

the following principles for assigning gates:

1. A server which is a passive history-sensitive object offers its services at a single gate.

Chapter 7. The Design Rationale o f ROOA 182

Figure 7.2: Giving gates according to the structure

2. Two active objects at the same level o f abstraction communicate through a single

gate.

3. Objects which make up a composite object may only interact with each other through

internal gates.

At this stage we were classifying objects according to their role. Using this approach

as a basis (it changed, as we will see below), and after several refinements (including the

introduction o f the OCTs) we end up with the OCD depicted in Figure 7.3. (In this

diagram we merged the object Bainks within Other-Bainks.)

Figure 7.3: Process Accounts is only accessed by a single gate

With the introduction of the final rules, as shown in Chapter 6, the diagram also

Chapter 7. The Design Rationale o f ROOA 183

changed to that presented in Figure 6.9.

The OCD proved to be very useful, since it helps in the transformation from a static

to a dynamic model. It can be built directly from the object model and the OCT, and it

directly models the structure o f the LOTOS specification which is represented by the top

level behaviour expression. ^

C lassifying O b jec ts . For some time, in order to define the number o f gates, we thought

that classifying the objects according to their role in the system could help determine their

specification in LOTOS and the necessary gates. Our first attempt yielded passive and

active objects, but after some time, we divided passive objects into history-sensitive and

pure ADTs. History-sensitive objects are those which can remember their previous local

state history. Pure ADTs are those which do not have state, i.e. they are values.

After several refinements, we gave this up. The role an object played in the system

in terms of having or not having significant behaviour was most important. We also

discovered that it would be important to classify objects into clients and servers.

O b jects-as-P rocesses versus O b je c ts -a s -A D T s . While working through the first

large example with the ROOA method, we realised that some class templates in the object

model should be specified with processes and ADTs, but others could only be specified

as ADTs (one ADT for each class template). Which method is chosen should depend

on the relative significance of the behaviour of an object of a given class template. For

example, suppose that an object is only required to play the passive role of an attribute of

another object. Such an object has no dynamic role to play in the system, and may then

be specified as an ADT. On the other hand, an object with complex behaviour must be

specified as a LOTOS process with one or more ADTs defining its state. Between these two

extremes, the analyst must judge as to which method is preferable in the circumstances.

The Role of Interface Scenarios. After having specified all the class templates, it

is necessary to ‘assemble’ them in some fashion in order to prototype the system by

simulation (using symbolic execution, as in the LITE simulator [EW93]). To drive the

Chapter 7. The Design Rationale o f ROOA 184

simulation o f the specification we used interface scenarios (first called test scenarios),

which represent typiced dialogues between the system and the user. (They ask services from

the specification and record the results.) The interface scenarios initially appeared simply

to help in prototyping the specification, by narrowing the options available. Limiting the

event offers during the simulation is essential so that the developer does not get lost in

tracing large numbers o f alternative paths. Soon the role of interface scenarios expanded

when we realised that they could be used to help us understand the expected dynamic

behaviour of the system, and to identify services and communication between objects in

the object model.

The use cases introduced by [Jac92] influenced our work. Our interface scenarios are

not textual descriptions o f the behaviour o f the system, as Jacobson’s use cases are, but

when joined with the object model in the beginning of the development and later joined

with the LOTOS specification they provide the same information that use cases give.

R efin ing the M e th od by R efin ing the O b je c t M od e l. As we were developing

ROOA, many authors came up with new methods for object-oriented analysis. We started

working with OOA [CY91a], but then OM T [RBP"^91] and OOSE [Jac92] appeared. The

object models produced by each method differed in the amount of information shown.

We realised that ROOA should have the flexibility to incorporate each different method,

depending on the user’s preference. This flexibility should also be encapsulated in a task

so that the core of ROOA remained the same. Thus we introduced the task: refine the

object model. ROOA was then composed o f three main tasks as presented in Chapter 6.

The refinement o f the object model takes an object model obtained by applying any

of the existing OOA methods, and transforms it to include all the information required as

input to the task o f building the LOTOS formal model.

Integrating Static, Dynamic and Functional Properties. Initially, we tried to

start from an object model and write a LOTOS specification which would include both

the static properties defined in the object model and the dynamic and functional charac

teristics from a requirements document. Since this was attempted as the specification was

Chapter 7. The Design Rationale o f ROOA 185

being written, we soon discovered that this approach was much too difficult to accomplish

all at once. Instead, we decided to use intermediate structuring techniques which would

simplify the task of building the LOTOS specification. These structuring techniques are

the Object Communication Diagrams, the Object Communication Tables and the Event

Trace Diagrams. ^

The Object Communication Table (OCT). As more examples were attempted,

other necessities appeared. For example, message connections in the object model only

show that one object needs to communicate with some other object, but not the structure

of this communication. Thus the O C T was developed as an intermediary structure between

the object model and both the OCD and the LOTOS specification. The OCT became

useful for helping to identify the services offered by each class template, and message

connections. Later, with the refinement of the rules defining the number of gates, we

added to it a fifth column to show the gates needed. With the incorporation o f OCTs into

ROOA, the role of the interface scenarios expanded further. The interface scenarios were

very useful in helping us decide, when building the OCT, which services were required

from the system.

Event-Trace Diagrams. Many applications of OOA methods are database-oriented

problems, with a small dynamic component. Other problems are process-oriented and

have a much more important behavioural component. In these problems, the types of

object interactions consist mainly in a series o f queries and responses. These are specified

graphically by using message-passing diagrams, such as those in OOSE [Jac92]. During

the application of ROOA to the warehouse problem proposed by Jacobson [Jac92], we

decided to introduce as part of the method event trace diagrams. These diagrams are

instances of Message Flow Graphs, a precise semantics for which may be found in Ladkin

and Leue [LL94].

Aggregation and Subsystems. One of the design considerations o f ROOA was to

make it applicable to large systems. To deal with complexity, the object-oriented liter-

Chapter 7. The Design Rationale o f ROOA 186

ature proposes, amongst other techniques, aggregates and subsystems. The distinction

between these two concepts is not always made clear. Authors use different terminology

to refer to the same or similar concepts, e.g. compositional object, associative object, con

tainer object. After understanding the terms used by different authors we chose ours and

modelled them in LOTOS. An important decision ^as to decide that aggregates and their

components would have proper identifiers while subsystems would merely be groupings of

class templates and therefore would not have identifiers.

7.3 ROOA: NIain Previous Versions

7.3.1 ROOA: First Version

In June 1992, ROOA was mainly helping us to describe the external behaviour of a system.

At the time we were especially concerned with creating a method to help us use LOTOS,

and we did not think o f combining OOA methods with LOTOS until later. We developed

the following strategy to create LOTOS specifications:

1. Look at the problem in its environment, i.e. integrate the problem into the surround

ing world.

2. Identify external entities with which the system interacts.

3. Identify the kind o f interactions between the system and the external entities.

4. Group the “ interactions” (events) for each object and define a gate for each group.

This can be done in different ways: one gate for all events; one gate for each event.

5. Think about the events and decide how they affect the system (concurrency, multi

user, mutual exclusion, etc.).

6. Detect possible internal objects.

7. Define processes. Each process in the more abstract level will implement an interface

with an external object, using the defined gate.

Chapter 7. The Design Rationale o f ROOA 187

8. Define the data structures.

The order o f the steps, and the steps themselves, reflect the problems faced when

trying to obtain our first LOTOS specification. And, in some way, they reflect also the

decisions taken.

It is important to notice that most o f this LOTOS specification was sequential, in

contrast to our final versions where parallelism plays a dominant role. So, in our banking

system each account was specified as an ADT. A set of accounts was then given as a

parameter of the process Data_Base which deals with each transaction a client may require

from an account (see Figure 7.4).

Figure 7.4: A first version o f the banking system in a first version of an OCD

Each bubble represents a process, the arcs represent communication between processes

and the rectangles labelled tb, t c and td represent gates.

7.3.2 ROOA: Second Version

From the first version to the second, the most important decision we took was to combine

the OOA methods with LOTOS. To start with we thought we would have two main tasks:

build an object model, and build a LOTOS model. The first OOA method we used to

build the object model was OOA proposed by Goad and Yourdon [CY91a]. By December

1992, the ROOA method had developed to include the following main sequence of steps:

1. Define the external behaviour.

(a) Identify the external entities.

Chapter 7. The Design Rationale o f ROOA 188

(b) Couple each external entity to one interface subsystem.

(c) For each interface subsystem, define the services provided.

(d) Incorporate a central subsystem that atts, to begin with, as a “data base” of

the information in the system. It also acts as a medium through which the

different interfaces can interact with on^ ^mother.

2. Apply the Coad and Yourdon method.

3. Complement the object structure o f the objects by identifying how to model the

relationships in the object model: as one attribute in one of the objects, as one

attribute in each object, as another object.

4. Use LOTOS to formalise the object model and to add the dynamic and the functional

models.

(a) Specify the system using the process part of LOTOS.

(b) Incorporate a test scenario to drive the simulation.

(c) Add dummy ADTs.

(d) All the previous steps are validated by using LITE tools.

The first step can be considered as the “ remains” of our first version. Later we elim

inated this explicit step as it could be seen as part o f the O O A method used. However,

this step was very useful in order to highlight the importance of interface scenarios and

interface objects.

After this stage we saw Jacobson’s classification of objects into entity, interface and

control. The interface objects are related to the interface subsystem we were proposing in

step l.b).

7.3.3 ROOA: Third Version

The third important ROOA version was ready in March 1993. In this new version we took

three important decisions in relation to the previous version: task 1 should be considered

r
Chapter 7. The Design Rationale o f ROOA 189

part of the OOA method used; task 3 could be incorporated within task 4; add to task 4

a subtask refining the LOTOS model.

So, ROOA was now composed of the following main tasks:

1. Building an object model by using any of the existing OOA methods.

2. Building a LOTOS model.

The goal of this step is to transform an object model into a formal LOTOS model

that contains all the information normally held in the separate object, dynamic and

functional models. This step has five main substeps:

(a) Specify the behaviour of the object model.

(b) Incorporate test scenarios to investigate object behaviour.

(c) Add dummy abstract data types to give local state to the objects.

(d) Iterate the analysis by refining processes and abstract data types.

(e) At each stage of the development, prototype the resulting specification.

From this version to the final version many refinements occurred: we introduced an

other main task in order to improve the object model so we could accept an object model

produced by any of the existing OOA methods; we found a better approach to deal with

ADTs (see Chapter 6); we started using value generation to create object identifiers; we

introduced OCTs to collect information about services and objects, and with that we re

fined the rules to identify gates; finally, we introduced event trace diagrams to help us

describe the initial dynamic behaviour before we started to write LOTOS code.

7.4 Conclusions

This chapter described the underlying ideas behind the ROOA method. It presented in

detail the major problems we found while developing our method, justifying our approach.

We discussed the necessity for both each intermediate structure used by ROOA and each

main task within ROOA. During this discussion we presented the temporary solutions we

adopted and gave the reasons which led us to reject them.

C hapter 8

Assessment of the ROOA Method

8.1 Introduction

The ROOA method is the final product of our work while investigating the advantages

of adding formality into the object-oriented analysis process. Existing OOA methods

suffer from two fundamental problems: weak integration between the static, dynamic and

functional models and lack of formality. We designed ROOA so that this gap could be

bridged.

A rigorous method should satisfy a number o f properties, namely proofs. These prop

erties are difficult, if not impossible, to impose in an analysis method. In this chapter we

analyse this problem and assess:

• the creation process as set out by the ROOA method;

• the understandability of the LOTOS specification produced by ROOA;

• the suitability of LOTOS as the formal specification language chosen.

Finally, we review the main findings that we made while observing ROOA being applied

to several problems, by ourselves and by others.

191

Chapter 8. Assessment o f the ROOA Method 192

8.2 Why a Rigorous Object-Oriented Analysis Method?

Given that, in order to be useful, software has to be correct, reliable and efficient, it is

clear that we only gain by using formal techniques. Our work is concerned with enhancing

the object-oriented analysis process. We know that the object-oriented analysis methods

that are currently used suffer from several deficiendiqs, namely:

• they are weak at representing dynamic views;

• they do not integrate the static, dynamic and functional properties;

• they lack formality in the method and in the models used;

• they need supporting tools to check the semantics o f the models.

The use of a formal specification language, such as LOTOS, during the analysis phase

can overcome these deficiencies. As a matter of fact, LOTOS is good at describing the

behaviour of a system (after all that is what it was designed for); the ROOA method

teaches us how to write LOTOS specifications which integrate the static, dynamic and

functional properties o f a system; LOTOS has a precise syntax and semantics, and there

fore the resulting ROOA model is formal; LOTOS has supporting tools, such as syntax

and static semantic checkers and simulators, which can be used to check that the final

model is semantically correct and to validate the specification against the requirements.

The validation of the specification against the requirements cannot be done by using

formal proofs, because the original requirements are informal. In ROOA, however, we

validate by executing the LOTOS specification, by using prototyping with sets o f interface

scenarios. Each scenario requires from the entire system a wide range of services. By

executing the specification with the whole set of scenarios we expect to validate, at least,

the more important requirements from the client.

8.3 What About Rigorous Methods?

It would be good to be able to reason formally about the requirements of a new software

system as soon as possible. If this was possible, we could prove that a specification met

Chapter 8. Assessment o f the ROOA Method 193

the requirements and also use prototyping to refine the requirements and to correct errors,

ambiguities and inconsistencies early. However, is it possible to develop an approach which

formalises the analysis process?

The answer is ‘no’ ! A formal approach tells us to develop programs from a given

formal specification and how to verify these progi;ams to meet the specification [BG77,

BJ83, EM85]. When using formal approaches, the correctness o f programs is established

by means of mathematical proofs [Jon80]. If the input is a formal specification, we can

propose a formal development process from there. For example, it is possible to provide a

formal design process if a formal requirements specification already exists. However, the

analysis process starts from a set of informal requirements and may include the capture of

the requirements, involving discussions with clients or the users of the system. Thus, an

analysis method cannot provide a formal process, as we cannot expect that our clients are

all mathematicians, able to express their need by means of a set o f equations, for example.

Nevertheless, we can reduce the distance between informal requirements and formal

specifications by providing a process which creates formal specifications earlier than usual.

Shortening this distance is the main goal of our work, and the primary result of the ROOA

method. The final specification provided by ROOA is a requirements specification which

can then be used as the starting point of a formal design process, as mentioned above.

The following are the characteristics that make ROOA a rigorous method:

• ROOA produces a formal requirements specification, expressed in the specification

language LOTOS which is formal and has a clear mathematical semantics.

• ROOA uses prototyping to validate the LOTOS specification against the require

ments.

• ROOA proposes algorithms to be followed when constructing the intermediate and

final structures.

- The object communication table can be produced automatically from the in

formation in the object model.

Chapter 8. Assessment o f the ROOA Method 194

— The object communication diagram follows an algorithm to be produced from

the object communication table, so it could be created automatically.

— A skeleton of the LOTOS processes can be created automatically from the

OCT.

— The top-level behaviour expressions o f the specification can be automatically

generated from the object communication diagram by following an algorithm.

• ROOA provides a systematic development process, by offering a set of well-defined

steps, heuristics and mappings from object-oriented concepts into LOTOS.

• ROOA builds on well-established methods and tools.

Therefore, ROOA is not a formal method. We call it a rigorous method, as it is less formal

than a formal method should be. But, as America said during a panel at OOPSLA’91,

formality is not a goal in itself, but is only useful as a means towards more efficient and

more reliable software development [dCAC"*'91].

We think that we have achieved an important goal with our work: we developed a

means of creating a formal requirements specification. This formal requirements specifi

cation can then be used as a starting point for a more formal development.

During this thesis, and following the terminology in the literature, we have been using

the term formal method when referring to a specification languages such as LOTOS. A

method includes a set of notations together with a strategy to be followed and heuristics.

Formal methods as such do not exist yet [dCAC"*'91]. What does exist are what we can

call formal notations, or formal specification languages, or formal description techniques,

or formal techniques.

8.4 Strengths and Weaknesses of the ROOA Method

8.4.1 The ROOA Process

Bringing formal methods to the analysis phase o f the development process is a new area

of research and little work has been done so far. ROOA is our contribution.

Chapter 8. Assessment o f the ROOA Method 195

The first major strength of ROOA is that it combines two important software de

velopment techniques; object-oriented analysis and formal methods. ROOA promotes

formal methods in an area where they are not yet being used and, on the other hand,

it adds formality to the informal object-oriented analysis methods. The specification re

sulting from an application of ROOA acts as an initial formal requirements specification.

This specification can be used as the starting point of a formal development trajectory

where a requirements specification is transformed into a design specification either by us

ing correctness-preserving transformations or by using prototyping to ensure that the two

specifications conform to one another [CJ92].

ROOA builds on the work already available for object-oriented analysis methods. By

using an executable specification language such as LOTOS, ROOA produces a prototype

where the LOTOS simulators may be used as the prototyping tools, which may be used

for validating the requirements.

ROOA has some weaknesses too. Some of these weaknesses can be avoided by changing

parts o f the method. For instance, ROOA starts with the object model. This is not a

weakness in itself, but favours systems with a strong static component. If the system

has a strong dynamic component, we may find it difficult to produce an object model.

Currently, we propose the use of event trace diagrams to help in capturing the message

passing between structural components o f the system and then use that information to

build the object model. Notice that LOTOS is primarily a dynamic model and so that

kind of problem only appears in the early stages o f ROOA. To solve this problem we could

modify Task 1 to emphasise an informal dynamic model to start with.

Some may consider the use of LOTOS to be a weakness of ROOA. We believe however

that ROOA can easily be adapted to embrace other specification languages. However,

more work is needed in this direction.

Finally, ROOA is not a formal method. We do not see how to create a purely formal

process for this phase o f software development. ROOA proposes a set of tasks to system

atically produce an initial formal requirements specification. During the method we give

rules to be followed, and we can build tools which can automate part of the ROOA process

Chapter 8. Assessment o f the ROOA Method 196

of building the object communication tables, the object communication diagrams and a

first outline of the LOTOS specification.

8.4.2 Importance of Techniques Used within ROOA

Task 1: Build th e O b ject \ lodeI. In order tjo build the object model we can use

any of the existing OOA methods. Depending upon the type of the problem we can start

identifying candidate objects in the requirements or, if the problem is strongly dynamic,

we may begin by using techniques such as event trace diagrams.

Task 2: R efine the O b ject M od e l. Refining the object model means to guarantee

that the object model produced in Task 1 has class templates defined with attributes and

services, has interface objects, has relationships and message connections between objects.

This is a major task in ROOA, stimulating important discussions about the behaviour of

class templates and objects. During this task we build the OCT which is an important

technique to bridge the gap between the refined object model and the OCD and the

LOTOS specification.

O b ject C om m u n ication Table (O C T) . The OCT collects the class templates, the

services offered, the services required, the clients of each offered service, and the gates

used for communication. Also, it helps us to reason about the necessary services each

class template offers and, for each offered service, which other services are required. We

find that one o f the most helpful characteristics of the OCT is the help it provides in

exploring the gates for communication between processes in the LOTOS specification.

Identifying offered services and required services is useful to help us establish the

channels of communication between objects.

O b jec t C om m u n ication D iagram (O C D). The OCD is a graph which shows objects

communicating between each other by means of gates. It gives a good summary of the

structure o f the LOTOS specification. This makes the specification easier to understand,

especially for lengthy specifications.

Chapter 8. Assessment o f the ROOA Method 197

We give a set of rules to build the OCD from the OCT. From the OCD we can then

use the algorithm developed by Clark [Cla94b] to create the high-level LOTOS behaviour

expressions, showing all the gates and the processes interacting. The only ca.se where this

algorithm cannot be followed is when there are closed cycles o f interacting objects and

this does not occur often in practice.

The OCD plays a significant role in the ROOA method. In problems with many

class templates, it is most useful to provide a “ first-cut” between the informal model,

represented by the object model and the OCTs, and the formal specification. On the

other hand, it may not seem very useful if we are analysing a small problem with a few

class templates.

M odelling the O O A C o n ce p ts . ROOA offers a mapping on how to model OOA con

cepts in LOTOS. The main concepts we deal with are: class templates, services, attributes,

classes, abstract classes, objects, object identity, message connections, aggregates, subsys

tems and inheritance. LOTOS can model incremental inheritance and behavioural inher

itance. Behavioural inheritance is described by Clark in [Cla94c] who then shows how it

can be specified in LOTOS [MC93a, CM94].

8.4.3 Assessing the Resulting LOTOS Specification

While assessing the LOTOS specifications produced by ROOA, two main questions come

to mind:

• Do LOTOS specifications reflect the analysis model being created?

• Are LOTOS specifications readable?

LOTOS has a very rich set of constructs which allow us to express many different ideas.

For example, the parallel operators are good at showing the final specification as a set o f

concurrent objects, just the way we can imagine them in the object model. The distinction

between pure synchronisation, synchronisation with value passing and interleaving are o f

great value when writing a specification. Non-determinism and value generation are also

Chapter 8. Assessment o f the ROOA Method 198

very useful concepts which allow us to abstract from detail and avoid design decisions at

this stage.

Also, LOTOS achieves a clear separation of concerns between behaviour and data.

Behaviour is described in the process part. This can be done in an elegant way that is not

difficult to understand. Moreover, the process part o f the specification preserves the struc

ture o f the static object model, and this is important for improving the understandability

of the final result. On the other hand, data is modelled in the abstract data type part.

As we said before, defining abstract data types can be a laborious and time consuming

task. However, the simplifications we have proposed in Chapter 3 make this task easier

and faster. It is in the abstract data type part that the internal structure and local state

of objects are fully defined. This state is hidden from the other objects. The only means

of communication between objects is by message passing and this happens in the process

part.

The difficulties of understanding formal specifications are a problem shared by most, if

not all, formal specifications languages. One could say that it is probably easier to specify

a problem than to read and understand the specification created by someone else. But, is

this not also the case for programming languages? Yes, it is! So, in which way are formal

specifications more difficult to understand than programs? We believe that a specification

language is not necessarily easier or harder to master than a programming language. A

program in C, a program in Ada and a program in Prolog look very different from <>ach

other. Each of these programming languages requires special skills from the programmer.

Why should a formal specification language be different?

We believe that the problem in writing specifications is getting the right level of ab

straction. When writing programs we use a low level o f abstraction, as compared with

what is usual in analysis, and we spend much time in so-called “ implementation details” .

When writing specifications we use a higher level of abstraction where the details we have

to consider are of a different kind. Hall observes that many people find it difficult to write

specifications because it is difficult for them to get away from the detailed descriptions

they are used to when writing programs [Hal90].

Chapter 8. Assessment o f the ROOA Method 199

In order to make our LOTOS specifications easier to read and to understand, we

propose an object-oriented style together with meaningful names for processes, events,

abstract data types, operations, parameters and gate names, supplemented with informal

comments before the specification of each process and ADT. Meaningful names do not al

ways come to mind immediately; however, we cannot overlook this point, as requirements

specifications can be used for communication between users, analysts and designers. More

over, the ROOA-style maintains a correspondence between the concepts and names used

in the object model, the OCTs and OCDs, and the final LOTOS specification.

8.5 Suitability of LOTOS

In Chapter 2 we discussed the reasons that led us to choose LOTOS as our formal descrip

tion technique used by ROOA. The characteristics o f LOTOS which make it the obvious

candidate are:

• LOTOS is an ISO standard;

• LOTOS is able to produce specifications in an object-oriented style;

• LOTOS support tools are available;

• LOTOS specifications are executable and so prototyping can be used;

• LOTOS supports concurrency.

However, LOTOS is not ideal for this task. It has shortcomings which we will dis

cuss now. The first criticism is that LOTOS does not directly support object-oriented

constructs: neither simple ones, such as class templates, nor more complex ones, such as

inheritance or aggregates.

Another criticism is that specifying abstract data types in LOTOS is a long and tedious

task, even if it is not too difficult. All algebraic specifications seem to suffer from the same

problem, but it could be alleviated if LOTOS was to offer more built-in facilities. Abstract

data types rapidly increase the size o f a LOTOS specification. Notice however that the

Chapter 8. Assessment o f the ROOA Method 200

solution we propose for specifying abstract data types cuts much of the work we have to

do. A related problem is that LOTOS is not particularly good at handling calculations. As

a matter of fact, LOTOS has a very simplistic approach to arithmetic. Even naturals have

to be explicitly defined using the basic constructors 0 and succ. Also, LOTOS does not

incorporate an input/output interface. We cannot yead values or write values. Everything

is done by value passing. This is one o f the reasons for defining interface scenarios, because,

as we explained before, an interface scenario contains calls to the system and receives the

respective answers.

The size of algebraic specifications, and therefore also LOTOS specifications, tends to

run into dozens of pages even for simple to average problems. It is difficult to ensure by

hand that specifications this large are correct and consistent, especially when an incremen

tal development is being applied, such as the one taken by ROOA. This is a point where

the LOTOS tools are most valuable. The syntax checkers, static semantic checkers and

simulators help us to identify several kinds of errors in a specification, including deadlock.

The capability to execute LOTOS specifications is definitely a great advantage, since it

helps us to gain confidence in our model.

Formal specifications are difficult to understand at first glance for a newcomer (the

same can be said for programs, of course). This is not only a LOTOS problem, but in

LOTOS we can certainly improve the readability of the final formal specification by writing

LOTOS in a ‘ ROOA-style’ , as mentioned in Section 8.4.3.

A general comment we have received from reviewers o f our papers is that LOTOS is

too low-level a language; it is too close to a programming language. We do not think that

this is a bad thing in itself. As far as we know, all specification languages which produce

executable specifications share this feature.

Even with its shortcomings, we still think that LOTOS is a good choice to be used

within the ROOA method for many kinds o f problems, and we believe this thesis has

demonstrated this view.

Chapter 8. Assessment o f the ROOA Method 201

8.6 ROOA Applied to Case Studies

While developing a new analysis method, it is wise to apply it to many different kinds

of problems. Otherwise, we cannot be sure that different types of requirements can be

dealt with appropriately within the new approach. For ROOA, it was important not only
I

to apply the method to a variety o f systems, but also to use different object-oriented

analysis methods within it. On the one hand, by applying ROOA to different problems

we could identify aspects of ROOA which should be improved, in order to support certain

characteristics o f systems. On the other hand, by applying ROOA together with different

OOA methods to the same problem and to different problems we could identify better the

distinguished features of the methods which have to be taken into account. This makes

ROOA compatible with several kinds o f existing object-oriented analysis methods.

ROOA has been applied to database oriented problems with simple communication

patterns and to problems with a more complex dynamic behaviour. Also, it was used

together with the methods by Goad and Yourdon [CY91a], Rumbaugh et al. [RBP"*"91]

and Jacobson [Jac92]. This helped us identify system development requirements and

object models with which ROOA had be compatible.

In this section we discuss briefly the applications of the ROOA method to problems.

This includes both our own experiences and other’s people experiences while using ROOA.

The results o f those experiments and and the lessons learnt through them were incorpo

rated into ROOA as it evolved.

A full description of case studies is given in the technical report Specification Case

Studies in ROOA [MC94e]. As with all new methods, it is only possible for the reader to

fully understand the method when he or she can see it applied to problems. Here, we are

only giving a brief discussion; the reader is strongly recommended to study the technical

report.

8.6.1 The Automated Banking System

In this thesis we have been using as an example and a guide, the specification o f an

automated banking system. We analysed the problem using a number o f different methods

Chapter 8. Assessment o f the ROOA Method 202

and with different requirements. First we used a sequential version of the problem. Only

then did we extend the requirements to include more objects and to support concurrency.

The exercise helped us to develop the major features of ROOA, namely, how to spec

ify the object-oriented concepts in LOTOS. During the analysis we found many simple,

common objects, such as accounts, which can take a<ivantage of inheritance and be spec

ified as a process definition with some guards. It also had other more complex objects

which were not so straightforward, such as cheques. However, the banking system has a

simple pattern o f communication; therefore we had to be careful not to overadapt ROOA

to problems with a strong static component.

For the initial analysis we first used the method of Coad and Yourdon. Later we redid

the problem using the method by Rumbaugh et al. By using different O O A methods, even

with the same problem, we identified the need to improve ROOA by adding Task 2 (Refine

the Object Model). This is because the existing OOA methods differ in the amount of

information they show in the object model. For instance, while object models produced

by using Coad and Yourdon’s method show class templates with attributes and services,

conceptual relationships and message connections, the method by Rumbaugh et al. does

not show services and messages connections. Other object models differ even more. This

is the case with object models produced by Jacobson’s method, for instance, which only

show cliiss template names with relationships and message connections.

It was while we were analysing the banking system that we divided Task 3 (Build the

LOTOS Formal Model) into its major subtasks. The composition of the subtask Refine

the Specification Buffered significant changes during this time. But, once established, there

were no major changes proposed.

8.6.2 The Warehouse Management System

After we finished the automated banking system problem we realised that we needed a

new problem with the following characteristics:

1. The new problem should have a stronger dynamic component than the banking

system.

Chapter 8. Assessment o f the ROOA Method 203

2. The object model from Task 1 should look different.

3. The object model might have been created by someone else.

For these reasons, we took the warehouse management system described by Jacobson

[Jac92]. We changed the object model presented in Jacobson’s book since it «dready took

into consideration a system of window interfaces. We eliminated some of the class tem

plates, for example Warehouse_Truck_Radio and Truck-Radio, as they were not of much

use for our exercise. The warehouse problem has a more complex pattern o f communica

tion than the banking system. This led us to use auxiliary techniques that could help us to

think earlier about communication between objects. This way we were able to start using

LOTOS sooner, LOTOS being a good language for specifying the behaviour of systems.

Jacobson’s object model only shows the name o f the class templates, static relationships

and message connections. This is directly related to points 2 and 3 referred above. On

the one hand, the object model looks different from an object model produced by using

the method by Coad and Yourdon or the one by Rumbaugh et al. On the other hand, the

object model was not produced by ourselves.

We found many difficulties in understanding Jacobson’s object model. In our opinion

a class template cannot be fully understood until we define its services and attributes

(although Jacobson does not include them). We used the use cases to identify the infor

mation that was missing in the object model, but this was a difficult task. The warehouse

management system helped us to strengthen Task 2, in particular the subtasks which are

concerned with identifying services and attributes, and with building the OCT. The OCT

proved itself to be a valuable technique for collecting all the information about services and

communications between objects. This was also an opportunity to validate the algorithm

used for building the OCD.

In retrospect, the warehouse problem helped us to propose a more robust Task 2,

capable of accepting a wider range of object models, showed the valuable use of OCTs and

OCDs, and highlighted the adequacy o f LOTOS to specify concurrency and communication

between objects.

Chapter 8. Assessment o f the ROOA Method 204

8.6.3 The Car Rental System

The two systems described in the two previous sections helped us to develop and to improve

the ROOA method. Having ROOA in its final stage, we felt it would be good to apply it to

a new problem, so that we could verify whether some other small changes were necessary.

The new problem was an automated car rental' and billing system for a car rental

company. Briefly, this company has several branches, each one with several terminals

connected to the main software system. Each branch has cars associated. Cars can be

reserved (and cancelled), rented and then returned to the same branch where they were

rented or to any other branch of the company.

Applying ROOA to this problem was a useful exercise, to make us feel more comfortable

with our method. We tested how the various ROOA techniques interact and help each

other as validation tools. In particular, we tested each task and subtask. The car rental

system has some interesting communication patterns. This helped us to evaluate once

more the need for the event trace diagrams, as an intermediate technique to help building

the object model. The event trace diagrams were also very useful in helping us build

the object communication tables which then were the major source of information in the

creation of the object communication diagram.

There is an important conclusion from this application o f the ROOA method: object

model, event trace diagrams, object communication tables, object communication diagram

and the LOTOS specification were being used many times to improve each other. All

these techniques are integrated in the sense that, at a given stage, we were using all of

them at the same time, in a parallel and interactive way. For example, from the event

trace diagrams and the object-communication table we started writing LOTOS code. As

coding advanced, we identified more services and communications which were not yet fully

identified in the previous tasks.

8.6.4 ROOA Applied by Others

The ROOA method has also been applied by other people. It was gratifying to see that

the method can be understood and applied effectively by other people.

Chapter 8. Assessment o f the ROOA Method 205

Clark applied ROOA to a second version of the warehouse problem [Cla93]. As a result

of his work, we introduced event trace diagrams in the method. T h e method of Rumbaugh

et al. uses event trace diagrams to build the dynamic model. We had decided to give

preference to LOTOS as the technique to describe behaviour of objects and communication

between them. Clark’s results showed that the use,of a simple technique such as event

trace diagrams could be of great help to understand the communication between objects,

without having to deal too soon with the intricacies of a specification language.

We had a M.Sc. student assessing ROOA for three months. In her dissertation,

Lim [Lim93] applied our method to two problems: a simple restaurant problem and a

hotel reservation and billing system. The first case study was composed o f six class tem

plates, without complex structures such as inheritance and aggregation. Its goal was to

help Lim learning about OOA methods and LOTOS, but little about ROOA. Because it

was a small problem, it was not possible to transmit to the student the necessity of the

OCDs, for example.
The second case study was composed of fourteen class templates, five o f them related

by an aggregation relationship. This problem was used to undertake a more thorough and

critical assessment of the ROOA method and of its intermediate structures. It was from

the discussions with Lim about this case study that the necessity for an earlier version of

the OCTs was identified. Here is an extract of Lim’s evaluation o f ROOA [Lim93]:

The use of LOTOS [in the ROOA method] brings with it the advantage of

language support tools and the ability to execute the specifications to simulate

the requirements specified.

Standard LOTOS is a good fit for specifying an object-oriented method and

work has been done [MC93c] to show how OOA concepts in the object model

can be specified using LOTOS. However, like all rigorous techniques, it brings

with it the need to have a special training for using and understanding it.

[...] The guidelines and templates in ROOA facilitated the learning o f LOTOS

and its use in the modelling of the case study requirements. Examples such

as the Bank Account example [MC93d], were found to b e especially helpful

Chapter 8. Assessment o f the ROOA Method 206

as they provided a complete picture of how the templates fitted in the entire

specification.

Having a rigorous technique for specifying requirements in object-oriented

technology will enable highly mission-critical software to make use of object-

oriented methods. [...] '■ ,

Having Lim with us applying ROOA was very important, as she was at the same

time learning about OOA methods, LOTOS and ROOA. This gave us a good feel of how

a newcomer would face a method such as ROOA which, while not using mathematics

directly, used a formal specification language. Lim’s work together with the questions we

had to answer during these three months have been of great help in improving both ROOA

and the readability o f the available document describing the method.

Lim did learn LOTOS, object-oriented analysis methods and ROOA (and wrote her

dissertation). This is a sign that, after all, formal specification languages, LOTOS at least,

are not so difficult to learn and that the ROOA method can be understood and used by

others besides ourselves.

8.7 ROOA: Domains of Application

ROOA can be used to model the same kinds of systems modelled by other OOA methods.

Since it uses LOTOS, ROOA is also suitable to model the kinds of systems usually modelled

in LOTOS. Therefore, we can for example use ROOA to model concurrent, database

management systems, and network communication systems.

8.8 Conclusions

This chapter together with Chapter 7 presented the main ideas behind ROOA. While

Chapter 7 presented the evolution of the ROOA method, justifying the current version, this

chapter began by discussing the properties that rigorous object-oriented analysis methods

should display, then it evaluated ROOA, by discussing its weaknesses and strengths and

by assessing the resulting LOTOS specification.

Chapter 9. Conclusions and Prospects 209

9.2 Results of the Thesis

Chapter 2 introduced object-oriented analysis methods and formal specifications. It iden

tified the general features of OOA methods and motivated the early use of formal methods

so that a formal requirements specification can be created sooner than usual. This chapter

defined the goals that a formal method should aim for so that a formal object-oriented

specification can be produced, and explored the idea of prototyping, discussing how it can

be used within the ROOA method.

Chapters 3 and 4 described how to model standard object-oriented analysis concepts

in LOTOS. This includes the representation of objects as LOTOS processes with abstract

data types. The LOTOS process specifies the dynamic behaviour of the object, and the

abstract data types, given as parameters of the process, specify its state information. If

the object merely plays the role of an attribute o f another object, it is specified as a single

abstract data type. An abstract data type contains only the equations necessary to allow

the objects to be prototyped with state information and values to be exchanged during

communication.

Two different definitions of a class occur in the literature. We distinguish between: (a)

a class template, used to represent common features of objects of the same kind; and (b) a

class, used to represent a collection of objects. In LOTOS a class template is represented

by a process definition, and a class is represented as an object generator. An object is

a member of a class and is created by instantiating a class template. It is referenced by

using an object identifier. Object identifiers are instances of a special LOTOS abstract

data type, which we have added to the LOTOS library. Each time an object is created,

we use value generation to “ produce” a new identifier for that object.

Interactions between objects (message connections) are represented by LOTOS pro

cess communication constructs. The primitive LOTOS communication construct is event

synchronisation, in which two processes synchronize on a gate, and may exchange data.

Complex object interactions may be built out of simpler interactions, by using the LOTOS

composition operators.

To define inheritance in the LOTOS framework we use technical features o f LOTOS,

Chapter 9. Conclusions and Prospects 210

namely abstract superclasses with exit functionality. We model conceptual relationships

by means o f attributes, which can be an object identifier or a set of object identifiers. The

associations with values are modelled as new objects.

Chapter 4 was concerned with aggregates. It reviewed the definitions of aggregates

from other authors and presented our own view o f aggregates and how we model them in

LOTOS by using the LOTOS parallel composition operators. We consider aggregation as

an important concept to scale up a system. This is the reason why we dedicated a whole

chapter to study that concept.

Chapter 5 was devoted to the formal definition of the basic OOA concepts in terms

of simple mathematical formalisms, such as tuples and functions. The major contribution

of this chapter is to show how the behaviour of objects belonging to the running system

can be derived from the generic definition of the behaviour of the class template. We do

that in a new way, which is different from the approaches followed by most authors, when

trying to give a formal interpretation of an object-oriented specification.

Chapter 6 presented the main result of our work: the Rigorous Object-Oriented Analy

sis (RO OA) method. ROOA enables a formal object-oriented analysis model to be devised

from a set of informal requirements, and results in a formal requirements specification ex

pressed in LOTOS. ROOA consists of three main tasks: building an object model, refining

the object model, and building the formal LOTOS OOA model. Each of these tasks in

volves multiple passes through subtasks. The three tasks are not necessarily sequential:

some parts of the model may be built through to the LOTOS specification before other

parts o f the model are analysed.

The first task, building the object model, may be accomplished in the first pass by

using any of the usual object-oriented analysis methods, such as the methods of Coad and

Yourdon [CY91a], Rumbaugh et al. [RBP"*'91] and Jacobson [Jac92]. The object model

is refined in the second task by passing through three subtasks: completing the ob ject

model, identifying the initial identification of dynamic behaviour, structuring the object

model. The formal LOTOS OOA model integrates the static, dynamic and functional

properties o f the system, and consists of five subtasks: creating the object communication

Chapter 9. Conclusions and Prospects 211

diagram (OCD); specifying the class templates as LOTOS processes and ADTs; composing

objects; prototyping the object model by executing the LOTOS specification; and refining

the specification according to the results of this rapid prototyping.

As LOTOS has a precise mathematical semantics, the resulting model is formal and

unambiguous. Moreover, as LOTOS is executable, tfie model is executable, and so proto

typing can be used to give immediate feedback to clients.

believe that Chapter 6, together with Chapters 3, 4 and 5 constitute the main

contributions of this work.
Chapter 7 described the evolution of the ROOA method during its development. It

explored the problems we faced, the temporary solutions we adopted and the reasons for

moving beyond them. This is useful to appreciate the reasons why ROOA is the way it is.

Chapter 8 presented a critical assessment of the ROOA method and of LOTOS as the

specification language used. It addresses the question of rigorous methods versus formal

methods. Together with Chapter 7, this chapter gives a basis for understanding the main

ideas behind the design of ROOA.

9.3 Future Work on ROOA

9.3.1 Improvements in the R.OOA Method

The development of ROOA is not complete. One area of further investigation is concerned

with Task 1, which could be modified to support the initial analysis of a system with a

strong dynamic component. We also need to devise more specific rules for grouping objects

into subsystems and develop the concept o f communication between objects of the same

class.

A related area of work would be to modify Task 3 (Build the LOTOS Formal Model) so

that other specification languages can be used. This would involve redoing the modelling

o f object-oriented concepts, presented in Chapter 3 and Chapter 4, in the new language.

Another area of further research is related to reusability. The specification o f concep

tual relationships as parameters o f the class templates involved in the relationship seems

Chapter 9. Conclusions and Prospects 212

to go against the idea of reusable objects. There are situations in which two objects exist

in the real world with a specific relationship, but in general, an object exists independently

of its relationships. In this document, the modelling of relationships blurs the definition of

class template, making it more difficult to be used as a reusable component. This problem

needs to be dealt with, and a strategy to create a library of reusable components has to

be investigated.
In the last couple of years researchers have been more and more interested in patterns

as a technique leading to reusability. Patterns are groups of repetitive objects and rela

tionships between these objects, which are likely to occur many times in the same or in

different applications. We are interested in studying how ROOA can handle them.

Finally, we have not yet investigated the optimisation of the various techniques within

ROOA. For example, we do not yet have an algorithm for minimising the number of gates

in the object communication diagram. These issues arc subjects for further research work.

0.3.2 Useful Tools to Support ROOA

We propose the development o f several tools which can support the application of the

ROOA method.

A n O C T generator would take the textual information in an object model and create the

object communication tables. Usually, the object model only contains the class templates

with attributes and services and relationships and message connections between objects.

However, tools exist that allow us to record information in the object model about class

template, services, attributes, etc. Therefore, instead of building the OCT by hand, a

translator could be used. An initial version of such a translator has been developed by

Clark [Cla94a].

A n O C D graphical to o l would take the information in the OCT and produce an object

communication diagram. This tool should allow entities (such as class template and arcs

between them) in the diagram to be moved, maintaining the connections of the entity

moved with the rest of the entities in the diagram. A prototype version o f this tool is

Chapter 9. Conclusions and Prospects 213

being developed during the summer o f 1994 by Chua [Chu94].

A L O T O S gen erator would take the information in an OCT and produce a first outline

of the LOTOS specification for each class template. Recall that the names o f the processes

are in the first column, the gates in the fifth column and the services in the second. The
I

services can be offered in the corresponding LOTOS process as structured events, in choices

of the ‘ [] ’ operator.

A top -leve l behaviou r expression gen erator to create the LOTOS top-level behaviour

expression from an OCD.

A C A S E too l could be developed to integrate the LOTOS tools with the tools described

above and to give us a common base o f information.

9 .3 .3 B r o a d e r A p p lic a t io n s

During the three years of our research we had to divide the time between research, writing

papers and technical reports, improving the ROOA method while applying it to case

studies. We would like to have spent more time applying ROOA to more problems, but

certainly that would have decreased the time available to write and publish technical

papers and reports.

For the future, we plan to apply ROOA to different types of problems, such as

transaction-based systems and real-time systems. We would also like to bring together a

team that would try to apply ROOA to a pilot project for Industry. This would help to

identify areas in which the method is weak and needs further improvement.

9.4 Concluding Remarks

III summary, this thesis has shown that it is possible to combine formal specification

languages with existing object-oriented analysis methods in a practical and effective way.

We believe that it is possible to apply ROOA to create an initial formal requirements

specification which can then be used as the starting point of a formal development strategy.

Bibliography

[AJ90] H. Alexander and V. Jones. Software Design and Prototyping Using me too.

Prentice-Hall, 1990.

[Ame91] P. America. Designing an Object-Oriented Programming Language with Be

havioural Subtyping. In J.W. de Bakker, W.P. de Roever, and G. Rozenberg,

editors, Foundations of Object-Oriented Languages, volume 489 of Lecture

Notes in Computer Science, pages 60-90. Springer-Verlag, 1991.

[AP93] S. Austin and G.I. Parkin. Benefits, Limitations and Barriers to Formal

Methods. Technical report. Division of Information Technology and Com

puting, National Physical Laboratory (NPL), United Kingdom, March 1993.

[BB87] T. Bolognesi and E. Brinksma. Introduction to the ISO Specification Lan

guage LOTOS. Computer Networks and ISDN Systems, 14(1):25 59, 1987.

[BB89] B.W. Boehm and F.C. Belz. Applying Programming to the Spiral Model.

In C. Tulley, editor. Proceedings o f the 4th International Software Process

Workshop: A C M Software Engineering Notes, 14(4):46-56, June 1989.

[BCG83] R.M. Balzer, T .E . Cheatham, and C.C. Green, Software Technology in the

90’s: Using a New Paradigm. IEEE Computer, 16(ll):39-45, November

1983.

[BD92] T. Bar-David. Practical Consequences of Formal Definitions of Inheritance.

Journal o f Object-Oriented Programming, 5(4):43-49, July/August 1992.

214

Bibliogra.pby 215

[BDMN80] G.M. Birtwistle, O.J. Dahl, B. Myrhaug, and K. Nygaard. Simula Begin.

Lund, Sweden: Studentlitteratur, 1980.

[Bel86] F.C. Belz. Applying the Spiral Model: Observations on Developing System

Software in Ada. In 1986 Annual Conference on Ada Technology, pages

57-66, Atlanta, Georgia, 1986. ' •

[Ben56] H.D. Benington. Production o f Large Computer Programs. In ONR Sym

posium on Advanced Program Methods for Digital Computers, pages 15-27,

June 1956. Also in Annals of the History o f Computing, October 1983,

pp350-361.

[Ben83] H.D. Benington. Production o f Large Computer Programs. In Annals o f the

History o f Computing, pages 350-361, 5(4), October 1983.

[Ben88] J. Bentley. Bumper-Sticker Computer Science. In More Programming Pearls.

Addison-Wesley, 1988.

[Ber88] E. Berard. Object Oriented Development for Ada Software. EVB Software

Engineering Inc., 1988.

[Ber89] E. Berard. Object Oriented Requirements Analysis. EVB Software Engi

neering Inc., 1989.

[Ber93] E.V. Berard. Essays on Object-Oriented Software Engineering, volume I.

Prentice-Hall, 1993.

[BG77] R. Burstall and J.A. Goguen. Putting Theories Together to Make Specifica

tions. In 5th IJCAI, pages 1045-1058, Cambridge, Mass, 1977.

[BGHS91] G. Blair, J. Gallagher, D. Hutchison, and D. Shepherd. Object-Oriented

Languages, Systems and Applications. Pitman, 1991.

[BGS84] B.W. Boehm, T.L. Gray, and T. Seewaldt. Prototyping Versus Specifying:

A Multiproject Experiment. IEEE Transactions on Software Engineering,

SE-10(3):290-302, May 1984.

Bibliography

[BGW82]

216

[BoeSl]

R. M. Balzer, N.M. Goldman, and D.S. Wile. Operational Specification as the

Basis for Rapid Prototyping. ACM Software Engineering Notes, 7(5):3-16,

December 1982.

K.S. Bhaskar. How Object-Oriented is your System. SIGPLAN Notices,

18(10);8-11, October 1983.

D. Bjprner and C.B. Jones. Formal Specification & Software Development.

Prentice-Hall, 1983.

S. Black. Objects and LOTOS. Technical report, Hewlett-Packard Labora

tories, Stoke Gifford, Bristol, 1989.

M. Blaha. Aggregation of Parts o f Parts of Parts. Journal of Object-Oriented

Programming, 6(5): 14-20, September 1993.

G.D. Buzzard and T.N. Mudge. Object-Based Computing and the Ada

Programming Language. IEEE Computer, 18(3):12—19, March 1985.

J.P. Bahsoun, S. Merz, and C. Servieres. A framework for programming and

formalizing concurrent objects. In Proceedings o f the First ACM SIGSOFT

Symposium on the Foundations o f Software Engineering: ACM Software En

gineering Notes, 18(5):126-137. ACM Press, December 1993.

B.W. Boehm. Software Engineering Economics. Prentice-Hall, Englewood

Cliffs, N.J., 1981.

B.W. Boehm. Industrial Software Metrics Top 10 List. IEEE Software,

4(5):84- 85, September 1987.

B.W. Boehm. A Spiral Model of Software Development and Enhancement.

IEEE Computer, 21(5):61-72, May 1988.

G. Booch. Software Engineering with Ada. Benjamin/Cummings, 2nd ed.

edition, 1987.

Bibliography 217

[Boo91] G. Booch. Object Oriented Design with Applications. Benjamin/Cummings,

1991.

[Bri94] T.L. Briggs. A Specification Language for Object-Oriented Analysis and

Design. In M. Tokoro and R. Pareschi, editors, E C O O P’94, volume 821 of

Lecture Notes in Computer Science, pa^e^ 365-385. Springer-Verlag, 1994.

[Bro75] F.P. Brooks. The Mythical Man-Month — Essays on Software Engineering.

Addison-Wesley, 1975.

[Bro91] D. Brookman. SA/SD vs OOD. Ada Letters, ll(9):96 -99 , Novem

ber/December 1991.

[BT75] V. Basili and A. Turner. Iterative Enhancement: A Practical Technique

for Software Development. IEEE Transactions on Software Engineering,

l(4):390-396, December 1975.

[CAB'*"94] D. Coleman, P. Arnold, S. Bodoff, C. Dollin, II. Gilchrist, F. Hayes, and

P. Jeremeas. Object-Oriented Development: The Fusion Method. Prentice-

Hall, 1994.

[CDD+89] D. Carrington, D. Duke, R. Duke, P. King, G. Rose, and G. Smith. Object-Z:

An Object-Oriented Extension to Z. In S.T. Vuong, editor. Formal Descrip

tion Techniques, II, pages 281-295. North-Holland, 1989.

[CGR93] D. Craigen, S. Gerhart, and T. Ralston. An International Survey o f In

dustrial Applications of Formal Methods — Purpose, Approach, Analysis,

and Conclusions. Technical Report NISTGCR 93/626, U.S. Department of

Commerce, Technology Administration, National Institute of Standards and

Technology, Computer Systems Laboratory, Gaithersburg, MD 20899, March

1993.

[Che76] P. Chen. The Entity Relationship Model: Toward a Unifying View o f Data.

ACM Transactions on Database Systems, l (l) :9 -3 6 , March 1976.

Bibliography

[Cho92]

[Chu94]

[Civ93]

218

C. Choppy. Prototyping and Formal Specifications. In C.M.I. Rattray

and R.G. Clark, editors, The Unified Computation Laboratory — Modelling,

Specifications, and Tools, pages 141-170. Oxford University Press, 1992.

K.C. Chua. Interviews and Object-Oriented Design. Master’s thesis. Depart

ment of Computing Science and Mathematics, University of Stirling, 1994.

In development.

F. Civello. Roles for Composite Objects in Object-Oriented Analysis and

Design. In Proceedings o f OOPSLA’QS: ACM SIGPLAN Aotices, 28(10):376-

393, October 1993.

[CJ92] R.G. Clark and V.M. Jones. Use of LOTOS in the Formal Development of

an OSI Protocol. Computer Communications, 15(2):86 92, March 1992.

[CL91] E. Cusack and M. Lai. Object-oriented Specification in LOTOS and Z or,

my Cat Really is Object-Oriented! In J.W. de Bakker, W.P. de Roever, and

G. Rozenberg, editors. Foundations o f Object-Oriented Languages, volume

489 of Lecture Notes in Computer Science, pages 179-202. Springer-Verlag,

1991.

[Cla90] R.G. Clark. The Design and Development o f Embedded Ada Systems. Soft

ware Engineering Journal, 5(3):175-184, May 1990.

[Cla91] R.G. Clark. The Development of Concurrent Ada Systems from LOTOS

Specifications. In R.J Mitchell and D. Simpson, editors, Ada into the 90’s,

pages 115-129. Woodhead Publishing Ltd, 1991.

[Cla92a] R.G. Clark. LOTOS Design-Oriented Specification in the Object-Based

Style. Technical Report CSM-84, Department of Computing Science and

Mathematics, University of Stirling, FK9 4LA Stirling, Scotland, April 1992.

[Cla92b] R.G. Clark. Using LOTOS in the Object-Based Development o f Embedded

Systems. In C.M.I. Rattray and R.G. Clark, editors. The Unified Compu-

Bibliography 219

tation Laboratory — Modelling, Specifications, and Tools, pages 307-319.

Oxford University Press, 1992.

[Cla93] R.G. Clark. The Warehouse Problem: Personal Communication, 1993.

[Cla94a] R.G. Clark. An OCT Generator, 1994. Draft.

[Cla94b] R.G. Clark. Construction of LOTOS Behaviour Expressions from Network

Diagrams. Technical Report CSM-124, Department of Computing Science

and Mathematics, University of Stirling, Scotland, 1994.

[Cla94c] R.G. Clark. Inheritance and Reliability. In Proceedings o f TaTTOO’94:

Teaching and Training in the Technology Of Objects, Leicester, January 1994.

[CM94] R.G. Clark and A.M.D. Moreira. Behavioural Inheritance in ROOA. In

R. Wieringa and R. Feenstra, editors. Workshop on Information Systems -

Correctness and reusability (IS-CORE’94), pages 346-356, Amsterdam, The

Netherlands, September 1994.

[Col89] E. Colbert. The Object-Oriented Software Development Method: A Practical

Approach to Object-Oriented Development. In Proceedings o f Tri-Ada’89

— Ada Technology in Context: Application, Development, and Deployment,

pages 400 415, 23(6), October 1989.

[Con89a] L. Constantine. Beyond the Madness of Methods: Systems Structure Mod

eling and Convergent Design. In Software Development ’89: Proceedings.

Miller-Freeman Publishing Co., 1989.

L. Constantine. Object-Oriented and Structured Methods: Toward Integra

tion. American Programmer, 2(7/8):34-40, August 1989.

E. Cusack, S. Rudkin, and C. Smith. An Object-Oriented Interpretation of

LOTOS. In S.T. Vuong, editor, Formal Description Techniques, II, pages

211-226. North-Holland, 1990.

BibIiogra.phy 220

[CY91a] P. Coad and E. Yourdon. Object Oriented Analysis. Yourdon Press, Prentice-

Hall, 2nd edition, 1991.

[CY91b] P. Coad and E. Yourdon. Object-Oriented Design. Yourdon Press, Prentice-

Hall, 1991.

[Dav82] A.M. Davis. Rapid Prototyping Using Dxecutable Requirements Specifica

tions. ACM Software Engineering Notes, 7(5):39-44, December 1982.

[Dav88] A.M. Davis. A Taxonomy of the Early Stages o f the Software Development

Life Cycle. The Journal of Systems and Software, 8(4):297-311, September

1988.

[Dav92] A.M. Davis. Operational Prototyping: a New Development Approach. IEEE

Software, 9(5):70 -78, September 1992.

D. de Champeaux, P. America, D. Coleman, R. Duke, D. Lea, and G. Leav

ens. Formal Techniques for OO Development. In Proceedings o f OOPSLA ’91:

ACM SIGPLAN Notices, 26(11):166-170, November 1991.

D. de Champeaux, D. Lea, and P. Faur. Object-Oriented System Develop

ment. Addison-Wesley, 1993.

[dC089] D. de Champeaux and W. Olthoff. Towards an Object-Oriented Analysis

Technique. In 7th Annual Pacific North West Software Quality Conference,

pages 323-338, 1989.

[DDBP93] E. Dubois, P. Du Bois, and M. Petit. 0 -0 Requirements Analysis: An Agent

Perspective. In O.M . Nierstrasz, editor, E C O O P’93, volume 707 of Lecture

Notes in Computer Science, pages 458-481. Springer-Verlag, 1993.

(DeM79] T . DeMarco. Structured Analysis and System Specification. Prentice-Hall,

1979.

[DN66] O.J. Dahl and K. Nygaard. Simula — An Algol-based Simulation Language.

Communications o f the ACM, 9(9):671-678, September 1966.

Bibliography 221

[DT88] S. Danforth and C. Tomlinson. Type Theories and Object-Oriented Pro

gramming. ACM Computing Surveys, 20(l):29-72, March 1988.

[EGS91] H.-D. Ehrich, J.A. Goguen, and A. Sernadas. A Catégorial Theory of Objects

as Observed Processes. In J.W. de Bakker, W.P. de Roever, and G. Rozen-

berg, editors, Foundations o f Object-Oriented Languages, volume 489 of Lec

ture Notes in Computer Science, pages 203-228. Springer-Verlag, 1991.

[EGS93] H.-D. Ehrich, M. Gogolla, and A. Sernadas. Objects and Their Specifica

tion. In M. Bidoit and C. Choppy, editors. Recent Trends in Data Type

Specification, volume 655 of Lecture Notes in Computer Science, pages 40-

65. Springer-Verlag, 1993.

[EM85] H. Ehrig and B. Mahr. Fundamentals o f Algebraic Specifications, volume I.

Springer-Verlag, 1985.

[ESS89] II.-D. Ehrich, A. Sernadas, and C. Sernadas. Objects, Object Types, and

Object Identification. In H. Ehrig, H. Ilerrlich, H.-J. Kreowski, and G. Preufi,

editors. Categorical Methods in Computer Science, volume 393 of Lecture

Notes in Computer Science, pages 142-156. Springer-Verlag, 1989.

[EW93] II. Eertink and D. Wolz. Symbolic Execution o f LOTOS Specifications. In

M. Diaz and R. Groz, editors. Formal Description Techniques, V, pages 295-

310. North-Holland, 1993.

[Fai85] R.E. Fairley. Software Engineering Concepts. McGraw-Hill, 1985.

[Fir91] D.G. Firesmith. Structured Analysis and Object-Oriented Design are not

Compatible. Ada Letters, 11(9):56-66, November/December 1991.

[FK92] R.G. Fichman and C.F. Kemerer. Object-Oriented and Conventional Analy

sis and Design Methodologies. IEEE Software, 25(10):22-39, October 1992.

Bibliography

[Flo84]

[FMG89]

[FMG90a]

[FMG90b]

[GFM89]

[GHH+92]

[Gib90]

222

C. Floyd. A Systematic Look at Prototyping. In R. Budde, K. Kuhlenkamp,

L. Mathiassen, and H. Züllighoven, editors. Approaches to Prototyping, pages

1-18. Springer-Verlag, 1984.

M . M. Freitas, A.M.D. Moreira, and P. Guerreiro. Choosing Ada Develop

ment Methodologies for a High Reliability Message Switching System. In 4th

AFCEA Hawaii Defense Electronics, Hawaii, December 1989.

M.M. Freitas, A.M.D. Moreira, and P. Guerreiro. Introducing Object-

Oriented Methodologies with Ada in Portugal. In International Conference

o f Asia Pacific D efense’90, Seoul, Korea, November 1990.

M . M. Freitas, A.M.D. Moreira, and P. Guerreiro. Object-Oriented Require

ments Analysis in an Ada Project. Ada Letters, 10(6):97-109, July/August

1990.

N. E. Fuchs. Specifications are (Preferably) Executable. Software Engineering

Journal, 7(5):323-334, September 1992.

SPECS-Specification Generation. Final Methods and Tools for the Gen

eration of Specifications. Technical Report 4 6 /S P E /W P 3 /D S /A /0 0 8 /b l,

INESC, Lisbon, Portugal, December 1992.

P. Guerreiro, M.M. Freitas, and A .M .D. Moreira. Using Object-Oriented

Design with Ada for a High Reliability Message Switching System. In

AFCEA International’s Asia Pacific D efense’89, pages 138-144, Seoul, Ko

rea, September 1989.

C. George, P. Half, K. Havelund, A.E. Haxthausen, R. Milne, C.B. Nielsen,

S. Prehn, and K.R. Wagner. The RAISE Specification Language. Prentice-

Hall, 1992.

E. Gibson. Object — Born and Bred. Byte, 15(10);245-254, October 1990.

BibUogrAphy 223

[GK76] A. Goldberg and A. Kay. Smalltalk-72 Instructional Manual. Technical

Report SSL-76-6, Xerox Parc, Palo Alto, California, March 1976.

[GKK'^88] J.A. Goguen, C. Kirchner, H. Kirchner, A. Megrelis, and J. Meseguer. An

Introduction to 0BJ3. In J.P Jouannaud and S. Kaplan, editors, Proc. Conf.

on Conditional Term Rewriting, number 308 in Lecture Notes in Computer

Science, pages 258-263. Springer-Verlag, 1988.

[Gom83] H. Gomaa. The Impact of Rapid Prototyping on Specifying User Require

ments. ACM Software Engineering Notes, 8(2):17-28, April 1983.

[Got93] R. Gotzhein. Open Distributed Systems. Vieweg Verlag, Wiesbaden, 1993.

[GR83] A. Goldberg and D. Robson. Smalltalk-80: the Language and its Implemen

tation. Addison-Wesley, 1983.

[Gra89] D.R. Graham. Incremental Development: Review of Nonmonolithic Life-

Cycle Development Models. Information and Software Technology, 3 l { l) :7 -

20, January/February 1989.

[Gre89] C.C. Green. Personal Communication with P. Ladkin, 1989.

[GS79] C. Gane and T. Sarson. Structured Systems Analysis: Tools and Techniques.

Prentice-Hall, 1979.

[GS81] H. Gomaa and P. Scott. Prototyping as a Tool in the Specification o f User

Requirements. In 5th International Conference on Software Engineering,

IEEE Computer Society Press, pages 333-342, Washington D.C., 1981.

[Hal90] A. Hall. Seven Myths of Formal Methods. IEEE Software, 7(5):11-19,

September 1990.

[Hed93] M. Hedlund. The Integration o f LOTOS with an Object Oriented Devel

opment Method. In J.C.P. Woodcock and P.G. Larsen, editors, FME ’93:

Industrial-Strength Formal Methods, volume 670 of Lecture Notes in Com

puter Science, pages 73-82. Springer-Verlag, 1993.

Bibliography 224

[HG94] R. Herzig and M. Gogolla. An Animator for the Object Specification

Language TROLL light. In 62ème Congrès de l ’Association Canadienne

Française pour l ’Avancement des Sciences (ACFAS): Orientation Object en

Bases de Données et Génie du Logiciel, pages 4-17, Montreal, Canada, May

1994.
*

[HJ89] LJ. Hayes and C.B. Jones. Specifications are not (Necessarily) Executable.

Software Engineering Journal, 4(6):330-338, November 1989.

[HJS92] T. Hartmann, R. Jungclaus, and G. Saake. Aggregation in a Behavior Ori

ented Object Model. In O.L. Madsen, editor, ECOOP’92, volume 615 of

Lecture Notes in Computer Science, pages 57-77. Springer-Verlag, 1992.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[Hoa94] R. Hoare, C.A. How Did Software Get so Reliable Without Proof? BCS

Proof Club, Edinburgh, March 1994.

[HS92] B. Henderson-Sellers. Object-Oriented Information Systems: An Introduc

tory Tutorial. The Australian Computer Journal, 24(l):12-24, February

1992.

[HS93] G.M. Hoydalsvik and G. Sindre. On the Purpose of Object-Oriented Analy

sis. In Proceedings o f OOPSL A ’93: ACM SIGPLAN Noticcs,28(\0).240-258,

October 1993.

[Hiir94] W.L. Hiirsch. Should Superclasses be Abstract? In M. Tokoro and

R. Pareschi, editors, E C O O P ’94 , volume 821 of L e c tu r e N o te s in C o m p u te r

S c ie n c e , pages 12-31. Springer-Verlag, 1994.

[IEE91] IEEE. IEEE Standard Glossary of Software Engineering Terminology. In

stitute o f Electrical and Electronic Engineers, Inc., New York, USA, 1991.

Revision and redesignation of IEEE Std 729-1983. Reprinted in I E E E S o ft

w are E n g in e e r in g S ta n d a r d s C o l le c t io n , 1993.

BibUogra.phy 225

[Ier93] R. lerusalimschy. A Formal Specification for a Hierarchy of Collections.

Software Engineering Journal, 8(4):237-244, July 1993.

[IH87] D.C. Ince and S. Hekmatpour. Software Prototyping - Progress and

Prospects. Information and Software Technology, 29(1):8-14, Jan-

uary/February 1987. 1

[IS088] ISO. Information Processing Systems — Open Systems Interconnection -

LOTOS : A Formal Description Technique Based on the Temporal Ordering

of Observational Behavior, International Standard 8807. ISO, 1988.

[IS094] ISO. Basic Reference Model o f Open Distributed Processing. ISO/IEC

JTC1/SC21, American National Standards Institute, 1994. Draft standard.

[Jac92] I. Jacobson. Object-Oriented Software Engineering — A Use Case Driven

Approach. Addison-Wesley, 1992.

[JDP89] L. Jadoul, L. Duponcheel, and W . Van Puymbroeck. An Algebraic Data Type

Specification Language and its Rapid Prototyping Environment. In 11th

International Conference on Software Engineering, IEEE Computer Society

Press, pages 74-42, Pittsburgh, Pennsylvania, 1989.

[Jon80] C.B. Jones. Software Development. A Rigorous Approach. Prentice-Hall,

1980.

[Jon86] C.B. Jones. Systematic Software Development Using VDM. Prentice-Hall,

1986.

[Jon93] C.B. Jones. A Pi-Calculus Semantics for an Object-Based Design Notation.

In E. Best, editor, CONCUR’9S, volume 715 of Lecture Notes in Computer

Science, pages 158-172. Springer-Verlag, 1993.

[JSHS91] R. Jungclaus, G. Saakc, R. Hartmann, and C. Sernadas. Object-Oriented

Specification of Information Systems: The TROLL Language. Technical Re-

Bibliography 226

port 91-04, Technische Universität Braunschweig, Informatik Berichte, Post

fach 3329, W-3300 Braunschweig, Germany, December 1991.

[KBC'*'87] W . Kim, J. Banerjee, H. Chow, J.F. Garza, and D. Woelk. Composite

Object Support in an Object-Oriented Database System. In Proceedings o f

O OPSLA’87: A C M SIGPLAN Notices, 22(12):118-125, December 1987.

[Lad94] P. Ladkin. Deriving the Behaviour of Objects: Personal Communication,

1994.

[Lam93] L. Lamport. The Temporal Logic o f Actions. Technical Report 79, Digital

Equipment Corporation, Systems Research Center, November 1993.

[Lam94] L. Lamport. The Temporal Logic o f Actions. ACM Transactions on Pro

gramming Languages and Systems, 1994. To appear.

[Li93] W. Li. A Theory o f Requirements Capture and Its Applications. In M.C.

Gaudel and J.P. Jouannaud, editors, TAPSOFT’93, volume 668 of Lecture

Notes in Computer Science, pages 406-420. Springer-Verlag, 1993.

[Lim93] P. Lim. Applying Rigorous Object-Oriented Analysis. Master’s thesis. De

partment of Computing Science and Mathematics, University of Stirling,

Scotland, September 1993.

[LL94] P.B. Ladkin and S. Leue. Interpreting Message Flow Graphs. Formal Aspects

o f Computing, 1994. To appear.

[LS83] B. Liskov and R. Scheifler. Guardians and Actions: Linguistic Support for

Robust, Distributed Programs. ACM Transactions on Programming Lan

guages and Systems, 5(3):381-404, July 1983.

[LS93] A. Laorakpong and M. Saeki. Object-Oriented Formal Specification Using

VDM . In S. Hishio and A. Yonezawa, editors, Object Technologies for Ad

vanced Software, volume 742 of Lecture Notes in Computer Science, pages

529-543. Springer-Verlag, 1993.

Bibliography 227

[May89] T. Mayr. Specification of Object-Oriented Systems in LOTOS. In K.J.

Turner, editor. Formal Description Techniques, pages 107-119. North-

Holland, 1989.

[MC83] R. Mason and T. Carey. Prototyping Iterative Information Systems. Com

munications o f the ACM, 28(5):347-354, May 1983.

[MC92] A.M.D. Moreira and R.G. Clark. Object-Oriented Analysis and its Rela

tion to Object-Oriented Design. Technical Report CSM-089, Department of

Computing Science and Mathematics, University of Stirling, Scotland, May

1992.

[MC93a] A.M.D. Moreira and R.G. Clark. LOTOS in the Object-Oriented Analysis

Process. In BCS-FACS Workshop on Formal Aspects of Object-Oriented

Systems, Imperial College, London, December 1993. BCS-FACS (British

Computer Society - Formal Aspects o f Computing Science).

[MC93b] A.M.D. Moreira and R.G. Clark. Os Métodos Formáis na Análise de Ori-

entagáo por Objectos. In Ith Brazilian Symposium on Software Engineering,

Rio de Janeiro, Ilrazil, pages 238 252, October 1993. An English version

of this paper is presented in the Technical Report CSM-111, Department of

(’omputing Science and Mathematics, University of Stirling.

[MC93c] A.M.D. Moreira and R.G. Clark. ROOA: Rigorous Object-Oriented Anal

ysis. Technical Report CSM-109, Department of Computing Science and

Mathematics, University of Stirling, Scotland, October 1993.

[MC93d] A.M.D. Moreira and R.G. Clark. Using Rigorous Object-Oriented Analysis.

Technical Report CSM-111, Department of Computing Science and Mathe

matics, University o f Stirling, Scotland, August 1993. Presented at the 7th

Brazilian Symposium on Software Engineering, October 199S.

[MC94a] A.M.D. Moreira and R.G. Clark. Combining Object-Oriented Analysis and

Formal Description Techniques. In M. Tokoro and R. Pareschi, editors,

Bibliography 228

ECOOP’94, volume 821 o f Lecture Notes in Computer Science, pages 344-

364. Springer-Verlag, 1994.

[MC94b] A.M.D. Moreira and R.G. Clark. Complex Objects: Aggregates. Techni

cal Report CSM-123, Department o f Computing Science and Mathematics,

University of Stirling, Scotland, May 1994.

[MC94c] A.M.D. Moreira and R.G. Clark. O Método ROOA. In A. Vaz-Velho and P.G.

Guedes, editors, Object-Oriented Portugal (O O P ’94), pages 67-76, Lisbon,

Portugal, September 1994.

[MC94d] A.M.D. Moreira and R.G. Clark. Rigorous Object-Oriented Analysis. In

E. Bertino and S. Urban, editors. International Symposium on Object-

Oriented Methodologies and Systems (ISOOMS), volume 858 of Lecture Notes

in Computer Science, pages 65-78. Springer-Verlag, 1994.

[MC94e] A.M.D. Moreira and R.G. Clark. Specification Case Studies in ROOA. Tech

nical Report CSM-129, Department o f Computing Science and Mathematics,

University o f Stirling, Scotland, October 1994.

[McC93] A. McClenaghan. Distributed Systems: Architecture-Driven Specification Us

ing Extended LOTOS. PhD thesis. Department o f Computing Science and

Mathematics, University o f Stirling, Scotland, September 1993.

[MF^G89] A.M.D. Moreira, M.M. Freitas, and P. Guerreiro. Using Object Oriented

Requirements Analysis for a High Reliability Message Switching System. In

AFCEA Portugal, Lisbon, Portugal, May 1989.

[MGh’90] A.M.D. Moreira, P. Guerreiro, and M.M. Freitas. Métodos de Análise de Req

uisitos Orientada pelos Objectos. In VI Congresso Portugués de Informática,

Lisbon, Portugal, June 1990.

[Mil56] G.A. Miller. The Magical Number Seven, Plus or Minus Two: Some Lim

its on Our Capacity for Processing Information. The Psychological Review,

Bibliography 229

63(2):81-97, March 1956. Reprinted in Yourdon Writings o f the Evolution,

pages 443-460, 1982.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[MLC94] A.M.D. Moreira, P.B. Ladkin, and R.G. Clark. Formalizing OO Analysis

with LOTOS. Technical Report CSM-125* Department of Computing Science

and Mathematics, University of Stirling, Scotland, August 1994.

[NW93] F. Nickl and M. Wirsing. A Formal Approach to Requirements Engineering.

In D. Bjorner and M. Broy, editors. Formal Methods in Programming and

Their Applications, volume 735 o f Lecture Notes in Computer Science, pages

312-334. Springer-Verlag, 1993.

[Ode94] J. Odell. Six Different Kinds o f Composition. Journal o f Object-Oriented

Programming, 6(8): 10 15, January 1994.

[Par72] D.L. Parnas. On the Criteria to be Used in Decomposing Systems into

Modules. Communications o f the ACM, 5(12): 1053-1058, December 1972.

[PC86] D.L. Parnas and P.C. Clements. A Rational Design Process: How and Why

to Fake It. IEEE Transactions on Software Engineering, SE-12(2):251-257,

February 1986.

[Pet88] L.J. Peters. Advanced Structured Analysis and Design. Prentice-Hall, 1988.

[PKT92] N. Plat, J. Katwijk, and H. Toetenel. Application and Benefits of Formal

Methods in Software Development. Software Engineering Journal, 7(5):335-

346, September 1992.

[Por92] H. H. Porter. Separating the Subtype Hierarchy from the Inheritance o f Im

plementation. Journal o f Object-Oriented Programming, 4(9):20-29, Febru

ary 1992.

[Rat88] B. Ratcliff. Early and Not-so-Early Prototyping - Rationale and Tool Sup

port. In 12th Annual International Computer Software and Applications

BibIiogra,phy 230

Conference, COM PSAC’88, IEEE Computer Society Press, pages 127-134,

Chicago, October 1988.

[RBP'*‘ 91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-

Oriented Modelling and Design. Prentice-Hall, 1991.

[RG92] K.S. Rubin and A. Goldberg. Object Behaviour Analysis. Communications

o f the ACM, 35(9):48-62, September 1992.

[Roy70] W .W . Royce. Managing the Development of Large Software Systems: Con

cepts and Techniques. In WESCON, San Francisco CA, August 1970.

[RS88] J. Reif and S.A. Smolka. The Complexity o f Reachability in Distributed

Communicating Processes. Acta Informatica, 25:333-354, 1988.

[Rud92] S. Rudkin. Inheritance in LOTOS. In K.R. Parker and G .A . Rose, editors.

Formal Description Techniques, IV, pages 409 423. North-Holland, 1992.

[Rud93] S. Rudkin. Templates, Types and Classes in Open Distributed Processing.

BT Technology Journal, 11(3):32-40, July 1993.

[SB82] W. Swartout and R.M. Balzer. The Inevitable Intertwining of Specifica

tion and Implementation. Communications o f the ACM, 25(7):438 440, July

1982.

[SBC92] S. Stepney, R. Barden, and D. (editors) Cooper. Object Orientation in Z.

Springer, 1992.

[Shu91] K. Shumate. Structured Analysis and Object-Oriented Design are Compat

ible. Ada Letters, 11(4):78 90, May/June 1991.

[SM89] S. Shlaer and S.J. Mellor. An Object-Oriented Approach to Domain Analysis.

ACM Software Engineering Notes, 14(5):66-77, July 1989.

[SM92] S. Shlaer and S.J. Mellor. Object Lifecycles — Modeling the World in States.

Prentice-Hall, 1992.

Bibliogr&phy 231

[Smi91] M.F. Smith. Software Prototyping — Adoption, Practice and Management.

McGraw-Hill, 1991.

[Som92] 1. Sommerville. Software Engineering. Addison-Wesley, 4th edition, 1992.

[Spi89] J.M. Spivey. The Z Notation. Prentice-Hall International, 1989.
I

[SS77] J.M. Smith and D.C.P. Smith. Database Abstractions: Aggregation. Com

munications o f the ACM, 20(6):405-413, June 1977.

[Sta93] M. Stark. Impacts o f Object-Oriented Technologies: Seven Years of

SEL Studies. In Proceedings o f OOPSLA’93: ACM SIGPLAN Notices,

28(10):365-373, October 1993.

[Tur93] K.J. Turner, editor. Using Formal Description Techniques. John Wiley &

Sons, 1993.

[TY92] S. Tysyberowicz and A. Yehudai. OBSERV-A Prototyping Language and

Environment. ACM Transactions on Software Engineering and Methodology,

l(3):269-309, July 1992.

[vEVD89] P.H. van Eijk, C.A. Vissers, and M. Diaz, editors. The Formal Description

Technique LOTOS: Results of the ESPRIT/SEDOS Project. North Holland,

1989.

[Wal91] N.L. Walters. An Ada Object-Based Analysis and Design Approach. Ada

Letters, ll(5):62 -78 , July/August 1991.

[War89] P. Ward. How to Integrate Object Orientation with Structured Analysis and

Design. IEEE Software, 6(2):74-82, March 1989.

[WBWW90] R. Wirfs-Brock, B. Wilkerson, and L. Wiener. Designing Object-Oriented

Software. Prentice-Hall, 1990.

[Weg87] P. Wegner. Dimensions o f Object-Based Language Design. Special Issue o f

SIGPLAN Notices, 22(12):168-182, October 1987.

Appendix A. LOTOS Overview 234

relationships among such interactions.

Process behaviour is described using behaviour expressions that consist of external,

observable events and internal, externally unobservable events. Processes are composed

by using the parallel operators and they interact with each other through synchronization

on events. An event is atomic and takes place at an event gate (or just gate). It appears

in a process definition and is composed of a gate nafne followed by a set of arguments

in which the operator “ !” is used in the form !v where v is a value expression, and the

operator “ ?” is used in the form ?x : s where x is a variable of the sort s.

For example, in the event:

ga te .n a m e !v a l ? x : Hat

the term !v a l indicates that the value va l is to be transmitted and the term ?x : Nat

indicates that any value of the sort Nat can be accepted and assigned to x.

There are restricted conditions in which events synchronize. The event:

gate_naune !val !num

would synchronize with the event above if !num is some value of sort Nat.

Table A .l summarizes the three types of synchronization [BB87].

Process
A

P rocess
B

C ondition o f
S ynchronization

Interaction
T y p e

Effect

K ' K value(Ej) =
value(£'2)

value matching synchronization
occurs

K ii-’i g ?x: s sort(£'i) = s value passing after synchronization
x = value(E\)

g ?y: w g lx : s W = 8 value generation after synchronization
y = X = V, where v is
some value of sort w

Table A .l : Interaction types

Value matching is used to ensure synchronization is achieved. Value passing is used

Appendix A. LOTOS Overview 235

to pass a value to a variable. Value generation allows the introduction of uninstantiated

variables.

A process definition has the following syntax:

process process_name [list o f gates](list of parameters) : functionality : =

(* behaviour expression *)

w h ere

(* data type definitions *)

(* process definitions *)

e n d p roc

The functionality can be; ex it, meaning that the process may terminate successfully,

n oexit, meaning that the process cannot terminate (perhaps because it recursively calls

itself) and exit (result), meaning that the process may terminate successfully and return

a result. (“ (* ” begins a comment and “ *)” ends it.)

The body of the process defines its behaviour in terms o f its process components (if

any) and the events in which it can take part. We can also define abstract data types

within a process definition.

Here is a simple example o f a process that offers a value greater than the value received

as a parameter:

p r o c e s s G r e a t e r V a lu e fg] (c o u n t : N at) : n o a x it :=

g ? n c o u n t : Nat [n cou n t g t c o u n t] ;

G re a te r V a lu a C g](n co u n t)

an d p roc

The process GraatsrValu« is defined recursively and uses gate g for synchronization with

other processes.

The behaviour expression:

g T n co u n t: Nat [n cou n t g t c o u n t] ;

offers a value of sort Nat for synchronization. The selection predicate [ncount g t count]

guarantees that only values greater than the value offered in the previous instantiation are

allowed.

Appendix A. LOTOS Overview 236

A .3 Abstract Data Types

LOTOS represents data as abstract data types (ADTs) using the language ACT ONE.

An AD T definition is rather lengthy and complex although this can be made easier by the

provision of an extensive library of predefined ADTs.

The structure used to define a type is always the same, with the sections in the following

order (some of these sections are optional);

ty p e type_name is

(* list of imported definitions *)

sorts sort_name

opns

(* list of operations *)

eqns forall

(* list of variables *)

o fsort a^ort_name

(* list of equations *)

o fsort a_sort_name

(* list of equations *)

en d typ e

The ty p e section gives the name of the definition (this is the name that should be used to

combine different definitions). A list o f imported definitions can appear after the keyword

is. The sorts section gives the name of the data sorts. The opns section gives the

signature of the operations. An operation is a function with zero or more sorts as its

domain and with only one sort as its codomain. The eqns section specifies, in terms o f

equations, the constraints the operations must satisfy. This section uses the keyword eqns

forall after which we declare the variables that are going to be used in the equations, and

the keyword ofsort after which we define the result sort o f the equations and then the

equations themselves. Because different equations can have different result sorts, the latter

Appendix A. LOTOS Overview 237

keyword can appear repeatedly.

The next example defines a stack o f natural numbers as a LOTOS ADT:

ty p e S ta c k .T y p e i s N aturalH um ber, B oo lea n

s o r t s S ta ck

opns E m ptyStack : -> S ta ck

Push : S ta c k , Nat -> S ta ck

Pop : S ta ck -> Nat

IsEm pty : S ta ck -> B oo l

eqns l o r a l l s : S ta c k , n l : Nat

o f s o r t Nat

P o p (P u s h (s , n l)) = n l ;

P op (E m ptyS tack) = 0 ;

o f s o r t B oo l

IsE m pty(E m ptyS tack) = t r u e ;

Is E m p ty (P u sh (s , n l)) = f a l s e ;

en d p roc

The operations Push and EmptyStack are constructors, i.e. they create a value of the

ADT, and they do not have any defining equations. The constant “0” has been defined

to be of sort Nat in type NaturalNumber. It is used here to indicate an error when the

Pop operation is applied to an empty stack. This is only an example, and should not be

considered the best definition of a stack.

A .4 Overall Structure of a LOTOS Specification

A general LOTOS specification has the following structure;

specification specification-name [list o f gates](list of parameters) : functionality

(* data type definitions *)

library ...endlib
type . . . endtype
type . . . endtype

Appendix A. LOTOS Overview

(* process definitions *)

behaviour

(* behaviour expression *)

w here

process .. .en d p roc

process .. .en d p roc

In the library are defined the commonly used data types that can be used either directly

or in the construction o f more complex data types. In the behaviour part it is possible

to have both abstract data type definitions and nested process definitions. However, the

option of defining ADTs inside a process is not much used, because ADT definitions are

often long and it would make the process more difficult to understand.

Table A .2 summarizes the syntax o f the most common behaviour expressions. These

can be combined to define complex behaviour expressions.

For further reading on the LOTOS language, see for example [BB87, Tur93].

Appendix A. LOTOS Overview 239

Name Syntajt .

inaction s t o p
term ination e x i t
term ination with parameters e x i t (£ ' i , . . , , E „)

choice B i D B 2

generalized-choice c h o i c e v.'T’ [] B

c h o i c e j in [f fi.......... g n] \ \ B

action-prefix:
observable (external) g , B

observable with selection predicate g d\ . . . d n [C E \ \ B

unobservable (internal) i - B

parallel com position :
general case B \ |[^l, . . . , 9n]| B 2

interleaving B i III B 2

full synchronization B x II B 2

hiding h id e g i , . . . , g „ in B

process instantiation n g i g n] { E x . . . E „)

guarding [C E \ - > B

disabling B x [> B 2

enabling B x » B 2

enabling with value passing B x » a c c e p t ; T x , . . . , v „ : T „ in B2

local definition le t r i ; T x = E x , . . . , v „ ; T „ = E „ in B

Legend:

B2 : behaviour expressions T] , . . . , Tn : sort identifiers
v i , vn : variable identifiers En • value expressions

01 f • • t 9n i gate identiflers CE : conditional expression

d i,.. . , dn : experim ent ofTera P \ process identifier

Table A .2: Syntax o f the most important LOTOS operators

A ppen dix B

Additions to the LOTOS

Libraries

Although LOTOS conies with libraries where some data types are defined, we must specify

almost all the data types we need. Most of these data types are defined based on the ones

exported by the library. Each object needs an identifier to allow it to be referenced by other

objects or by the external world. Instead of defining from scratch an identifier for each

object, we have included in the library the abstract data types Id_Type and Set_Id_Type
to be used as a starting point.

B .l Defining a Type Identifier

Id_Type is an identifier definition and we specify it as follows:

typ* Id_Typ* !• Boolean, laturallumbar

aorta Id

opna Id l, ld 2 , ld3, ld4, idS, IdO, ld7, idS, ld 9 , IdlO, i d l l ,

ld l2 , ld l3 , ld l4 , id l6 , ld l6 , ld l7 , Id le , IdlO, ld20 : -> Id

aq, _na_, _ l t _ : Id, Id -> Bool

h : Id -> Bat

F irat.S a t : Id -> Bool

Sacond.Sat : Id -> Bool

240

Appendix B. Additions to the LOTOS Libraries 241

Third_Set : Id -> Bool
Fourth_Set : Id -> Bool

eqns lorall nl, n2: Id
ofsort Nat
h(idl) = 0;
h(id2) = succ(h(idl));
h(id3) = succ(h(id2));
h(id4) = succ(h(id3));
h(id6) = succ(h(id4));
h(id6) = succ(h(id5));
h(id7) = succ(h(id6));
h(id8) = succ(h(id7));
h(id9) = succ(h(id8));
h(idlO) = succ(h(id9));
h(ldl2) = succ(h(idll));
h(idl3) = succ(h(idl2))
h(idl4) = succ(h(idl3))
h(idl5) = succ(h(idl4))
h(idl6) = succ(h(idl6))
h(idl7) = succ(h(idl6))
h(idl8) = succ(h(idl7))
h(idl9) = succ(h(idl8))
h(id20) = succ(h(idl9))¡

ofsort Bool
nl aq n2 h(nl) aq h(n2) ;
nl na n2 > h(nl) na h(n2);
nl It n2 a h(nl) It h(n2);
First_Sat(nl) > h(nl) It hCidB);
Sacond_Sat(nl) > not(h(nl) It h(ld6)) and (h(nl) It h(ldlO));
Third_Sat(nl) - not(h(nl) It h(idlO)) and (h(nl) It h(ldl6))¡
Fourth_Sat(nl) ■ not(h(nl) It h(idl6)) and (h(nl) It h(ld20))¡

andtypa

Appendix B. Additions to the LOTOS Libraries 242

We have defined 20 different identifiers, but we can define as many as we want. We also

define the operations First-Set, Second-Set, Third Sat and Fourth-Set in order to

allow different classes of objects to share the same sort o f identifiers. This is required to

specify subclasses (see Section 3.3.9).

B.2 Defining Sets of Identifiers

In a normal situation we need to be able to create multiple objects of the same class tem

plate. In order to accomplish that we specify the AD T Set_Id_Type which permits us to

define sets of Id_Type. The standard LOTOS libraries already include the parameterized

AD T Set for sets. Set has two formal parameters. Element, which is actualized with

Id, and FBool which is actualized with Bool. (Bool is a sort for booleans defined in the

LOTOS libraries.)

Therefore, the definition of S e t—Id_Type is an actualization of the Set ADT, as follows:

ty p o S e t_ Id _T y p o i s S ot a c t u a l i z e d b y Id _T yp o u s in g

sortn am os Id l o r E lom ont

B oo l f o r F B ool

en d ty p o

With these two ADTs added to the library, we can define new abstract data types for sets

o f object identifiers by renaming S et-Id -T yp e , using Set type and Id-Type as arguments.

For example, for the banking system, we can define Account-Number-Sot_Type:

ty p o A ccou n t_Iu m b or_S ot_T yp e i s S o t_ Id _T y p o

ronam odby

s o r tn a n o s A cco u n t .lu m b o r f o r Id

A c c o u n t_ lu n b o r _ S o t f o r S o t

on d ty p o

This defines the sort Account .Number and the sort Account.Number.Set.

A ppendix C

Publications

W p started working with object-oriented and object-based methods for analysis and design

in 1988 and with formal specification languages in 1991. Here we present a list of our

publications on these subjects. ('I'lie full references including co-authors are given in the
liibliography.)

C .l Articles in Conferences and Journals

• Combining Object-Orirnted Analysis and Formal Description Techniques, 8th Euro

pean Conference on Object-Oriented Programming, ECOOP’94, Lecture Notes in

(iornputer Science, volume 821, Hologna , Italy, July 1994.

• Rigorous Object-Oriented Analysis, International Symposium on Object-Oriented

Methodologies and Systems (ISOOMS), Lecture Notes in Computer Science, volume

8.58, Palermo, Italy, .September 1994.

• O MeUnlo ROOA, Object-Oriented Portugal, O O P’94, Lisbon, Portugal, September
1994.

• Behavioural Inheritance in ItOOA, 4th Workshop on Information Systems - Cor

rectness and reusability (IS-CORE’94), Amsterdam, The Netherlands, September
1994.

24.3

Appendix C. PubUca,tions 244

• Os Métodos Formats na Andlise de Orientagdo por Objectos, 7th Brazilian Sympo

sium on Software Engineering, Rio de Janeiro, Brazil, October 1993.

• LOTOS in the Object-Oriented Analysis Process, BCS-FACS Workshop on Formal

Aspects of Object-Oriented Systems, December 1993.

• Introducing Object-Oriented Methodologies wit,h Ada in Portugal, International Con

ference of Asia Pacific Defense’90, Seoul, Korea, November 1990.

• Object-Oriented Requirements Analysis in an Ada Project, Ada Letters, 10(6), July/

August 1990.

• Métodos de Andlise de Requisitos Orientada pelos Objectos, VI Congresso Portugués

de Informática, Lisbon, Portugal, June 1990.

• Choosing Ada Development Methodologies for a High Reliability Message Switching

System, 4th AFCEA Hawaii Defense Electronics, Hawaii, December 1989.

• Using Object-Oriented Design with Ada for a High Reliability Message Switching

System, AFCEA International’s Asia Pacific Defense’89, Seoul, Korea, September

1989.

• Using Object Oriented Requirements Analysis for a High Reliability Message Switch

ing System, AFCEA Portugal, Lisbon, Portugal, May 1989.

C.2 Technical Reports

• Specification Case Studies in ROOA, Department of Computing Science and Math

ematics, University of Stirling, CSM-129, Scotland, October 1994.

• Formalizing OO Analysis with LOTOS, Department o f Computing Science and

Mathematics, University of Stirling, CSM-125, Scotland, August 1994.

• Complex Objects: Aggregates, Department of Computing Science and Mathematics,

University o f Stirling, CSM-123, Scotland, May 1994.

A ppen dix D

Acronyms

This appendix contains a list of acronyms used in the thesis.

Acronyms Expansion
Abstract Data Type
Computer Aided Software Engineering
Calculus of Communicating Systems
Communicating Sequential Processes
Data Flow Diagram
Entity-Relationship Diagram
Event Trace Diagram
Formal Description Technique
International Organisation for Standardisation
LOTOSPHERF2 Integrated Tool Environment
Language Of Temporal Ordering Specification
Object Communication Diagram
Object Communication Table
Open Distributed Processing
Object Modelling Technique
Object-Oriented Analysis
Object-Oriented Design
Object-Oriented Software Engineering
Open Systems Interconnection
Rigorous Object-Oriented Analysis
Software Environment for the Design of Open Distributed Systems
Temporal Logic o f Actions

246

